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Preface

This volume contains the proceedings of the 4th International Conference on In-
formation and Communications Security (ICICS 2002). The three previous con-
ferences were held in Beijing (ICICS 97), Sydney (ICICS 99) and Xian (ICICS 01),
where we had an enthusiastic and well-attended event. ICICS 2002 is sponsored
and organized by the Laboratories for Information Technology, Singapore, in
co-operation with the Engineering Research Center for Information Security
Technology of the Chinese Academy of Sciences and the International Com-
munications and Information Security Association (ICISA).

During the past five years the conference has placed equal emphasis on the
theoretical and practical aspects of information and communications security
and has established itself as a forum at which academic and industrial people
meet and discuss emerging security challenges and solutions. We hope to uphold
this tradition by offering you yet another successful meeting with a rich and
interesting program.

The response to the Call For Papers was overwhelming, 161 paper submissions
were received. Therefore, the paper selection process was very competitive and
difficult – only 41 papers were accepted and many good papers had to be rejected.
The success of the conference depends on the quality of the program. We are
indebted to our program committee members and the external referees for the
wonderful job they did.

Before letting you enjoy the technical program, we would like to thank several
individuals who skilfully and tirelessly put this conference together. First, Robert
Deng would like to thank Prof. Sihan Qing for proposing to have this conference
in Singapore. Next, our special thanks to the conference organizing committee,
in particular Feng Bao (Local Arrangements), Jianying Zhou (Publicity and
Publication), and Patricia Loh (Logistics and Registration). Without the hard
work by all these folks, this conference would not have been possible.

Finally, we would like to thank the authors who submitted papers and the par-
ticipants from all over the world who chose to honor us with their attendance.

September 2002 Robert Deng
Sihan Qing
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Defenses against the Truncation
of Computation Results of Free-Roaming Agents

Jeff S.L. Cheng and Victor K. Wei

Department of Information Engineering
The Chinese University of Hong Kong

��������	
�������������������

Abstract. Yee [Yee97] and Karjoth, et al. [KAG98] proposed schemes to pro-
tect the agent data. Various degrees of forward integrity were achieved by their
results, among other benefits. A known vulnerability of their techniques is the
truncation attack where two visited hosts (or one revisited host) can collude to
discard the partial results collected between their respective visits. In this paper
we propose several defenses against the truncation attack and the related grow-
ing-a-fake-stem (“stemming”) attack for the protection of the partial computa-
tion results of free-roaming agents. In Protocol N1, we use a co-signing tech-
nique to prevent the two-colluder truncation attack. Generalizations of N1 can
further raise the threshold number of colluding hosts we can defend. Protocol
N2 does not prevent truncation or stemming.  It detects stemming and identifies
the exact pair of colluders for prosecution. Protocol N2 mainly relies on mutual
authentication techniques. 

Keywords: mobile agent security, malicious host, truncation attack, agent route
protection, cryptographic protocols.

1 Introduction

Mobile agents are software programs that can autonomously migrate from host to
host. During their execution, they work on behalf of their owners in order to fulfill
their goals. Free-roaming mobile agents are free to choose their respective next hops
dynamically based on the data they acquired from their past journeys.

Yee [Yee97] proposed using a Partial Result Authentication Code (PRAC) to en-
sure the integrity of the offers acquired from the hosts. In their scheme, an agent and
its originator maintained a list of secret keys, or a key generating function. The agent
used a key to encapsulate the collected offer and then destroyed the key. However, a
malicious host may keep the key or the key generating function. When the agent re-
visits the host or visits another host conspiring with it, a previous offer or series of
offers would be modified, without being detected by the originator.

Karjoth, et al. [KAG98] extended Yee’s results. In the KAG scheme, each host
generated a secret signature function for its successor and certified the corresponding
verification predicate. Using the received signature/verification function pair, a host
signed its partial result and certified a new verification function provided to the next
host. Their scheme could resist the modification attack in Yee’s scheme but not a two-
colluder truncation attack.  In this attack, a host with the agent at hand colludes with
a previously visited host to discard all entries between the two visits.   (Or a host
revisited by the agent can discard all entries between its two visits.)  The grow-a-fake-
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stem  (“stemming”) attack is the simultaneous attack of the two-colluder truncation
attack and the insertion of one or more chained fake offers in place of the truncated
results.

Loureiro, et al. [LMP99] and Lam, et al. [LW02] proposed schemes to protect the
agents. They noticed similar truncation issues in their protocol.

The two-colluder truncation attack and stemming attack have been identified in the
literature as a known and open problem. To the best of our knowledge, there have
been no effective solutions proposed to counter these attacks on a single agent. The
main purpose of this paper is to propose several defenses against these attacks.

(During the preparation of our paper, Roth’s results on the KAG protocols [Rot01a,
Rot01b, Rot02] and the results of Vijil, et al. on identifying collusions [VI02] came to
our attention. We plan to conduct further research on some of the issues raised there.)

Our Contribution. In this paper, we propose two new protocols (N1 and N2) for
protecting the computation results of free roaming mobile agents:

•  Truncation defense: We propose a new data collection protocol (N1) that prevents
the two-colluder truncation attack in a free roaming agent.  The main technique is
to require an external party, typically the precedingly-visited host, to co-sign the
agent migration.   Therefore, two colluders are not sufficient to effect a truncation
attack.   At least three colluders are needed (not counting the revisitation case).
Generalizations of our protocol can further raise the threshold number of colluding
hosts needed to effect a truncation attack.

•  Stemming culprit identification: Upon receiving the returning agent, the originator
can detect the unsigned offers on the fake stem and discard them.   In this paper,
we are interested in enabling the originator to identify the exact pair of colluders
who administered the stemming attack.  We present Protocol N2 for accomplishing
this.  Our main technique is to require the sending host and the receiving host in an
agent migration protocol to authenticate to each other. The authentication chal-
lenges-and-responses are encapsulated and carried along by the agent.   By exam-
ining the validity (or the lack of) of the authentication data, the originator will be
able to determine the identities of the two colluders and seek prosecution. We also
propose using Protocol N2 to implement a spot-check scheme to defend the trun-
cation attacks.

Both protocols N1 and N2 are motivated by, and are extensions of, protocols in
[KAG98]. The techniques demonstrated in these protocols can be generally applied to
other protocols.

Structure of the Paper. The rest of the paper is organized as follows: Section 2
specifies the notations and security properties in the agent environment. Section 3
reviews the previous work of Karjoth, et al. (K1) and studies the attacks against it.
Section 4 gives the counter measurements to two-colluder truncation attacks (N1).
Section 5 proposes a protocol (N2) to identify the culprits in stemming attacks. We
have a concluding remark at section 6.

2 Notations and Assumptions

In this paper, we follow the comparison-shopping scenario studied in [KAG98]. An
agent receiving a request from its originator S0 will obtain a list of hosts, {S1,…,Sn}
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from a directory server. This list may be updated during the agent’s journey on the
network. The agent will collect intermediate results oi from a host Si. This offer oi is
cryptographically encapsulated into Oi.

Table 1. Model Notations

S0 = Sn+1 The originator.
Si, 1 ≤  i ≤  n The hosts.

oi, 1 ≤  i ≤  n The offers from Si. The identities of Si are explicitly specified in oi.

Oi, 1 ≤  i ≤  n The encapsulated offers (cryptographically protected oi) from Si.

hi, 1 ≤  i ≤  n Integrity check values associated with Oi.
V A victim host whose identity is specified in a fake offer by the attackers.
O0, O1,…,On The chain of encapsulated offers from hosts S1, S2,…,Sn.

Table 2. Cryptographic Notations

ri A random number generated by Si.
(

iν ,
iν )

iν  is the private key of Si and iν is the associated public key.

(
iµ ,

iµ ) The secret private/public key pair used by Si.

),(
0 irmEncν A message m asymmetrically encrypted with the public key 

0ν  of S0.

)(mSig
iν The signature of Si on a message m using its private key 

iν .

),( νσVer A signature verification function with data recovery for signature σ
and public key ν .

H(m) A one-way, collision-resistant hash function.
m

1
 || m

2
The concatenation of messages m

1
 and m

2
.

[m] A message m sent via a confidential channel.
Alice →  Bob: m Alice sending message m to Bob.

A public key infrastructure is assumed in the mobile agent environment. Each host
Si has a certified private/public key pair (

iν ,
iν ). Given a signature expressed

as )(mSig
iν

, we assume that anyone could deduce the identity of S
i
 from it. The chain

of encapsulated offers O1, O2,…,On is an ordered sequence. Each entry of the chain
depends on some of the previous and/or succeeding members. A chaining relation
specifies the dependency. The model notations are summarized in table 1 and the
cryptographic notations are given in table 2.

Definition 1 An agent is defined as A = (I, C, S) where I is the identity, C is the code
and S is the state of the agent. Both I and C are assumed to be static while S is vari-
able. I is in the form of (IDA || SeqA), where IDA is a fixed identity bit string of the
agent and SeqA is a sequence number which is unique for each agent execution. The
originator signs )(

0 AhSigν , where hA = H(I || C) is the agent integrity checksum and

)(
0 AhSigν  is the certified agent integrity checksum. The agent carries this certified

checksum, allowing the public to verify the integrity of I and C and deduce the iden-
tity of S

0
.
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Security Properties. We incorporate and extend the set of security properties defined
in [KAG98]. Assume that an agent after visiting m undetermined hosts, m ≤  n, is
captured by an attacker. This attacker, possibly the host Sm+1, obtains a chain of en-
capsulated offers O0, O1,…, Om. Some hosts excluding Sm may collude with the at-
tacker. Letting 1 ≤  i ≤  m and assuming an agent environment with a security threshold
parameter L, we have the following security properties.

S1. Data Confidentiality: Only the originator can extract the offers oi from the encap-
sulated offers Oi.

S2. Non-repudiability: Si cannot deny submitting oi once S0 receives oi.
S3. Forward Privacy: No one except the originator can extract the identity informa-

tion of the hosts Si by examining the chain of encapsulated offers.
S4. Strong Forward Integrity: None of the encapsulated offers Oj, j < m, can be

modified.
S5. Publicly Verifiable Forward Integrity: Anyone can verify the offer oi by checking

whether the chain is valid at Oi.
S6. Insertion Defense: No offer can be inserted at i unless explicitly allowed, i.e.,

Sm+1. It is not possible for Sm+1 to insert more than one offers unless Sm+1 colludes
with some specific L hosts.

S7. Truncation Defense: Truncation at i is not possible unless some specific L hosts
collude with Si to carry out the attack.

Compared to the set of security properties defined in [KAG98], our notions
strengthened the definitions of truncation resilience and insertion resilience to S6 and
S7 such that it requires more than L colluders to carry out the attacks.

3 The Karjoth, et al. Protocol (K1)

We have combined the KAG protocols P2 and P4 to K1. The main technique in K1 is
to set up a signature chain. To start the protocol, the originator S0 randomly generates
r0 and a private/public key pair (

1µ ,
1µ ). S0 also calculates a hashed value h0 from r0

and the identity of S1. Then, S0 encrypts a dummy offer using its own public key 0ν .

S0 includes this encrypted value, h0 and 
1µ  in a dummy encapsulated offer O0. Fi-

nally, S0 signs O0 by its private key 
0ν  and sends O0 and 

1µ  to S1.

When the agent arrives at host Si, it contains the set of previously collected encap-
sulated offers Ok, 1 ≤  k < I, and a secret key [

iµ ]. From Oi-1, hi can be calculated.

Host Si generates a private/public key pair (
1+iµ ,

1+iµ ) and includes the public key

1+iµ , hi and a signed-then-encrypted offer of o
i
 in the encapsulated offer Oi. The en-

capsulated offer Oi is further signed by 
iµ .

Algorithmic description (K1)
•  Agent creation protocol. S

0
 should do the following:

1. Offer encapsulation and chaining relation
1.1. h0 = H(r0 || S1)
1.2. ),)(( 10000 00

µνν ,  h, roEnc Sig O =
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2. Agent transmission
2.1. Host S0 →  Host S1: Π , O0, [ 1µ ]

•  Agent migration protocol at Si, 1 ≤  i ≤  n. S
i
 should do the following:

3. Agent verification
3.1. Receive O0, O1,…,Oi-1, [ iµ ]

3.2. Ver(O0, 0ν ), recover h
0
, 

1µ
3.3. Ver(Ok, kµ ), recover h

k
, 

1+kµ  recursively, for 1 ≤  k ≤  i – 1

4. Offer encapsulation and chaining relation
4.1. hi = H(Oi-1 || ri

 || Si+1)
4.2. ),),),((( 10 += iiiii hroSigEncSigO

ii
µννµ

5. Agent transmission
5.1. Host Si →  Host Si+1: Π , {Ok | 0 ≤  k ≤  i}, [

1+iµ ]

Remark 1: In the rest of this paper, we assume that the identity I, code C and )(
0 AhSigν

of the agent are sent from Si to Si+1, but for simplicity, they are not specified in the
algorithmic description.

Remark 2: We address the following issues that are not explicitly specified in the
original KAG protocol:
−  The self-generating private/public key pair (

iµ ,
iµ ) is not reused.

−  Each host has to verify hA, )(
0 AhSigν  and O

0
 in order to ensure three security issues.

(1) The identity I and code C were not altered by any malicious hosts. (2) The host
identity deduced from )(

0 AhSigν  matches with that deduced from O
0
. (3) I is not

encrypted in O
0
 such that each host checks that O

0
 and hA belong to the same exe-

cution of the same agent, i.e., no one can copy O
0
 to other agents or another execu-

tions of the same agent. We omit this description in the above algorithmic descrip-
tion for simplicity.
Both remarks 1 and 2 apply to protocols N1 and N2 in the following sections.

Two-colluder truncation attack. An attacker E captures an agent with encapsulated
offers O

0
, O

1
,…, O

i
, O

i+1
,…, O

m
 and colludes with a host Si, who is visited by the agent

before, such that Si truncates all the offers after i.  The attacker inserts an offer during
the attack yielding the encapsulated offers O

0
, O

1
,…, O

i
, O

E
. Note that S

i
 can rebuild

the chaining relation using the new identity E in h
i
, and sign the modified offer Oi

using 
iµ .

Growing a fake stem attack. After a truncation attack, Si and Si+1 become two adja-
cent colluding hosts. Assume that they insert an offer in the name of a victim host V
to the itinerary of an agent. In this case, Si first inserts an offer Oi using its own iden-
tity in oi and states V as its successor when computing hi. The offer Oi is signed by

iµ . Then Si generates a private/public key pair (
Vµ ,

Vµ ) and inserts a fake offer OV

specifying the name of V in oV. To create OV, Si first generates a new private/public



6      Jeff S.L. Cheng and Victor K. Wei

key pair (
1+iµ ,

1+iµ ), specifies Si+1 as the successor when computing hV and then signs

the fake offer O
V
 using 

Vµ . The following equations are obtained,

1. Encapsulated Offer:
1.1. )))(((

0 Viiii , , h, roSigEnc Sig O
ii

µννµ=
1.2. ))(( 10 += iViVV , , h, roEnc Sig O

V
µνµ

1.3. )))((( 21111 101 +++++ ++
= iiiii , , h, roSigEnc Sig O

ii
µννµ

2. Chaining Relation
2.1. hi = H(Oi-1 || ri

 || V), (instead of hi = H(Oi-1 || ri
 || S

i+1
))

2.2. hV = H(Oi || rV
 || Si+1)

2.3. hi+1 = H(OV || r
i+1

 || Si+2)

After the agent returns to its originator, the originator would find out that oV was
not signed by V. However, it turns out that there could be two possibilities: (1) the
host V intentionally inserted an offer OV without signing on it, and (2) the host Si

inserts a fake offer in the name of V. The originator cannot accuse anyone because of
the above uncertainties.

4 Truncation Defenses Based on Co-signing (N1)

To counter the problem of the two-colluder truncation attack, a co-signing mechanism
is introduced. A host Si needs a third party, typically its preceding host, to co-sign its
encapsulated offer Oi. We will use this mechanism on K1 to demonstrate how it pre-
vents the two-colluder truncation attack.

To implement the co-signing mechanism in N1, the encapsulated offer Oi is signed
by Si-1, instead of Si. Si has to send Oi to Si-1. Host Si-1 signs O

i
 by the secret private key

1−iµ and then sends Oi back to Si. In order to prevent a host from inserting two offers in

a self-looping mode, each host Si has to sign a signature σ i on hi using its own private
key 

iν . When sending the agent to Si+1, Si sends all the encapsulated offers Ok, 0 ≤  k ≤
i, 

1+iµ , σ i-1 (received from Si-1) and σ i to Si+1. The function of sending σ i-1 and σ i to Si+1

is to allow Si+1 to verify that Si-1 and Si are two distinct hosts. S
i+1

 attaches σ
i-1

 and σ
i
 in

its encapsulated offer O
i+1

, proving itself for completing this verification process.

Algorithmic description (N1)
•  Agent creation protocol:
1. Offer encapsulation and chaining relation

1.1. h0 = H(r0 || S1)
1.2. )),(( 10000 00

µνν , I, h, roEnc Sig O =
1.3. )( 00 0

h Sig νσ =
2. Agent transmission

2.1. Host S0 →  Host S1: O0, [ 1µ ,  σ 0]
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•  Agent migration at S1 (all computations are performed at S1 unless otherwise speci-
fied)

3. Agent verification
3.1. Receive O0, [ 1µ ,  σ 0]

3.2. ),( 00 νOVer , recover I, h
0
, µ

1

3.3. correct),(
?

00 =νσVer
4. Interactive offer encapsulation and chaining relation

4.1. h1 = H(O0 || r1
 || S2)

4.2. S1 →  S0: }))||(({ 2110110
µσνν , , h, roSigEnc

4.3. )))||((( 211011 100
µσννν , , h, roSigEnc Sig O = , executed by S0

4.4. S0 →  S1: O1

4.5. correct),(
?

01 =νOVer

4.6. )( 11 1
h Sig νσ =

5. Agent transmission
5.1. Host S1 →  Host S2:{Ok | 0 ≤  k ≤  1}, [

2µ ,  σ  0, σ 1]

•  Agent migration at Si, 2 ≤  i ≤  n, (all computations are performed at Si unless oth-
erwise specified)

6. Agent verification
6.1. Receive O0, O1,…,Oi-1, [ iµ ,σ i-2, σ i-1]

6.2. Ver(O0, 0ν ), recover I, h
0
, 

1µ

6.3. Ver(O1, 0ν ), recover h
1
, 

2µ
6.4. Ver(Ok, 1−kµ ), recover h

k
, 

1+kµ  recursively for 2 ≤  k ≤  i - 1

6.5. correct),(
?

22 =−− iiVer νσ

6.6. correct),(
?

11 =−− iiVer νσ

6.7. 
1

?

2 −− ≠ ii  S S

7. Interactive offer encapsulation and chaining relation
7.1. hi = H(Oi-1 || ri

 || Si+1)
7.2. Si →  Si-1: },,))||||(({ 1120 +iiii-i-i h, roSigEnc

i
µσσνν

7.3. ),,),)||||((( 11201 +−
= iiii-i-ii hroSigEnc Sig O

ii
µσσννµ , executed by Si-1

7.4. Si-1 →  Si: Oi

7.5. correct),(
?

1 =−iiOVer µ
7.6. )( ii h Sig 

iνσ =
8. Agent transmission

8.1. Host Si →  Host Si+1:{Ok | 0 ≤  k ≤  i}, [
1+iµ ,  σ i-1, σ i]

If the any one of the above agent verifications fails, Si rejects the agent. If S
i
 detects

that S
i-1

 has sent the same agent twice, S
i
 rejects the agent.
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Remark 1: the host Si-1 will store the records of the departed agents in such a way that
it would only sign once for Si on the partial results of a particular departed agent.

Remark 2: at the end of shopping, the agent will eventually leave the last host Sn and
return to the originator. The originator may either send a message to host Sn to con-
firm the return of the agent to release Sn from waiting for the hand shaking process or
generate a dummy offer to complete the hand shaking process with Sn.

Remark 3: we assume that there is an authentication protocol between S
i
 and S

i-1
 such

that both hosts are clear about the identity of the agent in the co-signing process.
Protocol N1 can be easily generalized or modified in the following possible ways:

1. The agent carefully designs its migration path such that it travels to hosts of op-
posing camps alternatively, making the collusion between two adjacent hosts less
likely.

2. Include L preceding hosts in the co-signing process to prevent the L-colluder trun-
cation attack.

3. Have a trusted third party (TTP) group in the mobile agent environment such that
an agent can request a neighborhood TTP to co-sign the offer. This completely
prevents truncation attack.

Security Analysis. N1 achieves the following security properties:

−  (S1) Data Confidentiality. Each host Si encrypts its signed offer by the originator’s
public key in ),)((

0 ii roSigEnc
iνν  which can only be extracted by the originator.

−  (S2) Non-repudiability. Each host Si signs its offer oi by its private key in
)( ioSig

iν . Si cannot deny its offer after the agent returns to the originator.

−  (S3) Forward Privacy. The host identity Si is encrypted using the originator’s pub-
lic key in ),)((

0 ii roSigEnc
iνν . Therefore, no one except the originator can extract

Si’s identity from the agent itinerary. Also, a random number r
i
 is used in comput-

ing the checksum h
i
, therefore examining h

i
 reveals no identity information.

−  (S4) Strong Forward Integrity. Assume that the attacker leaves Om intact but
changes the (m-1)th offer Om-1 to Om-1′. Since hm = H(Om-1 || rm

 || Sm+1) and hm is signed
in Om, the value of hm cannot be changed in order to keep a valid signature in Om.
Thus, it requires to have H(Om-1′ || rm

 || Sm+1) = H(Om-1 || rm
 || Sm+1). This violates our

assumption that the hashing function H(⋅) is collision resistant. Alternatively, the
attacker has to change Om in response to the change in Om-1, violating our assump-
tion that Om is not changed. Similarly, in order to modify any offer Oj, 0 ≤  j < m,
the attacker has to modify Oj+1. By induction, strong forward integrity is achieved.

−  (S5) Publicly Verifiable Forward Integrity. As shown in steps 6.2 ~ 6.5, anyone
can verify the encapsulated offers.

−  (S6) Insertion defense. Following similar reasoning as in the above analysis, any-
one obtaining a chain of encapsulated offers O0, O1,…,Om cannot insert an offer at
i, 0 ≤  i ≤  m. This is because the chaining relation will not be respected after the in-
sertion point. Moreover, Sm+1 cannot insert more than one offer as Sm co-signs only
one offer with respect to the particular agent from Sm+1.



Defenses against the Truncation of Computation Results of Free-Roaming Agents      9

−  (S7) Truncation defense. Assume that Si colludes with an attacker to carry out a
truncation attack. There are two scenarios in which Si may truncate the itinerary. In
the first scenario, Si truncates Ok, i ≤  k ≤  m. In the second scenario, Si truncates Ok, i
< k ≤  m. For the first scenario, Si has to hand shake with Si-1 in order to have Si-1 to
co-sign the new offer Oi′. This turns out to be impossible because Si-1 will detect
that it is the second request for co-signing an offer to the same agent. In the second
scenario, Si does not change Oi, or the chaining relation will be altered. Si must
send the agent to Si+1 again in order to keep the chain relation hi = H(Oi-1 || ri

 || Si+1).
Si+1 will detect this agent resent action and thus reject the agent.

Drawbacks. N1 leaves residual duty for the host S
i-1

, who has to keep records for the
departed agents and act as a co-signer for S

i
. It also sacrifices the privacy of S

i-2
 to S

i
 so

as to allow S
i
 to verify that S

i-1
 and S

i-2
 are distinct (steps 6.5 ~ 6.7).

5 Culprit Identification Schemes in the Stemming Attack

We modify K1 by enforcing a two-way authentication mechanism in N2. With this
mechanism, we ensure that the two hosts involved in an agent transmission protocol
must mutually authenticate themselves, and the authentication data is carried by the
agent such that the originator can accuse the culprits in a stemming attack.

When sending an agent from Si to Si+1, Si must first obtain a backward authentica-
tion signature σ B,i+1 from Si+1, in which Si+1 signs (Si+1 || hi) using its own private key

1+iν . Then Si sends a forward authentication signature σ F,i to Si+1, where σ F,i is a sig-

nature of (Si || hi) signed by the secret key 
iν . Both hosts will verify the received

authentication signatures using public keys 
iν  and 

1+iν  respectively. The authentica-

tion data σ F,i-1 and σ B,i+1 will be signed by Si and encapsulate in Oi, where σ F,i-1 is a
forward authentication signature obtained from Si-1. With the two-way authentication
mechanism, Si cannot deny being the preceding host of Si+1. Similarly, Si+1 cannot
deny being the successor of Si.

Algorithmic description (N2)
•  Agent creation protocol (all computations are done in S0 unless otherwise speci-

fied)
1. Interactive offer encapsulation and chaining relation

1.1. h0 = H(r0 || S1)
1.2. S0 →  S1: h0

1.3. )||( 011, 1
hSSigB νσ = , executed in S1

1.4. S1 →  S0: [σ B,1]
1.5. Ver(σ B,1, ν 1)
1.6. ),,,),,(o( 1001,00 00

µσνν hIrEnc Sig O B=
1.7. )||( 000, 0

hSSigF νσ =
2. Agent transmission

2.1. Host S0 →  Host S1: O0, [ 1µ , σ F,0]
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•  Agent migration protocol at Si, 1 ≤  i < n
3. Agent verification

3.1. Receive O0, O1,…,Oi-1, [ iµ ,σ F,i-1]

3.2. Ver(O0, 0ν ), recover I, h
0
, 

1µ
3.3. Ver(Ok, kµ ), recursively recover h

k
, 

1+kµ , for 1 ≤  k ≤  i - 1

3.4. correct),(
?

11, =−− iiFVer νσ , recover h
i-1

3.5. h
i-1

 (recovered in step 3.3) 
?

= h
i-1

 (recovered in step 3.4) 
?

=  h
i-1

 (used in comput-
ing σ

B, i
, e.g. in step 1.3 for i = 1)

4. Interactive Offer encapsulation and chaining relation
4.1. hi = H(Oi-1 || ri

 || Si+1)
4.2. Si →  Si+1: hi

4.3. )||( 11, 1 iiiB hSSig
i ++ +

= νσ , executed in Si+1

4.4. Si+1 →  Si: [σ B,i+1]
4.5. Ver(σ B,i+1, ν i+1)
4.6. )||(, iiiF hSSig

iνσ =
4.7. ),),),||||((( 11,1,0 ++−= iiiiBiFii hroSigEncSigO

ii
µσσννµ

5. Agent transmission
5.1. Host Si →  Host Si+1:{Ok | 0 ≤  k ≤  i}, [

1+iµ ,σ F,i]

If the any one of the above agent verification steps fails, Si rejects the agent. Also,
Si will check if the same agent with the same chain of encapsulated offers has visited
it before. If yes, Si rejects the agent.

Stemming attack. Consider that case where either Si or V inserts an unsigned offer in
a chain of encapsulated offers O1, O2,…,Oi, OV, Oi+1 with the following equations:
1. Encapsulated offer:

1.1. ),),),||||((( ,1,0 ViiVBiFii hroSigEncSigO
ii

µσσννµ −=
1.2. ),),,(( 10 += iVVVV hroEncSigO

V
µνµ

1.3. ),),),||||((( 2112,,11 101 ++++++ ++
= iiiiBVFii hroSigEncSigO

ii
µσσννµ

2. Chaining relation
2.1. hi = H(Oi-1 || ri

 || V)
2.2. hV = H(Oi || rV

 || Si+1)
2.3. hi+1 = H(OV || ri+1

 || Si+2)

Note that both σ B, V in Oi and σ F, V in Oi+1 could be fraudulent because Si cannot sign
in the name of V.

Stemming detection. Upon the agent’s return, its originator can extract the offers
from the chain of encapsulated offers and detect an unsigned offer oV with false
authentication data in Oi, OV and Oi+1, the originator can detect the stemming attack.

Culprit identification. We use T(V, Si) to denote the case when an authentication
signature from V to Si is genuine and F(V, Si) to denote the fraudulent case. Culprits
are identified according to the following situations:
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1. if F(V, Si) and F(V, Si+1), then Si and Si+1 will be accused for inserting a fake offer in
the name of V.

2. if T(V, Si) and T(V, Si+1), then V will be accused for not signing its offer oV.
3. if T(V, Si) and F(V, Si+1), then V will be accused for not signing its offer and Si+1

will be accused for not enforcing the verification protocol.
4. if F(V, Si) and T(V, Si+1), then V will be accused for not signing its offer and Si will

be accused for not enforcing the verification protocol.

Remark: We assume that neither σ B,V nor σ F,V was signed by S
i
 or S

i+1
, otherwise, they

will be directly identified by verifying these signatures. Also, we assume that there is
no genuine authentication information stored in O

V
, otherwise such information will

allow the originator to directly locate the culprits.

Truncation defense (spot check). We can detect a truncation attack by comparing a
truncated agent with its itinerary before the truncation. In this scheme, an agent will
visit a trusted third party known as the spot check center (SCC) intermittently. When
an agent A visits the SCC for the first time, the SCC keeps a clone AC of the agent and
allows the original agent A to continue its journey. Upon the agent’s re-visitation, the
SCC compares the chain of encapsulated offers in A with that in AC. If the chain of
encapsulated offers in AC matches with the first portion of that of A, the SCC updates
AC = A and allow A to continue the next host. Otherwise, the SCC immediately sends
both A and AC back to their originator for truncation detection. When the originator
receives two agents A and AC from the SCC, the originator can use the above culprit
identification techniques to figure out if there are culprits in each itinerary. The origi-
nator then compares the two itineraries and identifies the last common host in the two
itineraries as the culprit for the truncation attack.

Drawbacks. The integration of the mutual authentication protocol leads to an inter-
active offer encapsulating protocol in N2. However, if the agent system has an exist-
ing mutual authentication scheme, the integration simply swaps the sequence of the
offer encapsulation protocol and the authentication protocol.

6 Conclusion

In this paper, we proposed several defenses against the truncation attacks and grow-a-
fake-stem attacks for the purpose of better protection of the computation results of
free-roaming agents.  Protocol N1 prevents the two-colluder truncation attack. It can
also be generalized to prevent the L-colluder truncation attack. Protocol N2 detects
the grow-a-fake stem attack and identifies the colluding pair for prosecution.  The
main technique of Protocol N1 is co-signing, and that of Protocol N2 is two-way
authentication. These techniques can be generally applied to other protocols.
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Abstract. Due to end-to-end design principle in distributed applications, many
emerging security problems could not be solved by conventional security tech-
nologies, such as firewalls and IDSs. To address these problems, we present a
distributed dynamic µFirewall architecture based on mobile agents and Key-
Note trust management system. In this architecture, KeyNote trust management
system provides the scalable distributed control capability and supports a
mechanism called “policy-updates on demand”. Mobile agents implement dy-
namic security policy reconfiguration and enhance the scalability. Each
µFirewall is built with a packet filter and DTE-enhanced evaluator to enforce
policy at the end points. A distributed intrusion detection and response (DIDR)
system supports dynamic security capabilities and provides fast response to at-
tacks from all possible sources. Our architecture is scalable, topology independ-
ent, and intrusion-tolerant.

1 Introduction

With the prospect of end-to-end computing, such as IPSec, SOAP, properties that
hold end-to-end must be provided by applications at the endpoints. STRONGMAN
[12] at the University of Pennsylvania is the first architecture for providing strong
security services which satisfies end-to-end property. It adopts the trust-management
authorization model, policy compliance checker local to the enforcement points, a
simple model for providing policy composition, and the concept of lazy binding of
policies.

However, the core foundation of the pervasive security technologies (firewalls,
IDSs) for distributed applications is arguably the end-to-end design principle. Fire-
walls enforce a single security policy at network boundaries, which has led to many
problems such as performance degradation, preventing inside attacks and failing to
handle dynamic communication (FTP, RealAudio). IDSs also face some limits such
as  difficultly screening end-to-end encrypted traffic.

It is clear that the placement of these security functionalities should be moved
deeper directly into the endpoints. Distributed firewall [4][11] proposed by Steven
Bellovin et.al. is the first attemp to meet this need. In their implementation, the policy
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is distributed to all endpoints where it is authenticated and then enforced, thus making
security an end-to-end property.

In this paper,  we tie together multiple security components to build a solid end-to-
end security frame. In our approach, we employ KeyNote trust management [5][6] to
construct and interpret the trust relationships among the hierarchical security compo-
nents. Mobile agents facilitate policy delivery without slowing down the traffic flow.
Security policy is enforced by low-overhead µFirewalls at endpoints. Besides, Our
architecture integrates a distributed intrusion detection and response (DIDR) system
to provide more aggressive response to intrusions from all possible sources, either
inside or outside.

The following part of the paper will delve further into  the aforementioned compo-
nents, and finally give a primitive evaluation of our architecture for its security, per-
formance and scalability.

2 Policy Management Model

In our approach, the hierarchical management model is adopted shown in Figure 1.
Central Policy Administrator (CPA) maintains global consistent policy. The central
policy can be divided into multiple policy domains managed by Sub-Policy Adminis-
trator (SPA). The depth of the management tree is decided practically, such as de-
partment within an organization or topology unit (VLAN, LAN, etc).

As shown in Figure1, µFirewall enforces network security policy at each individ-
ual network endpoint (SPA, CPA, gateways, routers, etc.). Intrusion Detection Agent
(IDA) and Intrusion Response Agent (IRA) compose an distributed intrusion detec-
tion and response (DIDR) system to repel attacks from everywhere. In our architec-
ture, we employ KeyNote to express delegation of trust.

Fig. 1. Distributed Dynamic µFirewall Architecture
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2.1 Delegation of Trust

Delegation of trust in our system is done to allow more than one SPA or CPA to
make policy updates and to protect the system from single point of failures. Besides,
it lets the hosts to identify its parents and trust only its parents for policy updates.
Delegation of trust is done through issuing the public key certificates [8] and Key-
Note credentials in a hierarchal manner.

The hierarchy of trust also defines how the system responds to intrusions. IRA in
CPA prompts the system-level response. The µFirewalls come under the SPAs and
take host-level reaction. This hierarchical response scheme will be illustrated in Sec-
tion 5.

Figure 2 shows an example credential where CPA delegates authorization to the
SPA1. This credential would allow the SPA1 to report any distributed intrusion
events and request for a response under the system level. In Figure 3, SPA1 signs a
credential indicating that Alice is authorized to report any probing events and conse-
quential response is under the domain level.

KeyNote-Version: 2
Comment: SPA1 is trusted to request a system-level response.
Authorizer: "CPA-Key"
Licensees: "SPA1-Key"
Conditions: (app_domain == "ResponseIntrusion") &&

              (intrusion_type== “Distributed_Attack”)
              ( @response_level<= SYSTEM_LEVEL);

Signature: …<signed by CPA>…

Fig. 2.  Credential Example of SPA1

KeyNote-Version: 2
Comment: Alice is trusted to request a domain-level response.
Authorizer: "SPA1-Key"
Licensees: "Alice-Key"
Conditions: (app_domain == "ResponseIntrusion") &&

(intrusion_type== “Probe_Attack”)
               ( @response_level<= DOMAIN_LEVEL);

Signature: …<signed by SPA1>…

Fig. 3.  Credential Example of Alice

2.2 Policy Cache and Update on Demand

In a centralized architecture, gateway firewall enforces a single security policy at
network boundaries. To implement the policy globally, the network topology must be
restricted to pass all traffic through the firewall. Consequently, gateway firewall is
generally overloaded with processing requests and mediating access. In our approach,
however, we distribute the global policy rules and form a multiple-level policy cache
structure. The SPA is the policy cache of CPA, and each enforcement point is sub-
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level policy cache of the SPA. Each enforcement point or SPA keeps partial policy of
the higher administrator. For example, web servers within the security perimeter only
support web-related security policy rules. Since every packet is directly mediated and
checked against the policy cache at endpoints, performance bottleneck brought out by
gateway firewall is eliminated.

With the growth number of users and enforcement points, the global policy per-
taining to both also needs scale up. Hence, we need update policy as cheap as possi-
ble. KeyNote trust-management system can satisfy our needs. In KeyNote, policy can
be translated into credentials signed by SPA or CPA. Since policy is expressed in the
form of credentials, policy need not be distributed synchronously to the enforcement
points. Enforcement points evaluate credentials passed from remote users and build
relevant rules for users to gain access to controlled resources. This property, namely
lazy policy instantiation, enables enforcement points to update policy rules as needed.
Moreover, IDAs and IRAs are also involved to update security policy once they find
intrusion happened. They provide feedback to enforcements points and elevate the
level of security policy. To sum up, the lazy instantiation and dynamic security
mechanism make policy updates on demand and allow our system to scale well with
the number of enforcement points.

3 µFirewall

In our prototype, the µFirewall is implemented at the kernel level using  iptables and
DTE package. These two security components together provide a defense in depth
protection. Figure 4 shows our µFirewall module built at the kernel space.

iptables is a package to implement packet-filtering rules in a Linux kernel of ver-
sion 2.4 or higher. iptables has a filter table and provides mechanisms to specify the
packet-filtering rules. According to these rules, iptables can inspect all network traffic
and drop those illegal packets.

Fig. 4.  µFirewall Module at Kernel Space
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DTE [2] is an enhanced form of type enforcement technology, which is a table-
oriented mandatory access control mechanism. DTE has many advantages: flexibility,
simplicity, operation system interoperability, binary application compatibility. Using
the DTE package, we can export some security-sensitive service (e.g., NFS, TFTP)
safely available through security perimeter, which was impossible in gateway
firewall. Also we can prevent iptables module from being tampered by unwitting
insiders or malicious attackers.

4 Mobile Agents for Policy Distribution

To decrease client-server interactions between the policy administrator and the client
hosts when a large number of hosts have to be updated with a new policy, we use
mobile agents to facilitate the fast delivery without slowing down the traffic flow.
Moreover, mobile agents have a lot of advantages, all related to cost-effectiveness,
fast response time, and easy to make security policy changes.

As shown in Figure 5, every agent contains the following data: a policy certificate,
an itinerary, an interaction sequence, and a small state memory. The policy certificate
contains the policy update signed by CPA or SPA, which is expressed in the form of
KeyNote credential. The policy certificate can also be used to authenticate agents and
prevent any attacks on the host by malicious agents [7]. The itinerary is a list of hosts
to visit in order to make policy updates. The host interaction sequence tells what the
agent is supposed to do during its visits of successive hosts along the way. The state
memory is reserved for the agent to store its state information, such as account of
various interactions.

              Fig. 5.  Mobile Policy Agent                         Fig. 6.  Policy Update Process

When updates security policy, administrator creates some policy agents and dis-
patch them to all hosts in the same security domain. The policy agents carry the pol-
icy certificates and specify itinerary as the IP addresses of hosts to visit. After dis-
patched, these agents automatically update the policy on the µFirewalls visited. Once
a policy agent reaching a host, as depicted in Figure 6, its policy certificate is verified
by KeyNote evaluator. If the positive result is returned, the policy certificate will be
passed to and decoded by a policy translator, which translates the policy into low-
level policy language (packet-filtering rules). The rules are then executed on the local
host to make the specified policy update to the kernel’s packet filtering module.
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Figure 7 lists a policy certificate expressed in KeyNote. In this certificate, SPA1
distributes new policy to its subordinates (i.e. Alice, Bob). The “version” attribute
indicates the version number of the policy, which protects against a replay attack. The
value of the “lifetime” attribute specifies the valid period of this certificate. The pol-
icy certificate extends the Simple Public Key Infrastructure (SPKI) [8] and can be
considered as an attribute certificate. The PKI is used in an organization to bind the
public keys to particular entities. This is called a public key certificate (PKC). A PKC
can be considered to be like a passport: it identifies the holder, tends to last for a long
time, and should not be trivial to obtain. An AC is more like an entry visa: it is typi-
cally issued by a different authority and does not last for a long time. Mobile agents
carry this KeyNote-expressed attribute certificate and relevant PKC to prove their
identities and the privileges.

KeyNote-Version: 2
Comment: SPA1 specifies a policy update to block traffic from 10.0.0.10
Authorizer: "SPA1-Key"
Licensees: "Alice-Key"|| "Bob-Key"
Conditions: (app_domain == "PolicyUpdate") &&

(@version==20020320)&&    # version information for this certificate
              (@timestamp==190103)&&   # creation time of this certificate (19:01:03)

(@lifetime<60)&&          # validity period of the certificate (<60 seconds)
(policy== “block Src_IP(10.0.0.10)” );   # policy updates go here

Signature: …<signed by SPA1>…

Fig. 7.  An Policy Certificate Example Carried by Agents from SPA1

The local host (i.e. Alice, Bob) has a policy as shown in Figure 8. The policy states
that SPA1 will specify end-host security policy when the value given in the “version”
attribute is larger than 20020320. On accepting a mobile agent dispatched from
SPA1, the host (say, Alice) will check the validity of the policy certificate using the
lifetime and version information on the certificate and also by verifying the digital
signature of the certificate which is signed by SPA1.

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "SPA1-KEY"
Conditions: (app_domain == "PolicyUpdate") &&(@version>=20020320)

# version number for the next policy certificate is no less than 20020320

Fig. 8.  Local Policy in Alice or Bob

5 DIDR Sysem

DIDR system includes two components: intrusion detection agent (IDA) and intru-
sion response agent (IRA). The former resides at every protected endpoints and sup-
ports detection and host-level response. The latter runs both at SPA to perform do-
main-level response and at CPA to take system-level response. The DIDR system
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provides a communication bridge between µFirewalls to response some distributed
cooperative attacks.

Intrusion Detection Agent screens all network packets and local activities to detect
attacks according to some intrusion-related signatures at end points. IDA is imple-
mented using light-weight intrusion detection software such as lids and portscan. For
those locally detected attacks, IDA takes a local response decision (e.g., kill the con-
nection, install filtering rules, disable the user account) based on the attack type, at-
tack certainty, attack severity, and local policy constraints. Although the IDA can
specify its desired blocking action, the IRA may perform a different action. Hence,
most of the local response implementations are for a short period of time (on the
order of minutes), with the objective of providing the time needed for the IRA to
develop a better long-term response.

Intrusion Response Agent collects alarm messages from all hosts within the same
policy domain and facilitates security policy reconfiguration to reduce the risk of
furthers penetrations. According to collected messages, IRA can then correlate them
to gain a better overall picture of the situation, and also issue response directives back
to individual nodes to either remove an unnecessary response, or update security
policy of the whole domain. Once SPA detects a severe cooperative intrusion [1]
attempt, it distributes an attack report to policy administrator at higher level (e.g.,
CPA) who can then help trace the attack path and take a system-level respond to the
intrusion.

Figure 9 below illustrates how DIDR system accomplishes hierarchical intrusion
response.

Fig. 9.  Hierarchical Intrusion Response

First (Step1), an external or internal hacker penetrated an “internal” host Alice, and
the attack is detected by IDA in Alice. IDA in Alice adds a temporarily blocking rules
to µFirewall. Then, IDA in Alice passes its local credential, illustrated in Figure 3, to
higher administrator SPA1 and reports the event.
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Then (Step 2), SPA1 collectively determines a domain-level response and dis-
patches policy agents carrying the KeyNote-expressed attribute certificate, as shown
in Figure 7, to update the security policy of its subordinate hosts (Alice, Bob). To
some infectious attacks (e.g., viruses), SPA1 submits its credential shown in Figure 2
to CPA and informs CPA to take a broad range action.

Next (Step 3), CPA takes a system-level response and distributes the policy up-
dates to all SPAs (SPA1, SPA2).

Last (Step 4), each SPA continues to distribute the policy updates to hosts as
Step2.

6 Security, Performance, and Scalability Evaluation

Security, performance, scalability are three major considerations in evaluating secu-
rity systems for Internet. In this section, we evaluate our distributed µFirewall
(DMFW) and compare it to centralized firewall (CFW) in detail.

Our experimental environment are based on x86 architecture machines running
RedHat 7.1 and interconnected by 100Mbps Fast Ethernet. Host A is a network traffic
generator with a 633 MHz PIII and 128M RAM. Each protected server is a Pentium-
Based PC with an 850 MHz CPU and 512M RAM.

Figure 10 illustrates test topology with gateway firewall, which is a PC with the
same configuration as each protected server. Gateway firewall installed using
IPTABLES package with overall policy in the filter list.

Figure 11 depicts experimental environment of distributed µFirewall architecture.
In this architectural environment, Ethernet hub is connected directly to the outside
world. Moreover, we eliminate the gateway machine. A policy administrator with an
IRA is added to maintain consistent global security policy. Each of the server ma-
chines installs with a µFirewall and enforces policy locally.

Fig. 10.  Environment with CFW                        Fig. 11.  Environment with DMFW

6.1 Security Evaluation

To evaluate security of a system, techniques designed to defeat and bypass the
firewall are used to determine the effectiveness of the firewall. As a matter of fact, it
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is difficult to simulate a real attacker’s behavior in a LAN experiment. However, the
vulnerability of a specified firewall can be checked with network scanning tools. We
use Nessus and other security tools for host attack and scanning.

Because security level of the firewall is directly related with policy configuration,
we set the security policy in both CFW and DMFW as follows:

1) Deny any service request unless it is explicitly permitted;
2) Deny any ping packets from the outside.

In the centralized architecture, a gateway firewall is installed with a network-based
intrusion detection system (NIDS, such as snort) to response some attack events. In
our distributed approach, host-level IDA checks all attack events and reports them to
IRA. A particular host attacks the internal nodes and computes success times. Here,
the word success means that the attack behavior isn’t denied by firewall. The results
of these security experiments are summarized in Table1.

From Table1, we observe that DMFW is more secure than CFW when distributed
attack (e.g., DDoS) or host-based attack (e.g., Password guessing) happens. There-
fore, hierarchical intrusion response mechanism enhances the security capability of
the protected system.

Table 1.  Security Evaluation Results

          No. of success count(s)

Attack Category/ No. of Attacks

CFW DMFW

Port scan / 10 4 4

Syn-flooding Attack / 40 5 5

Fragmental Attack / 10 10 8

DDoS / 10 8 4

Password guessing / 40 30 20

6.2 Performance Evaluation

In the performance evaluation, we assume that every protected node insides a policy
domain with same number of rules. We configure 4 internal servers to provide HTTP,
FTP, TELNET, and SSH service, respectively. In our system, once IRA at policy
administrator finds a severe intrusion event, it will add a counteract rule to all of
internal servers. Hence, we can simply assume that the number of global policy rules
is always four times that of each protected node. We also configure the gateway
firewall with the same number of rule set as that of global policy in DMFW case. The
experiments are done on the firewall to measure the performance degradation of two
types of representative service, i.e. HTTP and FTP.

For HTTP session experiments, a particular host generates 1000 requests to a static
web page and average session time is measured. In CFW, the gateway firewall con-
trols network traffic and redirects legal packets to a web server. When we add the
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screening rules at the HTTP server in DMFW, the number of gateway firewall rules is
augmented 4 times accordingly. Table 2 illustrates the experiments results. From the
result, we see that gateway firewall architecture costs nearly double processing time
compared to our architecture when the amount of HTTP-relevant rules reaches 300 or
more.

In FTP experiments, a client running on a particular host connects to an internal
FTP server and transfers a 44.1MB file. Table 3 shows the transaction latency time
versus number of FTP-related rules.

Table 2.  Average HTTP Latency (ms) vs. No. of HTTP-related Security Rules

0 100 200 300 400 500 600
CFW 0.128 0.168 0.177 0.205 0.315 0.370 0.630

DMFW 0.128 0.142 0.149 0.154 0.164 0.169 0.173

Table 3.  Average Latency (ms) vs. No. of FTP-related Security Rules for 44.1 MB Data

0 100 200 300 400 500 600
CFW 89.719 89.993 90.170 91.159 91.513 105.762 115.112

DMFW 89.719 89.758 89.763 89.828 89.900 90.230 90.989

6.3 Scalability Evaluation

To demonstrate the scalability of the distributed µFirewall, we varied the number of
hosts that participate in the connection setup. In this experiment, all of the internal
nodes are running HTTP service. A particular host generates 800 connection requests
to inside nodes. Gateway schedules the requests in a round-robin fashion. We first
measure average transaction delay without firewall as the base line for comparison. In
the experiment with gateway firewall, the gateway firewall filters illegal network
traffic. In the DMFW experiment, packet filtering is done at the internal nodes. In our
experiments, the number of global policy rules keeps 3200. In CFW case, these rules
are preloaded at gateway firewall. In DMFW situation, the rules are distributed to the
relevant nodes. We make the assumption that every protected node contributes
roughly the same number of rules. Table4 depicts the processing overhead as the
number of nodes increases. In Table 4, insecure means there is no firewall running.

Table 4. Average Transaction Delay (ms) with respective to Host Numbers

1 Hosts 2 Hosts 3 Hosts 4 Hosts 5 Hosts 6 Hosts 7 Hosts 8 Hosts
CFW 3.517 3.450 3.400 3.300 3.200 3.100 3.000 2.800

DMFW 3.517 1.557 1.068 0.677 0.600 0.500 0.380 0.270
Insecure 0.550 0.450 0.400 0.350 0.300 0.250 0.200 0.150

In our system, policy cache mechanism enables each enforcement point keep a
small subset of the whole rules. This experiment clearly demonstrates improvement
in performance and the additional increased flexibility and scalability of policy cach-
ing and enforcing at the protected node.
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7 Related Works

The distributed security architecture prompted by Kai Hwang [10]  is quite similar to
our work. In their design, gateway firewall, policy manager at the DMZ and micro-
firewalls jointly provide a defense in depth in the protection of Intranet. Our approach
is based on end-to-end security and is topology independent. Moreover, the policy-
updates on demand mechanism reduces network traffic compared to their approach.
Our preliminary results also indicate that fully distributed µFirewalls combining with
DIDR system will improve security capability without performance degradation.

In the distributed security system, firewall management becomes a significant
challenge. The administration of many independent firewalls is discussed by Miller
[13]. It is argued that the firewalls should all be the same, though the management of
different policies is not mentioned. Firmto [3] describes a toolkit for specifying policy
independent of specific devices. In this approach, policy updates force complete loads
of the rule-sets at the affected enforcement points. This causes scalability problems
with respect to the number of policy entries.

Our work is also related to intrusion detection and response techniques. The
Hummingbird system [9] designed by D.Frincke et al. is aimed to provide a coopera-
tive intrusion detection framework. In their system, Kerberos is used for authentica-
tion of communication between hummers. In our system, however, KeyNote trust
management system can provide end-to-end authentication comfortably and scale
well to very large networks.

8 Conclusions and Future Works

This paper presents a viable end-to-end  security architecture. In this architecture,
security enforcements are pushed to the protected endpoints. At the endpoint,
µFirewall is built with a packet filter based on DTE-enhanced OS and provides dual
protection. The DIDR system provides hierarchical intrusion response capability.
Mobile agents is used to accomplish fast policy delivery. Moreover, we exploit Key-
Note trust management system to express AC, security policy and intrusion alarm
messages.

Mobile-agent system saves network latency and bandwidth at the expense of im-
posing higher workload on their hosts and lower speed in policy distribution. There-
fore, we plan to implement a more efficient and scalable mechanism for policy distri-
bution, such as RMI broadcast and Reliable Multicast protocol which can provide
greater scalability, security and lower latency. In the future, we will  test our archi-
tecture with a larger scale deployment, validate intrusion detection and response on
real traffic.
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Abstract. Program counter is the only mechanism for processor to ac-
cess instruction to execute. Protecting program counter is the fundamen-
tal defense for securing computer system. This paper presents a scheme of
protecting program counter by encoding function pointers. In the scheme,
every function address is encoded by linker. Compiler inserts instruc-
tions for decoding function addresses before call instruction. Encoding
code pointers, function addresses as well as return addresses in stack
frame, provides substantial coverage of protecting program counter. Sev-
eral suggestions are also made to detect compromised code pointers at
run-time without memory space for sensor mechanism. A demo Linux
system has been under construction with the proposed scheme. Experi-
mental data shows performance slowdown less than 10% when all return
addresses and function addresses are encoded. With a Pentium III pro-
cessor of 866MHz, the overhead for each function call is on the order
of nanoseconds. We plan to migrate parts of our code pointer encoding
scheme from linker to dynamic linker, which should improve security and
performance.

Keywords: buffer overflow attack, program counter, function pointer
encoding, memory arrangement checking

1 Introduction

The outbreak of Code Red Worm in July 2001 [11] testifies that buffer over-
flow attack is still prevalent. More than 1/4 million systems were infected in 9
hours according to the CERT advisory report [12]. Recent statistics since 1998
shows that almost 50% of attacks are related to buffer overflow [22]. The his-
tory of buffer overflow attack has been long and notorious as in Morris worm
incident [13].
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Attack stages Countermeasures
Prevention-oriented

Overflow and compromising a code pointer
Dynamic detection and recovery

Loading PC from the compromised pointer
Avoiding intrusion

Fig. 1. Progress of buffer overflow attack and countermeasures

Program counter (PC) is the only mechanism for processor to access instruc-
tion to execute. Protecting PC is the fundamental defense for securing computer
system. The target of buffer overflow attack is PC. The attack proceeds in two
stages [1,19]. First, a buffer is overflowed beyond its limit, and a code pointer
becomes compromised. A return address pointer in stack frame or a function
pointer is utilized. A code pointer can be compromised sometimes by derefer-
encing a data pointer compromised by buffer overflow. Second, PC is loaded
from the compromised code pointer. Execution of a return or a call instruction
loads PC from the compromised pointer.

Countermeasures against buffer overflow attack intervene at one of the three
times as shown in Figure 1. Prevention-oriented solutions do not allow attacks
to proceed into the first stage. Buffer overflow cannot occur if programs check
bounds for all array and pointer accesses. However, bound-checking is usually
omitted in C/C++ programming, since bound-checking imposes heavy perfor-
mance overhead. It is reported that bound-checking may slow down matrix
multiplication up to 30 times [15]. The overhead can be reduced if bound-
checking would be applied selectively to vulnerable codes identified by static
analyses [16,21,22]. If some vulnerable codes are missed and thus unpatched,
there is no way of protecting the vulnerability at run-time.

Although a buffer is overflowed, an attack cannot win program control, unless
PC is loaded from a compromised code pointer (progression into the second
stage). Dynamic detection checks the integrity of code pointers at run-time when
they are actually referenced [6,9]. Compilers install sensor mechanism. If a sensor
detects a compromised code pointer at run-time, an exception handler is invoked
for recovery. Sensor-based detection has been successful for protecting return
address against linear stack smashing but not effective against non-linear attack.
Code pointers can be compromised without touching sensors [4,7,23]. Protecting
function pointers is another unresolved problem. The fundamental limitation
is that sensor data structures in writable memory are yet another vulnerable
locations.

Intrusion can be avoided even when PC is loaded from a compromised code
pointer at the second stage. Suppose all legitimate programs follow a private
protocol, for example program counter encoding (PC-encoding for short) [17].
The protocol encodes and decodes an address when it is stored into a code pointer
and loaded into PC respectively. Attackers may compromise the code pointer by
buffer overflow without proper encoding prior to loading PC, but the decoding
would produce an erroneous address. If the attacked program is equipped with
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#include <stdio.h>

char buf[10];
void (*fp)(); /* vulnerable function pointer */

void func() { printf("%s\n", buf); }

int main() {
fp = func;
gets(buf);
func(); /* plain function call */
fp(); /* call via a function pointer */
return 0;

}

Fig. 2. Buffer overflow vulnerability by a function pointer

an appropriate exception handler, it can nullify the attack and revive itself. PC-
encoding integrates security mechanism with the object to be protected (i.e. PC),
where prevention- and detection-oriented approaches encapsulate the object with
shield. Since PC is the final front presiding execution, protecting objects other
than PC with separate security mechanism is hardly free from vulnerability.

There has been no satisfactory solution against attacks on function point-
ers other than bound-checking. Figure 2 illustrates the problem. The function
pointer fp is compromised by overflowing the buffer buf. Program control can
be hijacked when the function func is called by way of the pointer fp. It makes
no difference whether the variables fp and buf are defined inside the function
main or outside.

This paper presents a scheme of protecting PC by encoding function pointers.
In the scheme, every function address is encoded by linker. Compiler inserts in-
structions for decoding function addresses before call instruction. Encoding func-
tion addresses complements PC-encoding [17] originally developed for protecting
return addresses in stack frame. Encoding code pointers, function addresses as
well as return addresses in stack frame, provides substantial coverage of pro-
tecting PC. The remaining code pointers to be protected are those in the buffer
structures used by setjmp and longjmp. Several suggestions are also made to
detect compromised code pointers at run-time without memory space for sensor
mechanism. They are collectively called memory arrangement checking.

We review the software solutions for buffer overflow attack in Section 2.
Protecting code pointers by encoding is discussed with emphasis on function
pointers in Section 3. Section 4 presents memory arrangement checking. Ex-
perimental performance data is shown in Section 5. Section 6 discusses several
improvements on our current implementation and wraps up this paper.

2 Related Work

Traditional program analysis and transformation for pointer and array bound-
checking [2,15] can be used to prevent buffer overflow as well as to reduce run-
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time errors. Integer range analysis [22], annotation-assisted analysis [16] and
scanning for functions known to be vulnerable [21] belong to specialized static
analyses to accurately locate vulnerable codes. The identified vulnerable codes
are patched manually or automatically.

StackGuard, a pioneering work by Cowan etal. [9], represents dynamic de-
tection. StackGuard puts a canary word as a security sensor data structure on
top of a return address when a function is called. Before a return instruction is
executed, a compromised return address is detected by comparing the canary’s
value with its original one. It is assumed that a return address pointer cannot
be compromised without overwriting the canary sensor during buffer overflow
attack. Compared to rigorous bound checking, StackGuard has superior perfor-
mance.

StackGuard has several shortcomings. StackGuard cannot detect non-linear
buffer overflow attack [4,7,23]. The change in the layout of stack frame by canary
may cause compatibility problem. It is no longer cost-effective to protect function
pointers in the framework of StackGuard. Suppose a function address is copied
from a function pointer to another. To make it worse, a function address can be
copied from a function pointer to an integer variable through type casting. There
would be not a few locations to protect with the inbetween sensors. An extension
of StackGuard, PointGuard is proposed to protect function pointers [10], but no
report is available yet.

Return address defender (RAD) [6] is another dynamic detection. It saves
copies of return addresses in a separate segment so that a return address in a
stack frame can be compared with the corresponding one in the reservoir when
return instruction is executed. It has advantage of preserving stack frame layout.
The reservoir’s integrity can be checked by parenthesizing it with sensors similar
to canary, but it is not free from the yet-another-vulnerable-location problem.
The problem may be avoided by toggling access right between writable and non-
writable states whenever necessary, but its overhead becomes unbearable. RAD
has no solutions for function pointers yet.

Libsafe [3] replaces vulnerable libraries with safe ones without disturbing
existing binaries that depend on the libraries. It intercepts vulnerable function
calls and redirects them to the corresponding safe ones. Recompiling the libraries
and programs using them are not required. They also show that return addresses
can be checked in existing binaries by using binary editing technique (Libverify).
Linkers and dynamic linkers take an active role in installing detective mechanism
in binaries. Libsafe can be classified as preventive, and Libverify, as dynamic
detection.

PC-encoding [17] does not require bound-checking and dynamic detection.
When a function is called, the return address is encoded before stored in stack
frame. The encoded return address is decoded before returning to the calling
function. Any function call and return not following encoding and decoding
with a proper key cannot continue normal execution. Since PC-encoding does
not perform any dynamic detection, it has little overhead compared to other
work. PC-encoding can be implemented at architecture or compiler level. PC-
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<main>:
xor %esp,(%esp,1) /* prologue: encoding return address */
push %ebp /* prologue: save frame pointer */
mov %esp,%ebp /* prologue: new frame pointer */
sub $0x14,%esp /* prologue: adjust stack pointer */
push %ebx
movl $0x3b37f333,0x8049658 /* fp = func */
add $0xfffffff4,%esp
push $0x804964c
mov $0x3b37f47f,%ebx /* load encoded address of gets */
mov 0x8049558,%eax /* load the key */
xor %eax,%ebx /* decode */
call *%ebx /* gets(buf) */
add $0x10,%esp
mov $0x3b37f333,%ebx /* load encoded address of func into ebx */
mov 0x8049558,%eax /* load the key */
xor %eax,%ebx /* decode */
call *%ebx /* func(); */
mov 0x8049658,%ebx /* load %ebx from fp */
mov 0x8049558,%eax /* load the key */
xor %eax,%ebx /* decode */
call *%ebx /* fp(); */
mov $0x1,%eax
jmp 80484cc <main+0x54>
lea 0x0(%esi),%esi
mov 0xffffffe8(%ebp),%ebx
mov %ebp,%esp /* epilogue: restore stack pointer */
pop %ebp /* epilogue: restore frame pointer */
xor %esp,(%esp,1) /* epilogue: decode return address */
ret

Fig. 3. Encoded function calls

encoding should be extended to protect function pointers in addition to return
address pointers.

3 Protecting Program Counter by Encoding

We briefly review return address encoding before discussing function address
encoding. In our current implementation for x86, return addresses are encoded
and decoded by xor’ing with the stack pointer register (%esp). Since two ad-
ditional xor instructions are required for encoding and decoding, the overhead
is minimal. Called functions are responsible for the encoding and decoding pro-
tocol. The corresponding calling functions are not aware of the enforcement of
the protocol. See the function prologue and epilogue in Figure 3. Given a return
address v, it is kept as v xor %esp. The encoded return address v xor %esp
is decoded in function epilogue before executing a return instruction. Applying
xor again gives the return address (v xor %esp) xor %esp, which is equal to v.
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When PC is loaded with a value from text segments, there is no chance of
being compromised. It is unnecessary to encode function addresses appearing
in text segments. The address of the function func appearing in the call with
comment “/* plain function call */” in Figure 2 does not have to be en-
coded. The assignment fp = func moves the address of the function func to the
function pointer fp in data segment, which is writable and thus vulnerable. The
address stored in fp should be encoded. If the value in fp was encoded, it should
be decoded before the following call fp() is executed. Though it may produce
efficient programs to encode function addresses selectively depending on which
segments they are from, function addresses are indiscriminately encoded for easy
implementation.

Since function addresses are not fixed until relocation is completed, linker en-
codes function addresses during relocation. When linker relocates a global sym-
bol, if the type of the symbol represents a function, linker encodes the address
resulting from relocation. We call it encoding relocation. A randomly generated
key is xor’ed with the relocated function address. The encoding key is stored in
a global variable so that it can be used for decoding at run-time. This key man-
agement bears some vulnerability including the yet-another-vulnerable-location
problem, but this can be overcome by dynamic linker (See Section 6).

It is compiler’s responsibility to generate instructions with anticipation of
linker’s encoding relocation. Since linker performs encoding relocation indepen-
dently of involvement of a function pointer, decoding instructions should be
placed before every call. For a call to a function f, compiler generates the fol-
lowing instructions:

1. load f’s address into a general register r
2. load the decoding key into a register k
3. xor the address in r by using k (decoding)
4. call using the register r, which now holds valid f’s address.

Figure 3 shows the machine code for x86 processors translated from the program
in Figure 2. The addresses of functions gets and func appear as encoded. The
encoded address of function func is copied to function pointer fp as usual. Since
all function addresses are encoded, they are decoded when call instructions are
executed.

When a program with PC-encoding is attacked by buffer overflow, the out-
come would be similar to that of the denial-of-service attack [5] in our current
implementation. Although the program would not allow intrusion, it would be
hung up. If attackers’ purpose is to crash the target program or system, winners
are the attackers. However, they cannot succeed in intruding the system under
attack. This suicidal defense is useful for blocking self-replicating worms such
as Code Red. PC-encoding can be used independently of other measures. Any
attack missed by bound-checking and dynamic detection still has to face up to
the combinatorial complexity of guessing correct key to break in a system alive.
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High address
4n+8(%ebp) argument n

· · · Caller
8(%ebp) argument 0
4(%ebp) return address
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Low address

(a) Stack frame

0xffffffff
Reserved

Dynamic segment
0x80000000
0x7fffffff

Data segment

Text segment
0x8048000

Stack segment
0x0

(b) Segment placement

Fig. 4. Memory arrangement for x86 microprocessor

4 Memory Arrangement Checking

Memory arrangement checking requires no additional memory space for security
sensor. Instead, memory arrangement checking inspects stack pointer, frame
pointer, segment bounds and instruction alignment. Since the original memory
layout is preserved, there is no compatibility problem. It can be used freely with
other solutions to reinforce self-protecting programs, for example, those using
PC-encoding. We suggest three methods of memory arrangement checking. They
are not comprehensive by any means but as powerful as canary by StackGuard.
They are explained in the context of x86 processors with System V application
binary interface [20].

4.1 Frame Inversion

Since stack grows downward from high to low memory, stack pointer register
%esp should always have values smaller than those of frame pointer register
%ebp. If %ebp - %esp < 0, then the stack frame is inverted. This is effective for
detecting linear stack smashing attack.

Figure 3 shows also the typical prologue and epilogue code sequences. Stack
frame is shown in Figure 4(a). A call instruction pushes a return address into
the stack. Called function pushes caller’s frame pointer into the stack, and copy
the stack pointer’s value to the frame pointer. Before a return instruction is
executed, the old frame pointer value is popped into the frame pointer register.
The caller’s stack frame is recovered. Return address is now at the top of the
stack. The return instruction, popping the return address into PC (instruction
pointer register for x86 processor), transfers control to the instruction following
the call instruction.
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Caller’s stack frame is inverted if a return address pointer is smashed from
below. Since attack code is injected into the buffer in the called function’s
stack frame, the injected attack code should have address lower than the frame
pointer’s value. If the return address pointer is smashed from below, the caller’s
frame pointer slot on top of the return address pointer should also be compro-
mised. Therefore linear attack inverts caller’s stack frame.

4.2 Destination Segment

This is a very crude bound checking. The 32-bit virtual address space for x86
is divided into 5 non-overlapping segments. They are reserved, dynamic, data,
text, and stack segments from high memory. Figure 4(b) shows a typical seg-
ments arrangement. Any call or return into non-text segment may be regarded as
intrusion. If segment checking would be used with PC-encoding, we only encode
and decode lower order bits. The size of text segment determines the number of
lower order bits subject to encoding. Higher order bits necessary to distinguish
segments are untouched. Higher order bits of a compromised code pointer would
address a segment other than text. In case of x86, if the higher order 20-bit chunk
of an address is less than 0x08048, then the address belongs to stack segment.

4.3 Address Rotation

This method is effective for RISC processors, where every instruction is of the
same length, say four bytes, and alignment is compulsory. If instructions should
be aligned at the multiple of four, the two least significant bits of every instruc-
tion’s address are always 0. Address encoding proceeds in two steps. Address is
xor’ed with a key, which puts 2-bit mark 00, 01, 10, or 11 into the two least
significant bit positions. The resulting bits are rotated by n positions, where n
is less than the size of an instruction.

The integrity of the encoded address is checked in reverse order. First, address
bits are rotated by n bits in opposite direction. Then the 2-bit mark in the least
significant bit positions are checked. If the mark is correct, the address is decoded
by xor instruction. The 2-bit mark and the number of bit positions to rotate can
be chosen randomly for each execution if dynamic linker takes the responsibility
of encoding.

Address rotation can be applied to microprocessors that do not enforce align-
ment on instructions such as x86. Compiler can translate every return address
to be a multiple of some 2’s power. For example, if return address should be a
multiple of 8 bytes, we have three bits to store marks in. Selecting one out of
the eight 3-bit marks, xor’ing and rotating complete encoding.

5 Experiment

A demo Linux system has been under construction with the proposed scheme. We
rebuilt gcc version 2.95 for encoding return addresses. Using the compiler, Linux



Encoding Function Pointers and Memory Arrangement Checking 33

Table 1. Execution times and code sizes when gcc and its variations are used

Execution time [sec] Code size [byte]
Programs gcc +RAE +FPE gcc +RAE +FPE
inc 19.77 23.55 (0.84) 23.63 (0.84) 13,504 13,556 (1.00) 13,568 (1.00)
compress 4.19 4.37 (0.96) 4.54 (0.92) 87,717 87,941 (1.00) 88,658 (0.99)
hanoi 29.27 33.92 (0.86) 37.80 (0.77) 13,573 13,625 (1.00) 13,677 (0.99)
quicksort 0.72 0.75 (0.96) 0.77 (0.94) 14,173 14,241 (1.00) 14,333 (0.99)
fibonacci 5.24 5.85 (0.90) 7.38 (0.71) 13,630 13,698 (1.00) 13,734 (0.99)

Table 2. Time overhead for a function call by PC-encoding

Overhead/call (sec)
Program Number of calls +RAE +FPE
inc 1,000,000,000 3.780 ∗ 10−9 3.860 ∗ 10−9

compress 72,828,619 2.472 ∗ 10−9 4.806 ∗ 10−9

hanoi 1,073,741,823 4.331 ∗ 10−10 7.944 ∗ 10−10

quicksort 9,480,029 3.165 ∗ 10−9 5.274 ∗ 10−9

fibonacci 204,668,309 2.980 ∗ 10−9 1.046 ∗ 10−8

system kernel version 2.4, major libraries and Apache server are recompiled. The
rebuilt system is used as our test bed. We rebuilt another version of compiler and
the linker in binutility version 2.10 for encoding function addresses. Currently it
works for only non-position-independent codes (non-PIC).

Table 1 shows the execution times and code sizes of five programs with many
function calls. They were compiled by using three different compilers, and ex-
ecuted by Pentium III 866 MHz with Linux system (kernel version 2.4). The
program inc calls the function int inc( int i ) { return ++i; } 1 billion
times. The compress is from the SPEC 95 integer benchmark suite. Rest of
the tested programs are heavily recursive so that we can magnify the overhead
inflicted by PC-encoding. Program hanoi (Tower of Hanoi) moves 30 disks,
quicksort works on 1 million numbers and fibonacci computes 40th Fibonacci
number. The second and the fifth columns show the execution times and the code
sizes when the original gcc compiler is used, the third and the sixth, when gcc
with return address encoding (RAE) is used, and the fourth and the seventh,
when gcc with both of return address and function pointer encoding (FPE) is
used. The numbers in parentheses are the slowdown for execution time, which is
execution time before PC-encoding divided by execution time after PC-encoding.
Code size change is computed similarly. Note that the programs compress and
quicksort show slowdown less than 0.1 and the code sizes change little.

Table 2 show the time overhead for each function call calculated from the
Table 1. The difference in execution times is divided by the the number of calls.
We observe that the overhead for a call is on the order of nanoseconds, which
are negligible.

Table 3 shows the result of benchmarking Apache server using WebStone
2.5 [18]. Apache server’s platform was Pentium 450Mhz with Linux with kernel
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Table 3. Performance of Apache web server with return address encoding

RAE Num. of
clients

Conn. / sec
Avg. latency
(sec)

Avg. throughput
(M bits/sec)

no 2 48.03 0.042 7.52
no 16 49.21 0.325 7.57
no 30 49.66 0.601 7.73
yes 2 47.94 0.042 7.51
yes 16 45.81 0.348 7.01
yes 30 49.13 0.608 7.62

2.2.16 and the client’s was Sun UltraSPARC. Linux kernel and Apache are rebuilt
by return address encoding gcc. Other experimental parameters are the same as
those in [8].

The results show that PC-encoding burdens system with little overhead for
protecting program counter. For return address protection, we need only two
instructions for encoding and decoding. For a function call including calls us-
ing function pointers, we need additional two instructions for loading encoded
address and key, and one instruction for decoding. The overhead would be ap-
proximately proportional to the number of these additional instructions.

6 Discussion and Conclusion

We have demonstrated how function pointers can be encoded by making compiler
and linker work together. When compiler translates a function call, instructions
are generated in anticipation of linker’s encoding relocations. Linker encodes the
function address for which compiler have made provision by generating decod-
ing instructions. Experimental data shows performance slowdown less than 10%
when all return addresses and function addresses are encoded. With a Pentium
III processor of 866MHz, the overhead for each function call is on the order of
nanoseconds.

Although it is hard for buffer overflow attack to guess the key for encod-
ing and break in a system, a program with PC-encoding would fault or crash
when attacked in our current implementation. To overcome the problem, mem-
ory arrangement checking can be employed. In particular, address rotation is
promising, since it checks integrity of encoded addresses by themselves echo-
ing to the PC-encoding’s self-protection philosophy. PC-encoding with memory
arrangement checking can protect programs at low cost.

Our implementation still needs improvements. Dynamically varying keys
should be used for encoding. This means function addresses should be encoded
differently for each execution. It is also desirable for the key to differ for each
function. Current implementation relies on static key, which is the same for all
functions and invariable unless linked again. This problem can be solved by let-
ting dynamic linker take the encoding responsibility. Whenever a program is
executed, dynamic linker generates a random key and perform encoding reloca-
tion for each function symbol at run-time. It is possible to encode each function
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address differently if dynamic linker keeps track of function-key pairs. It is nec-
essary to develop new relocation types to solve the problem systematically with
a view from dynamic linker. This scheme can also be applied to return address
encoding.

Keys should be kept in non-attackable locations. In our current implemen-
tation, linker and compiler exchange a key through a global location in data
segment, which is definitely a vulnerable location. Text segment is the best place
to keep the key in the current architecture, since it is write-protected. Keys can
be represented as immediate operands of some instructions. Dynamic linker can
patch key values directly in text segment at the beginning of execution.

Our PC-encoding has a limitation when type casting gets involved. Function
pointers can be cast to integer type in ISO C [14]. Thereafter it can be cast to
any other type. This includes casting back to the original function pointer type.
When an encoded function pointer is cast to an integer, its value can be changed.
Casting the integer back to the function pointer followed by decoding, no one
can expect what it would be. Although this kind of programming is believed
not to be used widely, the language definition allows it. Our PC-encoding, in
particular, function pointer encoding is no longer viable under this situation.

While we were working on function pointer encoding, Linux kernel and
Apache server rebuilt with return address encoding have been serving for al-
most a year without any performance degradation and significant errors. PC-
encoding compiler with intrusion detection by memory arrangement checking
makes a successful self-protecting solution against the infamous buffer overflow
attacks. For more secure protection against more sophisticated future attacks
that may compromise function pointers for position independent code (PIC),
our solution needs more work because PIC requires dynamic linker. We plan
to migrate parts of our code pointer encoding scheme from linker to dynamic
linker, which should improve security and performance.
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Abstract. The problem of identifying the sources of a denial of service attack is
among the hardest in the Internet security area, especially since attackers often
use incorrect, or spoofed, source IP addresses. In this paper we present the re-
sults from a comparison between some of the most promising traceback tech-
niques proposed to solve this problem. Our goal was to evaluate and analyze the
most promising techniques on our way to find a more efficient approach. We
have evaluated four different traceback approaches and summarized the results.
Our own research was primary targeted at the iTrace approaches while the other
approaches were evaluated based on the previous work. We conclude that there
are two main disadvantages of the proposed approaches. First, the hop-by-hop
path reconstruction is inefficient due to a significant computation overhead, or a
long time spent for collecting the samples of the path. Second, the path recon-
struction requires changes in the core routing structure that is not profitable. We
also suggest a slightly modified version of iTrace approach, which aims at re-
ducing the overhead imposed by such changes.

1 Introduction

Denial-of-service (DOS) attacks are a pressing problem in today’s Internet. The im-
pact caused is often more serious than network congestion because of their target spe-
cific and concentrated nature. In a distributed DOS (DDOS) attack, the attacker uses a
number of compromised slaves to increase the transmission power and orchestrate a
coordinated flooding attack. Highly automated attack tools have been developed
where a common ingredient is the use of spoofed source addresses. Particularly,
DDOS attacks with hundreds or thousands of compromised hosts, often residing on
different networks, may lead to the target system overload and crash. Due to the
stateless nature of the Internet, the dilution of locality in the flooding stream com-
bined with spoofed source addresses undermines the effectiveness of traceback tech-
niques for locating the sources. By the use of IP spoofing, stepping stone techniques,
and zombie slaves, attackers can quite easily hide their identity. Therefore, finding the
true identity of an attacker includes many steps, of which tracing the machines that di-
rectly generates the attack packets really is only the first step.

Another way to render efficient DDOS attacks, which do not include the use of
compromised slaves, is by bouncing flooding traffic off of reflectors. Attackers can
thereby effectively hide their own location. In this scenario the attacker sends a false
request to the reflector on behalf of the victim, which is done by setting the victim IP
address as the source address. By spoofing requests from the victim to a large set of
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Internet servers (for example DNS, Gnutella, and web servers) attackers can make it
really difficult for a victim to isolate the attack traffic in order to block it. As pointed
out in [11] it proves impractical to defeat reflector attacks with traceback techniques,
especially since the source addresses that reach a victim are the true IP address of
each reflector. Therefore reflector attacks are not particularly considered in the con-
text of traceback.

During recent years the problem with DOS attacks has become well known, but it
has been difficult to find a way to measure the denial of service activity in the Internet
as a whole. As far as we know there is only one publication in this area [4]. In this
publication they have been able to measure, with some reliability, the activity of DOS
attacks (excluding reflector attacks).

The experimental measurements give a conservative lower bound of approximately
20-40 attacks per hour in the whole Internet, directed to different network prefixes,
with the mean duration of 10-15 minutes. If these results are correct, they give us a
very sad imagination of today’s Internet security.

The problem of tracing streams of spoofed packets has received considerable at-
tention recently, and several approaches have been introduced in the Internet society.
One technique is Ingress filtering as described in RFC 2827 [13]. The idea with in-
gress filtering is that packets from an edge network should be filtered using the prefix
for that network. Any packet carrying an IP address with a wrong prefix should be
blocked at the filtering router and not allowed to continue towards its destination. If
ingress filtering could be implemented everywhere tracing traffic would be unneces-
sary. The problem is that it is not likely that all edge networks will ever implement
this even though it is in use today. Therefore our belief is that it will still be interest-
ing to find efficient traceback techniques.

The rest of this paper is organized as follows. Section 2 gives a short description of
proposed techniques. In Section 3 parameters used for comparison have been intro-
duced. Section 4 presents a modified iTrace approach and Section 5 describes the re-
sult. Finally we summarize in Section 6, and conclude in Section 7.

2 Traceback Approaches

The proposed traceback techniques can be sorted into three distinct categories:

1. Actively querying routers about traffic they forward.
2. Creating a virtually overlay network for selective monitoring of packet flows.
3. Identifying the attack path by reconstruction, using a collection of packets, marked

or especially generated by routers along the attack path.

A simple scheme of the first category is in use today. If a victim recognizes that it is
being attacked it develops an attack signature, consisting of some data common and
unique to the attack traffic. A query including the attack signature is then sent hop-by-
hop to each router along the path. This presuppose that each routing device supports
input debugging and is able to tell about interface through which a packet corre-
sponding to the attack signature has arrived. This technique is however not very effi-
cient and requires a lot of manpower and good contacts with other network providers.
Some ISP's may have implemented a more sophisticated and automated technique for
this to speed up the trace procedure within their own network. A drawback of all
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techniques in the first category is that tracing can only be done during an ongoing at-
tack.

In the second category we have placed different logging techniques [8, 12]. In gen-
eral it is not feasible to use logging since it often requires huge storage capacities, but
within this category there is one very interesting approach, Hash-Based IP traceback
[8], more common called SPIE (Source Path Isolation Engine). With the use of an ef-
ficient logging technique, only collecting hashes of the packets, it is possible to trace
a single route of one packet.

The third category includes different variants of probabilistic packet marking
(PPM), first proposed by Savage and colleagues [2], and ICMP traceback (iTrace),
first proposed by Bellovin and colleagues [5].

The basic idea behind PPM is the use of edge sampling. A packet on the path is
with a certain probability marked by two routers on the way, forming an edge. Each
marked packet then represents a sample of the whole path. The victim receives all
packets and can thereby use the marked packet to reconstruct the entire path back to
the source. Song and Perrig [3] have presented an enhanced version of PPM. They
noticed that if the victim knows the map of its upstream routers the computation and
reconstruction can be done much more efficient.

The basic idea behind iTrace is that every router should sample a packet with some
probability, copy its content onto a special ICMP packet, add information about the
adjacent upstream and/or downstream routers and send it towards the same destina-
tion as the original packet. The victim of an attack can then use these packets to re-
construct the paths back to the attackers. An observation made of this solution was
that it is much more likely that the victim will get iTrace packets from routers nearby
than from routers far away. A variant of iTrace, called intention-driven iTrace [6, 7]
propose a solution to this, which increase the probability of receiving an iTrace mes-
sage when needed. By using a special intention value that can be propagated to
routers through BGP updates it is possible for a host or victim to raise the probability
of receiving iTrace packets from remote routers.

A common disadvantage of the first category is that tracing cannot be done post
mortem, after an attack has stopped. Within the second category, all techniques expect
SPIE requires huge storage capacity. Even though SPIE is a promising technique, and
is unique in that it can trace a single packet, it suffers from a very tight time limit and
costly investments. Therefore we have chosen to focus on the various techniques pro-
posed within the third category.

3 Evaluation of the Suggested Approaches

We have simulated the different traceback approaches on a linear, star, and tree topol-
ogy. The results of the simulations were verified and compared to the results of
mathematical analysis, where possible.

We have selected four distinct parameters for comparison and evaluation of differ-
ent traceback approaches,

1. The number of packets required for a complete path reconstruction
2. The computation overhead of a reconstruction procedure
3. The robustness of a traceback mechanism in case of a large-scale DDOS
4. The deployment overhead
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The first parameter represents estimated time for collecting enough packets to get re-
quired information for the reconstruction. The second parameter represents estimated
time required for processing collected information to be able to reconstruct the path
back to the attackers. It is desirable to minimize these two characteristics to achieve a
fast response to an attack, and diminish the damage. The third parameter, the defini-
tion of robustness, was first given by Song and Perrig [3]. They introduced two terms:
false positive, a path that do not take part in an attack but it is reconstructed by a
traceback mechanism, and false negative, a path that take part in an attack but it is not
reconstructed. The traceback approach is robust if it gives a relatively low rate of false
positives and false negatives, and if the rate does not grow rapidly with increased
number of attackers. The fourth parameter, the deployment overhead, cannot be
measured or calculated directly but can be evaluated by means of common sense.

The choice of these parameters is motivated by our aspiration for a solution to the
IP traceback problem that is time and cost efficient, and gives a high precision.

3.1 Methodology

Our evaluation is based on the contribution of previously published papers [2, 3, 7],
simulations in the network simulator [10] and mathematical analysis.

The network simulator was extended to be used with both the PPM methods as
well as with the two approaches of iTrace. The attack traffic was simulated by the
UDP agents attached to every attack node and which were configured to send traffic
with a rate of about 500 pkt/s. The connecting links between routers were configured
to propagate data with high speed and minimal loss-rate in the queues (this was
achieved by setting up high bandwidth of the links). A victim node collected all re-
quired data and stored it into a file. These data were further processed in matlab. The
goal of the simulations was to evaluate statistically the behavior of the chosen ap-
proaches therefore every simulation with the same configuration was performed 100
times. In our simulation we used different topologies: linear topology, star and tree
topology. In case of a tree topology a victim was located at the root of a balanced tree
while the attackers were at the leaves of the tree.

3.2 Number of Packets Required for Reconstruction

The purpose of path reconstruction is to find the IP address of an attacking host or at
least the address of the router closest to the attacking host. During the reconstruction
procedure we have to verify that the reconstruction path is complete and correct.
Neither PPM nor iTrace approaches provide a mechanism for verifying the complete-
ness of the reconstructed path. The only way to verify this is to collect accordingly
large amount of samples, and to make sure that there are no new samples.

The edge-marking algorithm in PPM depends primarily on the marking probability
p. This parameter defines the fraction of packets, which are marked by a router. The
expected number of collected packets required for path reconstruction for a linear to-
pology is bounded by:
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where k is the number of samples required for reconstruction of a single edge between
two routers and d is the length of the path from the victim to the attacker [2].

The method suggested by Savage and colleagues assumes k=8.Figure 1 represents
the graph of this equation.
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Fig. 1. The expected number of packets re-
quired for path reconstruction in Savage and
colleagues algorithm

Fig. 2. The expected number of packets re-
quired for path reconstruction in iTrace

As Figure 1 indicates, with a value of p around 4-5%, the number of packets re-
quired for path reconstruction is minimized, and does not exceed 3104 ⋅ for all values
of d in the interval between 2 and 32. It is remarkable that this number neither de-
pends on topology nor the number of attackers. Assuming that the rate of emitting at-
tack packets is equal to 10 packets per second, per attacking host (which is an ex-
tremely low rate [4]), we yield that the attacking hosts have to generate traffic as long
as 5-7 minutes before a victim is able to reveal the whole path.

The method proposed by Song and Perrig requires fewer packets although the ro-
bustness suffers in this case [3]. The iTrace approach depends on the ICMP packet
generating probability µ , which indicates the fraction of the packets being traced by a
particular router. If, for example, this parameter is equal to 1/20000, it means that one
packet out of 20000 could be traced and an ICMP packet containing information
about the route of this packet is issued towards the destination. The reconstruction of
the path from a victim to an attacker is possible if all the routers have generated at
least one ICMP packet. We have found an appropriate formula showing the expected
number of packets required to be generated by an attacking host (in case of linear to-
pology), in order to make sure that all routers along the path have generated at least
one ICMP packet.1

µ
58.0)1ln(

}{
+−= d

NE (2)

where d is the length of the path from the victim to the attacking host Figure 2 repre-
sents the graph of this equation.

                                                          
1 The calculations are available upon request
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Figures 3 and 4 show the dependency on a distance from an attacker to a victim for
the particular values of parameters p (for Savage and colleagues) and µ (for iTrace)
correspondingly. These figures show also a good correlation of the theoretical and
simulated results.
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( 152/1=µ )

For the proposed value of µ =1/20000 and the mean Internet diameter 20 hops the

whole path can be reconstructed after an attacking host emits about 54 1010 − packets.
However, in real life, this value should be at least 10 times higher. This correction is
introduced by the following two reasons. First, the simulations on the network simu-
lator have shown the dependency on the routing topology. Figure 5 represents the
graph of the expected number of packets in case of a binary tree topology and 3-ary
tree topology compared to a linear topology. This figure shows that the number of
packets required for path reconstruction may be significantly higher in case of a com-
plicated topology even if only the attack traffic presents.

Second, the rate of attack packets emitted by a particular host can be quite low
compared to the legitimate background Internet traffic. This reduces the probability
that a router can sample an attack packet. Assuming an average rate of about

210 emitting attack packets per second per attacking host [4], we yield that the at-
tacking hosts should generate traffic as long as 2-3 hours before a victim is able to re-
veal the whole path. The parts of the path, however, can be reconstructed after a few
minutes, but the pieces of the path, obviously, do not disclose the origin of the attack,
although they can provide valuable information pointing where to add traffic filters.
In order to minimize the total number of attack packets required for path reconstruc-
tion, we have to raise the generating probability µ at least 10-20 times. However, this
could be inappropriate due to the significant traffic overhead caused by the iTrace
packets. Intention-driven iTrace can improve the situation and eliminate the influence
of the topology and background traffic, although the propagation of the "intention"
value through BGP updates may be quite slow, delaying the invocation of the inten-
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tion driven mechanism. Another prob-
lem with intention driven iTrace is that
it may cause instability in the routing
mechanism due to frequent updates in
the routing table.

3.3 Computation Overhead

PPM, as suggested by Savage and col-
leagues, suffers from enormous com-
putation overhead in case of a large-
scale DDOS. The complexity of recon-
struction grows very rapidly and is up-
per bounded by ),( 8nlO ⋅ where l is the
maximal distance to the attackers and n
is the number of attacking hosts. The
large overhead is explained by the con-
straint to break the IP address of a

router into eight pieces to fit each piece into the fragmentation field in the IP header.
Consequently, the path reconstruction of all attacking sources can take hours or days
[3].

The complexity of the path reconstruction in the traceback approach proposed by
Song and Perrig depends primarily on the topology of the map of upstream routers in-
stead of the number of attackers, and does not have a large overhead. The complexity
of the path reconstruction is upper bounded by )( nlO ⋅ and therefore scales well, al-
though the reconstruction procedure requires some intensive calculations [3]. The
complexity of the reconstruction procedure in iTrace is upper bounded by )( nlO ⋅ and
besides that, the reconstruction mechanism does not require significant and cumber-
some calculations [5].

3.4 Robustness

In terms of robustness both the PPM approaches are insufficiently robust. The Savage
algorithm gives a very high rate of false positives. Simulations in the network simu-
lator have shown that false positives can even appear when the number of attackers is
as low as five. Such behavior is explained, again, by a constraint to break the router’s
IP address into eight pieces, raising the probability of the accidentally incorrect recon-
structed paths at the victim side. The Song and Perrig approach instead suffers from a
possible high rate of false negatives. This is primary connected to the use of a map of
upstream routers. If the map is not accurate or not correspond to the real topology,
then the paths to some attackers cannot be reconstructed. In fact, no PPM approach is
"collision-resistant" in the sense that ambiguous representation of the same edge in-
creases the rate of false positives during the reconstruction procedure. The iTrace ap-
proach introduces a higher robustness, and does not suffer much from false positives.
However, a host may not be discovered if it is sending a low volume of attack traffic.
The robustness of iTrace is more influenced by insufficient information about the at-
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tack paths gathered at the victim, rather than ambiguous representation of informa-
tion.

We would like to note that any traceback approach, which uses a path reconstruc-
tion mechanism, would suffer from false positives due to two main reasons. First, it is
difficult to prove whether the path is reconstructed completely or partly. A partially
reconstructed path is considered as a false negative, since the reconstruction proce-
dure returns the IP address of a host, which is not actually involved in the attack and
just lies somewhere in the middle of the path. Second, a single mistake on one step of
the hop-by-hop path reconstruction procedure can imply multiple false negatives on
the subsequent steps.

3.5 Deployment Overhead and Cost

One of the desired features of a traceback approach is incremental deployment into
the current Internet structure, at low cost. The expenses for deployment of traceback
should not exceed the losses from the denial of service activity. Unfortunately, all
proposed approaches require a significantly high level of expenses since they require
changes in routers present in the current Internet structure. The authors of the PPM
scheme claim that their approach is incrementally deployable but this has not been
thoroughly evaluated. For iTrace, the reconstruction of the whole path requires the
participation of every other router on the path. Intention-driven iTrace has the draw-
back that it imposes a change in a somewhat sensitive BGP protocol.

4 A Modified iTrace Approach

As we have seen from the previous sections, the main drawbacks of the iTrace ap-
proach are a large number of attacking packets required for the path reconstruction
and significant overhead caused by necessity to implement the iTrace mechanism on
every router. While the first drawback can be (at least, theoretically) solved by tuning
the generating probability ,µ the second drawback requires a modification in the
mechanism itself in order to add such a desirable characteristics as "incremental de-
ployment" and reduce the overhead by implementing the iTrace mechanism only an a
small amount of the routers.

An obvious improvement of the second drawback is the marking of the iTrace
messages (issued by one router) on the other routers thereby creating a chain of the
routers, which the message traverses on its path. However, this method supposes
checking every packet in a router, which is inefficient. Instead, we suggest selecting
packets with a relatively low probability (which we denote as a selecting probability
η ) from the queue in a router and if the selected packet is an iTrace message then
mark it by adding some additional information to the body of the message. In other
words, the router that implements iTrace should not only generate iTrace messages
but also examine the randomly chosen packets and, if the examined packet is an
iTrace message from another router, add its own IP address to a special field of the
iTrace message. The reconstruction procedure at the victim side will use this infor-
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mation to fill in the "gaps" between the routers, which do not implement the iTrace
mechanism.
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Fig. 7. The number of attacking packets re-
quired for reconstruction of the whole path
with the given probability in case of a linear
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The selecting probabilityη should be low to avoid a processing overhead but, from
the other hand, it should not be very low, since this decreases the probability of
marking iTrace messages by the other routers. We suggest selecting the value for
η from 0.05 to 0.1, because this gives an insignificant processing overhead on a router
and, looking at the experiments, this value is sufficient for marking a reasonably high
amount of iTrace messages.

We have proved that this approach allows successfully reconstruction of the path
back to the router which is the nearest to the attaching host and which implements the
modified iTrace mechanism. The reconstruction is possible even if only a part of the
routers implements the modified iTrace mechanism. Moreover, a small amount of
such routers, which located in some distance from each other, can do this work better
than a large amount of routers disposed in a raw.

The following simulations were conducted in the network simulator. We have con-
nected an attacking node, a "gap", a chain of the nodes, which implement the modi-
fied iTrace mechanism and a victim into a linear topology. The "gap" was represented
by several nodes, which do not implement an iTrace mechanism at all. The length of
the chain of the nodes, which implement the modified iTrace mechanism, varied from
two up to twenty. The reconstruction procedure was extended to cope with the iTrace
messages marked by the other nodes on its way. The purpose of these simulations was
to figure out how the chain of nodes influences the path reconstruction.

The result of the simulations is shown in Figures 6 and 7. Figure 6 indicates the
dependency of the expected number of attacking packets required for path recon-
struction on the length of the chain. Figure 7 is a more extended analysis of our result.
It shows the number of packets, which an attacking host should emit in order to re-
construct the whole path with a certain probability given in advance.
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As the figures indicate, it is not desirable to have a long chain of routers which im-
plements a modified iTrace approach because this complicates the reconstruction and
requires more packets to complete the reconstruction. This phenomenon is explained
as follows. As we mentioned above in Section 3.2, the reconstruction procedure
makes a conclusion that the path is reconstructed completely if it receives no new
samples of the path. The longer chain requires more packets for its reconstruction and
emits more new samples of the path thereby delaying the reconstruction procedure
with a conclusion that the reconstruction is complete.

5 Result

The desired characteristics of an IP traceback mechanism are that it requires a rela-
tively small number of packets for path reconstructzion, low complexity of recon-
struction, high robustness, and low deployment overhead and cost. All the parameters
are equally important since a low evaluation of one of the parameters opposes using
the method in practice.

Table 1 indicates that none of the proposed solutions satisfies all the desired pa-
rameters. Both PPM approaches have insufficient robustness in case of a DDOS at-
tack but require fewer packets than iTrace for path reconstruction, whereas both of the
iTrace approaches possess a relatively good robustness. The deployment overhead is
high for all the methods (except the modified iTrace approach) since all of them as-
sume some kind of alternation in routers in the Internet. The modified iTrace ap-
proach assumes alternation only in a small and carefully selected part of routers, re-
ducing the deployment overhead. Summarizing the above, we infer that each of the
suggested approaches is directed to solve one particular issue of the IP traceback
problem but none can solve all of them.

Table 1. Summary of the evaluation of IP Traceback approaches

packets complexity robustness deployment overhead

Savage & colleagues 3104 ⋅ )( 8nlO ⋅ low high

Song & Perrig 3104 ⋅< )( nlO ⋅ medium high

ITrace 610> )( nlO ⋅ high high

Intention driven 510 )( nlO ⋅ high very high

Modified iTrace 610≈ )( nlO ⋅ high medium

6 Summary

In this paper we have closely studied and evaluated four IP traceback approaches pro-
posed during the last years. We have identified four parameters, which can be used
for the comparison. These parameters are aimed at finding a time and cost efficient
approach with high precision. Evaluation of the edge marking approach was based on
previously published articles and on our own simulations, while the evaluation of the
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iTrace mechanism was based on our own research and simulations in the network
simulator. We have also suggested a modified iTrace approach, which aims at reduc-
ing the deployment overhead.

7 Conclusions and Discussion

The detailed analysis has revealed two main disadvantages of the previously proposed
approaches. First, the hop-by-hop path reconstruction is inefficient due to a significant
computation overhead, or a long time spent for collecting the samples of the path.
Second, the path reconstruction imposes changes in the core routing structure that is
not profitable. With this in mind, a conclusion is that it may be a better approach to
solve the IP traceback problem locally, concentrating on the first hop router, or the
router that connects a local network to the rest of the Internet. The goal of all recon-
struction algorithms is to find the sources of the attacking traffic, but the reconstruc-
tion of an attack path can actually only reveal the first router an attack packet has
passed. Since the first router is of main interest, it would be desirable to find an algo-
rithm that could reveal the identity of the first router, without requiring the participa-
tion of all the routers on the path. However, it would not be practical approach to rely
only on the first-hop router because it might be compromised or damaged. The better
solution would be to include a traceback support into the core Internet structure itself
but to limit the overhead imposed by such changes. The modified iTrace approach
that we have presented in this article is an example of such a solution. Our future re-
search will focus on finding improvements in this approach.
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Abstract. Inference attacks mean that a user derives information on
the execution results of unauthorized queries from the execution results
of authorized queries. Although many studies so far focus on only infer-
ence of positive information (i.e., which object is the execution result of
a given unauthorized query), negative information (i.e., which object is
never the execution result of a given unauthorized query) is also sensi-
tive. In this paper, we define the following two types of security problems
against inference attacks on given negative information: (1) Is the infor-
mation secure under a given database instance? (2) Is it secure under
any database instance of a given database schema? It is shown that the
first problem is decidable in polynomial time in the description size of
the database instance while the second one is undecidable. A decidable
sufficient condition for given negative information to be secure under any
database instance of a given database schema is also proposed.

1 Introduction

In recent years, various authorization models for object-oriented databases
(OODBs) have been proposed and studied. Among them, the method-based
authorization model [7,13] is one of the most elegant models since it is in har-
mony with the concept that “an object can be accessed only via its methods” in
the object-oriented paradigm. In the model, an authorization A for a user u can
be represented as a set of rights m(c1, . . . , cn), which means that u can directly
invoke method m on any tuple (o1, . . . , on) of objects such that oi is an object
of class ci with 1 ≤ i ≤ n. On the other hand, even if m(c1, . . . , cn) �∈A, u can
invoke m indirectly through another method execution in several models, e.g.,
protection mode in [2]. Although such indirect invocations are useful for data
hiding [2], they may also allow inference attacks in some situations.

Example 1. Consider the following database schema: Employee, Host, and Room
are classes representing employees, hosts, and rooms, respectively. Method
computer returns the host which a given employee uses, method location re-
turns the room in which a given host is placed, and method office, which re-
turns the room occupied by a given employee, is implemented as office(x) =
location(computer(x)).

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 49–60, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Employee Host Room

John mars A626

office

computer location

Fig. 1. Inference of positive information.

Employee Host Room

John mars A626

office

computer

location
neptune B533

location

Fig. 2. Inference of negative information.

Now suppose that the physical computer network is top-secret information.
In this case, an authorization for a user u may be the one shown in Figure 1,
where a solid (resp. dotted) arrow denotes an authorized (resp. unauthorized)
method to u. Assume that u have obtained that computer(John) = mars and
office(John) = A626 using the authorized methods. Also assume that u knows
the implementation body of office as its behavioral specification. Then, u can
infer that location(mars) = A626, although executing location(mars) is prohibited.

In the above example, the positive information “location(mars) = A626” is
not secure against inference attacks. It is important for database administrators
to know whether top-secret information is secure against inference attacks.

In [8,9], two security problems against inference attacks on OODBs are dis-
cussed. These articles focus on inference of only positive information, i.e., in-
ference of the execution result of a given unauthorized query (see Example 1).
However, as illustrated below, negative information can also be inferred.

Example 2. Consider again the schema in Example 1. In this case, suppose that
the relationship between employees and hosts is top-secret information and there-
fore the authorization of u is set as shown in Figure 2. Then, u knows that
location(neptune) = B533 and office(John) = location(computer(John)) = A626,
similarly to Example 1. Since A626 and B533 are different rooms, u can conclude
that computer(John) �=neptune.

In this paper, inference of negative information is formalized under a model
of OODBs. Under the formalization, we consider the following security problems:

1. The instance security problem (ISP): Under a given database instance, is it
impossible to infer an object that is never the execution result of a given
unauthorized query?
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2. The schema security problem (SSP): Under any database instance of a given
database schema, is it impossible to infer an object that is never the execution
result of a given unauthorized query?

It is shown that the ISP is decidable in polynomial time in the description size of
the database instance while the SSP is undecidable. We propose a decidable suf-
ficient condition for given negative information to be secure under any database
instance of a given database schema.

In this paper we discuss “logical” inference in OODBs in the sense that the
result of the inference is always true. The inference in statistical databases [4] is
a kind of logical inference. Ref. [6] proposes a mechanism that accomplishes max-
imum data availability as long as given sensitive information is secure against
logical inference. Ref. [14] focuses on logical inference in OODBs. Besides in-
ferability of the result of a method execution, the article introduces the notion
of controllability, which means that a user can control (alter arbitrarily) an
attribute-value of an object in a database instance. We do not consider con-
trollability since our query language does not support update operations for
database instances. However, since our query language supports recursion while
the one in [14] does not, detecting inferability in our formalization is not trivial.

On the other hand, many of the researches concentrate on “statistical” in-
ference, i.e., inference under some statistical assumptions. Ref. [3] discusses the
inference based on Bayesian methods. In [15], a quantitative measure of infer-
ence risk is formally defined. In [10], the security against statistical inference is
defined based on information theory.

The rest of this paper is organized as follows. Section 2 defines OODBs.
Section 3 defines attacker’s inference and the security problems. Sections 4 and 5
discuss the two security problems. Section 6 sums up the paper. Because of the
space limitation, we rarely provide examples in this paper. Refer to [8] for some
explanatory examples of the definitions of OODBs and inference attacks.

2 A Formal Model of OODBs

We adopt method schemas [1] as a formal model of OODBs. Method schemas
have such basic features of OODBs as method overloading, dynamic binding, and
complex objects. The semantics is simply defined based on term rewriting. In
this section, we first introduce some notations and concepts for term rewriting.
Then, we restate the original definition of method schemas.

2.1 Notations

Let F be a family of disjoint sets F0, F1, F2,. . . , where, for a nonnegative integer
n, Fn is a set of function symbols of arity n. For a countable set X of variables,
let TF (X) denote the set of all the terms freely generated by F and X. For a set
V , let V n denote the Cartesian product V × · · · × V︸ ︷︷ ︸

n

. For a term t ∈ TF (X), an

n-tuple t = (t1, . . . , tn) ∈ (TF (X))n of terms, and an n-tuple x = (x1, . . . , xn) ∈
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Xn of variables, let t[t/x] denote the term obtained by simultaneously replacing
every xi in t with ti for 1 ≤ i ≤ n. Hereafter, we often use a bold letter v to
mean (v1, . . . , vn) without explicitly defining it when n is irrelevant or obvious
from the context. Also, we write v ∈ v if v = vi for some i.

An occurrence of a term t is a sequence of positive integers representing (the
position of) a subterm of t. For example, 1 · 2 of f(f(x, g(x)), g(x))) specifies
the first g(x), i.e., the second argument of the first argument of the outermost
f . Let R(t) denote the set of occurrences of t. The subterm of t at occurrence r
is denoted t/r. The replacement in t of t′ at occurrence r, denoted t[r← t′], is
defined as follows:

– t[ε← t′] = t′, where ε denotes the empty sequence;
– f(t1, . . . , ti, . . . , tn)[i · r← t′] = f(t1, . . . , ti−1, ti[r← t′], ti+1, . . . , tn).

2.2 Database Schemas

Let C be a finite set of class names (or simply classes). Let M be a family of
mutually disjoint finite sets M0, M1, M2,. . . , where, for a nonnegative integer
n, Mn is a set of function symbols (or often called method names) of arity n.
Each Mn is partitioned into Mb,n and Mc,n. Let Mb =

⋃
n≥0 Mb,n and Mc =⋃

n≥0 Mc,n. Each mb ∈Mb (resp. mc ∈Mc) is called a base method name (resp.
composite method name). We say that M is a method signature.

Definition 1. Let c ∈ Cn. A base method definition of mb ∈ Mb,n at c is a
pair (mb(c), c) for some c ∈ C. A composite method definition of mc ∈Mc,n at
c is a pair (mc(c), t) for some t ∈ TM ({x1, . . . , xn}).
For 1 ≤ i ≤ n, let oi be an object of class ci (see Def. 4 for the formal defini-
tion of objects). Informally, the above base method definition declares that the
application of mb to o = (o1, . . . , on) results in an object of c or its subclass,
while the above composite method definition states that the application of mc
to o results in term rewriting starting from t[o/x].

Definition 2. A method schema [1] S is a 5-tuple (C,≤, M, Σb, Σc), where:

1. C is a finite set of class names,
2. ≤ is a partial order on C representing a class hierarchy,
3. M is a method signature,
4. Σb is a set of base method definitions, and
5. Σc is a set of composite method definitions.

For every combination c ∈ Cn and m ∈Mn, there must exist at most one method
definition of m at c.

When c′ ≤ c, we say that c′ is a subclass of c and c is a superclass of c′.
We naturally extend ≤ to n-tuples of classes as follows: For two tuples c =
(c1, . . . , cn) and c′ = (c′

1, . . . , c
′
n), we write c ≤ c′ iff ci ≤ c′

i for all i.
Define the size ‖t‖ of a term t as |R(t)|, where |X| denotes the number of

elements of a set X. That is, ‖t‖ is the number of occurrences of t.
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2.3 Inheritance

Let c ∈ Cn and m ∈ Mn. By Def. 2, the method definition of m at c may not
exist. In this case, the definition of m at the smallest superclass of c is “inherited”
by c. The inherited method definition is called resolution and defined as follows:

Definition 3. Let S = (C,≤, M, Σb, Σc), mb ∈ Mb,n, and c ∈ Cn. Suppose
that (mb(c′), c′) ∈ Σb is the base method definition of mb at the smallest c′

above c, i.e., whenever (mb(c′′), c′′) ∈ Σb and c ≤ c′′, it is the case that c′ ≤ c′′.
The resolution Res(mb(c)) of mb at c is defined as c′. If such a unique base
method definition does not exist, then Res(mb(c)) is undefined, denoted ⊥. The
resolution of a composite method is defined in the same way.

2.4 Database Instance

A database instance of a method schema assigns a set of objects to each class
name. Also, it gives the semantics of base methods.

Definition 4. A database instance of a method schema S is a pair I = (ν, µ)
with the following properties:

1. To each c ∈ C, ν assigns a finite disjoint set ν(c) of object identifiers (or
simply, objects). Each o ∈ ν(c) is called an object of class c. Let OI =⋃

c∈C ν(c). For c = (c1, . . . , cn), let ν(c) denote ν(c1)× · · · × ν(cn).
2. For each mb ∈Mb,n, µ(mb) is a mapping from On

I to OI which satisfies the
following two conditions. Let c, c′ ∈ Cn.
(a) If Res(mb(c)) = c′, then µ(mb) |ν(c) is a partial mapping to

⋃
c≤c′ ν(c),

where “|” denotes that the domain of µ(mb) is restricted to ν(c).
(b) If Res(mb(c)) = ⊥, then µ(mb) is undefined everywhere in ν(c).
If µ(m)(o) is undefined, then we write µ(m)(o) = ⊥.

The description size of I is O(|OI |k), where k is the maximum arity of the
methods in the schema.

2.5 Method Execution

A term in TM (OI) is called an instantiated term. The one-step execution relation
→I on TM (OI) is defined based on the leftmost innermost reduction strategy.

Definition 5. For a term t ∈ TM (OI), let m(o) (o ∈ ν(c)) be the leftmost
subterm of t at occurrence r.

1. If m ∈Mb and µ(m)(o) �=⊥, then t→I t[r← µ(m)(o)].
2. If m ∈Mc and Res(m(c)) = t′ �=⊥, then t→I t[r← t′[o/x]].
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Note that, by Def. 5, for any instantiated term t, there exists at most one term t′

such that t→I t′. That is, every execution is deterministic. Taking the leftmost
reduction strategy is just for ensuring that every execution is deterministic. On
the other hand, taking the innermost reduction strategy (i.e., rewriting only the
term in the form of m(o)) is essential since the definition of m cannot be bound
before knowing the classes of the arguments of m.

Let →∗
I be the reflexive and transitive closure of →I . The execution result of

t, denoted t↓I , is a term t′ such that t →∗
I t′ and there exists no t′′ such that

t′ →I t′′. If t↓I ∈ OI , then the execution of t is successful, and if t↓I �∈OI , then
the execution of t is aborted. In both cases (i.e., if t↓I exists), the execution of t
is terminating. On the other hand, if t↓I does not exist, then the execution of t
is nonterminating.

3 Inference Attacks

3.1 Definition of Inference

We adopt the following simple but general method-based authorization model
because discussing authorization models is not our main purpose.

Definition 6. Let S = (C,≤, M, Σb, Σc). A right is a term in the form of m(c),
where m ∈Mn and c ∈ Cn. An authorization A is a finite set of rights.

Intuitively, m(c) ∈ A means that the corresponding user is authorized to directly
invoke method m on any tuple o of objects such that o ∈ ν(c).

For theoretical convenience, we introduce a special object o⊥ �∈OI denoting
aborted execution. Extend →I to the relation over TM (OI ∪ {o⊥}) as follows:

1. If the execution of t under I is aborted, then t→I o⊥.
2. If o⊥ ∈ o, then m(o)→I o⊥.

Define t↓I = o⊥ if t →∗
I o⊥. Thus, t↓I is defined whenever the execution of t is

terminating. In the rest of this paper,→I denotes this extended rewrite relation.
In this paper, the information obtained from the database is represented

by a predicate EQ(t, t′). Here, EQ(t, t′) (resp. ¬EQ(t, t′)) means that the user
knows that the execution results of t and t′ are the same object (resp. different
objects). For example, user u obtains EQ(location(mars), A626) in Example 1
and ¬EQ(computer(John), mars) in Example 2.

As stated in Examples 1 and 2, we assume that user u can obtain the following
three kinds of information (i.e., equalities and non-equalities) directly from a
database instance I = (ν, µ).

(∗1) User u knows the execution result of m(o) if the execution is terminat-
ing. Formally, if m(c) ∈ A, o ∈ ν(c), and m(o)↓I exists, then u obtains
EQ(m(o), m(o)↓I).

(∗2) User u knows the behavioral specification of a composite method mc at
c if executing mc(o) (o ∈ ν(c)) is authorized. Formally, if mc(c) ∈ A,
Res(mc(c)) = t, and o ∈ ν(c), then u obtains EQ(mc(o), t[o/x]).
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(∗3) User u can distinguish different objects. Formally, for every pair of distinct
objects o and o′ in OI ∪ {o⊥}, u obtains ¬EQ(o, o′).

A behavioral specification is usually more abstract and has less information than
its implementation (i.e., Res(m(c))). Our formulation is conservative in the sense
that if a term is secure in our model, then it will be secure in the real world.

Now, let K+
I,A denote the set of EQ’s by (∗1) and (∗2), and let K−

I,A be the
set of EQ’s by (∗3). Let AX be the set of the following Horn clauses:

(AX1) EQ(x, x),
(AX2) ¬EQ(x, y) ∨ EQ(y, x),
(AX3) ¬EQ(x, y) ∨ ¬EQ(y, z) ∨ EQ(x, z),
(AX4) ¬EQ(x, y) ∨ EQ(m(x1, . . . , x, . . . , xn), m(x1, . . . , y, . . . , xn)),
(AX5) EQ(m(x1, . . . , o⊥, . . . , xn), o⊥),

where (AX1)–(AX4) are axioms of equality and (AX5) represents the property
of o⊥. Define KI,A = K+

I,A ∪K−
I,A ∪ AX. The information that can be inferred

by the user is defined as the set of all the logical consequences of KI,A, denoted
{f | KI,A |= f}. Especially, the negative information that can be inferred by the
user is {¬EQ(t, o) | KI,A |= ¬EQ(t, o), o ∈ OI}.

The above definition of inference is reasonable under the next assumption:

Assumption 1. User u knows neither what OI is nor what C is.

If u knows OI , then u can conclude EQ(t, o) by obtaining ¬EQ(t, o′) for every
o′ ∈ OI − {o}. Such inference is not captured by the axioms in AX. If u knows
C, the equalities obtained by (∗2) may not be ground (i.e., may include some
variables). See the discussion in [8,9] for detail. In many cases, this assumption
can be satisfied by just hiding OI and C from u.

3.2 Two Security Problems

We formalize the two security problems against inference of negative information.
The first one, the instance security problem (ISP), is to determine whether for a
given database instance I, a query τ ∈ TM (OI), and an authorization A, there
is no o ∈ OI such that KI,A |= ¬EQ(τ, o). The second one, the schema security
problem (SSP), is to determine whether for a given database schema S, a query
τ ∈ TM (C), and an authorization A, there is no database instance I = (ν, µ) of
S such that KI,A |= ¬EQ(τ [o/c], o) for some o ∈ OI and o ∈ ν(c). In Section 4,
we show that the ISP is decidable in polynomial time in the description size of
the database instance. In Section 5, we show that the SSP is undecidable, and
propose a decidable sufficient condition for a given schema to be secure.

4 The Instance Security Problem

In this section, we show that the ISP is decidable. To do this, we use the notion
of congruence closure defined below.
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Definition 7. Let B be a binary relation on TM (OI ∪ {o⊥}). The congruence
closure of B, denoted B∗, is the least (finest) equivalence relation such that

– B∗ includes B; and
– B∗ satisfies substitutivity, i.e., if (t, t′) ∈ B∗, then

(m(t1, . . . , t, . . . , tn), m(t1, . . . , t′, . . . , tn)) ∈ B∗ for any m ∈M .

Let BI,A = {(t, t′) | EQ(t, t′) ∈ K+
I,A}. Also, for τ ∈ TM (OI), let BI,A(τ, o)

denote BI,A ∪ {(τ, o)}. For given I and A, BI,A can be computed in polynomial
time in the description size of the database instance [9]. Since every term in BI,A

(and also BI,A(τ, o)) is ground (i.e., includes no variables), the congruence clo-
sure can be computed in polynomial time in the description size of the database
instance, by using the fast algorithms proposed in [5].

The axioms (AX1)–(AX4) are in the form of Horn clauses, not in the ordinary
form such as “if EQ(x, y) then EQ(y, x),” etc. However, as is the ordinary case,
the following well-known property holds:

Lemma 1. Let t ∈ TM (OI) and o ∈ OI . (K+
I,A ∪ AX) |= EQ(t, o) iff (t, o) ∈

B∗
I,A.

Proof. By Proposition 1.5 in [11], a positive literal EQ(t, o) is a logical conse-
quence iff there is a finite number of hyperresolution steps for the Horn clauses
in AX. Here, each hyperresolution step is equivalent to an application of an
ordinary axiom of equality such as “if EQ(x, y) then EQ(y, x).” �

The following lemma states that disjunction of positive EQ’s is decomposable
into some single EQ’s.

Lemma 2. Let K be a set of Horn clauses including only EQ(· · ·) as predicates.
If K |= ∨n

i=1 EQ(ti, t′i), then K |= EQ(ti, t′i) for some 1 ≤ i ≤ n.

Proof. Since K is a set of Horn clauses, K has the minimum model H among
its Herbrand models. Every model is characterized by a set of EQ’s, and hence,
EQ(ti, t′i) ∈ H for some 1 ≤ i ≤ n. By the minimality of H, K |= EQ(ti, t′i). �

Theorem 1. Let t ∈ TM (OI) and o ∈ OI . KI,A |= ¬EQ(t, o) iff there exist
o1, o2 ∈ OI ∪ {o⊥} such that o1 �=o2 and (o1, o2) ∈ (BI,A(t, o))∗.

Proof. For the only if part, suppose that KI,A |= ¬EQ(t, o). Then, we have
(K+

I,A ∪AX ∪{EQ(t, o)}) |= ∨{EQ(o1, o2) | ¬EQ(o1, o2) ∈ K−
I,A}. By Lemma 2,

there exists EQ(o1, o2) such that (K+
I,A∪AX∪{EQ(t, o)}) |= EQ(o1, o2). By (∗3),

o1 �=o2. Also, by Lemma 1, (o1, o2) ∈ (BI,A(t, o))∗.
As for the if part, (K+

I,A ∪ AX ∪ {EQ(t, o)}) |= EQ(o1, o2) by (∗3) and
Lemma 1. Since ¬EQ(o1, o2) ∈ K−

I,A, we have (KI,A ∪{EQ(t, o)}) |= false. Thus
KI,A |= ¬EQ(t, o). �

Theorem 1 induces a straightforward algorithm for the ISP. That is, check
whether (o1, o2) ∈ (BI,A(t, o))∗ for each triple o, o1, o2 ∈ OI ∪ {o⊥} with o �=o⊥
and o1 �=o2. This algorithm takes polynomial time in the description size of I.
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5 The Schema Security Problem

5.1 Undecidability

First, we show the undecidability of the SSP.

Theorem 2. The schema security problem is undecidable for schemas with bi-
nary methods.

Proof. In [8], the “positive version” of the SSP for schemas with binary meth-
ods is shown to be undecidable by reducing the Post’s Correspondence Problem
(PCP) to the positive version. In the reduction, each database instance I is re-
garded as a candidate for a solution to a given PCP instance. If I is actually
a solution, then execution of a term, say m(o), is successful under I. Other-
wise, m(o) is nonterminating. By slightly modifying the reduction in [8], we can
construct a schema with the following properties:

– If I is a solution, then the execution of a term, say m′(o), is aborted under
I. Otherwise, the execution of m′(o) is successful.

– There are methods m1 and m2 such that for every c1, c2 ∈ C,
Res(m1(c1, c2)) = x2 and Res(m2(c1)) = m1(m′(x1), x1).

Let c be the class to which o belongs. Let A = {m1(c, c), m2(c)} and τ = m′(c).
The execution of m2(o) is successful iff that of τ [o/c] = m′(o) is successful.

Suppose that the PCP instance has a solution I. Then, from the execution
result of m2(o) under I, the user obtains that m′(o) is aborted (i.e., KI,A |=
¬EQ(m′(o), o′) for every o′ ∈ ν(c)) using (∗1)–(∗3) and (AX3)–(AX4). On the
other hand, suppose that the PCP instance has no solution. Let I be an arbitrary
database instance. In this case, all the equalities relevant to m′ that the user can
obtain are only EQ(m1(m′(o), o), o), EQ(m1(o, o), o), and EQ(m2(o), o) by (∗1)
and (∗2), and therefore, KI,A ∪ {EQ(m′(o), o′)} is consistent for every o′ ∈ OI .
Thus, KI,A �|= ¬EQ(m′(o), o′) for every o′ ∈ OI . �

5.2 A Sufficient Condition for the Security

In order to explain the proposed sufficient condition for the security, we use
another definition of inference. In [8], inference is defined through a rewriting
relation ⇒I,A on TM (OI ∪ {o⊥}). The formal definition of ⇒I,A is omitted
because of the space limitation.

Let t ∈ TM (OI) and o ∈ OI . Let ⇒∗
I,A denote the reflexive and transitive

closure of ⇒I,A. By Lemma 1 and [8], inference of positive information EQ(t, o)
is characterized as follows: (K+

I,A∪AX) |= EQ(t, o) iff (t, o) ∈ B∗
I,A iff t⇒∗

I,A o.
The next lemma states that inference of negative information ¬EQ(t, o) can also
be characterized by ⇒∗

I,A.

Lemma 3. Let τ ∈ TM (OI) and o ∈ OI . The followings are equivalent:

1. KI,A |= ¬EQ(τ, o).
2. There exist o1, o2 ∈ OI ∪ {o⊥} and t ∈ TM (OI) such that o1 �=o2, τ = t/r,

t⇒∗
I,A o1, and t[r← o]⇒∗

I,A o2.
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Proof. (1⇒2) Assume 1. By Theorem 1, there exist some o1, o2 ∈ OI ∪ {o⊥}
such that o1 �=o2 and (o1, o2) ∈ (BI,A(τ, o))∗. Since (o1, o2) ∈ (BI,A(τ, o))∗ but
(o1, o2) �∈B∗

I,A, there must be some t ∈ TM (OI) such that τ = t/r for some
occurrence r, (t, o1) ∈ B∗

I,A, and (t[r← o], o2) ∈ B∗
I,A. By the property of ⇒∗

I,A,
we have 2.

(1⇐2) Assume 2. By the property of⇒∗
I,A, (t, o1) ∈ B∗

I,A and (t[r←o], o2) ∈
B∗

I,A. Therefore, (o1, o2) ∈ (BI,A(τ, o))∗ and we have 1 by Theorem 1. �
Similarly to [8], the main idea of the sufficient condition is to introduce

“class-level” rewriting relation which “conservatively” approximate ⇒I,A, i.e.,
if τ ∈ TM (C) is insecure, then τ is reducible to a class c by the class-level
rewriting relation. To do this, we introduce a special class c⊥ as the class of o⊥,
and then, we extend ν so that ν(c⊥) = {o⊥}. Intuitively, each t ∈ TM (C ∪{c⊥})
is considered as the set of instantiated terms {t[o/c] | o ∈ ν(c)}. The “execution
result” E(t) of t is defined as follows: c ∈ E(t) iff there is an instance I = (ν, µ)
such that t[o/c]↓I ∈ ν(c) for some o ∈ ν(c). Unfortunately, we cannot compute
E exactly in general [1]. However, we can compute Z : TM (C∪{c⊥})→ 2C∪{c⊥}

such that Z(t) ⊇ E(t) for every t [12]. We use such Z to approximate ⇒I,A.

Definition 8. Define PS,A,Z as the minimum set of rewriting rules �S,A,Z on
TM (C ∪ {c⊥}) satisfying the following three conditions:

(A) If m(c) ∈ A, then PS,A,Z contains m(c) �S,A,Z c for each c ∈ Z(m(c)).
(B) If mc(c) ∈ A, mc ∈ Mc,n, and Res(mc(c)) = t �=⊥, then PS,A,Z contains

t[c/x] �S,A,Z c for each c ∈ Z(t[c/x]).
(C) If PS,A,Z contains t�S,A,Z c and t′′�S,A,Z c′′ such that t′′ is a proper subterm

of t at r′′, then PS,A,Z contains t[r′′←c′′]�S,A,Zc′ for each c′ ∈ Z(t[r′′←c′′]).

Define ⇒S,A,Z as the one-step reduction relation by �S,A,Z . Let ⇒∗
S,A,Z denote

the reflexive and transitive closure of ⇒S,A,Z . Note that for a given t ∈ TM (C),
it is decidable whether t⇒S,A,Z c for some c ∈ C ∪ {c⊥}, because in every rule
in PS,A,Z the size of the right-hand side is less than that of the left-hand side.

Lemma 4. Let t ∈ TM (C) and c ∈ C. Suppose that there is an instance I =
(ν, µ) such that t[o/c]⇒∗

I,A o for some o ∈ ν(c) and o ∈ ν(c). Then, t⇒∗
S,A,Z c.

Proof. Immediate from Theorem 2 in [8]. �
We have the following theorem from Lemmas 3 and 4.

Theorem 3. Let τ ∈ TM (C) and c ∈ C. Suppose that for every term t ∈ TM (C)
such that τ = t/r for some occurrence r of t, at least one of the following
conditions holds:

– There is no c1 ∈ C ∪ {c⊥} such that t⇒∗
S,A,Z c1.

– There is no c2 ∈ C ∪ {c⊥} such that t[r← c]⇒∗
S,A,Z c2.

Then, for any instance I = (ν, µ) and objects o ∈ ν(c) and o ∈ ν(c), we have
KI,A �|= ¬EQ(τ [o/c], o).
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The decidability of the sufficient condition given by Theorem 3 is not trivial
since the number of superterms of τ is infinite. In the rest of this subsection,
we show that only a finite number of superterms of τ have to be checked. This
implies the decidability of the proposed condition.

Theorem 4. Suppose that there is a superterm t ∈ TM (C) of τ ∈ TM (C)
satisfying neither conditions in Theorem 3. Then, there is t′ ∈ TM (C) such
that t′ satisfies neither conditions in Theorem 3 and the height of t′ is at most
(|PS,A,Z | · lmax)2 + ‖τ‖, where lmax is the maximum size of the terms appearing
in the rules in PS,A,Z .

Proof. Consider a term t ∈ TM (C) such that t ⇒∗
S,A,Z c ∈ C. t can be reduced

to c in a various way. Choose one of the reductions from t to c, and attach a
label (ρ, r′) to every internal (i.e., non-leaf) occurrence r of t, where

– ρ is the rewriting rule that is applied to the subterm containing r; and
– r′ is the occurrence of the left-hand side of ρ that corresponds to r.

Suppose that neither conditions in Theorem 3 are satisfied. That is, there
are a term t ∈ TM (C) and a class c ∈ C such that

– τ = t/r for some occurrence r;
– t⇒∗

S,A,Z c1 for some c1 ∈ C ∪ {c⊥}; and
– t[r← c]⇒∗

S,A,Z c2 for some c2 ∈ C ∪ {c⊥}.
Label every internal occurrence of t and t[r← c] as stated above. If

– r′ is a proper prefix of r′′;
– r′ of t and r′′ of t have the same label; and
– r′ of t[r← c] and r′′ of t[r← c] have the same label,

then replace t/r′ with t/r′′ and t[r← c]/r′ with t[r← c]/r′′. Repeat this replace-
ment while it is possible. Let t′ and t′[r← c] be the resultant terms. The height
of t′ is at most (|PS,A,Z | · lmax)2 plus the height of τ , since the number of possible
labels is at most |PS,A,Z | · lmax. Moreover, t′ still satisfies neither conditions in
Theorem 3 since the result of the reduction of t′ by �S,A,Z is never changed by
the replacement. �

6 Conclusions

In this paper, we have formalized inference of negative information under method
schemas. Under the model, a polynomial-time algorithm for deciding the ISP
has been proposed. Then, it has been shown that the SSP is undecidable by
reducing the PCP to the SSP. A decidable sufficient condition for given negative
information to be secure under any database instance of a given database schema
has also been proposed.

We have already shown that for schemas with only unary methods, the pro-
posed sufficient condition is also a necessary condition. Because of the space
limitation, we have not presented this result in this paper.
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The decision algorithm for the ISP is quite straightforward. There may be
faster algorithms for the ISP. Also, we have shown only the decidability of the
sufficient condition proposed in Section 5.2. We should investigate the time com-
plexity for deciding the condition.
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Abstract. We propose a key-evolving paradigm to deal with the key
exposure problem of public key encryption schemes. The key evolv-
ing paradigm is like the one used for forward-secure digital signature
schemes. Let time be divided into time periods such that at time period
j, the decryptor holds the secret key SKj , while the public key PK is
fixed during its lifetime. At time period j, a sender encrypts a message m
as 〈j, c〉, which can be decrypted only with the private key SKj . When
the time makes a transit from period j to j + 1, the decryptor updates
its private key from SKj to SKj+1 and deletes SKj immediately. The
key-evolving paradigm assures that compromise of the private key SKj

does not jeopardize the message encrypted at the other time periods.
We propose two key-evolving public key encryption schemes with z-
resilience such that compromise of z private keys does not affect confiden-
tiality of messages encrypted in other time periods. Assuming that the
DDH problem is hard, we show one scheme semantically secure against
passive adversaries and the other scheme semantically secure against the
adaptive chosen ciphertext attack under the random oracle.

1 Introduction

Consider the situation that the sender Alice sends a message m to the decryp-
tor Bob with Bob’s public key PK. An attacker Carol who does not know
Bob’s private key SK at present time eavesdrops and records the ciphertext
c = E(PK, m). If Carol manages to get Bob’s private key SK later on, she can
get the message m no matter how much time has elapsed. The message m may
carry information that is useful for a long period of time.

There are many ways to protect Bob’s private key SK. One way is to replace
Bob’s public key when his private key is exposed. In this case every user has
to update Bob’s public key in its database when Bob replaces his public key.
This is quite costly. Furthermore, it may not be practical since Bob may not be
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aware of losing his private key. Another way is to protect Bob’s private key on
a secure device, such as smartcards, so that key exposure is not possible. This
is quite costly, too. The third way is to use a threshold scheme to distribute SK
to n trusted agents (TA’s) such that k out of them can fully recover SK. When
Bob receives a ciphertext c, he uses the TA’s to decrypt c in a distributed way.
In this case TA’s not only bear heavy load of computation, but also should stay
on-line always to provide decryption service. There are of course other solutions.
We cannot enumerate them all.

We propose a key evolving paradigm, like the one used in forward-secure
digital signature schemes [2], to deal with the key exposure problem of public-
key encryption schemes. Let time be divided into periods, starting with 0. The
public key PK of the decryptor Bob is fixed for the whole lifetime. Bob’s private
key at time period j is SKj , j ≥ 0. When Alice wants to send message m to
Bob at time period j, she encrypts m as 〈j, c〉 = E(PK, j, m) such that one can
decrypt 〈j, c〉 only with SKj . The key evolving paradigm is that when time runs
from period j to period j + 1, Bob updates his private key from SKj to SKj+1
and then deletes SKj immediately, possibly with help from a trusted agent TA.
If Carol breaks into Bob’s system during time period j and gets Bob’s private
key SKj at that time period, she cannot get the private keys in the other time
periods directly since they have been deleted. With the key evolving paradigm,
even if Bob is not aware of losing his private key, he can be sure that only those
ciphertexts encrypted in the time period are exposed. In the next time period,
security of newly encrypted messages are guaranteed. We consider the situation
that Bob always decrypts the received messages in a short time such that the
ciphertext of time period j that arrives at time period j′, j′ > j will be discarded
or re-transmitted by the sender.

Our key evolving paradigm requires that the public key be fixed for the whole
lifetime. The reason is that the public key is widely distributed to other users
such that it is not practical to request users check validity and timeliness of the
public key frequently and on-line. Thus, a public key should remain as stable
as possible. On the other hand, the decryptor is a single point. It is reasonable
to allow him to interact with a trusted agent for updating his private key. Key
update occurs every time period and can be finished in a prompt, which shall
not incur network and computational problems to the trusted agent. The key
evolving paradigm adds to the array of mechanisms of protecting secrets, such
as distributed, threshold, and proactive cryptography [5,7,12,16].

A key evolving paradigm is z-resilient if one cannot decrypt the ciphertext
〈j, c〉 even he gets the private keys SKj1 , SKj2 , . . . , SKjz of z time periods, for
j �=jl, 1 ≤ l ≤ z. If the decryptor computes his private keys with help from a
trusted agent, we assume that the trusted agent is not broken in by the attacker.
To ensure this security, we distribute the secret to a set of TA’s and protect them
with threshold and proactive cryptography.

Our results. We propose two z-resilient public-key encryption schemes such
that z times of key exposures do not release any information pertinent to ci-
phertexts that are encrypted with non-exposed private keys. One scheme is
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semantically secure against passive adversaries and the other is semantically
secure against the chosen ciphertext attack under the random oracle model. The
size of a public key is independent of the total number of time periods, but
dependent on resilience. On the other hand, the size of a private key is a con-
stant. Without counting the pre-computation time for each time period, both
encryption and decryption operations take 2 modular exponentiations. The pre-
computation time is independent of time period, but dependent on resilience.
Therefore, our schemes are very efficient in key size and operations of encryption
and decryption.

Though the key update of our schemes needs help from TA, nevertheless,
TA can be treated as an escrow agent in case of the decryptor’s emergent need
to decrypt ciphertexts of previous time periods. To distribute trust of TA and
provide security against transient (mobile) attackers, we propose distributed and
proactive key update algorithms.

We also consider distributed decryption in our Ke-Enc schemes in which
the decryption key is shared among a set of decryptors. We stress that even all
decryptors are broken in at time period j, only SKj is exposed. In the next time
period, the decryptors share a new SKj+1 and the security is restored if the
adversary are transient.

Related work. Dodis etc. [8] propose a similar key-evolving notion, called key-
insulation, in which the decryptor updates its secret key SKi with a physically
protected central device for each key update. They consider the adaptive adver-
sary that can corrupt the system to obtain secret keys SKi at any time during
attack. Lu and Shieh [13] consider the key-evolving protocols in the secret-key
setting. The adversary they consider is weaker and the security requirement is
only that the adversary cannot fully determine an un-exposed key SKi.

2 Definitions and Preliminaries

We provide definitions for a key-evolving public-key encryption scheme and dis-
cuss its security under various security models. In the definition, we may assume
that there is a trusted agent TA, who holds some secret for updating private
keys of the decryptor.

Definition 1. A key-evolving public key encryption scheme Ke-Enc consists
of four algorithms 〈KG, UPD, E, D〉:
1. Key generation algorithm KG: it is a probabilistic polynomial-time algorithm

that takes as input a security parameter n and possibly other parameters and
returns a base public key PK and corresponding base private key SK0. That
is, KG(1n) = (PK, SK0, s), where s is the system secret (trapdoor). If TA
is involved, KG distributes s to it; otherwise, KG simply discards s.

2. Private key update algorithm UPD: it takes an input the public key PK, the
private key SKj−1 of time period j − 1, j ≥ 1, and outputs the new private
key SKj of time period j. That is, UPD(PK, SKj−1, j) = SKj. If TA is
involved, UPD interacts with TA to compute SKj.
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3. Encryption algorithm E: it takes as input the base public key PK, a message
m, and the time-period indicator j and outputs the ciphertext c of m at time
period j. We use E(PK, m, j) = 〈j, c〉 to denote the encryption. E might be
probabilistic.

4. Decryption algorithm D: it takes as input the ciphertext 〈j, c〉 of time period
j and the private key SKj′ of time period j′ and outputs m if and only if
j = j′. That is, D(SKj , E(PK, m, j)) = m.

We set no limit on the number of time periods. Key evolving can continue till
the limit set by the security parameter n. The maximum number of time periods
is 2n.

We assume a single TA for simplicity. In practicality, we distribute trust to
multiple trusted agents such that each TAi holds a share si of the system secret
s. The decryptor with private key SKj−1 and the TA’s together can compute
SKj in a secure way, such as, through the secure multi-party computation. We
discuss this in Section 4.

Operation. The system first generates a key pair (PK, SK0) to a decryptor
by the key generation algorithm KG. If TA is used, the system also sets TA for
interacting with the decryptor to update the private key at the end of each time
period. The public key PK is treated identically to that in a standard encryption
model for registration, distribution, revocation, etc. The time is divided into
periods, starting at 0, which is some reference point of time, say, January 1,
2000 and each time period covers a week. Time periods serve as ”time-stamps”,
which are known to all, that is, every body knows the number for the current time
period. At the end of each time period j − 1, the decryptor runs the algorithm
UPD, possible with TA, to update his private key SKj−1 of time period j − 1
to SKj of time period j. The decryptor need immediately delete SKj−1 after
getting SKj for itself’s protection. Therefore, an attacker who breaks in at time
period j can get the decryptor’s private key SKj only. When a user wants to send
a message m to the decryptor at time period j, he computes E(PK, m, j) = 〈j, c〉
and sends it to the decryptor. Note that the time period is part of the ciphertext.
When the decryptor gets 〈j, c〉, he uses his private key SKj to decrypt the
ciphertext. It may be that the decryptor gets 〈j, c〉 at time period j′, j′ > j. In
this case, the decryptor cannot decrypt it. Therefore, Ke-Enc is better used for
applications that decryption is done in a short period of time.

The key evolving scheme cannot guarantee the desired security if the decryp-
tor does not delete the old private key after getting the new one. It would be
better to ensure erasure of old private keys by some system mechanism.

Security. We consider the conventional security models for public-key en-
cryption schemes. We first consider the attack from passive adversaries and then
the adaptive chosen ciphertext attack, which is the strongest attack against an
encryption scheme.

Let KG, E and D be the key generation, encryption and decryption algo-
rithms of a public key encryption scheme. Also, let PK and SK be the public
and private keys, respectively. A public key encryption scheme is semantically
secure against passive adversaries if a passive adversary A, which is probabilistic
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polynomial-time, cannot distinguish the ciphertexts of any two messages m0 and
m1 with a non-negligible advantage. In particular, for any passive adversary A,

Pr[KG(1n) → (PK, SK) : A(PK, E(PK, mb)) = b] = 1/2 + ε(n),

where ε(n) is negligible and the probability is taken over b and the random coin
tosses of KG, E and A.

The adaptive chosen ciphertext attack on an encryption scheme works as
follows [15]. An adversary A of the attack has two probabilistic polynomial-
time algorithms A1 and A2. A1 takes as input PK, makes some queries to the
decryption oracle adaptively, and outputs two messages m0 and m1. Then, the
encryption oracle randomly chooses a bit b and encrypts mb as c = E(PK, mb).
A2 takes as input PK, c, m0 and m1, makes some queries to the decryption oracle
DO in an adaptive way, and outputs b′. The decryption oracle DO takes as an
input a ciphertext c′, other than c, and returns its corresponding plaintext m′.
If c′ is invalid, DO outputs ’?’. A public key encryption scheme is semantically
secure against the adaptive chosen ciphertext attack if, for any adversary A =
(A1, A2),

Pr[KG(1n) → (PK, SK); ADO
1 (PK) → (m0, m1) :

ADO
2 (PK, E(PK, mb)) = b] = 1/2 + ε(n),

where ε(n) is negligible and the probability is taken over b and all coin tosses of
KG, E, A1 and A2.

For the resilience property, we consider the security of of the scheme after
the attacker gets some private keys additionally.

Definition 2 (Resilience). Assume a security model for the public-key encryp-
tion scheme. A key evolving public-key encryption scheme Ke-Enc=(KG, UPD,
E, D) is z-resilient if the attacker cannot break the encryption scheme under the
assumed security model even if he gets z private keys SKj1 , SKj2 ,. . ., SKjz .

Since the attacker gets z private keys, breaking does not include obtaining
the corresponding plaintext of a ciphertext that is encrypted with any of the
private keys.

The random oracle model assumes that hash functions used in a scheme are
”truly random” hash functions [3]. Although security under the random oracle
model is not rigid, it does provide satisfactory security argument to related
schemes in most cases [4].

Assumption. We need a standard assumption of solving the decisional discrete
logarithm (DDH) problem. Let Gq be a group of a large prime order q. Consider
the following two distribution ensembles R and D:

– R = (g1, g2, u1, u2) ∈ G4
q, where g1 and g2 are generators of Gq;

– D = (g1, g2, u1, u2), where g1 and g2 are generators of Gq and u1 = gr
1 and

u2 = gr
2 for r ∈ Zq.
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The DDH problem is to distinguish the distribution ensembles R and D. That
is, we would like to find a probabilistic polynomial-time algorithm A such that

| Pr[A(Rn) = 1] − Pr[A(Dn) = 1] | = ε(n)

is non-negligible, where Rn and Dn are the size-n distributions of R and D,
respectively.

A trapdoor one-way permutation is a probabilistic polynomial-time algorithm
G that takes as input 1n and outputs a triple of algorithms (f, f−1, d), where f
and f−1 are inverses of each other and deterministic polynomial-time algorithms
and d is a probabilistic polynomial-time algorithm. The range of d(1n) is a subset
of {0, 1}k and f and f−1 on the range of d(1n) are permutations. Furthermore,
for any probabilistic polynomial-time algorithm A,

ε(n) = Pr[G(1n) → (f, f−1, d); d(1n) → x; f(x) → y : A(f, d, y) = x]

is negligible. For convenience, we shall call f , not G, a ”trapdoor one-way” per-
mutation.

3 Our Protocols

We first propose a Ke-Enc scheme, based on the discrete logarithm problem,
with z-resilience and show that the scheme is semantically secure against passive
adversaries. We then modify the scheme to become semantically secure against
the adaptive chosen ciphertext attack under the random oracle model.

3.1 Ke-Enc against Passive Adversaries

Our Ke-Enc scheme with z-resilience and security against passive adversaries is
Scheme 1, which is shown in Figure 1. The main idea is to treat f(j) as the time
stamp. The public key gf(j) =

∏z
i=0(g

ai)ji

at time period j can be computed
from the base public key PK = 〈ga0 , ga1 , . . ., gaz 〉. Key updating involves in
computing f(j) from f(j − 1) with help from TA. We use the ElGamal-type
encryption scheme for encryption and decryption.

Correctness. The correctness of decryption follows easily since

s/αf(j) = m ·
z∏

i=0

(gai)kji

/gkf(j) = m · gkf(j)/gkf(j) = m.

Efficiency. In each time period j, we can pre-compute

z∏

i=0

(gai)ji

= ga0(ga1(ga2(· · · )j)j)j = gf(j).

It needs z + 1 modular exponentiations and z modular multiplications, which is
independent of the time period j. After pre-computation, each encryption takes
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1. Algorithm KG(1n, z):
(a) Randomly select an n-bit prime p = 2q + 1, where q is also a prime. All

operations work over Zp except being stated otherwise. Let Gq be the subgroup
of order q in Z∗

p and g be a generator of Gq.
(b) Randomly select a degree-z polynomial f(x) =

∑z
i=0 aix

i mod q.
(c) Set the public key and base private key as

PK = 〈ga0 , ga1 , . . . , gaz 〉 and SK0 = 〈f(0)〉.
(d) Let TA hold f(xj), for some random xj ∈ Zq, 1 ≤ j ≤ z.

2. Algorithm UPD(PK, SKj−1): the decryptor Bob and TA together compute SKj =
f(j) from their shares in a secure distributed way.

3. Algorithm E(PK, m, j): randomly select k ∈ Zq, compute

α = gk, s = m ·
z∏

i=0

(gai)kji

= m · gkf(j)

and return the ciphertext 〈j, α, s〉.
4. Algorithm D(SKj , 〈j, α, s〉): compute and return m = s/αf(j).

Fig. 1. Scheme 1 – discrete logarithm based Ke-Enc with z-resilience and semantic
security against passive adversaries.

2 modular exponentiations and 1 modular multiplication only. Each decryption
takes 1 modular exponentiation and 1 modular division. Therefore, our scheme
is very efficient in computation.

The public key consists of (z + 1) n-bit values and the private key consists
of one n-bit value only, which are both independent of the total number of time
periods. The number of time periods can be as large as 2n.

Security. We now show that Scheme 1 is semantically secure against passive
adversaries even the decryptor’s system is broken in z times.

Theorem 1. Assume that the DDH problem is hard. For Scheme 1, given pub-
lic key PK=〈ga0 , ga1 , . . . , gaz 〉 and z private keys SKj1 ,SKj2 , . . . ,SKjz , no prob-
abilistic polynomial-time adversary can distinguish the ciphertexts of any two
messages m0 and m1 ∈ Gq at time period j, j �=jl, 1 ≤ l ≤ z.

3.2 Ke-Enc against Adaptive Chosen Ciphertext Attack

We modify Scheme 1 to become semantically secure against the adaptive chosen
ciphertext attack under the random oracle model. The idea is to use randomness
of hash functions. We construct a (probabilistic) trapdoor one-way permutation

hj,y(k, r) = (gk, r · yk, k ⊕ H(j, r))
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1. Algorithm KG(1n, z):
(a) Randomly select an n-bit prime p = 2q + 1, where q is also a prime. Let Gq

be the subgroup of order q in Z∗
p and g be a generator of Gq.

(b) Randomly select a degree-z polynomial f(x) =
∑z

i=0 aix
i mod q.

(c) Set the public key and base private key as

PK = 〈ga0 , ga1 , . . . , gaz 〉 and SK0 = 〈f(0)〉.
(d) Let TA hold f(xj), xj ∈ Zq, 1 ≤ j ≤ z.

2. Algorithm UPD(PK, SKj−1): the decryptor Bob and TA together compute SKj =
〈f(j)〉 from their shares in a secure distributed way.

3. Algorithm EH1,H2,H3(PK, m, j): randomly select k ∈ Zq and r ∈ Gq, compute

α = gk, β1 = r · (
z∏

i=0

(gai)ji

)k = r · gf(j)·k,

β2 = k ⊕ H1(j, r), s = m ⊕ H2(j, r, k), h = H3(j, r, k, m),

and return the ciphertext 〈j, α, β1, β2, s, h〉.
4. Algorithm DH1,H2,H3(SKj , 〈j, α, β1, β2, s, h〉):

(a) Compute r = β1/αf(j), k = β2 ⊕ H1(j, r) and m = s ⊕ H2(j, r, k).
(b) Check whether α = gk and h = H3(j, r, k, m). If it is so, return m; otherwise,

return ’?’.

Fig. 2. Scheme 2 – discrete logarithm based Ke-Enc with z-resilience and semantic
security against the adaptive chosen ciphertext attack under the random oracle model.

for time period j, where y = gf(j) and the trapdoor is f(j). The message is
encrypted with one-time pad H2(j, r, k). The hash value H3(j, r, k, m) forces the
querist to be aware of m.

The modified scheme, Scheme 2, is shown in Figure 2, in which H1, H2, H3
are collision-resistant hash functions with output length dependent on n.

Correctness. We can see that

β1/αf(j) = r · gkf(j)/gkf(j) = r,

β2 ⊕ H1(j, r) = (k ⊕ H1(j, r)) ⊕ H1(j, r) = k, and
s ⊕ H2(j, r, k) = (m ⊕ H2(j, r, k)) ⊕ H2(j, r, k) = m.

Efficiency. Encryption and decryption computation is similar to that of
Scheme 1. After pre-computation, each encryption takes 2 modular exponen-
tiations, 1 modular multiplication and 3 hash operations. Each decryption takes
1 modular exponentiation, 1 modular division and 3 hash operations. Again,
computation time is independent of the time period j. Therefore, this scheme is
as efficient as Scheme 1.



Robust Key-Evolving Public Key Encryption Schemes 69

Again, Scheme 2’s public key consists of (z + 1) n-bit values and private key
consists of only one n-bit value, which are both independent of the total number
of time periods.

Security. Assume the random oracle model, which postulates that H1, H2 and
H3 are ”truly random” hash functions. We show that Scheme 2 is semantically
secure against the adaptive chosen ciphertext attack.

Theorem 2. Assume the random oracle model and that the discrete logarithm
problem is hard. For Scheme 2, given public key PK = 〈ga0 , ga1 , . . . , gaz 〉 and
z private keys SKj1 ,SKj2 , . . . ,SKjz , no probabilistic polynomial-time adversary
with access to the decryption oracle is able to find m0 and m1 in Gq such that
their ciphertexts at time period j, j �=jl, 1 ≤ l ≤ z, are computationally distin-
guishable.

4 Key Evolving with TA

In our schemes, key evolving is done with help from the TA, which holds
f(x1), f(x2), . . . , f(xz). We consider distributed and proactive methods to evolve
private keys of the decryptor.

4.1 Distributing TA’s Secret

Assume that there are z TA’s and each TAi holds a share f(xi), 1 ≤ i ≤ z,
where xi’s are distinct and large enough so that the maximum time period never
reaches them. At time period j − 1, the decryptor Bob holds SKj−1 = f(j − 1).
Bob and TA’s would like to compute SKj = f(j), which shall be known to Bob
only. Assume that each pair of Bob and TA’s share a private channel by which
secret information can be passed between them.

We treat Bob as TA0 and let x0 = j − 1. By the Lagrange interpolation
method, the polynomial that passes shares of Bob and TA’s is

f(x) =
z∑

k=0

(f(xk) ·
∏

0≤i�=k≤z

x − xi

xk − xi
).

TAk can compute sk = f(xk) · ∏
0≤i�=k≤z

j−xi

xk−xi
, 0 ≤ k ≤ z. Therefore, f(j) =∑z

k=0 sk. Our goal is that TA’s together compute f(j) and only TA0 knows f(j).
Furthermore, each TAi does not reveal any information about its share f(xi).
Note that x0, x1, . . . , xz are known to all TA’s. The distributed protocol D-Upd
for computing f(j) securely is as follows.

1. Each TAl, 1 ≤ l ≤ z, selects a degree-z polynomial hl(x) =
∑z

i=1 al,ix
i + sl

over Zq and sends hl(xi) to TAi, 0 ≤ i ≤ z, via the private channel between
them. Let F (x) =

∑z
i=1 hi(x).

2. Each TAl, 0 ≤ l ≤ z, computes its share F (xl) =
∑z

i=1 hi(xl).
3. Each TAl, 1 ≤ l ≤ z, sends F (xl) to TA0 via the private channel between

them.
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4. TA0 then computes the constant coefficient
∑z

i=1 si of F (x) from F (x0),
F (x1),. . ., F (xz) by the Lagrange interpolation method and his private key
SKj = f(j) = s0 +

∑z
i=1 si at time period j.

Correctness follows the protocol easily. In the protocol, each TAi does not
have any information about another TAj ’s share f(xj).

We can make the computation verifiable by letting each TAl publish gal,0 ,
gal,1 ,. . ., gal,z [10]. Each TAi, 0 ≤ i ≤ z, verifies whether he receives the right
share hl(xi) from TAl, 1 ≤ l ≤ z, by checking ghl(xi) =

∏z
k=0 gal,kxi

k

.

4.2 Proactivizing TA’s Shares

We use proactive cryptography to protect TA’s shares further. Let PSi, 1 ≤ i ≤
n, be n proactive servers. In practicality, we can make TA’s as proactive servers.
We proactivize each TAi’s share f(xi) into PSi’s. by the proactive (t, n)-secret
sharing scheme [11]. Each evolving time period j − 1 is divided into sub-periods
p1, p2, . . . , pb, where p1, p2, . . . , pb−1 are refresh sub-periods in which the shares
of f(x1), f(x2), . . . , f(xz) are refreshed among PSi’s. In the last sub-period pb,
f(j − 1) of the decryptor is updated to f(j).

For simplicity, we let t = n. Let ri(x) be a degree-(n-1) polynomial over Zq

with constant coefficient f(xi), 1 ≤ i ≤ z. Each PSj , 1 ≤ j ≤ n, holds a share
ri(j) for the share f(xi), 1 ≤ i ≤ z, and refreshes them in every sub-time period
pi, 1 ≤ i ≤ b − 1, as follows.

1. Each PSl, 1 ≤ l ≤ n, selects n degree-(n-1) polynomials rl,i(x) over Zq,
1 ≤ i ≤ n, whose constant coefficients are all 0. PSl sends rl,i(j), 1 ≤ i ≤ n,
to PSj , 1 ≤ j ≤ n, via the private channel between them.

2. After receiving shares from other proactive servers, PSl, 1 ≤ l ≤ n, updates
its shares to r′

i(l) = ri(l) +
∑n

j=1 rj,i(l).

To update the decryptor Bob’s decryption key f(j − 1), we assume Bob as
PS0 and x0 = j − 1. Let

ρj,k =
∏

0≤i�=k≤z

j − xi

xk − xi
and λl =

∏

1≤i�=l≤n

−i

l − i
,

where 0 ≤ k ≤ z and 1 ≤ l ≤ n. We have

f(j) =
z∑

k=0

ρj,kf(xk) =
z∑

k=1

n∑

l=1

ρj,kλlrk(l) + ρj,0f(x0)

=
n∑

l=1

(
z∑

k=1

ρj,kλlrk(l)) + ρj,0f(x0).

Let sl =
∑z

k=1 ρj,kλlrk(l), which can be computed by PSl, 1 ≤ l ≤ n. Our
proactive key update scheme P-Upd for computing SKj = f(j) in the sub-
period pb of time period j is as follows.
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1. Each PSl, 1 ≤ l ≤ n, selects a degree-n polynomial hl(x) =
∑n

i=1 al,ix
i + sl

over Zq and sends hl(xi) to PSi, 0 ≤ i ≤ n, via the private channel between
them. Let F (x) =

∑n
i=1 hi(x).

2. Each PSl, 0 ≤ l ≤ n, computes its share F (xl) =
∑n

i=1 hi(xl).
3. Each PSl, 1 ≤ l ≤ n, sends F (xl) to PS0 via the private channel between

them.
4. PS0 then computes the constant coefficient

∑n
l=1 sl of F (x) from F (x0),

F (x1),. . ., F (xn) by the Lagrange interpolation method and his private key
SKj = f(j) = ρj,0f(x0) +

∑n
l=1 sl.

Correctness follows the above equations. Again, PSi does not have any in-
formation about another PSj ’s shares r1(j), r2(j), . . . , rz(j). We can also make
the computation verifiable by the verifiable secret sharing method as that in
Section 4.1.

5 Distributed Ke-Enc Schemes

It is sometimes desirable to have distributed decryption in which the decryption
key is shared among a set of decryptors Bi, 1 ≤ i ≤ n.

We assume that each decryptor Bi holds a share si of the secret key SKj =
f(j) via a polynomial t(x) =

∑z
k=1 aix

i + f(j) mod q such that si = t(i). For
Scheme 1, on receiving a ciphertext (α, s), Bi computes the partial plaintext
mi = αsi mod p. With z + 1 partial plaintexts mi1 , mi2 , . . . , miz+1 , one can
computes the plaintext

m = s/

z+1∏

k=1

(mik
)λk mod p = s/αf(j) mod p,

where λk’s are appropriate Lagrange coefficients. This method can be used in
Scheme 2 also since knowing αf(j) mod p is sufficient to decrypt the ciphertext
encrypted at time period j.

6 Conclusion

We have proposed two Ke-Enc schemes to deal with the key exposure problem
of public key cryptosystems. Our schemes are semantically secure against passive
adversaries under the standard model and the adaptive chosen ciphertext attack
under the random oracle model, respectively. To distribute trust and provide
security against transient attackers, we propose distributed key update D-Upd
and proactive key update P-Upd schemes.

The main drawback of these schemes is that key update needs help from TA
if we want to keep the decryptor’s storage a conatant. It would be interesting to
find a Ke-Enc scheme, in which key update can be done by the decryptor alone
in a single-decryptor mode.
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Abstract. In this paper, a group signature scheme committing the
group itself is proposed. In normal group signature schemes, a group
member can anonymously sign a message on behalf of a group, and the
anonymity of the signature can be revoked by only a designated au-
thority. Consider a situation that multiple groups exist. In the proposed
scheme, the signature hides not only the identity of the signer, but also
the identity of the group. The group can be specified by only the desig-
nated authority. This characteristic is useful for a user’s committing his
attribute in the application to anonymous statistical surveys of users’
attributes. Another application is the anonymous authentication of the
membership with the expiration.

Keywords: Group signature scheme, Strong RSA assumption, Signature
of knowledge

1 Introduction

A group signature scheme allows a group member to anonymously sign a message
on behalf of a group, where, in addition, a membership manager and a revocation
manager participate. The membership manager has the authority to add a user
into the group, and the revocation manager has the authority to revoke the
anonymity of a signature. Because the scheme allows us to anonymously verify
user’s ownership of some privilege, it is applied to various security protocols such
as anonymous e-cash[1], bidding[2], and statistical survey of users’ attributes [3].
In the other hand, various group signature schemes are also proposed[4,5,6,7],
with the improvement of efficiency and convenience. The key scheme is proposed
in [5], where the efficiency of the public key and signatures is independent from
the group size. The followers [6,7] also have this good characteristic.

This paper proposes a group signature scheme with a new characteristic,
which is the ability to commit the group itself. Consider the situation that the
membership manager controls multiple groups. In the proposed scheme, a sig-
nature does not reveal the specified group to which the signer belong, though
it reveals the fact that he belongs to some group. Only the revocation manager
can specify the group from the signature. The proposed scheme is extended from
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one in [6], which is provably secure against the adaptive adversary, under the
strong RSA assumption. Furthermore, the overhead of the addition to original
scheme is small.

An application of the proposed scheme is the anonymous survey to generate
the statistics of users’ attributes such as gender and age. An anonymous statis-
tical survey system of attributes is proposed in [3], where a service provider can
obtain the statistics on the users’ attributes. Under the assumption that some
TTPs (trusted third parties) exist, this system produces the correct statistics
and reveals no useful information beyond the statistics. However, the complexity
of the TTP’s generating the statistics depends on the number of all the users
registering with the system. By using the proposed group signature scheme, we
can construct the survey system that is independent from the number of regis-
tering users: A user belonging to a group correspondent with his attribute (e.g.,
male) sends the provider his group signature. When the distributor requests the
TTPs to generate the statistics for the received signatures, the TTPs coopera-
tively compute the statistics by shuffling the signatures and revealing the groups
from them. The detail is shown afterwards.

Another application is the anonymous authentication of the membership with
the expiration. In the normal group signature, it is hard to set the different
expiration for each group member. If the members with the same expiration of
the membership forms a group, the normal scheme allows a verifier to check the
expiration. However, this solution may weaken the anonymity, since each group
becomes small. By using the group signature scheme committing the group, this
problem can be solved, since the group ID correspondent with the expiration is
concealed. This detail is also shown afterwards.

2 Model

We show a model of group signature scheme committing the group. Though this
model describes a single revocation manager, it is easily extended into one with
the multiple managers.

Definition 1. A group signature scheme committing the group consists of the
following procedures:

Setup: The membership manager and revocation manager generate the general
public key, which is linked to multiple groups, and their secret keys.

Join: The membership manager issues a membership certificate for a member-
ship secret chosen by a user joining some group. Note that the certificate
assures that the user belongs to the specified group.

Sign: Given a message, a group member with a membership secret and its mem-
bership certificate generates the signature for the message w.r.t. the general
public key.

Verify: A verifier checks whether a signature is made by a member in one among
the groups linked to the general public key.
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Open: Given a signature, the revocation manager with his secret specifies the
identity of the signer. In addition, given a signature, the revocation manager
with his secret specifies the group to which the signer belongs.

Definition 2. A secure group signature scheme committing the group satisfies
the following properties:

Unforgeability: Only a member in one among the designated groups can gen-
erate a valid signature such that, given the signature, the revocation manager
can trace the signer and the group.

Coalition-resistance: Colluding members cannot generate a valid membership
certificate that the membership manager did not generate, even if the mem-
bers adaptively obtained valid certificates from the manager.

Anonymity: Given a signature, it is infeasible to trace the signer, nor to trace
the group to which the signer belongs.

Unlinkability: Given two signatures, it is infeasible to determine whether the
signatures ware made by the same signer, nor whether they ware made by
the members in the same group.

No framing: Even if the membership manager, the revocation manager, and
group members collude, they cannot sign on behalf of a non-involved member.

3 Preliminaries
3.1 Assumptions

The original group signature scheme [6] and our extension are based on the
strong RSA assumption[8].

Assumption 1 (Strong RSA assumption) Let n = pq be an RSA modulus,
and let G be a cyclic subgroup of Z∗

n. Then, there exists a probabilistic polynomial-
time algorithm K that on input |n| outputs n and z ∈ G such that, for all
probabilistic polynomial-time algorithm A, the probability that A on inputs n
and z outputs e ∈ Z>1 and u ∈ G satisfying z = ue (mod n) is negligible.

Furthermore, the original scheme and ours are based on the so-called decision
Diffie-Hellman (DDH) assumption. This assumption means the infeasibility to
decide whether the discrete logarithms of two random elements in G to the
random bases are the same. When n = pq is a secure RSA modulus (i.e., p =
2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are prime), let QR(n) be the set of quadratic
residues modulo n, that is, the cyclic subgroup of Z∗

n generated by an element
of order p′q′. As well as the original, we assume that QR(n) satisfies the above
assumptions.

3.2 Signatures of Knowledge
As building blocks, the original scheme uses signatures converted by so-called
Fiat-Shamir heuristic [9] from honest-verifier zero-knowledge proofs of knowl-
edge, which is called as signatures of knowledge. We abbreviate them as SPKs.



76 Toru Nakanishi, Masayuki Tao, and Yuji Sugiyama

The SPKs are secure in the random oracle model [10], if the underlying in-
teractive protocols are the zero-knowledge proofs of knowledge. The SPKs are
denoted as

SPK{(α, β, . . .) : R(α, β, . . .)}(m),

which means the signature for message m by a signer with the secret knowledge
α, β, . . . satisfying the relation R(α, β, . . .). In this notation, the Greek letters
denote the signer’s secret knowledge, and other parameters denote public values.

The proofs used in the original scheme and our extension show the relations
among the secret discrete logarithms in the group QR(n) with unknown order.
The simple SPK is one proving the knowledge of a discrete logarithm of an
element in the group QR(n). This is converted from a zero-knowledge proof of
knowledge in [8]. Let g be the generator of QR(n).

Definition 3. An SPK proving the knowledge of a discrete logarithm of y ∈
QR(n) to the base g on message m is denoted as

SPK{α : y = gα}(m).

In this SPK, the signer needs to convince the verifier that the elements he
presents are in QR(n). Hence, instead the above SPK, we use SPK{α : y2 =
(g2)α}(m), since logg2 y2 = logg y if y is in QR(n) [11]. Furthermore, this SPK
can be also extended into the SPK of a representation such as SPK{(α1, α2, . . .):
y = gα1

1 gα2
2 · · ·}(m).

The next SPK is one proving the equality of two discrete logarithms. This
can be obtained by simply adopting the standard SPK of the equality in the
known group to the setting of the unknown group’s order [6].

Definition 4. An SPK proving the knowledge of the same discrete logarithm
of y1, y2 ∈ QR(n) to the base g and h ∈ QR(n) on message m is denoted as

SPK{α : y1 = gα ∧ y2 = hα}(m).

The further SPK is one proving that the discrete logarithm lies in an interval.
This type of SPK used in the original [6] is not exact. It means that the SPK can
prove only the membership to a larger interval than what the discrete logarithm
belongs to. On the other hand, an exact zero-knowledge proof of knowledge about
the interval is proposed in [12], from which the following definition is derived.
Note that the efficiency of this SPK is comparable to that of about six normal
SPK{α : y = gα}.

Definition 5. Let ]a, b[ be an integer interval. An SPK proving the knowledge
of a discrete logarithm of y ∈ QR(n) to the base g satisfying logg y ∈]a, b[ on
message m is denoted as

SPK{α : y = gα ∧ α ∈]a, b[}(m).

The interactive versions of these SPKs are also used. The interactive ones
are denoted by substituting PK for SPK, such as PK{α : y = gα}.
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4 Proposed Scheme

4.1 Idea

The original scheme [6] is constructed informally as follows: Let a and a0 be
random public elements of QR(n), where the factorization of n is known by
only a membership manager. In the join, a user belonging to a group chooses
his membership secret x, and obtains the membership certificate (A, e) satis-
fying A = (axa0)1/e (mod n), where e is a prime chosen by the membership
manager, and x and e lie in designated intervals Γ and Λ, respectively. Then,
it is proved that, under the strong RSA assumption, no adversary except the
manager can forge a certificate of an unused x, even if the adversary adaptively
uses the manager to obtain the certificates. The group signature consists of a
triple (T1, T2) and an SPK proving the knowledge of (x ∈ Γ, A, e ∈ Λ) such
that A ≡ (axa0)1/e (mod n) and (T1, T2) is an ElGmal ciphertext of A w.r.t.
the revocation manager’s key. Note that this description includes the refinement
that the commitment of e is not used, as well as [11] and [7].

In the proposed scheme, we replace the membership secret and certificate
with x and (A, e) satisfying A = (axa0a

E
1 )1/e (mod n), where a1 is a random

public element of QR(n) and E is a public identifier of the committed group.
Furthermore, E is required to lies in a designated interval ∆. Then, the signature
consists of a tuple (T1, T2, T3, T4) and an SPK proving the knowledge of (x ∈
Γ, A, e ∈ Λ, E ∈ ∆) such that A ≡ (axa0a

E
1 )1/e (mod n) and (T1, T2) and

(T3, T4) are ElGmal ciphertexts of A and hE , respectively.

Remark. In [11], Camenisch and Lysyanskaya propose an anonymous creden-
tial system with anonymity revocation. The basic part in this system is the
same as the group signature scheme, and is derived from the scheme [6]. The
credential system uses the similar certificate to us, which is (A, e) satisfying
A = (axa0a

E
1 )1/e (mod n), and, by the similar SPK, the knowledge of the

certificate is proved in the zero-knowledge fashion. The main difference between
our scheme and the credential system is the selection of the value E. In our
scheme, E is the information agreed by both the manager and the joining user
at each join protocol, since E is the group’s ID. In the credential system, E is the
random value chosen by a joining user, and is unknown to the manager. Because
of this difference, the security proof of the paper [11] cannot be adopted. Thus,
after describing the detail of the proposed scheme, we should prove the security
of the certificate.

4.2 Setup

Hereafter, we denote the membership manager as MM , and denote the revoca-
tion manager as RM . Let ∈R denote the uniform random selection.

The setup of the proposed scheme is similar to the original one. Let �n be a
security parameter. Then, MM computes two (�n/2)-bit primes p = 2p′ +1 and
q = 2q′ + 1, where p′ and q′ are primes, and then sets n = pq. MM also chooses
a, a0, a1, g, h ∈R QR(n). He publishes (n, a, a0, a1, g, h) as the public key, and
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keeps (p, q) as the secret key. RM chooses a secret key xRM ∈R {0, 1}2�n and
publishes the public key y = gxRM mod n. The interval Γ =] − 2�Γ , 2�Γ [, ∆ =
]0, 2�∆ [, Λ =]2�Λ , 2�Λ+1[ are set, where �Λ > �Γ + �∆ + 2.

In addition, for the i-th group, the group’s ID Ei ∈ ∆ is selected and pub-
lished, where 1 ≤ i ≤ t for t ≤ 2�∆ with t = O(poly(�n)).

4.3 Join

This protocol is similar to issuing the credential in the scheme [11], which is
essentially the same as the original [6]. Assume that a user U is joining a group
identified by E ∈ {E1, . . . , Et}.

1. U chooses secrets x̃ ∈R Γ, r1 ∈R {0, 1}2�n , and sends MM C1 = gx̃hr1 mod
n. Then, U proves the correctness of C1 to MM by

PK{(α, β) : C2
1 = (g2)α(h2)β}.

2. MM chooses secret r̃ ∈R Γ , and sends U r̃.
3. U computes x = (x̃ + r̃ mod (2�Γ +1 − 1)) − 2�Γ + 1, and sends MM C2 =

ax mod n. Note that x falls in Γ . U also computes ẋ = � x̃+r̃
2�Γ +1−1�, chooses

r2 ∈R {0, 1}2�n , and sends MM C3 = gẋhr2 mod n. Then, U proves the
correctness of C2 to MM by

PK{(α, β, γ, δ, ε, ζ) : C2
1 = (g2)α(h2)β ∧ C2

2 = (a2)γ ∧ C2
3 = (g2)δ(h2)ε

∧C2
1 (g2)(r̃−2�Γ +1)/(C2

3 )(2
�Γ +1−1) = (g2)γ(h2)ζ ∧ γ ∈ Γ}.

4. If the above proofs were correct, MM chooses a random prime e ∈R Λ,
computes A = (C2a0a

E
1 )1/e mod n, and sends U the membership certificate

(A, e) for the membership secret x on the group ID E.
5. U verifies that axa0a

E
1 ≡ Ae (mod n).

4.4 Sign and Verify

Assume that the member U has the membership secret x and the certificate
(A, e) on the group ID E. To sign a message m, U chooses w1, w2 ∈R {0, 1}2�n ,
and computes ElGmal ciphertexts (T1 = Ayw1 , T2 = gw1) of A and (T3 =
hEyw2 , T4 = gw2) of hE , and the following SPK:

SPK{(α, β, γ, δ, ε, ζ) : a2
0 = (T 2

1 )α(1/a2)β(1/a2
1)

γ(1/y2)δ ∧ T 2
2 = (g2)ε

∧1 = (T 2
2 )α(1/g2)δ ∧ T 2

3 = (h2)γ(y2)ζ ∧ T 2
4 = (g2)ζ

∧α ∈ Λ ∧ β ∈ Γ ∧ γ ∈ ∆}(m).

The difference from the original is the addition of (T3, T4) and the modified
SPK. In the SPK, the first three predicates are derived from the original, and
are adjusted to the relationship A = (axa0a

E
1 )1/e mod n. Note that the SPK is

refined as the commitment of e is not used, as well as [11] and [7]. The newly
added fourth and fifth predicates prove the validity of the ElGmal ciphertext
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(T3, T4) of hE . Though the proofs of α ∈ Λ and β ∈ Γ are the same as the
original, the proof of γ ∈ ∆ is newly added. The last proof is required to prove
the security requirement of the collision-resistance (cf. Lemma 1).

The verification of the group signature is accomplished by the verification of
this SPK.

4.5 Open

To trace the identity of the member from the signature is the same as the original.
That is accomplished by RM ’s decrypting (T1, T2) with the public verifiability.

To trace the group of the signature, RM decrypts (T3, T4) of the signature,
by T3/(T4)xRM mod n. The decryption produces the value h̃ ≡ hE (mod n),
and, by checking h̃ = hEj mod n for all Ej , the corresponding group is found.
RM can prove the correctness by SPK{α : T 2

3 /(hE)2 = (T 2
4 )α ∧ y2 = (g2)α}.

5 Security

Before discussing the security of the proposed scheme, we show the following
lemma on the security of the membership certificate.

Lemma 1 (Coalition-resistance). Assume the strong RSA assumption, and
that the number K of the certificates that MM issues, and the number t of the
groups are polynomially bounded. Then, it is infeasible that an attacker, who is
allowed to adaptively run the join protocol with MM and obtain K membership
certificates, generate a membership certificate that MM did not generate.

Proof sketch. This is derived from the proof in [6]. Let M be an attacker that is
allowed to adaptively run the join protocol and obtain K membership certificates
(Ai, = (axia0a

Ei
1 )1/ei mod n, ei) for i = 1, . . . , K. Here, we prove that, if M

outputs a tuple (x̂, Â, ê, Ê) such that Â = (âx̂a0a
Ê
1 )1/ê with x̂ ∈ Γ, ê ∈ Λ, Ê ∈ ∆,

and (x̂, ê) �= (xi, ei) for all 1 ≤ i ≤ K with non-negligible probability, the strong
RSA problem can be solved.

Given a pair (n, z) on the strong RSA assumption, a random one of the
following two games with M is conducted repeatedly.

Game 1.

1. Select x1, . . . , xK ∈ Γ , e1, . . . , eK ∈ Λ, and E1, . . . , Et ∈ ∆.

2. Set a = z

∏
1≤�≤K

e� mod n.
3. Choose r, r′ ∈R Γ and set a0 = ar and a1 = ar′

.
4. For all 1 ≤ i ≤ K and all 1 ≤ j ≤ t, compute

Aij = z
(xi+r+r′Ej)

∏
1≤�≤K,� �=i

e� mod n.

Note that Aij ≡ (axia0a
Ej

1 )1/ei (mod n).
5. Select g, h ∈R QR(n), xRM ∈R {0, 1}2�n , and set y = gxRM mod n.
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6. Run the join protocol K times with M on input (n, a, a0, a1, y, g, h, E1,
. . . , Et). Consider the i-th protocol run. Receive the commitment C1 with
the PK, and extract x̃i satisfying C1 ≡ gx̃ihr1 (mod n) from the PK.
Choose r̃i ∈ Γ satisfying xi = (x̃i + r̃i mod (2�Γ +1 − 1)) − 2�Γ + 1, and send
r̃i M. Continue the rest of the protocol as specified until step 4. Then, send
(Aij , ei) M for the agreed group ID Ej .
After the protocols are conducted K times, M outputs (x̂, Â, ê, Ê) with
x̂ ∈ Γ, ê ∈ Λ, Ê ∈ ∆, and Â ≡ (ax̂a0a

Ê
1 )1/ê (mod n).

7. If gcd(ê, ei) �= 1 for some 1≤ i ≤ K then output ⊥ and quit. Otherwise,
let ẽ := (x̂ + r + r′Ê)

∏
1≤�≤K e�. Note that Âê ≡ zẽ (mod n). Because of

gcd(ê, ei) = 1 for all 1 ≤ i ≤ K, we have gcd(ê, ẽ) = gcd(ê, x̂ + r + r′Ê).
Thus, the extended Euclidean algorithm can compute α, β ∈ Z satisfying
αê + βẽ = gcd(ê, x̂ + r + r′Ê). Therefore, by setting u := zαÂβ mod n and
e := ê/ gcd(ê, x̂ + r + r′Ê), we have ue ≡ z (mod n). Because of ê ∈ Λ and
x̂ + r + r′Ê < 2�Γ +1 + 2�Γ 2�∆ < 2�Λ , we have e > 1. Output (u, e).

Game 2.

1. Select x1, . . . , xK ∈ Γ , e1, . . . , eK ∈ Λ, and E1, . . . , Et ∈ ∆.
2. Choose ı̃ ∈R {1, . . . , K}. Set a = z

∏
1≤�≤K,� �=ı̃

e� mod n.
3. Choose r, r′ ∈R Γ . Compute a0 = areı̃−xı̃ mod n, a1 = ar′eı̃ mod n, and

Aı̃j = ar+r′Ej mod n for all 1 ≤ j ≤ t. Note that Aı̃j ≡ (axı̃a0a
Ej

1 )1/eı̃

(mod n) for all j.
4. For all 1 ≤ i ≤ K (i �=ı̃) and all 1 ≤ j ≤ t, compute

Aij = z
(xi+reı̃−xı̃+r′eı̃Ej)

∏
1≤�≤K,� �=i,ı̃

e� mod n.

Note that Aij ≡ (axia0a
Ej

1 )1/ei (mod n).
5. Select g, h ∈R QR(n), xRM ∈R {0, 1}2�n , and set y = gxRM mod n.
6. Run the join protocol K times with M on input (n, a, a0, a1, y, g, h, E1,

. . . , Et). Consider the i-th protocol run. Receive the commitment C1 with
the PK, and extract x̃i satisfying C1 = gx̃ihr1 from the PK. Choose r̃i ∈ Γ
satisfying xi = (x̃i + r̃i mod (2�Γ +1 −1))−2�Γ +1, and send r̃i M. Continue
the rest of the protocol as specified until step 4. Then, send (Aij , ei) M for
the agreed group ID Ej .
After the protocols are conducted K times, M outputs (x̂, Â, ê, Ê) with
x̂ ∈ Γ, ê ∈ Λ, Ê ∈ ∆, and Â ≡ (ax̂a0a

Ê
1 )1/ê (mod n).

7. If gcd(ê, eı̃) �=eı̃ then output ⊥ and quit. Otherwise, we have ê = seı̃ for some
s and can define Z := Âs/ar+r′Ê mod n if x̂ ≥ xı̃ and Z := ar+r′Ê/Âs mod
n otherwise. Then, from ar+r′Ê ≡ (axı̃a0a

Ê
1 )1/eı̃ (mod n), we have Z ≡

(a|x̂−xı̃|)1/eı̃ ≡ (z|ẽ|)1/eı̃ (mod n) with ẽ := (x̂−xı̃)
∏

1≤�≤K,��=ı̃ e�. Because
gcd(eı̃,

∏
1≤�≤K,��=ı̃ e�) = 1, we have gcd(eı̃, |ẽ|) = gcd(eı̃, |x̂ − xı̃|). Hence,

compute α, β ∈ Z satisfying αeı̃ + β|ẽ| = gcd(eı̃, |x̂ − xı̃|). Therefore, by
setting u := zαZβ mod n and e := eı̃/ gcd(eı̃, |x̂ − xı̃|), we have ue ≡ z
(mod n). Because of eı̃ ∈ Λ and |x̂ − xı̃| < 2�Γ +2 < 2�Λ , we have e > 1.
Output (u, e).
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Consequently, by repeatedly playing a random one of Game 1 or 2 until the
result is not ⊥, an attacker with the access to M can solve the strong RSA
problem in the expected polynomial time in K and t. Since this contradicts the
strong RSA assumption, no one except MM can generate a valid membership
certificate.


�
The next lemma shows the security of the signature generation.

Lemma 2. The interactive version of the group signature generation is a
honest-verifier zero-knowledge proof of knowledge of (x, A, e, E) such that A ≡
(axa0a

E
1 )1/e (mod n) with x ∈ Γ, e ∈ Λ and E ∈ ∆. Furthermore, (T1, T2)

and (T3, T4) are ElGmal ciphertexts for A and hE mod n w.r.t. public key y,
respectively.

Proof sketch. It is easy to prove the completeness and the zero-knowledgeness.
The rest is to extract the knowledge. Owing to the knowledge extractor of each
SPK, we can extract the values x1, x2, x3, x4, x5 and x6 satisfying

a0 = T x1
1 (1/a)x2(1/a1)x3(1/y)x4 , T2 = gx5 , 1 = T x1

2 (1/g)x4 ,

T3 = hx3yx6 , T4 = gx6 ,

x1 ∈ Λ, x2 ∈ Γ, and x3 ∈ ∆.

From the second and third equations, the equation gx4 ≡ gx1x5 (mod n) holds,
and thus (1/y)x4 ≡ (1/y)x1x5 (mod n) also holds. Therefore, ax2a0a

x3
1 ≡

T x1
1 /yx4 ≡ T x1

1 /yx1x5 ≡ (T1/yx5)x1 (mod n) holds. Hence, the knowledge of
(x = x2, A = T1/yx5 mod n, e = x1, E = x3) satisfying A ≡ (axa0a

E
1 )1/e

(mod n), e ∈ Λ, x ∈ Γ , and E ∈ ∆ can be extracted.
Furthermore, since, for the extracted knowledge A and hE mod n, T1 ≡ Ayx5

(mod n), T2 ≡ gx5 (mod n) and T3 ≡ hEyx6 (mod n), T4 ≡ gx6 (mod n)
hold, (T1, T2) and (T3, T4) are ElGmal ciphertexts for A and hE mod n w.r.t.
public key y, respectively.


�
Now, we discuss the security properties.

Unforgeability: Because of Lemma 2, it is assured that the signer knows a
certificate (A, e). On the other hand, because of Lemma 1, it is infeasible
for anyone except MM to compute such (A, e). Therefore, only a member
can sign a message.
Furthermore, because of Lemma 2, it is assured that (T1, T2) and (T3, T4)
are ElGmal ciphertexts for A and hE of a member, respectively. Thus, the
revocation manager can decrypt the ciphertexts to match the corresponding
identity and group.

Coalition-resistance: This property follows from Lemma 1.
Anonymity and unlinkability: These properties follows since the group sig-

nature uses the ElGmal ciphertexts and the SPK, as well as the original.
No framing: Because of Lemma 2, signing on behalf of a member with the cer-

tificate (A, e) on the group ID E requires the knowledge of x = loga Ae/a0a
E
1 .



82 Toru Nakanishi, Masayuki Tao, and Yuji Sugiyama

On the other hand, the join protocol reveals only C2 = ax together with
(A, e), since the PK and the commitments C1 and C3 reveal no informa-
tion. The group signature also reveals no information on x owing to the
ElGmal ciphertexts and the SPK. Therefore, because of the infeasibility of
computing the discrete logarithm, the other including MM cannot extract
the knowledge x.

6 Applications

6.1 Application to Anonymous Statistical Survey of Attributes

In [3], the anonymous statistical survey of attributes is proposed. The purpose
of this system is that a service provider collects the attributes (e.g., gender, age,
and job) from the users. This is useful for working out the marketing strategy.
On the other hand, the users desire to anonymously use the service, and fur-
thermore not to offer their attributes since offering many attributes may weaken
the anonymity. Therefore, in this system, the use of some TTPs allows the dis-
tributor to obtains only the statistics of the attributes. The statistics means the
number of users with each attribute value. The example of the gender is the
information of 50 male users and 50 female users. This system satisfies both the
correctness of the statistics and the anonymity of users. The anonymity means
that no useful information beyond the statistics is revealed.

The participants in this system are, a provider, users, trustees, and attribute
authority. It is assumed that a quorum of the trustees are corrupted. It is assumed
that the attribute authority can be convinced of users’ genuine attributes, and
that the authority issues the correct certificate of the attributes.

The previous system [3] uses the normal group signature, which includes an
ElGamal ciphertext, and secure multiparty computations on ElGamal cipher-
texts. However, the secure multiparty computations are inefficient, since the
efficiency is in proportion to the number of all the users registering with the
system.

When using the proposed group signature scheme committing the group,
we can construct the efficient survey system easily as follows. Here, though the
description with a single trustee is shown, the threshold ElGamal encryption [13]
allows us to construct the version with multiple trustees.

Setup: The group signature scheme committing the group is set up, where the
attribute authority is MM and the trustee is RM .

Register: To join the system, a user conducts the join protocol of the group
signature scheme with the attribute authority, where the user joins the group
corresponding with his attribute value (e.g., male).

Offer: During the service, the user sends the provider his group signature com-
mitting the attribute group. The provider collects the group signatures of
users during a period.

Generate: The provider gives the trustee the collected signatures. The trustee
shuffles the ElGamal ciphertexts (T3, T4) in the group signature verifiably
(e.g., [14]). Then, the trustee opens the signatures to reveal the groups. The
revealed groups indicate the statistics of the attribute.
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Owing to the anonymity and unlikability of the group signature, and the
shuffle, the provider obtains no information beyond the statistics. Owing to the
unforgeability of the group signature and the verifiability of the shuffle, the
correctness of the statistics is assured.

Next, we discuss the efficiency of the usually used protocols. For offering
the attributes, the previous system uses the group signature [5]. The efficiency
is comparable to that of the proposed group signature. In the other hand, the
efficiency in the our generate protocol does not depend on the number of all the
registering users, though the previous system depends on it.

6.2 Application to Anonymous Authentication of Membership
with Expiration

The interactive version of the group signature (i.e., The SPK in the signature
is replaced by the PK) is called the identity escrow [15], which is the interac-
tive anonymous authentication of the membership. This scheme allows a service
provider to verify whether a user requesting the service is a valid user with the
access privilege, while the user’s identity is concealed, where the membership
of a group means the ownership of the privilege. In such an application, gener-
ally the privilege should be expired after a certain interval of time. Thus, the
membership should be expired.

In the normal group signature scheme, it is difficult to set the different expi-
ration date for each membership certificate. A plausible solution in the normal
scheme is to constitute a group of the users with the same expiration date. How-
ever, this strategy weakens the anonymity, since the size of the group becomes
smaller.

The proposed group signature can be extended into the scheme with the
expiration as follows:

Setup: In the setup protocol, the group IDs E1, . . . , Et are assigned to the
expiration dates D1, . . . , Dt, respectively, such that Ei ≤ Ej iff Di ≤ Dj .

Join: The join protocol is conducted for Ej assigned to the expiration date Dj

of the membership certificate.
Sign and verify: At the time of signing, assume that the dates D1, . . . , Dj are

expired. Then, consider an interval ∆j that includes Ej+1, . . . , Et and that
does not include E1, . . . , Ej . The signature uses ∆j instead of ∆.
Since E ∈ ∆j is proved, the verifier can be convinced that the membership
certificate is not expired at that time. On the other hand, the signature
does not reveal the concrete expiration date corresponding with E. Thus,
the anonymity remains.

Note that the efficiency of signing and verifying is the same as that of the
proposed group signature scheme.

7 Conclusion

We have proposed a group signature scheme committing the group. The collision-
resistance against the adaptive adversary is proved under the strong RSA as-
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sumption. Signing in this scheme is as efficient as the original [6], since the
addition is only an ElGamal ciphertext and the efficient SPK.

Furthermore we have shown two efficient applications: One is to offer the
user’s attribute in the anonymous statistical survey. Another is the anonymous
authentication of the membership with the expiration.
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Abstract. Computer systems are constantly under attack and illegal
access is a constant threat which makes security even more critical. A sys-
tem can be broken into and secret information, e.g. decryption key, may
be exposed. Very recently, a new framework for the protection against
such key exposure problem was suggested and was called, key-insulated
encryption (KIE). In this paper, we study key insulated cryptosystems
without computational assumptions. First, we define the model of KIE in
unconditional setting and show lower bounds on required memory sizes.
Our bounds are all tight since our concrete construction of KIE achieves
the bounds. In other words, this construction is optimal in terms of mem-
ory sizes of a user, a trusted device and a sender. We then, extend the
concept of it further, and add an extra property so that any pair of users
in the system can communicate with each other. We called the version
with this added extension, dynamic and mutual key insulated encryption
(DMKIE), and concrete implementations of DMKIE are also shown. Fi-
nally, we discuss the relationship among KIE, key predistribution schemes
(KPS) and broadcast encryption schemes (BES), specifically, showing
that DMKIE can be constructed from KPS or BES.

1 Introduction

Background. The physical loss of a Personal Computer is costly, but the loss
of computing power and the data stored on the computer can be disastrous.
Also, lost data is very expensive to replace. Sensitive or confidential information
is vulnerable to unauthorized access without the proper security, but is also an
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unavoidable part in networking life, whether it is the loss of keys, important
data or files. Nonetheless, if not able to avoid such loss of secret information,
we still want to suffer the least of the damage. In order to minimize the risk of
loss, there has been ways to achieve this by splitting the secret information that
you have into small pieces, or shares, and store each shares on different devices
beforehand [16,8]. And recently, Dodis, Katz, Xu and Yung [10] suggested a new
framework to the solution to the above key exposure problem, and was called,
key-insulated encryption (KIE). KIE combines key splitting with key evolution
ideas, which are often used in forward-secure schemes [3,1]. This basically means,
extracting the benefit of splitting, leaving the information manageable in case
of loss, and having decryption as a stand-alone user operation as well. In KIE,
a user has a trusted device, e.g. smart card, and a user and a trusted device
has stage 0 user secret key and master helper key, respectively. When a sender
encrypts the message by using an encryption key and transmits it to another
user, here, the length of lifetime of the encryption key is divided by the number
of stages i = 1, 2, · · · , N , where encryption in stage i is performed as a function
of the encryption key, i and the message. Accordingly, decryption in stage i is
performed by the user using stage i user secret key obtained from the following
key-update process performed in the beginning of stage i: first, the trusted device
sends a stage i helper key to the user which is computed as a function of the
master helper key and i; second, the user computes the stage i user secret key
as a function of the stage i − 1 user secret key and the stage i master helper
key; and finally, the user deletes the stage i − 1 user secret key. The intended
security goes like this: if the trusted device is not compromised, a user’s secret
keys of at least t+1 different stages must all be exposed in order to compromise
the ciphertext encrypted for all the rest of the stages. Additionally, in order to
violate the ciphertext, the user’s secret key of at least one stage must be exposed
in addition to exposing the trusted device.

As mentioned earlier, the first concrete implementation of KIE was proposed
by Dodis, Katz, Xu and Yung [10]. Based on identity-based encryption schemes
[7,9], Bellare and Palacio [2] further showed efficient constructions of KIE with
optimal threshold, namely, regardless of the number of user stages that has been
violated, ciphertexts of all the rest of the stages still remain secure. Up to this
point, all of constructions of KIE also described here so far, are all based on com-
putational difficulty of solving certain hard problems, e.g. discrete logarithms.
There has yet, an investigation made to explore what constructions and lower
bounds of required memory sizes may be for unconditional setting that is with
no computational assumptions, which is still remained unclear.

Our Results. In this paper, we study unconditionally secure key insulated
cryptosystems, specifically, on the lower bounds, optimal constructions and some
extensions. We begin, by defining the model of KIE for unconditional setting and
show the lower bounds of required memory sizes. We estimate that the required
memory sizes for a ciphertext, a user secret key, a master helper key, a helper key
and a sender’s key be at least H(M) bit, (k + 1)H(M) bit, (k + 1)(t + 1)H(M)
bit, (k + 1)H(M) bit and (t + 1)H(M) bit, respectively, where H(M) is the size
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of a plaintext assuming that the maximum number of malicious senders is at
most k, and at most t of the user’s keys are exposed. These bounds are all tight
since we show a concrete construction of KIE that achieves all the bounds, in
order words, that, these constructions are optimal in terms of memory sizes of a
user, a trusted device and a sender. It should be noticed that in our scheme, we
address strong key insulation [10,2], which means that, even if the secure device
is compromised and end up having the master helper key revealed, the adver-
sary still cannot compute any of user’s secret keys unless one of user’s secret
keys is exposed along with the master helper key, and is exactly the motiva-
tion of key splitting. Next, we extend the concept of KIE further and add an
extra property so that any pair of users in a system can communicate having
the same security benefits as existing KIE systems which are based on com-
putational assumptions. We call the extended KIE, dynamic and mutual key
insulated encryption (DMKIE) and show concrete implementations as well. Fi-
nally, we discuss the relationship among KIE, key predistribution schemes (KPS)
[4,14,5,17,12] and broadcast encryption schemes (BES) [11,6,17]. Specifically, we
show that a DMKIE can be constructed from a KPS or a BES.

2 Model and Bounds

2.1 The Model

The model of our KIE with unconditional setting includes a user U , the user’s
trusted device H and n senders S1, · · · , Sn. In the initial phase, U generates a
stage 0 user secret key uk0, a master helper key mk∗ and senders’ keys e1, · · · , en.
These keys are distributed to their corresponding owners via secure channels.
After distributing these key, U deletes mk∗, e1, · · · , en from his memory. For
updating user’s key for stage i, H sends the user a stage i helper key, mki,
which is computed as a function of mk∗ and i. U then calculates a stage i user
secret key, uki, as a function of uki−1 and mki. U deletes uki−1 and mki from his
memory. Now, a sender, Sj ∈ {S1, · · · , Sn}, encrypts the message mij by ej with
encryption in stage i performed as a function of ej , i and mij , and generates a
ciphertext cij . U then recovers mij as a function of uki and cij . We assume that
at most one message in each stage is encrypted, and that, there exist at most k
malicious senders and at most t user secret keys that are exposed.

2.2 Security Definition

For the model of unconditionally secure KIE, it is necessary to satisfy the fol-
lowing requirements:(1) U can correctly recover mij from cij with probability
1. (2) Sj can correctly create cij from mij with probability 1. (3) uki can cor-
rectly be generated from uki−1 and mki. (4) mki can correctly be generated
from mk∗. (5) Even if mk∗ is exposed, none of U ’s secret keys will be computed
without also having one of U ’s secret keys. (6) Any coalition of adversaries who
may have obtained t exposed user secret keys cannot obtain any information
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on mij from cij . (7) Any coalition of adversaries who may have mk∗ cannot
obtain any information on mij from cij unless they have oen of user secret
keys. (8) No ciphertext provides any information regarding any plaintext. Let-
ting UK� (� = 0, 1, · · ·), E� (� = 1, · · · , n), MK∗, MK� (� = 0, 1, · · ·), Mij (i =
0, 1, · · · , j = 1, · · · , n) and Cij (i = 0, 1, · · · , j = 1, · · · , n) be random variables
induced by uk� (� = 0, 1, · · ·), e� (� = 1, · · · , n), mk∗, mk� (� = 0, 1, · · ·), mij (i =
0, 1, · · · , j = 1, · · · , n) and cij (i = 0, 1, · · · , j = 1, · · · , n), respectively, a (t, k, n)-
secure KIE is formally defined as follows:

Definition 1 A KIE in the above model is called a (t, k, n)-secure KIE if the
following equations hold;

(1) H(Mij |Cij , UKi) = 0 (i = 0, 1, · · · , j = 1, · · · , n)
(2) H(Cij |Mij , Ej) = 0 (i = 0, 1, · · · , j = 1, · · · , n)
(3) H(UKi|UKi−1, MKi) = 0 (i = 1, 2, · · ·)
(4) H(MKi|MK∗) = 0 (i = 1, 2, · · ·)
(5) H(UKi|MK∗) = H(UKi) (i = 0, 1, · · ·)
(6) H(Mij |Cij , E�1 , · · · , E�k

, UKκ1 , · · · , UKκt) = H(Mij)
(i = 0, 1, · · · , j = 1, · · · , n, j �∈ ∀{�1, · · · , �k} ⊂ {1, · · · , n},

i �∈ ∀{κ1, · · · , κt} ⊂ {0, 1, · · ·})
(7) H(Mij |MK∗, Cij , E�1 , · · · , E�k

) = H(Mij)
(i = 0, 1, · · · , j = 1, · · · , n, j �∈ ∀{�1, · · · , �k} ⊂ {1, · · · , n})

(8) H(Mi0j0 , Mi1j1 , · · · |Cδγ) = H(Mi0j0 , Mi1j1 , · · ·)
(∀{i0, i1, · · ·} ⊆ {0, 1, · · ·}, ∀{j0, j1, · · ·} ⊆ {1, · · · , n},

δ = 0, 1, · · · , γ = 1, · · · , n)

2.3 Lower Bounds

In this subsection, lower bounds on required memory sizes for a (t, k, n)-secure
KIE are estimated. First, we show a lower bound on the required memory size for
a ciphertext of which can be easily obtained from Shannon’s and from conditions
(1), (2) and (6) of Def. 1.

Theorem 1 In a (t, k, n)-secure KIE,

H(Cij) ≥ H(Mij) (i = 0, 1, · · · , j = 1, · · · , n). (1)

Now, a lower bound on the required memory size for a user’s secret key is
shown. Again, this bound can be obtained from Shannon’s and from conditions
(1), (2) and (6) of Def. 1.

Theorem 2 In a (t, k, n)-secure KIE,

H(UKi) ≥ max
{j0,···,jk}⊆{1,···,n}

H(Mij0 , · · · , Mijk
) (i = 0, 1, · · ·). (2)
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Third, a lower bound on the required memory size for a helper key is shown.
Theorem 3 In a (t, k, n)-secure KIE,

H(MKi) ≥ max
{j0,···,jk}⊆{1,···,n}

H(Mij0 , · · · , Mijk
) (i = 0, 1, · · ·). (3)

Proof. From conditions (1) and (3) of Def. 1, we have

H(Mij |Cij , UKi−1, MKi) = 0 (i = 0, 1, · · · , j = 1, · · · , n).

From condition (6) of Def. 1, we also have

H(Mij |Cij , UKi−1) = H(Mij) (i = 0, 1, · · · , j = 1, · · · , n).

Consequently, from these equations, we have Eq. 3. ��
Next, a lower bound on the required memory size for the master helper key

is shown.
Theorem 4 In a (t, k, n)-secure KIE,

H(MK∗) ≥ max
{i0,···,it}⊆{0,1,···}

∑

i∈{i0,···,it}
max

{j0,···,jk}⊆{1,···,n}
H(Mij0 , · · · , Mijk

). (4)

Proof. From conditions (1) and (6) of Def. 1, we have

H(UKi|Cij , UKκ1 , · · · , UKκt) ≥ H(Mij)
(i = 0, 1, · · · , i �∈ ∀{κ1, · · · , κt} ⊂ {0, 1, · · ·}, j = 1, · · · , n).

Consequently, we have

H(UKi, UKκ1 , · · · , UKκt
) = H(UKi) + H(UKκ1 |UKi) + H(UKκ2 |UKi, UKκ1)

+ · · · + H(UKκt |UKi, UKκ1 , · · · , UKκt−1)

≥
∑

�∈{i,κ1,···,κt}
max

{j0,···,jk}⊆{1,···,n}
H(M�j0 , · · · , M�jk

)

(i = 0, 1, · · · , i �∈ ∀{κ1, · · · , κt} ⊂ {0, 1, · · ·}).

From conditions (3) and (4), we also have

H(UKi, UKκ1 , · · · , UKκt |MK∗, UK0) = 0,

and

H(UKi, UKκ1 , · · · , UKκt |UK0) =
∑

�∈{i,κ1,···,κt}
max

{j0,···,jk}⊆{1,···,n}
H(M�j0 , · · · , M�jk

)

(i = 1, 2, · · · , i �∈ ∀{κ1, · · · , κt} ⊂ {1, 2, · · ·}).

Hence, we have

H(MK∗) ≥
∑

�∈{i,κ1,···,κt}
max

{j0,···,jk}⊆{1,···,n}
H(M�j0 , · · · , M�jk

)

(i = 1, 2, · · · , i �∈ ∀{κ1, · · · , κt} ⊂ {1, 2, · · ·}).
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Therefore, we have

H(MK∗) ≥ max
{i0,···,it}⊆{0,1,···}

∑

i∈{i0,···,it}
max

{j0,···,jk}⊆{1,···,n}
H(Mij0 , · · · , Mijk

),

which proves the theorem. ��
Finally, a lower bound on the required memory size for a sender’s key is

shown.

Theorem 5 In a (t, k, n)-secure KIE,

H(Ej) ≥ max
{i0,···,it}⊆{0,1,···}

H(Mi0j , · · · , Mitj) (j = 1, · · · , n). (5)

Proof. From conditions (1) and (8), we have

H(Ci0j , · · · , Citj |Mi0j , · · · , Mitj , Ej) = 0,

and

H(Mi0j , · · · , Mitj |Ci0j , · · · , Citj) = H(Mi0j , Mi1j , · · · , Mitj)
(∀{i0, i1, · · · , it} ⊂ {0, 1, · · ·}, j = 1, · · · , n).

From Shannon’s, we have Eq. 5. ��
Definition 2 A (t, k, n)-secure KIE is optimal if one has equalities in Eq. 1, 2,
3, 4 and 5.

3 Construction

We show a construction of a (t, k, n)-secure KIE which is based on polynomials.
In this construction, we assume that the distribution of Mij is uniform for any
i, j such that i = 0, 1, · · · and j = 1, · · · , n, and is also independent of any other
variable.

Polynomial Construction. Let q be a prime power, and GF (q) be a finite field
with q elements. We assume that the maximum number of key updating that a
user is allowed is less than q and a plaintext can be expressed by an element in
GF (q). In the initial phase, U generates random polynomials f(x) :=

∑k
i=0 aix

i

and mk∗(x, y) :=
∑k

i=0
∑t

j=0 bijx
iyj over GF (q). U distributes mk∗(x, y), e1(y)

:= f(S1)+mk∗(S1, y), · · · , en(y) := f(Sn)+mk∗(Sn, y) to H, S1, · · · , Sn, respec-
tively, via a secure channel, assuming that Si (1 ≤ i ≤ n) are distinct elements in
GF (q). Let pi (i = 0, 1, · · · , i < q) be public and distinct elements in GF (q). U
keeps uk0(x) := f(x)+mk∗(x, p0) as the stage 0 user secret key. After distribut-
ing the keys, U deletes mk∗(x, y), e1(y), · · · , en(y) from his memory. For updating
the user’s key for stage i (i < q), H sends mki(x) := mk∗(x, pi) − mk∗(x, pi−1)
to U , and U computes uki(x) := uki−1(x) + mki(x). U further deletes uki−1(x)
and mki(x) from his memory. A sender, Sj ∈ {S1, · · · , Sn}, encrypts a message
mij ∈ GF (q) as cij := mij + en(pi), and generates a ciphertext cij . U recovers
mij as mij = cij − uki(Sj).
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Theorem 6 The above scheme is an optimal (t, k, n)-secure KIE.

Proof. It is obvious that the above scheme satisfies all of conditions in Def. 1
and has equalities in Eq. 1, 2, 3, 4 and 5. ��

Also, we see that the lower bounds in Theorem 1,2,3,4 and 5 are all tight.
We note that conditions (5) and (7) are not utilized for the estimation of the
bounds. This implies that no additional memory will be necessary in order to
satisfy these two conditions.

4 Dynamic and Mutual Key Insulated Encryption

The model of KIE described in section 2 is built for a single receiver, which
means that there only exists one receiver for the entire model. We can extend
this model to a multiple receiver model and call it, dynamic and mutual key
insulated encryption (DMKIE). In DMKIE, each user in a system has a secure
device and can both encrypt and decrypt in each of the stages.

4.1 The Model

The model of DMKIE involves n users U1, · · · , Un and each users’ trusted de-
vices H1, · · · , Hn corresponding to U1, · · · , Un, respectively. In the initial phase, a
trusted authority or a collaboration of users generates Ui’s stage 0 secret key uk

(i)
0

and Ui’s master helper key mk(i),∗ (i = 1, · · · , n). These keys are distributed to
the corresponding owners of the keys via secure channels. If a trusted authority
has been introduced to generated these secrets, this is the point where he deletes
uk

(i)
0 and mk(i),∗ (i = 1, · · · , n) from his memory. For Ui’s key for stage j updates,

Hi sends Ui’s stage j helper key, mk
(i)
j to Ui which is computed as a function of

mk(i),∗ and j. Then, Ui calculates Ui’s stage j user secret key, uk
(i)
j , as a function

of uk
(i)
j−1 and mk

(i)
j . Ui further deletes uk

(i)
j−1 and mk

(i)
j from his memory. When

a user, U�0 ∈ {U1, · · · , Un} transmits another user U�1 ∈ {U1, · · · , Un}\{U�0}
a message m

(�0,�1)
j , in stage j, U�0 encrypts m

(�0,�1)
j by uk

(�0)
j with encryption

in stage j performed as a function of uk
(�0)
j , U�1 and m

(�0,�1)
j and generates a

ciphertext c
(�0,�1)
j . Finally, U�1 recovers m

(�0,�1)
j as a function of uk

(�1)
j , U�0 and

m
(�0,�1)
j . We assume that only one message is transmitted between only one pair

of users per stage. We assume that there exist at most k malicious users, and at
most t user secret keys can be exposed per user.

4.2 Security Definition

The model of DMKIE needs to satisfy the following requirements:(1) U�1 can
correctly recover m

(�0,�1)
j from c

(�0,�1)
j with probability 1. (2) U�0 can correctly

create c
(�0,�1)
j from m

(�0,�1)
j with probability 1. (3) uk

(i)
j can correctly be gen-

erated from uk
(i)
j−1 and mk

(i)
j . (4) mk

(i)
j can only be generated from mk(i),∗.
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(5) Even if mk(i),∗ is exposed, none of Ui’s secret keys can be computed with-
out also having one of Ui’s secret keys. (6) Any coalition of adversaries who
may have obtained t exposed U�0 ’s secret keys and t exposed U�1 ’s secret keys,
still cannot gain any more information on m

(�0,�1)
j from c

(�0,�1)
j . (7) Any coali-

tion of adversaries who may have mk(�1),∗, cannot obtain any information on
m

(�0,�1)
j from c

(�0,�1)
j unless they have one of U�0 ’s or U�1 ’s secret keys. (8)

No ciphertext assist on leaking any information regarding any plaintext. Let-
ting UK

(i)
j (i = 1, · · · , n, j = 0, 1, · · ·), MK(i),∗ (i = 1, · · · , n), MK

(i)
j (i =

1, · · · , n, j = 0, 1, · · ·), M (ij)
� (i = 1, · · · , n, j = 1, · · · , n, i �=j, � = 0, 1, · · ·)

and C
(ij)
� (i = 1, · · · , n, j = 1, · · · , n, i �=j, � = 0, 1, · · ·) be random variables

induced by uk
(i)
j (i = 1, · · · , n, j = 0, 1, · · ·), mk(i),∗ (i = 1, · · · , n), mk

(i)
j (i =

1, · · · , n, j = 0, 1, · · ·), m(ij)
� (i = 1, · · · , n, j = 1, · · · , n, i �=j, � = 0, 1, · · ·) and

c
(ij)
� (i = 1, · · · , n, j = 1, · · · , n, i �=j, � = 0, 1, · · ·), respectively, and now a

(t, k, n)-secure DMKIE is formally defined as follows:

Definition 3 A DMKIE in the above model is called a (t, k, n)-secure DMKIE
if the following equations hold;

(1) H(M (ij)
� |C(ij)

� , UK
(j)
� ) = 0 (i = 1, · · · , n, j = 1, · · · , n, � = 0, 1, · · ·)

(2) H(C(ij)
� |M (ij)

� , UK
(i)
� ) = 0 (i = 1, · · · , n, j = 1, · · · , n, � = 0, 1, · · ·)

(3) H(UK
(i)
j |UK

(i)
j−1, MK

(i)
j ) = 0 (i = 1, · · · , n, j = 1, 2, · · ·)

(4) H(MK
(i)
j |MK(i),∗) = 0 (i = 1, · · · , n, j = 1, 2, · · ·)

(5) H(UK
(i)
j |MK(i),∗) = H(UK

(i)
j ) (i = 1, · · · , n, j = 0, 1, · · ·)

(6) H(M (ij)
� |C(ij)

� , MK(δ1),∗, · · · , MK(δk),∗, UK
(δ1)
0 , · · · , UK

(δk)
0 ,

UK(i)
κ1

, · · · , UK(i)
κt

, UK(j)
ω1

, · · · , UK(j)
ωt

) = H(M (ij)
� )

(i = 1, · · · , n, j = 1, · · · , n, � = 0, 1, · · · , i, j �∈ ∀{δ1, · · · , δk} ⊂ {1, · · · , n},

� �∈ ∀{κ1, · · · , κt} ⊂ {0, 1, · · ·}, � �∈ ∀{ω1, · · · , ωt} ⊂ {0, 1, · · ·})

(7) H(M (ij)
� |MK(j),∗, C(ij)

� , MK(δ1),∗, · · · , MK(δk),∗, UK
(δ1)
0 , · · · , UK

(δk)
0 )

= H(M (ij)
� )

(i = 1, · · · , n, j = 1, · · · , n, � = 0, 1, · · · , i, j �∈ ∀{δ1, · · · , δk} ⊂ {1, · · · , n})

(8) H(M i0j0
�0

, M i1j1
�1

, · · · |Cδγ
β ) = H(M i0j0

�0
, M i1j1

�1
, · · ·)

(∀{i0, i1, · · ·} ⊆ {1, · · ·n}, ∀{j0, j1, · · ·} ⊆ {1, · · · , n},

∀{�0, �1, · · ·} ⊆ {1, 2, · · ·}, δ = 1, · · · , n, γ = 1, · · · , n, β = 0, 1, · · ·)

4.3 Construction

In this subsection, we show a construction of DMKIE based on polynomials.

Polynomial Construction. Let q be a prime power, and GF (q) be a finite field
with q elements. We assume that the maximum number of key updating that
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a user is allowed is less than q times, and a plaintext can be expressed as
an element in GF (q). We also assume that Ui (i = 1, · · · , n) are expressed
as distinct elements in GF (q). Let pi (i = 0, 1, · · · , i < q) be public and
are distinct elements in GF (q). In the initial phase, either a trusted author-
ity or a collaboration of users generates Ui’s stage 0 secret key as uk

(i)
0 (x) :=

f(x, Ui) +
∑t

j=0 gj(x, Ui)p0
j as well as his master helper key as mk(i),∗(x, z) :=

∑t
j=0 gj(x, Ui)zj (i = 1, · · · , n), where f(x, y) and gj(x, y) (j = 0, · · · , t) are

random symmetric polynomials over GF (q) such that the maximum degrees
of x and y are at most k. (A method of distributed generation of symmetric
polynomials is shown in [18].) Now, this is when the trusted authority deletes
uk

(i)
0 (x) and mk(i),∗(x, z) (i = 1, · · · , n) from his memory after generating these

secrets. For updating Ui’s key for stage j, Hi sends Ui, Ui’s stage j helper key
as mk

(i)
j (x) := mk(i),∗(x, pj) − mk(i),∗(x, pj−1). Then, Ui calculates Ui’s stage j

user secret key as uk
(i)
j (x) := uk

(i)
j−1(x)+mk

(i)
j (x). Moreover, Ui deletes uk

(i)
j−1(x)

and mk
(i)
j (x) from his memory. When a user, U�0 ∈ {U1, · · · , Un}, transmits an-

other user U�1 ∈ {U1, · · · , Un}\{U�0} a message m
(�0,�1)
j in stage j, U�0 will now

encrypt m
(�0,�1)
j as c

(�0,�1)
j := m

(�0,�1)
j +uk

(�0)
j (U�1). Finally, U�1 recovers m

(�0,�1)
j

as m
(�0,�1)
j = c

(�0,�1)
j − uk

(�1)
j (U�0).

Theorem 7 The above scheme is a (t, k, n)-secure DMKIE.

5 DMKIE from KPS and BES

In this section, we show how closely related DMKIE is to key predistribution
schemes (KPS) [4,14,5,17,12] and broadcast encryption schemes (BES) [11,6,17].
More specifically, we show that a DMKIE can be constructed from either KPS
or BES.

In KPS, either a trusted authority or a collaboration of users, generates the
secret information which is transmitted to a set of users. Member of privileged
subset P of set of users can compute a common key, kp, which is specific to
them. While, no coalition F (of forbidden subset of users) is able to recover the
information of the key kp. In BES, a trusted authority or a collaboration of users,
generates and distributes the secret information to set of users and broadcasts
ciphertext bp over a network. The secret information is generated so that each
member of a particular subset P of the users can decrypt bp, but no coalition F
(of forbidden subset of users) is able to recover the information of the plaintext
mp of bp.

5.1 DMKIE from KPS

The Model of KPS. Let {U1, · · · , Un} be a set of users. In KPS, trusted
authority or a collaboration of users generates and distributes secret information
to each user. The information given to user Ui is denoted as uk

(i)
KPSj

and is
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distributed via a secure channel, where j is an index in case there exist multiple
KPSs for the same user. Such information enables various privileged subsets to
compute their common keys. Let 2U denote the set of all subsets of users, P ⊆ 2U ,
the set of all privileged subsets to whom TA distributes the keys, and F ⊆ 2U ,
the set of all possible coalitions (called forbidden subsets) against whose key
that is to remain secure. We assume that P and F are common to all KPSs
for the same users. Once the secret information is distributed, each user Ui in
a privileged set P should be able to compute the key kjP associated with P .
While, no forbidden set F ∈ F disjoint from P , should be able to compute kjP .
Let KjP and UK

(i)
KPSj

(i = 1, · · · , n) be random variables induced by kjP and

uk
(i)
KPSj

(i = 1, · · · , n), respectively.

Definition 4 (uk
(1)
KPSj

, · · · , uk
(n)
KPSj

) is a (τ, k, n)-secure KPS if

H(KjP |UK
(i)
KPSj

) = 0 (∀Ui ∈ P, ∀P ⊆ P, |P | = τ),

H(KjP |UK
(i1)
KPSj

, · · · , UK
(ik)
KPSj

) = H(KjP )

(∀P ⊆ P, ∀{Ui1 , · · · , Uik
} ⊆ F, ∀F ∈ F , P ∩ F = φ).

It is clear that there exist an operation �, such that for secret information in
a (τ, k, n)-secure KPS, � satisfy linear property, namely, for any integers a, b and
any pair of (τ, k, n)-secure KPSs over the finite field; (uk

(1)
KPSj0

, · · · , uk
(n)
KPSj0

) and

(uk
(1)
KPSj1

, · · · , uk
(n)
KPSj1

), we have another (τ, k, n)-secure KPS over the finite field,

(uk
(1)
KPSj2

, · · · , uk
(n)
KPSj2

) := (a · uk
(1)
KPSj0

� b · uk
(1)
KPSj1

, · · · , a · uk
(n)
KPSj0

� b · uk
(n)
KPSj1

),
such that kj2P = a kj0P + b kj1P , where x · uk denotes �x

i=1uk for any integer x
and secret information uk.

A Construction of DMKIE from KPS. Here, we demonstrate a construc-
tion of DMKIE using KPS.

KPS-based Construction. Let P be {X|X ∈ 2U , |X| = 2}. Let (uk
(1)
KPS�

, · · · ,
uk

(n)
KPS�

) (� = 0, · · · , t+1) be independent (2, k, n)-secure KPSs over a finite field
GF (q) with q elements, where q is a prime. It is required that no information
on �t+1

�=1j0
�−1 · uk

(i)
KPS�

can be obtained from {�t+1
�=1j1

�−1 · uk
(i)
KPS�

, · · · , �t+1
�=1jt

�−1 ·
uk

(i)
KPS�

}, and that no information on uk
(i)
KPS0

� �t+1
�=1j0

�−1 ·uk
(i)
KPS�

can be obtained

from uk
(i)
KPS1

, · · · , uk
(i)
KPSt+1

, for any i ∈ {1, · · · , n} and distinct j0, · · · , jt ∈ GF (q).
KPSs in [4,14,5,11] satisfy this requirement. We assume that the maximum
number of key updating that a user is allowed is less than q. Let Ui’s stage
0 secret key uk

(i)
0 := uk

(i)
KPS0

� uk
(i)
KPS1

and Ui’s master helper key mk(i),∗ :=

{uk
(i)
KPS1

, · · · , uk
(i)
KPSt+1

} (i = 1, · · · , n). For updating Ui’s key for stage j, Hi

sends to Ui, Ui’s stage j helper key mk
(i)
j , such that �t+1

�=1j
�−1 · uk

(i)
KPS�

= mk
(i)
j �
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�t+1
�=1(j − 1)�−1 · uk

(i)
KPS�

. Then, Ui calculates Ui’s stage j user secret key uk
(i)
j :=

uk
(i)
j−1 � mk

(i)
j . Moreover, Ui deletes uk

(i)
j−1 and mk

(i)
j from his memory. When a

user, U�0 ∈ {U1, · · · , Un}, transmits another user U�1 ∈ {U1, · · · , Un}\{U�0}, a
message m

(�0,�1)
j in stage j, then, U�0 encrypts m

(�0,�1)
j as c

(�0,�1)
j := m

(�0,�1)
j +

kj{U�0 ,U�1}, such that the size of m
(�0,�1)
j is equivalent or less than that of

kj{U�0 ,U�1}, where kj{U�0 ,U�1} is the shared key between U�0 and U�1 by KPS

(uk
(1)
KPS0

� �t+1
�=1(j − 1)�−1 · uk

(1)
KPS�

, · · · , uk
(n)
KPS0

� �t+1
�=1(j − 1)�−1 · uk

(n)
KPS�

). Finally,

U�1 recovers m
(�0,�1)
j as m

(�0,�1)
j = c

(�0,�1)
j − kj{U�0 ,U�1}.

Theorem 8 The above scheme is a (t, k, n)-secure DMKIE.

5.2 DMKIE from BES

The Model of BES. Let {U1, · · · , Un} be a set of users. In a BES, we assume
that the network is a broadcast channel, i.e., it is insecure, and that any infor-
mation transmitted by a trusted authority (TA) will be received by every user.
In the set-up stage, TA generates and distributes secret information uk

(i)
BES to

each user Ui via a secure channel. Later, the TA broadcasts a message mP to
privileged subset P . Which particular privileged subset P is selected, is in gen-
eral, not known ahead of time. P ⊆ 2U denotes the set of all privileged subsets
to which the TA might want to broadcast a message, and F ∈ 2U , the set of all
possible coalitions (forbidden subsets) against which a broadcast is to remain
secure. Suppose that, TA wants to broadcast a message to a given privileged set
P ∈ P at time not specified. In that case, TA broadcast bP which is computed as
a function of mP and all uk

(i)
BES such that Ui ∈ P . Once bP has been broadcast,

each user Ui ∈ P should be able to decrypt bP and obtain mP . On the other
hand, no forbidden set F ∈ F disjoint from P should be able to compute mP .
Let MP , BP and UK

(i)
BES (i = 1, · · · , n) be random variables induced by mP , bP

and uk
(i)
KPS (i = 1, · · · , n), respectively.

Definition 5 (UK
(1)
BES, · · · , UK

(n)
BES) is a (τ, k, n)-secure BES if

H(MP |UK
(1)
BES, · · · , UK

(n)
BES) = H(MP )

H(MP |BP , UK
(i)
BES) = 0 (∀Ui ∈ P, ∀P ⊆ P, |P | = τ),

H(MP |BP , UK
(i1)
BES, · · · , UK

(ik)
BES) = H(KP )

(∀P ⊆ P, ∀{Ui1 , · · · , Uik
} ⊆ F, ∀F ∈ F , P ∩ F = φ).

A Construction of DMKIE from BES. As shown in [13], we can construct
a (τ, k, n)-secure KPS from a (τ, k, n)-secure BES. Therefore, a (2, k, n)-secure
KPS can be constructed from a (2, k, n)-secure BES. Consequently, a (t, k, n)-
secure DMKIE can be constructed from a (2, k, n)-secure BES.
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Abstract. The illegal copying and redistribution of digitally-stored in-
formation is a crucial problem to distributors who electronically sell dig-
ital data. Fingerprinting provides a means which a copyright owner can
trace illegal redistributors of electronic information. Various fingerprint-
ing schemes have appeared as techniques for copyright protection from
symmetric fingerprinting by Boneh and Shaw [3], asymmetric fingerprint-
ing by Pfitzmann and Schunter [14], and anonymous fingerprinting by
Pfitzmann and Waidner [15]. In most of previous schemes, the compu-
tational capability of clients has been assumed to roughly be equal to
each other and even to their servers. In particular, the key size of known
algorithms for fingerprinting schemes keeps back from their practical
implementation. In this paper, we propose a scheme for anonymous fin-
gerprinting based on the bilinear Diffie-Hellman problem and prove its
security. Our scheme exhibits all computations are performed more ef-
ficiently than previous schemes and the key size is quite reasonable for
practical use.

Keywords: Anonymous, asymmetric, and symmetric fingerprinting, Bi-
linear Diffie-Hellman problem, Intellectual property protection, Security
reduction

1 Introduction

According to the progress of computer networks and development of the Internet,
protection of digitally-stored information property has become a crucial problem
to be solved. A lot of research work has been invested into the design of methods
that technically support the copyright protection of digital data. One class of
such methods consists of techniques called fingerprinting schemes. The other
class of such methods is called watermarking schemes. Watermarking is clearly
one of the reasonable alternatives to solve several problems such as violation
of ownership and illegal distribution of the copy. It enables the owner of digital
property to embed some information in the digital contents and to extract it. On
the other hand, fingerprinting allows a buyer to embed the information related to
himself, and enables a merchant to trace the buyer from the illegally redistributed
copy.
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In general, fingerprinting schemes are classified into two different classes
called symmetric fingerprinting schemes [2,3,17] and asymmetric fingerprinting
schemes [14,18]. While in symmetric schemes the merchant fingerprints the data
item, asymmetric schemes achieve this in an interactive protocol between the
buyer and the merchant where the buyer also embeds his own secret. At the end
of the protocol only the buyer knows the fingerprinted data item. The advantage
of the asymmetric schemes over the symmetric schemes is for the merchant to
obtain a proof of treachery that convinces any honest third party.

The two aforementioned classes of fingerprinting schemes do not preserve pri-
vacy because buyers are required to identify themselves to the merchant for the
purpose of fingerprinting. Purchasing digital items, especially in open networks,
reveals information about the buyer’ shopping behavior. Such buyer-profiles are
very appealing to commercial misuse. Thus it is desirable for buyers to be capable
of purchasing fingerprinted digital items anonymously and remain anonymous
as long as they do not distribute the digital contents illegally. To solve this prob-
lem, anonymous asymmetric fingerprinting schemes were first proposed by Pfitz-
mann and Waidner [15]. Since then, various anonymous fingerprinting schemes
have been proposed in [10,11,8,9,13,5]. The construction in [10,11,8] is based on
general two-party computation. The scheme [9] uses oblivious transfer proto-
cols. Later, Kuribayashi and Tanaka [13] focused on improving enciphering rate.
Another approach for constructing anonymous fingerprinting schemes based on
group signatures was suggested by Camenisch in [5].

However, most of the previous fingerprinting schemes, especially anonymous
cases, have not taken into account the computational capability of buyers. From
the practical point of view, the key size of known algorithms for previous finger-
printing schemes keeps back from their practical implementation. In this paper,
we propose a scheme for anonymous fingerprinting based on the bilinear Diffie-
Hellman problem and analyze its security emphasizing that all computations can
be performed efficiently and quite reasonable with respect to the key size.

The outline of this paper is as follows: Section 2 gives a brief introduction of
fingerprinting schemes and primitives adopted in this paper. Section 3 contains
several notations and formal statements for our definition of security. We proceed
in Section 4 by presenting our proposal. We then discuss the security of the
proposed method in Section 5 and present the brief comparison with previous
schemes in Section 6. Finally, we make concluding remarks in Section 7.

2 Preliminaries

In this section, we introduce some basic techniques used in our scheme. First
we review various fingerprinting techniques. Next we state briefly the bilinear
Diffie-Hellman problem exploited in the conventional scheme in [1,6].

2.1 Fingerprinting

Digital contents such as image, music, and movie are easily copied without any
degradation. Fingerprinting is a cryptographic scheme for the copyright protec-
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tion of digital contents assisted by a watermarking technique. And the scheme
can deter people from executing illegal redistribution of digital contents by mak-
ing it possible for the merchant to identify the original buyer of the redistributed
copy, where we call her a traitor. The fingerprinting schemes can be classified
into the following three classes.

Symmetric. The operation to embed a fingerprint is performed only by a
merchant. Therefore, the merchant cannot convince any third party of the
traitor’s treachery even if the merchant has detected the identity of a traitor
in the content.

Asymmetric. Fingerprinting is an interactive protocol between a buyer and a
merchant. After the purchase, only the buyer obtains the copy with a finger-
print. If the merchant has found the illegally distributed copy somewhere,
he can identify the traitor and prove to the third party.

Anonymous (asymmetric). A buyer can purchase a fingerprinted content
without revealing his identity to a merchant, however the merchant can iden-
tify the traitor when he finds the illegally distributed copy. It also retains
the asymmetric property.

Most fingerprinting schemes have a collusion problem. Suppose that digi-
tal contents are distributed with different fingerprints. If a collusion group who
has obtained those contents compares fingerprints of their contents, they eas-
ily capture all fingerprints from their contents. Therefore the collusion group
can remove original fingerprints, interpolate gaps, and resell the digital contents
without worrying about being traced. This collusion problem was first studied
by Blakley et al. [2] and practical solution against collusion was dealt with by
Boneh and Shaw [3].

2.2 Bilinear Diffie-Hellman Problem

We can make use of any bilinear map on an elliptic curve to construct a group G

in which the computational Diffie-Hellman (C-DH) problem is intractable, but
the decisional Diffie-Hellman (D-DH) problem is tractable [1,4].

Let E be an elliptic curve over a base field K and let G1 and G2 be two cyclic
groups of order m for some large prime m. Our scheme makes use of a bilinear
map ê : G1×G1 → G2 between these two groups. The bilinear map must satisfy
the following properties.

i. Bilinearity : For all P, Q, R ∈ G1 and a, b ∈ Z
∗
m, ê(aP, bQ) = ê(P, Q)ab or

ê(P + Q, R) = ê(P, R) · ê(Q, R) and ê(P, Q + R) = ê(P, Q) · ê(P, R).
ii. Non-degeneracy : If ê(P, Q) = 1 for all Q ∈ G1, then P = O, where O is a

point at infinity.
iii. Computability : There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Since the D-DH problem in G1 is easy, we cannot use the D-DH problem
to build cryptosystems in the group G1. Instead, the security of our protocol
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is based on a variant of the C-DH problem called the bilinear Diffie-Hellman
(B-DH) problem.

Let G1 and G2 be two cyclic groups of prime order m and let P be a generator
of G1. Let ê : G1 ×G1 → G2 be a bilinear map.

Definition 1. The B-DH problem in (G1, G2, ê) is the following: given
(P, aP, bP, cP ) for some a, b, c ∈ Z

∗
m, compute v ∈ G2 such that v = ê(P, P )abc.

Definition 2. A randomized algorithm IG is a B-DH parameter generator if

1. IG takes a security parameter 0 < k ∈ Z,
2. IG runs in polynomial time in k, and
3. IG outputs the description of two groups G1, G2 and the description of a

bilinear map ê : G1 ×G1 → G2.

We require that the groups have the same prime order m = |G1| = |G2|. We
denote the output of IG by IG(1k). A concrete example of the B-DH parameter
generator is given in [1].

3 Definitions of Security

In this section, we present some definitions that should be satisfied by a finger-
printing scheme and its security.

3.1 Bilinear Diffie-Hellman Assumption

Let G1 and G2 be two cyclic groups of prime order m and let P be a generator
of G1. Let ê : G1 ×G1 → G2 be a bilinear map.

Definition 3. An algorithm A has an advantage AdvB-DH(A) = ε in solving
B-DH in 〈G1, G2, ê〉 if

AdvB-DH(A) � Pr
[
A(P, aP, bP, cP ) = ê(P, P )abc

]
≥ ε,

where the probability is over the random choice of 〈a, b, c〉 ∈ Z
∗
m, the random

choice of P ∈ G
∗
1, and the random bits of A.

The security of our fingerprinting scheme is intrinsically based on the in-
tractability of the B-DH problem. We formally describe this assumption, called
the bilinear Diffie-Hellman intractability assumption (B-DHIA).

A (τ, ε)-B-DH-attacker for the groups is a probabilistic polynomial time(PPT)
algorithm A running in time τ that given a B-DH parameter generator IG stated
in Section 2 solves the B-DH problem if for a sufficiently large k:

Pr


A(G1, G2, ê, P, aP, bP, cP ) = ê(P, P )abc

∣∣∣∣∣∣
〈G1, G2, ê〉 ← IG(1k);
P ← G

∗
1;

〈a, b, c〉 ← Z
∗
m


 ≥ ε.

We denote this probability by SuccB-DH
IG (A).

Definition 4 (B-DHIA). Given a B-DH parameter generator IG the B-DH
problem is (τ, ε)-intractable if there is no (τ, ε)-attacker A for the groups.
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3.2 Model of Anonymous Fingerprinting

A model given in [5] was focused on fingerprinting using group signatures. We
describe the more general model of anonymous fingerprinting schemes.

Definition 5 (AAF protocol). An anonymous (asymmetric) fingerprinting
(AAF) protocol Pfing = {FKGR, FRegRB , FAuthMB , FFingMB , FIdenMR} involv-
ing a buyer B, a merchant M , and a registration authority R is defined by the
followings:

• FKGR: A PPT algorithm for R. Invoking the B-DH parameter generator IG,
it outputs R’s secret key and the corresponding public key, which is published
authentically.

• FRegRB: A probabilistic two-party protocol between B and R. B registers
at R and at the end each party obtains a registration record. B outputs his
anonymous public-key and obtains certificates on pseudonym pairs.

• FAuthMB: A probabilistic two-party protocol between B and M . B authenti-
cates himself to M using the certificate from the sub-protocol FRegRB.

• FFingMB: A probabilistic two-party protocol between B and M . B buys the
data item from M and jointly fingerprints it with him. The output to M is
a purchase record and the main output to B is the fingerprinted data item.

• FIdenMR: A probabilistic two-party protocol between R and M . If M finds
an illegally redistributed copy, he extracts some information from this copy.
The output to M is a proof which also contains the description of the corre-
sponding data item and the real identity of a traitor. R examines the proof
received from M by using the corresponding public information and makes a
decision.

Now we can define the security of the AAF scheme. The definition allows the
security of the proposed protocol to be reduced to that of the underlying hard
problem.

Definition 6.A protocol Pfing ={FKGR, FRegRB , FAuthMB , FFingMB , FIdenMR}
is a secure AAF protocol if:

1. Correctness: All sub-protocols should terminate successfully whenever all
players B, M , and R are honest.

2. Registration security: Without compromising the private key xB of B, the
registration protocol FRegRB provides authentication to B.

3. Anonymity: Without obtaining a particular and an illegally redistributed
copy, M cannot identify B through FAuthMB and FFingMB.

A (t, ε)-AAF-breaker for Pfing is a PPT Turing machine ∆ running in time
t that satisfies three conditions of Definition 6 at least with probability ε =
SuccAAF

P (∆). Then the fingerprinting scheme is (t, ε)-AAF-secure if there is no
(t, ε)-AAF-breaker ∆.
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4 The Protocol

In this section, we propose a secure fingerprinting scheme which provides an-
onymity and overcomes the drawbacks from previous schemes. In Domingo’s
schemes [10,11], the registration protocol is a 4-pass and his schemes require
many exponential operations. Our scheme is a 3-pass registration protocol and
requires one addition, one scalar multiplication, and one pairing operation over
an elliptic curve under the assumption that pre-computations are possible. The
identification protocol in our scheme preserves the same advantage.

Our AAF protocol PB-DH
fing consists of three sub procedures: registration, fin-

gerprinting, and identification. The registration procedure involves the key gen-
eration algorithm and the fingerprinting procedure may be divided into buyer’s
authentication process and fingerprinting process. Our scheme is constructed as
follows:

4.1 Registration Procedure

R invokes the key generation algorithm FKGR at first. Let G1 and G2 be two
cyclic groups of order m for some large prime m, P be an arbitrary generator of
G1, and ê be a bilinear map such that

ê : G1 ×G1 → G2.

Assume that both B and R have the B-DH public-key pairs as in [1]. R uses its
secret key to issue certificates which can be verified using R’s public key. The
public keys of R and all buyers are supposed to be known and certified. The
buyer’s secret key is xB = s1s2s3 ∈ Z

∗
m and his public key is yB = ê(xBP, P ) =

ê(P, P )s1s2s3 ∈ G2.

Protocol [registration] – FRegRB.

1. R chooses a secret random xR ∈ Z
∗
m and sends TR = xRP to B.

2. B uses secret keys s1, s2, and s3 in Z
∗
m and computes X and Y such that

X = s1s2P and Y = s1s2s3P + TR.

B convinces R in zero-knowledge of possession of s1, s2 and s3. Note that Y
plays a role of anonymous public-key of B.

3. R checks that ê(Y, P ) = yB · ê(P, TR). If valid, R computes T = ê(X, TR).
Otherwise terminates the protocol. R returns to B the certificates Cert(T ),
Cert(Y ||xR), and xR. The certificates issued by R state the correctness of T
and Y .

4. On receiving certificates, B verifies that T = ê(X, TR). He views (Y, T ) as a
pseudonym pair and keeps it safely.

The registration protocol works as shown in Figure 1.
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B R

Choose xR ∈ Z
∗
m

Compute TR = xRP

Choose s1, s2, s3 ∈ Z
∗
m

Compute X = s1s2P and

Y = s1s2s3P + TR

Check ê(Y, P ) = yB · ê(P, TR)

Compute T = ê(X, TR)

Issue Cert(T ) and Cert(Y ||xR)

Verify TR = xRP, T = ê(X, TR)

Keep (xR, T, Y )

TR

X, Y

Cert(T ), Cert(Y ||xR), xR

�

�

�

Fig. 1. The registration protocol FRegRB

4.2 Fingerprinting Procedure

From the conceptual point of view, fingerprinting is similar to secure contract
signing in some respects. One can capture such a similarity from the following
fingerprinting protocol. Assume that the B-DH signature given in [6] or its vari-
ants may be used here. If possible, we call the signing algorithm Sign(·, . . . , ·) and
the verifying algorithm Verify(·, ·, ·). Assume that a variant of a secure multiparty
computation given in [7] may be constructed under the B-DH assumption.

Protocol [fingerprinting] – (FAuthMB, FFingMB).

1. B sends Y, [T, Cert(T )], and text to M , where text is a string identifying
his purchase. B outputs a B-DH signature sig on text with the secret key
(s1, s2, s3, xR). The signature sig is not sent to M .

2. M verifies the certificate Cert(T ) on T and stores [T, Cert(T )] as his purchase
record.

3. B and M initiate a secure two-party computation assumed as above. M ’s
inputs are T, Y, text, and item, where item denotes the original information
to be fingerprinted. B’s inputs are xR, sig, s1, s2, and Cert(Y ||xR). The com-
putations are performed as follows:
i. val1 = Verify1(text, sig, Y ). The B-DH signature sig on text is verified

by the anonymous public-key Y . The output val1 is a Boolean variable
only seen by M which is true if and only if the signature verification is
completed successfully.
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B M

Verify Cert(T )

Record [T, Cert(T )]

Select k ∈R Z
∗
m

sig = Sign(text, s1, s2, s3, xR, k)

Y, [T, Cert(T )], text
�

Fig. 2. Buyer authentication of fingerprinting protocol FAuthMB

ii. val2 = Verify2(Y,Cert(Y ||xR), s1, s2, xR, T ). Firstly, the certificate
Cert(Y ||xR) on Y is verified. Secondly, it is checked whether T = ê(s1s2P,
xRP ). The output is also a Boolean variable only seen by M which is true
if and only if the two aforementioned checks are completed successfully.

iii. item� = Fing(item, emb). A collusion-tolerant fingerprinting algorithm as
used in [3,17] is applied to embed emb into the original information item,
where

emb = text
∣∣∣∣sig∣∣∣∣Y ∣∣∣∣Cert(Y ||xR)

∣∣∣∣s1
∣∣∣∣s2

∣∣∣∣xR

∣∣∣∣T. (1)

As a consequence, the fingerprinted information item� is obtained as output
and is only seen by B. In the above two-party computation, M allows him
to obtain outputs first and, unless val1 and val2 are both true, B does not
get his output item�.

From the overall point of view, the fingerprinting protocol can be divided into
two steps as following: buyer authentication and secure two-party computation.
The former works as depicted on Figure 2, and the latter works as shown in
Figure 3.

4.3 Identification Procedure

When M detects illegal redistribution of item�, he performs the identification
protocol on the ground of information extracted from item� and the purchase
record. On finding an illegal copy redistributed, M extracts emb. The extracted
information contains the values specified by Eq. (1) and is combined with the
purchase record [T, Cert(T )] by M in order to provide a redistribution proof.

Protocol [identification] – FIdenMR.

1. The signature sig on text is verified using the pseudonym public-key Y .
2. The value xR links the certificates T and Y . In addition, the value xR cannot

be altered since it is part of the certificates.
3. The value xR proves that the owner of the pseudonym public-key Y is

the same as the owner of T . This is because, according to the registra-
tion protocol, R only reveals xR to B after B has provided such that T =
ê(s1s2P, xRP ). Therefore, provided that the B-DH problem is hard, B cannot
produce a correct value T without knowing xR in polynomial time.
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B’s input Secure two-party computation M ’s input

xR, sig, s1, s2,

Cert(Y ||xR)

T, Y, text, item

val1 = Verify1(text, sig, Y ) val1
• Verify(sig, text, Y )

val2 = Verify2(Y, Cert(Y ||xR), s1, s2, xR, T ) val2
• Verify Cert(Y ||xR)

• Check T = ê(s1s2P, xRP )

item� = Fing(item, emb)item�

• emb = text
∣
∣
∣
∣sig

∣
∣
∣
∣Y

∣
∣
∣
∣Cert(Y ||xR)

∣
∣
∣
∣s1

∣
∣
∣
∣s2

∣
∣
∣
∣xR

∣
∣
∣
∣T

�
�

�

�

�

Fig. 3. Secure two-party computation of fingerprinting protocol FFingMB

4. In consequence, in order to identify an illegally redistributing buyer, M
attempts to raise the public keys of buyers to xR such that ê(Y, P ) =
yB · ê(P, P )xR . Now the dishonest buyer has been identified. Note that xR

cannot be forged by M to unjustly accuse a buyer because T and Y are
publicly certified.

5 Analysis of Security

We analyze in this section the security of the construction proposed in Section 4.

Theorem 1. Under the B-DHIA, the protocol PB-DH
fing is a secure AAF protocol.

Proof.
The first condition of Definition 6 follows immediately from the description

of PB-DH
fing . The theorem now follows from the following two lemmas.

Lemma 1. Under the B-DHIA, let the (FKGR, FRegRB) be a sub-protocol of
PB-DH

fing . Let ∆ be a breaker against the AAF security of PB-DH
fing within a time

bound t and with at least success probability ε. Then there exists an adversary
A that (τ, ε)-breaks the B-DH problem whose running time τ=O(ton · ε−1 + toff),
and success probability

SuccB-DH
IG (A) ≥ 1

16 · ε ,

where denote by ton its on-line running time and by toff its off-line running
time.

Proof(sketch).
R only sees X, Y , and zero-knowledge proofs. It is clear that the zero-knowl-

edge proofs leak no information on B. If we don’t consider the zero-knowledge
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proofs, R requires knowledge of xB to find the value Y ′ such that Y ′ + TR =
yB . With considering the zero-knowledge proofs, then the breaker ∆ without
knowing xB can compute X, Y such that X = s1s2P , Y = xBP + TR. Hence,
the breaker can solve the B-DH problem, which contracts the B-DHIA. That is,
the breaker ∆ is reduced to the adversary A. The detail of proof refers to [12].�

The registration protocol (FKGR, FRegRB) provides buyer authentication
without compromising the private key xB of B. This means that the protocol
PB-DH

fing meets the second condition of Definition 6.

Lemma 2. Assume that a secure two-party computation on the B-DH problem
is feasible. Under the B-DHIA, let the (FAuthMB , FFingMB) be a sub-protocol
of PB-DH

fing . Let ∆ be a breaker against the AAF security of PB-DH
fing within a time

bound t and with at least success probability ε. Then there exists an adversary
A that (τ, ε)-breaks the B-DH problem whose running time τ=O(ton · ε−1 + toff),
and success probability

SuccB-DH
IG (A) ≥ 1

τ · ε ,

where denote by ton its on-line running time and by toff its off-line running
time.

Proof(sketch).
In the fingerprinting protocol, M knows Y , [T, Cert(T )], and outputs of a secure
two-party computation that are val1 and val2. However, if the secure two-party
computation is infeasible, the only way for M to know xR is to solve the B-DH
problem such that T = ê(X, xRP ) = ê(P, P )s1s2xR using Cert(T ). If it is possible
to solve in polynomial-time bound, then the attacker A violates the B-DHIA.
Therefore, the breaker ∆ is reduced to the adversary A. The detail of proof refers
to [12]. �

An honest buyer who follows the fingerprinting protocol (FAuthMB ,
FFingMB) will not be identified if the secure two-party computation on the B-
DH problem is feasible. This means that the protocol PB-DH

fing meets the third
condition of Definition 6.

In the sequel, we have the breaker ∆ against the AAF security with respect
to the adversary A with running time τ and at least success probability ε such
that running time is bounded t, and the success probability

SuccAAF
P (∆) <

1
16 · ε +

1
τ · ε .

This completes the proof of the theorem. �

6 Comparison

The proposal gains an advantage over previous schemes with respect to the key
size because the proposal works on an elliptic curve. Therefore, our construc-
tion increases efficiency and, at the same time, decreases computation quantity.
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Table 1. Computation Complexity

Protocol Scheme [10] Scheme [8] Our scheme
6E 7E 1S + 1P

Registration 1M 2M 1A
5E 4E 2P

Fingerprinting 1M 2M 0
3E + N/2 (3 + 1)E 1S + 2P

Identification 2M 3M 0

Table 2. Communication Complexity

Protocol Scheme [10] Scheme [8] Our scheme
Registration 4R 2R 3R
Fingerprinting 6R 6R 6R
Identification N

2 R N
2 R N

2 R

Table 1 and 2 show the comparison. We denote by E the cost of modular expo-
nentiation, by M the cost of modular multiplication, by S the cost of the point
multiplication on an elliptic curve, by P the cost the pairing on an elliptic curve,
by A the cost of point addition on an elliptic curve, by R the number of rounds
in given protocol, and by N the number of public key in directory.

7 Concluding Remarks

We proposed a practical protocol suitable for anonymous fingerprinting which is
computationally much simpler than previous protocols.

As future works, firstly we have to replace the zero-knowledge proof by a more
efficient protocol in the registration protocol. Secondly, we should realize the
secure two-party computation on the B-DH problem used in the fingerprinting
protocol.

References

1. D. Boneh and M. Franklin, “ID-based encryption from the Weil-pairing”, Advances
in Cryptology – Crypto ’2001, LNCS 2139, Springer-Verlag, pp. 213–229, 2001.

2. G. R. Blakley, C. Meadows, and G. B. Purdy, “Fingerprinting long forgiving mes-
sages”, Advances in Cryptology – Crypto 1985, LNCS 218, Springer-Verlag, pp.
180–189, 1986.

3. D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data”, Advances
in Cryptology – Crypto 1995, LNCS 963, Springer-Verlag, pp. 452–465, 1995.

4. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil-pairing”,
Advances in Cryptology – Asiacrypt ’2001, LNCS 2248, Springer-Verlag, pp. 514–
532, 2001.

5. J. Camenisch, “Efficient anonymous fingerprinting with group signatures”, Ad-
vances in Cryptology – Asiacrypt 2000, LNCS 1976, Springer-Verlag, pp. 415–428,
2000.



108 Myungsun Kim, Jongseong Kim, and Kwangjo Kim

6. J. Cha and J. Cheon, “An identity-based signature from gap Diffie-Hellman
groups”, Available from http://eprint.iacr.org, 2002.

7. D. Chaum, I. Damg̊ard, and J. van de Graaf, “Multiparty computations ensuring
privacy of each party’s input and correctness of the result”, Advances in Cryptology
– Crypto 1987, LNCS 293, Springer-Verlag, pp. 87–119. 1988.

8. C. Chung, S. Choi, Y. Choi, and D. Won, “Efficient anonymous fingerprinting of
electronic information with improved automatic identification of redistributors”,
ICISC 2000, LNCS 2015, Springer-Verlag, pp. 221-234, 2001.

9. J. Domingo-Ferrer, “Anonymous fingerprinting based on committed oblvious trans-
fer”, PKC 1999, LNCS 1560, Springer-Verlag, pp. 43–52, 1999.

10. J. Domingo-Ferrer, “Anonymous fingerprinting of electronic information with au-
tomatic identification redistributors”, IEE Electronics Letters, Vol. 43, No. 13,
1998.

11. J. Domingo-Ferrer and H. Herrera-Joancomart́i, “Efficient smart-card based anony-
mous fingerprinting”, Smart Card Research and Advanced Application – CARDIS
1998, 1998.

12. M.S. Kim and K.J. Kim, “A new identification scheme base on the bilinear Diffie-
Hellman problem”, ACISP 2002, LNCS 2384, Springer-Verlag, pp. 362–378, 2002.

13. M. Kuribayashi and H. Tanaka, “A new anonymous fingerprinting scheme with
high enciphering rate”, Indocrypt 2001, LNCS 2247, Springer-Verlag, pp. 30–39,
2001.

14. B. Pfitzmann and M. Schunter, “Asymmetric fingerprinting”, Advances in Cryp-
tology – Eurocrypt 1996, LNCS 1070, Springer-Verlag, pp. 84–95, 1996.

15. B. Pfitzmann and M. Waidner, “Anonymous fingerprinting”, Advances in Cryptol-
ogy – Eurocrypt 1997, LNCS 1233, Springer-Verlag, pp. 88–102, 1997.

16. A.-R. Sadeghi, “How to break a semi-anonymous fingerprinting scheme”, Informa-
tion Hiding, 4th International Workshop 2001, LNCS 2137, Springer-Verlag, pp.
384–394, 2001.

17. W. Trappe, M. Wu, and K.J. R. Liu, “Collusion-resistant fingerprinting for multi-
media”,IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, Vol. 4, pp. 3309–3312, 2002.

18. H. Yoshiura, R. Sasaki, and K. Takaragi, “Secure fingerprinting using public-
key cryptography”, Security Protocols-6th International Workshop, LNCS 1550,
Springer-Verlag, pp. 83–89, 1998.



Reducing the Memory Complexity
of Type-Inference Algorithms

David Naccache1, Alexei Tchoulkine1, Christophe Tymen1, and Elena Trichina2

1 Gemplus Card International
34 rue Guynemer, Issy-les-Moulineaux, F-92447, France

{david.naccache,alexei.tchoulkine,christophe.tymen}@gemplus.com
2 University of Kuopio

Department of Computer Science and Applied Mathematics
Po.B. 1627, FIN-70211, Kuopio, Finland

elena.trichina@cs.uku.fi

Abstract. In the Java Virtual Machine, the byte-code verifier checks
low-level security properties that ensure that the downloaded code can-
not bypass the virtual machine’s security mechanisms. One of the stat-
ically ensured properties is type safety. The type-inference phase is the
overwhelming resource-consuming part of the verification process.
This paper addresses the RAM bottleneck met while verifying mobile
code in memory-constrained environments such as smart-cards. We pro-
pose to modify the algorithm in a way that significantly reduces memory
consumption.

1 Introduction

The Java Card architecture for smart cards allows new applications, called ap-
plets, to be downloaded into smart-cards. While bringing considerable flexibility
and extending the horizons of smart-card usage this post issuance feature raises
major security issues. Upon their loading, malicious applets can try to subvert
the JVM’s security in a variety of ways. For example, they might try to overflow
the stack, hoping to modify memory locations which they are not allowed to
access, cast objects inappropriately to corrupt arbitrary memory areas or even
modify other programs (Trojan horse attacks). While the general security issues
raised by applet download are well known, transferring Java’s safety model into
resource-constrained devices such as smart-cards appears to require the devising
of delicate security-performance trade-offs.

Upon download, an applet’s byte-code is subject to a static analysis called
byte-code verification which purpose is to make sure that the applet’s code is
well-typed. This is necessary to ascertain that the code will not attempt to violate
Java’s security policy by performing ill-typed operations at runtime (e.g. forging
object references from integers or calling directly API private methods). Today’s
de facto verification standard is Sun’s algorithm [6] which has the advantage
of being able to verify any class file resulting from any standard compilation
chain. While the time and space complexities of Sun’s algorithm suit personal
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computers, the memory complexity of this algorithm appears prohibitive for
smart-cards, where RAM is a significant cost-factor.

This limitation gave birth to a number of innovating workarounds [4,5,8]. The
work reported in this paper describes a new memory-optimization technique.

The rest of the paper is organized as follows: the next section recalls Java’s
security model and Sun’s verification algorithm with a specific focus on its data-
flow analysis part. The subsequent sections describe in detail our algorithm which
benchmarks are given in the last section.

2 Java Security

The Java Virtual Machine (JVM) Specification [6] defines the executable file
structure, called the class file format, to which all Java programs are compiled.
In a class file, the executable code of methods (Java methods are the equivalent
of C functions) is found in code-array structures. The executable code and some
method-specific runtime information (namely, the maximal operand stack size
Smax and the number of local variables Lmax claimed by the method) constitute
a code-attribute. We briefly overview the general stages that a Java code goes
through upon download.

To begin with, the classes of a Java program are translated into independent
class files at compile-time. Upon a load request, a class file is transferred over
the network to its recipient where, at link-time, symbolic references are resolved.
Finally, upon method invocation, the relevant method code is interpreted (run)
by the JVM.

2.1 Byte-Code Verification

Byte-code verification [3] is a link-time phase where the method’s run-time be-
havior is proved to be semantically correct. The byte-code is the executable
sequence of bytes of the code-array of a method’s code-attribute.

As this ends normally, the receiver assumes that the analyzed file complies
with the general syntactical description of the class file format.

Then, a second verification step ascertains that the code will only manipulate
values which types are compatible with Java’s safety rules. This is achieved by a
type-based data-flow analysis which abstractly executes the method’s byte-code,
by modeling the effect of the successive byte-codes on the types of the variables
read or written by the code.

The next section explains the semantics of type checking, i.e., the process
of verifying that a given pre-constructed type is correct with respect to a given
class file. We explain why and how such a type can always be constructed and
describe the basic idea behind data-flow analysis.

The Semantics of Type Checking. A natural way to analyze the behavior
of a program is to study its effect on the machine’s memory. At runtime, each
program point can be looked upon as a memory instruction frame describing
the set of all the runtime values possibly taken by the JVM’s stack and local
variables.
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Since run-time information, such as actual input data is unknown before
execution starts, the best an analysis may do is reason about sets of possible
computations. An essential notion used for doing so is the collecting semantics
defined in [2] where, instead of computing on a full semantic domain (values),
one computes on a restricted abstract domain (types).

For reasoning with types, one must precisely classify the information ex-
pressed by types. A natural way to determine how (in)comparable types are is
to rank all types in a lattice L.

The most general type is called top and denoted �. � represents the potential
simultaneous presence of all types, i.e. the absence of (specific) information. By
definition, a special null-pointer type (denoted null) terminates the inheritance
chain of all object descendants. Formally, this defines a pointed complete partial
order (CPO) � on the lattice L .

Stack elements and local variable types are hence tuples of elements of L to
which one can apply point-wise ordering.

L =

�
↙ ↓ ↘

int · · · Object
↙ ↓ ↘

τ1 · · · τk

↙ ↓ ↘ ↙ ↓ ↘
... · · ·

...
... · · ·

...
τ··· τ··· τ··· τ···
↓ ↓ ↓ ↓ ↓ ↓

null null null null null null

Abstract Interpretation. The verification process described in [6] 4.9, is an
(iterative data-flow analysis) algorithm that attempts to builds an abstract de-
scription of the JVM’s memory for each program point. A byte-code is safe if
the construction of such an abstract description succeeds.

Assume, for example, that an iadd is present at some program point. The i
in iadd hints that this instruction operates on integers. iadd’s effect on the JVM
is indeed very simple: the two topmost stack elements are popped, added and
the sum is pushed back into the stack. An abstract interpreter will disregard the
arithmetic meaning of iadd and reason with types: iadd pops two int elements
from the stack and pushes back an int. From an abstract perspective, iadd and
isub have identical effects on the JVM.

As an immediate corollary, a valid stack for executing an iadd must have a
value which can be abstracted as int.int.S, where S may contain any sequence
of types (which are irrelevant for the interpretation of our iadd). After executing
iadd the stack becomes int.S

Denoting by L the JVM’s local variable area (irrelevant to iadd), the total
effect of iadd’s abstract interpretation on the JVM’s memory can be described
by the transition rule ϑ:

iadd : (int.int.S, L) �→ (int.S, L)

The following table defines the transition rules of seven representative JVM
instructions1.
1 Note that the test n ∈ L is equivalent to ascertaining that 0 ≤ n ≤ Lmax.
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Instruction Transition rule ϑ Security test
iconst[n] (S, L) �→(int.S, L) | S |< Smax
iload[n] (S, L) �→(int.S, L) n ∈ L, L[n] == int, | S |< Smax
istore[n] (int.S, L) �→(S, L{n → int}) n ∈ L
aload[n] (S, L) �→(L[n].S, L) n ∈ L, L[n] 	 Object, | S |< Smax
astore[n] (τ.S, L) �→(S, L{n → τ}) n ∈ L, τ 	 Object
dup (τ.S, L) �→(τ.τ.S, L) | S |< Smax
getfield C.f.τ (ref(D).S, L) �→(τ.S, L) D 	 C

For the first instruction of the method, the local variables that represent
parameters are initialized with the types τj indicated by the method’s signature;
the stack is empty (ε) and all other local variables are filled with �s. Hence, the
initial frame is set to:

(ε, (this, τ1, . . . , τn−1,�, . . . ,�))

For other instructions, no information regarding the stack or the local variables
is available.

Verifying a method whose body is a straight-line code (no branches), is easy:
we simply iterate the abstract interpreter’ transition function ϑ over the succes-
sive instructions, taking the stack and register types after any given instruction
as the stack and register types before the next instruction. The types describing
the successive JVM memory-states produced by the successive instructions are
called frames.

Denoting by in(i) the frame before instruction i and by out(i) the frame
after instruction i, we get the following data-flow equation where evaluation
starts from the right:

in(i + 1)← out(i)← ϑi(in(i))

Branches introduce forks and joins into the method’s flowchart. By extension,
if an instruction i has several predecessors with different exit frames, i’s frame
is computed as the least common ancestor2 (LCA) of all the predecessors’ exit
frames:

in(i) = LCA{out(i) | j ∈ Predecessor(i)}.
Finding an assignment of frames to program points which is sufficiently con-

servative for all execution paths requires testing them all; this is what the ver-
ification algorithm does. Whenever some in(i) is adjusted, all frames in(j) that
depend on in(i) have to be adjusted too, causing additional iterations until a
fix-point (i.e., no more adjustments are required) is reached. The final set of
frames is a proof that the verification terminated with success. In other words,
that the byte-code is well-typed. We refer the reader to the verification algo-
rithm described in [6] page 143 (section 4.9.2) which summarizes the verification
process. This algorithm is denoted hereafter Vsun.

2.2 Basic Blocks
As explained above, the data-flow type analysis of a straight-line code consists of
simply applying the transition function to the sequence of instructions i1, i2, ..., it
2 The LCA operation is frequently called unification.
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taking in(ik) ← out(ik−1). This property can be used for optimizing the algo-
rithm.

Following [1,7], we call a basic block (B) a straight-line sequence of instruc-
tions that can be entered only at its beginning and exited only at its end.

In several implementations of Sun’s algorithm, the data-flow equations evolve
at the basic-block-level rather than at the instruction-level. In other words, it
suffices to keep track in permanent memory only the frames in(�) where � is the
first instruction of a B (i.e., a branch target). All other frames within a basic
block can be temporarily recomputed on the fly. By extension, we denote by
in(B) and out(B), the frames before and after the execution of B. The entire
program is denoted by P.

3 A Memory-Constrained Version of Sun’s Algorithm

Denoting by Nblocks the number of Bs in a method, a straightforward implemen-
tation of Sun’s algorithm allocates Nblocks frames, each of size Lmax + Smax.

Lmax and Smax are determined by the compiler and appear in the method’s
header. This results in an O((Lmax + Smax) × Nblocks) memory-complexity. In
practice, the verification of moderately complex methods would frequently re-
quire a few thousands of bytes.

A property of Java code is that a unique stack height is associated to each
program point. This property is actually verified on the fly during type-inference,
although it could be perfectly checked independently of type-inference.

In other words, the computation of stack heights throughout execution does
not require the modeling of the instructions’ effect on types, but only on the
stack-pointer.

Denoting by σi the stack height at the beginning of Bi, one can allocate for
the stack only σi RAM cells in in(Bi), knowing for sure that the verifier will
never attempt to enter Bi with more (or less) than σi stack levels.

However, during Bi’s abstract interpretation, the stack may grow higher than
σi. To cope with this, one working buffer of Smax RAM cells is enough. Hence,
the total amount of RAM required for stack manipulations is:

Smax +
Nblocks∑

i=0

σi

Considering that the stack is normally empty at most jump targets [4], this
trivial optimization turns out to be significant. Taking a ‘moderately complex‘
example from [4] where Smax = 5, Nblocks = 50 and Lmax = 15, we get a 30%
memory saving.

Can this idea be generalized to local variables? In other words, can one exploit
the fact all Bs do not necessarily use all the local variables? In the Toy example
below3 the compiler used three registers, namely, L[1] (parameter n, declared
3 For the sake of simplicity we ignore the this argument.
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as int), L[2] (variable m) and L[3] (variable q). Only B1, uses all three local
variables (L[1], L[2], L[3]). The three other blocks use only one variable each:
B0 and B3 use only r[2] and B2 uses only L[1]. In the example Smax = 2.

As mentioned above, a straightforward implementation of Sun’s algorithm
would allocate for Toy four RAM contexts, each of size Smax + Lmax = 2 + 3,
i.e. altogether 5 × 4 = 20 RAM registers. Should we manage to modify Sun’s
algorithm so that the frame of each B would contain only as many registers as
local variables used in this block and σi stack cells, the total memory usage
would melt down by 60% to 2 + 1 + 3 + 1 + 1 = 8 RAM cells. Moreover, can
we hope to keep in B’s frame only the stack chunk used effectively in B? The
answer is affirmative, as we will see in sections 4 and 5.

Class Toy extends Object {
int toy (int n) {

int m; int q;
m = 0;
while (n>0) {

n = n-1;
q = 1;
m = m + q;

}
return m;
}

}

compile−→

code L[1] L[2] L[3]
B0

√
B0 0 iconst 0
B0 1 istore 2
B0 3 goto 22
B1

√ √ √
B1 6 iload 1
B1 8 iconst 1
B1 9 isub
B1 10 istore 1
B1 12 iconst 1
B1 13 istore 3
B1 15 iload 2
B1 17 iload 3
B1 19 iadd
B1 20 istore 2
B2

√
B2 22 iload 1
B2 24 ifgt 6
B3

√
B3 27 iload 2
B3 29 ireturn

4 Exploring the Stack’s Behavior

As we saw, a unique stack height is associated to each program point; conse-
quently, a particular stack height σi is associated to the entry point of each
Bi. During the interpretation of Bi, elements are pushed and popped, caus-
ing the stack to vary between two Bi-specific bounds si and si. Note that
0 ≤ si ≤ σi ≤ si ≤ Smax = max{si}.

This section presents a simple algorithm for computing {s0, σ0}, {s1, σ1}, . . ..
from B0, B1, . . .

The algorithm uses a table ∆ associating to each instruction a signed integer
indicating the effect of this instruction on the stack’s size:

∆ Instruction ∆ Instruction ∆ Instruction ∆ Instruction
2 iconst[n] 1 sconst[n] 1 bspush 2 bipush
1 aload 1 sload 1 aload[n] 2 iload[n]

-1 aaload 0 iaload -1 astore -2 istore
-1 astrore[n] -2 store[n] -1 pop 1 dup
-1 sadd,smul -2 iadd,imul 0 getfield a 1 getfield i
0 iinc -3 icmp -1 ifne -2 if acmpne
0 goto 0 return 0 athrow 0 arraylength
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The information we are looking for is easily obtained by running Sun’s algo-
rithm with the modeling effect on types turned off, monitoring only the code’s
effect on the stack pointer.

Algorithm PredictStack(P).

– Associate to each Bi a bit changed[i] indicating if this B needs to be re-examined;
initialize all the changed[i]-bits to zero.

– Set σ0 ← 0; changed[0]← 1;
– While ∃ Bi such that changed[i] == 1:
• Set si ← σi; α← σi; changed[i]← 0;
• Let j1, j2, ..., jt be the successive instructions of Bi.
∗ For m← 1 to t

· α← α + ∆(jm)
· If 0 ≤ α ≤ Smax then si ← min(si, α) else report a failure.

∗ If i == Nblocks− 1 and it is possible to ’fall off’ instruction jt then report
a failure.

• For each successor block Bk of Bi :
∗ If Bk is visited for the first time, set σk ← α; changed[k]← 1
∗ If Bk was visited before and σk �=α, then report a failure.

– Return {s0, σ0}, {s1, σ1}, . . .

5 Memory-Constrained Local Variable Verification

Definition. The used-frame associated to Bi is a memory space u in(Bi) repre-
senting the stack chunk [si, . . . , σi] and the local variables actually used (read or
written to) during the execution of Bi.

What would happen if one would run Sun’s algorithm while unifying only
the memory elements present in the used-frame of each Bi?

Unfortunately, safety is not preserved, as is obvious from the following ex-
ample where the type information assigned to r2 by B0 will never reach B3 (r2
is nonetheless essential for the abstract interpretation of B3):

start
↓

B0
uses r1, r2

↙ ↘
B1 B2

uses only r1 uses only r1
↘ ↙

B3
uses r1, r2

↓
exit

In the next section we remedy to this by adapting the algorithm as follows:
upon exiting a current block, we find all the ‘first-hand‘ users for every variable
belonging to the current used-frame, and perform the unification.

By doing so, as a new block is reached (from any of its predecessors), all
variables in its used-frame have been already unified, and we can simply start
running a straight-line abstract interpretation. Let us formalize the solution.
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5.1 v-Successor Blocks

We define a notion of the ‘v-successor blocks‘ of a block Bi and describe an
algorithm for determining the v-successor blocks for a given i and v.

Definition. Let Bi be a basic block that uses variable v. Bj is a v-successor block
of Bi if:

1. Bj uses (reads or writes) variable v.
2. There is a path from Bi to Bj in the method’s control graph such that after

Bi used v and before Bj used v, no other block on this path used v.

In essence, the v-successors of Bi are the first consumers of the value stored
in v by Bi. The v-successors of Bi can be computed by the following algorithm
where 0 ≤ i < Nblocks and v ∈ u in(Bi):

Algorithm vSuccessors(i, v, P).

– Initialize three Nblocks-bit arrays marked, visited and found, to zero.
– marked[i]← 1
– While ∃ k such that marked[k] == 1,
• marked[k]← 0
• For all successors Bj of Bk for which visited[j] == 0
∗ If Bj uses variable v then found[j]← 1 else marked[j]← 1
∗ visited[j]← 1

– Return the bit array found.

found is such that found[j] == 1 iff Bj is a v-successor of Bi.

5.2 Putting the Pieces Together

We now present our new verification algorithm, denoted Vnew. For convenience,
we introduce a universal type, denoted by ⊥, which represents the lowest possible
node in L. We denote by B−1 an empty block which does not contain any instruc-
tions. B−1’s used-frame contains by convention all the local variables and all the
stack elements. B−1’s abstract interpretation is defined by out(−1) ← in(−1).
The successor of B−1 is B0.
Vnew uses two Nblocks + 1-bit arrays changed frame and changed block ,

which indices run from −1 to Nblocks − 1.
The initialization phase of the algorithm consists of the following steps.

1. Initialize the used-frame u in[−1] of B−1 by setting the local variables in u in[−1]
that correspond to the method’s parameters to the types declared by the method’s
signature. Initialize all other local variables in u in[−1] to �. Initialize the stack
elements in u in[−1] to �.

2. Run algorithm PredictStack(P) to compute:

{s0, σ0}, {s1, σ1}, . . . , {sNblocks−1, σNblocks−1}
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3. For i← 0, · · · , Nblocks-1
(a) build u in[i].
(b) initialize all variables in u in[i] to ⊥.

4. Set the arrays changed frame and changed block to zero.
5. Mark block B−1 by setting changed frame[−1] and changed block[−1] to one.

Next we execute the following loop, until array changed block is entirely equal to
zero.

1. Select an index i such that changed block[i] == 1 and set changed block[i]← 0.
2. Model the effect of Bi’s execution on the used-frame u in[i]. Let u out[i] denote

the resulting frame.
3. If the modeling exits without a failure, for every variable v in u out[i] do:

(a) Determine the v-successors of Bi by running algorithm vSuccessors(i, v, P).
(b) For each v-successor Bk of Bi,

i. unify variable v in u in[k] with variable v in u out[i],
ii. if the type of v in u in[k] has changed,

– set changed frame[k]← 1
– for all blocks Bj with j �=i belonging to any path from block Bi to

block Bk, set changed frame[j]← 1.
4. For each successor Bj of Bi, if changed frame[j] == 1, set changed block[j]← 1.

If this is the first time Bj is visited, set changed block[j]← 1.
5. Set changed frame[i]← 0.
6. Go to step 1.

5.3 Equivalence of Vnew and Vsun

In this section, we prove that a program is accepted by Vsun if and only if it is
accepted by Vnew.

We first need to introduce some definitions. We denote by P a program,
involving N basic blocks B0, . . . , BN−1. Let S = (i1, . . . , ik, . . .) be a sequence
of integers. We say that S is an admissible execution for (P,Vsun) (resp. for
(P,Vnew)) if

– there exists an integer n such that for 1 ≤ j ≤ n, all the ij are in {0, . . . , N−
1}.

– the successive verification of the blocks Bi1 , . . . , Bin is a possible order of
execution of Vsun (resp. Vnew) when verifying P.

Let M denote the maximal size of the stack during the execution of P, added
to the number of local variables used by P. Given an admissible execution (ij)j≥1
of (P,Vsun), we define Fi1,...,ik

(Vsun) the M ×N -tuple of types corresponding to
the frames at the beginning of the blocks in Vsun, resulting from the successive
verification of the blocks Bi1 , . . . , Bik

. Similarly, we denote by F i1,...,ik
(Vnew)

(resp. F i1,...,ik
(Vnew)) the M ×N -tuple of types corresponding to the frames at

the beginning of the blocks in Vnew, resulting from the successive verification
of the blocks Bi1 , . . . , Bik

, where the variables missing are arbitrarily set to �
(resp. to ⊥).
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We now define a modification of the algorithm Vsun, which we denote by
V ′

sun. V ′
sun is defined exactly as Vsun in paragraph 4.9.2. of [6], except that step

4 is replaced by the following step 4’:
4’. Unify out(i) with the in(·)-frame of each successor Bj .

– If Bj is visited for the first time,
• record that out(i) calculated in steps 2 and 3 is now the in(·)-frame of

Bj ;
• mark the successor instruction by setting the ‘changed‘ bit.

– If Bj has been visited before,
• Determine the set Vj of all the variables and all the stack elements v

such that there exists a block Bk (possibly Bj itself) using v reachable
from Bj .
• Unify out(i) with the successor instruction’s in(j)-frame and update :

in(j)← LCA(in(j), out(i)).
• If the unification caused modifications in in(j) of at least one variable or

stack element belonging to Vj , mark Bj by setting its ‘changed‘ bit.

Basically, V ′
sun marks as ’changed’ only the successor blocks where the uni-

fication has affected the type of a variable which could be used later on in the
execution flow. If the unification has affected only the type of variables that
cannot be used later, the ’changed’ bit is not set.

Under these notations, we have the following lemma:

Lemma 1. If a program is accepted by V ′
sun, then it is accepted by Vsun.

Proof. Let P be a program accepted by V ′
sun, and consider the the block-frames

in(i) when V ′
sun stops, along with an admissible execution S = (i1, . . . , ik) leading

to this state. As S is an admissible execution for (P,Vsun) one can execute Vsun
starting from this point, setting all the ’changed’ bits initially to one. From the
definition of V ′

sun, it is clear that a ‘changed’ bit is re-set to one during this
execution of Vsun iff a variable v in in(i) has been altered by a unification with
out(j), and v is never used in any block reachable from Bi. Consequently, the
only modifications that occur in the block-frames concern unused variables, and
thus cannot cause any verification failure. Thus, Vsun reaches a fix-point. �

The role played by V ′
sun in the proof stems from the following lemma:

Lemma 2. Let S = (i1, . . . , ik, . . .) be an admissible execution of (P,V ′
sun). Then

1. S is an admissible execution of (P,Vnew).
2. For all k ≥ 1,

F i1,...,ik
(Vnew) 
 Fi1,...,ik

(V ′
sun) .

Proof. The second part of the lemma is a trivial consequence of the first. For
the first statement, we proceed by induction on the number of steps of the
verification.
Initialization. Both for Vnew and V ′

sun, the block to be verified after B0 can be
any successor of B0.
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Propagation. Let us assume that (i1, . . . , in) is an admissible execution for
(P,V ′

sun), and let us consider that we have verified the blocks Bi1 , . . . , Bin fol-
lowing V ′

sun. We denote by j1, . . . , jl the indices of the blocks marked as ’changed’
at that point, just before the execution of step 4 for block Bin . We denote by
k1, . . . km the indices of the blocks that are newly marked as ’changed’ after the
execution of step 4 for the block Bin . As (i1, . . . , in) has length n, it is an admis-
sible execution for (P,Vnew). For the same reason, (i1, . . . , in−1, ja) is an admissi-
ble execution for (P,Vnew), for all 1 ≤ a ≤ l. Consequently, after having verified
Bi1 , . . . , Bin by running Vnew, the bits changed block[j1], . . . , changed block[jl]
are set to one. It remains to show that this is also the case for

changed block[k1], . . . , changed block[km]

We must distinguish two cases: if it is the first time Bk1 has been visited in the
execution of V ′

sun, then it is also the case in Vnew, and thus, changed block[k1]
will be set to one in Vnew. Otherwise, as Bk1 is newly marked as ’changed’ in
V ′

sun, there exists a variable (or a stack element) v such that

u out(in)v � u in(k1)v

in V ′
sun. Let us assume now that all the Bi1 , . . . , Bin do not read nor write v. Then

in(k1)v and out(in)v should be equal, which is impossible. Consequently, there
exists some 1 ≤ b ≤ n such that v is read or written by Bib

. Let us consider the
greatest possible b. According to the definition of V ′

sun, Bk1 necessarily belongs to
a path from Bib

to a v-successors of Bib
. Thus, in Vnew, changed frame[k1] = 1,

which implies that changed block[k1] will be set to one at this point of the
execution of Vnew. �

Let us consider another modification of Vsun, denoted by V ′′
sun, which exe-

cutes like Vsun, except that when choosing a new block to verify, V ′′
sun does not

limits its choice to the blocks marked as changed, but chooses any possible block
(obviously, V ′′

sun does not necessarily terminate).

Lemma 3. Let P be a program accepted by Vsun. For all admissible executions
(i1, . . . , ik, . . .) for (P,Vnew), there exists an admissible execution for (P,V ′′

sun),
(j1, . . . , jl), such that

F i1,...,ik
(Vnew) � Fj1,...,jl

(V ′′
sun) .

Proof. We proceed by induction on k. Let us assume that Vnew has run through
(i1, . . . , ik), and let us consider an admissible execution (j1, . . . , jl) for V ′′

sun as
stated. At that point, Vnew sets to one several new changed frame[ki], and mod-
ifies the corresponding frames u in[ki], i = 1, . . . , m. For each of these ki, let us
denote by pi a path from Bik

to Bki . Then it is clear that for all admissible ik+1,

F i1,...,ik,ik+1
(Vnew) � Fj1,...,jl,ik,p1,...,pm(V ′′

sun) ,

which concludes the proof. �
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Proposition 4. A program P is accepted by Vsun iff it is accepted by Vnew.

Proof. It is clear that the stack verification and the ‘fall off’ test work identically
for Vsun and Vnew. We thus concentrate only on the type inference verification.

Let P be a program rejected by Vsun. Then from Lemma 1, P is rejected by
V ′

sun. Let us denote by (i1, . . . , ik) the admissible execution for (P,V ′
sun) which

has led to the beginning of the verification of the block Bik+1 where the failure
occurred. From Lemma 2, (i1, . . . , ik+1) is an admissible execution of Vnew. Fur-
thermore, (i1, . . . , ik) is also an admissible execution of Vnew, and at this point,
the frame-set in Vnew is higher than the frame-set in V ′

sun. This implies that Vnew
will return a failure after verifying Bik+1 .

Conversely, let P be a program accepted by Vsun. First, it is clear that V ′′
sun

will never return a failure when verifying P: V ′′
sun simply verifies additional blocks

without modifying their frame-set. Let us assume that the verification of P by
Vnew returns a failure, and let us consider the execution path for (P,Vnew),
(i1, . . . , ik), which has led to the beginning of the verification of the block ik+1
where the failure occurred. Let us consider an admissible execution for V ′′

sun,
as in Lemma 3, denoted by (j1, . . . , jl). Now, we arbitrarily force V ′′

sun to start
verifying the block ik+1. At this point, the frame-set in V ′′

sun is higher than the
frame-set in Vnew, which implies that V ′′

sun should return a failure after having
verified block Bik+1 , which contradicts our assumption. �

6 Practical Benchmarks

Although we did not implement a complete memory-constrained verifier, we
wrote a simple software that builds the used-frames for a given *.jca file and
counts the number of RAM cells necessary to verify its most greedy method.

We added two further optimizations to our software:

– In many cases the types used and produced by a byte-code are unique and
fully determined by the byte-code itself. Typically, an iload requires the n-th
local variable to be int and int only. Local variable n can hence be omitted
from the frame whenever it is being read by an iload before being used by
any other byte-code. Indeed, unification of this variable (within this block)
is useless, given that its type can be nothing but int. A similar optimization
applies to stack elements.

– A second optimization consists in identifying in each frame the variables and
stack elements which are overwritten before even being read. This means that
the old values (and types) of these variables are discarded. Hence, there is
no need to keep track of such variables in the corresponding block-frames.

We used for our benchmarks the representative Java card applets from [10].
Results are rather encouraging, the new verification strategy seems to save on
the average 80% of the memory claimed by [6]. Increase in workload (i.e., a
number of extra unifications) has not been explored as yet.
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Applet Sun’s Verifier [6] Memory-Constrained Verification gain

NullApp.jca 6 words 3 words 50%
HelloWorld.jca 40 words 6 words 85%
JavaLoyalty.jca 48 words 13 words 73%
Wallet.jca 99 words 16 words 84%
JavaPurse.jca 480 words 41 words 91%
Purse.jca 550 words 39 words 93%
CryptoApplet.jca 4237 words 281 words 93%
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Abstract. This paper presents a taxonomy of known-key attacks on
athenticated key agreement protocols, which is based on the adversaries’
roles and objectives. The taxonomy is illustrated using new attacks on
the Just-Vaudenay and Yacobi protocol. The taxonomy is used to dis-
cuss countermeasures and protocol analysis methods against known-key
attacks.

Keywords: Authenticated key agreement protocol, insider, known-key
attack, key-compromise impersonation attack.

1 Introduction

Key establishment is the process by which two or more entities establish a shared
secret key. The key is subsequently used to achieve some cryptographic goals such
as confidentiality or data integrity. Broadly speaking, there are two kinds of key
establishment protocols : i) key transport protocols in which a key is created by
one entity and securely transmitted to the second entity, and ii) key agreement
protocols in which both parties contribute information which jointly establish
the shared secret key. In this paper, we shall focus on key agreement protocols
for the asymmetric two-entity setting.

Let A and B be two honest entities, i.e., legitimate entities who execute the
steps of a protocol correctly. A key agreement protocol is said to provide implicit
key authentication of B to A if entity A is assured that no other entity aside
from a specifically identified second entity B can possibly learn the value of
a particular secret key. Note that the property of implicit key authentication
does not necessarily mean that A is assured of B actually possessing the key.
A key agreement protocol which provides implicit key authentication to both
participating entities is called an authenticated key agreement (AK) protocol.

A key agreement protocol is said to provide key confirmation if entity A
assured that the second entity B actually has possession of a particular secret
key. If both implicit key authentication and key confirmation of B to A are
provided, then the key establishment protocol is said to provide explicit key
authentication of B to A. A key agreement protocol which provides explicit
key authentication to both participating entities is called an authenticated key
agreement with key confirmation (AKC) protocol.

Since the basic Diffie-Hellman key agreement scheme which provides the first
practical solution to the key distribution problem, allowing two parties, never

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 122–133, 2002.
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having met in advance or shared keying material to establish a shared secret by
exchanging messages over an open channel was proposed, numerous protocols
have been proposed to meet a variety of desirable security and performance re-
quirements. In fact, the protocol design is error-prone. Many of these protocols
were subsequently found to be flawed, and then either were modified to resist new
attacks. In fact, it is known that Unified Model, KEA, MTI/C0 and MQV pro-
tocol are vulnerable to a key-compromise impersonation attack, a key recovery
attack, a small subgroup attack, and an unknown key-share attack, respectively
[3,11,10,8,12]. The robustness of a protocol against the compromise of secret
information (past session keys or long-term private keys) has been the subject
of many investigations [4,6,5,13,16]. The assumption with disclosure of some se-
cret information may be theoretical, but, a good protocol minimizes the damage
caused by secret information exposures. In this paper, we present a taxonomy of
known-key attacks on the AK protocols, which is based on the adversaries’ roles
and objectives. The taxonomy is complete in the sense that all known attacks
can be classified as falling into one of the categories. Also, the attacks caused by
compromising of secret information is illustrated using new attacks on the AK
protocols.

The remainder of the paper is organized as follows. In section 2, we briefly
explain adversaries, adversaries’ goals and the desirable security attributes of
AK protocols to present a taxonomy of known-key attacks. In section 3, we
present a taxonomy of known-key attacks. In section 4, we show how they can
be applied to the Just-Vaudenay and Yacobi protocol. Also, we show that the
Just-Vaudenay protocol (and the Song-Kim protocol) is vulnerable to a key-
compromise impersonation attack and make suggestions for improvement. The
concluding remark will be followed in section 5.

2 Adversaries and Desirable Security Attributes
of AK Protocols

Before presenting a taxonomy of known-key attacks, we first describe the types
of adversaries which is based on the adversaries’ roles ;

• a passive adversary : an adversary who is capable only of recording (eaves-
dropping) the protocol runs,

• an active adversary : an adversary who may also transmit, alter, delete,
inject data and interleave multiple instantiations of the same protocol.

A secure protocol should be able to withstand both passive and active adversary.
The following kinds of adversaries is based on the type of information available
to them [14] ;

• an outsider : an adversary with no special knowledge beyond that generally
available, e.g., by eavesdropping on protocol messages over open channels,

• an insider : an adversary with access to additional information (e.g., past ses-
sion keys, long-term private keys or secret partial information) obtained by
some privileged means (e.g., physical access to private computer, conspiracy,
etc.).
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A good protocol should prevent an insider as well as an outsider. Next, we
describes the adversaries’ goals. An adversary in the AK protocols may pursue
many strategies, including attempting to ;

• deduce session keys
– using information gained by eavesdropping.
– participate covertly in a protocol initiated by one entity with another,

and influence it, by altering messages.

• impersonation : without being able to deduce the session key, deceive a
legitimate entity regarding the identity of the entity with which is shares a
key.

• deduce session key and impersonation : initiate one or more protocol runs
(possibly simultaneously), and combine (interleave) messages from one with
another, so as to masquerade as some party or carry out one of the above
attacks and to deduce session key.

• deduce secret partial information of a legitimate entity : deduce a long-term
private key of a legitimate entity without impersonation. (e.g., long-term
private key of a legitimate entity).

• to exhaust the responder’s resources and to disturb executions of it between
honest initiator and the responder (denial-of-service attacks on the AK pro-
tocols).

In fact, understanding an adversary’s possible attack objectives and roles, to-
gether with the techniques an adversary can use to launch attacks, can help
sufficiently identifying the weakness of a given protocol as well as possible at-
tacks.

In addition to implicit key authentication and key confirmation, a number
of desirable security attributes of AK and AKC protocols have been identified.
Typically the importance of supplying these attributes will depend on the ap-
plication.

1. Known-key security. Each run of a key agreement between A and B should
produce a unique secret key : such keys are called session keys. A protocol
should still achieve its goal in the face of an adversary who has learned some
other session keys.

2. Forward secrecy. If long-term private keys of one or more entities are com-
promised, the secrecy of previous session keys established by honest entities
is not affected.

3. Key-compromise impersonation attribute. Suppose A’s long-term private key
is disclosed. Clearly an adversary that knows this value can now imperson-
ate A, since it is precisely this value that identifies A. However, it may be
desirable in some circumstances that this loss does not enable the adversary
to impersonate other entities to A.

4. Unknown key-share attribute. Entity B cannot be coerced into sharing a key
with entity A without B’s knowledge, i.e., when B believes the key is shared
with some entity C �= A, and A (correctly) believes the key is shared with B.
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These are typically properties possessed by face-to-face key establishment pro-
tocol is used to provide security in real-life applications. We are interested in the
known-key security and the key-compromise impersonation attribute which are
related to compromise of secret information.

3 A Taxonomy of Known-Key Attacks

In this section, we present a taxonomy of known-key attacks which is based on
the adversaries’ roles, objectives and the types of compromising session keys.
The following types of secret information is available by an insider ;

• one or more past session keys,
– session keys of the session established between two legitimate entities A

and B.
– session keys of the session established between an interleaved adversary

and a legitimate entity A or B.

• long-term private keys of one or more entities,
• past session keys and a long-term private key.

Earlier attacks on key distribution protocols such as man-in-the-middle at-
tacks [7] and interleaving attacks [2], fail to take advantage of known-key attacks.
Typically, they leads to disclosure of secret information which subsequently can
be used to obtain session keys or to impersonate. Burmester [4] presented a
different attack on the Yacobi protocol. The adversary in his attack is an in-
sider who succeeds in computing the session key of earlier communication from
subsequent sessions with the entities involved in the communication. We will cat-
egorize known-key attacks so that these all known-key attacks can be classified
as falling into one of the categories.

The taxonomy splits attacks into Known-key passive attacks and Known-
key active attacks, which is based on adversaries’ roles. The Known-key active
attacks category is further divided into two subcategories : Known-key active
attacks without impersonation (an intruder’s goal is only session key retrieval)
and Known-key impersonation attacks (an adversary’s goal is retrieval of the
session key established with a legitimate entity as well as impersonation), which
is based on the adversaries’ goals. Known-key impersonation attacks subcate-
gory consists of two classes : KKI 1 and KKI 2 which is based on the types of
compromising session keys. The full taxonomy of known-key attacks is as follows.

A Taxonomy of Known-Key Attacks

1. Known-key passive (KKP) attacks : an adversary obtains some session
keys used previously and then uses this information to determine new session
keys.

2. Known-key active (KKA) attacks : an adversary obtains some keys of
the session established between interleaved adversary and a legitimate entity
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A or B and then uses this information to determine new session keys or past
session key between A and B, and to masquerade as some party, i.e., the
adversary’s goals are impersonation or session key retrieval.

(a) Known-key active attacks without impersonation : an adversary
obtains some keys of the session established between interleaved adver-
sary and a legitimate entity A or B and then uses this information to
determine new session keys or past session key between A and B, i.e.,
the adversary’s goal is only session key retrieval.

(b) Known-key impersonation (KKI) attacks : an adversary enters
the session and impersonate himself/herself as a valid entity B with the
previous session key and present key token, then finally compute the
session key between A and B, i.e., the adversary’s goal is impersonation
as well as session key retrieval.
i. KKI 1 attacks : session keys revealed to the adversary are the

key of the session established between interleaved adversary and a
legitimate entity A or B.

ii. KKI 2 attacks : session keys revealed to the adversary are the key
of the session established between two legitimate entities A and B
as well as that of the adversary’s interleaved sessions.

4 Examples of Attacks Caused by Compromising
of Secret Information

In this section, we show that the Just-Vaudenay protocol is vulnerable to two
active attacks caused by compromising of secret information. Before describing
the attacks on the protocol, we first introduce terminology used through this
paper. This paper deals with the case where G is a prime order subgroup of Z

∗
p,

the multiplicative group of the integers modulo a prime p. The operation mod p
will henceforth be omitted. However, the discussion applies equally well to any
group of prime order in which the discrete logarithm problem is computationally
intractable, for example, prime order subgroups of the group of points on an
elliptic curve over a finite field.

• A, B Honest entities.
• p 1024 bits primes.
• q 160 bits prime divisor of p − 1.
• g An element of order q in Z

∗
p.

• a, b Static private keys of A and B : a, b ∈R Z
∗
q .

• YA, YB Static public keys of A and B : YA = ga, YB = gb.
• x, y Ephemeral private keys of A and B : x, y ∈R Z

∗
q .

• RA, RB Ephemeral public keys of A and B : RA = gx, RB = gy.

The domain parameters (p, q, g) are common to all entities. For the remainder
of this paper, we will assume that static public keys are exchanged via certifi-
cates. The certificate is given by
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CertA =< IDA, p, q, g, YA = ga, SigCA(IDA, p, q, g, YA) > .

CertA denotes A’s public-key certificate, containing a string of information that
uniquely identifies A (such as A’s name and address), her static public key YA,
and a certifying authority CA’s signature over this information. Other informa-
tion may be included in the data portion of the certificate, including the domain
parameters if these are not known from context. Any other entity B can use his
authentic copy of the CA’s public key to verify A’s certificate, thereby obtaining
an authentic copy of A’s static public key.

4.1 KKI 1 Attack on the Just-Vaudenay Protocol IIA

At Asiacrypt’96, Just and Vaudenay [9] proposed a two-party authenticated key
agreement protocol. And they showed that impersonating either A or B in the
protocol was equivalent to solving an instance of the Diffie-Hellman problem.
However, their proof does not imply that the protocol is secure against active
attacks. The protocol is shown in Fig. 1 (with the session key K = gay+xy+bx).

A B
CertA, RA = gx

−−−−−−−−−−−−−−−−→
CertB , RB = gy

←−−−−−−−−−−−−−−−−
KAB = (RB)(a+x)(YB)x KAB = (RA)(b+y)(YA)y

Fig. 1. The Just-Vaudenay protocol IIA

In the KKI 1 attack on the protocol, an adversary succeeds in computing
the new session keys from compromising key of an earlier session with the entity
being deceived as well as impersonation. The KKI 1 attack is executed as follows.
When the entity A sends RA = gx to B, an adversary E intercepts it. E computes
RB = gy as follows.

1. E chooses a random value t ∈ Z
∗
q . And let t be b + y.

2. E computes gt.
3. E obtains gy by computing (gt)(gb)−1 using B’s public key YB = gb.

Note that neither b nor y is known to E. Next, E (pretending to be B) sends
RB = gy to A. Then A computes the session key KAB = (RB)(a+x)(YB)x =
gxy+ay+bx, but E cannot compute it. Suppose that the session key KAB is later
revealed to E. Then E can obtain gay by computing

KAB/(RA)t = gxy+bx+ay/(gx)(b+y) = gay.

Then E can impersonate B to A and computes all the session keys for next
sessions. Indeed, E (pretending to be B) starts the protocol with A and replays
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the message RB = gy. Then A sends RA = gx′
. Then E can compute the session

key K from the values t and gay as follows :

K = (RA)tgay = gx′y+x′b+ay.

A also computes the same session key K = (RB)(a+x′)(YB)x′
= gay+x′y+bx′

.
Thus, E succeeds to impersonate B to A and obtains the session key K.

A E(B), E(B) A

CertA, RA = gx

−−−−−−−−−−−−−−−−→ CertB , RB = gy

−−−−−−−−−−−−−−−−→
CertB , RB = gy

←−−−−−−−−−−−−−−−− CertA, RA = gx′

←−−−−−−−−−−−−−−−−

Fig. 2. KKI 1 attack on the Just-Vaudenay protocol

Remark. 1. In fact, E can induce A to reveal the key, KAB established in the
sessions between A and B. This may be reasonable assumption since A believes
that the session key should be known to B. The attack scenario is described in
[4].
2. By definitions, AK protocols satisfies the implicit key authentication (IKA)
but the property of IKA does not necessarily mean that A is assured of B
actually possessing the key. In fact, keys established using AK protocols should
be confirmed prior to cryptographic use. Indeed, some standards such as ANSI
X9.42 take the conservative approach of maintaining key confirmation of keys
agreed in an AK protocol. Thus, after finishing the session established between
A and E (pretending to be B), if appropriate key confirmation is subsequently
provided, then A comes to know the intrusion of the adversary in that session.
Thus the session key KAB of A may be handled with careless and then be
revealed. For, A thinks that it is useless and meaningless.

Another risk. The adversary E can obtain the value gab in the above attack.
When the session key KAB is revealed to E, E can obtain the value gab as
follows;

1. First, E computes K ′ = (RA · YA)t = g(x+a)(y+b) = gxy+ay+bx+ab.
2. Then, E can obtain the value gab by computing K ′/KAB .

In fact, the value gab is the resulting shared secret of the static Diffie-Hellman
scheme. In Fig. 3, if A (resp., B) a priori has an authentic copy of B’s (resp.,
A’s) static public key, this scheme can be executed without interaction. Given
that no parties are on-line, the static Diffie-Hellman scheme is the only choice.
The scheme provides only mutual implicit key authentication, no other security
attributes are provided. As the resulting shared secret value will always consist of
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the same value : it is strongly suggested that additional public information always
be used with varying values in the key derivation function. Thus, the disclosure
of the value gab brings out the serious consequence in these environment.

A B
CertA−−−−−−−−−−−−−−−−→
CertB←−−−−−−−−−−−−−−−−

K = (YB)a = gba K = (YA)b = gab

Fig. 3. The static Diffie-Hellman protocol

Remark. This KKI 1 attack cannot be applied to the Yacobi protocol and Goss
protocol. In the Yacobi protocol, when A sends RA = gx to B, the adversary E
intercepts it. E chooses a random number y and sends RB = gy to A pretending
to be B. Then A computes the session key KAB = gay+bx. But, E cannot
compute the session key since she does not know the long-term private key of
B. Even though it is revealed to E, E can recover only gbx. However, this value
depends on the value RA which is changed in each session. Thus, this value
cannot help the adversary to obtain the new session keys.

4.2 KKA Attack without Impersonation on the Yacobi Protocol

We describe a KKA attack on the Yacobi protocol which is a variant of
Burmester’s triangle attack on the same protocol. In the Burmester’s attack,
the adversary is an insider who knows a long-term private key of A. However, in
our attack, we replace the insider with a dishonest entity. Suppose that C is a
dishonest entity (C need not to know the long-term private key of A) and C has
her certificate CertC with a public/private key pair (YC = gc, c). The Yacobi
protocol is shown in Fig. 4. Then the KKA attack without impersonation on the
Yacobi protocol is launched as follows.

A B
CertA, RA = gx

−−−−−−−−−−−−−−−−→
CertB , RB = gy

←−−−−−−−−−−−−−−−−
KAB = (YB)x(RB)a KAB = (YA)y(RA)b

Fig. 4. The Yacobi protocol
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1. First, the adversary E eavesdrops on a communication of A and B.
2. Subsequently, C communicates with A and B separately. When A sends gx′

to C, C replays gx as the second message to A. Also, C starts a commu-
nication with B replaying gx, and B sends gy′

to C. Then A can compute
the session key KAC = (gy)a · (gc)x′

and B can compute the session key
KBC = (gx)b · (gc)y′

. However, C can obtain neither KAC nor KBC .
3. Suppose that the session keys KAC and KBC are later revealed to C. With

these information and her own long-term private key c, C can recover the
session key established in step 1 by computing

KAB = KAC · KBC · ((gx′
)c)−1 · ((gy′

)c)−1 = gay+bx.

A C, C B

CertA, RA = gx′

−−−−−−−−−−−−−−−−→ CertC , RC = gx

−−−−−−−−−−−−−−−−→
CertC , RC = gy

←−−−−−−−−−−−−−−−− CertB , RB = gy′

←−−−−−−−−−−−−−−−−

Fig. 5. KKA attack on the Yacobi protocol

Note that both this attack and the Burmester’s triangle attack on the Yacobi
protocol are falling into the KKA attacks without impersonation category in the
taxonomy.

4.3 Key-Compromise Impersonation Attack
on the Just-Vaudenay Protocol

Key-compromise impersonation resiliance is a security attribute that provides
assurance to an entity A that, even if an adversary somehow obtain A’s long-
term private key, the adversary cannot successfully impersonate another entity
to A. In fact, long-term secrets are in practice the most vulnerable secrets in
the system : in a typical setting, they are stored on a disk, perhaps protected
by a password. Ephemeral data is much more difficult for an attacker to obtain.
Indeed, we note the compromise of long-term private keys does not necessarily
mean that they are obtained via an inversion of the static public key. Since
users must store their private keys for use in key computation, the private keys
may also be obtained through lack of suitable physical measures. Not only this
compromises the security and validity of any transmitted message issued after
the break but it also compromises all past session keys. This property may be
attractive for the robustness of the security in most commercial applications
where customers does not always protect their key sufficiently.

The Just-Vaudenay protocol is also vulnerable to a key-compromise imper-
sonation attack. Suppose that A’s long-term private key a is compromised. And
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suppose that an adversary E who knows the value wants to impersonate B to
A. First, E chooses a random value t ∈ Z

∗
q . Let t be equal to b + y. Note that

neither b nor y is known to E. However, E can obtain gy by computing gt(gb)−1.

1. A selects x ∈R Z
∗
q and sends RA = gx and CertA to B.

2. E(B) (pretending to be B) sends RB = gy and CertB to A.
3. A computes a shared secret K = (RB)(a+x)(YB)x = gxy+ay+bx.
4. E(B) computes the shared secret as follows

K = (RA)t(RB)a = gxy+xb+ay.

The adversary would be able to generate a random value t, and removing the
public key of corresponding private key, she can produce new transmission public
key RB . Finally, she succeeds to impersonate B to A and retrieves the shared
secret K.

Remark. 1. At Indocrypt’00, Song and Kim [15] proposed an authenticated
key agreement protocol which is an elliptic curve version of the Just-Vaudenay
protocol. It is still vulnerable to the same key-compromise impersonation attack.
However, their scheme is secure against the KKA attack described in the section
4.1. Because they use a key derivation function to calculate a session key from
a shared secret.
2. By definitions, this attack is not included in the category of known-key attacks.

4.4 A Modified Version of the Just-Vaudenay Protocol

We propose a modified version of the Just-Vaudenay protocol to resist the attacks
described in previous sections. We will use the idea used in the MQV protocol
[11]. The following notation is used. If X ∈ [1, p−1] then X = (X mod 280)+280.
Note that (X mod q) �= 0.

Modification

1. A compute a shared secret KAB = (RB)(a+xRA·RB)·(YB)x = gay+bx+xyRA·RB .
2. B compute a shared secret KAB = (RA)(b+yRA·RB) ·(YA)y = gay+bx+xyRA·RB .

In the modified version, we cannot determine t and the ephemeral public key
RB = gy such that t = b+yRA ·RB . Indeed, an adversary chooses a random value
t and let be t = b+yRA ·RB . Next, she computes gyRB = (gt(gb)−1)RA

−1 (mod q).
But, she does not obtain gy since she cannot determine the value RB in advance.
Thus, adding RA·RB in the exponent of resulting shared key can prevent the KKI
1 attack and the key-compromise impersonation attack described in previous
sections.

Remark. In fact, the use of key derivation function to derive a session key from
the shared secret can help prevent against some kinds of known key attacks
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destroying the algebraic relationships between the shared secret K and the static
and ephemeral public keys. But, without using of such an additional function,
the protocol should be designed so that all the session keys of the same protocol
should be independent.

5 Conclusion

We have described a taxonomy of known-key attacks on the authenticated key
agreement protocols. The taxonomy based on adversaries’ roles and objectives
is helpful for cryptographic protocol analysis including formal methods. Also,
we have shown how the attacks can be applied to the Just-Vaudenay protocol
and Yacobi protocol. Moreover, we shown that the Just-Vaudenay protocol is
vulnerable to a key-compromise impersonation attack and make suggestions for
improvement.

Anderson and Needham [1] presented “Assume nothing : Do not assume the
secrecy of anybody else’s secrets” principle for designing cryptographic protocols.
In fact, the adversary who break cryptographic protocols don’t follow rules : they
cheat. They can attack a cryptographic protocol using techniques the designers
never thought of. They steal technical data, bribe the entities, and collude. De-
fenders have to protect against every possible vulnerabilities, but an adversary
only has to find one security flaw to compromise the protocol. Actually, the
long-term secret of each entity may be compromised. Although precautions may
be taken to avoid compromising of session keys, an adversary might obtain one
of those keys. Also, keying material cannot be trusted to provide the required
security : confidentiality, integrity, association with the owner or other entity and
association with other information. In particular, certificates for keys should ex-
pire : and when one key is expiring, it should not be used for encrypting the new
key that will replace it. It is vital that private keys are not leaked to attackers,
and there may need to be protection against insiders as well as outsiders.

In fact, the attacks described in this paper may be theoretical. Also, well-
designed implementations of key distribute systems will prevent session keys
being disclosed or lost. In real systems, the users do not know their encrytion
keys, and only interact through well defined interfaces. However, one should be
worry, particularly with poor implementations, or with applications in which
the session keys are eventually disclosed. A good protocol design will minimize
the effects of such events. Therefore, one should design these protocols with the
assumption on malicious adversaries intent on defeating the protocol is living
inside the system and so they use secret information at will.
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Abstract. Most password-authenticated key exchange schemes in the
literature provide an authenticated key exchange between a client and
a server based on a pre-shared password. With a rapid change in mod-
ern communication environments, it is necessary to construct a secure
end-to-end channel between clients, which is a quite different paradigm
from the existing ones. In this paper we propose a new framework which
provides a password-authenticated key exchange between clients based
only on their two different passwords without any pre-shared secret,
so called Client-to-Client Password-Authenticated Key Exchange (C2C-
PAKE). Security notions and types of possible attacks are newly defined
according to the new framework. We prove our scheme is secure against
all types of attacks considered in the paper. Two secure C2C-PAKE
schemes are suggested, one in a cross-realm setting and the other in a
single-server setting.

Keywords: Password authentication, key exchange, cross-realm, Ker-
beros, dictionary attack.

1 Introduction

Authentication relying on passwords is a popular method for user authentica-
tion in the client-server model because of its easy-to-memorize property. There
is, however, several security concerns such that a password selected from a small
space allows an adversary to mount, off-line, a dictionary attack. To prevent
this everpresent attack, various protocols have been proposed to achieve secure
password-authenticated key exchange [2,12,15,1,4,11,8] based on different cryp-
tographic assumptions.

Password-authenticated key exchange schemes assume that two entities have
a priori shared password. Two parties use their shared password to generate
a secure common session key and perform key confirmation with regard to the
session key. Most password-authenticated key exchange schemes in the literature
consider authentication between a client and a sever.
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With diversity and development of communication environments in the fields
such as mobile networks, home networking and etc., the end-to-end security is
considered as one of main concerns [17,3]. For example, from a user’s point of
view, in a mobile computing environment, a secure end-to-end channel between
one mobile user in cell A and another user in cell A or cell B may be a primary
concern. Additionally, the end-to-end security service minimizes the interferences
from the operator controlled network components.

The primary goal of the paper is to design a secure authenticated key ex-
change scheme, so called Client-to-Client Password-Authenticated Key Exchange
(C2C-PAKE) between two clients relying only on their distinct passwords with-
out any priori shared secret. Security notions and types of possible attacks are
newly defined according to the new framework. We prove our scheme is secure
against all types of attacks considered in the paper. Two secure C2C-PAKE
schemes are suggested, one for a cross-realm setting where two clients are in
two different realms and hence there exist two servers involved, the other for a
single-server setting where two clients are in the same realm. Our schemes are
based on an efficient cross-realm authentication scheme [5] in Kerberos system.

1.1 Related Work and Our Contribution

We explain our contributions in aspects of Practical Use and security against
Off-line Dictionary Attack by comparing our C2C-PAKE with related works.

Practical Use. Steiner, Tsudik and Waider proposed an authenticated key ex-
change scheme, called 3-Party EKE, between two clients, extended from M-EKE
[13]. But in their scheme, a server (KDC) must participate in every key exchange
process between clients. This on-line intervention of the server in authenticated
key exchange could be a critical bottleneck in efficiency of open networks. The
proposed C2C-PAKE schemes reduce the on-line intervention of servers using
Ticket which could be reused within its lifetime L between KDC and a client.
Furthermore 3-Party EKE does not provide a cross-realm authentication while
our C2C-PAKE scheme does.

Off-Line Dictionary Attack. One of the most serious problems in the Kerberos
system is an off-line dictionary attack. To prevent a dictionary attack, Kerberos
V5 introduced so-called preauthentication which has the form of an encrypted
timestamp. Unfortunately, Kerberos V5 does not provide a complete solution
against an off-line dictionary attack [16]. To solve this off-line dictionary at-
tack, Jaspan [9] proposed a variant of Kerberos system, denoted as PA-ENC-DH
by applying the DH-EKE scheme to Kerberos authentication scheme between
a client and a server (KDC). Jaspan could solve long-standing limitations of
the Kerberos system by proposing PA-ENC-DH scheme: vulnerability to dictio-
nary attacks, dependence on insecure time synchronization, and vulnerability
to the password chaining problem. However PA-ENC-DH scheme only consid-
ered single-server setting. Their scheme cannot be easily lift up to a scheme in
a cross-realm setting since security notions should be redefined according to the
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changed setting. Our scheme, which is a variant of cross-realm authentication in
the Kerberos system, solves dictionary attack against two passwords in a cross-
realm setting. In addition to this, C2C-PAKE also solves the problems of time
synchronization and password chaining.

2 Preliminaries

In this section we introduce definitions and models needed in our schemes. First
we classify password-authenticated key exchange schemes into two models.

1. [Shared Password-Authentication Model] This authentication model
(SPA, for short) provides password-authenticated key exchange using a
shared password between a client A and a server B. We assume A has a secret
password and B has a corresponding password verifier in its database. A and
B authenticate each other based on the shared password. Most password-
based schemes in the literature are based on this model.

2. [Different Password-Authentication Model] This model (DPA, for
short) provides password-authenticated key exchange between two clients
using different passwords. We further classify settings of this model into a
cross-realm setting and a single-server setting. In a cross-realm setting, the
model consists of two clients A1 and A2, and two servers B1 and B2, where
A1 and A2 are users of B1 and B2, respectively. In a single-server setting,
the model consists of two clients A1 and A2, and a server B1 where A1 and
A2 are users of server B1. Clients A1 and A2 authenticate each other with
their different passwords with help of B1 and B2 in the cross-realm setting,
and with help of B1 in the single-server setting. Our schemes in this paper
are based on this model.

In the DPA two passwords are involved in authentication process while only
a single password is used in the SPA. Notions of security and attacks in the
literature have been defined under the environments of the SPA. To discuss the
security of the DPA, the related notions should be modified accordingly. Next
section we treat this issue informally.

2.1 Definitions and Assumptions

First, we introduce a perfect forward secrecy in the SPA and then define a cor-
responding notion in the DPA.

Definition 1. A protocol is said to have perfect forward secrecy in the SPA
if compromise of a shared password does not compromise past session keys

In the DPA, with respect to perfect forward secrecy, the case of compromise of
two long-term passwords should be considered.

Definition 2. A cryptographic primitive or protocol provides perfect forward
secrecy in the DPA if the compromise of two passwords can not compromise
past session keys.
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We can easily infer from Definition 1 and 2 above that if a cryptographic prim-
itive or protocol satisfies the perfect forward secrecy in the DPA, then a perfect
forward secrecy in the SPA is satisfied, while the converse is not true. Next we
overview the definition of a Denning-Sacco attack in the SPA [6] and define a
new notion denoted as a Denning-Sacco attack in the DPA. As defined below,
a Denning-Sacco attack in the DPA possibly compromises several session keys
simultaneously.

Definition 3. A protocol is said to be vulnerable to a Denning-Sacco at-
tack in the SPA if compromise of a common session key allows an attacker
to mount a dictionary attack on the long-term secret value (or password) or to
impersonate one of the parties.

Definition 4. A protocol is said to be vulnerable to a Denning-Sacco at-
tack in the DPA if compromise of session keys allows an attacker to mount a
dictionary attack on the long-term secret values (or passwords) or to imperson-
ate one of the parties.

Password-based key exchange protocols in the SPA must have a property that
the shared password is protected against an off-line dictionary attack. The pro-
tocols in the DPA also must be strong against this attack. But the number of
passwords to be protected against dictionary attacks in the DPA is more than
one. Therefore we define a security notion against a dictionary attack.

Definition 5. A protocol is said to be strong against a dictionary attack
in the DPA if the following conditions are satisfied. First, all passwords in the
protocol must be strong against a dictionary attack. Second, even if attacker
A is given one password, other passwords must be strong against a dictionary
attack.

There exist many other active attacks in the SPA. Examples are replay attack,
man-in-the-middle attack, on-line guessing attack, etc. Such attacks could be
similarly defined in the DPA without modification. Next we discuss the security
of protocol in DPA .

Security of Protocol in the DPA. Suppose that poly-time adversary A tries
to break a given protocol by using well-known attack methods. In case of on-line
attack, A tries all possible passwords in log-in stage. If a server accepts a pass-
word chosen by A, the guess is correct. Otherwise A eliminates the guess from
the password-dictionary. A’s probability of success after R successive rejections
is 1/(|D| − R) where |D| is a dictionary size of passwords. Actually, on-line at-
tack can not be avoided and hence the success probability of on-line attack may
be considered as a lower bound of an advantage of any adversary. That is, a
protocol is secure if the advantage of an adversary A in attacking the protocol
is bounded above, as follows.
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Table 1. Notation

Notation Meaning
Alice, Bob honest user or client.
ID(A), ID(B) identities of Alice and Bob.
pwa, pwb passwords memorized by Alice and Bob.
EX symmetric encryption with X.
sk session key between Alice and Bob.
H1, H2, H3, H4, H5 cryptographic hash functions (e.q, SHA-1).
T icketB Kerberos ticket issued to user A for service from B.

AdvDPA
A (k) ≤ O(1/(|D| − R)) + ε(k),

for some negligible function ε(·), where R is the number of times rejected in
log-in stage, and k is a security parameter. The second term in the right-hand
side of the inequality is A’s advantage of success in all well-known active attacks
in the DPA, which is negligible.

Computational Assumption. Our schemes are based on numerical assump-
tions and computational assumptions. Let p, q be sufficiently large primes such
that q|p − 1, and let G be a subgroup of Z∗

p of order q. During initialization
step, a generator g ∈ G and hash function(H1, H2, H3, H4, H5) are published.
All protocols throughout the paper are based on the discrete logarithm assump-
tion(DLA) and the Diffie-Hellman assumption(DHA).

We use the notations in Table 1 throughout our paper.

3 Kerberos System in a Cross-Realm Setting

Kerberos is an authentication system developed as a part of project Athena at
MIT [14]. In the Kerberos system, the distribution of a session key between a
client and an application server is accomplished by the intervention of a Kerberos
server consisting of Authentication Server and Ticket Granting Server. A full-
service Kerberos provides a mechanism to support cross-realm authentication.
In this section we roughly overview a cross-realm authentication scheme in Ker-
beros system. And then we also overview an efficient cross-realm authentication
scheme, Fake Ticket Protocol [5] which is a variant of the original Kerberos sys-
tem. This scheme provides an efficient framework for cross-realm authentication
and decreases communication complexity between several realms [5].

Cross-Realm Authentication in the Original Kerberos System.
First we overview a cross-realm authentication in Kerberos system. Cross-realm
authentication allows a client Alice in one realm to access a server S in other
realm. The details of cross-realm authentication are illustrated in Protocol 1.
In Step (1) Alice requests her Authentication Server(AS) for Ticket Granting
Ticket(TGTA). On request from Alice, ASA issues TGTA to be used to access
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Ticket Granting Server(TGSA) in Step (2). In Step (3) Alice requests TGSA

to issue TGTB to be used to communicate with remote TGSB . After verifying
TGTA, TGSA sends TGTB encrypted with KTGSA,TGSB to Alice in Step (4).
Alice with TGTB requests remote server S for real Ticket, and then TGSB issues
to Alice TicketB to be used to communicate with S.

Alice → ASA : ID(A) (1)
ASA → Alice : TGTA, EKA(KA,TGSA , T ) (2)
Alice → TGSA : ID(A), ID(S), TGTA, EKA,T GSA

(T ) (3)
TGSA → Alice : TGTB , EKA,T GSA

(T, KA,TGSB ) (4)
Alice → TGSB : ID(A), TGTB , EKA,T GSB

(T ) (5)
TGSB → Alice : T icketB , EKA,T GSB

(KA,B , T ) (6)
Alice → S : ID(A), T icketB , EKA,B (T ) (7)

Protocol 1. Cross-Realm Authentication in Kerberos System. Each realm con-
sists of Authentication Server(AS) and Ticket Granting Server(TGS). TGTA is a ticket
to be used by Alice to access TGSA. KA and KB are symmetric keys shared between
Alice and ASA, Server S and ASB , respectively. T is a timestamp used to prevent
replay attacks. Notation KX,Y means a key shared between entity X and entity Y.
TGTA = EKT GSA,ASA

(ID(A), KA,TGSA), TGTB = EKT GSA,T GSB
(ID(A), KA,TGSB ),

and T icketB = EKB (ID(A), ID(S), KA,B).

Fake Ticket Protocol [5]
Crescenzo and Kornievskaia presented a cross-realm authentication scheme,
called Fake Ticket Protocol [5] between two clients Alice and Bob in different
realms. Their scheme is a variant of Kerberos. We briefly describe Fake Ticket
Protocol as follows. At login stage, Alice obtains a TGTA from KDCA. When
Alice with TGTA makes a request for a service ticket from KDCA, it gener-
ates a random session key KA,B and issues fake ticket(FTKT ) to Alice in Step
(4). Alice forwards FTKT to Bob. In Step (8) Bob with FTKT requests a
real service ticket TKT to KDCB . On request from Bob, KDCB issues a real
ticket(TKT ) to be used to communicate with Alice. The rest part is similar to
those of Kerberos cross-realm authentication.

We assume Internet is used between realms and Intranet used inside a realm.
It is notable the amount of communication between realms is relatively small
since Internet is slower than Intranet. As shown in Protocol 2 the amount of
communication between KDCA and KDCB in Fake Ticket Protocol is reduced
to one while the original Kerberos system requires three communications between
realms.

4 C2C-PAKE in a Cross-Realm Setting

In this section we propose a new client to client password-authenticated key
exchange(C2C-PAKE) scheme in a cross-realm setting. C2C-PAKE is con-
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I. Alice’s Login Stage in KDCA

Alice → KDCA : ID(A) (1)
KDCA → Alice : TGTA, EKA(KA,TGSA , T ) (2)
II. FTKT Issuing Stage
Alice → KDCA : ID(A), ID(B), TGTA, EKA,T GSA

(T ) (3)
KDCA → Alice : FTKT, EKA,T GSA

(T, KA,B) (4)
Alice → Bob : ID(A), FTKT, EKA,B (T ) (5)

III. Bob’s Login Stage in KDCB

Bob → KDCB : ID(B) (6)
KDCB → Bob : TGTB , EKB (KB,TGSB , T ) (7)
IV. Real Ticket Issuing Stage
Bob → KDCB : FTKT, TGTB , EKB,T GSB

(T ) (8)
KDCB → Bob : TKT , EKB,T GSB

(T ) (9)

Protocol 2. Fake Ticket Protocol. FTKT = EKKDCA,KDCB
(ID(A), KA,B),

TKT = EKB (ID(A), ID(B), KA,B), TGTA = EKT GSA,ASA
(ID(A), KA,TGSA) and

TGTB = EKT GSB,ASB
(ID(B), KB,TGSB ). Notation KX,Y means a key shared between

entity X and entity Y.

structed based on the framework of Fake Ticket Protocol [5] described in the
previous section. In a distributed environment, it is inefficient that KDCA al-
ways participates in every process of session key generation between two clients
Alice and Bob in two different realms as in Fake Ticket Protocol. Our scheme
uses Ticket structure. By using TicketB , Alice can generate a session key only
using her memorable passwords without intervention of KDCA.

C2C-PAKE described in Protocol 3 consists of two stages. One is a ticket
issuing stage((1)-(2)), and the other is a mutual authentication and session key
generation stage((3)-(8)). First, KDCA issues a TicketB in Ticket Issuing Stage.
As TicketB is issued in advance and contains lifetime, KDCA does not need to
participate in every session key generation. Alice can re-use this TicketB to gen-
erate a session key with Bob whenever needed during the lifetime L specified in
the TicketB .

Protocol Initialization: Preliminaries for a protocol run are as follows.

1. g, p and q are global parameters shared by protocol participants.
2. Alice chooses a password pwa, then transfers it to KDCA through a secure

channel. Bob also transfers pwb to KDCB similarly. KDCA and KDCB

store (ID(A), pwa) and (ID(B), pwb) respectively in their own databases.

Protocol Description: We assume that there is a secure shared key K between
KDCA and KDCB by using any of the methods in the public-key cryptography.
An example of such a method can be found in PKCROSS [10].

1. Alice chooses x ∈ Z∗
p randomly, computes and sends Epwa(gx) to KDCA

together with ID(A) and ID(B).
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I. Ticket Issuing Stage
Alice → KDCA : ID(A), ID(B), Epwa(gx) (1)
KDCA → Alice : ER(gx ⊕ gr, ID(A), ID(B)), Epwa(gy), T icketB (2)

II. Mutual Authentication and Session Key Generation
Alice → Bob : T icketB , ID(A), L (3)
Bob → KDCB : T icketB , Epwb(gx′

), ID(A), ID(B), L (4)
KDCB → Bob : ER′(gpwa·r·r′ ⊕ gx′

, ID(A), ID(B)), Epwb(gy′
) (5)

EH4(gpwa·r)(gpwb·r·r′
)

Bob → Alice : Ecs(ga), EH4(gpwa·r)(gpwb·r·r′
) (6)

Alice → Bob : Esk(ga), Ecs(gb) (7)
Bob → Alice : Esk(gb) (8)

Protocol 3. C2C-PAKE in a Cross-Realm Setting. KDCA and KDCB are key
distribution centers which store Alice’s password file and Bob’s password file. R(=
H1(gxy)), R′(= H2(gx′y′

)) and sk(= H3(gab)) are session keys agreed between Alice
and KDCA, Bob and KDCB , and Alice and Bob, respectively. K is a symmetric
key shared between KDCA and KDCB . T icketB = EK(gpwa·r, gr, ID(A), ID(B), L).
cs = H5(gpwa·pwb·r·r′

).

2. KDCA obtains gx by decrypting Epwa(gx), chooses y, r ∈ Z∗
p randomly

and computes Epwa(gy) and gpwa·r. KDCA also specifies L, a lifetime of
TicketB . Then KDCA makes TicketB and sends ER(gx⊕gr, ID(A), ID(B)),
TicketB and Epwa(gy) to Alice. Upon receiving the message from KDCA,
Alice computes a session key R and decrypts ER(gx ⊕ gr, ID(A), ID(B)) to
find gr.

3. Alice just forwards TicketB to Bob.
4. Bob chooses x′ ∈ Z∗

p randomly and computes Epwb(gx′
). Then he sends

Epwb(gx′
), ID(A) and ID(B) to KDCB with TicketB .

5. KDCB obtains gpwa·r by decrypting TicketB , selects r′ ∈ Z∗
p randomly

and computes gpwa·r·r′
. KDCB also selects another random number y′ ∈

Z∗
p , and computes R′(= H2(gx′y′

)). Next, KDCB computes ER′(gpwa·r·r′ ⊕
gx′

, ID(A), ID(B)) using R′. KDCB finally sends ER′(gpwa·r·r′ ⊕gx′
, ID(A),

ID(B)), Epwb(gy′
) and EH4(gpwa·r)(gpwb·r·r′

) to Bob.
6. Bob decrypts Epwb(gy′

) to find gy′
, and decrypts ER′(gpwa·r·r′ ⊕ gx′

,

ID(A), ID(B)) using R′ to obtain gpwa·r·r′
from gpwa·r·r′ ⊕ gx′

. He makes
cs(= H5(gpwa·pwb·r·r′

)). Then Bob chooses a random number a ∈ Z∗
p and

computes Ecs(ga). Finally Bob sends Ecs(ga) and EH4(gpwa·r)(gpwb·r·r′
) to

Alice.
7. Alice computes H4(gpwa·r) with her pwa and gr. And she gets gpwb·r·r′

by decrypting EH4(gpwa·r)(gpwb·r·r′
) with H4(gpwa·r). Alice also can com-

pute cs(= H5(gpwa·pwb·r·r′
)) using gpwb·r·r′

and pwa. Next, Alice selects
b ∈ Z∗

p randomly, and computes sk(= H3(gab)) and Ecs(gb). Finally she
sends Esk(ga) and Ecs(gb) for session key confirmation.
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8. After receiving Esk(ga) and Ecs(gb), Bob gets gb by decrypting Ecs(gb) with
cs, and computes sk(= H3(gab)) with gb and a. Bob verifies ga by decrypting
Esk(ga) with sk. Bob sends Esk(gb) to Alice to confirm the session key. Alice
also verifies gb by decrypting Esk(gb) with sk. Step 7 and 8 are session key
exchange and confirmation stages between Alice and Bob.

Remarks on cs. Note that cs can not be directly used as a session key. If an
attacker A obtains pwa and R, she can always get gr in Step (2). She also can
decrypt EH4(gpwa·r)(gpwb·r·r′

), and get gpwb·r·r′
since she knows gpwa·r. Finally

she can compute cs(= H5(gpwa·pwb·r·r′
)) using pwa and gpwb·r·r′

. This indicates
that perfect forward secrecy is not satisfied, if cs is used for a session key instead
of sk. Therefore cs should be used to only encrypt ga or gb. Then A, given pwa
and R, can not compute sk(= gx′y′

) since computing sk is equivalent to solving
the Diffie-Hellman problem. If Alice wants to re-generate a session key with Bob,
then TicketB can be re-used during its lifetime L.

Security Analysis of C2C-PAKE in a Cross-Realm Setting: We show
that C2C-PAKE in a cross-realm setting resists against all the well-known at-
tacks. The adversary A is denoted as a probabilistic polynomial time machine
A(1k, m) where 1k is security parameter and m is the useful information to A.
We assume that it is infeasible for A to solve the discrete logarithm problem and
Diffie-Hellman problem. Hence Pr[ForgeDLP (k)], Pr[ForgeDHP (k)] ≤ ε(k) for
some negligible function ε(k).

• Perfect forward secrecy in the DPA: Let Adv
P/S
A (k) be the advantage

of A in attacking perfect forward secrecy in the DPA. Then we show Adv
P/S
A

≤ Pr[ForgeDHP (k)].
− Case 1 Assume that an attacker A knows pwa. Then A can find gx

and gy by decrypting Epwa(gx) and Epwa(gy). But A(1k, pwa, gx, gy)
still cannot determine R(= H1(gxy)) because the Diffie-Hellman problem
is infeasible. If R is given to A, then it can get cs in the flow (6).
However, A(1k, pwa, gx, gy, ga, gb, cs) can not compute sk(= H3(gab))
without solving the Diffie-Hellman problem of ga and gb. Hence the
advantage of A is bounded above by Pr[ForgeDHP (k)] for finding session
keys. This fact is expected since our session key generating is based on
Diffie-Hellman assumption.

− Case 2 An attacker A with pwb can easily know gx′
and gy′

by de-
crypting Epwb(gx′

) and Epwb(gx′
). But these values do not help A to

compute sk or R′ in old sessions because session key generation is based
on the Diffie-Hellman problem. Adv

P/S
A (k) again is bounded above by

Pr[ForgeDHP (k)].
− Case 3 In this case, we allow A to get both pwa and pwb. However

A(1k, pwa, pwb, gx, gy, gx′
, gy′

, ga, gb, cs) can not obtain sk, R, R′ be-
cause it is based on the Diffie-Hellman problem to get a common session
keys.
By Case 1,2,3 we concludes Adv

P/S
A ≤ Pr[ForgeDHP (k)].
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• Denning-Sacco attack in the DPA: Let Adv
D/S
A (k) be the advantage

of A in attacking Denning-Sacco attack in the DPA. We show Adv
D/S
A ≤

ε(k). We classify an adversary A into two types. One is an Insider adversary
and the other is an Outsider adversary. Insider adversary, who knows pwa
or pwb, is a legal user of the system while Outsider adversary is not. So,
Outsider adversary knows neither pwa nor pwb.
− Case 1: Outsider Adversary A(1k, R, sk, R′). Outsider adversary,

A with session keys R, sk and R′ can determine ID(A), ID(B), L,
gx ⊕ gr, gpwa·r·r′ ⊕ gx′

, ga, gb and all conversations in the protocol. But
these values do not help A mount a dictionary attack on pwb or pwa.
For verifying pwa′, pwb′, A must get [gx, gy, gx′

, gy′
]. But A can not get

x, y, x′, y′ since these values are ephemeral values of each party. Hence
the probability of mounting a dictionary attack in this case is bounded
by the probability of finding x, y, x′, y′ in the Z∗

p . Therefore Adv
D/S
A (k)

≤ 1
|p| .

− Case 2: Insider Adversary A(1k, pwa, R, sk, R′). Assume A is
an Insider adversary with pwa, and given R, sk and R′. We are going
to show that A can not mount a dictionary attack on pwb. First A can
compute gpwa·r·r′ ⊕gx′

using R′, but can not get gpwa·r·r′
because A does

not know gx′
encrypted with pwb. gpwa·r·r′

is a critical value to prevent
A from mounting a dictionary attack against pwb. If gpwa·r·r′

is known
to A, then A can mount a dictionary attack against pwb, as follows.
- Step 1. A obtains gr·r′

using gpwa·r·r′
and pwa.

- Step 2. A gets gpwb·r·r′
by decrypting EH(gpwa·r)(gpwb·r·r′

) using pwa
and gr.
- Step 3. A chooses a candidate password pwb′, computes gpwb′·r·r′

and
compares gpwb′·r·r′

with gpwb·r·r′
of Step 2. Finally she is able to reduce

the size of candidate passwords.
Therefore gpwa·r·r′

must be blinded using gx′
. In this case, our scheme is

strong against a Denning-Sacco attack in the DPA with the probability
of finding x′, y′ in Epwb(gx′

), Epwb(gy′
). So, Adv

D/S
A (k) ≤ 1

|p| .
− Case 3: Insider Adversary A(1k, pwb, R, sk, R′). Assume A is

an Insider adversary with pwb. A(1k, pwb, R, sk, R′) can not mount
a dictionary attack against pwa since A can not get gx encrypted with
pwa. If A is given gx, then A can mount a dictionary attack against pwa,
as follows.
- Step 1. A obtains gr from ER(gx ⊕ gr) using gx and R.
- Step 2. A can get gpwa·r·r′

from ER′(gpwa·r·r′ ⊕ gx′
) because A knows

R′ and gx′
.

- Step 3. A selects a candidate pwa′ and computes H4(gpwa′·r). Then
A decrypts EH4(gpwa·r)(gpwb·r·r′

) with H4(gpwa′·r), then gets gpwb·r1·r2

where r1 and r2 are unknown values. She can remove pwb from gpwb·r1·r2 ,
and get gpwa′·r1·r2 using candidate password pwa′. A compares gpwa′·r1·r2

with gpwa·r·r′
of Step 2. If two values are matched, the guess is correct.

Otherwise A eliminates a candidate pwa′ from her dictionary.
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Hence, the hiding gx does not allow A(1k, pwb, R, sk, R′) to mount a
dictionary attack against pwa. Our scheme is strong against Denning-
Sacco attack in the DPA with the probability of finding x, y in Epwa(gx),
Epwa(gy). Hence Adv

D/S
A (k) ≤ 1

|p| .

• Dictionary attack in the DPA: Let Adv
D/A
A be the probability that ad-

versary A can mount a dictionary attack in the DPA. We analyze this attack
in two cases.
− Case 1: Compromise of pwa. An attacker A with pwa can get

gpwb·r·r′
by decrypting EH4(gpwa·r)(gpwb·r·r′

) using gr and its memorable
pwa. But A can not get gpwa·r·r′

from ER′(gpwa·r·r′ ⊕ gx′
) since A is not

able to get R′. Even if A gets R′, it can not get gx′
. Hence A is not

able to mount a dictionary attack against pwb, as analyzed in Denning-
Sacco attack in the DPA. A can mount a dictionary attack if it solves
the Discrete Logarithm problem and gets gx′

. So Adv
D/A
A is bounded by

Pr[ForgeDLH(k)] + 1
|p| .

− Case 2: Compromise of pwb. A with pwb can get gx′
and gy′

. But
A can not mount a dictionary attack against pwa. Even if R′ is given to
A, it can not mount a dictionary attack as analyzed in Denning-Sacco
attack in the DPA. Hence, Adv

D/A
A is negligible.

• On-line Guessing attack.: This attack is detectable, and thwarted by
counting the number of failures. If A is rejected R times, it can reduce the
size of the possible set. So, the success probability of on-line guessing attack
is bounded by 1

|D|−R .
• Man in the middle attack : A man-in-the-middle attack requires an at-

tacker A to fool both sides in a legitimate conversation. A intercepts ID(A),
ID(B) and Epwa(gx). A selects a candidate password pwa

′
and computes

gx̃. Then A generates Epwa′ (gx̃) and sends it to KDCA. KDCA finds gx̂ by
decrypting Epwa′ (gx̃) with pwa and computes R̂(= H1(gx̂y)). But this value
is different from the value R̃(= H1(gx̃y)) which is able to be computed by
A with pwa

′
. A also can not fool both KDCB and Bob without obtaining

pwb. The case of attack in the middle of Alice and Bob are similar to the
above case. Consequently A without obtaining pwa or pwb can not fool any
sides in a legitimate conversation.

• Replay attack : The probability of success with regard to a replay attack is
trivially negligible because x, y, x

′
and y

′
are ephemeral parameters of both

parties in a session. Therefore an attacker can not impersonate both parties.

From the analysis above, we conclude that

AdvDPA
A (k) < O(1/(|D| − R))+Adv

F/S
A (k)+Adv

D/S
A (k)+Adv

D/A
A (k)+ε(k).

On-line guessing attack is unavoidable in any password-authenticated key
exchange scheme and its success probability is a lower bound of the success
probability of an adversary. Since Adv

F/S
A (k), Adv

D/S
A (k) and Adv

D/A
A (k)

have been shown to be negligible, the proposed scheme is secure.
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5 C2C-PAKE DPA in a Single-Server Setting

In this section, we propose C2C-PAKE in a single-server setting. Single-server
setting, as mentioned in section 2, provides password-authenticated key exchange
between two clients on the same server. We further classify the single-server set-
ting into single-server ticket type and single-server non-ticket type. First we
introduce a simple C2C-PAKE in the single-server non-ticket type.

C2C-PAKE in the Single-Server Non-ticket Type
The first scheme classified into single-server non-ticket type is 3-Party EKE [13],
where each user uses his own password and the third party(KDC) participates
in every session during authentication between users. Protocol 4 is a variant of
original 3-Party EKE.

As shown in Protocol 4, KDC acts as a key transmission center which only
stores password information. When Alice wants to communicate with Bob reg-
istered in the same KDC, she sends Epwa(ga) to KDC. Since KDC knows pwa,
it can get ga by decrypting Epwa(ga). And KDC selects its own random number
s ∈ Z∗

p , computes and sends Epwb(ga·s) to Bob. Bob computes a session key
sk(= H1(ga·b·s)). Bob also chooses a random number b ∈ Z∗

p and sends back
Epwb(gb) to KDC. Finally KDC decrypts and sends Epwa(gb·s) to Alice. Alice
also computes sk(= H1(ga·b·s)). Protocol 4 only provides key exchange using
passwords, and does not provide session key confirmation. But we can easily
design key confirmation stage by adding extra flows to the protocol.

Alice → KDC : ID(A), ID(B), Epwa(ga) (1)
KDC → Bob : ID(B), Epwb(ga·s) (2)
Bob → KDC : ID(A), Epwb(gb) (3)
KDC → Alice : ID(A), Epwa(gb·s) (4)

Protocol 4. C2C-PAKE in the Single-server Non-ticket Type

C2C-PAKE in the Single-Server Ticket Type
C2C-PAKE in the single-server ticket type protocol is easily constructed by
modifying C2C-PAKE in a cross-realm setting. C2C-PAKE in a cross-realm
setting involves a shared key K so that each Kerberos realm can interoperate with
Kerberos in other realm. We construct a single-server ticket type by converting
this shared key(K ) between two Kerberos into private key(PK ) of KDC. The
rest part is identical to those of C2C-PAKE in a cross-realm setting.
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Abstract. The sealed bid model of auctions is ideally suited for electronic auction
systems, as they avoid the requirement for real-time communications between
various entities. A sealed bid auction scheme designed by Kikuchi, Harkavy and
Tygar is analysed. Several shortcomings are identified in this scheme including
the lack of public verifiability and the possibility of collusion between bidders
and/or auctioneers. A new scheme is designed to overcome these shortcomings.

1 Introduction

Sealed-bid auction systems require mechanisms for providing confidentiality and in-
tegrity services to the bid values until a bid-opening phase occurs. In order to electron-
ically simulate the sealing process, suitable cryptographic mechanisms are employed.
Electronic sealed-bid auction systems tend to be more resilient to real-time synchroni-
sation problems than do electronic outcry auctions.

Since the proposal by Franklin and Reiter [5] many other sealed bid e-auction systems
have been presented. Sakurai and Miyazaki [16] proposed a sealed-bid, Dutch-style1

auction system using undeniable signatures. Although this proposal possesses good se-
curity properties, it is both computationally and communicationally expensive. Sako [15]
proposed an alteration to reduce the communication overhead by requiring the bidders
to encrypt the bid value for the auctioneers, rather than use the undeniable signature
technique. Although the communication cost was greatly reduced, the most interesting
properties of the proposal by Sakurai and Miyazaki, namely user-controlled confidential-
ity for the sealed bid and public verifiability, were neglected. Suzuki et al. [19] employed
hash chains along with a standard signature scheme to greatly improve the computational
efficiency for the proposals by Sakurai and Miyazaki, and Sako. The number of rounds
of communication between the bidders and the auctioneer remains high, as was the case
with the proposal by Sakurai and Miyazaki.

The aim of this paper is to improve the security properties of the proposal by Kikuchi,
Harkavy and Tygar [9], which employs the homomorphic property of Shamir’s secret
sharing scheme [17]. Henceforth, the proposal by Kikuchi et al. will be called the KHT

1 In Dutch style auction systems, to determine the maximum price for the goods the auctioneer
starts with the highest value and progressively reduces the bid value. This process stops when
the first bidder is willing to pay the bid value.

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 147–159, 2002.
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system. Although this is an efficient proposal, it is an incomplete auction system because
crucial security properties, such as non-repudiation, were not discussed. The most no-
table absence is public verifiability of the auction process. Additionally, the method to
identify the winning bidder is unreliable and the scheme is vulnerable to certain attacks,
discussed below. However, the use of secret sharing techniques and suitable homomor-
phisms has the potential to achieve most of the security properties required by secure
e-auction systems in the most efficient manner. The proposal in this paper provides pub-
lic verifiability, achieves a more robust mechanism to identify the winning bidder and
prevents the attacks identified in the KHT system. The scheme requires only a single,
non-interactive communication between the auctioneers and the bidders.

Section 2 presents the desired properties of sealed-bid e-auction system followed by
Section 3, which presents a brief description and analysis of the KHT system. Section 4
introduces necessary cryptographic protocol constructs employed in the proposal. Sec-
tion 5 presents the proposal for a new auction scheme followed by the security analysis
in Section 6 and a comparison with the KHT scheme in Section 7.

2 Properties of Sealed-Bid e-Auction Systems

Sealed-bid auction systems consist of at least three phases, which are:

Bid submission: all the bidders will be expected to seal their bid value and submit the
sealed-bid to the auctioneer;

Bid opening: the auctioneers, with or without the assistance of the bidders, appropri-
ately open the sealed-bids; and,

Winner identification: the auctioneers identify the winning bid and the winning bidder
according to the established auction rules.

The following properties that are desirable in secure electronic auction systems have
been identified in the literature [6,10,18]. Although an extensive list is available, it
appears that not all properties can be achieved by any one e-auction system.

1. Correctness: If every party acts honestly, the correct winning price and winner(s)
will be identified according to the auction rules.

2. Fairness includes:
– No bidder knows anything about other bids before he submits his own bid. This

is also included in confidentiality.
– After a bidder submits his bid, the bid cannot be modified.
– No bidder can deny his bid after he submits it. This is sometimes called non-

repudiation of bids.
3. Robustness: Malicious behaviour of any party should not compromise the system or

lead to an incorrect result. Robustness is complementary to correctness and guaran-
tees that if there is a result, that result must be correct no matter what system failure
or attack may occur. Especially the following three attacks must be prevented.
(a) One or more bidders conspire with the auctioneer(s) to subvert the auction rules.

We will call this the ABC (auctioneer-bidder collusion) problem.
(b) Some bidders collude to subvert the auction rules. This is called the BBC (bidder-

bidder collusion) problem.
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(c) A subset of the auctioneers declare that a bidder has not submitted any bid or
has submitted an incorrect bid, while the bidder claims to have submitted a
correct bid. The bidder cannot prove his innocence without revealing the bid.
This situation is said to be a dispute.

4. Confidentiality of sealed-bid: The auctioneers must not be able to determine the
value of the sealed-bid until the bid opening phase.

5. Anonymity: The identities of the losing bidders remain confidential after the winner
identification phase.

6. Privacy of losing bids: The losing bids remain confidential, even for the auctioneer,
after the winner identification phase.

7. Public Verifiability: All the participants in the auction system, as well as a neutral
observer, must be able to verify the validity of the critical operations performed by
the auctioneers. Critical operations are those that have the capability to alter the
correct result of the auction.

3 Auction Scheme Proposed by Kikuchi, Harkavy and Tygar

3.1 Description of KHT

Like some other auction schemes, the KHT scheme employs the homomorphic property
of Shamir’s secret sharing to efficiently calculate the winning price and hide the losing
bids. Another paper by Kikuchi et al. [7] employs a very similar technique. A threshold
number of auctioneers cooperate to open the sealed-bids. Their scheme presupposes an
established set of biddable prices. A brief description of their proposal is as follows:

System setup. For each bidder, the auctioneers create a special identification tag, which
is a signature on the identity of the bidder, I , using the auctioneers’ secret signing
key. The identification tags are shared secrets between the auctioneers and the cor-
responding bidder. For each biddable price, the bidder calculates the identification
token, TK i, by encrypting the identification tag along with a random value.

Bid submission. Every bidder generates a polynomial for each biddable price. The
constant coefficients of the polynomial is TK i if the bidder is willing to pay the
price, or zero otherwise. The other coefficients of the polynomials are independently
and randomly chosen by the bidder. Every bid is shared among the auctioneers.

Determination of the winning bid. Every auctioneer adds the shares for a biddable
price, sent by different bidders, to form a general share. Then the auctioneers pool
the general shares to calculate the sum of all bids at that price using Lagrange
interpolation. The sum will be zero if no bidder is willing to pay that price, or the
sum of some identification tokens. A binary search is used to identify the winning
price.

Identification of the winning bidder. The auctioneers determine the winner by de-
crypting the identification token to obtain the identification tag. The identification
tag of the winner and the corresponding random value are published for verification.

Due to the homomorphic property of the secret sharing algorithm, the computational
cost to open the sealed-bids is independent of the number of bidders. The binary search
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strategy can be employed to find the winning price, thereby resulting in a more efficient
system. The losing bids are kept secret, unless the number of colluding auctioneers
exceeds the threshold of the secret sharing algorithm.

3.2 Shortcomings

The following shortcomings can be identified in the KHT system:

Vulnerability of the winner identification technique The method to identify the win-
ner is not reliable. A problem is the tie situation, when the auctioneers can only find
the winning price but cannot determine the identities of winning bidders.
Another problem is that the scheme is vulnerable to malicious bidders, who may
submit illegally formatted identification tokens. Such a vulnerability exists because
the auctioneers cannot verify the format of the identification tokens submitted by
individual bidders without reconstructing all the submitted bids. Reconstructing all
the submitted bids is essential to identify the illegal bids, but it will violate the
privacy of the bid values of honest bidders.

ABC attack: A bidder may conspire with one or more auctioneers to change his bid.
This is possible because there is no public commitment for the bid in their scheme,
since the bid is a shared secret between the bidder and the auctioneers. So if a bidder
conspires with at least one auctioneer, the bidder can illegally change the bid to gain
advantage over other bidders.

BBC attack: The use of homomorphic secret sharing mechanisms may result in the
BBC problem. If there is no collusion among the bidders and a general share is
equal to zero, all the shares to form it are zero with a very high probability. If some
bidders collude they can exploit the homomorphic property to make the sum of bids
at a price to be zero while some bids at that price are non-zero. For example, for a
particular price, the bids of two bidders can be k and −k. Their bids indicate that
they are willing to pay the price, while the sum of their bids indicates that neither
of them are willing to pay the price.

Dispute: An auctioneer declares that a bidder failed to submit a share or the submitted
share from a bidder is invalid while the bidder insists that the share is valid. This
dispute situation cannot be solved within the framework of the KHT system.

Due to these problems, the KHT system is not a practical system. Although there are
other schemes [8,7,4,1] that employ similar techniques used in the KHT system, these
schemes do not address all the problems identified in this section.

4 Verifiable Secret Sharing

The proposed scheme requires a verifiable secret sharing (VSS) scheme that can share
binary valued secrets. Namely the secret could be zero or non-zero. General purpose
VSS schemes, such as the proposal by Benaloh [3] and Pedersen [13], do not possess
this property and, therefore, cannot be employed in our proposal. This is because such
schemes are not information-theoretically hiding. So, the information-theoretically se-
cure scheme proposed by Pedersen [14] is employed.



Robust, Privacy Protecting and Publicly Verifiable Sealed-Bid Auction 151

The VSS scheme can be employed in conjunction with an appropriate verifiable
encryption scheme to realise a publicly verifiable secret sharing (PVSS) mechanism. The
verifiable encyption primitive can be implemented by modifying the verifiable encyption
scheme by Bao [2]. The only difference is that in Bao’s scheme only one value is
proved to be encrypted correctly whereas for Perdersen’s scheme two values must be
encrypted. The encryption scheme can be the algorithm by Okamoto and Uchiyama [11]
as suggested by Bao or other related encryption schemes like Paillier’s [12].

5 The Auction Scheme

We describe a new auction scheme, which includes several improvements to the KHT
system. For each biddable price, the willingness to pay is denoted by a random non-zero
value and unwillingness is denoted by the zero value. The bidders act as the dealers of a
secret sharing scheme and the auctioneers act as the share-holders. The bidders share the
bids corresponding to different biddable prices using the VSS scheme as described in
Section 4. The shares are communicated to the auctioneers using a secure channel. The
commitments generated by the VSS scheme are published in a bulletin board, which has
read-only access for the public and write-access for a trusted bulletin-board manager. All
communications by the bidder to the auctioneers must be through the bulletin-board. To
verify the validity of their shares, the auctioneers can use the commitment information
published in the bulletin board by the bidders.

A threshold number of auctioneers are trusted not to recover all the bids by every
bidder. Instead, they only recover the sum of all the bids sent to them by various bidders
for a particular price. This sum of bids will be called the general share. If the general
share is zero then, with a high probability, none of the bidders are willing to pay the
price and the auctioneers can proceed to recovering the general share for the next price.
If the general share is non-zero, then the auctioneers identify the winning bidder by
recovering the individual bids sent by the bidders for that particular price, which is the
winning price. This process protects the privacy of the losing bids. In order to protect the
identities of the bidders, pseudonyms are used during bidding which can be correlated
with the bidder only by the bidder and a trusted certifying entity.

In the case of a dispute about the identification of the winning bidder or bid, all the
bidders are required to encrypt the shares corresponding to various auctioneers and bids
using the verifiable encryption technique discussed in Section 4. This converts the private
verification procedure for the VSS commitments into a public verification procedure.
Such an optimistic use of public verification greatly reduces the computational load on
the bidders when there is no dispute. Moreover, it protects the value of the bids and the
identity of the bidders when there is a dispute.

Figure 1 illustrates the procedure for the auction when all participants act honestly.
The subsequent sections will provide the detailed description of the auction.

5.1 Parameter Initialization

There are three kinds of participants in the scheme: n bidders bi for i ∈ Zn, m auctioneers
for j ∈ Zm and an oblivious third party T . The auctioneers are trusted not to recover
the bids of the losing bidders. T is trusted only for providing a trust-based anonymity
service for the bidders.
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Authentication and Request for Registration

Pseudonym public-key pair and Certificate

Registration Phase

Bid Submission Phase

enera Shares

inning Bid and Bidder

Bid Opening Phase

Encrypted shares of Bids, VSS Commitments

Encrypted shares of Bids, VSS Commitments

(Confidential Channel)

(Anonymous Channel)

Set of Biddable Prices

Bidder i

Bidder i Trustee

Bulletin Board

Bulletin BoardAuctioneers

Fig. 1. Auction Procedure: The Optimistic Case

– There is a bulletin board, where public information can be published by all the
parties, and cannot be modified or removed.

– There are w biddable prices pl for l ∈ Zw. They are published by the auctioneers
on the bulletin board.

– The auctioneers choose large primes p and q such that q divides p− 1. Gq of order
q is a subgroup of Z∗

p .
– g and h are independently chosen primitive elements of Gq so that nobody knows

logg h. They are published by the auctioneers on the bulletin board.
– Every auctioneer publishes his public key certificate on the bulletin board. Encryp-

tion for the jthauctioneer is denoted by Ej() with corresponding decryption function
Dj(). We will assume that this encryption can be extended for public verification
when required. In practice a separate encryption algorithm could be used for this
purpose.

– Every bidder bi has a long-term certified public key yi and corresponding private
key xi.

E(x, y) = gxhy denotes the commitment information for x. The sharing threshold is k,
which means k or more correct shares are enough to reconstruct the secret.
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5.2 Registration Phase

Every bidder authenticates, in a suitable fashion to T . The bidder bi and T perform the
following exchanges in a secure channel.

1. T securely chooses a private key x̂i and computes the corresponding public key ŷi,
which will be the pseudonym for bi;

2. T commits to the private key and the pseudonym, and signs the public key and the
commitment as follows: Com Ti = H(bi, ri) and Sig Ti = SIGT (ŷi, Com Ti),
where ri is a random integer chosen by T

3. T sends to bi the private key x̂i, the random integer ri and the certificate Ci =
(ŷi, Com Ti, Sig Ti).

4. bi verifies Com Ti = H(bi , ri) and Sig Ti = SIGT (ŷi, Com Ti).

5.3 Bid Submission Phase

Every bidder, bi, determines his/her evaluation l̂ ∈ Zw, sets {si,l = 0 | l > l̂} and
{si,l = Ri,l ∈R Zq and Ri,l �= 0| l ≤ l̂}. Every bidder chooses w random integers
ti,l < q and l ∈ Zw and performs the following steps to submit the bids.

Calculation of shares: The secret bids for each biddable price are shared for each
auctioneer using the following equations:

si,l,j = fi,l(j + 1)
ti,l,j = gi,l(j + 1)

for all l ∈ Zw, j ∈ Zm and where:
– fi,l,r and gi,l,r are secret random values chosen from Zq by the bidder for

r = 1, 2 . . . k − 1.
– fi,l(x) =

∑k−1
r=0 fi,l,rx

r mod q, fi,l,0 = si,l, gi,l(x) =
∑k−1

r=0 gi,l,rx
r mod q

and gi,l,0 = ti,l

Calculation of public commitments: The commitments for the bids si,l for each price
and the commitments for the coefficients of the polynomial for each price are cal-
culated using the following equations:

{Ei,l,0 = E(si,l, ti,l) | ∀l ∈ Zw}
{Ei,l,r = E(fi,l,r, gi,l,r) | ∀l ∈ Zw,∀r ∈ Zk \ {0}}

Publication of Commitments: The public information PUB i, which includes the fol-
lowing information, are published in the bulletin board:

– the certificate Ci;
– the set of commitments, {Ei,l,r | ∀l ∈ Zw,∀r ∈ Zk}; and,
– the signature using the pseudonym on the set of bids,

σ̂i = SIGx̂i
({ŷi||Ei,l,r | ∀l ∈ Zw,∀r ∈ Zk})

– the signature σi = SIGxi(x̂i||{Ei,l,r | ∀l ∈ Zw,∀r ∈ Zk})
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The last term in the published information, σi, cannot be publicly verified in this stage
even though the public key corresponding to the private key xi is publicly available.
This is because the message that corresponds to this signature is not public, as x̂i is a
shared secret between the bidder and the trustee, T (refer to the registration phase).
This property is essential to protect the anonymity of the bidders. This signature
information is important for the bidder to be certain that the trusted party, T , did
not submit the bid. T is trusted only to protect the identity of the losing bid. So this
signature is very useful to limit trust on T .

Communication of shares for the auctioneers: The shares for the jth auctioneer for
every secret bid are collated to form Bi,j = (ŷi, {si,l,j , ti,l,j | ∀l ∈ Zw}) and the
bidder sends the following information to the bulletin board:

Vi,j = Ej(Bi,j , SIGx̂i(Bi,j))

5.4 Bid Opening Phase

If non-repudiation of the winning bid is essential, then T may verify σi in the data
structure PUB i, for every bidder bi and every sealed bid available in the bulletin board.
This process will prevent the winning bidder from repudiating the bid. At the end of the
bid submission phase, the auctioneers open the bids as follows.

Signature Verification. For each sealed bid, PUB i, available in the bulletin board:

– The auctioneers verify the certificate, Ci and the signature, σ̂i, in PUB i using ŷi.
– The auctioneer j decrypts Vi,j and verifies the signature on Bi,j using ŷi.

If either of the verifications fail for any anonymous bidder, ŷi, then the bidder and his
bid are removed from the auction proceedings and the value Bi,j is published on the
bulletin board for public verification of the failed signature tuples.

Recovering the Winning Price. We assume that the winning price is the highest bid. A
binary search strategy can be employed to determine the winning price. The following
steps are iterated in a suitable fashion until a possible winning price p̂W is found:

1. Summing up the Bids
Every auctioneer dj adds up all the bids for price pl sent to him to form his general
share for that price.

{ŝl,j =
∑

i

si,l,j , t̂l,j =
∑

i

ti,l,j | ∀j ∈ Zm,∀i ∈ Zn}

These general shares are published on the bulletin board and their correctness can
be verified by anyone by the following equation:

{E(ŝl,j , t̂l,j) =
k−1∏

r=0

(
n−1∏

i=0

Ei,l,r)(j+1)r | ∀j ∈ Zm} (1)
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If the above equation is satisfied for no less than k general shares, go to next step.
Otherwise a random invalid general share ŝl,j is chosen to be corrected. In this
case, dj must point out an invalid original share si,l,j , otherwise the auctioneer
is blacklisted for incorrectly summing up the original shares. The auctioneer may
provide an unsuccessful verification of the following equation to accuse some bidder,
ŷi, of submitting incorrect share (si,l,j , ti,l,j).

E(si,l,j , ti,l,j) =
k−1∏

r=0

E
(j+1)r

i,l,r (2)

If ŷi denies the accusation then a dispute said to have occured. To solve the dispute,
ŷi is required to publish verifiable encryptions of the shares si,l,j for each auctioneer.
If they are valid, then valid original shares si,l,j can be decrypted from them and
ŝl,j is recalculated. Otherwise the auctioneers ask T to recover the true identity, bi

of ŷi. In such a case, all shares and public information from ŷi are removed from
the auction proceedings. This step is iterated until there are enough correct general
shares.

2. Interpolation
No less than k correct general shares are put together to recover the sum of all the
bids, sl from the set of shares {sl,j}, at price pl using Lagrange interpolation. Any
outsider can also perform the interpolations to check the validity of winning price.

Identifying the Winner(s).

1. Opening the bids at p̂W

Every bidder’s shares at p̂W are published by the auctioneer. If a bidder disputes his
shares, he can correct them. The following verification is performed.
E(si,W,j , ti,W,j) =

∏k−1
r=0 E

(j+1)r

i,W,r for i = 0, 1, . . . , n−1 and j = 0, 1, . . . , m−1.
The verification can be performed by any entity. If no less than k shares pass the
verification, his bid at p̂W is recovered. Otherwise his bids are removed. ŷi is a
possible winner if si,W �= 0.

2. Upward opening
si,W+1 for i satisfying si,W �= 0are opened. If any opened si,W+1 is non-zero,
W ←W + 1 and si,W+1 for i satisfying si,W �= 0are opened. This step is iterated
until si,W+1 = 0 for every i satisfying si,W �= 0. This price pW is the winning
price. ŷi for each i satisfying si,W �= 0are the pseudonyms of the winners.

3. Identification
All the winners are required to reveal their real identities by publishing bi, x̂i and
ri where the winner is denoted as bi. If any anonymous winner ŷi refuses or fails to
open his identity the auctioneers can ask T to recover his identity.After verifying that
the bidder is actually a winner according to the information available on the bulletin
board, T recovers the real identity bi, and the pseudonym private key x̂i, the random
integer, ri of ŷi. T publishes the so recovered information on the bulletin board.

Any entity can verify that Com Ti
?= H(bi, ri), Sig Ti

?= SIGT (ŷi, Com Ti) and

σi
?= SIGyi(x̂i||{Ei,l,r | ∀l ∈ Zw,∀r ∈ Zk}). If either of the first two verifications

fails, T is dishonest and can be held accountable. If the last verification fails, the
winning bid is removed and recalculated.
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6 Security Analysis

In this section it is illustrated that the properties described in Section 2 are satisfied.

Correctness: If the shares at pl are correct, namely E(si,l,j , ti,l,j) =
∏k−1

r=0 E
(j+1)r

i,l,r for
i = 0, 1 . . . , n − 1 and j = a0, a1 . . . , ak−1 where aγ ∈ Zm for γ = 0, 1 . . . , k − 1,
then

E(ŝl,j , t̂l,j) = gŝl,j ht̂l,j = g
∑n−1

i=0
si,l,j h

∑n−1

i=0
ti,l,j

=
n−1∏

i=0

gsi,l,j hti,l,j =
n−1∏

i=0

k−1∏

r=0

E
(j+1)r

i,l,r =
k−1∏

r=0

(
n−1∏

i=0

Ei,l,r)(j+1)r

=
k−1∏

r=0

E
(j+1)r

l,r

and El,r =
∏n−1

i=0 Ei,l,r for j = a0, a1 . . . , ak−1 where aγ ∈ Zm for γ = 0, 1 . . . , k−1.
Thus, the verification equations are correct.

Robustness: The proposed scheme is robust and avoids all the problems described in
Section 2. It can ensure that any incorrect result will be noticed by any neutral observers.
If the number of honest auctioneers is more than the threshold number, a correct result
will definitely be recovered. In our scheme robustness is guaranteed by the following
four operations: verification of general shares at the prices on the route of binary search,
opening of all the bids at p̂W , the upward opening of the bids of possible winners and
the verification of the winner’s signature on his bid. The problems identified in the KHT
system has been avoided due to the following mechanisms:

1. General share verification guarantees a unique value is computationally bound in
the commitment information.
As demonstrated by Pedersen [14], at a price pl, satisfaction of (1), namely

E(ŝl,j , t̂l,j) =
k−1∏

r=0

E
(j+1)r

l,r for j = a0, a1 . . . , ak−1

where aγ ∈ Zm for γ = 0, 1 . . . , k− 1, guarantees that a unique value ŝl satisfying
E(ŝl, t̂l) = El,0 for some t̂l can be recovered from ŝl,j for j = a0, a1 . . . , ak−1
where aγ ∈ Zm for γ = 0, 1 . . . , k − 1 by interpolation.

2. The value ŝl bound in El,0 is the sum of bids at pl.
If we see Ei,l,0 as a sealed bid and a value Si,l satisfying E(Si,l, Ti,l) = Ei,l,0 as
bi’s unchangeable bid at price pl, ŝl is always the sum of bids at pl since

E(ŝl, t̂l) = El,0 =
n−1∏

i=0

Ei,l,0 =
n−1∏

i=0

E(Si,l, Ti,l) = E(
n−1∑

i=0

Si,l,

n−1∑

i=0

Ti,l)

leads to ŝl =
∑n−1

i=0 Si,l.
So ŝl is always the sum of bids at pl whether the shares are correct or not. Therefore
the true winning price is not less than p̂W .
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3. Opening all the bids at p̂W can identify all the possible winning bids. Compared to
the token-based method in KHT proposal, our method is direct and robust.

4. The upward opening of the bids of possible winners guarantees that correct winner(s)
are found. After the upward opening,

– every bidder has at least a zero bid at a price no more than pW+1;
– every loser has at least a zero bid at a price no more than pW ;
– for every winner bi, Si,W �= 0.

5. The signature verification σi
?= SIGyi

(x̂i||{Ei,l,r | ∀l ∈ Zw,∀r ∈ Zk}) robustly
identifies the winning bidder corresponding to the winning bid. Although T can
recover x̂i, only bi can form valid σi because only bi is assumed to know the private
key, xi, corresponding to the long-term certified public key, yi.

6. PVSS technique based on verifiable encryption enables a bidder to prove the validity
of his bids without revealing them.

Upward opening prevents BBC problem. In all the operations the shares are verified
against the published commitments before the bids are reconstructed. Thus ABC problem
is avoided. When there is a dispute between a bidder and the auctioneer, an innocent
bidder can employ the PVSS protocol discussed in Section 4 to prove the shares he
distributes are correctly committed.

However there is another problem. The bids from a bidder may be inconsistent. If a
winner submits a zero bid at a price lower than pW or a loser submits a non-zero bid at
a price higher than pW some problem may arise. The auctioneers interpret them in one
way and obtain a reasonable result. But after the winning price and winners are declared
the bidder may publish some of his bids, which can be verified against the corresponding
commitment as valid and leads to a reasonable result. The solution is to ignore these
protests as long as the auctioneers follow the correct procedure to compute the result.
The result recovered by the auctioneers is indisputable because it is uniquely determined
by the bids and the pre-established auction rules.

Confidentiality: is achieved because the commitments published before the shares sub-
mission reveal no information about the bids, while the encryption scheme is computa-
tionally hiding.

Public Verification: Anyone can verify that the auctioneers follow the unique route of
binary search, the sum of bids are opened correctly along the search route, every losers
has a bid opened correctly at a price no more than pW as zero, every winner has a bid
opened correctly at pW as non-zero, all winners’ bids are opened correctly at pW+1 as
zero and all winners’ commitments are correctly signed by himself. So any protest by
any bidder can be judged by any outside observers. Especially PVSS technique enables
any neutral party to solve the dispute.

Privacy: Under this scheme the privacy of the losing bids can be protected unless more
than k auctioneers are malicious and collude to recover them. Even though enough
malicious auctioneers collude, they can only know the distribution of the bids. Because
all the bids are submitted anonymously, without collusion of T the auctioneers cannot
link the losing bids to their owners. Without colluding with a number of auctioneers
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over the threshold T do not know the bids of the losers. There is an exception. Upward
opening may reveal some losing bids. But these bids are submitted by dishonest bidders
with a overwhelmingly high probability, it is not necessary to protect their privacy.

7 Comparison with KHT Scheme

Table 1 lists the properties satisfied in by the KHT system and our proposal.

Table 1. Comparison of properties

Privacy of
Fairness Confidentiality Public Verifiability losing bids Robustness

KHT System no conditional no conditional no
Proposal yes yes yes conditional yes

The efficiency analysis assumes that in the KHT system RSA signature and ElGa-
mal encryption are used for setting up confidential and authenticated channels between
bidders and auctioneers. The following observations can be made on our proposal.

1. Communication Efficiency
Only one round of communication is needed after the bidder submits their bids.

2. Computation Efficiency
– The computation load of T is n exponentiations.
– The computation load of a bidder is 2wk + 3m + 2 exponentiations. All can be

performed off-line.
– The computation load of the auctioneers is (k + 2)m(n + log2 w) + n(3m +

1) exponentiations. In comparison the KHT scheme uses only 3nm + (k +
2)m log2 w exponentiations.

The proposed scheme achieves more properties than the KHT system but, as mentioned
above, has higher computaitonal requirements. For the sake of this analysis, we assume
that in Kikuchi’s scheme the secret sharing by Pedersen [14] is employed and the general
shares at the prices on the route of binary search are verified by the auctioneers. In a
typical example with n = 10, w = 1024, m = 4, k = 2, the number of exponentiations
in KHT system and the proposed scheme are 280 and 450 respectively.

8 Conclusion

By modifying the KHT system, a sealed bid auction system has been designed that
provides confidentiality, anonymity for the losing bids and robustness. Although the
proposed scheme is more costly than the KHT system, extra security functionalities are
accomplished. Future research will attempt to reduce the cost by employing suitable
optimisation techniques for various verification procedures. In both the KHT system
and the proposal, the winning bid is the highest price value. It would be interesting to
extend the technique to determine the second highest bid without identifying the second
highest bidder, which may be required in Vickery auction.
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Abstract. Predictable initialization vectors in IPsec ESP encryption,
allowed by the IPsec specifications and used by most implementations,
compromise IPsec confidentiality. By using an adaptive chosen plaintext
attack, an attacker can break low entropy plaintext blocks using brute
force, and confirm guesses of the contents of arbitrary plaintext blocks.
We analyze the preconditions and the seriousness of such attacks, and
provide results of practical attack experiments.

1 Introduction

The IP Security Architecture (IPsec) [6] is widely used for end-to-end connection
encryption, for remote access to a protected intranet, and for interconnecting
sites using encrypted VPN tunnels. The currently specified IPsec ESP encryption
algorithms use cipher block chaining (CBC) mode [9,10]. The initialization vector
(IV) is included in the ciphertext of every packet to allow the receiver to decrypt
individual packets regardless of packet loss or reordering of packets.

The specifications for ESP DES [9] and other ciphers [10] do not specify
an explicit IV selection algorithm, but require that the algorithm satisfy certain
properties. RFC 2451 [10] states that the IV field must be chosen at random and
must not use a low Hamming-distance source, such as a counter, so that ECB
encryption of very similar plaintext blocks is avoided. However, the specification
does not require unpredictability of an IV to an external party, and explicitly
allows the common practice of using the last ciphertext block of the previous
packet as the next IV.

The use of predictable IVs leads to an adaptive chosen plaintext attack, which
was pointed out by Scott Fluhrer on the IPsec working group mailing list. The
attack allows an attacker to break low entropy plaintext blocks using brute force,
and confirm guesses of the contents of arbitrary plaintext blocks. In this paper,
we analyze the preconditions and seriousness of such attacks, and provide results
of practical attack experiments that confirm the vulnerability in practice.

In the rest of this paper, the term victim host refers to a host that performs
IPsec ESP encryption and possibly ESP or AH authentication. A victim packet is
an IPsec-protected plaintext packet whose (arbitrary) plaintext block, the victim
block, the attacker wants to guess. The term attack packet refers to the IPsec-
protected plaintext packet that the attacker forces the victim host to encrypt

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 160–172, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Fig. 1. The victim and attack packets

and send. The first plaintext block of the attack packet is called the attack block.
The term chained IV refers to the common practice of using the last ciphertext
block of the previously encrypted packet as the IV for the next encrypted packet.

2 Description of the Attack

2.1 The Attack
Figure 1 describes the ESP CBC processing of the victim and attack blocks. The
attacker observes the victim packet, and then causes the victim host to encrypt
and send the attack packet. The victim block may be any block of the victim
packet, including the first and last plaintext blocks, while the attack block is
always first in the attack packet. The victim and attack packets do not have to
be adjacent in the packet stream; the victim may encrypt and send one or more
packets between the victim and attack packets.

By definition of CBC, the encrypted victim block is

c1 = F (K, p1 ⊕ iv1) , (1)

where ⊕ denotes the bitwise exclusive-or (XOR) operator, F is the block en-
cryption function (e.g. 3DES), K is the key, p1 is the victim block, and iv1 is
either the IV of the packet, if the victim block is the first block in the packet,
or the previous ciphertext block, otherwise.

Similarly, the encrypted attack block is

c2 = F (K, p2 ⊕ iv2) . (2)

The attacker chooses the attack block, p2, as

p2 = iv1 ⊕ iv2 ⊕ G , (3)

where G is the attacker’s guess of the victim block, p1, and iv2 is the attacker’s
prediction of the ESP initialization vector that the victim host will use to encrypt
the attack packet. The encrypted attack block is then

c2 = F (K, iv1 ⊕ iv2 ⊕ G ⊕ iv2) = F (K, G ⊕ iv1) . (4)

If the guess G is correct, c2 will equal c1, confirming the attacker’s guess of the
contents of the victim block.

The preconditions for the attack are discussed in Sect. 3.2.
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2.2 Previous Work

The security requirements for ESP IVs have been debated on the IPsec mailing
list since the beginning of the IPsec working group.

A good description of this attack can be found in an e-mail sent to the IPsec
mailing list by Scott Fluhrer3. Although the e-mail was related to AES, the
attack is independent of the underlying cipher.

Phillip Rogaway pointed out that the IV generation (and security related
algorithms in general) should be concretely specified to avoid cryptographically
unsound implementations. He also suggested that a correlation between the IV
and the first plaintext block is harmful [12]. The conclusion reached by the
working group was that the IV generation has to be random to avoid correlations,
but unpredictability was not required.

Later, Hugo Krawczyk pointed out a chosen plaintext attack against pre-
dictable IVs (especially chained IVs). The attack reveals the cipher key being
used for encryption, but requires O(2n) memory, where n is the cipher key size
in bits4.

Philip Gladstone suggested that, although unlikely, a predictable IV might
open IPsec up to a chosen plaintext attack5. Others commented that such an
attack is not practical; the attacker cannot choose the plaintext directly because
there are protocol headers before the actual plaintext, and the attacker does not
have full control of the headers.

The overall consensus seems to have been that it is sufficient that the IV does
not correlate with plaintext. Thus, a random IV, predictable or not, is acceptable
– in particular, the common practice of IV chaining is acceptable. The attack
described by Hugo Krawczyk is difficult to exploit in practice, especially against
a cipher with a large keyspace, and the potential vulnerability against chosen
plaintext attacks (described by Philip Gladstone and others) was also considered
impractical.

3 Analysis of the Attack

3.1 Assumptions

Throughout the discussion below we assume that a cipher with a 64-bit block
size is used. The attack applies to arbitrary block sizes, but the analysis details
vary depending on how the block boundaries align with the protocol headers
and data. Similarly, we only cover IPv4 although the attack applies to IPv6 as
well.

3 See [13], message titled “Suggested modification to AES privacy draft”, January
2002.

4 See [13], message titled “pf key comments (predictable IVs)”, January 1997.
5 See [13], message titled “Re: I-D ACTION:draft-ietf-ipsec-skipjack-cbc-00.txt”, May

1999.
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3.2 Preconditions for the Attack

The attacker must be able to observe a victim packet in ciphertext form, and to
extract the ciphertext block, c1, corresponding to the victim block, p1, and the
IV used in encrypting the victim block, iv1.

The attacker has to make a guess about the entire contents of the victim
block in order to generate one attack packet. If there are n possible contents for
the victim block, the attacker has to try each of the n alternatives in turn.

The attacker must be able to predict the IV, iv2, which the victim host
will use to encrypt the attack packet. The prediction can be verified from the
encrypted attack packet. If the victim host uses IV chaining, this precondition
means that the attacker has to capture the last ciphertext block of the packet
encrypted immediately prior to the attack packet.

The attacker must be able to force the victim to encrypt and send the attack
packet. Determining the desired contents of the attack block is simple, involving
simply XOR. However, when the victim host processes the attack packet, the
attack block corresponds to a protocol header in transport mode, and an IP
header in tunnel mode. Thus, the attack block must meet any validity constraints
of the header in question; otherwise the victim host will refuse to encrypt the
packet.

If the attacker determines that the attack block does not meet such validity
constraints, the attacker simply forces the victim to encrypt and send a dummy
packet (which meets the constraints). This resets the predicted IV to a new value,
and changes the corresponding attack block to a new value. The attacker then
simply tries again with the new attack block. If necessary, the attacker can iterate
this process indefinitely until the attack block meets the validity constraints (or
the security association expires). Having obtained an attack block (dummy or
not), the attacker must force the victim host to encrypt and send the attack
packet, for which transport and tunnel mode require a different approach. We
will analyze this precondition in more detail in Sect. 4.3.

The attacker must be able to observe the encrypted version of the attack
block. If the encrypted attack block (c2) equals the encrypted victim block (c1),
the guess in the attack packet was correct. The attacker should also be able to
verify that the encrypted IPsec packet received is actually the encrypted attack
packet and not some unrelated encrypted packet. If this condition is not met,
the attack may yield a false negative. Verifying this condition reliably seems
impossible because of encryption. However, the attacker may use e.g. timing
and length of the encrypted packet as sanity checks and redo the attack if such
checks fail. The attacker may also simply rely on her luck and compensate by
attempting every guess several times.

The attacker must also verify that the attack packet was encrypted using the
same cipher key as the victim packet. This can be done by simply verifying that
the SPI fields in the two packets agree because the SPI maps statically to the
cipher parameters, including the key.
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3.3 Analysis of the Preconditions

Observing the victim block requires that the attacker be able to passively mon-
itor the packets routed between the victim host and the other IPsec endpoint;
the attacker may also use a routing attack to get access to the packets. If the
victim uses IV chaining, predicting the IV is trivial; however, any predictable
method of choosing the IV opens up the same vulnerability. Verifying the result-
ing encrypted attack packet is trivial. The remaining preconditions are covered
in Sections 4.2 and 4.3.

The vulnerability can be confirmed by the attacker before she decides to
mount an attack. The attacker can simply monitor the encrypted traffic flow
and ensure her IV prediction algorithm works correctly. Also, if IKE [8] is used
to set up the IPsec security associations, vendor identification payloads in the
phase 1 IKE messages may provide a clue about the IV generation algorithm
used by the implementation. If the attacker cannot correctly predict the IVs,
she can simply give up the attack as futile without wasting resources or getting
caught while attempting an active attack.

3.4 Kinds of Attacks

Brute Force Guessing. The attacker may simply iterate through a set of
possible plaintexts in the victim block. Such attacks are difficult to mount if
there are more than one or two octets to guess, because the amount of attack
traffic easily becomes excessive.

Some potential realizations of this kind of attack:

1. The victim sends a TCP segment with a single character of e.g. password
data. The attacker iterates through all the possibilities and discovers the
character. (We tried this attack; see Sect. 5 and [2].)

2. The victim downloads a file from an IPsec-protected FTP site. The attacker
iterates through all potential files to determine which one was downloaded.
In more detail, the attacker identifies one or more plaintext blocks that are
different in every potential file, and then iterates through these plaintext
block possibilities.

Confirming Suspected Plaintext. The attacker may have a strong suspicion
about the plaintext, and simply wants to use the vulnerability to verify her guess.
In such cases, the attack is extremely efficient, and can verify a large amount of
plaintext very easily.

Some potential realizations of this kind of attack:

1. The victim is sending an e-mail to a correspondent. The attacker verifies the
receiver (and the sender) of the mail by predicting what the headers should
(probably) look like, and by verifying these plaintext guesses. If the position
of the address in the packet is uncertain, the attacker simply shifts the guess
through all possible positions in the packet.
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2. The victim accesses a web page. The attacker has a suspicion that the victim
is accessing a certain URI, and verifies her suspicion. Note that even if the
web server address is known, the attacker may be interested in knowing
which URI the victim is accessing. (We verified that this attack is feasible;
see Sect. 5 and [1].)

3. The attacker may routinely scan all e-mail correspondence of the victim for
a few chosen words, by trying each word at every possible place in each IPsec
packet that might be related to e-mail.

3.5 Effort Estimate

To uncover the contents of a single victim block requires an average of

N =
W

2p
(5)

attempts, where p is the probability that the computed attack block meets the
validity constraints imposed by the victim host (given a predicted IV), and W
is the maximum number of possible plaintexts p1.

Suppose that, p = 2−16 (which is a realistic figure for IPsec tunnel mode
attack; see Sect. 5) and W = 256, In this case, N = 223. At 100 packets per
second, the attack requires an average of about 23.3 hours. At 1000 packets per
second, the average is 2.3 hours.

When using chained IVs, the time between sending an attack packet and
observing the encrypted version (containing the next IV prediction) dictates the
maximum rate of attack packets. Thus, network latency plays a crucial role in
the feasibility of the attack (e.g. 100 packets per second corresponds to 10 ms
cycle time).

If the attacker is able to predict IVs for multiple packets in advance, latency
becomes less important for feasibility. A pseudo random IV generator indepen-
dent of the ciphertext (or plaintext) in previous packet(s) would allow this, but
such generators do not seem to be used in practice.

4 Carrying out the Attack

4.1 Guessing the Victim Block

It is not feasible to successfully attack a completely unknown plaintext block in
practice. The attacker thus needs to somehow limit the number of alternative
plaintext blocks. Doing so is dependent on how the plaintext aligns with the
cipher blocks. Attacking the last plaintext block of the victim packet is usually
easier than attacking the other plaintext blocks, because the last plaintext is
padded with a (usually) deterministic padding.

The ESP padding consists of 0...255 padding octets, followed by a “pad
length” field indicating the number of such padding octets, followed by a “next
header” field indicating which protocol ESP protects (the value 4, i.e. IP-IP tun-
nelling, is used for IPsec tunnel mode). The padding octets are used to bring
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the total amount of plaintext to a multiple of the cipher block size. However,
the implementation is allowed to add extra padding octets in order to conceal
the true length of the encrypted data. The padding octets are specified to have
the form (in hex) 01 02 03, etc, unless the cipher in question has a different
requirement. [7]

In practice, all cipher algorithms for ESP use the default padding octet se-
quence. Since most implementations also use a minimum size padding, the entire
sequence of octets following the payload data is completely deterministic.

An example: suppose that the last plaintext block contains a single data
octet 0x7a, and tunnel mode is used. The last plaintext block then contains the
following octets (in hex): 7a 01 02 03 04 05 05 04. All octets except the data
octet are known (assuming that the implementation uses the shortest padding
sequence).

Attacking the first user data octets is, in many cases, complicated by interfer-
ence from a preceding protocol header; if the first user data octets share a cipher
block with the protocol header, the attacker must guess the protocol header in
addition to the user data. We next cover how the user data in UDP [4] and TCP
[5] may be guessed in both transport and tunnel mode.

UDP. In transport mode, the UDP payload begins at an eight octet boundary,
and thus there are never any unpredictable octets (other than the unknown data)
in the plaintext blocks.

In tunnel mode, the IPv4 header preceding the UDP header changes the
alignment (assuming there are no IPv4 options): the first plaintext block con-
taining UDP payload data also contains the “length” and “checksum” UDP
header fields. The attacker may either try to guess both fields (which can be
done with a good probability), or try to force IPv4 options that fix the align-
ment6 to be used (which is difficult, because the attacker does not construct
the packet). If the victim block is farther in the UDP data, such changes in
alignment do not require guessing any header fields.

TCP. TCP options change the alignment of TCP user data with the cipher
blocks. Similarly to UDP in tunnel mode, the attacker may compensate by guess-
ing the TCP header fields in addition to the user data. The attacker may also
try to force the victim to use suitable TCP or IPv4 (in tunnel mode) options
that fix the alignment, but this is difficult because the attacker cannot directly
affect the construction of the victim packet.

In transport mode without TCP options, the “checksum” and “urgent
pointer” fields of the TCP header interfere with the first four octets of user data.
While the urgent pointer is almost always zero, the checksum field is considerably
harder to guess, because it is affected by e.g. the sequence and acknowledgement
numbers, the window size, etc. A TCP header with 4+8n octets of options (and
padding) does not interfere with the first plaintext containing data.
6 Note, however, that some IPsec implementations do not deal correctly with IPv4

options.



Attacking Predictable IPsec ESP Initialization Vectors 167

ver TOS total length

1 2 3 4
Octet number

IHL

identification frag. offsetflags

... rest of the IP header

1 2 3 4
Octet number

src port dst port

length checksum

UDP payload data

Fig. 2. Partial IPv4 header and UDP header

In tunnel mode, a TCP header without options does not interfere with the
first plaintext block containing data. Thus, to attack TCP in tunnel mode, the
attacker would prefer to either have no TCP options, or have an integral multiple
of eight octets of TCP options.

4.2 Controlling the Attack Block

One of the preconditions of the attack described is that the attacker must be able
to control the first plaintext block of the attack packet. Such control is heavily
dependent on the IPsec encapsulation mode (tunnel or transport).

Transport Mode. In transport mode, the first plaintext block of the attack
packet begins with the protocol header of the protocol carried inside the IP
packet. Using the UDP transport protocol is the easiest method to force the
victim host to encrypt and send a chosen plaintext block, because the UDP
header is exactly 64 bits long (which was assumed to be the cipher block size).

The attacker has almost full control of the UDP header (Fig. 2), except for
minor limitations: the length field has a minimum value (8), zero ports should
not be used, and the attacker may not be able to force an arbitrary source port
to be used (due to lack of privileges, for instance).

Tunnel Mode. In tunnel mode, the first plaintext block in the attack packet
consists of the first eight octets in the IPv4 header [3] (Fig. 2).

The “Version” field contains four fixed bits. The “IHL” field has a value in
the range 5—15; if we assume that the attacker does not use IP options, this
field contains the value 5, and thus four fixed bits. The “Type of Service” field
can be entirely controlled by the attacker, but may be modified by some routers;
we assume that the attacker controls this field.

The “Total length” field is limited by the medium used; we assume Ethernet
and thus the total length must be 20 at minimum and 1470 at maximum7 The
7 Because we did not want the IPsec packets to be fragmented, the maximum total

length is 1500 minus IPsec overhead; the overhead consists of SPI (4 octets), sequence
number (4 octets), the initialization vector (8 octets), padding, padding length and
“next header” field inside ESP (2 octets, at minimum), and the ESP authenticator
(we are assuming 12 octets). The resulting maximum total length is 1470.
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attacker can control log2 1451 ≈ 10.5 bits, while approximately 5.5 bits cannot
be controlled.

The “Identification” field can be controlled fully. The “Flags” field consists
of three flags: the reserved bit (set to zero), the “Don’t Fragment”-bit (assumed
set to zero to avoid problems), and the “More Fragments”-bit, which can be
controlled. The “Fragment Offset” field can be chosen freely, as long as it is
compatible with the “Total length” field8.

In summary, with the given assumptions, there are roughly 16 bits beyond
the control of the attacker.

A Note on Encrypting Fragments. Above, we assume that the IPsec imple-
mentation being attacked encrypts fragments in tunnel mode; this assumptions
holds for FreeS/WAN 1.91 which was used in our tests. Some IPsec implemen-
tations first reassemble all the fragments, then encrypt, and finally fragment
the resulting packet again. Attacking such implementations is more difficult be-
cause the fragment related fields cannot be freely controlled; the attack is harder
(roughly) by a constant of 213 (the “Fragment Offset” field).

4.3 Forcing the Victim Host to Encrypt the Attack Packet

Forcing the victim to encrypt and send the attack packet is the most difficult
part of the attack. Satisfying this precondition is entirely different in tunnel and
transport mode, and is also sensitive to the network topology.

Tunnel Mode. The attacker may route attack packets through the tunnel if
the attacker has access to the network behind the tunnel endpoint. The common
objection to this approach is that the attacker must have access to the trusted
side of the tunnel, and thus there is no point in attempting this attack anyway.
This argument is, however, not always valid.

The trusted network might be a large routed network. The victim and the
attacker may reside in entirely different parts of the network, and the attacker
might not be otherwise able to observe the victim’s traffic.

Also, if the network setup allows access to an external network (through a
NAT or a firewall), the attacker may be able to carry out the attack without
access to the internal network. For instance, if NATted Internet access is allowed,
any NAT mapping (created by the victim host by accessing the Internet) can
be exploited by the attacker. The attacker can then simply forge IPv4 packets
and send them using the NATted address information. If there is no NAT or a
stateful firewall, the attacker can send attack packets directly without waiting
for the victim to initiate an external access.

Note, however, that in such attacks, the attacker is only able to attack IPsec
traffic directed towards the victim host – not traffic coming from the victim host.
8 The combination of “Total Length” and “Fragment Offset” (converted to octets)

must not exceed 65536, the size of the maximum IPv4 packet.
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This is fortunate, because the traffic sent by the victim (e.g. passwords) is often
more interesting than the traffic flowing in the reverse direction.

Ciphers with larger than 64-bit block size force the attacker to control more
bits of the IPv4 header. For instance, a cipher with a 128-bit block size (such as
AES) force the attacker to control the source IPv4 address, the TTL, and the
checksum fields, among other fields.

Transport Mode. Applications running on the victim host may provide a
method for sending a chosen plaintext block. Such applications could include
e.g. streaming protocols, FTP, and SMTP. The victim may, for instance, have
separate IPsec transport connections to both the attacker and a third host. The
application on the victim host may “route” data from one connection to another
at the application layer (consider, for instance, e-mail).

If the victim host is a multi-user machine, one user may be sending data
using one application while the attacker is causing attack packets to be sent by
using another. This approach may work for tunnel mode as well.

5 Attacks

We first verified the vulnerability manually by setting up an IPsec transport
connection between Alice and Bob, and sending an UDP packet with known
plaintext from Alice to Bob. We then captured the IPsec-processed ESP packet,
and extracted the encrypted victim block and the IV used to encrypt it. Based
on these two blocks, the known plaintext, and an IV prediction, we computed
the attack block, and forced Alice to encrypt the attack packet. This was done by
choosing an UDP data payload that forces the UDP header port fields, checksum
field, and length field to values matching the attack block.

We then tried an attack against suspected plaintext in transport mode. Alice
accesses a web page using HTTP protected by IPsec transport mode. Eve sus-
pects that Alice is accessing a certain URI on the web server. By using the attack
described in this paper, Eve verifies her guess. The attack was a success [1]. The
URI of the web page being accessed was uncovered with three attack packets,
confirming a guess of 24 plaintext characters9, which is an optimal number of
packets for this kind of an attack. Note that this attack is easy to carry out in
tunnel mode as well.

The final attack was the most demanding one. We used a setup of three hosts,
shown in Fig. 3. Alice and Bob run Linux FreeS/WAN, while Eve runs Linux with
custom software able to sniff (encrypted) packets exchanged by Alice and Bob,
and route forged packets through Alice in a tunnel mode attack. We used ESP
with 3DES and HMAC-SHA1 for encryption and authentication, respectively.
9 Attacking a multi-user host where several users share an IPsec security association

is not new. Bellovin describes a similar attack against ESP without authentication
in [14]. However, the attack described here works regardless of ESP or AH authen-
tication.
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Fig. 3. Attack setup

A user of host X logs into Bob using a telnet-like protocol, protected by
an IPsec tunnel. The login consists of single-character TCP segments10. Eve
captures the encrypted packets and determines each character in turn.

We first sent a single test character through the IPsec tunnel connection, and
tried the attack first using a few false guesses and then using the correct guess.
This attack worked, and we were able to correctly verify desired characters of
the login traffic.

Our intention was then to crack a single unknown character to obtain a prac-
tical effort estimate. This attack failed because the victim rekeyed spontaneously
during the attack; we ran out of time and could not continue the attack further.
Note that rekeying does not really prevent the attack – we could have continued
after waiting for the victim to login again.

Even though the second part of the attack failed, the first part indicates
that the vulnerability can be exploited, as long as the attacker deals with rekey-
ing events. We were able to obtain an effort estimate in our network from the
second part of the attack: the average rate of attack packets was about 1012
packets/second (0.987 milliseconds between packets). Verifying a single char-
acter guess required approximately 51821 attack packets and 51.2 seconds on
average. The probability of the attack block meeting the validity constraints for
IPv4 headers was approximately 2−15.7[2], which is slightly better than the pes-
simistic estimate of 2−16 (which corresponds to 65536 attack packets per guess,
on average) and can be reduced further by exploiting the specific features of the
victim IPsec implementation.

Given these estimates, it would take an average of 5.4 hours to uncover an
eight character password consisting of ASCII characters in the range 0x20...0x7e.

Note that our network was very simple, and thus had extremely low latency.
The time required for the attack increases linearly with the latency (unless the
attacker is able to predict more than one IV at a time).

6 Preventing the Attack

The change suggested by Fluhrer was to require that in addition to being ran-
dom, the IV must be unpredictable to an external party. Of course, the same
10 In real environments, the username and/or password characters might be combined

into larger TCP segments.
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requirement suffices to prevent the attack regardless of which cipher is used. Any
algorithm for choosing IVs that can be predicted by the attacker opens up the
same vulnerability; IV chaining is simply one vulnerable algorithm.

Using another ESP cipher has no effect on the attack, unless the cipher
block size changes. In particular, the adaptive chosen plaintext attack described
by Fluhrer is feasible even if the cipher itself resists such attacks. A larger block
size makes the attack harder because there is more plaintext data to guess, and
more bits to control in the attack packet.

Rekeying slows down the attacker, because an iteration of guesses against a
given plaintext block cannot be continued if the key changes. The attacker can,
however, wait for the victim to resend the interesting plaintext and continue
the attack (of course, the attacker must somehow guess which encrypted block
is a resend of the previous plaintext). Note that the attacker does not need to
restart the attack from scratch; previously eliminated guesses do not have to be
reconfirmed. Thus, rekeying does not protect against the attack fully.

If IV chaining is used, sending high speed data through the IPsec connection
makes the attack very difficult: once the attacker has predicted the initialization
vector, it may have already been used before the attacker has time to exploit
the prediction. However, should the high speed traffic stop, the attacker could
mount the attack immediately against any previous plaintext block, even blocks
that were sent when the high speed traffic was still being sent.

ESP or AH authentication does not prevent the attack, since packets are not
directly modified by the attacker but the attacker is causing the victim host to
encrypt the attack blocks.

Note that the attacker does not get information that helps in breaking the
encryption key, and consequently a successful attack will simply reveal the con-
tents of a plaintext block. The attacker gains no advantage for later attacks.
Knowledge of a verified plaintext-ciphertext block pair may be useful informa-
tion, although such pairs are easy to guess (with a high degree of certainty)
anyway.

7 Conclusions

If IVs are chosen in a predictable manner in ESP, an adaptive chosen plaintext
vulnerability opens up. The preconditions of the attack are restrictive, and the
vulnerability is thus difficult, but not impossible, to exploit in practice.

We demonstrated that the vulnerability can be exploited to guess single
characters of TCP connections, and to verify suspected plaintext blocks, such as
URIs being accessed. ESP or AH authentication does not prevent the attack.

If the victim chooses IVs using an unpredictable algorithm, the attack is
effectively prevented.
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Abstract. In digital content distribution systems, digital watermark-
ing(fingerprinting) technique provides a good solution to avoid illegal
copying and has been studied very actively. c-secure CRT code is one
of the most practical schemes for such fingerprinting since it is secure
against collusion attacks even though random errors are added. But it is
not sufficiently secure in the case that random errors are added. In this
paper, a new ID coding scheme, Randomized c-secure CRT code, is pre-
sented. This new scheme improves the error tracing probabilities against
collusion attacks with addition of random errors.

1 Introduction

In digital content distribution systems, it is very important to avoid illegal copy-
ing since this might causes copyright infringement. Digital watermarking tech-
niques can be used to deter illegal copying in the following way: The recipient
ID of a content is watermarked(embedded) as a fingerprint into the distributed
content and if an illegal copy is found, the malicious redistributer’s ID can be
traced from the embedded ID.

A collusion attack is an attack that malicious recipients collude, compare
their watermarked contents and make a content which leads to a tracing error.
c-secure code with ε-error[1] is secure against any collusion attacks by up to
c recipients with ε-error on an assumption called Marking Assumption but, as
pointed out in [6], its code length will be long if the number of colluders c is
large. Additionally, even in the case that c is small, the code length is very
large. In [6], c-secure CRT code with ε-error was proposed and it has less code
length(O(n1/k)) for large n and c where k is a security parameter. This code can
be transformed into a random error resilient code by redefining c(for detail, see
[6]) even though, by colluders(malicious recipients), random errors are added to
the content.

In content distribution system, if a tracing error(an innocent recipient is
detected as a malicious recipient) probability is not sufficiently small, the system
might not be used widely. Unfortunately, c-secure CRT Code cannot achieve the
small probability without increase of codeword’s length if random errors are
added. To make the tracing error probabilities smaller, an improved algorithm
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called A3 for tracing malicious recipients of c-secure CRT code was proposed[9].
In this tracing algorithm, a new threshold, wth, is used and a new procedure
which checks neighbor blocks of a subcodeword detected from illegal copy is
added to distinguish random errors and modifications by collusion attacks with
addition of random errors. Differently from coding theory, the environment in
which the coding scheme is used is not static in fingerprinting coding scheme.
In other words, colluders can design attacks by using the knowledge of coding
scheme, encoding and tracing (decoding) algorithms. In this paper, a new such
collusion attack with addition of random errors is introduced. We show that even
the encoding algorithm of c-secure CRT Code and the tracing algorithm A3 does
not achieve sufficiently small tracing error probability by computer simulations.

Next, we analyze why the tracing errors occurred and we propose a new cod-
ing scheme, Randomized c-secure CRT Code by using the result of the analysis.
We evaluate the tracing error probability of our new scheme by computer simu-
lation against the new attack and show the effectiveness of our new scheme. Of
course, Randomized c-secure CRT Code is also secure against the attack con-
sidered in [6],[9]. The length of codewords is the same of c-secure CRT Code.
These results indicate that Randomized c-secure CRT Code is very responsible
for secure content distribution systems.

In Section 2, we explain the construction of c-secure CRT Code, its tracing
algorithm and improved tracing algorithm A3 briefly. In Section 3, we introduce
an effective attack for c-secure CRT Code and discuss why the attack is effective.
We propose an improved coding scheme, Randomized c-secure CRT Code, which
is secure against the new attack in Section 4 and show the security in Section 5.
Section 6 concludes this study.

2 Preliminaries

2.1 c-Secure CRT Code and Its Tracing Algorithm

In this section, we briefly explain the construction and the tracing algorithm
of c-secure CRT code with ε-error [6]. Let n be the number of users in the
distribution system. A user ID u is chosen from Zn and the user ID is expressed
by a set of residues by the Chinese Remainder Theorem(CRT). Each residue
is encoded by O(n) n-secure code [1]. The code is a shortest code for small n.
c-secure CRT code is a concatenated code of these inner codes.
Modulus. Let ε1 and ε2 be non-negative numbers satisfying 0 < ε1 < 1, 0 <
ε2 < 1 and (1 − ε1)(1 − ε2) > 1 − ε where ε is the upper bound of the tracing
error probability. Let l, k′ and k be positive integers such that �2k′/c� = k + l.
Let p0, p1, · · · , pk′−1(without loss of generality, we assume that p0 < p1 < . . . <

pk′−1) be a pairwise relative prime integers and satisfy
∏k−1

i=0 pi ≥ n(note that
k > k′, and small k primes, p0, p1, · · · , pk−1, are sufficient). l is chosen such that
satisfying the following condition:
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[1 −
l−1∏
i=0

{1 − (1 − 1
pk+i

)c}]k′ Ck+l×2kl ≥ 1 − ε2.

We call them(pis) moduli and define an average of the moduli p̄ =
∑k′−1

i=0 pi/k′.

Residues. For a user ID u, an integer ri ∈ Zpi such that ri ≡ u (mod pi) is
a residue of u modulo pi. if at least k distinct residues are given, the user ID u
can be computed from the residues by the Chinese remainder theorem.

Inner Code. For each moduli pi, the inner code Γ0(pi, t) is defined in [1]. The
codeword w

(j)
i of Γ0(pi, t) is defined as follows:

w
(j)
i = 00 · · · 0︸ ︷︷ ︸

t×j

11 · · · 1︸ ︷︷ ︸
t×(pi−j−1)

for j ∈ Zpi .

Here, t is the smallest integer satisfying t ≥ − log2[1 − (1 − ε1)
1

2k′ ]. We call the
t bit strings in the inner code a block. A codeword w

(j)
i consists of j “0” blocks

and pi − j − 1 “1” blocks.

c-Secure CRT Code. c-secure CRT Code is a concatenated code of the residues
which are encoded by the inner code. This code is denoted by Γ (p0, p1, · · · ,
pk′−1; n, t). A codeword of c-secure CRT Code W (u) is defined as follows:

W (u) = w
(r0)
0 ‖w

(r1)
1 ‖ · · · ‖w(rk′−1)

k′−1 for u ∈ Zn

where ri ≡ u mod pi, 0 ≤ i < k′. The code length of c-secure CRT Code is

k′−1∑
i=0

pit = p̄k′t.

Every k(< k′) inner codes are sufficient to detect the ID u if the codeword is not
attacked since

∏k−1
i=0 pi ≥ n(see Modulus and Residues).

Tracing Algorithm. The tracing algorithm of c-secure CRT Code[6] consists
of the following five steps.

STEP 1: Check the content and detect the embedded information x. the
length of x is p̄k′t.

STEP 2: Divide x into k′ words as follows:

x = x0‖x2‖ · · · ‖xk′−1

where length of xi is t(pi − 1).
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STEP 3: For each xi, apply the following algorithm:

input x;
for (min = 0; min < pi − 1; min ++)

if (Hmin(x) > 0) break;
for (max = pi − 1; max > min; max −−)

if (Hmax−1(x) < t) break;
output min and max;

Here, Hmin(x) is the Hamming weight of the min-th block of x. The out-
puts of the algorithm min and max are denoted by r

(−)
i and r

(+)
i , respec-

tively, where r
(−)
i < r

(+)
i .

STEP 4: Count numbers D(u)(0 ≤ D(u) ≤ k′) exhaustively for each user
u. D(u) is the number of congruent equations which u satisfies with the
residue pairs, defined as follows:

D(u) = |{i ∈ Zk′ |(u ≡ r
(−)
i (mod pi)) ∨ (u ≡ r

(+)
i (mod pi))}|.

D(u) is called a degree of the residue pairs at u.

STEP 5: Define Dth = k + l. If the condition D(u) > Dth holds, output the
user u as a member of the coalition.

2.2 Improved Tracing Algorithm A3

The above tracing algorithm is sufficiently secure against collusion attacks by up
to c malicious recipients. However, if random errors are also added to the con-
tent, tracing errors occur in not small probability. By redefining c(consequently
increasing the codeword’s length), the code can be transformed to a random
error resilient one but it is not so effective. To overcome this problem, three
improved tracing algorithms were proposed [9]. The best algorithm of them is
called A3. This algorithm is almost the same algorithm and the only difference
is STEP 3.

In this algorithm, it is assumed that the random errors are added to the con-
tent with the probability e(note that e means the rate that bits of the codeword
are changed), and the server(who checks the embedded ID) can compute e in
some way. From the probability e, the server determine a new threshold wth as
follows: The blocks of the detected data can be classified into tree types, a col-
lusion attack is executed to blocks(Type 1), only random errors are added to all
“0” blocks(Type 2), and only random errors are added to the all “1” blocks(Type
3). The probability distribution of the Hamming weights on type 1, type 2 and
type 3 are defined in the following way:
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pType1 (w) =
(

t

n

) (
1
2

)t

,

pType2 (w) =
(

t

w

)
ew(1 − e)t−w,

pType3 (w) =
(

t

w

)
et−w(1 − e)t.

Let wth be a maximum integer which satisfy pType2 (wth) > pType1 (wth). In
other words, wth is the maximum Hamming weight which the probability that
the block was created by adding random errors to all “0” block is greater than
the probability that the block was created by the collusion attack. Finally, the
server chooses a small positive integer adth. The choice of adth is ad hoc. The
STEP 3 of A3 is as follows:

STEP 3 of Algorithm A3:

input x;
for (min = 0; min < pi − 1; min ++)

if ((Hmin(x) > wth) ∧ · · · ∧ (Hmin+adth−1(x) > wth))
break;

for (max = pi − 1; max > min; max − −)
if ((Hmax−1(x) < t − wth)∧ · · · ∧ (Hmax−adth+2(x) < t − wth))

break;
output min and max;

3 Attacks for c-Secure CRT Code

3.1 Attacks

Since Marking Assumption[1] is supposed, for each detected places, there exist
two values corresponding to “0” and “1”. For each modification of detected
places, the only possible thing to do for colluders is to select one value from
these two values.

On the evaluation of tracing algorithms in [6],[9], only the following collusion
attack with addition of random errors was considered since Additional Marking
Assumption[6] is supposed:

Uniform Selection Attack

1. Compare and detect the places in which fingerprint embedded.
2. Make a possible modified codeword using the knowledge of detected places.

For each modification of detected places, the selection of each value is done
randomly and independently.

3. Add random errors to the result content.
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But there exists a collusion attack with addition of random errors whose success
probability is higher than the above attack. This attack turns the new threshold
wth to evil ends by using the knowledge of the encoding and the tracing algo-
rithms. The attack is executed in the following way:

Threshold Based Attack

1. Compare their contents and detect the places fingerprint embedded.
2. Select two colluders who have most different contents.
3. Decide a error probability calculated in tracing and calculate the correspond-

ing threshold wth.
4. Make a possible modified codeword from two contents of the selected col-

luders. For each modification of detected places, the selection of each value
is based on the threshold. The ratio of selecting one’s value or the other’s
value is

wth : t − wth

where t is a parameter and wth is the introduced new threshold in [9].
5. Add random errors in the probability decided in STEP 3 to the result con-

tent.

In this tracing algorithm, wth is calculated from the random error probability.
The probability is calculated in tracing. To succeed in the attack, colluders must
know the probability in advance. Colluders do not have to keep the probability
secret in this case. By using the knowledge of the estimation way of the proba-
bility in tracing or simply adding random errors, colluders can easily manipulate
the threshold calculated in advance. That is why colluders can do this attack.

We show the probabilities of error tracing against Threshold Based Attack
plotted by � and those in which no one can be detected plotted by + in Figure
1 by simulation(the value of each point is the average of 1000 trials). The pa-
rameters used are the same of [9]: c = 15, m = 52, k = 2, t = 25, p0 = 100, n =
1.0 × 104, l = 5, L = 2.77 × 106, adth = 3 where

c max number of colluders supposed here
k, m, l parameters (see Modulus)

t block length(see Inner Code)
p0 smallest moduli(p1 = 101, . . . , pm−1 = 359)
n number of users in the system
L code length

adth window size in A3

and ID = 0, 1, . . . , 49 are not used as weak IDs[6]. The discontinuities in Fig-
ure 1 mean the changes of the threshold value wth. Note that, against Uniform
Selection Attack, the average error probabilities of tracing residues in the inner
codes are not so high and the average probabilities of error tracing are 0[9].
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Fig. 1. Tracing Error Probabilities of c-secure CRT Code

3.2 Discussion

In this section, we discuss why Threshold Based Attack is effective for A3 tracing
algorithm.

Threshold Based Attack makes the random errors and the modifications in-
distinguishable since the ratios of “0” and “1” in the inner codes are similar
with not small probability. To succeed in the attack, colluders must furthermore
make a modified codeword of which the same innocent user can be detected from
sufficiently many inner codes. This can occur with not small probability.

We will show the fact by using examples. Let two adjacent IDs be 123 and
124, and let {pi} = {. . . , 57, . . . , 101, . . . }. In this case, the inner codes of 123
and 124 for modulus 57 and 101 are in Table 1. Residues of adjacent IDs are also
adjacent with high probability. Therefore corresponding inner codes of moduli
are adjacent with high probability, too.

Table 1. Relations between IDs and Residues

ID residue of modulus 57 residue of modulus 101
123 9 22
124 10 23

Consider the case that two users collude and their IDs are 123 and 150. Look
at the Table 2. To succeed in the attack for the inner code of modulus 57, the
modification of leftmost(or rightmost) X block must be considered as the result
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of addition of random errors in this inner code. The probability that they make
the modified inner code such that an innocent user ID u(124 ≤ u ≤ 149) is
detected is not small. The reason is that, in 4 of Threshold Based Attack, the
ratio of selecting one’s value or the other’s value is wth : t − wth and the ratio of
“0” and “1” in the block is also similar with high probability. This means that
the number of “1”(“0”) in leftmost(rightmost) X does not exceed wth and the
modification of leftmost(or rightmost) X is considered as that with not small
probability.

Table 2. A Modification of an Inner Code

ID inner code of modulus 57
123 00 · · · 0

︸ ︷︷ ︸

t×9

11 · · · 1
︸ ︷︷ ︸

t×47

150 00 · · · 0
︸ ︷︷ ︸

t×36

11 · · · 1
︸ ︷︷ ︸

t×19

collusion attacked data 00 · · · 0
︸ ︷︷ ︸

t×9

XX · · · X
︸ ︷︷ ︸

t×29

11 · · · 1
︸ ︷︷ ︸

t×19

For each inner code, the same discussion can be applied. And since adjacent
IDs relate their residues and their inner codes, it is not very difficult for colluders
to create sufficiently many such inner codes that the same ID(for example, ID
124) can be detected.

4 Randomized c-Secure CRT Code

As the result of analysis in the above discussion, we proposed a new ID coding
scheme, Randomized c-secure CRT Code. Our encoding algorithm is based on
c-secure CRT Code. The only difference is to add random permutation processes
Pi(0 ≤ i ≤ k′ − 1) for breaking the correlation between adjacent IDs and their
inner codes. Our tracing algorithm is based on A3. The only differences are the
processes of treating the additional random permutations.

Random Permutations. For each modulus pi(0 ≤ i ≤ k′ − 1), the random
permutation Pi of numbers from 0 to pi − 1 is defined. The k′ tables of these
permutations are created and stored by the server who embeds and detects
fingerprints.

Randomized c-Secure CRT Code. Randomized c-secure CRT Code is a
concatenated code of the residues which are encoded by the inner code. This code
is denoted by ΓR(p0, p1, · · · , pk′−1; n, t). A codeword of Randomized c-secure
CRT Code W

(u)
R is defined as follows:

W
(u)
R = w

(P0(r0))
0 ‖w

(P1(r1))
1 ‖ · · · ‖w(Pk′−1(rk′−1))

k′−1 for u ∈ Zn
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where ri ≡ u mod pi, 0 ≤ i < k′. The code length of Randomized c-secure CRT
Code is also p̄k′t.

Tracing Algorithm. The tracing algorithm of Randomized c-secure CRT Code
consists of the following five steps. The differences between this and A3 are only
STEP 4 and 5.

STEP 1: Check the content and detect the embedded information x. the
length of x is p̄k′t.

STEP 2: Divide x into k′ words as follows:

x = x0‖x2‖ · · · ‖xk′−1

where length of xi is t(pi − 1).

STEP 3: For each xi, apply the following algorithm:

input x;
for (min = 0; min < pi − 1; min + +)

if ((Hmin(x) > wth) ∧ · · · ∧ (Hmin+adth−1(x) > wth))
break;

for (max = pi − 1; max > min; max − −)
if ((Hmax−1(x) < t − wth)∧ · · · ∧ (Hmax−adth+2(x) < t − wth))

break;
output min and max;

STEP 4: Count numbers DR(u)(0 ≤ D(u) ≤ k′) exhaustively for each user
u. DR(u) is the number of congruent equations which u satisfies with the
residue pairs, defined as follows:

DR(u) = |{i ∈ Zk′ |(Pi(u) ≡ r
(−)
i (mod pi))∨ (Pi(u) ≡ r

(+)
i (mod pi))}|.

STEP 5: Define Dth = k + l. If the condition DR(u) > Dth holds, output the
user u as a member of the coalition.

5 Security

We show the security of Randomized c-secure CRT Code by showing the prob-
abilities of error tracing against Threshold Based Attack. The probabilities are
plotted by � in Figure 2 by computer simulation(the value of each point is the
average of 10000 trials). The parameters used are also the same of [9]. Note that,
since a random permutation is used in our proposed code, we do not have to
consider weak IDs any more. Since Randomized c-secure CRT Code uses random
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Fig. 2. Tracing Error Probabilities of Randomized c-secure CRT Code

permutations described in previous section, the residues of adjacent IDs are not
adjacent in their inner codes. For this reason, it is more difficult to make an
attacked codeword that the same innocent user is detected from its inner codes.
Consequently, the tracing error probabilities against Threshold Based Attack are
drastically improved(less than 1/200 at many points).

Of course, our new code is also secure against Uniform Selection Attack since
our modification does not affect tracing errors. It might be more secure than c-
secure CRT Code but, because the previous work has achieved sufficient security
against the attack, we omit the results.

6 Conclusion

In this paper, we have proposed a collusion attack with addition of random errors
called Threshold Based Attack. This attack is effective in breaking the security
of c-secure CRT Code since it uses the knowledge and the characteristic of the
coding scheme.

To solve the problem, we have proposed a new ID coding scheme called Ran-
domized c-secure CRT Code. Since this code does not have such characteristic,
it is also secure against the new attack. Randomized c-secure CRT Code is one
of the most suitable ID coding schemes for secure content distribution systems.
On designing an ID coding scheme, it is very important to consider not only the
simple attack but also attacks which uses the knowledge of the coding scheme
like Threshold Based Attack.



An ID Coding Scheme for Fingerprinting, Randomized c-Secure CRT Code 183

References

1. D. Boneh and J. Shaw: “Collusion-Secure Fingerprinting for Digital Data,” Proc.
of CRYPTO’95, LNCS963, pp.452–465, Springer-Verlag, 1995.

2. J. Yoshida, K. Iwamura and H. Imai: “A Coding Method for Collusion-Secure
Watermark and Less Decline,” Proc. of SCIS’98, 10.2.A, 1998(In Japanese).

3. D. Boneh and J. Shaw: “Collusion-Secure Fingerprinting for Digital Data,” IEEE
Transactions on Information Theory, vol.44, no.5, pp.1897–1905, 1998.

4. H-J. Guth and B. Pfitzmann: “Error- and Collusion-Secure Fingerprinting for Dig-
ital Data,” Proc. of IH’99, LNCS1768, pp.134–145, Springer-Verlag, 2000.

5. H. Muratani: “Collusion Resilience of Digital Watermarking,” Proc. of SCIS2000,
C-06, 2000(In Japanese).

6. H. Muratani: “A Collusion-Secure Fingerprinting Code Reduced by Chinese Re-
maindering and Its Random-Error Resilience,” Proc. of IH 2001, LNCS2137,
pp.303–315, Springer-Verlag, 2001.

7. K. Yoshioka and T. Matsumoto: “Random-Error-Resilient Tracing Algorithm for
Collusion-Secure Fingerprinting Code,” Technical Report of IEICE, ISEC2001-52,
pp.247–254, 2001(In Japanese).

8. H. Muratani: “Combinatorial Outer Codes for c-Secure CRT Code,” Proc. of
SCIS2002, Vol.2, pp.1009–1014, 2002(In Japanese).

9. K. Yoshioka and T. Matsumoto: “Random-Error-Resilient Tracing Algorithm for
Collusion-Secure Fingerprinting Code (Part2),” Proc. of SCIS2002, Vol.2, pp.1021–
1026, 2002(In Japanese).



A Robust Block Oriented Watermarking Scheme
in Spatial Domain

Tanmoy Kanti Das1 and Subhamoy Maitra2

1 Computer Vision and Pattern Recognition Unit, Indian Statistical Institute
203, B T Road, Calcutta 700 108, India

das t@isical.ac.in
2 Applied Statistics Unit, Indian Statistical Institute

203, B T Road, Calcutta 700 108, India
subho@isical.ac.in

Abstract. In this paper we present an invisible spatial domain water-
marking technique. The technique divides the image into n small blocks
and the intensity of some of these blocks are modified depending on the
key, which is a secret random binary string of length m < n. Given an
attacked image, the recovery process generates a bit pattern of length
m and we show that from this pattern it is possible to get back the
exact key using either standard correlation measure or error correcting
codes. The recovery process employs window matching technique on the
attacked image, which has been found to work successfully. Our method
can survive common image transformations and intentional attacks both
in spatial and frequency domain. Most importantly, it also survives the
nonlinear geometric attacks, e.g., Stirmark. To the best of our knowl-
edge, here we experiment with an exhaustive set of attacks which has
not been provided elsewhere.

Keywords: Information Hiding, Digital Watermarking, Gray Scale Im-
age, Stirmark, Cryptanalytic Attacks.

1 Introduction

Now a days most of the multimedia contents are in digital form. With the in-
creased use of Internet, the digital objects can be distributed very efficiently and
rapidly over the net. However, the question of copyright protection becomes an
issue to be taken care of. Watermarking technologies are thus becoming natu-
ral choice of the content creators in this direction. This area of research is not
only used in establishing the ownership but also being exploited to identify the
copyright infringer.

Most of the existing invisible watermarking techniques exploit the charac-
teristic of human visual system and except a few, most of them are correlation
based. The embedding process works in a manner so that very little visible mod-
ification occurs to image. These modifications correspond to the watermarking
information and should be robust enough to withstand any kind of attack. Cor-
relation between the recovered information and embedded information are used
as the measure of confidence in the detection process. The watermarking strate-
gies are employed in the spatial domain as well as different transform domains
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like Discrete Cosine Transform, Fast Fourier Transform, Wavelet Transform etc.
See [2,3,6,7,8,9,10,11,15,17] and references in these papers for more details.

In this paper we present a block based spatial domain watermarking scheme.
Many spatial domain watermarking techniques find the perceptually significant
regions of the image and embeds the watermark in those places [8,9]. Our algo-
rithm is independent of such assumptions. We use slight modification of pixel
values to insert the watermark. One early spatial domain watermarking strategy,
Patchwork [1], also uses modification of pixel values to embed the watermark.
However, our method is much more involved and robust than Patchwork.

Let us now briefly outline the requirements for a robust watermarking scheme.

1. The watermark should remain secret and should only be accessible to owner,
even if the scheme is available in the public domain. Moreover, it should
preserve the perceptual quality of the image.

2. It must withstand common signal processing operations both in frequency
and spatial domain such as lossy compression, scaling, cropping, rotation,
low pass filtering etc. and their combinations. More importantly, the method
should provide robustness against nonlinear geometric attacks (distortion
attacks) such as Stirmark [13,14,18].

3. It should prevent any intentional cryptanalytic attacks. Moreover, more than
one buyer should not be able to collude and remove the watermark.

Methodologies to test the robustness of watermarking schemes are now well
known [15,13,9] and our technique survives these tests. To the best of our knowl-
edge, here we provide simulation of an exhaustive set of attacks which has not
been experimented elsewhere. In particular the Stirmark [13,14,18] program pro-
vides remarkable success in disabling watermark recovery process. We show that
our method can survive this attack too. Our method divides the image into sev-
eral blocks of size β × β. To embed a bit value 0 (or 1) into a block we decrease
(or increase) the pixel values of that block by certain amount δ. The value of
δ is calculated dynamically depending on the block at hand. Extraction proce-
dure employs several techniques to resist sophisticated watermark removal and
disabling attack. To extract a bit from a block we compare the corresponding
block of watermark and original image. Prior to the comparison window match-
ing algorithm is employed for each block to ascertain (and rectify) whether the
watermarked image is subjected to any nonlinear geometric attack.

In the next section (Section 2) we explain the algorithms in detail for both the
watermark insertion and watermark recovery strategies. In Section 3 we present
experimental results to show that our scheme provides necessary robustness.

2 Watermarking Scheme

The embedding process is executed for each buyer. The method is as follows.

1. Read the host image into I.
2. Divide I into number of blocks of size β × β. Let n = ht(I)×wd(I)

β×β . By
ht(I), wd(I), we mean the height and width of the image in pixels.
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3. Take a permutation π of n integers 0, . . . , n − 1 (which is same for all the
buyer) and a binary pattern k of lengthm < n. Insert k in the database along
with the buyer information. This database is kept secret with the owner.

4. Watermark insertion in I is done as follows. For each of the selected blocks
bπj , 0 ≤ j ≤ m− 1, we do the following operations.
(a) Calculate minimum ψl and maximum ψh of the intensities in the block.
(b) Calculate a parameter δ for the block as δ = max(µ, �α ∗ (ψh − ψl)�),

where µ is an integer constant with very low value (say 1 ≤ µ ≤ 3) and
α is a small real value (say 0.05 ≤ α ≤ 0.10).

(c) If kj = 1, we increase every pixel of the chosen block by δ, otherwise we
decrease it by δ.

From the nature of algorithm it is clear that in the flat region of the image,
where ψh, ψl differ very little, value of δ = µ but in case an edge is present
ψh, ψl will differ by large amount thus value of δ will be much higher than
µ. Thus for an attacker it becomes difficult to change the value of each block
by random amount to defeat the watermarking process, without damaging the
edges. Because any small change in wrong direction will destroy the edges. At
this point let us discuss what is the optimal value of m. It is well known that
less the watermarking payload (number bits embedded, i.e., m) more robust it
is. It is experimentally found that value of m should lie between n

4 and 3n
4 to

resist rewatermarking as well as block based attack successfully.
Let us now calculate the key space. As already mentioned, the number of

available block is n and length of the binary pattern to embed is m where
m < n. So we have m different blocks chosen out of n blocks keeping the order
of permutation. The permutation of n blocks taken m at a time is nPm. Now the
number of binary patterns considering m places is 2m. Hence the total number
of possible keys is nPm × 2m. Note that we here use n = 4096 and m = 2660 for
experiment. This gives a key space of size 4096P2660 × 22660. It is very clear that
the key space is of huge size. Note that we do not need these many keys in any
practical system. Thus, we can choose the bit pattern of length m with proper
care. In fact it is better to select these m bit patterns in such a manner so that
the Hamming distance (the number of places in which two same length binary
strings differ) between any two keys is large. This can be done by using error
correction codes [12].

The recovery process requires both the watermarked (may be attacked) im-
age and the original host image with a complete read access to the buyer key
database. Watermark is recovered by comparing accumulated intensity of all pix-
els in each block of host image with corresponding block of watermarked image.
The comparison process is very much sensitive to small affine changes which can-
not be reliably corrected. To overcome this problem we employ window matching
algorithm. Let us now describe the window matching algorithm in detail.

Input : Coordinate (x, y) and window size parameters β, σ. Output : Γx,y.
1. Consider the original image I and the attacked watermarked image I#.
2. Consider a window of size β × β whose top left pixel is at location (x, y).

This we consider as location of the window also. Let us denote such windows
as w(x, y) and w#(x, y) respectively for the images I and I#.
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3. Consider a larger window size of (β+ c) × (β+ c) pixels, where σ = β+ c at
location (x− c

2 , y − c
2 ) from I which we denote as W (x− c

2 , y − c
2 ).

4. There are (c + 1)2 number of different smaller windows w(x + i, y + j) for
i = − c

2 to c
2 and j = − c

2 to c
2 inside W (x− c

2 , y − c
2 ).

5. Calculate sum of absolute differences of the β× β pixel values between each
pair w#(x, y) and w(x+i, y+j) for all i = − c

2 to c
2 and j = − c

2 to c
2 . Denote

this by ∆i,j .
6. Consider the coordinate (x+ i′, y + j′) for which ∆i′,j′ = mini,j ∆i,j .
7. Report the sum of differences of the β × β pixel values between the pair
w#(x, y) and w(x+ i′, y + j′). This we denote as Γx,y.

The importance of the window matching algorithm becomes evident in the
case of nonlinear geometric attacks such as Stirmark [18]. See the discussion in
Subsection 3.3 for experimental results which shows how the robustness in the
watermark recovery scheme is attained using the window matching technique.
Next we present the complete watermark recovery algorithm.

1. Read the host image into I and the watermarked (possibly attacked) image
into I ′.

2. A preprocessing step on I ′ is executed.
(a) In case of cropping we will compensate the cropped part by glueing the

cropped parts from existing I to I ′.
(b) In case of resizing, rotation and translation, we bring back the image to

the original size and form using standard affine transformations [5].
3. Construction of k′′.

(a) Take the n length permutation π.
(b) We normalize the intensity of I ′ in following manner.

i. From π, it is noted which of the blocks are selected for modification
during watermark embedding. We first concentrate on the rest of the
n−m blocks.

ii. Now we run the window matching algorithm corresponding to each
block (each block is identified by the coordinate of its top left corner)
of size β × β. We also consider the larger window of size σ × σ. For
our experiment, we take β = 4, σ = 8.

iii. We calculate ν = �
∑

Γx,y

(n−m)×β×β �, where the summation is over all the
n−m blocks not included in permutation π.

iv. For all the pixels of I ′ (irrespective of whether they are in the wa-
termarked blocks or not) p′ = p′ − ν.

(c) Now we construct a binary string k′′ of length m as follows.
i. Given π, we know which of the blocks are modified during water-

marking.
ii. Let us consider the block corresponding to πj at location (x, y). For

this block we run the window matching algorithm to get Γx,y.
iii. If Γx,y > 0, we take k′′

j = 1, if Γx,y < 0, we take k′′
j = 0, and if

Γx,y = 0, we take k′′
j = 0 or 1 depending on coin tossing.
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4. This step is executed for each of the records present in the database. Read a
binary pattern k′. Now we fix a threshold γ (it should be greater than 0.5).
If M(k′,k′′)

m is less than γ, we reject k′. If M(k′,k′′)
m is greater than γ, we accept

k′ as the correct key k. By M(s1, s2), we mean number of places two same
length binary strings s1, s2 match. (Note that the value of M(k′,k′′)

m × 100,
i.e., the percentage, is called the similarity factor.)

Note that in the step 4 of the recovery algorithm, we traverse through
the complete database. In fact, this is not required if we use error correcting
codes [12]. In that case from k′′ we can directly get back k using the decoding
algorithm of the respective error correcting code and the search over the com-
plete database is not required. Let us now relate the the value γ with the error
correcting codes. Consider the error correcting codes of length m, such that min-
imum distance between any two codes is at least d. We know that even if there
are at most d

2 errors in the bit pattern of length m, then also it is possible to get
back to the original code word. Given γ, we calculate d in terms of m as follows.
We need, m − d

2 = γm, i.e., d = 2(1 − γ)m. Note that if we take γ = 0.6 and
m = 2660, then d becomes 2128. This means for the buyer key, we need binary
strings of length 2660 such that the Hamming distance between any two strings
is at least 2128. By Hamming distance between two same length strings s1, s2,
we mean number of places s1, s2 do not match. In the experiments, we present
our results in terms of similarity factor.

Given the complex nature of the scheme it seems hard to analyse it theo-
retically and hence the robustness is demonstrated experimentally in the next
section.

3 Experimental Results

In this section we present the experimental results to substantiate our claims.
We start the processing on a watermarked image I ′ generated from the original
image I, according to the embedding algorithm described in Section 2. In our
experiment we process the images in TIF format. First we refer to the origi-
nal image and its watermarked version. It is clear that there is no perceptual
distinction between the original and watermarked images (see Figure 1). In the
watermark embedding algorithm (step 4b) we use the values α = 0.05 and µ = 1.
Note that these are the lowest possible values of α, µ for the range we propose
in the watermark embedding algorithm. This provides the best possible scenario
for the attacker. Even then the experiments reveal the robustness of the scheme.
Note that the PSNR value [9, Page 112] of the watermarked image with respect
to the original image is as high as +42.2 db for α = 0.05, µ = 1 (see Figure 1).
For the maximum possible values in the range, i.e., α = 0.10, µ = 3, we find the
PSNR value of +35.8 db with respect to the original image. This also keeps the
perceptual quality of the watermarked image indistinguishable from the original
image. In watermark recovery process value of γ = 0.6 (in terms of similarity
factor it is 60%) is used.
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Fig. 1. The original and the watermarked image.

3.1 Transformations and Attacks in Spatial Domain

In Table 1 we present the result related to rotation. The image I ′ is rotated
at different angles from 10o to 45o to get I ′′. Then the image is rotated back
as I ′′′. It is clear that in this processing some portion of the image is cropped
out. These parts are replaced by the portions of the original image I to get I ′′′′.
This completes the step 2 in the watermark recovery algorithm in Section 2. See
Figure 2 for these operations.

Fig. 2. Rotation of 15o, back and glue.

Next we run the rest of the watermark recovery algorithm to get back the
key k′′. The key is compared with each key k′ from the database. For all the
keys in the database we get the similarity factors around 50% except the correct
key, whose similarity factor is very high. We present that maximum similarity
factor in Table 1.

Table 2 provides the results of cropping on the watermarked image from
different positions. In this case also, we replace the cropped portions from the
part of the original image. Table 3 provides the results of resizing. The original
image size is 256 × 256. Table 4 provides the results related to resizing, rotation
and cropping. We take the watermarked image I ′. Then we consecutively go for
first resizing, rotation and back, resizing back and finally glue parts from original
image.

Next we present the results of intentional random attacks. First consider the
results in Table 5. During the simulation we randomly change (either increase
or decrease) the value of each pixel of the watermarked image by certain per-
centage of the original pixel value. We find that our scheme survives this attack
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Table 1. Rotation.
Angle Similarity
10o 95.1%
20o 92.5%
30o 87.6%
40o 80.1%
45o 76.8%

Table 2. Cropping.

Cropping % Position Similarity
14 Vertically Left 92.1%
14 Vertically Middle 93.1%
14 Vertically Right 92.8%
14 Horizontally Below 94.8%
14 Horizontally Up 93.9%
28 Vertically Left 85.4%
28 Vertically Middle 86.2%
28 Vertically Right 84.8%
28 Horizontally Below 89.3%
28 Horizontally Up 91.4%

Table 3. Resizing.

Modified Size Similarity
128×128 90.8%
153×153 92.1%
180×180 96.0%
204×204 97.6%
230×230 98.4%
307×307 99.1%
332×332 99.2%

Table 4. Resizing, Rotation and Cropping.

Modified Size Rotation Similarity
128×128 15o 76.9%
128×128 30o 73.4%
128×128 45o 64.8%
192×192 15o 88.0%
192×192 30o 77.9%
192×192 45o 70.0%
320×320 15o 94.1%
320×320 30o 90.0%
320×320 45o 78.9%

satisfactorily. In fact for a noise of 10% in spatial domain, the watermarked im-
age degrades to a high extent (see left of the Figure 3). Even then we can find
the similarity of the order of 67.7%. In Table 6, we present the robustness of
our algorithm against combined attacks in spatial domain. We first resize the
watermarked image. Then we provide some amount of rotation. After that we
introduce 2% noise (random increase or decrease of pixel values) in spatial do-
main. We then rotate back the image, resize it back to its original size and then
glue the cropped portions by that of the original image.

Table 5. Noise in spatial domain.

% Change Similarity
1% 98.6%
2% 93.9%
3% 86.7%
4% 86.7%
5% 78.2%

Table 6. Combined attack in spatial do-
main.

Resize Rotation Similarity
128 × 128 15o 62.9%
192 × 192 15o 83.9%
192 × 192 30o 73.3%
192 × 192 45o 67.4%
320 × 320 15o 89.1%
320 × 320 30o 84.3%
320 × 320 45o 74.8%

In some watermarking schemes, the watermark is incorporated by modifying
the least significant bit (lsb) of each pixel value [9, Page 29] and a standard attack
is to modify those bits to remove the watermark. Given an watermarked image,
setting each lsb to 1 (respectively 0) we get a similarity factor 99% (respectively
84%). Complementing each lsb we get the similarity factor 81%.

We now present the result after applying some filters on the watermarked
image. We take the filter mask to be 3×3. For median filter we find the similarity
factor 87.2%. Average filtering gives a similarity factor of 80.18%. Let us also
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consider the effect of low pass filtering on the watermarked image. We use 0.9
intensity value [5]. The similarity factor in this case is 79.8%.

Fig. 3. Left: Noise of 10%. Right: Blocking attack with a value 5.

Since we are proposing a block oriented scheme, it is natural to consider that
the attacker will try to do some block oriented cryptanalysis. The most natural
attack in this direction could be as follows. The attacker selects each block in the
watermarked image and then modify all the pixels of the block by some value
x. As example, one block is selected and the pixels corresponding to that block
are increased by 2. Similarly, another block is selected and all the pixels of that
block are decreased by 2. This decision of either increasing or decreasing all the
pixels is taken randomly. With this kind of attack we get the similarity values
83.4%, 64.2%, 59.6%, 56.7%, 53.6% for the block oriented change in pixel values
1, 2, 3, 4, 5 respectively. It is true that the similarity factor goes closer towards
50% for change in pixel value 5. However, in that situation the watermarked
image quality degrades considerably (see right of Figure 3).

Next we consider the rewatermarking attack. Note that this is also one type
of blocking attack. In this attack we rewatermark the watermarked image once
again and then try to recover the original watermark. Consider the original
image as I. We first apply the watermark with the keys π1, k1 on I to get I1 and
then rewatermark I1 with π2, k2 to get I2. As we run the watermark recovery
algorithm, we get a similarity of 85.2% with the key k1 using permutation π1.

Note that this is only a basic attack and an attacker may go on exercising
the rewatermarking attack more than once. We consider two different cases here.
In the first case the attacker goes on rewatermarking for number of steps. After
a few steps we find that the similarity factor with the original key decreases
and then settles around 50%. However, in such a case the quality of the image
degrades considerably. We represent this in graphical manner. In the horizontal
axis we present the iteration number and in the vertical axis we present the
similarity factor and the PSNR with respect to the original image. Note that the
similarity factor comes down to 55% after 16th step and at this point the PSNR
value is as low as +17.7 db with respect to the first copy of the watermarked
image. Thus the image quality degrades to a large extent and such an attack
can not be successfully performed.
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Fig. 4. Rewatermarking, left : without replacement, right : with replacement.

In such a scenario, an attacker can modify the scheme as follows. Consider
that the attacker decides a limit of change in the pixel values (−δ to +δ) in
comparison to the watermarked image he possesses. This will keep the image
quality intact. For the experiment we choose δ = 3. That is, in such a case the
attacker takes the watermarked image I ′ as reference. Let the pixel values of I ′

be denoted as p′. After each step of rewatermarking, the attacker checks whether
the pixel value is in the limit p′ − δ to p′ + δ. If it is not in this limit, the value
is selected uniformly at random from the range p′ − δ to p′ + δ. This keeps the
quality of the image very good (PSNR around +40 db) with respect to the first
copy of the original image. In such a situation, we find the similarity factor with
the original key stays at a very high range, i.e., in the range 73% to 85%. Though
quality of image stays good, such an attack cannot destroy the watermark.

3.2 Transformations and Attacks in Frequency Domain

We first consider the JPEG compression [16]. This compression is executed in
the DCT (Discrete Cosine Transform) domain. We compress the TIF formatted
watermarked image (using Electric Eye on Linux 6.1) to JPEG format giving
different values of compression. Then we get back the compressed image to TIF
format. Even if we use as low quality as 20% (i.e., high compression), we can
recover the key with significant correlation 67.9%. At this high level of com-
pression, the image quality degrades substantially and blocking effect is noticed.
Even then it is possible to recover the watermark. This we present in Table 7.
In Table 8 we consider the noise in frequency domain. We transform the image
to frequency domain using FFT (Fast Fourier Transform) and then introduce
some percentage of noise in terms of increasing or decreasing the values in the
frequency spectrum. We proceed with inverse FFT and then use the real part of
the matrix to get back the image in spatial domain.

Next we consider a combination of attacks considering both frequency and
spatial domain. In Table 9 we provide results of rotation at different degrees,
then introduce 5% noise in spatial domain and perform JPEG compression at
quality level 50%. After that we get back the image to TIF format, rotate back
the image and glue the cropped portions by the original image. In Table 10, we
provide the results corresponding to the attack combining resize, rotation and
noise in frequency domain. We transform the resized and rotated image by FFT.
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Table 7. JPEG compression.

JPEG Quality Similarity
20% 67.9%
30% 74.7%
50% 86.5%
60% 90.0%
70% 94.4%
80% 97.9%
99% 99.3%

Table 8. Noise in FFT domain.
% noise Similarity

1% 94.6%
2% 77.3%
3% 76.5%
4% 63.9%
5% 61.7%

Table 9. Rotation, noise, JPEG.

Rotation Similarity
10o 74.2%
10o 72.6%
30o 70.6%
40o 66.7%

Table 10. Resize, rotation, FFT, noise.

Resize Rotation Similarity
128 × 128 15o 63.9%
192 × 192 15o 72.4%
192 × 192 30o 66.3%
320 × 320 15o 81.5%
320 × 320 30o 72.3%

In the frequency domain we introduce 2% random noise. Next we use the inverse
transform to get back the image in spatial domain (the real part of the matrix
after inverse FFT), rotate it back, resize it to original size and glue cropped
portions from the original image.

Next we consider transformations and attacks in wavelet domain. Currently
image processing techniques using wavelet transformation have received a lot
of attention. Moreover, it is used in JPEG 2000 standard [19] for compression.
We here concentrate on the transformation in wavelet domain. We consider two
different strategy for attacking. In the first attack we transform the watermarked
image to wavelet domain. Then we introduce random noise of 1% to 10% in the
wavelet domain. Again we get back the image in spatial domain and run the
watermark recovery algorithm. The results are presented in Table 11. We now
present another attack which is analogous to compression in wavelet domain.
The strategy is to select a range of values in the wavelet transform domain and
then replace them by zero. In Table 12 we present the range of values that is
replaced by zero in wavelet domain and how the similarity factor varies after
inverse wavelet transform.

Table 11. Random Noise.
% noise similarity

1% 93.5%
2% 81.7%
3% 77.1%
4% 73.2%
5% 70.8%
10% 62.8%

Table 12. Replacement by zeros.

range similarity
-1 to +1 97.2%
-2 to +2 97.0%
-3 to +3 96.7%
-4 to +4 96.5%
-5 to +5 96.4%

-10 to +10 96.2%

3.3 Nonlinear Geometric Attack (Stirmark)

Here we present the robustness of our scheme against the famous Stirmark at-
tacks. We use the softwares available at [18]. For the version 1 of Stirmark attack
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we get a similarity factor of 71.4%, whereas for version 3 of the Stirmark attack
we get the similarity factor of 70.9%. We use the default parameters used in the
programs available at [18]. The watermark uses a block size of 4 × 4 and the
watermarked images after Stirmark attacks are presented in Figure 5.

Fig. 5. Watermarked images after Stirmark 1 (left) and Stirmark 3 (right) attacks.

Much better result can be achieved by increasing the block size to 8×8 (in this
case the larger window size used in the window matching algorithm is 12 × 12).
Here, n = 1024 and m = 665. For version 1 of Stirmark we get a similarity factor
of 83.4% and for stirmark version 3 the similarity factor achieved is 86.46%. Due
to the increased size of β the window matching algorithm performs better and
we get improved results.

Let us now highlight the utility of window matching algorithm. If we do
not use this, the similarity factors for 4 × 4 block size are 53.5% and 55.5% for
strimark version 1 and Stirmark version 3. For 8 × 8, the values are 62.5% and
60.5% for Stirmark version 1 and Stirmark version 3. Thus, it is clear how the
window matching algorithm improves the robustness of our scheme against small
nonlinear geometric transformations.

3.4 Collusion Attack

In this section we consider the scenario when two or more buyers collude together
to remove the watermarking information from the image. It is now clear that the
standard invisible watermarking schemes are prone from collusion attacks under
a very general framework [4]. Still we perform the benchmark tests as provided
in [3] and show that our scheme survives at least these benchmark attacks.

We take 3 different keys k1, k2, k3 to generate 3 watermarked images I1, I2, I3
from I. These three users collude in the following way. We take the 3 different
pixels p1, p2, p3 from the same location of the three images I1, I2, I3. Then we
construct a pixel value p = f(p1, p2, p3) where f is taken to be one of the
functions from median, max,min, average and weighted average. Taking the
pixel values p we construct an image J . We then consider J as attacked image
and run recovery algorithm on this. We also consider a 4th key k4 for a 4th buyer
who has not participated in the collusion. The results are shown in Table 13. It
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is clear from the data that for the buyers who have participated in the collusion
are identified, since the similarity factors are much greater than 50%. On the
other hand, the buyer who has not participated in the collusion is not wrongly
implicated since the similarity is very close to 50%. Note that in the weighted
average, we calculate p = � 0.5p1+0.25p2+0.25p3

3 �. It is clear that in this case the
maximum correlation is found with the first buyer.

Table 13. Collusion attack.

Strategy Similarity #1 Similarity #2 Similarity #3 Similarity #4
median 74.1% 75.6% 74.8% 50.6%

min 62.0% 61.9% 62.0% 49.6%
max 62.6% 62.5% 62.5% 50.6%

average 74.1% 75.6% 74.8% 50.4%
wtd. avg. 86.7% 62.1% 61.5% 50.1%

Similar to the collusion attack experiment proposed in [3] we check the sce-
nario considering 5 watermarked images and taking their averages. We get the
similarity of 65.6%, 66.3%, 64.5%, 66.6%, 66.3% with the participated keys. On
the other hand we have taken two other watermarked images which were not
used in collusion. For those two keys the similarity factors are 49.8%, 50.1%.

4 Conclusion

In this paper we have presented a simple but robust invisible digital watermark-
ing scheme. We demonstrated the robustness of the scheme with an exhaustive
set of image transformation and intentional attacks. It is also important to state
that in all the experiments the scheme never provided any false positive alarm.
In all the cases, the experiments with a wrong key provides a similarity factor
very close to 50% and never implicates an honest buyer.
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Abstract. We propose a new type of revocation scheme for efficient
public-key black-box traitor tracing. Our revocation scheme is flexible
in the sense that any number of subscribers can be revoked in each dis-
tribution under an assumption that the number of revoked subscribers
who collude in one coalition is limited to a threshold, while the maxi-
mum number of revoked ones cannot be changed in previous schemes.
The flexibility in revocation is significant since flexible revocation can
be integrated with efficient black-box tracing and this integration can be
achieved without a substantial increase in the transmission overhead over
the previous schemes. In this paper, we present an efficient public-key re-
vocable and black-box-traceable scheme by combining flexible revocation
with two known black-box-tracing algorithms.

Keywords: Flexible revocation, Traitor tracing, Black-box tracing

1 Introduction

Consider the following content-distribution system: A data supplier distributes
digital contents (e.g., a movie) to subscribers over a broadcast channel. Since the
contents should be available only to subscribers, the data supplier broadcasts the
encrypted contents. Only subscribers can decrypt them with their correspond-
ing decryption keys given in advance. This system can be applied to pay-TV,
CD(DVD)-ROM distribution, online databases, etc. In this content-distribution
system, malicious subscribers may redistribute their decryption keys to non-
subscribers. This piracy should be prevented since it infringes the copyright of
the digital contents.

As a deterrent to the piracy, traitor tracing has been studied extensively.
The concept of traitor tracing was introduced by Chor-Fiat-Naor [4]. In traitor
tracing, each subscriber is given a distinct decryption key (personal key) which
is contained in a decryption device (decoder), and the data supplier broadcasts
both the contents encrypted with a session key and the encrypted session key
(header). Typically, a symmetric key is used as the session key. Subscribers can
obtain the session key (and consequently the contents) by inputting the received
header to their decoders. In this scenario, malicious subscribers (traitors) may
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give away their personal keys to a pirated version of a decoder (pirate decoder).
Once the pirate decoder is found, at least one of the traitors who join the piracy
can be identified by it. A traitor-tracing scheme discourages traitors from com-
mitting the piracy since the confiscated pirate decoder can be traced back to its
producers.

Traitor-tracing schemes can be classified into two types according to their
constructions: The construction of one type of scheme is combinatorial while
that of the other is algebraic and number-theoretic. The former type of scheme
[4,7,9] is inefficient in the following criteria: each subscriber’s storage and the
transmission overhead. This is because it has to greatly degrade the efficiency in
order to eliminate the probability that an honest subscriber is falsely detected
as a traitor. On the other hand, an algebraic and number-theoretic approach
solves the above efficiency problem. The latter type of scheme [5,3] is efficient
in the sense that each subscriber’s storage is constant (e.g., 160 bits) and the
transmission overhead is linear only in the maximum number of traitors in a
coalition. Our interest is in this type of scheme.

Among efficient public-key traitor-tracing schemes, the schemes of [8,12,10,11]
achieve revocation of subscribers by using a key-distribution method proposed in
[1]. In these schemes, the data supplier can revoke a certain number of subscribers
in each distribution, i.e., the data supplier can make their decoders useless with-
out confiscating them. The schemes are suitable for the content-distribution
system where the subscribers frequently cancel/renew their subscriptions to the
contents. Moreover, the schemes have another desirable property. The revoca-
tion mechanism can also be used to support black-box tracing, which provides
the assurance that traitors can be identified no matter how the pirate decoder
is implemented. In black-box tracing, a tracer does not break open the pirate
decoder but uses it as a black box. Briefly, the tracer chooses suspects and tests
whether traitors are among them only by observing the behavior of the pirate
decoder on chosen inputs. If revocation is supported, the tracer can perform
the above test by revoking the suspects in the input. Therefore, the revocation
mechanism can seamlessly be integrated with black-box tracing.

Unfortunately, in the previous schemes [8,12,10,11], the revocation mecha-
nism cannot be integrated with efficient black-box tracing, i.e., the black-box-
tracing algorithm of the previous schemes has to be exponential, hence imprac-
tical, in order to keep the transmission overhead efficient. This trade-off greatly
spoils the scalability of the schemes. In this paper, we get rid of the trade-off be-
tween the transmission overhead and the running time of the tracing algorithm
by combining the scheme of [1] and that of [5]. Our scheme is the first one which
satisfies all of the following properties:

Flexible revocation. While the number of revoked subscribers in the previ-
ous schemes is limited to a certain threshold which cannot be changed unless
the system is initialized again, in our scheme, the upper bound on this parame-
ter can be set differently in each distribution without any reinitialization. Note
that even though there is a threshold of the coalition size of traitors, revocation
of any number of subscribers can be achieved in the following case we con-
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sider in the paper: A set of revoked subscribers includes one or more disjoint
subsets, X 1, . . . ,X i. Each X j is a distinct coalition in which revoked ones col-
lude and |X j | is limited to the threshold. Our main contribution is providing
a revocation mechanism which can drastically reduce the running time of the
black-box-tracing algorithm without a substantial increase in the transmission
overhead over the previous schemes. Thanks to flexible revocation, our scheme
can achieve the efficient transmission overhead and efficient running time of the
tracing algorithm, while the previous ones cannot accomplish both.

Efficient black-box tracing. For completeness of our scheme, we give an
explicit description of two black-box-tracing algorithms, although they are men-
tioned in [12]. The first can identify all of the traitors in a coalition with run-
ning time O(n). The second can detect at least one of them with running time
O(log n), while the running time of the previous tracing algorithm is O(

(
n
k

)
),

where n is the total number of subscribers and k is the maximum coalition size.
The tracing algorithms can work under the same threat model as assumed in
the previous schemes. Besides, the tracing result is publicly verifiable in our
scheme since no secret information is needed to execute the tracing algorithms,
i.e., anyone can work as a tracer. This property provides a stronger deterrent
to the piracy. Moreover, it is useful in the case where subscribers are given
their decoders in which the personal keys have already been embedded. Since
a malicious merchant might deceive subscribers into buying pirate decoders as
legitimate ones, they want to be convinced that decoders to be purchased are
genuine without breaking open their decoders. Black-box tracing with public
verifiability enables subscribers to verify the legitimacy of their decoders by ex-
ecuting a tracing algorithm with their decoders as an input.

Public-key setting. In our scheme, anyone can work as a data supplier since
the session key is encrypted with the public key.

The rest of the paper is organized as follows. In Sect. 2, an assumption on
the pirate decoder is described. We propose an efficient public-key revocable
and black-box-traceable scheme in Sect. 3. The proposed scheme is analyzed in
terms of security and efficiency in Sect. 4 and Sect. 5, respectively. We present
our conclusions in Sect. 6.

2 Model of Pirate Decoders
We adopt the same assumption on the pirate decoder as in the previous schemes.

Assumption 1 The pirate decoder constructed by traitors always outputs the
correct plaintext if it gets the header of a regular form, i.e., it does not take
measures that might fool the tracer.

It is possible for traitors to construct a pirate decoder that can take measures
that fool the tracer whatever it receives as the header. However, such a decoder
could hardly be an item for sale. For example, consider that the digital data of a
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movie is distributed. The data is divided into 3-minute lengths, and each part of
the data is encrypted with a different session key. Traitors can build the pirate
decoder which intentionally fails to calculate the session key every few minutes
to escape from the analysis, but no one want to buy such a decoder because only
fragments of the movie can be watched by using it. Therefore, Assumption 1 is
not strong.

3 Proposed Scheme

First, we describe an outline of the proposed scheme. Secondly, the construction
of our scheme is shown.

3.1 Outline

Our scheme consists of the four phases.
Initialization: A trusted party generates and secretly gives subscribers their
personal keys. The personal key is stored in the decoder.
Encryption: The data supplier selects revoked subscribers and encrypts (i)
the digital contents with the session key and (ii) the session key itself as the
header in such a way that revoked ones cannot obtain the session key in the
header. Then, the data supplier broadcasts the encrypted digital contents and
the header. To avoid complication, we assume that (i) the symmetric encryption
algorithm, which is used for encryption of the contents, is secure and publicly
known and (ii) a broadcast channel is reliable in the sense that the received
information is not altered.
Decryption: When receiving the header, subscribers input it to their decoders
in order to obtain the session key. Since only non-revoked subscribers can com-
pute the session key, the digital contents are available only to them.
Tracing: Suppose that the pirate decoder is confiscated. The tracer chooses a
set of suspects and builds the header in which the selected suspects are revoked.
The tracer inputs the chosen headers to the pirate decoder and observes whether
it decrypts the headers correctly or not. If its output is (i) correct on the input
where a set of revoked suspects is T and (ii) incorrect on the input where a set
of revoked suspects is T ∪ {u}, then the tracer decides the subscriber, u, is a
traitor.

3.2 Protocol

Let n be the total number of subscribers and k be the maximum number of
traitors in a coalition. Let p, q be primes s.t. q|p − 1 and q ≥ n + k + 1. Let g
be a qth root of unity over Z∗

p and Gq be a subgroup of Z∗
p of order q. Let U

be a set of subscribers (U ⊆ Zq\{0}) and X be a set of revoked subscribers. All
the participants agree on p, q, and g. The calculations are done over Z∗

p unless
otherwise specified.
Initialization: Choose a0, . . . , ak, b1, . . . , bk ∈R Zq. Then, compute the public
key e as follows:
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e = (g, y0,0, . . . , y0,k, y1,1, . . . , y1,k)
= (g, ga0 , . . . , gak , gb1 , . . . , gbk).

Split U into k disjoint subsets U1, . . . ,Uk. These subsets are publicly known.
Suppose that u ∈ U i. The subscriber u’s personal key is (u, fi(u)) where

fi(x) =
k∑

j=0

ai,jx
j mod q,

ai,j =
{

aj (i �=j),
bj (i = j).

Encryption: Check whether Y �
= X\∪j∈{z|Uz⊆X} Uj is a non-empty set or not.

If Y = {x1, . . . , xw}, then find an integer d s.t. d(k + 1) ≤ w ≤ d(k + 1) + k. Set
m← d(k + 1) + k. Otherwise (Y = ∅ or X = ∅), set m← k and w ← 0.

Select c0, . . . , cm ∈R Zq, and xw+1, . . . , xm ∈R Zq\(U ∪ {0}) if w < m. Then,
build the header h(r,X ) as follows:

h(r,X ) = (h, h0,0, . . . , h0,m, h1,1, . . . , h1,m, H1, . . . , Hm),

where

h = gr,

h0,j = yr
0,zj

gcj ,

zj = j mod (k + 1),

h1,j =
{

grj (Uzj ⊆ X , zj �= 0),
yr
1,zj

gcj (Uzj � X , zj �= 0),

Hj = (xj , g
F (xj)),

F (x) =
m∑

j=0

cjx
j mod q,

and r, rj for all j ∈ {z | 1 ≤ z ≤ m, z �≡0 (mod (k + 1)), Uz mod (k+1) ⊆ X}
are random numbers generated by the data supplier. If zj = 0, then h1,j is not
included in the header. Each 2-tuple Hj is a distinct share of gF (0) = gc0 , which
is the session key.
Decryption: Suppose that x0 ∈ U i. If x0 /∈ X , the subscriber, x0, can correctly
compute one share of gF (0), i.e., (x0, g

F (x0)) as follows:

gF (x0) = Di(x0)
/

hfi(x0)
∑d

j=0 x
j(k+1)
0 ,

where d = (m− k)/(k + 1) and

Di(x0) =
m∏

j=0

B
xj
0

i,j ,

Bi,j =
{

h0,j (i �=j mod (k + 1)),
h1,j (i = j mod (k + 1)).
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Since U1, . . . ,Uk are publicized, the subscriber, x0, knows a value of i s.t. x0 ∈ U i.
Therefore, Di(x0) can be calculated as follows:

Di(x0)=
d∏

j=0

(
h0,j(k+1)× hx0

0,j(k+1)+1× · · · × h
xi
0

1,j(k+1)+i × · · · × h
xk
0

0,j(k+1)+k

)x
j(k+1)
0

=
d∏

�=0

(
gr

∑k
j=0 ai,jxj

0

)x
�(k+1)
0 × g

∑m
j=0 cjxj

0

=hfi(x0)
∑d

�=0 x
�(k+1)
0 × gF (x0).

Now, the subscriber, x0, obtains the m + 1 shares H1, . . . , Hm, and (x0, g
F (x0)).

Then, compute the session key, gF (0), by performing the Lagrange interpolation
in the exponents:

gF (0) =
m∏

j=0

(
gF (xj)

)Lj

= g
∑m

j=0 LjF (xj),

where

Lj =
∏

0≤�≤m,��=j

x�

x� − xj
mod q.

Tracing: We describe how two efficient black-box-tracing algorithms are applied
to our scheme.
Algorithm 1 (One-by-one black-box tracing)
Input: U1, . . . ,Uk, and the pirate decoder, D.
Output: a set of traitors, R.

Step 1. Label all the elements in U1, . . . ,Uk as follows:

U1 = {u1, . . . , ud1},
U2 = {ud1+1, . . . , ud1+d2},

...
Uk = {u∑k−1

j=1 dj+1, . . . , u
∑k

j=1 dj
}.

Recall that ∪k
i=1U i = U and U i∩Uj = ∅ if i �=j, and therefore

∑k
j=1 dj = n.

Step 2. Set R ← ∅ and � ← 1. Then, repeat the following procedures for 1 ≤
� ≤ n:
(2-1) Set T � ← U\{u�} and execute the algorithm Atest with input U1, . . . ,
Uk, T �,D. The algorithm Atest is described below.

(2-2) If the output of Atest(U1, . . . ,Uk, T �,D) is “correct”, then set R ←
R∪ {u�}.

(2-3) Increment � by one and go to (2-1).
Step 3. Output R as a set of traitors.
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Algorithm 2 (Black-box test Atest)
Input: U1, . . . ,Uk, T �, and the pirate decoder, D.
Output: “correct” or “incorrect”.

Step 1. It is obvious that for some i ∈ {1, . . . , k} there exists at most one set U i

s.t. U i � T � and U i ∩ T � �=∅. Check whether there exists such a set or not.
– If there is such a set U i, then set Y ← U i ∩ T �.
– Otherwise (there is no such set), set Y ← ∅.

Then, build h(r, T �) in the same way as in Sect. 3.
Step 2. Input h(r, T �) to D and observe its output.

– If D outputs the correct session key, gF (0), on the input, then output
“correct”.

– Otherwise (D outputs incorrectly), output “incorrect”.

In the �th test of Algorithm 1, the tracer examines whether the subscriber, u�, is
a traitor or not. Since all the subscribers are checked one by one, all the traitors
who give away their personal keys to the pirate decoder can be identified. The
next tracing algorithm can more efficiently detect at least one of the traitors by
using binary search.

Algorithm 3 (Binary-search black-box tracing)
Input: U1, . . . ,Uk, and the pirate decoder, D.
Output: a traitor’s ID.

Step 1. Relabel U1, . . . ,Uk as V1, . . . ,Vk in randomized order. For 1 ≤ i ≤ k,
label all the elements of Vi in randomized order. Then denote V1, . . . ,Vk as
follows:

V1 = {u1, . . . , ud′
1
},

V2 = {ud′
1+1, . . . , ud′

1+d′
2
},

...
Vk = {u∑k−1

j=1 d′
j+1, . . . , u

∑k
j=1 d′

j
}.

Note that
∑k

j=1 d′
j = n, Vi ∈ {U1, . . . ,Uk}, and Vi ∩ Vj = ∅ if i �=j.

Step 2. Set Lo ← 0, Hi ← n, and � ← 1. For 1 ≤ � ≤ �log2 n� + 1, repeat the
following procedures:
(2-1) Set Mid← �(Lo+Hi)/2� and T � ← {u1, . . . , uMid}. Then, execute the

algorithm Atest (described in Algorithm 2) with input U1, . . . ,Uk, T �,D.
– If Atest(U1, . . . ,Uk, T �,D) =“correct”, then set Lo←Mid.
– Otherwise (the output is “incorrect”), set Hi←Mid.

(2-2) Increment � by one and go to (2-1).
Step 3. After the �log2 n�+1 tests, there exists one element u ∈ U which satisfies

the following two conditions for some � ∈ {1, . . . , �log2 n�+ 1}:

Atest(U1, . . . ,Uk, T �,D) = “correct”,

Atest(U1, . . . ,Uk, T � ∪ {u},D) = “incorrect”.

Output u as a traitor’s ID.
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The same procedure as in Step 1 of Algorithm 1 can be substituted for the
permutation procedure in Step 1 of Algorithm 3 if it suffices to detect only one
of the traitors who are responsible for the pirate decoder, although the tracer
can identify more than one of them by repeating Algorithm 3 with differently
permutated U1, . . . ,Uk.

4 Security

The security of our scheme is based on the difficulty of the Decision Diffie-
Hellman problem (DDH) [2]. Informally, the assumption that DDH in Gq is
intractable means that no probabilistic polynomial-time (p.p.t. for short) algo-
rithm can distinguish with non-negligible advantage between the two distribu-
tions 〈g1, g2, g

a
1 , ga

2 〉 and 〈g1, g2, g
a
1 , gb

2〉 where g1, g2 ∈R Gq and a, b ∈R Zq.

4.1 Secrecy

Recall that X is a set of revoked subscribers and a set of subscribers U is divided
into k disjoint subsets U1, . . . ,Uk.

Lemma 1 Suppose that the subscribers in X are revoked after obtaining a cer-
tain number (bounded by a polynomial) of previous session keys and headers,
the new header, the public key, and their personal keys. For any X , the compu-
tational complexity for any coalition of k revoked subscribers to distinguish the
session key corresponding to the new header from a random element in Gq is as
difficult as DDH in Gq.

The proof is omitted due to space limitation. Lemma 1 leads to the next theorem
which shows that, for any X , no coalition of at most k revoked subscribers can
compute the session key with non-negligible probability.

Theorem 1 Suppose that the subscribers in X are revoked after obtaining a
certain number (bounded by a polynomial) of previous session keys and headers,
the new header, the public key, and their personal keys. For any X , the compu-
tational complexity for any coalition of at most k revoked subscribers to compute
the session key corresponding to the new header is at least as difficult as DDH
in Gq.

Proof Let C be a set of revoked subscribers in a coalition. Let Acomp
C,X be a

p.p.t. algorithm the coalition C uses to compute the session key corresponding
to the new header when a set of revoked subscribers is X . Let Adist

C,X be a p.p.t.
algorithm the coalition C uses to distinguish the session key corresponding to
the new header from a random element in Gq when a set of revoked subscribers
is X . Let ADDH be a p.p.t. algorithm which solves DDH in Gq. For two p.p.t.
algorithms A0,A1, we mean by A0 ⇒ A1 that the existence of A0 implies that
of A1 and by A0 ⇔ A1 that A0 ⇒ A1 and A1 ⇒ A0. Among Acomp

C,X ,Adist
C,X , and

ADDH there exist the following three relations:
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(R1) Acomp
C,X ⇒ Adist

C,X for any X , C with C ⊆ X , |C| = k (∵ Adist
C,X can be

constructed via one oracle call to Acomp
C,X .)

(R2) Adist
C,X ⇔ ADDH for any X , C with C ⊆ X , |C| = k (∵ Lemma 1)

(R3) Acomp
C′,X ⇒ A

comp
C,X for any X , C, and C′ with C ⊆ X , |C| = k, C′ � C

It follows from (R1) and (R2) that Acomp
C,X ⇒ ADDH for any X , C with C ⊆

X , |C| = k. From this result and (R3), it holds that Acomp
C,X ⇒ ADDH for any X ,

C with C ⊆ X , |C| ≤ k, which means the statement of Theorem 1. �

Note that we do not consider the collusion between revoked subscribers and
non-revoked ones.

4.2 Black-Box Traceability
Let C be a coalition of traitors and recall that T � is a set of suspects in the
input for black-box tracing. Similarly to the previous schemes, the inputs for
the normal broadcast and the ones for black-box tracing are indistinguishable.
Therefore, according to Assumption 1, the output of the pirate decoder on the
input h(r, T �) should be:

– the correct session key if C � T �.
– some incorrect one with overwhelming probability if C ⊆ T � (∵ Theorem 1).

Lemma 2 If Algorithm 2 answers “correct” for T � and “incorrect” for T � ∪
{u} (u /∈ T �), then it holds that u ∈ C with probability 1−ε where ε is negligible.

Proof Since Algorithm 2 outputs “incorrect” for T � ∪ {u}, it must hold that
C ⊆ T � ∪ {u} with overwhelming probability. Assume that u /∈ C. Since C ⊆ T �

in this case, Algorithm 2 must output “incorrect” for T � with overwhelming
probability. This is a contradiction. Therefore, the case where u /∈ C is impossible.

�

In Algorithm 1, the tracer tests whether the only non-revoked subscriber,
u� ({u�} = U\T �), is a traitor or not. The subscriber, u�, is determined as a
traitor if Algorithm 2 answers “correct” for T �.

Theorem 2 From the pirate decoder constructed by a coalition of at most k
traitors, Algorithm 1 can identify all of them with probability 1 − ε where ε is
negligible.

Proof According to Assumption 1, Algorithm 2 outputs “correct” for T � if u� ∈
C. From Lemma 2 and the fact that T � ∪ {u�} = U , it follows that u� ∈ C with
overwhelming probability if Algorithm 2 answers “correct” for T �. Therefore,
Algorithm 2 can correctly decide whether u� ∈ C with overwhelming probability.
By repeating the test of Algorithm 2 for 1 ≤ � ≤ n, Algorithm 1 can identify all
the traitors with overwhelming probability. �

In Algorithm 3, the tracer finds the last traitor who is added to a set of suspects.
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Theorem 3 From the pirate decoder constructed by a coalition of at most k
traitors, Algorithm 3 can identify at least one of them with probability 1 − ε
where ε is negligible.

Proof First, we prove that Algorithm 3 does not fail. Since Algorithm 2 must
answer “incorrect” for U with overwhelming probability and “correct” for ∅,
there exist with overwhelming probability two disjoint sets T , {u} (T � U , {u} ⊆
U\T ) s.t. Algorithm 2 outputs “correct” for T and “incorrect” for T ∪ {u}. It
is clear that Algorithm 3 can find such sets T , {u}. Therefore, Algorithm 3 does
not fail.

Secondly, it immediately follows from Lemma 2 that the subscriber, u, who
is detected by Algorithm 3, is a traitor with overwhelming probability. This
completes the proof. �

5 Efficiency

Let P, S, and H be sets of possible personal keys, session keys, and head-
ers, respectively. In Table 1, the previous schemes and ours are compared from
the viewpoints of each subscriber’s storage, the transmission overhead, the run-
ning time of the tracing algorithm, and the type of revocation. In our scheme,
each subscriber’s storage is constant and the transmission overhead does not
increase substantially over the previous schemes. For example, it holds that
log |H| = (4k +2) log |S| when the number of revoked subscribers is k. Note that
the transmission overhead does not always grow as the number of revoked sub-
scribers increases. In our scheme, the data supplier can make it impossible for
the revoked subscribers to compute the session key by (i) adding their shares of
the session key to the header or (ii) substituting a random value for the element
used only by the subscribers in one of the k disjoint subsets if all of them in the
subset are revoked. Therefore, if all of the members in a subset are revoked, the
corresponding shares of the session key are unnecessary in the header. For in-
stance, the transmission overhead is independent of the total number of revoked
subscribers and it still holds that log |H| = (4k + 2) log |S| as long as d = 0, i.e.,
there is at most k revoked subscribers who coexist with one or more non-revoked
ones in each of their subsets. Revocation in our scheme is flexible in the sense
that the maximum number of revoked subscribers does not have to be fixed in
the initialization phase and is variable in each distribution, although the security
level of revocation remains unchanged. It is desirable that the capacity level of
revocation should be changeable in each distribution in the case where the range
of the number of revoked subscribers is wide.

The outstanding advantage of our scheme is the efficient running time of
the tracing algorithm with the efficient transmission overhead. In our scheme,
(i) all the traitors in a coalition can be identified with running time O(n) and
(ii) at least one of them can be caught with running time O(log n), while the
running time of the previous one is O(

(
n
k

)
). Thanks to flexible revocation, an

efficient tracing algorithm can be achieved without a substantial increase in the
transmission overhead. Note that, as shown in Table 2, the scheme of [12] has to
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Table 1. Comparison of each subscriber’s storage, the transmission overhead, the
running time of the tracing algorithm, and a feature (n: the total number of subscribers,
k: the maximum number of traitors in a coalition, tmax: the maximum number of
revoked subscribers, d: an integer s.t. |Y| ≤ d(k + 1) + k where Y is a set of revoked
subscribers who coexist with one or more non-revoked ones in each of their subsets)

Each subscriber’s storage and the trans-
mission overhead

The running
time of the trac-
ing algorithm

Is tmax changeable
in each distribu-
tion?

[8] |P| = |S|, log |H| = (2k + 1) log |S| O(
(

n
k

)
) No (tmax = k)

[10] |P| = |S|, log |H| = 4k log |S| O(
(

n
k

)
) No (tmax = 2k − 1)

[11] log |P| = 2 log |S|, log |H| = 3(k+1) log |S| O(
(

n
k

)
) No (tmax = k)

[12] |P| = |S|, log |H| = 2(k + 1) log |S| O(
(

n
k

)
) No (tmax = k)

Ours
|P| = |S|,
log |H| = {4(d + 1)k + 3d + 2} log |S|

O(n) (Alg. 1)
O(log n) (Alg. 3) Yes

Table 2. Comparison of each subscriber’s storage and the transmission overhead re-
quired to identify all the traitors in a coalition efficiently (The same notations are used
as in Table 1.)

Each subscriber’s storage and the transmission overhead
The running time of
the tracing algorithm

[12] |P| = |S|, log |H| = 2n log |S| O(n)
Ours |P| = |S|, log |H| = {4(d + 1)k + 3d + 2} log |S| O(n)

incur an inefficient transmission overhead in order to support efficient black-box
tracing, due to lack of the flexibility in revocation. This problem is common to
the other previous schemes.

6 Conclusions

In this paper, we have proposed a flexible-revocation scheme for efficient public-
key black-box traitor tracing. Our scheme is efficient in all of the following crite-
ria: each subscriber’s storage, the transmission overhead, and the running time
of the tracing algorithm. Thanks to flexible revocation, which makes it possible
to change the maximum number of revoked subscribers in each distribution, two
efficient tracing algorithms can be applied to our scheme without a substantial
increase in the transmission overhead. One of the two tracing algorithms can
identify all of the traitors in a coalition with running time O(n), and the other
can detect at least one of them with running time O(log n), where n is the total
number of subscribers.

As a concluding remark, we mention our future research. If more intelligent
pirate decoders are taken into account, the assumptions adopted in this paper
do not always hold true. For example, the camouflage attack [6], in which the
pirate decoder conceals the correct output and pretends not to be able to out-
put correctly based on some strategy, might defeat the proposed scheme. It is
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an open problem to construct an efficient public-key revocable and black-box-
traceable scheme which satisfies a property that the information on the identities
of suspects is not revealed in the inputs for black-box tracing.
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Abstract. By using a standard polynomial basis, we present a low com-
plexity bit serial systolic multiplier over GF (2m) when there exist the
following types of irreducible polynomials, xm +xm−1 +1, xm +

∑m−2
i=0 xi

and
∑m

i=0 xi, an all one polynomial. When compared with most of other
bit serial systolic multipliers, our multiplier needs two latches fewer in
each basic cell. Therefore, the hardware complexity of our systolic array
is approximately 20 percent reduced from other existing multipliers.

Keywords: finite field, basis, systolic multiplier, all one polynomial

1 Introduction

Arithmetic of finite fields, especially finite field multiplication, found various ap-
plications in many cryptographic areas. Therefore an efficient design of a finite
field multiplier is needed. Though one may design a finite field multiplier in a
software arrangement, a hardware implementation has a strong advantage when
one wants a high speed multiplier. Moreover, arithmetic of GF (2m) is easily
realized in a circuitry using a few logical gates. A good multiplication algorithm
depends on the choice of a basis for a given finite field. In general, there are
three types of basis being used, that is, polynomial, dual and normal basis.
Some popular multipliers for cryptographic and coding theoretical purposes are
Berlekamp’s bit serial multipliers [1,2] which use a dual basis, and bit paral-
lel multipliers of Massey-Omura type [3,4,5] which use a normal basis. Above
mentioned multipliers and other traditional multipliers have some unappealing
characteristics. For example, they have irregular circuit designs. In other words,
their hardware structures may be quite different for varying choices of m for
GF (2m), though the multiplication algorithm is basically same for each m. This
is a great drawback when one has to use two finite fields where one field is a
subfield of the other, which arises in many cryptographic situations. Moreover as
m gets large, the propagation delay also increases. So deterioration of the perfor-
mance is inevitable. A systolic multiplier does not suffer from above problems.
It has a regular structure consisting of a number of replicated basic cells, each of
which has the same circuit design. So overall structures of systolic multipliers are
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same and not depending on a particular choice of m for GF (2m). Furthermore
since each basic cell is only connected with its neighboring cells, signals can be
propagated at a high clock speed. Accordingly, the computational delay of the
non systolic multipliers in [1,2,3,4,5] is very long when compared with systolic
multipliers if m is large. There are systolic multipliers using a polynomial basis
[7,8] and a dual basis [9,10,11]. When one uses a polynomial basis to multiply
two elements in a finite field, there are basically two types of multiplication
algorithms, namely, LSB (least significant bit) first scheme and MSB (most sig-
nificant bit) first scheme. To find a bit serial systolic arrangement, MSB first
scheme is used by Wang and Lin in [7] and LSB first scheme is used by Yeh et
al. in [8]. A design in [8] has a better longest path delay than that of [7] due to
increased parallelism among internal computations. However one needs two con-
trol signals in [8] whereas [7] needs only one. Therefore the hardware complexity
of [8] is higher than that of [7] because of the extra latches (flip-flops). In this
paper, we modify MSB first scheme used in [7] so that we eliminate two latches
in each basic cell when there exists an irreducible all one polynomial of degree
m for GF (2m). We show that this multiplier has the best hardware complex-
ity among all currently known bit serial systolic multipliers. Also we propose a
low complexity multiplier for each irreducible polynomial, xm + xm−1 + 1 and
xm +

∑m−2
i=0 xi. We compare our multipliers with other existing multipliers and

show that the number of necessary latches in each basic cell is reduced by two
from other bit serial systolic multipliers.

2 MSB First Algorithm

Let GF (2m) be a finite field of 2m elements. GF (2m) is a vector space over
GF (2) of dimension m. We briefly explain basic finite field arithmetic and MSB
first scheme. Let F (x) = xm + fm−1x

m−1 + · · · + f1x + f0 ∈ GF (2)[x] be an
irreducible polynomial over GF (2). Then we have GF (2m) = GF (2)[x]/(F (x))
and an element of GF (2m) is uniquely represented by a polynomial of degree
less than m, A(x) = am−1x

m−1 + am−2x
m−2 + · · · + a1x + a0 ∈ GF (2)[x]. Let

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · · + b1x + b0 be another element in GF (2m).
A multiplication of two elements A(x) and B(x) is given by

P (x) = A(x)B(x) (mod F (x)).

Let T0(x) = 0 and for each 1 ≤ i ≤ m, define

Ti(x) = A(x)(bm−1x
i−1 + bm−2x

i−2 + · · · + bm−i) (mod F (x)).

Then we have P (x) = Tm(x) and

Ti(x) = A(x)(bm−1x
i−1 + bm−2x

i−2 + · · · + bm−i) (mod F (x))

= xA(x)(bm−1x
i−2 + bm−2x

i−3 + · · · + bm−i+1) (mod F (x)) + A(x)bm−i

= xTi−1(x) (mod F (x)) + A(x)bm−i.



Low Complexity Bit Serial Systolic Multipliers 211

Letting Ti(x) = ti,1x
m−1 + ti,2x

m−2 + · · ·+ ti,m−1x+ ti,m, we have the recursive
relation

Ti(x) = xTi−1(x) + ti−1,1F (x) + bm−iA(x), 1 ≤ i ≤ m.

Comparing the coefficients of xm−k of above polynomials, we get

ti,k = ti−1,k+1 + ti−1,1fm−k + bm−iam−k, 1 ≤ i, k ≤ m.

Wang and Lin [7] realized above algorithm in the following bit serial systolic
arrangement. For convenience we assume m = 4. Fig. 1(a) is the circuit of
ith basic cell and Fig. 1(b) is the corresponding systolic array. The multiplier
supports a pipelined operation with latency 3m and throughput rate 1/m.

Fig. 1(a). The circuit of ith basic cell in GF (24)

Fig. 1(b). Corresponding systolic array

3 Multipliers of Low Complexity Using Special Types
of Irreducible Polynomials

3.1 A Multiplier Using an Irreducible All One Polynomial

A polynomial of the form 1 + x + x2 + · · · + xm in GF (2)[x] is called an all
one polynomial (AOP) of degree m over GF (2). It is well known [5,6] that
an AOP of degree m is irreducible over GF (2) if and only if m + 1 = p is
a prime and 2 is a primitive root modulo p. For example, an AOP of degree
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m = 4 is irreducible over GF (2). When the irreducible polynomial F (x) =
f0 + f1x + · · · + fm−1x

m−1 + xm ∈ GF (2)[x] used in the multiplier in Fig. 1
is AOP, i.e. fi = 1 for all 0 ≤ i ≤ m − 1, we may further reduce the hardware
complexity of the systolic design. This is easily noticed when one sees that the
inputs fi are not necessary because ti−1,1fm−k = ti−1,1, 1 ≤ k ≤ m, in the
recursive relation stated above Fig. 1(a). Therefore one can eliminate two latches
and one AND gate in Fig. 1(a), and the resulting circuit is shown in Fig. 2 for
the case m = 4.

Fig. 2(a). The circuit of ith basic cell using irreducible AOP

Fig. 2(b). Corresponding systolic array in GF (24)
where F (x) = 1 + x + x2 + x3 + x4

An irreducible all one polynomial (AOP) is closely related with a normal basis
of some good properties. In fact, if α is a zero of an irreducible AOP of degree
m, then {α, α2, α3, · · · , αm} is known [6] to be a normal basis in GF (2m) and
is widely used [3,5,6] in the design of a bit parallel multiplier of low complexity.
In some literature [6], this normal basis is called an optimal normal basis of
type I. However our basis in the systolic design in Fig. 2 is a polynomial basis,
{1, α, α2, · · · , αm−1}. To the author’s knowledge, this is the first design of a bit
serial systolic multiplier using an irreducible AOP or an optimal normal basis of
type I, though there are some other examples [10,11] of bit serial systolic mul-
tipliers of low complexity using irreducible trinomials of a special kind, namely,
xm + x + 1. As one can see from Table 1, our design of an AOP multiplier needs
fewer MUXs and gates when compared with the ones using xm + x + 1. A mul-
tiplier using irreducible xm + x + 1 is presented in [10] as a special case of the
construction of a dual basis bit serial systolic multiplier. A similar construction
(again using a dual basis with the same polynomial) is also proposed in [11].
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Table 1. Comparison of cell complexity

basis with AND XOR 3XOR MUX Latch longest
F (x) path delay

[7] polynomial 3 0 1 1 8 DA+D3X+DL

[8] polynomial 3 2 0 1 10 DA+DX+DL

[9] dual 2 2 0 2 8 DA+DX+DM+DL

[10] dual 4 3 0 1 6 DA+2DX+DL

xm+x+1
[11] dual 3 + 2 0 2 6 DA+DX+DN+DL

xm+x+1 one NAND
Fig. 2 polynomial 2 0 1 1 6 DA+D3X+DL

AOP
Fig. 3 polynomial 3 + 0 1 1 6 DA+D3X+DN+DL

xm+xm−1+1 one NAND
Fig. 4 polynomial 3 0 1 1 6 DA+D3X+DL

xm+
∑m−2

i=0

All above multipliers have latency m and throughput rate 1/m. AND, NAND, XOR and MUX mean
2-input gates and 3XOR means a 3-input XOR gate. DA, DN , DX and DM mean the delay time of
an AND gate, a NAND gate, a XOR gate and a MUX respectively. Note that the area complexity
of latch is higher than any other gates in the table. Approximately, a latch takes 5 times more area
than an AND gate, 2.5 times more than a MUX and 2 times more than a XOR gate.

Since these multipliers do not need the inputs of fi, one can save two latches
from a usual multiplier.

3.2 A Multiplier Using an Irreducible xm + xm−1 + 1

An irreducible polynomial F (x) = xm + xm−1 + 1 ∈ GF (2)[x] corresponds to
input signal 〈f0 f1 f2 · · · fm−1〉 = 〈1 0 · · · 0 1〉. By adjusting control signal
〈1 1 · · · 1 0〉, we can make the signal 〈f0 f1 f2 · · · fm−1〉 occur without ac-
tually using the inputs fi. That is, by taking a NAND gate of control signal
〈1 1 · · · 1 0〉 and one clock delayed control signal 〈1 · · · 1 0 1〉, we have the
signal 〈0 · · · 0 1 1〉. We make this signal come in the cell one clock ahead of
the signals ai. Therefore the resulting signal is 〈1 0 · · · 0 1〉, which is the input
signal of xm + xm−1 + 1. The circuit is shown in Fig. 3 for the case m = 4. We
omit the corresponding systolic array since it is exactly same to Fig. 2(b).

Fig. 3. The circuit of basic cell using irreducible xm + xm−1 + 1
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It is easy to show that the polynomial xm + xm−1 + 1 is irreducible over GF (2)
if and only if xm +x+1 is irreducible, since 1/α is a root of xm +x+1 whenever
α is a root of xm + xm−1 + 1. Therefore, the dual basis multipliers in [10,11]
using xm + x + 1 and our multiplier using xm + xm−1 + 1 are applicable for the
same class of finite fields. Again, Table 1 says that our systolic arrangement in
Fig. 3 has a lower hardware complexity than the multipliers in [10,11]. It should
be mentioned that the polynomial xm + x + 1 (or xm + xm−1 + 1) is not very
often irreducible over GF (2) when compared with AOP. It is known [14] that
there are 21 of m ≤ 1000 for which xm + x + 1 (or xm + xm−1 + 1) is irreducible
over GF (2). However the number of m ≤ 1000 for which an irreducible AOP of
degree m exists [6,p.100] is 68. Therefore an AOP multiplier is applicable to a
broader class of m than a multiplier using xm + x + 1.

3.3 A Multiplier Using an Irreducible xm +
∑m−2

i=0 xi

It is also possible that we do not use any gate on the control signals and still we
can get an efficient multiplier. For example, when F (x) = xm+

∑m−2
i=0 xi, the cor-

responding input 〈f0 f1 f2 · · · fm−1〉 is same to the control signal 〈1 1 · · · 1 0〉.
Thus we have a multiplier for an irreducible F (x) = xm +

∑m−2
i=0 xi and it is

shown in Fig. 4, where the case m = 5 is dealt since x5 + x3 + x2 + x + 1 is
irreducible over GF (2).

Fig. 4. The circuit of basic cell using irreducible F (x) = xm +
∑m−2

i=0 xi

4 Conclusions

In this paper, we proposed three types of low complexity bit serial systolic mul-
tipliers applicable for some classes of finite fields. A slight modification of the
MSB first design in [7] yields efficient multipliers applicable to the following
types of irreducible polynomials, namely, an AOP polynomial, xm + xm−1 + 1
and xm+

∑m−2
i=0 xi. We showed that all these multipliers need only 3 (serial) input

lines into the basic cells as shown in Table 1. Therefore, they have lower hardware
complexities than other multipliers with 4 (serial) input lines. Moreover, since
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we use a standard polynomial basis, we do not have to worry about the basis
conversion process. The irreducibility of an AOP polynomial and xm +xm−1 +1
is well understood for moderately small values of m. It is known [14] that
the values of m ≤ 1000 for which xm + xm−1 + 1 is irreducible over GF (2)
are m = 2, 3, 4, 6, 7,9, 15, 22, 28, 30,46, 60, 63,127, 153, 172,303, 471, 532,865, 900.
There are 21 of them. The number of m ≤ 2000 for which an AOP of degree
m is irreducible [6,p.100] is 118. For example, we have an irreducible AOP of
degree m when m = 2, 4, 10,12, 18,28, 36, 52,58, 60, 66,82, 100, 106, 130,138,148,
162, 172, 178, 180, · · · . For a cryptographic purpose where one needs a large fi-
nite field GF (2m), one can always find a sequence of m for which GF (2m)
has an AOP basis or a trinomial basis of xm + xm−1 + 1. The irreducibility of
xm +

∑m−2
i=0 xi is not currently available in a known literature. But it is not

difficult to test the irreducibility of xm +
∑m−2

i=0 xi by using standard algorithms
explained in [6]. By a hand calculation, one easily shows that xm +

∑m−2
i=0 xi

is irreducible when m = 3, 5, 7 but reducible when m = 9, 11. It would be very
nice if one has a table of the irreducibility of this polynomial and compares the
result with those of an AOP polynomial and xm + xm−1 + 1, which will clarify
possible finite fields for which our multipliers have applications.
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Abstract. The Single Instruction, Multiple Data (SIMD) architecture
enables to compute in parallel on a single processor. The SIMD opera-
tions are implemented on some processors such as Pentium 3/4, Athlon,
SPARC, and even on smart cards. This paper proposes efficient algo-
rithms for assembling an elliptic curve addition (ECADD), doubling
(ECDBL), and k-iterated ECDBL (k-ECDBL) with SIMD operations.
Using the singed binary chain, we can compute a scalar multiplication
about 10% faster than the previously fastest algorithm by Aoki et al.
Combined with the sliding window method or the width-w NAF window
method, we also achieve about 10% faster parallelized scalar multiplica-
tion algorithms with SIMD operations. For the implementation on smart
cards, we propose two fast parallelized scalar multiplication algorithms
with SIMD resistant against side channel attacks.

Keywords: Elliptic Curve Cryptosystems (ECC), scalar multiplication,
NAF, window method, SIMD operations, side channel attacks

1 Introduction

Elliptic curve cryptosystems (ECC) have become a vital technology for cryp-
tography because of their high security with shorter key-length and faster com-
putation than existing other cryptographic schemes. Designers are strongly rec-
ommended to implement ECC based on the standards [IEEE,NIST,SEC]. Let
E(K) be an elliptic curve over a finite field K = IFq (q is a power of a prime
p). The dominant computation of all ECC algorithms, including the encryp-
tion/decryption and the signature generation/verification, is the scalar multi-
plication d ∗ P for a point P ∈ E(K) and an integer d. Numerous algorithms
have been proposed to enhance the computing time of the scalar multiplica-
tion (see [BHLM01]). In this paper we deal with the parallel computation of
the scalar multiplication. Parallelized computation of elliptic curve arithmetic is
discussed by Koyama and Tsuruoka for the first time [KT92]. In the paper, they
assumed that the parallel computation is executed by a special hardware. Nowa-
days SIMD (Single instruction, Multiple Data) operations, with which multiple
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data are processed by a single instruction on a single processor, are available on
major CPUs; MMX and SSE for Pentium 3/4, enhanced 3D Now! for Athlon,
VIS for SPARC, and even on smart cards. In this context, Smart proposed
a family of elliptic curves suitable for the SIMD operations [Sma01], however
these curves are not fully-compatible to standard elliptic curves. Aoki et al. pro-
posed efficient algorithms for computing addition formulas in parallel with SIMD
[AHKO01]. They implicitly assumed the time for computing multiplication by
a constant over the definition field is negligible, and their addition formulas are
not suitable for arbitrary computational environment. Their computation time
for computing ECADD and ECDBL are 5M + 1S and 2M + 3S, where M and
S are the computation time of a multiplication and a squaring of the definition
field, respectively.

In this paper, we propose complete and efficient algorithms for comput-
ing scalar multiplications in parallel with SIMD for standard curves. We show
the faster implementation of an elliptic curve addition (ECADD) and doubling
(ECDBL) in the Jacobian coordinate as well as k-iterated ECDBL (k-ECDBL).
The algorithms of our proposed addition formulas are written using only basic
operations of the definition field, namely multiplications, squarings, additions,
and subtractions. We also optimize the number of auxiliary variables required
for the formulas. Thus the addition formulas can be used for all computation
environments. Let A be the computation time of an addition or a subtraction of
the definition field. The proposed ECADD requires time 4M + 2S + 6A with 8
auxiliary variables. It is faster than the formula by Aoki et al. over the environ-
ment whose squaring is faster. The proposed ECDBL requires 2M +3S+7A with
7 auxiliary variables. The formula k-ECDBL aims at computing k-time ECDBLs
with one formula instead of repeatedly applying ECDBL. For non-parallel cases,
Itoh et al. proposed an efficient algorithm for the k-iterated ECDBL in the Ja-
cobian coordinate [ITTTK99]. We develop the SIMD version of their algorithm.
The computation time of our k-ECDBL with SIMD requires 2kM+(2k+1)S+7kA,
and we can reduce the number of squarings for k > 1. We then apply these for-
mulas for computing scalar multiplications. Both the signed binary method and
the window-based methods are discussed. Through the paper we assume that the
base point is not fixed. The signed binary method using our proposed formulas
can yield about 10% faster scalar multiplication than one using the formulas by
Aoki et al. We deal with two window-based schemes, namely the sliding window
method (Algorithm 14.85 of [MvOV97]) and the width-w NAF window method
(Algorithm 11 of [BHLM01]). Because these methods have long zero runs of their
addition chain, we can expect that the algorithm k-ECDBL effectively reduces the
number of squaring. The improvement of our schemes over the previous schemes
are estimated about 10%. We made experiments for the expected length of the
zero run, and we confirmed our above estimations are correct.

The shorter key-length of ECC is suitable for implementing on smart cards.
However, the side channel attacks (SCA) are serious if there is a tight connec-
tion between a secret key in the device and side information such as computing
times and power consumptions [Koc96,KJJ99]. There are two levels of SCA at
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the moment; the simple power analysis (SPA) and the differential power anal-
ysis (DPA). Implementer should pay attention against each of them. Recently,
Fischer et al. proposed a parallelized scalar multiplication algorithm resistant
against SCA on the CRYPTO2000 [FGKS02]. The CRYPTO2000 is an arith-
metic co-processor on which SIMD operations are available. In this paper, we
propose two parallelized scalar multiplication algorithms resistant against SCA.
The first one is a direct application of proposed ECADD and ECDBL. The
second one is based on the Möller’s window-based algorithm [Möl01]. Compar-
ing with previous algorithms, we establish the fastest algorithm for computing
parallelized scalar multiplication with SIMD operations.

2 Preliminaries

Elliptic Curves: In this paper we assume K = IFp (p > 3) be a finite field
with p elements. Elliptic curves over K can be represented by the Weierstrass
form equation

E(K) := {(x, y) ∈ K×K | y2 = x3+ax+b (a, b ∈ K, 4a3+27b2 �= 0)}∪O, (1)

where O is the point of infinity. An elliptic curve E(K) has an additive group
structure. For two points P1, P2 of E(K), we call P1 + P2 (P1 �=P2) the elliptic
curve addition (ECADD) and P1 +P2 (P1 = P2), that is 2∗P1, the elliptic curve
doubling (ECDBL). Let d be an integer and P be a point on the elliptic curve
E(K). The scalar multiplication is to compute the point d ∗ P .

Jacobian Coordinate System: Costs of computing ECADD/ECDBL depend
on the representation of an elliptic curve [CMO98]. The Jacobian coordinate
offers a faster computation, which is obtained by setting x = X/Z2, y = Y/Z3

in (1). The equation of the curve is given by EJ : Y 2 = X3 + aXZ4 + bZ6

and a point on the curve is represented by (X, Y, Z) where two points (X, Y, Z)
and (λ2X, λ3Y, λZ) (λ �= 0) are identified as same. The addition formulas for
Jacobian coordinate are given in Table 1.

Table 1. Addition formulas in Jacobian coordinate

ECADD ECDBL
Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) Input: P1 = (X1, Y1, Z1), a
Output: P3 = P1 + P2 = (X3, Y3, Z3) Output: P4 = 2 ∗ P1 = (X4, Y4, Z4)
U1 ← X1Z

2
2 , U2 ← X2Z

2
1 M ← 3X2

1 + aZ4
1

S1 ← Y1Z
2
2 , S2 ← Y2Z

3
1 S ← 4X1Y

2
1

H ← U2 − U1, r ← S2 − S1 T ← −2S + M2

X3 ← −H3 − 2U1H
2 + r2 X4 ← T

Y3 ← −S1H
3 + r(U1H

2 −X3) Y4 ← −8Y 4
1 + M(S − T )

Z3 ← Z1Z2H Z4 ← 2Y1Z1

Computing times for ECADD and ECDBL in Table 1 are ECADD = 12M + 4S
and ECDBL = 4M + 6S [CMO98], where M, S denotes computing times of a
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multiplication and a squaring in K, respectively. If one of the Z-coordinate
equals 1, ECADD is reduced to ECADDZ=1 = 8M +3S. If a = −3, ECDBL is reduced
to ECDBLa=−3 = 4M + 4S.

Addition Chain: Let d be an n-bit integer and P be a point of the elliptic curve
E. A standard way for computing a scalar multiplication d∗P is to use the binary
expression d = d[n−1]2n−1 +d[n−2]2n−2 + . . .+d[1]2+d[0], where d[n−1] = 1
and d[i] = 0, 1 (i = 0, 1, ..., n − 2). The binary method computes an ECDBL for
every d[i] and an ECADD if d[i] �= 0. In average it requires (n−1) ECDBLs and
(n − 1)/2 ECADDs. Because computing the inverse −P of P is essentially free,
we can relax the condition ”binary” to ”signed binary” d =

∑n−1
i=0 d[i]2i, where

d[i] = −1, 0, 1. It is called the signed binary method (or the addition-subtraction
method). NAF offers a way to construct the addition-subtraction chain, which
requires (n− 1) ECDBLs and (n− 1)/3 ECADDs in average [IEEE] for an n-bit
scalar multiplication. We denote the signed binary expression obtained by NAF
as d =

∑
NAF (d)[i]2i. In the binary methods, points P and −P are constant

that we can set Z-coordinates of them to 1 for an efficiency reason.

Window Method: If we are allowed to use extra memory, the window methods
enhance the efficiency of scalar multiplications by using a table of pre-computed
points. In the following we assume the base point is not fixed. There are several
types of window methods such as the 2w-array window method, the sliding
window method, the width-w NAF window method, and the combined fixed
window methods [MvOV97,BHLM01]. As we will combine window methods and
our proposed iterated ECDBL in section 3.2, we are particularly interested in
the schemes that computes ECDBL successively.

We give a brief review of these methods. The 2w-array window method
with NAF is a direct extension of the signed binary method. It pre-computes
2P, . . . , (2w−1)P and in main loop it computes ECDBL w times and ECADD(Q,
±iP ) for i ∈ {0, ±1, ±2, . . . ,±(2w − 1)} repeatedly.

The w-width sliding window method with NAF also use a pre-computed ta-
ble (See Table 2). As the optimal window size of this method (in the sense of
efficiency) for 160-bit scalar multiplications is w = 4 [dWMPW98], we assume
w = 4. Then, the pre-computed windows are the following 10 forms (1̄ denotes
−1): 101̄0 (6 ∗ P ), 1001̄ (7 ∗ P ), 1000 (8 ∗ P ), 1001 (9 ∗ P ), 1010 (10 ∗ P ), and their
negatives which can be easily computed and are not stored in the table. Denote
e(xy) = 6, 7, 8, 9, 10 for xy = 1̄0, 01̄, 00, 01, 10, respectively. We write 4 consecu-
tive bits from the bit NAF (d)[i] as 4-NAF (d)[i]. Denote ECDBLk by the k-time
iteration of ECDBL. In Table 2 we show the 4-width sliding window with NAF.
In the pre-computation step, we compute 4 ECDBLs and 4 ECADDs. Then the
five points e(1̄0)P, e(01̄)P, e(00)P, e(01)P, e(10)P are converted to the affine co-
ordinate and are stored in the table. In the evaluation step requires 160 ECDBLs
and about 30 ECADDs on average [dWMPW98]. Therefore, the 4-width sliding
window with NAF for 160 bits requires 164 ECDBLs and about 34 ECADDs on
average, and 5 additional affine point storage.



Fast Elliptic Curve Multiplications with SIMD Operations 221

Table 2. 4-width Sliding Window Method with NAF

Input: NAF(d), P, (NAF(d)[i], n)
Output: d*P
Pre-computation
1: 2P=ECDBL(P), 3P=ECADD(2P,P), 4P=ECDBL(2P), 6P=ECDBL(3P)
2: 7P=ECADD(6P,P), 8P=ECDBL(4P), 9P=ECADD(8P,P), 10P=ECADD(9P,P)
3: (e(1̄0)P,e(01̄)P,e(00)P,e(01)P,e(10)P) = Affine(6P,7P,8P,9P,10P)
Evaluation
1: Q = O, i = n-1
2: while i ≥ 3 do
3: if NAF(d)[i] = 0 then find the largest c

with NAF(d)[i-j] = 0 for j ≤ c else c = 0
4: Q = ECDBLc+4(Q), i = i-c
5: if 4-NAF(d)[i] = 10xy then Q = ECADD(Q,e(xy)P), i = i - 4
6: if 4-NAF(d)[i] = 1̄0x̄ȳ then Q = ECADD(Q,-e(xy)P), i = i - 4
7: while i > 1 do
8: Q = ECDBL(Q)
9: if NAF(d)[i] = ±1 then Q = ECADD(Q,±P)

10: return Affine(Q)

Next is the width-w NAF window method (See Table 3), which is an effi-
cient window based scheme with a small table size. The width-w NAF represents
the scalar d as d =

∑
NAFw(d)[i]2i, where |NAFw(d)[i]| < 2w−1 and among

any w consecutive coefficients, at most one is nonzero. In the pre-computation
stage, we precompute the points P, 3P, . . . , (2w−1 − 1)P . In the evaluation stage
we compute ECDBL and ECADD with the point from the table based on the
NAFw(d)[i]. It is known that the evaluation stage requires n ECDBLs and
n/(w +1) ECADDs on average [BHLM01]. For 160 bit cases, width 4 is optimal
in the sense of efficiency and memory. The pre-computation of 3P, 5P , and 7P
requires 3 ECDBLs and 3 ECADDs and the conversions to the affine coordinate.
In the evaluation stage we need 160 ECDBLs and 32 ECADDs. Therefore the
width-4 NAF window method requires 163 ECDBLs and 35 ECADDs and 3
additional point storage.

3 Scalar Multiplication with SIMD Operations

This section provides faster scalar multiplication algorithms with SIMD opera-
tions. First, we establish the algorithms for computing addition formulas in the
Jacobian coordinate with SIMD, and an algorithm for computing the k-iterated
ECDBL with SIMD. Then scalar multiplication algorithms based on the signed
binary method and the window-based methods are discussed.

3.1 Previous Algorithms

Recently Smart proposed a family of elliptic curves which is suitable for imple-
menting with SIMD. However these curves are not fully-compatible with stan-
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Table 3. width-4 NAF Window Method

Input: NAF4(d), P, (NAF4(d)[i], n)
Output: d*P
Pre-computation
1: 2P=ECDBL(P), 3P=ECADD(2P,P), 4P=ECDBL(2P)
2: 5P=ECADD(4P,P), 6P=ECDBL(3P), 7P=ECADD(6P,P)
3: (3P,5P,7P) = Affine(3P,5P,7P)
Evaluation
1: Q = O
2: for i = n-1 to 0
3: Q = ECDBL(Q)
4: if NAF4(d)[i] �= 0 then Q = ECADD(Q,±NAF4(d)[i]P)
5: return Affine(Q)

dardized elliptic curves (Weierstrass form). Aoki et al. proposed efficient algo-
rithms for computing addition formulas on Weierstrass form curves with SIMD
operations [AHKO01]. The computing times of algorithms of Aoki et al. with
SIMD are ECADDAHKO

Z=1 = 5M + 1S and ECDBLAHKO = 2M + 3S.

3.2 New Algorithms

Actually, the algorithms by Aoki et al. compute the addition formulas efficiently,
they implicitly assumed that the computing time for a multiplication by a con-
stant is negligible. They did not discuss general case of ECADD (when Z �= 1).
Moreover, they did not include the cost of additions in algorithms. Generally
computing additions are easier than multiplications and squaring. However, to
make a minute comparison, the numbers of addition should be considered.

We show an improved version of parallelized algorithms without neglecting a
multiplication by a constant. The concrete algorithms are summarized in Table
9 in appendix. The computing times for ECADD and ECDBL with SIMD are
ECADDnew = 6M + 2S + 5A with 8 variables and ECDBLnew = 2M + 3S + 7A
with 7 variables. If one of Z-coordinates of inputs is 1, ECADDnew is deduced to
ECADDnew

Z=1 = 4M + 2S + 6A with 8 variables. If a = −3, ECDBLnew is deduced to
ECDBLnew

a=−3 = 2M + 2S + 7A with 8 variables.
If we successively compute ECDBL k times, we call this operation as the

k-iterated ECDBL. We can compute iterated ECDBL by computing ECDBL k
times. However, the computing time may be enhanced if intermediate results
are reused. Indeed, Itoh et al. proposed an efficient algorithm for the k-iterated
ECDBL in the Jacobian coordinate [ITTTK99].

We parallelized their algorithm and optimized the computing time with
SIMD operations. The proposed algorithm is in Table 10 in the appendix. The
computing time for k-iterated ECDBL is kECDBL = 2kM +(2k+1)S+7kA with 8
variables. If we apply ECDBLnew k times, the computing time is 2kM +3kS+7kA,
which is slower than kECDBL (k ≥ 2). On the other hand, if a = −3, this
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Table 4. Signed binary method with k-ECDBL

Input: NAF(d), P, (NAF(d)[i],n)
Output: d*P
1: Q = O, i = n-1
2: while i ≥ 1 do
3: if NAF(d)[i] = 0 then find the largest c

with NAF(d)[i-j] = 0 for j ≤ c else c = 0
4: Q = (c+1)-ECDBL(Q), i=i-c
5: if NAF(d)[i] = ±1 then Q=ECADDnew

Z=1(Q,±P), i = i - 1
6: return Affine(Q)

approach is not effective. That is, applying ECDBLnew
a=−3 k times, which needs

2kM + 2kS + 7kA, is slightly faster.

3.3 Signed Binary Methods

We are going to discuss the scalar multiplication algorithms in this and next
sections. In this section, we propose non-window based algorithms, which is
faster than the scheme using the formulas [AHKO01]. For a general purpose, we
assume a �=−3 in the following. But we assume the bit length of a scalar is
160. The comparison is measured by the time of multiplications, squarings, and
inversions in the definition field K. We neglect computing times for additions
(subtractions) in K.

First, we apply our proposed ECADDnew
Z=1 and ECDBLnew to the signed binary

method with NAF. The estimated computing times for both our method and
the method in [AHKO01] are roughly equal to (n − 1) ECDBL + n/3 ECADD
and more 3M + 1S + 1I for converting the coordinate from the Jacobian to
the affine coordinate by computing (X, Y, Z) → (X/Z2, Y/Z3). The scheme of
[AHKO01] requires 587.7M + 531.3S + 1I = 1042.7M . Our proposed scheme
requires 534.3M + 584.7S + 1I = 1032.1M .

Next, we apply the k-iterated ECDBL to the signed binary chain. ECADDnew

is computed if and only if the i-th bit of the NAF chain NAF (d)[i] is not zero.
Therefore, we can repeatedly apply k-iterated ECDBL for the consecutive zero
sequences instead of k times ECDBLs. The algorithm is as follows:

Let us estimate the efficiency of the method. Koyama-Tsuruoka estimated
the average length of c for NAF is 4/3 [KT92]. Therefore the averaged length k
of k-iterated ECDBL is 7/3 = 2.33 and the number of iterated ECDBL is 68.14
on average for 160-bit cases. The average number of ECADD is 159/3 = 53.
Thus the total efficiency is 532.5M + 492.7S + 1I = 956.7M . Our proposed
scheme using ECADDnew and kECDBL is about 10% faster than the previously
fastest algorithm.

In order to confirm the appropriateness of our efficiency estimations, we made
an experiment for 10,000 randomly selected 160-bit scalars. These results justify
our estimations. We summarize the estimations and experimental results in Table
7, where we set 1S = 0.8M, 1I = 30M as in [OS00,IT02a].
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Table 5. Comparison of the computing times of signed binary methods

Estimation Exp. Res.
NAF with ECADDAHKO, ECDBLAHKO 587.7M + 531.3S + 1I 1042.7M 1044.4M

NAF with ECADDnew
Z=1, ECDBLnew 534.3M + 584.7S + 1I 1032.1M 1033.7M

NAF with ECADDnew
Z=1, kECDBL 532.5M + 492.7S + 1I 956.7M 947.8M

3.4 Window-Based Methods

In this section, we discuss the window-based methods, i.e. the sliding win-
dow method and the width-w NAF window method. We do not consider the
window-based schemes that use the fixed base exponentiation, e.g. the com-
bined fixed window method [MvOV97]. In the following, the formulas ECADDnew

Z=1
and ECDBLnew will be abbreviated as ECADDZ=1 and ECDBL, respectively.

The window-based methods consist of the pre-computation stage and the
evaluation stage. In order to improve the efficiency of the evaluation stage, we
employ ECADDZ=1, namely Z-coordinate of points in the table are chosen 1. We
only need one inversion to transform all points by Montgomery’s trick, which
converts k inversions into 3(k − 1) multiplications and 1 inversion.

At first we estimate the efficiency of the 4-width sliding window method
described in section 2. In the pre-computation stage, we need 4 ECDBL and 4
ECADDZ=1 for point computation and 27M + 5S + 1I for the transformation of
the 5 points to the affine coordinate. The total efficiency of the pre-computation
is 51M + 25S + 1I. We need 160 ECDBL+ 30 ECADDZ=1 for the evaluation stage
and 3M + 1S + 1I for the conversion to the affine coordinate. Thus the 4-width
sliding windows requires 494M + 566S + 2I = 1006.8. Note that if we apply the
ECADDAHKO to the scheme it becomes 6M slower.

Here our proposed kECDBL can reduce the computing time of step 3 in Table
3, if we apply it to the 4-width sliding window method with NAF, because the
method computes ECDBL (at least) 4 times successively. If the largest integer
c with NAF (d)[i − l] for j ≤ c is longer in step 3, the improvement becomes
larger. Win et al. estimated l = 4/3 and the expected number of the ECADD
is �160/(4 + 4/3)	 = 30 [dWMPW98]. In step 8 we compute 1 ECADDZ=1 on
average. Therefore in total we require 30 (5.33-ECDBL) + 31 ECADDZ=1 in the
evaluation stage. Thus the 4-width sliding windows using 4-iterated ECDBL
requires 497.8M + 437.8S + 2I = 908.4M on average. Our proposed scheme is
about 10% faster than the original 4-width sliding window method. We made
an experiment for 10, 000 randomly chosen scalar d as in Section 3.4. Then we
have the following results. The average length of l is 1.13 and the average call of
4+l-ECDBL is 30.28. The number of ECADD that appeared in step 4 (or 5) is 29.45.
The computation of i < 3 in step 8 and 9 requires 1.21ECDBL + 0.79 ECADDZ=1.
Therefore in total we require 30.28 (5.13-ECDBL) + 29.45 ECADDZ=1 + 1.21 ECDBL
+ 0.79 ECADDZ=1 = 434M + 405S in the 1.22 evaluation stage. Thus the total
efficiency of the 4-width sliding windows requires 488M + 432S + 2I = 893.6M .

Next, let us consider the efficiency of the width-4 NAF window method in
section 2. The pre-computed points are 3P, 5P , and 7P as the affine coordi-



Fast Elliptic Curve Multiplications with SIMD Operations 225

Table 6. width-4 NAF Window Method with k-ECDBL

Input: NAF4(d), P, (NAF4(d)[i],n)
Output: d*P
Pre-computation
1: 2P=ECDBL(P), 3P=ECADD(2P,P), 4P=ECDBL(2P)
2: 5P=ECADD(4P,P), 6P=ECDBL(3P), 7P=ECADD(6P,P)
3: (3P,5P,7P) = Affine(3P,5P,7P)
Evaluation
1: Q = O, i = n-1
2: while i ≥ 1 do
3: if NAF4(d)[i] = 0 then find the largest c

with NAF4(d)[i-j] = 0 for j ≤ c else c = 0
4: Q = (c+1)-ECDBL(Q), i=i-c
5: if NAF4(d)[i] �= 0 then Q = ECADDnew

Z=1(Q,±NAF4(d)[i]P), i = i-1
6: return Affine(Q)

nate. We compute them as 2P = ECDBL(P ), 3P = ECADDZ=1(2P, P ), 4P =
ECDBL(2P ), 5P = ECADDZ=1(4P, P ), 6P = ECDBL(3P ), 7P = ECADDZ=1(6P, P ),
which require 18M +15S. We convert the points 3P, 5P, 7P to the affine coordi-
nate, which requires 3(3M +1S +I) = 15M +3S +1I. The total efficiency of the
pre-computation stage is 33M + 18S + 1I. We need 159ECDBL+ 32ECADDZ=1 for
the evaluation stage and 3M +1S+1I for the conversion to the affine coordinate.
Thus the width-4 NAF window method requires 482M + 560S + 2I = 990M .
Note that if we apply the ECADDAHKO to the scheme it becomes 6.4M slower.

We apply kECDBL to the width-4 NAF window method (See Table 6). In
the evaluation stage, ECADD is computed if and only if the NAF4(d)[i] �= 0. Let
c be the largest integer which satisfies NAF4(d)[i] = NAF4(d)[i − 1] = ... =
NAF4(d)[i − c] = 0. The expected length of c is 2 [dWMPW98]. Thus we can
improve its efficiency by repeatedly applying kECDBL. We estimate the efficiency
of the proposed method. The pre-computation stage requires as large as the
original scheme, namely 33M + 18S + 1I. The expected length of c is 2, and
thus we have to compute 53 times 3-ECDBL and 32 ECADDZ=1 on average, which
is equivalent to 446M +435S. Therefore the total efficiency of the 4-width NAF
window method is 482M + 454S + 2I = 905.2M and it requires additional 3
points storage. Our experiment result is 884.7M for 10, 000 randomly chosen
160-bit scalar d. Our proposed scheme is about 10% faster than the original
width-4 NAF window method.

Consequently, we summarize the results that we have discussed above in the
following table.

Table 7. Comparison of the computing times of window based schemes

Estimation Exp. Res. Table Size

4-width SW with ECADLnew, ECDBLnew 494M + 566S + 2I 1006.6M 993.6M 5 points
4-width SW with ECADLnew, kECDBL 497.8M + 437.8S + 2I 908.4M 893.6M 5 points

width-4 NAF with ECADLnew, ECDBLnew 482M + 560S + 2I 990.0M 986.0M 3 points
width-4 NAF with ECADLnew, kECDBL 482M + 454S + 2I 905.2M 884.7M 3 points
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4 Scalar Multiplication and Side Channel Attacks

The shorter key-length of ECC is suitable for implementing on low-power devices
such as smart cards. The side channel attacks (SCA) [Koc96,KJJ99] are serious
if there is a tight connection between secret information hidden in the device
and the side channel information observed by an attacker. The simple power
analysis (SPA) and the differential power analysis (DPA) are good examples of
SCA. Implementers should take measures against each of them.

4.1 Countermeasures against SCA

There are three approaches to resist SPA. The first one uses the indistinguish-
able addition formula in the scalar multiplication [BJ02]. The second one uses
the add-and-double-always method [Cor99] which masks the dependency be-
tween the scalar and the side channel information. In the algorithm, both an
ECDBL and an ECADD are computed in every bit. Thus an adversary cannot
guess the bit information of d. Möller’s window-based method is in this category
[Möl01]. The last countermeasure is the Montgomery’s ladder [Mon87], which
essentially resists SPA [OKS00,BJ02,FGKS02,IT02a,IT02b]. The x-coordinate-
only addition formula, which is a modification of the standard addition formula,
combined with the Montgomery’s ladder offers a fast scalar multiplication. Pre-
viously fastest algorithm for computing a scalar multiplication is based on this
method [IT02b].

Even if a scheme is SPA-resistant, it is not always DPA-resistant. Coron
proposed a countermeasure by randomizing parameters of ECC to resist DPA
[Cor99]. A key of Coron’s idea for the Jacobian coordinate is as follows. Let
P = (X, Y, Z) be a base point in a projective coordinate. Then (X, Y, Z) equals to
(r2X, r3Y, rZ) for all r ∈ K. By randomizing a base point with r before starting
the scalar multiplication, the side information for the statistic analysis will be
randomized. The other countermeasure against DPA was proposed by Joye-
Tymen [JT01]. They use an isomorphism of an elliptic curve. The base point P =
(X, Y, Z) and the definition parameters a, b of an elliptic curve are randomized
into its isomorphic classes like (r2X : r3Y : Z) and r4a, r6b, respectively.

4.2 Previous Addition Formulas

Previously fastest algorithm for a scalar multiplication with a single processor
is by Izu-Takagi [IT02b]. The computing time for each bit is 13M + 4S (effects
of additions are not discussed).

In a parallelized computation, Izu-Takagi also proposed an algorithm which
needs TM = 8M + 2S (addition are not discussed) for each bit [IT02a]. How-
ever, their parallelizaion architecture is based on MIMD (Multiple Instructions,
Multiple Data) operations and it is hard to implement on smart cards. Recently,
Fishcher et al. proposed a parallelized algorithm with SIMD for a scalar multi-
plication which needs T0 = 10M + 8A in each bit [FGKS02].
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4.3 Proposed Algorithms

At present, parallel computation with SIMD operations on high-power CPU is
easily realized as in the previous section. However SIMD operations are thought
to be hard to realize on smart cards. In the case of ECC arithmetic, a co-processor
CRYPTO2000 offers the SIMD operations [FGKS02]. The CRYPTO2000 has
two modes; one is the 2K RSA mode and the other is the 1/2K ECC mode. In
the ECC mode, the CRYPTO2000 is divided into two parallel calculation units.
Our study is motivated by this architecture and this is why SCA-resistant scalar
multiplication with SIMD operations is required on smart cards.

In this section, we propose two SCA-resistant algorithms for computing a
scalar multiplication with SIMD operations. The first one is a direct applica-
tion of ECADDnew

Z=1 and ECDBLnew to the add-and-double-always method. The sec-
ond one is based on a parallelization of Möller’s SCA-resistant window method
[Möl01], to which our kECDBL in Section 3.3 can be applied

Proposal 1: By applying ECDBLnew
Z=1 and ECADDnew (see Section 3.2) to the add-

and-double-always method, we can establish an SPA-resistant scalar multipli-
cation and, in addition, establish a DPA-resistant algorithm with Joye-Tymen’s
countermeasure. The computing time for each bit is T1 = ECADDnew

Z=1+ECDBLnew =
(4M + 2S + 5A) + (2M + 3S + 7A) = 6M + 5S + 12A. No pre-computations are
needed. With Coron’s countermeasure, we cannot keep Z-coordinate of P to 1,
it makes the scalar multiplication slower. Note we cannot apply the k-iterated
ECDBL because ECADD and ECDBL are computed one after another.

Proposal 2: A key idea of Möller’s algorithm [Möl01] is to establish an add-
and-double-always computation in 2w-array window method. Möller gave an
excellent algorithm to compute coefficients of d =

∑k
i=1 D[i]2wi where D[i] ∈

{−2w, ±1, ±2, . . . ,±(2w−1 − 1), 2w−1}. Then in the 2w-array method, ECADD
and ECDBL are always computed because D[i] �= 0. In this scenario, ECDBL is
computed w times successively and our w-iterated ECDBL can be applied. For
n-bit scalar multiplications, we need 
 n

w � − 1 loops and in each loop we need
one w-iterated ECDBL and one ECADD. The computing time for each loop is
TC

2 (w) = w-ECDBL + ECADDnew = (2w + 6)M + (2w + 3)S + (7w + 5)A with
Coron’s countermeasure, and T JT

2 (w) = w-ECDBL + ECADDnew
Z=1 = (2w + 4)M +

(2w + 3)S + (7w + 6)A with Joye-Tymen’s countermeasure.
In the pre-computation we have to compute 2P, . . . , (2w−1−1)P, 2w−1P, 2wP .

With Coron’s countermeasure, we require

TC
2,Pre(w) = (2w−2 − 1)ECADDnew + 2w−2ECDBLnew

= (8 · 2w−2 − 6)M + (5 · 2w−2 − 2)S + (12 · 2w−2 − 5)A.

With Joye-Tymen’s countermeasure, after computing 2w−1 points, we have to
convert them to the affine coordinate. We require

T JT
2,Pre(w) = (2w−2 − 1)ECADDnew

Z=1 + 2w−2ECDBLnew

+ 3(2w−1 − 2)M + 1I + 3(2w−1 − 1)M + (2w−1 − 1)S
= (18 · 2w−2 − 13)M + (7 · 2w−2 − 3)S + 1I + (13 · 2w−2 − 6)A.
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Table 8. Comparison of the computing times of a scalar multiplication

Countermeasure Estimation (n = 160) Table Size
[FGKS02] JT 1618M + 10S + 1I 1656.0M —–
Proposal 1 JT 961M + 798S + 1I 1629.4M —–
Proposal 2 Coron (w = 4) 578M + 449S + 1I 967.2M 8 points

Coron (w = 5) 558M + 443S + 1I 942.4M 16 points
JT (w = 4) 559M + 467S + 2I 992.6M 8 points
JT (w = 5) 573M + 459S + 2I 1000.2M 16 points

Comparison: We give a time comparison of 3 parallelized SCA-resistant al-
gorithms, (1) non-window method based on [FGKS02], (2) non-window method
(Proposal 1), and (3) window method (Proposal 2), in Table 8. The computing
times for additions are neglected. The computing times of (1) and (2) are roughly
same, while the times of (3) are much faster. For Coron’s countermeasure w = 5
is optimal, while for Joye-Tymen’s countermeasure w = 4 is optimal.
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Appendix

The appendix describes the formulas discussed in this paper.

Table 9. Proposed algorithms for ECADDnew and ECDBLnew

ECADDnew (in 6M+2S+5A with 8 var.) ECDBLnew (in 2M+3S+7A with 7 var.)
Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) Input: P1 = (X1, Y1, Z1), a
Output: P3 = P1 + P2 = (X3, Y3, Z3) Output: P4 = 2 ∗ P1 = (X4, Y4, Z4)
R1 ← X1, R2 ← Y1, R3 ← Z1 R1 ← X1, R2 ← Y1, R3 ← Z1
R4 ← X2, R5 ← Y2, R6 ← Z2

1. R7 ← R2
3 R8 ← R2

6 1. R4 ← R2
1 R5 ← R2

3
2. R4 ← R4 × R7 R1 ← R1 × R8 2. R6 ← R2

2 R5 ← R2
5

3. R2 ← R2 × R6 R5 ← R3 × R5 3. R1 ← R1 × R6 R5 ← a× R5
4. R8 ← R2 × R8 R7 ← R5 × R7 4. R7 ← R4 + R4 R5 ← R4 + R5
5. R2 ← R4 − R1 R5 ← R7 − R8 5. R5 ← R5 + R7 R1 ← R1 + R1

6. R7 ← R2
2 R4 ← R2

5 6. R4 ← R2
5 R6 ← R2

6
7. R1 ← R1 × R7 R7 ← R2 × R7 7. R1 ← R1 + R1 R6 ← R6 + R6
8. R8 ← R8 × R7 R3 ← R3 × R6 8. R7 ← R1 + R1 R6 ← R6 + R6
9. R4 ← R4 − R7 R6 ← R1 + R1 9. R4 ← R4 − R7 R6 ← R6 + R6

10. R4 ← R4 − R6 — 10. R1 ← R1 − R4 —
11. R1 ← R1 − R4 — 11. R1 ← R1 × R5 R2 ← R2 × R3
12. R5 ← R5 × R1 R3 ← R3 × R2 12. R1 ← R1 − R6 R2 ← R2 + R2
13. R7 ← R5 − R8 —
X3 ← R4, Y3 ← R7, Z3 ← R3 X4 ← R4, Y4 ← R1, Z4 ← R2

ECADDnew
Z=1 (in 4M+2S+6A with 8 var.) ECDBLnew

a=−3 (in 2M+2S+7A with 8 var.)
Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, 1) Input: P1 = (X1, Y1, Z1)
Output: P3 = P1 + P2 = (X3, Y3, Z3) Output: P4 = 2 ∗ P1 = (X4, Y4, Z4)
R1 ← X1, R2 ← Y1, R3 ← Z1 R1 ← X1, R2 ← Y1, R3 ← Z1
R4 ← X2, R5 ← Y2

1. R6 ← R2
3 — 1. R4 ← R2

2 R5 ← R2
3

2. R7 ← R5 × R3 R8 ← R4 × R6 2. R4 ← R4 + R4 R6 ← R1 − R5
3. R4 ← R8 − R1 — 3. R8 ← R4 + R4 R7 ← R1 + R5
4. R8 ← R6 × R7 R3 ← R3 × R4 4. R1 ← R1 × R8 R6 ← R6 × R7
5. R5 ← R8 − R2 — 5. R8 ← R1 + R1 R7 ← R6 + R6

6. R7 ← R2
4 R8 ← R2

5 6. R6 ← R6 + R7 —
7. R4 ← R4 × R7 R1 ← R1 × R7 7. R4 ← R2

4 R7 ← R2
6

8. R8 ← R8 − R4 R6 ← R1 + R1 8. R4 ← R4 + R4 R7 ← R7 + R8
9. R8 ← R8 − R6 — 9. R1 ← R1 − R7 —

10. R1 ← R1 − R8 — 10. R1 ← R1 × R6 R2 ← R2 × R3
11. R1 ← R5 × R1 R2 ← R2 × R4 11. R1 ← R1 − R4 R2 ← R2 + R2
12. R1 ← R1 − R2
X3 ← R8, Y3 ← R1, Z3 ← R3 X4 ← R7, Y4 ← R1, Z4 ← R2

Table 10. Proposed algorithm for k-iterated ECDBL (kECDBL)

k-ECDBL (in 2kM + (2k + 1)S + 7kA with 8 var.)
Input: k, P1 = (X1, Y1, Z1), a

Output: P4 = 2k ∗ P1 = (X4, Y4, Z4)
R1 ← X1, R2 ← Y1, R3 ← Z1

1. R4 ← R2
1 R5 ← R2

3 13. (repeat the following k − 1 times)
2. R6 ← R2

2 R5 ← R2
5 13-1. R3 ← R2

4 R5 ← R2
1

3. R1 ← R1 × R6 R8 ← a× R5 13-2. R4 ← R4 × R5 R8 ← R8 × R6
4. R7 ← R4 + R4 R5 ← R4 + R8 13-3. R8 ← R8 + R8 R7 ← R3 + R3
5. R5 ← R7 + R5 R1 ← R1 + R1 13-4. R6 ← R3 + R7 R4 ← R4 + R4

6. R4 ← R2
5 R6 ← R2

6 13-5. R3 ← R8 + R6 R7 ← R4 + R4

7. R1 ← R1 + R1 R6 ← R6 + R6 13-6. R6 ← R2
3 R5 ← R2

5
8. R7 ← R1 + R1 R6 ← R6 + R6 13-7. R5 ← R5 + R5 R4 ← R7 + R7
9. R4 ← R4 − R7 R6 ← R6 + R6 13-8. R5 ← R5 + R5 R4 ← R6 − R4

10. R1 ← R1 − R4 — 13-9. R6 ← R5 + R5 R7 ← R7 − R4
11. R1 ← R5 × R1 R2 ← R2 × R3 13-10. R7 ← R3 × R7 R2 ← R1 × R2
12. R1 ← R1 − R6 R2 ← R2 + R2 13-11. R1 ← R7 − R6 R2 ← R2 + R2
X4 ← R4, Y4 ← R1, Z4 ← R2
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Abstract. Recently the problem of analysing the multiples of primitive
polynomials and their products has received a lot of attention. These
primitive polynomials are basically the connection polynomials of the
LFSRs (Linear Feedback Shift Registers) used in the stream cipher sys-
tem. Analysis of sparse multiples of a primitive polynomial or product of
primitive polynomials helps in identifying the robustness of the stream
ciphers based on nonlinear combiner model. In this paper we first prove
some important results related to the degree of the multiples. Earlier
these results were only observed for small examples. Proving these re-
sults clearly identify the statistical behavior related to the degree of
multiples of primitive polynomials or their products. Further we discuss
a randomized algorithm for finding sparse multiples of primitive polyno-
mials and their products. Our results clearly identify the time memory
trade off for finding such multiples.

Keywords: Cryptanalysis, Galois Field, Nonlinear Combiner Model,
Primitive Polynomials & Their Products, Polynomial Multiples, Stream
Cipher.

1 Introduction

In the nonlinear combiner model of a stream cipher the outputs of several LFSRs
are combined using a nonlinear Boolean function to produce cryptographically
secure key stream (see [3,14,2] for more details). The connection polynomials of
these LFSRs are polynomials over GF(2). For cryptographic robustness these
polynomials are taken to be primitive [9] and it is expected that these primitive
polynomials should be of high weight and also they should not have sparse
multiples [13,1] (see also [8] and the references in this paper for current research
on cryptanalysis on the nonlinear combiner model). The combining Boolean
function should also have some properties to resist certain attack [14,15,1].
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In this paper we concentrate on the sparse multiples of the connection poly-
nomials corresponding to the LFSRs. Analysis of sparse multiples of primitive
polynomials has received considerable attention recently [6,4,5,12]. In [5] it has
been shown that given any primitive polynomial of degree d, it has exactly
Nd,t = (

(
2d−2
t−2

)
−Nd,t−1 − t−1

t−2 (2d − t+ 1)Nd,t−2)/(t− 1) many t-nomial multi-
ples (having constant term 1) with initial conditions Nd,2 = Nd,1 = 0. Moreover,
it has been identified [5] that the distribution of the degrees of t-nomial multiples
(having constant term 1) of a degree d primitive polynomial f(x) is almost indis-
tinguishable with the distribution of maximum of the tuples having size (t − 1)
in the range 1 to 2d − 2. Further experiments in [12] have substantiated this
claim and it has been observed that average of square of the degrees of t-nomial
multiples and average of square of the maximum of the tuples having size (t− 1)
are almost equal. A very interesting issue related to the trinomial multiples was
observed in [12], which says that average of square of the degrees of trinomial
multiples and average of square of the maximum of the tuples having size 2 are
exactly equal. As a formal statement, consider any primitive polynomial f(x)
of degree d. Consider that the degree of the trinomial multiples (having degree
≤ 2d−2) of f(x) are d1, d2, . . . , dNd,3 . Then

∑Nd,3
i=1 d2

i = 2
3 (2d−1)(3.2d−2−1)Nd,3.

The observation has been made on experiments over primitive polynomials with
small degrees 4 to 7 only. We here theoretically prove this result in Subsection 2.1.

Consider the nonlinear combiner model [14,15] which combines the outputs
of several LFSRs using a nonlinear Boolean function. To study the robustness
of such systems, it is important to analyse the sparse multiples of products
of primitive polynomials (see [1,12] for details). Generally the degree of the
primitive polynomials are taken to be coprime for generation of key stream
having better cryptographic properties [9, Page 224]. Hence, if one can find
sparse multiples of the product of primitive polynomials, then it is possible to
launch cryptanalytic attacks on the nonlinear combiner model of the stream
cipher (see [1] for a concrete description of such an attack).

In this direction the work in [12] concentrates on t-nomial multiples of prod-
ucts of primitive polynomials. Consider k different primitive polynomials f1(x),
f2(x), . . . , fk(x) having degree d1, d2, . . . , dk respectively, where d1, d2, . . . , dk are
pairwise coprime. It is observed [12] that the distribution of the degrees of t-
nomial multiples (having constant term 1) of product of primitive polynomials
is very close with the distribution of maximum of the tuples having size (t− 1).
In [12] the following observations were made based on experiments. (1) The av-
erage of degree of the t-nomial multiples of

∏k
r=1 fr(x) is fixed and it is equal to

t−1
t δ, where δ is the exponent of

∏k
r=1 fr(x). (2) The average of the square of

degree of the trinomial multiples of
∏k

r=1 fr(x) is fixed but not exactly equal to
the estimated value 2

3δ(
3(δ+1)

4 − 1). We here settle both the problems with the-
oretical proofs in Subsection 2.2. With the work of [12] and the results proved
in this paper, it is clear that the degree distribution of multiples of primitive
polynomials and multiples of products of primitive polynomials are close. This
assumption has also been considered earlier in [1, Page 581].



Further Results on Multiples of Primitive Polynomials 233

Though a lot of works are presented recently for analysing sparse multiples
of primitive polynomials, algorithms to find them in practice has not been in-
vestigated properly. This we discuss in Section 3. Recent studies [5] identify that
given a primitive polynomial f(x) of degree d, the expected number of t-nomial
multiples less than or equal to degree c is

(
c

t−1

)
Nd,t/

(
2d−2
t−1

)
. Given such a c,

we here analyse a randomized algorithm and show that the algorithm needs s
iteration to produce a t-nomial multiple having degree ≤ c of f(x) with proba-
bility as high as 1 − e−u, where s

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
) = u. Moreover, if

we consider sparse multiples (i.e., t ≤ 10), then given such a c, the algorithm
takes s steps (cs ≈ 2d+2) and provides a solution with probability 0.95. Further
we analyse the time memory trade off for this algorithm. In this direction we
also point out how the algorithms for Discrete Log Problem can be suitably used
here. We also mention how one can use similar strategy to get sparse multiples
of products of primitive polynomials.

Let us now briefly discuss a few basic concepts. The field of 2 elements is de-
noted by GF (2). GF (2d) denotes the extension field of dimension d over GF (2).
A polynomial is irreducible over a field if it is not the product of two polynomi-
als of lower degree in the field. An irreducible polynomial of degree d is called
primitive if its roots are the generators of the field GF (2d). The exponent of the
polynomial f(x) (having degree d ≥ 1, with f(0) = 1) is e ≤ 2d − 1, which is the
least positive integer such that f(x) divides xe − 1. For primitive polynomials
e = 2d −1. By a t-nomial we refer to a polynomial with t distinct non zero terms.
For more details on finite fields, the reader is referred to [10,9].

2 On Degrees and Their Squares of t-Nomial Multiples

2.1 Trinomial Multiples of Primitive Polynomials:
Square of Degrees

In [5], the distribution of the degrees for the t-nomial multiples (having con-
stant term 1) of primitive polynomials has been discussed. Given any primitive
polynomial f(x) of degree d, it is clear that f(x) has Nd,t number of t-nomial
multiples having degree ≤ 2d − 2. From cryptanalytic point of view, it is an im-
portant question that how many t-nomial multiples are there having degree less
than or equal to some c. Since, this result is not settled, in [5], an estimation has
been used. In [5], any t-nomial multiple 1+xi1 +xi2 + . . .+xit−2 +xit−1 has been
interpreted as the (t− 1)-tuple < i1, i2, . . . , it−2, it−1 >. It was also empirically
justified using experimental results [5] that by fixing f(x), if one enumerates all
the Nd,t different (t − 1) tuples, then the distribution of the tuples seems ran-
dom. Moreover, the distribution of the degrees of the t-nomial multiples seems
very close with the distribution of maximum value of each of the ordered tuples
< i1, i2, . . . , it−2, it−1 > with 1 ≤ i1 < i2 < . . . < it−2 < it−1 ≤ 2d − 2.

To analyse the degree distribution of these t-nomial multiples, the random
variate X is considered in [5], which is max(i1, i2, . . . , it−2, it−1), where 1+xi1 +
xi2 + . . . + xit−2 + xit−1 is a t-nomial multiple of f(x). There are Nd,t such
multiples. The mean value [5] of the distribution of X is t−1

t (2d −1)Nd,t divided
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by Nd,t, i.e., X = t−1
t (2d − 1). On the other hand, consider all the (t− 1)-tuples

< i1, i2, . . . , it−2, it−1 > in the range 1 to 2d − 2. There are
(

2d−2
t−1

)
such tuples.

Each tuple is in ordered form such that 1 ≤ i1 < i2 < . . . < it−2 < it−1 ≤ 2d −2.
Consider the random variate Y which is max(i1, i2, . . . , it−2, it−1). It has been
shown in [5] that the mean of this distribution is Y = t−1

t (2d − 1).
Thus, given any primitive polynomial f(x) of degree d, the average degree of

its t-nomial multiples with degree ≤ 2d−2 is equal to the average of maximum of
all the distinct (t−1) tuples form 1 to 2d −2. With this result and experimental
observations, the work of [5] assumes that the distributions X,Y are very close.
Further experimental results have been presented in [12] to strengthen the claim
of [5] that the distributions X,Y are very close. In this direction, it has been
shown in [12] that in terms of average of squares, the distributions X,Y are very
close. The average of squares of the values in Y have been calculated in [12] as
t−1

t (2d − 1)( t2d

t+1 − 1) and it has been shown experimentally that the average
of values in X are very close to that of Y . In [12], it has been observed that
for t = 3, the average of the squares of the elements of distribution Y and the
average of the squares of the degrees of trinomial multiples are same for all the
experiments, which is 2

3 (2d − 1)(3.2d−2 − 1). We theoretically prove it here.
Theorem 1. Consider any primitive polynomial f(x) of degree d. Consider
that the degree of the trinomial multiples (having degree ≤ 2d − 2) of f(x) are
d1, d2, . . . , dNd,3 . Then

∑Nd,3
s=1 d

2
s = (2/3)(2d − 1)(3.2d−2 − 1)Nd,3.

Proof. Consider a trinomial multiple of f(x) of the form xi +xj +1, where i > j.
Let e = 2d − 1. Let i �= 2(2d − 1)/3, j �= (2d − 1)/3. Then x(e−i)+j +xe−i +1 and
xe−j + xi−j + 1 are two more distinct trinomial multiples of f(x) (multiplying
xi+xj+1 by xe−i and xe−j respectively). Now, consider the difference

(
i2 − j2

)
+(

(e− i+ j)2 − (e− i)2)
)

+
(
(e− j)2 − (i− j)2

)
, which is equal to e2. Further

take the case i = 2(2d − 1)/3, j = (2d − 1)/3, when d is even. In that case all
the three trinomials generated in the above manner are same. Thus we will only
consider one difference, (2(2d − 1)/3)2 − ((2d − 1)/3)2 = e2/3.

Let the trinomial multiples (having degree < e) of f(x) be xis + xjs + 1,
for s = 1, . . . , Nd,3. We will consider

∑Nd,3
s=1 (i2s − j2s ). If d is odd we will get

Nd,3/3 different groups each contributing e2 in this sum. If d is even, we will get
(Nd,3 − 1)/3 different groups each contributing e2 in this sum except one term
which contributes e2/3 when is = 2(2d − 1)/3, js = (2d − 1)/(3).

Thus,
∑Nd,3

s=1 (i2s − j2s ) = Nd,3e
2/3. Now add

∑Nd,3
s=1 (i2s + j2s ) in both sides.

Then 2
∑Nd,3

s=1 i
2
s = Nd,3e

2/3 +
∑Nd,3

s=1 (i2s + j2s ).
Note that, considering the values of is, js for all s we basically get all the

integers in the range 1 to e− 1. Thus,
∑Nd,3

s=1 (i2s + j2s ) = 12 + 22 + . . .+ (e− 1)2.
We already know [4] that Nd,3 = 2d−1 − 1. Simplifying, we get

∑Nd,3
s=1 i

2
s =

(2/3)(2d − 1)(3.2d−2 − 1)Nd,3. ��
Theorem 1 proves the observation of [12]. This is now theoretically proved that
for t = 3, the average of squares of the values in Y, i.e., 2

3 (2d − 1)( 3·2d

4 − 1) is
exactly equal to the average of square of the values in X.
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2.2 Degrees and Square of Degrees for t-Nomial Multiples
of Products of Primitive Polynomials

Consider k many primitive polynomials f1(x), f2(x), . . . , fk(x) having degrees
d1, d2, . . . , dk respectively. Further, the degrees are pairwise coprime. We here
follow the notations of [12]. To analyse the degree distribution of these t-nomial
multiples of the products of primitive polynomials, let us consider the random
variate X(d1,...,dk),t, which is max(I1, . . . , It−1), where xI1 +xI2 + . . .+xIt−1 +1 is
a t-nomial multiple of f1(x)f2(x) . . . fk(x). Let δ = (2d1 −1)(2d2 −1) . . . (2dk −1).
On the other hand, consider all the (t−1)-tuples < I1, . . . , It−1 >, in the range 1
to δ−1. There are

(
δ−1
t−1

)
such tuples. Consider the random variate Y (d1,...,dk),t,

which is max(I1, . . . , It−1), where< I1, . . . , It−1 > is any ordered t-tuple from the
values 1 to δ− 1. With some experimental results, in [12], it was mentioned that
the distributions X(d1,...,dk),t, Y (d1,...,dk),t are very close. Based on experimental
results, the following two observations were made in [12]. (1) The average of
degree of the t-nomial multiples of

∏k
r=1 fr(x) is fixed and it is equal to t−1

t δ,
where δ is the exponent of

∏k
r=1 fr(x). (2) The average of the square of degree

of the trinomial multiples of
∏k

r=1 fr(x) is fixed but not exactly equal to the
estimated value 2

3δ(
3(δ+1)

4 −1). We here prove these theoretically. First we present
a technical result.

Lemma 1. Let f(x) be a polynomial over GF(2) having degree d and exponent e
and 1+x does not divide f(x). Let the number of t-nomial multiples (with degree

< e and constant term 1) of f(x) be Nf
t . Then Nf

t

t =
Nf

e−t

e−t , where 2 < t < e−2.

Proof. Note that f(x) divides 1 + xe. Since 1 + x does not divide f(x), f(x)
divides 1+xe

1+x , i.e., f(x) divides 1 + x + x2 + . . . + xe−1. This is the e-nomial
multiple of f(x). Whenever xi1 + xi2 + . . .+ xit (constant term 0) is a multiple
of f(x) (here 1 ≤ i1 < i2 < . . . < it < e), adding with 1 + x + x2 + . . . + xe−1,
we will get an (e − t)-nomial multiple 1 +

∑e−1
i=1,i�=i1,i2,...,it

xi (having constant
term 1) of f(x).

We will count the number of such multiples of f(x), which is equal to the
number of (e− t)-nomials. Consider a t-nomial multiple xj1 +xj2 + . . .+xjt−1 +1
of f(x). Multiplying it by xj for 0 ≤ j < e, we will get t many t-nomial multiples
having constant term 1 and (e−t) many multiples of the form xi1 +xi2 +. . .+xit ,
(having constant term 0) where 1 ≤ i1 < i2 . . . it < e. Considering any one of
these t many t-nomials (having constant term 1) will produce the same set of
(e− t) many (e− t)-nomial multiples. So, t many t-nomials giving (e− t) many

(e− t)-nomials and vice versa. Hence, we get Nf
t

t =
Nf

e−t

e−t . ��
Let us now present the following theorem.

Theorem 2. Consider a polynomial f(x) over GF(2) with exponent e such that
1 + x does not divide f(x). Let the number of t-nomial multiples (with degree
< e and constant term 1) of f be Nf

t . Then the sum of the degrees of all it’s
t-nomial multiples with degree < e is t−1

t eNf
t .
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Proof. We have 1 + x does not divide f(x). Consider each t-nomial multiple of
degree d̂s, where 1 ≤ s ≤ Nf

t . Now multiply each t-nomial by xi, for 1 ≤ i ≤
(e− d̂s −1), we will get multiples of the form xi1 +xi2 + . . .+xit , where 1 ≤ i1 <

i2 < . . . < it < e. Thus each t-nomial will provide (e− d̂s − 1) many multiples of
the above form and observe that these are distinct. Similar to proof of Lemma 1,∑Nf

t
s=1(e− d̂s −1) gives the count of (e− t)-nomial multiples. Moreover, from the

proof of Lemma 1, we will get Nf
e−t = e−t

t Nf
t , i.e.,

∑Nf
t

s=1(e− d̂s − 1) = e−t
t Nf

t .

Hence
∑Nf

t
s=1 d̂s =

(
e− 1 − e−t

t

)
Nf

t = t−1
t eNf

t . ��

Corollary 1. Consider k many primitive polynomials f1(x), f2(x), . . ., fk(x)
having degrees d1, d2, . . . , dk respectively (the degrees are pairwise coprime). The
average of degree of the t-nomial multiples (having degree < δ) of

∏k
r=1 fr(x) is

fixed and it is equal to t−1
t δ, where δ is the exponent of

∏k
r=1 fr(x).

Proof. Let f(x) =
∏k

r=1 fr(x). Since each fr(x) is a primitive polynomial of

degree dr, all the conditions of Theorem 2 are satisfied. So,
∑N

f
t

s=1
d̂s

Nf
t

= t−1
t δ. ��

Hence, we prove that the average of the values in distributions X(d1,...,dk),t, and
Y (d1,...,dk),t are same which was presented as an observation in [12]. Next we
consider the square of the degrees of trinomial multiples of

∏k
r=1 fr(x).

Theorem 3. Take k many primitive polynomials f1(x), f2(x), . . . , fk(x) over
GF(2) having degrees d1, d2, . . . , dk (pairwise coprime) and exponents er = 2dr −
1, for 1 ≤ r ≤ k. Then sum of squares of degrees of trinomial multiples of f(x) =
f1(x)f2(x) . . . fk(x) with degree < e = e1e2 . . . ek is e2

6 2k−1 ∏k
r=1(2

dr−1 − 1) +

(e−1)e(2e−1)
12 + 1

2

∑k−1
r=1

∑
Ar⊂{e1,e2,...,ek}[(−1)r(

∏
ej∈Ar

ej
2)(

∑e/
∏

ej∈Ar
ej−1

l=1 l2)]
where |Ar| = r.

Proof. Similar to proof of Theorem 1, considering all the trinomials xis +xjs +1

of f(x) with 1 ≤ j < i < e for 1 ≤ s ≤ Nf
3 , we have 2

∑Nf
3

s=1 is
2 = Nf

3
3 e2 +

∑Nf
3

s=1(is
2 + js

2).
Now we will see the possible values for is, js in the range [1, e− 1]. Consider

a trinomial multiple xi +xj + 1, where 1 ≤ j < i < e, of f(x). It is important to
see that this is not exactly similar to that of the proof of Theorem 1.

Note that, xi mod er + xj mod er + 1 is a trinomial multiple of fr(x), for 1 ≤
r ≤ k except the following case. If i mod er = 0 or j mod er = 0, then xi mod er +
xj mod er + 1 is not a trinomial multiple of fr(x).

On the other hand, consider xi +1, where 1 ≤ i < e and i �≡0 mod er, for all
r = 1, 2, . . . , k. Since fr(x) is primitive polynomial, for each xi mod er + 1, where
1 ≤ r ≤ k, we will get xi mod er + 1 ≡ xlr (modfr(x)), where 1 ≤ lr < er, i.e.,
xi mod er + xlr + 1 is a trinomial multiple of fr(x). By using Chinese remainder
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theorem [7, Page 53], we get a unique integer l mod e, where l ≡ lr mod er, for
1 ≤ r ≤ k, as er’s are pairwise coprime.

Hence, we have to discard the cases where, 1 ≤ l < e and l ≡ 0 mod er, for

any r, 1 ≤ r ≤ k. Then
∑Nf

3
s=1(is

2 + js
2) =

∑e−1
i=1 i

2 − ∑
x∈S x, where S = {l2 :

1 ≤ l < e and l ≡ 0 mod er, for any r, 1 ≤ r ≤ k}.
Consider the sets Sr = {e2r, (2 · er)2, . . . , (( e

er
− 1) · er)2}, for 1 ≤ r ≤ k. Ob-

serve that ∪k
r=1Sr = S. We now calculate

∑
x∈S x using inclusion and exclusion

principle.
Take n1, n2, . . . , nr as distinct integers in the range [1, k]. Now we con-

sider ∩r
q=1Snq , which contains

∏r
q=1 enq

2, 22 ·∏r
q=1 enq

2, . . . , (e/
∏r

q=1 enq − 1)2 ·
∏r

q=1 enq
2. Hence,

∑
x∈∩r

q=1Snq
x = (

∏r
q=1 enq

2)(
∑(e/

∏r

q=1
enq −1)

l=1 l2). Finally,
for |Ar| = r.

∑
x∈S x =

∑
x∈∪k

r=1Sr
x =

∑k−1
r=1

∑
Ar⊂{e1,e2,...,ek} [(−1)r+1(

∏
ej∈Ar

ej
2)(

∑(e/
∏

ej∈Ar
ej)−1

l=1 l2)]. So,

2
∑Nf

3
s=1 is

2 = Nf
3
3 e2 +

∑Nf
3

s=1(is
2 + js

2) = Nf
3
3 e2 +

∑e−1
i=1 i

2 − ∑
x∈S x. Hence,

for |Ar| = r.
∑Nf

3
s=1 is

2 = Nf
3
6 e2 + (e−1)e(2e−1)

12 +

1
2

∑k−1
r=1

∑
Ar⊂{e1,e2,...,ek} [(−1)r(

∏
ej∈Ar

ej
2)(

∑(e/
∏

ej∈Ar
ej)−1

l=1 l2)].
From [12], we have the exact formula for the number of trinomial multiples

(having degree < e) of f(x), which is 2k−1 ∏k
r=1(2

dr−1 − 1) and this is the value
of Nf

3 . Hence the proof. ��

3 Algorithm to Find Sparse Multiples

We start with the following simple algorithm which provides the least degree
t-nomial multiple of a degree d primitive polynomial f(x).

Algorithm 1 Inputs : (1) a primitive polynomial f(x) of degree d and its root
α, (2) the value t, for the t-nomial multiple, (3) an integer c ≤ 2d − 2. We need
a t-nomial multiple having degree ≤ c.

1. for i = d+ 1 to c
(a) Choose all possible sets of t− 2 distinct integers i1, . . . , it−2 in the range

[1, . . . , i− 1].
(b) If f(x) divides xi + xi1 + . . .+ xit−2 + 1, then report it and terminate.

This will provide the lowest degree t-nomial multiple of f(x). The complexity of
this algorithm is

∑c
j=d+1

(
j

t−2

)
. It is expected that [5] there is at least one t-

nomial multiple below the degree 2
d

t−1+log2(t−1). Thus to analyse the complexity
we can take c = 2

d
t−1+log2(t−1). A rough approximation shows that the algorithm

needs O(2d) steps. For large d, it is almost impossible to run this algorithm.
That is why we analyse a randomized algorithm which provides t-nomial

multiples at much lower complexity. Consider a primitive polynomial f(x) of
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degree d. Let α be a root of f(x). Consider that we choose (t−2) distinct integers
i1, . . . , it−2 in the range 1 to c uniformly at random where c < 2d. It is clear,
that 1 + αi1 + . . . + αit−2 must be equal to some αit−1 for 0 ≤ it−1 ≤ 2d − 2.
Thus, 1 + xi1 + . . . + xit−2 + xit−1 will be a multiple of f(x). Note that, if
it−1 /∈ {0, i1, . . . , it−2}, then 1 + xi1 + . . . + xit−2 + xit−1 will be a t-nomial
multiple of f(x). Moreover, if it−1 ≤ c, we get a t-nomial multiple (of f(x)) with
degree ≤ c. We first present the randomized algorithm and analyse it next.

Algorithm 2 Inputs as in Algorithm 1.

1. Take (t−2) distinct integers i1, . . . , it−2 form [1, . . . , c] uniformly at random.
2. Find out it−1, where, 1 + αi1 + . . .+ αit−2 = αit−1 .
3. If it−1 /∈ {0, i1, . . . , it−2} and it−1 ≤ c, then report 1+xi1 + . . .+xit−2 +xit−1

and terminate1. Else go to step 1.

In [1, Page 580], similar algorithm has been discussed. In the actual implementa-
tion of the algorithm [1, Page 580], an array of length 2d is required. That is the
reason the algoithm takes just a single step to check whether it−1 ≤ c. However,
an array of length 2d is not possible to manage in practical computer systems if
d ≥ 40. If c is as large as 2d, then the multiple will be of very high degree and
the cryptanalytic attack will not succeed as the degree of the multiple should be
of the order of (approximately half) the length of available cipher text. Thus,
we need to consider c much lower than 2d. We present Algorithm 3 (see later),
which gives t-nomial multiples, even if d ≥ 40, for c much lower than 2d.

Now the question is what is the expected number of iterations in Algorithm 2
before it terminates. For this we present a series of technical results. Note that
here e = 1 + 1

1! + 1
2! + . . . + upto ∞ (unlike the previous sections where e was

used as the exponent of a polynomial).

Proposition 1. As described in Algorithm 2 , the probability of getting a t-

nomial multiple in a single step is π = 1 − e
−
(

c
t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
)
.

Proof. Note that the expected number [5] of t-nomial multiples having degree
≤ c is k =

(
c

t−1

)
Nd,t/

(
2d−2
t−1

)
. There are

(
c

t−2

)
distinct (t − 2)-tuples upto

c. Thus π = 1 − (1 − 1/
(

c
t−2

)
)k. Now we are interested about the term (1 −

1/
(

c
t−2

)
)k. Note that, for large c, and t ≥ 3, 1/

(
c

t−2

)
is very small, and it

tends to 0. So we can apply the result limx→0(1 + x)
1
x = e. Note that, k =(

c
t−1

)
Nd,t/

(
2d−2
t−1

)
=

(
c

t−2

)
r, where r =

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
). Thus,

(1 − 1/
(

c
t−2

)
)k tends to e−r, i.e., e

−
(

c
t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
)
. Hence, π =

1 − e
−
(

c
t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
)
. ��

1 Note that, if the step 3 in Algorithm 2 produces it−1 ∈ {0, i1, . . . , it−2}, then we get
a (t − 2)-nomial multiple (having degree ≤ c) of f(x).
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Corollary 2. As described in Algorithm 2, the probability of getting a t-nomial

multiple in s steps is p = 1 − e
−s

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
)
.

Proof. We have, p = 1 − (1 − π)s. Using Proposition 1, we get the result. ��

Theorem 4. Consider a primitive polynomial f(x) of degree d. Algorithm 2
needs s iteration to produce a t-nomial multiple having degree ≤ c of f(x) with
probability as high as 1 − e−u, where s

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
) = u.

For practical purposes we need sparse multiples of primitive polynomials. In
this direction, using some specific range of values, we try to approximate the
complicated expression presented in Theorem 4. Our motivation is to get p very
close to 1 for successful outcome of the algorithm. Choosing p = 0.95, we get

e
−s

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
)
= 0.05. Thus, s

(
c

t−1

)
Nd,t/(

(
c

t−2

)(
2d−2
t−1

)
) = 3.0.

We now need the following approximation.

Proposition 2. Nd,t ≤
(

2d−2
t−2

)
/(t− 1) ≤ (1 + ε1)Nd,t, where ε1 = 0.00077, d ≥

17, 3 ≤ t ≤ 10.

Proof. Nd,t = (
(

2d−2
t−2

)
− Nd,t−1 − t−1

t−2 (2d − t + 1)Nd,t−2)/(t − 1). As Nd,t−1,

Nd,t−2 ≥ 0, Nd,t ≤
(

2d−2
t−2

)
/(t−1). Now

(
2d−2
t−2

)
/(t−1)

Nd,t
= 1/(1− Nd,t−1(

2d−2
t−2

) − (2d −

t+1) t−1
t−2

Nd,t−2(
2d−2
t−2

) ). Again, Nd,t−1 ≤
(

2d−2
t−3

)
/(t−2) and Nd,t−2 ≤

(
2d−2
t−4

)
/(t−3).

Substituting,

(
2d−2
t−2

)
/(t−1)

Nd,t
≤ 1/(1− t−1

t−2

(
2d−2
t−3

)
(

2d−2
t−2

) −(2d−t+1) (t−1)2

(t−3)(t−2)

(
2d−2
t−4

)
(

2d−2
t−2

) ).

Simplifying we get,

(
2d−2
t−2

)
/(t−1)

Nd,t
≤ 1/(1 − t−1

2d−t+1 − (t−1)2

2d−t+2 ) ≤ 1/(1 − t2

2d−t+1 ).

Hence
(

2d−2
t−2

)
/(t− 1) ≤ (1+ ε1)Nd,t, where, ε1 = ε+ ε2 + ε3 + . . . upto ∞, with

ε = t2/(2d − t + 1). It is clear that for a given t, as d increases ε1 decreases.
Fixing d = 17, for 3 ≤ t ≤ 10, we have calculated the value of ε1 and taken the
maximum value, which is 0.00077. Hence the result. ��

From Proposition 2, s(
(

c
t−1

)
/(

(
c

t−2

)(
2d−2
t−1

)
))(

(
2d−2
t−2

)
/(t−1)) ≤ 3.0× (1+ ε1).

Routine calculation shows that s(
(

c
t−1

)
/(

(
c

t−2

)(
2d−2
t−1

)
))(

(
2d−2
t−2

)
/(t−1)) equals

s c−t+2
2d−t

. Thus, s c−t+2
2d−t

≤ 3.0 × (1 + ε1).

Proposition 3. Consider 2
d

t−1+log2(t−1) ≤ c ≤ 2
2d
3 . Then, c−t+2

2d−t
≤ c

2d ≤ (1 +
ε2) c−t+2

2d−t
, where ε2 = 0.316, d ≥ 17, 3 ≤ t ≤ 10.
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Proof. c
2d − c−t+2

2d−t
= c2d−ct−c2d+t2d−22d

2d(2d−t) = (t−2)2d−ct
2d(2d−t) ≥ 2d−ct

2d(2d−t) ≥ 0, since for
the range of c, t, d, the value 2d − ct is always positive.

Again,
c

2d
c−t+2
2d−t

=
1− t

2d

1− t−2
c

≤ 1
1− t−2

c

= (1 − t−2
c )−1. So, c

2d ≤ (1 + ε2) c−t+2
2d−t

,

where ε2 = ε + ε2 + . . . upto ∞, where, ε = t−2
c . For minimum value of c =

2
d

t−1+log2(t−1), where we take d = 17, t = 10, ε2 = 0.316. This is the case when
ε2 is maximum in the given range. Hence the proof. ��
From Proposition 3, we get s c

2d ≤ 3.0 × (1 + ε1) × (1 + ε2), which gives, sc ≤
4 × 2d = 2d+2. From the above discussion, we get the following result.

Theorem 5. Consider a primitive polynomial f(x) of degree d ≥ 17. Algo-
rithm 2 needs s iteration to produce a t-nomial (3 ≤ t ≤ 10) multiple having
degree ≤ c of f(x) with probability as high as 0.95, where sc ≤ 2d+2.

Theorem 5 clearly identifies the time memory trade-off in the Algorithm 2. It is
important to discuss the following issues in this direction. The best possible time
memory trade-off is when s = c = �2 d

2 +1. For cryptanalysis, one needs to find
a sparse multiple at a degree as low as possible. To get a t-nomial multiple at a
very low degree (i.e., low values of c), the number of iterations s will increase.
In [5] it has been identified that given a primitive polynomial of degree d, the
expected least degree of its t-nomial multiple is approximately 2

d
t−1+log2(t−1).

Hence, it is expected that in Algorithm 2, minimum value of c should be taken
as 2

d
t−1+log2(t−1). However, it is evident that in such a scenario the number

of iterations s will be as high as 2d+2− d
t−1 −log2(t−1). In the next section, we

will identify that the amount of memory in a computer (RAM) will mount an
additional constraint on the value of c. Now we implement Algorithm 2 in a
more specific form.

Algorithm 3 Inputs as in Algorithm 1.

1. Take array of integer Arr[0, . . . , c]. Load αi (d length bit patterns interpreted
as integers) in Arr[i], 0 ≤ i ≤ c. Use another array of integer Idx of length
c+1 with Idx[i] = i. Sort Arr in ascending order and maintain corresponding
order in Idx, i.e., after sorting, if Arr[i] = αj, then Idx[i] = j.

2. Take (t−2) distinct integers i1, . . . , it−2 from [1, . . . , c] uniformly at random.
3. Calculate β = 1 + αi1 + . . .+ αit−2 .
4. Use binary search to see if β belongs to the array Arr.
5. If β belongs to the array Arr, say Arr[j] = β, then it−1 = Idx[j]. Report

1 + xi1 + . . .+ xit−2 + xit−1 (it will either be a t-nomial or a (t− 2)-nomial)
and terminate. Else go to step 2.

Note that the space required for the algorithm is dominated by 2(c+1) integers
needed for the arrays Arr, Idx (see step 1) in Algorithm 3. The time complexity
for the sorting in step 1 of Algorithm 3 is O(c log2 c). The expected number of
iterations is s, where each iteration means execution of step 2 to step 5. Among
these, step 5 needs O(log2 c) time for binary search. Thus the time complexity



Further Results on Multiples of Primitive Polynomials 241

is O(c log2 c+ s log2 c) = O((c+ s) log2 c). From Theorem 5, let us consider the
worst case, i.e., cs = 2d+2. The time complexity is minimum when c = s = 2

d
2 +1,

i.e., the complexity is O(d2
d
2 ).

It is very clear that we are restricted in terms of available RAM in the
computers. Let us explain it with an example. Currently a computer with 256
Megabytes (228 bytes) is available at nominal cost. Consider that, we try to find
sparse multiples of a degree 64 primitive polynomial. Now, storing each integer
for the arrays Arr, Idx in step 1 of Algorithm 3 will need 64 bits, i.e., 8 byte
space. Thus the maximum value of c is restricted by 2×c×8 = 228, i.e., c = 224.
Taking c = 224, the value of s comes around 242, which is computationally high.
In fact, considering the memory requirements for the operating system and other
parts of the program, the value of c will decrease further. If c < s, then the time
complexity will be dominated by s = 2

d
2 +a, where a > 1. In that case, the time

complexity will be O(s log2 c), i.e., O(d2
d
2 +a).

To keep the value of s low, we need to go for higher c. This makes it clear
that we are not in a position to use 2c amount of memory space as required
in Algorithm 3. We like to point out that the existing sub exponential time
algorithms for Discrete Log Problem (DLP) can be successfully used here [11].

Algorithm 4 Inputs as in Algorithm 2.

1. Take (t−2) distinct integers i1, . . . , it−2 from [1, . . . , c] uniformly at random.
2. Calculate β = 1 + αi1 + . . .+ αit−2 .
3. Use a routine to solve DLP and get β = αit−1 .
4. If it−1 ≤ c, report 1 + xi1 + . . . + xit−2 + xit−1 (it will either be a t-nomial

or a (t− 2)-nomial) and terminate. Else go to step 1.

Note that step 3 of Algorithm 4 uses some routine to solve the DLP. One of the
well known sub exponential algorithm due to Coppersmith is available at [11,
Page 112]. Define Lq[α, ψ] = O(exp((ψ + o(1))(ln q)α(ln ln q)1−α)), where ψ is a
positive constant and 0 < α < 1. The expected run time of the Coppersmith’s
algorithm for F∗

2d is L2d [13 , ψ] for ψ < 1.587. Algorithm 3 needs O(log c) time
to get it−1 in step 4. Using DLP in step 3 of Algorithm 4, this requirement is
(expected) L2d [13 , ψ], where (ψ < 1.587), which is larger than O(log c). However,
the advantage in Algorithm 4 is there is no constraint on the value of c as it
relates memory requirement in Algorithm 3.

Now consider the case, where the polynomial is not primitive. Consider a
polynomial f(x) over GF(2) with degree d and exponent δ. We are interested in
finding t-nomial multiples of f(x) with degree < δ. Consider the ring of residue
classes R = GF (2)[x]

<f(x)> whose elements are g(x)+ < f(x) >, denoted by [g(x)], with
g(x) ∈ GF (2)[x]. From [9, Theorem 1.61, Page 25], it is clear that any element
of R is linear combination of 1, x, x2, . . . , xd−1. The zero element of R is denoted
by [0]. Consider the set G consisting of [x]i, for 0 ≤ i < δ−1. Clearly G ⊂ R. As
e < 2d − 1, G does not contain all linear combinations of 1, x, x2, . . . , xd−1. It is
important to note that G is a cyclic group with respect to multiplication modulo
f(x). Further G is not closed with respect to addition modulo f(x). That is, it
may very well happen that [x]i, [x]j ∈ G, but [x]i +[x]j = [xi +xj ] /∈ G, for some



242 Ayineedi Venkateswarlu and Subhamoy Maitra

i, j ∈ {0, 1, . . . , δ− 1}. Consider an expression [x]i1 + [x]i2 + . . .+ [x]it−1 + 1, for
δ > i1 > i2 > . . . > it−1 ≥ 1. If this is equal to [0], i.e., [xi1+xi2+. . .+xit−1+1] =
[0], then f(x) divides xi1 + xi2 + . . .+ xit−1 + 1. So we have a t-nomial multiple
xi1 + xi2 + . . .+ xit−1 + 1 of f(x).

So, we can apply the above mentioned algorithms, for getting t-nomial multi-
ples of any arbitrary polynomial having exponent δ, considering the representa-
tions of [x]i, for 0 ≤ i < δ, as linear combination of 1, x, x2, . . . , xd−1 in GF (2)[x]

<f(x)> .
Next refer to the algorithms presented in the last subsection. Consider a poly-
nomial f(x) having degree d and exponent δ. We choose c < δ. Identify α as
[x], β as [h(x)] and γ as [g(x)]. Here Arr contains the d bit representations of
[x]i. Observe that [g(x)], [h(x)] may not be in G, as G does not satisfy closure
property with respect to addition modulo f(x). In such case, t-nomial multiple
will not be available and one has to go for next iteration.
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Abstract. Code and data sharing is an important issue in Java Card.
The Java Card 2.2 introduced an object sharing scheme to allow client
applets to access to the server applet methods using a sharable interface
object. This method suffers from some security problems such as Applet
Identifier impersonation. For solving those problems, we propose two se-
cure object sharing schemes based on the delegate model introduced by
Montgomery and Krishna. Our schemes have some significant improve-
ment over the original model in that a client applet in our system needs
only one key.

1 Introduction

Java Card can be referred to as a smart card that can run Java programs.[1,2]
As showed in Figure 1, a Java Card contains an operation system, Java Card
Virtual Machine (JCVM), Java Card Framework, and Industry add-on Classes
in Read-Only Memory (ROM). Java Card Framework implements the Applica-
tion Programming Interface (API). The applications are java packets that are
located in Electrical Erasable Programmable Read Only Memory (EEROM).
Every application consists of one or more applets. Firewall partitions the Java
Card platform object system into separates protected object spaces called con-
text. All applets within same Java packet share the same context. The Java Card
Runtime Environment (JCRE) has its own JCRE context, and this context has
special system privileges and can perform operations.

Some existing secure issues in Java Card 2.1 (same in Java Card 2.2) have
been addressed by Montgomery and Krishna[3]. In order to solve the secure prob-
lems, they introduced a delegate model where each of applets (client or server)
has a delegate. To invoke a method in the server applet For each sharable, a
client shares a secret key with the server; therefore the client can be authenti-
cated by the server with a simple challenge-response protocol. It is noted that
in their scheme the number of secret keys for a client applet is proportional to
the number of sharable methods in the server applet. In this paper, based on the
delegate concept, we introduce two alternative object sharing schemes for Java
Card 2.2[4]. Our schemes are also based on a distributed encryption that allows
an encryption key to map multiple decryption keys. Using this property, in our
system each client applet needs only one secret key, which shows a significant
improvement over the previously proposed model.
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Fig. 1. Java Card architecture.

The rest of this paper is organized as follows. In Section 2, we introduce
the object sharing mechanism in Java Card 2.2 and discuss some major security
issues in Java Card 2.2. In Section 3, we present two new object sharing schemes.
In Section 4, we conclude the paper.

2 Object Sharing Mechanism in Java Card 2.2

Java Card 2.2 specification[5] introduces four mechanisms to enable applets to
interact with each other and with the JCRE, so one context can access an object
belonging to another context. These mechanisms are JCRE Entry point Objects,
Global Arrays, JCRE Privileges and Sharable Interfaces. Here we discuss the
Sharable Interface.

2.1 Applet Isolation

Applet isolation means that one applet can not access the objects or fields in
another context unless the other applets provide an interface for access. For
security concern, except the Java technology protection, Java Card uses the
Applet Firewall to enforce the VM, and allows the VM to automatically perform
additional security checks at runtime. This is because the applet entry points
are public; other applets may obtain an object reference to access the applet
and might cause the sensitive data to be leaked. The only method the JCRE
provided to access other applets is through the SIO mechanism.

2.2 The Applet Context

The Java Card platform object system is partitioned into separate protected
object space by the firewalls. These partitions are referred to as contexts. As
shown in Figure 2, all applets in the same package share the same context.
There is no firewall between the applets within the same package. The JCRE
has its own context and has special privileges to perform operations that are
denied to the context of applets. There is only one active context within the
Virtual Machine (VM). The VM determines if the context switch is required.
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Fig. 2. Contexts with the Java Card Platform’s Object System.
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Fig. 3. Server Applet create Sharable Interface Object (SIO).

2.3 Sharable Interfaces and Sharable Interface Object (SIO)

A sharable interface was introduced in the Java card 2.1 API[6]. It defines a set of
methods that are available to other applets. A class can implement any number
of sharable interfaces and can extend other classes that implement sharable in-
terfaces. A sharable interface object is an object class that implements a sharable
interface. Only the methods defined in sharable interface can be accessed by ap-
plets in other contexts, other methods and fields in SIO only can be accessed in
the same context. The applets that provide the SIO are server applets and the
applets that use the SIO are client applets. The applet can be a server to some
applets and a client to other applets.

2.4 Creating a SIO

Figure 3 illustrates how to create a SIO. To create a sharable interface object, the
server applet first defines a sharable interface SI that includes the method the
server applet supplied to other client applets and then defines a service provider
class C that can implement the methods defined in the SI. After that, the server
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Fig. 4. The client applet requests the sever SIO. (1) Request a SIO, Jcsys-
tem.getAppletShareable InterfaceObject (Server AID,byte), (2) Receive AID of B,
getAppletShareable InterfaceObject (Client AID,byte), (3) Return reference of O or
null and (4) Receive reference of O or null and store it in object reference variable SIO.

applet creates an object of the service provider class C. When the applet instance
is created, it is registered in the JCRE using the Applet Identifier (AID). During
the object sharing, this AID is used to identify the applet.

2.5 Requesting and Using a SIO

The Figure 4 shows the process that the client applet requests the server SIO.
The client applet can invoke the any methods from the sharable interface.

During the invocation the Java Card VM performs a context switch, the context
of the server applet becomes the currently active. At this time, the firewall allows
the client applet to access all the methods and fields in the SIO, and prevents
it from accessing all other methods and fields in non-shared object in the server
applet context. The context of the client applet is not visible at all, and the
firewall prevents the server applet to access the context of the client context.

2.6 The Issues with the SIO

There are some security issues in Java Card 2.1/2.2 having been addressed.[7].
We summarise the important issues as follows:

– The JCRE security protection mechanisms do not prevent interfaces from
being cast into other kinds of interfaces that might exist for given object.
If one client applet is granted to use any sharable interface, it can cast into
other interface. So it is possible to for this client applet to access all of the
sharable interface methods of an object.

– In the sharable interface mechanism, the sever applet provides the sharable
interface to some particular applets, which solely depends on the AID of
the clients applet. In other words, the server determines whether to provide
the service to a particular client applet, just checking the AID of the client
applet. In this case, a rogue applet may maliciously set the AID to be the
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same AID of a client applet, which is known to have access to the server
applet particular sharable interface, and then request the service from the
server. The server applet only has the AID of the client for reference and this
request AID match it, so it will grant this request. Then the rogue applet
can freely access the server sharable interface for any purpose.

– It is hard for future reference to a shared object. In this mechanism the
server applet that has sharable interfaces must have a list of AID of client
that have granted to access the sharable interface. This is not a problem
for the new written and late loaded applet that legitimately needs to access
the server applet sharable interface. This is because the server applet grants
the access only based on the AID of the client applet, and the AID of such
applets is excluded from this server list. The server applet must be rewritten
and reissued if the client applet have to share the interface.

3 New Object Sharing Schemes

In this section, we propose two object sharing schemes. We refer to them as
Scheme 1 and Scheme 2. Scheme 1 is simple, but it satisfies the important au-
thentication requirements for Java Card. Scheme 2 gives an alterative for authen-
tication, but it has some additional features that the privilege can be granted
and removed from a client applet. The most important improvement of these
systems over the existing one is that a client applet needs only one secret key.

3.1 Construction of Keys

Our model is a variant of the scheme given in Ref. [8]. Basically, we want to
create a “public key” system such that several private keys are mapping to a
single “public key”. By “public key” we actually mean “encryption key”. We
should avoid using the term “public key” because all keys in our system are
private!

Let p be a large prime, Z
∗
p be a multiplicative group of order q = p − 1, and

g ∈R Z
∗
p be a generator. To construct an encryption key for Method j associated

with n decryption keys, we need to construct a the polynomial function of order
n, f(x) =

∏n
i=1(x − xi) mod q, here (x1, ..., xn) are decryption keys. Clearly, if

we set f(x) = 0, then x1, ..., xn are solutions to the equation. We can write the
polynomial function into a general form: f(x) =

∑n
i=0 aix

i mod q. The unique
encryption key can be then constructed as an (n+1)-tuple (ga0 , ga1 , ..., gan). For
simplicity, we denote by (g0, g1, ..., gn) the encryption key tuple.

To encrypt a message M ∈ Zp, we select a number r ∈R Zq set ui = gr
i for

i = 1, ..., n, and compute C = m(g0)r. The ciphertext consists of (u1, ..., un, C).
To decrypt the message, you must have one of decryption keys associated with
the public key. For xj , you can decrypt the message as follows:

Cu
xj

1 u
x2

j

2 · · ·uxn
j

n = Mgr
∑n

i=0 aix
i
j = M



248 Junqi Zhang, Vijay Varadharajan, and Yi Mu

Client 
Applet

Server  
Applet

JCRE

(1) (2) 
(3) 

(4) 

Fig. 5. Invoking a method in the server applet.

3.2 The Java Card Object Sharing Model

Let us have a quick review of object sharing in Ref. [3]. The simplified illustration
is given in Figure 5 and described as follows:

– The server applet has the sharable methods. All the sharable methods must
register in the JCRE system using the method and AID as parameter,
register(Method, Server AID). This is referred to as Step 1.

– In Step 2, the client applet obtains access to the server applet via JCRE
using JCSystem.getDelegate(Server AID, byte)

– In Step 3, the server applet delegate object is sent to the client.
– In Step 4, the client accesses the shared method in the server applet. Prior

to this step, there should be an authentication process that will be given in
the main protocols later.

Note that the JCRE has been changed by adding two system methods:
register(Method, Server AID) and JCSystem.getDelegate(Server AID,
byte).

3.3 Scheme 1

For convenience in our presentation, we denote by y(x1, ..., xn) an encryption
key wrt decryption keys x1, ..., xn. Assume that M1, ..., Ml ∈ M are sharable
methods in the server applet. Each of these methods is assigned with a private
decryption key, xj . On the other hand, each of client applets is assigned with
a unique private encryption key, yj(.), which can be referred to as a certificate.
In general, a client applet could have the right to access to several methods.
For example, yj(x2, x4) represents the encryption key associated with methods
M2, M4. In other words, Client j can have access to M2 and M4 with its private
encryption key yj(x2, x4).

Following Figure 6, the protocol is described as follows (assume that the
client has an index j):

1: CD → SD: The Request for service (this can be done by invoking the methods
in the server)
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Fig. 6. Applet delegate approach to object sharing.

2: SD → JCRE: The Request for the client applet’s AID. The server delegate
has to determine the security lever of protecting the sharing method. If
the method or the data is public to every context, the SD will provide the
service to the client straightaway. If it is a sharable method, the client must
be validated before provideing the service.

3: JCRE → SD: AID of CD
4: SD → CD: a random Challenge, c
5: CD → CA: The random Challenge c
6: CA → CD: The Response encrypted with yj . Note that CA has a unique

encryption key that is also served as its certificate. As an example, we assume
that y(x1, x5) is the encryption key and the CD wants to invoke Method M5.

7: CD → SD: The Response encrypted with yj .
8: SD → SA: The Response encrypted with yj and the Service request by the

CD (i.e., M5 in the example). SA then checks whether the response can be
decrypted using x5. A positive result indicates that the CA has the privilege
to access the method (M5).

9: SA → SD: The Response for the Service (if the CD Response can be de-
crypted using proper decryption keys associated with the requested meth-
ods)

10: SD → CA: The Response for the Service. SD can now invoke the method
(M5).

3.4 Scheme 2

We now give the second scheme that is opposite to Scheme 1. Each method in
SD is assigned with an encryption key and each of client applets is assigned with
a unique decryption key, xi. In general, a client applet could have the privilege
to access several methods, so we denote by yi(.) the encryption key associated
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with method i. For example, y2(x2, x4) is the public key for Method 2, so only
Client Applet 2 and Client Applet 4 can invoke the method.

The encryption keys of all methods are stored in a special directory in JCRE
that is only readable to the server applets. These encryption keys can be updated
by an access control software called AC in JCRE. Updating happens when a
client applet leaves or joins the Java card and when the access right of a client
applet needs to update.

Following Figure 6, we give the protocol below:

1: CA → SD: The Request for service (we assume that Client Applet 5 is the
CA and that Method M3 is intended to invoke.)

2: SD → JCRE: The Request for the AID of the client applet, CD, and for
the encryption key related to the shared method requested by the client
(noting that the server delegate has to determine the security level the shared
methods. If the method is public to every context, the CD will provide the
service to the client straightaway.)

3: JCRE → SD: AID and the encryption key (say, y3(x3, x5, x6))
4: SD → CD: a random Challenge, c, encrypted using the matching encryption

key (i.e., y3(x3, x5, x6) in the example)
5: CD → CA: The encrypted Challenge, c. CA decrypts it using its decryption

key (x5).
6: CA → CD: The Response wrt c (this can be done after the decryption of

the challenge, c, is successful.)
7: CD → SD: The Response wrt c. SD checks whether or not c matches the

one sent to CD in Step 4.
8: SD → SA: The Service request by the CD.
9: SA → SD: The Response for the Service request.

10: SD → CA: The Response for the Service request. CA is now able to invoke
M3.

In comparison with Scheme 1, Scheme 2 has an additional feature for revoca-
tion. A client applet’s access rights can be changed by modifying the encryption
keys stored in the special directory in JCRE without changing the private de-
cryption key of the client applet.

4 Conclusion

We have proposed two schemes for securing object sharing in Java Card, using
the concept of Delegate. Our schemes eliminates the security problems men-
tioned in Section 2; therefore only legitimate client applets can have access to
the specific sharable methods. Our schemes are based on a distributed asymmet-
ric key system where an encryption key maps to multiple decryption keys. This
property naturally fits into the Java Card environment such that in our system
a client applet needs only a single key exhibiting significant improvement over
the previously proposed system.
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Abstract. Over the past decade Intrusion Detection Systems (IDS)
have been steadily improving their efficiency and effectiveness in de-
tecting attacks. This is particularly true with signature-based IDS due
to progress in attack analysis and attack signature specification. At the
same time system complexity, overall numbers of bugs and security vul-
nerabilities have increased. This has led to the recognition that in order
to operate over the entire attack space, multiple IDS must be used, which
need to interoperate with one another, and possibly also with other com-
ponents of system security. This paper describes an experiment in IDS
interoperation using the Intrusion Detection Message Exchange Format
for the purpose of correlation analysis and in order to identify and ad-
dress the problems associated with the effective use and management of
multiple IDS. A study of the process of intrusion analysis demonstrates
the benefits of multi-IDS interoperation and cooperation, as well as the
significant benefits provided by alert analysis using a central relational
database.
Keywords: Intrusion Detection, Data Analysis, Correlation, Interoper-
ability, Network Management

1 Introduction

Intrusion Detection Systems (IDS) have evolved significantly over the past two
decades since their inception in the early eighties [6]. The simple IDS of those
early days were based either upon the use of simple rule-based logic to detect very
specific patterns of intrusive behaviour or relied upon historical activity profiles
to confirm legitimate behaviour. In contrast, we now have IDS which use data
mining and machine learning techniques to automatically discover what consti-
tutes intrusive behaviour and quite sophisticated attack specification languages
which allow for the identification of more generalised attack patterns.

IDS are still however commonly characterised according to a two-fold taxon-
omy involving detection method on the one hand and placement on the other.
Classification by detection method relates to signature-based vs. anomaly-based

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 252–264, 2002.
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IDS while classification by placement relates to host vs. network based IDS.
Many IDS can be described in this way, with the exception of emergent hybrid
IDS, which may use multiple placement types or detection methods.

Signature based IDS constrain the range of attacks detected using specific
detection patterns in return for acceptable detection error rates, while anomaly
based IDS cover the entire attack space by looking for anomalies within their
data source at the cost of increased error rates.

Host based IDS or HIDS, use host logs and host event records to provide
a record of current activity which can then be analysed. Network based IDS
or NIDS, typically use packet headers and packet level information, sometimes
even packet payload, as their working data. Due to the speeds required in modern
networks, NIDS are typically signature based.

With a wide range of IDS and applications, it is inevitable that individual
IDS have their own areas of specialisation and effectiveness [7]. As a result, with
the broad range of systems and networks in use today, many systems use mul-
tiple IDS which brings with it the associated challenge of achieving a consistent
approach to IDS management and analysis of IDS alerts.

The Intrusion Detection Working Group (IDWG) emerged following previous
work done by the Common Intrusion Detection Framework (CIDF), both efforts
attempting to standardise and formalise the work of cooperating IDS. The IDWG
efforts so far have focussed on two standards, a data exchange format and a
protocol for communication. The Intrusion Detection Message Exchange Format
(IDMEF) built on the experience of CIDF, but given the increased deployment
of XML for specifying protocols across the Internet used XML for expressing
the two protocol requirements. The IDMEF Data Type Definition (DTD) is
currently in version 1.0, and provides a rich and extensible alert representation
for a broad range of IDS applications.

The motivation and background for our research is described in more detail
in Section 2. Section 3 describes the detailed design of the prototype software
that has been developed for interoperability and alert correlation, as well as
testing procedures and experiments performed with the prototype. Section 4
then presents a case study of an experimental attack analysis, while Section 5
addresses future work and conclusions.

2 Related Work and Motivation

Our work is related to work by Vigna et. al.[10], Doyle et al. [5], Valdes and
Skinner [9], Cuppens [1] and Debar and Wespi [4]. In each case, use is made
of a central alert store that captures alerts from multiple sensors in order to
assist the overall intrusion detection process. Some of the systems use IDMEF
for communication, and some utilise purpose built IDS platforms, rather than
relying on commodity IDS for alert data. While all perform some sort of analysis
on the data, the mechanisms used are different. The STAT framework [10] pro-
vides the ability to perform dynamic configurability of STAT components and
uses Java to aid in portability. The MAITA [5] project reflects similar goals,
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but utilises a more complex architecture to support interoperability and uses
trend templates as opposed to STATL (used by the STAT framework) for the
specification of chains of events. Valdes and Skinner use a probabilistic approach
to perform correlation of information from multiple sensors, and focus on the
concept of ’threads’ to maintain links between alerts. Debar and Wespi use fea-
tures in the Tivoli Enterprise Console to perform correlation, and focus on the
abilities of an management system to reduce the amount of data presented to an
administrator. Recent work by Cuppens [1,2] which focuses on commodity IDS,
and uses a central database for alert aggregation and analysis is the most simi-
lar to our own approach. Cuppens uses a Prolog database and static signatures
for attack detection, together with stored procedures to perform aggregation of
alerts to reduce redundancy. The signature set is defined using the LAMBDA
syntax, which enables the specification of very complex event relationships. Our
work, by comparison focuses on a simple framework built of commodity and
free software in order to produce practical alert correlation across heterogenous
commodity IDS. Our work also differs in concepts to do with implementation,
such not using stored procedures, the nature of interaction between analysis and
signatures, and the format and implementation of signatures themselves.

We use the following terms and definitions inherited from both recent work
cited above, but we define them again here for convenience.
Attack: A series of steps taken by an attacker to achieve an unauthorized result;
any attempt to gain knowledge of or penetrate a system; includes scanning,
probing, mapping, etc.1

Alert: An alert is a warning message generated by an IDS. It may indicate an
attack or suspicious event.
Complex Attack: An attack that may comprise multiple steps and generates
multiple alerts. This definition is based on that by Cuppens [1].
Attack Signature: An attack signature is the specification of a pattern of alerts
whose occurrence would indicate a complex or multi-step attack. In our work,
signatures consist of a combination of groups and/or sequences of alerts, in any
order.
Alert Cluster: An alert cluster is a group of alerts that are related by one or
more common features, such as time, source or destination. This relationship may
be logical, mathematical or based on statistical grouping. We use this definition
of cluster as opposed to some others e.g., in the work of Cuppens, who uses
’cluster’ to term grouped alerts corresponding to a single instance of an attack.

Our work has been motivated by the previous work above and attempts to
address the application of IDS data analysis within a simple architecture based
upon commodity IDS. As a result, our goals are:

– to provide standardised IDS interoperability;
– to provide a capability for multiple levels of analysis of multi-IDS alerts;
– to provide centralised management of IDS.

Interoperability is important in order to provide a proper base for information
sharing amongst IDS and possibly other system security components e.g., be-
1 http://www.cert.org/security-improvement/modules/m06.html
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tween IDS and firewalls, or host logging information. This allows us to exploit
the use of heterogeneous IDS and other components to provide identification and
notification of a wider range of alerts than is possible with homogeneous IDS.

The need for alert analysis arises from the two main tasks performed by an
IDS administrator - to identify individual attacks and group them by charac-
teristics, and the ability to investigate a specific stored alert to discover other
alerts that may be related.

While the first task is simple data aggregation and representation, the second
relies on correlation, the selection of sets of alerts that could be related, and
induction by ascertaining which alerts in the set of relevant alerts should be
investigated further.

Centralised management of IDS enables us to integrate the features of in-
teroperability and global IDS data analysis (in this case correlation) into a
product that is both useful and efficient. While interoperability and correlation
can be achieved without requiring a central management framework, centralised
management facilitates system extensibility with regard to incorporation of new
tools, and efficiency with regard to removal of redundant or superfluous func-
tionality.

In particular correlation provides us with the potential ability to see beyond
the actual alerts themselves, and determine trends, find patterns and infer rela-
tionships between alerts - capabilities which a single sensor is unlikely to have,
and can be far more easily and comprehensively performed with multiple IDS.

3 Prototype for IDS Interoperability

One of the goals of our research has been to produce a prototype that draws
upon standardised communication and alerting formats, as well as making use
of commodity systems. Our approach is to convert native alerts from Snort and
Dragon to the IDMEF format, store these IDMEF alerts in a central database,
and perform analysis on the data both with native SQL queries and custom
algorithms. We feel this commodity IDS solution suits the ’real world’ concerns
of many IDS users, rather than being customised for particular IDS, which ties
usage to particular products. The decision to use common IDS unfortunately
means that some aspects of an alert may be ignored in favour of maintaining a
common ’core’ set of information provided by the majority of IDS. The exact
ways in which this effects our prototype are discussed later in the paper.

There are a selection of free tools for IDS analysis, dealing almost exclusively
with Snort alerts. Examples include ACID, Demarc and SnortReport. The aim
of our prototype is to provide the functionality of these free tools as well as
more sophisticated event processing and more detailed correlation capabilities.
Some systems, including some commercial offerings, provide administrators with
a web browser interface to manage their systems. While this may be appropriate
for some systems, the range of features we desired required a full GUI, with the
ability to run on multiple OS. Two IDS were chosen for the prototype , due to
their suitability both in terms of OS platforms and alert format. These two IDS
were Snort and Enterasys Dragon.
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After first looking at the possibilities of the native Snort alert format for
simple centralised IDS alert storage (due to the tools currently available for
Snort mentioned above), it was decided, for interoperability reasons, to look at
the capabilities of the emerging IDMEF standard.

While IDMEF is a very expressive and extensible format, our usage is limited
to the common set of information available from virtually any IDS, that of alert
classification (or alert name), time, source and target. Omitted information that
could be considered useful with more widespread IDS support includes priority
of the alert, host names and DNS names of hosts, and the impact of the alert.

3.1 The Architecture

The prototype architecture consists of three major components: the Alert Agent
(AA), the Control Unit (CU) and the Administrative Console (AC). These three
components interact in a manner so as to provide a simple architecture and allow
for the majority of applications to be integrated easily and effectively.

Control Unit

Alert Agent

IDS

Alert Agent

IDS

Alert Agent

IDS

Alert Database
Administrative Console

IDMEF Alerts

Fig. 1. The Architecture

Alert Agent. The Alert Agent performs translation and communication of ID-
MEF alerts to the CU. It can utilise either a native IDS IDMEF output format
such as the Snort output plugin, or translate to IDMEF from the native IDS
format. Generally ‘native’ (IDS generated) IDMEF messages should be consid-
ered a more accurate data source than converted messages, due to the increased
amount of information that can be gathered at alert time versus conversion later,
but the basic information required in an IDMEF message can be met by virtually
any commonly used IDS alert format.

Control Unit. The recipient of all IDMEF messages is the Control Unit. The
CU is responsible for alert processing and storage, as well as implementing any
real-time alert analysis (not implemented at this time). When an alert is received
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it is queued for storage in the database. This queue is buffered which allows our
prototype to handle influxes of alerts, such as in the case of a DoS attack. When
storing, the alert is converted to the SQL tables by a custom IDMEF-DBMS
mapping module and a JDBC connection pool. This allows IDMEF alerts to
be stored in a normal relational database, in this case a Postgres database,
aiding in portability and the effectiveness of later searches on alert data. The
database contains all the information stored in the IDMEF alert, though only
a small amount of this is generally used in our analysis. With the addition of
more support from IDS vendors to supply the additional information possible
in an IDMEF alert, analysis could include alert priority and impacts in order to
perform better tracing of possible cause and effect relationships between alerts.

Administrative Console. This application allows the administrator to gain
access to the alerts stored in the database. In the current off-line method, the
simplest form of correlation, the aggregation and sorting of alerts, is performed
by SQL queries on the database. Complex correlation (where mathematical pat-
terns maybe involved) is performed by Java algorithms working on the produced
database result set. The process by which data is analysed is discussed further
below. The Administrative Console is designed to be the only device actually
reading the database, though there could be multiple consoles running simulta-
neously. The console also has rights to alter information inside the database if
required, to perform tasks such as delete old records, merge alert information or
change alert data to add extra information.

3.2 Data Analysis

Figure 2 shows the four step process we use to analyse IDS data and shows
the waterfall nature of the stages and the information flow between them. This
model builds on concepts mentioned in related work discussed above. We use
this model to systematically reduce the workload and volume of information in
later stages, and to concentrate the amount of relevant data to be used in the
correlation and induction stages. The basic process of alert analysis uses the
stages below to group alerts into clusters which are related in some way, either
by an attack signature or by a pattern, such as time difference or grouping by
time. How these relations are developed is described below.

Stage 1: Data Aggregation. At this point, alerts are grouped by time, classi-
fication, source and destination using similarity metrics. These metrics currently
use simple factors such as time period, time difference between alerts (to detect
sequences), IP differences and matches on alert classification, host or IDS type.

Stage 2: Data Reduction. After determining which alerts can be grouped
together, we remove redundant alerts. This can be performed by merging alert
groups based on pre-defined criteria (such as ignoring certain types of messages
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Aggregation

Reduction

Correlation

Induction

Fig. 2. Data Flow Diagram

from a particular IDS) and deleting the originating alerts, or using signatures
for patterns of alerts to delete. Examples of this could be low-level alerts of no
interest, alerts not appropriate for the environment, such as IIS attacks on an
Apache web server, or duplicate alerts. The goal is to remove that information
that is definitely not relevant, therefore while the process of removing alerts is
simple, the logic can become quite complex. Reduction in this iterative stage
fashion is not currently used in our system, though the major functionality is
implemented off-line using SQL.

Stage 3: Data Correlation. With the alerts reduced to a more relevant subset,
the software considers which alerts may be correlated. Correlation is currently
based on time, IP, location, and name, but in principle could be virtually any field
deemed relevant in determining an attack. Examples of this could be noticing
sequences in fields like ports (such as in the case of a portscan), or even the
process of an attack on a HIDS (such as might occur in a resource exhaustion
attack). The relationship may be based directly on a signature, or by the system
watching for certain abnormal operation, such as the above cases of sequences
of ports opened by a single host (for a portscan) or a large amount of processes
opened by a single user (for the above host attack). The exact nature of what
the system can determine as ’abnormal operation’ is yet to be defined.

Stage 4. Data Induction. At this point in analysis, the software will extrapo-
late from the data either to determine events that may have occurred, or would
be likely to occur. Induction uses more complex analysis than does correlation
but the same general principles apply. The major difference is that induction is
used to extrapolate or interpolate information from the dataset, rather than sim-
ply determine relationships. Examples of this could be predicting the next stage
of an attack, deducing missing components of an attack, or determining possible
spread of an attack through the network. In our current prototype, induction is
not yet included, though will be closely tied to the ’abnormal operation’ aspect
of correlation.

3.3 Attack Signatures

Attack specification languages such as LAMBDA [3], and CISL [8] provide the
ability to define very complex relationships between events themselves. However,
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our only requirement at this stage is that the signatures be able to describe the
relationships between the alerts generated by IDS as opposed to events. In order
to best solve our specific problems, we have developed our own signature format
for patterns of alerts. Our signature scheme is designed to be simple yet still have
the capability to define reasonably complex patterns. It is used only to represent
alert relationships, and as such requires less complexity and expressiveness than
the above systems. The general requirements for our signatures are:

– The signature must contain information about the conditions on the alerts
comprising the signature. This includes whether the alerts are a sequence or
unordered group, any temporal constraints on the interval between alerts,
any spatial constraints (i.e., same host or subnet) and the timeout for expiry
of the signature.

– Signatures should be able to generate an alert themselves or be able to
trigger new monitoring processes, so multiple signatures can be combined in
a sequence or hierarchy if necessary.

A signature may be of two types:

1. For signatures which define alert sequences, the monitor process attempts to
find a match for the first item only, and when triggered by such a match, a
new monitor process is spawned which looks for the next step in the sequence.
This means a sequence of n alerts could potentially have n-1 monitor points.
A sequence signature monitor expires when the interval between individual
steps is reached, or the overall signature timeout is reached.

2. For signatures which define alert groups, the monitor must check for each
item in the group. For this reason, groups should be kept small, or significant
processing could be required. When an alert within the set is matched, it
is flagged so that it will not be matched against again. A group signature
monitor expires when a timeout occurs on the interval between alerts. A
signature-wide timeout is not needed, as functionally, this would be equiva-
lent to the timeout between alerts.

One property of our system, is that signatures can specify what operations
to perform on the alerts which contributed to the signature (e.g. store, delete,
merge), as well as any responses to be effected. This relatively simple system
specification can accommodate many conceivable relationships of interest by
being able to express signature composition using multiple signatures, without
storing redundant information. An example of our signatures being used to de-
scribe a multi-step attack across two different IDS in multiple stages is included
in the Evaluation and Testing section.

We currently use a first-fit system to determine matching on signature mon-
itors, which means that the first signature which matches an alert will prevent
any other signatures from matching it. This has implications for signature or-
dering and the construction of signatures, but is not a significant impediment
at this stage of research. Investigation into other methods for matching, such as
’best-fit’ or ’multi-fit’approaches may be used later if needed.
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3.4 Discussion

The architecture is purposely minimalistic. Other approaches propose more so-
phisticated architectures which are likely to be difficult to manage and maintain.
We have purposely not included a comprehensive communication mechanism or
information sharing protocols. As our system is a testbed for data analysis,
more complex issues of distributed monitoring, information sharing policy and
complex data channels would distract from the focus. We consider our simple
communication to be an adequate model in many cases, especially in small to
medium sized implementations, or those already using secure communication
channels (such as a separate ethernet network dedicated to IDS) or IDWG’s
communication protocol, the Intrusion Detection eXchange Protocol (IDXP).

The current system is implemented in an off-line context, in order to properly
evaluate the capabilities of the system for centralised monitoring and analysis
without the distraction of requiring real-time operation. We have nonetheless
endeavoured to include consideration of performance and eventual real-time im-
plementation while developing the architecture.

4 Evaluation and Testing

In order to properly gauge the usefulness of our system, we experimented with
various attacks and profiled the operation of our system on a set of attack data
versus the operation required by a human administrator. This helped us distin-
guish those elements of the system that were useful, and identified algorithms
used in human analysis that could be replicated in our prototype.

4.1 Testing

The testing procedure was developed both to test the operation of the system
itself, and to evaluate the success of the methodology for data analysis. This
entailed the careful construction of a test network to enable the evaluation of
analysis across network boundaries as well as investigation of the abilities of one
IDS to reinforce or invalidate the data of another. Figure 3 shows the testing
framework for the software. Two ‘client’ machines are used, each hosting Snort,
Dragon Squire and Dragon NIDS. The alerts from these systems are then inter-
preted by IDS Alert Agents, and sent to the Control Unit on a separate third
machine. The Control Unit is co-located with a Postgres Alert Database, and
stores all alerts received in the database. This is then accessed from a separate
machine acting as the Administrative Console. All the machines were placed on
a switch, to separate traffic into distinct network segments.

A suite of attacks capable of being launched across multiple machines was
selected, consisting of two DDoS tools, stick and tfn2k (Case 2 below), as well
as multiple variations of nmap scan (Case 1 below) and a multi-stage attack
described by Cuppens [3] (Case 3 below). A vulnerability scanner and two attack
tools were also run, but not described below as the alerts could not be correlated
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Fig. 3. Testing Framework

directly with the attacks themselves. The Cuppens attack consists of 6 steps, of
which only five (all except step 5) are detectable by Snort and Dragon:

1. finger root@target
2. rcpinfo <target>
3. showmount <target>
4. mount <target directory>
5. cat “++” < .rhost
6. rlogin <target>

The attacks were scripted in order to satisfy reproducibility concerns, and the
session was logged in TCPDUMP for later analysis. Initial experiments had used
TCPreplay and TCPDUMP to reproduce attack sets, but the sophistication of
Dragon and Snort meant that some data ‘normal’ replayed (such as obsolete
TCP SYN/ACK sequences) would trigger alerts, and the incorrect session gener-
ation meant that some attacks were (correctly) ignored as erroneous. Because of
these problems, we used shell scripting to automate the attacks. Using scripting
meant that the attacks could be performed quickly and repeatably for multiple
iterations if required and avoid the problems of stale packets with TCPDUMP.

4.2 Correlation Analysis

After running the three attacks (Case 1, Case 2 and Case 3) below, we com-
menced correlation by querying how many alerts had been logged. The four
IDS, IDS2-dragon, IDS3-dragon ,IDS2-snort and IDS3-snort produced a total
of 8799 alerts. A list of alerts per IDS shows IDS2-dragon had 7 alerts, while
IDS2-snort had 3737, IDS3-dragon 3784 and IDS3-snort 1271.

Case 1: TCP Scan. Looking at the abnormally low number of alerts on IDS2-
dragon, we observed that it contained three unique types of alert, one ‘HEART-
BEAT’, one ‘SSH:VERSION-1’, and five ‘TCP-SCAN’. The TCP-Scan alerts are
potentially dangerous, and have timestamps of 1:22:52, 1:22:55, 1:23:10, 1:23:14
and 1:24:18. Based on the similarity in times we can infer three separate events
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have occurred. By searching through the database for time periods +/- 5 seconds
around these groups of alerts on other IDS, we observed that many scan-related
alerts (such as ‘ICMP Ping NMAP’ and ‘Scan Proxy’ messages from Snort and a
‘TCP-SCAN’ message from Dragon) occurred across both IDS2 and IDS3 in the
10 second periods around 1:22:50 and 1:23:10, and that the third time (1:24:18)
is the result of separate traffic. Considering there were 18 alerts (including a nor-
mal HEARTBEAT message from IDS3-Dragon) from the four different IDS (2
IDS2-Dragon, 11 IDS2-Snort, 3 IDS3-Dragon, 3 IDS3-Snort) in the first period,
and 11 alerts (2 IDS2-Dragon, 7 IDS2-Snort, 1 IDS3-Dragon, 1 IDS3-Snort) in
the second, we can safely conclude that two separate large-scale scans occurred.

Case 2: DoS Attack. As noted above, the other alerts around 1:24:18 alert
did not correspond to a TCP-Scan. From 1:24:18 to 1:24:49 3551 alerts from
varying IP’s logged as ‘BAD-TRAFFIC’ requests on IDS2-Snort. From 1:24:38 to
1:24:48 1246 ‘BAD-TRAFFIC’ alerts were received on IDS3-Snort. Interestingly,
IDS3-Dragon logs 3758 alerts in this time, indicating that Dragon on FreeBSD
may contain DoS protection in the kernel network code or the FreeBSD version
of Dragon itself. Large amounts of varying source alerts could indicate either
a spoofed single host DoS attack, or a bone-fide multi-host DoS attack. As
there were 1625 unique IP’s, all of which had the last IP quad as ‘0’, one could
reasonably assume a spoofed DoS attack has taken place.

Case 3: Cuppens Attack. Without extra events to analyse, by looking at
the relative levels of alerts on both IDS, we note that IDS3 has more alerts
than IDS2, and that Snort logs less alerts than Dragon. The large amounts of
alerts for this host indicate a higher chance of attack, therefore warrants further
investigation. In much the same way as Case 1 above, we can look at the types
of alerts on IDS3 and relate these to each other in order to identify attacks.

Using the smaller dataset on IDS3, and using a query to show a list of unique
alert names, Snort logs 9 different types of alert: 2 types of ‘BAD TRAFFIC’,
plus ‘FINGER root query’, ‘ICMP PING NMAP’, ‘RPC portmap listing’, ‘RPC
portmap request mountd’, ‘RSERVICES rlogin root’, ‘SCAN Proxy (8080) at-
tempt’ and ‘X11 outbound client connection detected’. Looking at the occur-
rences of each of these, 1260 come from BAD TRAFFIC alerts (related to the
DoS attack, above), two occurrences of the SCAN Proxy alert, two occurrences
of ICMP PING NMAP, three occurrences of RPC portmap listing and one of
FINGER root query, RPC portmap request mountd and RSERVICES rlogin
root. Looking at the times of the alerts, 1:23:46 contains two instances of RPC
portmap listing, as well as the RPC mountd and RSERVICES Login attempt,
comes 30 seconds before the DoS attack, and contains the majority of types of
alerts the IDS logged - this makes the alerts from this particular time suspicious.

A search for alerts from all IDS for 10 seconds around this time gives us 16
entries confined to IDS3, 5 from Snort and 11 from Dragon. This period adds the
“FINGER root query” from Snort mentioned earlier, plus a FINGER:ROOT,
RSH:ROOT and 8 DYNAMIC-TCP messages from Dragon. The FINGER and
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RSH:ROOT messages match those of Snort, while the DYNAMIC-TCP mes-
sages match the RPC messages of Snort. These alerts constitute a match to the
sequence that indicate Cuppens multi-stage attack. In this case Dragon’s alerts
allow us to validate the results of Snort. Note that both systems missed the
‘cat “++”’ stage - it is at this point the addition of a host-based IDS would
help to increase detection scope and effectiveness. Notice that this attack can
be identified from others simply by looking for anomalous alerts and correlating
information between IDS.

This attack can also be detected using signatures. In our case, we note that
“FINGER root” and “FINGER:ROOT” are equivalent, so create a signature
of the name “DUAL IDS Finger Root Detection” consisting of both of these
alerts, and we create another with “RSH:ROOT” and “RSERVICES rlogin root”
called “DUAL IDS Remote Root Login Detection”. If we combine these in a
sequence with the RPC messages from Snort, as well as a single occurrence
of “DYNAMIC-TCP” (to cover the Dragon-Snort RPC overlap) we create a
signature for the combination of these alerts that allows the checking of detection
across heterogenous IDS. This allows for better error rates due to the reduced
likelihood of false positives across both IDS simultaneously.

Summary. The end result is that we are able to identify signatures of certain
large-scale attacks across time and space, as well as the anomalies which may
indicate suspicious activity with simple SQL queries and a small amount of extra
analysis. We replicated the experiment of Cuppens [1] “multi-stage” attack using
Snort and Dragon instead of Snort and E-trust, without complicated attack
signatures.

We see that the levels of data reduction and aggregation are included in
the SQL query generation, while alert correlation occurs within an outside pro-
cess. The current system iterates through the data either in the manner shown
above looking for abnormal events, or by searching for matches to simple static
signatures. It cannot currently extrapolate or interpolate information, but that
functionality is the subject of further research.

As well as demonstrating the process of an attack analysis, this example also
shows the advantages of cross-IDS and cross-locational analysis. In all cases, the
overlap of IDS alerting provided an increase in information regarding the nature
of the attack, and correlating across location helped to identify the scale of the
attack.

5 Conclusions

Our aim in developing the prototype has been to implement alert correlation
across multiple real-world IDS. We have achieved successful development of
such a prototype to support IDS interoperability using several concepts that
build upon previous work, as well as new concepts, such as simple signature
specification and grouping of alerts. This has demonstrated proof of concept of
the ideas used in the research and it now remains to deploy the prototype in a
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wider range of real-world situations, in particular the context of a wider range
of attacks and background traffic, in order to better explore the architecture’s
potential for analysis using the concepts of aggregation, reduction, correlation
and induction. Further work will address optimisation of the algorithms used in
the architecture, and deployment of the system in a real-time environment.
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Abstract. In many cases synthetic data is more suitable than authentic
data for the testing and training of fraud detection systems. At the same
time synthetic data suffers from some drawbacks originating from the
fact that it is indeed synthetic and may not have the realism of authentic
data. In order to counter this disadvantage, we have developed a method
for generating synthetic data that is derived from authentic data. We
identify the important characteristics of authentic data and the frauds
we want to detect and generate synthetic data with these properties.
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1 Introduction

Fraud detection is the process of automated analysis of data from a service with
the goal of revealing attempts to use the service without paying or in some other
way illicitly benefit from the service. When designing a fraud detection system,
it is essential to have suitable data for evaluation and testing. This data must be
representative of normal and attack behavior in the target system since detection
systems can be very sensitive to variations in input data.

Using synthetic data for evaluation, training and testing gives several ad-
vantages compared to using authentic data. Data properties of synthetic data
can be tailored to meet various conditions not available in authentic data sets.
On the other hand purely synthetic data suffers from the fact that they may
be quite unrealistic and will consequently not properly reflect the properties of
authentic data. Thus, the aim of this work has been to develop a methodology
for generating synthetic data with realistic properties and this is achieved by
using authentic data as a property ”seed”. Thus, the method uses statistical
properties from smaller amounts of authentic data and generates large amounts
of synthetic data preserving parameters important for fraud detection and the
training of fraud detection systems. Examples of such parameters are user and
service behavior.
� The author is also with Telia Research AB, SE-123 86 Farsta, Sweden

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 265–277, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



266 Emilie Lundin, H̊akan Kvarnström, and Erland Jonsson

The rest of this paper is organized as follows. Related work is summarized
and discussed in section 2. Advantages and motivation for using synthetic data
can be found in section 3 and our method for generation of synthetic data is
presented in section 4. Conclusions can be found in section 5.

2 Related Work

There are very few papers which focus on properties of test data. Most papers
describing training and test data focus on testing a specific detection prototype,
or is about benchmarking and comparing detection systems. Often, data is only
mentioned briefly. In most papers, (manipulated) authentic data is used.

The absence of research on synthetic data for fraud detection applications
has led us to study work in the intrusion detection area. In [10] we discuss several
similarities between fraud and intrusion detection systems. However, there are
some differences that need to be considered. Intrusion detection is performed on
log data from operating systems, applications, and networks to detect malicious
actions in a computer system. Fraud detection is normally performed on log data
from a specific service to find people trying to gain unauthorized benefits from
the service. Fraud detection is often more specialized and adapted to a service as
opposed to intrusion detection which is more general. Roughly, fraud detection
can be seen as application-specific intrusion detection. We believe that the way
test and training data is retrieved and used is similar and the same methods for
generating data can be used.

In the following two sections, we review some papers that present test meth-
ods using authentic and synthetic test data. We describe how the data is re-
trieved, used, and manipulated, and how it compares to our method.

2.1 Authentic Data

In the JAM project [2], some papers have been written that actually focus on
test and training data properties. For example, [4], and [15] describe experiments
on varying the fraud rate in training data and also introduces a cost model where
each transaction is associated with a cost. In [15] which is an unpublished techni-
cal report, the data and the manipulation of data is described more thoroughly,
but this information is shortened in the published papers based on the same ex-
periments. For the experiments two large sets (500000 records each) of authentic
credit card transactions are used. The transactions are labeled as fraudulent or
legitimate and the fraud rate is around 20%. A cooperation with two banks pro-
vided the data. The labeling seems to have been performed by bank employees
and the authors mention that some of the unclear cases were indeed labeled as
fraudulent. The authors concluded that the optimal rate of fraudulent vs. normal
events in training data depends on the cost model and the learning algorithm
used. For their applications, the desired rate is shown to be close to 50:50. The
fraud categories presented in their work are likely to be representative of future
fraud. However, the process for labeling data is not described.
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In [3], data is described but not analyzed in much detail. The data used for
the experiments in this paper is GSM Toll Tickets from Vodafone. It consists
of calls made by 300 normal users during two months. This data is “sanitized”,
but it is not specified how this is done. It also consists of calls made by 300
fraudulent users but it is not explained how these fraudulent users are selected.
The paper describe what information the Toll Tickets contain although the ratio
between normal and fraudulent events is probably not realistic.

2.2 Synthetic Data

Probably the biggest effort in testing and comparing intrusion detection systems
is made by DARPA in 1998 and 1999 [11]. A great deal of work has been spent
on generating large amounts of test and training data for this project. The gen-
eration of data is best described in [8]. The test data contains network traffic
and system call log files (SUN BSM log files) from a simulated large computer
network. Both attacks and background data has been generated synthetically,
but the background data is said to be similar to sampling data from a number
of Air Force bases. Background data is generated mainly by using software au-
tomata simulating the usage of different services. Attack data is generated by
running attack scripts. The database of attacks used is described in [9]. Some
more complicated background data and attacks are injected live into the system.
No extensive analysis of the quality of the generated data has been made. Some
efforts in automating the data generation further is described in [7].

McHugh [13] criticizes the lack of validation of test data in the 1998 DARPA
evaluation. The process of generating data is vaguely described, and it is dif-
ficult to determine the quality of the data. There are no guarantees that the
attacks used are really representative and realistic. Also, he questions whether
the background data is really representative of the user behavior in the com-
puter systems used and if the behavior in these systems represent user behavior
in other computer systems. Another question he raises is whether attacks are
realistically distributed in the background data. Some improvements were made
in the 1999 experiments but many of these issues are still not fully addressed.

Debar et al. [6] developed a generic intrusion detection testbed. They show
how to simulate user behavior with a finite state automata to obtain normal
traffic, but state that this is only a practical approach if the set of user commands
is limited. Instead, they use recorded live data from user sessions, which has been
replayed inside the workbench. They also describe how they create attack scripts
to use in the testing process.

Maxion and Tan [12] discuss the effects of more or less irregular background
data. They generate “random” background data with different degrees of regu-
larity and show that it affects the false alarm rate drastically. The paper also
measures regularity in real-world log data.

Chung et al. [5] claim that concurrent and distributed intrusions are likely to
occur in a computer system, and therefore, should be included in test data for
intrusion detection systems. They have developed a tool that parallelizes attack
scripts to simulate concurrent intrusions.
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Puketza et al. [14] describe a software platform for testing intrusion detection
systems. They have used the UNIX package expect to generate synthetic user
sessions. However, they do not analyze the quality of this data to any great
extent.

From the discussion above we conclude that most projects seem to use syn-
thetic data due to lack of authentic data or lack of data having desired properties.
In the DARPA project [1], it was necessary to generate synthetic data since it
was not possible to retrieve the desired amount of data. Also, most projects
seem to suffer from a shortage of real attacks, which makes it necessary to inject
fraud/intrusions synthetically.

3 Using Synthetic Data for Evaluation

Training and testing of fraud detection systems require data which has certain
properties. Access to authentic data from real services is often preferred although
it may suffer from lack of control of what fraud cases it contains and the amount
of data may not be sufficient. Another possibility is to use synthetic data.

Synthetic data can be defined as data that is generated by simulated users in
a simulated system, performing simulated actions. This definition can be relaxed
to include humans performing simulated actions on a system. Simulated actions
means that people (or a program) perform actions according to a specification
created by the experiment organizers, and not act according to their normal
behavior. This specification should reflect the desired behavior of the system.
In this paper, we use the wider definition of synthetic data. It depends on the
situation whether it is better to simulate user behavior using a software automata
or to hire people to generate background data and attacks. There is also a choice
between using a fully simulated system, a real system or a mix of real and
simulated system components.

3.1 Rationale

Use of authentic data is not always a viable solution for evaluation of detection
systems. For future services (e.g. services that are planned or under development)
authentic data may not exist or may only be available in small quantities. In
these situations, synthetic data is the only possible solution for conducting tests.
Moreover, expected fraud cases for services under development are not present
in the authentic data as the service has no real users. Under these circumstances,
synthetic data containing expected fraudulent user behavior must be generated
for testing of the detection system.

An advantage of synthetic data is that it can be designed to demonstrate
properties, or include attacks, not available in the authentic data. This gives a
high degree of freedom during testing and training. In addition, synthetic data
may be generated to cover extensive periods of time which could have taken
months or years to collect from the real target system. Also, a large number of
users can be efficiently simulated, even though the real system only has a few of
them. This makes scalability tests possible.



A Synthetic Fraud Data Generation Methodology 269

3.2 Data for Training Fraud Detection Systems

The process of detecting fraud involves analyzing large amounts of data, looking
for signs of fraudulent behavior. Intelligent techniques such as neural networks
and other AI (Artificial Intelligence) techniques can be used to decide whether
an event or a group of events indicate fraudulent behavior. Common to most
intelligent techniques is that extensive training needs to be performed. During
training, data similar to that of the target system must be available. In addi-
tion, the data must be labeled (i.e. all events must be categorized as normal or
fraudulent) so that the detection algorithm can learn to distinguish normal us-
age from fraudulent. We have identified a number of properties that characterize
good training data.

– Data is labeled, i.e. we have exact knowledge of which attacks are included
in the data.

– The attacks in the input data represent the attacks we expect to occur in
the target system. (Not necessarily the same attacks that currently occur in
the system.)

– The number and distribution of attacks in the background data (fraud/
normal data ratio) are adapted to the detection mechanism. Some detection
methods perform better if they are trained on data where attacks are over-
represented. In [4], it is shown that varying the amount of attacks in the
data will greatly affect the training process of the detection algorithms.

– The amount of data is large enough. In particular, certain AI algorithms
need huge amounts of training data.

These properties indicate that synthetic data can be a better choice for train-
ing fraud detection systems.

3.3 Data for Testing Fraud Detection Systems

The detection algorithms need to be tested on data sets containing expected
fraud in the system. Testing the detection capability of the algorithm may require
a different data set than used during training, even though most of the properties
for training data is valid also for test data. For example, it is easier to test the
system if data is labeled. Some additional important properties for test data are
stated here.

– The number and distribution of attacks in the background data (fraud/
normal data ratio) should be realistic.

– The attacks in the input data are realistically integrated in the background
data. For example, time stamp of an attack, time between attacks, and time
between parts of an attack may affect detection results.

– Normal (background) data should have similar statistical properties as au-
thentic data from the target system. Different behavior in the system may
affect detection performance drastically. In [12], it is shown that the false
alarm rate rises sharply when background data becomes more irregular. This
would indicate that test data is often system specific.
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Testing a fraud detection system involves many diverse activities. Scalability
tests need to be performed to see whether the systems can handle current and
future data volumes. Again, large authentic data sets may not be available to
realistically conduct such tests. Various stress tests can be conducted to test
the system’s ability to withstand sudden changes in data volume or the char-
acteristics of the data. For example, the system can be tested to determine its
susceptibility to parameter changes. These changes could be triggered by sud-
den changes of the environment in which the detection system operates or by
faults and errors in the collected data. By using synthetic data, faults and other
unexpected events can be injected to study the susceptibility of the detection
system and its ability operate under harsh conditions.

4 Data Generation Methodology

There is a great deal of complexity in synthetic data generation and it is time-
consuming to create the necessary components. Therefore, a methodology is
needed to structure the work and to point out the choices that have to be made.

The main components needed to automate the data generation process are
specifications of desired user behavior in the system, a user/attacker simulator,
and a system simulator. The goal of the methodology is to guide the production
of these components. The starting-point of the methodology is the collection of
information about the anticipated behavior in the target system. The method-
ology includes both background and attack data generation. Therefore, we need
both information about possible attacks as well as normal usage. This data serves
as basis for user and system modeling.

4.1 Methodology Overview

In figure 1, the methodology for generating the data generation components is
pictured. The first step is the collection of data that should be representative of
the anticipated behavior in the target system. The data may consist of authen-
tic background data, background data from similar systems, authentic attacks,
and other collections of possible attacks. The second step is to analyze the col-
lected data and identify important properties such as user classes, statistics of
usage, attack characteristics, and statistics of system behavior. In step 3, the
information from the previous step is used to identify parameters that need to
be preserved to be able to detect the anticipated attacks, and to create user
and attacker profiles that conforms to the parameter statistics. A user model
is created in step 4. This model must be sophisticated enough to preserve the
selected profile parameters. Also, the attacks are modeled in this step. The user
and attacks simulators implements the models. In step 5, the system is mod-
eled. The model must be accurate enough to produce log data of the same type
as the target system for the input user actions. The system simulator is imple-
mented according to this model. It is important that it is possible to configure
the user and system models using variable input parameters in order to change
the properties of the generated data during operation.
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Background data from similar systems
Authentic attacks
Possible attacks

Authentic background data

Attack statistics
User classes
User statistics

System statistics

Data generation components

User profiles

System modelling

Profile generation

User and attack
User simulator Attacker simulatormodelling

System simulator

Data collection

Data analysis

Fig. 1. Synthetic log data generation method

In the following sections, each of the steps in the data methodology are
discussed and methods for implementing them are suggested.

The division into steps with well defined interfaces reduces the complexity of
the task and makes it possible for different groups of people to work on different
tasks. It is possible to run some of the work in parallel. For example, as soon as
some authentic background data is collected and analyzed, it is possible to start
working on both the user model and the system model. In parallel to the user
and system modeling, attack data may be collected and analyzed to create the
attack model.

It is possible to use people instead of a user simulator to create the user
actions. It is also possible to use the whole, or parts of the real system instead
of a system simulator. In some situations, this may be preferable, especially if
the system or user behavior is very complex, and needs to be modeled in great
detail. However, there are some disadvantages in using people and real hardware
and software in the generation process.

If only simulation programs are used, it is possible to make the data genera-
tion process fully automatic. In the DARPA evaluation [8], they use humans to
inject attacks, and a great deal of system hardware and software. They admit
that their data generation procedure required much manual administration and
attention during the simulation runs.

An advantage of using fully simulated components, is that it has the pos-
sibility to become very scalable, both concerning the number of users and the
simulation time period. If humans are used to generate background data, each
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person can only perform the tasks of one or a few simulated users. If we want to
use humans to inject attacks, the simulation time can not be much faster than
real-time. Also, if real software and hardware is used, these components may
limit the simulation speed considerably.

The rest of this section presents and discusses the different steps of the
methodology in some detail and describes the final creation of the synthetic
log data.

4.2 Data Collection

The data we need as a starting point in the data generation method are samples
of background data and attacks representative of the anticipated behavior on
the target system. The output log data from the target system is the input to
the detection system. This is the type of data that should be produced in the
synthetic data generation process. Therefore, it is convenient to have samples
available of authentic data from the target system. Hopefully, this data also
contains information about user and system behavior which is representative.
This may be the most valuable source of data for the generation. If too small
amounts of authentic data is available, it is also possible to collect data from
similar services. In each case, we need to determine if this data is applicable to
our service. Even if we have authentic data, these may not be representative,
e.g. because the number of users are going to increase or functions in the system
are changed before the detection system will be in operation.

Authentic attacks are often not available. Therefore, we need to collect them
in other ways. In the intrusion detection area, databases of known attacks are
more or less publicly available. In the fraud area, they are often more service
specific, and we may need to “invent” possible attack scenarios or adapt known
frauds from other types of services to our situation. Collected attacks may be
injected into the target system to get corresponding log data. It is important
that the log data can be labeled to know exactly which entries corresponds to a
specific attack.

It is difficult to know that properties of the collected data corresponds to the
environment that the detection system will operate in. On the other hand, this
is not a problem specific for synthetic data. If the detection system is trained
and tested on data with the “wrong” properties, the detection will not be correct
irrespective of the type of input data. We must predict the future behavior of
users and hope that the prediction is close enough to reality.

The output from this step may have many different formats. Some of it may
be labeled log data on the same format as will be used as input to the FDS. It
may also be databases of attacks with only some information about each attack.

4.3 Data Analysis

The next step is to analyze the collected data. The goal of this work is to get a
picture of how the system is used and how user actions and attacks show up in
log data.
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One task is to identify classes of users with similar behavior. Exploratory
Data Analysis (EDA) [16] is an existing set of ideas on how to study data sets
to uncover the underlying structure, find important variables, detect anomalies
etc. We believe that techniques based on those ideas could be used for this
purpose. This may include use of visualization tools and/or clustering methods.
It is important to use several classes of user behavior to get diversity in the
generated data.

Another task is to identify important attack features, i.e. parameters that
are useful for detection of the anticipated attacks. For example, to detect an
attacker guessing passwords on a system, the number of failed logins within
a certain time interval is a useful parameter. Also, system statistics must be
examined. For example, response time and amount of network traffic generated
by different events may be useful for the system modeling.

The log data generated by the target system should be examined to determine
if it is adequate for effective detection. If it is not adequate, it may be necessary
to implement additional logging mechanisms and collect new data.

The output from this step is user classes and a number of statistics for dif-
ferent aspects of user, attacker, and system characteristics.

4.4 Profile Generation

The next step is to identify important parameters for user behavior in the statis-
tics. One way to identify these parameters is to study the features needed to
detect expected frauds. These features must have correct statistical properties
in the generated data to be useful for detection. One example of a fraud indica-
tor would be users logging in at night that usually only log in during daytime.
In this case, we must preserve the statistical distribution of logins during the
day for the simulated users. Also, correlation between parameters may be fraud
indicators and must be preserved.

When we know what parameters we have and what properties we want to
preserve, collected data is used to find statistical values for them. There are more
or less automatic tools available for calculating values for parameters and fitting
data to statistical distributions.

Output from this step is files for different user classes containing values for all
parameters that are required for the user simulation. A cooperation between this
step and the user modeling step is needed to adapt the format of the profiles to
fit the user model. For example, there are different ways to model the frequency
of a specific event. Either, it can be defined as the expected number of events
per time interval, or it can be defined as the expected time until the next event.

4.5 Modeling the User

The user and attacker behavior can be very complex to model. To limit the
complexity, we should bear in mind that it is only of interest to simulate actions
that will affect log data. It is in general easier to model the behavior of users
in a service which is less complex. Behavior profiles are appropriate to use as
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configuration data to the user simulator. This way, we can easily adapt the
simulator to changes in behavior and add new user classes.

There are several ways to model user behavior. One way is to use a finite
state machine. This is suggested by Debar et al. [6] and also used in the DARPA
evaluation [11]. This is a suitable method if user behavior is not too complex or
if only a limited number of parameters need to be preserved in the background
data. Also, it is possible to generate great amounts of data for many simulated
users. However, it may be very time consuming to model users and attacks if
the behavior needs to be modeled in great detail.

Another way is to “record” real user sessions and attack sessions and replay
them in the system simulator. This method is suggested by Puketza et al. [14].
If the behavior is complex, this may be a better method than modeling the
users with a state machine. The problems are that the system simulator must be
advanced enough to handle this type of input and it may be difficult to generate
large enough amounts of user sessions.

A third way is to use test suites developed for testing functionality in op-
erating systems. This is suggested by Debar et al. [6]. The test suites are not
representative of real user behavior but generate all sorts of events that may be
very infrequent in a real-life system. The advantage of this method is that it
does not require much work to implement, and it may be useful for evaluating
the false alarm rate when behavior is very irregular. However, it is questionable
if this type of data is useful for testing fraud detection systems.

The output of this step is “lists” of user actions in a format suitable to use
as input to the system simulator.

4.6 Modeling the System

The simulated system must be able to produce output data similar to that of
the target system, where the similarity can be restricted to those features that
are necessary for the fraud detection. The simplest way to model the service re-
alistically would be to set up a replica of all system components. This would give
us perfectly accurate log data as long as the “users” are behaving realistically.
However, it may require a great deal of resources if we want to simulate a large
system, and there are other disadvantages as mentioned before.

A more realistic way to model the system would be to make a hardware
replica of the central system components, but implement the clients in software.
One single machine can simulate numerous clients. This is the method used by
DARPA [11]. There are two major problems with this solution. Firstly, it is not
trivial to simulate traffic from many different IP addresses from one machine,
but it can be done. Secondly, it is not possible to speed up the simulation time
as the client software must send out the traffic in real-time if the rest of the
components are to respond realistically.

A third solution would be to implement a model of the service in software.
Some of the real service software can be used, but we can experience problems
if we want to run the simulation at non real-time speed. The advantages of this
solution are that we have full control of the simulation process and can speed up
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the simulation as fast as the computing platform allows. Furthermore, simulation
processes can be quickly and easily implemented for low complexity services. The
disadvantage is that it may take some time and effort to study the behavior of
the service to be able to implement the required functionality. There is also a
risk of oversimplification resulting in significant differences between synthetic
and authentic data.

The output of this step is data on the same format as the data produced by
the target system.

4.7 Creation of Synthetic Log Data

The basic data generation methodology was presented in figure 1. Figure 2 be-
low shows in more detail how the data generation components interact in the
generation process.

Simulated
user actions

User profiles

Synthetic log data

Live data
injection

Configuration
data

Configuration
data

System simulator

User simulator

Attacker simulator

Fig. 2. The synthetic log data generation process

The user profiles are used as input to the user and attacker simulator. The
user and attacker simulator generates user actions that are fed to the system
simulator. The system simulator creates the final synthetic test data and the
configuration data for the user and attacker simulator contains information that
controls the generation of normal user and attack actions. For example, it may
be the start time and stop time for simulation, the number of normal users from
different user classes, the number of attacks of each type, and the start time and
stop time for different attacks. The configuration data for the system simulator
contains for example information about the number of clients that should be
simulated, statistics about reply times and traffic amounts for different events,
and behavior in the presence of certain attack events. Parameters that we want
to vary between different simulation runs should be included in the configuration
data. This means that we can generate batches of synthetic data for different
purposes without reprogramming the simulators.
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It is possible to complement the user simulation with live data injection, e.g.
to generate more complex series of actions or to generate deviating behavior for
special stress tests.

5 Conclusions

The results presented in this paper form a foundation for generation of synthetic
test data based on authentic data for fraud detection systems. By starting out
from small sets of authentic log data, appropriate synthetic log data can be cre-
ated in large amounts. Properties of parameters in the initial data are preserved
or can be tailored to meet the needs of testing and training of fraud detection
systems. In the near future we aim to use our method in practice with authentic
log data collected from a pilot-test video-on-demand application.
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Abstract. The security of any system that is configured or operated by
human beings depends on the information conveyed by the user interface,
the decisions of the users, and the interpretation of their actions. This
paper establishes some starting points for reasoning about security from
a user-centred perspective: it proposes to model systems in terms of
actors and actions, and introduces the concept of the subjective actor-
ability state. Ten principles for secure interaction design are identified;
examples of real-world problems illustrate and justify the principles.

1 Introduction

Security problems are often attributed to software errors such as buffer overruns,
race conditions, or weak cryptosystems. This has focused much attention on the
correctness of software implementations. However, correct use of software is just
as important as correctness of the software itself. For example, there is nothing
inherently incorrect about a program that deletes files. It is only when such a
program deletes files against our wishes that we perceive a security violation.

It follows that the security properties of any system can only be meaningfully
discussed in the context of the system’s expected behaviour. Garfinkel and
Spafford give the definition: “A computer is secure if you can depend on it
and its software to behave as you expect” [7]. Notice that this definition is
necessarily dependent on the meaning of “you”, which usually refers to the user.
It is impossible to even describe security without addressing the user perspective.

Among the most spectacular of recent security problems are the e-mail attach-
ment viruses. Many of these are good real-life examples of security violations in
the absence of software errors: at no point during their propagation does any
software behave differently than its programmers would expect. The e-mail client
correctly decodes the attachment and the system correctly executes the virus
when the user opens the attachment. Rather, the problem exists because the
functionally correct behaviour is inconsistent with what the user would want.

This paper aims to make two main contributions: first, it presents a model
to guide thinking about this type of issue; and second, it gives specific recom-
mendations in the form of ten interaction design principles for secure systems.

Among many designers, there is the pervasive assumption that improving
security necessarily degrades usability, and vice versa; the decision to favour
one or the other is typically seen as a regrettable compromise. For example,
commonly suggested security fixes involve having the computer ask for user
confirmation, yet we are also warned against annoying the user by asking too
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frequently [14]. In the end, these judgement calls are often made arbitrarily. A
coherent interaction model will help designers resolve these dilemmas.

I take the apparently radical position that security and usability are not
fundamentally at odds with each other. In fact, it should be clear upon reflection
that the opposite makes more sense: a more secure system is more controllable,
more reliable, and hence more usable; a more usable system reduces confusion
and is thus more likely to be secure. Security advocates and usability advocates
both want computers to correctly do what users want – no more and no less1.

The results presented here come from discussing design challenges and user
experiences at length with designers and users of software intended to be secure.
After much debate and several iterations of refinement, we have tried to form a
concise set of design principles that covers many of the important failure modes.

This paper is heavily abridged due to last-minute space restrictions; for a
complete version with detailed case studies, please see http://zesty.ca/sid/.

2 Related Work

There seem to be relatively few development efforts in computer security [10]
[12] [25] that have seriously emphasized user interaction issues. The Adage
project [25], a user-centred authorization service, is probably the largest such
effort to date. There have been several important usability studies of security
applications [1] [13] [16] [24], all of which have shown the devastating impact that
ignoring usability issues can have on the effectiveness of security measures. To my
knowledge, this paper is the first attempt to propose a structured framework for
design thinking and to suggest widely applicable guidelines for secure interaction
design as opposed to studying a single application or mechanism.

Simultaneously addressing all of the principles presented here is admittedly
a significant design challenge. Lest they seem too idealistic to be satisfiable, it is
worth mentioning that there is an independently developed prototype of a secure
desktop shell [3] that largely succeeds in satisfying most of these principles.

3 Design Principles

The following sections present a preliminary set of guidelines for secure interac-
tion design. They are a snapshot of an ongoing process of refinement; applying
them in practice will help to assess their completeness. Sufficiency cannot be
proved, as it is impossible to guarantee the success of a user interface. So, our
criterion for admitting something as a basic principle is that it be a necessary
1 Often a dilemma stems from conflicts between what different people want. For

example, some digital rights management efforts would make media content harder
to use – but the resulting conflict is not one of security versus usability. It is actually
a conflict between the desires of the users and the content providers. Balancing such
conflicts is indeed an important problem, but outside of the scope of this paper. We
will not address the design of systems that serve two masters, but understanding
how to serve one master faithfully remains an important and necessary first step.
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and non-trivial concern. I will argue that each principle is necessary by showing
how its violation would likely yield a security vulnerability, and show that the
principles are non-trivial by pointing out that violations exist in real software.

The principle of least privilege [21] is a starting point for our reasoning. It is
better to think of our design principles in the context of least-privilege systems,
rather than current systems not designed in a least-privilege style. A language-
based security system, such as Java’s “sandbox”, is one kind of model in which
one could hope to satisfy these principles. Other platforms designed around the
least-privilege concept include the E language [5], KeyKOS [8], and EROS [22].

The design principles are listed here, with detailed explanations to follow. In
the statement of these principles, the term “actor” is used to mean approximately
“user or program”, but this term will be explained more precisely below. The
term “authority” refers to the ability to take a particular action.

Path of Least Resistance. The most natural way to do any task should also
be the most secure way.

Appropriate Boundaries. The interface should expose, and the system should
enforce, distinctions between objects and between actions along boundaries that
matter to the user.

Explicit Authorization. A user’s authorities must only be provided to other
actors as a result of an explicit user action that is understood to imply granting.

Visibility. The interface should allow the user to easily review any active
actors and authority relationships that would affect security-relevant decisions.

Revocability. The interface should allow the user to easily revoke authorities
that the user has granted, wherever revocation is possible.

Expected Ability. The interface must not give the user the impression that it
is possible to do something that cannot actually be done.

Trusted Path. The interface must provide an unspoofable and faithful com-
munication channel between the user and any entity trusted to manipulate
authorities on the user’s behalf.

Identifiability. The interface should enforce that distinct objects and distinct
actions have unspoofably identifiable and distinguishable representations.

Expressiveness. The interface should provide enough expressive power (a) to
describe a safe security policy without undue difficulty; and (b) to allow users
to express security policies in terms that fit their goals.

Clarity. The effect of any security-relevant action must be clearly apparent
to the user before the action is taken.

3.1 The User and the User Agent

Thus far, we have mentioned “the user” several times, so it is necessary to
precisely define what is meant by the user. For the purpose of this discussion, the
user is a person at a computer using some interface devices such as a keyboard,
mouse, and display. We are concerned with the software system that is intended
to serve and protect the interests of the user, which is called the user agent.

On a single-user system, the user agent is the operating system shell, through
which the user interacts with an arena of entities such as files and programs. On
a multi-user system, other users use their own user agents to interact in the
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same arena. When the system is connected to the Internet, there is a new level
of interaction. Now, the arena of the single computer is nested within the larger
arena of the Internet. A new kind of user agent (such as a Web browser) now
represents the user’s interests in that larger arena of interacting entities. But in
the smaller arena of the single computer, a Web browser is merely one of the
participants, and the user’s interactions with it are mediated by the lower-level
user agent, the system shell. The browser might be used to contact yet a third
user agent, such as a Web-based interface to a bank, operating in yet a third
arena (of financial transactions among account holders), and so on.

This distinction is explained mainly to avoid confusion among levels of user
agents. We will not directly address communicating through multiple user agents
here; we consider only one level at a time. The rest of this paper discusses the
design of any user agent serving a user. The ten design principles can apply to all
kinds of users – not just end users of applications, but also system administrators
or programmers, using whatever software they use for their tasks. Different users
will have different expectations and needs, so the design of any secure system
must begin with a clear understanding of those needs.

Principle of the Path of Least Resistance. In the real world, there is often
no relationship between how safe or unsafe actions are, and how easy or hard
they are. (It takes more concentration to use a hammer safely than unsafely, for
instance.) We all have to learn, by being told, by observing others, and often
by making painful mistakes, which ways of doing things are safe. Sometimes,
through the design of our tools, we can make it easier to do things safely. Most
food processors have a switch that lets them run only when the lid is closed.
On power drills, the key for opening the drill chuck is often attached to the
power cord so that unplugging the drill is a natural prerequisite to changing the
drill bit. In both cases, a bit of cleverness has turned a safety precaution into a
natural part of the way work is done, rather than an easily forgotten extra step.

Most users do not spend all their time thinking about security; rather, they
are concerned with accomplishing some useful task. It is human nature to be
economical with the use of physical and mental effort, and to choose the “path
of least resistance”. This can cause the user to work against security measures,
either unintentionally or intentionally. The primary consideration is to keep the
user’s motivations and the security goals aligned with each other.

There are three aspects to this. First, observe that the ultimate path of least
resistance is for the user to do nothing. Therefore, the default settings for any
software should be secure (this is Saltzer and Schroeder’s principle of “fail-safe
defaults” [21]). It is unreasonable to expect users to read the documentation to
learn that they need to change many settings before they can run software safely.

Second, consider how a user might work against security measures uninten-
tionally. User behaviour is largely guided by perceived affordances (the visual
and non-visual properties of the interface that suggest the available modes of
interaction) [6] [19]. For example, if a button for a security function does not
look clickable, the user might never notice that it is an available action.

Third, consider whether users will subvert security intentionally. If operating
securely takes too much effort, users may decide to circumvent or ignore security
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measures while completely aware that they are doing so. There is a security risk
in systems where the secure patterns of usage are inconvenient: each inconve-
nience increases the probability that the user will decide to operate unsafely.

All of these aspects can be summarized by the principle of the path of least
resistance: the natural way should be the secure way.

Sometimes security goals might seem to oppose the desire to make things
easy. However, these are truly in conflict less often than one might think. Tight-
ening security has to do with having more specific information about the user’s
intent so it can be achieved safely. Often this information is already conveyed in
the user’s actions; it just needs to be applied consistently to improve security2.

In the few remaining situations where it is absolutely necessary to introduce a
new inconvenience for the sake of security, provide a payoff by making productive
use of the extra information the user is asked to provide. For example, consider
a multi-user system that requires a login procedure. Entering a password is an
extra step that is necessary for security, but has nothing to do with the user’s
intended task. However, the login information can be used to personalize the
experience – by providing a custom desktop, menu of favourite programs, and
so on – to offset the added inconvenience. This helps keep users from trying to
circumvent the login process (or choosing to use a system that doesn’t have one).

3.2 Objects, Actors, and Actions

To interact with the world around us, we build a mental model of how it works.
The model enables us to predict the consequences of our actions, so we can make
useful decisions. Most concepts in the model fall within the two fundamental
categories of objects and actions. This division is reflected in the way that nearly
all languages, natural or invented, draw the distinction between nouns and verbs.

Some objects are inert: their behaviour is simple enough to be completely
predicted using physical laws. For instance, if a cup is pushed off of a table, we
expect it to fall to the ground. In Dennett’s terms, our model adopts the physical
stance [4] toward the cup. On a computer, one might consider a text file such
an object. One can perform actions on the text file (say, copy or delete it) with
simple consequences, but the file does not appear to take actions of its own.

Some objects have their own behaviours; we will call such objects actors,
since they are capable of taking action. Even though such objects exist in the
physical world and still follow physical laws in principle, their behaviour is too
complex to model using only physics. Since we cannot predict exactly what an
actor will do, we proceed by estimating reasonable bounds on its behaviour.

To a computer user, an application program is an actor. There are some
expectations about what the program will do, and some limits on what it should
be able to do, but no user could know exactly what program instruction is being
executed at a given moment. Even though the operation of the program may be
completely deterministic, we cannot take a physical stance toward it because it
is too complex. Instead, we base our model on an understanding of the purpose
for which it was designed – Dennett calls this taking the design stance.

2 See the file browser example in the section on explicit authorization.
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Other users are also actors. However, rather than having been designed for
a purpose, their behaviour is directed by their own motivations and goals. As
they are conscious entities, we model their behaviours in terms of their beliefs
and intentions; that is, we adopt what Dennett calls the intentional stance.

Incomplete knowledge of the design, beliefs, or intentions of an actor produces
uncertainty. We limit this uncertainty by applying the physical stance. For
example, while one is inside a locked house, one has no need to model the
intentions of any people outside the house because one is relying on the physical
properties of the house to keep them out of the model.

Building models of actors is something we humans are very good at. Bruce
and Newman [2] have examined in detail how the comprehension of “Hansel
and Gretel” requires us to model actors, actors’ models, actors’ models of other
actors’ models, and so on, many levels deep – yet such complex modelling is a
routine skill for young children. There is also evidence from computer-human
interaction research that people perceive computers as “social actors” [20] even
though machines do not actually possess human motivations. Both these reasons
suggest that we indeed form our mental models of computers in terms of actors
and actions. It is no coincidence that this is reminiscent of OOP, since the
designers of Smalltalk also sought to match our mental models of the world [11].

Given this foundation, we can now formulate a more precise interpretation
of Garfinkel and Spafford’s definition of computer security. Our new definition
is: “A system is secure from a given user’s perspective if the set of actions that
each actor can do are bounded by what the user believes it can do.”

3.3 The System Image and the User Model

When a designer creates a system, the

Fig. 1. The designer, the system,
and the user (from [19]).

designer does so with some model in mind.
But the designer doesn’t get to communicate
directly with the user. Rather, the designer
decides how the system will work, the sys-
tem presents an image to the user, and the
user builds a model from interacting with the
system. Communication of the model occurs
only via this system image.

3.4 Aggregation

The actual working of a computer system is very complex and involves a great
many small components and operations. To make the system comprehensible,
the system image aggregates objects and actions into a smaller number of units.

Objects may be grouped by related concept or purpose. All the individual
bytes of a file are usually taken together, given a single name, and presented as
a single manipulable object. Actions may be grouped by concept, by locality in
time, or by causality relationships. For example, while a request to open a Web
page may involve many steps (looking up a hostname, opening a connection,
sending a request, and so on) it is presented as a single action.
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Most user interfaces allow the user to control some grouping in order to reduce
their own mental effort. For instance, in most desktop operating systems, one
can move a collection of files into a directory, and then move, copy, or delete the
entire directory with a single operation: users can perform subjective aggregation
[15] on the file objects. Systems with end-user programming features, such as
macros, allow the subjective aggregation of several actions into a single action.

Principle of Appropriate Boundaries. Aggregation is important because
it defines the terms in which authorities can be expressed. The user’s model
deals with concepts such as “actor X can perform action Y on object Z”. The
boundaries of the objects and actions are found by observing the system image,
which conveys these boundaries through the methods it provides for identifying
objects, communicating with actors, taking actions, and so on.

Here is an example to demonstrate the significance of choosing boundaries.
Consider the idea that a secure operating system should let the user control
the granting of authorities to programs. If a program spawns multiple processes,
must the user separately grant authorities to each process? Or if a program
relies on software modules or shared libraries, should the user have to separately
control the authorities of every module? No: we resolve the dilemma by declaring
that the boundaries between actors in the system image (which are also the
boundaries of authority control) should be consistent with distinctions that the
user cares about. Any boundary that could have meaningful security implications
to the user should be visible, and those that do not should not be visible.

Stated another way, the interface should distinguish objects and actions along
boundaries that matter to the user. If the distinctions are too detailed, there is
greater risk that users will overlap or leave out specifications. However, if the
boundaries are too few, users will be forced to give away more authority than they
intend. The right distinctions can be discovered by asking: Would the user ever
want to manipulate this authority independently of another? To grant authority
to this actor but not another? To permit access to this resource but not another?

Supporting good distinctions sometimes places requirements on the software
system behind the user interface. In the case of our example, since it would be
infeasible to insist on separate control of authorities for each software component,
the system should support the safe aggregation of components into useful con-
ceptual units (that is, applications), such that reasoning about applications as
individual actors holds valid. It follows that the system should enforce the corre-
sponding boundaries: whenever two applications use the same software module,
that module should be unable to convey authority between the applications.

3.5 The Actor-Ability State

Among other things, the user model contains some knowledge of actors and their
abilities. As a starting point for talking about the user’s conceptual state, let us
consider a very simple model where the user knows about a finite set of actors
A = {A0, A1, A2, . . . , An} that can have an effect on the system, where A0 is the
user and there are n other actors. Each actor Ai is associated with an alleged set
of potential actions, Pi. One can think of Pi as the user’s answer to the question,



User Interaction Design for Secure Systems 285

“What can Ai do that would affect something I care about?” The knowledge of
actors and abilities then consists of {〈A0, P0〉 , 〈A1, P1〉 , 〈A2, P2〉 , . . . , 〈An, Pn〉}.

Since the user believes P0 to be the set of available actions he or she can
perform, the user will always choose to do actions from that set. In order for
the user to choose actions that are actually possible, P0 should be a subset of
the user’s real abilities. Since the user believes that Pi (for i > 0) is the set of
available actions some other actor Ai can perform, the user expects that any
action taken by Ai will be a member of Pi. To uphold this expectation, Pi must
be a superset of that actor’s real abilities. If we write Ri for actor Ai’s set of
real abilities, our no-surprise condition can be summarized as follows:

P0 ⊆ R0 and Pi ⊇ Ri for i > 0

Principle of Explicit Authorization. It is essential to keep the actor-ability
state in the user’s model accurate at all times, since the user will make security-
relevant decisions based on this state. To stay synchronized with reality, the user
must be in control of changes in the actor-ability state. To maintain Pi ⊇ Ri,
we require that only explicit user action can cause Ri to come to exceed Pi.

Explicit authorization is perhaps the most basic requirement for controlling
authority in any system, and is a direct descendant of Saltzer’s principle of least
privilege. Requiring each authority to be explicitly granted increases the likeli-
hood that actors will operate with the least authority necessary. Without such
a restriction, the user becomes responsible for finding a potentially unlimited
set of implicitly granted authorities to disable before the system is safe to use.
In current systems, applications often have complete access to the network and
filesystem without ever having been explicitly granted these authorities.

At first glance, it may seem that this principle is in conflict with the principle
of the path of least resistance. Must we constantly intercept the user with
annoying security prompts to confirm every action? No – most of the time, the
user already provides plenty of information in the course of performing tasks.
The system must merely honour the manipulations of authority that are already
being communicated. For example, if the user asks an application to open a file
and makes a selection in a file browser, it is already clear that they expect the
application to read the file. No further confirmation is necessary. The single act
of selecting the file should convey both the identity of the chosen file and the
authority to read it. In many situations, combining designation with authority
[9] yields an effective solution that improves both security and usability.

One can judge when explicit authorization is necessary on the basis of user
expectations. For example, if there is a window that clearly belongs to an editor,
one can expect the editor to draw in the window. However, it would certainly
be unexpected for the editor to spontaneously delete the user’s files. Just as it
normally requires an explicit action for the user to delete files, so should it require
explicit user action for another actor to acquire the ability to delete them.

The judgement of which authorizations should be explicit should be based
on the potential consequences, not on the technical difficulty of the granting
decision. Any authority that could result in unexpected behaviour should be
controlled by the user. If the user cannot readily understand the consequences
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of granting an authority, then it should never be granted at all, not merely
hidden under some “Advanced” section of the interface. If a truly necessary
authority seems to require an unusual degree of technical knowledge, then the
model presented to the user probably needs to be rethought in simpler terms.

Principle of Visibility. If the actor-ability state begins as a known quantity
(some safe minimal set of authorities), and we are in control of each change in
state, then in theory we know enough to ensure that our state remains accurate.
However, there will be situations where one comes upon a new system in an
unknown state. Moreover, it is unreasonable to expect a user to keep a perfect
record of all grantings; human memory is fallible and limited in capacity. So we
must enable users to update the actor-ability state in their heads at any time.

This is not to say that the interface should display all the low-level authorities
of all the components in the system as a debugger would. Rather, it should show
the right information for the user to ascertain the limits of what each actor can
do, and should do so in terms of actors and actions that fit the user’s model.

Visibility of system state is advocated as essential for usability in general
[18]. Likewise, visibility of authorities is necessary for users to understand the
security implications of their actions. It makes sense to show the actor-ability
state in terms of the granting actions that brought it about. Past granting actions
having no effect on the current state (such as access given to applications that
have terminated) need not be visible. It is helpful to identify authorities by
inspection of either the holder or the accessible resource. Without visibility of
authorities, any application could retain and use a granted authority undetected
and indefinitely, once the user has forgotten about the granting action.

Windows and Unix systems typically run dozens of background processes.
It should be emphasized that this principle does not require the interface to
display all these processes. Processes like the kernel swap daemon are not part
of the typical user’s model and so should not be considered actors. Consequently,
system behaviour should maintain consistency with a model where such processes
are not actors: the system must strive to maintain the appearance that the swap
daemon has no effect on the user’s world of files and programs.

One of the most widely publicized examples of a harmful background process
is the “Back Orifice” program released by Cult of the Dead Cow in 1998. This
program is an actor since it can modify files and transmit them over the network
without user initiation, and therefore should be visible in the interface. Although
Microsoft denied [17] that there was a Windows security issue here, the fact that
Windows allows Back Orifice to run invisibly is what makes it so dangerous.

Principle of Revocability. To keep the actor-ability state manageable, the
user must be able to prevent it from growing without limit. Therefore, wherever
possible, the interface should allow the user to revoke granted authorities.

Another argument for facilitating revocation is the need to accommodate
user error. It is inevitable that mistakes will be made; any well-designed system
should help recover from them. In the context of granting authorities, error
recovery amounts to revocation. One might intentionally grant an authority to
an program and later discover that the program is untrustworthy; or one might
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inadvertently grant the wrong authority by mistake. In both cases, the granting
decision should be reversible. Note that revocation prevents further abuse of
an authority, but it is not always possible to undo damage caused by abuse of
an authority while it was available. Thus, interfaces should avoid drawing an
analogy between “revoke” and “undo”; “revoke” is better described as “desist”.

Principle of Expected Ability. Whereas the preceding three principles deal
with managing other actors’ abilities, the perception of the user’s own abilities
can also have security consequences. Users sometimes make decisions based on
the expectation of future abilities. There can be serious security consequences
if these expectations are wrong. The false expectation of an ability might give
the user a false sense of security, or cause the user to make a commitment that
cannot be fulfilled. Explicit authorization addresses one half of the no-surprise
condition; this principle addresses the other half: P0 ⊆ R0.

For example, consider a system where granted authorities are usually revo-
cable. If the user encounters an authority that cannot be revoked, the interface
should make this clear, as it could affect the user’s granting decisions.

3.6 Input and Output

Observation and control is conveyed through input and output, so the ability to
use a system securely relies on the integrity of the input and output channels.

Principle of the Trusted Path. The most important input and output
channels are those used to manipulate authorities; if these channels can be
spoofed or corrupted, the system has a security vulnerability. Hence the principle
of the trusted path: the user must have an unspoofable and incorruptible channel
to any entity trusted to manipulate authorities on the user’s behalf.

The authority-manipulating entity could be a number of different things,
depending on the domain. In an operating system, the user needs a trusted
path to the interface components for handling permissions and authentication.
Microsoft Windows, for example, provides a trusted path to its login window
by requiring the user to press Ctrl-Alt-Del. These keys cause a non-maskable
interrupt that can only be intercepted by the system, thus guaranteeing that
the login window cannot be spoofed by any application. In a language system
for running untrusted code, such as Java, this issue also needs to be addressed.

Principle of Identifiability. The ability to identify objects and actions is the
first step in proper communication of intent. When identity is threatened, either
by inadvertent collision or by intentional masquerading, the user is vulnerable to
error. Identification has two aspects: continuity (the same things should appear
the same) and discriminability (different things should appear different).

That something is perceived to have an identity depends on it having some
consistency over time. When we see an object that looks the same as something
we saw recently, we are inclined to believe it is the same object. If an untrusted
program can cause an object to look the same as something else, or it can change
the appearance of an object in an unexpected way, it can produce confusion that
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has security consequences. The same is true for actions, in whatever way they are
represented; actions are just as important to identify and distinguish as objects.

Note that it is not enough for the representations of distinct objects and
actions to merely be different; they must be perceived by the user to be different.
Even a choice of typeface can have security consequences. It is not enough
for two distinct identifiers to be distinct strings; they must be displayed with
visually distinct representations. In some fonts, the lowercase “L” and digit “1”
are very difficult to distinguish. With Unicode, the issue is further complicated
by characters that combine to form a single accented letter, which can cause
different character sequences to be rendered identically on the screen.

It is not safe to assume that all actors will choose unique and consistent
representations, so the continuity and discriminability of objects and actions are
things that must be enforced by the system. This is the principle of identifiability.

Principle of Expressiveness. Sometimes a security policy may be specified
explicitly, as in a panel of settings; other times it is implied by actions in the
normal course of performing a task. In both cases, there is a language (of settings
or actions) through which the user expresses a security policy to the system.

If the language used to express policies does not match the user’s model of the
system, then it is hard to set policy in a way that corresponds with intentions.
In order for the security policy enforced by the system to be useful, we must be
able to express a safe policy, and we must be able to express the policy we want.

For a good example of an expressiveness problem in real life, consider the
Unix filesystem. Since each file can only be assigned to one group, it is impossible
to share a file only for reading by one colleague and writing by another. Because
the commands for setting permissions lack sufficient flexibility to express some
kinds of sharing, users are sometimes forced to share files unsafely with everyone.

Principle of Clarity. When the user is given control to manipulate authorities,
we must ensure that the results reflect the user’s intent. We rely on correct
software to enforce limits on each actor, but correctness of the implementation
is irrelevant if the policy being enforced is not what the user intended. This can
occur if the interface gives misleading, ambiguous, or incomplete information.

The interface must be clear not only about granting or revoking authorities;
the consequences of any security-relevant decision, such as a decision to reveal
sensitive information, should be clear. All the information needed to make a
good decision should be accurate and available before the action is taken.

An interface can be misleading or ambiguous in non-verbal ways. Many
graphical interfaces use common widgets and metaphors, conditioning users to
expect certain unspoken conventions. For example, round radio buttons signify
an exclusive selection of one option from many, while square checkboxes signify
individual yes-or-no decisions. An ellipsis at the end of a menu command in-
dicates that additional options must be specified before an action takes place,
whereas the absence of an ellipsis implies that an action will occur immediately.

Visual interfaces often rely heavily on association between graphical elements,
such as the placement of a label next to a checkbox, or the grouping of items
in a list. Within a dialog box of security settings, we might rely on the user to
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correctly associate the text describing an authority with the button that controls
it. Clarity can be evaluated in terms of the Gestalt principles of perceptual
grouping [23], which suggest that visual associations are guided by proximity,
closure, symmetry, figure-ground separation, continuation, and similarity.

3.7 Summary

In order to be able to use a system safely in a world of unreliable and adversarial
software, a user must have confidence in all of the following statements:

– Things don’t become unsafe all by themselves. (Explicit Authorization)
– I can know whether things are safe. (Visibility)
– I can make things safer. (Revocability)
– I don’t choose to make things unsafe. (Path of Least Resistance)
– I know what I can and cannot do within the system. (Expected Ability)
– I can distinguish the things that matter to me. (Appropriate Boundaries)
– I can tell the system what I want. (Expressiveness)
– I know what I’m telling the system to do. (Clarity)
– The system protects me from being fooled. (Identifiability, Trusted Path)

4 Conclusion

I have argued that consideration of human factors is essential for security, and
that security and usability do not have to be in conflict. In an attempt to provide
some foundations for talking about secure interaction design, I have presented
the actor-ability model and a set of design principles. The model is supported by
evidence from other research; the principles are supported by direct reasoning,
by the model, and by examples of problems in real software. The principles are
applied in case studies of interaction problems, with proposed solutions, available
at http://zesty.ca/sid/. I hope this paper will provoke discussion about a user-
centred approach to computer security, and lead to computer systems that are
safer and more reliable – not only in theory, but also in practice.
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Abstract. A basic method in computer security is to perform integrity
checks on the file system to detect the installation of malicious programs,
or the modification of sensitive files. Integrity tools to date rely on the
operating system to function correctly, so once the operating system
is compromised even a novice attacker can easily defeat these tools. A
novel way to overcome this problem is the use of an independent auditor,
which uses an out-of-band verification process that does not depend on
the underlying operating system. In this paper we present a definition of
independent auditors and a specific implementation of an independent
auditor using an embedded system attached to the PCI bus.

1 Introduction

Computer systems have been made increasingly secure over the past decades.
However, new attacks and the spread of harmful viruses have shown that bet-
ter methods must be used. One approach gaining increasing popularity in the
computer community is to use Intrusion Detection Systems (IDSs).

Intrusion Detection Systems identify attacks against a system or users per-
forming illegitimate actions. Using a common analogy, having an Intrusion De-
tection System is like having a ”burglar alarm” in your house. The alarm will not
prevent the burglar from breaking into your house, but it will detect and warn
you of the problem. Following the publication of the first research in Intrusion
Detection Systems, a large number of diverse applications have been developed.
One method of accomplishing this type of detection is the use of file system
integrity tools. When a system is compromised, an attacker will often alter cer-
tain key files to provide continued access and to prevent detection. The changes
could target any portion of the system software, e.g. the kernel, libraries, log
files, or other sensitive files. File system integrity checkers detect those changes
and trigger a corresponding alert. To guarantee the integrity of the file system,
two approaches can be followed.

The first approach is to create a secure database, which is usually composed
of hashes. The stored hash will be periodically checked against a newly computed
hash. This method is used with tools such as Tripwire [1], Aide [2], and others.
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The second, more recent approach is to create digital signatures of sensitive
data, such as executable files using asymmetric cryptography, and use these
signatures to check the integrity of the signed file ([3], [4]).

Both approaches have advantages and drawbacks, but they share a common
flaw: the auditing relies on the validity of the operating system. All the previous
applications have made the assumption that the OS itself is not corrupted. Once
the operating system is compromised the intruder can easily defeat integrity
tools. As an example, in the Linux operating system, redirecting system calls
using kernel modules can potentially compromise the system.

Also, since the binary of the Integrity Tool resides in the machine to be
audited, the attacker may be able to corrupt the binary or the configuration
files of the tool.

This work develops a novel way to overcome the problems of traditional
Integrity Tools. Our approach is to use an independent auditor, i.e. a completely
standalone and independent device, potentially tamper resistant, to perform the
integrity detection checks.

2 Motivation

An Integrity Verification Tool that relies on the operating system of a penetrated
machine can be easily deceived by corrupting the kernel. In fact, this problem
is well known. In an article by ”Halflife” [5], a loadable kernel module was used
to bypass the Tripwire integrity checking System. Since then, several tools for
corrupting the operating system have been developed including Knark, famous
for being used in the Ramen worm [6]. This section will explain the mechan-
ics of these attacks. Although the attacks discussed here occurred on Unix-like
operating systems, all operating systems are vulnerable to these kinds of attacks.

2.1 System Calls

User processes and the kernel run in different modes. The CPU itself enforces
this policy. Every modern processor has at least two modes of operations, and in
some cases, as in the x86, more than two. Every mode of operation allows some
actions and does not permit others. In the case of the Unix operating system,
only two levels are used: the lower, called user space or protected mode and the
higher mode, called kernel space or supervisor mode. In this mode the process
has unrestricted access to memory and devices. User-space applications are run
in protected mode, while the kernel is executed in the supervisor mode. The only
way an application will be able to access the sources restricted by the protected
mode is through the kernel. If an application requests a service from the kernel,
such as asking for more memory or accessing a hardware device, system calls are
used to access the second mode of operation. These system calls, along with an
interrupt reaching to the system, are the only ways to access kernel space.

In order to use system calls, the process will fill certain registers with appro-
priate values, including the type of system call to access, and then call a defined



Using Independent Auditors as Intrusion Detection Systems 293

interrupt, dependent on the operating system and architecture. For example, in
the Intel architecture the user process will call interrupt 0x80 if the operating
system is Linux or interrupt 0x21 if the operating system is Windows. Then,
depending on the system call used, the process will jump to a certain location of
the kernel. The location in Linux is stored in a table (sys call table), where
the addresses of the functions in the kernel are stored. The kernel will look at
this table and jump to the corresponding address. After it returns from the call
the kernel will do some system checks and continue in the address of the user
space calling process.

2.2 Attacks in Kernel Space

In this section, we explore kernel attacks specific to the Linux operating system.
Similar attacks could be launched in other Unix-like operating systems. The
most straightforward way of changing the kernel is to replace the kernel binary
itself. The kernel binary is usually placed in the /boot partition, so an attacker
could compile his/her own version of the kernel and replace the binary. Some
operating systems make this more difficult now, but the attack remains feasible
on several current operating systems. Another possibility an attacker has is to
use Loadable kernel Modules (LKMs). LKMs are a feature of Unix-like operating
systems which allow dynamic changes to components of the kernel. An attacker
will not have to recompile the complete kernel, but rather just code a LKM
which can be loaded at any time and become part of the kernel.

Once the intruder has gained access to the kernel space, several attacks could
be launched against the system so as to remain undetected. The most obvious
attack is to redirect the system calls. Any program in user space such as Integrity
Tools will use system calls to access kernel space, even for very simple operation
such as reading a file. By redirecting the system call to a ”rogue” routine system
call the attacker can hide the existence of any file in the system even from
integrity checkers. Redirecting a system call using kernel modules is simple. As
we have seen, the addresses where systems call will jump to when loaded are
stored in a table. When the module is initialized, the kernel module will use
code similar to the following:

ori_syscall=sys_call_table[SYS_sycall]
sys_call_table[SYS_syscall]=hacked_syscall

where hacked syscall is a pointer to the function used to replace the system
call. In the function hacked syscall the attacker will call the original syscall and
then change the results. For example, in Figure 1 the IDS never sees the file
/foo/evilbinary because the system call filter eliminates it from the results.

res=(*ori_syscall)(parameters)
//change res to mislead the system
return(res)
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Fig. 1. Redirecting System Calls

Several Rootkits (a set of tools that an attacker uses to mask an intrusion
and/or regain access later) take advantage of kernel modules. Other operating
systems, such as Windows NT or 2000, may also be targets for these attacks,
by using malicious system patches to the system or corrupted drivers. Some
efforts have been made to counter the loading of kernel modules. Most of these
techniques, as [7] in Windows NT, operate by restricting modules and drivers
to be loaded or by using vigilant modules. However, the former creates a lack of
flexibility that is usually not reasonable for most systems and the later tends to
be a ”chicken and egg” solution, as the attacker could modify his/her module to
be loaded before the checking module, i.e. during the bootstrap.

3 Definition of Independent Auditors

In the present and following sections the terms ”host processor” or ”host system”
will be used to define the machine or set of machines to be verified for file system
integrity. The term ”host” is slightly inaccurate. However, as in this work, the
out-of-band verification system is implemented as an embedded coprocessor, and
the term host processor will be used in order to avoid confusion. Other terms,
such as host operating system, will be used throughout the text to refer to
components of the system to be verified.

3.1 Properties

Machine A is an out-of-band auditor or independent auditor of Machine B if it
accomplishes the following set of properties

1. Unrestricted access: Machine A must have unrestricted access to the internal
devices of machine B to be verified or needed for the verification, including
peripherals, hard disks and interrupts. Notice, however, that unrestricted
write access, i.e. without mutual exclusion, to the internal components of
the host system could lead to an unstable system.
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2. Secure transactions: The channel used by the independent auditor to retrieve
the data should be a secure channel, meaning a channel which cannot be
eavesdropped or intercepted, nor modified.

3. Inaccessibility: Machine B must not have access in any way to the internal
components of machine A, including memory and internal interrupts.

4. Continuity: Machine A must run immediately after machine B has setup the
internal devices and is in a known trusted state. After this moment, Machine
A must run continuously, independently of the behavior of machine B. Notice
that power failures or hardware reboots should be the only way to restart
machine A and must be labeled as high risk level alerts.

5. Transparency: The access to the internal devices should be transparent to the
host system. However, concurrent access to the devices will probably occur
unless mutual exclusion is provided. In these situations, the consequences to
the host system should be minimized.

6. Verifiable software: All the code running in machine A must be trusted and
verifiable. This, at least, implies that all running software in machine A must
have the source code available. This includes the firmware, operating system
and user space programs in machine A.

7. Non-volatile Memory: Machine A must be capable of retaining a record of
the alerts even in the event of a power failure or reboot. Hence, machine A
should have some non-volatile storage to record sensitive data.

8. Physically secure: Machine A should be physically secure.

3.2 Modes of Operation

The independent auditor has three different possible states. The running state
is the normal mode of operation and is dependent on the method used for the
integrity verification. The second state is the alarm state which is reached if an
alarm is triggered in the running state. A final mode, which can be accessed only
at boot time, is the management mode. This mode is only accessible through a
set of secure mechanisms, and allows the administrator to change parameters in
the secure coprocessor. An independent auditor is hence not vulnerable to API
level attacks as described by Bond & Anderson in [8], as there is no interface
to the independent auditor from the protected host. The running mode of op-
eration could follow different methods to ensure the integrity of the data in the
host machine, but the implementation described in section 4 uses a database to
perform the integrity checking. All of these modes of operation assume that the
host operating system is in a trusted state when the first checking takes place.

3.3 Audit Logs

Information pertaining to the alarm should be stored in a non-volatile storage
device in the event of an alert. Using an independent auditor for integrity also
creates an opportunity to not only store the information of the attack but also
information before the attack. This is useful, as the auditor is not checking the
system in real time. The auditor could log processes, measurements or events.
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The auditor stores these sensitive logs in a trusted state. Every check without
an alarm will ensure that the system remains in this trusted state. Hence, if
the system audit occurs without an alarm, the auditor will update the data. In
the event of an alarm, the data before the system compromise took place will
be preserved, allowing the supervisor to retrieve the logs before the attack took
place, in a trusted state. The recorded file could be compared to the files in the
compromised machine to discover if the attacker has tampered with the logs
and possibly uncover information about the type of attack and identity of the
intruder. A discussion of the importance of secure audit logs can be found in [9].

ALARM
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RECORD 
LOGS

INTEGRITY
CHECK

NO ALARM

Time Lapse

SECURE
LOGS

ALERT

SECURE LOG DESCRIPTION

Fig. 2. Secure Logs Mechanism

3.4 Independent Auditor Using a Database Mode

This method does not differ much from its software counterpart, but as we see
in Figure 3, all sensitive actions are moved inside the auditor and are therefore
protected by the strong separation between the protected host and the auditor.
The independent auditor will have a policy file, which is uploaded into the system
in management mode, where the files to be checked will be declared along with
the parameters to be verified. The files will be accessed periodically, and the set of
actions stated by the policy file will occur. The independent auditor will retrieve
the file’s information, possibly computing its hash function. This information
will then be checked against the locally stored information inside the auditor.
If the information matches, the file has not been compromised. If it does not
match, the alarm state will be triggered.

Using an independent auditor in database mode has several advantages as
compared to its counterpart which is managed by the host operating system.

– The auditor handles the computational work. Hence, the performance of the
host system is not degraded.

– The system is not vulnerable to subversion errors. Following directly from
the inaccessibility property, an attacker gaining access to the host machine
will not be able to corrupt the auditor.
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– Secure logs can be stored, which could greatly help in the forensics of the
attack.

– In a system with more than one administrator a central administrator could
make sure that the local administrators have not changed sensitive files.

4 Implementing an Independent Auditor

As an example of implementing an independent auditor, we used an embedded
co-processor plugged directly into the PCI bus. The co-processor used was the
SA-100 ARM processor with the 21285 core logic [10]. This coprocessor comes
packaged as a EBSA-285 [11]. The EBSA-285 includes support for both volatile
and non-volatile storage. The non-volatile storage is 4MB of flash ROM memory,
and the volatile memory is upgradeable up to 256 MB, but for our system only 16
MB were necessary. The EBSA-285 is shaped as PCI card, and runs a romized
Linux kernel. The Linux OS was chosen for the system as it supports a wide
range of file-systems and it had good support for the SA-110 processor. AIDE
was used as the application for performing the Integrity checks.

Our objective was to create a reliable integrity tool, which could be portable
to any OS. We met the first requirement. We were able to mount the partition of
a Linux box and a Windows NT box, and check the integrity of the file-systems
using AIDE. However, since the access to the IDE controller through the PCI bus
is non-atomic, when both the host OS and the EBSA-285 write to the registers
on the IDE controller at the same time, a race condition occurs. To avoid these
problems, patches for the host OS must be supplied to create a mutual exclusion
mechanism.

4.1 The EBSA-285 as an Independent Auditor

In this section the suitability of the EBSA-285 to act as an independent au-
ditor will be discussed. An assumption of this work is that the host machine
is physically secure. The term physically secure is used in this section to de-
scribe a machine whose internals can not be tampered with by an attacker. The
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attacker, however, could have access to the peripherals attached to the host,
including keyboard and monitor.

The EBSA-285 must have open access to the hard disk data to meet the
property of unrestricted access. The EBSA-285 has access to the entire PCI
bus, hence is capable of reading the registers and data from all PCI devices
plugged into the same bus. If the IDE controller is plugged into the same bus
as the EBSA-285, the EBSA-285 will be able to read the hard disk without the
intervention of the host OS. Notice that if the EBSA-285 is plugged into a slot
using a different bus than the IDE controller, the access will not be possible and
the EBSA-285 will not be capable of acting as an independent auditor of the host
processor. The EBSA-285 is not able to ”listen” to the interrupts raised by the
different devices in the PCI bus. These interrupts, however are not imperative
to the auditing, as a polled method can be used to read and write data to the
peripherals.

The channel used to retrieve the information from the peripherals is the PCI
bus. This channel is secure as it is an internal part of the computer and we
have assumed that the internal parts of the host are secure. Hence, the EBSA-
285 accomplishes the property of secure transactions. The EBSA-285 does not
map its memory (either ROM or RAM) via the PCI bus, which allows the host
processor to access only mailbox registers and doorbell registers. The EBSA-
285 uses these register as information, and does not interfere with its operation,
hence not breaking the inaccessibility property.

Once the EBSA-285 starts auditing only a power failure or reset of the host
machine will stop it from functioning, and these events will be labeled as alarms.
The EBSA-285 will begin functioning after the host machine has set up all the
internal peripherals. In our case, the EBSA-285 will begin functioning before
this happens, so the EBSA-285 has a mechanism to stall its booting until all the
peripherals have been configured. Therefore the property of continuity is satis-
fied. Because the EBSA-285 has direct access to the registers of the PCI devices,
it is able to access the data by polling without the supervision of the host OS,
and therefore satisfying the requirement of the property of transparency. No-
tice, however, that some mechanism should be implemented to avoid concurrent
writes to the IDE registers, which would lead to an unstable system.

The software running in the EBSA-285 is open source. It is composed of a
minimum bootloader and the ARM-port of the Linux operating system, with
some changes to support the EBSA-285 and the polling method.

The EBSA-285 can use the flash ROM to store the alarms and logs. The
ROM normally cannot be reprogrammed if the program is executed from the
flash ROM. To avoid this problem, the bootloader copies the root file-system
and the operating system to the RAM memory before executing it, freeing the
flash ROM.

4.2 Solving Race Conditions

The EBSA-285 was able to access the IDE hard disk using a polled IDE driver
instead of the usual Linux driver and was able to mount the hard disk indepen-
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dently of the host operating system used, as long as it was supported by the
Linux operating system[12]. However, if the host operating system tried to ac-
cess the hard disk at the same time as the EBSA-285, race conditions occurred,
as requests to the IDE controller through the PCI bus are not atomic. The PCI
specification [13] contains a method to achieve atomic transactions using the
PCI bus with the LOCK# signal. This signal, however, is not used in common
drivers and few motherboards support its use. While we hoped to avoid changes
to the host operating system, we could not due to the lack of an atomic lock on
the PCI bus.

To avoid the race conditions we used a communication path between the host
processor and the independent auditor, named mailbox registers and doorbell
interrupts. Using these tools will not break the inaccessibility property as the
independent auditor will only use this signal as information to prevent the race
conditions. The host processor is only able to modify these specific registers.

If the host accesses the hard disk, it will write a doorbell register in the
EBSA-285, which will raise a sleep interrupt in the EBSA-285. If the EBSA-
285 is engaged in any hard disk transaction, it will finish the current block
transaction, and then send an ACK to the host using a mailbox register. After
receiving the ACK the host will resume normal operation. Once the host has
finished using the hard disk, it will raise a wakeup doorbell interrupt in the
EBSA-285. The EBSA-285 will be then free to begin a new transaction. The
transaction size depends of the mode of operation.

The behavior of both the EBSA-285 and the host processor can be summa-
rized in the state machines shown in figures 4 and 5.

It could be argued that an attacker could easily halt the EBSA-285 by chang-
ing the driver so that the host will never send a wakeup interrupt to the EBSA-
285. To combat this attack we use a counter, which will be set to the maximum
transaction value and will wakeup the EBSA-285 after that time, even if the
interrupt never arrives. Additionally, an alarm will be raised.

Another possible attack would be to prevent the host from sending the sleep
interrupt to the EBSA-285. In this case, the EBSA-285 would proceed to read
even if the host is accessing the hard disk. This could cause a corruption of the
file-system. However, this attack is not only a problem with the EBSA-285, for
if an intruder is able to change the drivers, obviously he/she would be able to
corrupt the file-system anyway.

4.3 Implementation Results

To collect the timing information, the host used was an Intel Pentium III Cop-
permine. As stated before, the EBSA-285 uses a polled driver. The average
throughput of the EBSA-285 to the hard disk using this polled driver is 1.40
Mb/s.

The performance varies greatly from one system to another, or even in the
same machine: at different times the data to be checked could be stored in cache
or not, the CPU could be burdened by a huge amount of processes or just a few,
and so on.
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In the EBSA-285, the numbers are deterministic. The EBSA-285 always by-
passes the internal cache and retrieves the data directly from the hard disk at a
constant rate. The CPU is always running a minimal number of process, so the
CPU is 99% devoted to computing the hashes and perform the different tests. In
Table 1 we can see the comparison between the two unique states we can have,
the EBSA-285 executing AIDE alone and the EBSA-285 executing AIDE at the
same time as the host machine is performing a hard disk access, for three differ-
ent amount of files. This hard disk access is performed using a ”worst scenario”
approach: we read a file from the host machine bigger than the RAM memory
while AIDE is running on the independent auditor, therefore the data will never
be cached.

The time spent in kernel space is roughly the time the EBSA-285 spent
retrieving the data. This time is directly proportional to the total size of the
data to be retrieved, while the amount spent in user space is proportional to the
complexity of the hash function.

The overhead of the locking mechanism to the host machine when there isn’t
a concurrent access with the EBSA-285 is negligible, as the only addition to the
driver is a new register write through the PCI bus (writing to a Mailbox Register
in the EBSA-285).

The locking mechanism was created to give priority to the host machine.
When the host machine begins a hard disk access, if the EBSA-285 is accessing
the hard disk at the same time, the EBSA-285 will stall until the host machine
has ended the request (the size of a request depends of the mode used to access
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Table 1. Different Timings of executing AIDE on the EBSA-285 . The first column
states if the host machine is accessing the hard disk concurrently with the EBSA-285.
the second column the number of files and the total size of all of them. The third
and fourth columns the amount of time spent in User Space and in kernel Space,
respectively. The tests performed by AIDE were: permissions, inode, user, group, size
and checksum using SHA1 checksum

Concurrent File Amount and Size User Space System Space Total

No 36 (7644k) 1.18s 3.69s 4.86s
Yes 36 (7644k) 1.26s 4.02s 5.03s
No 2302 (47552k) 7.12s 36.55s 43.68s
Yes 2302 (47552k) 7.06s 55.00s 62.71s
No 3484 (128736k) 17.53 75.51 93.29
Yes 3484 (128736k) 17.67 101.37 119.25

the hard disk). As a result the impact in the performance of the host machine
is very low. In fact, most of the time the host machine does not access the hard
disk, but reads the data stored in the internal cache. Even in the worst case
scenario, where the hard disk is reading a file bigger that its memory while the
EBSA-285 is performing several hard disk access, only supposes a maximum of
a 5% overhead in the timing results of the host machine.

5 Conclusions

Current computer systems can not fully protect themselves against motivated
attackers because of the attackers ability to change the underlying operating sys-
tem once gaining system privilege. The attacker can simply change the operating
system to “lie” to any security system– not only integrity detection systems.

In this paper, we proposed the notion of an independent auditor whose role
is to serve as an unimpeachable reviewer of the state of the protected host. We
defined the properties required for such an auditor, and we implemented such a
device for measuring the integrity of a protected host. The results we achieved
were excellent in that at most only five percent of overhead was added to the
protected host– in the worst case.

While such a system is not required in all computer systems within an orga-
nization, the capabilities provided by an independent auditor are tremendously
important to server systems. Given the low cost of these boards, $200, and the
vast increase in protection they provide– organizations serious about protecting
their resources should consider such protection.
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Abstract. This paper introduces a Cellular Automata (CA) based sym-
metric key cryptosystem for block cipher. The scheme named as CAC
(Cellular Automata based Cryptosystem) employs a series of transforms
– simple, moderately complex, and complex – all generated with differ-
ent classes of CA. CAC provides a low cost, high speed cryptosystem
with desired level of security. Cryptanalysis of the proposed scheme is
reported along with similar analysis for two popular systems - DES and
AES. Experimental results confirm that the security of the system is
significantly better than DES and comparable to that of AES. The en-
cryption/decryption throughput is higher than that of both AES and
DES.

1 Introduction

This paper reports a high speed, low cost cryptosystem with desired level of
security. Its hardwired version supports real time encryption/decryption. The
scheme referred to as CAC (Cellular Automata based Cryptosystem) employs
different classes of transforms generated with Cellular Automata (CA).

We currently live in an internetworked society where a large volume of dif-
ferent classes of data travel around the globe. This electronic data transmission
should be secured enough against unwanted interceptor. In the above context
we aim to achieve the following objectives for design of CAC: (i) High speed
operation, specifically on line real time data encryption/decryption; (ii) low cost
of implementation; and (iii) acceptable level of security.

In this paper, we concentrate on developing an innovative cryptosystem based
on the theory of Cellular Automata(CA). A CA can be viewed as a parallel ma-
chine simulating a discrete dynamical system. Further, the inherent parallelism
of CA cells with their simplicity and local interactions make it particularly suit-
able for designing a low-cost crypto-hardware. The above mentioned advantages
have lead researchers to design various Cellular Automata based cryptosystems

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 303–314, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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[2–5]. In [2] Cellular Automata is used as random sequence generator. In [3],
non-homogeneous Cellular Automata has been proposed for public-key cryp-
tosystems. Gutowitz [4] uses Cellular Automata as discrete dynamical system to
add complexity of the cryptosystem. But none of these schemes has been able
to withstand the modern attacks developed out of the cryptanalysis techniques
[1]. Cellular Automata based block cipher and stream cipher schemes are also
presented in [5]. But the scheme is insecure because of its inability to change the
key. The ability to change the key is essential for any cipher. Also the scheme, as
pointed out in [6], generates a subgroup of affine group and not the alternating
group. In [7] another CA based block cipher scheme was proposed. But this is
also unable to come out from the affine group constraint and so fails to achieve
the desired level of security. This paper removes this bottleneck while generating
non-affine CA transform.

The CA based cryptosystem (CAC) along with the encryption and decryp-
tion algorithm is outlined in Section 3 after introducing CA preliminaries in
Section 2. Discussion on cryptanalysis of CAC are covered in Section 4. A com-
parative study with other symmetric key block-cipher like DES and AES has
also been included in this section. Finally, a low cost pipelined architecture of
CAC crypto-hardware is reported in Section 5.

2 Cellular Automata Preliminaries

2.1 Introduction to GF (2) CA

A CA consists of a number of cells arranged in a regular manner, where the
state transitions of each cell depends on the states of its neighbors. The next
state of a particular cell, as shown in Figure 1, is assumed to depend only on
itself and on its two neighbors ( left and right ) and this leads to 3-neighborhood
dependency. The state q ∈ {0,1} of the ith cell at time (t + 1) is denoted as
qt+1
i = f(qt

i−1, q
t
i , q

t
i+1), where qt

i denotes the state of the ith cell at time t
and f is the next state function called the rule of the automata [8]. Since f is a
function of 3 variables, there are 223

or 256 possible next state functions. The
decimal equivalent of the output column in the truth table of the function, as
noted below is denoted as the rule number [8].

Neighborhood : 111 110 101 100 011 010 001 000 RuleNo
(i) NextState : 0 1 0 1 1 0 1 0 90
(ii) NextState : 1 0 0 1 0 1 1 0 150

A CA employing both XOR and XNOR local rules for different cells are
referred to as Additive CA, while the ones using only XOR rules are noted as
Linear CA. This class of CA is referred to as GF (2) CA in the sense that each
of the CA cells can store an element 0 or 1 in GF (2). comprehensive treatment
of GF (2) CA results is noted in the book [8].

We next generalize this structure to study of GF (2p) CA [10] where each cell
is capable of processing a symbol of {0,1,· · · 2p − 1 } ∈ GF(2p). CAC employs
GF (2p) CA that can be analyzed with the theory of extension field [9].
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Fig. 2. General structure of a GF (2p) Cellular Automata machine

2.2 Introduction of GF (2p) CA

The Fig.2 depicts the general structure of an n-cell GF (2p) CA. The connection
among the cells follow a three neighborhood dependency in the sense that the
next state qi(t + 1) of the ith cell depends upon the present states of (i − 1)th,
ith and (i + 1)th. The connection among the cells of the CA are weighted in the
sense that to arrive at the next state qi(t + 1) of ith cell, the present states of
(i − 1)th, ith and (i + 1)th are multiplied respectively with wi−1, wi and wi+1
and then added. In GF (2p) CA each cell, having p number of FF s(Flip-Flops),
can store values 0,1,2,· · ·,(2p − 1) and the weights being elements of GF (2p).

If all the states in the state transition diagram of a CA lie in some cycles,
it is a group CA; otherwise it is a non-group CA. Group CA can further be
classified into maximum and non-maximum length CA. An n-cell maximum-
length GF (2p) CA is characterized by the presence of a cycle of length (2pn-1)
with all nonzero states. On the other hand, a non-maximum length CA state
transition diagram has a number of cycles.

3 Cellular Automata Based Cryptosystem (CAC)

The objectives of high speed of operation with lower implementation cost achiev-
ing high level of security are conflicting in nature. In order to meet such conflict-
ing demands we apply a series of transforms of increasing complexity in succes-
sive levels. For the current vesion of CAC, four levels of transforms, as shown in
Fig. 3, have been employed. The basic guiding factor is to achive a trade off in
typical engineering design – realize the targeted objective with higher efficiency
while minimizing cost. With a similar analogy, we apply low cost high speed
linear and affine transforms in first two levels, while introducing complex non-
affine transform at the third level to achive higher level of security. The fourth
level is responsible for key-mixing.
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3.1 A Specific Implementation

A specific CAC implementation is shown in Figure 4. Four different levels of
transformations are explicitly marked as Level 1, 2, 3 and 4. Different stages of
computation are marked as (I), (II), (III), (IV), (V) and (VI) in Figure 4.

The encryption algorithm is based on two different classes of group CA, 16
cell GF (28) Major CA and 16 cell GF (28) Minor CA. The Major CA is a
non-maximum length group CA with equal cycles of length 32. The Minor CA
is a maximum-length CA. CAC with 16 cell GF (28) CA can encrypt 16×8=128
bits of token at a time. Thus the token (T ) size and also the key size are taken
as 128 bits.
Note: The size of the key and token can be adjusted by changing the number of
cells of the CA and/or the value of p in GF (2p). The basic scheme does not get
effected by that.
The operation of the encryption and decryption scheme is presented below. Each
step of the operation is explained with the help of the Figure 4.
Level 1 – Linear Transformation on Key: The key (K) used for CAC
scheme is a bit string of length same as the number of bits used for Minor CA.
The input key is used as the initial seed of the Minor CA.
Role of Minor CA: The Minor CA is operated for a fixed number of clock
cycles (d) for input of each token. Initially, the seed of the Minor CA (S0) is
the key K (marked as I in the Fig 4). For each successive input token, Minor
CA generates a new state (marked as SN ) after running d number of steps from
its current state (shown as II in Figure 4). The state SN is utilized for four
different purposes:

1. Provides the value δ by which each byte of the input token (T ) is rotated.
2. Provides seed for equivalent Major CA synthesis.
3. Provides the number of clock cycles (∆) of Major CA operation for encryp-

tion.
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4. XORing the intermediate encrypted token to form the final encrypted token
Tencr.

Level 1 – Linear Transform on Token: The linear transformation of the
token T to T1 is executed by rotating each byte of T by δ amount of steps (III
in Figure 4). In decryption side token generated from Major CA is subjected
to a same amount of rotation in the opposite direction.
Level 2 – Affine Transform: Next we give an affine transform to the token T1
by using the Major CA. The Major CA is generated at runtime by an efficient
synthesis algorithm [10]. The Major CA uses the input token (T1) as its seed
and operates for ∆ number of cycles to generate the encrypted token T2 (IV in
Figure 4). The Major CA has cycles of equal length 32. So, the Major CA will
invariably return back the input token T1 after running for 32 number of clock
cycles. So the original token is returned after running the Major CA for (32-∆)
clock cycles at the decryption side.
Level 3 – Non-Affine Transform: A non-affine transform is achieved by
selective use of Control Majority Not (CMN) gate. CMN gate is a non-linear
reversible gate with four inputs(1 data input and 3 control inputs) and one
output. We will denote the control bits by c1, c2 and c3. The function is defined
as

y = x ⊕ {(c1 · c2) ⊕ (c2 · c3) ⊕ (c3 · c1)}

where ⊕ denote the XOR and · denote the AND function. The token T2 is
subjected to CMN gate depending on the result of a function called Majority
Evaluation Function. The Majority Evaluation Function takes the 5 bits, referred
to as fixed-bits, of T2 and calculate the number of 1’s in these bits. The 5 bit
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positions are selected depending on SN (Figure 4). If the number of 1’s is greater
than 2 then each bit of T2 except these fixed-bits are subjected to CMN gate.
Otherwise, T2 remains as it is. In any case, we call the resultant token as T3 (V
in Figure 4). Two sets of control bits taken from SN applied to the CMN gate
alternately. The fixed-bits have to be remained fixed because during decryption
the same fixed-bits will require to get the same result from majority evaluation
function.
Level 4 – Key Mixing: To enhance the security and randomness, we generate
final encrypted token Tencr by XORing the Minor CA state SN with the token
T3(V I in Figure 4).

The algorithm for encryption and decryption process is presented next.

Algorithm 1 Encryption
Input: input file to be encrypted
K=key
Output: encrypted file
begin

Step 1. Divide the file into 128 bit tokens (T ).
Step 2. Load initial seed of Minor CA S0=K
For each token T begin loop

Step 3. Run the Minor CA for d time steps and obtain SN

Step 4. Obtain δ from SN . Rotate T by δ number of times and obtain T1

Step 5a. Randomly synthesize Major CA (CAmaj) using SN as seed
Step 5b. Obtain ∆ from SN

Step 5c. Run CAmaj for ∆ time steps with T1 as seed to obtain T2

Step 5d. S0=T2

if T2 satisfies MEF
Step 6a. Obtain the 2 sets of Control bits for CMN gate
Step 6b. Apply CMN gate to non-fixed bits of T2 using the Control bits

alternately
Step 6c. Assign the result to T3

end if
Step 7. XOR T3 with SN to get Tencr

Step 8. write Tencr in output file
Go to Step 3 untill the input file is exhausted

end

Algorithm 2 Decryption
Input: input file to be decrypted
K=key
Output: decrypted file
begin

Step 1. Divide the file into 128 bit tokens (Tencr)
Step 2. Load initial seed of Minor CA S0=K
For each token Tencr begin loop

Step 3. Run the Minor CA for d time steps and obtain SN

Step 4. XOR Tencr with SN to get T3

if T3 satisfies MEF
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Step 5a. Obtain the 2 sets of Control bits for CMN gate
Step 5b. Apply CMN gate to non-fixed bits of T3 using the Control bits

alternately
Step 5c. Assign the result to T2

end if
Step 6a. S0=T2

Step 6b. Randomly synthesize Major CA (CAmaj) using SN as seed
Step 6c. Obtain ∆ from SN

Step 6d. Run CAmaj for 32-∆ time steps with T2 as seed to obtain T1

Step 7. Obtain δ from SN . Rotate T1 by δ number of times in reverse order
and obtain T .

Step 8. Write back T into output file
Go to Step 3 untill the input file is exhausted

end

4 Analysis of CAC

4.1 Different Levels of Security

Large Key Space: The number of possible key is very large (2128) and all
key are equiprobable to occur. This randomness in key generation gives random
probability distribution in key space. Since we can change the size of the minor
and major CA the key size can also vary. So we can have a variable key space
of any arbitrary size.
Security Level 1 – Linear Transformation: Each byte of token T is sub-
jected to a random rotation decided by Minor CA state. Since Minor CA is an
excellent pseudo-random generator [8], this rotation of token introduces a degree
of randomness to the input token.
Security Level 2 – Affine Transformation and On-line Synthesis of
Major CA: The state transition of a Major CA which is additive generates
an affine transformation.

On the fly generation of Major CA reduces the memory requirement by a
large amount and as well as enhances the security. The number of all possible
CA having the cycle structure of Major CA is higher than 2128 [10]. Thus, each
seed (SN ) produces different Major CA providing us with the huge possibility
of 2128 different Major CA. This ensures that each key value (K) will encrypt
differently and no key will be superfluous. Thus the CAC satisfies one of the
important criterion of a secure cryptosystem. The criterion is specified by the
following theorem:
Theorem: [11] A necessary condition for a cryptosystem to have a perfect secrecy
is that it to have at least as many keys as messages.
Security Level 3 – Non-affine Transformation: This is a non-affine re-
versible CA transform which enables CAC to generate a non-affine group which
is the alternating group. The affine group is a small subgroup of the alternating
group(Fig. 5). The analytical proof that the CAC scheme generates alternating
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group is quite exhaustive and so omitted for short of space. Thus CAC, be-
ing able to generate the alternating group which is much larger than the affine
group, satisfies another important criterion of a secure cryptosystem which says
that ability to generate the alternating group on the message space is one of the
strongest security conditions.
Security Level 4 – Key-mixing: The intermediate token (T3) is next XORed
with the state SN of the minor CA. This is very simple and takes only a single
clock cycle. But it makes the encrypted token (Tencr) totally unpredictable. The
only way to return back to the original string is to randomly try with 128 bits
which will cost O(2128) operations, for every token.
Security Level 5: In order to further increase the level of security, our scheme
can be used in bricklaying mode which will use multilevel encryption. This can
be done with a minor increment of the cost while using the same basic structure
reported in Fig. 4.

4.2 Cryptanalysis of CAC

The acceptance of any cryptosystem depends on its sustainability against various
cryptanalysis attacks. Most important cryptanalysis are differential cryptanaly-
sis [1] and Shannon’s notion of perfect secrecy test [12]. We perform both these
tests on CAC and as well as on DES and AES for the sake of comparison.
Results of Differential Cryptanalysis: We perform differential cryptanalysis
with 50 different files having 11 different size. For each file, we take different fixed
input differences to get the output probability distributions and the average value
of the standard deviations for them is calculated. We also perform the same for
DES and AES systems. The results are reported in Table 1. Column II of Table
1 depicts the average mean standard deviation for CAC, where the same for
DES and AES noted in Column III and Column IV respectively. The results
for the current version of CAC is significantly better than that of DES and
comparable to AES. It can also be noted from the results that the percentage
of the standard deviation is around 4.0 whereas 10% is sufficient for a system to
be considered as secured.
Results for Shannon’s Security Quotient: We perform the Shannon’s se-
curity test on CAC with 50 files for 9 different size and also perform the same
on other cryptosystems (DES, AES) for the sake of comparison. Column II of
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Table 1. Differential Cryptanalysis of our scheme and Comparative Study with DES
and AES

Input file Avg. Std. Devin of Avg. Std. Devin of Avg. Std. Devin of
size (MB) XOR distributions XOR distributions XOR distributions

for CAC (%) for DES (%) for AES (%)
1 4.36 31.95 4.2
2 4.30 30.03 4.0
4 4.26 29.05 3.63
6 4.17 28.24 3.62
8 3.91 28.10 3.67
10 4.02 28.89 3.52
12 3.89 28.74 3.51
14 3.55 28.52 3.48
16 3.40 27.86 3.43
18 3.42 27.74 3.26
20 3.59 27.67 3.24

Table 2. Measurement of Shannon’s Security Quotient and comparative study with
DES and AES

Input file Shannon’s Security Shannon’s Security Shannon’s Security
size (MB) Quotient (ϑ) Quotient (ϑ) Quotient (ϑ)

of CAC(%) for DES(%) for AES(%)
2 14.1605 14.2374 14.2345
3 11.5527 11.5531 11.5706
4 10.1060 10.2507 10.1675
7 7.5640 7.9141 7.6014
8 7.1182 7.1468 7.7046
9 6.7043 6.7139 6.7136
13 5.5868 5.5645 6.0266
14 5.3636 5.4001 5.4625
15 5.2097 5.3157 5.5552

Table 2 gives the average value of Security Quotient for our scheme calculated
for different keys on each file size. The results show that our scheme fulfills the
primary security level defined for any secure cryptosystem. Column III and IV
of Table 2 report the Security Quotient for DES and AES respectively, which
establishes that CAC is better than DES and AES as far as Shannon’s security
notion is concerned.

4.3 Execution Time of Software Version

The main attractive feature of our CA based encryption scheme is its high
speed of operation. Cellular automata are inherently parallel, so higher speed of
execution of CAC is a natural outcome.

We have developed non-optimized reference code for CAC. Both the CAC
and AES are run under same environment of P − III, 633MHz processor to
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Table 3. Comparison of time of software version of CAC and AES

Input file CAC AES AES
size Reference Reference Optimized

(in MB) Code(in Sec) Code(in Sec) Code(in Sec)
1.00 2.70 10.00 0.87
2.00 5.00 25.20 0.89
3.00 7.00 36.40 1.90
4.24 9.80 42.36 2.25
5.14 11.00 56.78 2.79
6.108 11.30 59.34 3.2
7.125 16.00 79.86 3.4
8.00 17.91 87.10 3.9
9.76 23.30 116.67 4.0
10.30 23.7 121.53 5.11
11.40 27.40 136.40 5.20
12.00 27.90 140.21 5.4

generate the results of Table 3. CAC reference code can be found to be sig-
nificantly faster than that of AES. The optimized CAC code for commercial
application is being developed. Preliminary results indicate that the optimized
code of CAC will be faster than that of AES. However, the main advantage of
CAC can be derived from its hardware version which is presented in the next
section.

5 Cryto-Hardware Based On CAC

The pipelined architecture of CAC hardware is shown in Figure 6. The data
path has five stages as explained below:
Stage 1 – Minor CA Implementation: It accepts the input key and control
signals from Control Block and CA Synthesis Hardware block for on the fly
generation of minor CA.
Stage 2 – Barrel Shifter Implementation: Its input register accepts the
plain text token. The shift control of Barrel Shifter comes from Stage 1.
Stage 3 – Major CA Implementation with 3 Sub-Blocks: The three sub-
blocks of this stage are flip-flops, a set of switches to implement Programmable
CA(PCA) and an array of XOR gates. The control of the PCA to generate
different major CA comes from the CA synthesis hardware.
Stage 4: It covers the implementation of CMN(Control Majority Not) logic
along with evaluation of majority function on the pseudo exhaustive fields of
major CA.
Stage 5 – The XOR operation: The input to this stage is the token coming
from Stage 3 and the minor CA state.

Two inter-stage pipeline registers are introduced between Stages 3 and 4,
and also between 4 and 5. Different features of CAC crypto-hardware are next
reported:
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Fig. 6. Block Diagram CAC Hardware

– A verilog code has been written for the design and simulated using Cadence
Verilog Simulator on a Sun Ultra-60 machine.

– The design has been synthesized and analyzed using Synopsis Design Com-
piler and Signal Scan.

– The design has been implemented with 0.25µCMOS technology.
– The pre-layout area estimate of the non-optimized design is 4.25 × 106 sq.

micron.
– Static timing analysis of one complete run of CAC implementation on 128

bit plain text confirms correct operation of each stage with 1 GHz clock.
– For multiple rounds of operation(for the current implementation it is 4), the

pipe line stages gets extended 4 times.
– The pipelined crypto-hardware throughput as per above timing analysis is

128 Gb/sec.
Note: (i) Even if we assume 25% reduction of throughput for delay associated
with silicon implementation, the throughput will be close to 100 Gb/sec. (ii)
By contrast the full round Rijndael chip produced by NSA(National Security
Agency) on 0.5CMOS technology exhibit throughput of 5.7 Gb/sec. This is
much lesser than the throughput of full round CAC chip.

– Key generation hardware has been integrated within CAC implementation.
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6 Conclusion

The CA based cryptosystem presented in this paper shows a very low cost,
high speed encryption scheme with very high cracking complexity. The different
cryptanalytic tests on our scheme shows that it satisfies primary security crite-
rion and better than DES, AES. Its throughput is better than that of AES.
The hardware version of CAC suits ideally for real time applications.
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Abstract. This paper presents a large collection of new weak-key classes
for the IDEA cipher. The classes presented in this paper contain 253−264

weak keys (as compared with 251 differential weak keys presented by
Daemen at CRYPTO’93 and 263 differential-linear weak-keys presented
by Hawkes at EUROCRYPT’98). The novelty of our approach is in the
use of boomerang distinguishers for the weak-key class membership test.
We also show large weak-key classes for reduced-round versions of IDEA.

Keywords: IDEA cipher, weak keys, boomerang attack, NESSIE.

1 Introduction

The International Data Encryption Algorithm (IDEA) [8,9,10] is 64-bit block
cipher using a 128-bit secret key. IDEA consists of eight rounds followed by an
output transformation. In the last decade considerable cryptanalytic effort was
concentrated on IDEA [1,3,4,5,6,7,11], however, despite that effort the cryptan-
alytic progress was very slow. Till now the best attack [1] breaks 4.5 rounds out
of 8.5 rounds and it requires the knowledge of all 264 blocks of the codebook
and complexity of analysis is 2112. In the same decade some weak-key classes for
the full 8.5-round IDEA were found. In [4] a class of 251 weak keys, detectable
under differential membership test, was discovered. The membership test uses
two chosen plaintexts and runs in at most 212 steps. In [5] a class of 263 weak
keys, detectable under differential-linear membership test, was found.

In this paper we describe a series of new classes of weak-keys for the full 8.5-
round IDEA. Keys are termed weak in the sense that some multiplicative keys
which assume values 0 or 1 turn the modular multiplication into a linear opera-
tion. These key classes are detectable with boomerang techniques developed by
Wagner ([13]). At least one of the weak-key classes is of size 264 which is larger
than the best previously known weak-key class of IDEA that used a differential-
linear distinguisher. However, the complexity of the membership test for this
class is 216 data and time which is higher than for the Hawkes’ class. We also
� The work described in this paper has been supported in part by the Commission of

the European Communities through the IST Programme under Contract IST-1999-
12324 and in part by the Concerted Research Action (GOA) project Mefisto 2000/06
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show a collection of other smaller classes all of which are new and not covered
by the previously known weak-key classes. In most cases, our membership test
can be used to recover up to 16 additional key bits.

Furthermore, for 5-round IDEA (from the third to the seventh round), we
found a class of 295 weak keys with a boomerang membership test using only a
single boomerang quartet (four chosen texts). This class can be extended four
times to the class of size 297 keys (a fraction 2−31 of all keys) at the cost of
28 quartets for the membership test (80% of success). The best class previously
known for the 5-round IDEA contained 213 times less keys [5]. This result also
compares favorably to the currently best attack on 4.5-round IDEA mentioned
above.

This paper is organized as follows. Section 2 gives a description of the IDEA
block cipher, its key schedule and round structure. Section 3 describes the
boomerang attack. Section 4 presents our discoveries of the new weak-key classes
of IDEA. In Section 5 we show large fractions of weak keys for IDEA reduced
to 5 rounds, and compare the complexities of some previously known attacks on
IDEA. Section 6 contains a brief discussion and finally section 7 concludes the
paper.

2 The IDEA Block Cipher

The International Data Encryption Algorithm (IDEA) is an iterated block cipher
designed by Lai, Massey and Murphy in 1991 (see [8,9,10]).

In November 2000, IDEA was submitted as a candidate block cipher to the
NESSIE Project [12], which is a project within the Information Societies Tech-
nology (IST) Programme of the European Commission.

The IDEA cipher has a 64-bit block size, 128-bit key size, and iterates eight
rounds plus an output transformation. Three algebraic operations are used in
IDEA: addition in ZZ216 denoted by �, bitwise exclusive-or, denoted by ⊕, and
multiplication in GF (216 + 1), denoted by �, with 216 interpreted as 0. Encryp-
tion and decryption in IDEA use the same framework and differ only in the key
schedule.

Every full round of IDEA can be split into two halves: a key-mixing layer and
a multiplication-addition (MA) structure (see Fig. 1). Let Xi = (Xi

1, X
i
2, X

i
3, X

i
4)

be the input block to the i-th round of IDEA, where 1 ≤ i ≤ 8, and Xi
j ∈ ZZ16

2 ,

for 1 ≤ j ≤ 4. Let Zi = (Z(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 , Z

(i)
5 , Z

(i)
6 ), with Z

(i)
j ∈ ZZ16

2 , for
1 ≤ j ≤ 6 represent the six subkey words used in the i-th round of IDEA. The
first operation in a round is a key-mixing half-round that combines the four 16-
bit input words with the subkey words Z

(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 , in parallel, by either

modular addition or multiplication. The result is input to the MA structure (or
half-round), together with Z

(i)
5 and Z

(i)
6 . At the end of the MA half-round there

is a swap of the two middle words.
The output transformation (OT) is composed of a swap of the two middle

input words and a key-mixing half-round.
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2.1 Key Schedule of IDEA

The key schedule of IDEA processes the initial 128-bit master key into fifty-two
16-bit subkeys. Each one of the eight rounds uses six subkeys, and the output
transformation (OT) uses four subkeys. The initial 128-bit key is partitioned into
eight 16-bit words, and is used as the first eight subkeys. Successive sets of eight
subkeys are generated by: rotating left by 25 bits the 128-bit block containing the
previous eight 16-bit subkey words. Partitioning the resulting block into eight
16-bit words.

Z 6

7 more rounds

(9)

X1
9

X 4
9

Z2
(9)

X 2
9

X 3
9

Z 1

Output
Transf.

Z5
(1)

(1)

Z3
(9)

Z
4
(9)

Z 1
(1)

Z2
(1)

X1 X 4
1 1

X2
1

X 3
1

Z3
(1)

Z
4
(1)

MA
box

Round 
First

half−round
MA

key−mix
half−round

Fig. 1. Encryption scheme of IDEA block cipher.

Table 1 shows the dependency of subkey bits on the master key bits, which
is indexed from 0 (MSB: most significant bit) to 127 (LSB: least significant bit).
Bit numbering is taken modulo 128, that is, in a circular fashion, due to the
rotation operation.

3 The Boomerang Attack

In this section we describe the cryptanalytic technique called the boomerang
attack developed by Wagner [13].

Traditional differential attacks [2] are powerful methods of cryptanalysis in
which the attacker considers pairs of plaintexts P1, P2 with a fixed difference
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Table 1. Dependency of subkey bits on the master key bits of IDEA.

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124

OT 22–37 38–53 54–69 70–85 — —

� = P1⊕P2, and studies the propagation of differential patterns throughout the
cipher. The aim of the attacker is to predict the resulting ciphertext difference
C1 ⊕ C2 with non-negligible probability. If this can be done then the cipher can
be distinguished from a random permutation, and in many cases a key-recovery
attack can be mounted on the cipher.

The boomerang attack is a differential-style attack in which the attacker
does not try to cover the whole cipher with a single highly-probable differential
pattern. Instead, the attacker tries to find several high-probability patterns that
are not necessarily related to each other but together cover the whole cipher.
The boomerang attack requires the ability to make both chosen-plaintext and
chosen-ciphertext queries1.

Let’s denote the encryption operation by E and its decomposition into two
parts (not necessarily dividing the cipher into halves) as E = E1 ◦ E0. Suppose
that we start with two plaintexts P1, P2, such that P1 ⊕ P2 = �. Suppose that
we have a differential pattern � → �∗ propagating through the E0 part of the
cipher with probability p. Now consider the corresponding ciphertexts C1, C2 and
their “shift” by the difference ∇ as follows: C3 = C1 ⊕∇, C4 = C2 ⊕∇. As ∇ we
use a pattern that goes up through E−1

1 with high probability q, i.e. ∇ → ∇∗. We
decrypt the new ciphertexts C3, C4 to obtain their corresponding plaintexts P3
and P4. If the previous three difference patterns happened as predicted, between
E0 and E1, we obtain:

E0(P3)⊕E0(P4) = E0(P1)⊕E0(P2)⊕E−1
1 (C1)⊕E−1

1 (C3)⊕E−1
1 (C2)⊕E−1

1 (C4) =

= �∗ ⊕ ∇∗ ⊕ ∇∗ = �∗.
Thus we can decrypt backwards through E0 using the pattern �∗ → �. The

claim is that with probability p2q2, the difference P3 ⊕P4 = � holds, which can
be readily checked. See Figure 2 for a graphical representation of a boomerang
quartet. This is an example of a top-down boomerang.
1 The chosen-plaintext queries in the boomerang attack are adaptive in the sense that

one first obtains ciphertexts which are the results of the chosen-plaintext queries to
the encryption oracle, then one performs appropriate modifications to these cipher-
texts and finally feeds them to the decryption oracle.
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There are several refinements to the technique described above: we may send
boomerangs from the decryption direction, that is, starting from the ciphertext
and then performing adaptive plaintext queries (bottom-up boomerangs); we
may guess the keys of the first or last rounds and send boomerangs (top-down
or bottom-up) based on the key guesses. We can use the careful choice of � and
∇ in order to obtain additional half-round(s) in the middle (for the IDEA cipher
it is the MA half-round) for free (this observation was used in [13] to attack
the Khufu-16 cipher). We can use truncated differentials whenever the two faces
of the boomerang produce the same difference patterns, the boomerang goes
through, no matter what these difference patterns are. If the E0 part is short
enough we may use more analysis to check how differences propagate through
it, without waiting for the perfect match of the difference in the second pair of
plaintexts to �.

E0 E0

E0

E1

E1

E1

E1

E0

C C

P1

P2

P3

P4

1

C2 C

3

4

∆

∆ ∆* *

∆

∆

∆

∆
∆

*

*

Fig. 2. A (top-down) boomerang quartet (P1, P2, C3, C4).

4 Boomerang Attack under Weak-Key Assumptions

In this section we show a variety of attacks on the full 8.5-round IDEA block
cipher under some weak-key assumptions. These attacks provide new weak-key
classes, larger than the ones discovered by Daemen [4], and not covered by the
class discovered by Hawkes [5]. Some of these classes are the largest found so far
for this cipher, but they require more effort for their membership test compared
to Hawkes’ differential-linear classes.

In order to build our new weak-key classes we use the boomerang-style
distinguisher. The benefit of using boomerang distinguishers is two-fold: first,
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boomerang distinguishers pose different constraints on the key schedule than
the previous differential or differential-linear distinguishers, thus we are likely to
find new weak-key classes; second, we can pick unrelated patterns to cover both
the E0 (top) and E1 (bottom) parts of the cipher and optimize the number of
key-bit constraints to be minimal. As in the previous attacks we consider input
xor-differences that only differ in the most significant bit (8000x). Such differ-
ences have the advantage of propagating across the modular addition for free
(i.e. with probability one). We are thus concerned only with the multiplicative
keys.

4.1 Advanced Boomerang Techniques

In this section we describe our general method of search for the weak-key classes
of the IDEA cipher. The method includes several refinements to the basic boo-
merang attack. These refinements help us to increase the key-class sizes.

We have written a program that searches through all possible plaintext/
ciphertext differences in order to find the largest boomerang weak-key classes.
We also considered gaps2 of one, two and three half-rounds in the middle of the
cipher, in order to increase the sizes of the key-classes at the cost of higher data
and time complexities of the membership test. Another relaxation was not to
cover either the top-most or bottom-most key-mixing half-round, assuming that
the attacker can guess the required top or bottom keys or use special structures to
construct appropriate input (or output) difference after the key-mixing. In these
cases, given a correct boomerang quartet, the attacker can find up to 16 bits of
multiplicative subkeys of the first or last key-mixing half-rounds, in addition to
the zero key bits of the weak-key class. In the following subsections we describe
several examples of our weak key classes together with their membership tests.
In Table 2 we summarize the findings of this paper and compare them with the
previously best classes.

4.2 A Weak-Key Class of Size 253

Consider a boomerang distinguisher which consists of two differentials: one with
chosen-plaintext xor-difference � = (8000x, 0000x, 0000x, 0000x) that causes the
xor-difference �∗ = (8000x, 8000x, 0000x, 8000x), after 2.5 (encryption) rounds
with probability one, provided that the 64 key bits 0–23, 64–103 are zero. The
other differential has chosen-ciphertext xor-difference ∇ = (0000x, 8000x, 8000x,
0000x), and causes the xor-difference ∇∗ = (0000x, 8000x, 0000x, 8000x) after
5.5 (decryption) rounds with probability one, provided the 63 key bits numbered
0–25, 77–107, 123–127 are zero. These two differentials together require that the
75 key bits numbered 0–25, 64–107, 123–127 be zero. One MA half-round, with
subkeys Z

(3)
5 and Z

(3)
6 , is not included in the boomerang. However due to the

proper choice of the differences coming from top and the bottom end of the
cipher, we gain this MA half-round for free (a similar trick was used by Wagner
2 Half-rounds with no constraints on the key bits.
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in his attack on Khufu [13]). This boomerang can be used to identify a weak-key
class of size 2128−75 = 253 using a single quartet: two chosen-plaintext and two
chosen-ciphertext queries.

4.3 A Weak-Key Class of Size 256

Consider a boomerang distinguisher which consists of two differentials: one with
chosen plaintext xor-difference � = (8000x, 0000x, 8000x, 0000x) that causes the
xor-difference �∗ = (8000x, 8000x, 0000x, 0000x) after 1.5 (encryption) rounds
with probability one, provided that the 30 key bits 0–14, 96–110 are zero. The
other differential has chosen xor-difference ∇ = (0000x, 8000x, 0000x, 8000x) at
the end of the 8th round (without including the last key mix half-round) and
causes the xor-difference ∇∗ = (0000x, 8000x, 0000x, 8000x) at the beginning
of the third round with probability one, provided the 42 key bits 15–32, 84–95,
116–127 are zero. These two differentials jointly require that the 72 key bits 0–32,
84–110, 116–127 be zero. One MA half-round is not included in the boomerang.
If the fourteen MSBs of Z

(9)
4 can be guessed, then this bottom-up boomerang

can be used to identify a weak-key class of size 2128−72 = 256. However we can
do better than guessing the last subkey. Instead, we will prepare two pools of
ciphertexts which have appropriate differences in all words and random 29 values
in the ciphertext word after the unknown key Z

(9)
4 . The pools contain 218 pairs

and we assume that due to the birthday paradox we’ll have several pairs that
have the required difference 8000x after the decryption by the unknown key. If
this event happens, then the boomerang runs for the rest of the rounds with
probability one (the MA half-round in the middle is bypassed for free). In order
to detect this class we thus need 211 queries.

4.4 The Largest Weak Key Class of Size 264

In this section we describe the largest weak-key class of the IDEA cipher which
we discovered. It is twice larger than that described by Hawkes, although its
membership test is more complex. We consider Daemen’s weak-key class (see
Table 2) in which we do not restrict the subkey Z

(7)
4 thus increasing the key

class size from 51 to 66 bits. We use the boomerang distinguisher bottom-up
and create special structures of ciphertexts in order to bypass the bottom round
without the need to guess the multiplicative key Z

(8)
1 .

In more detail: we produce two pools of chosen ciphertexts of size 214 texts
each, in order to generate many pairs with the difference � = (0000x, 8000x,
0000x, 8000x) just above the bottom key-mixing half-round. This pattern covers
the next MA half-round with probability one, since it causes zero difference in the
inputs to the MA-box. We create a pool C1 of 216 chosen ciphertexts, in which
the 4th word takes 214 random values and the other three words are arbitrary
but fixed for all the texts in the pool. The second pool C2 is created using the
difference (0000x, 8000x, 0000x) from the texts of the first pool in the 1st, 2nd and
3rd words respectively, and the 4th word runs through random 214 values. Thus,
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between the pools we have 228 pairs with the difference (0000x, 8000x, 0000x, ∗)
and among these we have 212 pairs with the required difference (0000x, 8000x,
0000x, 8000x) after decrypting a single key-mixing half-round and thus with a
difference (0000x, 8000x, 0000x, 8000x) after decrypting the last round.

∆

∆ ∗

∆∗

∆

∆∗

∆ ∗

PP

P P

E

E

1

1E

E

0

∆ ∆

C1

C2

C3

C4

1

2

3

4

E
1

E1

E0

E0

E2

E
2

E

E
2

2

0

Fig. 3. Boomerang quartet for our largest key-class. E0: 6 rounds, E1: 1.5 rounds, E2:
1 round.

We decrypt the pools C1, C2 producing plaintext pools P1, P2, from which
we create two new pools P3, P4 by using the difference ∇ = (0000x, 8000x,
0000x, 8000x) and encrypt these pools to obtain new ciphertext pools C3, C4.
We sort these pools by the highest 48 bits (1st, 2nd and 3rd words) and check if
there is a pair with difference: 0000x, 8000x, 0000x in the highest-order 48 bits,
between the pools. If so, we proclaim that the boomerang has returned and the
key belongs to the weak-key class.

In this boomerang attack we bypass the bottom key-mixing half-round using
the birthday paradox, and we cover the IDEA cipher with one round from the
bottom and six rounds from the top. In between we have a gap of three half-
rounds: key-mixing, MA and another key-mixing which our differences have to
bridge in order for the boomerang to work. Some of the multiplicative keys in
the gap are already restricted by our key class which helps for the boomerang
differences to bridge the gap. Although the key mask for this class has 66 bits
we observed that boomerangs returned for about 25% of all such keys, for 214
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quartets, which reduces the key class to 64 bits3. Data complexity of this mem-
bership test is 214 quartets or 216 texts. Figure 3 shows one quartet used for our
largest key class.

5 Attacks on Round-Reduced IDEA

In this section we show boomerang attacks on round-reduced IDEA under weak-
key assumptions.

5.1 Attack on 5-Round IDEA

Using the program described above we discovered that 5-round IDEA (from the
3rd to the 7th round) can be attacked for a fraction of 2−33 keys (295 weak keys)
with just one quartet (4 text queries). The plaintext difference to the boomerang
is � = (0000x, 8000x, 0000x, 8000x) and the ciphertext difference after 5 rounds
is ∇ = (8000x, 8000x, 0000x, 8000x). The key-mixing at the 10th half-round is
covered for free.

There is another smaller class with 292 weak keys (fraction of 2−36) also from
the 3rd to the 7th round which can be detected with a single boomerang quartet.
Compare these results to the class of size 284 (fraction 2−44) found previously by
Hawkes. Recall also that the best attack on IDEA [1] covers only 4.5 half-rounds,
uses all the 264 blocks of the codebook and has 2112 complexity.

Furthermore there is a larger class of size 297 (fraction 2−31) which requires 28

quartets for 80% success probability of the boomerang attack. The increased data
requirements are due to the two half-round gap in the middle of the boomerang.
Also note that this class includes the previous class of size 295.

In Table 2 we summarize our results for round-reduced versions of IDEA
(from four to six rounds) and compare them to the best-previously known re-
sults [5]. In this table “Flow” indicates the top-down (↓), or bottom-up (↑)
direction of the boomerang attack, |WKC| denotes the size of the weak key
class. The data complexity is measured in the number of texts (divide by four
to get the number of quartets), time complexity is measured in the number of
reduced-round encryptions.

6 Discussion

We have also discovered that not only keys with certain subkeys equal to zero
or one are weak (as was known before) but keys with few runs of ones are also
weak and contribute to a very slow avalanche inside the IDEA cipher. While the
zero-one weak keys problem of IDEA can be corrected just by XORing a fixed
constant to all the keys (one such constant may be 0DAEx as suggested in [4])
the problem with the runs of ones may still remain and will require complete
redesign of the IDEA key schedule.
3 By increasing the number of quartets more keys would be covered but the amount

of additional data required are larger than the gain in the key bits.
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Table 2. Summary of Weak-key Boomerang Distinguishers.

#Rnds Hawkes Our Half- Flow Weak-Key Input‡ Output‡ Complexity
|WKC| |WKC| Rnds� Bit Positions Difference Difference Data Time

4 299 2104 � 6-13 ↓ 11-32 (0 0 1 1) (1 1 0 1) 210 210

4.5 297 2101 6-14 ↑ 0-18, 123-127 (0 1 0 1) (0 1 0 1) 218 218

4.5 297 2101 4-12 ↑ 2-25 (0 1 0 1) (0 1 0 1) 218 218

5 284 297 2-11 ↓ 0-25, 123-127 (0 1 0 *) (0 1 0 1) 210 210

5 284 297 4-13 ↓ 0-18, 116-127 (0 1 0 *) (0 1 0 1) 210 210

5 284 295 4-13 ↓ 2-34 (0 1 0 1) (1 1 0 1) 4 4
5 284 297 4-13 ↓ 2-32 (0 1 0 1) (1 1 0 1) 28 28

5.5 282 295 4-14 ↑ 2-34 (0 1 0 1) (* 1 0 *) 216 216

5.5 282 297 4-14 ↑ 2-32 (0 1 0 1) (1 1 0 1) 222 222

6 282 283 2-13 ↓ 0-32, 116-127 (0 1 0 *) (0 1 0 1) 210 210

8.5 263 253 0-16 ↓ 0-25,64-107,123-127 (1 0 0 0) (0 1 1 0) 4 4
8.5 263 256 0-16 ↑ 0-32,84-110,116-127 (1 0 1 0) (0 0 1 *) 211 211

8.5 263 257 0-16 ↓ 0-23,57-91,116-127 (0 0 1 *) (0 0 1 1) 211 211

8.5 263 257 0-16 ↓ 0-32,57-91,125-127 (0 0 1 *) (0 0 1 1) 213 213

8.5 263 258 0-16 ↑ 0-18,41-71,77-91,123-127 (0 1 0 1) (0 1 0 *) 224 224

8.5 263 259 0-16 ↑ 0-32,84-107,116-127 (1 0 1 0) (0 0 1 *) 221 221

8.5 263 259 0-16 ↓ 0-25,73-110,123-127 (0 0 0 *) (0 1 1 0) 216 216

8.5 263 260 0-16 ↓ 4-25,66-110 (0 0 0 *) (0 1 1 0) 224 224

8.5 263 264 0-16 ↑ 0-25,77-107,123-127 (0 1 0 1) (0 1 1 *) 216 216

‡: the symbol ’0’ denotes 32-bit difference 0000x, and ’1’ denotes 8000x; ’*’ denotes
arbitrary difference, used to produce 8000x difference after multiplication by an unre-
stricted key.
�: half-round numbering starts from 0, and ends at 16.
�: out of a class of size 2106, about 1/4 of the keys allows boomerangs to return, for
the given amount of data.

7 Conclusions

IDEA is a strong block cipher that for more than a decade has evaded attempts
of cryptanalysis. However during the same period of time large weak key classes
for this cipher were found. This is due to the fact that the main non-linear part
of the cipher is based on multiplication with a chosen master key and due to
linearity of the key schedule. In this paper we have shown new large weak-key
classes of IDEA. We have used the boomerang distinguisher as a membership
test for these classes. These results strengthen the need for the redesign of the
key schedule of IDEA.
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A Example of 5-Round Boomerang

In this section we show an example printout of our program for the 5-round
boomerang from the 3rd to the 7th rounds (4th – 13th half rounds). The dif-
ferences are the input differences to the half-rounds, the keys printed are those
that need to be restricted and the masks show the effect of these restrictions on
the weak-key class size ( denoted by |WKC|). The key-class below has size 295.
The gap in half-round 10 is covered for free.

HR xor-difference weak subkeys key masks |WKC|
----|-------------------|---------------|--------------------------|-------

4 0000 8000 0000 8000 Z_4ˆ3 ff8000ff ffffffff ffffffff ffffffff 2ˆ113
5 0000 8000 0000 8000 ff8000ff ffffffff ffffffff ffffffff 2ˆ113
6 0000 0000 8000 8000 Z_4ˆ4 c00000ff ffffffff ffffffff ffffffff 2ˆ106
7 0000 0000 8000 8000 Z_5ˆ4 c0000000 7fffffff ffffffff ffffffff 2ˆ97
8 0000 8000 8000 0000 c0000000 7fffffff ffffffff ffffffff 2ˆ97
9 0000 8000 8000 0000 Z_5ˆ5 c0000000 7fffffff ffffffff ffffffff 2ˆ97

10 ---- ---- ---- ----
11 8000 0000 0000 0000 Z_5ˆ6 Z_6ˆ6 c0000000 1fffffff ffffffff ffffffff 2ˆ95
12 0000 8000 0000 0000 c0000000 1fffffff ffffffff ffffffff 2ˆ95
13 0000 8000 0000 0000 Z_6ˆ7 c0000000 1fffffff ffffffff ffffffff 2ˆ95

Below we show another example of a weak-key class. This class is of size 297

and includes the class shown above. However due to the gap of 2 half-rounds
(10th and 11th) the membership test for this class requires 28 quartets for 80%
success probability.
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HR xor-difference weak subkeys key masks |WKC|
----|-------------------|---------------|--------------------------|-------

4 0000 8000 0000 8000 Z_4ˆ3 ff8000ff ffffffff ffffffff ffffffff 2ˆ113
5 0000 8000 0000 8000 ff8000ff ffffffff ffffffff ffffffff 2ˆ113
6 0000 0000 8000 8000 Z_4ˆ4 c00000ff ffffffff ffffffff ffffffff 2ˆ106
7 0000 0000 8000 8000 Z_5ˆ4 c0000000 7fffffff ffffffff ffffffff 2ˆ97
8 0000 8000 8000 0000 c0000000 7fffffff ffffffff ffffffff 2ˆ97
9 0000 8000 8000 0000 Z_5ˆ5 c0000000 7fffffff ffffffff ffffffff 2ˆ97

10 ---- ---- ---- ----
11 ---- ---- ---- ----
12 0000 8000 0000 0000 c0000000 7fffffff ffffffff ffffffff 2ˆ97
13 0000 8000 0000 0000 Z_6ˆ7 c0000000 7fffffff ffffffff ffffffff 2ˆ97
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Abstract. There are extensive researches on how CBC-MAC can be
modified in order to efficiently deal with messages of arbitrary lengths.
Based on the three-key construction of XCBC by Black and Rogaway,
Moriai and Imai improved the scheme and proposed an optimally efficient
CBC-MAC variants with two key materials, that is called 2-key XCBC.
They give a proof of the security in the same manner as 3-key XCBC.
In this paper, we study 2-key XCBC, and discuss the security of 2-key
XCBC used with real replacement to an ideal PRP. We show (1) a forgery
based on the raw-key masking technique used in 2-key XCBC for a partic-
ular instance where Even-Mansour PRP construction is used, and (2) an
attack that violates the provable security of DESX construction. There-
fore, the raw-key masking technique, which is the core improvement of
2-key CBC, must be avoided unless an overall implementation is con-
sidered in detail. Moreover, we discuss 2-key XCBC with two promising
real block ciphers AES and Camellia and note important security con-
sideration concerning their uses with 2-key XCBC.

Keywords: Block cipher, mode of operation, MAC, provable security.

1 Introduction

CBC-MAC [FIPS81] is the most commonly used way to generate a message
authentication code (MAC) from a block cipher. This was originally proposed
as a mode of operation for DES cipher [FIPS46-3]. Assuming that CBC-MAC is
used with a pseudorandom permutation (PRP), the MAC tag cannot be forged
by an attacker that does not change the length of message [BKR94]. On the
other hand, it is also well-known that the basic CBC-MAC can be forged if an
attacker changes the length of verified messages.

To overcome this problem, some improvements of CBC-MAC are proposed.
Major objectives of the improvements are followings:
1. a secure MAC generation even against concatenating attacks,
2. dealing with a message of arbitrary length, (i.e., message can be authenti-

cated regardless of the block size of a block cipher),
3. minimum PRP invocation,
4. minimum size of key material.

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 327–341, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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In order to achieve the security against concatenation attacks, the scheme needs
the distinct terminating process. One of the solutions against this problem is
proposed as EMAC at RACE project [RACE]. EMAC always requires two key
setups for one message. Moreover, in order to handle a message that does not
fit the block boundary, the message must be padded such that any length of
bit strings are transformed to non-zero multiple length of blocks. Consequently,
another yet PRP invocation is required for those messages that fit the block
boundary. In order to minimize these additional costs Black and Rogaway con-
structed an efficient CBC-based MAC schemes. The most successful construction
is called as 3-key XCBC[BR00]. This is initiated by the important lemma in the
literature [BR00]. This lemma gives a way to generate two computationally dif-
ferent PRPs out of one secret PRP, and proves the security of the proposed con-
struction. 3-key XCBC requires no additional PRP invocation or no more than
one key setups, but requires another 2b-bit independent key materials where b
is the block length of the PRP.

Moriai and Imai enhanced the lemma shown by Black and Rogaway. The
enhanced lemma contribute to reduce the length of the necessary key material.
Moriai and Imai proposed an enhanced MAC scheme, that is called as 2-key
XCBC [MI02a]. 2-key XCBC achieves most of the desirable features of CBC
based MAC schemes. From this point, 2-key XCBC is the most efficient MAC
scheme amongst ones based on the CBC-MAC.

In this paper, we study the security of 2-key XCBC with real ciphers and
discuss the gap between real ciphers and a PRP assumed in the security proof of
2-key XCBC. We firstly consider the security of 2-key XCBC with two provable
secure PRP constructions. One is Even-Mansour construction [EM97] and give
the way to forge example schemes of 2-key XCBC mode with EM construction.
Next, DESX by Rivest [KR96] is considered. Although our modified attack does
not efficiently forge 2-key XCBC with DESX, the computational complexity
required for our attack is much below than the proven boundary for DESX.
Related works. There are also extensive research results dealing with a pseudo-
random function (PRF) and a pseudorandom permutation (PRP). The definition
of PRF and PRP are given in [GGM86]. Luby and Rackoff analyzed the way to
use PRF in order to construct a PRP [LR88]. Major modes of operation are ana-
lyzed using PRP/PRF and their prooves of security appears in [BD+97]. For the
practical security assessment of Even-Mansour construction, Daemen gives two
kinds of attacks [Da93]. Although they are faster than the key exhaustive search,
the computational complexity required for the attack does not conflict the prov-
able security of EM construction shown in [EM97]. The attacks described by
Daemen are essentially the partial key exhaustive search and a time-data trade-
off variant. In addition the advanced slide attacks give more efficient attack to
derive the key of EM construction [BW00]. For the security of DESX construc-
tion. The proof of the security is given in [KR96]. On the other hand there are
some results on the attack of DESX. The advanced slide attack is again appli-
cable to DESX [BW00]. There is another unpublished note on the security of
DESX [Mi02]. For the provable secure MAC schemes based on a PRP, there is a
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recent publication [BR02]. The proposed scheme PMAC is as efficient as CBC-
MAC. In addition to CBC-MAC PMAC has the provable security and potential
parallelizability. There is a result on the strengthened CBC-MAC in terms of
provable security [JJV02]. More recently, another CBC-based MAC scheme was
proposed for NIST [KI02].

2 Notations

For two integers a and b, the relation a | b means that a divides b. For two
bit strings, a and b, the operation a ⊕ b means the bitwise xor operation. The
operation a <<<n k means the k-bit left rotation in an n-bit register, i.e. a is
treated as an n-bit string if a is shorter than that.

In the following part, we write PK(M) as a PRP with two inputs, a key K
and a message data M . Let b the block size of PK(M) in bit length. Let len(M)
be the bit length of M . More specifically we use the notation #bM to describe
the number of b-bit blocks required to store M . Therefore, #bM = �len(M)/b�.
For a bit string M such that b | len(M), we use the notation with a subscript
Mi to be the i-th block of M cutting into b-bit blocks. For two bit strings A and
B, the operation A || B means the concatenation of two strings.

3 MAC Generations Based on a CBC-MAC

So far, some MAC generating schemes have been proposed, based on the original
CBC-MAC[FIPS81]. We review some relative works to our research.

3.1 CBC-MAC and Variants

The CBC-MAC operates on a message M such that b | m and len(M) �= 0. The
authentication tag tagM is generated in the following way:

tagM = CBCMACK(M) = PK(M#Mi−1 ⊕ PK(M#Mi−2 ⊕ · · · ⊕ PK(M0))).

Assuming that P is a PRP, an adversary without a secret key K cannot forge a
message when an adversary does not change the length of the message [BKR94].
However if an adversary changes the length of a message, the adversary can
generate a different message with a valid tag only out of a valid pair (M, tagM )
as follows:

CBCMACK(M || M ′ || M ′ || . . . || M ′) = tagM ,

where M ′ is a string to be generated out of M by replacing M0 by M0 ⊕ tagM .
We call this attack as the concatenation attack.

Following the analysis on the original CBC-MAC, some schemes being se-
cure against the concatenation attack were proposed. One of the examples is
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ECBC [RACE]. To overcome the drawbacks of ECBC (dual key setups, addi-
tional PRP invocations, handling arbitrary length of messages), some construc-
tions with three key materials are introduced. The technical essence of the three
key construction is that for a message such that len(M) > 0 and b | len(M), the
obligative padding is not applied (in order to avoid an additional P invocation),
but another PRP is applied. To realize the idea, following methods are proposed:

1. Another key material K3 is introduced so as to identify messages with or
without padding by using different PRPs, one is PK2 , and the other PK3 .

2. Unlike EMAC, the last invocation of CBC is the target of switching two
PRPs.

The 3-key ECBC proposed in [BR00] is the method with (1) and the 3-key
FCBC proposed in [BR00] is the method with (1) and (2). The FCBC achieves
the minimum P invocation for any message. Meanwhile the FCBC requires three
keys all of which are set to P 1. In real implementation of the FCBC scheme,
three keys may be fed into a key schedule that can be costful when dealing
shorter messages.

In [BR00], Black and Rogaway introduced an almost optimally efficient
scheme based on CBC-MAC. The number of key setups for the scheme is re-
duced to one instead of three (FCBC). There is a most contributing lemma to
this improvement. The lemma, Lemma 4 in [BR00], proves that there is no ad-
versary that efficiently distinguishes a pair of two functions, (PK1(·), PK2(·)) and
(PK1(K2 ⊕ ·), PK1(·)). Thanks to the lemma, two permutations PK2 and PK3 of
FCBC can be replaced by two functions PK1(· ⊕K2) and PK1(· ⊕K3) without
security degrade. While the provable security is still achieved, the number of key
setups became optimal.

3.2 2-Key XCBC

Following the work by Black and Rogaway, Moriai and Imai enhanced Lemma
4 in [BR00] and introduced a new lemma [MI02b]. The enhanced lemma proves
that no adversary efficiently distinguishes a pair of two functions, (PK1(·), PK2(·))
and (PK1(K1⊕·), PK1(·)). Based on this lemma, the two PRPs, PK2 and PK3 of
FCBC, can be replaced by PK1(· ⊕K1) and PK1(· ⊕K2). While this enhanced
scheme still achieves the provable security, one key material out of three in 3-key
XCBC can be saved. Of course, the number of key setup is still optimal. One of
the examples using this lemma is the 2-key XCBC proposed by Moriai and Imai
[MI02a,MI02b].
2-key XCBC in [MI02b]: Share two key materials, K1 for a secret parameter
for PRP and the other b-bit K2 for secret masking. If a message M satisfies
len(M) > 0 and b | len(M), then set Kt = K2. Otherwise, set Kt = K1 and
pad the minimum binary string 10i to M such that the padded message M̃ fits
1 More specifically, for a fixed length of message, only two keys are always required.

Depending on the length of message, either of two keys is used as the second key
material.
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the b-bit block boundary, or more precisely pad the bit string 10b−1−len(M) mod b

to M . Let M− be the one-block truncated M̃ . The 2-key XCBC generates the
tagM as MAC that is calculated in the following procedures:

tmp = CBCMACK1(M
−), tagM = PK1(tmp⊕Kt).

This scheme successfully reduces the required key material in comparison with
3-key XCBC. We summarize the performance of 2-key XCBC.
Security. Assuming that the security of PRP and the randomness of Kt, namely
K1 and K2, it is proven that the 2-key XCBC cannot be forged. The security
proof of the 2-key XCBC is based on the pseudo-randomness of 2-key XCBC
function, which immediately implies the unforgeability.
Workload. The number of P invocations is �m/b�. This means that the 2-key
XCBC is almost as efficient as CBC-MAC from the viewpoint of required com-
putational complexity. Moreover thinking of that a PRP in a scheme is replaced
to a secure block cipher in reality, consideration of the number of keys fed to key
schedule is also important. In this regard, the scheme is also optimally efficient
since the number of keys parameterizing PRP is one.
Key materials. The most important advantage of 2-key XCBC is the number of
key materials. Only the original CBC-MAC (but with major security problems)
achieves single-key scheme. The EMAC scheme uses two key materials but there
are some disadvantages over 2-key XCBC: one necessary additional P invocation,
no definition dealing with a message that does not fit b-bit block boundary
(EMAC∗ does, but it requires another P invocation), and two keys are always
set to PRP.

4 2-Key XCBC Variations and Raw-Key Masking

In this part, we discuss the 2-key XCBC in more detail. The original version of 2-
key XCBC was introduced in the previous part of the paper. However a number
of variations can be also considered. Firstly we formalize a simple variation that
is implicitly described in [MI02b].
2-key XCBC′: Share two key materials, K1 for a secret parameter for PRP
and the other b-bit K2 for secret masking. If a message M satisfies len(M) > 0
and b | len(M), Kt = K1. Otherwise, Kt = K2 and pad the minimum binary
string 10i to M such that the padded message M̃ fits the b-bit block boundary,
or more precisely pad the bit string 10b−1−len(M) mod b. Let M− be one-block
truncated M̃ . The 2-key XCBC generates the tagM in the same way as 2-key
XCBC. Note that the difference from the original 2-key XCBC is the definition
of Kt. Moriai and Imai also note that this variation also achieves the provable
security [MI02b].

In addition to this variation, there are some variations for the operation
to Kt. For the simplest case, we can consider the case where len(K1) �=b. If
len(K1) > b, Kt can be generated out of the truncate of K1. If len(K1) < b, Kt

can be a string of K1 padded with a constant or a part of K1. Another possible
variations are ones differing the replacement to xor operation, e.g., addition
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and subtraction operations. Moreover any of these variations have another yet
variations by defining Kt in the opposite manner, like 2-key XCBC′.
Raw-key masking. In order to discuss the security of 2-key XCBC variations, we
especially focus on the security against a certain special form of plaintexts. In
order to define these plaintexts, we introduce a way to categorize all 2-key XCBC
variants into two groups; one is called 2-key XCBC group and the other 2-key
XCBC′ group. The 2-key XCBC group includes 2-key XCBC variations where
Kt is generated out of K2 for a message M with len(M) > 0 and b | len(M).
The 2-key XCBC′ group is the co-group of 2-key XCBC group, i.e., that includes
2-key XCBC variations where Kt is generated out of K1 for a message M with
len(M) > 0 and b | len(M).

Following these notations, we define the target plaintexts for each group. For
2-key XCBC group, letM to be the set of messages with 0 ≤ len(M) < b. Note
that the size ofM is sufficiently large since

∑b−1
i=0 2i = 2b − 1. For 2-key XCBC′

group, letM to be the set of messages with len(M) = b. Also note that the size
of M in this case is sufficiently large since it is 2b.

The purpose of these target plaintexts is to construct a situation of raw-key
masking where the PRP parameter K1 is reused to mask the message. Therefore
regardless of which category one is considering, the MAC generation against a
message M ∈M can be written as: tagM = PK1(f(M,K1)), where f is a simple
non-cryptographic function, e.g., xor, addition and subtraction operations. The
operands can be also the result of a simple operation such as <<< and bitwise
negation.

In the following part of the paper, we study the security of the function
PK1(f(M,K1)), treating some real examples of P and examples of f2.

5 Security Analysis:
2-Key XCBC with PRP Constructions

We discuss the security of tagM = PK1(f(M, K1)). Especially we treat the cases
in which P is a PRP construction with a provable security. To respect the prac-
ticality of the discussion, we deal with f functions that is naturally defined ones,
such as xor or truncation in a natural manner.

As we already mentioned, we concentrate on a message M ∈ M. Thanks to
the flexible definition ofM, we can treat any variants suggested in the previous
as a function of tagM = PK1(f(M, K1)). Since an adversary against a MAC
scheme can gather sufficient pair of a message and its valid tag (M (i), tag(i)),
the adversary is equivalent to an adversary against tagM = PK1(f(M, K1)) in
chosen-plaintext-attack circumstance.
2 In our situation, an adversary does not have the oracle by which P −1

K1
(C) is com-

putable in response to C. This oracle may not exist in the genuine implementation.
However if ever a wrong implementation happens to allow to use such oracle, the
scheme is immediately cracked. Such circumstances could be realized in the case
when K1 is reused for encryption (e.g, CBC mode). We do not treat this situation
since the discussion is trivial and out of the scope in this paper.
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5.1 Even-Mansour Construction

A publicly-known PRP can be efficiently transformed to a provably-secure secret
PRP by Even-Mansour construction [EM97]. This construction is effective and
increases the efficiency very much especially in the case that the secret key is fre-
quently changed in the memory-limited device. Moreover the throughput of the
data randomizing part can be also improved. Since the secret PRP can be used
for many cryptographic schemes such as a MAC generation and a symmetric-
key encryption, many cryptographic implementations (especially where keys are
frequently changed) take advantage of EM construction using a public PRP.

The security of EM construction is proven [EM97]. The length of the secret
information required for EM construction is 2b bits where b is the block length
of the public PRP. Then the proven security of EM construction can achieve
the effective key length of b − l − m bits against an adversary the number of
whose oracle call to the public PRP and EM construction is limited to 2m and
2l respectively.

The description of EM construction is as follows. There are parameters of
EM construction, namely a public b-bit PRP P and two b-bit keys Ka and Kb.
The EM construction can be written as

EMP,Ka,Kb
(M) = P (M ⊕Ka)⊕Kb.

When EM construction is used as a block cipher, the computational com-
plexity for key setup is almost negligible. Therefore, if a scheme where a PRP is
keyed by plural key materials (for instance FCBC [BR00]) is concerned, there is
an advantage in key setup efficiency over the current secure block ciphers.

We discuss the security of the 2-key XCBC mode with a secret PRP con-
structed by EM construction. An adversary can obtain pairs of a message and its
valid tag (M (i), tag(i)). Based on the knowledge of (M (i), tag(i)), an adversary
tries to generate a message M ′ that is different from any M (i), and its valid tag
tag′.

We treat special 2-key XCBC variants in which raw-key masking material is
defined by the Ka of EM construction. Especially we consider these two schemes,
2kXCBCEMP,Ka,Kb

,Ka,K3,⊕ and 2kXCBC ′
EMP,Ka,Kb

,K3,Ka,⊕. These variations
are ones of most possible variants since the length of Ka fits to the requirement
of raw-key masking for 2-key XCBC and 2-key XCBC′. We give the following
lemma concerning the security of these schemes. The lemma treats only 2-key
XCBC but the same fact is also applied to 2-key XCBC′ as well.

Lemma 1. (Security of 2-key XCBC with Even-Mansour construction) The se-
curity of 2-key XCBC is insecure if raw-key masking material of 2-key XCBC is
defined to be Ka, the plaintext-side key material of Even-Mansour construction.
More specifically, there is an attacker with one MAC-generating oracle call and
two public-PRP oracle call. The forgery requires only negligible computational
complexity and memory.

Proof. We show an algorithm to forge 2-key XCBC with the specified EM con-
struction. For simplicity, we show the attack against 2-key XCBC specified in
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[MI02b]. However, almost the same attack can be applied to the 2-key XCBC′

scheme with EM construction.

Attack algorithm
Precalculation
P1. An adversary against 2-key XCBC chooses any message M (1) such that

0 ≤ len(M (1)) < b and obtain its valid tag tag(1).
P2. The adversary generates the padded message M̃ (1) = M (1) || 10i where

b | len(M̃ (1)) and 0 ≤ i < b.
P3. The adversary calculates tag′ = P (M̃ (1)) since P is publicly known.
P4. Set K ′

b = tag(1) ⊕ tag′.
Forgery
F1. Generate a message M (2) such that 0 ≤ len(M (2)) < b and M (2) �=M (1).
F2. Generate the padded message M̃ (2) = M (2) || 10i where b | len(M̃ (2)) and

0 ≤ i < b.
F3. Generate the tag for M (2), tag(2) = P (M̃ (2))⊕K ′

b.

Attack analysis
Since the adversary choose M (1) so as to hold 0 ≤ len(M (1)) < b, M (1) will be
internally padded and generate the same string as M̃ (1). From the same reason,
2-key XCBC will choose Ka for raw-key masking. Therefore the valid tag for
M (1) is mathematically described as follows:

tagM(1) = EMP,Ka,Kb
(M̃ (1) ⊕Kt)

= P (M̃ (1) ⊕Ka ⊕Ka)⊕Kb

= P (M̃ (1))⊕Kb.

Since the adversary knows tag′ = P (M̃ (1)),

tag′ ⊕ tagM(1) = P (M̃ (1))⊕ (P (M̃ (1))⊕Kb)
= Kb.

Therefore K ′
b that the adversary calculates is equal to Kb.

We now verify that tag(2) is a valid tag for M (2). Since M (2) is also chosen
so as to hold 0 ≤ len(M (2)) < b, the valid tag for M (2) is formulated as follows:

tagM(2) = EMP,Ka,Kb
(M̃ (2) ⊕Kt)

= P (M̃ (2) ⊕Ka ⊕Ka)⊕Kb

= P (M̃ (2))⊕Kb.

The tag tag(2) generated by the adversary coincides to tagM(2) . ��
This kind of attack can be applied because of the potential weakness due to

the key masking at outside of the PRP. We show the attack against the weakest
variation of f but the most possible specification (if this kind of security has
not been concerned). There are number of possibilities to the variation of the
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raw-key masking function f since the purpose of f is only to mask the data.
However another elaborated attack can be also applied to some of variations.

For f functions such that f(M, K) = M⊕(K <<<b c) for some c, the adversary
is required an additional workload to exhaustively guess the value k⊕ (k <<<b c).
However in this case the total workload is still equal to(when b and c are coprime
to each other) or less than (otherwise) the proven security level to EM scheme.

5.2 DESX Construction

DESX is an efficient way of improving the security of a block cipher with small
additional computational complexity and additional key resources. This was orig-
inally proposed by Rivest but not published. The formal security level was proven
by Kilian and Rogaway [KR96].

There are two variations of DESX construction; we introduce the 3-key vari-
ant at first so that the other variant can be seen as the special case of the former.
Let PKa be a b-bit PRP parameterized by the secret key Ka. Then 3-key DESX
takes another two b-bit key materials, namely Kb and Kc. The scheme can be
written as:

DESXPKa ,Kb,Kc(M) = PKa(Kb ⊕M)⊕Kc. (1)

The 2-key variant is the case in which Kb = Kc holds.
As one can easily find the similarity between the structure of DESX and EM

construction, we can apply the similar attack against a certain special case (but
still very possible) of DESX. However, unlike the case with EM construction, our
attack only violates the security bound of DESX. That is, our forgery against
2-key XCBC scheme with DESX requires partial exhaustive key search over
Ka. We summarize our result by showing the similar lemma. First of all, we
formalize the target construction of 2-key XCBC with DESX. Let PKa be any
publicly known PRP (e.g. a block cipher) keyed by the secret key Ka. The DESX
construction we study here is defined in Equation (1). Then immediately we can
formalize the special case of the 2-key XCBC with DESX construction as follows:

2kXCBCDESXPKa
,Kb,Kc ,Kb,K3 .

We analyze the MAC scheme.

Lemma 2. (Security of 2-key XCBC with DESX construction) The security of
2-key XCBC cannot be bounded by the security of DESX if plaintext-side key
material of DESX (that is Kb in the previous definition of DESX) is set to
be one of the key material used in 2-key XCBC. More specifically, there is an
attacker that performs a forgery with almost the same time complexity to what
is required to the key exhaustive search for Ka.

Proof. The proof for this lemma is basically the same to the proof of Lemma
1 except the additional exhaustive search over Ka. We will only describe the
attack algorithm and omit the detail analysis.
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Attack algorithm
Precalculation
P1. An adversary against 2-key XCBC chooses any messages M (i) (i = 1, · · · 2)

such that 0 ≤ len(M (i)) < b and obtain its valid tag tag(i).
P2. The adversary generates the padded message M̃ (1) = M (1) || 10i where

b | len(M̃ (1)) and 0 ≤ i < b.
P3. Do the exhaustive search over possible Ka and find the correct pair of

(Ka, Kc) as follows:

1. For each Ka’s candidate, K
(i)
a , set K

(i)
c = P

K
(i)
a

(M (1))⊕ tag(1).

2. If P
K

(i)
a

(M (2)) ⊕ K
(i)
c == tag(2), break the loop and set (K ′

a, K ′
c) =

(K(i)
a , K

(i)
c ).

Forgery
F1. Generate M ′ such that 0 ≤ len(M ′) < b and M ′ �=M (i) for any i.
F2. Set M̃ ′ = M ′ || 10i, where b | len(M̃ ′) and 0 ≤ i < b.
F3. Generate the tag for M ′, tag′ = PK′

a
(M̃ ′)⊕K ′

c. ��
Roughly speaking the use of DESX in this case cannot bring any efficient

security advantage over the normal block cipher usage, PKa
. The required data

for this attack are a few pair of a message and its tag. Although the required time
complexity for this attack is almost the same as the key exhaustive search for
underlying block cipher, the amount of the required computational complexity
is remarkably below than what is proven for DESX. More specifically we require
a constant number of invocations to DESXPKa ,Kb.Kc , 2k off-line calculation of
P , and negligible memory space.

6 Security Analysis:
2-Key XCBC with Real Block Ciphers

In the previous section, we exemplified the special case of 2-key XCBC such that
the mode of operation potentially weakens the underlying primitive. However the
similar discussion can be also applied to a block-cipher primitive, whose security
is typically evaluated in a heuristic manner.

One of the example is about the AES cipher [FIPS197], by which we exemplify
the case where 2-key XCBC mode weakens the AES cipher from the view point of
cryptographically effective number of rounds. The second example is on a future
promising cipher Camellia [AI+00]. We also discuss the security of Camellia
used in 2-key XCBC. In Camellia’s case, we conclude that 2-key XCBC does
not weaken the cryptographic security evaluated from the key schedule analytic
approach. However, our security evaluation in this respect is not trivial because
we use some of Camellia’s key-schedule analyses.
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6.1 AES with 2-Key XCBC

AES [FIPS197] (originally proposed as Rijndael [DR99]) is a 128-bit block cipher
whose key length is 128, 192 or 256 bit. The number of rounds r is defined to
be 10, 12 and 14 for the key length 128, 192 and 256 bit. The key scheduling
algorithm generates (r + 1) 128-bit round keys. The first round key is identical
to the most significant 128 bits in the secret key.

To encrypt a plaintext block, the input is xored with the first round key
followed by the non-linear substitution, shift-row, mix-column and key addition
for the round one. At the last round (the tenth round for 128-bit key), there is
no mixcolumn operation.

We study the 2-key XCBC with AES in more detail. For a message M ∈M,
any variation of 2-key XCBC generate a tag calculated by tagM = PK1(f(M,
K1)). We let the non-cryptographic function f to be fhigh128·⊕, the xor operation
of b-bit M and the most significant 128 bits of K1. Note that this definition of
the raw-key masking K1 is a fairly natural definition rather than ones elaborated
to embed a security flaw.

In this case, the initial whitening of AES is the exactly the same operation
as the raw-key masking due to the 2-key XCBC mode. Therefore these two op-
erations cancel out each other. Consequently the padded message M̃ is the exact
value after the key whitening. Since AES does not have key addition until the
key addition at the end of the first round, the adversary can take an advantage
of one round due to the secret-free recovery of intermediate value. This means
that a chosen-plaintext attack against (r− 1)-round AES variant is sufficient to
attack such 2-key XCBC mode.

The current security assessment of a block cipher is considerably related to
the number of rounds. Many cryptographic techniques exploit a certain kind
of characteristics in a round and try to extend the characteristics to as many
rounds as possible. Therefore, from that common point of view, 2-key XCBC
with AES is cryptographically weaken the underlying AES cipher, especially in
a context of the current state-of-the-art cryptography.

6.2 Camellia with 2-Key XCBC

Camellia is a 128-bit block cipher, that supports 128-, 192- and 256-bit key
lengths [AI+00]. Camellia adopts Feistel structure in its overall design. However
there are additional structural components; initial and final whitening and FL
and FL−1 functions. In the key-scheduling algorithm, two intermediate keys KL

and KA (in addition, KR and KB for 192 and 256 key length) are generated out
of the secret key. Each round key is a upper or lower half of bitwisely-rotated
intermediate keys.

If Camellia is used with 2-key XCBC mode, the cryptographic security must
be considered especially concentrating on the function CamelliaK1(f(M, K1)).
As we noted, the plaintext is initially whitened by the 128-bit initial whitening
key (kw1, kw2). Note that the specification of the key schedule defines (kw1, kw2)
such that kw1 || kw2 = K1 for 128-bit key length. For other key length, the same
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thing can be found when we define f = fhigh128·⊕. Therefore the intermediate
value after the whitening coincides to the padded message in a result of canceling
out the raw-key masking and the initial whitening. Therefore in this mode, the
effect of the initial masking disappears.

This characteristics can be regarded as the same thing as what happened in
AES. However, the discussion in the following is different. Unlike to the case of
AES, Camellia has another key masking for every input of the non-linear round
function. Therefore the adversary cannot know the actual input of non-linear
functions. Consequently, if the security of a block cipher is considered just from
the viewpoint of the number of rounds, the fact that the whitening disappears
will not weaken the security statement.

However, because of the characteristics due to Feistel structure, we have to
consider the security against equivalent keys. In Feistel network, the initial and
final whitening keys effect every round key in a linear manner. Therefore these
whitening keys are transformed to each round function and can be combined with
the round key [Kn91]. This observation is extremely critical if the security in the
context of equivalent keys is considered. For example, LOKI89 [BKS89] has a
structure with 16 equivalent keys for all keys [Kn91]. However, these equivalent
keys will not happen for LOKI89 without the initial whitening. From the study
of LOKI89, how the existence of the initial whitening strengthen (or weaken)
the cryptographic security is not obvious.

In the following part of this section, we analyze the security of Camellia with-
out the initial whitening. We treat the equivalent key or similar characteristics
in the structure. In order to make the discussion simple, we treat the equivalent
cipher, where the final whitening is combined with every round key. The resul-
tant round keys are called pseudo round keys PKi. If a distinct secret key pair
(K, K ′) is a equivalent key, the key differential value ∆K = K ⊕ K ′ does not
affect to the PKi differentials, i.e., ∆PKi = 0 for all i.

We study the key schedule of Camellia. For simplicity, we treat the key
schedule for 128-bit key. The similar analysis can be also applied to 192- and 256-
bit key schedules. The Camellia’s key schedule for a 128-bit secret key generates
128-bit KA value using non-linear transformations out of the secret key KL.
Please refer to [AI+00] for definitions of each round keys. From the definition
some of important pseudo round keys are defined as follows:

PK13 = (KL <<<128 94)L ⊕ kw4, PK17 = (KL <<<128 111)L ⊕ kw4,

PK14 = (KL <<<128 94)R ⊕ kw3, PK18 = (KL <<<128 111)R ⊕ kw3.

where kw4 = (KA <<<128 111)R and kw3 = (KA <<<128 111)L.
In order to find a remarkable characteristics for two distinct keys, the differ-

ential of all pseudo-keys ∆PKi must be zero. For necessary condition we show
the followings; Two of the whitening differentials for a fixed pair (K, K ′), ∆kw4
(and ∆kw3), must cancel out round-key differentials for round 13 and 17 (or 14
and 18). This is formulated as:

∆K13 = ∆K17 = ∆kw4, ∆K14 = ∆K18 = ∆kw3.
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These are combined into one 128-bit relation as follows.

(∆KL
<<<128 94) = (∆KL

<<<128 111) = (∆KA
<<<128 111).

Note that for a fixed (K, K ′), the intermediate-key differentials ∆KL and ∆KA

are also fixed. Since the rotation offsets between two KLs differ in 17 bit (that
is coprime to the register size 128), the only satisfiable differentials for KL and
KA are only the bit string of 1128 for both differentials.

Since KA is generated out of KL by means of four-round iterative function
used in the data randomizing part. With respect to the classic differential prop-
agation, the differential probability for the corresponding ∆KL

and ∆KA
must

be extremely small. This means that almost negligible pair of secret key must
collide the key differentials at round 13, 14, 17 and 18 rounds. From this fact,
the Camellia without the initial key whitening will not have remarkably large
class of keys that have equivalent keys.

7 Conclusion

We studied the security of 2-key XCBC mode and demonstrated two important
cases where a PRP is replaced to a provably secure PRP construction. For Even-
Mansour construction, there is an efficient forgery, and for DESX construction,
its probable security is compromised. The 2-key XCBC MAC generation scheme
is not always secure even with a provably secure primitive.

These security-proof violation comes from abuse of raw-key masking outside
of the cipher. In both cases we showed that an adversary can make the random-
izing function contain two raw-key masking. In worst cases, these two raw-key
maskings may cancel out each other effects.

The discussion on the security of a block cipher with raw-key masking be-
comes more complicated. As shown in Camellia case, a certain kind of attacks
must be revisited. So to use raw-key masking safely there must be good evalua-
tion on its primitive and scheme.

We remark that our observations discussed in this paper are not applicable
to the most recent works by Kurosawa and Iwata [KI02].
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A The Important Lemma Constructing 2-Key XCBC

Settings. Let us think of the situation where an adversary tries to distinguish
whether the oracle outputs based on the pair of functions (π1(·), π2(·)) or the
other pair of functions (π(·), π(K ⊕ ·)) in response to the adversary’s queries.

Lemma 3. (Lemma 1 from [MI02b]) Let n be a positive integer and define N =
2n. If an adversary makes at most p queries to the oracle, we have the following
relation concerning the advantage of the adversary.

∣
∣
∣ Pr[πK

R← Perm(n) : AπK(·),πK(K⊕·) = 1] −

Pr[π1, π2
R← Perm(n) : Aπ1(·),π2(·) = 1]

∣
∣
∣ ≤ p2

N
.
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Abstract. This paper presents a new statistical testing of symmetric ci-
phers and hash functions which allow us to detect biases in a few of these
systems. We first give a complete characterization of the Algebraic Nor-
mal Form (ANF) of random Boolean functions by means of the Möbius
transform. Output bits of a cryptosystem are here described by a set of
Boolean functions. The new testing is based on the comparison between
their Algebraic Normal Form and those of purely random Boolean func-
tions. Detailed testing results on several cryptosystems are presented. As
a main result we show that AES, DES, Snow, and Lili-128 fail the tests
wholly or partly and thus present strong biases.

Keywords: Boolean function, statistical testing, symmetric cipher, ran-
domness, hash function, Möbius transform, Walsh Transform.

1 Introduction

Randomness is the ground property of cryptography. For the attacker, any quan-
tities produced by a given cryptosystem must look as unpredictable as possible.
It means that these quantities have to be of sufficient size and “be random” in
the sense that the probability of any particular value being selected must be
as weak as possible to preclude a cryptanalyst from gaining advantage through
optimed search strategy based on such probability [15, p 169].

From a general point of view, any symmetric cipher and any hash function
must be designed as a pseudorandom bit generator (PRBG) relatively to each
of its output bits.

Two important requirements are then to be satisfied: the output sequences
of a PRBG must be statistically indistinguishable from truly random sequences
and the output bits must be unpredictable to an attacker with limited computing
facilities. Therefore, many different statistical tests have been proposed and are
usually implemented to evaluate these two requirements. Historically, we must
cite Golomb’s randomness postulates [11]. These tests have been designed as
necessary but not sufficient tests to check if a shift register sequence statistically
behaves properly. Yet statistically good according to these postulates, this kind
of sequence has been shown very predictable when using the Berlekamp-Massey
algorithm [16]. This is the illustration that randomness is uniquely defined rel-
atively to the statistical tests we may use.

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 342–353, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Many other statistical tests have been proposed in order to improve what
may be considered as “random”. Among many others, let us cite those that
are mainly implemented: frequency test, serial test, poker test, runs test and
autocorrelation test [8,13], Maurer’s universal statistical test [17], (for a more
detailed bibliography on statistical tests used in cryptography see [15, pp 188-
189]).

All the recently proposed symmetric cryptosystems and hash functions can
be considered as satisfying all the known randomness requirements. Now the
essential part of the cryptanalyst’s work is to find an exploitable bias, due to an
unknown design flaw, that none of the up-to-now known test detected. For that,
the cryptanalyst generally first designs a new hypothesis testing based on a new
test. Let us recall that in fact randomness is a theoretical indeed “philosophical”
concept. Practically speaking, it can only be determined and defined relatively
to the set of statistical tests used to evaluate it.

In this paper we present a new hypothesis testing based on a χ2 distribu-
tion and called Statistical Möbius Analysis. More precisely, we define as working
statistic X the number of monomials of degree exactly d in the Algebraic Normal
Form (ANF) of all the Boolean functions modeling each of the output bits. The
set of these d-monomials which are effectively represented in the ANF, are prac-
tically computed by means of the Möbius transform. A secure cryptosystem has
a fixed distribution determined by general results on random Boolean functions.
Then one-sided tests allow us to check if the constituent Boolean functions are
truly random.

These tests have been implemented for a few recently proposed stream ciphers
and block ciphers, as well as for the main hash functions. All are known to have
passed the previously known statistical tests and thus are considered as having
very good random properties. Our main results is that famous cryptosystems
such AES, DES, Snow and Lili-128 did not pass our tests, wholly or partly.
Other results as well as detailed data will be found in [5].

This paper is organized as follows. Section 2 presents the necessary prelim-
inaries and gives the characterization of the Algebraic Normal Form (ANF) of
random Boolean functions. In particular, we complete the results presented in
[19], make them more practical and give new results on the total degree of a
Boolean function. Section 3 presents the new test we designed whilst Section
4 gives detailed numerical results that have been obtained for a few stream ci-
phers (Lili-128, Snow, BGML and RC4), block ciphers (DES and AES) and hash
functions (SHA-0, SHA-1, Ripe-MD, Ripemd160, Haval, MD4 and MD5).

2 Characterization of Boolean Functions and Results

In this section, we present a new statistical way of describing a Boolean function
by use of its ANF. This latter can be uniquely computed by means of the Möbius
transform. We deduce results on the balancedness and correlation properties with
the help of the Walsh transform.
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2.1 Structure of the Algebraic Normal Form

A Boolean function is a function f from F
n
2 to F2. The number of such functions

is 22n

. We define a random Boolean function as a function f whose values are
independent, identically distributed (i.i.d.) random variables that is to say

∀(x1, . . . , xn) ∈ F
n
2 , P [f(x1, . . . , xn) = 0] =

1
2
. (1)

In other words, every f(x1, . . . , xn) is a Bernoulli random variable of parameter
1
2 . The corresponding probabilistic law will be denoted B(p) whith p = 1

2 in our
present case1.

The weight of a Boolean function over F
n
2 is defined by wt(f) = |{x ∈

F
n
2 |f(x) = 1}|. Then a Boolean function will be said to be balanced if wt(f) =

2n−1. Note that a random Boolean function, as defined above, may be not bal-
anced. In fact we will give the general probability for such a function to be
balanced.

The Algebraic Normal Form (ANF) of f is the multivariate polynomial given
by f(x1, . . . , xn) =

⊕
u∈F

n
2

auxu, au ∈ F2, where u = (u1, . . . , un) and xu =∏n
i=1 xui

i . The au are given by the Möbius transform [14] of f :

au =
⊕
x�u

f(x) (2)

where � denotes the partial order on the Boolean lattice, that is to say that
α � β if and only if αi ≤ βi for all 1 ≤ i ≤ n. A monomial auxu of the ANF
will then be said of degree k if au = 1 and if wt(u) = k where wt(.) denotes the
Hamming weight. With these notations we now can state:

Proposition 1 The Algebraic Normal Form (ANF) of a random Boolean func-
tion f from F

n
2 to F2 has 2n−1 monomials in average. For every k such that

0 ≤ k ≤ n, there are an average of 1
2

(
n
k

)
monomials of degree k.

When k = 0 (resp. k = n), it is equivalent to assert that half of randomly chosen
Boolean functions contains a0 (resp a(111···11)) in their ANF.

Proof. A given monomial xi1xi2 . . . xik
of degree k will be part of the ANF if

and only if au = 1 where the support of u (that is to say the set of indices j
such that uj = 1 and denoted supp(u)) is {i1, i2, . . . , ik}. Now we have

au = f(0)) ⊕
k⊕

j=1

f(eij ) ⊕

 k⊕

l=1

k⊕
j=1,j�=l

f(eij ⊕ eil
)


 ⊕ . . . ⊕ f(

k⊕
j=1

eij ), (3)

where 0 = (0, 0, . . . , 0) and ei is the n-uple whose only its i-th coordinate is
non zero. The right side of Equation (3) has

∑k
j=1

(
k
j

)
= 2k terms. We have

1 Every n-tuple (x1, . . . , xn) is randomly and independently chosen, then f(x1, . . . , xn)
too. It is equivalent to randomly choose f from the set of Boolean functions.
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au = 1 if an odd number of terms are all equal to 1. There are 2k−1 such odd
configurations. Each of them, according to (1) has probability 1

2k to be equal to
1 since we consider i.i.d. variables. Whence we have P [au = 1] = 2k−1 × 1

2k = 1
2 .

Thus the number of monomials of degree k in the ANF will be P [au = 1]×(
n
k

)
=

1
2 × (

n
k

)
. ��

We can in fact generalize this results with the following theorem:

Theorem 1 With the notation of Proposition 1, the number nk of monomials
of degree k has normal distribution with mean value E[nk] = 1

2

(
n
k

)
and variance

V [nk] = 1
4

(
n
k

)
.

To be mathematically rigorous, we should consider the binomial distribution in-
stead of the normal distribution. Moreover, we should write “X tends toward
normal distribution” rather than “X has normal distribution”. However, proba-
bility theory [4] entitle us such shortcuts as soon as the conditions of application
for the Central Limit Theorem are fulfilled. It is the case in our work.

Proof. The proof is straightforward when considering that au, for all u ∈ F
n
2 is a

Bernouilli random variable with parameter 1
2 , where E[au] = 1

2 and V [au] = 1
4 .

Since nk =
∑

wt(u)=k au, for large enough values of the number of u of weight k,
the Central Limit Theorem gives the result (as soon as nk ≥ 30 [4]). ��
This proposition allows to study the randomness properties of a Boolean func-
tion. Let us consider a function f used for the feedback of a shift register of
length L. If f is constant (its ANF has only one monomial), the output will not
be random at all. In the case of the linear feedback (the ANF of f is of degree
1 and has at most n monomials), the randomness properties are limited: the
linearity properties are not suppressed, and combinatorial information is easy to
get (for details see [11]). Moreover, it is very easy to reconstruct the feedback
polynomial with only 2L output bits [16]. This is due to the fact that linear
functions have very limited randomness properties.

In other words, if we consider x = (x1, . . . , xn) and y = (y1, . . . , yn) such
that (e.g.) f(x) = f(y) = 1, the less random the function is, the easier is the
extraction of information on x and y.

Example 1 Let us take f(x1, x2) = x1 ⊕ x2. Any x = (x1, x2) and y = (y1, y2)
with x 	=y such that f(x) = f(y) = 1 will satisfy x1 ⊕ y1 = 1. This comes from
the fact that the values of the truth table are “structured” and not “randomly
spread” into this table.

Proposition 1 gives us the following criterion:

Corollary 1 A Boolean function used for cryptographic applications and pre-
senting the best trade-off in terms of its cryptographic properties must have a
degree as high as possible.

Proof. This directly comes from the fact that a n-variable random Boolean func-
tion in average has its term of degree n with probability 1

2 and will contain n
2
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terms of degree n−1. According to the upper bound of the degree [23] of a func-
tion presenting the best trade-off in terms of correlation immunity, balancedness,
..., we have for a t-correlation immune function: deg(f(x1, . . . , xn)) ≤ n − t − 1.
Constraining the function with given properties lowers the algebraic degree.
Combinatorial structures are introduced while randomness is lessened. In the
search for the best possible trade-off, to keep good randomness properties by
forbidding to get combinatorial information on the function inputs, the function
should have the highest possible degree. ��

2.2 Characterization of the Walsh Coefficients

The Walsh Hadamard transform of a Boolean function f refers to the following
transformation: ∀u ∈ F

n
2 , χ̂f (u) =

∑
x∈F

n
2
(−1)f(x)+<x,u>, where < x, u > de-

notes the usual scalar product computed over F
n
2 . A well-known result allows to

characterize the correlation immunity of f with the Walsh Hadamard transform:

Proposition 2 [24] A Boolean function f is t-order correlation immune if and
only if ∀u ∈ F

n
2 , 1 ≤ wt(u) ≤ t χ̂f (u) = 0.

Moreover f is balanced if and only if χ̂f (0, 0, . . . , 0) = 0.

Proposition 3 Let f be a random Boolean function over F
n
2 with n ≥ 5. For

all u ∈ F
n
2 , χ̂f (u) is a random variable which has Gaussian distribution with

mean value 0 and variance 2n.

Proof. First we can write χ̂f (u) =
∑

x∈F
n
2
(−1)f(x)+<x,u> = (2n−2)·∑x∈F

n
2
(f(x)

+ < x, u >). Since x and f(x) are independent, we can consider < x, u > +f(x)
as independent, identically distributed random variables for all x as well. Let us
note Y =

∑
x∈F

n
2
(f(x)+ < x, u >). For n > 5 (that is to say 2n > 30), due to

the central limit theorem [4], Y has a Gaussian distribution LG(E, σ2) with

E[Y ] = 2nP [f(x)+ < x, u >= 1] = 2n−1

(σY )2 = 2nP [f(x)+ < x, u >= 1]P [f(x)+ < x, u >	= 1] = 2n−2.

Hence χ̂f (u) has Gaussian distribution with mean value E[χ̂f (u)] = 2n(1 −
2P [f(x)+ < x, u >= 1]) = 0 and variance σ2 = 4.2nP [f(x)+ < x, u >=
1]P [f(x)+ < x, u >	= 1] = 2n. ��

If Φ denotes the normal distribution function, Φ(x) = 1√
2π

∫ x

−∞ exp
(
− t2

2

)
dt

and if p0 = Φ( 1
2

n
2 −1 ) − 1

2 , we then can state

Lemma 1
P [f balanced ] = p0.

Proof. For a balanced Boolean function, we have χ̂f (0, . . . , 0) = 0. By definition,
χ̂f (u), ∀u ∈ F

n
2 is even. Then we have P [χ̂f (u) = 0] = P [0 < χ̂f (u) < 2]. The

rest is straightforward to proove with Proposition 3. ��
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Remark.- This result is an accurate approximation of the “exact” probability

for a function to be balanced given by p = ( 2n

2n−1)
22n . Table 1 compares exact

probability with that computed with Theorem 1 for 5 ≤ n ≤ 19. Note that
computing exact probability p is highly time consuming while computation time
is negligible for p0.

Table 1. Exact and approximate probabilities for a function to be balanced

n p p0 n p p0 n p p0

5 0.1399 0.1381 10 0.02493 0.02491 15 0.004408 0.004407
6 0.09935 0.09870 11 0.01763 0.01762 16 0.003117 0.003116
7 0.07039 0.07015 12 0.01247 0.01246 17 0.002204 0.002203
8 0.04982 0.49738 13 0.008815 0.008814 18 0.001558 0.001558
9 0.03524 0.03521 14 0.006233 0.006233 19 0.001102 0.001101

3 The New Statistical Testing

We now present the different tests we built up to evaluate new statistical prop-
erties of symmetric cryptosystems and hash functions. Let us now consider such
a cryptosystem and specify the context we choose. Let there be a secret key
K = (k0, . . . , kn−1). A stream cipher can be seen as follows: every output bits i
generated from the secret key K can be expressed by a unique ANF (by means
of the Möbius transform defined by Equation (2)).

In other words, the N -bits output sequence can be described by a family of N
Boolean functions (ft(K))0≤t<N = (f0(K), . . . , fN−1(K)) where fi(K) denotes
the i-th bit produced by the system and modelled as a polynomial in variables
ki (ANF). Each output bit is a Boolean function ft : F

n
2 
→F2.

Similarly, let us represent a block cipher with n-bit key K working on m-bit
blocks. In the same way, but with the different output functions being evaluated
on the key space and the plaintext space P = (p0, . . . , pm−1), for a block cipher
C, we then have C = (c0, . . . , cm−1) = (f0(K, P ), . . . , fm−1(K, P )). Each of the
m ciphertext bits is a Boolean function ft : F

n+m
2 
→F2.

A hash function H : F
n
2 
→F

m
2 will have its m-bit message digest of block

B = (b0, . . . , bn−1) represented by (ht(B))0≤t<m = (h0(B), . . . , hm−1(B)). In the
rest of this paper we will use indifferently the term output bits and output Boolean
Functions (or output ANFs for short) to describe the quantities produced by
the cryptosystem we consider. At last we will consider that the different output
Boolean functions (or bits) are statistically independant. It is precisely the result
stated by previous usual, known tests.

The complete output ANF cannot be computed since it contains in aver-
age 2n−1 monomials. It would require exponential memory and computing time
complexity. For our tests we only focus on the monomials of degree at most 3
and need only to compute the 3-truncated ANF, that is to say the partial ANF
whose coefficients are effectively computed up to degree 3. For a few cases, 5-
truncated ANFs have been computed when necessary. From a practical point
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of view, we use Formula (3) to produce them. As a result, we observe in every
ANF, n̂d monomials of degree exactly d.

Let us now note Hd
0 the statistical hypothesis that the number n̂d of mono-

mials of degree exactly d is distributed according to the Theorem 1. In other
words, the cryptosystem passes our tests and thus exhibits no particuliar struc-
tural, statistical bias for the aspect we consider when satisfying this hypothesis.

We suppose the reader is familiar with basic probability and statistics theories
(for a detailed presentation see [4] and [15, Chap 5.4]).

3.1 The Affine Constant Test

Our hypothesis is then denoted H0
0 . According to Theorem 1, the probability for

the affine constant a0 to be represented in each of the output ANFs is p = 1
2 .

Equivalently, it means that the number of output Boolean functions having
a0 = 1 in their ANF has normal distribution N (N

2 ,
√

N
2 ) where N is the total

number of output ANFs.
If XS , the number of times a0 = 1, is the statistic we consider over the sample

output S of N ANFs, we can now describe the following two-sided test, called
the Affine Constant Test:

1. Compute XS over S.
2. Let us fix a significance level α (i.e. probability of rejecting H0

0 when it is
true) and choose a threshold xα so that for a statistic X of normal standard
distribution we have P [X > xα] = P [X < xα] = α

2 .

3. If the value X̂S = XS− N
2√

N
2

> xα or if X̂S < −xα then H0
0 is rejected (the

system fails the test) otherwise H0
0 is kept (the system passes the test).

3.2 The d-Monomial Tests

We are now considering the monomials of degree exactly d in the output ANFs.
Our testing is now denoted Hd

0 .
With the notation of Theorem 1, the number of monomials of degree d in a

Random Boolean Function ANF is a random variable which is N ( 1
2

(
n
d

)
, 1

2

√(
n
d

)
)

distributed. We now consider two goodness-of-fit, one-sided tests between the
expected frequencies (denoted nd) and those (denoted n̂d) we observe for the
considered cryptosystem.

The first test, T d
1 consider every different ANF and thus has a rather local

scope by giving more weight to very weak output ANFs. The second one, T d
2 ,

groups the N output ANFs according to a few numbers of sets or classes. So
to summarize, we will use the χ2 distribution with ν degrees of freedom by
considering the sum of the ν squared, independent random variables (ni

d−n̂i
d)√

ni
d

(i ≤ ν) which have by definition standard normal distribution.
In T d

1 we have ν = N − 1 (i.e. the number of output ANFs) while for T d
2 we

choose 2 ≤ ν ≤ 9
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1. Compute for each of the ν random variables ni
d and n̂i

d (ni
d is given by

applying Theorem 1).
2. Let us fix a significance level α and a threshold value xα (computed directly

from the cumulative density function of the χ2 distribution) so that for a
statistic X over a random sample we would have P [X > xα] = α (when X
follows a χ2 distribution with ν degrees of freedom).

3. Compute the statistics D2 given by D2 =
∑ν

i=1
(ni

d−n̂i
d)2

ni
d

.
4. If D2 > xα then we must reject Hd

0 (the system fails the test and thus
presents a statistical bias) otherwise we keep Hd

0 (the system does not present
any significative bias).

Test T d
2 is intended to describe the considered cryptosystem from a global

point of view. In particular it aims at verifying if local biases (detected with
T d

1 ) are still really significative at a more global level. Instead of dealing with
the observed frequencies n̂i

d of d-monomials for each of the N output ANFs we
rather are interested with the number of output ANFs whose number n̂d belongs
to a given, predefined intervall [a, b[. The expected frequency for every class is
computed from Theorem 1 by applying basic probability results.

3.3 The d-Monomial Tests on a Given Output ANFs Subset

Essentially, we consider the tests of Section 3.1 and 3.2 but on particuliar sub-
sets S of output ANFs. These test are intended to detect subsets of weak output
ANFs. They are denoted T d

i |S where i = 1, 2. Accordingly to the probability
and statistics theories, results for which a given cryptosystem exhibits weak-
nesses must be thoroughly examined and inspected. Complementary results on
sampling theory must be taken into account to discriminate “normal but ex-
tremal results” (that is to say samples S for which P [X > xα] = α whilst having
truly random distribution) from “truly non-random behaviour”.

For all these tests and in all our experiments , we considered α = 0.05, 0.01
and 0.001.

4 Simulation Results

4.1 Stream Ciphers

We will here mainly focus on two stream ciphers that have been proposed for
the NESSIE Open Call for Cryptographic Primitives [18]: Lili-128 and Snow.
Other stream ciphers have been tested or are currently under testing. Table 2
summarizes results for a few of them. We considered the first N = 6016 output
bits in our experiments.

It is worth noticing that:

– All the tested stream ciphers pass the Affine Constant test except Lili-128.
– Lili-128 exhibits extremely strong biases. Table 3 presents the results for

this stream cipher. These biases have been analyzed and exploited for an
operational cryptanalysis in [6].
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Table 2. Stream Ciphers: Tests Results (significance levels α = 0.001)

T 1
1 T 2

1 T 1
2 T 2

2 T 1
1 T 2

1 T 1
2 T 2

2

Lili-128 fail fail fail fail RC4 [20] pass pass pass pass
Snow pass pass fail fail Bgml [18] pass pass pass pass

Table 3. Lili128: Experimental results for tests T d
1 and T d

2

T 1
1 T 2

1 T 1
2 T 2

2

D2 39,344.03 400,839.93 667729.02 1,028,048.45
χ2

0.001 6349.15

– Snow exhibits strong biases too but only when considering global statisti-
cal behavior. Unfortunately these biases allowed us to design a complete,
operationnal cryptanalysis of Snow [6].

– We can give the following interesting observations based on the comparison
of the tests convergence (that is to say the distance between the estimator
and the threshold value; for details see [12]). The ciphers of Table 2 can
be ranked according to their relative “random” quality. We observe that (
means “better than”) Bgml  RC4  Snow  Lili-128.

– Note that the existence of “weak keys” in stream ciphers like Lili-128 (for
example all zero secret key) can only very partly explain these bad statistical
results (it only affects the Affine Constant test). Snow presents bad results
too whilst it does not have any weak key.

– Second version of Snow and Lili-128 exhibit the same weaknesses.

4.2 Block Ciphers

We mainly focus on the DES [7] and the AES [1]. Results for other block ciphers
will be found on [5]. For block ciphers we considered both the encryption ANFs
and the decryption ANFs. Since every output ANF involves both plaintext and
key variables, tests T d

2 (d = 1, 2) have been replaced by tests T d
1 relatively to:

– the number n1 of plaintext variables from one side and of key variables from
the other side (denoted respectively T 1

1 |p and T 1
1 |k).

– the number n2 of 2-monomials respectively involving plaintext/plaintext
variables, key/key variables and plaintext/key variables (tests denoted re-
spectively T 1

1 |pp, T 1
1 |kk and T 1

1 |pk).

The DES. Table 4 gives detailed experimental results of the estimator D2 with
63 degrees of freedom. The critical values are χ2 = 82.52 (α = 0.05), χ2 = 92.01
(α = 0.01) and χ2 = 103.44 (α = 0.001).

It is worth noticing that:
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Table 4. DES: Values of Estimator D2

T 1
1 T 2

1 T 1
1 |p T 1

1 |k T 1
1 |pp T 1

1 |kk T 1
1 |pk

Encr. + IP 35.06 37.65 34.75 35.57 35.41 33.47 33.25
Decr. + IP 33.68 33.93 34.75 39.74 35.41 39.12 29.95

Table 5. AES (128, 128): Values of Estimator D2

T 1
1 T 2

1 T 1
1 |p T 1

1 |k T 1
1 |pp T 1

1 |kk T 1
1 |pk

Encryption 59.61 71.32 57.84 61.51 64.47 72.34 62.39
Decryption 67.38 62.27 67.21 70.70 71.26 60.11 47.27

– DES passes the Affine Constant Test in all modes and all significance levels.
– The overall statistical quality is slightly different for encryption and for de-

cryption (in particular the statitical results are slightly better for encryption
when only the key is considered).

– DES fails the tests T 1
1 |S for many subsets S. For example, several 3-uples

including output ANFs 0 and 22 do not pass the test. The overall results
present a significant difference for the DES with or without IP. According
to the results for the tests T 1

1 |S and T 2
1 |S, the different modes of DES can

be ranked in the following manner (( means “better than”):
{DES Encr. - IP, DES Decr. + IP, DES Decr. - IP}  DES Encr. + IP.
For these tests, the initial permutation IP improves the overall statistical
quality for encryption only. Nevertheless IP is usually discarded by cryptol-
ogy community when considering its cryptanalysis.

The AES. We will focus on the algorithm working on 128-bit blocks and with
128-bit secret key. Table 5 gives detailed experimental results of the estimator
D2 with 127 degrees of freedom. The critical values for α = 0.05 is χ2 = 159.59
It is worth noticing that:

– AES passes the Affine Constant Test in all modes and all significance levels.
– Overall statistical quality of AES (128, 128) is good. Partial results on tests

T 5
1 and T 5

2 indicate that AES do not pass the test. Moreover AES (encryption
and decryption) do not pass the tests T 1

1 |S and T 2
1 |S for many subsets S. As

an example, 3-uples containing output ANFs 52 and 110 are weak subsets
for encryption. These biases are currently exploited to greatly improve the
cryptanalysis of AES.

– Encryption and decryption exhibits quite the same overall statistical prop-
erties.

4.3 Hash Functions

We tested the following hash functions: SHA-0 [9], SHA-1 [10], Ripemd160 [3],
MD4 [21], MD5 [22], Ripe-MD [2] and Haval [25] (for this latter we tested all the
different versions). Extensively detailed numerical results (due to lack of space)
are only available in [5]. Tests T 1

1 |S and T 2
1 |S are under way.
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Table 6. Experimental results for tests T d
1 and T d

2 (d = 1, 2, α = 0.05)

T 1
1 T 2

1 T 1
2 T 2

2
Hash Functions

D2 χ2 D2 χ2 D2 χ2 D2 χ2

SHA-1 76.87

189.52

70.89

189.52

0.04

5.99

0.42

5.99

(5,160)-haval 76.34 79.76 0.17 2.02

Ripemd160 77.51 66.72 5.24 2.66

(4,160)-haval 83.52 74.18 1.77 3.51

(3,160)-haval 83.79 64.28 1.05 5.50

SHA-0 97.08 74.50 3.26 0.42

All the tested hash functions have passed the tests whatever may be the
significance level. However we can once again give the following interesting ob-
servations based on the comparison of the tests convergence.

– The different hash functions can be ranked according to their relative “ran-
dom” quality. For example when considering results of test T 1

1 (1-monomials),
which is the most interesting, we have the following ordering ( means “bet-
ter than”):

• 160-bit Message Digest: SHA-1  (5, 160)-haval  Ripemd160  (4,
160)-haval  (3, 160)-haval  SHA-0.

• 128-bit Message Digest: (5,128)-haval  Ripe-MD  MD5  (4,128)-
haval  (3,128)-haval  MD4.

– SHA-1 has indeed better statistical properties than SHA-0, especially when
considering the degree 1. The inclusion of the 1-bit rotation in the block
expansion from 16 to 80 words really improved the randomness properties
of the hash function.

– For the Haval family, the random quality increases with the number of
rounds.

Table 6 presents the results of the tests T d
1 and T d

2 for d = 1, 2 and for the
160-bit message digest hash functions (significance level α = 0.05; let us recall
that passing the tests for significance level α imply passing the test for α′ < α
since χ2

α′ > χ2
α).

5 Conclusion

This paper presents a new statistical testing of symmetric ciphers and hash
functions. Where previous known tests did not exhibit particuliar bias, these
new tests reveal structural, statistical biases for DES, AES, Snow and Lili-128.
Other cryptosystems are currently tested and may present unsuspected biases.

These tests are still rather quantitative tests but nonetheless they allow to
detect possible structural weaknesses in the output ANFs. Current research fo-
cuses on more qualitative test involving factorial experiments. It should provide
necessary information to greatly improve previous cryptanalytic techniques.
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Abstract. In this paper, we propose classes of Message Authentica-
tion Codes (MAC) based on error correcting-codes. We introduce a new
notion of error tolerant forgery of hash messages. These MACs allow
full error recovery for all applications, while being error-tolerant for less
information-sensitive applications. The classes of the keyed hash func-
tions are highly secure, and provide the capabilities of correcting errors
on transmission, including burst-errors, which is a typical phenomenon
in wireless communications. These classes of hash functions are easily im-
plementable in hardware by means of simple linear feedback shift register
structures.

Keywords: Message Authentication Codes, Error Correcting Codes

1 Introduction

Keyed hash functions, also known as message authentication codes (MAC) in
the literature [9], provide security service of data integrity and data origin au-
thentication in network communications. However, due to the characteristics of
transmission channels, data may be corrupted by errors occurred during the
communication process. In this case, the verification for integrity check of data
would not be possible. Thus, it is interesting to construct MACs which are tol-
erant to a few errors that may occur during transmission. The purpose of this
paper is to construct MACs which allow at most 2 errors or one segment of burst
error of length n to occur during communication, by means of the well known
BCH codes and Reed-Solomon codes [8,10].

Applying error correcting codes to construct MACs was first exploited by
Krawczyk [7] in Crypto ’94. In that paper, Krawczyk used all distinct Hamming
codes of length 2n−1 as a space of keys for the MAC, and the parity check bits as
the hash value of a message. He showed that the functions introduced are highly
secure with a failure probability of 2−30 authenticating 1 Gbit of information.
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However, the author did not make use of the error-correcting property that comes
with the construction.

In our scenario, we will consider the scheme where the MAC will perform
error correcting operations, which we will call an error correcting MAC. We
will show that this scheme possess high security strength. Note that this MAC
will be error-correcting, and unless the messages transmitted is not information
sensitive, such a MAC is not error tolerant, and an incoming MAC must be
error-corrected.

Traditionally, error correcting codes are used to transmit a MAC by first
computing the MAC and then adding error correcting codes for transmission.
However, due to the way current error correcting codes are applied, the mes-
sage is first divided into many small blocks, and then error correcting codes are
applied, resulting in large message expansion. In our MAC, the error correct-
ing code is embedded into the MAC, and although not capable of correcting the
amount of errors that a regular error correcting code can process, can still correct
burst errors of a respectable length, without significant message expansion.

The rest of the paper is organised as follows. In Section 2, we give a con-
struction based on BCH codes. We analyse the security in Section 3.1 and the
complexity and implementation issues in Section 3.2. In Section 4, we intro-
duce the construction using Reed-Solomon codes, and then discuss the related
security, complexity and implementation issues.

To conclude this section, we will give a formal definition of classes of hash
functions, and the construction of the proposed MACs given in [7].

Definition 1 An (m, n)-family H of hash functions over a finite field F is a
collection of functions that map the set of strings of length m over F into the set
of strings of length n over a F.

For simplicity, we assume a communication scenario in which two parties
communicate over an unreliable channel with a malicious adversary in the mid-
dle. The secret key used in the communication is unknown to the adversary. The
parties exchange using the secret key for only one message of length m, where
the secret key is a hash function h drawn randomly from the (m, n)-family of
hash functions and a random pad r of length n. Let Z

n
2 be the vector space of

dimension n over GF(2). We consider the messages M to be vectors over Z
m
2 and

the hash values to be vectors over Z
n
2 . The sender sends the message M together

with the tag t = h(M) + r, and is verified at the receiver by recalculating t.

Construction 1 [7, Section 3.1] Let Hm,n be an (m, n)-family of hash functions
over Z2 defined as follows. Let f(x) be an irreducible polynomial of degree n over
GF(2). Let M be a message of predetermined binary length m, and M(x) be the
polynomial over GF(2) with coefficients corresponding to the bits of M . That is, if
M = (sm−1, sm−2, . . . , s0), then M(x) = sm−1x

m−1+sm−2x
m−2+ · · ·+s1x+s0.

We associate the hash function hf for a message M to be

hf (M) = M(x) · xn mod f(x).
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The construction, if considered as a codeword in error-correcting codes con-
text for a fixed irreducible polynomial f(x), is a Hamming code [8,10] of distance
3, thus is able to correct up to 1 error upon transmission.

2 Error Correcting MAC Based on BCH Codes

In this section, we first give a definition for the error correcting MAC, then
we give a detailed construction of such a MAC using binary BCH codes with
designed distance 5.

Construction 2 Let Hm,l be an (m, l)-family of hash functions over Z2 defined
as follows. Let C be a binary BCH code of length 2n − 1 with minimal distance
2e + 1 and g(x) be the parity check polynomial of C of degree l. Let M be a
message of predetermined binary length m, and M(x) be the polynomial over
GF(2) with coefficients corresponding to the bits of M . The hash function hg

associated with the polynomial g is defined as

hg(M) = M(x) · xl mod g(x),

and
Hm,l = {hg | all valid parity check polynomials g}.

Let D be an error decoding algorithm for a code with minimal distance 2e + 1.
D can further be decomposed into two sub-procedures: D1 and D2 where D1 is
the error detection algorithm (equivalently, the computation of the error locator
polynomial), and D2 is the error correction operation.

Scheme 1 (Error Correcting MAC) The algorithm is as follows:
Sender: To send a message M of length m,

Step 1. Select hg ∈R Hm,l.
Step 2. Choose a random pad u ∈ Z

l
2.

Step 3. Compute

r(x) = hg(M) = M(x) · xl mod g(x)

and set
t(x) = r(x) + u(x).

Step 4. Convert t(x) into the corresponding bit string of length l and then
send the message-tag pair (M, t).

Receiver: Suppose the received message-tag pair is (M ′, t′).

Step 1. Compute
hg(M ′) = M ′(x) · xl mod g(x).

Verify that
t′(x) + u(x) = hg(M ′) (1)

If (1) is true then accept the pair (M ′, t′) as valid (we have M ′ = M and
t′ = t), in this case no errors occurred during transmission.
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Step 2. Otherwise, remove the random pad from t′, let

r′ = t′ + u.

Apply D1 to (M ′, r′). If D1 returns e+1 errors or more, then reject the pair
(M ′, t′).

Step 3. If (M ′, r′) has at most e errors, apply D2 to find the error locations
detected in D1. Let (M ′′, r′′) be the resulting pair, that is,

(M ′′, r′′) = D2 ◦ D1(M ′, r′)

where ”◦” represents the composition of the two operators D1 and D2. If
the error location are found to be outside of the length of the message-tag
pair, when the word itself is considered to be the codeword of length 2n −1 in
the sense of a full BCH codeword, then reject the message, otherwise accept
(M ′′, r′′) as the valid message-tag pair.

Definition 2 Let d(A, A′) represent the Hamming distance of two codewords
A, A′ of the same length. If A = (M, t) is a correct message-tag pair, and
A = (M ′, t′) is another message-tag pair of the same length, such that

d(A, A′) ≤ e,

then A′ = (M ′, t′) is considered as an equivalent acceptable pair, corresponding
to the same message-tag pair A = (M, t).

Under this definition, it seems that we have violated the definition of a secure
MAC. However, if we allow error correcting capability for a MAC, such a defini-
tion will be necessary. Hence, we do not consider replacing a correct message-tag
pair A with an equivalent acceptable message-tag pair A′ which is of Hamming
distance less than e from A as a message attack, since A′ is correctable to A,
thus it is considered as the same message.

In the following we will discuss in detail Scheme 1 by using the BCH code
with designed distance 5.
Construction 3 Let n ≥ 7 be an odd integer, so that gcd(3, 2n − 1) = 1. Let
Hm,2n be a (m, 2n)-family of hash functions defined as follows. Let α be a prim-
itive element in GF(2n) and fα(x) be its minimal polynomial of degree n over
GF(2), where α is a root over GF(2n). Let fα3(x) be the minimal polynomial of
degree n for α3 over GF(2), and let gα(x) = fα(x)fα3(x). The hash function hg

associated with the polynomial g for the message M is defined as

hgα(M) = M(x) · x2n mod gα(x).

Scheme 2 (2-error Correcting MAC) The algorithm is as follows:
Sender: For a message M:

Step 1. Select in random a primitive element α ∈ GF(2n) and compute the
minimal polynomials fα(x) and fα3(x). Set

gα(x) = fα(x)fα3(x).
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Step 2. Select r ∈R Z
2n
2

Step 3. Compute the hash value of M :

hgα(M) = M(x) · x2n mod gα(x).

Receiver: For the message-tag pair (M ′, t′):

Step 1. Form the polynomial

s(x) = M ′(x) · x2n + t′(x) + r(x).

Compute

A1 = s(α),
A3 = s(α3).

The receiver will accept (M ′, t′) if A1 = A3 = 0. There are no errors occurred
during transmission.

Step 2. Otherwise errors may have occurred. If A1 �= 0and A3 = A3
1, we set

the error locator polynomial as

σ(z) = 1 + A1z.

Else we set
σ(z) = 1 + A1z + (

A3

A1
+ A2

1)z
2.

Step 3. Solve the error locator polynomial for roots z1 (and z2, depending on
the degree of the polynomial). Let xi = z−1

i . The discrete logarithm of xi

with respect to α are the locations of the errors. If the error locations are out
of range then we reject the message-tag pair. Otherwise let E be the error
vector and let

M ′′ = M ′ + E,

and accept the message-tag pair as valid with corrected message M ′′.

Remark: Note that the random pad r ∈R Z
2n
2 is needed. Otherwise, a simple

attack by taking the polynomial factorization s(x) of a correctly transmitted s
will likely lead to the factors of gα(x).

Remark: Although the MAC proposed includes the parameter of the length
of the message, it is noted that the length m is only used in security analysis
and decoding while the hash functions are only dependent on the polynomial
gα(x). The length, however, is to be noted during transmission, for the reason
of error correction and security. We will discuss this issue in the following section.

Remark: Solving the discrete logarithm of xi seems to be a computationally
infeasible operation in the field GF(2n) for large n. However, since the length
of the received word (M, t) is known, calculating the discrete logarithm over a
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much smaller bounded continuous region requires much less work. We will dis-
cuss the complexity of the MAC generation, verification, and error correction in
Section 3.2.

Remark: Note that our construction applies to BCH codes of larger distances.
For example, in literature, there are two types of BCH codes which give a minimal
distance of 7. We can take [8,10] the polynomial with designed distance 7, where

g(x) = fα(x)fα3(x)fα5(x),

or to take [3]
g(x) = fα(x)fαd(x)fαd2 (x),

where n is odd and d = 1 + 2
n−1

2 .

3 Security and Complexity Analysis of Error Correcting
MAC through BCH Codes of Distance 5

Using the construction through BCH codes, we will show the security aspects of
the class Hm,2n. The following is given by Krawczyk in [7]. The security analysis
for general BCH codes is similar. The complexity and implementation issues
follow.

3.1 Security Analysis

Definition 3 A family of functions Hm,l over F is linear if for all M,M ′ ∈ F
m

we have h(M+M ′) = h(M)+h(M ′), where M , M ′ ∈ F
m and h(M), h(M ′) ∈ F

l.

Definition 4 A family Hm,l of hash functions over F is called ε-balanced if for
all M �= 0, M ∈ F

m, c ∈ F
l

Prh(h(M) = c) ≤ ε.

It can be easily shown that our class of hash functions Hm,2n over Z2 for any
fixed m and n is linear and ε-balanced. Let w(·) represent the hamming weight
of a string.

Because of the ability of error correcting, we consider any vector of length
m + l within hamming distance e from a correct message-tag pair (M, t) to be
in the same equivalence class. That is, the messages within distance e of (M, t)
are all acceptable message-tag pairs corresponding to the same correct message
(M, t).

Definition 5 A hash function hg ∈R Hm,l over F is e-error-forgery-resistant
with probability ε if and only if given any message-tag pair within distance e of
a correct pair (M, t), where M ∈ F

m, t = hg(M)+r ∈ Fl, r ∈R F
l, no adversary

succeeds by finding some M ′ of length m and t′ of length l, with M ′ �=M ,
d(M ′, M) > e such that (M ′, t′) is an acceptable pair with probability larger
than ε.
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Theorem 1 A family Hm,l of hash functions is e-error-forgery-resistant with
probability ε if and only if

∀c, M1 �=M2, d(M1, M2) > e,
∑

e′∈Fl,w(e′)≤e

Prh(h(M1) + h(M2) = c + e′) ≤ ε.

The proof of the above statement is similar as in Theorem 5 in [7], except
we allow errors to be introduced in the transmitted word.

Proof. We consider all the vectors within distance e from a correct message-tag
pair (M, t) to be in the same equivalent class. The pair (M1, t1) is successfully
replaced by the pair (M2, t2) if and only if for the secret function h and the
random vector r we have t′1 = h(M ′

1)+ r and t2 = h(M2)+ r + e′, where M ′
1 and

t′1 are the error-free message-tag pair associated with M1 and t1, and e′ ∈ F
l with

0 ≤ w(e′) ≤ e. Note that the error e′ already includes the possibility of having
errors in the message part. Equivalently, we have c = t′1 + t2 + e′ = h(M ′

1 +M2).
Hence, the probability of success for an adversary is bounded by

p =
∑

e′∈Fl,w(e′)≤e

max
M1,M2,c

Prh(h(M1) + h(M2) ∈ Cc),

where Cc is the equivalent class of vectors within distance e of c. Notice that
this success probability is achievable whenever the transmitted message is one
of the messages in which the maximum is attained, by replacing (M ′

1, t
′
1) by

(M2, t
′
1 + c). Since the correct words (M, t) are distance at least e apart, we

must have
p ≤ ε.

Similar to [7], we can draw the following consequence.

Theorem 2 If Hm,l is linear then Hm,l is e-error-forgery-resistant with proba-
bility ε if and only if Hm,l is ε-balanced.

Theorem 3 For any values of m and n, the family of hash functions Hm,2n in
Construction 3 is linear and ε-balanced for

ε ≤ 6(m + 2n) ln ln(2n − 1)
2n − 1

,

and 2-error-forgery-resistant with probability ε.

Proof. The family of hash functions is obviously linear. Now given any poly-
nomial gα(x) = fα(x)fα3(x) where α is a primitive element in GF(2n), any
non-zero message M of length m and any string c of length n,

hg(M) = c ⇐⇒ M(x) · x2n mod gα(x) = c(x)
⇐⇒ gα(x)|(M(x) · x2n − c(x)).
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Note that q(x) = M(x) · x2n − c(x) is a non-zero polynomial of degree at most
m+2n. Thus there are at most m+2n

n factors of primitive polynomials of degree n
in q(x). Therefore, there are at most m+2n

n possible hash function candidates. Let
φ(·) be the Euler Phi function. While there are φ(2n−1)

n possible hash functions
in this family, we have the probability

Pr(hg(M) = c) ≤ (m + 2n)/n

φ(2n − 1)/n
=

m + 2n

φ(2n − 1)
.

Using the estimate

φ(2n − 1) >
2n − 1

6 ln ln(2n − 1)
,

the result follows. Note that if the received message-tag pair is error-prone within
distance 2 of a correct code word, the factorisation of q(x) will not contain all
of the factors of gα(x), thus lowering the probability value ε.

For ε < 2−80, n ≥ 93 is required. Below is a table for the values of m and n
which guarantee a probability ε < 2−80.

ε < 2−80

n = 100 m < 41031
n = 120 m < 4.14 × 1010

n = 140 m < 4.19 × 1016

For ε < 2−160, n ≥ 174 is required. Below is a table for the values of m and
n which guarantee a probability ε < 2−160.

ε < 2−160

n = 180 m < 35849
n = 200 m < 3.71 × 1010

n = 220 m < 3.82 × 1016

In practice, two communicating parties would exchange multiple messages,
one particular hash function hg can be used for the multiple messages, as long
as a different random pad r is used for each message. In fact, since a random
pad is applied, it is useless that the adversary sees many message-tag pairs.

In the practice of error correcting codes, the error correcting property also
mean the capability to be able to detect errors without correcting. However, in
this MAC, the procedure of error correcting must be applied. The reason being
that the security of the MAC is dependent on the length of the message-tag pair.
If error detection is done without error-correcting, this would allow a message of
a different length (typically much longer one) of short Hamming distance to be
accepted as a valid message-tag pair. In other words, it is highly likely that the
any pair (M, t) ∈ Z

m+2n
2 such that when considered over a codeword of length

2n − 1 under the normal sense of the BCH codeword C1 ∈ Z
2n−1
2 , where

C1 = ( 0, 0, · · · 0︸ ︷︷ ︸
2n−1−m−2n

, M, t︸︷︷︸
m+2n

)
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is within distance 2 of a codeword such as

C2 = (0, · · · 0,×, 0, · · · 0,×, 0, · · · 0︸ ︷︷ ︸
2n−1−m−2n

, M, t︸︷︷︸
m+2n

) ∈ Z
2n−1
2 .

However, the restriction of the length of the message limits the probability (de-
fined by ε) that such an attack can happen. This also illustrates the reason for
the upper limit on the length m of the message for any fixed ε and n.

Remark: In Construction 3, we propose to use gα(x) = fα(x)fα3(x). There are
in fact more choices g(x) = fα(x)fαk(x) which give a BCH code of minimal dis-
tance at least 5. While there are no results on which values of k or the proportion
of such polynomials that give codes of distance at least 5, any such results would
greatly improve the probability value ε, and thus increase the possible number
of hash functions in the class.

3.2 Complexity and Implementation

In a typical communication session, such a MAC algorithm requires a predeter-
mined choice of a primitive element α ∈ GF(2n), together with a pseudorandom
bit string r of length 2n, which together forms our secret key. The polynomial
gα(x) is therefore fα(x)fα3(x). The message-tag pair (m, t) is then computed and
sent over an error-prone channel. The receiver calculates the tag using gα(x).
If the tag does not match, the receiver may first attempt to error correct the
message-tag pair by considering (m, t + r) as a codeword with limited length
m+2n. If the error correcting is successful, the receiver will accept the message-
tag pair. Note that if the error location is out of the range of the m + 2n bits,
then the error correction fails, thus the receiver may reject the message-tag pair.

The generation of the message-tag pair requires a multiplication by x2n fol-
lowed by an operation of the division algorithm. It is easy to see that the di-
vision algorithm takes 2mn bit operations over GF(2). The implementation of
this operation is simple over software. In hardware, such an operation can be
implemented through a linear feedback shift register (LFSR) with architecture
allowing input of a variable gα(x).

The more computationally heavy operation is the error-correcting part. We
are required to first solve a quadratic equation over GF(2n) and then compute at
most two discrete logarithms of type x = logα β where α is a primitive element of
GF(2n) (specified by gα(x)) and 0 ≤ x ≤ m+2n−1 (recall that if x is outside of
this range then we reject the message). Finding the roots of a quadratic equation
is easy with an algorithm outlined in IEEE P1363 [5]. As for the part of solving
the discrete logarithm problem, an exhaustive search for the discrete logarithms
for a short length message-tag pair is feasible as such an operation requires only
m+2n multiplication operations in GF(2n), which is relatively fast by choosing
an appropriate basis representation. If, say, a baby-step-giant-step algorithm is
used for decoding on a device with abundant memory storage, such an operation
requires

√
m + 2n storage of group elements, 2

√
m + 2n multiplications, and at

most
√

m + 2n table lookups.
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The key size of the hash functions in the use as a MAC is 3n, including n
bits for the element α and 2n bits for the pseudorandom pad r.

There are other possible implementations on MAC with error correcting
capabilities. One method is to apply some other MAC algorithms to get the
message-tag pair, and append the result with error correcting codes. In this case
the industrial codes are usually on message segments of short lengths. We will
end up with a transmitted message of longer length but corrects more errors.
The length of the transmitted message will be equal to the length of the mes-
sage, plus the length of the MAC, and the length of the error correcting bits. The
information rate of such an implementation is dependent on the error correcting
code we choose.

In our case, the MAC itself is also the syndrome for error correction. Hence
the information rate is at least m

m+2n . The message we transmit is shorter in the
sense that the MAC itself is also the syndrome for error correction.

4 Error Correcting MAC Based on Reed-Solomon Codes

In this section, we give another construction by applying Reed-Solomon Codes.
Let α ∈ GF(2n). A Reed-Solomon code with designed distance δ has generator
polynomial

g(x) = (x − αb)(x − αb+1) · · · (x − αb+δ−2).

The resulting code has a distance of at least δ over GF(2n).

4.1 Construction

We can map a binary message of length m = kn where k ∈ Z into a polynomial
over GF(2n) by dividing up the message into n-bit blocks and consider each as
an element in GF(2n). For example, if a polynomial basis is used, then each bit in
the n-bit block can be considered as the coefficient to the linear combination of
the ordered basis elements, and the whole n-bit block is one element represented
by the linear combination. Padding is necessary if the message length is not a
multiple of n. However, caution must be taken in the method for padding.

Construction 4 Let m = kn and Hk,δ−1 be a family of hash functions defined
over GF(2n) as follows. Let α be a primitive element in GF(2n). Let 1 ≤ b ≤
2n − 1 where gcd(b, 2n − 1) = 1. Let δ = 2e + 1 for some positive integer e. Let

gα,b,δ(x) = (x − αb)(x − αb+1) · · · (x − αb+δ−2).

Let M(x) be the polynomial over GF(2n) of degree k associated with the message
M of binary length m by a bijective mapping as described above. We associate a
hash function hg for the message M to be

hg(M) = M(x) · xδ−1 mod gα,b,δ.
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The above construction leads us to a hash function capable of correcting
burst errors. We can consider the message-tag pair not only as a codeword over
GF(2n) but also over Z2 by considering each element represented over a certain
basis and the coefficients over Z2 of the linear combination as message bits (using
the same bijective mapping as described). The result is an Hm,(δ−1)n family of
hash functions. The following is a standard result from coding theory.

Definition 6 A cyclic burst of length t is a vector whose non-zero components
are within t successive entries (cyclically), and which the first and the last entry
are non-zero.

Fact 1 The resulting message-tag pairs (M, t) from Construction 4 is capable of
correcting up to e errors when considered as a word over GF(2n), and correcting
a burst error of length up to n(e − 1) + 1 when considered as a word over Z2.

Definition 7 A hash function is e-burst-error-forgery-resistant with probability
ε if and only if given any message-tag pair within a burst error of length e of a
correct pair (M, t), where M is of length m, t = hg(M) + r of length (δ − 1)n,
hg ∈R Hm,(δ−1)n, r ∈R Z

(δ−1)n
2 , no adversary succeeds by finding some M ′ of

length m and t′ of length (δ − 1)n, with M ′ �=M , and (M ′, t′) − (M, t) being
a burst error vector of length > e, such that (M ′, t′) is an acceptable pair with
probability larger than ε.

4.2 Security Analysis

Theorem 4 The family of hash functions Hk,n in Construction 4 is
1. linear
2. ε-balanced where

ε ≤

(
k + δ − 1

δ − 1

)

(φ(2n − 1))2
.

3. e-error-forgery-resistant over GF(2n) with probability ε.
4. n(e − 1) + 1-burst-error-forgery-resistant over Z2 with probability ε (when

considered as the family Hkn,n(δ−1)).

Proof. The proof is similar to Theorem 3 except now that

q(x) = M(x) · xδ−1 − c(x)

may split into linear factors. Since our choice of α can be any primitive element
in GF(2n) and the choice of b is any integer relatively prime to 2n − 1, we have
(φ(2n − 1))2 different functions with respect to any given δ.

Below is a table for the values of n and k = m
n which guarantee a probability

ε < 2−80.

δ = 5 δ = 7 δ = 9
n = 80 k < 1.52 × 106 k < 23301 k < 3111
n = 120 k < 1.39 × 1012 k < 2.20 × 108 k < 2.99 × 106

n = 160 k < 1.67 × 1018 k < 2.48 × 1012 k < 3.27 × 109
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4.3 Complexity and Implementation Issues

The implementation of decoding Reed-Solomon codes have been discussed thor-
oughly in literature [1,2,8,10,6,12].

Due to the similar reason as in the MACs using BCH codes, it is necessary to
compute the error locations during decoding. However, for applications to less
information-sensitive transmissions, such as voice and image signals, a few errors
occurred during transmission is not crucial. Therefore, the step to correct the
errors may not be required and we can simply take the received message M as
the accepted message if error locations are found to be within the range of the
length of M .

The major computation problem here we are faced with, again, is the solution
of the discrete logarithm with base α over a limited region of length k + δ −1 for
the location of error. The computational aspect is similar as in the BCH case.

However, if only burst errors are corrected, there is a much simpler algorithm
which requires only k + δ − 1 clock cycles of operations. This is discussed in the
following section.

4.4 Error-Trapping Method for Burst Errors Decoding

The method is described in [10], here we give a brief explanation of the algorithm.
Let e(x) be the error polynomial. Let

sj(x) ≡ x−je(x) (mod gα,b,δ(x)).

If sj(x) is a polynomial of burst length e or less, then

e(x) = xjsj(x)

is the error polynomial.
The implementation of this decoding method is done by calculating

sj(x) ≡ x−jr(x) (mod gα,b,δ(x))

starting from j = 0. Note that for each j ≥ 1, sj(x) can be obtained from a
shift operation of the polynomial from sj−1(x), plus an addition of a polynomial
over GF(2n)[x] of degree δ (which is the inverse of x with respect to gα,b,δ(x)).
We stop when there are no such bursts within s0(x), . . . , sk+δ−1(x). Hence this
operation takes k + δ − 1 clock cycles of simple XOR operations in hardware.

5 Conclusion

We have provided an error correcting MAC which can provide integrity check
for corrupted data which corrects at most 2 errors or an n(e − 1) + 1-bit burst
error during transmission. In the process, we introduced the notion of error-
tolerant forgery of hash messages. The security of such MACs remain high, and
can be applied to less information-sensitive wireless transmissions such as voice
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communications. It remains open research problems to increase the size of key
space, to efficiently decode BCH and Reed-Solomon codes over a large field, and
to solve the discrete logarithm problem over a short continuous interval. It is
also desirable to find classes of error correcting codes that locate errors without
having to solve the discrete logarithm problem.
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Abstract. This paper gives firstly an introduction about the consistency of an
Access Control List (ACL). It uses triples or in other words, in three dimensions
and their corresponding decisions to describe the access control rules, i.e. ACL
entries. We present then and justify the mathematical definitions of an ACL and
its related components and discuss its consistency, two theorems about the con-
sistency of the ACL. Thirdly the paper discusses verification of the consistency
of the ACL and a new method used to verify the consistency of the ACL de-
rived from the theorems in use. The method obtained here is a theoretical ap-
proach. In the conclusion, we point out that in a practical system, verification of
the consistency of the ACL is necessary and the method is an effective and effi-
cient one, further measures should be taken and study should be continued to
reduce the amount of computation needed to examine the consistency of the
ACL.

Keywords: access control, consistency, information security

1 Introduction

The goal of information security is to attain confidentiality, integrity and availability.
Access control is required to achieve these three objectives. There are several ap-
proaches for implementing the access matrix model in computer system, the most
popular of which is Access Control List, names ACL ([1]). The conventional concept
of an ACL is the architectural foundation of many authorization mechanisms. A typi-
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cal ACL is associated with an object to be protected and enumerates the list of
authorized users and their rights to access the object. Access rights are selected from a
predefined fixed set built into the authorization mechanism. Specification of the sub-
jects is bound to the particular security mechanism employed by the system ([2]).

Here we refer to subjects as active entities in the system, and objects as passive en-
tities. Examples of subjects are processes, and examples of objects are files. Different
systems and their implementations will have different ACL structures, representations
and features, but in the whole, an ACL always accurately reflects the aspects of the
organization’s security policy relating to the control of access to the information be-
ing protected by the device or system.

The consistency of an ACL means that, there shouldn’t be any conflicting entries
in the ACL that define contradictive access attributes (access rights).

Another consideration is that the propagation of access right that might occur due
to the specific definition of the ACL, even in a consistently defined ACL. This paper
is concentrated on the consistency of the ACL. The propagation of access rights is out
of the scope of this paper.

In an operating system (OS), the boundary of objects is usually restricted to the
passive entities which are easy to be defined and described. It is convenient to enu-
merate one or a set of objects in a general purpose OS. For example we can designate
a file as a single object (exactly object container) and a group of files in a hierarchy
(directory) as a set of objects. According to the design, each item in the access control
matrix usually stored with its relating object or set of objects. Similarly the boundary
of subjects in an OS is also easy to define. It is often easy for us to know all of the
users that will have interactions with the system and all of the processes that might act
on the users’ behalf. After this unambiguous definition of objects and subjects, we can
clearly define access rules using the access attribute, such as Read, Write, Execute
and others. If we, at first, set a criteria for the possibility of occurrence of conflicting
items in the ACL for objects in different level of the hierarchy (i.e. directory and sub-
directory) and for subjects in single or collective forms. Then the consistency of the
ACL defined above will not be a serious problem,

In a firewall system, the concept of subject and object will have a different mean-
ing than that of an OS. A firewall is always located on the boundary of two adjacent
networks, and is the only path of the information flow. The two adjacent networks are
usually referred to internal and external networks ([3]). This time, the subjects of the
system can be defined less precisely as hosts, group of hosts, sub-nets, clients, proc-
esses, applications, users and so on. More strictly, all of them are sets of processes
running on the hosts in the separated networks. The objects can also be defined as
hosts, group of hosts, sub-nets, services, files and so forth. Similarly, all of them can
be abstracted to information contained in containers (files) or services. As the bounda-
ries of subjects and objects in a network system protected by a firewall are hard to be
unambiguously defined. This often results in inconsistency in the definition of an
ACL with many entries, although the proper operation of the firewall requires that the
access control list appropriately reflect the security policy and the ACL should be
consistent. A simple example can show the potential existence of inconsistency in the
ACL of a firewall. Assume that there is a rule in the ACL stating that host A, in the
external network, whose IP address is 202.92.10.100 can fully access host B, in the
internal network, whose IP address is 202.93.2.10 and there exist an other rule in the
ACL that states that sub-net C, whose IP address is 202.92.10.*, can only use the FTP
services on sub-net D, whose IP address is 202.93.*.*,  then the two rules above will
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conflict. In a complex and practical network environment where a firewall may con-
tain hundreds of rules or more, with each rule states an access right in different
granularity, inconsistency of a firewall’s ACL is often encountered.

In order to have a deep study on the problem of the consistency in an ACL, we’ll
use a most general abstraction here. Each rule of ACL can be defined as a triple

A)O, S, (T =  together with a desired decision d . Actually, it can be expanded to n
dimension, we skip it for simplicity here.

The triple T  represents that a set of subjects S  hopes to perform a set of opera-

tions A  on a set of objects O . We use d  as the decision (such as permit, reject,
drop and redirect) made by the system upon the triple T , then an access control fea-
ture is a function implemented by the system. That is:

( ) ( )AO,S, T d ff ==
Wherein S  is a set of subjects, O  is a set of objects and A  is a set of access at-

tributes.
An access control list can be recognized as a table that defines f . It isn’t include

some other restrict condition such as the time of access, the location and so on for
space limiting, but these factors will never affect the analyzing.

Upon the general abstraction of the access control rules, the consistency among
these rules in an ACL can be discussed in the following parts of the paper.

2 The Mathematical Representation ([4])

Let { }msssS ,,, 21 �=  denote the set of all subjects, iS  as a subset of S ,

and ∗S as the power set of S , i.e.:

)2,,2,1(* m
i iSS �=∈∀ , then SSi ⊆

Let { }noooO ,,, 21 �= denote the set of all objects, jO  as a subset of O , and

∗O  as the power set of O , i.e.:

)2,,2,1(* n
j jOO �=∈∀ , then OO j ⊆

Define },,,{ 21 laaaA �=  represent the set of all kinds of possible accesses or

operations that might be taken on objects by subjects. kA  is a subset of A , and ∗A

is the power set of A , i.e.:

)2,,2,1(A *
k

lkA �=∈∀ , then AAk ⊆
Let { }hdddD ,,, 21 �= represent the set of different decisions that might be

made by the security mechanism provided by the system according to the security
policy.

Thus an ACL is a function from V to D , i.e.

DVf →: , where ∗∗∗ ××⊂ AOSV
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The definition of consistency: There shouldn’t be two or more entries in the ACL
that specify contradicting decisions.

That is, given VAOSVi ∈=∀ ),,( , VAOSVj ∈′′′=∀ ),,( , if aos ,,∃ , thus

Ss ∈  and Ss ′∈ , Oo ∈  and Oo ′∈ , Aa ∈  and Aa ′∈ , meaning that the two

triples iV  and jV  will intersect, so ),,()( AOSfVfd i ==  and

),,()( AOSfVfd j ′′′==′  should be consistent.

For example, in a typical firewall, we can usually assume that },{ failpassD = ,

if there are two entries in an ACL whose ),,( AOS , the triples, intersect, then the
decision should be pass (or fail) for both of them, and they can’t be both a pass and a
fail.

For the consistency of the ACL, we have the following theorem.

Theorem 1: An ACL is consistenct, if VVV ji ∈∀ , , where ),,( AOSVi = ,

),,( AOSV j ′′′= , the following condition holds.

Φ=′∩ SS  or
Φ=′∩ OO  or

Φ=′∩ AA
where Φ  denotes null set.

Justification: Let ),,()( AOSfVfd i == , ),,()( AOSfVfd j ′′′==′ , so

d and d ′ are the corresponding decisions of two entries in an ACL. Assume

Φ=′∩ SS , then the two triples ),,( AOSVi =  and ),,( AOSV j ′′′=
described above will not intersect. Thus according to the definition, no matter what
values d and d’ take, the ACL is consistent. Similarly, this can also be justified when

Φ=′∩ OO  or Φ=′∩ AA .

Theorem 2: For VVV ji ∈∀ , , where ),,( AOSVi = , ),,( AOSV j ′′′= , and

dVf i =)( , dVf j ′=)( , Ddd ∈′, , if:

Φ≠′∩ SS  and

Φ≠′∩ OO  and

Φ≠′∩ AA
Then the ACL is consistent if and only if )( dRd ′ , where R  is a relation on D

representing that the effects of the two decisions will not contradict each other.

Justification: Through the condition given by the theorem, we can easily notice that

two triples ),,( AOSVi =  and ),,( AOSV j ′′′=  corresponding to the two entries

of the ACL will intersect. That is, ao,s, ∃ , such that S∈s  and S ′∈s , Oo ∈  and

Oo ′∈ , Aa ∈  and Aa ′∈ . If d  and d ′  is exclusive, i.e. Rdd ∉′),( , then for

aos ,, , there will exist two contrary decisions, as is the necessity.
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If )( dRd ′ , then for all aos ,,∀ , if S∈s  and S ′∈s , Oo ∈  and Oo ′∈ ,

Aa ∈  and Aa ′∈ , there won’t be any inconsistent decisions appeared in the entries
of the ACL, and the sufficiency is justified.

3 The Consistency Examining

Assume that there exist an ACL that has n  entries. An entry in the ACL can be de-

noted as ),,,( iiii dAOS . Below we will construct four matrixes MS, MO, MA, Md.
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θ  ( R  is the relation on D defined above)

Now we can define an operation on the matrixes.

Let ( ) ( )ijijijijAOSV MMMM αϕψφ            =⊗⊗=⊗⊗= , whereas the opera-

tion “ ⊗ ” is to calculate the boolean product of two binary integers, and “ ⊗ ” repre-
sents to perform element by element the boolean products of each pair of the elements
in the same row and the same column of two matrixes and gain a new matrix.

It's easy for us to prove that, if VijijdV MMM   ) (   =⊗=⊗ θα , then the ACL is

consistent. This is because of the following:
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First, for any 1=ijα , through theorem 2 we know that in order to attain consis-

tency of the two rules (rule No. i and j), we need to assured that ( ) Rji ∈dd , , i.e.

1=ijθ , so the boolean product ijijij αθα ==⊗ 1  .

Second, according to theorem 1, we learn that for any 0=ijα , the two rules (rule

No. i and j ), will never contradict each other, whether ji Rdd or ji Rdd  i.e. there is

no restrict to the value of ijθ , it can either be "1" or "0". This time again we get

ijijij αθα ==⊗ 0  .

Thus the statement above is demonstrated.

4 Conclusion

This paper discusses a new method to correctly verify the consistency of an ACL.
When an ACL that contains many entries is used in a practical system, this method of
verification need a large amount of computation, even considering that jiij φφ =  (so

are jiijjiijjiij θθϕϕψψ ===  and  , ), especially for SM  and OM . Calculating each

of the matrixes dAOS MMMM ,,, , will need to perform 2/2/)1( 2nnn ≈−
times operations which are mainly based on the checking of whether two sets intersect
or not.

Fortunately, it is unnecessary to execute all these operations during each checking
of consistency of ACL in practice. The configuration of secure rules is an evolution-
ary process. So the consistency checking is on from the beginning. Every time when
adding a piece of rule, what the system has to do is to execute the operation between
the new rule and the old rules which have been consistent. The number of operation
concerning every matrix is just )1( −n ( n  is the number of current rules). In addi-

tion, because of the special property of “ ⊗ ” operation, it is not all the entries that

have to be computed for matrix dAOS MMMM ,,,  and vM . If 0=ijθ , then it

does not need to compute ijijijij φϕψα ,,, . If 0≠ijθ  but 0=ijφ , then 0=ijα , and

it does not need to compute ijij ϕψ , .

To remain the consistency of the secure policies, it is recommended to check the
consistency of the rules set when a piece of rule has been cancelled. The triple con-

cerning the rule cancelled is ),,( AOSVi = , its decisions is d = f(Vi) = f(S,0,A). Af-

ter a piece of rule has been cancelled, the triple becomes ),,( AOSV j ′′′=  with its

),,()( AOSfVfd j ′′′==′ . That is, Φ≠′SS � , Φ≠′OO � , Φ≠′AA�
and Rdd ∈′),( . Then the deletion of rules is not integrated. So all these entries
which satisfy these relations should be treated. The rule concerning each new triple
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should be changed to be a new rule. The triple ),,( AOSV ′′′′′′=′′  of this new rule
satisfies following relation:

SSS −′=′′ , OOO −′=′′ , AAA −′=′′ .
From the description above, we know that the consistency checking can be exe-

cuted in the system no matter when a piece of rule was added or cancelled in the
ACL. So the ACL can remain its consistency.

In order to effectively perform the examination of the consistency of an ACL, fur-
ther study should be undertaken in the future. Even though we have noticed that at
least we can use two approaches to improve the examination. One is to remove the
unnecessary computations using the information obtained from the sequential prog-

ress of the calculation of dAOS MMMM ,,, . The other is to use a delta computation

policy by making the system to keep a useful history record of the previous state of
the consistency.
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Abstract. It is quite necessary that an organization’s information network
should be equipped with a proper security system based on its scale and impor-
tance. One of the effective methods is to use the simulation model for deciding
which security policy and mechanism is appropriate for the complex network.
Our goal is to build a foundation of knowledge-based modeling and simulation
environment for the network security. Within this environment, users can con-
struct the simulation model of security mechanisms, apply various security
policies, and quantitatively analyze their security performance against possible
attacks. In this study, we considered security domain and implemented the
models based on a systematic modeling approach. We enabled the model to in-
clude knowledge in modular fashion and provided well-defined guidelines for
transforming security policy to concrete rule set.

1 Introduction

Today, highly developed information and communication network is improving the
efficiency of business and enhancing the quality of life. But on the other side, adverse
effects such as illegal intrusion, effluence or compromise of information, or denial of
service are increasing day by day. Therefore a security system that is suitable for the
scale and the importance of an organization’s network is quite essential [1]. Since
evaluating the performance of a security system directly in real world requires heavy
costs and efforts, an effective alternative solution is using the simulation model. In
concrete terms, using the model we can build various simulation situations, perform
iterative runs, and decide which security configuration is effective in meeting the
change of network environment.

In this paper, we present a foundation of knowledge-based modeling and simula-
tion framework for network access control, which has the following design goals. Be
capable of modeling the security mechanism representing the policy as an adequately
abstracted form. And be capable of simulating and analyzing the model with respect
to security performance on altering the policy. To meet these goals, the scope of this
study has the following phases.



Knowledge-Based Modeling and Simulation      375

In the phase of reviewing the network security, we will briefly mention security
systems and selected a target to be modeled in this study, and investigate the selected
target in regard to the structural and behavioral feature. Besides, we’ll mention gen-
eral security policies applicable to the system and investigate the existing well-
defined methods for representing policies. In the phase of defining a modeling ap-
proach for the network security, we’ll present a knowledge-based modeling and
simulation framework facilitating the design and implementation of security models.
Especially, we’ll have the framework include the knowledge module based on the
architecture of rule-based expert system so that security policies can be described as
the form of rule sets. Moreover, we’ll provide a systematic approach for transforming
policies of highly abstracted level into rule sets of actually workable level in consid-
eration of existing well-defined methods. In the phase of designing and implementing
security models, we’ll abstract meaningful characteristics of the target system from
functional and dynamic point of view based on the defined modeling approach. And
we’ll test the validity of implemented models through the sample scenario of apply-
ing policy examples.

There are several existing papers similar and comparable to our paper. Alain Mayer
designed and implemented a firewall analysis tool. This allows the administrator to
easily discover and test the global firewall policy, uses a minimal description of the
network topology, and directly parses the various vendor-specific low-level configu-
ration files. Thus, the tool complements existing vulnerability analysis tools, as it can
be used before a policy is actually deployed, and it operates on a more understandable
level of abstraction [2]. Noureldien and Osman enumerate considerations that have to
be taken into account in order to develop an appropriate and meaningful evaluation
criteria, and propose a multi-dimensional criterion for evaluating firewalls. The crite-
rion consists of three major components: security, performance and management. The
analytical results of applying the proposed criteria on firewall show the strengths and
benefits of the proposed multi-dimensional approach [3].

2 Review of Network Security

OSI security Architecture (X.800) classifies security services into several types such
as authentication, access control, confidentiality, integrity, and non-repudiation. Secu-
rity mechanisms can be classified into authentication, access control, encryption, and
audit trail, and these require one or more algorithms or protocols [4]. As the core part
of security infrastructure, access control mechanisms are widely used and can be
implemented into various systems such as firewall, operating system, and database
management system [4,5]. Therefore, we chose the packet filter, representatives of
network level access control, as modeling target in this study.

2.1 Features of Access Control Mechanisms

In order to abstract main features to be represented in each model, we investigated the
selected mechanisms in regard to the structural and behavioral feature.
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Static Packet Filtering. Decides whether to pass or to drop each packet only by it’s
header fields. Packets are just examined by prearranged filtering rules regardless of
the result of examining previous packets. Fig. 1 shows the behavioral feature of this
mechanism. There are several advantages such as fast speed of processing, the
easiness of collaborating with application level services, and the simplicity of
implementation. But on the other side, there are serious disadvantages too. Though
the attacker can fabricate the header of packet, it is impossible to examine the content
of packet. And if an attacker accomplishes an intrusion, the harmful influence on the
entire network is very critical [6].

Dynamic Packet Filtering (Stateful Inspection). Inspects the content of packet as
well as the header, extracts required information in order to enforce the security
policy, and maintains such information in the Dynamic State Table. Filtering is
performed in consideration of the relationship of contiguous packets based on the
table. Fig. 1 shows the behavioral feature of this mechanism [7].

Fig. 1. Process of the packet filtering

2.2 Representation of Security Policy

Setting-up the security policy is deriving concrete rules applicable to a certain system
from abstract goals. It describes proper or improper activities towards protected re-
sources based on security requirements that are confidentiality, integrity, and avail-
ability of resources [4,5]. Table 1 shows typical policy examples of detailed level.
Those are concerned in major network access control issues common throughout
diverse organizations and categorized according to applicable access control mecha-
nisms [8].

There are several well-defined security policy models such as BLP (Bell-
LaPadula), HRU (Harrison-Ruzzo-Ullman), Biba, and so on. Especially, the BLP is
capable of representing the mandatory and the discretionary access control policy by
way of more formalized method [9]. BLP is a state-machine model that represents the
access permission through the access control matrix and the security level. The set of
states is defined as B ×  M ×  F, where
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B = P (S ×  O ×  A) is the set of current accesses. An element b∈ B is a collection of
tuples (s, o, a), indicating that subject s currently performs operation a on object o. S
is a set of subject, O is a set of objects, and A is the set of access operations.

M is the set of access permission matrices M = (Mso)s∈ S, o∈ O.
F is the set of security level assignments. An element f∈ F is a tuple (fS , fC , fO),

where fS gives the maximal security level each subject can have, fC gives the current
security level of each subject, and fO gives the classification of all objects.

The HRU can be referred to represent policies that are related to modification of
the access right and creation and deletion of the subject or the object, and also the
Biba does for policies that are related to the integrity of access.

Table 1. Security policy examples

Applicable mechanism Policies of detailed level
Static packet filtering - Drop the packet spoofed with internal IP addresses

- Pass the packet from trusted domains
- Drop ICMP echo and direct broadcast packets
- Drop the packet whose TTL value equal 1
- Shut down vulnerable services such as tftp, rlogin, etc.

Dynamic packet filter-
ing

- Use the SYNdefender Relay method
- Use the SYNdefender Gateway method
- Use the Committed Access Rate function

3 Modeling Approach for Network Security

3.1 Knowledge-Based Modeling and Simulation Environment

In this paper, we propose the Structural Base and the Behavioral Base. The former is
a conceptual framework for representing the structure of the complex network in
clear and hierarchical manner based on the discrete event modeling theory, the latter
is a code-level framework for representing the behavior of network components in
modular and reusable manner based on the object-oriented paradigm.

Structural Base. We designed the Structural Base from the SES (System Entity
Structure) that is a modeling methodology proposed by Bernard P. Zeigler, and it is
capable of effectively representing the structural knowledge of the system [10].
Existing conceptual components of the system can be represented as entities that is to
be models, and relationships among those entities can be represented as the following
types:

– Decomposition (|): means that child entities are components of the parent.
– Specialization (||): means that child entities are kinds of the parent.
– Multiple-Decomposition (|||): means that multiple instances of child entities con-

sist of the parent.
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Fig. 2 shows an example of the Structural Base, which is a representation of network
environment including the security system.

Fig. 2. An example of the Structural Base

Behavioral Base. We designed the Behavioral Base, which is composed of the
Model Base, the Component Base, and the Rule Base like Fig. 3. These three types of
‘Base’ are capable of representing behavioral features of the system with different
levels of abstraction and in modular fashion. The Model Base is a set of simulation
models. The Component Base is a set of components of model. The Rule Base, as a
particular component, is a set of rule subsets representing security policies.

Fig. 3. The Behavioral Base, types, and components of model
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3.2 Types and Components of Model

We designed two types of model based on the DEVS (Discrete Event System Specifi-
cations) proposed by Bernard P. Zeigler [10]. One is the Basic Model, and the other is
the Compound Model.

Basic Model. As the model by which a unitary system functioning independently is
represented, the Basic Model is defined by the structure   M = < X, S, Y, δ , λ  >,
where X is the set of external input event types, S is the sequential state set, Y is the
set of external output event types, δ  is the transition function dictating state transitions
due to internal or external events (S× X→ S), and λ  is the output function generating
external events (S→ Y).

Fig. 3 shows components of the Basic Model. The EvtProcessor facilitates han-
dling of input events, state transitions of the model according to the passage of time,
and generation of output events. The AbsInBuff (AbsOutBuff) facilitates buffering and
conversion of input (output) data. As an extended type from the Basic Model, the
Basic-Expert Model is capable of including a particular component named Expert-
Core. The ExpertCore is based on the expert system architecture, and facilitates rep-
resentation of security policies and decision-making.

Compound Model. The Compound Model groups one or more models so that these
collaborate without conflicts. As the model by which more complex systems are
represented, it is defined by the structure CM = < {Mi}, {Ii}, {Zij} >, where Mi is a
component model, Ii is the set of influences on Mi, and Zij is a function translating
output Mi to Mj. Fig. 3 shows components of the Compound Model. The Coordinator
facilitates interaction among component models and interfacing with external.

3.3 Knowledge Representation inside Model

We present an approach to construction of knowledge base for the security model in
consideration of formalized methods for representing policy (see Sect. 2.2) and gen-
eral concept of the rule-based expert system, which facilitates representation of lim-
ited knowledge, accumulation of new knowledge, and separation of control [11].

To begin with, rule set mapping approach can be described as follows:

f : PA R  (P:Policy, A:Attack, R:Rule set)
PA⊆ PA = P×A = {(p1, a1), (p2, a1), ...}
f = { ((p1, a1), r1), ((p2, a1), r2), ... }
P={ p1, p2,...}, A={ a1, a2,...}, R={ r1, r2,...}

(1)

And, several guidelines for constructing rule sets are defined.

– Security policies should be represented by the predicate logic.
– Facts should describe properties and relationships of the domain entity, and their

evaluation result must be true or false.
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– Condition part of the IF clause can have a series of Facts only if these are con-
nected with the AND operator.

– For applying to the Inference Engine, one or more conflict resolution schemes
should be considered.

– It is possible only to add a new rule, so modifying and deleting of existing one
should not be happened.

– If rules are too increased, it is possible to separate rules into several groups ac-
cording to steps of inference for decreasing conflicts and maintaining the consis-
tency. Fig. 4 shows steps of inference. The process of inference is divided into
subject discovering, object discovering, operation discovering and decision-
making. Condition discovering can be included in any other steps.

– Subject, object, access operation, and access condition discovering rules are de-
fined with respect to available information (initial facts) of security models.

– Access conditions are properties restricting particular subject, object, or operation.
Security level and integrity level are dealt in access conditions too.

– All rules under the decision-making step should derive a goal state. The regular
form of these rules by predicate logic is as the following.

“IF Who(Subject)∧ What(Object)∧ How(Operation) THEN Permit(Access)∨ Deny(Access)”

Fig. 4. Stepping the process of inference

4 Design of Security Model

4.1 Object Structure of Modeling Environment

Fig. 5 shows core objects provided by the modeling framework. These are designed
based on the MODSIM III package. In the MODSIM III, a compile unit is an inde-
pendent ‘Module’ file. The object structure of the framework is composed of 5 mod-
ules, ‘Model-Type Module’ defining model types, ‘Security-Model Modules’ defin-
ing specific security models, ‘Component Module’ defining components of the
model, ‘Entity Module’ defining utility objects independently used in each model and
‘Graphic-Resource Module’ for GUI and animation.
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Fig. 5. Object structure of the modeling environment

4.2 Sample Scenario

Detailed applying scenario is necessary to evaluate security policy examples men-
tioned in Section 2.2 through the simulation, and then we constructed a sample sce-
nario with regard to packet filtering policies and the SYN flooding attack. These are
good representatives of the policy and the attack for the purpose of validating the
proposed modeling framework.

Scenario 1. (allowance policy): TCP based services (such as Telnet, FTP, etc.) of
internal network of an organization can be accessible from both internal and external
network.

Scenario 2. (static packet filtering policy): As a result of scenario 1, the SYN flood-
ing attack can be occurred from external attackers. As a countermeasure for this,
packet filtering is performed using a designated list of deniable and permissible IP
addresses. The organization precautions against the potentiality of attack by means of
preventing all accesses from external to TCP services of protected hosts. But in this
case, though all attack packets must be cut off clearly, normal accesses must also be
restricted. So exceptionally, trustworthy hosts of external network are allowed to
access those services.

Scenario 3. (dynamic packet filtering policy): As a result of scenario 2, the attack
spoofed as a trustworthy host can still be occurred. As a countermeasure for this,
consecutive SYN packets from the same client are dynamically monitored and pre-
vented because those deserve to be an attack. For monitoring the state of packets
dynamically, the packet filter can transmit the TCP connection-established packet
instead of the target host (SYNDefender Relay [7]).

4.3 An Example of Security Model Design

Fig. 6 shows functional characteristics of the packet filter model designed based on
the Basic-Expert Model. Inputs of this model are like policy scenario, filtering condi-
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tion (allowable or preventable IP addresses, port number, TCP flag and so on), and
continuously generated packets during simulation interval. Outputs of this model are
permissible packets. Main processes inside this model are transition of model states,
handling events due to components interaction, and inference engine deciding which
packet is allowed.

Fig. 6. Functional view and rule-base composition of the Filter model

Especially, as an instance of composition of rule-base in the model, Fig. 6 shows a
process that compose the rule-base representing policies of the sample scenario in
Section 4.2 according to the knowledge representation approach in Section 3.3. Table
2 shows the specification of completed rule-base. In the Fig. 10, available information
of filter is major information extracted from arbitrary packets and additional informa-
tion restricting specific subject, object and operation. The access condition of subject
and object is a list of pre-inputted addresses. An access operation is determined to
monitoring or not by TCP flag. Necessary objects and attributes to represent rules by
predicate logic can be selected from available information of filter, and rules are
grouped according to inference steps.

In the Table 2, FO_3 and FG_3 are rules for access control of protective objects,
FS_3 and FG_4 are for trustworthy subjects, and from FP_1 to FP_5 are for attentive
operations. To resolve the conflict, rules in upper side are applied prior to downward.
Rules can be interpreted as the following examples. FS_3 means “If the source IP
address is one of the trustworthy list, the subject is trusted”, FO_1 means “If the tar-
get IP address is internal, the port is FTP, and the protocol is TCP, the object is an
internal FTP service”, and FP_1 means “If the subject is external, the protocol is
TCP, and the TCP flag is SYN, the access operation is a request for connection”.

Table 2. The Specification of Filter model’s Rule-base

Steps ID Rule
Subject FS_3 IF    One_of(Source_ip, Trusty_ips)      THEN  Trusty(Subject)
Disco- FS_1 IF     External(Source_ip)      THEN  External(Subject)
Vering FS_2 IF     Internal(Source_ip)       THEN  Internal(Subject)
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Table 2. (continued)

Steps ID Rule
Object
Disco-

FO_3 IF    One_of(Target_ip, Protective_ips) ∧  Tcp(Protocol)
THEN  Protective(Object)

vering FO_1 IF    Internal(Target_ip) ∧  Ftp(Target_port) ∧  Tcp(Protocol)
THEN  Internal_ftp(Object)

FO_2 IF    Internal(Target_ip) ∧  Telnet(Target_port) ∧  Tcp(Protocol)
THEN  Internal_telnet(Object)

Opera-
tion

FP_1 IF    External(Subject) ∧  Tcp(Protocol) ∧  Syn(Flag)
THEN  Connect_requesting(Operation)

Disco-
vering

FP_2 IF    External(Subject) ∧  Tcp(Protocol) ∧  Ack(Flag)
THEN  Connect_establishing(Operation)

FP_3 IF    Connect_requesting(Operation) ∧  ¬ One_of(Operation, Attentive_Ops)
THEN  append(Operation, Attentive_Ops)

FP_4 IF    Connect_establishing(Operation) ∧  One_of(Operation, Attentive_Ops)
THEN  remove(Operation, Attentive_Ops)

FP_5 IF    Connect_requesting(Operation) ∧  One_of(Operation, Attentive_Ops)
THEN  Consecutive_request(Operation)

Deci FG_5 IF    Consecutive_request(Operation)         THEN  Deniable(Access)
-sion FG_4 IF    Trusty(Subject) ∧  Preventive(Object)      THEN  Permissive(Access)
Making FG_3 IF    External(Subject) ∧  Preventive(Object)     THEN  Deniable(Access)
(Goals) FG_1 IF    External(Subject) ∧  Internal_ftp(Object)     THEN  Permissive(Access)

FG_2 IF    External(Subject) ∧  Internal_telnet(Object)   THEN  Permissive(Access)

5 Implementation of Security Model

Fig. 7 shows the execution window of simulation environment. During the execution,
the window shows the movement of packets and the variation graph of performance
index. Also, when clicking a model, statistical data until then can be shown. Provided
functions are generating of security models, changing attributes of the model, com-
pounding various models, representing security policies inside the model, simulating
selected scenarios, animating the process of execution, displaying the summary of
observation index and so on.

Before executing the simulation, a scenario must be selected in the menu and at-
tributes of the model are initialized with appropriate values in the corresponding
interface. Through the initialization interface for filter model, users can set up attrib-
utes of the filter model such as traffic limit, filtering way, deniable or permissible IP
address, port number, TCP flag, and so on.

Each model represents final statistics when the simulation is finished. Table 3 is
the result of sample scenario in the Section 4.2. We observed permission ratio of
attack packets and denial ratio of normal packets in order to analyze security per-
formance of the packet filter. Implemented model is valid because expected result is
almost equal to simulation result. For example, when static packet filtering is applied
to simulation, filter permits 60%, packet type 2, 5, 11, of total attack packets, that is,
it denies 40% of attack packets.
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Fig. 7. Dynamic processing of simulation

Table 3. Simulation result of sample scenario

Packet
Types

Source target flag N/A gener-ation
(%)

allowance
policy

Static
filtering

dynamic
filtering

1 SYN Normal 10 permit Permit permit
2 Protective SYN Attack 2.5 permit permit deny
3 Trusty ACK Normal 12.5 permit permit permit
4 SYN Normal 10 permit permit permit
5 Accessible SYN Attack 2.5 permit permit deny
6 ACK Normal 12.5 permit permit permit
7 SYN Normal 2.5 permit deny deny
8 Protective SYN Attack 10 permit deny deny
9 Untrusty ACK Normal 12.5 permit deny deny
10 SYN Normal 2.5 permit permit permit
11 Accessible SYN Attack 10 permit permit deny
12 ACK Normal 12.5 permit permit permit

Permission ratio of attack packets (%) 100 60 0
Denial ratio of normal packets (%) 0 20 20

6 Conclusion

In this paper, we presented a knowledge-based modeling and simulation environment
for network access control, which is capable of modeling the security mechanism
representing the policy as an adequately abstracted form and simulating and analyz-
ing the model with respect to security performance on altering the policy. Through
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the presented environment, we can considerably save time required in evaluating the
security system and expect the enhancement of security. From now on, we should
make a step further from evaluating the role of security system itself. We will im-
prove the environment to be capable of connecting the vulnerability database and
analyzing the damage of resources with respect to more various scenarios. Thus, we
will make the environment be a tool by which the security manager gets a compre-
hensive guidance.
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Abstract. In this paper, we discuss a distributed policy control model
where each object has its own policy and objects’ behaviors are au-
tonomously controlled based on those policies when they interact with
one another. First the paper proposes a policy specification language
suitable for distributed policy control. The operational semantics of the
language is formally defined. Based on the formal semantics, we pro-
pose a runtime policy control mechanism for interpreting a given policy
specification and sequencing method execution.

1 Introduction

Recent network technology enables us to exchange various kinds of data such
as text, music and movie via a real-life computer network. Hence, a systematic
method is needed to control the access to those data to achieve the required
security and privacy of the system.

A policy specification is a set of rules (or policies), each of which describes
when and in which condition a specified subject can (or cannot) perform a spec-
ified action on a specified target. An obligation policy such that s must perform
a on t is important as well, especially in e-Business applications and network
security management. In an object-oriented environment, an action corresponds
to a method which may have arguments, and the above model is no longer useful
to describe a policy.

A few policy specification languages are proposed which have rich functions
to describe the above mentioned policies in a concise way. However, almost all
the works implicitly assume the existence of a centralized policy controller. Also,
defining a formal semantics of a policy specification language is important since
a correct policy control is possible only by correctly interpreting the meaning of
a given policy specification. However, how to define a formal semantics has been
scarcely discussed except [7,2].

In this paper, we first propose a simple policy specification language, which
is suitable for distributed policy control. The main features of the proposed
specification language are summarized as follows.
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– The language fits autonomous distributed policy control where an object has
each own policy specification. In a specification, one can refer to a public
attribute of another object as well as an attribute of the self object.

– A content-dependent conditional policy can be described concisely in the
language.

– The language has a simple but useful exception handling mechanism by
which policy violations and other exceptions are handled in a uniform way.

– The operational semantics of a policy specification is formally defined. This
enables us to implement a reliable policy control mechanism which satisfies
a given policy specification.

Related Works. Recently, several policy specification languages are proposed
(for example, [3,4,5]). In [4] and its companion papers, logical languages based on
Hoarn-clause are used as specification languages and various theoretical problems
such as authorization inheritance and authorization conflict detection/resolution
are discussed. However, these studies do not consider obligation policy. Ponder
[3,2] is a general purpose policy specification language in which one can specify
obligatory, conditional and data-dependent policies. Also a formal semantics of
a subset of the language is defined in [7,2]. However, it is not easy to directly
translate their semantics into a policy control mechanism. They define only the
execution order of methods under a given policy specification, leaving the rest of
the system as a blackbox. In contrast with [7], we describe the whole execution
control of a system in a simple way by explicitly defining the change of runtime
stack configuration. In [5], a specification language whose expressive power is no
less than Ponder is proposed. The main advantage of the language is that both
policy specifications and control targets can be maintained in a uniform XML
environment. However, the formal semantics of the language is not provided.

2 Distributed Policy Control

This section shows how a policy for distributed objects can be specified. In a
traditional access control model, 3-tuple (s, t, a) means that “subject s performs
action a on target t” and is called an operation unit. In an object-oriented model,
(s, t, a) corresponds to “subject s executes method a on target t.” There are four
kinds of basic access control policy for (s, t, a) as follows.

– positive authorization (or permission or right) : s is permitted to perform a
on t.

– negative authorization (or prohibition) : s is forbidden to perform a on t by
the target’s policy.

– refrain : s is forbidden to perform a on t by the subject’s policy.
– obligation : s is obliged to perform a on t (when a specific event has occurred).

We write t.a ← s to denote operation unit (s, t, a). Furthermore, we write
t.a(p1, . . . , pn)← s to denote that s performs a with actual arguments p1, . . . , pn

on t or s sends message a(p1, . . . , pn) to t.



388 Shigeta Kuninobu et al.

In the following, auth+, auth−, oblg and refrain stand for positive authoriza-
tion policy, negative authorization policy, obligation policy and refrain policy,
respectively.

In our model, each object has its own policy. When more than one object
interact with one another, the execution of every method should meet all the
policies of the objects which participate in the method execution. For example,
object A can play the movie contained in object B by executing method B.play
only when both the policies of A and B permit A to execute B.play. We use
the reserved word “this” to denote the self object, namely, the object which has
that policy.

(1) positive authorization
policy auth+ policy name this.m←B if Cond

“If Cond holds then subject B may perform action m on this object (or B
may send message m to ‘this’ object).”

(2) negative authorization
policy auth− policy name this.m←B if Cond

“If Cond holds then subject B must not perform m on this object.”
(3) refrain

policy refrain policy name B.m←this if Cond
“If Cond holds then this object must not perform m on target B.”

(4) obligation
policy oblg policy name B.m←this on Event if Cond

“If Cond holds when Event occurs then this object must perform m on
target B.”
Event should be a time instant (without duration). In the above policy
specification,
– if Event =“beginning of D.m′ ← F” then this object must perform m

on B just before F performs m′ on D.
– if Event =“end of D.m′ ← F” then this object must perform m on B

just after F performs m′ on D.

2.1 Examples

Example 1 Policy of digital contents (Playing contents): Consider an object
which has digital contents such as movie and music. This object may specify
the following policy. Let x be an arbitrary user. “If x is the owner of this object
and if x is older than or equal to 20 years then x may play the contents in this
object. ”
“Just after the execution of play method, x must execute pay method with actual
arguments x, B and $10.00. That is, when the contents have been played by x
then x must pay $10.00 to B.”

policy auth+ Play 1
var x: user
this.play←x if this.owner==x, x.age>=20

policy oblg Play 2
var x: user
this.pay(x,B,$10.00) on end of this.play←x
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Since this.pay(x,B,$10.00) which appears in Play 2 policy is an operation
unit, it should be written as this.pay(x,B,$10.00)←this. If the subject of an
operation unit is omitted in a policy, then the subject is specified as “←this” by
default.

Example 2 Policy of a user (Refrain from playing contents) : A user object
(or a personal computer of the user) may have the following policy. Let z be an
arbitrary object which has a movie as contents.
“If the current user is under 18 years old and if the type of the contents is ‘v’
then this user cannot play z.”

policy refrain Age Check
var z: content
z.play if this.age<18, z.type==v

Instead of specifying Age Check policy in the user object, you can put the
following Age Check by Contents policy in the movie object.

policy auth− Age Check by Contents
var x: user
this.play←x if x.age<18, this.type==v

However, there is no guarantee that every movie object has such a policy as
Age Check by Contents. Even if the movie object has such a policy, it is difficult
for a user to know it from outside. Therefore, it is desirable for both of a user
object and a movie object to have policy specification and control mechanism.

3 A Policy Specification Language

In this section, we define the syntax of a policy specification language using BNF
notation as follows. The policy specification language is a set of 〈policy〉.
〈policy〉 := ‘policy’ 〈mode1〉 〈policy name〉

[ ‘var’ 〈variable declaration〉+ ]
〈operation unit1〉+ [ ‘if’ 〈condition〉 ]
% This rule defines the syntax of auth± and refrain policies.
| ‘policy’ 〈mode2〉 〈policy name〉

[ ‘var’ 〈variable declaration〉+ ]
〈operation unit2〉+ ‘on’ 〈event〉 [ ‘if’ 〈condition〉 ]
% This rule defines the syntax of an obligation policy.

〈condition〉 := 〈expression〉 % The type of 〈expression〉 should be Boolean.
〈mode1〉 := ‘auth+’ | ‘auth−’ | ‘refrain’
〈mode2〉 := ‘oblg’
〈operation unit1〉 := 〈object〉‘.’〈action〉 [ ‘←’ 〈object〉 ]
〈operation unit2〉 := 〈object〉‘.’〈action〉‘(’ 〈expression〉∗ ‘)’[ ‘←’ 〈object〉 ]
% See table 1 for the microsyntax of 〈operation unit1〉 and 〈operation unit2〉.
〈object〉 := 〈identifier〉 | ‘this’ % ‘this’ means the self object.
〈expression〉 := ‘(’ 〈expression〉 ‘)’ | 〈object〉‘.’〈attribute〉 |

〈expression〉 〈binary operator〉 〈expression〉 |
〈unary operator〉 〈expression〉 | 〈constant〉 | 〈variable〉

〈event〉 := ‘beginning of’ 〈operation unit3〉 | ‘end of’ 〈operation unit3〉
〈operation unit3〉 := 〈operation unit1〉
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Table 1. Form of 〈operation unit1〉 and 〈operation unit2〉

this.m←this x.m←this this.m←y x.m←y

auth+
√ √

auth− √
refrain

√ √
oblg

√ √

〈variable declaration〉 := 〈variable〉+ ‘:’ 〈type〉
〈policy name〉,〈action〉,〈attribute〉,〈variable〉 := 〈identifier〉

– Note that, 〈...〉 are nonterminal symbols, A | B is a choice of A and B, [ A ]
means A is an option, A∗ stands for 0 or more repetition of A, A+ stands for
1 or more repetition of A and ‘α’ stands for α itself as terminal symbols.

– The microsyntax of 〈binary operator〉, 〈unary operator〉, 〈constant〉, 〈type〉
and 〈identifier〉 are omitted.

– For 〈operation unit1〉 and 〈operation unit2〉, if ← 〈object〉 is omitted then
←this is specified by default.

– In table 1, x and y stand for any objects other than ‘this.’
– As defined in the above BNF rules, 〈operation unit3〉 is used only in the

event clause of obligation mode. It is allowed to have the form this.m←this,
x.m ←this or this.m ←y where x and y stand for any objects other than
‘this.’

4 Formal Semantics

In this section, we formally define a multi-object system in which the behavior
of each object is controlled by specified policies. An object in the system calls a
method of another object (or itself) along a given program, and the invocation
of the called method is permitted or forbidden complying with both the caller’s
and callee’s policies. Moreover, an invocation and an ending of a method may
cause other obligatory method calls specified by the policies.

First, we define a simple model of objects and programs. Second, we introduce
several concepts about policies and define the behavior of a system with policies.
Finally, the system is extended by introducing an exception handling function. In
our model, an exception occurs when a forbidden method call is requested, and
thus policy violations are handled by the uniform exception handling function.

As a related work, Tonouchi and Damianou[2,7] define an operational seman-
tics of policies written in Ponder. Their semantics is based on a system model
which excludes the behavior of objects and a mechanism causing events which
trigger off obligatory method calls. However, due to this simplification their se-
mantics does not sufficiently describe the following features of the system.

– There is a recursive causal relation as: each policy does or does not become
effective depending on the truth of its if-clause which may be affected by
the state of the objects; the state of the objects is changed by the execution
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o1.x := 10

o2.m2(o1.x) ←  o1

o1.x := ret

···

method o1.m1()

n1=IT[o1.m1]

o2.y := arg1+20

return o2.y

method o2.m2(arg1)

n2

n3

n5

n4=IT[o2.m2]

o1.z ≤  1 o1.z > 1

true

true

Fig. 1. A sample program

of a method; a method call is permitted or forbidden by a policy. Hence, to
predict the correct behavior of the system, we have to consider the state of
the objects and the state transition caused by the execution of a method.

– Executing an obligatory method call may cause other obligatory calls. To
predict the chain of obligatory calls, we have to define the relationship be-
tween a method invocation and an event.

As described in the following subsections, our semantics is designed to include
the above features into the formal semantics, though we currently omit some
complex features such as multi-threaded execution.

4.1 Behavior of System without Policies

Objects. Each object has a finite number of attributes and methods defined
by its class. Assume that an object o has attributes a1, a2, . . . , ak. When the
value of ai is vi for 1 ≤ i ≤ k, the state of o is represented by the tuple state =
(v1, v2, . . . , vk). We may write o.a and o.m to represent an attribute a and a
method m of an object o, respectively.

Let O be a finite set of objects. Assuming a total order of objects in O, we
let O be an ordered set (o1, o2, . . . , on). A global state of O is an n-tuple σ =
(state1, state2, . . . ,
staten), where statej is a state of oj for 1 ≤ j ≤ n. Let σ(e) denote the value
of an expression e at a global state σ and let σ[o.a := v] denote the global state
which is the same as σ except that the value of the attribute o.a is v.

Program. The body of a method o.m is a program which is represented by a
directed graph shown in figure 1. A program is a tuple (NO, TG, IS, IT, VAR).
In the following we write NO[o.m], TG[o.m], and so on to represent each of
the five components of the body of a method o.m. Let EXP[o.m] be the set of
expressions each of which is a term consisting of built-in functions, attributes of
o, and variables in VAR[o.m] (defined below).
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– NO[o.m] is a set of nodes which represent program points. We assume that
for any o1, o2, m1 and m2, NO[o1.m1] and NO[o2.m2] are disjoint unless
o1 = o2 and m1 = m2.

– TG[o.m] ⊆ NO[o.m]× EXP[o.m]×NO[o.m] is a set of edges called transfer
edges. For any n1, n2 ∈ NO[o.m], n1

e→ n2 denotes (n1, e, n2) ∈ TG[o.m],
which represents that the control can move to n2 just after the execution of
n1 if the value of e is true.

– IT[o.m] ∈ NO[o.m] is the entry point of the program and is called the initial
node.

– IS[o.m] is a mapping from a node to its label. The label of a node represents
an atomic action and is one of the following forms.
• o2.m2(e1, . . . , ek) ← o Invoke o2.m2 with the arguments e1, . . . ,

ek ∈ EXP[o.m]: move the control to IT[o2.m2] and assign the values of
expressions e1, . . . , ek to the parameters arg1, . . . , argk in VAR[o2.m2],
respectively.
• return e Return to the caller method and move the control to the

next node. The value of e ∈ EXP[o.m] is returned and is assigned to the
special local variable ret of the caller method.
• o.a := e Assign the value of e ∈ EXP[o.m] to the attribute a of o

itself.
• r := e Assign the value of e ∈ EXP[o.m] to the local variable

r ∈ VAR[o.m].
In the following, let IS be the mapping which is the union of IS[o.m] for
every method m of every object o.

– VAR[o.m] is a set of local variables. Assuming that VAR[o.m] is an ordered
set (r1, . . . , rk), a state of the local variables of o.m is represented by a
tuple µ = (v1, . . . , vk) of the values of them. We define µ(e) and µ[r := v]
in the same way as the global state of objects. The value of an expression
e ∈ EXP[o.m] at a global state σ and a state µ of local variables is σ ◦µ(e) =
σ(µ(e)). The state of local variables in which the values of all variables are
undefined is denoted by ⊥.

4.2 Behavior of System with Policies

Policies. Now we extend the system described in the previous subsection by
introducing policies. Consider an ordered set O = (o1, o2, . . . , on) of objects.
Each object in O has a finite set of policies as well as the attributes and the
methods. Assuming that each object oj has a set Pj of policies for 1 ≤ j ≤ n, let
Policy(O) =

⋃
1≤j≤n P ′

j where P ′
j equals Pj except that “this” in Pj is replaced

with oj .
Let σ be a global state of the set O of objects, s and t be objects in O, m

be a method of t, and mod be any of auth+, auth− and refrain. We define a
relation σ |= mod(s, t, m) as follows, which represents that the target t permits
(if mod = auth+) or forbids (mod = auth−) the subject s to call the method m
of t, or s refrains (if mod = refrain) from calling m of t when the global state
is σ.
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σ |= mod(s, t, m) if and only if ∃p ∈ Policy(O),
∃θ: a substitution for the variables in p,
p = “policy mod . . . B.m← A if Cond”,
σ ◦ θ(Cond) = true, θ(A) = s, θ(B) = t.

If σ |= auth+(s, t, m) and σ |= auth−(s, t, m), then we say that σ causes a
conflict between policies upon the operation (s, t, m). Using an arbitrary conflict
resolution method (cf. [4,6]), we define CAN(σ, t.m← s) as a predicate which is
true if the operation t.m← s is permitted when the global state is σ.

For a global state σ and an event ev , we also define the set oblg(σ, ev) of
obligatory method calls which become effective when the global state is σ and
the event ev has just occurred.

oblg(σ, ev) = { t.m(v1, . . . , vkm)← s |
∃p ∈ Policy(O), ∃θ: a substitution for the variables in p,
p = “policy oblg . . . B.m(E1, . . . , Ekm)← A on Ev if Cond”,
σ ◦ θ(Ev) = ev , σ ◦ θ(Cond) = true, θ(A) = s, θ(B) = t,
σ ◦ θ(Ei) = vi for 1 ≤ i ≤ km }

Order of Obligations. If the set oblg(σ, ev) of obligations has more than one
elements, then we assume a total order ≺ over oblg(σ, ev) which represents the
order of performing the obligations. Thus

oblg(σ, ev) = {op1, . . . , opl} and op1 ≺ op2 ≺ · · · ≺ opl

where opi = “ti.mi(vi1, . . . , viki)← si” for 1 ≤ i ≤ l. opi ≺ opj represents that
opi should be performed before opj . For the above-mentioned oblg(σ, ev), we
define a sequence Foblg(σ, ev) of stack frames as follows.

Foblg(σ, ev) = (noblg[op1],⊥) : (noblg[op2],⊥) : · · · : (noblg[opl],⊥),

where noblg[op] is a special node newly introduced here for any obligatory oper-
ation op. Note that noblg[op] does not belong to any method and IS(noblg[op])
is defined as IS(noblg[op]) = op. Let NOoblg be the set of all noblg[op]s.

Transition System with Policies. The abstract multi-object system consists
of a set O of objects and a control stack. The control stack is a sequence of an
arbitrary number of stack frames. Each stack frame (or simply, frame) is a triple
(n, µ, ef ), where n ∈ NO[o.m] for a method o.m, µ a state of the local variables
of o.m, and ef a truth value. The frame represents that the control is at n in
method o.m with the state µ of the local variables, and if ef = true, then it
also represents that the label of n is o2.m2(e1, . . . , ek) ← o and the control has
already reached a return node in the callee method o2.m2. We may abbreviate
a frame (n, µ, false) to (n, µ). The concatenation of two sequences ξ and ν is
denoted by ξ : ν. The empty sequence is denoted by ε. The rightmost symbol in
a sequence of frames corresponds to the topmost symbol of the stack.
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(GASSIGN)
IS(n) = “o.a := e” n

e2→ n2 σ′ = σ[o.a := σ ◦ µ(e)] σ′ ◦ µ(e2) = true
(σ, ξ : (n, µ))→ (σ′, ξ : (n2, µ))

(LASSIGN)
IS(n) = “r := e” n

e2→ n2 µ′ = µ[r := σ ◦ µ(e)] σ ◦ µ′(e2) = true
(σ, ξ : (n, µ))→ (σ, ξ : (n2, µ

′))

(CALL)

IS(n) = “o2.m2(e1, . . . , ek)← o1” CAN(σ, o2.m2 ← o1) = true
f2 = (IT[o2.m2],⊥[arg1 := σ ◦ µ(e1)] . . . [argk := σ ◦ µ(ek)])
Foblg(σ, beginning of o2.m2 ← o1) = fx,1 : fx,2 : · · · : fx,l

(σ, ξ : (n, µ))→ (σ, ξ : (n, µ) : f2 : fx,l : · · · : fx,2 : fx,1)

(RETURN)

IS(m) = “return e” IS(n1) = “o2.m2(e1, . . . , ek)← o1”
f2 = (n1, µ[ret := σ ◦ µ2(e)], true)
Foblg(σ, end of o2.m2 ← o1) = fx,1 : fx,2 : · · · : fx,l

(σ, ξ : (n1, µ) : (m, µ2))→ (σ, ξ : f2 : fx,l : · · · : fx,2 : fx,1)

(FINISH)
n1 /∈ NOoblg n1

e→ n2 σ ◦ µ(e) = true
(σ, ξ : (n1, µ, true))→ (σ, ξ : (n2, µ))

(OFINISH)
n1 ∈ NOoblg

(σ, ξ : (n1, µ, true))→(σ, ξ)

Fig. 2. Inference rules which define the transition relation

n2 n4n1 n2

callgassign
n2 n5

return
n2

ef=true

gassign finish
n3

Fig. 3. Behavior of the system with the program in figure 1 and no obligation

The abstract system is represented by a transition system Sys defined as
follows. A state of Sys is a pair (σ, ξ) where σ is a global state of O and ξ is
the contents of the control stack. We define the transition relation → of Sys
by inference rules in figure 2. Note that a method invocation o2.m2 ← o1 is
performed only when CAN(σ, o2.m2 ← o1) = true. Moreover, when a method
has been just invoked or has just finished, a sequence of stack frames which will
accomplish the obligations caused by the beginning or the end of the method is
added into the control stack (see figures 3 and 4).

4.3 Exception Handling

We extend our model by a function to handle exceptions, that is,

(1) Extend the program model so that we can specify an action to be performed
when an exception has just occurred.

(2) Extend the transition system so that an exception occurs when a forbidden
method call is requested.
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···

n2 n4n1 n2 no2 no1

callgassign
n2 n4 no2 no1

call
m

obligations for the beginning of
the method called by n2

n2 n4 no2 no1 m2

return
n2 n4 no2 no1 no4 no3

ef=true

obligations for the end of
the method called by no1

Fig. 4. Behavior of the system with obligations

policy oblg DELIVERY FEE
var sender:Channel

(a)

try
(this.casher).pay((this.cert).fee, sender)

except
on e:OperationFailed do this.throw(e)

on beginning of this.receive←sender

Fig. 5. A sample obligation

Consider a situation in which an obligation causes a policy violation. In the
definition of the policy specification language, we said that the main clause of
an obligation policy is a method call, and thus we cannot specify any action for
the violation exception. However, we extend the specification language as follows
without changing the model of obligations. Figure 5 shows a specification of an
obligation policy written in the extended language. In the language we can write
an arbitrary program code in the main clause (part (a) of figure 5). We assume
that the part (a) is the body of a method which has no name and when this
obligation becomes effective, the method is called.

Program with Exception Handling. A program is a tuple (NO, TG, EG, IS,
IT, VAR), where EG is a set of edges called exception edges. An element in EG is
a tuple (n1, r, ty , n2) where n1, n2 ∈ NO, r ∈ VAR, and ty a type of an exception
such as OperationFailed (see figure 6). Note that in our model an exception occurs
only at a method call and thus n1 should be a method call. n1

r:ty→EG n2 denotes
(n1, r, ty , n2) ∈ EG and represents that if the control is at n1 and an exception
ex of the type ty occurs, it can move to n2 assigning ex to r (i.e., the exception
is caught). When an exception ex of a type ty occurs at a node n and n

r:ty→EG n2
does not hold for any n2 and r, ex is delivered to the method which called the
method which n belongs to (i.e., the exception is thrown).

Transition System with Exception Handling. Let expolicy be a constant
which represents the policy violation exception, and typeof(ex ) be the type of
an exception ex .
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o1.x := 10

o2.m2(o1.x) ←  o1

o1.x := ret

···

method o1.m1()

n1=IT(o1.m1)

o2.y := arg1+20

return o2.y

method o2.m2(arg1)

n2

n3
n5

o1.x := 0

o1.throw(r) ←  o1

n6

n7

r:ty

n4=IT[o2.m2]

o1.z ≤  1 o1.z > 1

true

true
true

true

Fig. 6. A sample program with an exception edge

(THROW1)
IS(n) = “o1.throw(e1)← o1” ex1 = σ ◦ µ(e1)
(σ, ξ : (n, µ))→ (σ, ξ : (n, µ) : ex1)

(POLICY EX)
IS(n) = “o2.m2(e1, . . . , ek)← o1” CAN(σ, o2.m2 ← o1) = false
(σ, ξ : (n, µ))→ (σ, ξ : (n, µ) : expolicy)

(CATCH)
n

r:typeof(ex)→EG n2

(σ, ξ : (n, µ, ef ) : ex )→ (σ, ξ : (n2, µ[r := ex ]))

(THROW2)
n

r:typeof(ex)→EG n2 does not hold for any n2 and r.
(σ, ξ : (n, µ, ef ) : ex )→ (σ, CASTOFF(ξ : (n, µ, ef )) : ex )

Fig. 7. Inference rules for exception handling

Let f1 = (n1, µ1, ef 1) and f2 = (n2, µ2, ef 2) be arbitrary frames. We define
a mapping CASTOFF from and to a sequence of frames as

CASTOFF(f1) = ε

CASTOFF(ξ : f1 : f2) =
{

ξ : f1 ef 1 = true or n2 /∈ NOoblg
CASTOFF(ξ : f1) otherwise.

We extend the transition system Sys as follows. A stack frame can be either
the above-mentioned tuple (n, µ, ef ) or an exception ex . If the topmost element
of the control stack is an exception ex , it represents that ex has occurred and is
to be processed. We add the inference rules in figure 7 to the set of the rules in
subsection 4.2. We also add “m2 �= throw” to the premise of the rule (CALL) in
figure 2.

5 Implementation Issues

In this section we describe a policy control system, which is an implementation
of the abstract multi-object system defined in the previous section, using an
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policy
interpreter

meta object A meta object B

base object Bbase object A

delegateToSend

Deliver the message

Invoke the
specified method

event
notification

event
notification

authorization/
obligations

authorization/
obligations2

1

3

4

6

5

7

Policy controller

Base objects

(virtual communication)

Fig. 8. Communication using meta objects

class ObjectA extends BaseObject {
void methodA() {

BaseObject objB = PolicyController.getObject(”somewhere/objectB”);
Message msg = new Message(”methodB”, new Object[] {a1, a2});
sendMessage(msg, objB); // Send a message toward objectB.

} }
class ObjectB extends BaseObject { void methodB(Class1 p1, Class2 p2) { ... } }

Fig. 9. An implementation of base objects

object-oriented programming environment such as Java. We call a member of
the concerned multi-object system a base object. To each base object, we attach
a newly introduced object called a meta object in the same way as the reflective
authorization system described in [1]. Each base object cannot communicate
directly with another one. Instead, it delegates its meta object to send or receive
a message to or from another (see figure 8). Figure 9 is an implementation of
base objects in Java, where methodA of a base object of class ObjectA calls
methodB of another base object of class ObjectB. Note that methodA does
not call methodB directly but uses sendMessage of the superclass BaseObject
instead. sendMessage invokes delegateToSend of the meta object of the caller.
The meta object delivers the message to the callee’s meta object, and then
receiveMessage of BaseObject is invoked. Finally receiveMessage invokes the
specified method, that is, methodB. The policy control is achieved by the meta
objects and a policy interpreter. At first the meta object of caller object checks
whether the method call is permitted or not. The policy interpreter computes
the truth of the predicate CAN in subsection 4.2 and if it is false, throws the
policy violation exception. Next the meta object performs the operation as well
as the obligations.

6 Conclusion

In this paper, a policy specification language suitable for distributed policy con-
trol is proposed and its formal semantics is provided. There are several theoretical
issues to pursue, namely, policy conflict, termination and confluence [4,6].
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Abstract. Distributed systems usually contain objects with heterogeneous secu-
rity requirements that pose important challenges on the underlying security
mechanisms and especially in access control systems. Access control in distrib-
uted systems often relies on centralized security administration. Existing solu-
tions for distributed access control do not provide the flexibility and manage-
ability required. This paper presents the XML-based Secure Content Distribu-
tion (XSCD) infrastructure is based on the production of self-protected software
objects that convey contents (software or data) and can be distributed without
further security measures because they embed the access control enforcement
mechanism. It also provides means for integrating Privilege Management Infra-
structures (PMIs). Semantic information is used in the dynamic instantiation
and semantic validation of policies. XSCD is scalable, facilitates the admini-
stration of the access control system, guarantees the secure distribution of the
contents, enables semantic integration and interoperability of heterogeneous
sources, solves the “originator retained control” issue and allows activities
(such as payment) to be bound to the access to objects.

Keywords: Distributed systems security, secure content distribution, XML
metadata, Privilege Management Infrastructure.

1 Introduction

The “digital object” concept has proven to be a valuable approach for different appli-
cations in distributed environments. Digital objects can be classified with respect to
their contents. On the one hand, data objects encapsulate several logically related
pieces of data along with some administrative information in a package intended to
provide a uniform access. This is the case in systems for information commerce,
digital libraries or eBooks. On the other hand, software objects encapsulate several
services/operations. Software objects are found in object oriented middleware, web
services or grid computing.

The security problems associated to digital objects also depend on the type of con-
tent encapsulated in the object. The protection for data objects is usually related to
Digital Rights Management issues. In particular, access control, use-control, payment
and copyright enforcement are relevant problems. The main problem for software
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objects is use-control, while access control (to operations), copy-protection, function
analysis and runtime protection are also important issues. In both cases, the ability to
retain control over the objects after they are accessed, known as “originator retained
control”, is a desirable security property.

Distributed systems usually contain objects with heterogeneous security require-
ments. However, some of the new scenarios where distributed systems are emerging
share some common problems. The most remarkable ones are the following. Firstly, it
is usual that objects are accessed by previously unknown users. Therefore, subscrip-
tion-based schemes are not appropriate in this case. Secondly, the execution of copy-
right agreements, payment or other activities must be bound to the access to the ob-
jects. Finally, the originator or owner of the object must retain control over it regard-
less of its physical location and even after it is accessed by users. Other requirements
are: (i) that a high degree of flexibility is required because of the heterogeneous na-
ture of the objects, (ii) that being able to change the access control parameters dy-
namically and transparently is also essential and, (iii) due to the large amount of ob-
jects, it is important to be able to establish access conditions in an automatic way
based on information about objects.

Paradoxically, access control in distributed systems often relies on centralized se-
curity administration. Centralized control has important disadvantages: (a) the control
point represents a weak spot for security attacks and fault tolerance, (b) it does not
facilitate the deployment of owner retained control mechanisms, (c) it reduces system
performance because it introduces a bottleneck for request handling, and (d) it usually
enforces homogeneous access control schemes that do not fit naturally in heterogene-
ous user groups and organizations. On the other hand, systems for distributed security
administration still have open problems. Solutions proposed so far do not provide the
flexibility and manageability required. A system for distributed access control has
been proposed based on the concept of mobile policies [1] to solve some of the limi-
tations of Role Based Access Control (RBAC) schemes [2]. This improvement is
limited by the requirement of executing the access control policies in trusted comput-
ers. Furthermore, when access to an object is granted, this object is sent to the client
computer where it has no protection. Finally, because object and policy are compiled
in a package, a change in the policy requires that the object-policy package is recom-
piled and distributed to all trusted servers.

This paper presents the XML-based Secure Content Distribution (XSCD, pro-
nounced “exceed”) infrastructure that provides distributed access control and en-
forcement and secure content distribution. We address the integration of a separate
Privilege Management Infrastructure (PMI) by defining mechanisms for the semantic
description of its components. We introduce Semantic Policy Language (SPL), an
XML-based policy definition language designed to specify policies in a simple way,
to be evaluated by processors with limited capabilities such as smart cards and to
facilitate semantic policy validation processes. SPL policies are modular and can be
composed without ambiguity. We also address the problem of the association of poli-
cies to objects in a flexible and automated way and the combination of policies. To
achieve our goals we have extended the concept of mobile policy by allowing their
execution in untrusted systems and used XML metadata technologies extensively.

The rest of the paper is organized as follows. Section 2 summarizes some relevant
related work. Section 3 presents the building blocks of XSCD. Section 4 describes the
infrastructure. Finally, section 5 summarizes the conclusions and presents ongoing
and future work.
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2 Related Work

Regarding access control, several proposals have been introduced for distributed het-
erogeneous resources from multiple sources [3][4]. Unfortunately, these proposals do
not address the specific problems of access control in distributed systems. Traditional
access control schemes such as mandatory access control (MAC), discretionary access
control (DAC) or RBAC are not practical for scenarios where the users are previously
unknown or with a very large number of registered users.

Static grouping of users can suffice in many situations but it is not flexible enough
to cope with the requirements of more dynamic systems where the structure of groups
can not be anticipated by the security administrators. In these scenarios new resources
are frequently incorporated to the system and each resource may need a different
group structure and access control policy. Furthermore, the policy for a given re-
source may change frequently. A different approach is required in order to solve the
scalability problems of these systems, facilitate access control management and pro-
vide means to express access conditions in a natural and flexible way.

Some systems based on the idea of the self-secured package of information have
been proposed for secure content distribution. None of these systems has achieved a
representative use because the security of these systems depends heavily on the secu-
rity of the client software. IBM’s Cryptolope [5] is one of the most elaborated alter-
natives. A Cryptolope is a package that includes the protected content and all neces-
sary administrative information. As noted in [6], the fact that the opener component
(known as Cryptolope Player) runs on the end user's PC, introduces the possibility to
produce software emulators. In addition, an infrastructure of trusted clearing houses
and online connection with these entities is needed. A similar scheme is Intertrust’s
Rights|System platform [7] where digital content is protected even when it is resold.
This platform is designed for high-value digital goods but is actually limited to three
data formats. Both schemes are platform dependent (need specific client software),
offer a set of closed possibilities for the contents, and have no integrated payment
scheme. Moreover, they are designed for high-value digital goods, but are not ade-
quate for low-value transactions and occasional business relations.

In the context of policy specification, several XML based languages such as
XACL, XrML, ODRL, ebXML, SAML or XACML have been developed for access
control, digital rights management, authentication and authorization. Many similari-
ties and interesting features can be found among these languages. Nevertheless, they
do not support some relevant properties such as policy parameterisation and composi-
tion. Moreover, many features provided by those languages are not necessary in our
application scenarios [8].

Two related proposals are the Author-X system [9] and the FASTER project [10],
which propose similar systems specific for access control to XML documents. Both
systems define hierarchic access control schemes based on the structure of the docu-
ment. But the structuring of XML documents does not necessarily match the security
requirements of the nodes. As a consequence, for the general case the number of dif-
ferent authorizations (positive and negative) that have to be defined grows up rapidly.
Author–X policy language uses DTDs, while FASTER uses XML-Schema [11]. Scal-
ability is very limited in both Author-X and FASTER systems. The FASTER system
is described as completely server-side and Author-X is essentially centralized, al-
though a distributed approach is proposed based on a set of XML federated sources
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relying on a central ‘master source’. The design based on this central ‘master source’
has negative consequences on its scalability.

The content protection of Author-X is founded on the concept of “passive” secure
container requiring a different key for each possible view of the document. This in-
troduces important disadvantages related to the administration of the access control
system and the security [12]. FASTER does not support any content protection
mechanism, except the creation of the appropriate user view on the server. FASTER
access control is based on user groups and physical locations defining a subject hier-
archy. This scheme does not work well for scenarios where heterogeneous contents
are frequent and the structure of groups can not be anticipated by the administrators.
Author-X is based on credentials that are issued by the access control administrator.
Therefore, in practice, each credential will be useful only for a single source, limiting
interoperability. A consequence of this approach is that users are obliged to subscribe
to sources before they can access their contents

3 XSCD Overview

The main motivation has been to design an access control scheme that is scalable to a
large number of previously unknown users and solves the originator retained control
issue. Starting from a design based on attribute certificates and taking into account the
characterization of different scenarios as well as the analysis of previous proposals.
The following are the main goals for our secure distribution infrastructure:
o Scalability. The centralized approach adopted in current access control systems

introduces many drawbacks in terms of efficiency, manageability and security.
The access control system must be designed to suit scenarios where the number of
users, attributes and policies are very large. Therefore, distributed access control
enforcement is essential. Moreover, distributed management of the security poli-
cies is also important.

o Originator-retained-control. This issue deals with enabling the originator to retain
control over the protected object, not over the contents. The latter, called ‘full use-
control’, is a digital rights issue that is out of the scope of this work.

o Distributed access control management. Administrators should be able to manage
their resources regardless of the resource location. Attribute certificates issuers
must be independent of the application and the system must support the secure
interoperation with those entities.

o Interoperability. The integration of different heterogeneous object sources is hin-
dered by traditional access control systems because each source defines a specific
access control scheme. The integration of an external PMI represents a step to-
wards the solution of this problem.

o Distributed access control enforcement. Access control enforcement mechanisms
must be distributed in order to avoid bottlenecks in request processing.

o Ease of management. The distributed approach must not introduce complexity of
management. Tools to help security administrators should be provided.

The separation of the access control and authorization functions (credential issu-
ance or attribute certification in our case) is universally accepted as a secure and scal-
able approach. XSCD is based on the integration of an external PMI supported by
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semantic information about the certification entities. We describe now the basic
building blocks of the XSCD infrastructure.

3.1 Building Blocks

Privilege Management Infrastructure. Traditionally, the study of authorization issues
has focused on access control. However, when considering Internet applications,
authorization adopts a wider meaning, including group membership, role identifica-
tion (collection of permissions or access rights, and aliases for the user’s identity),
limits on the value of transactions, access time for operations, security clearances,
time limits, etc. Attribute certificates provide, for those applications, the means to
carry authorization information, which in this way becomes "mobile".

The mobility feature of attributes is not a new issue. In fact, extensions of identity
certificates as specified in ITU-T 1997 recommendation [13] tried to address this
problem. However the use of the corresponding extension, subjectDirectoryAttributes,
does not make entity attributes independent from identity. To be more precise, when
using that solution, the change of privileges indirectly force a costly revocation of the
identity related information. Besides, that solution does not solve delegation and im-
personation issues, which are especially relevant in many of actual applications. The
ITU-T 2000 recommendation [14] provides a more suitable solution because it clearly
defines a framework where identity and attribute certificates, although related, can be
independently managed. That recommendation defines new types of authorities, At-
tribute Authorities (AA), for the assignment of privileges. It also defines the Source of
Authority (SOA) as the ultimate authority to assign a set of privileges. Additionally,
the ITU-T framework provides a foundation to build a PMI that contain a multiplicity
of AAs, SOAs and final users.

Usually, each SOA issues certificates for a small number of semantically related
attributes. With this approach security administrators do not have control over some
elements of the access control system. Consequently, a mechanism to establish the
trust between these administrators and the PMI is required. We have addressed this
problem using semantic information about the certifications issued by each SOA to
assist the security administrators in the creation and semantic validation of access
control policies.

Software Protection. In order to provide secure content distribution and originator
control, the access control system must provide means to protect the contents not only
while in transit through the network but also when they arrive to the destination. The
problem with systems based on passive secure information containers is that users
must install specific client software to access the protected data. This software con-
trols access to the data and enforces the appropriate actions (e.g. payment) before
access is granted. Because the client software is not protected, it becomes the weak
spot in terms of security. Opposed to these proposals we use “active” containers
(software instead of data) in order to avoid some problems of the latter. XSCD uses
protected mobile software elements named Protected Content Objects (PCO) to con-
vey the contents and force the user to fulfil the applicable policy before access is
granted. By “protected software” we mean that it is neither possible to discover nor to
alter the function that the software performs and it is also impossible to impersonate
the software. In our solution, this is achieved using a variant of the SmartProt system
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[15]. SmartProt partitions the software into functions that are executed by two col-
laborating processors. One of those processors must be a trusted computing device
that enforces the correct execution of the functions and avoids that these functions are
identified or reverse engineered. We are currently using smart cards for this purpose
although other alternatives are possible.

Some specific sections of the unprotected software are translated by SmartProt into
functionally equivalent sections of card-specific code. The translation process also
identifies the dependencies between these protected sections, reorganizes the code and
introduces fake code and data to confuse the attacker. These sections are then en-
crypted with a unique, randomly produced key using a symmetric cryptosystem. This
key will be later included in a license (for a specific smart card) that is required to be
able to run the software. Each license is encrypted using the public key of the client
smart card. The last step substitutes the original code sections by calls to a function
that transmits the respective equivalent protected sections, including code and data, to
the card. Some additional support functions are also included. Therefore, the pro-
tected sections of the software do not reside in the cards; instead, during the execution
of the software, these sections are transmitted dynamically as necessary to the card
where they are decrypted using the installed license and executed. When finished, the
card may send back some results. Some other partial results will be kept in the card in
order to obtain a better protection against function analysis and other attacks. As each
piece of software has its own key, we can manage them individually, which is not
possible in other software protection proposals where the protected sections of all
applications share the same key. For XSCD we integrate the access control policy and
the license in a structure that we call Mobile Policy (MP).

Metadata. Most of times, metadata (information about data) are designed to support
people or programs in locating and retrieving information resources. XML metadata
technologies such as XML-Schema, RDF and RDF Schema [16] provide the founda-
tion for the description of semantic information in our proposal. Metadata are applied
at different levels in XSCD. On one hand, access control policies benefit from meta-
data for its creation and semantic and contextual validation. Likewise, digital objects
have metadata associated that are used for the dynamic policy assignment and pa-
rameter instantiation. Additionally, metadata are used at the mobile policies creation
level, for the specification and acquisition of certification rules. On the other hand,
metadata is an essential tool for the integration of the external PMI.

Authorization language. Although other XML-based languages have been developed
for access control and authorization, there are specific requirements found in our
infrastructure that make their use difficult or inadequate. The main reason is that they
do not support some relevant properties such as policy parameterisation and composi-
tion. On the other hand, policies must be processed inside smart cards with limited
storage and processing capabilities. Therefore, the specification language must be
simple enough to be translated into a more compact form in order to be processed by
the smart cards. For these reasons, we have developed a specific XML-Schema based
language, Semantic Policy Language (SPL), in order to specify the access control
policies. The keys to the high flexibility of SPL are the extensive use of metadata, the
modular composition of policies that separates declaration of each policy component
and the parameterisation of the policies.
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The SPL system uses several components to define policies. SPL Policies specify
the conditions that must be satisfied to gain access. Each Policy Applicability Specifi-
cation (PAS) links some policies to a series of resources. Finally, Secured Resource
Representations (SRRs) and other contextual metadata are used to provide semantic
information that is used in policies and PAS. Additionally, Source of Authorization
Descriptions (SOADs) provide a semantic description of the PMI that is essential for
the policy validation process. Fig. 1 shows examples of some of these components.

SPL policies are described following an XML-Schema template where we can de-
clare access rules stating the set of certificates that must be presented for granting
access. Optionally, we can declare a set of actions to be performed before access is
granted. Examples of these actions are Notify_To, Payment and Online_
Permission. This is known as provisional authorization. Import clauses can also be
included to substitute some of the previous components of the policy and to allow the
modular composition of policies based on the X-Path standard. Additionally, dynamic
instantiation is enabled by the possibility to define parameters in the policies. The
instantiation of parameter references is stated in the PAS. Metadata (SRRs and con-
textual information) is used for parameter instantiation.

The Policy Applicability Specification (PAS) provides an expressive way to relate
policies to resources, either explicitly or based on metadata. PAS documents include
declarations of the applicable policies, the target objects and, optionally the instantia-
tion of the parameters of the policy. The object declaration includes the object loca-
tion, the operations affected (defaulting to all operations) and some optional condi-
tions. In this way, the PAS comprise all necessary information to relate policies to
objects, and to instantiate policies. The PAS in Fig. 1 relates all objects in ‘http://
www.lcc.uma.es/Research/VFwkProgramme’ of type ‘report’ to the policy defined in
‘VFrameworkProgram.xml’.

The Secured Resource Representation (SRR) is a simple and powerful mechanism
to describe properties about resources. Properties described in SRRs are used to in-
stantiate policies and PAS, and to locate the applicable policies. The SRR in Fig. 1
declares that object ‘http://www.lcc.uma.es/Research/VfwkProgramme/WP3.pdf’ is a
‘report’ and belongs to the project with ID ‘IST_2001-32446’.

The Source Of Authorization Description (SOAD) documents are digitally signed
[17] RDF instances expressing the different attributes certified by each SOA, includ-
ing their names, descriptions and relations. SOADs convey information that is essen-
tial for the semantic validation of the policies such as metadata about the different
attributes certified by the SOA and its certification procedures. The set of SOADs
represents the semantic description of the PMI. Full integration of the PMI can be
achieved transparently for the rest of the system based on this description.

4 Architecture and Operation of the Infrastructure

Fig. 2 shows the main components of the XSCD system and their relationship. The
first component is called Policy Assistant. This component uses the SOADs to pro-
duce and validate SPL Policies and PAS. The second component is the SmartProt
protection system. This component transforms unprotected content objects in the
server into PCOs generating also their corresponding Licenses. A PCO is a software
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object that encapsulates and protects the original object and enforces the access con-
trol mechanism. PCOs can be freely distributed to untrusted servers. It can be noticed
that policies are not included in the PCO. The third component, called Mobile Policy
Generator, attends requests from end users producing MPs dynamically. The Object
Metadata database, containing SRRs, is used to determine the set of applicable poli-
cies for the corresponding PCO.
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Fig. 1. Example Policy, its corresponding PAS and the SRR for a report

Fig. 3 shows the system operation. When the client requests some object from a
server it receives the PCO containing it, which runs in the client computer. Before the
protected sections of its code can be executed the PCO has to retrieve the corre-
sponding MP (which includes the license that allows the decryption and execution of
those protected sections). To do this it sends a request containing the certificate of the
public key of the smart card. In case the server from where it was retrieved is the
originator of the PCO, it produces the MP for that PCO. Otherwise the server just
forwards this request to the originator. Once received, the MP is installed and used to
run the protected sections of the PCO.

Policy Specification and Validation. The creation and maintenance of access control
policies is a difficult and error prone activity. The Policy Assistant component (which
includes the Policy Editor and Semantic Policy Validator) is designed to help security
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administrators to specify those policies and validate them to find errors. For this pur-
pose, the Policy Assistant provides the administrators with information about the
attribute certificates that can be included in the policies, their sources and relation.
This information is gathered from SOADs.
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Fig. 2. Overview of the XSCD Infrastructure

The Policy Assistant includes components for the automated validation of policies
at different levels. SPL policies are validated syntactically using XML-Schema. Se-
mantic validation is made possible by the use of a specific Semantic Policy Validator
that uses the DOM API to parse the document validating it. Finally, policies can be
validated taking into account the context where they will be applied.

For instance, consider the case of a research network among several institutions
that participate in a common research project. Each participant establishes the access
control parameters over the contents they share. Additionally, membership is certified
by each institution. Fig. 1 showed an example policy granting access to members
assigned to this project of any participant institution, to the commissioner of the proj-
ect and to the external reviewers assigned to it by the European Union. The institution
parameter is instantiated from contextual metadata about the project. On the other
hand, the project parameter is instantiated from the SRR corresponding to the object
to be accessed. A parameter can represent a complex XML element, as is the case of
the institution parameter.

The Mobile Policy Generator analyses the semantic metadata available for the tar-
get resource contained in the SRR along with other contextual metadata, finds the
appropriate PAS and retrieves the necessary SOADs. Using this information, the
Mobile Policy Generator is able to find the applicable policies. All applicable policies
are then analysed and instantiated. Finally, all policies are combined and translated to
produce the MP. For the semantic and contextual validation of policies the Policy
Assistant performs the same process. In this case, after the combination of policies the
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Policy Assistant analyses the resulting policy and run some test cases in order to
check its consistency. SOADs play a key role in this semantic validation because they
provide the information needed to infer all the possible situations where access is
granted, enabling the detection of semantically incomplete or incorrect policies.

:SecureCoprocessor

Steps 9-10 are 
repeated

Originator:Server :Server

9:Run(protSect)

8: Install(mobilePolicy)

4: PolicyReq(PCO_ID, CardCert)
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POLICY(mobilePolicy) 7:

10:Result(res)

5: PolicyReq
(PCO_ID,  
CardCert)

6: POLICY
(mobilePolicy)

:Client

Fig. 3. A scenario for information access

Protected Content Object Generation and Access. The SmartProt system is used to
protect software applications. In our prototype system, the protected application
(PCO) is a Java applet responsible for the transport of the contents. In other environ-
ments PCOs will be implemented accordingly (e.g., CORBA objects, a proxy for web
services, etc.). Consequently, the PCO includes the (encrypted) contents to be ac-
cessed, the access control enforcement mechanism and a cryptographic link to the
MP. PCOs can be distributed and copied freely.

The PCO generation process is independent of the customer secure coprocessor
(smart card) and will be performed just once for each piece of mobile software. The
first step of the PCO generation consists in the production of a Java applet containing
the original object. Then, SmartProt is used to protect this applet. The key generated
by SmartProt will be used afterwards to produce the MP.

Mobile Policy Generation. In order to allow that originators of the contents are able to
dynamically change the applicable access control policy regardless of the storage
location, policy and PCO must be separated. In this way, policies are retrieved from
the originating server during the execution of the PCO. This allows a high degree of
flexibility giving the originator more control over the application of the policies. For
efficiency and flexibility, validity constraints in MPs can be used to control the need
for an online access to the originator server. Originators can define certain validity
constraints for each policy (based on number of accesses, time, etc. depending on the
smart card features). Hence, policies can be cached by clients and used directly while
they are still valid. The generation of MPs is a reasonably fast process while the gen-
eration of PCOs is slower. Furthermore, PCOs are much more stable than policies.
Finally, opposed to PCOs, each MP is specific for a smart card.

Following a user request, the new MP is produced linking the combined SPL pol-
icy and the PCO. The MP is obtained and loaded in the card as part of the PCO. When
the MP is received by the client smart card, it is decrypted, verified and stored inside
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the card until it expires or the user explicitly decides to extract it. Once the MP is
correctly installed in the card the protected sections of the PCO can be executed,
which requires the cooperation of the card containing the MP. The Mobile Policy
Generator retrieves and combines all applicable policies to produce the MP. The
combination of different policies is usually a difficult task that can result in inconsis-
tent or contradictory policies. To deal with this problem the most common solution is
to establish a series of general rules to solve the ambiguous cases. But, in practice,
each situation is different. Therefore general rules do not produce good results. Our
infrastructure enables the administrator to define rules governing the combination of
policies. Additionally, the modular approach and the tools for policy creation, compo-
sition and validation facilitate the detection and correction of wrong policies. Because
MPs must be processed by smart cards, they are specified using SPL and are later
translated into a compact format to be included in MPs. The binding between PCO
and the corresponding MP is established by cryptographic means.

5 Conclusions and Future Work

We have presented the XSCD infrastructure for the secure distribution of objects in
distributed systems. XSCD extends mobile policies by allowing their execution in
untrusted systems and the dynamic and transparent modification of policies. XSCD is
based on the SmartProt software protection scheme and the SPL access control
scheme. We have introduced mechanisms to seamlessly integrate the external PMI in
our infrastructure. The extensive use of XML metadata technologies facilitates the
security administration in such environments, and enables important functionalities of
the system such as the contextual validation of policies. Furthermore, the combination
of policies and the association of policies to objects in a flexible and automated way
have been considered. To summarize, XSCD represents a flexible solution for differ-
ent distributed scenarios and any kind of content, solves the originator-retained-
control problem, can be applied regardless of the attribute certification scheme, im-
plements distributed access control management and enforcement mechanisms and
allows dynamic modification of policies transparently and efficiently. To the best of
our knowledge no other works have been done allowing the semantic validation of
policies in distributed environments with separate authorization infrastructures.

A prototype of this system has been implemented for a Digital Library scenario. In
such environment, PCOs are implemented using Java applets. e-gate CyberflexTM USB
Java smart cards are used as secure coprocessors. The high capacity and the transfer
speed of these cards makes possible that the performance of the PCO is very good. A
set of techniques, such as temporary authorizations, is used to improve the perform-
ance. We are currently working on the application to the CORBA environment. More
precisely, we have implemented a Resource Access Decision (RAD) facility based on
the XSCD approach.
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Abstract. In this paper we discuss the security issue of distributed key
generation in a distributed threshold protocol. We identify two subtle
flaws in the previously proposed discrete-log based distributed key gen-
eration protocols. We propose a discrete-log based distributed key gen-
eration protocol that meets the necessary security requirements and has
no such flaws.

1 Introduction

In this paper we discuss the security issue of distributed key generation in a dis-
tributed threshold protocol. A discrete-log based distributed threshold protocol
of computing function f , with threshold t, has two sub-protocols:

1. Distributed key generation (Dkg): a set of players P1, P2, . . . , Pn together
generate a public key y = gx mod p such that each honest player Pi holds a
share xi of the secret key x and any t+1 or more honest players can recover
the secret key x.

2. Threshold function execution (Tfe): a set of t′ honest players
Pi1 , Pi2 , . . . , Pit′ , t′ ≥ t + 1, who were involved in the DKG protocol can
compute the function σ = f(y, m, x) by combining their partial results
σi1 , σi2 , . . . , σit′ , where m is the common input and σij = f ′(y, m, sij ),
1 ≤ j ≤ t′.

The Dkg protocol is executed once only in the initial setting. Then, the
qualified players of the threshold protocol execute the Tfe protocol whenever
they need to compute such a function distributively.

In previous papers [GJKR96,GJKR99], these two sub-protocols are discussed
separately so that their interaction effect is not addressed. The interaction effect
between two protocols in a system has been known for years. For example,
the auxiliary-input zero-knowledge interactive proof system assumes that the
verifier obtains additional information from previous execution of the protocol or
other sources. Also, the effect causes security problems even though the executed
protocols seem irrelevant [TH99].
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We demonstrate flaws about the setting due to such loss of link. We show that
even if the Dkg protocol meets security requirements, the resultant configuration
does not constitute a secure Tfe protocol. We show that a corrupted player can
get a share of the secret key and an honest player, who follows all steps of the
Dkg protocol during execution, can actually compute the secret key x.

We believe that there is no reason to let the corrupted (or malicious) player
who has shown signs of malice during execution of the Dkg protocol to obtain a
share of the secret key. Otherwise, when we obtain a σ = f(y, m, x), we cannot be
sure that it is indeed computed from a set of authorized players. This is because
a corrupted (or malicious) player who is disqualified can claim that he is not
responsible for computing this σ, but he indeed is involved in. Although it is
possible to authenticate the involved players when executing the Tfe protocol,
it is not practical in most cases and violates the anonymity property sometimes.
We identify the following two ingredients to amend the security problem we just
mentioned.

1. After executing the Dkg protocol, the set of the n′ honest players in QUAL,
who get all broadcast messages, should constitute a valid and secure (n′, t)-
Tfe even if honest players do additional computation from received
messages.

2. Any player who is not in QUAL does not get any information about
the shares of the secret key shared by the players in QUAL.

Nevertheless, previous DKG protocols only require that the corrupted play-
ers do not get information about the secret key. As a component of an
integrated system, these protocols leak information about the valid shares of the
secret key.

Therefore, a discrete-log based distributed threshold protocol with threshold
t and to compute function f should consist of the following two sub-protocols
with specified properties:

1. Distributed key generation (Dkg): a set P of n players together generate a
public key y = gx mod p. It results in a qualified set QUAL ⊆ P such that
each player Pi ∈ QUAL holds a share xi of the secret key x and each player
Pj /∈ QUAL holds no shares of the secret key x.

2. Threshold function execution (Tfe): t′ players Pi1 , . . . , Pit′ of QUAL in
which at least t + 1 of them are honest can compute the correct result
σ = f(y, m, x) = g(y, m, σi1 , . . . , σit′ ), where t′ ≥ t+1 and σij = f ′(y, m, sij )
is the partial result computed by Pij

, 1 ≤ j ≤ t′. Furthermore, any set of
players that contains t or less players from QUAL cannot compute any in-
formation about σ = f(y, m, x).

In our setting of distributed threshold protocols, we require that the later Tfe
should meet all security requirements even if some players in QUAL deliberately
broadcast malicious information.

Results. In this paper, we propose a discrete-log based distributed key gen-
eration protocol. Our DKG protocol meets the necessary security requirements
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stated above. In particular, the honest players constitutes a secure threshold
protocol and the corrupted players get no shares of the secret.

2 Flaws in Previous DKG Protocols

We present a typical discrete-log based DKG protocol [GJKR99] and show how
flaws occur in this protocol. Other discrete-log based DKG protocols have the
same flaws.

Let the constructed secret key x be in Zq and the public key be y = gx mod p,
where p = 2q + 1, both p and q are prime, and g is a generator in Gq, which
is the order-q subgroup in Z∗

p . In a typical DKG, each player Pi, 1 ≤ i ≤ n,
selects a secret value ai, uses the (t, n)-threshold secret sharing scheme to split
ai into sij , 1 ≤ j ≤ n, and sends sij to Pj via a private channel shared between
Pi and Pj . Each Pi who gets sji from Pj , 1 ≤ j ≤ n, computes his own share
xi =

∑n
j=1 sji mod q. Thus, the secret key is x =

∑n
i=1 ai mod q, and the public

key is y =
∏n

i=1 gai mod p, where each Pi publishes gai mod p. If we want the
shares to be verifiable, each Pi uses a verifiable secret sharing scheme to share
ai instead. The protocol is stated as follows:

1. Each Pi chooses a random degree-t polynomial

fi(x) =
t∑

j=0

aijx
j mod q

and broadcasts the verification values Aik = gaik mod p, 0 ≤ k ≤ t. Let
ai = ai0 and sij = fi(j), 1 ≤ j ≤ n. Pi sends sij to Pj via a private channel.

2. Each Pj verifies the received shares sij , 1 ≤ i ≤ n, by checking

gsij ≡
t∏

k=0

(Aik)jk

(mod p). (1)

If the check fails for index i, Pj broadcasts a complaint against Pi.
3. If Pi receives a complaint from Pj , it broadcasts sij , which should satisfy

Equation (1).
4. Each Pj disqualifies Pi if any of the following conditions holds:

– It receives complaints against Pi from t + 1 or more players.
– If Pk, 1 ≤ k ≤ n, complains against Pi and sik revealed by Pi in Step 3

does not match Equation (1).
Let QUALj be the qualification set defined by Pj . Note that all QUALj for
honest players Pj are equal.

5. Each Pi sets his share as xi =
∑

j∈QUALi
sji mod q and broadcasts yi =

gai mod p. Pi computes y =
∏

j∈QUALi
yj mod p as the public key.

There are two problems in this protocol. Firstly, if the corrupted Pi does not
send a legal sij to Pj in Step 1, it shall receive a complaint from Pj in Step
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2. Even if Pi cannot send a valid sij that satisfies Equation (1) in Step 3 and
shall be disqualified by other players in Step 4, it has already possessed a valid
share xi =

∑
j∈QUALi

sji, which is F (i) =
∑

j∈QUALi
fj(i). In this case, Pi is

disqualified by all players in QUAL, but it has a valid share xi.
Secondly, Pj may file a false complaint against Pi in Step 2, that is, Pj

actually receives a valid share fi(j) from Pi, but it still complains against Pi.
Then, Pi has to reveal fi(j) for others to verify in Step 3. We can use the revealed
partial information to compute a valid share of the final shared polynomial F (z).

The flaw is as follows. Without loss of generality, we assume that
P1, P2, . . . , Pt are the corrupted players and Pt+1, Pt+2, . . . , Pn are honest play-
ers, where n ≥ 2t+1. In Step 1, each corrupted Pi, 1 ≤ i ≤ t, sends invalid sij to
honest players Pj , t+1 ≤ j ≤ n, such that all honest players Pj would complain
against Pi in Step 2. Furthermore, in Step 2, each corrupted Pi, 1 ≤ i ≤ t,
complains (falsely) against all honest players Pj , t + 1 ≤ j ≤ n. Then, in Step
3, each honest player Pj , t + 1 ≤ j ≤ n, sends fj(i), 1 ≤ i ≤ t, that satisfies
Equation (1).

We can see that all corrupted players are disqualified in Step 4 since all
honest players complain against them and there are more than t honest players.
The QUAL set is {Pt+1, Pt+2, . . . , Pn} and the hidden polynomial of the secret
sharing is F (z) = ft+1(z) + ft+2(z) + · · · + fn(z). Since all honest players are
complained, each player Pj , t + 1 ≤ j ≤ n, broadcasts sji = fj(i), 1 ≤ i ≤ t, for
verification. Therefore, the shares F (i) = ft+1(i)+ft+2(i)+· · ·+fn(i), 1 ≤ i ≤ t,
are publicly known. Furthermore, since each honest player Pj , t + 1 ≤ j ≤ n,
has an additional share F (j), it can compute F (z). This violates the threshold
requirement of the threshold protocol during the execution of Tfe.

3 Preliminaries

In this section, we present the models of communication, the honest player, the
adversary and the security requirements.

Communication model. We assume that all players are probabilistic
polynomial-time Turing machines. They are connected by a round-based and
fully synchronous broadcast channel. That is, all players broadcast messages
simultaneously in each round and can see all broadcast messages from others
without delay and alternation. We also assume that any two players are con-
nected by a private channel such that all other players cannot tape. There is
literature discussing how to implement private channels.

Honest player. A player is honest if all messages it sends during DKG follow
the specification of the protocol. Nevertheless, it may compute information from
received messages.

It may be that Pi is corrupted by the adversary, but it shows no signs of
malice during execution of the DKG protocol. We treat Pi as honest since it is
in the final qualified set and responsible for the Tfe protocol.

Adversary. We assume that the adversary is static, which means that the
adversary chooses the corrupted (malicious) players before the DKG protocol
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starts. The computational power of the adversary is modeled as a probabilis-
tic polynomial-time Turing machine. A corrupted player may deviate from the
protocol in any way. It can broadcast any message or holds back when required.

Security requirements. A DKG protocol with threshold t allows n partici-
pating player to jointly generate a random secret key x, and each player holds
a share xi of the generated secret key x. The protocol also outputs the public
key y = gx mod p. One can reconstruct the secret key x if he has t + 1 or more
shares. A secure DKG protocol should meet the following correctness and secrecy
requirements.

Correctness. Gennaro, et al. [GJKR99] define the correctness requirements (C1)
to (C4). We add the requirement (C5). The combination of (C5) and the secrecy
requirement guarantees that no information about the valid shares of the secret
key leaks.

(C1) We can construct the unique secret key x on the input of t + 1 correct
shares efficiently.

(C2) Robustness: we can still construct the secret key x from n shares even if
up to t shares of them are sent by corrupted players.

(C3) The secret key x is uniformly distributed in Zq.
(C4) All players get identical public key y = gx mod p.
(C5) No disqualified players can hold a correct share of the secret key x.

Secrecy. The adversary learns no information of the secret key x except the
public key y = gx mod p.

A secure DKG protocol with threshold t is defined as follows.

Definition 1. A distributed key generation protocol is t-secure if it allows at
most t corrupted players and meets the above correctness and secrecy require-
ments.

4 An Inefficient Solution

Since disqualified players can obtain valid shares, the qualified players need up-
date their shares so that the shares of the disqualified players become obso-
lete. An intuitive approach is to use the techniques of proactive secret sharing
schemes [HJKY95,HJJ+97] to update shares. However, a corrupted player may
act maliciously at any stage. If a malicious player acts during the round of share
update, the protocol has to start a new round of share update. Since there are
up to t corrupted players, the protocol need t rounds of share update at most.
Furthermore, the communication cost of each round of share update is roughly
equal to a basic DKG protocol. Therefore, this approach needs cost equivalent
to t runs of the basic DKG protocols. It is very inefficient though.
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5 Our DKG Protocol

Our DKG protocol is based on the one in [GJKR99]. There are two main different
points. First, we add an additional phase for updating the shares of the players
in QUAL. The share update phase uses the information prepared in the first
phase so that no additional rounds are needed. We define two stages of qualified
sets: SQUAL (for semi-QUAL) and QUAL. All players may obtain initial valid
shares of the secret key, but only the players in QUAL obtain final valid shares
of the secret key. Second, since it is also possible to bias the secret key during the
share update phase, we use an additional polynomial to prevent this problem.
The three phases of our protocol are shown in Figures 1, 2 and 3.

1. Secret-key generation: (in Figure 1)
In this phase, each player Pi performs the Pedersen-VSS protocol to con-
tribute his share to the secret key. The secret key x is defined uniquely
by all honest players. Due to Pedersen-VSS, the secret key x is committed
securely in the information-theoretical sense.
Furthermore, each player Pi generates additional 2(n + 1) degree-t backup
polynomials over Zq with zero free terms. The first 2n backup polynomials
R

(m)
i and R

′(m)
i , 1 ≤ i ≤ n, are used to make the shares of dishonest players

obsolete in the share update phase. The other two polynomials R
(0)
i and R

′(0)
i

are used to prevent bias of the secret key during the share update phase.
Each player Pi sends the shares of these polynomials to other players except
that Pj , j �=i, does not get the shares r

(j)
ij = R

(j)
i (j) and r

′(j)
ij = R

′(j)
i (j).

In this phase, a player is disqualified if it is complained by more than t other
players or cannot rebut the complaint of other players. The set of players
who are not disqualified after this phase is called SQUAL (semi-QUAL).

2. Public-key extraction: (in Figure 2)
The players who are not disqualified in the secret-key generation phase pub-
lish their partial yi = gxi mod p of the public key y. Since a player can send
out an invalid share of the public key, we disqualify those errant players in
this phase. Those players who are in SQUAL and send a valid share of the
public key form the set QUAL.
Now, those errant players have shares of the secret key. Those in QUAL need
updates their shares so that the shares of other players become obsolete.

3. Share update: (in Figure 3)
The players in QUAL update their shares by adding the backup shares sent
in the first phase. That is, each player Pi ∈ QUAL computes its share as

xi =
∑

j∈SQUAL

(sji +
∑

m∈{0,...,n}\QUAL

r
(m)
ji ) mod q.

Those dishonest players don’t have enough information to update their
shares. Therefore, their shares become obsolete.
Furthermore, each player Pi in QUAL contributes r

(0)
ij , j ∈ QUAL, so that

the distribution bias of the secret key won’t occur. This completes the pro-
tocol.
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Generating x:

1. Each player Pi chooses two random polynomials fi(z), f ′
i(z) over Zq of degree t:

fi(z) = ai0 + ai1z + . . . + aitz
t f ′

i(z) = a′
i0 + a′

i1z + . . . + a′
itz

t

Pi broadcasts Cik = gaikha′
ik mod p for k = 0, . . . , t, and hands sij = fi(j), s′

ij =
f ′

i(j) to player Pj secretly.
2. Again, Pi chooses 2(n+1) zero-free-term random polynomials over Zq of degree

t:
R

(m)
i (z) = b

(m)
i1 z + . . . + b

(m)
it zt R

′(m)
i (z) = b

′(m)
i1 z + . . . + b

′(m)
it zt

for m = 0, . . . , n. Each Pi broadcasts D
(m)
ik = gb

(m)
ik hb

′(m)
ik mod p for m =

0, . . . , n, k = 0, . . . , t, and secretly hands r
(m)
ij = R

(m)
i (j), r

′(m)
ij = R

′(m)
i (j)

to player Pj , for m = 0, . . . , j − 1, j + 1, . . . , n.
3. Each player Pj verifies the shares he received from others by checking

gsij hs′
ij ≡

t∏

k=0

(Cik)jk

mod p (2)

and

gr
(m)
ij hr

′(m)
ij ≡

t∏

k=0

(D(m)
ik )jk

mod p (3)

for i = 1, . . . , n, m = 0, . . . , j − 1, j + 1, . . . , n. If the check fails for an index i,
Pj broadcasts a complaint message against Pi.

4. Each player Pi who received a complaint from player Pj broadcasts the corre-
sponding shares (sij , s

′
ij or r

(m)
ij , r

′(m)
ij , for m = 0, . . . , j − 1, j + 1, . . . , n).

5. Each player marks as disqualified any player that
– received more than t complaints in Step 3, or
– answered to a complaint in Step 4 with values that falsify Eq. 2 or Eq. 3.

6. Each player then builds a common set of non-disqualified players SQUAL (Semi-
QUAL). (The secret key x is now defined as x =

∑
i∈SQUAL ai0 mod q, even

though it is not explicitly appeared.)

Fig. 1. Secret-key generation phase

6 Security Proofs

We now prove that our DKG protocol is t-secure, as in Definition 1.

Theorem 1. The DKG protocol consisting of Figures 1, 2, and 3 is t-secure.

Proof of Correctness. Assume that D = {0, . . . , n}\QUAL. We prove each cor-
rectness requirement individually:

(C1) In the first phase, each player Pi performs n + 2 times of Pedersen-VSS
and gets the shares sji, r

(0)
ji , . . . , r

(i−1)
ji , r

(i+1)
ji , . . . , r

(n)
ji from player Pj . We
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Extracting y = gx mod p:

7. Each player Pi, i ∈ SQUAL, broadcasts Aik = gaik mod p and B
(m)
ik =

gb
(m)
ik mod p for k = 0, . . . , t, m = 0, . . . , n.

8. Each player Pj verifies the values he received from other players in SQUAL by
checking

gsij ≡
t∏

k=0

(Aik)jk

mod p (4)

and

gr
(m)
ij ≡

t∏

k=0

(B(m)
ik )jk

mod p (5)

for i ∈ SQUAL, m = 0, . . . , j −1, j +1, . . . , n. If the check fails for an index i, Pj

complains against Pi by broadcasting the shares sij , s
′
ij(r

(m)
ij , r

′(m)
ij ) that satisfy

Eq. 2 (Eq. 3) but do not satisfy Eq. 4 (Eq. 5).
9. For each player Pi who receives at least one valid complaint, the other play-

ers reconstruct fi(z) by running the reconstruction phase of the Pedersen-VSS
protocol. Hence, the value Ai0 can be computed by all players.

10. For all players in SQUAL, compute y =
∏

i∈SQUAL Ai0 mod p.

Fig. 2. Public-key extraction phase

can use these shares to compute the the corresponding polynomial. At the
end of the protocol, each honest player Pi obtains

xi =
∑

j∈SQUAL

(sji +
∑

m∈D
r
(m)
ji ) mod q

as the share of the secret key x. Thus, for any set S of t+1 correct shares,
we can get

x =
∑

j∈SQUAL

aj0 + 0 mod q

=
∑

j∈SQUAL

(
∑

i∈S
λisji +

∑

i∈S,m∈D
λir

(m)
ji ) mod q

=
∑

i∈S
λi(

∑

j∈SQUAL

(sji +
∑

m∈D
r
(m)
ji )) mod q

=
∑

i∈S
λixi mod q,

where λi is the Lagrange coefficient for the share of index i. Therefore, the
secret key x is uniquely defined and can be efficiently reconstructed from
any set of t + 1 correct shares.

(C2) To show robustness, we need differentiate between correct shares and incor-
rect ones. We should check the validity of the shares before reconstruction.
For each share xi, we do the following check:
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Updating share

11. Each player builds a new set QUAL of players who are in the set SQUAL and
receive no valid complaint in Step 8.

12. Each player Pi in QUAL sets his share of the secret as xi =
∑

j∈SQUAL(sji +
∑

m∈{0,...,n}\QUAL r
(m)
ji ) mod q

Fig. 3. Share update phase

gxi ≡ g
∑

j∈SQUAL(sji+
∑

m∈D r
(m)
ji )

≡
∏

j∈SQUAL

(gsji ·
∏

m∈D
gr

(m)
ji )

≡
∏

j∈SQUAL

t∏

k=0

((Ajk)ik ·
∏

m∈D
(B(m)

jk )iK

) (mod p),

where Ajk and B
(m)
jk are broadcasted in the public-key extraction phase.

We drop the shares that fail the check so that incorrect shares cannot
influence the reconstruction.

(C3) Since SQUAL is defined in Step 6 of the first phase, the secret key
x =

∑
i∈SQUAL ai0 mod q is fixed at the end of the first phase. If one

of these constant terms ai0’s uniformly distributes over Zq, the secret key
x also uniformly distributes over Zq. For an honest player Pi, ai0 is uni-
formly chosen from Zq and shared via Pedersen-VSS. The secrecy of ai0 is
unconditional and hence no information about ai0 is obtained by the ad-
versary. Therefore, the value ai0 uniformly distributes over Zq without any
influence from corrupted players, so does the secret key x and the public
key y = gx mod p.

(C4) We show that the public key y is indeed equal to gx mod p. In Step 10, all
players in SQUAL compute

y =
∏

i∈SQUAL

Ai0 mod p

=
∏

i∈SQUAL

gai0 mod p

= g
∑

i∈SQUAL ai0 mod p

= gx mod p.

Since Ai0 broadcast by player Pi is known to all players, if Ai0 is equal
to gai0 for all i ∈ SQUAL, all players in SQUAL get identical public key
y = gx mod p. Consider the verification of Aik(k = 0, . . . , t) in Step 8.
If no valid complaint is issued against player Pi, the values Ai0, . . . , Ait

define a unique polynomial consistent with at least t + 1 shares held by
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honest players. Therefore, Ai0 = gfi(0) mod p = gai0 mod p. Otherwise, if
Pi receives valid complaints, the other players take the public values Cik,
k = 0, . . . , t and their shares sij to reconstruct fi(z) in Step 9. This ensures
Ai0 = gai0 mod p as well.

(C5) A disqualified player Pi gets sji and r
(m)
ji from player Pj for j ∈ SQUAL

and m ∈ {0, . . . , n}\{i}. Even so, to compute the share xi, Pi needs to
obtain all shares r

(i)
ji for j ∈ SQUAL. Now, we show that Pi can’t get

all r
(i)
ji even he colludes with other t − 1 corrupted players. Consider that

each honest player Pj in SQUAL performs a Pedersen-VSS on R
(i)
j (z) in

Step 2 and he doesn’t send R
(i)
j (i) to player Pi. According to Pedersen-

VSS, it requires t + 1 or more shares to reconstruct the polynomial, and
hence the share R

(i)
j (i). Consequently, Pi can’t get any information about

r
(i)
ji = R

(i)
j (i) since there are at most t corrupted players.

Proof of Secrecy (sketch). We construct a simulator SIM in Figure 4 and show
that the view of the adversary A in the following two conditions are the same:

– A interacts with SIM on input y.
– A interacts with the honest players in the real run of the protocol with

output y.

Let us discuss the simulator SIM first. Without loss of generality, we assume
that B = {1, . . . , t′} is the set of players controlled by the adversary and G =
{t′ + 1, . . . , n} is the set of honest players, where t′ ≤ t. After Step 1, the set
SQUAL is well-defined. Since |G| > t, SIM can interpolate all polynomials held
by malicious players in SQUAL. Thus, SIM knows all polynomials fi(z), f ′

i(z),
R

(m)
i (z), and R

′(m)
i (z) for i ∈ SQUAL, m = 0, . . . , n In order to simulate the

run of the protocol that ends with the output y, we choose some suitable values
Aij ’s that satisfy

y ≡
∏

i∈SQUAL

Ai0 mod p.

In Step 2, we let
A∗

n0 = y ·
∏

i∈SQUAL\{n}
(A−1

i0 ) mod p

and set A∗
nk to the appropriate values for k = 1, . . . , t. Since there is no output

or communication in the share update phase of the real protocol, we need not
care about the share update phase here.

Note that the polynomials R
(m)
i (z), R′(m)

i (z) and its corresponding values
r
(m)
ij and r

′(m)
ij are all generated in Step 1 of SIM. In other words, these values

are generated in the same way as the real protocol runs. No related output is
produced in later phases. Hence we omit the description of these values in the
proof below.

Now, we show that SIM outputs a probability distribution identical to the
real run of the protocol. The polynomials f∗

i and f ′∗
i , i ∈ G\{n}, output by SIM,
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Simulator SIM

Input: public key y

1. Simulate the honest players Pt′+1, . . . , Pn to perform the first phase of the pro-
tocol.

2. Perform all steps in the public-key extraction phase on behalf of the honest
players, except that player Pn broadcasts A∗

nk, instead of Ank:
– A∗

n0 = y · ∏
i∈SQUAL\{n}(A

−1
i0 ) mod p.

– A∗
nk = (A∗

n0)λk0 ·∏t
i=1(g

sni)λki for k = 1, . . . , t, where λki’s are the Lagrange
interpolation coefficients.

Fig. 4. Simulator for our DKG protocol

are set to fi and f ′
i . The polynomial f∗

n is defined by the values f∗
n(j) = fn(j),

j = 1, . . . , t, and f∗
n(0) = logg A∗

n0, where A∗
n0 is evaluated from the random and

uniformly distributed input y. Then, f ′∗
n is immediately defined via f∗

n and Cnk,
k = 0, . . . , t, that is, f ′∗

n (z) = (logg h)−1 · (fn(z) − f∗
n(z)) + f ′

n(z) mod q. So, it
can be seen that for i ∈ G, f∗

i and f ′∗
i are all in the appropriate distribution.

Furthermore, the coefficients of these polynomials committed to the values Cik

and Aik, 0 ≤ k ≤ t, are also in the right distribution.
Thus, the view of the adversary consists of values fi(j), f ′

i(j) (SIM sends),
and values Cik, Aik (SIM broadcasts), i ∈ G, j ∈ B, k = 0, . . . , t, in the two
conditions we describe above are the same. This ensures secrecy.
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Abstract. While software agents have been employed in payment protocols,
they are largely passive entities, i.e., they participate in the payment protocol
but do not make decision.  In this paper, we propose an agent-assisted payment
protocol called LITESET/A+ that empowers the payment agent (PA) to perform
encryption operation for its owner. This is realized by introducing a Trusted
Third Party (TTP) in the payment system based on the SET protocol (Secure
Electronic Transaction) and a novel signcryption-threshold scheme. In
LITESET/A+, the PA and TTP collaborate together to ensure the same level of
security as the SET specification. At the same time, with the signcryption-
threshold scheme, the PA is more flexible and autonomous during trading.

1 Introduction

Although the Internet is now becoming an important environment for e-commerce,
the public is still wary of buying goods and also paying for them on-line. For exam-
ple, there is concern that credit card information, when submitted on-line, may be
eavesdropped despite the fact that very few of those attacks have actually succeeded.
Even the deployment of secure servers, based on protocols such as SSL [1] or S-
HTTP [2], is not considered to be secure enough to protect the credit card information
since it is deposited on the sever, where it can potentially be read by anyone who have
access to the server.

To protect the user’s credit card information over open network like the Internet,
the SET (Secure Electronic Transaction) protocol [3] has been developed mainly by
credit card industry such as VISA and MasterCard, in association with major software
and cryptography companies. SET provides many important secure properties – such
as authentication of participants, confidentiality of information, integrity of data and
non-repudiation, etc. In the payment system, each participant can only obtain the in-
formation that is necessary for it to perform its own function. For example, the mer-
chant never gets the buyer’s credit card information, and the financial institution
authorizing the transaction never knows the details of the purchase like the nature of
the products, quantities, etc. Nevertheless, SET is a complex protocol and may be
unsuitable under some technical conditions.

Several extensions of the SET protocol have been proposed. The SET/A [4] proto-
col dispatches an agent to the merchant server so that all operations can be performed
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there. In this way, the user no longer needs to connect to the Internet when the trans-
action is running. The SET/A+[5] protocol removes the requirement of SET/A for a
secure agent execution environment by adding a Trust Verification Center (TVC) in
the payment system. TVC keeps the sensitive information and provides verification
services for cardholder and merchants. But the payment agent of SET/A+ is not
authorized to certain functions, e.g., to ensure that some operations are performed in a
non-repudiable way or to encrypt certain important information.

To improve the flexibility of mobile agents and the efficiency of SET/A+ protocol,
a LITESET/A+ protocol based on LITESET system (Light-Weight Secure Electronic
Transaction) is proposed in this paper. By using a new cryptography technique –sign-
cryption [6], LITESET protocol reduces the heavy computation and message over-
head in the employment of SET, the implementation of which is based on traditional
RSA signature and encryption scheme [7]. In LITESET/A+ protocol, we introduce a
Trusted Third Party (TTP) and a newly proposed signcryption-threshold scheme. TTP
and payment agent collaborate together to protect the sensitive information such as
credit card information and the signature private key carried by the agent during the
whole payment process.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes a proposed signcryption-threshold scheme, and Section 4 presents
the LITESET/A+ payment protocol. Security issues are discussed in section 5. Fi-
nally, Section 6 concludes this work.

2 Related Work and Background

2.1 Related Work of Payment Protocol

2.1.1 SET Protocol
There are five participants in SET protocol: cardholder, issuer, merchant, acquirer and
payment gateway. Each participant possesses two distinct asymmetric key pairs. One
is used for performing encryption and decryption function and its public key is
authenticated by key- exchange certificate ( KC ). The other is used for generation and
verification of signatures and its public key is authenticated by signature certificate
( SC ).

Since the phase on purchase request is the core of the whole transactions, only this
phase is emphasized and described in detail in this work (see Fig. 1).

2.1.2 LITESET Protocol

Although SET is treated publicly as one of the important protocols for electronic
payments, a straightforward implementation incur significant computation and mes-
sage overhead, primarily because it uses traditional techniques such as RSA digital
signature and encryption scheme [7]. LITESET [6], a lightweight secure electronic
transaction protocol, improves the efficiency by using signcryption– a new crypto-
graphic scheme. For the same level of security as the SET specification, LITESET
shows a 53.7% reduction in the computational time in message generation/verification
and a 79.9% reduction in communication overhead [6].
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                   C                                         M

Fig. 1. SET purchase request transaction

2.1.3 SET/A Protocol
Since SET is very complex and may not be suitable under some technical conditions,
SET/A protocol [4] is proposed to make SET adaptable to the mobile computing envi-
ronments. Based on the principles used in purchase phase of SET, SET/A improve its
performance only by adding a mobile agent for the cardholder to fulfill payment
transaction. Also it is a practical technique since the cardholder need not frequently
connect to Internet during the whole transaction phase. SET/A performs the same
function of transaction as that in SET except that mobile agent of SET/A replaces the
cardholder of SET in the purchase phase. However, SET/A protocol also has its
drawbacks: it has to rely on a secure execution environment or hidden computation on
the merchant server since all the critical data carried by agent are deposited on it.

2.1.4 SET/A+ Protocol
SET/A+ protocol [5] removes the security requirement of agent’s running environ-
ment on merchant server by adding a Trust Verification Center (TVC) in the payment
system. The TVC keeps the sensitive information and charges cardholders or mer-
chants by providing verification service. However, the agents are limited in their
functionalities. For example, an agent cannot sign and perform encryption for the
owner during trading (since it requires the secret key of the owner).

3 Signcryption-Threshold Scheme

In this paper, a signcryption-threshold scheme is proposed, which is based on the spe-
cial case of shamir-threshold scheme (t=w) that protects the secret K by distributing
w secret shares from the secret to t users. We also extend the scheme to work with
signature-only mode of signcryption scheme, namely signature-threshold scheme.

1. In the scheme, there are three public parameters ),,( gqp , two public hash func-
tions (hash, KH) and one pair of encryption/decryption algorithms (E, D).

P

Authorization

},{ PIKEPG

 Response, )(MCS

},{,),( PIKEOICC PGS

)(),( PGCMC KS

Purchase Request
C:   Cardholder
M:   Merchant
PG: Payment Gateway
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The notations of the above parameters are:
� p- a large prime
� q- a large prime factor of p-1
� g- an integer chosen randomly from [1,…,p-1] with order q modulo p
� hash- a one-way hash function whose output has ,say, at least 128 bits
� KH - a keyed one-way hash function, which is for secure message authenti-

cation.
� (E, D)- the encryption and decryption algorithms of a private key cipher

2.  Each entity in the payment system owns a key pair. For example, entity A has a

key pair ),( aa xy , where )(mod pgy ax
a = and the private key ax is chosen uni-

formly at random from [1,…,q-1] .

3.  To protect one entity’s private key, we assume several parties share it using the
special case of shamir-theshold scheme (t=w). For example, to protect entity A’s sig-
nature private key ax , t parties ),...,,( 21 tAAA  will share the private key and have

secret shares 
taaa xxx ,...,,

21
 respectively, where )(mod....

21
pxxxx

taaaa +++= .

4.   We are ready to describe the signcryption-threshold scheme:
In the scheme, there are several participants: sender A, recipient B and t sharing-
parties ),...,,( 21 tAAA to share the secret for A.

Sender A :               Private key - ax

                                 Public key - )mod(, pgyy ax
aa =

Sharing-Parties:       The private key ax  is shared by t parties ( tAAA ,...,, 21 ), each

                                 of which has the secret share 
taaa xxx ,...,,

21
respectively and

                                 
)(mod....

21
pxxxx

taaaa +++=
.

  Recipient B:            Private key - bx

                                  Public key - )mod(, pgyy bx
bb =

Two modes of the scheme (i.e. signcryption-threshold scheme and signature-
threshold scheme) are described in detail below:

(1) Signcryption-threshold on a message m  (Sender: tAAA ,...,, 21 , Recipient: B)

      a) Signcrypting m by sharing-parties ( tAAA ,...,, 21 ):

)mod(),( 21 pyhashkk x
b=                                                  (1)

)(
1

mEc k=
                                                                             (2)
)(

2
mKHr k=

                                                                         (3)
qxrxs

iai mod)/( +=
                                                          (4)

Where equation (1) uses a hash function- )mod( pyhash x
b and splits the

result into 1k  and 2k  of appropriate length.  The key 1k  is used to encrypt

message m by equation (2) and a key hash function - )(
2

mKH k - performs hash
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function on message m using key 2k  by equation (3). From the results of (2)

and (3), each party computes qxrxs
iai mod)/( += , where ti ≤≤1 , and

generates a part of signature respectively.
In above equations, x  is a random number chosen from [1,…,q-1] , but  its

value keeps the same for each sharing- party. The difference of signcryption
operation among each party is the last equation (4) used to produce signature

is  because the secret share 
iax  may be different to each party.

After the signcrypted text (c, r, is ) is generated, it is sent to B by each
party.

       b) Unsigncryption of (c, r, is ) by B involves the followings:

          )mod)((),(
1

1

1)(

21 pgyhashkk
b

t

i
i xs

nr
a

⋅−

=

−∑
⋅=                                   (5)

           
)(

1
cDm k=

                                                                                       (6)

           
rmKH k

?

)(
2

=
                                                                                     (7)

Where equation (5) performs the public hash function- 

)mod)((
1

1

1)(

pgyhash
b

t

i
i xs

nr
a

⋅−

=

−∑
⋅  to recover ),( 21 kk  from input signature

parts (c, r, is ) sent by each sharing-party. Then B decrypts c using key 1k  to

get message m by equation (6) and verifies it by checking if rmKH k =)(
2

.

(2) Signature-threshold on a message m  (Sender: tAAA ,...,, 21 , Recipient: B)

     a) Signature part (r, is ) on a message m generated by sharing-parties

( tAAA ,...,, 21 ):

            ),mod( mpghashr x=                                                               (8)
            qxrxs

iai mod)/( +=                                                                 (9)

Where equation (8) performs hash function- ),mod( mpghash x and gets r,

then qxrxs
iai mod)/( +=  is computed by each party to get the A’s signa-

ture part, where ti ≤≤1 .

After the signature part (m, r, is ) is generated, it is sent to B by each party.

      b) Verification of signature (r, is ) of A can be performed as follows:

             pgyhashv

t

i
is

nr
a mod)( 1

11)(∑
⋅= =

−−

                                             (10)

            
rmvhash

?

),( =
                                                                           

(11)
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Where equation (10) performs public hash function- 

∑
⋅= =

−−
t

i
is

nr
a gyhashv 1

11)(

)( mod p and B checks if rmvhash =),( with equa-

tion (11).

4 LITESET/A + Protocol

In this section we present the payment protocol LITESET/A+, where the agent acting
on behalf of the cardholder is much more capable than that in SET/A+. Once the
agent is authorized to buy certain kind of product, all further activities such as appro-
priate decision of buying, negotiation and signing for certain action, will be performed
without the cardholder’s assistance.

We propose the LITESET/A+ protocol by adding a trusted third party (TTP) in
LITESET based on the proposed signcryption-threshold scheme. The TTP can be
assumed as a trusted agent to perform partial functions for the cardholder. The TTP
also contributes to support non-repudiation between cardholder and merchant. In our
approaches, payment agent and TTP share the randomly generated symmetric key K
for the encryption of credit card information (i.e., )(PIEk ), which is based on the
special case of shamir-threshold scheme (t=w=2). At the same time, they also share
the signature private key SCx for signing messages on behalf of cardholder, which is
based on the special case of the signcryption-threshold protocol (t=w=2). They share
the two kinds of keys. Any one of them cannot retrieve the secret keys and therefore
the credit card information and private signature key could be protected.

 The notation of the certificate, signature key pair and key-exchange key pair of
each participant is illustrated in Table 1.

Table 1. Two Distinct Key Pairs & Certificates of Participants

Name Signature Certificate,
Public key & Private Key

Key-exchange certificate,
Public key & Private Key

Cardholder (C) )(CCS , SCy , SCx )(CCK , KCy , KCx
Merchant (M) )(MCS , SMy , SMx )(MCK , KMy , KMx
Payment Gateway
(PG)

)(PGCS , SPGy , SPGx )(PGCK , KPGy , KPGx

Trust Third Party
(TTP)

)(TTPCS , STTPy , STTPx )(TTPCK , KTTPy , KTTPx

Payment Agent
(PA)

)(PACS , SPAy , SPAx )(PACK , KPAy , KPAx

4.1 Secret-Sharing of Symmetric Key K

The symmetric key K used to encrypt the credit card information is divided into:

PAKS - the shared secret of payment agent, and TTPKS  - the shared secret of TTP.
The construction can be seen in the following formula:
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TIxKS

RxKKS

CTTP

PA

++=
+−=

                                                      (12)

Where x, R are random numbers chosen from [1,…,q-1] , CI is the transaction
identifier assigned by cardholder and T is timestamp.

Reconstruction of the key K is described in Section 4.3.

4.2 Secret-Sharing of Cardholder’s Signature Private Key SCx

The payment agent and TTP share cardholder’s signature private key SCx  are based
on shamir-threshold scheme. See formula (13):

          
’

’

xxxs

xxs

SCTTP

PA

−=

=
                                                           (13)

Where ’x  is a random number chosen from [1,…,q-1] .
Verification of the cardholder’s signature can be obtained from the above sign-

cryption-threshold scheme in Section 3.

4.3 Procedure of Payment Transaction

In this section, we focus on the purchase request in LITESET/A+ protocol and the
procedure is sketched in Fig. 2.
Following is the detailed procedure of payment transaction in LITESET/A+:

Step1.  The cardholder C builds a purchase description with the same elements of
SET. Then an agent A(C) on behalf of the cardholder is dispatched to search the re-
quired goods, perform negotiation with merchants and pay for goods finally.

The cardholder’s agent contains: the cardholder’s signature certificate ( )(CCs ),
the request information, the information for TTP, the digest of payment instructions
(PI)(i.e. H (PI)) and the encrypted payment instructions ( )(PIEk ).

The information for TTP includes:

qxrxs

InfoCustomerxsKSmKHr

xsKSmEc

pyhashkk

c

TTPTTPk

TTPTTPk

x
KTTP

mod)/(

)_||||||(

)||||(

)mod(),(

2

1

21

+=

=

=
=

Notes:
� m is the message for TTP, including the transaction identifier CI  assigned by

cardholder , the merchant host name and the time stamp T.
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� Customer_Info contains the data of )(CCs , int)(Constrahash , where Con-
straint is the cardholder’s buying constraint on mobile agent, such as certain
goods’ brand, the goods’ quantities, the maximum money allowed to be spent,
etc.

Fig. 2. LITESET/A+ purchase request transaction

Then, the agent on behalf of the cardholder is dispatched to one of merchant serv-
ers.

Step2. After the agent finishes searching and negotiation phase, it decides to pay
required goods of certain merchant M. To make purchase and payment, it arrives at
the merchant server and submits cardholder’s signature certificate ))(( CCs . Merchant
M verifies them. If correct, it supplies the agent an execution environment.

Step3.  The agent residing on the merchant server then sends information (c, r, s) to
TTP (See Step1) and also the purchase initial request (PInitReq) to merchant locally
including the card brand name. It also asks the merchant to respond with a copy of the
payment gateway’s key-exchange certificate )(PGCk .

Step4. Upon receiving the information from payment agent, TTP unsigncrypts it

as: pgyhashkk KTTPxsr
C mod)((),( 21

⋅⋅=  and get TTPKSm, , TTPxs from )(
1

cDk .

TTP accepts only if rInfoCustomerxsKSmKH TTPTTPk =)_,,,(
2

and it keeps

Customer_Info, m, r and s as the non-repudiation evidence.
Step5. When merchant receives the request, it returns a purchase initial response

(PinitRes), containing a signed message with its signature certificate )(MCs , the

payment gateway key-exchange certificate )(PGCk , and a unique transaction identi-

fier ( MI ) to the payment agent.

PinitResponse

PinitRequest

SerResponse

C

A MCreate
Request

Final
Response

Merchant
Server

AuthResponse

AuthRequest

PurResponse

PurRequest

SerRequest

TTP

PG

C:      Cardholder
M:      Merchant
A:       Payment Agent
PG:     Payment Gateway
TTP:   Trust Third Party
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Step6. The agent verifies the merchant’s certificate )(MCs  and the signature.
After verification, agent generates the order information (OI) and the half dual signa-
ture of the cardholder on them (i.e. ))](||)(([ OIHPIHHxsPA ), etc. The payment
agent sends message to the TTP including the payment gateway key-exchange certifi-
cate )(PGCk , )(MCs  and also the shared secret key PAKS  used to protect the
credit card information.

Step7.  Upon obtaining the above information, TTP generates another half dual
signature of the cardholder on the OI and the PI (i.e. ))](||)(([ OIHPIHHxsTTP )

and reconstructs the symmetric key K: RTIKKSKS CPATTP +++=+ . And TTP

keeps )(MCs + MI as the non-repudiation service. It then gives information to pay-

ment agent including )( RITIKy MCKPG ++++ .

Step8. When the payment agent obtains the above information, the agent creates
the digital envelope PGE  for the payment gateway: TIIKyE MCKPGPG +++= ({

)}(,,,,), PIERTIIR KMC+ . And the purchase request (PReq (PIData, OIData)) for

the merchant includes: ([))],(||)(([,),(),( HxsOIHPIHHxsOIPIHCC TTPPAs

PGEOIHPIH ))](||)(
Step9. After receiving the purchase request, the merchant M checks the card-

holder’s certificate )(CCs  and verifies the dual signature of the cardholder

(i.e. ))](||)(([))],(||)(([ OIHPIHHxsOIHPIHHxs TTPPA ) with H (PI) and OI. It
is obvious that merchant M cannot get PI during the verification. If verification suc-
ceeds, merchant M sends the rest information
(i.e. )())],(||)(([))],(||)(([, CCOIHPIHHxsOIHPIHHxsE STTPPAPG ) to pay-
ment gateway for authorization.

Step10. The payment gateway obtains the symmetric key K from PGE  if

TII MC ,, are not abused and hereby gets PI. Then the payment gateway verifies

)(CCS and the dual signature

 (i.e. ))](||)(([))],(||)(([ OIHPIHHxsOIHPIHHxs TTPPA ) by applying PI and H
(OI). If all these are correct, payment gateway sends authorization response.

Step11.After processing the order, the merchant generates and signs a purchase re-
sponse, and sends it to the agent along with its signature certificate. If the payment is
authorized, the merchant will fulfill the order, by delivering the products bought by
the cardholder.

Step12.The agent verifies the merchant signature certificate, checks the digital sig-
nature of the response, and then returns back to its owner. The owner takes any ap-
propriate actions based on its contents.

From the above we can see that LITESET/A+ has only two steps more than
SET/A+. In LITESET/A+, the agent not only has the function of doing payment for
cardholder, it also searches goods information and negotiates with merchants in per-
vious steps. And since the agent and TTP share the signature private key of the card-
holder, they generate half of the dual signature on OI and PI for cardholder respec-
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tively. This inevitably adds steps in payment process. We can see it doesn’t signifi-
cantly affect the efficiency of LITESET/A+ but can improve the security level.

5 Security Issues

5.1 Security of Proposed Signcryption Scheme

The security of Signcryption is based on the discrete logarithm problem. It satisfies
unforgeability, non-repudiation and confidentiality conditions [12][13]. And the secu-
rity of Shamir-threshold scheme relies on the provable assumptions [10][11]. As for
the proposed signcryption scheme that is based on Shamir-threshold scheme, each
sharing party won’t know secret shares except its own share. For example, when an
attacker wants to forge the cardholder’s signature by performing signature-threshold
scheme, he/she must get each share part from each sharing-party and it is almost im-
possible except they conspire together.

5.2 Protection of the Credit Card Information

Since the agent perhaps runs on a hostile server, the sensitive information such as
credit card information should not be disclosed on any other environment except to
payment gateway in LITESET. In our approach, the payment agent and the TTP will
collaborate together to protect the credit card information to fulfill the payment trans-
action. The proposed LITESET/A+ protocol achieves such objective by using sign-
cryption-threshold scheme. Even TTP and merchant taking part in the process cannot
retrieve encrypted credit card information. For example, when TTP reconstructs the
secret information of symmetric key K ( RTIKKSKS CPATTP +++=+ ), it can

only obtain RTIK C +++  and cannot obtain K since payment agent keeps the ran-

dom number R. And also when merchant gets the PGE , it cannot decrypt the en-

crypted PI and )( RITIKy MCKPG ++++ .

5.3 Protection of the Private Key Carried by Agent

To protect the owner’s private key carried by agent, Kotzanikolaou [8] presented a
solution to the hostile host by encrypting a signature function based on RSA signature
scheme. Although the scheme protects cardholder’s private key successfully, it
doesn’t ensure non-repudiation property. Since the signature can be computed by any
party, the merchant server can repudiate the cardholder’s signature generation later.
Another solution [9] is to issue proxy certificate [14][15] to an agent, which is based
on delegation type as partial delegation (issuing a new key pair to the agent), and the
agent will sign for its owner using the new private key. But this solution has obvious
limitations since the private key of the agent can also be attacked at any time. In this
paper, our approach to solve this problem is that agent and TTP will share the card-
holder’s private key to protect the signature key from detecting. The proposed sign-
cryption-threshold scheme is adopted to protect owner’s private key. Agent has one
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share of the private key PAxs  (i.e. ’x ) and TTP owes the other share TTPxs (i.e.

( ’xxSC − )). Even the TTP cannot retrieve the private key except agent and TTP con-
spire together. It can only be known to its owner. In this proposed approach, both
agent and TTP perform signing or signcryption based on threshold-signcryption
scheme for cardholder when needed.

6 Conclusions

In this paper, we have proposed a LITESET/A+ payment protocol that is based on
Shamir-threshold scheme and a newly proposed signcryption-threshold scheme, and
employs a Trusted Third Party. It allows an agent to perform sign/signcryption opera-
tions for its owner during purchase.  The mobile agent automatically roams among
some on-line merchants, finds the most suitable sites, negotiates with them and then
purchases satisfied goods by using LITESET/A+ protocol on behalf of cardholder. In
this approach, a cardholder need not frequently connect to Internet and only need to
wait for the purchase response at last. LITESET/A+ protocol is also computationally
efficient as it is based on signcryption-threshold scheme. In view of above discus-
sions, we believe LITESET/A+ is acceptable for both cardholder side and merchant
side.

The future work will consider optimizing the secure payment protocol and achiev-
ing the combination of the payment protocol with the searching information and ne-
gotiation protocol in reality. The agent will automatically and independently fulfill the
whole business transaction for its owner.
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Abstract. We introduce a tensor transform for Boolean functions that
covers the algebraic normal and Walsh transforms but which also allows
for the definition of new, probabilistic and weight transforms, relating
a function to its bias polynomial and to the weights of its subfunctions
respectively. Our approach leads to easy proofs for some known results
and to new properties of the aforecited transforms. Finally, we present a
new probabilistic characteristic of a Boolean function that is defined by
its algebraic normal and probabilistic transforms over the reals.

Keywords: cryptography, key-stream generator, Boolean function, ten-
sor transform, Walsh transform, probabilistic properties.

1 Introduction

The two most common building blocks for key-stream generators are the nonlin-
ear filter generator and the nonlinear combination generator [1]. They correspond
respectively to a nonlinear transformation applied to several phases of the same
linear feedback shift register (LFSR) or to the outputs of several independent
LFSR’s. The nonlinear transformation can be represented by a Boolean func-
tion and the security of the key-stream generators heavily relies on the specific
qualities of this function. If the function is not chosen properly then the whole
system is susceptible to different types of correlation [2] and linear [3] attacks.

It is currently generally accepted that secure Boolean function to be used in
a key-stream generator must satisfy the following properties: balancedness, high
nonlinearity, sufficiently high algebraic degree (this should hold for each individ-
ual variable), optimized with correlation properties. These conditions are neces-
sary, although it is not clear if they are sufficient to resist all kinds of attacks.
The algebraic degree of a Boolean function is the degree of its algebraic normal
form (ANF), balancedness, nonlinearity, and correlation properties are defined
by its Walsh transform [4]. Thus, the algebraic normal and Walsh transforms of
a Boolean function define the most important cryptographic characteristics of
the function. The objective of this paper is to generalize known transforms of
Boolean functions and develop new ones that would provide efficient means for
analyzing security of these functions.

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 434–446, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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In Sect. 2 we describe the general basis for a tensor transform of Boolean
functions. Special cases of this approach provide easy proofs for some known
and new relations in the theory of algebraic normal and Walsh transforms. We
also propose a new type of tensor transform, the probabilistic transform, giving
an important insight in certain probabilistic properties of Boolean functions
that are discussed in Sect. 3. Another new type of tensor transform that we
propose, is the weight transform. It relates a Boolean function to the weights of
its subfunctions. It is proved that coefficients of the ANF of a Boolean function
depend on the values contained in its binary weight transform for the zero-valued
vector.

A new probabilistic function of a Boolean function is introduced in Sect. 3.
This function estimates the probabilistic distribution of bits at the output of a
Boolean function if the distribution of the arguments, the function depends on,
is known. Further, we suggest a characteristic for a balanced Boolean function
that measures its ability to compensate a nonuniform distribution of the input.
Resilient functions [5] are proved to have good compensating qualities.

2 Tensor Transform of Boolean Functions

Let Mn(P ) denote the ring of n-dimensional square matrices over the field P . For
a pair of matrices A ∈ Mn(P ) and B ∈ Mm(P ) let A ⊗ B denote the Kronecker
product [6, p. 421] of these matrices and A[k] denote the kth Kronecker power
of A. For any matrix A ∈ M2n(P ) by writing A = (g0, . . . , g2n−1) we mean
that gi (i = 0, . . . , 2n − 1) is the ith column of A, entries in gi are indexed
lexicographically by the elements in {0, 1}n, so

gi =




gi(0, . . . , 0)
gi(0, . . . , 1)

...
gi(1, . . . , 1)


 .

Let αi (i = 0, . . . , 2n − 1) denote the n-bit binary expansion of i, so gi =
(gi(α0), . . . , gi(α2n−1))T , where the superscript T denotes transpose of a matrix.

Lemma 1. Let A = (g0, . . . , g2n−1) ∈ M2n(P ) and A′ = (g′
0, . . . , g

′
2n−1−1) ∈

M2n−1(P ). Suppose that A = B ⊗ A′ for some matrix B =
(

b00 b01
b10 b11

)
. Then

gi(x1, . . . , xn) =
{

(b00x1 + b10x1)g′
i′(x2, . . . , xn), if αi = (0, αi′),

(b01x1 + b11x1)g′
i′(x2, . . . , xn), if αi = (1, αi′) ,

where αi′ is the (n − 1)-bit vector, binary expansion of i′.

Proof. By the definition of the Kronecker product, A =
(

b00A
′ b01A

′

b10A
′ b11A

′

)
. Thus,

gi(0, x2, . . . , xn) =
{

b00g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b01g
′
i′(x2, . . . , xn), if αi = (1, αi′) and
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gi(1, x2, . . . , xn) =
{

b10g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b11g
′
i′(x2, . . . , xn), if αi = (1, αi′) .

These equations combined together prove the claimed result. ��
The following proposition easily follows from Lemma 1.

Proposition 1. Let A = B1⊗. . .⊗Bn, where Bj =

(
b
(j)
00 b

(j)
01

b
(j)
10 b

(j)
11

)
for j = 1, . . . , n,

and A = (g0, . . . , g2n−1). Then for any i ∈ {0, . . . , 2n − 1}

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i

(
b
(j)
00 xj + b

(j)
10 xj

)
+ αj

i

(
b
(j)
01 xj + b

(j)
11 xj

))
,

where αi = (α1
i , . . . , α

n
i ).

Let A ∈ M2n(P ) be an invertible matrix and A = (g0, . . . , g2n−1). Further,
let the function f(x1, . . . , xn), mapping {0, 1}n in P , be defined by its string of
values T f = (f(α0), . . . , f(α2n−1))T ∈ P 2n

and let the function F (x1, . . . , xn)
be defined by the string TF = A−1T f = (F (α0), . . . , F (α2n−1))T ∈ P 2n

. Vectors
T f and TF are considered further as column-vectors. Then T f = ATF ,

T f =
2n−1∑
i=0

giF (αi) and f(x1, . . . , xn) =
2n−1∑
i=0

gi(x1, . . . , xn)F (αi) (1)

for any (x1, . . . , xn) ∈ {0, 1}n. Equations (1) represent the decomposition of
function f in the basis vector set (g0, . . . , g2n−1). Hereafter in this paper, by
fβ1,...,βm

i1,...,im
for any 1 ≤ i1 < . . . < im ≤ n, we denote the subfunction of f obtained

by fixing the variables xi1 , . . . , xim with binary values β1, . . . , βm respectively.
It is well known that if B1 and B2 are invertible matrices over P then the

Kronecker product matrix B1 ⊗ B2 is invertible too and (B1 ⊗ B2)−1 = B−1
1 ⊗

B−1
2 . In particular, if B ∈ M2(P ) is an invertible matrix and A = B[n] then A

is invertible too and A−1 = (B−1)[n].
Now we will demonstrate how Proposition 1 substantially facilitates proving

of some important matrix identities for various representations of a function
of Boolean variables. By convention, for a Boolean variable x we assume that
x0 = x and x1 = x.

The Algebraic Normal Transform. Take P = GF(2) and set B =
(

1 0
1 1

)
=

B−1 and A = B[n]. Then, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i xj

)
=

∏
j=1,...,n: αj

i
=1

xj (2)

and
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f(x1, . . . , xn)
(1)
=

2n−1∑
i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑
i=0


 ∏

j=1,...,n: αj
i
=1

xj


F (αi) .

One can easily recognize the ANF of function f on the right hand side of the
last identity, where F (αi) (i = 0, . . . , 2n − 1) are the coefficients of the ANF
polynomial. Let P f denote the coefficient vector of the ANF polynomial for

function f and denote also R2 =
(

1 0
1 1

)
, R2n = R

[n]
2 . Then

T f = R2nP f and P f = R2nT f . (3)

This transform of f is called the algebraic normal transform.
If R2n is considered as a matrix over the real number field IR and the algebraic

normal transform of f is implemented over IR then TF is equal to the coefficient
vector of a real-valued, square-free (in variables) polynomial of n variables with
integer coefficients that takes on the same values as function f on the points
from GF(2)n. Let Πf denote the coefficient vector of such a polynomial. In this

case R−1
2 =

(
1 0

−1 1

)
, R−1

2n = (R−1
2 )[n],

T f = R2nΠf and Πf = R−1
2n T f . (4)

This real-valued polynomial gives an important insight in certain probabilistic
properties of a Boolean function that will be discussed further in Sect. 3.

The Probabilistic Transform. Assume that P = IR and set B = 1
2

(
2 −1
2 1

)

and A = B[n]. Then B−1 = 1
2

(
1 1

−2 2

)
and, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i +
1
2
αj

i (xj − xj)
)

=

=
∏

j=1,...,n: αj
i
=1

1
2
(xj − xj)

(◦)
=

∏
j=1,...,n: αj

i
=1

δj ,

where (◦) is obtained by using xj = 1 − xj and introducing the new variable
δj := xj − 1/2. Therefore,

f(x1, . . . , xn)
(1)
=

2n−1∑
i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑
i=0


 ∏

j=1,...,n: αj
i
=1

δj


F (αi) .

The right hand side of the last identity contains the real-valued, square-
free polynomial of n variables δ1, . . . , δn that for {δ1, . . . , δn} ∈ {−1/2, 1/2}n

takes on the same values as function f on corresponding arguments {x1, . . . , xn}
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if identity xj = δj + 1/2 is assumed. Therefore, if Df (x1, . . . , xn) denotes a
polynomial obtained by the algebraic normal transform over the reals then the
probabilistic transform gives coefficients for polynomial Df (1/2+δ1, . . . , 1/2+δn)

that we will denote by ∆f . Denote also Q2 = 1
2

(
2 −1
2 1

)
, Q2n = Q

[n]
2 . Then

Q−1
2 = 1

2

(
1 1

−2 2

)
, Q−1

2n = (Q−1
2 )[n],

T f = Q2n∆f and ∆f = Q−1
2n T f . (5)

We will call this transform of f the probabilistic transform. Applications of this
transform will be discussed further in Sect. 3.

The Walsh Transform. According to [1, p. 118], the direct and inverse Walsh
transforms of a real-valued function f over GF(2)n are defined as

Sf (αi) =
2n−1∑
x=0

f(x)(−1)〈αi,x〉 and f(x) =
1
2n

2n−1∑
i=0

Sf (αi)(−1)〈αi,x〉 , (6)

where x = (x1, . . . , xn) and 〈αi,x〉 = α1
i x1 ⊕ . . . ⊕ αn

i xn is the standard inner
product over GF(2). In the sum over x in (6) the summation index is considered
as an integer in the range 0, . . . , 2n − 1 but written in its binary expansion. The
vector Sf = (Sf (α0), . . . , Sf (α2n−1)) is called the Walsh transform of function
f .

Assume that P = IR and set B =
(

1 1
1 −1

)
= 2B−1 and A = B[n]. Thus, A

is a Hadamard matrix of order 2n (see [6, p. 422]). Then, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i (xj − xj)

)
=

∏
j=1,...,n: αj

i
=1

(xj − xj) = (−1)〈αi,x〉

and

f(x1, . . . , xn)
(1)
=

2n−1∑
i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑
i=0

F (αi)(−1)〈αi,x〉 .

In the latest identity one can recognize the inverse Walsh transform (6) but with-
out the multiplicative coefficient. Therefore, in this case F (αi) = 1/2nSf (αi),

where Sf (αi) is the Walsh transform of f evaluated in αi. Let H2 =
(

1 1
1 −1

)
and H2n = H

[n]
2 . Then

T f =
1
2n

H2nSf and Sf = H2nT f . (7)

It is possible to generalize property (7) of the Walsh transform. Let us assume
that function f is Boolean. From now on wt(ω) denotes the Hamming weight of
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a binary string ω and wt(f) denotes the Hamming weight of a Boolean function
f , i.e. the weight of T f . Let r be an integer in the range 1 ≤ r ≤ n and let
i1, . . . , ir be a set of indices with 1 ≤ i1 < . . . < ir ≤ n. Let k1, . . . , kn−r

with 1 ≤ k1 < . . . < kn−r ≤ n denote the indices complementing i1, . . . , ir with
respect to {1, . . . , n}. Let also the real-valued function w(y1, . . . , yr) of r Boolean
variables be defined as follows

w(α1
j , . . . , α

r
j) = wt

(
f

α1
j ,...,αr

j

i1,...,ir
(xk1 , . . . , xkn−r

)
)

= wj

for 0 ≤ j < 2r, where (α1
j , . . . , α

r
j) = αj is the r-bit binary expansion of j. Then,

by (7), Sw = H2r (w0, . . . , w2r−1)T . On the other hand,

Sw(αi)
(6)
=

2r−1∑
j=0

w(αj)(−1)〈αj ,αi〉 =
2r−1∑
j=0

2n−r−1∑
t=0

f
α1

j ,...,αr
j

i1,...,ir
(αt)(−1)〈αj ,αi〉 =

=
2n−1∑
k=0

f(αk)(−1)〈αk,θi〉 (6)
= Sf (θi) ,

where θi is the n-bit vector whose coordinates at the index positions i1, . . . , ir
are equal to α1

i , . . . , α
r
i respectively (where (α1

i , . . . , α
r
i ) = αi) and the remaining

(n − r) coordinates are set to zero. Thus,

H2r (w0, . . . , w2r−1)T = (Sf (θ0), . . . , Sf (θ2r−1))T , (8)

which is the generalization of [5, Proposition 3.1], while the proof here is less
complicated. If r is set equal to n then wj = f(αj), θi = αi and (8) transforms
into (7).

If function f is Boolean then in some cases it is more convenient to work with
the real-valued counterpart (sign function) of f , defined as f̂(x) = 1 − 2f(x),
and to apply the Walsh transform to f̂ . Function f̂ can be recovered by the
inverse Walsh transform of Sf̂ . Further, since f(x) = 1/2−1/2f̂(x), the original
function f can be obtained from the Walsh transform Sf̂ by the following inverse
transform:

f(x) =
1
2

− 1
2n+1

2n−1∑
i=0

Sf̂ (αi)(−1)〈αi,x〉 .

The relationship between the Walsh transform of f(x) and f̂(x) is given by [7,
Lemma 1] as follows

Sf̂ (0) = 2n − 2Sf (0) and Sf̂ (w) = −2Sf (w) for 0 < w < 2n . (9)

By these identities and (7),

T f =
(

1
2
, . . . ,

1
2

)T

− 1
2n+1 H2nSf̂ and Sf̂ = (2n, 0, . . . , 0)T − 2H2nT f (10)
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since H2n

( 1
2 , 0, . . . , 0

)T =
( 1

2 , . . . , 1
2

)T . On the other hand, identities, similar to
(7), hold:

T f̂ =
1
2n

H2nSf̂ and Sf̂ = H2nT f̂ .

Combining (3) with (7) or (10), we obtain the following identities relating
the coefficient vector of the ANF polynomial of f with the Walsh transforms Sf

and Sf̂ :

P f =
1
2n

R2nH2nSf (mod 2) =
1
2n

(
1 1
2 0

)[n]

Sf (mod 2) (11)

P f = R2n

((
1
2
, . . . ,

1
2

)T

− 1
2n+1 H2nSf̂

)
(mod 2) ,

where all operations on the right hand side are performed in IR and the final
result is reduced modulo 2.

Finally, if (5) is combined with (7) then the resulting identities relate the
probabilistic transform of f with the Walsh transform Sf :

∆f =
1
2n

(
1 0
0 −2

)[n]

Sf and Sf =
(

2 0
0 −1

)[n]

∆f . (12)

Since the matrix of the transform (12) is diagonal, coordinates of zero values in

vectors ∆f and Sf are the same. Now, using Proposition 1 for B =
(

1 0
0 −2

)
and A = B[n], we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i xj − 2αj
i xj

)
=
{

(−2)wt(αi), ifxj = αj
i (j = 1, . . . , n),

0, otherwise
.

Therefore, by (12),

∆f (ω) =
1
2n

(−2)wt(ω)Sf (ω)
(9)
=
{ 1

2n (−2)wt(ω)−1Sf̂ (ω), if ω 
= 0,
1
2 − 1

2n+1 Sf̂ (0), if ω = 0
, (13)

where ∆f (ω) is the ωth coordinate of the probabilistic transform of function f .

The Weight Transform. Take P = IR and set B0 =
(

0 1
1 −1

)
, B1 =

(
1 −1
0 1

)
and A = Bβ1 ⊗ . . .⊗Bβn for some n-bit vector β = (β1, . . . , βn). Let also A−1 =

B−1
β1

⊗ . . . ⊗ B−1
βn

= (g̃0, . . . , g̃2n−1), where B−1
0 =

(
1 1
1 0

)
and B−1

1 =
(

1 1
0 1

)
.

By Proposition 1 and since b
(j)
11 = b

(j)
12 = 1 for any j = 1, . . . , n,

g̃i(x1, . . . , xn) =
n∏

j=1

(
xj + xj

(
αj

i b
(j)
21 + αj

i b
(j)
22

))
(∗)
=

(∗)
=

n∏
j=1

(
xj + xj

(
αj

i βj + αj
i βj

))
=

∏
j=1,...,n: αj

i
�=βj

xj . (14)
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Equality (*) holds because b
(j)
21 = βj and b

(j)
22 = βj . Thus, g̃i(x1, . . . , xn) is equal

to one if and only if the coordinates, where vectors αi and β differ, correspond
to the zero entries in vector (x1, . . . , xn).

Let us assume that function f is Boolean. Then

F (x1, . . . , xn) =
2n−1∑
i=0

g̃i(x1, . . . , xn)f(αi) =

=
2n−1∑
i=0


 ∏

j=1,...,n: αj
i
�=βj

xj


 f(αi) = wt

(
f

βt1 ,...,βtk
t1,...,tk

)
,

where k = wt(x1, . . . , xn) and t1, . . . , tk are the coordinates of the nonzero entries
in (x1, . . . , xn). Here it is assumed that if αi = β then

∏
j=1,...,n: αj

i
�=βj

xj = 1.

Therefore, wt
(
fβ1,...,βn

1,...,n

)
= f(β).

Let Θf
β denote the ordered 2n-tuple, containing the weights of the subfunc-

tions of f , obtained by fixing all possible subsets of variables with corresponding
values from vector β. Thus,

Θf
β =

{
wt
(
f

βi1 ,...,βik
i1,...,ik

)
| 1 ≤ i1 < . . . < ik ≤ n; k ∈ {0, . . . , n}

}
.

Denote also Dβ = Bβ1 ⊗ . . . ⊗ Bβn . Then

T f = Dβ Θf
β and Θf

β = D−1
β T f . (15)

We will call this transform of f the weight transform. In particular, if vector
β consists of zeros only then Dβ = B

[n]
0 , and if it consists only of ones then

Dβ = B
[n]
1 .

If we consider matrices B0 and B1 as matrices over the field GF(2) and
perform all operations in (15) in this field then (15) will relate the string of
values of function f with binary weights of its subfunctions.

Let us compare the basis vector set (14) of the weight transform when β =
(0, . . . , 0) with the basis vector set (2) of the inverse algebraic normal transform.
It is clear that they are directly related via a simple variable complementation.
Since R2n = R−1

2n , the basis vector sets of the algebraic normal transform and
its inverse are equal. Therefore,

Pf (α1
i , . . . , α

n
i ) = Θf

0 (α1
i , . . . , α

n
i ) (mod 2) (16)

for any i = 0, . . . , 2n − 1, where (α1
i , . . . , α

n
i ) = αi. This identity is easily ac-

counted for by the well-known fact that a Boolean function has maximal alge-
braic degree if and only if it has an odd weight. Indeed, the right hand side of
the identity contains the binary weight of the subfunction which maximal pos-
sible order term in the ANF is equal to

∏
j=1,...,n: αj

i
=1 xj and the coefficient for

this term in the ANF of f is the value on the left hand side of the identity. To
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construct the subfunction, relevant variables of f are being fixed only with zero
values, therefore, the term

∏
j=1,...,n: αj

i
=1 xj is either present in the ANFs of

both f and the subfunction or is missing in both.
The weight transform defines correlation properties of a Boolean function and

these properties are extremely important, especially for stream cipher design,
where filter and combination generators with not correlation immune filtering
and combining functions are susceptible to ciphertext-only attacks [2]. Therefore,
the weight transform is important for assessing cryptographic characteristics of
Boolean functions.

It is important to note that the P f , Πf , ∆f , Sf , S f̂ and Θf
β transforms of

a function f can be represented by matrix equations (3), (4), (5), (7), (10) and
(15), all based on the Kronecker product of appropriate elementary cells. This
fact allows to use fast Fourier and Walsh transform algorithms [8] for efficient
estimation of these transforms and easy transition from one transform to another.

3 Probabilistic Function of a Boolean Function

Let us consider the arrangement when n sequences of nonuniform, independent
and identically distributed (i.i.d.) random binary variables are combined with a
Boolean function to produce an output sequence hopefully having better alge-
braic and statistical properties relevant to a key-stream. In this section we show
that an appropriately chosen combining function can compensate the nonuni-
form distribution of the inputs and generate the close-to-uniform output. Similar
problems were considered in a recent paper [9] where maximized estimates for
the bias of the distribution of the output bits were made. Our approach allows
to obtain explicit polynomial expression for this bias.

Definition 1. Let f(x1, . . . , xn) be a Boolean function of n variables. Assume
that X = (X1, . . . , Xn) is an n-tuple consisting of i.i.d. random binary variables
with P (Xi = 1) = pi for i = 1, . . . , n. Then function Ff (p1, . . . , pn) = P (f(X) =
1) is called the probabilistic function of f .

From Definition 1 it follows that Ff (p1, . . . , pn) =
∑

β: f(β)=1 P (X = β) and

if β = (β1, . . . , βn) then P (X = β) =
∏n

i=1 pβi

i (1− pi)1−βi . Thus, Ff (p1, . . . , pn)
is the polynomial of n variables p1, . . . , pn with integer coefficients.

Further, let Df (x1, . . . , xn) denote the real-valued, square-free (in variables)
polynomial of n variables with integer coefficients such that

Df (x1, . . . , xn) = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ GF(2)n . (17)

Let us write down the polynomial Df in the canonical form

Df (x1, . . . , xn) =
2n−1∑
i=0

ai


 ∏

j=1,...,n: αj
i
=1

xj


 ,
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where αi = (α1
i , . . . , α

n
i ) is the n-bit binary expansion of i and ai ∈ ZZ. Then,

since (17) holds, the integer coefficients ai form the solution of the following
system of linear equations

M(a0, . . . , a2n−1)T = (f(0, . . . , 0), . . . , f(1, . . . , 1))T ,

where M = (mi,j)2n×2n (i, j = 0, . . . , 2n − 1) is a nondegenerate triangular
{0, 1}-matrix with mi,j = 1 if and only if the positions of ones in the n-bit binary
expansion of j are a subset of those in the binary expansion of i (in particular,
it is necessary that j ≤ i). Therefore, this system has a unique solution and that
proves the uniqueness of the polynomial Df . Moreover, the coefficient vector of
Df can be obtained by the algebraic normal transform of function f over IR (see
Sect. 2).

Identities x = 1 − x, x1 ∧ x2 = x1x2 and x1 ⊕ x2 = x1 + x2 − 2x1x2 con-
vert elementary Boolean operations into integer expressions. Thus, using these
identities any formula representing f(x1, . . . , xn) in the basis {−, ∧, ⊕} (for in-
stance, the ANF) can be transformed into the real-valued polynomial of n vari-
ables with integer coefficients that satisfies (17). Moreover, if we assume that
x2

i ≡ xi (i = 1, . . . , n) then the constructed polynomial is square-free and, there-
fore, by the uniqueness, is equal to Df . That provides an alternative way for
constructing polynomial Df starting from a formula representing the Boolean
function.

Proposition 2. For any Boolean function f(x1, . . . , xn) and arbitrary values
p1, . . . , pn with 0 ≤ pi ≤ 1 for all i = 1, . . . , n

Ff (p1, . . . , pn) = Df (p1, . . . , pn) .

Proof. To prove this identity we apply induction on n.
Let n = 1. Then function f is one of the following four functions of a single

variable
f0 ≡ 0, f1 = x1, f2 = x1, f3 ≡ 1 .

But

P (f0 = 1) = 0 = Df0

P (f1 = 1) = P (X1 = 1) = p1 = Df1(p1)
P (f2 = 1) = P (X1 = 0) = 1 − p1 = Df2(p1)
P (f3 = 1) = 1 = Df3 .

Now, supposing that the proposition is true for n = l−1, we prove it for n = l.
It is easy to see that the following decomposition of function f into subfunctions
holds:

f(x1, . . . , xl) = x1f
0
1 (x2, . . . , xl) ⊕ x1f

1
1 (x2, . . . , xl) .

According to the induction hypothesis, Ffi
1
(p2, . . . , pl) = Dfi

1
(p2, . . . , pl) for i =

0, 1. On the other hand,

Df (x1, . . . , xl) = (1 − x1)Df0
1
(x2, . . . , xl) + x1Df1

1
(x2, . . . , xl)
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since x1f
0
1 (x2, . . . , xl)x1f

1
1 (x2, . . . , xl) ≡ 0 on GF(2)n. On the other hand, by

the rule of total probability

Ff (p1, . . . , pl) = (1 − p1)Ff0
1
(p2, . . . , pl) + p1Ff1

1
(p2, . . . , pl) .

Thus, Ff (p1, . . . , pl) = Df (p1, . . . , pl) for any p1, . . . , pn with 0 ≤ pi ≤ 1 for all
i = 1, . . . , n. ��

Let wi (i = 0, . . . , n) denote the number of vectors having the weight i
in the support of a Boolean function f of n variables. Let us assume first that
p1 = . . . = pn = p = 1/2+δ, where δ ∈ (−1/2, 1/2) is the bias of the distribution
of the random variable xi (i = 1, . . . , n). Then, since

∑n
i=0 wi = wt(f),

Ff (p) =
n∑

i=0

wip
i(1 − p)n−i =

n∑
i=0

wi

(
1
2

+ δ

)i(1
2

− δ

)n−i

=

= d1δ + d2δ
2 + . . . + dnδn +

1
2n

wt(f) ,

where d1, . . . , dn are some real values. Let ∆f (δ) = Ff (1/2+ δ)−1/2 denote the
bias of the distribution of the function f output. In particular, if function f is
balanced then ∆f (δ) = d1δ + d2δ

2 + . . . + dnδn.
In case when the values of p1, . . . , pn are different let pi = 1/2 + δi (i =

1, . . . , n). The bias of the distribution of the function f output is defined in a
similar way as the polynomial of n variables

∆f (δ1, . . . , δn) = Ff

(
1
2

+ δ1, . . . ,
1
2

+ δn

)
− 1

2
. (18)

If function f is balanced then the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to

∆f (0, . . . , 0) = Ff

(
1
2
, . . . ,

1
2

)
− 1

2
=

wt(f)
2n

− 1
2

= 0 .

And the other way around: if the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to zero then function f is balanced. We will call polynomial ∆f (δ1, . . . , δn)
the bias polynomial of function f .

The coefficient vector of the bias polynomial is equal to the probabilistic
transform of function f (see Sect. 2) except for the initial coordinate of ∆f

which has to be corrected by subtracting 1/2. On the other hand, combining

(9) and (12), the coefficient vector can be expressed as − 1
2n+1

(
1 0
0 −2

)[n]

Sf̂ .

Coefficients of the bias polynomial can also be estimated using identities (13)
that are equivalent to [9, Theorem 3.1].

Definition 2. For k ∈ {1, . . . , n} a Boolean function f is called k-compensating
if the bias polynomial of f does not contain product terms having degree lower
than k.
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Note that any balanced Boolean function is 1-compensating. For the par-
ticular case when p1 = . . . = pn, Definition 2 means that function f is k-
compensating if it is balanced and d1 = . . . = dk−1 = 0. In other words, if
the input of a k-compensating Boolean function is nonuniform with bias δ then
the bias on its output is at most the size of order δk. The following proposition
provides a method for constructing k-compensating functions.

Proposition 3. Let f(x1, . . . , xn) = f1(x1, . . . , xk) ⊕ f2(xk+1, . . . , xn), where
k ∈ {1, . . . , n − 1}. Then

Ff (p1, . . . , pn) − 1
2

= −2
(

Ff1(p1, . . . , pk) − 1
2

)(
Ff2(pk+1, . . . , pn) − 1

2

)
,

i.e., ∆f (δ1, . . . , δn) = −2∆f1(δ1, . . . , δk)∆f2(δk+1, . . . , δn).

Proof. Since f1 ⊕ f2 = f1 + f2 − 2f1f2,

Df (x1, . . . , xn) = Df1(x1, . . . , xk) + Df2(xk+1, . . . , xn) −
− 2Df1(x1, . . . , xk)Df2(xk+1, . . . , xn) .

Therefore, by Proposition 2,

Ff (p1, . . . , pn) = Ff1(p1, . . . , pk) + Ff2(pk+1, . . . , pn) −
− 2Ff1(p1, . . . , pk)Ff2(pk+1, . . . , pn) ,

which is equivalent to the statement of the proposition. ��
The following corollary is obvious.

Corollary 1. Let f(x1, . . . , xn) be a Boolean function of n variables. If

(i) f(x1, . . . , xn) = f1(x1, . . . , xk) ⊕ f2(xk+1, . . . , xn), function f1 is k1-com-
pensating and function f2 is k2-compensating then function f is (k1 + k2)-
compensating;

(ii) f(x1, . . . , xn) = xi1 ⊕ . . . ⊕ xik
⊕ a0 then

Ff (p1, . . . , pn) − 1
2

= (−1)a0(−2)k−1δi1 · . . . · δik
.

In other words, an affine function consisting of k linear terms is k-compen-
sating.

The following proposition easily follows from (12) and the well-known crite-
rion of correlation immunity in terms of the Walsh transform [4].

Proposition 4. A Boolean function f(x1, . . . , xn) is k-resilient if and only if it
is (k + 1)-compensating.

Therefore, highly resilient Boolean functions significantly increase the size of
order for the bias of the distribution of the output bits compared to the bias of
the input. On the other hand, due to Siegenthaler’s inequality [10, Theorem 1],
Proposition 4 means that Boolean functions with high algebraic degree have poor
compensating properties and vice versa. This fact underlines again the need for
optimizing algebraic degree with correlation and compensating properties when
constructing secure Boolean functions.
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4 Conclusion

The classical algebraic normal and Walsh transforms appear to be a special case
of the tensor transform that also allows for the definition of new transforms, in
particular, probabilistic and weight transforms. The new transforms are crypto-
graphically important since they relate a Boolean function directly to its bias
polynomial and to the weights of its subfunctions. A tensor transform is based
on the Kronecker product of appropriate elementary cells. This fact allows to
use fast Fourier and Walsh transform algorithms for efficient estimation of any
tensor transform and easy transition from one transform to another.

The probabilistic function allows to estimate the probabilistic distribution of
bits at the output of a Boolean function if the distribution of the arguments, the
function depends on, is known. The probabilistic function is a polynomial which
coefficients can be obtained by the algebraic normal transform of a Boolean
function over IR. The newly introduced measure for a Boolean function to com-
pensate a nonuniform distribution of its input bits was called the compensating
degree. Compensating degree can be efficiently estimated by the probabilistic
transform. Highly resilient Boolean functions significantly increase the size of
order for the bias of the distribution of the output bits compared to the bias of
the input.
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Abstract. We formally introduce the concept of related-cipher attack. In this
paper, we consider the related ciphers as block ciphers with the same round
function but with different round numbers. If their key schedules do not depend
on the total round number, then related-cipher attack could be applied if the
same key is used.  We applied this attack to block cipher SQUARE and show
that SQUARE is vulnerable to this attack. We also show that a new AES key
schedule proposed at ACISP02 is weaker than the original one under this attack.
We then classify the differential attacks into three categories: related-message
attack (the original differential cryptanalysis), related-key attack and related-
cipher attack. These attacks should be taken into consideration in cipher design.

1 Introduction

There have been a number of attacks on block ciphers.  The most important two kinds
of attacks are differential cryptanalysis [1] and linear cryptanalyis [11].  There are
some variants or extensions of these two attacks such as the higher order differential
cryptanalysis [7], truncated differential cryptanalysis [5], multiple linear approxima-
tions [9], non-linear approximations [6], partitioning cryptanalysis [4] and differen-
tial-linear cryptanalysis [8], etc.  A common feature of these attacks is that both the
cipher and the key are fixed. By analyzing some known (or chosen) plaintexts, infor-
mation about the key could be revealed. The linear cryptanalysis can also be applied
in the ciphertext only attack when there is sufficient redundancy in the plaintexts.  All
these attacks are very important in the design of ciphers.  In [2], the related-key attack
is introduced.  For this attack, the cipher is fixed while the keys are related. This at-
tack can be applied when some related keys and one common cipher are used to en-
crypt messages.  Related key attack has important implication on the key schedule
design of block ciphers.

In this paper, we introduce a new attack – related-cipher attack. For related-cipher
attack, the key is fixed while the ciphers are related.  It could be applied when some-
one uses the same key in related ciphers.  In this paper, we consider the related ci-
phers as block ciphers with the same round function but different round number and
their key schedules do not depend on the total round number.  This attack can find the
key easily when the difference between the round numbers is small.  Related-cipher
attack has important implication on the design of the key schedule of block ciphers
with flexible round number.
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This paper is organized as follows.  The related-cipher attack is introduced in Sec-
tion 2.  Section 3 applies the related-cipher attack to some block ciphers with flexible
round number.  Section 4 suggests a way to resist related cipher attack by relating the
key schedule to the total round number of the block cipher.  Section 5 concludes this
paper.

2 Related-Cipher Attack

Usually a secret key is associated with one particular cipher.  However, the same key
may be used in different ciphers in some cases.  If those ciphers are related, the re-
lated-cipher attack may be applied.  In this paper, we deal with the block ciphers with
flexible round number.

Flexible round number is a feature in some block ciphers.  It allows a user to
choose greater security level.  However, the key schedule of some of these block
ciphers does not depend on the total round number.  We denote these block ciphers as
related ciphers.  For this kind of cipher, if the same key is used in the ciphers with
different round number, then the key can be found when the difference between the
round numbers is small.  The attack is outlined below.

Related-Cipher Attack on Block Ciphers. Consider two related block ciphers. Both
of them have the same round function, but with different round numbers, r and (r +
∆r) respectively.  If a key is used in these two ciphers to encrypt the same message,
the attack can be carried out on the ∆r- round cipher.  For this ∆r-round cipher, the
plaintext is the ciphertext of the r-round cipher and the ciphertext is that of the (r +
∆r)-round cipher.  The key can be determined easily for small ∆r.

In the next section, we will apply related-cipher attack on some block ciphers with
flexible round number.

3 Related-Cipher Attack on Some Block Ciphers

In this section related cipher attack is applied to two block ciphers with flexible round
number. Block SQUARE [3] is vulnerable to this kind of attack. AES [13] can resist
this kind of attack. But a new AES key schedule [12] is not that secure. Other block
ciphers with flexible round number such as SAFER [10] are also vulnerable to the
related cipher attack but we omit the attacks here.  These results show that some of
the block ciphers with flexible round number are really vulnerable to related cipher
attack if their key schedules are not carefully designed.  Care should be taken when
we design block ciphers with flexible round number.  In Subsection 3.1, we apply the
attack to SQUARE.  In Subsection 3.2, AES is shown to be able to resist the related-
cipher attack. In Subsection 3.3, we show that a new AES key schedule presented at
ACISP02 is not secure against the related-cipher attack.

3.1 Block Cipher SQUARE

SQUARE is a new block cipher designed by J. Daemen, L. Knudsen and V. Rijmen.
The round number of SQUARE is set to eight while the designers also allow the con-
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servative users to increase the number of rounds in a straight way.  The key schedule
of SQUARE does not depend on the total round number of the cipher and thus vulner-
able to the related cipher attack.

3.1.1 Structure of SQUARE

The structure of SQUARE is outlined below.  Interested readers may refer to [3] for the
detail.  SQUARE is an iterated block cipher with a block length and key length of 128
bits each.  The basic building blocks of the cipher are five different invertible trans-
formations that operate on a 4 × 4 array of bytes.  The element of a state a in row i
and column j is specified as ai,j.  Both indexes start from 0.  These five transforma-
tions are outlined below.

A Linear Transformation θ .

3,32,21,10,,)(: ijijijijji acacacacbab −−− ⊕⊕⊕=⇔= θθ

where the multiplication in GF(28) and the indices of c is taken modulo 4.  If the rows
of a state is denoted by polynomials

j
ji

j
i xaxa ,

3

0
)(

=
⊕=

Using this notation, and defining

j
j

j
xcxc

3

0
)(

=
⊕=

Then θ can be described as a modular polynomial multiplication:

)1mod()()()()( 4xxaxcxbab ii +=⇔= θ  for  40 <≤ i

In SQUARE, )(xc is chosen to be

32 3112)( xxxxc xxxx ⊕⋅⊕⋅⊕=

A Nonlinear Transformation γ.
γ is a nonlinear byte substitution and is defined as

)()(: ,, jiji aSbab γγγ =⇔=

with Sγ an invertible 8-bit substitution table.

In SQUARE, the S-box is constructed by taking the mapping 1−→ xx and applying
an affine transformation to the output bits.

A Byte Permutation π.

ijji abab ,,)(: =⇔= ππ

Bitwise Round Key Addition σ.

][ tkσ  consists of the bitwise addition of a round key kt.
ttt kabakbk ⊕=⇔= )]([:][ σσ
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The Round Key Evolution ψ.
The round keys kt are derived iteratively from the cipher key K in the following way.

Kk =0

)( 1−= tt kk ψ

where ψ is an invertible affine transformation and )(1 tt kk ψ=+ is defined by

1
23

1
3

1
12

1
2

1
01

1
1

30
1

0 )(

++

++

++

+

⊕=

⊕=

⊕=

⊕⊕=

ttt

ttt

ttt

t
ttt

kkk

kkk

kkk

Ckrotlkk

(1)

where rotl(ai) is a left byte-rotation operation on a row as

][][ 0,3,2,1,3,2,1,0, iiiiiiii aaaaaaaarotl =

and the round constants Ct are also defined iteratively as

1

0

2

1

−⋅=
=

txt

x

CC

C

We notice that the key schedule of SQUARE does not depend on the total round num-
ber.

The Cipher SQUARE

The tth round function is denoted by ][ tkρ :

θγπσρ ���][][ tt kk =

SQUARE is defined as eight rounds preceeded by a key addition ][ 0kσ and by 1−θ :

                                  SQUARE[k] = ���� ][][][][ 5678 kkkk ρρρρ
                                        101234 ][][][][][ −θσρρρρ ����� kkkkk

As a safety margin, the designers fixed the number of rounds to eight.  However, the
designers also allow conservative users to increase the number of rounds in a straight
way.

3.1.2 Related Cipher Attack on SQUARE

From the description of SQUARE, it is noted that the key schedule of SQUARE does not
depend on the total round number.  So SQAUARE ciphers with different round num-
bers are related.  If the same key is used in SQUARE with different round number, then
the related cipher attack can be applied.

Denote cr as the ciphertext of r round SQUARE and cr+∆r as that of r+∆r round
SQUARE.  If a cr and a cr+∆r are related to the same plaintext, they are denoted as one
right pair.  We apply the related cipher attack to the situations where ∆r =1 and ∆r =2.
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When ∆r =1, the cipher key can be determined from only one right pair.  In this case,
SQUARE is reduced to only one round and the following relation holds

)]([ 11 rrr ckc ++ = ρ (2)

From equation (2), the round key kr+1 is derived as

11 ))(( ++ ⊕= rrr cck θγπ ��

The cipher key K can be derived from this round key directly since the key evolution
ψ is invertible.  This cipher key K can be used to decrypt all the messages encrypted
with it.

When ∆r =2, the cipher key can be determined from two right pairs easily.  In this
case, SQUARE is reduced to two rounds and the following relation holds

)]([][ 122 rrrr ckkc +++ = ρρ � (3)

Let

)( rr cc θγπ ��=′

then equation (3) is simplified to

))(( 122 +′++ ⊕⊕= rrrr kckc θγπ �� (4)

We note the fact that one row of )( 1+′ ⊕ rr kc  is related to one column of

)( 22 ++ ⊕ rr kc .  So equation (4) is decomposed into four block ciphers each with 32-
bit block length.  These four block ciphers have the common form as

))(( 12 kckc ⊕′⊕= θγ � (5)

The value of k1 (or k2) can be determined easily from 2 pairs of ),( cc ′ .  So the round
key kr+1 (or kr+2) is known and the cipher key can be determined.

3.2 Block Cipher AES

AES is also with flexible round number: 10 for AES-128, 12 for AES-192, and 14 for
AES-256 (where AES-x indicates AES with x-bit secret key). However, AES is not
vulnerable to the related-cipher attack.

3.2.1 Structure of AES
We introduce only the key schedule of AES here. Its pseudo code is given in Fig. 1.

In Fig. 1, the key[ ] represents the cipher key, Nk is the length of the cipher key in 32-
bit words,  Nb is the block size in words, w[ ] is the round keys, Nr is the round num-
ber.  Subword, RotWord and Rcon are some functions we will omit their illustrations
here.
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Fig. 1. Pseudo code for AES key schedule

3.2.2 AES Is Able to Resist the Related-Cipher Attack

From the description of the AES key schedule, we see that the key schedule of AES
depends on the key length Nk.  It is thus impossible for the same key being used in the
AES with different round numbers. Even if a 256-bit key is the repeat of a 128-bit key
and both of them are used to encrypt the same message, the related-cipher attack
could not be applied since the key schedule of AES-256 is slightly different from that
of AES-128. We see that AES is able to resist the related cipher attack because the
relationship between the key length and the round number is fixed. It is thus avoided
that the same key being used in the related ciphers.

3.3 A New AES Key Schedule

At ACISP2002, a new AES key schedule [12] was proposed. However, we will show
that this new key schedule is weaker than the original one under the related-cipher
attack.
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3.3.1 Description of the New AES Key Schedule

We introduce only the new key schedules for AES-192 and AES-256 here.
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Fig. 2.  Pseudo code for the new AES key schedule

In Fig. 2, each Mkj represents one byte of the cipher key. ByteSub, ShiftRow, Mix-
Column and AddRoundKey are the components of the AES round function. S[ ] is the
S-box used in AES. Each KRr represents a 128-bit round key.

3.3.2 Weakness in the New AES Key Schedule

We consider the following scenario. Consider that a 64-bit key being used in AES-
192 and AES-256. And very likely the 64-bit key is concatenated to form the 192 and
256-bit key, respectively. Then the first 12 round keys for AES-192 and AES-256
would be identical. Now an attack could be applied to the last two rounds of AES-
256.

4 Method to Resist the Related Cipher Attack

In Section 3, we applied the related-attack on SQUARE, AES and a new AES key
schedule. AES is able to resist the attack. In this section, we introduce a general
method to resist the related-cipher attack on block ciphers with flexible round num-
ber: relating the key schedule to the total round number.  So when the same key is
used to encrypt the same plaintext, the intermediate value after the ith round in the r
round cipher should be quite different from that in the r’ round cipher (r ≠ r’).

The actual implementation that relates the key schedule to the total round number
may vary from cipher to cipher.  In the following example, we show how to relate the
key schedule of SQUARE to the total round number.  The original key schedule of
SQUARE is maintained and additional modification is carried out on the subkeys.
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After the original key schedule of SQUARE, we denote all the subkeys as k1,...,kn

(each one is one byte).  The additional modification is carried out in this way:

                           for i = 1 to n do
                            ]];[[ rSkSk ii γγ +=

where γS is the S-box used in SQUARE and r is the total round number.  We expect

that SQUARE with this modified key schedule could resist the related-cipher attack.
Since 8 round SQUARE is in use now, we suggest to keep the 8-round SQUARE the

same as in [3], but those SQUARE with increased round number may adopt this
strengthened key schedule.

5 Conclusion

In this paper, we introduced the related-cipher attack and applied this attack to some
block ciphers with flexible round number. A Block cipher with flexible round number
but with key schedule unrelated to the total round number is vulnerable to this attack.
Care should be taken in designing ciphers with flexible features. A method to resist
related cipher attack by relating the key schedule to the total round number is also
suggested.

After introducing the related-cipher attack, we can classify the differential attack as
related-message attack (the original differential cryptanalysis), related-key attack and
related-cipher attack.  Any combination of these attacks also gives a new attack. We
believe that the cipher design should take all these attacks into consideration.
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Abstract. In this paper, we firstly evaluate the resistance of the re-
duced 5-round version of the block cipher CIKS-1 against linear crypt-
analysis(LC). A feature of the CIKS-1 is the use of both Data-Dependent
permutations(DDP) and internal key scheduing which consist in data-
dapendent transformation of the round subkeys. Taking into account
the structure of CIKS-1 we investigate linear approximation. That is,
we consider 16 linear approximations with p = 3

4 for 16 parallel mod-
ulo 22 additions to construct one-round linear approximation and derive
one-round linear approximation with the probability of P = 1

2 + 2−17

by Piling-Up lemma. Also we estimate that the P is a valid probability
of one-round approximation and achieve that the probability P for one-
round approximation is better than 1

2 +2−17 through experiments. Then
we construct 3-round linear approximation with P = 1

2 +2−17 using this
one-round approximation and can attack the reduced 5-round CIKS-1
with 64-bit block by LC. In conclusion, we present that our attack re-
quires about 236 chosen plaintexts with a probability of success of 78.5 %
and 1

5 ×232× 236 ≈ 265.7 encryption times to recover last round(5-round)
key. In addition, we discuss a few improvements of the cipher CIKS-1.

Keywords: Block Cipher, Linear Cryptanalysis, Data-Dependent Per-
mutation, CIKS-1(Cipher with Internal Key Scheduling)

1 Introduction

Data-Dependent operations appear to be an interesting cryptographic primi-
tive. Data-Dependent Rotation(DDR) of them were used for the first time by
Becker in IBM [5]. DDR gained recognition after they were used extensively by
Rivest in RC5 [14]. And it has been shown [7] that mixed use of DDR with
some other simple operations is an effective way to thwart linear cryptanalysis.
Recently, RC6[15] and MARS[2] of AES candidates also composed DDR with
integer multiplication. DDR can be interpreted as a particular case of controlled
permutations(CP)[11]. The execution of the CP-operation Pn/m(V )(X) consist

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 456–468, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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in performing the fixed permutation
∏

V on X where X is input data and V is
controlling vector. We will explain CP operation obviously in the next section.

In this paper, we describe that the block cipher CIKS-1 introduced in Jour-
nal of cryptology (Vol.15 Num.1 winter 2002)[12] is based on Data-Dependent
permutations(DDP) which are the basic cryptographic primitive to construct
fast hardware-oriented cipher.(a feature of CIKS-1 is the use of both the Data-
Dependent transformation of round subkeys and the key dependent DDP op-
erations) And we analyze the security of the reduced 5-round version of the
block cipher CIKS-1 against LC. Taking into account the structure of CIKS-1
we investigate linear approximation for it. That is, we consider 16 linear approx-
imations with p(= 3

4 ) for 16 parallel modulo 22 additions to construct one-round
linear approximation and derive one-round linear approximation with probabil-
ity value P = 1

2 + 2−17 by Piling-Up lemma [10]. Also we estimate that P is a
valid probability for one-round approximation and achieve that the probability
P for one-round approximation is better than 1

2 + 2−17 through experiments.
Then we construct 3-round linear approximation with P = 1

2 + 2−17 using this
one-round approximation and attack the reduced 5-round CIKS-1 with 64-bit
block, 160-bit key by LC. If one persist in using CIKS-1 with original 256-bit key,
then we also can attack full-round CIKS-1 with 256-bit key through the canoni-
cal extension of our attack. So we attack only the reduced 5-round CIKS-1 with
160-bit key by LC. In conclusion, we present that our attack requires about 236

chosen plaintexts with a probability of success of 78.5% and 1
5 ×232 ×236 ≈ 265.7

encryption times to recover last round(5-round) key. In addition, we discuss the
improvements of CIKS-1.

This remainder of this paper is organized as follows. In Section 2 we summa-
rize description of the cipher CIKS-1 and describe some approaches for achieving
our attack and our attack on the reduced 5-round CIKS-1 against LC in Section
3 and conclude in Section 4.

2 Description of CIKS-1

In this section we describe a new block CIKS-1 based on CP-boxes performing
data-dependent permutations.

2.1 Preliminary

We consider notations, definitions and properties of CP-boxes. And most of
notations and definitions used in this paper are them used in [12].

Definition 1. Let two operands input vector X = (x0, ..., xn−1) and controlling
vector V = (v0, ..., vm−1) be given and let be output vector Y = (y0, ..., yn−1) and
let be order set

∏
V = {Π0, Π1, ..., Π2m−1} is a family of fixed permutations of

some set of n bits (or CP -modifications). Then, the execution of CP operation
Pn/m(V )(X) consist in performing the fixed permutation

∏
V on X, i.e, Y =

Pn/m(V )(X) =
∏

V (X)

A feature of CP-box Pn/m is shown in Fig.1.
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Fig. 1. Structures of the basic CP-box permutations

In the general case the value V is assumed to be dependent on encrypted data
and(or) Key. CP-boxes can be constructed as a superposition of the standard
elementary P2/1-boxes shown in Fig.1. A P2/1-box is controlled by one bit v. If
v = 0, it swaps two input bits otherwise(if v = 1), the bits are not swapped.

Definition 2.
1. Let a Pn/m-box be given. Suppose for arbitrary h ≤ n input bits x1, x2, ..., xh

and arbitrary h output bits y1, y2, ..., yh there is at least one CP-modification
moving xi to yi for all i = 1, 2, ..., h. Such a Pn/m-box is called a CP-box of
order h.
2. A strict CP-box is a Pn/m-box in which all CP-modification are pairwise un-
equal.
3. CP-boxes Pn/m and P−1

n/m are mutual inverses, if for all possible values
of the vector V the corresponding CP-modifications

∏
V and

∏−1
V are mutual

inverses.

The cipher CIKS-1 is composed of variants of the CP-boxes in Fig.2, 3 and
we explain a detailed figure of the cipher CIKS-1 in next subsection.

2.2 The Block Cipher CIKS-1

The design rationale for block cipher CIKS-1 is based to extensive use of the CP-
box permutations which are fast and inexpensive in hardware implementation.
CIKS-1 is a 64-bit block iterated cipher with r(=8) rounds and a 256-bit Master
key K. The master key K is divided into 8 32-bit subkeys to be injected into
each round transformation with internal key scheduling [12].
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Fig. 2. Structures of the basic CP-box permutations

One Round Structure.
Here, we describe the description of one round structure of CIKS-1. The cipher
CIKS-1 is represented in Fig 4. In addition to CP-box permutations, one encryp-
tion (decryption) round of CIKS-1 uses fixed permutations (

∏
1,

∏
2, rotations

by 7bits), one XOR operation, and 16 parallel modulo 22 additions (subtrations)
denoted as a single operation “ + ... + ”(“ − ... − ”).

• Operations

1 Operation XOR combines the right data subblock with current round subkey
after the latter is permuted in dependence on the left subblock.

2 Sixteen parallel modulo 22 additions (subtractions) are used to mix together
values of the left and right subblocks instead of one modulo 232 addition
(subtraction). To execute operation “+ ...+”(or“− ...−”) each of two 32-bit
operands is divided into 16 2-bit operands and then 16 modulo 22 additions
(subtractions) are performed simultaneously on respective pairs of the 2-bit
operands.

3 Fixed permutations improve data diffusion.
(1) Permutation

∏
1 is described by the following formula:

V ′ = (v′
0, ..., v

′
79) =

∏
1(L|L′|S′) =

∏
1(l0, ..., l31, l16, ..., l31, s

′
0, ..., s

′
31)

= (l8, ..., l31, s′
0, ..., s

′
7, l16, ..., l31, l0, ..., l7, s

′
8, ..., s

′
31),

where S′ = (s′
0, ..., s

′
31) is the value of the left subblock permuted in depen-

dence on the current round subkey.



460 Changhoon Lee et al.

8/12
� �

x0 x7

2/1 2/1

8/12
� �

x8 x15

2/1
� �� �	

.............. .......

..... ..... .....

� � � � � �

v0...v11 v12...v23

v24 v25 v31

y0 y1 y2 y3 y14 y15

16/32
� �

x0 x15

2/1 2/1

16/32
� �

x16 x31

2/1
� �� �	

.............. .......

..... ..... .....

� � � � � �

v0...v31 v32...v63

v64 v65 v79

y0 y1 y2 y3 y30 y31

P32/80

P16/32

� �

� � �

� �

� � �

�

�

Fig. 3. Structures of the basic CP-box permutations

(2) Permutation
∏

2 is described by the following formula:
V ′′ = (v′′

0 , ..., v′′
79) =

∏
2(S

′′|L∗|L′′) =
∏

2(s
′′
0 , ..., s′′

31, l
∗
0, ..., l

∗
31, l

∗
0, ..., l

∗
15)

= (s′′
16, ..., s

′′
23, l

∗
0, ..., l

∗
3, s

′′
24, ..., s

′′
31, l

∗
4, ..., l

∗
15, s

′′
0 , ..., s′′

7 , l∗16, ..., l
∗
19,

s′′
8 , ..., s′′

15, l
∗
20, ..., l

∗
31, l

∗
0, ..., l

∗
15),

where S′′ = (s′′
0 , ..., s′′

31) = P32/48(VK>>>7)(L∗).

In a word, CIKS-1 is an eight-round iterated cipher with a 256-bit secret key
K represented as a set of 32-bit subkeys K1, · · ·, K8 (i.e, K = K1‖ · · · ‖K8).
CIKS-1 can be described by the following algorithm.

• Algorithm

Step 1 Input: 64-bit plaintext PL‖PR represented as concatenation of two 32-bit
subblocks PL and PR.

Step 2 For i=1 to 7 do {PL‖PR:=Crypt(PL‖PR);PL ↔ PR} , where Crypt
means a round encryption procedure and ”↔” denotes swapping blocks.

Step 3 PL‖PR:=Crypt(PL‖PR)
Step 4 Output: ciphertext PL‖PR
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Fig. 4. The ith-round transformation with internal key scheduling in the CIKS-1

3 Linear Cryptanalysis on CIKS-1

The most powerful attack with Differential Cryptanalysis(DC)[3] on block ci-
phers is LC[10] which was introduced by Matsui. The attack explores linear
relations between plaintext, ciphertext and subkey bits. Linear approximations
for an iterated cipher are usually made by combining approximations for each
round. We find the following linear approximation which holds with the proba-
bility p �= 1/2 for randomly given plaintext P and the corresponding ciphertext
C and analyze the CIKS-1 cipher using the Algorithm 2 in [10].

P [i1, i2, ..., ia] ⊕ C[j1, j2, ..., jb] = K[k1, k2, ..., kc] (1)

where i1, i2, ..., ia, j1, j2, ..., jb and k1, k2, ..., kc denote fixed bit locations and
P [i1, i2, ..., ia] = P [i1]⊕, ...,⊕P [ia].
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3.1 The Approach

We explain main approaches to evaluate resistance of CIKS-1 against LC.

• Our Approaches

1. We easily know the following property of CP-boxes(permutations). if the
number of “1”(or “0”) in input data of CP-boxes is n, then the number of
“1”(or “0”) in output data of CP-boxes is also equal to n without regard
to control vector V . Thus we know that I[i0, ..., in−1] = O[o0, ..., on−1] with
probability p = 1 where I(or O) denotes the input(or output) data.

2. We shall consider 16 linear approximations for 16 parallel modulo 22 ad-
ditions to construct one-round linear approximation of CIKS-1. Let L =
(l0, ..., l31) and R = (r0, ..., r31) be 32-bit operands of operation “ + ... + ”
and let G(L, R)(m0, .., m31) be output of “ + ... + ” for two input L and R.
Then,

L[l0, l1] ⊕ R[r0, r1] = G(L, R)[m0, m1]
L[l2, l3] ⊕ R[r2, r3] = G(L, R)[m2, m3]

· · · · · · · · · · · · · · ··
L[l30, l31] ⊕ R[r30, r31] = G(L, R)[m30, m31]

We easily can achieve that each probability value of 16 linear approximations
above is equal to p = 3

4 and then using Piling-Up lemma [10] we can derive
the following one-round linear approximation of CIKS-1 with probabilityP =
1
2 + 2−17.

L[l0, ..., l31] ⊕ R[r0, ..., r31] = G(L, R)[m0, ..., m31] (2)

Also we estimated that the P is a valid probability for the equation(2) and
could achieve that the probability P for one-round approximation is better
than 1/2 + 2−17 through experiments.

3. We easily know that if we choose the following plaintexts(•) , then the linear
probability for the equation(2) is equal to P = 1 in the first round.

• (P 1
L,P 1

R)=((l0, ..., l31), 32-bit random vector) where l2i+1 = 0 if for all i,
0 ≤ i ≤ 15.
Since each probability of 16 linear approximations for 16 parallel modulo 22

additions is equal to p = 1 in the case(•).

3.2 The Chosen Plaintext Linear Attack
on the Reduced 5-Round CIKS-1

In this subsection, we introduce a 3-round linear approximation used in our at-
tack on CIKS-1 and we attack the reduced 5-round CIKS-1 with 160-bit key
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by using it. But if one persists in using CIKS-1 with original 256-bit key, then
we also can attack full-round CIKS-1 with 256-bit key through the canonical
extension of our attack. So, we analysis only 5-round CIKS-1 with 160-bit key
by LC and our attack is described in Fig.5, 6, 7. Let P i

L(P i
R) denote the 32-

bit left(right) input in the i-th round in CIKS-1. Then we choose plaintexts(•)
presented in previous section 4.1 and then using approach 1,2 of the previous
section we derive the 3-round linear approximation with maximal probability for
5-round CIKS-1. This linear approximation is shown in Fig.5, 6, 7. We denote
A[a0, ..., a31] by A[all] for convenience where A = (a0, ..., a31) means 32-bit ran-
dom vector and define linear characteristic probability LCPi for ith round. [1]
(i.e, LCPi = |2Pi − 1|2 where Pi is the probability for linear approximation of
ith round.)

To begin with, let Li(Ri)be the left(right) input of “ + ... + ” in the ith
round and let Bi

j is a input(or output) data of Bjbox in the ith round. we
can observe that P 1

L[all] = B1
1 [all] = L1[all] and that P 1

R[all] = B1
2 [all] =⇒

B1
6 [all] = K1[all] ⊕ P 1

R[all] = R1[all] in the first round.
Then we can know L1[all] ⊕ R1[all] = G1(L, R)[all] with P1 = 1. Therefore we
can construct the linear approximation of the first round. (See Fig.5)

1st round : P 1
R[all] ⊕ P 2

L[all] = K1[all] with P1′ = 1
P 1

L[all] ⊕ P 1
R[all] ⊕ P 2

R[all] = K1[all] with P1 = 1

Also, we can observe that P 2
L[all] = K1[all] ⊕ P 1

R[all] = B2
1 [all] = L2[all]

and that P 2
R[all] = P 1

L[all] ⊕ K1[all] ⊕ P 1
R[all] = B2

2 [all] =⇒ B2
6 [all] = K2[all] ⊕

B2
2 [all] = R2[all] in the 2nd round. Then L2[all] ⊕ R2[all] = G2(L, R)[all] with

P2 = 1/2 + 2−17 ⇐⇒ (K1[all] ⊕ P 1
R[all]) ⊕ (K1[all] ⊕ K2[all] ⊕ P 1

R[all] ⊕
P 1

L[all]) = P 1
L[all] ⊕ K2[all] = G2(L, R)[all]. Therefore we can construct the

linear approximation of the second round. (See Fig.5)

2nd round : P 2
R[all] ⊕ P 3

L[all] = K2[all] with P2′ = 1
P 2

L[all] ⊕ P 3
L[all] ⊕ P 3

R[all] = 0 with P2 = 1/2 + 2−17

and LCP2 = 4 × 2(−17)2 = 2−32

and we can observe that P 3
R[all] = P 1

L[all] ⊕ K2[all] = B3
2 [all] =⇒ B3

6 [all] =
K3[all] ⊕ B3

2 [all] = K3[all] ⊕ K2[all] ⊕ P 1
L[all] = R3[all] in the 3rd round. Then

we can construct the linear approximation of the third round. (See Fig.6)

3rd round : P 3
R[all] ⊕ P 4

L[all] = K3[all] with P3′ = 1

Hence these one-round approximations lead to the following 3-round approxi-
mation for 5-round CIKS-1. (See Fig.5, 6)
That is, we calulate that (P 1

R[all] ⊕ P 2
L[all] = K1[all]) ⊕ (P 1

L[all] ⊕ P 1
R[all] ⊕

P 2
R[all] = K1[all]) ⊕ (P 2

R[all]⊕P 3
L[all] = K2[all]) ⊕ (P 2

L[all]⊕P 3
L[all]⊕P 3

R[all] =
0) ⊕ (P 3

R[all] ⊕ P 4
L[all] = K3[all]) and then we get the following relation.

PL
4[all] = K2[all] ⊕ K3[all] ⊕ P 1

L[all] with a probability P = 1/2 + 2−17

by Piling-Up lemma and LCP = LCP2 = 2−32
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if for all i, (0 ≤ i ≤ 15)

Fig. 5. Our Attack on CIKS-1
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Fig. 7. Our Attack on CIKS-1

Then we apply this approximation to our attack on CIKS-1. Our attack
method is followed as: (See Fig.5, 6, 7)

• Attack Algorithm
1. Acquire 236 Chosen plaintext/ciphertext-pairs such that

• (P 1
L,P 1

R)=((l0, ..., l31), (32-bit random vectors �= 0)) wherel2i+1 = 0 if for
all i, 0 ≤ i ≤ 15.

2. For each of 232 guessed 5th-round key do:
For each of 236 plaintext/ciphertext-pair do:

After decrypting 5th-round,
(1) Compute 4 round output C4

L and C4
R and L4∗

(2) Compute L4∗[all] and if (L4∗[all] = 0), T = T++

where T : the number of “L4∗[all] = 0”
(3) Let Tmax(Tmin) be the maximal(minimal) value of all T ’s.
• If |Tmax −N/2| > |Tmin −N/2| then adopt the candidate corresponding

to Tmax and guess L4∗[all] = P 4
L[all] = P 1

L[all] ⊕ K2[all] ⊕ K3[all] = 0
(when P > 1/2) or 1 (when P < 1/2)

• If |Tmax −N/2| < |Tmin −N/2| then adopt the candidate corresponding
to Tmin and guess L4∗[all] = P 4

L[all] = P 1
L[all] ⊕ K2[all] ⊕ K3[all] = 1

(when P > 1/2) or 0 (when P < 1/2)
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Thus if a linear attack can be mounted on CIKS-1 with 5 rounds using 236

chosen plaintexts, then our attack will succeed in finding last round subkey with
a probability of 78.5% since 4 · |P − ( 1

2 )|−2 = 236 data complexity.[10] Hence we
present that our attack requires about 236 chosen plaintexts to recover 5th-round
key and estimate that time complexity is about 1

5 × 232 × 236 ≈ 265.7.

4 Conclusion

In this paper we have evaluated the resistance of the reduced 5-round CIKS-1
against LC. and have showed that our attack requires 236 chosen plaintexts to
recover 5th-round key with a probability of success of 78.5%. Also, Using the
properties of CP-boxes and Matsui’s ideas, we have presented efficient linear
approximation on CIKS-1 and introduced “Attack Algorithm ”. In result, we
have achieved that data complexity 236 and time complexity is about 265.7. As
stated in previous section 3.2, the block cipher CIKS-1 has weak points in view
of our attack and our approaches can be applied to other block cipher with DDP.
Therefore we have to keep a our approaches in mind to design a secure block
cipher with DDP. If one can solve these weakness for our attack then the block
cipher CIKS-1 is worth exploiting in view of efficiency of cipher and we will study
the cipher CIKS-1 in more detail and report new results in the near future.
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Abstract. The work investigates the design of ideal threshold secret
sharing in the context of cheating prevention. We showed that each or-
thogonal array is exactly a defining matrix of an ideal threshold scheme.
To prevent cheating, defining matrices should be nonlinear so both the
cheaters and honest participants have the same chance of guessing of the
valid secret. The last part of the work shows how to construct nonlinear
secret sharing based on orthogonal arrays.

Keywords: Threshold Secret Sharing, Orthogonal Arrays, Cheating De-
tection, Nonlinear Functions.

1 Introduction

Secret sharing is one of basic cryptographic algorithms that is of great impor-
tance for cryptographic services where actions are controlled by groups. It is a
well known fact that linear secret sharing is vulnerable to cheating attacks. In
these attacks, dishonest participants submit forged shares to the combiner who
returns an invalid secret. The cheaters, knowing the invalid secret and their valid
shares, are able to recover the valid secret. As the result, the cheaters hold the
valid secret while the honest participants are left with the invalid one distributed
by the combiner.

This paper explores how (nonlinear) orthogonal arrays can be used to build
ideal threshold schemes that are immune against cheating. The immunity against
cheating springs from the fact that, in nonlinear secret sharing, a cheater is
unable to obtain the valid secret. More precisely, the probability of guessing the
valid secret by the cheater and honest participants are the same.

This work is structured as follows. The basic concepts of secret sharing are
introduced in Section 2. In Section 3, we define a perfect secret sharing scheme
using defining matrices. An ideal secret sharing scheme is a perfect scheme for
which the set of secrets and the set of shares have the same size. We investigate
some properties of ideal secret sharing in Section 4. In Section 5, we introduce
orthogonal arrays and show how they can be used to construct ideal threshold
schemes. In Section 6, we study properties of such ideal threshold schemes and
their applications for cheating prevention. In Section 7 we demonstrate the exis-
tence of orthogonal arrays that are defining matrices of ideal threshold schemes.
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Section 8 examines how cheating attacks can be prevented in secret sharing
based on orthogonal arrays and constructions of secret sharing immune against
cheating are given. Conclusions close the work.

2 Access Structures

Secret sharing is a method to share a secret among a set of participants P =
{P1, . . . , Pn}. Let K denote the set of secrets and S denote the set of shares.
The secret sharing includes two algorithms: the distribution algorithm (dealer)
and the recovery algorithm (combiner). The dealer assigns shares s1, . . . , sn to
all the participants P1, . . . , Pn, respectively, or in other words, it creates the
secret sharing system. After that the participants collectively hold the secret
until there is a big enough subset of participants who wish to recover the secret
by calling the recovery algorithm. Assume that the currently active participants
are Pj1 , . . . , Pj�

and that they submit their shares to the combiner in order
to recover the secret. Their shares sj1 , . . . , sj�

can determine a secret if and
only if {Pj1 , . . . , Pj�

} is a qualified subset of P, i.e., the set of currently active
participants belongs to the access structure Γ . It turns out that any access
control is monotone or any superset of qualified set of participants belongs to
the access structure, or more precisely

if A ∈ Γ and A ⊆ B ⊆ P then B ∈ Γ (1)

We can describe secret sharing with the access structure Γ by an m× (n+1)
matrix M∗, as shown in [2,3]. The matrix M∗ has n + 1 columns indexed by
0, 1. . . . , n. The number m of rows of M∗ depends on a particular scheme. We
index the m rows by 1, . . . ,m. For a row of M∗, the entry in the 0th position
holds a secret and the entry in the ith position (i = 1, . . . , n) contains the
corresponding share of Pi. Denote the entry on the ith row and the jth column
of M∗ by M∗(i, j). The matrix M∗ is called a defining matrix of secret sharing
with the access scheme Γ . The matrix M obtained from M∗ by removing the
0th column is called the associated matrix of the scheme.

The dealer works in two stages. In the first stage, it creates the defining
matrix M∗ for secret sharing with the access structure Γ . The matrix is made
public. In the second stage, the dealer randomly chooses a row of the matrix
M∗. Let the row chosen be indexed by the integer i. The secret is K = M∗(i, 0)
and shares are sj = M∗(i, j), j = 1, . . . , n. The shares are distributed to the
corresponding participants via secure channels.

An access structure Γ = {A | #A ≥ t} is called a (t, n)-threshold access
structure, where #X denotes the cardinality of the set X (i.e., the number of
elements in the set X) and the integer t is called the threshold of secret sharing,
where t ≤ n. Secret sharing schemes with the (t, n)-threshold access structure
are called (t, n)-threshold schemes.

It should be noticed that a defining matrix uniquely determines a secret shar-
ing scheme but a secret sharing scheme has more defining matrices. Permuting
the rows of a defining matrix of secret sharing does not give a new scheme.
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Clearly, two secret sharing schemes are considered to be the same if the defining
matrix of the one can be obtained from the other by permuting the rows of
its defining matrix. Permuting the columns of defining matrices of secret shar-
ing is equivalent to changing the indices of participants. In other words, access
structures of secret sharing with permuted columns are different but one access
structure can be derived from the other by permuting the participants. For this
reason, we do not regard the the resulting scheme as a new one. We say that the
resulting scheme is equivalent to the original one.

It should be pointed out once again that a defining matrix of a secret sharing
scheme is public. The dealer chooses at random a single row of the matrix. The
shares are communicated to the corresponding participants via secure channels
so the share si is known to the participant Pi only (i = 1, . . . , n).

3 Perfect Secret Sharing

We say that secret sharing with the access structure Γ is perfect if the following
two conditions are satisfied:

(1) If A ∈ Γ then the participants in A can uniquely determine the secret by
pooling their shares together.

(2) if A �∈Γ then the participants from A can determine nothing about the
secret (in an information theoretic sense).

As argued in [2], Conditions (1) and (2) can be translated into conditions
that need to be satisfied in the context of the defining matrix.

(a) Let A ∈ Γ . If M∗(i, j) = M∗(i′, j) for every Pj ∈ A then M∗(i, 0) =
M∗(i′, 0).

(b) Let A �∈Γ . For any 1 ≤ i0 ≤ m and any K ∈ K, there exists some i with
1 ≤ i ≤ m such that M∗(i, j) = M∗(i0, j) for all Pj ∈ A and M∗(i, 0) = K.

(b’) Let A = {Pj1 , . . . , Pj�
} �∈Γ . For any sj1 , . . . , sj�

∈ S and any K ∈ K,

#{i | M∗(i, ju) = sju for all Pju ∈ A and M∗(i, 0) = K}
is independent to the choice of K.

It is easy to verify that (b’) implies (b). For the case of a (t, n)-threshold
scheme, Conditions (a), (b), and (b’) can be rewritten as follows:

(c) Let #A ≥ t. If M∗(i, j) = M∗(i′, j) for every Pj ∈ A then M∗(i, 0) =
M∗(i′, 0).

(d) Let #A < t. For any 1 ≤ i0 ≤ m and any K ∈ K, there exists some i with
1 ≤ i ≤ m such that M∗(i, j) = M∗(i0, j) for all Pj ∈ A and M∗(i, 0) = K.

(d’) Let A = {Pj1 , . . . , Pj�
} with � < t. For any sj1 , . . . , sj�

∈ S and any K ∈ K,

#{i | M∗(i, ju) = sju for all Pju ∈ A and M∗(i, 0) = K}
is independent to the choice of K.

Similarly, (d’) implies (d).
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Definition 1. A secret sharing scheme satisfying (a) and (b) is called weakly
perfect, while it is called perfect if it satisfies (a) and (b’) [2]. Alternatively, a
(t, n)-threshold scheme satisfying (c) and (d) is called weakly perfect, while it is
called perfect if it satisfies (c) and (d’).

Threshold schemes were first introduced by Blakley [1] and Shamir [6]. Ito et
al [5] generalized threshold secret sharing for arbitrary monotonic access struc-
tures.

4 Ideal Secret Sharing

Given an access structure Γ . A set A ∈ Γ is called minimal if all proper subsets
of A do not belong to Γ . It is easy to see that A is minimal for a (t, n)-threshold
access structure if and only if #A = t.

Lemma 1. #K ≤ #S for any weakly perfect secret sharing scheme.

Proof. Denote K = {K1, . . . ,Kκ}. We are going to consider the following two
cases: every minimal A ∈ Γ satisfies #A = 1 and there exists a minimal A0 ∈ Γ
such that #A0 ≥ 2. The first case is trivial. For this case, let M∗(i1, 0) = K1 . . .,
M∗(iκ, 0) = Kκ. Since K1, . . . ,Kκ are mutually distinct, due to Condition (a),
M∗(i1, 1), . . ., M∗(iκ, 1) must be mutually distinct. This proves that #S ≥ #K.
Consider the second case: there exists a minimal A0 ∈ Γ such that #A0 ≥ 2.
Let A0 = {Pj1 , . . . , Pj�

} where j1 < · · · < j�. For fixed i0th row of M∗, let
M∗(i0, j1) = sj1 , . . . ,M

∗(i0, j�−1) = sj�−1 . Since {Pj1 , . . . , Pj�−1} �∈Γ , according
to Condition (b), for each Kr with 1 ≤ r ≤ κ, there exists a row ir of M∗

such that M∗(ir, j1) = sj1 , . . . ,M
∗(ir, j�−1) = sj�−1 and M∗(ir, 0) = Kr, where

r = 1, . . . , κ. Since M∗(i1, 0) = K1, . . . ,M
∗(iκ, 0) = Kκ are mutually distinct,

due to Condition (a), M∗(i1, j�), . . . ,M∗(iκ, j�) must be mutually distinct. This
proves that S contains at least κ elements, i.e., #S ≥ #K. ��

A similar statement for perfect secret sharing appeared previously, for in-
stance, in [3], that is, #K ≤ #S for any perfect secret sharing scheme. Since
any perfect secret sharing is a special weakly perfect secret sharing, Lemma 1 is
more general. In particular, if the equality in Lemma 1 holds, i.e., #K = #S,
the perfect secret sharing scheme is said to be ideal.
Definition 2. A perfect secret sharing scheme is said to be ideal if #K = #S,
where K and S denote the set of secrets and the set of shares respectively. Al-
ternatively, a perfect threshold scheme is said to be ideal if the set of secrets and
the set of shares have the same cardinality.

Using the same approach as in the proof of Lemma 1, we can prove the following
lemma.

Lemma 2. Let M be an associated matrix M of an ideal secret sharing scheme
with an access structure Γ . Let A0 = {Pj1 , . . . , Pj�

} ∈ Γ , where j1 < · · · < j�, be
a minimal set. Then the submatrix of M , comprised of � columns of M , indexed
by j1, . . . , j�, contains each row vector (s1, . . . , s�) where each sj ∈ S.

In particular, we can formulate the following corollary.
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Corollary 1. Let M be an associated matrix of an ideal (t, n)-threshold scheme.
Then a submatrix of M consisting of any t columns, contains all values of the
vector (s1, . . . , st) where each sj ∈ S.

Let M∗ be a defining matrix of an ideal (t, n)-threshold scheme. Set St =
{(s1, . . . , st) | s1, . . . , st ∈ S}. Let 1 ≤ j1 < · · · < jt ≤ n and M1 be the
m × t submatrix of M , comprised of the t columns indexed by j1, . . . , jt. We
now define a function, denoted by χj1,...,jt , from St to K as follows. According
to Corollary 1, for any (s1, . . . , st) ∈ St, there exists some i0 with 1 ≤ i0 ≤ m
such that M∗(i0, j1) = s1, . . . ,M

∗(i0, jt) = st. Let M∗(i0, 0) = K. Note that
according to Condition (d), if there exists another i1 (1 ≤ i1 ≤ m) such that
M∗(i1, j1) = s1, . . . ,M

∗(i1, jt) = st, then M∗(i1, 0) = K. Thus we can define
K to be the image of (s1, . . . , st) and write K = χj1,...,jt(s1, . . . , st). We call
χj1,...,jt the secret function with respect to j1, . . . , jt. Secret functions play an
important role as a tool against cheating. This will be elaborated later.

5 Ideal Threshold Schemes from Orthogonal Arrays

An m×n matrix with entries from b-set B is called an orthogonal array, denoted
by (m,n, b, t), if its any m × t submatrix contains all bt possible row vectors
precisely λ times. Clearly m = λbt. The parameters m, t and λ are called the
size, the strength and the index of the orthogonal array, respectively, while n is
called the number of constraints and b is called the number of levels.

Lemma 3. An orthogonal array (m,n, b, t) with an index λ is an orthogonal
array (m,n, b, �) with an index λbt−� where � is any integer with 1 ≤ � ≤ t.

In particular, we can formulate the following corollary.

Corollary 2. Each column of an orthogonal array (m,n, b, t) with entries from
a b-set B contains each element of B precisely λbt−1 times, where λ is the index
of the orthogonal array.

This following statement is obvious.

Lemma 4. Let O1 be an m × n1 submatrix of an orthogonal array (m,n, b, t)
with an index λ. If n1 ≥ t then O1 is an orthogonal array (m,n1, b, t) with an
index λ.

Orthogonal arrays with index λ = 1, i.e, orthogonal arrays (bt, n, b, t) have
many interesting properties. The following bounds on the number of constraints
for orthogonal arrays (bt, n, b, t) was proved by Bush [4]:

Lemma 5. For an orthogonal array (bt, n, b, t),

(i) if t ≤ b then n ≤ b+ t− 1 (b is even) or n ≤ b+ t− 2 (b is odd and t ≥ 3),
(ii) if b ≤ t, then n ≤ t+ 1.
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Theorem 1. An orthogonal array (bt, n+ 1, b, t) with entries from a b-set B is
a defining matrix of an ideal (t, n)-threshold scheme with K = S = B.

Proof. Let O be an orthogonal array (bt, n+1, b, t) with entries from b-set B. We
index the columns of O by j = 0, 1, . . . , n and index the rows of O by i, 1 ≤ i ≤ bt.
We write O(i, j) to denote the entry of O in the i row and the j column. We
now construct a (t, n)-threshold with participants P1, . . . , Pn as follows. For an
ith row, let O(i, 0) be a secret, and O(i, j) denote the share of participant of Pj ,
j = 1, . . . , n. We next prove that this scheme satisfies Condition (c) and (d’).

Let {Pj1 , . . . , Pj�
} be the set of currently active participants. For the case of

� ≥ t, if O(i, j1) = O(i′, j1), . . . , O(i, j�) = O(i′, j�), then it follows that i = i′,
as the orthogonal array (bt, n + 1, b, t) has index λ = 1. Thus Condition (c) is
satisfied. For the case of � < t, let O1 denote the bt × (� + 1) submatrix of O,
comprised of the � + 1 columns indexed by 0, j1, . . ., j�. Note that � + 1 ≤ t.
Let K, sj1 , . . . , sj�

∈ B. According to Lemma 3, O1 contains the row vector
(K, sj1 . . . . , sj�

) precisely bt−�−1 times, where bt−�−1 is independent to the choice
of K. This proves (d’). Thus O is a defining matrix of a perfect (t, n)-threshold
scheme. Finally, due to Corollary 2, we conclude that K = S = B. Hence the
scheme is ideal. ��

6 Properties of Threshold Schemes
from Orthogonal Arrays

The Hamming distance of two vectors µ = (a1, . . . , an) and ν = (b1, . . . , bn),
denoted by dist(µ, ν), is the value of #{j | aj �=bj , 1 ≤ j ≤ n}.

Lemma 6. Any two distinct row vectors of an orthogonal array (bt, n, b, t) have
a Hamming distance at least n− t+ 1.

Proof. Denote the orthogonal array by O. We prove the lemma by contradic-
tion. Assume that there exist two rows of O, row Li and Lj of O, satisfying
dist(Li, Lj) ≤ n−t. Then Li and Lj have at least t same corresponding coordina-
tions. This contradicts the fact that the submatrix, comprised of any t columns,
contains a row vector precisely once as O is an orthogonal array (bt, n, b, t) with
index λ = 1. Therefore we have proved the lemma. ��

Consider (t, n)-threshold secret sharing whose defining matrix O is an or-
thogonal array (bt, n+ 1, b, t). Assume that the dealer chooses an i0 row vector
(s1, . . . , sn) of O and assigns s1, . . . , sn to participants P1, . . . , Pn, respectively.
Let {Pj1 , . . . , Pj�

} for t ≤ � ≤ n be a subset of active participants. Let O1 be the
bt × � submatrix of O, containing � columns indexed by j1, . . . , j�. According to
Lemma 4, O1 is an orthogonal array (bt, �, b, t). Denote the ith row of O1 by Li.
According to Lemma 6, any two distinct row vectors Li and Lj of O1 satisfy

dist(Li, Lj) ≥ �− t+ 1 (2)

Clearly, the row i0 of O1 is Li0 = (sj1 , . . . , sj�
). Let there exist u cheaters,

among the active participants Pj1 , . . ., Pj�
, who submit modified shares to the
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combiner while the honest active participants submit correct shares to the com-
biner. Assume that the combiner receives the shares s′

j1
, . . . , s′

j�
sent by Pj1 , . . .,

Pj�
, where s′

ji
= sji if and only if Pji is honest. Write L′ = (s′

j1
, . . . , s′

j�
). Clearly,

dist(L′, Li0) = u.
We show that cheating can be checked when 1 ≤ u ≤ �− t. We assume that

the combiner (recovery algorithm) knows the defining matrix O and then O1.
Thus the combiner can calculate

dm = min{dist(L′, Li) | 1 ≤ i ≤ bt}
Since dist(L′, Li0) = u and 1 ≤ u ≤ � − t, it follows that 1 ≤ dm ≤ � − t.
Although the combiner does not know Li0 , from 1 ≤ dm ≤ �− t and (2), he can
conclude that L′ = (s′

j1
, . . . , s′

j�
) is not a row of O1 and thus it is incorrect.

Furthermore we indicate that the correct shares can be found and the cheaters
can be identified when 1 ≤ u ≤ � 1

2 (�− t)	, where � 1
2 (�− t)	 denotes the greatest

integer not larger than 1
2 (� − t). The combiner can find a row Li1 of O1 such

that dist(L′, Li1) = dm. Then Li1 is identical with Li0 = (sj1 , . . . , sj�
). In fact

dist(Li1 , Li0) ≤ dist(Li1 , L
′) + dist(L′, Li0) ≤ 2u ≤ � − t. Since both Li0 and

Li are rows of O1, due to (2), we conclude that Li1 is identical with Li0 =
(sj1 , . . . , sj�

). Thus the correct shares have been found. Comparing L′ and Li0 ,
the combiner (recovery algorithm) can determine who are cheaters.

The above discussions uses basic facts of coding theory. The reader interested
in more details is referred to any book on the subject.

7 Simple Construction

According to Theorem 1, the design of threshold schemes is equivalent to the
construction of corresponding orthogonal arrays. In this section, we are interested
in orthogonal arrays with elements in a finite field, or simply, orthogonal arrays
over a finite field. Let q = pv where p is a prime number and v is a positive
integer. We write GF (q) or GF (pv) to denote the finite field of q = pv elements,
and GF (q)n or GF (pv)n to denote the vector space of n tuples of elements
from GF (q). Each vector α ∈ GF (q)n can be expressed as α = (a1, . . . , an)
where a1, . . . , an ∈ GF (q). The integer a1q

n−1 + · · · + an−1q + an is called the
integer representation of vector α = (a1, . . . , an), where each aj and the sum are
regarded real-valued. Thus we can index all vectors in GF (q)n:

α0, α1, . . . , αqn−1

where j is the integer representation of αj . A function f on GF (q)n is a mapping
fromGF (q)n toGF (q). The function f can be expressed as f(x) or f(x1, . . . , xn),
where x = (x1, . . . , xn) ∈ GF (q)n. The truth table of f is the sequence f(α0),
f(α1), . . . , f(αqn−1). If each element of GF (q) = GF (pv) appears in the truth
table of f precisely qn−1 times then f is called balanced. If f can be expressed
as f(x1, . . . , xn) = c + a1x1 + · · · + anxn then f is called an affine function. In
particular, the affine function f is called linear if c = 0. It is easy to see that
non-constant affine functions are balanced.
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For any integer t, n and prime power q with 1 ≤ t ≤ n+ 1 ≤ q − 1, we next
construct an orthogonal array (qt, n+1, q, t) over GF (q). Since n+1 ≤ q−1, we
can collect n+ 1 nonzero elements of GF (q): λ1, . . . , λn+1. For each λj , 1 ≤ j ≤
n+1, define a vector βj = (1, λj , . . . , λ

t−1
j ), j = 1, . . . , n+1, and a liner function

ψj on GF (q)t such that ψj(x) = 〈βj , x〉 where x = (x1, . . . , xt) ∈ GF (q)t and 〈, 〉
denotes the inner product of two vectors. We now construct a qt ×(n+1) matrix
O. We index the columns of O by j = 0, 1. . . . , n, and define the j column vector
of O to be the truth table of ψj+1 where j = 0, 1, . . . , n. According to the results
given in [4], O is an orthogonal array (qt, n + 1, q, t) over GF (q). Therefore, by
Theorem 1, O is a defining matrix of an ideal (t, n)-threshold scheme.

The above orthogonal arrays have a property as follows.

Lemma 7. Let O be the orthogonal array (qt, n+1, q, t) over GF (q), constructed
previously in this section. Then for any fixed 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt is
a linear function.

Proof. It is not hard to verify that any t vectors βj1 , . . . , βjt , where each βj has
been defined previously in this section, are linearly independent. Thus {βj1 , . . .,
βjt} is a basis of GF (q)t and thus the 0th column is a linear combination of
the j1th, . . ., the jtth columns. If we denote the jth columns of O by ηj , then
η0 = c1ηj1 + · · · + ctηjt where each cj ∈ GF (q). Thus O(i, 0) = c1O(i, j1) + · · · +
ct0(i, jt), i = 1, . . . , qt. By definition, χj1,...,jt(s1, . . . , st) = c1s1 + · · · + ctst, for
any s1, . . . , st ∈ GF (q). This proves the lemma. ��

Using the same approach as shown by Tompa and Woll [7] for Shamir’s
scheme [6], due to Lemma 7, we can demonstrate that the Tompa-Woll attack
works also for the scheme constructed above. For this reason, we will improve
this construction in the next section.

8 Ideal Threshold Schemes
with Nonlinear Secret Functions

We address the weakness discussed in the previous section by removing linearity
from the orthogonal array (qt, n+1, q, t). Being more specific, we make sure that
the 0th column (secret) is described by a nonlinear function of other columns
(shares).

Theorem 2. Let O be the orthogonal array (qt, n + 1, q, t) over GF (q), con-
structed in Section 7. We replace the 0th column by the truth table of function
σ(x) = 〈β1, x〉p, where p is the characteristic of GF (q), i.e., q = pv. Denote
the resulting matrix by O′. Then O′ is also an orthogonal array (qt, n+ 1, q, t).
Alternatively, we obtain an ideal (t, n)-threshold scheme with the defining matrix
O′.

Proof. Let O′
1 (O1) be a qt×t submatrix of O′ (O), consisting of any t columns of

O′ (O), indexed by j1, . . . , jt, where 0 ≤ j1 < · · · < jt ≤ n. Let (a1, a2, . . . , at) be
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a t-dimensional vector where each aj ∈ GF (q). There two cases to be considered:
j1 �= 0 andj1 = 0. For the first case: j1 �= 0, clearlyO′

1 = O1 is a submatrix
of O. Thus O′

1 = O1 contains (a1, a2, . . . , at) as a row vector precisely once.
We next consider the second case: j1 = 0. It is easy to verify that c1 = c2,
where c1, c2 ∈ GF (q), if and only if cp1 = cp2. Thus, there exists an unique
element c ∈ GF (q) such that cp = a1. Recall that O is an orthogonal array
(qt, n+ 1, q, t) with index λ = 1. Thus O1 contains the row vector (c, a2, . . . , at)
precisely once. It follows that O′

1 contains the row vector (a1, a2, . . . , at) precisely
once. Summarising the two cases, we have proved that O′ is also an orthogonal
array (qt, n+1, q, t). According to Theorem 1, we obtain an ideal (t, n)-threshold
scheme with the defining matrix O′. ��

Theorem 3. Let O′ be the orthogonal array (qt, n + 1, q, t) in Theorem 2. For
any 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt is a nonlinear function.

Proof. Recall that for each j with 1 ≤ j ≤ n, the jth column of O′ is the truth
table of a linear function on GF (q)t. On the other hand, the 0th column of O′

is the truth table of the function σ(x) = 〈β1, x〉p, that contains nonlinear terms.
Thus the 0th column of O′ is not a linear combination of other columns. This
proves that χj1,...,jt is a nonlinear function. ��

9 Constructions of Ideal Threshold Schemes

The construction in Section 7 demonstrates the existence of secret sharing based
on orthogonal arrays. In this section, we show how to construct secret sharing
from a known orthogonal array.

Theorem 4. Let O be the orthogonal array (m,n, b, t) with elements from a b-
set B. For a permutation π on B and a uth column of O, we replace each entry c
in the uth column by π(c). Denote the resulting matrix by O′. Then O′ is also an
orthogonal array (m,n, b, t). Alternatively, we obtain an ideal threshold scheme
based on the defining matrix O′.

Proof. The proof is similar to the proof of Theorem 2. Let O′
1 (O1) be an m× t

submatrix of O′ (O), consisting of the t columns of O′ (O), indexed by j1, . . . , jt,
where 1 ≤ j1 < · · · < jt ≤ n. Let (a1, a2, . . . , at) be a t-dimensional vector
where each aj ∈ GF (q). There two cases to be considered: u �∈ {j1, . . . , jt} and
u ∈ {j1, . . . , jt}. For the first case: u �∈ {j1, . . . , jt}, clearly O′

1 = O1 is a sub-
matrix of O. Thus O′

1 = O1 contains (a1, a2, . . . , at) as a row vector precisely
once. We next consider the second case: u ∈ {j1, . . . , jt}. Let u = jr and then
assume that j1 < · · · < jr−1 < jr < jr+1 < · · · < jt. Since π is a permutation
on B, there exists an unique element c ∈ B such that π(c) = ajr . Recall that O
is an orthogonal array (m,n, b, t) with index λ = 1. Thus, O1 contains the row
vector (a1, . . . , ajr−1 , c, ajr+1 , . . . , at) precisely once. It follows that O′

1 contains
the row vector (a1, . . . , ajr−1 , ajr , ajr+1 , . . . , at) precisely once. Summarising the
two cases, we have proved that O′ is also an orthogonal array (m,n, b, t). Alter-
natively, we obtain an ideal threshold scheme with the defining matrix O′. ��
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Repeatedly applying Theorem 4, we obtain more orthogonal arrays and more
ideal threshold schemes. Moreover, the theorem gives ideal threshold schemes
with different properties.

Theorem 5. Let O be the orthogonal array (qt, n + 1, q, t) over GF (q), con-
structed in Section 7. Let a permutation π on GF (q) satisfy π(0) �= 0. For a uth
(1 ≤ u ≤ n) column of O, we replace each entry c in the uth column by π(c),
and replace the 0th column by the truth table of function σ(x) = 〈β1, x〉p, where
q = pv. Denote the resulting matrix by O′. Then

(i) O′ is also an orthogonal array (qt, n, q, t). Alternatively, we obtain an ideal
threshold scheme with the defining matrix O′,

(ii) all the row vectors of the orthogonal array O′ do not form a linear subspace
of GF (q)n,

(iii) for any 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt
is a nonlinear function.

Proof. According to Theorems 2 and 4, (i) is true. We denote the jth column of
O (O′) by ηj (η′

j). From the construction of O mentioned in Section 7, O(0, u) =
0. Thus O′(0, u) = π(0) �= 0. This means thatη′

u is not the true table of a
linear function. We have proved (ii). We next prove (iii). There exist two cases
to be considered: u �∈ {j1, . . . , jt} and u ∈ {j1, . . . , jt}. In the first case: u �∈
{j1, . . . , jt}. According to the same arguments as in the proof of Theorem 3,
(iii) is true in the first case. We consider the second case: u ∈ {j1, . . . , jt}. Let
u = jr. We prove (iii) by contradiction. Assume that χj1,...,jt is a linear function.
By definition,

η′
0 = c1η

′
j1 + · · · + cr−1η

′
jr−1

+ crη
′
jr

+ cr+1η
′
jr+1

+ · · · + ctη
′
jt

for some c1, . . . , ct ∈ GF (q). Since η′
j = ηj for j �= 0, jr, we have

η′
0 = c1ηj1 + · · · + cr−1ηjr−1 + crη

′
r + cr+1ηjr+1 + · · · + ctηjt (3)

From the proof of Theorem 3, we know that η′
0 is not a linear combination of

ηj1 , . . ., ηjr−1 , ηjr+1 , . . ., ηjt . Thus we conclude that cr �= 0. On the other hand,
O′(0, 0) = 0, O(0, j1) = 0, . . ., O(0, jr−1) = 0, O(0, jr+1) = 0, . . ., O(0, jt) = 0
but O′(0, jr) �= 0. This means that (3) does not hold. The contradiction proves
(iii) in the second case. ��

It is easy to see that all row vectors of the orthogonal array (qt, n + 1, q, t),
constructed in Section 7, form a linear subspace. Usually, this is not a desirable
property from a security point of view as the corresponding secret sharing may
be subject to the Tompa-Woll attack. In contrast to the construction in Section
7, the construction in Theorem 5 provides secret sharing that is resistant against
cheating.

10 Conclusions

In this work we have applied orthogonal arrays to construct threshold schemes
and have shown that all these schemes are not only perfect but also ideal. We
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have indicated that such ideal threshold schemes have an ability to detect cheat-
ing and also, can identify cheaters and recover correct shares. Besides cheating
detection and identification, we have also shown that the secret functions must
be nonlinear to prevent cheating using the Tompa-Woll attack.
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Abstract. In this paper, we propose the efficient and feasible key recov-
ery algorithm against the reduced-round RC6 without whitening, called
RC6W. Our attack applies to a rather large number of rounds. RC6W
with r rounds can be broken in a success probability of 90% by using
28.1r−13.8 plaintexts. Therefore, our attack can break RC6W with 17
rounds by using 2123.9 plaintexts in a probability of 90%.

1 Introduction

RC6-w/r/b[13] is a fast software-oriented block cipher, which is constructed by
only simple arithmetic such as a multiplication, an addition, a bit-wise exclusive-
or(XOR), and a data dependent rotation. RC6-w/r/b means that four w-bit-
word plaintexts are encrypted by r rounds with b byte keys. We denote RC6-
32/r/16 by RC6, which is submitted as a candidate for NESSIE[12], and recently
has been selected to proceed the next stage. RC6 is the next version of RC5[14].
RC5 also includes a data dependent rotation, which is much efficiently improved
in RC6 in such a way that it is determined by all 32 bits of both data and subkey
but not 5 bits. Such an efficient improvement makes RC6 much secure because it
is difficult to handle the rotation by choosing specific plaintexts. Compared with
various attacks against RC5[1,2,4,5,6,7,11], any key recovery algorithm against
RC6[3,2,8] requires much memory and work even in the case of low round. Mul-
tiple linear cryptanalysis is applied to RC6-32/r/32[16], but it has not been
applied to RC6-32/r/16.

Correlation attack makes use of correlations between an input and an output,
which is measured by the χ2 test: the specific rotation in RC6 is considered
to cause the correlations between the corresponding two 10-bit integer values.
Correlation attack consists of two parts, the distinguishing algorithm and the key
recovery algorithm. The distinguishing algorithm has only to handle plaintexts in
such a way that the χ2-value of a part of the ciphertext becomes a significantly
higher value. The key recovery algorithm has to rule out all false keys, and
single out exactly a correct key by using the χ2-value. Up to the present, only
distinguishing algorithm has been investigated[8,4]. That is, only the high χ2-
value is focused, which is experimentally computed on the average of keys. In [8],
correlation attacks are applied to RC6 to recover subkeys from the 1st subkey to

R. Deng et al. (Eds.): ICICS 2002, LNCS 2513, pp. 480–494, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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the final subkey. Their key recovery algorithm is based on the next idea: the χ2-
value is significantly high if B0 or D0 of a plaintext (A0, B0, C0, D0) introduces
zero rotation in the 1st round, and lsb5(A0) and lsb5(C0) is fixed. It exactly
works well as a distinguishing algorithm, but, as a key recovery algorithm, it
is unlikely that it rules out all 32-bit false keys well. Because fixing the first
round rotation to zero is just fixing the 5-bit information amount on the first
subkey but not all its 32bits. In fact, for a plaintext, there are 227 first subkeys
that lead to the zero rotation. Furthermore, unfortunately, their key recovery
algorithm has not been executed yet although their distinguishing algorithm has
been implemented. Because their algorithm is forced to recover all 32 bits of the
first subkey, and thus it requires 262.2 works with 242 memory even in the case
of RC6 with 5 rounds. In a realistic sense, it would be infeasible to employ such
an algorithm on a modern computer. This is why their key recovery algorithm
is estimated by only using the results of distinguishing algorithm. We also note
that the number of available plaintexts for each key is 2118. In [11], a correlation
attack against RC5 is proposed. Their algorithm can recover every four bit of
subkey in the final round with the high probability by using a rather low χ2-
value. They also reported that an algorithm applying [8] to RC5 cannot recover
subkeys well although the χ2-value is extremely high. Their results indicate that
any bit of subkeys can be recovered, and that a good distinguishing algorithm
does not necessarily work as a good key recovery algorithm.

In this paper, we focus on RC6 without whitening, which is called RC6W
in this paper. We propose the feasible key recovery algorithm for the reduced-
round RC6W for the first time. We improve the distinguishing algorithm in
such a way that the χ2-values for outputs become significantly high with less
constrain of plaintexts, and then improve key recovery algorithm in such a way
that the variance of χ2-value is reduced. As for the distinguishing algorithm, we
investigate how outputs after r rounds, both Ar+1 and Cr+1, depend on a chosen
plaintext, and find experimentally the following feature of RC6: the χ2-values
for the concatenation of lsb5(Ar+1) and lsb5(Cr+1) become significantly high if
both the least significant 5 bits of the first and third words before addition to
each 1st-round subkey are just fixed. This means that we can use any plaintext
by classifying them into groups with the same condition, and thus, the number
of available plaintext is 2128. As for the key recovery algorithm, we also direct
our attention to the variance of χ2-value in addition to the above results of key
distinguishing algorithm. We compute the χ2-value not flatly for all plaintext
but for plaintexts in each group, and then compute the average among these
χ2-value. As a result, the variance of χ2-value is reduced. The main points of
our feasible key recovery algorithm are as follows:
1. Use any plaintext by classifying it into groups;
2. Compute the χ2-value of an output for plaintexts in each group, and then
compute the average among these χ2-value.
We also present three key recovery algorithms, which reflect the importance of
the variance of the χ2-value. By employing our best attack, RC6W with 5 rounds
can be broken within 20 minutes on PPC 604e/332MHz by using 227 plaintexts
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and 226 memory. RC6W with r rounds can be broken with a success probability of
90% by using 28.1r−13.8 plaintexts, and thus RC6W with 17 rounds can be broken
in a probability of 90% by using 2123.9 plaintexts and feasible memory size of 226,
faster than an exhaustive key search. We also investigate a two-register-version
RC6[13], called RC6-64 in this paper. We denote RC6-64 without whitening by
RC6-64W. RC6-64 is oriented to 64-bit architecture, whose plaintexts consists
of two 64-bit words, and whose size of subkeys is 64 bits. So the security level
of one round in RC6-64, the size of subkeys, is equal to that in RC6-32, which
has two 32-bit subkeys in one round. The round function of RC6-64 is almost
the same structure as that of RC6. It is very useful to discuss the difference
of each security of round function. By applying our attack to RC6-64W with
r rounds, it can be broken in a success probability of 90% by using 25.0r−8.2

plaintexts, and thus RC6-64W with 27 rounds can be broken by using 2126.8

plaintexts in a probability of 90%. The weakpoint of RC5 is thought to a data
dependent rotation, which is defined by only 5-bit subkey and data, but not the
data structure of two words. Although the weakness of data dependent rotation
is improved in both RC6 and RC6-64, RC6-64 is much weaker than RC6. From
our results, we see that the data structure of RC6, 4-word plaintexts, also makes
the security high.

This paper is organized as follows. Section 2 summarizes some notations and
definitions in this paper. Section 3 describes experimental results of χ2-test of
RC6. Section 4 presents two chosen plaintext algorithm, Algorithm 2 and 3,
and one known plaintext algorithm, Algorithm 4. Section 5 applies Algorithm 4
for RC6-64W, and discusses the difference between RC6 and RC6-64W from a
security point of view.

2 Preliminary

This section denotes RC6 algorithm and some experimental remarks after defin-
ing the following notations:
+, + (−, −) : an addition (subtraction) mod 232; ⊕ : a bit-wise exclusive OR;

a ≪ (≫)b : a cyclic rotation of a to the left(right) by b bits;
Si : the i-th subkey; r : the number of (full)rounds;

lsbn(X) : the least significant n bits of X; Xi : the i-th bit of X;
X [i,j] : from the i-th bit to the j-th bit of X (i > j);
f(X) : X × (2X + 1); F (X) : f(X) (mod 232) ≪ 5.

Algorithm 1 (Encryption with RC6)
1. A1 = A0; B1 = B0 + S0; C1 = C0; D1 = D0 + S1;
2. for i = 1 to r do: t = F (Bi); u = F (Di); Ai+1 = Bi;

Bi+1 = ((Ci ⊕ u) ≪ t) + S2i+1; Ci+1 = Di; Di+1 = ((Ai ⊕ t) ≪ u) + S2i;

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1; Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

The part 1 or 3 is called to pre-whitening or post-whitening, respectively. We
call the version of RC6 without pre- or post-whitening to RC6W or RC6 without
whitening.
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Table 1. χ2-distribution with each degree of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
31 degree of freedom 30.34 32.35 34.60 37.36 41.42 44.99 52.19
63 degree of freedom 62.33 65.20 68.37 72.20 77.75 82.53 92.01

255 degree of freedom 254.33 260.09 266.34 273.79 284.34 293.25 310.46
1023 degree of freedom 1022.33 1033.83 1046.23 1060.86 1081.38 1098.52 1131.16

We make use of the χ2-tests for distinguishing a random sequence from non-
random sequence [6,8,9]. Let X = X0, ..., Xn−1 be a sequence with ∀Xi ∈
{a0, · · · , am−1}. Let Naj (X) be the number of Xi which equals aj . The χ2-
statistic of X, χ2(X), estimates the difference between X and the uniform dis-
tribution as follows: χ2(X) = m

n

∑m−1
i=0

(
Nai

(X) − n
m

)2. Table 1 presents each
threshold for 31, 63, 255, 1023 degrees of freedom. For example, (level, χ2)=(0.95,
44.99) for 31 degrees in Table 1 means that the value of χ2-statistic exceeds 44.99
in the probability of 5% if the observation X is uniform. In this paper, we uses
these four degree of freedom. For preciseness, we often discuss the χ2-statistic
for any degree by the level. We set the level to 0.95 in order to distinguish a
sequence X from a random sequence.

In our experiments, all plaintexts are generated by using m-sequence[10]. For
example, Algorithm 2, 3, or 4 uses 108-, 113- or 128-bit random number gen-
erated by m-sequence, respectively. The platforms are IBM RS/6000 SP (PPC
604e/332MHz × 256) with memory of 32 GB.

3 Distinguishing Algorithm for RC6

In this section, we investigate how to lead to much stronger biases with less
constraint of plaintexts.

3.1 χ2-Statistic of RC6

We conduct the following experiments in order to find conditions of less con-
straint of plaintexts.
Test 1: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) in the case which both B0 and D0
introduce zero rotation in the 1st round, lsb5(A0) = 0, and lsb5(C0) = 0.
Test 2: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) in the case which both B0 and D0
introduce zero rotation in the 1st round, lsb5(A0) = 0, ..., 31, and lsb5(C0) = 0.
Test 3: χ2-test on lsbn(Ar+1)||lsbn(Cr+1) for n = 3, 4, 5 in the case which both
lsb5(A0) and lsb5(C0) are set to 0, and both B0 and D0 introduce zero rotation
in the 1st round.
Test 4: χ2-test on (any consecutive 5 bits of Ar+1) ||lsb5(Cr+1) in the case
which both lsb5(A0) and lsb5(C0) are set to 0, and both B0 and D0 introduce
zero rotation in the 1st round.
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Table 2. The χ2-value on lsb5(Ar+1)||lsb5(Cr+1) of RC6 in Test 1(in 100 keys)

4 rounds
# texts 212 213 214

The χ2-value Average Level Variance Average Level Variance Average Level Variance
1045.450 0.694 1774.828 1076.568 0.881 2177.806 1126.800 0.987 2448.999

6 rounds
# texts 228 229 230

The χ2-value Average Level Variance Average Level Variance Average Level Variance
1041.933 0.667 2098.079 1060.985 0.801 2263.724 1095.914 0.944 2942.704

The condition in Test 1 is the same with that in [8]. The conditions in other
tests are eased than Test 1. We observe whether the almost same effect as Test
1 is expected with the eased conditions or not.

We discuss the difference between Test 1 and 2. In the first round, each of A1
and C1 is added to each round key, and thus neither lsb5(A1) nor lsb5(C1) is zero
in the final stage of the first round even if plaintexts are chosen with the condition
of Test 1. Therefore, the same effect as lsb5(A0), lsb5(C0) = 0 is expected if only
lsb5(A0) and lsb5(C0) is just fixed. Test 2 examines the hypothesis. Table 2
shows the implementation results in the case of r = 4, 6 of Test 1. We compute
the χ2-value on lsb5(Ar+1)||lsb5(Cr+1) on the average of 100 keys, and the level
and the variance. The variance will be discussed in the following sections. The
number of available plaintexts in Test 1 is 2108. The experimental results of
Test 2 are presented in Figure 1. The horizontal line corresponds to the fixed
value of lsb5(A0) and the vertical line corresponds to the level of the χ2-value
on lsb5(A5)||lsb5(C5) for each number of plaintexts. From Figure 1, we see that
any lsb5(A0) can be distinguished from a random sequence in almost the same
way as lsb5(A0) = 0. The same discussion also holds in the case of lsb5(C0). To
sum up, we do not have to set lsb5(A0) = lsb5(C0) = 0 in order to increase the
χ2-value. We can use plaintexts with any (A0, C0) by just classifying it to each
lsb5(C0) and lsb5(A0), and thus the number of available plaintexts is 2118.

Test 3 examines whether outputs with any bit-size n of lsbn(Ar+1)||lsbn(Cr+1)
lead also highly nonuniform distribution or not. Our key recovery algorithm
shown in Section 4 and 4.3 can set the size of recovered key flexibly. Therefore
if the nonuniform distribution of lsbn(Ar+1)||lsbn(Cr+1) for n �= 5 also holds,
then our algorithm can work according to the memory capacity of machine. The
experimental results of Test 3 in the case of 4, 6 rounds are presented in Ta-
ble 3. From the experimental results, we see that the larger n is, the higher the
nonuniform distribution of lsbn(Ar+1)||lsbn(Cr+1) is, and that the nonuniform
distribution of lsbn(Ar+1)||lsbn(Cr+1) for n = 3, 4 is also observed in the same
way as n = 5. Since we use the χ2-value on lsb3(Ar+1)||lsb3(Cr+1) in Section 4,
other experimental results in the case of lsb3(Ar+1)||lsb3(Cr+1) are shown in
Table 4.

Test 4 computes the χ2-value in (any consecutive 5 bits of Ar+1)||lsb5(Cr+1).
Figure 2 shows the experimental results in the case of 4 rounds. The horizon-
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tal line corresponds to the first bit of consecutive 5 bits of A5, and each plot
presents the level of χ2-value in the case of each consecutive 5 bits for each
number of plaintexts. For example, the case of i = 1, or i = 32 corresponds to
A

[5,1]
5 , or {A32

5 , A
[4,1]
5 }. From Figure 2, we see that (any consecutive five bits of

A5)||lsb5(C5) can be distinguished from a random sequence in almost the same
way as lsb5(A5)||lsb5(C5).

3.2 χ2-Statistic of RC6 without Pre-whitening

We focus attention on RC6 without pre-whitening, called RC6WP. In Test 2, we
have seen that the χ2-value on lsb5(Ar+1)||lsb5(Cr+1) becomes significantly high
if both B0 and D0 introduce zero rotation in the 1st round, and both lsb5(A0) and
lsb5(C0) are fixed. That is, in Test 2, both lsb5((A0⊕F (B0+S0)) ≪ F (D0+S1))
and lsb5((C0 ⊕ F (D0 + S1)) ≪ F (B0 + S0)) are fixed. Therefore, in the case of
RC6WP, the same effect as Test 2 is expected if only both lsb5((A0 ⊕F (B0)) ≪
F (D0)) and lsb5((C0 ⊕ F (D0)) ≪ F (B0)) are fixed. To observe this, we do the
next experiments.
Test 5: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) of RC6WP with lsb5((C0⊕F (D0)) ≪
F (B0)) = 0 and lsb5((A0 ⊕ F (B0)) ≪ F (D0)) = 0.
Test 6: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) of RC6WP with lsb5((C0⊕F (D0)) ≪
F (B0)) = 0 and lsb5((A0 ⊕ F (B0)) ≪ F (D0)) = 0, .., 31.
Table 5 shows the result of Test 5 in the case of 4 rounds. Compared with Table 2,
we see that the effect of Test 5 is better than that of Test 1. Figure 3 presents
the experimental results of Test 6: the horizontal line corresponds to the fixed
value of lsb5((A0 ⊕ F (B0)) ≪ F (D0)) and the vertical line corresponds to the
χ2-value of lsb5(A5)||lsb5(C5) for each number of plaintexts. From Figure 1, we
see that any lsb5((A0 ⊕ F (B0)) ≪ F (D0)) can be distinguished from a random
sequence in almost the same way as lsb5((A0⊕F (B0)) ≪ F (D0)) = 0. The same
discussion also holds in the case of lsb5((C0 ⊕ F (D0)) ≪ F (B0)) = 0. In the
case of analysis of RC6WP, we can handle plaintexts by controlling lsb5((A0 ⊕
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Table 3. The χ2-value on lsbn(Ar+1)||lsbn(Cr+1) of RC6 in Test 3(in 100 keys)

4 rounds
# texts 212 213 214

χ2-value Average Level Variance Average Level Variance Average Level Variance
n = 3 66.275 0.635 140.251 69.518 0.733 155.518 81.111 0.938 244.195
n = 4 268.910 0.737 493.753 277.883 0.845 618.303 301.961 0.977 679.494
n = 5 1045.450 0.694 1774.828 1076.568 0.881 2177.806 1126.800 0.987 2448.973

6 rounds
# texts 229 230 231

χ2-value Average Level Variance Average Level Variance Average Level Variance
n = 3 71.804 0.791 203.645 76.572 0.883 209.564 88.474 0.981 270.062
n = 4 273.571 0.797 580.289 290.854 0.939 699.839 323.876 0.998 1049.104
n = 5 1060.985 0.801 2263.680 1095.913 0.944 2942.691 1173.418 0.999 3270.362

Table 4. The χ2-value on lsb3(A5)||lsb3(C5) of RC6 in Test 3(in 105 keys)

# texts 27 28 29

χ2-value Average Level Variance Average Level Variance Average Level Variance
63.174 0.530 126.426 63.241 0.532 126.612 63.395 0.538 126.645

# texts 210 211

χ2-value Average Level Variance Average Level Variance
63.820 0.553 130.434 64.655 0.581 131.970

F (B0)) ≪ F (D0)). We can use any plaintext to analysis for RC6WP by just
classifying it into each lsb5((A0 ⊕F (B0)) ≪ F (D0)) and lsb5((C0 ⊕F (D0)) ≪
F (B0)), and thus the number of available plaintexts is 2128.

3.3 The Variance of χ2-Distribution

We have seen from the experimental results that high correlations between an
input and an output of RC6 are observed if both inputs and outputs are chosen
appropriately. Correlation attack makes use of the correlation: if we choose a
correct key, then high correlations between an input and an output of RC6 would
be observed; but if we choose a false key, then high correlations between an input
and an output of RC6 would not be observed. In distinguishing algorithm, the χ2-
value is computed on the average of keys, and thus only the conditions, of which
the average of χ2-value is high, are discussed. However, each experimental results
show that variance of distribution of the χ2-value can not be negligible in the
case of correct keys. Generally, for a normally distributed X with the average µ,
and the variance σ2, the probability that the data exists in {µ−σ ≤ X ≤ µ+σ},
Pr(µ − σ ≤ X ≤ µ + σ), satisfies Pr(µ − σ ≤ X ≤ µ + σ) = 0.68. Therefore,
if the variance would not be reduced, then we could not rule out all false keys,
and single out exactly a correct key. In the following sections, we will design
key recovery algorithms in such a way that the variance of χ2-distribution is
reduced.
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3.4 Estimation

In the following sections, we will show key recovery algorithms, based on χ2-
test. We actually implement theses key recovery algorithms against RC6W with 5
rounds, and evaluate the χ2-value necessary for key recovery against RC6W with
5 rounds exactly. For the discussion against RC6W with more rounds, we use
the same method as [8] to estimate the complexities of key recovery algorithms:
we estimate slope, that is, how many plaintexts are required to get similar values
in a χ2-test on r+1 rounds compared with r rounds. Our algorithms, applied to
RC6W, may make use of χ2-test of RC6 to estimate the slope: as for the post-
whitening, the χ2-value without post-whitening is the same as that with post-
whitening; and as for the pre-whitening, the condition without pre-whitening is
the same as that of which B0 and D0 introduce zero rotation in the 1st round
of RC6. The condition of χ2-test of three key recovery algorithms are classified
into two cases: Condition 1(Algorithm 2 and 3) and Condition 2(Algorithm 4).
Condition 1 The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) of RC6 in the case which
both B0 and D0 introduce zero rotation in the 1st round, lsb5(A0) = 0, and
lsb5(C0) = 0.
Condition 2 The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) of RC6 in the case which
both B0 and D0 introduce zero rotation in the 1st round, lsb3(A0) = 0, and
lsb3(C0) = 0.
Condition 1 is the same with the case of n = 3 in Test 3. Table 6 shows the precise
experimental results in Condition 1 and 2. It presents the number of plaintexts
required for the χ2-value with each level, 0.70, 0.75, 0.80, 0.90, and 0.95, which
is calculated to the first decimal place. From Table 6, we can estimate that to
get similar values in a χ2-test on r + 1 rounds compared r rounds requires a
factor of 28.1 additional plaintexts in both Condition 1 and 2.
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Table 5. The χ2-value on lsb5(A5)||lsb5(C5) of RC6WP in Test 5(in 100 keys)

# texts 212 213 214

χ2-value Average Level Variance Average Level Variance Average Level Variance
1054.720 0.761 2653.532 1083.073 0.906 2634.250 1137.702 0.993 2504.252

Table 6. log2#(texts) required for the χ2-value of RC6 with each level

4 rounds 4 rounds
Level 0.70 0.75 0.80 0.90 0.95 0.70 0.75 0.80 0.90 0.95

Condition 1 12.5 12.9 13.1 13.8 14.2 28.3 28.6 29.2 30.2 30.7
Condition 2 14.9 15.3 15.6 16.1 16.6 30.8 31.1 31.6 32.5 32.8

4 Key Recovery Algorithms against RC6W

In this section, we present two chosen-plaintext key recovery algorithms and one
known-plaintex key recovery algorithm against RC6W.

4.1 Algorithm 2

Algorithm 2 is designed by making use of the results in Section 3 as follows:
1. The χ2-statistic are not measured on a fixed part of Ar+1||Cr+1 (Test 4);
2. The degree of χ2-statistic is flexibly set to 63 in such a way that Algorithm 2
is feasible, that is, compute the χ2-statistic on 6 bits of Ar+1||Cr+1 (Test 3);
3. The χ2-value is computed on za||zc, to which lsb3(Br+1)||lsb3(Dr+1) is exactly
decrypted by 1 round (see Figure 4);
4. The χ2-value is computed on each decrypted data za||zc, which is classified
into 64 cases according to each r-th round rotation number.

Algorithm 2
Recover lsb2(S2r) and lsb2(S2r+1) of RC6W.
Set (lsb3(Br+1), lsb3(Dr+1)) = (yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc),
and (lsb5(F (Ar+1)), lsb5(F (Cr+1))) = (xc, xa).
1. Encrypt (A0, B0, C0, D0)

with (lsb5(A0), lsb5(C0), lsb5(F (B0)), lsb5(F (D0))) = (0, 0, 0, 0).
2. For each sa, sc = 0, 1, 2, 3, set s = sa||sc, S3

2r, S
3
2r+1 = 0, and decrypt yd||yb

with key (S3
2r||sa, S3

2r+1||sc) by 1 round, using the r-th round rotation
amount xa and xc. The decryptions of yd||yb are set to za||zc = z.

3. For each value s, xa, xc, and z, increment each array count[s][xa][xc][z].
4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]} for each s, and output s

with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

Algorithm 2 computes the χ2-value on z, to which y is decrypted by the fi-
nal round subkey. Since the χ2-value on the decryption z by using each key,
lsb3(S2r)||lsb3(S2r+1) = 1||sa||1||sc, 1||sa||0||sc, 0||sa||1||sc, 0||sa||0||sc are coin-
cident each other[11], we may decrypt y by setting S3

2r, S
3
2r+1 = 0 temporarily.

Algorithm 2 shown the above works as 6-bit examination and 4-bit estimation,
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Table 7. Success probability and the χ2-
value of Algorithm 2 (in 100 keys)

#texts #keys χ2-value(63 degree)
Average Level Variance

217 12 63.106 0.527 0.165
218 8 63.076 0.526 0.122
219 16 63.216 0.531 0.109
220 32 63.492 0.541 0.107
221 71 64.049 0.561 0.102
222 99 65.119 0.597 0.133
223 100 67.321 0.668 0.218

Table 8. log2(#texts) required for re-
covering a key in Algorithm 2(in 100
keys)

90% 70% 30%
log2(#text) 21.4 21.0 20.0

but it can work flexibly as 2n-bit examination and 2(n − 1)-bit estimation for
n = 3, 4, 5 according to the capacity of memory. We can recover other bits of
round keys S2r, and S2r+1 by repeating Algorithm 2 sequentially. Apparently,
the number of available plaintexts is 2108.

Table 7 shows the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of χ2-value of recovered keys, the level, and the
variance. Let us compare the results in Algorithm 2 with Table 4. In Algorithm 2,
the χ2-value is computed on each group, classified by the rotation number in the
final round. Since all plaintexts in our experiments are randomly generated by
m-sequences, plaintexts are roughly estimated to be uniformly distributed to
each group. Therefore, the χ2-test is computed by using 1/210 times the number
of plaintexts in Table 7. The χ2-test of using 220 − 223 plaintexts in Algorithm 2
corresponds to that of 210 − 213 in the case of n = 3 of Test 3. In a sense,
Algorithm 2 computes the χ2-value for sample mean, which keeps the average
of χ2-value but reduce the variance of χ2-value from statistical fact. Comparing
Table 7 with Table 3 and 4, we see that the variance of χ2-value in Algorithm 2
is about 1/210 as much as that in the corresponding Test3, and that the average
of χ2-value in Algorithm 2 is almost the same as that in the corresponding Test3.
Algorithm 2 can recover a key with rather low level by reducing the variance of
χ2-value.

More precise experimental results are shown in Table 8. All experiments are
calculated to the first decimal place. From Table 8, the number of plaintexts
required for recovering a key in r rounds with the success probability of 90%,
log2(#text), is estimated to log2(#text) = 8.1r − 19.1 by using the slope com-
puted in Section 3 . By substituting log2(#text) = 108, Algorithm 2 can break
RC6W with 15 rounds with 2102.4 plaintexts with a probability of 90%. Algo-
rithm 2 can work faster than an exhaustive key search with 220 memory.

4.2 Algorithm 3

We improve the Algorithm 2 by making use of the results of Test2. The conditions
on plaintexts in the Algorithm 3 is: both B0 and D0 introduce zero rotation in
the 1st round; and both lsb5(A0) and lsb5(C0) are just fixed.
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Table 9. Success probability and the χ2-
value of Algorithm 3 (in 100 keys)

#texts #keys χ2-value(63 degree)
Average Level Variance

222 21 63.067 0.526 0.003
223 54 63.135 0.528 0.003
224 93 63.267 0.533 0.005

Table 10. log2(#texts) required for re-
covering a key in Algorithm 3 (in 100
keys)

90% 70% 30%
log2(#text) 23.9 23.3 22.5

Algorithm 3
Recover lsb2(S2r) and lsb2(S2r+1) of RC6W.
Set (lsb3(Br+1), lsb3(Dr+1)) = (yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc),
and (lsb5(F (Ar+1)), lsb5(F (Cr+1))) = (xc, xa).
1. Choose a plaintext (A0, B0, C0, D0)

with (lsb5(F (B0)), lsb5(F (D0)), lsb5(C0)) =
(0, 0, 0), set lsb5(A0) = t, and encrypt it.

2. For each sa, sc = 0, 1, 2, 3, set s = sa||sc, S3
2r, S

3
2r+1 = 0, and decrypt yd||yb

with a key (S3
2r||sa, S3

2r+1||sc) by 1 round, which are set to za||zc = z.
3. For each value s, t, xa, xc, and z,

increment each array count[s][t][xa][xc][z].
4. For each s, t, xa, xc, compute χ2[s][t][xa][xc].
5. Compute the average ave[s] of {χ2[s][t][xa][xc]} for each s, and output s

with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

The number of available plaintexts in Algorithm 3 is 2113. Algorithm 3 uses
plaintexts with lsb5(C0) = 0, but this condition is further eased by classifying
the value of lsb5(C0). Then the number of available plaintexts becomes 2118.

Table 9 shows the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of χ2-value of recovered keys, the level, and the
variance. Let us compare the results with that of Algorithm 2 in Table 7. In
Algorithm 3, the plaintexts computed on the χ2-value is further classified to
each group by the value of lsb5(A0). Since all plaintexts in our experiments
are randomly generated by m-sequences, plaintexts are roughly estimated to be
uniformly distributed to each group. Therefore, the χ2-test of using 222 − 224

plaintexts in Algorithm 3 corresponds to that of 217 −219 in Algorithm 2. In the
same way, the χ2-test of using 222 − 224 plaintexts in Algorithm 3 corresponds
to that of 27 − 29 in the case of n = 3 of Test 3. We see the average of χ2-value
by using 222, 223, or 224 in Table 9 is roughly equal to that by using 217, 218, or
219 in Table 7, and that by using 27, 28, or 29 in Table 4, respectively. On the
other hand, the variance of χ2-value by using 222, 223, or 224 in Table 9 is about
1/25 as much as that by using 217, 218, or 219 in Table 7, and about 1/215 as
much as that by using 27, 28, or 29 in Table 4, respectively. Algorithm 3 keeps
the level of the average of χ2-value with less variance of χ2-value. As a result,
Algorithm 3 can recover a key with more low level by reducing the variance of
χ2-value than Algorithm 2.

More precise experimental results are shown in Table 10. All experiments are
calculated to the first decimal place. From Table 10, the number of plaintexts
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required for recovering a key in r rounds with the success probability of 90%,
log2(#text), is estimated to log2(#text) = 8.1r−16.6 by using the bias computed
in Section 3 . By substituting log2(#text) = 118, Algorithm 2 can break RC6W
with 16 rounds with 2113.0 plaintexts with a probability of 90%. Algorithm 3 can
work faster than an exhaustive key search with 225 memory.

4.3 Algorithm 4

We improve Algorithm 3 by using all plaintexts and classifying them into the
same lsb3((A0 ⊕ F (B0)) ≪ F (D0)) and lsb3((C0 ⊕ F (D0)) ≪ F (B0))(see the
results of Test 5 and 6 in Section 3).

Algorithm 4
Recover lsb2(S2r) and lsb2(S2r+1) of RC6W.

Set (lsb3(Br+1), lsb3(Dr+1)) = (yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc),
and (lsb5(F (Ar+1)), lsb5(F (Cr+1)) = (xc, xa).

1. Given a plaintext (A0, B0, C0, D0), set lsb3((A0 ⊕ F (B0)) ≪ F (D0)) = ta,
lsb3((C0 ⊕ F (D0)) ≪ F (B0)) = tc, and encrypt it.

2. For each sa, sc = 0, 1, 2, 3, set s = sa||sc, S3
2r, S

3
2r+1 = 0, and decrypt yd||yb

with a key (S3
2r||sa, S3

2r+1||sc) by 1 round, which are set to za||zc = z.
3. For each value s, ta, tc, xa, xc, and z,

increment count[s][ta][tc][xa][xc][z].
4. For each s, ta, tc, xa, xc, compute χ2[s][ta][tc][xa][xc].
5. Compute the average ave[s] of {χ2[s][ta][tc][xa][xc]} for each s,

and output s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

The number of available plaintexts in Algorithm 4 is 2128. Algorithm 4 classifies
plaintexts by each 3 bit of (A0 ⊕F (B0)) ≪ F (D0) and (C0 ⊕F (D0)) ≪ F (B0),
which may be enlarged to, for example, 5, like the conditions of Test 5 and 6.
However, the larger classified bit size is, the larger memory is required.

Table 11 show the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of χ2-value of recovered keys, the level, and the
variance. We see that, in Algorithm 4, the variance of χ2-value is much more
reduced than Algorithm 2 and 3. As a result, Algorithm 4 can recover a key
more efficiently by reducing the variance of χ2-value than Algorithm 2 and 3.

More precise experimental results are shown in Table 12. All experiments
are calculated to the first decimal place. From Table 12, the number of plain-
texts required for recovering a key in r rounds with the success probability of
90%, log2(#text), is estimated to log2(#text) = 8.1r − 13.8, by using the slope
computed in Section 3 . By substituting log2(#text) = 128, Algorithm 4 can
break RC6W with 17 rounds by using 2123.9 plaintexts in a probability of 90%.
Algorithm 4 can work faster than an exhaustive key search with 226 memory.

5 A Key Recovery Algorithm against RC6-64

This section applies Algorithm 4 to a two-register version of RC6 without whiten-
ing, RC6-64W, and discusses the security difference between RC6-64 and RC6.
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Table 11. Success probability and the
χ2-value of Algorithm 4 (in 100 keys)

#texts #keys χ2-value(63 degree)
Average Level Variance

225 26 63.057 0.526 0.0003
226 59 63.108 0.528 0.0005
227 100 63.230 0.532 0.0007

Table 12. log2(#text) required for re-
covering a key in Algorithm 4(in 100
keys)

90% 70% 30%
log2(#text) 26.7 26.3 25.3

We apply Algorithm 4 to RC6-64W after presenting RC6-64. The round
function of RC6-64 is almost the same structure with that of RC6. An input of
the i-th round is denoted by (Ai, Bi), and (A0, B0) is a plaintext, where each
Ai and Bi is 64 bits. The i-th subkey Si is also 64 bits. Here the function F is
modified to F6 in a 64-bit-oriented manner, F6(X) = X(2X+1) (mod 264) ≪ 6.

Algorithm 5 (Encryption with RC6-64)
1. [pre-whitening] A1 = A0; B1 = B0 + S0;

2. for i = 1 to r: t = F6(Bi); Ai = ((Ai ⊕ t) ≪ t) + Si; Ai+1 = Bi;Bi+1 = Ai;

3. [post-whitening] Ar+2 = Ar+1 + Sr+1; Br+2 = Br+1.

Algorithm 6 (Algorithm to RC6-64W)
This algorithm recovers lsb4(Sr) of RC6-64W.
Set lsb5(Br+1) = y, lsb4(Sr) = s, and lsb6(F6(Ar+1)) = x.
1. Given a plaintext (A0, B0), set lsb5((A0 ⊕ F6(B0)) ≪ F6(B0)) = t,

and encrypt.
2. For each s (s = 0, · · · , 15), set S5

r = 0, and decrypt y with the key S5
r ||s

by 1 round. We also set a decryption of y to z,
which is a 5-bit integer.

3. For each value s, t, x, and z, increment each array count[s][t][x][z].
4. For each s, t, and x, compute χ2[s][t][x].
5. Compute the average ave[s] of {χ2[s][t][x]} for each s, and

output s with the highest ave[s] as lsb4(Sr).

The number of available plaintexts in Algorithm 6 is 2128. Table 13 shows the re-
sults for RC6-64W with 5 and 7 rounds: the success probability among 100 trials,
the average of χ2-value of recovered keys, the level, and the variance. More pre-
cise experimental results are shown in Table 14. All experiments are calculated
to the first decimal place. From Table 14, the number of plaintexts required for
recovering a key in r rounds with the success probability of 90%, log2(#text),
is estimated to log2(#text) = 5.0r − 8.2. By substituting log2(#text) = 128,
Algorithm 6 can break RC6-64W with 27 rounds with 2126.8 plaintexts with a
probability of 90%. Algorithm 6 can work faster than an exhaustive key search
with 220 memory.

We discuss the difference between the round function of RC6 and that of
RC6-64 from the security point of view. First we conduct the following Test 7
of RC6-64, whose results are shown in Table 15.
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Table 13. Success probability and the χ2-value of Algorithm 6 (in 100 keys)

5 rounds 7 rounds
#texts #keys χ2-value(63 degree) #texts #keys χ2-value(63 degree)

Average Level Variance Average Level Variance
215 20 31.214 0.545 0.0296 225 30 31.278 0.548 0.0394
216 65 31.504 0.559 0.0290 226 53 31.512 0.559 0.0302
217 96 32.022 0.584 0.0335 227 95 32.050 0.586 0.0286

Table 14. log2(#texts) required for recovering a key in Algorithm 6 (in 100 keys)

5 rounds 7 rounds
90% 70% 30% 90% 70% 30%

log2(#text) 16.8 16.2 15.3 26.9 26.2 25.0

Table 15. The χ2-value on lsb5(Ar+1) in Test 7(in 100 keys)

4 rounds
# texts 26.9 28.7 29.5

The χ2-value Average Level Variance Average Level Variance Average Level Variance
34.600 0.700 86.071 40.893 0.890 126.840 51.261 0.988 188.444

6 rounds
# texts 216.5 217.5 218.9

The χ2-value Average Level Variance Average Level Variance Average Level Variance
33.966 0.674 73.204 37.666 0.809 112.739 45.193 0.952 131.131

Test 7: χ2-test on lsb5(Ar+1) in RC6-64 with r rounds in the case which B0
introduces the zero rotation in the 1st round, and lsb5(A0) = 0
Let us compare each round function between RC6-64 and RC6 by using Table 15
and 2. The security level of one round in RC6-64, the size of one-round subkeys,
is equal to that in RC6-32, which has two 32-bit subkeys in one round. The round
function of RC6-64 is almost the same structure as that of RC6. However, the
slope, defined in Section 3.4, of RC6-64 is apparently lower than that of RC6.
This means that the correlations between an input of round function and the
output in RC6-64 is kept more than that in RC6. The round function of RC6-64
mixes up data less than that of RC6. The weakpoint of RC5 is thought to be
a data dependent rotation, which is defined by only 5 bits of subkey and data.
Although the weakness of data dependent rotation is improved in both RC6 and
RC6-64, RC6-64 is much weaker than RC6. The difference between RC6-64 and
RC6 is the data structure: RC6-64 consists of 2 units, and RC6 consists of 4
units. Both RC6-64 and RC6 make use of modular-additions in order to mix
within the unit. Apparently, correlations are introduced by the consecutiveness
of modular-additions. From our results, we see that the structure of RC6, 4-
unit plaintexts, reduce correlations more efficiently than that of RC6-64, 2-unit
plaintexts.
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6 Conclusions

We have proposed an efficient and feasible known plaintext correlation attack
on RC6W. Our attack can break RC6W/r with a success probability of 90% by
using 28.1r−13.8 plaintexts, and thus can break RC6W with 17 rounds by using
2123.9 plaintexts. We have analyzed that the security of RC6 is further enhanced
by dividing data into 4 units to break the consecutiveness of modular additions.
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