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Preface

This book is about making a virtue out of a necessity. More
specifically, it is about harnessing the very significant Doppler shifts
encountered in communications involving Earth stations and low Earth orbit
(LEO) satellites as an aid to those communications. We have come to
believe that very real benefits may be easily derived from Doppler shift
signal processing and analysis for communications flow control and power
control. What makes Doppler especially attractive from an implementation
point of view is the generally implied necessity to measure it for other
reasons, most notably the need to pre- or post-compensate for the Doppler
shift on the communications processing chain. Thus, most communications
terminals will have a voltage somewhere that can be accessed and
discretized and serve as the Doppler input to our algorithms and methods.

The book has been set into seven chapters. The first chapter is a
recounting of the characteristics of a LEO satellite and its orbit, and a brief
sampling of the already rich history of the art, as reflected by various LEO
satellites and their missions. Chapter two addresses the LEO orbital
geometry and reviews the Doppler effect in LEO communications. Chapter
three is concerned with the important task of estimating the Doppler at a
ground terminal. Appropriate signal processing algorithms are reviewed.
Chapter four is concerned with predicting LEO satellite visibility. Chapters
five and six are, respectively, devoted to the use of the significant LEO
Doppler as an aid in traffic flow control and as an aid for effecting
communications power control.

Chapter 7 describes MATLAB® based analysis and demonstration
software that we have chosen to provide with the book. The software is,



xii

first, a collection of functions useful for calculating satellite orbits, terrestrial
contours and regions, and coordinate transformations based on Earth
rotation. They are functions that have proven fundamental to the analysis of
the DBMA protocol described in the book. Second, the software includes a
set of user-friendly graphical animation routines that aid in visualization of a
LEO orbit, its coverage regions, and the DBMA concept.

The authors would like to acknowledge the GE Corporate Research and
Development Center for giving us the opportunity to investigate LEO
satellites. We would also like to thank Mr. John Paffett of the Surrey Space
Centre for permission to use some materials in Chapter 1. Finally, we would
like to thank our wives – Özden, Julie, Alia and Anna – for their love and
patience.

Irfan Ali

Pierino G. Bonanni

Naofal Al-Dhahir

John E. Hershey



Chapter 1

Little LEO Satellites

In this chapter we qualitatively salute the value of a low Earth orbit
(LEO) satellite’s orbit. We review the history of LEO satellite deployment
with brief and edited summarization. We then proceed to review LEO
satellite orbits, coordinate reference frames, and other conventions and aids
essential for determining a satellite’s orbit from the perspective of an
observer on the Earth’s surface. As will be evident, the single most striking
feature of LEO communications is the significant Doppler shift encountered
by virtue of the rapid dynamics of the low Earth orbit. It is the goal of this
book to show how to make good use of this feature that at first blush appears
to a communications engineer as a pesky problem complicating
synchronization and requiring added complexity in various tracking loops.

1. THE LEO AND ITS VALUE

Partition in LEO satellites appears first in satellite complexity or size,
giving rise to the terms "Big LEO" and "Little LEO." The Little LEOs are
those satellites that handle relatively short data messages that are not time
critical. Little LEO satellites are not cross-linked through space, and may
function in either a "bent pipe" transponder mode or as message store-and-
forward data transportation vehicles. Little LEOs are almost always in
circular orbits and they may or may not use stationkeeping. Little LEO orbits
have been proposed with very different inclinations, the angle formed
between the orbit plane and the equatorial plane. In some cases these
inclinations are specifically chosen to optimize customer service
requirements, in other cases the inclination is essentially a result of a major
satellite launch on which the Little LEO piggybacked.
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Little LEO satellites are physically small, generally single mission
satellites operating without sophisticated measures such as the previously
stated direct satellite-to-satellite cross-linking, and are relatively inexpensive
to build and to launch. For communications services, which is the motivation
behind this work, they are generally employed as a set of identical satellites
regularly positioned about a series of orbital planes in order that line-of-sight
services to specific areas on the Earth are in accordance with some system
specification such as a maximum time that a ground station must wait until a
satellite is in view above a minimum elevation angle. The Low Earth Orbit is
not a hard and fast specification. Sturza [1] offers a reasonable
characterization however: "Low Earth Orbits are generally considered to be
those with altitudes between 500 km and 2,000 km. Lower altitudes [result]
in quick re-entry and higher altitudes are subject to severe radiation from the
Van Allen Belts." Table 1 is a sampling of Little LEO projects for
communications. It was developed from data placed on the Web by SSTL
[2].
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A LEO satellite may have a distinct advantage over a geosynchronous
orbit (GEO) satellite by virtue of the "elevation search" capability. As
depicted in Figure 1, it is conceivable that a communications asset on the
Earth will be shadowed and unable to communicate to a geostationary
satellite. In the case shown, a building is obstructing the path from the
transmitter to the GEO. As both the GEO and the transmitter are fixed, the
path will remain blocked. Also shown is a LEO that moves with respect to
the blocking building and the fixed transmitter. At first, the LEO path is
similarly blocked. Later, however, the LEO moves into positions where the
path is no longer blocked. Thus, a LEO, with its dynamic geometry, is often
capable of allowing a link to be established which would be impossible for a
fixed transmitter/GEO scenario.
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2. KEPLERIAN ELEMENTS

Keplerian parameters or elements define an orbit as an ellipse, orient the
ellipse with respect to the Earth and then place a satellite at an instant of time
on the ellipse. In the Keplerian model, satellites orbit the Earth in an ellipse
of constant shape and orientation. In reality, perturbations due to Earth’s
shape, atmospheric drag, and gravitational pull of the sun and the moon
cause the orbit to deviate from its ideal elliptical shape. We will not cover
these perturbations in this chapter and in the book, as these perturbations
cause higher order modifications to a satellite’s orbit which are usually
compensated by active stationkeeping. The reader should refer to books on
satellite geometry that cover this topic in detail.

Though in this book we are only concerned with circular orbits that
require fewer Keplerian elements to define, we will introduce all the
Keplerian elements used to define an elliptical orbit. It is important for the
reader to be aware of all these elements as these elements are commonly
used in most textbooks on satellite communication.

A satellite orbit is an ellipse with one focus, at the Earth's center as
sketched in Figure 2 wherein:

and are the foci,



Little LEO Satellites 5

is the radius of the Earth,
is the height above the Earth of the satellite’s closest approach to the
Earth called perigee,
is the height above the Earth of the satellite’s farthest distance from
the Earth called apogee,

a is the length of the orbit's semi-major axis,
b is the length of the orbit's semi-minor axis.

The Keplerian elements used to describe an orbit and locate a satellite on
the orbit are:
1. The length of the semi-major axis, a. The period of a satellite's orbit, T,

the time, in seconds, required for a satellite to traverse one full path of its
elliptical orbit, is

where a is in km and Another parameter associated

with the semi-major axis is the mean motion, n

2. The eccentricity, e, which measures the ellipticity of the orbit is
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If the satellite’s orbit is circular, the apogee and perigee are the same and
the eccentricity is zero.

3. The inclination of the orbital plane, i. This is the angle between the plane
containing the satellite’s orbit and the Earth’s equatorial plane, as shown
in Figure 3. There we see that the planes form intersection angles of i
degrees and 180-i degrees. The ambiguity is resolved by picking the
angle, i, which is formed when the satellite crosses from the Southern
Hemisphere to the Northern Hemisphere. A right-hand convention is
used. Curl the fingers of the right hand about the satellite orbit with the
fingers pointing in the direction of the satellite’s motion. Erect the thumb
so that it is normal to the orbital plane. The thumb then forms an angle
with the line joining the center of the Earth and the North Pole. An
inclination of 90° is termed a polar orbit.

4. Right ascension of the ascending node, Two parameters are used to
orient a satellite’s orbital plane in space, the first of which is the
inclination angle, i, and the second is the right ascension of ascending
node. For a given inclination angle, there are infinite number of orbital
plane orientations, with each orientation intersecting the equator at
different points. The right ascension of ascending node fixes the
intersection of the orbital plane with the equator and is shown in Figure
4. The orbital plane intersects the equator at two points. In one of the
points the satellite is going from the south to the north hemisphere. This
point is called the ascending node. The other point is called the
descending node. The right ascension of the ascending node is the angle
between the line joining the Earth’s center to the ascending node and the
line joining the Earth’s center to the vernal equinox. Vernal equinox will
be described in the next section. For the current moment, vernal equinox
can be assumed to be a fixed point in space (which is not completely true,
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but will suffice for the moment). If the right ascension of the ascending
node is zero, the orbital plane crosses the equator at the line of vernal
equinox.

5. Argument of perigee, Now that we have oriented the orbital plane in
space, the next parameter, namely argument of perigee, is used to orient
the satellite’s orbit, especially an elliptical orbit, in the orbital plane. The
argument of perigee is the angle from the ascending node to the perigee.
The angle is measured counter-clockwise from the ascending node. For
circular orbit satellites, this angle is undefined. However, accurately
speaking, circular orbits are essentially elliptical orbits with a very small
value of eccentricity. Hence, the argument of perigee is also defined for
most circular orbits.

6. Anomaly: Mean Anomaly (M), True Anomaly (v) and Eccentric Anomaly
(E). Anomaly is angle measurement used to define the location of a
satellite in its orbit. Mean anomaly is an angle measurement that
increases at a constant rate from 0 degrees to 360 degrees. It is defined to
be zero when the satellite is at is perigee and it is 180 degrees when the
satellite is at its apogee. For circular orbits, since the angular velocity of
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the satellite is a constant, a line from the Earth’s center at an angle equal
to the mean anomaly from the line of perigee actually points at the
location of the satellite in the orbit. For elliptical orbits, since the angular
velocity of the satellite is not a constant, a line at mean anomaly angle
from the perigee does not point at the satellite. True anomaly is the angle
at the Earth’s center between the satellite’s current location and the line of
perigee, as shown in Figure 2 for elliptical orbit satellites. For circular
orbits, true anomaly is equal to the mean anomaly. Another term,
eccentric anomaly, is also used in orbital geometry, and it is shown in
Figure 2.
The mean anomaly, M, at any time t is defined as

where T is the orbit period and is the time at perigee. The relation
between the mean anomaly, true anomaly and eccentric anomaly is given
below

The values of the three anomalies coincide when the satellite is at the
perigee (value equals 0 degrees) and at the apogee (value equals 180
degrees).
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Two parameters usually used to specify the location of a satellite in its
orbit are the right ascension and declination as shown in Figure 4.
Applying the law of sines to the spherical triangle (i.e., triangle formed by
arcs of great circles) ASN, we obtain,

Also, from the law of cosines of sides applied to the spherical triangle
ABS,

Eliminating cos from these two equations,

or,

Also, by the law of sines,

or

The above six parameters define an orbit and a satellite’s location in the
orbit at a particular time.

A widely used format for distributing satellite orbit parameters is the so-
called “NASA 2-line format” (actually three lines, with the first providing
the name of the satellite). A Web site from which orbit parameters can be
obtained in this form for most LEO satellites is [4]. An example of the
NASA 2-line format for an Orbcomm satellite, downloaded from the Web
site on August 20, 1999, is shown in Figure 5. There it is shown that each
number is in a specific fixed column, and spaces are significant. The
complete definition of all the information elements in the 2-line format is
provided at the Web site [4].
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The relevant orbital information for this Orbcomm satellite is given in
Table 2.

3. REFERENCE FRAMES

Three reference frames are commonly used in orbital geometry, as each
frame is well suited for representing a different set of geometric concepts. A
reference frame fixed in space, the Earth-centered inertial (ECI) reference
frame, is best used to specify the parameters of a satellite’s orbit. A reference
frame fixed to the Earth, the Earth-centered fixed (ECF) reference frame, is
favored when it is desired to describe the location of a satellite in orbit in
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terms of geographic latitude and longitude. A reference frame centered on an
observer on the Earth’s surface, the topocentric reference frame, is best
suited to determine quantities that determine the location of a satellite with
respect to the user, such as elevation angle, slant range, and direction to the
satellite. We will first describe the reference frames and then provide the
transformations between reference frames.

3.1 Earth Centered Inertial (ECI) Reference Frame

This reference frame is centered at the Earth with the x-axis pointing
towards a (quasi) fixed point in space – the vernal equinox – and the z-axis
along the axis of rotation of the Earth.

The easiest way to define the vernal equinox, represented by the symbol
is to consider the revolution of the Earth around the sun. From the

perspective of the Earth, the sun can be assumed to rotate around the Earth.
Consider for an instant the Earth to be stationary about its axis. Due to the
23.5-degree tilt of the Earth's equator with respect to the plane of the Earth's
orbit around the sun, the trajectory of the sun's orbit with respect to Earth is
"inclined" by 23.5 degrees from the equator. This inclination in more
technical terms is the "obliquity of the ecliptic." On one particular day every
year, the trajectory of the sun's orbit crosses the Earth's equator going from
south to north. This day is called the "first day of Spring". The direction
from the center of the Earth through the point of intersection of the sun's
orbit with the equator is called the vernal equinox.

Had the sun been stationary in space, the vernal equinox would always be
pointing to the same zodiac in space. In fact, about 3000 years ago, when
Babylonians codified the zodiac, the vernal equinox was pointing to the
Aries constellation; hence, the symbol denoting Aries and the reference to
vernal equinox as the "first point of Aries." However, currently the vernal
equinox is pointing toward the constellation Pisces.

The ECI reference frame is the simplest frame in which to describe a
satellite's orbit because in this frame the orbit is a closed curve (an ellipse).

3.2 Earth Centered Fixed (ECF) Reference Frame

This reference frame rotates along with the Earth. The x-axis of the
reference frame passes through the intersection of the Greenwich Meridian
and the equator. The z-axis is the axis of Earth's rotation. Latitudes and
longitudes are defined in the ECF reference frame; hence this frame is used
for representing the location of a satellite in terms of geographic coordinates.
More specifically, the ground trace of a satellite, i.e., the locus of points
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defined by the radial projection of the satellite on the Earth’s surface, is
defined in the ECF reference frame.

3.3 Topocentric Reference Frame

The topocentric reference frame is centered at an observer on the Earth.
The x-axis points south, the y-axis due east, and the z-axis toward the
observer’s zenith, as shown in Figure 6. The topocentric coordinate frame is
used in everyday life to give directions. In satellite geometry, the
topocentric reference frame is used to describe the relative geometry
between an observer and the satellite.

4. REFERENCE FRAME TRANSFORMATIONS

4.1 ECI to ECF

One of the prime uses of the ECI to ECF frame transformation is to
determine the location of a satellite, or more accurately, the location of the
sub-satellite point at a given instant of time in terms of latitude and
longitude, with time usually expressed in the commonly used Gregorian
calendar.

The transformation is from a reference frame stationary in space to a
reference frame that rotates with the Earth. At a given instant of time, the
ECF reference frame subtends an angle with the ECI reference frame. This
angle, which is the angle between the vernal equinox and the Greenwich
Meridian is called the Greenwich mean sidereal time, or GMST. Note that
GMST is angle and not time. Also, GMST should not be confused with
Greenwich Mean Time (GMT), which is the local time in London. To clarify
this confusion, we use the term "GMST angle" instead of GMST.

It so happens that time expressed in the Gregorian calendar is not
convenient to compute the GMST angle. It needs to be converted into a
time-frame in which the computation of the GMST angle is simple. This
time reference frame is the Julian time. Hence, the two steps involved in the
computation of the GMST angle at a specific time instant are, (i) convert
time from Gregorian calendar to Julian time, and (ii) determine the GMST
angle subtended at the computed Julian time.

1. Conversion to Julian time



Little LEO Satellites 13

A few definitions first: “Universal Time” (UT) is the local time in the United
Kingdom. The “Julian Day” (JD) is a continuous count of days and fractions
thereof from noon on the first day of the year 4713 B.C. It is important to
note that Julian Day starts at noon, i.e., UT.

The following is the algorithm to compute Julian day from Universal
Time, from [3] pg. 60-61:

Let Y represent the year, M the month (1 for January, 2 for February,
etc., to 12 for December) and D the day of the month (with decimals, if
any) of the given calendar date.
If M > 2, leave Y and M unchanged.
If or 2, replace Y by Y-1 and M by M+12.
Calculate:

The required Julian Day is

2. GMST angle at a Julian time
Again, from [3] pg. 87-88, the algorithm is:
Find T by

The GMST angle, in degrees, is given by

Now that we have computed the GMST angle at the specified time, we
are set to convert from ECI to ECF reference frame. The transformation is a
rotation about the z-axis by GMST angle. The transformation is efficiently
computed using Cartesian coordinates. Let (x,y,z) define the location of a
point (say, a satellite) in the ECI reference frame and (x',y',z') define the
same coordinates in the ECF reference frame. The transformation, a rotation
about the z-axis by angle –GMST, is given by
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The longitude and latitude of the point are given by

The length of the radial vector from the Earth’s center to the point is
given by

4.2 ECF to Topocentric Frame

The topocentric reference frame is used to track a satellite in an arbitrary
orbit from a point on the ground and usually requires the computation of
quantities such as slant range, azimuth, and elevation. There are two
approaches to computing these quantities, (i) using Cartesian geometry, and
(ii) using spherical geometry.
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4.2.1 Cartesian Geometry Based Transformation

Let the Cartesian coordinates of the satellite in ECF coordinate frame be
denoted by (x’,y’,z’) and the observer on the ground be located at longitude
and latitude as shown in Figure 6. The Cartesian coordinates of the
observer in the ECF reference frame are

The components of the slant range vector from the observer to the
satellite are thus

followed by (ii) rotation about the y axis by angle Hence,

For the transformation to topocentric coordinates we observe
that topocentric coordinates involve (i) a rotation about the z axis by angle -
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The slant range d is

Also, the azimuth Az and elevation angle are given by

and

4.2.2 Spherical Geometry Based Transformation

The local mean sidereal time (LMST), again actually LMST angle, of a
ground station at latitude i.e., the angle between the vernal equinox and

measured positive to the east, is

The longitude of the satellite is given by
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The geometry between the Earth station E and the satellite P with sub-
satellite point S is shown in Figure 7. The hour angle H of the satellite,
measured positive to the west, is the relative longitude between E and S,

The spherical triangle ENS is redrawn in Figure
8. To compute the central angle subtended by the great circle arc ES, we
apply the law of cosines for sides to ENS
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The slant range d is determined by the law of cosines applied to the plane
triangle EOP, redrawn in Figure 9

The azimuth angle Az is given by

or

The elevation angle is obtained from the law of sines applied to plane
triangle EOP

or
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5. PERTURBATION EFFECTS

As might be expected, perturbation effects differ in their significance for
LEO satellites from that for satellites at much higher orbits. For example, the
oblateness of the Earth affects LEO satellites to a greater degree than higher
orbiting satellites and conversely the effects of the Sun’s and Moon’s gravity
are more significant to higher orbiting satellites than for LEOs. The two
important perturbations of the LEO orbits due to the Earth’s oblateness are
nodal regression and apsidal precession. The equations and a discussion is
found in Wertz [5].

5.1 Nodal Regression

The line that is common to the equatorial plane and the orbital plane is
called the line of nodes. This line precesses at a rate that is dependent upon
the magnitude of the satellite orbit’s semi-major axis (a is in kilometers),
eccentricity, and inclination. The rate of precession is approximately

degrees per day. If the rate of
precession is 0.9856 degrees per day, then we have the interesting case
wherein the line of nodes turns around 360° in one year. The effect of this
specific rate is that the satellite’s orbital plane remains essentially fixed with
respect to the sun and also views the Earth below at the same angle. Such an
orbit is called sun synchronous. (Note that a sun synchronous orbit is
retrograde as cos i must be negative.) In Figure 10 we plot the inclination,
i, in degrees, versus the apogee height of a circular orbit in order that the
satellite orbit be sun synchronous.



5.2 Apsidal Precession

Another line of importance is the line that passes through the satellite’s
position at perigee and apogee. This line is called the line of apsides and it
also precesses due to an orbital perturbation. The rate of precession is

approximately again

with a in kilometers. This perturbation is not important, of course, if we are
dealing with circular orbits.

The most striking example of the implications of this perturbation,
incidentally, is found in the design of the so-called Molniya orbit. The
Molniya orbit was the orbit chosen for a class of satellites that served the
massive landmass of the former USSR. The orbits were highly elliptical with
the apogee over the Northern Hemisphere. Having the apogee there allowed
the satellites to spend a great proportion of their orbital period in common
view of the USSR ground stations served. Clearly the converse situation, an
exchange of apogee and perigee, would be of little utility. There was thus a
desire to keep the apsidal precession negligible and this was achieved by
correctly setting the inclination, i. The Molniya orbit was inclined at about

and this caused the multiplicative term, to vanish,

thus nullifying the apsidal precession.

20 Chapter 1
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Another important consideration is atmospheric drag. The LEO orbit, as
it is so near to the Earth, will encounter traces of atmosphere that will act on
the satellite and eventually cause orbital decay. Key parameters for
calculating estimated time of terminal orbital decay are initial perigee,
eccentricity, satellite mass, and satellite cross-sectional geometry. For this
last variable, it is important to know the area presented to the vestigial
atmosphere. The greater the area, the more decelerating momentum transfer
there will be, and the sooner the satellite will decay.

Figure 11 is a graphical aid from [6]. It is useful for making a crude
estimate of time to terminal orbital decay. Aside from knowing the relevant
satellite orbital elements, we are required to know or estimate the satellite’s
ballistic coefficient in order to use Figure 11. The ballistic coefficient is

defined as where m is the satellite’s mass, A is the satellite’s cross-

sectional area normal to the direction of the satellite’s motion, and is the

drag coefficient. Wertz [5] suggests that, if unknown, be picked in the
range from 1 to 2. Wertz [5] cautions that "Most lifetime estimates are in
error by at least 10%. Simplified relations … [such as Figure 11] may be in
error by 50%."
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In order to gain a perspective on LEO orbital decay times, we have
compiled Table 3 from the SSTL database [2]. Table 3 is a selection of some
crucial parameters of LEO satellites that have decayed.
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Consider the two satellites Iskra-3 and GLOMR. We first calculate the
ballistic coefficients for these two satellites. They are both spherical and so
calculating the satellite’s cross-sectional area normal to the direction of the
satellite’s motion is straightforward. If we assume we have the
data shown in Table 4.

6. THE UPLINK INTERFERENCE ENVIRONMENT

It is important to estimate the interference environment experienced at
the satellite’s uplink receiver(s). A few studies have been performed in which
the interference was mapped across the globe. A summary of one of these
important studies, Paffett et al. [7], advises that “The frequency bands
allocated by the WARC92 for use by ‘Little LEO’ systems are still shared
with terrestrial services, and it is shown using results from the in-orbit
measurements that the interference in these bands can severely limit the
performance of a narrow band satellite communication system. One can
consider usage of these frequencies by other users, be it terrestrial or
satellite, as a form of interference, which must be accommodated for
successful system operations.” The study involved the monitoring of two
adjacent 25-kHz channels within the 148-150 MHz uplink band. The
satellite platform was the HealthSat II Little LEO, which had a circular orbit
of 800-km height and was in near polar orbit with an inclination of 89.5
degrees.

Figure 12 displays the mean received signal strength observed in two
adjacent 25 kHz channels and Figure 13 displays the dynamic range of the
observed received signal strengths. The range of signal power in Figure 12 is
on the order of 50 dB. The lighter areas represent higher levels of
interference. It is perhaps not that surprising that the heavily industrialized
areas show the highest interference levels. In Figure 13, the regions
exhibiting large variations in received signal strength are colored more
darkly. These figures are provided courtesy of J. Paffett and colleagues,
Surrey Space Centre, Surrey University, and reproduced with permission.

So important and so potentially deleterious is the uplink interference
environment that special and sophisticated measures may be required for
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some communication systems. The proposed STARSYS system [8],
intended to “provide commercial messaging and localization services
between mobile terminals and regional stations, connected to processing
facilities and user's networks,” is said to employ a “proprietary interference
rejection processing, using frequency domain adaptive filtering” in order to
excise significant narrowband jammers.
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Chapter 2

Doppler Characterization

In this chapter, we derive an equation for Doppler-time curves at ground
based terminals on the forward channel due to the relative motion of a
circular orbit LEO satellite. We show that Doppler-time curves can be
classified based solely on the maximum elevation angle between the
terminal and satellite during the satellite’s visibility window. This
characterization depends only on the relative geometry between the terminal
and the satellite. We also derive an expression for the visibility window
duration of the satellite as a function of the maximum elevation angle. We
then provide an algorithm for estimating the parameters of a Doppler curve
based on a pair of Doppler and Doppler-rate measurements.

1. INTRODUCTION

For satellite communications through LEO satellites, mobile units
(terminals) or Earth stations observe significant Doppler, which has to be
estimated and compensated for, to enable reliable communication. In this
chapter we mathematically characterize the Doppler shift observed at points
on Earth for circular orbit satellites.

We also introduce an algorithm that can be used by mobile terminals to
predict, at the onset of satellite visibility, the shape of the Doppler-time
variation over the remainder of the visibility duration. The Doppler curve
information may be used to improve the performance of the terminal’s
phase-locked-loop. Moreover, the terminal can also estimate the duration of
the visibility window and the instant of maximum elevation. This could be
used as a basis for multiple access by scheduling transmission of packets
from the terminal at higher elevation angles to the satellite. A more elaborate
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multiple-access scheme based on Doppler characterization has been
proposed in [4] and is covered in Chapter 5. The Doppler characterization
can be used to predict the visibility-time function of a satellite at a terminal;
this was proposed in [5]  and is covered in Chapter 4. Effective power
conservation at the terminal, by switching the power supply off during the
non-visibility periods and then switching it on based on the visibility-time
information, can also be implemented.

Previous research has primarily focused on methodology to compensate
for Doppler shifts. Only in [1,2] did the authors attempt to characterize
Doppler-time curves. In [1] the authors considered the simple case of
circular LEO satellites in the equatorial plane and Doppler observed by
points on the equator. However, they did not consider the general case of
inclined circular orbits and points not on the ground trace. In [2] the authors
derived expressions for the time-evolution of elevation angle and Doppler
for elliptical orbit satellites. However, they did not parameterize Doppler
curves observed by points on Earth.

2. DOPPLER CURVE

For LEO satellites, the Doppler frequency at terminals exhibits well-
behaved variation with time that can be parameterized by the maximum
elevation angle from the terminal to the satellite during the visibility
window. This S shaped variation is depicted in Figure 14 for maximum
elevation angles ranging from 11.4° to 90° degrees for a terminal located at
latitude 39° N and longitude 77° W. The satellite follows a circular orbit
(eccentricity=0) of altitude 1000 km and inclination 53°. The minimum
elevation angle for visibility is assumed to be 10°. Doppler shift is captured
in terms of normalized Doppler shift which is equal to (v/c), where v is the
relative velocity of the satellite with respect to the terminal and c is the speed
of light. Time is expressed relative to the zero-Doppler instant. The zero-
Doppler instant is the time during the visibility window at which the
elevation angle from the terminal to the satellite is at its maximum value and
the satellite is at its closest approach to the terminal. The Doppler frequency
shift is shown only for the visibility duration of the satellite at the terminal;
the visibility duration increases as the maximum elevation angle to the
satellite increases.



Doppler Characterization 29

2.1 Analysis Strategy

The first step in our analysis is to derive, from geometry, the equation for
the observed Doppler shift for a given terminal location and a maximum
elevation angle. The analysis is performed as seen from the terminal’s
location, i.e., in the Earth-centered fixed (ECF) coordinate frame, using
trigonometric formulas for spherical triangles. To use the spherical triangle
laws, we make the assumption that in the ECF frame the satellite’s orbit
during the visibility window can be approximated by a great-circle arc. We
then show that the variation in the angular velocity of the satellite in the ECF
frame is very small (<3%) for most LEO circular orbits and hence, can be
approximated by a constant. We next derive the equation for the visibility
window duration of a satellite for a given maximum elevation angle.

2.2 Doppler Equation

Consider the geometry of Figure 15. The coordinate system is an ECF
coordinate system. Point P denotes the location of the terminal, which
observes a maximum elevation angle A segment of the ground along
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with the segment of the satellite’s orbit trace is shown. Point M is the sub-
satellite point at the instant the terminal observes maximum elevation angle.

In the ECF frame the satellite’s orbit is not a great circle due to the
rotation of the Earth (see [3], Figure 2-15, pp. 72). However, the visibility
window at a point on Earth for a LEO satellite is small compared to the orbit
period. For example, for a circular orbit altitude of 1000 km, the maximum
visibility window duration is less than 14 minutes whereas the orbit period is
1.75 hours. Hence, for the visibility window duration the deviation of the
satellite’s orbit from a great-circle arc is small.

The slant range s(t) is determined by the law of cosines applied to the
plane triangle SOP, redrawn in Figure 16,
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Let denote the instant when the terminal observes maximum elevation
angle and is the angular distance between M and N measured on
the surface of Earth along the ground trace. From the cosine law of sides
applied to the spherical right triangle MNP (Figure 17),

Differentiating the above expression and substituting it into the
expression for the derivative of the slant range, we have

Also, from Figure 16, the central angle at epoch of maximum elevation
angle, satisfies
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Now is the angular velocity of the satellite in the ECF frame, which
we shall denote as Substituting in Equation (3) and
noting that normalized Doppler is given by where c is the
speed of light, we obtain,

From the above expression, we observe that the normalized Doppler is a
function of the maximum elevation angle and the angular velocity

of the satellite in the ECF frame.

2.3 Satellite Velocity

In the Earth-centered inertial (ECI) frame the angular velocity is
constant; however, in the ECF frame it varies with latitude due to Earth’s
rotation.

Consider the geometry of Figure 18. Let i denote the inclination of the
orbit. The angular velocity of the satellite in the ECI coordinate system is
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denoted by The corresponding tangential velocity of the satellite in the
ECI frame is denoted by Vector denotes the velocity of the sub-

satellite point due to Earth’s rotation at latitude degrees projected up to the

Using the triangle law of cosines and the relation

and letting denote the angular velocity of the Earth’s rotation,

Numerically, for LEO satellites, the absolute variation of the satellite’s
velocity in the ECF frame for a given orbit is very small. For an orbit of

The percentage variation of with respect to
is only 0.168 %. For orbit altitude the variation is 0.3073%,

and for it is 2.466%. Hence, for low to medium orbit
altitudes, the magnitude of the tangential velocity of the satellite in the ECF
frame shows small variation, and can be approximated by a constant. We
approximate by its value at the highest latitude, i.e.,

Therefore,

We should note here that Hence, we have

Let denote the time when the satellite just becomes visible to the
terminal. The angle of elevation to the satellite at denoted is the
minimum elevation angle for visibility.

satellite’s altitude. Vector (not shown in the figure) denotes the
corresponding velocity of the satellite in the ECF frame, and is given by the
resultant

inclination and altitude and

approximated by its minimum value.

2.4 Satellite Visibility Window Duration
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From the cosine law of sides applied to the right triangle NMP (Figure
17),

which implies

Using the angular velocity approximation, and noting that the total
visibility window duration of the satellite at the terminal, is

we have

3. NUMERICAL RESULTS

The configuration for the numerical results consists of a satellite in a
circular orbit (eccentricity=0) of altitude 1000 km and orbit inclination of
53°. The terminal is assumed to be located at 39° N and 77° W (Washington,
D.C.). A computer orbit generation program was used to generate exact
Doppler-time curves.
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Figure 14 consists of plots of exact normalized Doppler-time and the
analytic Doppler-time (Equation (5)) approximation for a range of maximum
elevation angles. In Figure 19, we provide numerical results for the visibility
window duration versus maximum elevation angle. In Figure 20 we plot
results of the approximation error, in terms of coefficient of determination
[6, pg. 449], between the Doppler-time approximation and the exact
Doppler-time curves. The coefficient of determination, is defined as

where and with

denoting data points for actual Doppler and those for estimated

Doppler.
We consider three orbit altitudes of 1000 km, 5000 km, and 10,000 km.

The orbit inclination is 53° in all three cases. The analytic approximations
are excellent fits to the exact Doppler-time curves. We observe that the
approximation error increases as the altitude of the orbit increases due to
larger variations in the satellite’s ECF velocity, as discussed in Section 2.3.
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4. DOPPLER CURVE ESTIMATION

In this section, we show how to process Doppler and Doppler-rate
measurements to compute estimates of the zero-Doppler time and the
associated maximum elevation angle

Denoting the right-hand side of Equation (5) by d(t), differentiating and
manipulating the resulting expression, it can be shown that

where Since the right side of Equation (14) is
independent of time
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where the subscripts 1 and 2 denote measurements made at sampling

we can rewrite Equation (14) as
follows

Using the trigonometric identities for and it can be
readily shown that

The zero-Doppler time is computed from the relation

From Equation (4), we have

where is computed from Equation (4) and

(since one sign is rejected

based on physical considerations).
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Chapter 3

Doppler Estimation at Terminals

In this chapter we provide an overview of various open-loop frequency
and phase estimation techniques suitable for packet-based LEO satellite
communications. The Cramer-Rao lower bound on the variance of Doppler
frequency and phase estimation is presented and is shown to decrease as

and 1/ N , respectively, where N is the number of processed discrete-
time observations. This motivates the estimation of Doppler frequency
before phase due to its faster convergence. While the maximum likelihood
frequency estimator is theoretically optimum, it requires exhaustive search
procedures that can be prohibitive in terms of computation and storage
requirements. Alternatively, lower-complexity algorithms that average
windowed estimates of the angle of several correlation lags of the discrete-
time observations are presented. After the Doppler frequency is estimated
accurately, its effect may be removed by de-rotating the received data
symbols. Prior to data demodulation, an accurate estimate of any unknown
phase offset may be calculated as the arctangent of the ratio of averaged
quadrature to in-phase values of the de-rotated data symbols. Simulation
results illustrate the effectiveness of the Doppler frequency estimation
algorithms.

1. INTRODUCTION

The relative movement, whether approach or escape, of a LEO satellite
with respect to a receiving terminal on the surface of the Earth causes a shift
in the carrier frequency of the received satellite signal. This phenomenon is
commonly referred to as the Doppler effect. In addition to frequency offsets
which result in a rotation of the received signal constellation, random but
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fixed (over a data block) phase offsets are also common in packet-based data
communications [9] and cause a tilt in the received signal constellation. Both
effects can significantly degrade the quality of a satellite link unless they are
accurately estimated and compensated for.

As will become clear in the ensuing chapters, the main theme of this
book is that while the presence of a Doppler frequency shift impairs the
quality of the received satellite signal if left uncompensated for, it also
contains valuable information on the maximum elevation angle of a LEO
satellite at a ground terminal. This information can be used at the ground
terminals to enhance overall system performance.

Doppler frequency and phase estimation techniques can be broadly
divided into two categories:

Closed-loop techniques, such as those using a phase-locked loop (PLL)
or decision-directed techniques. For short packet communications, PLLs
cannot provide rapid acquisition of the carrier frequency and phase due to
the hang-up phenomenon [5]. In addition, decision-directed frequency
and phase techniques [2] are plagued with the effects of decision errors,
which become more pronounced at low SNR levels where many LEO
satellite links operate.
Open-loop techniques, which operate on the in-phase and quadrature
components of the digitized received signal without requiring feedback
or the use of numerically or voltage-controlled oscillators. Furthermore,
these techniques are derived from the maximum likelihood estimate
under various assumptions and approximations, and are suitable for
digital implementation. Therefore, we shall focus on open-loop
techniques for the remainder of this chapter.

2. CRAMER-RAO LOWER BOUND

We start with the standard baseband model of a received data packet of
length N corrupted by additive white Gaussian noise, Doppler frequency

and a random phase error

where T is the symbol period.
For simplicity, we assume Binary Phase Shift Keying (BPSK) modulated

data, i.e, It is straightforward to extend the analysis to other
modulation schemes.
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The first step is to remove modulation effects from the received data. For
BPSK modulation, this can be done by squaring1 the received digitized
samples. The squared samples have the form

where is a noise sequence assumed to be zero-mean, Gaussian-

distributed, and uncorrelated, with a variance equal to Using the

observations vector we would like to estimate the

unknown vector where and

The conditional probability density function (pdf) of z given u is

where and F(z) is a term independent of u.
The Cramer-Rao Lower Bound (CRLB) is the lowest value that can be

attained by the variance of any unbiased estimator of u and is given by the
diagonal elements of where

is the Fisher information matrix defined by

Using (3), it can be shown that the error covariance matrix for joint
frequency and phase estimation is lower-bounded by the matrix

where for BPSK. Therefore,

1 For an M-PSK modulation, an Mth order nonlinearity is required to remove the modulation
[9].
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It is interesting to note that the CRLB for random phase estimation

decreases as while it decreases as for frequency estimation.

3. ALGORITHMS

While joint frequency and phase estimators have been developed [1,2],
they are decision-directed (i.e. closed loop). Therefore, we restrict our
discussion here to separate frequency and phase estimation algorithms.

3.1 Maximum Likelihood Frequency Estimation

The maximum likelihood estimate of is defined as follows

It can be shown that is given by the frequency at which the

periodogram of the noisy received signal attains its peak. Mathematically,

Although the computationally-efficient FFT algorithm can be used to
compute the periodogram, accurate computation of still requires an

exhaustive search and large storage requirements. Therefore, we investigate
next several alternative Doppler frequency estimation algorithms that avoid
this exhaustive search.
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3.2 Tretter’s Frequency Estimator

Equation (2) can be alternatively expressed as follows:

where the complex-valued baseband noise samples

have variance At high SNR (i.e.

), we can write

The above equation shows that at high SNR, the additive noise effects
can be viewed as equivalent phase noise. Therefore, given the discrete
samples Tretter proposed in [8] to estimate and by performing a
least-squares fit on the phase data

This, however, requires phase unwrapping that adds to the computational
complexity and leads to high estimation errors due to cycle slips, especially
at low signal-to-noise ratios.

3.3 Kay’s Frequency Estimator

An elegant approach proposed in [6] avoids phase unwrapping by
considering the differenced phase data. Using Equations (11) and (12)

which describes a moving average process. It can be shown [6] that the

maximum likelihood estimate of (which is also equivalent to the

unbiased least squares estimate) is equal to
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where the window is given by [6]

The variance of this frequency estimator, which we shall refer to as the
Kay estimator, is given by

which achieves the Cramer-Rao bound (under the high-SNR assumption)
and decreases as the cube of the packet length.

At high SNR, an equivalent frequency estimator can be derived by
interchanging the argument and averaging operations, resulting in

At low to moderate SNR levels, the frequency estimator of (14) is
superior to that of (17). It is also worth mentioning that for small frequency
offsets the arg(.) function can be replaced by the function to

simplify the calculations. The Doppler frequency estimator of (17) will be
referred to as the high-SNR Kay estimator

3.4 Fitz’s Frequency Estimator

The time-varying nature of the window function in (15) makes a
recursive high-speed implementation costly, especially for long packet
lengths N. To reduce the cost while still retaining good performance, Fitz [3]
proposed the use of higher-order lags for the sample auto-correlation
function of The rationale behind this is as follows. The argument of the
signal component in the order lag is linearly proportional to m while the
noise has the same statistical description for all lags. This results in a more
accurate frequency estimator. Mathematically, the Doppler frequency
estimator can be derived by taking the derivative of the periodogram
function (given by the right hand side of Equation (9)) with respect to
and setting the result to zero. This results in the optimality condition
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Next, we make the following (high SNR) assumption

This assumption allows us to approximate the likelihood equation of (18)
as follows

Truncating the sum at the term, Fitz proposed the following frequency
estimator [3]

where is the sample auto-correlation sequence and J is

typically This Doppler frequency estimator will be referred to as the
Fitz estimator. We conclude this section by mentioning that uniformly-
spaced samples have been assumed throughout. Doppler frequency
estimation with non-uniformly spaced samples is treated in [4].
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3.5 Random Phase Estimation

The next step is to estimate the random phase offset which is assumed

to be constant over the packet. The methods of the previous section are used
to remove the frequency error resulting in the discrete-time samples

Assuming accurate frequency offset estimation, i.e., then

The ML estimate of is given by

where
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is the conditional pdf of given Setting

we get

which leads to the following simple technique for estimating

Figure 21 depicts the frequency and phase estimators of Equation (21)
and (26), respectively.

4. SIMULATION RESULTS

In this section, we evaluate the performance of three Doppler frequency
estimators described in the previous section; namely the Kay estimator, the
high-SNR Kay estimator, and the Fitz estimator. The performance metric
adopted is the Root-Mean-Square (RMS) Doppler frequency error defined as
follows

where is the Doppler frequency offset of the i-th burst, is its

estimate, and is the number of received data bursts.
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As a performance benchmark, we also compute the Cramer-Rao lower
bound on frequency estimation given by

In our computer simulations, we assume BPSK packet transmission on
an AWGN channel with constant normalized Doppler frequency offset

and random phase error assumed constant

throughout each packet.
The three frequency estimators are computed on a packet-by-packet

basis, and the RMS statistic in (24) is calculated by averaging over 1000
bursts.

Figure 22 through Figure 24 depict the variation of the estimated
Doppler frequency over the 1000 received bursts for the Kay, high-SNR
Kay, and Fitz estimators, respectively. We assume a packet length
bits and operating
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The variation of the RMS Doppler frequency error (in degrees) versus
SNR for the three frequency estimators is shown in Figure 25 and compared
with the Cramer-Rao lower bound. The assumed packet length is 128 bits. It
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can be seen that all three estimators converge to the Cramer-Rao bound at
high SNR. At low SNR, their performance deteriorates rapidly, due to the
well-known threshold effect experienced by non-linear single-frequency
estimators [7].

We conclude this section by mentioning that the RMS Doppler frequency
error also decreases with increasing packet length, since more observations
are used to compute the estimator. This effect is shown in Figure 26.



Doppler Estimation at Terminals 51

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Fitz, “Planar Filtered Techniques for Burst Mode Carrier Synchronization,” Proc.
GLOBECOM’91, p. 12.1.1-12.1.5
M. Fitz and W. Lindsey, “Decision-Directed Burst-Mode Carrier Synchronization
Techniques,” IEEE Transactions on Communications, October 1992, p. 1644-1653.
M. Fitz, “Further Results in the Fast Estimation of a Single Frequency,” IEEE
Transactions on Communications, Feb/March/April 1994, p. 862-864.
J. Gansman, K. Krogmeier, M. Fitz, and A. Singh, “Single Frequency Estimation with
Non-Uniform Sampling,” Proceedings of the Asilomar Conference on Signals, Systems,
and Computers, November 1996, p. 399-403.
F. Gardner, “Hangup in Phase-Lock Loops,” IEEE Transactions on Communications,
October 1977, p. 1210-1214.
S. Kay, “A Fast and Accurate Single Frequency Estimator,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, December 1989, p. 1987-1990.
D. Rife, “Single-Tone Parameter Estimation from Discrete-Time Observations,” IEEE
Transactions on Information Theory, September 1974, p. 591-598.
S. Tretter, “Estimating the Frequency of a Noisy Sinusoid by Linear Regression,” IEEE
Transactions on Information Theory, December 1985, p. 832-835.
A. Viterbi and A. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with
Application to Burst Digital Transmission,” IEEE Transactions on Information Theory,
July 1983, p. 543-551.



This page intentionally left blank 



Chapter 4

Satellite Visibility Prediction

In this chapter, we present a simple algorithm to determine the visibility-
time function at a given location on Earth for circular LEO satellites.
Numerical results show that for a wide range of LEO orbit altitudes, the
algorithm provides accurate results for predicting the satellite’s rise time and
in-view period. The algorithm implemented in the mobile terminal’s
processor could be used to aid power conservation and communication
functions in the mobile.

1. INTRODUCTION

A variety of LEO satellite systems have recently been proposed for
personal communications [1]. In these systems, satellites follow inclined
circular orbits with altitudes between 600 km and 1400 km. These systems
provide global communications capability; however, at any given location
on Earth, a LEO satellite is visible only for a short duration of time. For
example, the length of the maximum in-view period is under 15 minutes for
a satellite at 1000 km altitude.

Predicting the visibility of LEO satellites at a terminal is valuable for a
number of reasons. By implementing the visibility prediction algorithm at a
terminal, the terminal could conserve power by going into a power
conserving “sleep” mode until the next rise time of the satellite. Also, for
communication through LEO satellites, it is beneficial for the terminal to
communicate with the satellite when the elevation angle to the satellite is
large. This is because there is lower probability of line-of-sight blockage,
and the slant range to the satellite is shorter, providing a better
communication channel. The in-view period varies between satellite passes
and is a function of the maximum elevation angle between the terminal and
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the satellite during a satellite pass; the greater the maximum elevation angle
to the satellite, the longer the in-view period. Thus the terminal could
improve the probability of successful communication with a satellite by
transmitting during the middle of a longer in-view period pass of the
satellite.

The visibility prediction algorithm presented in this chapter uses a result
we derived in Chapter 2 for circular orbit LEO satellites that relates the
maximum observed elevation angle during a satellite pass to the length of
the in-view period. The maximum elevation angle is observed at the instant
the sub-satellite point is closest to the terminal. To compute the location of
this point and the epoch of its occurrence without resorting to exhaustive
orbit propagation, we approximate the ground trace of the satellite during the
in-view period by a great-circle arc. In reality, the ground trace of a LEO
satellite deviates from a great-circle arc due to Earth’s rotation. However, in
[5] we showed that using the great-circle arc approximation at LEO altitudes
provided very accurate results for the Doppler time curve observed at a
terminal. Here we use the great-circle arc approximation to enable the use of
spherical geometry to efficiently compute the sub-satellite point closest to
the terminal and the corresponding epoch of its occurrence. The algorithm
provides accurate results even for LEO satellite orbits at relatively high
altitudes.

In the literature, two approaches for computing the visibility-time
function of satellites have been reported in [2,3]. In [2], the authors apply
orbit propagation routines on the satellite constellation to obtain the
visibility-time function. Orbit propagation is the predominant method of
determining satellite visibility. Visibility prediction through orbit
propagation involves mathematically generating the satellite’s orbit, sampled
on a fine time grid. Visibility conditions are determined for each time
sample. This process is computationally intensive. The visibility prediction
algorithm that we introduce here avoids exhaustive enumeration by using
approximations to determine the satellite visibility data. In [3], the satellite
visibility prediction algorithm is a small but integral part of a design
methodology for LEO satellite systems. The authors use an iterative
approach, similar to the one used here, to determine in-view period. For each
rotation of the satellite, the algorithm solves an analytic expression to
determine whether the satellite is visible at the terminal or not. If the satellite
visibility condition is met, the algorithm determines the in-view period by
computing the satellite’s rise and set time at the terminal. The algorithm used
in [3] uses expressions that are valid in the ECI reference frame but assumes
that the terminal is fixed and not moving as the Earth rotates. To correct for
this assumption, successive approximations, which update the terminal’s
location at computed rise and set times, are used. By contrast, the algorithm
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presented here explicitly accounts for the movement of the terminal due to
Earth’s rotation.

2. VISIBILITY PREDICTION ALGORITHM

2.1 Algorithm Overview

We provide an overview of the algorithm with the help of Figure 27.
Figure 27 shows one visibility pass of an Orbcomm satellite (altitude = 738
km, inclination = 70°, and eccentricity assumed to be zero) at a terminal,
located at 39°N latitude and 77°W longitude. For a satellite to be visible to
the terminal, the ground trace of the satellite should be within the visibility
perimeter. The minimum elevation angle required for visibility, denoted
is assumed to be 10° in the figure.

The visibility-time profile is computed by iterating over consecutive
rotations of the satellite. For each satellite rotation, the algorithm determines
whether the satellite is visible to the terminal; if so, it computes an accurate
approximation for the maximum elevation angle from the terminal to the
satellite and the time instant of observation of the maximum elevation angle.

Determining if a satellite is visible to a terminal in a particular rotation of
the satellite is complicated by the fact that the terminal moves due to the
Earth’s rotation. In a frame of reference fixed to the Earth, the ECF
frame, the terminal is stationary, but the path of the satellite is not a great
circle and hence spherical geometry relations cannot be used. However, if
one approximates a small segment of the ground trace of a LEO satellite by a
great-circle arc, simple analytic expressions can be used to determine the
visibility condition and the in-view period. In [5], we showed that the error
in approximating a segment of the ground trace of a LEO satellite over a
period equal to the maximum visibility of the satellite at a terminal is very
small. However, since the great-circle arc approximation is only valid for
short ground trace segments, to determine in-view period we should
approximate the satellite’s ground trace when it is in close vicinity of the
terminal. For inclined orbit satellites, an easy way to compute coordinates on
the ground trace of a satellite in close proximity to the terminal’s location is
by first determining the intersection of the ground trace with the terminal’s
latitude. By computing two points close to this intersection, we obtain the
expression for the great-circle arc approximation. These points are
represented by the two ‘x’s in Figure 27. Using a simple geometric relation
we compute the point on the great-circle arc approximation that is closest to
the terminal, i.e., a point on the great-circle arc from which the distance to
the terminal is the shortest. A corresponding point on the ground trace is
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computed. This point is shown by the ‘o’ in Figure 27. At this point on the
ground trace the central angle between the sub-satellite point and the
terminal is at its minimum value. If the satellite is visible to the terminal, the
central angle should be within a specified range, i.e., the point of closest
approach should be within the visibility perimeter shown in Figure 27. Also,
at this point of closest approach, the elevation angle from the terminal to the
satellite is at its maximum value and can be easily computed (Equation (13)).
Using results from [5], we determine the in-view period from the maximum
elevation angle, and since the visibility window is centered at the epoch of
observation of the maximum elevation angle, we are able to determine the
rising and setting epochs of the satellite.

The inputs to the algorithm are orbit parameters describing the satellite
path, and also an initial reference location of the satellite. The results of the
algorithm are with respect to these initial space-time coordinates. Time
within each iteration of the algorithm is measured with respect to some
conveniently chosen space-time instant representing the beginning of an
iteration. The space-time instant we choose to represent the beginning of a
cycle is the instant at which the satellite’s ground trace crosses the equator
with the satellite transitioning from the southern hemisphere to the northern
hemisphere.
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2.2 Detailed Algorithm

2.2.1 Inputs

The inputs to our algorithm are:
1.

2.

3.

Orbital parameters: Orbit radius (r) or orbit period  or ECI angular
velocity and orbit inclination (i).
Initial location of the satellite: Time instant and longitude

of the satellite in the equatorial plane when transitioning
from the southern hemisphere to the northern hemisphere.
Location of the terminal: Longitude and latitude of the
terminal’s location. Vector denotes the coordinates of the terminal
in the Cartesian frame.

The specific input values for most commercial LEO satellites can be
obtained from NASA’s Web site [6]. Using calculations [4, pg. 127-130],
one can obtain the satellite’s terrestrial latitude, and longitude, at the
given time epoch specified in the database. However, the input to our
algorithm requires that at the initial time epoch the satellite be at the equator,
i.e., The generalization to cover the case when the initial latitude
location of the satellite is arbitrary leads to a more complex expression in
Step 1 of our algorithm, detailed below. Since Step 1 is repeated for each
rotation of the satellite, it is simpler to restrict the initial latitude of the
satellite to the equator and compute the corresponding time epoch, for this
location. To do this, we first compute the time it took the satellite to
propagate from the equator to its current phase in the circular orbit given by

where is the argument of perigee and is the mean anomaly

at the time epoch. These parameters are provided by the NASA database.

Assuming a circular orbit satellite, The

corresponding initial time epoch input to the algorithm is The

longitude of the sub-satellite point at the equator can be obtained from the
right ascension of the ascending node parameter provided in the
database by

where is the Greenwich mean sidereal time at

2.2.2 Outputs

The outputs are in the form of two sequences:
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1.

2.

Sequence of maximum elevation angles

Sequence of maximum elevation angle observation instants

In [5], we derived an accurate analytic approximation for the satellite in-
view period, as a function of the maximum elevation angle,

where the parameters are

r

i

maximum elevation angle during the visibility window,
minimum elevation angle for visibility,
radius of the Earth,
radius of the satellite’s orbit,
angular velocity of the satellite in the ECI frame,
angular velocity of the Earth’s rotation,
inclination of the satellite’s orbit.

Thus the satellite in-view periods are The

visibility window is centered at the maximum elevation angle observation
instant. Hence, the visibility time function for the satellite is

2.2.3 Steps of the Algorithm

The following variables are used by the algorithm:

t

time instant at the start of the i-th rotation,
longitude of the intersection of the satellite’s orbit with the
equatorial plane at the start of the i-th rotation,
time within a  rotation.  at the start of a rotation.
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1. Determine if the terminal is within the satellite’s coverage latitudes:
Inclined orbit LEO satellites are visible from within a latitude range on
the Earth’s surface. The latitude range depends on the inclination of the
orbit, the altitude of the orbit, and the minimum elevation angle required
for visibility. The coverage region, expressed in terms of latitude degrees,
is given by [max min ], where is the central angle
between a point on the Earth at the edge of satellite’s visibility and the
sub-satellite point. From Figure 28, is given by

If the terminal is not located in the coverage region, the satellite will
never be visible to the terminal, and we quit the algorithm.
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For rotation
2. Determine the intersection of the satellite’s orbit with the terminal’s

latitude: If the terminal is located within the coverage region but not
within the range [–i,i] latitude, the ground trace of the satellite does not
intersect the terminal’s latitude. In this case we compute the intersection
of the ground trace with either +i or –i degrees latitude depending on
whether the terminal is located in the northern hemisphere or the
southern hemisphere, respectively.
From spherical trigonometry, using sine and cosine laws to the spherical
triangle ABC in Figure 29, the equations relating the sub-satellite point’s
latitude, and longitude in the ECI coordinate system are given
by

To compute the sub-satellite point’s longitude in the ECF frame, we
compensate for the Earth’s rotation to give
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The time instant, and the longitude, of the intersection of the
ground trace with the terminal’s latitude is obtained from,

The right hand side of Equation (8) has two solutions, as the ground trace
intersects the terminal’s latitude at two points. In one case the satellite is
approaching the equator and in the other case the satellite is receding
from the equator. Assuming that the function returns values in the
range the two solutions for Equation (8) are
where is a function that returns the principal value of an angle in
the range From the two solutions, we choose that intersection of
the ground trace which is closer to the terminal’s longitude.

3. Compute the great-circle arc approximation of the ground trace and the
minimum perpendicular distance to the terminal: Two points on the
ground trace at times and are used to define the great-circle
arc. Using Equation (5) through (7), we compute the sub-satellite points,
denoted by vectors and at these two time instances. The unit vector
perpendicular to the plane defined by denoted by n, is

The perpendicular distance of the terminal from the plane defined by the
great-circle arc approximation is and the central angle
between the terminal and the point on the great-circle arc approximation
closest to the terminal is given by
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4.

5.

Compute time instant of closest approach: The location of the sub-
satellite point at the instant of maximum elevation angle observation,
denoted by is

Let denote the longitude and latitude corresponding to the

location Note that is an approximation of the sub-satellite

point at the instant of maximum elevation angle observation based on
the great-circle arc approximation of the ground trace. This point might

not lie on the actual ground trace, i.e., might not satisfy

Equations (5), (6), and (7) simultaneously. We compute the time when

the sub-satellite point is at latitude from Equation (5). Note that

should be constrained to lie in the range [-i,i] latitude.
Refine the estimates: To refine the estimates of the time instant of
maximum elevation angle observation, we approximate the ground trace
closer to the point of closest approach. For this, we use two points on the
ground trace at times and to define the great-circle arc. Steps 2
and 3 are repeated to provide more accurate estimates of and Note
that this step is not illustrated in Figure 27, but is very important in
improving the algorithm’s accuracy when the point of closest approach
on the ground trace is much further away from the intersection of the
ground trace with the terminal’s latitude. An example of such a case is
shown in Figure 30. There one can observe that the first great-circle arc
approximation deviates significantly from the ground trace at the point of
closest approach. The second great-circle arc approximation is much
closer to the ground trace at the point of closest approach.
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6.

7.

8.

Check satellite visibility condition: If the satellite is visible to the
terminal, the elevation angle from the terminal to the satellite should be
greater than the minimum elevation angle for  visibility, The condition
on for visibility is where is given by Equation (4). If
this condition is not met, the satellite is not visible during the current
rotation, and we go to Step 8 of the algorithm.
Compute the maximum elevation angle: At the point of closest approach
of the ground trace to the terminal, the central angle between the terminal
and the ground trace is minimum. At this instant, the elevation angle
from the terminal to the satellite is maximum. The maximum elevation
angle, is given by [4, Equation (3-4)]

Save results and update variables for next rotation: If the satellite is
visible during the current rotation, the actual time for the observation of
the maximum elevation angle of the satellite is
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and For the next rotation of the satellite

The longitude of the intersection of the ground trace with the equator for the
(i+l)-th rotation is

Go to Step 2 to compute results for (i+l)-th rotation of the satellite.

3. NUMERICAL RESULTS

We consider circular LEO satellite orbits at altitudes of 1000 km and
5000 km above the Earth’s surface, and orbit inclination 60°. The location on
the Earth’s surface at which we compute the visibility-time function is 30° N
and 77° W. The minimum elevation angle for visibility is 10°. An orbit
generation program written in MATLAB® was used to obtain the exact
results. The program generates satellite orbits, sampled 16,000 times each
day (5.4 sec sampling interval), for a duration of 10 days. Higher order
perturbation effects are ignored, under the assumption that satellite
stationkeeping will result in circular orbits.

In Figure 31, we plot the percentage normalized error in predicting the
satellite rise time. This error is defined as

Defined in this manner, the normalized error gives the error in predicting
the satellite rise time as a percentage of the satellite visibility time during the
particular satellite pass. The in-view period is a function of the maximum
elevation angle observable during a satellite pass. Thus, for lower maximum
elevation angle, the same error in predicting satellite rise time leads to higher
normalized error value. The percentage normalized error is plotted as a
function of the maximum elevation angle observed during the visibility
window. The data cover the entire range of maximum elevation angles from
10° to 90°.

® MATLAB is a registered trademark of The MathWorks, Inc.
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In Figure 32, we plot the percentage error in the algorithm for predicting
the in-view period as a function of the maximum elevation angle. The
percentage error in both these figures decreases with maximum elevation
angle as the in-view period, which is the normalizing factor in both the error
computations, increases with the maximum elevation angle.

The percentage error in the prediction of the in-view period increases
with the orbit’s altitude. With an increase in the orbit altitude, the period of
rotation of the satellite increases. This causes a greater deviation of the
ground trace from a great-circle arc due to the increased effect of Earth’s
rotation. Also, with an increase in the orbit’s altitude, for the same maximum
elevation angle, the in-view period of satellite increases (in Equation (1), the
denominator decreases with altitude). For these two reasons, the satellite’s
ground trace during the in-view period deviates to a greater extent from a
great-circle arc approximation for higher satellite altitudes. The deviation, in
turn, increases the error in the overall algorithm’s results.

A caveat to note is that very infrequently, at certain terminal locations,
the algorithm fails to predict a satellite’s pass with very short in-view period.
The maximum elevation angles for these passes are within 3° of the cutoff
visibility elevation angle. This happens in those cases when the ground trace
of the satellite grazes the terminal’s visibility perimeter at a latitude far from
the terminal’s latitude. However, low visibility passes that occur in close
vicinity of the terminal’s latitude are accurately predicted by the algorithm.
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Chapter 5

Doppler Based Multiple Access

In this chapter, we show how to use the Doppler-time S-curve,
observed by terminals on the outbound downlink channel (from satellite to
terminal) due to the relative motion between the satellite and the terminal, in
a novel way to provide flow control in a LEO satellite messaging
communication system. The control scheme, Doppler Based Multiple
Access, or DBMA, uses two parameters of the Doppler S-curve, namely,
maximum elevation angle and zero-Doppler time, to specify a region of
eligibility (ROE) for transmission from terminals. Only terminals inside the
ROE are allowed to transmit. The size of the ROE can be modified by
controlling two parameters to provide a highly effective flow control method
for traffic on the inbound channel. Through computer simulations, we
illustrate the effectiveness of DBMA. We also show that quadratic curve
fitting of Doppler frequency measurements is fairly accurate for a wide
range of maximum elevation angles. DBMA promises to be a powerful and
effective method for flow control for LEO satellite systems.

1. INTRODUCTION

This chapter is concerned only with a subclass of LEO satellites. This
subclass is termed the "Little" LEOs. They are typically LEO satellites that
provide a narrow class of low bandwidth aperiodic services such as
messaging. Further, this Little LEO subclass can be partitioned into those
Little LEO satellites that accomplish their mission with onboard memory in
what is termed "store-and-forward" operation; and those Little LEOs that
function as a "bent pipe," i.e., have an onboard transponder that "turns
around" or rebroadcasts incoming messages. We are concerned with this
latter subclass and have encircled it in Figure 33.
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Our class of interest, the transponding Little LEO, holds promise for
inexpensive data transport that may be of significant, if not critical,
importance to certain business interests. LEOs have two highly significant
advantages over GEOs. First, they are much closer to the Earth and therefore
the data round-trip delay is much less than that with a GEO. Second, and
often more important, is that a LEO system is one of dynamic geometry as
the relative geometrical relationship of the ground-based terminals and the
satellite are continuously changing with time. There are many instances
where a fixed or long-term non-mobile terminal will not be able to see a
GEO but can expect to see a LEO on frequent basis. This is especially true in
congested areas such as cities. An article by Akturan and Vogel [5] discloses
that in urban Japan, the probability is greater than 50% that an Earth-to-
space line of sight will be blocked at an elevation below 25°.

Exploitation of the dynamic geometry to capture its inherent advantage
has always seemed to be a difficult design issue. The difficulties have been
thought to reside in the necessity for a complex protocol controlling access
to the transponder capacity. We now examine the idea of using Doppler
information to implement flow control for LEO satellite systems. As we
have previously noted, the correction for Doppler is a necessity for LEO
satellite systems, as the Doppler frequency-shift is significant for these
systems. Moreover, for successful reception of information in the outbound
channel, terminals are required to estimate and compensate for the Doppler
shift. Our new protocol requires only that the terminals keep track of the
Doppler frequency-shift versus time characteristic, in addition to
compensating for it.
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We call the idea embodied in our concept Doppler-Based Multiple
Access or DBMA. We use the Doppler frequency shift observed at terminals
to control transmissions from them such that the system may function at its
capacity limit at all times, i.e., serve as many terminals as possible.

In a nutshell, DBMA functions as sketched in Figure 34. The top graph
displays the number of terminals desiring to transmit as the satellite passes
over the terminals. This number varies with time due to two factors: (i) the
stochastic process of message arrivals at individual terminals, and (ii) the
satellite’s changing position with respect to the terminals. Terminals in new
areas become visible to the satellite and others that were visible are no
longer within the visibility footprint of the satellite. For some satellite-
terminal geometries, the number of terminals desiring to transmit can be
higher than the system capacity and can overload the system, as shown in
Figure 34. There are two effects of such an overload. First, the terminal
transmissions above capacity are surely lost, and second, and perhaps most
deleterious to the system, the interference introduced by the simultaneous
terminal transmissions above capacity raises background noise levels to
existing users and thereby increases the probability of errors in existing
terminal transmissions. This overload situation can result in a serious
diminution of capacity.

The middle graph is a DBMA flow control, which manages, in a novel
way, the number of terminals communicating with the satellite. It is based
upon Doppler processing at terminals and is particularly well suited to a
Little LEO satellite operating as a "bent-pipe" transponder.
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The bottom graph shows the effect of the DBMA flow control on the
number of communicating terminals. Note that it is brought to near capacity
and thus provides a nearly optimal use of the satellite asset, increasing the
utilized capacity of the system.

2. OVERVIEW OF THE DBMA PROTOCOL

DBMA is a flow control scheme for regulating traffic on the inbound
channel. In DBMA, the Earth station specifies a subset of the visibility
footprint as a region of eligibility (ROE). Only terminals located in the ROE
are permitted to transmit. By varying the size and location of the ROE,
effective flow control is achieved on the inbound channel.

DBMA control is a centralized flow control scheme, i.e., the Earth station
determines the ROE. This is communicated to the terminals via the outbound
channel. The remarkable feature of this method is that the ROE is defined
solely by the characteristics of the Doppler frequency-shift versus time
function on the outbound channel. The Doppler-time variation observed at
terminals is fairly significant because of the low altitude of the satellite’s
orbit. The Doppler-time curve is a smooth, fast varying “S-curve” due to the
rapidly changing geometry between the terminal and satellite.

For illustrative purposes, we consider a configuration comprising a single
satellite in a circular orbit. The Earth station is located at San Francisco, and
terminals are located in the continental United States. The satellite follows a
circular orbit (eccentricity=0) of altitude 1000 km and inclination 53°. The
revolution period of the satellite is 1.75 hours [9]. This orbit is fairly
representative of LEO satellite systems proposed for operation [7]. The
cutoff elevation angle for communication is assumed to be 10°, i.e., a
terminal can communicate with a satellite only if the elevation angle from
the terminal to the satellite is greater than or equal to 10°. In the remainder of
this chapter, when we state that a satellite is visible to a terminal, we mean
that the elevation angle from the terminal to the satellite is greater than or
equal to 10°. The visibility footprint of a satellite is the region on Earth’s
surface where the elevation angle to the satellite is greater than or equal to
10°.
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The DBMA protocol uses the fact that the Doppler frequency at terminals
exhibits a well-behaved variation with time that can be parameterized by the
maximum elevation during the visibility duration of the satellite at the
terminal. This S-shaped variation is depicted in Figure 35 for maximum
elevation angles ranging from 11.4° to 89.6°. Doppler shift is captured in
terms of normalized Doppler shift, which is equal to (v/c), where v is the
relative velocity of the satellite with respect to the terminal and c is the speed
of light. The actual Doppler frequency shift observed at the terminal is
(v/c)*f where f is the central frequency of the outbound channel. Time is
expressed relative to the zero-Doppler instant. These curves are similar to
the ones previously reported in the literature [6]. For a carrier frequency of
150 MHz, the Doppler frequency exhibits noticeable variation, up to 3 kHz,
over the satellite visibility time interval. This variation can be measured and
tracked in the receiver frequency synchronization circuitry prior to data
demodulation

A similar Doppler-time curve is observed at the satellite on the outbound
uplink channel (from Earth station to satellite). If the outbound uplink shift is
not compensated for, the Doppler shift observed at terminals will be the
cumulative effect of the shift in the outbound uplink direction and the
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outbound downlink direction. However, in most LEO operations, the Earth
station monitors and compensates for the Doppler frequency shift in the
outbound uplink direction. Hence, the Doppler shift observed at a terminal is
due only to the relative geometry between the terminal and the satellite. For
the DBMA protocol, it is a requirement that the Earth station compensate for
the Doppler frequency shift in the outbound uplink direction.

The terminal makes a few Doppler frequency shift measurements. These
measurements enable it to determine which Doppler-time curve it is
observing. The terminal infers two important parameters from the Doppler-
time curve that are used in the DBMA protocol. The first is the maximum
elevation angle to the satellite that will be observable at the terminal:
The second is the estimate of the time instant of zero-Doppler: The details
of the estimation process are provided in Chapter 2 and in Section 5.

For flow control, the Earth station describes the ROE for transmission in
terms of these two parameters. Let us first consider the parameter In
Figure 36, the present location of the satellite is over the sub-satellite point
shown by a ‘+’ over Texas on the ground trace. The outer circle is the locus
of points on the Earth’s surface where the elevation angle to the satellite is
10°. This is the circumference of the communication visibility region. For all
points inside the circle, the elevation angle to the satellite is greater than 10°.
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The inner circle is the locus of all points on the Earth where the elevation
angle to the satellite is 30°. The edge of the shaded region parallel to the
ground trace is the locus of all points on the Earth’s surface within the 10°
elevation angle circle where the maximum elevation angle to the satellite is
30°; the maximum is taken over the visibility duration of the satellite at a
terminal. All points in the shaded region will observe maximum elevation
angle greater than 30° at some time in their corresponding satellite visibility
duration. In the literature, this region is referred to as the 30° swath of the
satellite [8].

All terminals in the shaded region observe one of the Doppler S-curves
corresponding to maximum elevation angles between 30° and 90° (Figure
35). The terminals on the perpendicular to the ground trace at the sub-
satellite point observe zero Doppler. The satellite is at its closest approach to
these terminals and these terminals observe the maximum elevation angle to
the satellite at the present instant. The terminals within the 30° swath behind
the zero-Doppler line observe negative instantaneous Doppler frequency
shift. These terminals have already observed zero Doppler. Correspondingly,
in Figure 35, these terminals observe Doppler on the Doppler-time curve to
the right of the zero-Doppler instant. The terminals within the 30° swath
along the direction of travel of the satellite and ahead of the zero-Doppler
observation line observe positive instantaneous Doppler frequency shift.
These terminals are yet to observe zero Doppler. Correspondingly, in Figure
35, these terminals observe Doppler on the Doppler-time curve to the left of
the zero-Doppler instant.

One parameter that the Earth station uses in describing the ROE on the
Earth’s surface is a cutoff maximum elevation angle Those terminals
in the visibility region of the satellite which observe a maximum elevation
angle greater than are permitted to transmit. If the shaded
region of Figure 36 is the ROE for transmission. The terminals in the 10°
visibility region of the satellite, but outside the shaded region are not
permitted to transmit.
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By varying the Earth station controls the contour of the ROE.
Figure 37 shows the ROE for This region is narrower than the
one corresponding to (Figure 36). Hence, determines the
width of the ROE. For the ROE is the entire 10° visibility circle;
for the ROE is the ground trace in the 10° visibility circle.
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Another parameter the Earth station uses to define the ROE is a time
interval about the zero-Doppler instant on the Doppler S-curve. Let us
denote this parameter by Those terminals that observe instantaneous
Doppler within the time interval about the zero Doppler time are
eligible to transmit. The ROE corresponding to and is
shown shaded in Figure 38. All terminals in the shaded region have either
observed zero Doppler during the past 4 minutes or will observe zero
Doppler within the next 4 minutes.
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In Figure 39, the shaded region corresponds to ROE with and
The parameter determines the length of the ROE. Given

for the ROE is a line perpendicular to the ground trace at
the sub-satellite point ‘+’. Terminals on this line observe zero-Doppler at
this instant.

Thus, through two parameters, maximum elevation angle and time
interval about zero-Doppler, DBMA controls the size of the ROE. This
provides a two-axis control of the ROE. By varying the size of the ROE for
transmission, DBMA regulates the number of terminals that communicate to
the Earth station, thus regulating the load on the inbound channel.

3. DBMA PROTOCOL PROCESSES

The DBMA protocol processes are composed of two sub-processes: one
at a terminal and one at the Earth station.
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3.1 At the Terminal

As a satellite comes into common view of a terminal and the Earth
station, the terminal determines:
1.
2.

the expected maximum elevation of the satellite to the terminal, and
the time to the maximum elevation of the satellite.
This information is obtained from the Doppler-time curve observed at the

terminal.
The terminal monitors the Earth station outbound link to determine the

terminal’s eligibility to transmit, should it have a message waiting in the
transmit queue. This eligibility is defined by a message from the Earth
station in the outbound channel with:

a lower bound on the maximum elevation of the satellite, and
limits on a time interval centered at the time of zero Doppler.
If the terminal has a message to transmit, and if it is eligible to transmit

during the present satellite pass, the terminal selects a start transmission time
at random within the available time window of eligibility.

3.2 At the Earth Station

The Earth station monitors the cumulative terminal transmission load on
the inbound channel. If this load exceeds the capability of the Earth station,
the Earth station reduces the size of ROE for transmissions and broadcasts
this restriction. The Earth station controls the ROE by allowing terminals to
transmit only if the maximum angle of elevation falls within a tighter set of
limits. The Earth station also adjusts the inbound channel load by changing
limits of the time window around zero-Doppler instant.

4. SIMULATION RESULTS

We illustrate the effectiveness of DBMA through simulations. The
simulation assumes a single satellite in a circular orbit of altitude 1000 km
and orbit inclination 53°. Terminals are modeled as point sources of traffic
located in the continental United States. For our simulation, we assumed
10,000 terminals uniformly distributed over a rectangular area between the
latitudes of 30° N and 50° N, and longitudes -125° E and -75° E, which
serves as an approximation of the geographical extent of the continental US.
Terminals communicate with the Earth station through the satellite when the
satellite is visible (greater than 10° elevation angle) to both the terminal and
Earth station.
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Load on the inbound channel, in our simulation, is measured by the
number of terminals that can communicate to the Earth station. We have
used this simple definition to introduce and illustrate the operation of DBMA
flow control. As discussed previously, DBMA controls traffic on the
network by changing the size of the ROE for transmission. This regulates the
load on the network irrespective of whether load is measured in terms of
number of nodes transmitting or number of messages per unit time.

For the results provided here, we have assumed that terminals are able to
exactly determine the correct Doppler-time curve they are observing. Hence,
they make no errors in estimating the maximum elevation angle to the
satellite and the time to zero-Doppler. Also, we have ignored the latency
between the transmission of the two parameters and and its reception
by terminals in the visibility footprint of the satellite.

To appreciate the dynamics of the load on the inbound channel as the
location of satellite changes, consider Figure 40. There we show a segment
of the ground trace along with 10° visibility regions for two locations of the
satellite separated in time by 7.2 minutes. These locations are marked by ‘+’
on the ground trace. The location of the Earth station is represented in the
figure by an ‘x’ in San Francisco. The load on the channel varies
dynamically as new regions on Earth become visible to the satellite while
other regions that were visible are no longer within the visibility footprint of
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the satellite. This is illustrated in Figure 41, which plots the load on the
inbound channel with time for one pass of the satellite over the US. Time is
expressed in minutes from the start of the simulation. The traffic increases
from 1000 terminals to about 9000 terminals as more areas of the US are
covered by the 10° visibility footprint of the satellite. The traffic drops off to
zero suddenly at the end of the pass as the satellite loses visibility to the
Earth station. The capacity of the system is assumed to be fixed at 6000
terminals.

The algorithm at the Earth station for determining and is as
follows: If traffic from the ROE is greater than the capacity, (Step 1)

(Step 2) reduce by and check if traffic is below capacity.
Repeat steps 1 and 2 until the traffic is just below capacity. The initial
condition is to let the ROE be the entire 10° visibility region and

Traffic is measured by counting the number of terminals within the ROE.
The simulation is advanced every 21.6 seconds (4000 samples in a 24 hour
day), the new location of the satellite generated, and the DBMA protocol
applied.

increase by and check if the traffic is below capacity; if not,
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Figure 42 and Figure 43 show the result of applying the DBMA protocol
for two different passes of the satellite over the continental US. Each figure
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consists of three plots. The first plot has three curves. The first curve depicts
the uncontrolled traffic on the inbound channel. The second curve shows the
capacity of the inbound link. The third curve is a plot of the load on the
inbound channel as a result of DBMA. The second and the third plots show
the time variations of the control parameters and respectively.

From these two figures, we observe that the DBMA protocol is very
effective in throttling the load on the inbound channel at or below capacity.
When the load on the channel is below the rated capacity of the channel, all
terminals in the visibility footprint are permitted to transmit, i.e., the ROE is
the 10° visibility footprint. When traffic goes above the rated capacity,
DBMA modifies the ROE to maintain the load at its rated capacity. The
control algorithm at the Earth station does not exhibit oscillations in the
value of the two control parameters with time.

5. DOPPLER CURVE ESTIMATION

The prediction of the maximum elevation angle and zero-Doppler
time using Doppler frequency measurements was provided in Chapter 2
based on the analytical expression for the Doppler S-curve. In this section,
we provide a simpler scheme to predict these quantities based on curve-
fitting of the Doppler S-curve.

Careful inspection of Figure 35 shows that if we consider transmission
times up to the Doppler-time characteristics can be approximated by a
quadratic functional dependence. We show a sample of our quadratic
Doppler curve fitting results in Figure 44 for a maximum elevation angle of
39.4°. The estimate was computed using three Doppler frequency
measurements during the first 3 minutes of satellite visibility. It is noted that
for small elevation angles (less than 25 degrees), the Doppler-time
characteristic is linear.
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Figure 45 shows the variation of the mean square estimation error (in dB)
between the actual and estimated Doppler frequency. In Figure 46, we have
plotted the ideal value of together with its estimated value (using quadratic
curve fitting) as a function of maximum elevation angle. It can be seen from
the figures that the maximum error in estimating the zero-Doppler instant is
less than 1.5 minutes.
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Fitting accuracy for higher maximum elevation angles can be improved
by using more Doppler measurements and using a higher-order polynomial
fit. Another means for improving fitting accuracy is to use Doppler rate
measurements in conjunction with the direct Doppler data, as in [10] and in
Chapter 2. As shown in Figure 47, the Doppler rate of change decreases
appreciably as the satellite approaches the terminal, and it reaches a
minimum at
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Chapter 6

Doppler for Power Control

In this chapter, we introduce two schemes for uplink power control based
on the Doppler S-curve observed at mobile terminals. In the first scheme,
termed Doppler Based Transmit Power Control (DBTPOWC), terminals
estimate their distance from the satellite using the Doppler S-curve and
modify their transmitted power to compensate for the path loss differential to
the satellite. In the second scheme, termed Doppler Based Transmit
Permission Control (DBTPERMC), the Earth station permits only those
terminals to transmit whose distance from the satellite is within a specified
range. The regions of eligibility (ROE) in DBTPERMC are regions between
concentric ellipses centered at the sub-satellite point, instead of the
parallelogram regions of DBMA.

1. INTRODUCTION

Because of their simplicity and low complexity as multiple-access
schemes, code division multiple-access (CDMA) and spread-ALOHA have
been proposed as multiple-access schemes on the uplink channel in LEO
satellite systems [2]. These schemes require minimal coordination among
transmitting mobile terminals, and the channel throughput performance of
these schemes degrades gracefully as the load on the channel increases. One
of the key disadvantages of these schemes is the requirement for power
control by mobile terminals: for optimal performance, the received power
levels at the satellite from the transmitting terminals should be
approximately the same. For LEO satellite systems, this problem is further
exacerbated by the dynamic geometry between satellite and mobile
terminals.
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In this chapter, we introduce two effective schemes for power control on
the uplink channel of LEO satellite systems. Both of these schemes are based
on the Doppler observed by mobile terminals on the downlink channel. For
LEO satellite systems, this Doppler is significant and is a smooth, S shaped
curve [4]. For effectively decoding information on the downlink channel,
mobile terminals must estimate and compensate for this Doppler. Hence, the
Doppler information is already available at mobile terminals.

Transmit power control schemes reported in the literature have been
broadly classified into two categories [6]: open-loop power control, in which
the mobile terminal monitors a pilot in the downlink channel and modifies
its transmit power accordingly, and feedback-loop power control, in which
messages in the downlink channel instruct the terminal to transmit at the
desired power level. The schemes proposed in this chapter are open-loop
power-control schemes.

Transmit permission control as a means for power control by reducing
interference due to excessive number of simultaneous transmissions was
independently introduced in [1] and [3] for LEO satellite systems. In [1], a
pilot signal transmitted in the downlink channel is used by mobile terminals
to determine their distance from the satellite. The Earth station permits only
those mobile terminals to transmit whose distance from the satellite is less
than a specified value. Geographically, this amounts to specifying a region
of eligibility (ROE) on the ground that is a circle with radius smaller than
that of the visibility footprint [1]. In [3], the ROEs are parallelograms
parallel to the ground trace of the satellite and centered at the sub-satellite
point. The ROEs in [3] were specified in terms of the Doppler-time curve
observed by mobile terminals.

The key advantages of the two power control schemes proposed here for
LEO satellite systems, with respect to the open-loop power control and
Jamalipour’s transmit permission control scheme [1], is that the schemes
proposed here accomplish power control with existing Doppler information
at mobile terminals, without requiring additional information such as a pilot
signal in the downlink channel. However, these schemes are specifically for
non-fading channels, and only compensate for path length variations. The
non-fading assumption is a proper simplification for high elevation angles in
LEO satellite systems [2, pg. 209]. For fading channels, the Doppler based
power control schemes proposed here can be supplemented with either open-
loop or feedback-loop power control schemes that compensate for the fast
fading characteristics of the channel. In this case, the Doppler based power
control schemes compensate for the relatively slow variation in distance to
the satellite.
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2. DOPPLER CHARACTERIZATION

For LEO satellites, the Doppler frequency at terminals exhibits a well-
behaved variation with time that can be characterized by the maximum
elevation angle from the terminal to the satellite during the visibility
window. This S-shaped variation is depicted in Figure 48 for maximum
elevation angles ranging from 11.4° to 90° degrees for a terminal located at
latitude 39° N and longitude 77° W. The satellite follows a circular orbit
(eccentricity=0) of altitude 1000 km and inclination 53°. The minimum
elevation angle for visibility is assumed to be 10°. Doppler information is
captured in terms of normalized Doppler shift, which is equal to (v/c), where
v is the relative velocity of the satellite with respect to the terminal, and c is
the speed of light. Time is expressed relative to the zero-Doppler instant.
The zero-Doppler instant is the time during the visibility window at which
the elevation angle from the terminal to the satellite is at its maximum value
and the satellite is at its closest approach to the terminal. The Doppler
frequency shift is shown only for the visibility duration of the satellite at the
terminal; the visibility duration increases as the maximum elevation angle to
the satellite increases.
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In [4], we developed analytic approximations to the Doppler-time curve
and we outlined a simple algorithm by which a mobile terminal determines
the maximum elevation angle to the satellite, and the zero-Doppler
instant, based on two Doppler and-Doppler rate measurements taken at
the beginning of the visibility window of the satellite. The instantaneous
elevation angle, from a mobile terminal to a satellite is given by [5,
Equation (3-4)]

where
radius of the Earth,

r radius of the satellite’s orbit,
central angle between the point on the Earth and the sub-satellite
point. This is given by [4, Equation (10)], i.e.,

where is the angular velocity
of the satellite in the ECF frame approximated by [4, Equation (9)]
and is given by [4, Equation (4)].

The distance to the satellite, d, is a function of the elevation angle to the
satellite and is given by [5, Equation (3-7)]

In Figure 49 we plot the instantaneous elevation angle with respect to
time from the zero-Doppler instant, for different values of and for the
satellite orbit parameters used for Figure 48. Thus, using the Doppler-time
estimation algorithm and the above equations, each mobile terminal
determines its distance to the satellite.
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3. DOPPLER BASED TRANSMIT POWER
CONTROL (DBTPOWC)

Let the desired received power level at the satellite from mobile terminals
be S. In a non-fading channel, the transmitted power of the i-th user should
be [l]

where is constant and is the distance of the i-th user from the satellite.
As stated in the previous section, the mobile terminal determines its distance
to the satellite from the Doppler-time curve and then transmits at the desired
level.
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4. DOPPLER BASED TRANSMIT PERMISSION
CONTROL (DBTPERMC)

In DBTPermC, the Earth station specifies an ROE on the ground such
that transmissions are allowed only from mobile terminals within the ROE.
The received power from these transmissions is within a specified range.
The ROEs are specified such that the received power at the satellite from all
the permitted mobiles is within a narrow range. From Equation (3), this can
be achieved by restricting the permitted mobiles to be at approximately the
same distance from the satellite. Since terminals with equal elevation angle
to the satellite are at the same distance from the satellite, the Earth station
specifies ROE in terms of a permitted range in the elevation angle. The
ROEs are now circular bands on the Earth’s surface centered at the sub-
satellite point. We show the ROEs for two ranges of permitted elevation
angle (30°,40°) and (60°,70°) in Figure 50. Mobile terminals determine their
instantaneous elevation angle from the Doppler-time curves, and transmit
only if their elevation angles are within the specified range.
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In DBTPermC, the mobile terminals may or may not use active transmit
power control. Using active transmit power control, such as DBTPowC,
would further improve performance.
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Chapter 7

DBMA Simulation Software

To aid the reader in the visualization of LEO satellite orbit geometry and
dynamics of the DBMA protocol, we have provided a small but instructive
set of MATLAB® simulation routines. This chapter, like the software, is
written to serve two types of users. For the busy reader who wishes simply
to run the simulations without particular interest in how they work, we
provide immediate instructions on how to load and use a set of
demonstration functions that are driven by a simple graphical user interface
(GUI). For the more interested reader, we describe the architecture of the
package and the mathematical algorithms implemented. We end by
providing a formal function reference that details the usage of each routine,
enabling those who might wish to advance the material in this book the
benefit of a few useful tools to aid the work.

1. LOADING AND USING THE DEMO SOFTWARE

The complete set of routines is available on CD-ROM provided with the
book. Alternatively, the software and any future updates can be accessed via
the Math Works Web site. Instructions for download are

ftp://ftp.mathworks.com/pub/books/bonanni

® MATLAB is a registered trademark of The MathWorks, Inc.
For MATLAB product information, please contact: The MathWorks, Inc., 3 Apple Hill Drive,

Natick, MA, 01760-2098, USA. Tel: 508-647-7000. Fax: 508-647-7101. E-mail:
info@mathworks.com. Web: www.mathworks.com.

Web:
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Unix login: ftp ftp.mathworks.com

Name: anonymous

Guest login ok, send your complete e-mail address

Password: (type in e-mail address)

cd /pub/books/bonanni

The routines have been tested with Versions 5.3.1, 6.0, and 6.1 of MATLAB.
To install the software, simply copy all the provided files to a convenient

folder. Upon startup of MATLAB, use the path command to ensure that the
selected folder is included in the search path. Then enter a demo command

to bring up a GUI from which an animation
can be launched.

The following animations are included in the initial release:
- Satellite ground track animation. This demo

animates the ground track of a typical LEO satellite. The chosen
trajectory is an inclined circular orbit at 1000 km altitude.

- Visibility-based coverage region animation. This
demo displays and animates the visibility-based coverage region
of a typical LEO satellite. Visibility from points on the Earth's
surface is established if the satellite appears above a given
elevation angle in the sky. The satellite in this demo follows an
inclined circular orbit at 1000 km altitude.

- DBMA-based coverage region animation. This
demo displays and animates the DBMA-based coverage region of
a typical LEO satellite. The "region of eligibility" for DBMA
coverage is symmetric about the sub-satellite point and is given
by the intersection of three larger regions:

(1) Visibility cone around the sub-satellite point – the
region in which the elevation to the satellite from the
ground exceeds a given angle. Nodes may transmit at a
given time only if the satellite is above this elevation.
(2) Orbital swath – the region defined by a lower bound
to the maximum elevation angle to the satellite. Only
nodes that have observed, or will observe, an elevation
angle greater than the given value upon closest passage of
the satellite during the current orbital cycle are permitted
to transmit.
(3) Orbital time window – the region observing closest
passage of the satellite within a given time window. Only
nodes that have observed (will observe) maximum

(demo1, demo2, demo3, . . . )

demo1

demo2

demo3
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elevation within this interval from the given time are
permitted to transmit.

The satellite in this demo follows an inclined circular orbit at
1000 km altitude.

2. OVERVIEW OF ROUTINES

The demos described above are built on a platform of satellite oriented
routines and some supporting math functions that supplement the basic
MATLAB command set. The most direct reliance is on two high-level
routines, walker and dbmacover, which compute the satellite orbits and
the DBMA coverage regions displayed dynamically in the animations.
Function walker generates orbit trajectories for a Walker satellite
constellation, which describes a pattern of identical circular orbits regularly
spaced about a series of planes at a fixed inclination. Function dbmacover
computes the geographic “region of eligibility” defined by the DBMA
protocol of Chapter 5, given parameters specifying the visibility cone, the
orbital swath, and the orbital time window.

The satellite oriented support functions on which these high-level
routines are based are next listed and described:

– Calculates the angular distance (central angle)
between two terrestrial surface points specified by latitude and
longitude.
drawmap – Draws a map using a rectangular grid projection
(latitude versus longitude). A map is defined as a sequence of
contiguous latitude-longitude pairs delimited by “pen-up”
indications. Example maps are provided in the MAT-file
maps.mat. Included are maps representing Earth land-water
boundaries, U.S. state borders, and a grid constructed from parallels
of latitude and meridians of longitude.

– Transforms a position/velocity trajectory from Earth-
centered-inertial (ECI) to Earth-centered-fixed (ECF) coordinates.

– Computes a latitude-longitude sequence representing
the great circle arc connecting two terrestrial surface points.

– Calculates the Greenwich right ascension for a given
Julian date and time. This is used to compensate for Earth rotation
in transformations between ECI and ECF coordinates.

– Computes a latitude-longitude sequence representing the
intersection of two geographic regions, themselves defined by
latitude-longitude sequences.

arcangle

eci2ecf2

greatarc

grnwich

intreg
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– Transforms Keplerian to ECI coordinates. Keplerian
coordinates are convenient for specification of elliptical orbits;
conversion to ECI enables Cartesian representation of position and
velocity.

 – Calculates longitude, latitude, and range from a
Cartesian position specification (ECI or ECF). Opposite of

– Calculates the orbital period as a function of semi-
major axis for satellites in orbit about Earth.

– Computes a latitude-longitude sequence describing
the perimeter of the region on Earth’s surface visible from a given
position in space. Visibility is defined by the criterion that the
elevation to the satellite from the ground exceeds a given angle.

– Calculates Cartestian position (ECI or ECF) given
longitude, latitude, and range. Opposite of lonlat.

– Converts a date-time string specification to a real-valued
Julian time in days, suitable for use in astronomical formulas.

– Generates a latitude-longitude sequence defining the
swath of visibility for an orbit. Visibility from a given ground point
is defined by the criterion that the maximum elevation reached by
the satellite on the current pass exceeds a given angle.

– Calculates unit vectors defining local bearings (East,
North, and Zenith) for a given latitude and longitude on Earth.

Additionally, the satellite routines make use of the following
mathematical support functions:

– Principal value in degrees. Converts angles outside the
range degrees to the equivalent angle in that range.

– Symmetric principal value in degrees. Converts angles
outside the range degrees to the equivalent angle in that
range.

– Principal value in radians. Converts angles outside the
range radians to the equivalent angle in that range.

– Symmetric principal value in radians. Converts angles
outside the range radians to the equivalent angle in that
range.

– Computes the 3x3 matrix representing a rotation about
the x-axis by a given angle.

– Computes the 3x3 matrix representing a rotation about
the y-axis by a given angle.

kepl2eci

lonlat

posllr.

orbitper

perimvis

posllr

str2jt

swath

ucompass

pvdeg

rot3x

pvdegs

pvrad

pvrads

rot3y
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– Computes the 3x3 matrix representing a rotation about
the z-axis by a given angle.

– Rotates a 3-space trajectory about the x-axis.
– Rotates a 3-space trajectory about the y-axis.
– Rotates a 3-space trajectory about the z-axis.

3. FUNCTION REFERENCE

ARCANGLE - Angular distance between surface points.
angle = arcangle(elon1,nlat1,elon2,nlat2)

Calculates the angular distance between surface points
(elon1,nlat1) and (elon2,nlat2), along the great arc
connecting the points. Inputs 'elon1' and 'elon2' are
in east longitude degrees and 'nlat1' and 'nlat2' are in
north latitude degrees. These may be scalars or column
vectors of uniform length. Output 'angle' (scalar or
vector, matching the inputs) is returned in degrees.

P.G. Bonanni
6/29/00

DBMACOVER - Coverage region using DBMA protocol.
[elon,nlat] =
dbmacover(xECF,vECF,index,dt,elev1,elev2,tmax)

Calculates a longitude and latitude sequence (elon,nlat)
defining the boundary of the region within which tags
are allowed to communicate by the DBMA protocol. This
"region of eligibility," computed for a specific instant
in time, is symmetric about the sub-satellite point and
is given by the intersection of three larger regions:

1)

2)

Visibility cone around the sub-satellite point - the
region in which the elevation to the satellite from
the ground exceeds a given angle, specified by
'elev1' in degrees. Nodes may transmit only if the
satellite is above this elevation at the current
time.
Orbital swath - the region defined by a lower bound
to the maximum elevation angle to the satellite,
specified by 'elev2' in degrees. Only nodes that
have observed, or will observe, an elevation angle

rot3z

rotate3x

rotate3z

rotate3y



3)

greater than this value upon closest passage of the
satellite during the current orbital cycle are
permitted to transmit.
Orbital time window - the region observing closest
passage of the satellite within a given time window,
whose half width is specified by 'tmax' in seconds.
Only nodes that have observed (or will observe)
maximum elevation within +/- this interval from the
current time are permitted to transmit.

Parameters:
xECF -

vECF -

index -

dt
elev1-
elev2-

tmax -

Earth-centered-fixed satellite location [x,y,z]
in km
Earth-centered-fixed satellite velocity
[vx,vy,vz] in km/sec
index into xECF (and vECF) defining the current
time

- time between orbit samples, in sec
minimum current visibility angle, in degrees
minimum visibility at closest passage, in
degrees
maximum time preceding/following closest
passage, in sec

NOTE: A negative value for 'tmax' specifies use of the
full time window during which the visibility and maximum
elevation criteria are met.

Units for (elon,nlat) are east longitude degrees and
north latitude degrees, respectively.

Irfan Ali / P.G. Bonanni
7/10/00

DEMO1 - Satellite ground track animation.
demo1(action)

This demo animates the ground track of a typical LEO
satellite. The chosen trajectory is an inclined
circular orbit at 1000 km altitude.

Possible button actions:
'initialize' - initialize UI and graphics
'start' - start animation
'stop' - stop animation
'info' - display help info
'close' - close graphics window
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P.G. Bonanni / Irfan Ali 7/17/00

DEMO2 - Visibility-based coverage region animation.
demo2(action)

This demo displays and animates the visibility-based
coverage region of a typical LEO satellite. Visibility
from points on the Earth's surface is established if the
satellite appears above a given elevation angle in the
sky. The satellite in this demo follows an inclined
circular orbit at 1000 km altitude.

Possible button actions:
'initialize' - initialize UI and graphics
'start' - start animation
'stop' - stop animation
'info' - display help info
'close' - close graphics window

P.G. Bonanni / Irfan Ali 7/18/00

DEMO3 - DBMA-based coverage region animation.
demo3(action)

This demo displays and animates the DBMA-based coverage
region of a typical LEO satellite. The "region of
eligibility" for DBMA coverage is symmetric about the
sub-satellite point and is given by the intersection of
three larger regions:

1)

2)

3)

Visibility cone around the sub-satellite point - the
region in which the elevation to the satellite from
the ground exceeds a given angle, given by 'elev1' in
degrees. Nodes may transmit at a given time only if
the satellite is above this elevation.
Orbital swath - the region defined by a lower bound
to the maximum elevation angle to the satellite,
given by 'elev2' in degrees. Only nodes that have
observed, or will observe, an elevation angle greater
than this value upon closest passage of the satellite
during the current orbital cycle are permitted to
transmit.
Orbital time window - the region observing closest
passage of the satellite within a given time window,
given by 'tmax' in seconds. Only nodes that have



observed (will observe) maximum elevation within this
interval from the given time are permitted to
transmit. (NOTE: A negative value for 'tmax'
specifies use of the full time window during which
the visibility criteria above are met.)

The satellite in this demo follows an inclined circular
orbit at 1000 km altitude.

Possible button actions:
'initialize' - initialize UI and graphics
'start' - start animation
'stop' - stop animation
'info' - display help info
'close' - close graphics window

P.G. Bonanni / Irfan Ali 7/17/00

DRAWMAP - Draw a map using a rectangular grid
projection.
handle = drawmap(map[,range,s])

Draws that portion of 'map' which lies within the
geographical area specified by 'range', where 'map' is
an [N,2] matrix of contiguous (elon,nlat) pairs
separated by "pen-up" indicators (i.e., the pair "NaN
NaN"). Units for (elon,nlat) are east longitude degrees
and north latitude degrees, respectively. Parameter
'range' is a 1x4 vector whose format is like the MATLAB
'axis' parameter with x range referring to east
longitude degrees and y range to north latitude degrees.
Parameter 's' specifies the line type for the plot. The
output of the function is a handle to the resulting
plot.

Other usage modes:
1)

2)

3)

drawmap(map)
displays the full map using a solid line type.
drawmap(map,range)
displays the specified range using a solid line type.
drawmap(map,s)
displays the full map using the specified line type.

P.G. Bonanni
2/7/95
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ECI2ECF2 - Pos/ve1 ECI to ECF transformation.
[xECF,vECF] = eci2ecf2(JT,xECI,vECI)
xECF = eci2ecf2(JT,xECI)

Converts positions x and velocities v from ECI to ECF,
given Julian time JT in days.

Parameters:
JT - Nx1 vector of Julian times
xECI - Nx3 ECI position trajectory
vECI - Nx3 ECI velocity trajectory

ECF outputs 'xECF' and 'vECF' are Nx3. Input parameter
'vECI' may be omitted if only a position transformation
is desired.

P.G. Bonanni
9/28/94

GREATARC - Great arc connecting two surface points.
[elon,nlat] = greatarc(elon1,nlat1,elon2,nlat2,npoints)

Generates longitude (deg E) and latitude (deg N)
coordinates representing the great arc connecting points
(elon1,nlat1) and (elon2,nlat2). Parameter 'npoints'
specifies the number of points on the arc.

P.G. Bonanni
8/26/94

GRNWICH - Greenwich right ascension.
az = grnwich(JT)

Computes the right ascension of Greenwich (rad) given
Julian Time vector 'JT' (days). (Algorithm from Meeus,
J., Astronomical Algorithms, p. 83-85.)

P.G. Bonanni (adapted from code by Craig Bennett)
10/31/94

INTREG - Intersection of two geographic regions.
[elon,nlat] = intreg(elon1,nlat1,elon2,nlat2)

Given two geographic regions bordered by the closed
sequences (elon1,nlat1) and (elon2,nlat2) where 'elon1'
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and 'elon2’ are vectors of east longitude degrees, and
’nlat1’ and ’nlat2’ are vectors of north latitude
degrees, calculate the region defined by the
intersection. Assumes close sampling of the border
contours, and that both the input regions and the
intersection region have the property that great circle
arcs directed outward from their geographic centers
intersect their boundaries only once.

P.G. Bonanni (adapted from code by Irfan Ali)
7/10/00

LONLAT - Calculate longitude, latitude, and range.
[elon,nlat,range] = lonlat(x)

Given an Nx3 vector 'x' of Earth-fixed Cartesian
positions, calculate Nx1 input vectors specifying
longitude, latitude, and range. Longitude 'elon' is
specified in east degrees and latitude in north degrees.
Ouput ’range’ has units to match those of input
trajectory ’x’.

P.G. Bonanni
6/28/00

P.G. Bonanni
3/10/95

KEPL2ECI - Keplerian to ECI transformation.
[xECI,vECI] = kepl2eci(a,e,i,o,w,v)

Calculates the Nx3 position trajectory ’xECI' and Nx3
velocity trajectory ’vECI’ in Earth-centered-inertial
coordinates given Keplerian orbit element Nx1 sequences
(a,e,i,o,w,v). Scalar values for any of the inputs are
acceptable. Units for ’xECI’ and ’vECI’ are km and
km/sec, respectively.

The Keplerian elements are:
semimajor axis (km)
eccentricity (unitless)
inclination (rad)
right ascension of the
ascending node (rad)
argument of perigee (rad)
true anomaly (rad)

a :
e :
i :
o :

w :
v :
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ORBITPER - Calculate period for terrestrial orbits.
T = orbitper(a)

Calculates orbital period as a function of semi-major
axis for a body in Earth orbit. The semi-major axis 'a'
is specified in km (vector input is permitted). Orbit
period is returned in units of seconds.

P.G. Bonanni
3/7/95

PERIMVIS - Calculate perimeter of visible ground region.
[elon,nlat] = perimvis(x [, elev], npoints)

Calculates a length 'npoints' sequence of (elon,nlat)
pairs that define the perimeter of the region on the
Earth's surface visible from a given position 'x' in
space. Visibility is defined by the criterion that the
elevation to the point 'x' from the ground is greater
than or equal to angle 'elev'. This angle is given in
degrees, and defaults to zero if omitted from the
argument list. The position 'x' is specified in km with
respect to Earth-centered coordinates. Units for 'elon'
and 'nlat' are east longitude degrees and north latitude
degrees, respectively.

P.G. Bonanni
6/22/00

POSLLR - Calculate position given longitude, latitude,
and range.
x = posllr(elon,nlat [,range])

Calculates an Nx3 vector 'x' of Earth-fixed Cartesian
positions given Nx1 input vectors specifying longitude,
latitude, and range. Longitude 'elon' is specified in
east degrees and latitude in north degrees. If 'range'
parameter is omitted, Earth radius is assumed.

P.G. Bonanni
3/7/95

PVDEG - Principal value in degrees.



angle1 = pvdeg(angle)

This function converts angles outside the range [0,360]
to their equivalent in that range. Both scalar and
matrix inputs are valid.

P.G. Bonanni
10/31/94

PVDEGS - Symmetric principal value in degrees.
angle1 = pvdegs(angle)

This function converts angles outside the range [-
180,180] to their equivalent in that range. Both scalar
and matrix inputs are valid.

P.G. Bonanni
10/31/94

PVRAD - Principal value in radians.
angle1 = pvrad(angle)

This function converts angles outside the range [0,2*pi]
to their equivalent in that range. Both scalar and
matrix inputs are valid.

P.G. Bonanni
11/10/94

PVRADS - Symmetric principal value in radians.
angle1 = pvrads(angle)

This function converts angles outside the range [-pi,pi]
to their equivalent in that range. Both scalar and
matrix inputs are valid.

P.G. Bonanni
11/10/94

ROT3X - 3-space rotation matrix - x.
R = rot3x(theta)

Computes the 3x3 matrix representing a rotation about
the x-axis by angle ‘theta’.
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P.G. Bonanni
11/10/94

ROT3Y - 3-space rotation matrix - y.
R = rot3y(theta)

Computes the 3x3 matrix representing a rotation about
the y-axis by angle ‘theta’.

P.G. Bonanni
11/10/94

ROT3Z - 3-space rotation matrix - z.
R = rot3z(theta)

Computes the 3x3 matrix representing a rotation about
the z-axis by angle ‘theta’.

P.G. Bonanni
11/10/94

ROTATE3X - Rotate a 3-space trajectory about the x-axis.
[x1,y1,z1] = rotate3x(x,y,z,theta)

Rotates the 3-space trajectory [x,y,z] by an amount
'theta' radians about the x-axis, where 'theta' is a
vector equal in size to 'x', 'y', and 'z'. Scalar
inputs are extended to vectors if needed.

P.G. Bonanni
3/5/96

ROTATE3Y - Rotate a 3-space trajectory about the y-axis.
[x1,y1,z1] = rotate3y(x,y,z,theta)

Rotates the 3-space trajectory [x,y,z] by an amount
'theta' radians about the y-axis, where 'theta' is a
vector equal in size to 'x', 'y', and 'z'. Scalar
inputs are extended to vectors if needed.

P.G. Bonanni
3/5/96



ROTATE3Z - Rotate a 3-space trajectory about the z-axis.
[x1,y1,z1] = rotate3z(x,y,z,theta)

Rotates the 3-space trajectory [x,y,z] by an amount
’theta’ radians about the z-axis, where ’theta’ is a
vector equal in size to ’x’, ’y’, and ’z’. Scalar
inputs are extended to vectors if needed.

P.G. Bonanni
3/5/96

STR2JT - Convert date-time string to Julian Time.
jt = str2jt(line)

Converts a date-time string to Julian time, in days.
Julian days are a continuous count of days starting from
noon Universal Time on January 1 of the year 4713 BC, a
reference useful in astronomical formulas. Input ’line’
is a string variable having any of the following
formats:

FORMAT

'dd-mmm-yyyy HH:MM:SS'
'dd-mmm-yyyy'
'mm/dd/yy'
'mm/dd'
'mmmyy'
'HH:MM:SS'
'HH:MM:SS PM'
'HH:MM'
'HH:MM PM'

EXAMPLE

01-Mar-1995 15:45:17
01-Mar-1995
03/01/95
03/01
Mar95
15:45:17
3:45:17 PM
15:45
3:45 PM

(Variations on date and time can be combined.)

P.G. Bonanni
7/19/00

SWATH - Calculate swath of visibility for an orbit.
[elon,nlat] = swath(xECF,vECF [,elev])

Generates a sequence of (elon,nlat) pairs that define
the swath of coverage for a satellite with the given
orbit. Coverage is defined by the criterion that the
elevation to the satellite from the ground is greater
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than or equal to angle ’elev’ in degrees. Units for
’elon’ and ’nlat’ are east longitude degrees and north
latitude degrees, respectively. The NX3 orbital
position trajectory ’xECF’ and velocity trajectory
’vECF’ are specified in km and km/sec respectively, with
respect to Earth-centered-fixed coordinates. Elevation
’elev’ may be scalar or Nx1 corresponding to the orbit
length. If omitted entirely, zero is assumed.

P.G. Bonanni (adapted from code by Irfan Ali)
6/29/00

UCOMPASS - Calculate compass directions.
[east,north,zenith] = ucompass(elon0,nlat0)

Calculates 3x1 unit vectors ’east’, ’north’, and
’zenith’ representing the corresponding local directions
for a given longitude ’elon0’ and latitude ’nlat’
expressed in the ECF frame. Input units are degrees
east and degrees north, respectively.

P.G. Bonanni
3/8/95

WALKER - Generate a Walker satellite constellation.
[XECI,VECI] = walker(nsat,radius,inclin,nplanes,...

harmonic,ran0,anom0,time)

Generates orbit trajectories XECI =
{xECI1,xECI2,...,xECInsat} and corresponding velocity
trajectories VECI = {vECI1,vECI2,...,vECInsat} for a
Walker satellite constellation orbiting the Earth at
’radius’ km. The Walker constellation is specified by
the number of satellites ’nsat’, inclination angle
’inclin’ (in degrees), number of planes ’nplanes’, and
harmonic factor ’harmonic’. Parameter ’ran0’ specifies
the right ascension of the ascending node (in degrees),
and ’anom0’ the initial true anomaly (in degrees), for
the first satellite in the constellation. Vector ’time’
(in seconds) defines the temporal spacing and duration
of the trajectory points. (The initial value time(1) is
referenced to ’anom0’.)

P.G. Bonanni (adapted from code by Irfan Ali)
6/28/00
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