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Introduction 

“This is a synopsis of my book,” Tom said abstractly. 

A s Sir Arthur C. Clarke has noted, any significantly advanced technol-
ogy is indistinguishable from magic. The advances made in com-
puter technology in the past two decades have been dramatic and 

can qualify as nearly magical. The computer on my desk today is far more 
powerful than that which was available to the entire national defense sys-
tem just 30 years ago. Software for traders, however, has not kept pace. 
Most of the trading tools available today are neither different from nor 
more complex than the simple pencil-and-paper calculations that can be 
achieved through the use of mechanical adding machines. True, these cal-
culations are now made with blinding speed and presented in colorful and 
eye-grabbing displays, but the power and usefulness of the underlying pro-
cedures have not changed. If anything, the relative power of the calcula-
tions has diminished because the increased speed of information exchange 
and increased market capitalization have caused fundamental shifts in the 
technical character of the market. These shifts include increased volatility 
and shorter periods for the market swings. 

Cybernetic Analysis for Stocks and Futures promises to bring magic to 
the art of trading by introducing wholly new digital signal-processing tech-
niques. The application of digital signal processing offers the advantage of 
viewing old problems from a new perspective. The new perspective gained 
by digital signal processing has led me to develop some profoundly effective 
new trading tools. The advances in trading tools, along with the continuing 
advancements in hardware capabilities, virtually ensure the continued ap-
plication of digital signal processing in the future. Traders who master 
the new concepts, therefore, will find themselves at a great advantage when 

xi 
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xii Introduction 

approaching the volatile market of the twenty-first century. If you like code, 
you will love this book. Every new technique, indicator, and automatic trad-
ing system is defined in exquisite detail in both EasyLanguage code for use 
in TradeStation and in eSignal Formula Script (EFS) code. They are also 
available as compiled DLLs to be run in NeuroShell trader. 

Chapter 1 starts the wizardry off with a bang by challenging the con-
ventional wisdom that market prices have a Gaussian probability density 
function (PDF). Just think about it. Do prices really have several events 
separated by a standard deviation from the mean across the screen as you 
would expect with a Gaussian PDF? Absolutely not! If the PDF is not 
Gaussian, then attaching significance to the one-sigma points in trading 
systems is, at best, just plain wrong. I show you how to establish an approx-
imate Gaussian PDF through the application of the Fisher transform. 

I derive a new zero-lag Instantaneous Trendline in Chapter 2. By divid-
ing the market into a trend component and a cycle component, I create a 
zero-lag cycle oscillator from the derivation. These results are put to work 
by designing an automatic trend-following trading strategy in Chapter 3 
and an automatic cycle-trading strategy in Chapter 4. 

Several new oscillators are then derived. These include the CG 
Oscillator in Chapter 5 and the Relative Vigor Index (RVI) in Chapter 6. The 
performance of the Cyber Cycle Oscillator, the CG Oscillator, and the RVI 
are compared in Chapter 7. Noting that a favorite technical analysis tool is 
the Stochastic Relative Strength Index (RSI), where the RSI curve is sharp-
ened by taking the Stochastic of it, I then show you in Chapter 8 how to 
enhance the oscillators by taking the Stochastic of them and also applying 
the Fisher transform. 

In Chapter 9 I give an all-new exciting method of measuring market 
cycles. Using the Hilbert transform, a fast-reacting method of measuring 
cycles is derived. The validity and accuracy of these measurements are 
then demonstrated using several stressing theoretical waveforms. In 
Chapter 10 I then show you how to use the measured Dominant Cycle 
length to make standard indicators automatically adaptive to the measured 
Dominant Cycle. This adaptation makes good indicators stand out and 
sparkle as outstanding indicators. In Chapter 11, the cycle component 
of the Dominant Cycle is synthesized from the cycle measurement and 
displayed as the Sinewave Indicator. The advantages of the Sinewave 
Indicator are that it can anticipate cyclic turning points and that it is not 
subject to whipsaw trades when the market is in a trend. I continue the 
theme of adapting to the measured Dominant Cycle in Chapter 12 by show-
ing you how to use the measurement to design an automatic trend-
following trading strategy. The performance of the strategies I disclose is 
on par with or exceeds that of commercially available strategies. 
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Chapter 13 provides you with several types of filters that give vastly 
superior smoothing with a minimum penalty in lag. Computer code is pro-
vided for these filters, as well as tables of coefficient values. Another way 
to obtain superior smoothing is through the use of Laguerre polynomials. 
Laguerre polynomials enable smoothing to be done using a very short 
amount of data, as I explain in Chapter 14. 

One of the problems with using backtests of automatic trading strate-
gies is that they don’t necessarily predict future performance. I describe a 
technique in Chapter 15 that will enable you to use the theory of probabil-
ity to visualize how your trading strategy could perform. It also illustrates 
what historical parameters are important to make this assessment. In 
Chapter 16 I show you how to generate leading indicators, along with the 
penalty in increased noise that you must accept when these indicators are 
used. I conclude in Chapter 17 by showing you how to simplify the coding 
of simple moving averages (SMAs). 

Many of the digital signal-processing techniques described in this book 
have been known and used in the physical sciences for many years. For 
example, Maximum Entropy Spectral Analysis (MESA) algorithm was orig-
inally developed by geophysicists in their exploration for oil. The small 
amount of data obtainable from seismic exploration demanded a solution 
using a short amount of data. I successfully adapted this approach and pop-
ularized it for the measurement of market cycles. More recently, the use of 
digital signal processing has exploded in consumer electronics, making 
devices such as CDs and DVDs possible. Today, complete radio receivers 
are constructed without the use of analog components. As we expand DSP 
use by introducing it to the field of trading, we will see that digital signal 
processing is an exciting new field, perfect for technically oriented traders. 
It allows us to generalize and expand the use of many traditionally used 
indicators as well as achieve more precise computations. 

I begin each chapter with a Tom Swifty. Perhaps this is a testament to 
my adolescent sense of humor, but the idea is to anchor the concept of the 
chapter in your mind. A Tom Swifty is a play on words that follows an 
unvarying pattern and relies for its humor on a punning relationship 
between the way an adverb describes the speaker and at the same time 
refers significantly to the import of the speaker’s statement, as in, “I like 

fuzzy bunnies,” said Tom acutely. The combinations are endless. Since 
this book contains magic, perhaps I should have selected Harry Potter as a 
hero rather than Tom Swift. 

Throughout this book my objective is to not only describe new tech-
niques and tools but also to provide you the means to make your trading 
more profitable and therefore more pleasurable. 
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CHAPTER 1 

The Fisher 
Transform 

“I don’t see any chance of a market recovery,” 

said Tom improbably. 

The focus of my research for more than two decades has been 
directed toward applying my background in engineering and signal 
processing to the art of trading. The goal of this book is to share the 

results of this research with you. Throughout the book I will demonstrate 
new methods for technical analysis of stocks and commodities and ways to 
code them for maximum efficiency and effectiveness. I will discuss meth-
ods for modeling the market to help categorize market activity. In addition 
to new indicators and automatic trading systems, I will explain how to turn 
good-performing traditional indicators into outstanding adaptive indica-
tors. The trading systems that subsequently evolve from this analysis will 
seriously challenge, and often exceed, the consistent performance and 
profit-making capabilities of most commercially available trading systems. 
While much of what is covered in this book breaks new ground, it is not 
simply innovation for innovation’s sake. Rather, it is intended to challenge 
conventional wisdom and illuminate the shortcomings of many prevailing 
approaches to systems development. 

In this chapter we plunge right into an excellent example of challenging 
conventional wisdom. I know at least a dozen statistically based indicators 
that reference “the one-sigma point,” “the three-sigma point,” and so on. 
Sigma is the standard deviation from the mean. In order to have a standard 
deviation from the mean, one must know the probability density function 
(PDF). A Gaussian, or Normal, PDF is almost universally assumed. A 
Gaussian PDF is the familiar bell-shaped curve used to describe IQ distribu-
tion in the population and a host of other statistical descriptions. The 
Gaussian PDF has long “tails” that describe events that have a wide deviation 

1 
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from the mean with relatively low probability. With a Gaussian PDF, 68.26 
percent of all occurrences fall within plus or minus one standard deviation 
from the mean, 95.44 percent of occurrences fall within plus or minus two 
standard deviations, and 99.73 percent of all occurrences fall within plus or 
minus three deviations. In other words, the majority of all cases fall within 
the one-sigma “boundary” with a Gaussian PDF. If an event falls outside the 
one-sigma level, then certain inferences have been drawn about what can 
happen in the future. 

The real question here is whether the Gaussian PDF can be used to reli-
ably describe market activity. You can easily answer that question yourself. 
Just think about the way prices look on a bar chart. Do you see only 68 per-
cent of the prices clustered near the mean price? That is, do you see 32 per-
cent of the prices separated by more than one deviation from the mean? 
And, do you see prices spike away from the mean nearly 5 percent of the 
time by two standard deviations? How often do you even see price spikes 
at all? If you don’t see these deviations, a Gaussian PDF is not a good 
assumption. 

The Fisher transform is a simple mathematical process used to convert 
any data set to a modified data set whose PDF is approximately Gaussian. 
Once the Fisher transform is computed, we can then analyze the trans-
formed data set in terms of its deviation from the mean. 

The Commodity Channel Index (CCI), developed by Donald Lambert, 
is an example of reliance on the Gaussian PDF assumption. The equation to 
compute the CCI is 

Price − Moving Average
CCI = ��� (1.1)

0.015 * Deviation 

Deviation is computed from the difference of prices and moving aver-
age values over a period. The period of the moving average over which the 
computation is done is selectable by the user. The CCI can be viewed as the 
current deviation normalized to the standard deviation. But what gives 
with the 0.015 term? Well, conveniently enough, the reciprocal of 0.015 is 
66.7, which is close enough to one standard deviation of a Gaussian PDF 
for most technical analysis work. The premise is that if prices exceed a 
standard deviation, they will revert to the mean. Therefore, the common 
rules are to sell if the CCI exceeds +100 and buy if the CCI is less than −100. 
Needless to say, the CCI can be improved substantially through the use of 
the Fisher transform. 

Suppose prices behave as a square wave. If you tried to use the price 
crossing a moving average as a trading system, you would be destined for 
failure because the price has already switched to the opposite value by the 
time the movement is detected. There are only two price values. Therefore, 
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FIGURE 1.1 The Probability Distribution of a Square Wave Has Only Two Values 

the probability distribution is 50 percent that the price will be at one value 
or the other. There are no other possibilities. The probability distribution of 
the square wave is shown in Figure 1.1. Clearly, this probability function 
does not remotely resemble a Gaussian probability distribution. 

There is no great mystery about the meaning of a probability density or 
how it is computed. It is simply the likelihood the price will assume a given 
value. Think of it this way: Construct any waveform you choose by arrang-
ing beads strung on a series of parallel horizontal wires. After the wave-
form is created, turn the frame so the wires are vertical. All the beads will 
fall to the bottom, and the number of beads on each wire will stack up to 
demonstrate the probability of the value represented by each wire. 

I used a slightly more sophisticated computer code, but nonetheless 
the same idea, to create the probability distribution of a sinewave in Figure 
1.2. In this case, I used a total of 10,000 “beads.” This PDF may be surpris-
ing, but if you stop and think about it, you will realize that most of the sam-
pled data points of a sinewave occur near the maximum and minimum 
extremes. The PDF of a simple sinewave cycle is not at all similar to a 
Gaussian PDF. In fact, cycle PDFs are more closely related to those of a 
square wave. The high probability of a cycle being near the extreme values 
is one of the reasons why cycles are difficult to trade. About the only way 
to successfully trade a cycle is to take advantage of the short-term 
coherency and predict the cyclic turning point. 

The Fisher transform changes the PDF of any waveform so that the 
transformed output has an approximately Gaussian PDF. The Fisher trans-
form equation is 

1 + x 
y = 0.5 * ln � (1.2)� 1 − x � 

Where x is the input 
y is the output 
ln is the natural logarithm 
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FIGURE 1.2 Sinewave Cycle PDF Does Not Resemble a Gaussian PDF 

The transfer function of the Fisher transform is shown in Figure 1.3. 
The input values are constrained to be within the range −1 < X < 1. 

When the input data is near the mean, the gain is approximately unity. For 
example, go to x = 0.5 in Figure 1.3. There, the Y value is only slightly larger 
than 0.5. By contrast, when the input approaches either limit within the 

FIGURE 1.3 The Nonlinear Transfer of the Fisher Transform Converts Inputs (x Axis) to 
Outputs (y Axis) Having a Nearly Gaussian PDF 
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FIGURE 1.4 The Fisher-Transformed Sinewave Has a Nearly Gaussian PDF Shape 

range, the output is greatly amplified. This amplification accentuates the 
largest deviations from the mean, providing the “tail” of the Gaussian PDF. 
Figure 1.4 shows the PDF of the Fisher-transformed output as the familiar 
bell-shaped curve, compared to the input sinewave PDF. Both have the 
same probability at the mean value. The transformed output PDF is nearly 
Gaussian, a radical change from the sinewave PDF. 

I measured the probability distribution of U.S. Treasury Bond futures 
over a 15-year span from 1988 to 2003. To make the measurement, I created 
a normalized channel 10 bars long. The normalized channel is basically the 
same as a 10-bar Stochastic Indicator. I then measured the price location 
within that channel in 100 bins and counted up the number of times the 
price was in each bin. The results of this probability distribution measure-
ment are shown in Figure 1.5. This actual probability distribution more 
closely resembles the PDF of a sinewave rather than a Gaussian PDF. I then 
increased the length of the normalized channel to 30 bars to test the hypoth-
esis that the sinewave-like probability distribution is only a short-term phe-
nomenon. The resulting probability distribution is shown in Figure 1.6. The 
probability distributions of Figures 1.5 and 1.6 are very similar. I will leave it 
to you to extend the probability analysis to any market of your choice. I pre-
dict you will get substantially similar results. 

So what does this mean for trading? If the prices are normalized to fall 
within the range from −1 to +1 and subjected to the Fisher transform, 
extreme price movements are relatively rare events. This means the turn-
ing points can be clearly and unambiguously identified. The EasyLanguage 
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FIGURE 1.5 Probability Distribution of Treasury Bond Futures in a 10-Bar Channel over 
15 Years 

FIGURE 1.6 Probability Distribution of Treasury Bond Futures in a 30-Bar Channel over 
15 Years 



c01.qxd  2/2/04  10:43 AM  Page 7

7 The Fisher Transform 

Inputs: Price((H+L)/2), 
Len(10); 

Vars: MaxH(0), 
MinL(0), 
Fish(0); 

MaxH = Highest(Price, Len);

MinL = Lowest(Price, Len);


Value1 = .5*2*((Price - MinL)/(MaxH - MinL) - .5) 

+ .5*Value1[1];

If Value1 > .9999 then Value1 = .9999;

If Value1 < -.9999 then Value1 = -.9999;


Fish = 0.25*Log((1 + Value1)/(1 - Value1)) + .5*Fish[1];


Plot1(Fish, “Fisher”);

Plot2(Fish[1], “Trigger”);


FIGURE 1.7 EasyLanguage Code to Normalize Price to a 10-Day Channel and 
Compute Its Fisher Transform 

code to do this is shown in Figure 1.7 and the eSignal Formula Script (EFS) 
code is shown in Figure 1.8. Value1 is a function used to normalize price 
within its last 10-day range. The period for the range is adjustable as an 
input. Value1 is centered on its midpoint and then doubled so that Value1 
will swing between the −1 and +1 limits. Value1 is also smoothed with an 
exponential moving average whose alpha is 0.5. The smoothing may allow 
Value1 to exceed the 10-day price range, so limits are introduced to pre-
clude the Fisher transform from blowing up by having an input value larger 
than unity. The Fisher transform is computed to be the variable “Fish”. 
Both Fish and Fish delayed by one bar are plotted to provide a crossover 
system that identifies the cyclic turning points. 
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/*****************************************************

Title: Fisher Transform

*****************************************************/


function preMain() {

setStudyTitle(“Fisher Transform”);

setCursorLabelName(“Fisher”, 0);

setCursorLabelName(“Trigger”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);


setDefaultBarThickness(2, 0);

setDefaultBarThickness(2, 1);


}


var Value1 = null;

var Value1_1 = 0;

var Fish = null;

var Fish_1 = 0;

var vPrice = null;

var aPrice = null;


function main(nLength) {

var nState = getBarState();


if (nLength == null) nLength = 10;

if (aPrice == null) aPrice = new Array(nLength);


if (nState == BARSTATE_NEWBAR && vPrice != null) {

aPrice.pop();

aPrice.unshift(vPrice);

if (Value1 != null) Value1_1 = Value1;

if (Fish != null) Fish_1 = Fish;


}


vPrice = (high() + low()) / 2;

aPrice[0] = vPrice;


if (aPrice[nLength-1] == null) return;


var MaxH = high();

var MinL = low();

var temp;


FIGURE 1.8 EFS Code to Normalize Price to a 10-Day Channel and Compute Its Fisher 
Transform 
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for(i = 0; i < nLength; ++i) {

MaxH = Math.max(MaxH, aPrice[i]);


MinL = Math.min(MinL, aPrice[i]);

}


Value1 = .5 * 2 * ((vPrice - MinL) / 

(MaxH - MinL) - .5) + .5 * Value1_1;


if(Value1 > .9999) Value1 = .9999;

if(Value1 < -.9999) Value1 = -.9999;


Fish = 0.25 * Math.log((1 + Value1) / 

(1 - Value1)) + .5 * Fish_1;


return new Array(Fish, Fish_1);

}


FIGURE 1.8 (Continued) 

The Fisher transform of the prices within an eight-day channel is plot-
ted below the price bars in Figure 1.9. Note that the turning points are not 
only sharp and distinct, but they also occur in a timely fashion so that prof-
itable trades can be entered. The Fisher transform is also compared to a 
similarly scaled moving average convergence-divergence (MACD) indica-
tor in Figure 1.9. The MACD is representative of conventional indicators 
whose turning points are rounded and indistinct in comparison to the 
Fisher transform. As a result of the rounded turning points, the entry and 
exit signals are invariably late. 
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FIGURE 1.9 The Fisher Transform of Normalized Prices Has Very Sharp Turning Points 
When Compared to Conventional Indicators such as the MACD 

KEY POINTS TO REMEMBER 

•	 Prices almost never have a Gaussian, or Normal, probability distribution. 
•	 Statistical measures based on Gaussian probability distributions, such 

as standard deviations, are in error because the probability distribu-
tion assumption underlying the calculation is in error. 

•	 The Fisher transform converts almost any input probability distribu-
tion to be nearly a Gaussian probability distribution. 

•	 The Fisher transform, when applied to indicators, provides razor-sharp 
buy and sell signals. 
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CHAPTER 2 

Cycles 
Trends and 

“That took the wind out of my sails,” said Tom disgustedly. 

To a trader, Trend Modes and Cycle Modes are synonymous with selec-
tion of a trading strategy. In an uptrend the obvious strategy is to buy 
and hold. Similarly, in a downtrend the strategy is to sell and hold. 

Conversely, the best strategy in a Cycle Mode is to top-pick and bottom-fish. 
Traders usually use some variant of moving averages to trade the Trend 
Mode and some oscillator to trade the Cycle Mode. In either case, the lag 
induced by the calculations is one of the biggest problems for a trader. 

To an analyst, Trend Modes and Cycle Modes are best described by 
their frequency content. Prices in Trend Modes vary slowly with respect to 
time. Therefore, Trend Modes disregard high-frequency components and 
use only the slowly varying low-frequency components. Moving averages 
are low-pass filters that allow only the low-frequency components to pass 
to their output, and that is why they are effective for Trend Mode trading. 
Oscillators are high-pass filters that almost completely disregard the low-
frequency components. 

I will use these concepts to create a complementary oscillator and 
moving average. Most important, both the oscillator and the moving aver-
age have essentially no lag. The elimination of lag is crucial to the trading 
indicators and systems developed from them in later chapters. I consider 
the creation of these zero-lag tools one of the most important develop-
ments described in this book. Searching for zero-lag tools has long been the 
focus of my research, and I have used descriptors such as Instantaneous 

Trendline in previous publications. The techniques I show you in this chap-
ter are entirely new, even if the names are similar. 

11 
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I will start with the well-known exponential moving average (EMA) to 
derive an optimum mathematical description of Trend Mode and Cycle 
Mode components. The equation for an EMA is 

Output = α * Input + (1 − α) * Output[1] (2.1) 

Where α is a number less than 1 and greater than 0 

In words, this equation means we take a fraction of the current price and 
add to it the filtered output one bar ago multiplied by the quantity (1 − α). 
With these coefficients, if the input is unchanging (zero frequency), the out-
put will eventually converge to the input value. That is, this filter has unity 
gain at zero frequency. We can describe this filter in terms of its transfer 
response, which is the output divided by its input. By using Z transform nota-
tion, we let Z−1 denote one bar of lag as a multiplicative operator. Doing this, 
the transfer response of Equation 2.1 can be solved using algebra as 

Output α
H(z) = � = �� (2.2)

Input 1 − (1 − α) *  Z−1 

We can test Equation 2.2 by letting Z−1 equal +1 (zero frequency). When 
we do this, it is easy to see that the numerator is equal to the denominator, 
and so the gain is unity. The high-frequency attenuation of this filter can be 
tested at the highest possible frequency, the Nyquist frequency, by letting Z−1 

equal −1. Using daily samples, the highest frequency we can analyze is 0.5 
cycles per day (a two-bar cycle). This is the Nyquist frequency for daily data. 
The two-bar cycle attenuation is [α. /(2 − α)]. The general attenuation 
response of the EMA as a function of the frequency is shown in Figure 2.1. 
The period of a cycle component in Figure 2.1 can be calculated as the reci-
procal of frequency. For example, a frequency of 0.1 cycles per day corre-
sponds to a 10-bar period for that cycle component. 

In principle, all we have to do to create a high-pass filter is subtract the 
transfer response of the low-pass filter from unity. The logic is that a trans-
fer response of 1 represents all frequencies, and subtracting the low-pass 
response from it leaves the high-pass response as a residual. However, 
there is one problem with this approach: The high-frequency attenuation of 
the low-pass filter of Equation 2.2 is not infinite (i.e., the transfer response 
is 0) at the Nyquist frequency. A finite high-frequency response in the low-
pass filter will lead to a gain error in the transfer response of the high-pass 
filter. The finite attenuation problem is eliminated by averaging two 
sequential input samples rather than using only a single input sample. In 
this case, the transfer response of the averaged-input low-pass filter is 
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FIGURE 2.1 EMA Frequency Response (α = 0.05) 

α 
�� * (1  + Z−1)
2

H(z) = �� (2.3)
1 − (1 − α) *  Z−1 

Equation 2.3 guarantees that the transfer response of the low-pass fil-
ter will be 0 when Z−1 = −1. The general frequency response of the averaged-
input EMA is shown in Figure 2.2. 

The lag of a simple moving average is approximately half the average 
length. For example, a 21-bar moving average has a lag of 10 bars. The 
alpha of an equivalent EMA is related to the length of a simple moving 
average as 

2α = �� (2.4)
Length + 1 

Using Equation 2.4, an EMA using α = 0.05 is equivalent to a 39-bar sim-
ple moving average. A 39-day simple moving average has a 19-day lag, 
approximately half its length. Examination of Figure 2.3 shows that the very 
low-frequency lag of an EMA whose α = 0.05 is indeed 19 days. Although the 
lag decreases as frequency is increased, it is of little consequence because 
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FIGURE 2.2 Smoothed-Input EMA Frequency Response (α = 0.05) 

FIGURE 2.3 Smoothed-Input Lag Response (α = 0.05) 



c02.qxd  2/2/04  10:44 AM  Page 15

= ����

= ���

15 Trends and Cycles 

the filtered amplitude is so small at these frequencies. The real impact of lag 
of all moving averages is the value of the lag at very low frequencies. 

With Equation 2.3 we now have the capacity to construct a high-pass 
filter. We will subtract Equation 2.3 from unity as 

α 
�� * (1  + Z−1)
2

HP(z) = 1 − �� (2.5)
1 − (1 − α) *  Z−1 

1 − (1 − α) *  Z−1 − � 
α 

� * (1  + Z−1)
2

1 − (1 − α) *  Z−1 

� α
1 − ��� * (1  − Z−1)

2
1 − (1 − α) *  Z−1 

Sharper attenuation can be obtained by using higher-order filters. 
However, I have learned that higher-order filters not only have greater lag, 
but they also have transient effects that impress false artifacts on their out-
puts. This is somewhat like ringing a bell: The ringing is more a function of 
the bell itself rather than a filtered response of a driving force. A reasonable 
compromise is the use of a second-order Gaussian filter. A second-order 
Gaussian low-pass filter can be generated by taking an EMA and immedi-
ately taking another identical EMA of the first EMA. This can be represented 
by squaring the transfer response. We can therefore obtain a second-order 
Gaussian high-pass filter response by squaring Equation 2.5 as 

� α
1 − ���

2 

* (1  − 2 *  Z−1 + Z−2)
2

HP(z) = ���� (2.6)
1 − 2 * (1  − α) *  Z−1 + (1 − α)2 * Z−2 

Equation 2.6 is converted to an EasyLanguage statement as 

HPF = (1 − α/2)2 * (Price − 2 * Price[1] + Price[2]) 
+ 2 * (1 − α) * HPF[1] − (1 − α)2 * HPF[2]; (2.7) 

The transfer responses of Equations 2.6 and 2.7 (they are the same) are 
plotted in Figure 2.4. 

Figure 2.4 shows that only frequency periods longer than 40 bars (fre-
quency = 0.025 cycles per day) are significantly attenuated. Thus we have 
created a high-pass filter with a relatively sharp cutoff response. Since the 
output of this filter contains essentially no trending components, it must be 
the cycle component of price. 
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FIGURE 2.4 Transfer Response of a Second-Order High-Pass Gaussian Filter (α = 0.05) 

The complementary low-pass filter that produces the Instantaneous 
Trendline is found by subtracting the high-pass components of Equation 
2.6 from unity. Skipping over the tedious algebra to put both elements of 
this subtraction over a common denominator, the equation for the low-pass 
Instantaneous Trendline is 

IT(z) = 

α
�
4 

2 

�
α
�
2 

2 

�
3
�

4 
α2 

�

����
1 − 2 * (1  − α) *  Z−1 + (1 − α)2Z−2 

� � � �Z−1 − Z−2α − α −+
(2.8) 

Equation 2.8 is converted to an EasyLanguage statement as 

InstTrend = (α − (α/2)2) * Price + (α2/2) * Price[1] 
− (α − 3α2/4) * Price[2]) + 2 * (1 − α) 
* InstTrend[1] − (1 − α)2 * InstTrend[2]; (2.9) 

Figure 2.5 shows the attenuation of the Instantaneous Trendline filter 
and how only the low-frequency components are passed. The attenuation 
characteristic of the Instantaneous Trendline in Figure 2.5 is almost identi-
cal to that of the EMA shown in Figure 2.2. 

The most important feature of the Instantaneous Trendline is that it 
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FIGURE 2.5 Frequency Response of the Instantaneous Trendline Filter (α = 0.05) 

has zero lag. That’s right—zero lag! The lag is 0 because Instantaneous 
Trendline was created by subtracting the transfer response of a high-pass 
filter from unity. Since the high-pass filter has a very small amplitude at low 
frequencies, the resulting low-frequency lag of the difference is just the lag 
of unity, which is 0. Figure 2.6 shows the lag profile of the Instantaneous 
Trendline as a function of frequency. While the lag does increase to 13 bars 
at an approximate frequency of 0.005 cycles per day (200-day period), a fre-
quency that low is more important to investors than to traders. 

The importance of the zero lag feature of the Instantaneous Trendline 
is demonstrated by comparing its response to an EMA having an equivalent 
alpha. Figure 2.7 gives this comparison in response to real market data. It 
is clear that the two averages have about the same degree of smoothing, 
but that the Instantaneous Trendline has zero lag. If it is more convenient, 
you can think of the Instantaneous Trendline as a centered moving average. 
The major advantage of the Instantaneous Trendline compared to the cen-
tered moving average is that it can be used up to the right edge of the chart. 
That means that real indicators and trading systems can be built using it as 
a component. It is also clear that the lag of the Instantaneous Trendline is 
so small that a trader can begin to think about creating indicators and trad-
ing systems as a function of the price crisscrossing it. In later chapters we 
will develop such indicators and trading systems. 
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FIGURE 2.6 Lag of the Instantaneous Trendline Filter (α = 0.05) 

FIGURE 2.7 Instantaneous Trendline Has Much Less Lag than an EMA (α = 0.05) 
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KEY POINTS TO REMEMBER 

•	 The Instantaneous Trendline has zero lag. 
•	 The Instantaneous Trendline has about the same smoothing as an EMA 

using the same alpha. 
•	 An EMA is a low-pass filter. 
•	 Higher-order Gaussian filters are the equivalent of applying the EMA 

multiple times. 
•	 Using filters higher than second order is not advisable because of the 

ringing transient responses of the higher-order filters. 
•	 A complementary cycle oscillator to the Instantaneous Trendline ex-

ists as a second-order high-pass filter. 
•	 The lag of the complementary cycle oscillator is 0. 
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CHAPTER 3 

Trading 
the Trend 

“The market is going up,” said Tom trendedly. 

Having an Instantaneous Trendline with zero lag (Equations 2.8 and 
2.9) is a good beginning to generate a responsive trend-following 
system. The system would be even more responsive if it contained 

a trigger that preceded the Instantaneous Trendline rather than following it 
and offering a confirming signal. A leading trigger can be generated by 
adding a two-day momentum of the Instantaneous Trendline to the Instan-
taneous Trendline itself. 

The rationale for the leading trigger is that adding the two-day momen-
tum to the current value in a trend is predicting where the Instantaneous 
Trendline will be two days from now. When plotting the trigger on the cur-
rent bar, the trigger must lead the Instantaneous Trendline by two bars. On 
a more mathematical level, the lag of the trigger is shown in Figure 3.1. The 
figure shows that the low-frequency lead is two bars and the worst-case lag 
occurs at a frequency of 0.25 cycles per day (a four-bar cycle period). The 
lag is of no concern because the attenuation of the Instantaneous Trendline 
(shown in Figure 2.5) makes the amplitude of the components in the vicin-
ity of 0.25 cycles per day almost irrelevant to the overall response. 

There is a price to pay for achieving the lead response of the trigger. 
That price is that leading functions cause a higher-frequency gain in the fil-
ter instead of attenuation, which has a smoothing effect. Therefore, high-
frequency gain causes the resulting transfer response to look more ragged 
than the original function. This is the case for any momentum function. The 
gain response of the trigger has a maximum of 9.5 dB at a frequency of 0.25 
cycles per day, as shown in Figure 3.2. In this case, the gain does not 

21 
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FIGURE 3.1 Lead and Lag of the Trigger as a Function of Frequency 

FIGURE 3.2 Gain Response of the Trigger 
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severely affect the smoothness of the trigger because the Instantaneous 
Trendline has an attenuation of 26 dB at 0.25 cycles per day, as shown in 
Figure 2.5. Therefore, using both terms to compute the net attenuation, the 
worst-case high-frequency smoothing attenuation is still about 16 dB. This 
means the trigger will have about the same degree of smoothness as the 
Instantaneous Trendline. 

The Instantaneous Trendline and the Trigger of the trend-following sys-
tem are shown as indicators in Figure 3.3; the EasyLanguage code to create 
these indicator lines is shown in Figure 3.4, and the eSignal Formula Script 
(EFS) code is shown in Figure 3.5. The process for creating a trend-
following trading system from the indicators is simple. One unique aspect 
of the code is that the ITrend is forced to be a finite impulse response 
(FIR)-smoothed version of price for the first seven bars of the calculation. 
This initialization is included to cause the ITrend to converge more rapidly 
to its correct value from the beginning transient. The strategy enters a long 
position when the trigger crosses over the Instantaneous Trendline and 
enters a short position when the trigger crosses under the Instantaneous 
Trendline. However, an effective trading system is more than following a 
simple set of indicators. 

First, experience has shown that greater profits result from using limit 
orders rather than market orders or stop orders. Market orders are self-
explanatory. Stop orders mean the market must be going in the direction of 
the trade before the order is filled. For example, for long-position trades, the 
stop order must be placed above the current price. Thus, the price must 

FIGURE 3.3 Crossing of the Trigger and Instantaneous Trendline are Trading Signals 
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Inputs: Price((H+L)/2), 
alpha(.07); 

Vars: Smooth(0), 
ITrend(0), 
Trigger(0); 

ITrend = (alpha - alpha*alpha/4)*Price 

+ .5*alpha*alpha*Price[1] - (alpha 
- .75*alpha*alpha)*Price[2] + 2
*(1 - alpha)*ITrend[1] - (1 - alpha)

*(1 - alpha)*Itrend[2];


If currentbar < 7 then ITrend = (Price + 2*Price[1] 

+ Price[2]) / 4;

Trigger = 2*Itrend - ITrend[2];


Plot1(Itrend, “ITrend”);

Plot2(Trigger, “Trig”);


FIGURE 3.4 EasyLanguage Code for the ITrend Indicator 

increase from its current level before you get stopped into the long-position 
trade. This means you necessarily give up some of the profits you would 
otherwise have gotten if you had entered on a market order at the instant of 
your signal. You can lose additional profits from stop orders due to slippage. 
Slippage is the difference between your stop value and the price at which 
your order actually got filled. In fast markets slippage can be substantial. If 
limit orders are placed for the long position, the limit price must be below 
the current price. That is, the market must move against your anticipated 
trade before you get a fill. This means that if the price drops sufficiently so 
that your limit order is filled, you have captured additional profits if the 
price subsequently reverses and goes in the direction of your signal. 
Furthermore, if there is any slippage in filling the limit order, the slippage 
will be negative because it is going in the direction opposite to your 
intended trade. When the price turns around and goes in the direction of 
your signals, you have therefore captured the slippage as profit. In the 
EasyLanguage trading strategy code of Figure 3.6, I have set the level of the 
limit order to be 35 percent of the current bar’s range added onto the clos-
ing price of the current bar (in the case of a short signal) or subtracted from 
the closing price of the current bar (in the case of a long signal). The 35 per-
cent is the input variable RngFrac, and is an optimizable parameter. 
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/*****************************************************

Title: Instantaneous Trendline

*****************************************************/


function preMain() {

setPriceStudy(true);

setStudyTitle(“Instantaneous Trendline”);

setCursorLabelName(“IT”, 0);

setDefaultBarThickness(2, 0);


}


var a = 0.05;

var IT = 0;

var IT1 = 0;

var IT2 = 0;

var Price = 0;

var Price1 = 0;

var Price2 = 0;


function main() {

if (getBarState() == BARSTATE_NEWBAR) {


IT2 = IT1;

IT1 = IT;

Price2 = Price1;

Price1 = Price;


}


Price = close();


IT = (a-((a/2)*(a/2)))*Price + ((a*a)/2)*Price1 

- (a-(3*(a*a))/4)*Price2 + 2*(1-a)*IT1 
- ((1-a)*(1-a))*IT2;

return (IT);

}


FIGURE 3.5 EFS Code for the ITrend Indicator 

Unfortunately, not all trading signals are perfect. In fact, with the 
crossover strategy that I have developed it is possible to be on the wrong 
side of the trade for a substantial period from time to time. For this reason, 
I have added a rule that if the price goes against your position by more than 
some percentage, the strategy will correct itself and automatically reverse 
to the opposite position. The percentage is supplied as the input variable 
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Inputs: Price((H+L)/2), 
alpha(.07), 
RngFrac(.35), 
RevPct(1.015); 

Vars: Smooth(0), 
ITrend(0), 
Trigger(0); 

ITrend = (alpha - alpha*alpha/4)*Price 

+ .5*alpha*alpha*Price[1] – (alpha 
- .75*alpha*alpha)*Price[2] + 2
*(1 – alpha)*ITrend[1] – (1 - alpha)

*(1 - alpha)*ITrend[2];


If currentbar < 7 then ITrend = (Price + 2*Price[1] 

+ Price[2]) / 4;

Trigger = 2*Itrend - ITrend[2];


If Trigger Crosses Over ITrend then Buy Next Bar at

Close – RngFrac*(High - Low) Limit;


If Trigger Crosses Under ITrend then Sell Short Next

Bar at Close + RngFrac*(High - Low) Limit;


If MarketPosition = 1 and Close < EntryPrice/RevPct 

then Sell Short Next Bar On Open;


If MarketPosition = -1 and Close > RevPct*EntryPrice 

then Buy Next Bar on Open;


FIGURE 3.6 EasyLanguage Code for the Instantaneous Trendline Trading Strategy 

RevPct. RevPct is an optimizable parameter, but I find that the default 
value of 1.5 percent (RevPct = 1.015) is a relatively robust number. The 
same strategy for EFS code is given in Figure 3.7. 

I applied the strategy code of Figures 3.6 and 3.7 to several currency 
futures because it is well known that currencies tend to trend. I addition-
ally introduced a $2,500 money management stop to further avoid giving 
back accumulated profits. Doing this, I achieved the trading results shown 
in Table 3.1. The time span is on the order of a quarter century, and a rela-
tively large number of trades are taken. The Instantaneous Trend Strategy 
consists of only a few independent parameters. Since the ratio of the num-
ber of trades to the number of parameters is large and since the trading 
took place over a large time span, it is highly unlikely that the strategy has 
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/*****************************************************

Title: ITrend Trading Strategy 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0


======================================================

Fix History:


06/27/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var grID = 0; 
var nBarCount = 0; 
var xOver = 0; 
var nStatus = 0; 
var nEntryPrice = 0; 
var nDirection = 0; 
var nLimitPrice = 0; 
var nAdj1 = null; 

var aPriceArray = new Array(); 
var aITrendArray = new Array(); 

//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“ITrend Strategy”);

setCursorLabelName(“ITrend”, 0);

setCursorLabelName(“Trig”, 1);


(continued)


FIGURE 3.7 EFS Code for the Instantaneous Trendline Trading Strategy 
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setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<10; x++) { 

aPriceArray[x] = 0.0; 
aITrendArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha, RngFrac, RevPct ) {

var x;

var nPrice;


if (getCurrentBarIndex() == 0) return;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}

if ( RngFrac == null ) {


RngFrac = 0.35;

}

if ( RevPct == null ) {


RevPct = 1.015;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


if (nAdj1 == null) nAdj1 = (high()-low()) * 0.20;


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


FIGURE 3.7 (Continued) 
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aITrendArray.pop();

aITrendArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


if (aPriceArray[2] == 0) return;


if ( nBarCount < 7 ) {

aITrendArray[0] = (nPrice 


+ 2*aPriceArray[1] 
+ aPriceArray[2])/4;

}

else {


aITrendArray[0] = (Alpha 

- Alpha*Alpha/4)*nPrice 
+ 0.5*Alpha*Alpha*aPriceArray[1] 
- (Alpha - 0.75*Alpha*Alpha) 
* aPriceArray[2] + 2*(1-Alpha)
*aITrendArray[1] - (1-Alpha)

*(1-Alpha)*aITrendArray[2];


}


if (aITrendArray[2] == 0) return;


nTrig = 2 * aITrendArray[0] - aITrendArray[2];


nStatus = 0;

if ( Strategy.isLong() ) nStatus = 1;

if ( Strategy.isShort() ) nStatus = -1;


var bReverseTrade = false;

if ( nStatus == 1 && close() 


< (nEntryPrice/RevPct) ) {

ReverseToShort();

bReverseTrade = true;


} else if ( nStatus == -1 && close() 

> (RevPct*nEntryPrice) ) {


ReverseToLong();

bReverseTrade = true;


(continued)


FIGURE 3.7 (Continued) 
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}

//check for new signals


if (bReverseTrade == false) {

if ( nTrig > aITrendArray[0] ) {


if ( xOver == -1 && nStatus != 1) {

nLimitPrice = Math.max(low(), (close() 


- ( high()-low() )*RngFrac));
LongLimit( nLimitPrice );

nDirection = 1;


}

xOver = 1;


} else if ( nTrig < aITrendArray[0] ) {

if ( xOver == 1 && nStatus != -1) {


nLimitPrice = Math.min(high(), (close() 

+ ( high()-low() )*RngFrac));

ShortLimit( nLimitPrice );

nDirection = -1;


}

xOver = -1;


}

}


if (!isNaN( aITrendArray[0] ) ) {

return new Array( aITrendArray[0],_


nTrig );

}


}


function LongLimit( nPrice ) {

Strategy.doLong(“Long”, Strategy.LIMIT,_


Strategy.THISBAR, Strategy.DEFAULT,_

nPrice );


nEntryPrice = nPrice;

drawShapeRelative(0, low()-nAdj1, Shape.UPARROW,_


““, Color.lime, Shape.ONTOP, gID());

return;


}


function ShortLimit( nPrice ) {

Strategy.doShort(“Short”, Strategy.LIMIT,_


Strategy.THISBAR, Strategy.DEFAULT,_

nPrice );


FIGURE 3.7 (Continued) 
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nEntryPrice = nPrice;

debugPrintln(getCurrentBarIndex()


+ “ short “ + nPrice);

drawShapeRelative(0, high()+nAdj1,Shape.DOWNARROW,_


““, Color.maroon, Shape.ONTOP, gID());

return;


}


function ReverseToLong() {

Strategy.doLong(“Reverse to Long”,_


Strategy.MARKET, Strategy.NEXTBAR,_

Strategy.DEFAULT );


DrawShapeRelative(1, low(1)-nAdj1,_

Shape.UPARROW, ““, Color.lime,_

Shape.ONTOP, gID());


nEntryPrice = open(1);

nStatus = 1;

nDirection = 0;

nLimitPrice = 0;

return;


}


function ReverseToShort() {

Strategy.doShort(“Reverse to Short”,_


Strategy.MARKET, Strategy.NEXTBAR,_

Strategy.DEFAULT );


drawShapeRelative(1, high(1)+nAdj1,_

Shape.DOWNARROW, ““, Color.maroon,_

Shape.ONTOP, gID());


nEntryPrice = open(1);

nStatus = -1;

nDirection = 0;

nLimitPrice = 0;

return;


}


//== gID function assigns unique identifier to_

graphic/text routines


function gID() {

grID ++;

return( grID );


}


FIGURE 3.7 (Continued) 
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TABLE 3.1	 Sample Trading Results Using the Instantaneous 
Trendline Strategy 

Number Percent Profit Max 
Future Net Profit of Trades Profitable Factor DD 

EC (4/81–3/03) $201,812 230 42.2% 1.89 ($26,775) 
JY (9/81–3/03) $221,312 229 48.5% 2.50 ($11,712) 
SF (6/76–3/03) $129,175 337 45.1% 1.52 ($15,387) 

been curve fitted. Curve fitting is a weakness of many technical analysis 
trading strategies. 

Please allow me to brag about the Instantaneous Trendline Strategy. 
(Perhaps it is not bragging, because as Muhammed Ali said, “It ain’t brag-
ging if you can really do it.”) The performance results of this strategy are 
comparable to, or exceed, the performance of commercial systems costing 
thousands of dollars. You can create synthetic equity growth curves using 
the established percentage of profitable trades and profit factors. This is 
explained in Chapter 15. You will find the equity growth trading the cur-
rencies in Table 3.1 to be remarkably consistent. 

KEY POINTS TO REMEMBER 

•	 The Instantaneous Trendline has zero lag. 
•	 The Instantaneous Trendline has about the same smoothing as an 

exponential moving average (EMA) using the same alpha. 
•	 The smoothing enables the use of a trading trigger that has a two-bar 

lead. 
•	 Trading signals are generated by the crossing of the Trigger line and the 

Instantaneous Trendline. 
•	 Trade entries are made on limit orders to capture a larger range of the 

trade and to eliminate slippage losses. 
•	 Major losses are avoided by recognizing when a trade is on the wrong 

side and reversing position. 
•	 The Instantaneous Trendline Strategy can be optimized for application 

to many stocks and commodity markets. 



c04.qxd  2/2/04  10:45 AM  Page 33

CHAPTER 4 

the Cycle 
Trading 

“It happens again and again,” said Tom periodically.


Equation 2.5 described a high-pass filter that isolated the cycle mode 
components. Essentially all that need be done to generate a cycle-
based indicator is to plot the results of this equation. However, some 

smoothing is required to remove the two-bar and three-bar components 
that detract from the interpretation of the cyclic signals. These compo-
nents can be removed with a simple finite impulse response (FIR)1 low-
pass filter as 

Smooth = (Price + 2 * Price[1] + 2 * Price[2] + Price[3])/6; (4.1) 

The lag of the Smooth filter of Equation 4.1 is 1.5 bars at all frequen-
cies. Figure 4.1 demonstrates that the Smooth filter eliminates the two- and 
three-bar cycle components. The Smooth filter is to be used as an addi-
tional filter to remove the distracting very-high-frequency components, 
thus creating an indicator that is easier to interpret for trading. 

The EasyLanguage code to make a cycle component indicator is given 
in Figure 4.2 and the eSignal Formula Script (EFS) code is given in Figure 
4.3. I call this the Cyber Cycle Indicator. After the inputs and variables are 
defined, the smoothing filter of Equation 4.1 and the high-pass filter of 
Equation 2.7 are computed. They are followed by an initialization condition 
that facilitates a rapid convergence at the beginning of the input data. A 
trading trigger signal is created by delaying the cycle by one bar. 

Trading the Cyber Cycle Indicator is straightforward. Buy when the 
Cycle line crosses over the Trigger line. You are at the bottom of the cycle 

33 
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FIGURE 4.1 A Four-Element FIR Filter Eliminates Two- and Three-Bar Cycles 

Inputs: Price((H+L)/2), 
alpha(.07); 

Vars: Smooth(0), 
Cycle(0); 

Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)
*Cycle[1] - (1 - alpha)*(1 - alpha)*Cycle[2];


If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Plot1(Cycle, “Cycle”);

Plot2(Cycle[1], “Trigger”);


FIGURE 4.2 EasyLanguage Code for the Cyber Cycle Indicator 
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/*****************************************************

Title: Cyber Cycle

*****************************************************/


function preMain() {

setStudyTitle(“High Pass Filter”);

setCursorLabelName(“HPF”,0);

setDefaultBarThickness(2, 0);


}


var a = 0.07;

var HPF = 0;

var HPF1 = 0;

var HPF2 = 0;

var Price = 0;

var Price1 = 0;

var Price2 = 0;


function main() {

if (getBarState() == BARSTATE_NEWBAR) {


HPF2 = HPF1;

HPF1 = HPF;

Price2 = Price1;

Price1 = Price;


}


Price = close();


HPF = ((1-(a/2))*(1-(a/2))) * (Price - 2*Price1 

+ Price2) + 2*(1-a)*HPF1 - ((1-a)*(1-a))*HPF2;

return (HPF);

}


FIGURE 4.3 EFS Code for the Cyber Cycle Indicator 

at this point. Sell when the Cycle line crosses under the Trigger line. You 
are at the top of the cycle in this case. Figure 4.4 illustrates that each of the 
major turning points is captured by the Cycle line crossing the Trigger line. 
To be sure, there are crossings at other than the cyclic turning points. Many 
of these can be eliminated by discretionary traders using their experience 
or others of their favorite tools. 
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FIGURE 4.4 The Cyber Cycle Indicator Catches Every Significant Turning Point 

One of the more interesting aspects of the Cyber Cycle is that it was 
developed simultaneously with the Instantaneous Trendline. They are 
opposite sides of the same coin because the total frequency content of the 
market being analyzed is in one indicator or the other. This is important 
because the conventional methods of using moving averages and oscilla-
tors can be dispensed with. The significance of this duality is demonstrated 
in Figure 4.5. 

A low-lag four-bar weighted moving average (WMA) is plotted in Figure 
4.5 for comparison with the action of the Instantaneous Trendline. Note that 
each time the WMA crosses the Instantaneous Trendline the Cyber Cycle 
Oscillator is also crossing its zero line. Since there is essentially no lag in the 
Instantaneous Trendline we can, for the first time, use an indicator overlay 
on prices in exactly the same way we have traditionally used oscillators. 
That is, when the prices cross the Instantaneous Trendline you can start to 
prepare for a reversal when prices reach a maximum excursion from the 
Instantaneous Trendline. Since there is only a small lag in the Instantaneous 
Trendline, it represents a short-term mean of prices. This being the case, we 
can use the old principle that prices revert to their mean. 

But what is the best way to exploit the mean reversion? The false sig-
nals arising from use of the Cyber Cycle are more problematic for automatic 
trading systems. The first thing that must be understood about indicators is 
that they are invariably late. No indicator can precede an event from which 
it is derived. This is particularly important when trading short-term cycles. 
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FIGURE 4.5 The Instantaneous Trendline and Cyber Cycle Oscillator are Duals 

We need an indicator that predicts the turning point so the trade can be 
made at the turning point or even before it occurs. In the code of Figure 4.2 
we know we induce 1.5 bars of lag due to the calculation of Smooth. The 
cycle equation contributes some small amount of lag also, perhaps half a 
bar. The Trigger lags the Cycle by one bar, so that their crossing introduces 
at least another bar of lag. Finally, we can’t execute the trade until the bar 
after the signal is observed. In total, that means our trade execution will be 
at least four bars late. If we are working with an eight-bar cycle, that means 
the signal will be exactly wrong. We could do better to buy when the signal 
says sell, and vice versa. 

The difficulties arising from the lag suggest a way to build an automatic 
trading strategy. Suppose we choose to use the trading signal in the oppo-
site direction of the signal. That will work if we can introduce lag so the 
correct signal will be given in the more general case, not just the case of an 
eight-bar cycle. Figure 4.6 is the EasyLanguage code for the Cyber Cycle 
strategy. It starts exactly the same as the Cyber Cycle Indicator. I then 
introduce the variable Signal, which is an exponential moving average of 
the Cycle variable. The exponential moving average generates the desired 
lag in the trading signal. As derived in Rocket Science for Traders,2 the rela-
tionship between the alpha of an exponential moving average and lag is 

1α = � (4.2)
Lag + 1 
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Inputs: Price((H+L)/2), 
alpha(.07), 
Lag(9); 

Vars: Smooth(0), 
Cycle(0), 
alpha2(0), 
Signal(0); 

Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)
*Cycle[1] - (1 - alpha)*(1 - alpha)*Cycle[2];


If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

alpha2 = 1 / (Lag + 1);

Signal = alpha2*Cycle + (1 - alpha2)*Signal[1];


If Signal Crosses Under Signal[1] then Buy Next_

Bar on Open;


If Signal Crosses Over Signal[1] then Sell Short Next_

Bar on Open;


If MarketPosition = 1 and PositionProfit 

< 0 and BarsSinceEntry > 8 then Sell This Bar;


If MarketPosition = -1 and PositionProfit 

< 0 and BarsSinceEntry > 8 then Buy To Cover This Bar;


FIGURE 4.6 EasyLanguage Code for the Cyber Cycle Trading Strategy 

This relationship is used to create the variable alpha2 in the code and 
the variable Signal using the exponential moving average. 

The trading signals using the variable Signal crossing itself delayed by 
one bar are exactly the opposite of the trading signals I would have used if 
there were no delay. But, since the variable Signal is delayed such that the 
net delay is less than half a cycle, the trading signals are correct to catch 
the next cyclic reversal. 

The idea of betting against the correct direction by waiting for the next 
cycle reversal can be pretty scary because that reversal may “never” happen 
because the market takes off in a trend. For this reason I included two lines 
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of code that are escape mechanisms if we were wrong in our entry signal. 
These last two lines of code in Figure 4.6 reverse the trading position if we 
have been in the trade for more than eight bars and the trade has an open 
position loss. 

The EFS code for the Cyber Cycle Trading Strategy is given in Figure 4.7. 
The trading strategy of Figures 4.6 and 4.7 was applied to Treasury 

Bond futures because this contract tends to cycle and not stay in a trend 
for long periods. The performance response from January 4, 1988 to March 
3, 2003, a period in excess of 15 years, produced the results shown in Table 
4.1. These performance results, and the consistent equity growth depicted
in Figure 4.8, exceed the results of most commercially available trading 
systems designed for Treasury Bonds. 

/*****************************************************

Title: Cyber Cycle Trading Strategy 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0


======================================================

Fix History:


06/27/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables


var grID = 0;

var nBarCount = 0;

var nStatus = 0; //0=flat, -1=short,_


1=long

//var nTrigger = 0; //buy/sell on next open

var nBarsInTrade = 0;

var nEntryPrice = 0;


(continued)


FIGURE 4.7 EFS Code for the Cyber Cycle Trading Strategy 



c04.qxd  2/2/04  10:45 AM  Page 40

40 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

var nAdj1 = 0;

var nAdj2 = 0;


var aPriceArray

var aSmoothArray

var aCycleArray

var aSignalArray


= new Array();

= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


//setPriceStudy( true );

setStudyTitle(“CyberCycle Strategy”);


//setShowCursorLabel( false );


setCursorLabelName(“Signal “, 0);

setCursorLabelName(“Signal1”, 1);


setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aSignalArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha, Lag ) {

var x;

var nPrice;

var nAlpha2;


FIGURE 4.7 (Continued) 
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if (getCurrentBarIndex() == 0) return;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}


if ( Lag == null ) {

Lag = 20;


}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;

nBarsInTrade++;


//variables for image alignment

nAdj1 = (high()-low()) * 0.20;

nAdj2 = (high()-low()) * 0.35;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aSignalArray.pop();

aSignalArray.unshift( 0 );


}


//Cyber Cycle formula

nPrice = ( high()+low() ) / 2;


(continued)


FIGURE 4.7 (Continued) 
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aPriceArray[0] = nPrice;


if (aPriceArray[3] == 0) return;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2] ) / 4;

}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] 
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


//create the actual trading signals

nAlpha2 = 1 / (Lag + 1 );

aSignalArray[0] = nAlpha2 * aCycleArray[0] 


+ ( 1.0 - nAlpha2 ) * aSignalArray[1];

//process our trading strategy code

//=================================


nStatus = 0;

if (Strategy.isLong() == true) nStatus = 1;

if (Strategy.isShort() == true) nStatus = -1;


//currently not in a trade so look for a trigger

if ( nBarCount > 10 && nStatus == 0 ) {


//signal cross down - we buy

if ( aSignalArray[0] < aSignalArray[1]_


FIGURE 4.7 (Continued) 
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&& aSignalArray[1] 

>= aSignalArray[2] ) {


goLong();

}

//signal cross up - we sell

if ( aSignalArray[0] > aSignalArray[1]_


&& aSignalArray[1] 

<= aSignalArray[2] ) {


goShort();

}


}

//currently in a trade so look for profit stop_


or reversal

else if ( nBarCount > 10 && nStatus != 0 ) {


if ( nStatus == 1 ) { //in a long trade

//if trade is unprofitable after_


8 bars, exit position

if ( close() - nEntryPrice 


< 0 && nBarsInTrade > 8 ) {

closeLong();


}

//otherwise, check for trigger in_


other direction

if ( aSignalArray[0] 


> aSignalArray[1]_

&& aSignalArray[1] 

<= aSignalArray[2] ) {


goShort();

}


} else if ( nStatus == -1 ) { //in a_

short trade


//if trade is unprofitable after_

8 bars, exit position


if ( nEntryPrice - close() < 0_

&& nBarsInTrade > 8 ) {


closeShort();

}

//otherwise, check for trigger in_


other direction

if ( aSignalArray[0] 


< aSignalArray[1]_

(continued)


FIGURE 4.7 (Continued) 
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&& aSignalArray[1] 

>= aSignalArray[2] ) {


goLong();

}


}

}


return new Array(aSignalArray[0],_

aSignalArray[1]);


}


//enter a short trade

function goShort() { 


drawShapeRelative(1, aSignalArray[1],_

Shape.DOWNARROW, ““, 

Color.maroon, Shape.ONTOP|Shape.BOTTOM,

gID());

Strategy.doShort(“Short Signal”,_

Strategy.MARKET, Strategy.NEXTBAR,

Strategy.DEFAULT );


nStatus = -1; 
nEntryPrice = open(1); 
nBarsInTrade = 1; 

} 

//exit a short trade

function closeShort() {


drawShapeRelative(-0, aSignalArray[0],_

Shape.DIAMOND, ““, 

Color.maroon, Shape.ONTOP|Shape.TOP, gID());


Strategy.doCover(“Cover Short”,_

Strategy.MARKET, Strategy.THISBAR,_

Strategy.ALL );


nStatus = 0;

nEntryPrice = 0;


}


//enter a long trade

function goLong() { 


drawShapeRelative(1, aSignalArray[1],_


FIGURE 4.7 (Continued) 
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Shape.UPARROW, ““, 

Color.lime, Shape.ONTOP|Shape.TOP, gID());


Strategy.doLong(“Long Signal”, Strategy.MARKET,_

Strategy.NEXTBAR, Strategy.DEFAULT );


nStatus = 1; 
nEntryPrice = open(1); 
nBarsInTrade = 1; 

} 

//exit a long trade

function closeLong() {


drawShapeRelative(0, aSignalArray[0],_

Shape.DIAMOND, ““,

Color.lime, Shape.ONTOP|Shape.BOTTOM, gID());

Strategy.doSell(“Sell Long”, Strategy.MARKET,_


Strategy.THISBAR, Strategy.ALL );

nStatus = 0;

nEntryPrice = 0;


}


//== gID function assigns unique identifier to

graphic/text routines


function gID() {

grID ++;

return( grID );


}


FIGURE 4.7 (Continued) 

TABLE 4.1	 Fifteen-Year Performance of the Cyber 
Cycle Trading System Trading 
Treasury Bond Futures 

Net profit $93,156 
Number of trades 430 
Percent profitable 56.7% 
Profit factor 1.44 
Max drawdown ($12,500) 
Profit/trade $216.64 
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FIGURE 4.8 Cyber Cycle Trading System 15-Year Equity Growth Trading Treasury 
Bonds 

KEY POINTS TO REMEMBER 

•	 All indicators have lag. 
•	 The Instantaneous Trendline and the Cyber Cycle Indicator are com-

plementary. This enables traders to use indicators overlaid on prices 
the same way conventional oscillators are used. 

•	 A viable cycle-based trading system delays the signal slightly less than 
a half cycle to generate leading turning point entry and exit signals. 

•	 Major losses are avoided by recognizing when a trade is on the wrong 
side and reversing position. 
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CHAPTER 5 

The CG Oscillator 

“Add up this list of n numbers and then divide the sum by n,” 

said Tom meanly. 

In this chapter I describe a new oscillator that is unique because it is 
smoothed and has essentially zero lag. The smoothing enables clear 
identification of turning points and the zero-lag aspect enables action 

to be taken early in the move. This oscillator, which is the serendipitous 
result of my research into adaptive filters, has substantial advantages over 
conventional oscillators used in technical analysis. The CG in the name of 
the oscillator stands for the center of gravity of the prices over the window 
of observation. 

The center of gravity (CG) of a physical object is its balance point. For 
example, if you balance a 12-inch ruler on your finger, the CG will be at its 
6-inch point. If you change the weight distribution of the ruler by putting a 
paper clip on one end, then the balance point (i.e., the CG) shifts toward 
the paper clip. Moving from the physical world to the trading world, we can 
substitute the prices over our window of observation for the units of 
weight along the ruler. Using this analogy, we see that the CG of the win-
dow moves to the right when prices increase sharply. Correspondingly, the 
CG of the window moves to the left when prices decrease. 

The idea of computing the center of gravity arose from observing how 
the lags of various finite impulse response (FIR) filters vary according to 
the relative amplitude of the filter coefficients. A simple moving average 
(SMA) is an FIR filter where all the filter coefficients have the same value 
(usually unity). As a result, the CG of the SMA is exactly in the center of the 
filter. A weighted moving average (WMA) is an FIR filter where the most 
recent price is weighted by the length of the filter, the next most recent 
price is weighted by the length of the filter less 1, and so on. The weighting 

47 
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terms are the filter coefficients. The filter coefficients of a WMA describe 
the outline of a triangle. It is well known that the CG of a triangle is located 
at one-third the length of the base of the triangle. In other words, the CG of 
the WMA has shifted to the right relative to the CG of an SMA of equal 
length, resulting in less lag. In all FIR filters, the sum of the product of the 
coefficients and prices must be divided by the sum of the coefficients so 
that the scale of the original prices is retained. 

The most general FIR filter is the Ehlers Filter,1 which can be written as 

N 

� ci * Pricei

N 

� 
i = 0Ehlers Filter = �� (5.1) 

ci 

i = 0 

The coefficients of the Ehlers Filter can be almost any measure of vari-
ability. I have looked at momentum, signal-to-noise ratio, volatility, and 
even Stochastics and Relative Strength Index (RSI) values as filter coeffi-
cients. One of the most adaptive sets of coefficients arose from video edge 
detection filters, and was the sum of the square of the differences between 
each price and each previous price. In any event, the result of using differ-
ent filter coefficients is to make the filter adaptive by moving the CG of the 
coefficients. 

While I was debugging the code of an adaptive FIR filter, I noticed that 
the CG itself moved in exact opposition to the price swings. The CG moves 
to the right when prices go up and to the left when prices go down. 
Measured as the distance from the most recent price, the CG decreased 
when prices rose and increased when they fell. All I had to do was to invert 
the sign of the CG to get a smoothed oscillator that was in phase with the 
price swings and had essentially zero lag. 

The CG is computed in much the same way as we computed the Ehlers 
Filter. The position of the balance point is the summation of the product of 
position within the observation window times the price at that position 
divided by the summation of prices across the window. The mathematical 
expression for this calculation is 

N 

� (xi + 1) * Pricei 

N 

� 
i = 0CG = �� (5.2) 

Pricei 

i = 0 

In this expression I added 1 to the position count because the count 
started with the most recent price at zero, and multiplying the most recent 
price by the position count would remove it from the computation. The 
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Inputs: Price((H+L)/2), 
Length(10); 

Vars: count(0), 
Num(0), 
Denom(0), 
CG(0); 

Num = 0; 
Denom = 0; 
For count = 0 to Length - 1 begin


Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);


End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;


Plot1(CG, “CG”);

Plot2(CG[1], “CG1”);


FIGURE 5.1 EasyLanguage Code to Compute the CG Oscillator 

EasyLanguage code to compute the CG Oscillator is given in Figure 5.1 and 
the eSignal Formula Script (EFS) code is given in Figure 5.2. 

In EasyLanguage, the notation Price[N] means the price N bars ago. 
Thus Price[0] is the price for the current bar. Counting for the location is 
backward from the current bar. In the code the summation is accomplished 
by recursion, where the count is varied from the current bar to the length 
of the observation window. The numerator is the sum of the product of the 
bar position and the price, and the denominator is the sum of the prices. 
Then the CG is just the negative ratio of the numerator to the denominator. 
A zero counter value for CG is established by adding half the length of the 
observation window plus 1. Since the CG is smoothed, an effective 
crossover signal is produced simply by delaying the CG by one bar. 

An example of the CG Oscillator is shown in Figure 5.3. In this case, I 
selected the length to be an eight-bar observation window. It is clear that 
every major price turning point is identified with zero lag by the CG 
Oscillator and the crossovers formed by its trigger. Since the CG Oscillator 
is filtered and smoothed, whipsaws of the crossovers are minimized. The 
relative amplitudes of the cyclic swings are retained. The resemblance of 
the CG Oscillator to the Cyber Cycle Indicator of Chapter 4 is striking. I will 
compare all the oscillator type indicators in a later chapter. 
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/*****************************************************

Title: CG Oscillator 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0


======================================================

Fix History:


06/27/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nPrice = 0; 
var nCG = 0; 

var aPriceArray = new Array(); 
var aCGArray = new Array(); 

//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“CG Osc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0;

aCGArray[x] = 0.0;


FIGURE 5.2 EFS Code to Compute the CG Oscillator 
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}


}


//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;

var nValue1;


//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 10;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aPriceArray.pop();

aPriceArray.unshift( 0 );


aCGArray.pop();

aCGArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += ( 1.0 + x ) * ( aPriceArray[x] );


(continued)


FIGURE 5.2 (Continued) 
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nDenom += ( aPriceArray[x] );

}


if ( nDenom != 0 ) nCG = -nNum/nDenom 

+ ( OscLength+1 )/2;

aCGArray[0] = nCG;


//return the calculated values

if ( !isNaN( aCGArray[0] ) ) {


return new Array( aCGArray[0],_

aCGArray[1] );


}


}


FIGURE 5.2 (Continued) 

FIGURE 5.3 The CG Oscillator Accurately Identifies Each Price Turning Point 
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The appearance of the CG Oscillator varies with the selection of the 
observation window length. Ideally, the selected length should be half the 
dominant cycle length because half the dominant cycle fully captures 
the entire cyclic move in one direction. If the length is too long, the CG 
Oscillator is desensitized. For example, if the window length is one full 
dominant cycle, half the data pulls the CG to the right and the other half of 
the data pulls the CG to the left. As a result, the CG stays in the middle of 
the window and no motion of the CG Oscillator is observed. On the other 
hand, if the window length is too short, you are missing the benefits of 
smoothing. As a result of this case, the CG Oscillator contains higher-
frequency components and is a little too nervous for profitable trading. 

KEY POINTS TO REMEMBER 

•	 The CG in an FIR filter is the position of the average price within the fil-
ter window length. 

•	 The CG moves toward the most recent bar (decreases) when prices 
rise and moves away from the most recent bar (increases) when prices 
fall. Thus the CG moves exactly opposite to the price direction. 

•	 The CG Oscillator has essentially zero lag. 
•	 The CG Oscillator retains the relative cycle amplitude, similar to the 

Cyber Cycle Indicator. 
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CHAPTER 6 

Relative Vigor 
Index 

“Get to the back of the boat,” said Tom sternly. 

This chapter describing the Relative Vigor Index (RVI) uses concepts 
dating back over three decades and also uses modern filter and digi-
tal signal processing theory to realize those concepts as a practical 

and useful indicator. The RVI merges the old concepts with the new tech-
nologies. The basic idea of the RVI is that prices tend to close higher than 
they open in up markets and tend to close lower than they open in down 
markets. The vigor of the move is thus established by where the prices 
reside at the end of the day. To normalize the index to the daily trading 
range, the change in price is divided by the maximum range of prices for 
the day. Thus, the basic equation for the RVI is 

Close − Open
RVI = �� (6.1)

High − Low 

In 1972, Jim Waters and Larry Williams published a description of their 
A/D Oscillator.1 In this case, A/D means accumulation/distribution rather 
than the usual advance/decline. Waters and Williams defined Buying Power 
(BP) and Selling Power (SP) as 

BP = High − Open 
SP = Close − Low 

where the prices were the open, high, low, and closing prices for the day.

The two values, BP and SP, show the additional buying strength relative to

the open and the selling strength relative to the close to obtain an implied


55 
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measure of the day’s trading. Waters and Williams combined the measure-
ment as the Daily Raw Figure (DRF). DRF is calculated as 

BP + SP
DRF = �� (6.2)

2 * (High − Low) 

The maximum value of 1 is reached when a market opens trading at the 
low and closes at the high. Conversely, the minimum value of 0 is reached 
when the market opens trading at the high and closes at the low. The day-
to-day evaluation causes the DRF to vary radically and requires smoothing 
to make it usable. 

We can expand the equation for the DRF as 

DRF = 

= 

= 

1
�
2

1
�
2

1
�
2


�High − Open + Close − Low 
�����High − Low 

High − Low + Close − Open
High − Low 

Close − Open
1 + (6.3)

High − Low 

Clearly, the equation for the DRF is identical with the daily RVI expres-
sion except for the additive and multiplicative constants. It seems there are 
no new ideas in technical analysis. However, smoothing must be done to 
make the indicator practical. This is where modern filter theory contributes 
to the successful implementation of the RVI. I use the four-bar symmetrical 
finite impulse response (FIR) filter (described in Equation 4.1 and Figure 4.1) 
to independently smooth the numerator and the denominator. 

The RVI is an oscillator, and we are therefore only concerned with 
the cycle modes of the market in its use. The sharpest rate of change for 
a cycle is at its midpoint. Therefore, in the ascending part of the cycle we 
would expect the difference between the close and open to be at a maxi-
mum. This is like a derivative in calculus, where the derivative of a 
sinewave produces a negative cosine wave. The derivative is therefore a 
waveform that leads the original sinewave by a quarter cycle. Also, from 
calculus, integration of a sinewave over a half-cycle period results in 
another sinewave delayed by a quarter cycle. Summing over a half cycle 
is basically the same as mathematically integrating, with the result that 
the waveshape of the sum is delayed by a quarter wavelength relative to 
the input. The net result of taking the differences and summing produces 
an oscillator output in phase with the cyclic component of the price. It is 
also possible to generate a leading function if the summation window is 
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less than a half wavelength of the Dominant Cycle. If a cycle measure-
ment is not available, you can sum the RVI components over a fixed 
default period. A nominal value of 8 is suggested because this is approxi-
mately half the period of most cycles of interest. 

Calculating the RVI is straightforward. The numerator, consisting of 
Close − Open, is filtered in the four-bar symmetrical FIR filter before the 
terms are summed. The denominator, consisting of High − Low, is indepen-
dently filtered in the four-bar symmetrical FIR filter before it is summed. 
The numerator and denominator are summed individually and the RVI is 
then computed as the ratio of the numerator to the denominator. Since the 
numerator and denominator are lagged the same amount due to filtering, 
the lag is removed by taking their ratio. 

The rules for the use of the RVI are flexible. Just remember that it is an 
oscillator that is basically in phase with the cyclic component of the mar-
ket prices. I prefer crossing line indicators because they are unambiguous 
in their signals. A simple Trigger line is just the RVI delayed by one bar. 

The RVI oscillator is shown in Figure 6.1. The responsiveness and clar-
ity of the signals are self-explanatory. The EasyLanguage code to compute 
the RVI is shown in Figure 6.2, and its eSignal Formula Script (EFS) code is 
shown in Figure 6.3. 

FIGURE 6.1 The RVI Gives Crisp Indications of the Cyclic Turning Point 
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Inputs: Length(10); 

Vars: Num(0), 
Denom(0), 
count(0), 
RVI(0), 
Trigger(0); 

Value1 = ((Close – Open) + 2*(Close[1] 

- Open[1]) + 2*(Close[2] - Open[2]) 
+ (Close[3] - Open[3]))/6;

Value2 = ((High – Low) + 2*(High[1] 

- Low[1]) + 2*(High[2] - Low[2]) 
+ (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length -1 begin


Num = Num + Value1[count];

Denom = Denom + Value2[count];


End;

If Denom <> 0 then RVI = Num / Denom;

Trigger = RVI[1];


Plot1(RVI, “RVI”);

Plot2(Trigger, “Trigger”);


FIGURE 6.2 EasyLanguage Code to Compute the RVI 

/*****************************************************

Title: RVI 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================


FIGURE 6.3 EFS Code to Compute the RVI 



c06.qxd  2/2/04  10:45 AM  Page 59

59 Relative Vigor Index 

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables

var aRVIArray

var aValue1Array

var aValue2Array


= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“RVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


aRVIArray[x] = 0.0; 
aValue1Array[x] = 0.0; 
aValue2Array[x] = 0.0; 
aValue3Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;


(continued)


FIGURE 6.3 (Continued) 
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//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aRVIArray.pop();

aRVIArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


aValue2Array.pop();

aValue2Array.unshift( 0 );


}


aValue1Array[0] = ( ( close()-open() ) 

+ 2*( close(-1)-open(-1) ) 
+ 2*( close(-2)-open(-2) ) 
+ ( close(-3)-open(-3) ) ) / 6;

aValue2Array[0] = ( ( high()-low() ) 

+ 2*( high(-1)-low(-1) ) 
+ 2*( high(-2)-low(-2) ) 
+ ( high(-3)-low(-3) ) ) / 6;

nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];


FIGURE 6.3 (Continued) 
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}


if ( nDenom != 0 ) aRVIArray[0] = nNum/nDenom;


//return the calculated values

{


return new Array( aRVIArray[0],_

aRVIArray[1] );


}


}


FIGURE 6.3 (Continued) 

KEY POINTS TO REMEMBER 

•	 The RVI concept is that prices close higher than they open in up mar-
kets and close lower than they open in down markets. 

•	 The RVI is a normalized oscillator, where the movement is normalized 
to the trading range of each bar. 

•	 Lag-canceling four-bar symmetrical FIR filters are used to produce a 
readable indicator. 
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CHAPTER 7 

Oscillator 
Comparison 

“Let’s play musical chairs,” said Tom deceitfully. 

In the previous three chapters I have described three different oscilla-
tors using three different principles. There is probably no need for 
more than one oscillator in your technical trading arsenal if it is a good 

one. It is my experience that a number of traders suffer from the “paralysis 
of analysis.” Rather than searching for the ideal combination of tools—or 
worse, changing the mix of tools for every situation—it is better to settle 
on the few tools that work the best for you on average. The three oscilla-
tors are for your consideration. The only way to know which of the three is 
best is to do a comparison on the same chart using the same data for each. 
This comparison is shown in Figure 7.1. 

Frankly, I don’t see a nickel’s worth of difference between the three 
oscillators in this particular example. All three indicate the relative cycle 
amplitude and correctly identify each major turning point as it occurs. If 
anything, the Relative Vigor Index (RVI) is slightly less susceptible to whip-
saw indications. Nonetheless, I am partial to the Cyber Cycle because I 
know it contains only the theoretical cycle components that comprise an 
oscillator. I have seen greater differences between the oscillators in other 
data samples. 

The differences will become more apparent when you insert these 
oscillators as part of an automatic trading strategy. In these applications 
one oscillator may give a signal one bar earlier than the others at critical 
times for the strategy. It’s also true that one oscillator may have fewer 
short-term crossovers that lead to whipsaw trades. In any event, you now 
have three excellent tools for your own technical analysis. It may be that 
one of the oscillators will outperform the others in your application. 

63 
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FIGURE 7.1 Comparison of the Cyber Cycle, CG, and RVI Oscillators 

It may be constructive to compare just one of the oscillators I have 
developed to several other oscillators that are in common use on a chart 
using the same data as before. This standardized comparison is useful to 
assess the relative lag of the trading signals and the degree to which whip-
saw signals are produced. Two of the more popular oscillators are the 
Relative Strength Index (RSI) and the Stochastic. These are compared to 
the Cyber Cycle in Figure 7.2, where eight-bar periods are used for compa-
rable scaling. Whoa! Clearly, the RSI and Stochastic are more erratic than 
the Cyber Cycle. Waiting for confirmation for the indicators to cross the 
signal lines is the conventional way of minimizing the erratic behavior of 
the indicators. Waiting for confirmation means that the RSI and Stochastic 
trading signals are invariably late or that the signal is missed altogether. I 
could cite many more examples and many more comparison indicators, 
but the purpose of this book is to generate tools you can use in your own 
work. Since you have the code, you can test your own examples. You can 
also compare these new tools to your other favorite indicators. 
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FIGURE 7.2 Cyber Cycle is Smoother and Signals are More Timely than Those of an 
RSI or Stochastic 

KEY POINTS TO REMEMBER 

•	 The Cyber Cycle, CG, and RVI oscillators all carry relative cycle ampli-
tude information. 

•	 The Cyber Cycle, CG, and RVI all indicate major turning points with 
minimum lag. 

•	 The Cyber Cycle, CG, and RVI are vastly superior to standard indicators. 
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CHAPTER 8 

Stochasticization 
and Fisherization 

of Indicators 

“I’m of greater value to you every day,” said Tom appreciatively. 

There is an indicator I wish I had invented because it works pretty 
well. This indicator is called the Stochastic RSI. Since I didn’t invent 
it, the best I can do is to describe it and then proceed to shamelessly 

adapt some of its principles to create even better indicators. All of these 
indicators will be described and compared in this chapter. 

The name of the Stochastic RSI is descriptive of how it is calculated. 
First an RSI Indicator is computed from recent prices; then a Stochastic 
Indicator is computed using the RSI as the input variable. Finally, a 
weighted moving average of the Stochastic is taken to smooth it so that a 
workable output can be viewed. 

An RSI averages the difference in ascending closing prices over a 
selected period separately from averaging the difference in descending 
closing prices. For a shorthand notation, I will call these Closes Up (CU) 
and Closes Down (CD). The RSI is the ratio of CU to the sum of CU and CD. 
If there are no CD in the selected period, the ratio is unity (1). If there are 
no CU in the selected period, the ratio is 0. So, if the length exactly coin-
cides with half the period of a perfect cycle, the RSI will swing between 
0 and 1. It is common to multiply the ratio by 100 to display the RSI as a 
percentage. 

A Stochastic Indicator1 (definitely not a stochastic random variable) is 
computed by finding the highest value and the lowest value over a selected 
period. The Stochastic Indicator is the ratio of the difference between the 
current and lowest values and the difference between the highest and low-
est values. It is also common to multiply this ratio by 100 to display the 
Stochastic Indicator as a percentage. 

67 
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The EasyLanguage and EFS codes to derive the Stochastic RSI from 
RSI and Stochastics are given in Figures 8.1 and 8.2, respectively. Before 
the Stochastic RSI is plotted, it is smoothed by a weighted moving average 
to provide a pleasing display with minimal lag. The Trigger line displayed is 
the Signal line delayed by one bar. The crossing of the Stochastic RSI Signal 
and a Trigger line constitutes buy and sell signals of the indicator. I have 
taken the liberty of scaling the Stochastic RSI to swing between −1 and +1. 
My scaling is selected so that I can directly apply the Fisher transform to it 
to generate razor-sharp entry and exit signals. 

The amazing thing about the Stochastic RSI is that, after all the com-
putations, the trading signals have almost no lag. The primary reason for 
this is that both the RSI and the Stochastic Indicators are ratios, so that lag 
in the numerator is canceled by lag in the denominator. The performance of 
the Stochastic RSI is shown in Figure 8.3. Unlike the Cyber Cycle and CG 
Oscillator, the Stochastic RSI tends not to retain the relative amplitudes of 
the cycles. This amplitude standardization can be an advantage to traders 
because it removes some of the interpretive aspects of the oscillators. In 
Figure 8.3, the Stochastic RSI clearly captures every major turning point in 
a timely manner. 

This is the good part. If taking the Stochastic of a standard indicator 
produces a better indicator, it is reasonable that a superlative indicator can 
be created by applying the same process to an already good indicator. The 
EasyLanguage and EFS codes for transforming the Cyber Cycle of Figure 
4.4 into a Stochastic Cyber Cycle are given in Figures 8.4 and 8.5, respec-
tively. The EasyLanguage and eSignal Formula Script (EFS) codes for 

Inputs:	 RSILength(8),

StocLength(8),

WMALength(8);


Value1 = RSI(Close, RSILength) - Lowest(RSI(Close, 

RSILength), StocLength);


Value2 = Highest(RSI(Close, RSILength), StocLength) 

- Lowest(RSI(Close, RSILength), StocLength);

If Value2<> 0 then Value3 = Value1 / Value2;

Value4 = 2*(WAverage(Value3, WMALength) - .5);


Plot1(Value4, “StocRSI”);

Plot2(Value4[1], “Trig”);


FIGURE 8.1 EasyLanguage Code to Compute the Stochastic RSI 
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/*****************************************************

Title: Stochastic RSI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nAvgUpClose = 0; 
var nAvgDnClose = 0; 
var ntAvgUpClose = 0; 
var ntAvgDnClose = 0; 
var nValue3 = 0; 
var nValue4 = 0; 
var nTrig = 0; 
var bInitialized = false; 

var nRS = 0; 
var nRSI = 0; 

var aRSIArray = new Array(); 
var aValue3Array = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“StochasticRSI”);


(continued)


FIGURE 8.2 EFS Code to Compute the Stochastic RSI 
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setCursorLabelName(“StocRSI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<70; x++) {


aRSIArray[x] = 0.0;

aValue3Array[x] = 0.0;


}


}


//== Main processing function

function main( RSILength, StocLength, WMALength ) {

var x;

var nDiff;

var nDivBy;

var nValue1;

var nValue2;


//initialize parameters if necessary

if ( RSILength == null ) {


RSILength = 8;

}

if ( StocLength == null ) {


StocLength = 8;

}

if ( WMALength == null ) {


WMALength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//initialize the basic RSI calculation

if ( bInitialized == false ) {


nAvgUpClose = 0.0;

nAvgDnClose = 0.0;

for (x=0; x<RSILength; x++) {


FIGURE 8.2 (Continued) 
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nDiff = close( -x ) 

- close( -(x+1) );

if ( nDiff > 0 ) {

nAvgUpClose += nDiff;


}

else {


nAvgDnClose

+= Math.abs


( nDiff );

}


}

nAvgUpClose /= RSILength;

nAvgDnClose /= RSILength;

nRS = nAvgUpClose / nAvgDnClose;

nRSI = 100.0 - ( 100.0 / ( 1.0 


+ nRS ) );

bInitialized = true;

}

//continue the RSI calculation on subsequent_ 


bars

else {


if ( getBarState() == BARSTATE_NEWBAR ) {

nAvgUpClose = ntAvgUpClose;

nAvgDnClose = ntAvgDnClose;

if ( !isNaN( nRSI ) ) {


aRSIArray.pop();

aRSIArray.unshift( 0 );

aValue3Array.pop();

aValue3Array.unshift( 0 );

nTrig = nValue4;


}

}

nDiff = close( 0 ) - close( -1 );

if ( nDiff > 0 ) {


ntAvgUpClose = (( nAvgUpClose 

* (RSILength-1) ) + nDiff ) 
/ RSILength;


ntAvgDnClose = (( nAvgDnClose 

* (RSILength-1) ) + 0 ) 

/ RSILength;


}

(continued)


FIGURE 8.2 (Continued) 
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else {

ntAvgUpClose = (( nAvgUpClose 


* (RSILength-1) ) + 0 ) 

/ RSILength;


ntAvgDnClose = (( nAvgDnClose 

* (RSILength-1) ) 
+ Math.abs( nDiff ) ) 
/ RSILength;


}

nRS = ntAvgUpClose / ntAvgDnClose;

nRSI = 100.0 - ( 100.0 / ( 1 


+ nRS ) );
aRSIArray[0] = nRSI;


}


//calculate the StocRSI using the RSI Array we_ 

have created.


nValue1 = nRSI - Lowest( StocLength );

nValue2 = Highest( StocLength ) 


- Lowest( StocLength );

nValue3 = 0;

if ( nValue2 != 0 ) nValue3 = ( nValue1 


/ nValue2 );

aValue3Array[0] = nValue3;


//compute weighted moving average

nValue4 = 0;

nDivBy = 0;

for (x=0; x<WMALength; x++) {


nValue4 += ( aValue3Array[x] 

* ( WMALength-x ) );

nDivBy += ( WMALength-x );

}


nValue4 = nValue4 / nDivBy;

nValue4 = 2.0 * ( nValue4 - 0.5 );


//return the calculated values

if (!isNaN( nValue4 ) ) {


return new Array( nValue4, nTrig );


FIGURE 8.2 (Continued) 
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}


}


/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aRSIArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aRSIArray[x] );


}


return( nTmp );

}


FIGURE 8.2 (Continued) 

converting the CG Indicator of Figure 5.3 into a Stochastic CG are given in 
Figures 8.6 and 8.7, respectively. Finally, the EasyLanguage and EFS codes 
to stochasticize the Relative Vigor Index (RVI) of Figure 6.1 are provided in 
Figures 8.8 and 8.9, respectively. In each case, I have simply added the code 
to take the Stochastic of the indicators and scaled the resulting indicators 
to range between −1 and +1. This scaling was done because the next step of 
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FIGURE 8.3 The Stochastic RSI Captures Turning Points in a Timely Manner 

the indicator creation is to take the Fisher transform for sharper, better-
defined entry and exit signals. The Trigger is just the indicator delayed by 
one bar and scaled to swing between −0.98 and +0.98. Shrinking the size of 
the Trigger gives a better-defined crossover when the indicator moves 
away from the extreme values. 

The three stochasticized indicators are compared in Figure 8.10. They 
are clearly similar, although I like the Stochastic Cyber Cycle because the 
buy/sell indications are based purely on the cycle content of the data. On 
the other hand, it is clear that the Stochastic RVI is more regular with fewer 
whipsaws. In any event, you have all the tools to make your own selection. 
The input parameters for each of the indicators enable you to optimize the 
indicator period, if desired, when used with a specific security. 

In Chapter 1, I pointed out that the probability density functions of 
sinewaves are not Gaussian and that creating sharp indicators from them is 
difficult because the indications come after the movement has already 
started. The Stochasticized Indicators all look somewhat like sinewaves. 
Therefore, we should be able to create razor-sharp trading signals by apply-
ing the Fisher transform to them. This is exactly what I have done in the 
indicator codes of Figures 8.11 through 8.16. I have limited the amplitude 
swings to absolute values of 0.99 to avoid getting huge output amplitudes 
from the Fisher transform. The trading signals, as before, are given by the 
crossing of the Signal line and the Trigger line. The Trigger line is simply the 
Signal line delayed by one bar. 
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{*****************************************************

Stochastic Cyber Cycle


*****************************************************}


Inputs: Price((H+L)/2),

alpha(.07),

Len(8);


Vars:	 Smooth(0),

Cycle(0),

MaxCycle(0),

MinCycle(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1] 
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

MaxCycle = Highest(Cycle, Len);

MinCycle = Lowest(Cycle, Len);

If MaxCycle <> MinCycle then Value1 = (Cycle 


- MinCycle) / (MaxCycle - MinCycle);

Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2] 


+ Value1[3]) / 10;
Value2 = 2*(Value2 - .5);


Plot1(Value2, “Cycle”);

Plot2(.96*(Value2[1] + .02), “Trigger”);

Plot3(0,”Ref”);


FIGURE 8.4 EasyLanguage Code to Compute the Stochastic Cyber Cycle 

/*****************************************************

Title: Stochastic Cyber Cycle 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003


(continued)


FIGURE 8.5 EFS Code to Compute the Stochastic Cyber Cycle 
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Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

******************************************************/


//External Variables 

var nBarCount = 0; 
var nValue2 = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 
var aCycleArray = new Array(); 
var aValue1Array = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“StochasticCyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aValue1Array[x] = 0.0;


FIGURE 8.5 (Continued) 
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}


}


//== Main processing function

function main( Alpha, OscLength ) {

var x;

var nPrice;

var nMaxCycle;

var nMinCycle;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


(continued)


FIGURE 8.5 (Continued) 



c08.qxd  2/2/04  10:47 AM  Page 78

78 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

nTrig = nValue2;

}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2] ) / 4;

}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) * ( 1 

- 0.5*Alpha ) * ( aSmoothArray[0] 
- 2*aSmoothArray[1] + 

aSmoothArray[2] ) + 2*( 1-Alpha ) 

* aCycleArray[1] - ( 1-Alpha ) 
* ( 1- Alpha ) * aCycleArray[2];


}


nMaxCycle = Highest( OscLength );

nMinCycle = Lowest( OscLength );


if ( nMaxCycle != nMinCycle ) aValue1Array[0] 

= ( aCycleArray[0]-nMinCycle ) / ( nMaxCycle 

- nMinCycle );

nValue2 = ( 4*aValue1Array[0] 

+ 3*aValue1Array[1] + 2*aValue1Array[2] 
+ aValue1Array[3] ) / 10;

nValue2 = 2 * ( nValue2 - 0.5 );


if (!isNaN( nValue2 ) ) {

return new Array( nValue2, 


(0.96*(nTrig+0.02)) );

}


}


FIGURE 8.5 (Continued) 
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/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aCycleArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aCycleArray[x] );


}


return( nTmp );

}


FIGURE 8.5 (Continued) 

{*****************************************************

Stochastic CG Oscillator 


*****************************************************}


Inputs: Price((H+L)/2),

Length(8);


Vars:	 count(0),

Num(0),

Denom(0),

CG(0),


(continued)


FIGURE 8.6 EasyLanguage Code to Compute the Stochastic CG 
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MaxCG(0),

MinCG(0);


Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin


Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);


End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;


MaxCG = Highest(CG, Length);

MinCG = Lowest(CG, Length);

If MaxCG <> MinCG then Value1 = (CG - MinCG) / (MaxCG 


- MinCG);
Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2] 


+ Value1[3]) / 10;
Value2 = 2*(Value2 - .5);


Plot1(Value2, “CG”);

Plot2(.96*(Value2[1] + .02), “Trigger”);

Plot3(0,”Ref”);


FIGURE 8.6 (Continued) 

/*****************************************************

Title: Stochastic CG Oscillator 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


FIGURE 8.7 EFS Code to Compute the Stochastic CG 
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======================================================

*****************************************************/


//External Variables

var nPrice = 0;

var nCG = 0;

var nValue2 = 0;

var nTrig = 0;


var aPriceArray

var aCGArray

var aValue1Array


= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“StochasticCGOsc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0; 
aCGArray[x] = 0.0; 
aValue1Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;


(continued)


FIGURE 8.7 (Continued) 
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var nMaxCG;

var nMinCG;

var nValue1;


//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aPriceArray.pop();

aPriceArray.unshift( 0 );


aCGArray.pop();

aCGArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


nTrig = nValue2;

}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += ( 1.0 + x ) 


* ( aPriceArray[x] );

nDenom += ( aPriceArray[x] );


}


FIGURE 8.7 (Continued) 
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if ( nDenom != 0 ) nCG = -nNum/nDenom 

+ ( OscLength+1 )/2;

aCGArray[0] = nCG;


nMaxCG = Highest( OscLength);

nMinCG = Lowest( OscLength );


nValue1 = 0;

if ( nMaxCG != nMinCG ) nValue1 = (nCG 


- nMinCG) / (nMaxCG - nMinCG);
aValue1Array[0] = nValue1;


nValue2 = ( 4*aValue1Array[0] 

+ 3*aValue1Array[1] + 2*aValue1Array[2] 
+ aValue1Array[3] ) / 10;

nValue2 = 2.0 * ( nValue2 - 0.5 );


//return the calculated values

if ( !isNaN( nValue2 ) ) {


return new Array( nValue2, 

(0.96*(nTrig+0.02)) );


}


}


/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aCGArray[x] );


}


return( nTmp );

(continued)


FIGURE 8.7 (Continued) 
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}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aCGArray[x] );


}


return( nTmp );

}


FIGURE 8.7 (Continued) 

{****************************************************

Stochastic Relative Vigor Index (RVI)


*****************************************************}

Inputs: Length(8);


Vars:	 Num(0),

Denom(0),

count(0),

RVI(0),

MaxRVI(0),

MinRVI(0);


Value1 = ((Close - Open) + 2*(Close[1] - Open[1]) 

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1]) 

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin


Num = Num + Value1[count];

Denom = Denom + Value2[count];


End;


FIGURE 8.8 EasyLanguage Code to Compute the Stochastic RVI 
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If Denom <> 0 then RVI = Num / Denom;


MaxRVI = Highest(RVI, Length);

MinRVI = Lowest(RVI, Length);

If MaxRVI <> MinRVI then Value3 = (RVI - MinRVI) 


/ (MaxRVI - MinRVI);

Value4 = (4*Value3 + 3*Value3[1] + 2*Value3[2] 


+ Value3[3]) / 10;
Value4 = 2*(Value4 - .5);


Plot1(Value4, “RVI”);

Plot2(.96*(Value4[1] + .02), “Trigger”);

Plot3(0,”Ref”);


FIGURE 8.8 (Continued) 

/*****************************************************

Title: Stochastic RVI 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nValue4 = 0; 
var nTrig = 0; 

(continued) 

FIGURE 8.9 EFS Code to Compute the Stochastic RVI 
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var aRVIArray

var aValue1Array

var aValue2Array

var aValue3Array


= new Array();

= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“StochasticRVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


aRVIArray[x] = 0.0; 
aValue1Array[x] = 0.0; 
aValue2Array[x] = 0.0; 
aValue3Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;

var nMaxRVI;

var nMinRVI;


//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 8;

}


FIGURE 8.9 (Continued) 
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// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aRVIArray.pop();

aRVIArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


aValue2Array.pop();

aValue2Array.unshift( 0 );


aValue3Array.pop();

aValue3Array.unshift( 0 );


nTrig = nValue4;

}


aValue1Array[0] = ( ( close()-open() ) 

+ 2*( close(-1)-open(-1) ) + 2*( close(-2)
- open(-2) ) + ( close(-3)-open(-3) ) ) 

/ 6;


aValue2Array[0] = ( ( high()-low() ) 

+ 2*( high(-1)-low(-1) ) + 2*( high(-2)
- low(-2) ) + ( high(-3)-low(-3) ) ) / 6;

nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];


}


if ( nDenom != 0 ) aRVIArray[0] = nNum/nDenom;

(continued)


FIGURE 8.9 (Continued) 
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nMaxRVI = Highest( OscLength);

nMinRVI = Lowest( OscLength );


if ( nMaxRVI != nMinRVI ) aValue3Array[0] 

= ( aRVIArray[0]-nMinRVI ) 

/ ( nMaxRVI-nMinRVI );


nValue4 = ( 4*aValue3Array[0] 

+ 3*aValue3Array[1] + 2*aValue3Array[2] 
+ aValue3Array[3] ) / 10;

nValue4 = 2.0 * ( nValue4 - 0.5 );


//return the calculated values

if ( !isNaN( nValue4 ) ) {


return new Array( nValue4, 

(0.96*(nTrig+0.02)) );


}


}

/*****************************************************


SUPPORT FUNCTIONS

*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aRVIArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {


FIGURE 8.9 (Continued) 
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nTmp = Math.min( nTmp, aRVIArray[x] );

}


return( nTmp );

}


FIGURE 8.9 (Continued) 

FIGURE 8.10 Comparison of the Stochasticized Indicators 

{*****************************************************

Fisher Cyber Cycle


*****************************************************}

Inputs: Price((H+L)/2),


alpha(.07),

Len(8);


Vars: Smooth(0),

(continued)


FIGURE 8.11 EasyLanguage Code to Compute the Fisher Stochastic Cyber Cycle 
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Cycle(0),

MaxCycle(0),

MinCycle(0),

Lead(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

MaxCycle = Highest(Cycle, Len);

MinCycle = Lowest(Cycle, Len);

If MaxCycle <> MinCycle then Value1 = (Cycle 


- MinCycle) / (MaxCycle - MinCycle);
Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2] 


+ Value1[3]) / 10;

Value3 = .5*Log((1+1.98*(Value2-.5))/(1-1.98

*(Value2-.5)));


Plot1(Value3, “Cycle”);

Plot2(Value3[1], “Trigger”);

Plot3(0,”Ref”);


FIGURE 8.11 (Continued) 

/*****************************************************

Title: Fisher Cyber Cycle

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


FIGURE 8.12 EFS Code to Compute the Fisher Stochastic Cyber Cycle 
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======================================================

Fix History:

06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables


var nBarCount = 0;

var nValue3 = 0;


var aPriceArray = new Array();

var aSmoothArray = new Array();

var aCycleArray = new Array();

var aValue1Array = new Array();


//== PreMain function required by eSignal to set 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“FisherCyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aValue1Array[x] = 0.0; 

} 

} 
(continued) 

FIGURE 8.12 (Continued) 



c08.qxd  2/2/04  10:47 AM  Page 92

92 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

//== Main processing function

function main( Alpha, OscLength ) {

var x;

var nPrice;

var nValue2;

var nMaxCycle;

var nMinCycle;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


nTrig = nValue3;

}


FIGURE 8.12 (Continued) 
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nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2] ) / 4;

}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) * ( 1 

- 0.5*Alpha ) * ( aSmoothArray[0] 
- 2*aSmoothArray[1] + 

aSmoothArray[2] ) + 2*( 1-Alpha ) 

* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


nMaxCycle = Highest( OscLength );

nMinCycle = Lowest( OscLength );


if ( nMaxCycle != nMinCycle ) aValue1Array[0] 

= ( aCycleArray[0]-nMinCycle ) 

/ ( nMaxCycle - nMinCycle );


nValue2 = ( 4*aValue1Array[0] 

+ 3*aValue1Array[1] + 2*aValue1Array[2] 
+ aValue1Array[3] ) / 10;

nValue3 = 0.5 * Math.log( ( 1 + 1.98 

* ( nValue2-0.5 ) ) / ( 1 - 1.98 
* ( nValue2-0.5 ) ) );

//return the calculated values

if (!isNaN( nValue3 ) ) {


return new Array( nValue3, nTrig );

}


}

(continued)


FIGURE 8.12 (Continued) 



c08.qxd  2/2/04  10:47 AM  Page 94

94 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aCycleArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aCycleArray[x] );


}


return( nTmp );

}


FIGURE 8.12 (Continued) 
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{*****************************************************

Fisher CG


*****************************************************}

Inputs: Price((H+L)/2),


Length(8);


Vars:	 count(0),

Num(0),

Denom(0),

CG(0),

MaxCG(0),

MinCG(0),

Lead(0);


Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin


Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);


End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;


MaxCG = Highest(CG, Length);

MinCG = Lowest(CG, Length);

If MaxCG <> MinCG then Value1 = (CG - MinCG) / 


(MaxCG - MinCG);

Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2] + 


Value1[3]) / 10;


Value3 = .5*Log((1+1.98*(Value2-.5))/(1-1.98

*(Value2-.5)));


Plot1(Value3, "CG");

Plot2(Value3[1], "Trigger");

Plot3(0,"Ref");


FIGURE 8.13 EasyLanguage Code to Compute the Fisher Stochastic CG 
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/*****************************************************

Title: Fisher Stochastic CG Oscillator 
Coded By: Chris D. Kryza (Divergence Software, Inc.) 
Email: c.kryza@gte.net 
Incept: 06/19/2003 
Version: 1.0.0 

======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables

var nPrice = 0;

var nCG = 0;

var nValue3 = 0;

var nTrig = 0;


var aPriceArray

var aCGArray

var aValue1Array


= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“FisherStochasticCGOsc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


FIGURE 8.14 EFS Code to Compute the Fisher Stochastic CG 



c08.qxd  2/2/04  10:47 AM  Page 97

97 Stochasticization and Fisherization of Indicators 

//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0; 
aCGArray[x] = 0.0; 
aValue1Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;

var nMaxCG;

var nMinCG;

var nValue1;


//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aPriceArray.pop();

aPriceArray.unshift( 0 );


aCGArray.pop();

aCGArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


(continued)


FIGURE 8.14 (Continued) 
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nTrig = nValue3;

}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += ( 1.0 + x ) 


* ( aPriceArray[x] );

nDenom += ( aPriceArray[x] );


}


if ( nDenom != 0 ) nCG = -nNum/nDenom 

+ ( OscLength+1 )/2;

aCGArray[0] = nCG;


nMaxCG = Highest( OscLength);

nMinCG = Lowest( OscLength );


if ( nMaxCG != nMinCG ) aValue1Array[0] 

= (nCG - nMinCG) / (nMaxCG - nMinCG);


nValue2 = ( 4*aValue1Array[0] 

+ 3*aValue1Array[1] + 2*aValue1Array[2] 
+ aValue1Array[3] ) / 10;

nValue3 = 0.5 * Math.log( ( 1 + 1.98 

* ( nValue2-0.5 ) ) / ( 1 - 1.98 
* ( nValue2-0.5 ) ) );

//return the calculated values

if ( !isNaN( nValue3 ) ) {


return new Array( nValue3, nTrig );

}


}


FIGURE 8.14 (Continued) 
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/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aCGArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aCGArray[x] );


}


return( nTmp );

}


FIGURE 8.14 (Continued) 

{*****************************************************

Fisher RVI


*****************************************************}


Inputs: Length(8);


Vars:	 Num(0),

Denom(0),

count(0),


(continued)


FIGURE 8.15 EasyLanguage Code to Compute the Fisher Stochastic RVI 



c08.qxd  2/2/04  10:47 AM  Page 100

100 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

RVI(0),

Lead(0),

MaxRVI(0),

MinRVI(0);


Value1 = ((Close - Open) + 2*(Close[1] - Open[1]) 

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1]) 

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin


Num = Num + Value1[count];

Denom = Denom + Value2[count];


End;

If Denom <> 0 then RVI = Num / Denom;


MaxRVI = Highest(RVI, Length);

MinRVI = Lowest(RVI, Length);

If MaxRVI <> MinRVI then Value3 = (RVI - MinRVI) 


/ (MaxRVI - MinRVI);

Value4 = (4*Value3 + 3*Value3[1] + 2*Value3[2] 


+ Value3[3]) / 10;

Value5 = .5*Log((1+1.98*(Value4 - .5))/(1-1.98*(Value4 

- .5)));

Plot1(Value5, “RVI”);

Plot2(Value5[1], “Trigger”);

Plot3(0,”Ref”);


FIGURE 8.15 (Continued) 
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/*****************************************************

Title: FisherStochastic RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nValue5 = 0; 
var nTrig = 0; 

var aRVIArray = new Array(); 
var aValue1Array = new Array(); 
var aValue2Array = new Array(); 
var aValue3Array = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“FisherStochasticRVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );

addBand( 0, PS_SOLID, Color.black, 1, -55 );


//initialize arrays

for (x=0; x<70; x++) {


(continued)


FIGURE 8.16 EFS Code to Compute the Fisher Stochastic RVI 
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aRVIArray[x] = 0.0; 
aValue1Array[x] = 0.0; 
aValue2Array[x] = 0.0; 
aValue3Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( OscLength ) {

var x;

var nNum;

var nDenom;

var nValue4;

var nMaxRVI;

var nMinRVI;


//initialize parameters if necessary

if ( OscLength == null ) {


OscLength = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aRVIArray.pop();

aRVIArray.unshift( 0 );


aValue1Array.pop();

aValue1Array.unshift( 0 );


aValue2Array.pop();

aValue2Array.unshift( 0 );


aValue3Array.pop();

aValue3Array.unshift( 0 );


FIGURE 8.16 (Continued) 
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nTrig = nValue5;

}


aValue1Array[0] = ( ( close()-open() ) 

+ 2*( close(-1)-open(-1) ) 
+ 2*( close(-2)-open(-2) ) 
+ ( close(-3)-open(-3) ) ) / 6;

aValue2Array[0] = ( ( high()-low() ) 

+ 2*( high(-1)-low(-1) ) 
+ 2*( high(-2)-low(-2) )
+ ( high(-3)-low(-3) ) ) / 6;

nNum = 0;

nDenom = 0;


for ( x=0; x<OscLength; x++ ){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];


}


if ( nDenom != 0 ) aRVIArray[0] = nNum/nDenom;

nMaxRVI = Highest( OscLength);

nMinRVI = Lowest( OscLength );


if ( nMaxRVI != nMinRVI ) aValue3Array[0] 

= ( aRVIArray[0]-nMinRVI ) 

/ ( nMaxRVI-nMinRVI );


nValue4 = ( 4*aValue3Array[0] 

+ 3*aValue3Array[1] + 2*aValue3Array[2] 
+ aValue3Array[3] ) / 10;

nValue5 = 0.5 * Math.log( ( 1 + 1.98 

* ( nValue4-0.5 ) ) / ( 1 - 1.98 
* ( nValue4-0.5 ) ) );

//return the calculated values

if ( !isNaN( nValue5 ) ) {


return new Array( nValue5, nTrig );

}


}

(continued)


FIGURE 8.16 (Continued) 
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/*****************************************************

SUPPORT FUNCTIONS


*****************************************************/


function Highest( nPeriod ) {

var x;

var nTmp = -999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.max( nTmp, aRVIArray[x] );


}


return( nTmp );

}


function Lowest( nPeriod ) {

var x;

var nTmp = 999999999.0;


for (x=0; x<nPeriod; x++) {

nTmp = Math.min( nTmp, aRVIArray[x] );


}


return( nTmp );

}


FIGURE 8.16 (Continued) 

The three Fisherized indicators are compared in Figure 8.17. In all 
cases, the Fisher transform provides a means to filter the undesired whip-
saw signals by ignoring line crossovers that happen at an absolute ampli-
tude of less than 2. It appears that the Fisher RVI is the superior oscillator 
because, almost without exception, it provides trading signals several bars 
in advance of the other indicators. That makes it a really good indicator 
because the other two are not slouches in their own right. Any or all of the 
three can be a profound addition to your technical analysis tools. 
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FIGURE 8.17 Fisherized Indicators Give Razor-Sharp Trading Signals 

KEY POINTS TO REMEMBER 

•	 New, easier-to-read oscillators can be created by applying the Stochastic 
calculation to existing indicators. 

•	 The Stochastic RVI is an extraordinarily smooth and consistent oscil-
lator. 

•	 Performing a Fisher transform on amplitude-limited oscillators pro-
vides a way to eliminate whipsaw signals by ignoring crossovers that 
occur at amplitudes less than 2. 

•	 The Fisher RSI provides consistently timely signals with surgical pre-
cision. 
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CHAPTER 9 

Measuring Cycles 

“Looks like rain,” said Tom precipitously. 

I t is obvious that cycles exist in the market. They can be found on any 
chart by the most casual observer. What is not so clear is how to iden-
tify those cycles in real time and how to take advantage of their exis-

tence. When Welles Wilder first introduced the Relative Strength Index 
(RSI), I was curious as to why he selected 14 bars as the basis of his calcu-
lations. I reasoned that if I knew the correct market conditions, then I 
could make indicators such as the RSI adaptive to those conditions. Cycles 
were the answer. I knew cycles could be measured. Once I had the cyclic 
measurement, a host of automatically adaptive indicators could follow. 

Measurement of market cycles is not easy. The signal-to-noise ratio is 
often very low, making measurement difficult even using a good measure-
ment technique. Additionally, the measurements theoretically involve 
simultaneously solving a triple infinity of parameter values. The parame-
ters required for the general solutions were frequency, amplitude, and 
phase. Some standard engineering tools, like fast Fourier transforms 
(FFTs), are simply not appropriate for measuring market cycles because 
FFTs cannot simultaneously meet the stationarity constraints and produce 
results with reasonable resolution. Therefore I introduced Maximum 
Entropy Spectral Analysis (MESA) for the measurement of market cycles. 
This approach, originally developed to interpret seismographic informa-
tion for oil exploration, produces high-resolution outputs with an excep-
tionally short amount of information. A short data length improves the 
probability of having nearly stationary data. Stationary data means that fre-
quency and amplitude are constant over the length of the data. I noticed 
over the years that the cycles were ephemeral. Their periods would be 

107 
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continuously increasing and decreasing. Their amplitudes also were chang-
ing, giving variable signal-to-noise ratio conditions. Although all this is 
going on with the cyclic components, the enduring characteristic is that 
generally only one tradable cycle at a time is present for the data set being 
used. I prefer the term Dominant Cycle to denote that one component. The 
assumption that there is only one cycle in the data collapses the difficulty 
of the measurement process dramatically. 

Assuming that only one cycle is present in the data enables the mea-
surement to be made using a frequency discriminator. A frequency discrimi-
nator basically measures the differential phase between successive samples. 
Since there are 360 degrees in each cycle, dividing 360 by the differential 
phase produces the measured cycle length. For example, if the differential 
phase is 20°, the resulting cycle length would be 360/20 = 18 bars. That is, an 
18-bar cycle is changing phase at the rate of 20° per sample so that 360° (one 
cycle) is reached after 18 samples. Pretty simple! The most significant fact is 
that, in theory, the cycle measurement can be attained in just two samples. 

To make the phase measurements, we need to describe the cycle in 
terms of a phasor instead of the conventional waveform with which we are 
familiar. The relationship between the cycle waveform and the phasor is 
shown in Figure 9.1. Imagine the phasor as the arrow whose tail is pinned 
at the origin and is rotating counterclockwise. A shadow cast by the arrow-
head would then trace out the sinewave cycle. That is, as the phasor 
rotates, the peak amplitude is reached, followed by the zero crossing, fol-
lowed by the minimum cycle amplitude, and then back to zero, and so on. 
One complete rotation of the phasor describes a cycle. 

The phasor can be broken into two components, called the InPhase 
and Quadrature components, as shown in Figure 9.2. The phase angle for 
any given sample is easily found as the arctangent of the ratio of these two 
components. 

FIGURE 9.1 A Phasor Can Represent a Cycle 
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FIGURE 9.2 The Phase Angle Is the Arctangent of the Ratio of the Quadrature and 
InPhase Components 

The trick is to break the analytic waveform (the cyclic component of 
prices in the form with which we are familiar) into the InPhase and 
Quadrature components. This is done with the Hilbert transform.1 The 
Hilbert transform is theoretically an infinite series; to make it practical for 
traders I have truncated the series at four elements. The equation for the 
Quadrature component in EasyLanguage notation is 

Q = 0.0962 * Price + 0.5769 * Price[2] − 0.5769 
* Price[4] − 0.0962 * Price[6]; (9.1) 

The lag of the Quadrature component is half the filter length, or three 
bars. Therefore the InPhase component is just the price delayed by three 
bars, or 

I = Price[3]; (9.2) 

To test the speed of the cycle-measuring process, I created a single 
cycle of a 20-bar sinewave. I then applied the Hilbert transform, computed 
the phase angles, and used a discriminator to measure the cycle period. 
The results of this experiment are shown in Figure 9.3. These results are 
impressive. An accurate measurement of the cycle period is made within 
four samples of the beginning of the cycle. That four-sample lag is just the 
lag of the Hilbert transform plus one more sample because the phase dif-
ference between samples is required for the computation of the period. 

Before getting too excited about these results, please recall that 
this is a purely monochromatic theoretical waveform having an infinite 
signal-to-noise ratio. Furthermore, the waveform is already detrended 
because the cycle swings about the zero line. In the real world we must 
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FIGURE 9.3 The Hilbert Transform Enables Rapid Measurement of the Cycle Period 

detrend the signal to extract the cyclic component and then also deal 
with the noise that is superimposed on the signal. In other words, we 
need to compute the cyclic component of the market prices as we did in 
Figure 4.2 before we compute the cycle period. 

The EasyLanguage and eSignal Formula Script (EFS) codes for com-
puting the cycle period are shown in Figures 9.4 and 9.5, respectively. The 
description of the calculation is done with reference to Figure 9.4. After 
defining the inputs and declaring the variables, the first three lines of code 
recover the cyclic component, just as in Figure 4.2. The cyclic component 
is used to compute the Quadrature (Q1) and InPhase (I1) components of 
the Hilbert transform. One penalty for truncating the infinite series in com-
puting the Quadrature component is that its amplitude is attenuated for the 
longer cycle periods. The last term in the computation of Q1 is a straight-
line amplitude correction. Since the period is not yet known at this point in 
the code, and since the period is a relatively slowly varying function from 
sample to sample, it is satisfactory to use the period computed one bar ago 
in this compensation. I found this feedback compensation to be the most 
robust approach. 

There is another amplitude compensation scheme that is possible. In 
the case of a pure cycle I can think of the InPhase component being Cos (θ) 
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Inputs:	 Price((H+L)/2),

alpha(.07);


Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

I2(0),

Q2(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1] 
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC 

= 6.28318 / MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];


Plot1(Period, “Period”);


FIGURE 9.4 EasyLanguage Code to Compute the Cycle Period 
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/*****************************************************

Title: Cycle Period 
Coded By: Chris D. Kryza (Divergence Software, Inc.) 
Email: c.kryza@gte.net 
Incept: 06/19/2003 
Version: 1.0.0 

======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables


var nBarCount = 0;


var aPriceArray

var aSmoothArray

var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1


= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Cycle Period”);

setCursorLabelName(“Period”, 0);

setDefaultBarFgColor( Color.blue, 0 );


FIGURE 9.5 EFS Code to Compute the Cycle Period 
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//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aQ1[x] = 0.0; 
aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha ) {

var x;

var nDC;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}


// study is initializing

if ( getBarState() == BARSTATE_ALLBARS ) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


(continued)


FIGURE 9.5 (Continued) 
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aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2] ) / 4;

}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] 
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


FIGURE 9.5 (Continued) 
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aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) / (1 
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;

//Need a 5 bar Median filter of DeltaPhase here_


(MedianDelta)

nMedianDelta = Median( 5, aDeltaPhase );


if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

return( aPeriod[0] );


}


function Median( nBars, aArray ) {

var aTmp = new Array();


(continued)


FIGURE 9.5 (Continued) 
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var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two_


middle elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {


return( -1 )

}

else {


return( 1 );

}


}


FIGURE 9.5 (Continued) 
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and the Quadrature component being Sin (θ). Then, a compensation for 
amplitude error in the Quadrature component can be computed from the 
simple trigonometric identity 

Sin2(θ) = 1 − Cos2(θ) 

and normalizing amplitudes. While this is a great theory, and it works on the-
oretical waveforms, I could not obtain satisfactory compensation on real 
price data because of the noise present in that data. I therefore use the feed-
back amplitude compensation in the code. 

The computation of the DeltaPhase starts with a conditional IF state-
ment to preclude the possibility of dividing by 0. Some explanation for the 
rest of the line is required. The phase angle measured for the current bar is 
ArcTan (I1/Q1) and the phase angle for one bar ago is ArcTan (I1[1]/Q1[1]). 
The differential phase calculation is simplified using the trigonometric 
identity 

A − B
ArcTan (A) − ArcTan(B) = ArcTan (9.3)

1 + AB 

A six-bar cycle is as short as we need to measure. A six-bar cycle has a 
phase shift of 60° per bar, or 1.047 radians per bar. Since the differential 
phase has a maximum of about one radian, a reasonable approximation is 
that the angle in radians is approximately equal to the arctangent of that 
angle. This is the approximation we have applied to the computation of the 
differential angle in the code. 

After the DeltaPhase is first computed, some limits must be estab-
lished. First, the DeltaPhase must always be positive because time cannot 
run backward. If we get a negative DeltaPhase computation, it is either due 
to noise or because the two absolute phase measurements have split a 
quadrant of the phasor. (The arctangent is positive in quadrants 1 and 3 and 
is negative in quadrants 2 and 4.) In the case of a negative DeltaPhase, it is 
satisfactory to substitute the previous calculation. Instead, if the 
DeltaPhase is less than 0.1 radians I limit it to 0.1 radians. This is because a 
DeltaPhase smaller than 0.1 radians implies the period is greater than 63 
bars (2 * π/0.1). The other limit is to not compute a period of less than six 
bars. This is done by limiting the DeltaPhase to 1.1 radians. 

The actual calculation of the cycle period is perhaps the easiest part of 
the code to understand. In a nutshell, the concept is to divide the 
DeltaPhase into 2π because 2π represents one full cycle of phases in radian. 
measure. In practice, DeltaPhase is very noisy, varying by a large amount 
from bar to bar. If DeltaPhase were used directly, substantial smoothing 
would be required to recover a reasonable Dominant Cycle. There is a 
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more efficient way of smoothing. The best kind of filter to use on spiky data 
is a median filter. Therefore I filter the DeltaPhases over five samples in a 
median filter to give the variable MedianDelta. MedianDelta is then divided 
into 2π to compute the Dominant Cycle. Measuring theoretical sinewave. 
periods, I found there is a bias of about 0.5 in the period measurement, and 
therefore added a compensation term to remove that bias. The Dominant 
Cycle is smoothed in an exponential moving average having α = 0.33 for a 
relatively rapid response for the feedback term in the computation of Q1. I 
call this variable the Instantanteous Period (InstPeriod). The InstPeriod is 
then smoothed again in an exponential moving average having α =  0.15. 
This value was selected to reach the full cycle length measurement in one 
cycle of a 20-bar signal, starting from 0. 

I have conducted a number of rigorous tests to examine the quality of 
the cycle measurement. First among these is to examine the start-up tran-
sient in a way similar to the single cycle measurement of Figure 9.3. The 
final results are shown in the bottom subgraph of Figure 9.6. In this case, 
I continue the 20-bar cycles after the first one. The InstPeriod comes up 
to a 20-bar measurement at 8 bars after initiation. This is consistent with 
the 1.5-bar lag of the smoothing filter plus the four-bar lag for the Hilbert 

FIGURE 9.6 Measurement of a Single 20-Bar Cycle 
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transform plus the 2.5-bar lag of the median filter. The smoothing of the 
period output is due to the exponential moving average. I could have used 
less smoothing. However, cycle periods tend to change relatively slowly in 
real data, and the greater amount of smoothing is desirable when lag is of 
less concern. These results should be viewed in context. For example, an 
FFT would take about 16 cycles of data to make a measurement of compa-
rable resolution. Yes, you read it correctly—16 full cycles of data would be 
required by an FFT for equivalent results. Even MESA would take a large 
fraction of the cycle to make the first measurement. 

With any measurement algorithm, one crucial test is whether the algo-
rithm makes a correct measurement over a wide range of input data. To 
this end I created a theoretical sinewave whose period gradually increased 
from 6 bars to 40 bars. Figure 9.7 shows this waveform and shows that the 
measurement of its cycle periods is very accurate. 

Another transient and accuracy test is to measure how fast the mea-
surement algorithm can follow the switch from a 30-bar cycle to a 15-bar 
cycle and back. In Figure 9.8, the data consists of two cycles of a 30-bar 

FIGURE 9.7 Measurement of a Chirped Waveform Whose Period Increases from 6 Bars 
to 40 Bars 
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FIGURE 9.8 Measurement of Cycle Periods Varying from 30-Bar Cycles to 15-Bar 
Cycles and Back 

cycle, four cycles of a 15-bar cycle, and two more cycles of a 30-bar cycle. 
This is a severe test, requiring the measurement to slew over a wide range 
between harmonically related cycles. This test shows that the measure-
ment is within reasonable range of the actual period within 15 samples, 
switching either way. 

The basic message here is that the cycle measurement has a lag of 
about 8 bars, as demonstrated in Figure 9.6, up to a lag of about 15 bars in 
one of the most stressing situations. This lag should be recognized when 
the measurement is used in trading. 

Figure 9.9 shows the cycle period measurement of real data. This mea-
surement is far more responsive than the more common measurements. 
Measurement accuracy can be tested by counting bars between major suc-
cessive lowest lows or major successive highest highs and comparing the 
count to the measurement at that point. There are five bars per horizontal 
unit as a tip to help speed up your bar count. Please recall that there is 
about an eight-bar lag in the cycle measurement waveform. 
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FIGURE 9.9 Cycle Measurement of Real Data 

KEY POINTS TO REMEMBER 

•	 The Hilbert transform enables the cycle period to be measured in as 
few as four bars. 

•	 The cyclic component must be extracted from the data and then used 
to measure the Dominant Cycle period. 

•	 The frequency discriminator to measure the Dominant Cycle period 
just sums the differential phases between bars until the sum reaches 
360°—a full cycle. 

•	 A five-bar median filter creates the differential phase to be summed. 
•	 Summing the median differential phase enables the cycle measure-

ment to be made using only five samples. 
•	 The lag of measuring the Dominant Cycle period is about eight bars. 
•	 The Dominant Cycle period measurement technique described in this 

chapter is the most responsive technique available. 
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CHAPTER 10 

Adaptive Cycle 
Indicators 

“The dinosaurs did not survive,” said Tom adaptively. 

Having made the cycle period measurements as in Chapter 9, one 
brute force application would be to note the most recent highest 
high and then count forward the number of bars equal to half the 

dominant cycle period to locate the next buying opportunity. Fortunately, 
we can be much more sophisticated in our analysis using indicators. If indi-
cators work moderately well using fixed lengths in their computation, then 
these indicators should sparkle when the length is adaptive to a fraction of 
the measured dominant cycle. 

I developed several oscillator-type indicators in Chapters 4 through 6. I 
will now revisit each of these and examine the improvements that result 
from using a Dominant Cycle measurement to make their computational 
length adaptive to the current market conditions. In each case, I compare 
the adaptive version of the indicator to the static version. I also compare 
the three adaptive indicators to each other for you to judge which is prefer-
able. Since I use the same price chart throughout this book for consistency, 
and because you can test these indicators on your own computer using 
your own data, I will not bore you with agonizing details regarding indica-
tor performance and comparisons. 

ADAPTIVE CYBER CYCLE 

The most simple cycle indicator was the Cyber Cycle, which was extracted

from the price series in Chapter 4 by filtering out the trend component. 

The filter itself was derived in Chapter 2. This filter used the coefficient 


123 
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α = 0.07. The EasyLanguage and eSignal Formula Script (EFS) codes for 
the adaptive version of the Cyber Cycle Indicator are shown in Figures 10.1 
and 10.2, respectively. Here, the Dominant Cycle is computed exactly as in 
Chapter 9. A fixed value of alpha is used to make the Dominant Cycle 
period measurement; then the measured Dominant Cycle is used to com-
pute the coefficient alpha1. It is commonly recognized that the exponential 
moving alpha is related to the length of a simple moving average by the 
equation α = 2/(Length + 1). In this case, I use the Dominant Cycle period 
as the length in the computation of alpha1. This enables the Cyber Cycle 
Indicator to be adaptive to the measured Dominant Cycle period. A trigger 
signal consisting of the adaptive cycle delayed by one bar is also included 
in the indicator. Crossings of the adaptive cycle indicator and the trigger 
signal represent the buy and sell opportunities identified by this indicator. 

Figure 10.3 shows the Adaptive Cyber Cycle Indicator compared to the 
static Cyber Cycle. This comparison shows that the adaptive indicator gen-
erally emphasizes the cyclic swings and is often one bar earlier in produc-
ing buy and sell signals. 

ADAPTIVE CG INDICATOR 

The CG Oscillator, derived in Chapter 5, finds the center of gravity of a 
fixed-length data sample as the sampling window is moved from bar to 
bar. The Adaptive CG Indicator uses half the measured Dominant Cycle 
period as the adaptive length of this variant of the CG Oscillator. The 
EasyLanguage and EFS codes for the adaptive version of the CG Oscillator 
are shown in Figures 10.4 and 10.5, respectively. Here, the dominant cycle 
is computed exactly as in Chapter 9. A fixed value of alpha is used to make 
the dominant cycle period measurement. The variable IntPeriod is com-
puted as the integer portion of a four-bar weighted moving average of the 
Period. Since the weighted coefficients are divided by twice their sum, 
IntPeriod is the integer value of half the Dominant Cycle period. An integer 
value is required to sum the numerator and denominator in the subsequent 
code. Since the length of the summing varies with the length of the mea-
sured Dominant Cycle period, the CG is adaptive to it. 

Figure 10.6 shows the Adaptive CG Indicator compared to the static 
CG Oscillator. This comparison in this data set does not display any dra-
matic change in the indicator as a result of making it adaptive. 

ADAPTIVE RELATIVE VIGOR INDEX 

The RVI, derived in Chapter 6, finds the difference of the close minus 

the open, normalized to the difference of the high and low. This ratio was
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{*****************************************************

Adaptive Cycle


*****************************************************}

Inputs: Price((H+L)/2),


alpha(.07);


Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Length(0),

Num(0),

Denom(0),

alpha1(0),

AdaptCycle(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

(continued)


FIGURE 10.1 EasyLanguage Code for the Adaptive Cyber Cycle 
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Period = .15*InstPeriod + .85*Period[1];


alpha1 = 2 / (Period + 1);

AdaptCycle = (1 - .5*alpha1)*(1 - .5*alpha1)*(Smooth 


- 2*Smooth[1] + Smooth[2]) + 2*(1 
- alpha1)*AdaptCycle[1] - (1 - alpha1)*(1 
- alpha1)*AdaptCycle[2];

If currentbar < 7 then AdaptCycle = (Price 

- 2*Price[1] + Price[2]) / 4;

Plot1(AdaptCycle, “AdaptCycle”);

Plot2(AdaptCycle[1], “Trigger”);


FIGURE 10.1 (Continued) 

/*****************************************************

Title: Adaptive Cyber Cycle Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var nBarCount = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 

FIGURE 10.2 EFS Code for the Adaptive Cyber Cycle 
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var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1

var aACycleArray


= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Adaptive CyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aQ1[x] = 0.0; 
aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 
aACycleArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha ) {

var x;

var Alpha1;

var nDC;

var nMedianDelta;


//initialize parameters if necessary

(continued)


FIGURE 10.2 (Continued) 
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if ( Alpha == null ) {

Alpha = 0.07;


}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aACycleArray.pop();

aACycleArray.unshift( 0 );


FIGURE 10.2 (Continued) 
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}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] + aPriceArray[2] ) 
/ 4;


}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] 
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) / (1 
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );

(continued)


FIGURE 10.2 (Continued) 
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if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

Alpha1 = 2 / ( aPeriod[0] + 1 );


if ( nBarCount < 7 ) {

aACycleArray[0] = (aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2])/4;

}

else {


aACycleArray[0] = ( 1 - 0.5*Alpha1 ) 

* ( 1 - 0.5*Alpha1 ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] + 


aSmoothArray[2] ) + 2*( 1 

- Alpha1 ) * aACycleArray[1] 
- ( 1-Alpha1 ) * ( 1-Alpha1 ) 
* aACycleArray[2];

}


//return the calculated values

if (!isNaN( aACycleArray[0] ) ) {


return new Array( aACycleArray[0],_ 

aACycleArray[1] );


}


}


FIGURE 10.2 (Continued) 



c10.qxd  2/2/04  10:50 AM  Page 131

131 Adaptive Cycle Indicators 

function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two middle 


elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {

return( -1 )


}

else {

return( 1 );


}

}


FIGURE 10.2 (Continued) 
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FIGURE 10.3 Adaptive Cyber Cycle Indicator Is More Responsive to Cyclic Price 
Variations than Static Cyber Cycle Indicator 

{*****************************************************

Adaptive CG


*****************************************************}

Inputs: Price((H+L)/2),


Vars:


alpha(.07);


Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

count(0),

Num(0),

Denom(0),

CG(0),

IntPeriod(0);


FIGURE 10.4 EasyLanguage Code to Compute the Adaptive CG Indicator 
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Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Value1 = .15*InstPeriod + .85*Value1[1];

IntPeriod = intportion(Value1 / 2);


Num = 0;

Denom = 0;

For count = 0 to IntPeriod - 1 begin


Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);


End;

If Denom <> 0 then CG = -Num/Denom + (IntPeriod + 1) 


/ 2;


Plot1(CG, “CG”);

Plot2(CG[1], “Trigger”);


FIGURE 10.4 (Continued) 
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/*****************************************************

Title: Adaptive CG Oscillator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var nBarCount = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 
var aCycleArray = new Array(); 
var aDeltaPhase = new Array(); 
var aPeriod = new Array(); 
var aInstPeriod = new Array(); 
var aQ1 = new Array(); 
var aI1 = new Array(); 
var aCGArray = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Adaptive CG”);

setCursorLabelName(“CG”, 0);


FIGURE 10.5 EFS Code to Compute the Adaptive CG Indicator 
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setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aQ1[x] = 0.0; 
aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 
aCGArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha ) {

var x;

var nCG = 0;

var nDC;

var nIntPeriod;

var nNum;

var nDenom;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


(continued)


FIGURE 10.5 (Continued) 
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nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aCGArray.pop();

aCGArray.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] 
+ aPriceArray[2] ) / 4;

FIGURE 10.5 (Continued) 
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}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) * ( 1 

- 0.5*Alpha ) * ( aSmoothArray[0] 
- 2*aSmoothArray[1]
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) * ( 1-
Alpha ) * aCycleArray[2];


}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) / (1 
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );


if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

(continued)


FIGURE 10.5 (Continued) 
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nIntPeriod = Math.floor( ( 4*aPeriod[0] 

+ 3*aPeriod[1] + 

2*aPeriod[3] + aPeriod[4] ) / 20 );


nNum = 0;

nDenom = 0;


for ( x=0; x<nIntPeriod; x++ ){

nNum += ( 1.0 + x ) 


* ( aPriceArray[x] );

nDenom += ( aPriceArray[x] );


}


if ( nDenom != 0 ) nCG = -nNum/nDenom 

+ ( nIntPeriod+1 )/2;

aCGArray[0] = nCG;


//return the calculated values

if (!isNaN( aCGArray[0] ) ) {


return new Array( aCGArray[0], 

aCGArray[1] );


}


}


function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];


FIGURE 10.5 (Continued) 
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}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two middle_


elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {


return( -1 )

}

else {


return( 1 );

}


}


FIGURE 10.5 (Continued) 

computed over a fixed period. The Adaptive RVI Indicator uses half the 
measured Dominant Cycle period as the adaptive length of this variant of 
the RVI. The EasyLanguage and EFS codes for the adaptive version of the 
RVI are shown in Figures 10.7 and 10.8, respectively. Here the Dominant 
Cycle is computed exactly as in Chapter 9. A fixed value of alpha is used to 
make the Dominant Cycle period measurement. The variable Length is 
computed as the integer portion of a four-bar weighted moving average of 
the period. Since the weighted coefficients are divided by twice their sum, 
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FIGURE 10.6 Adaptive CG Indicator Compared to Static CG Oscillator 

{*****************************************************

Adaptive RVI


*****************************************************}

Inputs: Price((H+L)/2),


Vars:


alpha(.07);


Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

count(0),

Length(0),

Num(0),

Denom(0),

RVI(0),

MaxRVI(0),


FIGURE 10.7 EasyLanguage Code to Compute the Adaptive RVI 
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MinRVI(0);

Smooth = (Price + 2*Price[1] + 2*Price[2] 


+ Price[3])/6;
Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 


- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Length = intportion((4*Period + 3*Period[1] 


+ 2*Period[3] + Period[4]) / 20);

Value1 = ((Close - Open) + 2*(Close[1] - Open[1]) 

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1]) 

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin


Num = Num + Value1[count];

Denom = Denom + Value2[count];


End;

If Denom <> 0 then RVI = Num / Denom;


Plot1(RVI, “RVI”);

Plot2(RVI[1], “Trigger”);


FIGURE 10.7 (Continued) 
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/*****************************************************

Title: Adaptive RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var nBarCount = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 
var aCycleArray = new Array(); 
var aDeltaPhase = new Array(); 
var aPeriod = new Array(); 
var aInstPeriod = new Array(); 
var aQ1 = new Array(); 
var aI1 = new Array(); 
var aRVIArray = new Array(); 
var aV1Array = new Array(); 
var aV2Array = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Adaptive RVI”);


FIGURE 10.8 EFS Code to Compute the Adaptive RVI 
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setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aQ1[x] = 0.0;

aI1[x] = 0.0;

aDeltaPhase[x] = 0.0;

aPeriod[x] = 0.0;

aInstPeriod[x] = 0.0;

aRVIArray[x] = 0.0;

aV1Array[x] = 0.0;

aV2Array[x] = 0.0;


}


}


//== Main processing function

function main( Alpha ) {

var x;

var nRVI = 0;

var nDC;

var nLength;

var nNum;

var nDenom;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


(continued)


FIGURE 10.8 (Continued) 
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//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aRVIArray.pop();

aRVIArray.unshift( 0 );


aV1Array.pop();

aV1Array.unshift( 0 );


aV2Array.pop();

aV2Array.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


FIGURE 10.8 (Continued) 
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aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] + aPriceArray[2] ) 
/ 4;


}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) * ( 1 

- 0.5*Alpha ) * ( aSmoothArray[0] 
- 2*aSmoothArray[1]
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) * ( 1-
Alpha ) * aCycleArray[2];


}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) 
/ (1 + aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));


}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );


nPhaseSum = 0; 
nOldPhaseSum = 0; 
nDC = 0; 

if ( nMedianDelta == 0 ) {

(continued)


FIGURE 10.8 (Continued) 
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nDC = 15;

}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

nLength = Math.floor( ( 4*aPeriod[0] 

+ 3*aPeriod[1] + 


2*aPeriod[3] + aPeriod[4] ) / 20 );


aV1Array[0] = ( ( close()-open() ) 

+ 2*( close(-1)-open(-1) ) 
+ 2*( close(-2)-open(-2) ) 
+ ( close(-3)-open(-3) ) ) / 6;

aV2Array[0] = ( ( high()-low() ) 

+ 2*( high(-1)-low(-1) ) 
+ 2*( high(-2)-low(-2) ) 
+ ( high(-3)-low(-3) ) ) / 6;

nNum = 0;

nDenom = 0;


for ( x=0; x<nLength; x++ ){

nNum += aV1Array[x];

nDenom += aV2Array[x];


}


if ( nDenom != 0 ) nRVI = nNum/nDenom;

aRVIArray[0] = nRVI;


//return the calculated values

if (!isNaN( aRVIArray[0] ) ) {


return new Array( aRVIArray[0],_ 

aRVIArray[1] );


}


FIGURE 10.8 (Continued) 
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}


function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two middle 


elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {


return( -1 )

}

else {


return( 1 );

}


}


FIGURE 10.8 (Continued) 
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FIGURE 10.9 The Adaptive RVI Is More Responsive to Shorter Cycle Variations than 
the Static RVI 

FIGURE 10.10 Adaptive Indicator Comparison 
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Length is the integer value of half the Dominant Cycle period. An integer 
value is required to sum the numerator and denominator in the subsequent 
code. Since the length of the summing varies with the length of the mea-
sured Dominant Cycle period, the RVI is adaptive to it. 

Figure 10.9 shows the Adaptive RVI compared to the static RVI. As with 
the other adaptive indicators, the contributions of the shorter cycle periods 
are emphasized when compared to their static variants. 

Figure 10.10 shows the three adaptive indicators compared to each 
other. As with their static variants, all show about the same performance. 
Perhaps the message is that once the cyclic component is extracted from 
the data correctly, most oscillator-type indicators have about the same per-
formance. It may be true that one indicator performs better in one data set 
than another. The bottom line is that you now have in your toolbox three 
independently derived indicators from which to choose. It then becomes a 
matter of personal preference. 

KEY POINTS TO REMEMBER 

•	 The adaptive indicators all use the measured Dominant Cycle as their 
adaptive criterion. 

•	 The Adaptive Cyber Cycle adapts to the full Dominant Cycle period in 
the computation of its alpha1 filter parameter. 

•	 The Adaptive CG Oscillator uses the integer portion of the half 
Dominant Cycle period in the computation of the filter center of 
gravity. 

•	 The Adaptive RVI uses the integer portion of the half Dominant Cycle 
period in the computation of the vigor ratio. 

•	 All three adaptive indicators demonstrate similar performance. 
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CHAPTER 11 

The Sinewave 
Indicator 

“I can forecast the future,” said Tom predictably. 

Causal filters can never predict the future. In fact, all have lag. The 
purpose of making good indicators adaptive in Chapter 9 was to 
eliminate as much lag as possible, not to make a prediction. With the 

Sinewave Indicator we are trying to create a noncausal filter that can pre-
dict the turning point of market cycles. Anticipation of the cyclic turning 
points is a major advantage of the Sinewave Indicator when compared to 
other oscillators, such as the RSI and Stochastic Indicators, that must wait 
for confirmation. 

In Chapter 9 I showed you how to measure the period of the dominant 
market cycle for any bar in the data series. However, this measurement does 
not tell us where we are within that cycle. To locate the position of the cycle, 
we must measure the phase of the Dominant Cycle. Knowing the phase of 
the cycle, we can take the sine of the measured phase to create an artificial 
oscillator-type indicator. That is, the cyclic component of the market data is 
synthesized as a pure sinewave. Any lag we created in the process of mea-
suring the phase can be mathematically removed. Furthermore, simply 
adding 45° to the measured phase creates an artificial phase lead. This is the 
noncausal factor. The phase is advanced on the presumption that the mea-
sured cycle has existed (at least briefly) in the past and will continue (at 
least briefly) into the future. Advancing the phase by 45° and taking a sine of 
the advanced phase angle produces an oscillator waveshape that leads the 
original sinewave by one-eighth of a cycle. The two sinewaves therefore 
cross 1⁄16 of a cycle before the peak cycle turning point and before the valley 
turning point. For a 16-bar Dominant Cycle, this gives an ideal 1-bar advance 
warning of the absolute Dominant Cycle turning points. For a 48-bar cycle, 

151 
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the advance extends to 3 bars. For an eight-bar Dominant Cycle, the 
advance warning is theoretically only half a bar. 

My simplified model of the market consists of a trend and a cycle. There 
are certainly additional components present in real markets, but we are ignor-
ing them in this simplified model. I call the highest-amplitude cycle the 
Dominant Cycle. Experience bears out that the assumption of the presence of 
a single Dominant Cycle is a workable approximation. Knowing the Dominant 
Cycle period, the phase of this Dominant Cycle can be measured. But if the 
market goes into a pure trend, there is no cycle. In this case, the phase ceases 
to advance. If the phase does not advance, then the two sinewave waveshapes 
of the Sinewave Indicator cannot cross. If the two waveshapes do not cross, 
the Sinewave Indicator produces no cyclic buy or sell signals. This avoidance 
of false whipsaw signals is a distinct advantage over traditional oscillators. In 
practice, the phase does not exactly stop; the phase does languish and the 
phase waveshape appears distinctly different than the constant rate of change 
that is produced when the market is in a cycle mode. The phase varies 
between 0° and 360°. If the cycle period is changing, there is an occasional 
crossing of the Sinewave Indicator lines to correct the phase angle for the cur-
rent cycle period measurement. In these cases, the Sinewave Indicator lines 
do not appear to be sinewaves in the vicinity of the crossing. Therefore, these 
occasional bad crossing signals are easy to identify. 

We obtain the Sinewave Indicator by plotting the sine of the measured 
phase angle. This gives us an oscillator that always swings between the lim-
its of −1 and +1. We enhance the usability of this oscillator by plotting the 
sine of the phase angle advanced by 45°. The effect of plotting these two 
lines is shown for both the phasor and time domain presentations in Figure 
11.1. Adding 45° clearly advances the phasor from a 45° slant to the vertical 
position. This phase advance means the LeadSine waveform will crest 
before the Sine crests. The LeadSine and Sine lines cross 22.5°, or 1⁄ of a16 

cycle, before the turning point of the cycle is reached. If the market has a 
cycle of 16 bars or less, this is a signal to enter or exit a trade immediately. 
If the market has a longer cycle, there is some built-in anticipation time 
before you pull the trigger. 

FIGURE 11.1 Phasor and Time Domain Views of the Sinewave Indicator 
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Compared to conventional oscillators such as the Stochastic or RSI, 
the Sinewave Indicator has two major advantages. These are as follows: 

1.	 The Sinewave Indicator anticipates the Cycle Mode turning point 
rather than waiting for confirmation. 

2.	 The phase does not advance when the market is in a Trend Mode. 
Therefore the Sinewave Indicator does not tend to give false whipsaw 
signals when the market is in a Trend Mode. 

An additional advantage is that the anticipation signal is obtained 
strictly by mathematically advancing the phase. Momentum is not em-
ployed. Therefore, the Sinewave Indicator signals are no more noisy than 
the original signal. 

The EasyLanguage and eSignal Formula Script (EFS) codes to mea-
sure Dominant Cycle phase and then to synthesize the Sinewave are 
described with reference to Figures 11.2 and 11.3, respectively. The initial 
part of the code measures the Dominant Cycle exactly as in Chapter 9. The 
measured period must be further smoothed using an exponential moving 
average (α = 0.15) because there is no further smoothing in the computa-
tion of the phase. The variable DCPeriod is the integer portion of the 
smoothed Dominant Cycle period because it is used to sum over the period 
and only an integer variable can be used for this purpose. Otherwise, 
rounding errors cause erratic results. The cycle component of the data is 
multiplied individually with the sine and cosine of the Dominant Cycle 
period, and these two products are summed individually over one com-
plete cycle. These sums are known as the real part and the imaginary part 
of the data. It is well known that the arctangent of their ratio is the phase of 
cycle component. The arctangent function can go to infinity, and the code 
precludes a computational problem if the ImagPart variable is smaller than 
0.001. The arctangent function is also subject to ambiguities, depending on 
in which phase quadrant the computation resides. In EasyLanguage, it is 
simplest to resolve these ambiguities by rotating the DCPhase by 90° and 
then adding another 180° if ImagPart is negative. If converting this code to 
another language, care should be taken when dealing with the arctangent 
function. First, most computer languages represent angles in terms of radi-
ans rather than degrees. Second, the ambiguity resolution scheme I used is 
not universally appropriate for all languages. The Sine Indicator is plotted 
simply as the sine of the phase angle of the Dominant Cycle and the 
LeadSine Indicator is plotted as the sine of the phase angle plus 45°, giving 
it the desired leading property. 

The Sinewave Indicators are plotted against both theoretical analytic 
waveforms and real-world data to demonstrate their performance. Figure 
11.4 shows a theoretical 20-bar cycle sinewave analytic waveform. Note
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{*****************************************************

Sinewave Indicator


*****************************************************}


Inputs: Price((H+L)/2),

alpha(.07);


Vars:	 Smooth(0),

Cycle(0),

I1(0),

Q1(0),

I2(0),

Q2(0),

DeltaPhase(0),

MedianDelta(0),

MaxAmp(0),

AmpFix(0),

Re(0),

Im(0),

DC(0),

alpha1(0),

InstPeriod(0),

DCPeriod(0),

count(0),

SmoothCycle(0),

RealPart(0),

ImagPart(0),

DCPhase(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

{Cycle = Price;}

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 


- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);
I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

FIGURE 11.2 EasyLanguage Code to Compute the Sinewave Indicator 



c11.qxd  2/2/04  10:58 AM  Page 155

155 The Sinewave Indicator 

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 / 

MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Value1 = .15*InstPeriod + .85*Value1[1];


{Compute Dominant Cycle Phase}

DCPeriod = IntPortion(Value1);

RealPart = 0;

ImagPart = 0;

For count = 0 To DCPeriod - 1 begin


RealPart = RealPart + Sine(360 * count 

/ DCPeriod) * (Cycle[count]);


ImagPart = ImagPart + Cosine(360 * count 

/ DCPeriod) * (Cycle[count]);


End;

If AbsValue(ImagPart) > 0.001 then DCPhase 


= Arctangent(RealPart / ImagPart);

If AbsValue(ImagPart) <= 0.001 then DCPhase = 90 


* Sign(RealPart); 

DCPhase = DCPhase + 90;

If ImagPart < 0 then DCPhase = DCPhase + 180;

If DCPhase > 315 then DCPhase = DCPhase - 360;


Plot1(Sine(DCPhase), “Sine”);

Plot2(Sine(DCPhase + 45), “LeadSine”);


FIGURE 11.2 (Continued) 

how the LeadSine crosses over the Sine immediately prior to each peak 
and valley in the price waveform. The LeadSine always crosses the Sine 
line before the turning point in the cycle, giving advance indication of the 
cyclic turning point. The amount of advance warning relative to the length 
of the cycle is less for the shorter cycles. 

The Sinewave Indicator is plotted in the bottom graph for the standard 
data set in Figure 11.5. The market is in a trend at the left side of the chart 
in August and September. We know this because the wiggles in the 
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/*****************************************************

Title: Sine Wave Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var nBarCount = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 
var aCycleArray = new Array(); 
var aDeltaPhase = new Array(); 
var aPeriod = new Array(); 
var aInstPeriod = new Array(); 
var aQ1 = new Array(); 
var aI1 = new Array(); 
var aV1Array = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Sine Wave”);

setCursorLabelName(“Sine”, 0);

setCursorLabelName(“LeadSine”, 1);

setDefaultBarFgColor( Color.blue, 0 );


FIGURE 11.3 EFS Code for the Sinewave Indicator 



c11.qxd  2/2/04  10:58 AM  Page 157

157 The Sinewave Indicator 

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<70; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aQ1[x] = 0.0; 
aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 
aV1Array[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha ) {

var x;

var nDC;

var nDCPeriod;

var nRealPart;

var nImagPart;

var nDCPhase = 0.0;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


(continued)


FIGURE 11.3 (Continued) 
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aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aV1Array.pop();

aV1Array.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] + aPriceArray[2] ) 
/ 4;


}

else {


FIGURE 11.3 (Continued) 
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aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] - 2
*aSmoothArray[1] + aSmoothArray[2] ) 

+ 2*( 1-Alpha ) * aCycleArray[1] 
- ( 1-Alpha ) * ( 1-Alpha ) 
* aCycleArray[2];

}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) 
/ (1 + aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));


}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );


if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

aV1Array[0] = 0.15*aPeriod[0] 

+ 0.85*aV1Array[1];

(continued)


FIGURE 11.3 (Continued) 
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//compute dominant cycle phase

nDCPeriod = Math.floor( aV1Array[0] );

nRealPart = 0.0;

nImagPart = 0.0;


for ( x=0; x<nDCPeriod; x++ ) {

nRealPart += Math.sin( DegToRad_


( 360*x/nDCPeriod ) ) 

* ( aCycleArray[x] );

nImagPart += Math.cos( DegToRad_

( 360*x/nDCPeriod ) ) 

* ( aCycleArray[x] );

}


if ( Math.abs( nImagPart ) > 0.001 ) nDCPhase 

= RadToDeg( Math.atan_

( nRealPart/nImagPart ) );


if ( Math.abs( nImagPart ) <= 0.001 ) nDCPhase 

= 90 * ( nRealPart<0 ? -1 : 1 );


nDCPhase += 90;

if ( nImagPart < 0 ) nDCPhase += 180;


//return the calculated values

if (!isNaN( nDCPhase ) ) {


return new Array( Math.sin( DegToRad_

( nDCPhase) ), Math.sin( DegToRad_

( nDCPhase+45 ) ) );


}


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


FIGURE 11.3 (Continued) 
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//== Convert Radians to Degrees

function RadToDeg( nValue ) {

var nTmp;


nTmp = nValue * ( 180 / Math.PI );


return( nTmp );


}


function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two_


middle elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


(continued)


FIGURE 11.3 (Continued) 
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function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {


return( -1 )

}

else {


return( 1 );

}


}


FIGURE 11.3 (Continued) 

Sinewave Indicator do not cross. In other words, the Sinewave Indicator 
indicates that some kind of trend-following system should be used. Then 
there are three clear cyclic turning points until the trend is indicated again 
in November. This is a case where the phase is unwinding and there is no 
clear cyclic crossover in the indicator. The Sinewave Indicator then has six 
successive sterling turning points identified until the trend returns at the 
right side of the chart, near the end of February. 

FIGURE 11.4 The Sinewave Indicator Always Gives an Advanced Turning Point 
Warning 
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FIGURE 11.5 The Sinewave Indicator Gives Correct Cycle Signals 

KEY POINTS TO REMEMBER 

•	 The Sinewave Indicator is a noncausal predictive filter based on the 
premise that the Dominant Cycle has existed in the immediate past and 
will continue into the immediate future. 

•	 The phase has a constant rate of change when the market is in a Cycle 
Mode. 

•	 The phase languishes when the market is in a Trend Mode, and can 
even have a negative rate of change. 

•	 The Sinewave Indicator consists of the sine of the Dominant Cycle 
phase and the sine of the Dominant Cycle phase advanced by 45°. 

•	 The Sinewave Indicator gives entry and exit signals 1⁄16 of a cycle period 
in advance of the cycle turning point. 

•	 The Sinewave Indicator seldom gives false whipsaw signals when the 
market is in a Trend Mode. 
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CHAPTER 12 

Adapting to 
the Trend 

“I have no idea,” said Tom thoughtlessly. 

A t this point, I have developed enough tools for you that you can now 
start putting them together to create some serious trading strate-
gies. This chapter gives you the beginning of one such strategy. You 

can use this strategy as a beginning and add your own rules to increase the 
percentage winners. 

In previous chapters, I derived and adapted oscillator-type indicators 
with the goal of having the indicators move with the cycle component of 
the market with as little lag as possible. Most technical analysis trend-
following techniques don’t use oscillators; they use moving averages or 
some variation thereof. In this chapter I will show you how to use the cycle 
measurement both as a trend indicator and as a trading system. 

The slopes from any given point in a cycle to the same point in the next 
cycle are exactly the same. It doesn’t matter whether the point you select is 
the peak, the valley, or anyplace in between; the slope between the same 
points in idealized cycles is zero. If there is a difference in the amplitudes 
between successive samples, either the cycle period has changed or the mar-
ket is in a trend. Since the cycle periods morph very slowly from cycle to cycle, 
it is more likely that the one-cycle momentum is an indication of the trend. 

Our approach to forming this trading strategy is to measure the 
Dominant Cycle period and then use that measured period to take a one-
cycle momentum. Momentum functions are notoriously noisy, so I smooth 
the momentum using the three-pole Super Smoother filter described in the 
next chapter. It is just that simple. The EasyLanguage and eSignal Formula 
Script (EFS) codes to compute the Smoothed Adaptive Momentum are 
shown in Figures 12.1 and 12.2, respectively. 

165 
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{*****************************************************

Smoothed Adaptive Momentum


*****************************************************}

Inputs: Price((H+L)/2),


alpha(.07),

Cutoff(8);


Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Num(0),

Denom(0),

a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

FIGURE 12.1 EasyLanguage Code to Compute the Smoothed Adaptive Momentum 
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If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];


Value1 = Price - Price[IntPortion(Period - 1)];


a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 - coef4;


Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2] 

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;


Plot1(Filt3, “Filt3”);

Plot2(0, “Ref”);


FIGURE 12.1 (Continued) 

/*****************************************************

Title: Smoothed Adaptive Momentum Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


(continued)


FIGURE 12.2 EFS Code to Compute the Smoothed Adaptive Momentum 
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If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];


Value1 = Price - Price[IntPortion(Period - 1)];


a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 - coef4;


Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2] 

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;


Plot1(Filt3, “Filt3”);

Plot2(0, “Ref”);


FIGURE 12.1 (Continued) 

/*****************************************************

Title: Smoothed Adaptive Momentum Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


(continued)


FIGURE 12.2 EFS Code to Compute the Smoothed Adaptive Momentum 
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======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 

var nBarCount = 0; 

var aPriceArray = new Array(); 
var aSmoothArray = new Array(); 
var aCycleArray = new Array(); 
var aDeltaPhase = new Array(); 
var aPeriod = new Array(); 
var aInstPeriod = new Array(); 
var aQ1 = new Array(); 
var aI1 = new Array(); 
var aFiltArray = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“Smoothed Adaptive Momentum”);

setCursorLabelName(“Filt3”, 0);

setDefaultBarFgColor( Color.blue, 0 );

addBand( 0.0, PS_SOLID, 1, Color.black, -10 );


//initialize arrays

for (x=0; x<150; x++) {


aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aQ1[x] = 0.0;


FIGURE 12.2 (Continued) 
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aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 
aFiltArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha, Cutoff ) {

var x;

var nValue1;

var nDC;

var nOffset;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


Alpha = 0.07;

}

if ( Cutoff == null ) {


Cutoff = 8;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;

(continued)


FIGURE 12.2 (Continued) 
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aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aFiltArray.pop();

aFiltArray.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] + aPriceArray[2] ) 
/ 4;


}

else {


FIGURE 12.2 (Continued) 
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aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] 
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


- aI1[1]/aQ1[1]) / (1 + aI1[0]
*aI1[1]/(aQ1[0]*aQ1[1]));


}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );


if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

nOffset = Math.floor( aPeriod[0] )-1;

(continued)


FIGURE 12.2 (Continued) 



c12.qxd  2/2/04  10:59 AM  Page 172

172 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

if ( nOffset < 0 ) nOffset = 0;


nValue1 = aPriceArray[0] 

- aPriceArray[ nOffset ];

nA1 = Math.exp( -3.14159 / Cutoff );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.738 * 180 


/ Cutoff ) );

nC1 = nA1 * nA1;


nCoef2 = nB1 + nC1;

nCoef3 = -( nC1 + nB1 * nC1 );

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;


if ( nBarCount < 4 ) {

aFiltArray[0] = nValue1;


}

else {


aFiltArray[0] = nCoef1*nValue1 

+ nCoef2*aFiltArray[1] 
+ nCoef3*aFiltArray[2] 
+ nCoef4*aFiltArray[3];

}


//return the calculated values

if (!isNaN( aFiltArray[0] ) ) {


return( aFiltArray[0] );

}


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


FIGURE 12.2 (Continued) 
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}


//== Convert Radians to Degrees

function RadToDeg( nValue ) {

var nTmp;


nTmp = nValue * ( 180 / Math.PI );


return( nTmp );


}


function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two middle


elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


(continued)


FIGURE 12.2 (Continued) 
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function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {


return( -1 )

}

else {


return( 1 );

}


}


FIGURE 12.2 (Continued) 

Figure 12.3 suggests that the uptrend starts when the indicator crosses 
up through the zero line and a downtrend starts when the indicator crosses 
down through the zero line. 

I converted the Smoothed Adaptive Momentum Indicator to an auto-
matic strategy by writing the trading rules to buy each time the filter 
crosses up through zero and to sell short each time the filter crosses down 
through zero. I also added a money management stop. This simple but ele-
gant trend-following automatic trading strategy produced the results 
shown in Table 12.1. The EasyLanguage and EFS codes for the Smoothed 
Adaptive Momentum strategy are in Figures 12.4 and 12.5, respectively. 

FIGURE 12.3 Smoothed Adaptive Momentum as a Trend Indicator 
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TABLE 12.1	 Sample Trading Results Using the 

Smoothed Adaptive Momentum Trading Strategy


Number Percent Profit 
Future Net Profit of Trades Profitable Factor Max DD 

EC (4/81–3/03) $112,112 196 40.3% 2.03 ($8,137) 
JY (9/81–3/03) $160,950 277 39.7% 2.01 ($13,450) 
SF (6/76–3/03) $157,337 523 38.8% 1.64 ($13,587) 

{*****************************************************

Smoothed Adaptive Momentum


*****************************************************}

Inputs: Price((H+L)/2),


alpha(.07),

Cutoff(8);


Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Num(0),

Denom(0),

a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);


Smooth = (Price + 2*Price[1] + 2*Price[2] 

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth 

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

(continued)


FIGURE 12.4 EasyLanguage Code for the Smoothed Adaptive Momentum Strategy 
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If currentbar < 7 then Cycle = (Price - 2*Price[1] 

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4] 

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];


If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1 

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);


If MedianDelta = 0 then DC = 15 else DC = 6.28318 

/ MedianDelta + .5;


InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];


Value1 = Price - Price[IntPortion(Period - 1)];


a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 -coef4;


Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2] 

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;


If Filt3 Crosses Over 0 then Buy Next Bar on Open;

If Filt3 Crosses Under 0 then Sell Short Next Bar 


on Open;


FIGURE 12.4 (Continued) 
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/*****************************************************

Title: Smoothed Adaptive Momentum Trading


Strategy

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

******************************************************/


//External Variables


var nBarCount = 0;


var aPriceArray

var aSmoothArray

var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1

var aFiltArray


= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();


var nStatus = 0; 
var nEntryPrice = 0; 
var nStop = 0; 
var nPVal = 0; 
var nSVal = 0; 

var grID = 0; 

(continued) 

FIGURE 12.5 EFS for the Smoothed Adaptive Momentum Strategy 
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//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy( true );

setStudyTitle(“Smoothed Adaptive Momentum 

Strategy”);


setShowCursorLabel( false );


//initialize arrays

for (x=0; x<150; x++) {


aPriceArray[x] = 0.0; 
aSmoothArray[x] = 0.0; 
aCycleArray[x] = 0.0; 
aQ1[x] = 0.0; 
aI1[x] = 0.0; 
aDeltaPhase[x] = 0.0; 
aPeriod[x] = 0.0; 
aInstPeriod[x] = 0.0; 
aFiltArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha, Cutoff, StopAmt, PointValue ) {

var x;

var nValue1;

var nDC;

var nOffset;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;

var nMedianDelta;


//initialize parameters if necessary

if ( Alpha == null ) {


FIGURE 12.5 (Continued) 
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Alpha = 0.07;

}

if ( Cutoff == null ) {


Cutoff = 8;

}

if ( StopAmt == null ) {


StopAmt = 1000.0;

}

if ( PointValue == null ) {


PointValue = 50;

}


nSVal = StopAmt;

nPVal = PointValue;


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aSmoothArray.pop();

aSmoothArray.unshift( 0 );


aCycleArray.pop();

aCycleArray.unshift( 0 );


aQ1.pop();

aQ1.unshift( 0 );


aI1.pop();

aI1.unshift( 0 );


aDeltaPhase.pop();

aDeltaPhase.unshift( 0 );


(continued)


FIGURE 12.5 (Continued) 
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aInstPeriod.pop();

aInstPeriod.unshift( 0 );


aPeriod.pop();

aPeriod.unshift( 0 );


aFiltArray.pop();

aFiltArray.unshift( 0 );


}


aPriceArray[0] = ( high()+low() ) / 2;


aSmoothArray[0] = ( aPriceArray[0] 

+ 2*aPriceArray[1] + 2*aPriceArray[2] 
+ aPriceArray[3] ) / 6;

if ( nBarCount < 7 ) {

aCycleArray[0] = ( aPriceArray[0] 


- 2*aPriceArray[1] + aPriceArray[2] ) 
/ 4;


}

else {


aCycleArray[0] = ( 1 - 0.5*Alpha ) 

* ( 1 - 0.5*Alpha ) 
* ( aSmoothArray[0] 
- 2*aSmoothArray[1] 
+ aSmoothArray[2] ) + 2*( 1-Alpha ) 
* aCycleArray[1] - ( 1-Alpha ) 
* ( 1-Alpha ) * aCycleArray[2];

}


aQ1[0] = ( 0.0962*aCycleArray[0] 

+ 0.5769*aCycleArray[2] 
- 0.5769*aCycleArray[4] 
- 0.0962*aCycleArray[6] ) * ( 0.5 + 0.08 
* aInstPeriod[1] );

aI1[0] = aCycleArray[3];


if ( aQ1[0] != 0 && aQ1[1] != 0 ) {

aDeltaPhase[0] = (aI1[0]/aQ1[0] 


FIGURE 12.5 (Continued) 
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- aI1[1]/aQ1[1]) / (1 
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if ( aDeltaPhase[0] < 0.1 ) aDeltaPhase[0] 


= 0.1;

if ( aDeltaPhase[0] > 1.1 ) aDeltaPhase[0] 


= 1.1;


nMedianDelta = Median( 5, aDeltaPhase );


if ( nMedianDelta == 0 ) {

nDC = 15;


}

else {


nDC = 6.28318 / nMedianDelta + 0.5;

}


aInstPeriod[0] = 0.33 * nDC + 0.67 

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0] 

+ 0.85*aPeriod[1];

nOffset = Math.floor( aPeriod[0] )-1;

if ( nOffset < 0 ) nOffset = 0;


nValue1 = aPriceArray[0] 

- aPriceArray[ nOffset ];

nA1 = Math.exp( -3.14159 / Cutoff );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.738 * 180 


/ Cutoff ) );

nC1 = nA1 * nA1;


nCoef2 = nB1 + nC1;

nCoef3 = -( nC1 + nB1 * nC1 );

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;


if ( nBarCount < 4 ) {

aFiltArray[0] = nValue1;


}

else {


(continued)


FIGURE 12.5 (Continued) 
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aFiltArray[0] = nCoef1*nValue1 

+ nCoef2*aFiltArray[1] 
+ nCoef3*aFiltArray[2] 
+ nCoef4*aFiltArray[3];

}


// if currently flat, look for a trade entry

if ( nStatus == 0 ) {


if ( nStatus <= 0 && aFiltArray[0] 

> 0 && aFiltArray[1] <= 0 ) {


goLong();

}

else if ( nStatus >= 0 && aFiltArray[0] 


< 0 && aFiltArray[1] >= 0 ) {

goShort();


}


}

else {


// in a long trade

if ( nStatus == 1 ) {


// if stop hit, sell long

if ( low() <= nStop ) {


if ( open() <= nStop ) {

closeLong( open() );


}

else {


closeLong( nStop );

}


}

// check for reversal signal

else if ( aFiltArray[0] 


< 0 && aFiltArray[1] >= 0 ) {

goShort();


}

}

// in a short trade

else if ( nStatus == -1 ) {


FIGURE 12.5 (Continued) 
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// if stop hit, cover short

if ( high() >= nStop ) {


if ( open() >= nStop ) {

closeShort( open() );


}

else {


closeShort( nStop );

}


}

// check for reversal signal

else if ( aFiltArray[0] 


> 0 && aFiltArray[1] <= 0 ) {

goLong();


}

}


}


}


//== gID function assigns unique identifier to 

graphic/text routines


function gID() {

grID ++;

return( grID );


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


//== Convert Radians to Degrees

function RadToDeg( nValue ) {

var nTmp;


(continued)


FIGURE 12.5 (Continued) 
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nTmp = nValue * ( 180 / Math.PI );


return( nTmp );


}


function Median( nBars, aArray ) {

var aTmp = new Array();

var nTmp;

var result;

var x;


//transfer elements to temp array

x = 0;

while( x < nBars ) {


aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort( SortAsc );


//if odd # of elements, just take middle

if ( nBars % 2 != 0 ) {


result = aTmp[ (nBars+1) / 2 ]

aTmp = null;

return( result );


}

//if even # elements, take average of two middle 


elements

else {


nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return ( result );


}

}


function SortAsc( arg1, arg2 ) {

if (arg1<arg2) {

return( -1 )


}


FIGURE 12.5 (Continued) 
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else {

return( 1 );


}

}


//enter a short trade

function goShort() { 


drawShapeRelative(1, high(1), Shape.

DOWNARROW, ““, 

Color.maroon, Shape.ONTOP|Shape.BOTTOM,_ 


gID());

Strategy.doShort(“Short”, Strategy.MARKET, 


Strategy.NEXTBAR, Strategy.DEFAULT );

nEntryPrice = open(1);

nStop = ( nEntryPrice + nSVal 


/ nPVal );

nStatus = -1;


}


//close a short trade

function closeShort( nPrice ) {


drawShapeRelative(0, low(), Shape.UPARROW, ““, 

Color.blue, Shape.ONTOP|Shape.BOTTOM, gID());


Strategy.doCover(“Short Stopped Out”, 

Strategy.STOP, Strategy.THISBAR, Strategy.ALL, 


nPrice );

nStatus = 0;


}


//enter a long trade

function goLong() { 


drawShapeRelative(1, low(1), Shape.UPARROW, ““, 

Color.lime, Shape.ONTOP|Shape.TOP, gID());


Strategy.doLong(“Long”, Strategy.MARKET,_ 

Strategy.NEXTBAR, Strategy.DEFAULT );


nEntryPrice = open(1); 

nStop = ( nEntryPrice - nSVal 


/ nPVal );

nStatus = 1;


}


(continued)


FIGURE 12.5 (Continued) 
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//close a long trade

function closeLong( nPrice ) {


drawShapeRelative(0, high(), Shape._

DOWNARROW, ““, 


Color.blue, Shape.ONTOP|Shape.TOP, gID());

Strategy.doSell(“Long Stopped Out”,_ 


Strategy.STOP, Strategy.THISBAR,_ 

Strategy.ALL, nPrice);


nStatus = 0;

}


FIGURE 12.5 (Continued) 

KEY POINTS TO REMEMBER 

•	 It really does matter if you measure the Dominant Cycle. 
•	 The trend component is measured by taking the momentum across one 

full Dominant Cycle. 
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CHAPTER 13 

Super Smoothers 

“That evens it out,” said Tom smoothly. 

Amethod of smoothing called regularization was introduced to 
traders by Dr. Chris Satchwell.1 He starts with an exponential mov-
ing average as 

F = α * G + (1 − α) * F[1] (13.1) 

Where F[1] means the value of F one sample ago. This is EasyLanguage 
notation. If Equation 13.1 is collected on one side of the equation and 
squared as in Equation 13.2, and differentiation with respect to F is per-
formed, then its minimum coincides with Equation 13.1. This shows that 
the exponential moving average can be derived by minimizing an associ-
ated function. In equation 13.2, D denotes differentiation. 

D(F − α * G − (1 − α) * F[1])2/D(F) = 0 (13.2) 

A least-squares component of an error function can be derived from 
the argument of the numerator of Equation 13.2 and a penalty term for the 
curvature can be introduced to achieve regularization. The penalty term 
comes from the mathematics of finite differences, where the second part of 
Equation 13.3 is based on the second derivative of F with respect to time. 

E = (F − α * G − (1 − α) * F[1])2 + λ * (F − 2 * F[1] + F[2])2 (13.3) 

Differentiating Equation 13.3 with respect to F and equating to 0 gives 

2 * (F − α * G − (1 − α) * F[1]) + 2 .* λ * (F − 2 * F[1] + F[2]) = 0 (13.4) 

187 
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Rearranging, Equation 13.4 is written more conveniently as 

F = (α * G + (1 − α + 2 * λ) * F[1] − λ * F[2])/(1 + λ) (13.5) 

There are no explicit constraints on the value of the regularization con-
stant λ. However, just a small amount of experimentation shows that 
unreasonable results can be obtained if the regularization constant is too 
large. For example, Figure 13.1 shows the transfer response of the 
Regularized filter for α = 0.33 and λ = 10. In this case, the filter has more 
than a 6-dB gain at a frequency of 0.03 cycles per day (a 33-bar cycle). That 
means that the 33-bar period components in the input waveform will be 
amplified rather than smoothed. 

It is ideal if the frequency components we want to pass through the fil-
ter are not amplified at all and the frequency components we want to reject 
are attenuated by the filter. The ideal goal is approximately met in a 
Regularized filter if the relationship between alpha and lambda is main-
tained as 

λ = expvalue (0.16/α) (13.6) 

For example, if α = 0.33, then the ideal value of lambda is 1.624. The 
filter transfer response for this pair of parameters is shown in Figure 13.2. 

FIGURE 13.1 Transfer Response of the Regularized Filter (α = 0.33, λ = 10) 
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The frequency response is almost flat from zero frequency to 0.05 cycles 
per day. From that point on, the higher-frequency components are increas-
ingly attenuated. 

One amazing characteristic of Regularized filters is that their zero-
frequency lag is determined solely by the alpha parameter, regardless of the 
value of lambda that is used. An example of the Regularized filter lag 
response is shown in Figure 13.3 for the ideal value of lambda. The rela-
tionship of the zero-frequency lag and alpha in an exponential moving aver-
age is 

1α = � (13.7)
Lag + 1 

It therefore follows that if the zero-frequency lag is 2, then α = 0.33 and 
vice versa. 

Recalling from Chapter 2 that the transfer response of an exponential 
moving average is expressed as 

Output α
H(z) = � = �� (13.8)

Input 1 − (1 − α) *  Z−1 

FIGURE 13.2 Transfer Response of the Regularized Filter (α = 0.33, λ = 1.624) 
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FIGURE 13.3 Lag Response of the Regularized Filter (α = 0.33, λ = 1.624) 

If the delay factor Z−1 is 1/(1 − α), the denominator goes to 0 and thus 
the transfer response goes to infinity. This is called a pole of the transfer 

response. Don’t worry: Since α must be less than unity, and since the delay 
can only have integer values, the pole condition is never attained—rather it 
is a descriptor of the transfer response. In this case, the denominator is a 
first-order polynomial of Z−1. 

The Regularized filter transfer response is written as 

α 
�

+ λ
�
1Output

Input α λH(z) = (13.9)(1 −
1 − �

1 
+ 2λ)
� Z−1 +
λ 

Z−2�
λ


�
1 +
+


Equation 13.9 shows that the transfer response now has a second-
order polynomial in the denominator. From the fundamental theorem of 
algebra, we know that an Nth-order polynomial can be factored into 
N roots. Roots of a polynomial are those values of the variable where the 
polynomial goes to 0. Therefore, an Nth-ordered polynomial produces 
N poles in the transfer response of a filter. The more poles a filter has, the 
sharper its attenuation curve becomes with respect to frequency. Visualize 
the transfer response as a circus tent; the filtering you get is like rolling a 
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marble off the tent without actually getting to a tent pole. The more poles 
you have in the tent, the faster you can make the marble roll. The fact that 
the Regularized filter has one more pole than an exponential moving aver-
age is why it has superior smoothing. 

The flat transfer response of an idealized Regularized filter and its 
being derived by taking multiple derivatives are reminiscent of Butter-
worth filters. Butterworth filters are analog filters (as opposed to digital fil-
ters) that are called maximally flat because the first N derivatives of an 
Nth-ordered Butterworth filter are 0 at zero frequency. 

BUTTERWORTH DIGITAL FILTERS 

Years ago I translated analog Butterworth filters to their digital approxima-
tions. The transfer response is characterized by a single variable—the cut-
off frequency. The cutoff frequency is that frequency where the input is 
attenuated by 3 dB. Below the cutoff frequency, the input frequency com-
ponents are passed to the output; above the cutoff frequency, the input 
frequency components are rejected to the extent possible by the filter 
characteristics. Since traders are more comfortable with period, which is 
the reciprocal of frequency, the equations for the Butterworth digital filters 
are characterized in terms of the cutoff period. 

The equations for a two-pole Butterworth digital filter, in Easy-
Language notation, are 

a = ExpValue (−1.414 * 3.14159/Cutoff); 
b = 2 * a * Cosine (1.414 * 180/Cutoff); 

Butter = ((1 − b + a * a)/4) * (Price + 2 * Price[1] + Price[3]) (13.10) 

+ b * Butter[1] + a * a * Butter[2]; 

The EasyLanguage and eSignal Formula Script (EFS) codes to imple-
ment the two-pole Butterworth digital filter are given in Figures 13.4 and 
13.5, respectively. 

It may be more convenient for some readers to implement the filter as 
a function of a given Cutoff Period. Table 13.1 is provided for this case. In a 
prior work,2 I have also given tables for Gaussian filters. 

As opposed to the Regularized filter, the order of Butterworth filters 
can be increased indefinitely to increase the sharpness of the filter rejec-
tion. For traders, this quickly reaches the point of diminishing returns 
because increasing the number of poles in the filter means the lag of the fil-
ter is also increased. A three-pole filter gives just about the limit of tol-
erable lag for a selected cutoff period. The equations for a three-pole 
Butterworth filter, in EasyLanguage format, are 



c13.qxd  2/2/04  10:59 AM  Page 192

192 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

{****************************************************

Two Pole Butterworth Filter


****************************************************}


Inputs: Price((H+L)/2),

Period(15);


Vars:	 a1(0),

b1(0),

coef1(0),

coef2(0),

coef3(0),

Butter(0);


a1 = expvalue(-1.414*3.14159 / Period);

b1 = 2*a1*Cosine(1.414*180 / Period);

coef2 = b1;

coef3 = -a1*a1;

coef1 = (1 - b1 + a1*a1) / 4;


Butter = coef1*(Price + 2*Price[1] + Price[3]) 

+ coef2*Butter[1] + coef3*Butter[2];

If CurrentBar < 3 then Butter = Price;


Plot1(Butter, “Butter”);


FIGURE 13.4 EasyLanguage Code to Compute the Two-Pole Butterworth Filter 

a = ExpValue (−3.14159/Cutoff); 

b = 2 * a * Cosine (1.738 * 180/Cutoff); 

c = a * a; 

Butter = ((1 − b + c) * (1 − c)/8) * (Price + 3 * Price[1] (13.11) 
+ 3 * Price[3] + Price[4]) 
+ (b + c) * Butter[1] − (c + b * c) 
* Butter[2] + c * c * Butter[3]; 

The EasyLanguage and EFS codes to implement the three-pole Butter-
worth digital filter are given in Figures 13.6 and 13.7, respectively. 

Table 13.2 lists the coefficients of three-pole Butterworth filters as a 
function of their cutoff period. It is provided as a convenience for readers 
who may want only to quickly access the coefficient values rather than 
compute them. 
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/*****************************************************

Title: 2 Pole Butterworth Filter 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables

var nPrice = 0;

var nBarCount = 0;


var aPriceArray = new Array();

var aButterArray = new Array();


//== PreMain function required by eSignal to set 

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“2-Pole Butterworth”);

setCursorLabelName(“Butter”, 0);

setDefaultBarFgColor( Color.blue, 0 );


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aButterArray[x] = 0.0; 

} 

(continued) 

FIGURE 13.5 EFS Code for the Two-Pole Butterworth Filter 
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}


//== Main processing function

function main( Period ) {

var x;

var nA1;

var nB1;

var nCoef1;

var nCoef2;

var nCoef3;


//initialize parameters if necessary

if ( Period == null ) {


Period = 15;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aButterArray.pop();

aButterArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nA1 = Math.exp( -1.414 * 3.14159 / Period );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.414 * 180 


/ Period ) );


FIGURE 13.5 (Continued) 
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nCoef2 = nB1;

nCoef3 = -nA1 * nA1;

nCoef1 = ( 1 - nB1 + nA1 * nA1 ) / 4;


if ( nBarCount < 3 ) {

aButterArray[0] = aPriceArray[0];


}

else {


aButterArray[0] = nCoef1*( aPriceArray[0]

+ 2*aPriceArray[1] + aPriceArray[2] )
+ nCoef2*aButterArray[1] 
+ nCoef3*aButterArray[2];

}


//return the calculated values

if ( !isNaN( aButterArray[0] ) ) {


return( aButterArray[0] );

}


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


FIGURE 13.5 (Continued) 
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TABLE 13.1 Two-Pole Butterworth Filter Coefficients 

Y = A[0] * X[0] + A[1] * X[1] + A[2] * X[2] + B[1] * Y[1] + B[2] * Y[2]; 

Cutoff Period A[0] A[1] A[2] B[1] B[2] 

2 0.285784 0.571568 0.285784 −0.131366 −0.011770 
4 0.203973 0.407946 0.203973 0.292597 −0.108489 
6 0.130825 0.261650 0.130825 0.704171 −0.227470 
8 0.088501 0.177002 0.088501 0.975372 −0.329377 

10 0.063284 0.126567 0.063284 1.158161 −0.411296 
12 0.047322 0.094643 0.047322 1.287652 −0.476938 
14 0.036654 0.073308 0.036654 1.383531 −0.530147 
16 0.029198 0.058397 0.029198 1.457120 −0.573914 
18 0.023793 0.047586 0.023793 1.515266 −0.610438 
20 0.019754 0.039507 0.019754 1.562309 −0.641324 
22 0.016658 0.033317 0.016658 1.601119 −0.667753 
24 0.014235 0.028470 0.014235 1.633667 −0.690607 
26 0.012303 0.024607 0.012303 1.661342 −0.710555 
28 0.010739 0.021477 0.010739 1.685157 −0.728112 
30 0.009454 0.018908 0.009454 1.705862 −0.743678 
32 0.008386 0.016773 0.008386 1.724025 −0.757571 
34 0.007490 0.014980 0.007490 1.740086 −0.770045 
36 0.006729 0.013459 0.006729 1.754388 −0.781305 
38 0.006079 0.012158 0.006079 1.767204 −0.791520 
40 0.005518 0.011037 0.005518 1.778753 −0.800827 

{*****************************************************

Three Pole Butterworth Filter


*****************************************************}


Inputs: Price((H+L)/2),

Period(15);


Vars:	 a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Butter(0);


a1 = expvalue(-3.14159 / Period);

b1 = 2*a1*Cosine(1.738*180 / Period);

c1 = a1*a1;


FIGURE 13.6 EasyLanguage Code to Compute the Three-Pole Butterworth Filter 
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coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = (1 - b1 +c1)*(1 - c1) / 8;


Butter = coef1*(Price + 3*Price[1] + 3*Price[2] 

+ Price[3]) + coef2*Butter[1] + coef3*Butter[2] 
+ coef4*Butter[3];

If CurrentBar < 4 then Butter = Price;


Plot1(Butter, “Butter”);


FIGURE 13.6 (Continued) 

/*****************************************************

Title: 3 Pole Butterworth Filter 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables

var nPrice = 0; 
var nBarCount = 0; 

var aPriceArray = new Array(); 
var aButterArray = new Array(); 

(continued) 

FIGURE 13.7 EFS Code to Compute the Three-Pole Butterworth Filter 
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//== PreMain function required by eSignal to set 

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“3-Pole Butterworth”);

setCursorLabelName(“Butter”, 0);

setDefaultBarFgColor( Color.blue, 0 );


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aButterArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Period ) {

var x;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;


//initialize parameters if necessary

if ( Period == null ) {


Period = 15;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


FIGURE 13.7 (Continued) 
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nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aButterArray.pop();

aButterArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nA1 = Math.exp( -3.14159 / Period );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.738 * 180 


/ Period ) );

nC1 = nA1 * nA1;


nCoef2 = nB1 + nC1;

nCoef3 = -( nC1 + nB1 * nC1 );

nCoef4 = nC1 * nC1;

nCoef1 = ( 1 - nB1 + nC1 ) * ( 1 - nC1 ) / 8;


if ( nBarCount < 4 ) {

aButterArray[0] = aPriceArray[0];


}

else {


aButterArray[0] = nCoef1 

* ( aPriceArray[0] 
+ 3*aPriceArray[1] + 3*aPriceArray[2] 
+ aPriceArray[3] ) 
+ nCoef2*aButterArray[1] 
+ nCoef3*aButterArray[2]

+ nCoef4*aButterArray[3];

}


//return the calculated values

if ( !isNaN( aButterArray[0] ) ) {


return( aButterArray[0] );

(continued)


FIGURE 13.7 (Continued) 
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}


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


FIGURE 13.7 (Continued) 

TABLE 13.2 Three-Pole Butterworth Filter Coefficients 

Y = A[0] * X[0] + A[1] * X[1] + A[2] * X[2] + A[3] * X[3] + B[1] * Y[1] + B[2] * Y[2] 
+ B[3] * Y[3]; 

Cutoff 
Period A[0] A[1] A[2] A[3] B[1] B[2] B[3] 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

0.170149 
0.100733 
0.050373 
0.027610 
0.016541 
0.010629 
0.007213 
0.005111 
0.003750 
0.002831 
0.002188 
0.001726 
0.001385 
0.001128 
0.000931 
0.000778 
0.000656 
0.000558 
0.000479 
0.000414 

0.510448 
0.302200 
0.151118 
0.082830 
0.049622 
0.031887 
0.021640 
0.015334 
0.011250 
0.008492 
0.006565 
0.005179 
0.004156 
0.003385 
0.002794 
0.002333 
0.001967 
0.001674 
0.001437 
0.001242 

0.510448 
0.302200 
0.151118 
0.082830 
0.049622 
0.031887 
0.021640 
0.015334 
0.011250 
0.008492 
0.006565 
0.005179 
0.004156 
0.003385 
0.002794 
0.002333 
0.001967 
0.001674 
0.001437 
0.001242 

0.170149 
0.100733 
0.050373 
0.027610 
0.016541 
0.010629 
0.007213 
0.005111 
0.003750 
0.002831 
0.002188 
0.001726 
0.001385 
0.001128 
0.000931 
0.000778 
0.000656 
0.000558 
0.000479 
0.000414 

−0.336246 
0.398405 
1.080990 
1.505892 
1.783327 
1.976163 
2.117205 
2.224560 
2.308883 
2.376806 
2.432658 
2.479376 
2.519020 
2.553078 
2.582648 
2.608560 
2.631451 
2.651819 
2.670059 
2.686486 

−0.026816 
−0.247486 
−0.607116 
−0.934652 
−1.200263 
−1.412114 
−1.582459 
−1.721388 
−1.836396 
−1.932941 
−2.015013 
−2.085571 
−2.146834 
−2.200500 
−2.247883 
−2.290012 
−2.327708 
−2.361631 
−2.392315 
−2.420202 

0.001867 
0.043214 
0.123145 
0.207880 
0.284610 
0.350920 
0.407548 
0.455938 
0.497514 
0.533488 
0.564848 
0.592385 
0.616731 
0.638395 
0.657784 
0.675232 
0.691011 
0.705347 
0.718425 
0.730403 
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MULTIPOLE SMOOTHING FILTERS 

The transfer responses of Butterworth filters have polynomials in both the 
numerator and denominator. For example, the transfer response of a two-
pole Butterworth filter is 

Output A[0] + A[1]Z−1 + A[2]Z−2 

H(z) = � = ��� (13.12)
Input 1 + B[1]Z−1 + B[2]Z−2 

There is a polynomial in the numerator as well as the denominator. The 
significance of the polynomial in the numerator is that it represents the 
finite impulse response (FIR) part of the filter. This part is like a simple 
moving average. The denominator forms the iterative part of the filter cal-
culation and is the infinite impulse response (IIR) part of the filter. The FIR 
part of the filter sharpens the filter rejection response, but it also con-
tributes to lag in the response. Recognizing that the parts of a Butterworth 
filter are separable, I form the multipole super smoothing filters by simply 
deleting the polynomial in the numerator. Since the transfer response must 
be unity when Z − 1 = −1, I replace the polynomial with the fixed coefficient 
C[0] = 1 − B[1] + B[2]. The EasyLanguage and EFS codes for the two-pole 
Super Smoother are given in Figures 13.8 and 13.9, respectively. The coeffi-
cients are in Table 13.3. 

The transfer response of the two-pole Super Smoother is shown in 
Figure 13.10. Note that it is almost identical to the transfer response of the 
Regularized filter shown in Figure 13.2. The difference between the two is 
that the characteristics of the Super Smoother are determined by a single 
parameter and the flatness of the passband response is guaranteed. 

The order of Super Smoother filters can be increased indefinitely to 
increase the sharpness of the filter rejection, just as with Butterworth fil-
ters. The EasyLanguage and EFS codes to implement the three-pole Super 
Smoother filter are given in Figures 13.11 and 13.12, respectively. 

Table 13.4 lists the coefficients of three-pole Super Smoother filters as 
a function of their cutoff period. It is provided as a convenience for readers 
who may want only to quickly access the coefficient values rather than 
compute them. 

Figure 13.13 shows that a three-pole Super Smoother filter has far 
more attenuation in the reject band than the two-pole filters of Figures 13.2 
and 13.10. The passbands are identical in all three cases. 
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{****************************************************

Two Pole Super Smoother


****************************************************}


Inputs: Price((H+L)/2),

Period(15);


Vars:	 a1(0),

b1(0),

coef1(0),

coef2(0),

coef3(0),

Filt2(0);


a1 = expvalue(-1.414*3.14159 / Period);

b1 = 2*a1*Cosine(1.414*180 / Period);

coef2 = b1;

coef3 = -a1*a1;

coef1 = 1 - coef2 – coef3;


Filt2 = coef1*Price + coef2*Filt2[1] + coef3*Filt2[2];

If CurrentBar < 3 then Filt2 = Price;


Plot1(Filt2, “Filt2”);


FIGURE 13.8 EasyLanguage Code to Compute the Two-Pole Super Smoother Filter 

/*****************************************************

Title: Two Pole Super Smoother 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


FIGURE 13.9 EFS Code to Compute the Two-Pole Super Smoother Filter 
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======================================================

*****************************************************/


//External Variables

var nPrice = 0;

var nBarCount = 0;


var aPriceArray = new Array();

var aFiltArray = new Array();


//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“2-Pole Super Smoother”);

setCursorLabelName(“Filt2”, 0);

setDefaultBarFgColor( Color.blue, 0 );


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aFiltArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Period ) {

var x;

var nA1;

var nB1;

var nCoef1;

var nCoef2;

var nCoef3;


//initialize parameters if necessary

if ( Period == null ) {


Period = 15; (continued)


FIGURE 13.9 (Continued) 
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}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aFiltArray.pop();

aFiltArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nA1 = Math.exp( -1.414 * 3.14159 / Period );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.414 * 180_ 


/ Period ) );


nCoef2 = nB1;

nCoef3 = -nA1 * nA1;

nCoef1 = 1 - nCoef2 - nCoef3;


if ( nBarCount < 3 ) {

aFiltArray[0] = aPriceArray[0];


}

else {


aFiltArray[0] = nCoef1*aPriceArray[0]_ 

+ nCoef2*aFiltArray[1] 
+ nCoef3*aFiltArray[2];

}

//return the calculated values

if ( !isNaN( aFiltArray[0] ) ) {


return( aFiltArray[0] );


FIGURE 13.9 (Continued) 
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}


}


//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


FIGURE 13.9 (Continued) 

TABLE 13.3 Two-Pole Super Smoother Coefficients 

Y = C[0] * X[0] + B[1] * Y[1] + B[2] * Y[2]; 

Cutoff Period C[0] B[1] B[2] 

2 1.143136 −0.13137 −0.01177 
4 0.815892 0.292597 −0.10849 
6 0.523299 0.704171 −0.22747 
8 0.354005 0.975372 −0.32938 

10 0.253135 1.158161 −0.4113 
12 0.189286 1.287652 −0.47694 
14 0.146616 1.383531 −0.53015 
16 0.116794 1.45712 −0.57391 
18 0.095172 1.515266 −0.61044 
20 0.079015 1.562309 −0.64132 
22 0.066634 1.601119 −0.66775 
24 0.05694 1.633667 −0.69061 
26 0.049213 1.661342 −0.71056 
28 0.042955 1.685157 −0.72811 
30 0.037816 1.705862 −0.74368 
32 0.033546 1.724025 −0.75757 
34 0.029959 1.740086 −0.77005 
36 0.026917 1.754388 −0.78131 
38 0.024316 1.767204 −0.79152 
40 0.022074 1.778753 −0.80083 



c13.qxd  2/2/04  10:59 AM  Page 206

206 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES 

FIGURE 13.10 Transfer Response of the Two-Pole Super Smoother Filter 

{*****************************************************

Three Pole Super Smoother


*****************************************************}


Inputs: Price((H+L)/2),

Period(15);


Vars:	 a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);


a1 = expvalue(-3.14159 / Period);


FIGURE 13.11 EasyLanguage Code to Compute the Three-Pole Super Smoother Filter 
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b1 = 2*a1*Cosine(1.738*180 / Period);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 – coef3 - coef4;


Filt3 = coef1*Price + coef2*Filt3[1] + coef3*Filt3[2] 

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Price;


Plot1(Filt3, “Filt3”);


FIGURE 13.11 (Continued) 

/*****************************************************

Title: Three Pole Super Smoother 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0


======================================================

Fix History:


07/09/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nPrice = 0; 
var nBarCount = 0; 

var aPriceArray = new Array(); 
var aFiltArray = new Array(); 

(continued) 

FIGURE 13.12 EFS Code to Compute the Three-Pole Super Smoother Filter 
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//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“3-Pole Super Smoother”);

setCursorLabelName(“Filt3”, 0);

setDefaultBarFgColor( Color.blue, 0 );


//initialize arrays

for (x=0; x<10; x++) {


aPriceArray[x] = 0.0; 
aFiltArray[x] = 0.0; 

} 

} 

//== Main processing function

function main( Period ) {

var x;

var nA1;

var nB1;

var nC1;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;


//initialize parameters if necessary

if ( Period == null ) {


Period = 15;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


FIGURE 13.12 (Continued) 
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nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aFiltArray.pop();

aFiltArray.unshift( 0 );


}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


nA1 = Math.exp( -3.14159 / Period );

nB1 = 2*nA1 * Math.cos( DegToRad( 1.738 * 180 


/ Period ) );

nC1 = nA1 * nA1;


nCoef2 = nB1 + nC1;

nCoef3 = -( nC1 + nB1 * nC1 );

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;


if ( nBarCount < 3 ) {

aFiltArray[0] = aPriceArray[0];


}

else {


aFiltArray[0] = nCoef1*aPriceArray[0] 

+ nCoef2*aFiltArray[1] 
+ nCoef3*aFiltArray[2] 
+ nCoef4*aFiltArray[3];

}


//return the calculated values

if ( !isNaN( aFiltArray[0] ) ) {


return( aFiltArray[0] );

}


}

(continued)


FIGURE 13.12 (Continued) 
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//== Convert Degrees to Radians

function DegToRad( nValue ) {

var nTmp;


nTmp = nValue * ( Math.PI / 180 );

return( nTmp );


}


FIGURE 13.12 (Continued) 

TABLE 13.4 Three-Pole Super Smoother Filter Coefficients 

Y = C[0] * X[0] + B[1] * Y[1] + B[2] * Y[2] + B[3] * Y[3]; 

Cutoff Period C[0] B[1] B[2] B[3] 

2 1.361195 −0.33625 −0.02682 0.001867 
4 0.805867 0.398405 −0.24749 0.043214 
6 0.402981 1.08099 −0.60712 0.123145 
8 0.22088 1.505892 −0.93465 0.20788 

10 0.132326 1.783327 −1.20026 0.28461 
12 0.085031 1.976163 −1.41211 0.35092 
14 0.057706 2.117205 −1.58246 0.407548 
16 0.04089 2.22456 −1.72139 0.455938 
18 0.029999 2.308883 −1.8364 0.497514 
20 0.022647 2.376806 −1.93294 0.533488 
22 0.017507 2.432658 −2.01501 0.564848 
24 0.01381 2.479376 −2.08557 0.592385 
26 0.011083 2.51902 −2.14683 0.616731 
28 0.009027 2.553078 −2.2005 0.638395 
30 0.007451 2.582648 −2.24788 0.657784 
32 0.00622 2.60856 −2.29001 0.675232 
34 0.005246 2.631451 −2.32771 0.691011 
36 0.004465 2.651819 −2.36163 0.705347 
38 0.003831 2.670059 −2.39232 0.718425 
40 0.003313 2.686486 −2.4202 0.730403 
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FIGURE 13.13 Transfer Response of a Three-Pole Super Smoother Filter 

KEY POINTS TO REMEMBER 

•	 A Regularized filter has smoothing superior to that of an exponential 
moving average because an extra pole in the transfer response is intro-
duced. 

•	 The α and λ parameters of the Regularized filters can be independently 
assigned. 

•	 The optimum relationship between α and λ for a flat passband re-
sponse is approximately α = exp (0.16/ λ). 

•	 A Butterworth filter is an analog filter whose response is maximally 
flat at zero frequency. 

•	 A Butterworth digital filter is generated via an approximate translation 
from the analog version. 

•	 Butterworth filters can have an arbitrarily large number of poles. 
•	 The passband of Butterworth filters is prescribed by a single parame-

ter. That parameter is the Cutoff Period, where the attenuation of the 
filter is 3 dB. 

•	 The Super Smoother filter is formed by retaining the IIR part of a 
Butterworth digital filter. 

•	 You can return to this chapter for equations to compute smoothing fil-
ters or to look up tables of their coefficients. 
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CHAPTER 14 

Without Space 
Time Warp— 

Travel 

“I only get Newsweek,” said Tom timelessly.


One of the most frustrating aspects of technical analysis is trying to 
avoid whipsaw trades. When the moving averages are made 
smoother to avoid these whipsaws, the lag produced by the 

smoothing often renders the signals ineffective. The dilemma therefore is 
how to strike a balance between the amount of smoothing that can be 
obtained and the amount of lag that can be tolerated. In this chapter, I 
introduce a new tool to address the smoothing versus lag problem more 
effectively. In particular, you will learn another way to create better 
smoothing filters. 

A moving average is a simple concept involving sampled data. One 
averages the data over the last N samples, moves forward one sample and 
averages over the new set of N samples, and so on. For each new set of N 

samples, only the oldest sample is discarded and one new sample is added. 
The average is done over a fixed number of samples and moved forward 
one sample at a time. In this way the average moves. An engineer views the 
process differently. From this perspective, the data moves down a fixed 
delay line that is tapped to get the output of each sample, and the tap out-
puts are added together to produce the moving average. This process is 
depicted in the schematic of Figure 14.1 for a four-bar moving average. In 
Figure 14.1, the symbol Z−1 means that there is one unit of delay. In the case 
of daily data, the delay would be one day. The filter response in terms of the 
Z transform is 

H(z) = 1 + Z−1 + Z−2 + Z−3 (14.1) 

213 
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FIGURE 14.1 Schematic of a Moving Average 

The equation for the moving average, in EasyLanguage format, is 

Filt = (Price + Price[1] + Price[2] + Price[3])/4; (14.2) 

That is, successively older data samples from the newest sample are 
averaged to obtain the filtered output. The tapped delay line concept is 
favored by engineers because more generalized finite impulse response 
(FIR) filters can be developed by changing the relative amplitudes of the 
samples. For example, if we wanted the middle two samples to have twice 
the weight of the newest sample and oldest sample in our four-sample 
example, the schematic diagram would be as shown in Figure 14.2. 

The equation for the FIR filter, in EasyLanguage format, is 

Filt = (Price + 2 * Price[1] + 2 * Price[2] + Price[3])/6; (14.3) 

This is exactly the same filter used to eliminate the two-bar and three-
bar cycle components in Figure 4.1. The multipliers on price are called the 
coefficients of the filter. Note that the filter is always normalized to the sum 
of the coefficients. This normalization is done so that the output will be the 
same as the input if all the samples have the same value. In engineering 
terms, the direct current, or zero frequency (DC) gain is equal to unity. The 
FIR filter can be made to have additional smoothing by making the filter 
longer. However, the lag of a FIR filter is approximately half the filter 
length. The result is that if we want greater smoothing we must accept the 
additional lag in conventional filters. 

FIGURE 14.2 Schematic of a Four-Element FIR Filter 
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Conventional filters use the Z transform to describe the filter transfer 
characteristic, where Z−1 denotes a unit delay. There are a semi-infinite 
number of orthonormal functions for transform arithmetic. One such func-
tion is formed from Laguerre polynomials. The mathematical expression 
for a kth-order Laguerre transfer response is 

1 − γ  Z−1 − γ
H(z) = � � (14.4)

1 − γZ−1 � 1 − γZ−1 �
k − 1 

The Laguerre transform can be represented as an exponential moving 
average (EMA) low-pass filter (the first term) followed by a succession of all-
pass elements instead of unit delays (the k − 1 terms). All terms have exactly 
the same damping factor γ. We see that these are all pass networks by exam-
ining the frequency response. When frequency is 0, the Z−1 term has a value 
of 1, and therefore the element evaluates to (1. − γ)/(1. − γ) = 1. Similarly, 
when frequency is infinite, Z−1 has a value of −1, and therefore the element 
evaluates to (−1. − γ)/(1. + γ) = −1. The element has a unity gain at all fre-
quencies between 0 and infinity, and therefore is an all-pass network. 
However, the phase from input to output shifts over the frequency range, 
causing the lag to be variable as a function of frequency. The degree to which 
the lag is variable depends on the value of the damping factor γ. For example, 
the lag, or group delay, for γ = 0.6 and γ = 0.8 is shown in Figure 14.3. 

Therefore, we can make a filter using the Laguerre elements instead 
of the unit delay, whose coefficients are also [1 2 2 1]/6 as with the FIR fil-
ter. The difference is that we have warped the time between the delay line 
taps. The schematic of the Laguerre filter is shown in Figure 14.4. 

FIGURE 14.3 All-Pass Network Lag Is a Function of Frequency and Damping Factor 
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FIGURE 14.4 Schematic of a Laguerre Filter 

The EasyLanguage and eSignal Formula Script (EFS) codes for a four-
element Laguerre Filter are given in Figures 14.5 and 14.6, respectively. L0 
is the output of the first section and is just an EMA. The following three 
sections are identical in their form. The four sections of the Laguerre delay 
line are summed exactly the same way as a linear delay line for a FIR filter. 
The Laguerre output is the Filt variable. An identical-length FIR filter is 
also computed for comparison. 

Inputs: Price((H+L)/2), 
gamma(.8); 

Vars: L0(0), 
L1(0), 
L2(0), 
L3(0), 
Filt(0) 
FIR(0); 

L0 = (1 - gamma)*Price + gamma*L0[1];

L1 = -gamma*L0 + L0[1] + gamma*L1[1];

L2 = -gamma*L1 + L1[1] + gamma*L2[1];

L3 = -gamma*L2 + L2[1] + gamma*L3[1];


Filt = (L0 + 2*L1 + 2*L2 + L3) / 6;

FIR = (Price + 2*Price[1] + 2*Price[2] + Price[3]) / 6;


Plot1(Filt, “Filt”);

Plot2(FIR, “FIR”);


FIGURE 14.5 EasyLanguage Code for the Laguerre Filter 
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/*****************************************************

Title: Laguerre Filter

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables

var aL0

var aL1

var aL2

var aL3

var aPriceArray


= new Array();

= new Array();

= new Array();

= new Array();

= new Array();


//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle("LaguerreFilter");

setCursorLabelName("Filt", 0);

setCursorLabelName("FIR", 1);

setDefaultBarFgColor( Color.blue, 0 );

setDefaultBarFgColor( Color.red, 1 );


//initialize arrays

for (x=0; x<5; x++) { 

aPriceArray[x] = 0.0; 
aL0[x] = 0.0; 
aL1[x] = 0.0; 

(continued) 

FIGURE 14.6 EFS Code for the Laguerre Filter 
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aL2[x] = 0.0; 
aL3[x] = 0.0; 

} 

} 

//== Main processing function

function main( Gamma ) {

var x;

var nFilt;

var nFIR;


//initialize parameters if necessary

if ( Gamma == null ) {


Gamma = 0.80;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aPriceArray.pop();

aPriceArray.unshift( 0 );


aL0.pop();

aL0.unshift( 0 );


aL1.pop();

aL1.unshift( 0 );


aL2.pop();

aL2.unshift( 0 );


aL3.pop();

aL3.unshift( 0 );


}


FIGURE 14.6 (Continued) 
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aPriceArray[0] = ( high()+low() ) / 2;

aL0[0] = (1.0-Gamma) * aPriceArray[0] 


+ Gamma*aL0[1];
aL1[0] = -Gamma*aL0[0] + aL0[1] + Gamma*aL1[1];

aL2[0] = -Gamma*aL1[0] + aL1[1] + Gamma*aL2[1];

aL3[0] = -Gamma*aL2[0] + aL2[1] + Gamma*aL3[1];


//calculate LaGuerre filter

nFilt = ( aL0[0] + 2*aL1[0] + 2*aL2[0] 


+ aL3[0] ) / 6;
//calculate FIR filter

nFIR = ( aPriceArray[0] + 2*aPriceArray[1] 


+ 2*aPriceArray[2] + aPriceArray[3] ) / 6;

//return the calculated values

if ( !isNaN( nFilt ) ) {


return new Array( nFilt, nFIR );

}


}


FIGURE 14.6 (Continued) 

The results of the Laguerre and FIR filters are shown in Figure 14.7. 
Remember that all filters have identical lengths. The FIR filter has a lag of 
only 1.5 bars and only moderately smooths the price data. On the other 
hand, the Laguerre filter is dramatically smoother and also has significant 
lag. You can decrease the smoothing and the lag by decreasing the damping 
factor. When the damping factor is reduced to 0, the Laguerre filter is iden-
tical to the FIR filter. This is a simple way to control the action of a moving 
average and still use only a few data samples in the calculation. 

The story does not end with conventional filters. As I am fond of say-
ing, “Truth and science always triumph over ignorance and superstition.” If 
we can generate superior smoothing with very short filters, it follows that 
we should be able to create superior indicators using very short data 
lengths also. The use of shorter data lengths means that we can make the 
indicators more responsive to changes in the price. The Laguerre RSI will 
be used as an example. 

Welles Wilder defined the RSI as 
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FIGURE 14.7 Four-Element Laguerre Filter Is Dramatically Smoother than a 
Conventional Four-Element FIR Filter 

RSI = 100 − 100/(1 + RS) 

where RS = (Closes Up)/(Closes Down) 
= CU/CD 

RS is shorthand for Relative Strength. That is, CU is the sum of the dif-
ference in closing prices over the observation period where that difference 
is positive. Similarly, CD is the sum of the difference in closing prices over 
the observation period where that difference is negative, but the sum is 
expressed as a positive number. When we substitute CU/CD for RS and 
simplify the RSI equation, we get 

100RSI = 100 − �CU
1 + ��

CD

100CD = 100 − ��
CU + CD 

100CU + 100CD − 100CD 
CU + CD 

100CU
RSI = ��

CU + CD 
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In other words, the RSI is the percentage of the sum of the delta closes 
up to the sum of all the delta closes over the observation period. In the 
EasyLanguage and EFS codes of Figures 14.8 and 14.9, respectively, I have 
generated an RSI over Laguerre time rather than linear time, using only 
four data samples. In this case, I used a damping factor of 0.5, but you can 
adjust the damping factor to best suit your own data. 

An example of the results for the four-element Laguerre RSI is shown 
in Figure 14.10 below the price charts. The 20 percent and 80 percent signal 
levels are also plotted. Note that the excursions of the RSI are typically 
lock to lock and that the recovery is rapid at each major price reversal. A 
typical use of the Laguerre RSI is to buy after the line crosses back over the 

Inputs: gamma(.5); 

Vars: L0(0), 
L1(0), 
L2(0), 
L3(0), 
CU(0), 
CD(0), 
RSI(0); 

L0 = (1 – gamma)*Close + gamma*L0[1];

L1 = - gamma *L0 + L0[1] + gamma *L1[1];

L2 = - gamma *L1 + L1[1] + gamma *L2[1];

L3 = - gamma *L2 + L2[1] + gamma *L3[1];


CU = 0;

CD = 0;

If L0 >= L1 then CU = L0 - L1 Else CD = L1 - L0;

If L1 >= L2 then CU = CU + L1 - L2 Else CD = CD + L2 


- L1;
If L2 >= L3 then CU = CU + L2 - L3 Else CD = CD + L3 


- L2;

If CU + CD <> 0 then RSI = CU / (CU + CD);


Plot1(RSI, “RSI”);

Plot2(.8);

Plot3(.2);


FIGURE 14.8 EasyLanguage Code to Compute a Laguerre RSI Indicator 
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/*****************************************************

Title: Laguerre RSI Indicator 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0


======================================================

Fix History:


06/19/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var aL0 = new Array(); 
var aL1 = new Array(); 
var aL2 = new Array(); 
var aL3 = new Array(); 
var aPriceArray = new Array(); 
var nRSI = 0; 

//== PreMain function required by eSignal to set_

things up


function preMain() {

var x;


setPriceStudy(false);

setStudyTitle(“LaguerreRSI”);

setCursorLabelName(“RSI”, 0);

setDefaultBarFgColor( Color.blue, 0 );

addBand( 0.80, PS_SOLID, 2, Color.black, -55 );

addBand( 0.20, PS_SOLID, 2, Color.black, -56 );


//initialize arrays

for (x=0; x<5; x++) {


aPriceArray[x] = 0.0;


FIGURE 14.9 EFS Code to Compute a Laguerre RSI Indicator 
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aL0[x] = 0.0; 
aL1[x] = 0.0; 
aL2[x] = 0.0; 
aL3[x] = 0.0; 

} 

} 

//== Main processing function

function main( Gamma ) {

var x;

var nCD;

var nCU;


//initialize parameters if necessary

if ( Gamma == null ) {


Gamma = 0.50;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {


return null;

}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


aPriceArray.pop();

aPriceArray.unshift( 0 );


aL0.pop();

aL0.unshift( 0 );


aL1.pop();

aL1.unshift( 0 );


aL2.pop();

aL2.unshift( 0 );


aL3.pop();

aL3.unshift( 0 );


(continued)


FIGURE 14.9 (Continued) 
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}

aPriceArray[0] = close();

aL0[0] = (1.0-Gamma) * aPriceArray[0] + Gamma


*aL0[1];

aL1[0] = -Gamma*aL0[0] + aL0[1] + Gamma*aL1[1];

aL2[0] = -Gamma*aL1[0] + aL1[1] + Gamma*aL2[1];

aL3[0] = -Gamma*aL2[0] + aL2[1] + Gamma*aL3[1];


nCU = 0;

nCD = 0;


if ( aL0[0] >= aL1[0] ) {

nCU = aL0[0] -aL1[0];


}

else {


nCD = aL1[0] - aL0[0];

}


if ( aL1[0] >= aL2[0] ) {

nCU = nCU + aL1[0] - aL2[0];


}

else {


nCD = nCD + aL2[0] - aL1[0];

}

if ( aL2[0] >= aL3[0] ) {


nCU = nCU + aL2[0] - aL3[0];

}

else {


nCD = nCD + aL3[0] - aL2[0];

}


if ( nCU + nCD != 0 ) {

nRSI = nCU / ( nCU + nCD );


}


return( nRSI );


}


FIGURE 14.9 (Continued) 
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FIGURE 14.10 A Laguerre RSI Reacts Rapidly to Price Changes 

20 percent level and sell after the price crosses back down over the 80 per-
cent level. Of course, just as with the conventional RSI, more elaborate 
trading rules can be created. 

KEY POINTS TO REMEMBER 

•	 The Laguerre transform provides a time warp such that the low-
frequency components are delayed much more than the high-
frequency components. 

•	 Time distortion enables very smooth filters to be built using a short 
amount of data. 

•	 Indicators can also be created using the time warp. 
•	 Time-warped indicators react faster because a shorter amount of data 

is used. 
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CHAPTER 15 

Evaluating 
Trading Systems 

“I got the first three wrong,” said Tom forthrightly. 

There are basically two ways to trade using technical analysis—dis-
cretionarily and systematically. Discretionary traders can, and have, 
made spectacular amounts of money with their techniques. They 

integrate their life’s experience, knowledge of the markets, and technical 
indicators to make their trading decisions. In fact, I have used a large frac-
tion of this book to describe new indicators to be used as tools. Systematic 
traders, on the other hand, do not need to know very much about the mar-
ket or have much experience. Instead, they rely on the trading signals auto-
matically produced by rules implemented by computer programs. They 
have the confidence to rely on the computerized systems because the per-
formance statistics can be reproduced by backtesting. That is not to say 
that hypothetical performance is perfect. There can be sharp differences 
between hypothetical performance and real trading results. For example, 
hypothetical trading does not involve financial risk, and the ability to with-
stand losses or to adhere to a particular trading system in the face of these 
losses is not considered. Implementation issues, such as slippage and com-
mission, can only be included as allowance factors. Furthermore, the trad-
ing system can have performance in the future significantly different from 
its past performance due simply to the randomness of events. Since back-
tests are always done with the benefit of hindsight, there are all kinds of 
ways to cheat on reported performance. This chapter is about what you 
can realistically expect from your trading system rather than how to cheat 
the statistics. 

Many people equate speculation in the market to gambling. Their 
beliefs are reinforced by popular books such as A Random Walk Down 

227 
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Wall Street.1 This belief persists although it is patently false and intellectu-
ally dishonest. More serious investors look at fundamental considerations 
such as P/E ratios, Sales, Debt, and so on, and give scant attention to tech-
nical analysis. The technique described in this chapter uses some gaming 
concepts not only to show that there is merit to trading using technical 
analysis trading systems, but also to enable you to visualize what equity 
growth performance you can reasonably expect from your system. 

There are a number of statistics that are important if you are putting 
your hard-earned money at risk. Maximum drawdown is important because 
it, plus required margin, is the absolute minimum amount of money you 
should have in your account to avoid a margin call with reasonable proba-
bility. The number of consecutive losers is a test of how strong your stom-
ach must be to trade the system. The average profit per trade is important to 
know because you must cover your transaction costs (commission plus 
slippage) before you can start making money for yourself. 

Taking away all the details of the particular system, there are two sta-
tistics that enable you to assess what performance you can expect. These 
are the percentage of profitable trades and the Profit Factor. It is desirable 
to have as high a percentage of winners as possible, but this need not be 
greater than 50 percent to be profitable if you make more on winning 
trades than you lose on losing trades. Profit Factor is the ratio of Gross 
Winnings to Gross Losses. In terms of gaming, it is the payout probability. 
By determining whether a trade is a winner or a loser using the percentage 
wins and a random number generator, applying the payout probability to 
each trade, and summing the randomly selected trades, you can provide 
realistic expectations for the equity growth produced by the system. Only 
in this sense can randomization be introduced to establish performance. 
Simply winning or losing is not a random occurrence. 

We can create an equity growth simulator and plot the results in an 
Excel spreadsheet. First we need to insert the two important statistics. In 
cell A1, type “% Winners” and in cell A2 type 45. In cell B1, type “Profit 
Factor” and in cell B2 type 1.5. The values of 45 and 1.5 are only initial val-
ues. The entries into cells A2 and B2 are system statistics that you can 
change to visualize their impact on equity growth. 

In cell A3 input =RAND( ). This creates a random number having a 
uniform probability density in the range between 0 and 1. This random 
number is compared to the probability of a win by inserting =IF(A3 < 
$B$1/100,$B$2,0) into cell B3. This conditional statement says that if the 
random number falls within the winning probability then assign the pay-
out probability (the Profit Factor) to the trade, otherwise assign a value 
of −1 to the trade. This is the outcome of the trade. In cell C3 input =B3. 
Copy all of row 3 into row 4. Then change cell C4 to be =C3 + B4. This 
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sums the trades in column C. Next copy all of row 4 and paste into rows 
5 through 500. Column C now becomes the equity growth for the ran-
domized set of trades using only the percent winners and Profit Factor. 
This equity growth changes every time you press F9, causing the spread-
sheet to recalculate. 

You can plot the equity curve for ease of interpretation. To do this, high-
light cells C3 through C500. Then click on the chart wizard and input the 
data as requested. First, select a line type chart and click on the type shown 
in the upper left corner of the thumbnail examples. Click Next. Then click 
Finish. Your chart is done! Now you are free to experiment with the kind of 
equity growth you can expect from your trading system. Just press F9 to 
recompute the spreadsheet. You will create a new randomized equity 
growth curve because all the random numbers have changed. Repeat as 
often as you desire to get a feeling that you know what to expect. Figures 
15.1 and 15.2 are just two examples I ran using the default statistics. Note
that although exactly the same statistics are used, the equity curves are dra-
matically different. The message is that you should not blindly accept an 
equity curve (real or hypothetical) from a vendor without also finding out 
what the Profit Factor and Percent Profitable statistics were. 

To see what a nice equity growth curve looks like, change cell A2 to 50 
and cell B2 to 2.0. MESA Software is among the few systems developers 
that have systems with statistics such as these. You can see the backtested 

FIGURE 15.1 Hypothetical Equity Growth for %Profitable = 45 and Profit Factor = 1.50 
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FIGURE 15.2 Another Hypothetical Equity Growth Example for %Profitable = 45 and 
Profit Factor = 1.50 

equity curves of some of our systems at www.mesa-systems.com. Next, 
explore what the lower-limit statistics might be for a profitable trading sys-
tem. My experience is that the boundary is 42 in cell A2 (for percentage 
winners) and 1.5 (for Profit Factor) in cell B2. 

KEY POINTS TO REMEMBER 

•	 Profit Factor and Percentage Winners of a trading system are all you 
need to create a Monte Carlo equity curve of that system. 

•	 A real equity curve is only one of the possibilities that can be produced 
by a Monte Carlo equity curve. 

•	 A Monte Carlo simulation can be used to evaluate the expected perfor-
mance of any trading system. 
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CHAPTER 16 

Leading 
Indicators 

“Leading indicators are neat,” said Tom predictably. 

There are two basic kinds of leading indicators: causal and noncausal 
filters. Causal filters depend on data and noncausal filters can be pre-
dictive from almost any other basis, including gut feelings. The Sine-

wave Indicator described in Chapter 11 is an example of a noncausal filter. 
The purpose of this chapter is to derive the limitations and usefulness of 
causal predictive filters. It is a fundamental principle that causal filters can-
not predict a specific event because their very value depends on that event. 
That is to say, causal filters cannot anticipate a transient response. However, 
they can and do act as reliable indicators of steady-state responses. 

All moving averages have lag. A moving average is depicted as the 
dashed line relative to the original function (the solid line) in Figure 16.1a. 
The difference between the two lines d is a constant value in the case of a 
continuous trend. Similarly, the lag k is also a constant value. The leading 
indicator is created by adding the difference between the original function 
and its moving average to the function itself. Adding the difference neces-
sarily places the indicator with a negative lag relative to the original func-
tion, as depicted in Figure 16.1b. Negative lag makes this filter a leading 
indicator. The amount of lead is exactly equal to the amount of lag of the 
moving average. 

Since the amount of lead of the leading indicator is dependent on the 
lag of a moving average, it is instructive to examine the lag of an exponen-
tial moving average as a function of its smoothing parameter alpha. 
Imagine an original function that increases by 1 with each sample. The 
function will have a value of I on the Ith sample. If the moving average has 
a lag of k, then the moving average will have a value of (I − k) on the Ith day. 

231 
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FIGURE 16.1 How Leading Indicators Are Constructed 
a. A moving average has a lag k and a difference d. 
b. Adding the moving average difference yields a lead k. 

Similarly, the moving average will have had a value of (I − 1 − k) on the 
(I − 1)th day. Putting these values in the equation for an exponential mov-
ing average, we have 

(I − k) = α * I + (1 − α) * (I − 1 − k) (16.1) 

Solving for alpha in terms of the delay k, we have the relationship 

α = 1/(k + 1) (16.2) 

Or, conversely 

k = 1/α − 1 (16.3) 

Equation 16.3 tells how much lead we can expect from our leading indi-
cator. From Chapter 2, the transfer response is the ratio of the output to the 
input. Thus the transfer response of the leading indicator can be written as 

Output α * Z−1 

H(z) = � = 2 − ��
Input 1 − (1 − α) *  Z−1 

2 + (α − 2) * Z−1 

= �� (16.4)
1 − (1 − α) *  Z−1 

But there is a price to be paid for getting the leading function. That price 
is noise gain. If we let Z−1 = 1 in Equation 16.4, we get the zero frequency 
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(constant input) gain. Doing this algebra, the gain of this filter is unity. That 
is, if the input is constant we get exactly the same output from the filter. 
The output cannot be leading because there is no trend to the input. 
Letting Z−1 = −1, the value of the transfer response at the Nyquist (highest 
possible) frequency is obtained. Doing this, the filter gain for a two-bar 
cycle is (4 − α)/(2 − α). So the noise gain varies from 2 when α = 0 to 3 when 
α = 1. If the lead is three bars, Equation 16.2 gives α = 0.25, and therefore the 
noise gain is 2.14, slightly more than 6 dB. Figure 16.2 shows how the noise 
gain varies with frequency for the case when α = 0.25. 

Noise gain is not a good thing. The noise gain can be reduced by fol-
lowing the leading indicator filter with an exponential moving average. As 
I indicated earlier, all moving averages have lag. So, if an alpha of the mov-
ing average is selected to have less lag than the lead of the leading indica-
tor, an indicator having a net leading function can still be produced. As an 
example, selecting α = 0.33 results in an exponential moving average that 
has a lag of only two bars. The attenuation at Z−1 = 1 is 0.2, which gives a 
greater attenuation than the noise gain of the leading indicator. The net 
gain of the composite filter is shown in Figure 16.3. While there is still some 
noise gain in the vicinity of a 20-bar cycle (frequency = 0.05), the net filter 
has a net smoothing effect over most of the frequency range. 

FIGURE 16.2 Noise Gain of a Leading Indicator 
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FIGURE 16.3 Net Gain of a Leading Indicator 

The leading characteristic is still present in the net filter, as shown in 
Figure 16.4. As predicted, the lead is one bar at very low frequencies. That 
is, the trend indication will lead by one bar. However, the net filter has a lag 
of approximately 2.5 bars for cycle components near 20-bar cycles. Also, 
higher-frequency lag settles down to be about half a bar. The interpretation 
of the lag response is that the filter predicts a continuation of a trend by 1 
bar, lags abrupt changes by about 0.5 bars, and lags smooth changes that 
can be fitted by segments of a 20-bar sinewave by as much as 2.5 bars. 
That’s the law of physics—you cannot get something for nothing. Causal fil-
ters can have a predictive capability over some portion of the frequency 
response, but not at all frequencies. There is no magic predictor. 

The EasyLanguage and eSignal Formula Script (EFS) codes to compute 
several leading indicators are given in Figures 16.5 and 16.6, respectively. In 
these codes, the leading indicator is compared to an exponential moving 
average whose α = 0.5. This exponential moving average has a lag of only a 
half bar. The relative positions of the leading indicator and the exponential 
moving average show when the market is in an uptrend or a downtrend as in 
the example in Figure 16.7. The alphas of the leading indicator are provided 
as inputs for ease of modification of the indicator. For example, the continu-
ation of the trend is more clearly identified if α1 is reduced to a value of 0.15. 
The impact of giving the indicator greater lead is shown in Figure 16.8. 
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FIGURE 16.4 The Net Filter Has a Low-Frequency Leading Characteristic 

Inputs: Price((H+L)/2),

alpha1(.25),

alpha2(.33);


Vars:	 Lead(0),

NetLead(0),

EMA(0);


Lead = 2*Price +(alpha1 - 2)*Price[1] 

+ (1 - alpha1)*Lead[1];

NetLead = alpha2*Lead + (1 - alpha2)*NetLead[1];


EMA = .5*Price + .5*EMA[1];


Plot1(NetLead, “Lead”);

Plot2(EMA, “EMA”);


FIGURE 16.5 EasyLanguage Code to Compute Leading Indicators 
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******************************************************

Title: Leading Indicator 

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 09/02/2003

Version: 1.0.0


======================================================

Fix History:


09/02/2003 - Initial Release

1.0.0


======================================================

*****************************************************/


//External Variables 
var nPrice = 0; 
var nBarCount = 0; 

var aPriceArray = new Array(); 
var aLead = new Array(); 
var aNetLead = new Array(); 
var aEMA = new Array(); 

//== PreMain function required by eSignal to set_ 

things up


function preMain() {

var x;


setPriceStudy(true);

setStudyTitle(“Leading Indicator”);

setCursorLabelName(“Lead”, 0);

setCursorLabelName(“EMA”, 1 );

setDefaultBarFgColor( Color.red, 0 );

setDefaultBarFgColor( Color.blue, 1 );


//initialize arrays

for (x=0; x<10; x++) {


FIGURE 16.6 EFS Code to Compute Leading Indicators 
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aPriceArray[x] = 0.0; 
aLead[x] = 0.0; 
aNetLead[x] = 0.0; 
aEMA[x] = 0.0; 

} 

} 

//== Main processing function

function main( Alpha1, Alpha2 ) {

var x;


//initialize parameters if necessary

if ( Alpha1 == null ) {


Alpha1 = 0.25;

}

if ( Alpha2 == null ) {


Alpha2 = 0.33;

}


// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;


}


//on each new bar, save array values

if ( getBarState() == BARSTATE_NEWBAR ) {


nBarCount++;


aPriceArray.pop();

aPriceArray.unshift( 0 );


aLead.pop();

aLead.unshift( 0 );


aNetLead.pop();

aNetLead.unshift( 0 );


aEMA.pop();

aEMA.unshift( 0 );


(continued)


FIGURE 16.6 (Continued) 
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}


nPrice = ( high()+low() ) / 2;

aPriceArray[0] = nPrice;


aLead[0] = 2 * aPriceArray[0] + ( Alpha1 - 2.0 ) 

* aPriceArray[1] + ( 1.0 - Alpha1 ) 
* aLead[1];

aNetLead[0] = Alpha2 * aLead[0] 

+ ( 1.0 - Alpha2 ) * aNetLead[1];

aEMA[0] = 0.5 * aPriceArray[0] + 0.5 * aEMA[1];


//return the calculated values

if ( !isNaN( aNetLead[0] ) && !isNaN( aEMA[0] ) 


&& nBarCount > 20 ) {

return new Array( aNetLead[0], aEMA[0] );


}


}


FIGURE 16.6 (Continued) 
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FIGURE 16.7 Leading Indicator (α1 = 0.25, α2 = 0.33) and EMA 

FIGURE 16.8 Leading Indicator (α1 = 0.15, α2 = 0.33) and EMA Provides a Clearer 
Picture of the Trend Continuation 
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KEY POINTS TO REMEMBER 

•	 Adding the difference between price and an exponential moving aver-
age to the price itself creates a leading indicator. 

•	 The leading indicator always has noise gain. 
•	 Smoothing the leading indicator with another exponential moving 

average can mitigate noise gain. 
•	 Constants can be selected to provide a net lead for the indicator at low 

frequencies. 
•	 The leading indicator has a lagging signal at price turning points. 
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CHAPTER 17 

Simplifying Simple 

Computations 
Moving Average 

“One topic has to be last,” said Tom finally. 

A simple moving average (SMA) of length N is computed by adding N 

values and dividing the sum by N. The process is repeated on a bar-
by-bar basis. What could be easier? While conceptually easy, the 

coding for long moving averages can be tedious because there are so 
many terms. The tedium can be reduced by putting the summation in a 
loop. But looping is difficult to do in some applications, such as Excel. 
Another simplifying approach is to drop off the oldest value and add a 
new value to the moving average. But this requires computing the initial 
value of the long moving average at least once. I will show you two ways 
to compute the SMA with ease. 

In Z transform notation, a unit delay is represented by Z−1. The transfer 
response is the output of the filter divided by its input. Thus, the transfer 
response of an eight-bar SMA would be written as 

H(z) = (1 + Z−1 + Z−2 + Z−3 + Z−4 + Z−5 + Z−6 + Z−7)/8 (17.1) 

This same expression, written in EasyLanguage where a delay of N 

bars is represented in square brackets as [N], is shown in Equation 17.2. 

SMA = (Price + Price[1] + Price[2] + Price[3] + Price[3] 
+ Price[4] + Price[5] + Price[6] + Price[7])/8; (17.2) 

241 
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Equation 17.1 is a simple finite series that can be written most gener-
ally in fractional form as 

−NY(z) 1 − z
H(z) = � = (N + 1) (17.3)��−1 � /X(z) 1 − z

where Y(z) is the filter output and X(z) is the filter input. 
Equation 17.3 is identical to Equation 17.1 if N = 7, and is therefore an 

SMA. When we carry out the cross multiplication of Equation 17.3, we 
obtain 

Y(z) = (X(z)(1 − z−N) + Y(z)z−1)/(N + 1) (17.4) 

Equation 17.4 provides the means to program an arbitrarily long SMA 
using just a few terms. The EasyLanguage equivalent of Equation 17.4 is 

SMA = (Price − Price[N] + SMA[1])/(N + 1); (17.5) 

Another SMA programming trick can be accomplished by recognizing 
that we don’t have to do the filtering all at one time. Rather, we can cascade 
filters. That means we can filter the output of a previous filter that takes the 
output of a previous filter, and so on. Cascading filters are represented by 
multiplication in Z transforms. Therefore, the SMA transfer response of 
cascaded filters can be written as 

K − 1
−2 )/2KH(z) = (1 + z−1)(1 + z−2)(1 + z−4) . . . (1  + z (17.6) 

For example, if K = 3, we would have an eight-bar SMA. As a test, we 
can expand Equation 17.6 to be 

H(z) = (1 + z−1)(1 + z−2)(1 + z−4)/8 

= (1 + z−1 + z−2 + z−3)(1 + z−4)/8 

= (1 + z−1 + z−2 + z−3 + z−4 + z−5 + z−6 + z−7)/8 (17.7) 

Thus, Equation 17.7 shows that the cascaded filters expand to be identi-
cal with an SMA. In EasyLanguage, the cascaded filters would be written as 
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Value1 = Price + Price[1]; 

Value2 = Value1 + Value1[2]; 

Value3 = Value2 + Value2[4]; 
(17.8) 

SMA = Value3/8; 

KEY POINTS TO REMEMBER 

•	 An N-bar SMA can be written in an iterative form similar to an expo-
nential moving average. 

•	 An N-bar SMA can be written as K iterative two-element averages, 
where N = 2K . 
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CONCLUSION 

But Wait— 
There’s More! 

In the Introduction, I said my goal was to revolutionize the art of trad-
ing by introducing the concept of modern digital signal processing. I 
hope you agree that this has led to the development of some pro-

foundly effective new trading tools. More important, I hope that these new 
trading tools have given you a new perspective on how to view the market 
as well as how to technically analyze it. Perhaps I have even changed your 
perspective from thinking technical analysis is bad to thinking that it is 
often practiced badly. My tools address the practice of technical analysis. 

Cybernetic Analysis for Stocks and Futures was written on several 
levels. At one level, you have been given cookbook codes for trading sys-
tems with which you can begin trading immediately. The historical perfor-
mance of these systems is on par with, or exceeds, the performance of 
commercial systems that would cost you thousands of dollars to purchase. 
At another level, you have genuinely new analysis tools, such as the Fisher 
transform, the CG Oscillator, the RVI, and the Hilbert transform discrimi-
nator to measure the Dominant Cycle period, and unique ways to combine 
concepts. These indicators and automatic trading strategies view the mar-
ket from an entirely new perspective and therefore augment your existing 
tools. I invite you to read the book again—perhaps more than once—and 
reach the highest level possible. That level constitutes a deep understand-
ing of both the market and our analysis processes. 

If you have read my previous book, Rocket Science for Traders (Wiley, 
2001), you see that I address some of the same topics. I even use similar ter-
minology. For instance, I develop an Instantaneous Trendline in Chapter 2. 
This Instantaneous Trendline is as close as anyone can come to nearly zero 

245 
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lag in a smoothing filter. It therefore represents an improvement. Since 
eliminating lag is extremely important to traders, the ideas put forward 
herein are improvements over my previous works. 

As another example, the Hilbert Transform cycle period method in 
Chapter 9 is a substantial improvement over the three alternate discrimi-
nators I previously described. The improvement is made possible through 
two innovations that reduce lag in the computation. The first of these inno-
vations is the recovery of the cycle component of the prices, which saves at 
least four bars of lag in the detrending operation. The second innovation is 
using a median filter to obtain a better estimate of the change of phase 
from sample to sample. The previous approaches required the multiplica-
tion of data samples. Since the data comprises both signal and noise, the 
multiplication produced products in the form of (S + N)(S + N) = S 2 + SN + 
NS + N 2. That is, the product now has three noise terms that must be 
removed by filtering instead of just one term in the original data. Filtering 
produces lag. Therefore, avoiding a solution requiring the multiplication of 
data samples reduces lag in the net result. 

The Super Smoothers described in Chapter 13 are also improvements 
over higher-order Butterworth filters. Only after reading about regulariza-
tion did I realize that the Butterworth filter consists of finite impulse 
response (FIR) and infinite impulse response (IIR) components, and that 
the FIR component could be removed, leaving a nearly maximumly flat 
amplitude response in the filter passband. Not only are the desirable char-
acteristics of the Butterworth filter retained, but several bars of lag are 
removed due to the removal of the FIR component. The result is the Super 
Smoothers described. 

This book is by no means the final word on digital signal processing as 
it applies to trading. For example, Ehlers filters are in a continuing state of 
research, evolution, and design. Through continued effort I hope to gener-
ate more accurate models of the market that will lead to greater profits for 
traders. I encourage you to join me in this quest for greater accuracy and 
precision. Please check www.mesasoftware.com for my latest technical 
articles. You can apply the tools in this book in a jillion ways to improve 
your own trading. For example, plot the two-pole Super Smoother and the 
three-pole Super Smoother using the same Period for each. You will almost 
immediately see a trading system jump at you from the crossings of the two 
lines. I look forward to hearing of your successes and invite you share the 
new horizons you reach in your adventures in the market. 



bfmi.qxd  2/2/04  10:42 AM  Page 247

For More Information 

Research is an ongoing process for me. The latest reports of my research 
can be found in technical papers and Power Point seminars on my Internet 
site, www.mesasoftware.com. 

Users of TradeStation may wish to avoid the work of keying in the code 
and the agony of debugging the indicators and strategies. In this case, the 
EasyLanguage Archive (ELA) files are available for direct transfer into your 
TradeStation2000I platform. The files are automatically translated when 
transferred into TradeStation 7.0. Similarly, eSignal users may want the elec-
tronic version of the eSignal Formula Script (EFS) codes. Your can pur-
chase the ELA or EFS files from my website at www.mesasoftware.com, or 
by contacting me at: 

MESA Software 
P.O. Box 1801
Goleta, CA 93116 
(800) 633-6372 

NeuroShell Trade users can obtain the DLLs and templates for the 
indicators and systems in this book by contacting Ward Systems Group. 

Good trading! 
John F. Ehlers 
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Notes 

CHAPTER 4 

1. John Ehlers, Rocket Science for Traders, John Wiley & Sons, New York, 
2001, Chap. 14. 

2. Rocket Science for Traders, Chap. 3. 

CHAPTER 5 

1. Rocket Science for Traders, Chap. 18. 

CHAPTER 6 

1. Perry Kaufman, The New Commodity Trading Systems and Methods. 

New York: Wiley, 1987, p. 102–103. 

CHAPTER 8 

1. The Stochastic Indicator’s name is an arbitrary “term of art” chosen 
by its original proponents. It has nothing to do with the statistical term 
stochastic, which is defined as a randomly determined sequence of 
events. 

CHAPTER 9 

1. Rocket Science for Traders, Chap. 6. 
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CHAPTER 13 
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2.	 Rocket Science for Traders, Chap. 15. 

CHAPTER 15 

1. Burton G. Malkiel, A Random Walk Down Wall Street, W.W. Norton & 
Co., New York, 1973–2003. 
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Adaptive cycle indicators:

CG Indicator, 124, 132–140, 149

Cyber Cycle, 123–124, 125, 132,


149

Relative Vigor Index, 124,


139–149

A/D Oscillator, 55–56


Butterworth filters:

analog, 191, 211

digital, 191–200, 211

versus Super Smoothers, 246


Buying Power, defined, 55


Center of gravity (CG), 47–48 
CG Oscillator:


adaptive, 124, 132–140, 149

calculating, 48–52

example of, 49, 52

Fisher, 95–99

function of, 47–48, 53, 245

in indicator comparison, 63–65

Stochastic, 68–73, 79–84


Commodity Channel Index 
(CCI), 2


Currency, trend tendencies of, 26

Curve fitting, 32

Cyber Cycle Indicator:


adaptive, 123–124, 125–132, 149

Fisher, 89–94

in indicator comparison, 63–65


versus Instantaneous Trendline, 
36, 37, 46


lag in, 36–37

Stochastic, 68, 74, 75–79

trading on, 33–35


Cyber Cycle strategy:

EFS code for, 38–45

performance of, 45

trading with, 37, 39, 46


Cycle measurement:

accuracy of, 118–120

methods of, 107

process of, 108–118, 121, 246


Cycle Mode:

mathematical description of, 12

Sinewave Indicator in, 163

as trading strategy, 11, 33–46


Cycles:

components of, 108–110

in market model, 152

trading difficulty of, 3

trend indicators in, 165

turning points in, 3, 5, 7, 151, 163


Daily Raw Figure (DRF), 56

DeltaPhase computation, 117–119

Discretionary trading, 227

Dominant Cycle:


in adaptive indicators, 123, 124,

139, 149


in market model, 152
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Dominant Cycle (Continued): 
in measurement process, 108, 

117, 118, 121, 245 
phase of, 151 
in Sinewave Indicator, 153, 163 
for Smoothed Adaptive 

Momentum, 165, 186 

EasyLanguage Archive (ELA), 247 
EasyLanguage code: 

for Adaptive CG Oscillator, 
132–133 

for Adaptive Cyber Cycle, 
125–126 

for Adaptive RVI, 140–141 
for CG Oscillator, 49 
for Cyber Cycle Indicator, 34 
for Cyber Cycle strategy, 38 
for cycle period computation, 

111 
for Fisher CG Oscillator, 95 
for Fisher Cyber Cycle, 89–90 
for Fisher RVI, 99–100 
for Instantaneous Trendline, 

26–31 
for ITrend indicator, 24 
for Laguerre filter, 216 
for Laguerre RSI, 221 
for leading indicators, 234, 235 
for price normalization, 5–7 
for Relative Vigor Index, 58 
for Sinewave Indicator, 154–155 
for Smoothed Adaptive 

Momentum, 166 
for Smoothed Adaptive 

Momentum strategy, 175–176 
for Stochastic CG Oscillator, 

79–80 
for Stochastic Cyber Cycle, 75 
for Stochastic RSI, 68 
for Stochastic RVI, 84–85 
for three-pole Butterworth filter, 

196–197 

Index 

for three-pole Super Smoother 
filter, 206–207 

for two-pole Butterworth filter, 
192 

for two-pole Super Smoother fil-
ter, 202 

Ehlers filters, 48, 246 
Equity growth simulator, in perfor-

mance evaluations, 228–230 
eSignal Formula Script (EFS): 

for Adaptive CG Oscillator, 
134–139 

for Adaptive Cyber Cycle, 
126–131 

for Adaptive RVI, 142–147 
for CG Oscillator, 50–52 
for Cyber Cycle Indicator, 35 
for Cyber Cycle strategy, 39–45 
for cycle period computation, 

112–116 
for Fisher CG Oscillator, 96–99 
for Fisher Cyber Cycle, 90–94 
for Fisher RVI, 101–104 
for ITrend indicator, 25 
for Laguerre filter, 217–219 
for Laguerre RSI, 222–224 
for leading indicators, 234, 

236–238 
to normalize price, 7, 8 
for Relative Vigor Index, 58–61 
for Sinewave Indicator, 156–162 
for Smoothed Adaptive 

Momentum, 167–174 
for Smoothed Adaptive 

Momentum strategy, 177–186 
for Stochastic CG Oscillator, 

80–84 
for Stochastic Cyber Cycle, 

75–79 
for Stochastic RSI, 69–73 
for Stochastic RVI, 85–89 
for three-pole Butterworth filter, 

197–200 
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for three-pole Super Smoother

filter, 207–210


for two-pole Super Smoother 

filter, 202–205


eSignal Formula Script (EFS) 

electronic version, 247


Exponential moving average

(EMA):


calculating, 12–13, 187

in cycle measurement, 118, 


119

versus Instantaneous Trendline,


17–19

lag and, 37, 233

in leading indicator creation,


232–234, 239, 240


Fast Fourier transforms (FFTs),

107, 119


Filters. See also Smoothing

Butterworth, 191–200, 211

cascading, in SMA program
-

ming, 242

causal, 151, 231, 234

coefficients of, 48, 214

Ehlers, 48, 246

finite impulse response (FIR),


23, 33, 47–48, 201, 214, 219,

221


Gaussian, 15, 16

high-pass, 12, 15, 19

infinite impulse response (IIR),


201

Laguerre, 215, 216–220

low-pass, 16, 19

median, 118, 121, 246

noncausal, 151, 163, 231

Regularized, 188–191, 211

for Relative Vigor Index, 56

Smooth, 33

Super Smoother, 165, 201–211

time distortion used with, 215,


221, 225


Finite impulse response (FIR) 

filters:


Butterworth, 246

in cycle trading, 33

equation for, 214

for Instantaneous Trendline, 23

lag and, 47–48

versus Laguerre filter, 219, 220

in smoothing, 201, 214


Fisher transform:

computing, 7–10

equation for, 3

function of, 2, 10, 245

versus MACD, 7, 10

for stochastic indicators, 74,


89–105

Stochastic RSI application, 68

transfer function of, 4


Frequency discriminator, 108


Gaussian probability density func
-
tion (PDF):


function of, 1–2, 10

versus sinewave cycle PDF, 3–5


Hilbert transform:

as analysis tool, 245, 246

for cycle components, 109, 110

function of, 121

lag and, 118–120


Infinite impulse response (IIR),

201, 246


InPhase component, of phasor,

108, 109, 110


Instantaneous Period (InstPeriod),

118


Instantaneous Trendline:

versus Cyber Cycle Indicator,


36, 37, 46

lag of, 16–19, 36, 245–246

versus moving average, 17–19

parameters for, 26–32
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Instantaneous Trendline 
(Continued):


performance of, 32

trigger for, 21–24


Lag:

in all pass networks, 215

of Butterworth filter, 191

in Cyber Cycle Indicator, 


36–37

eliminating, 11, 151, 246

of finite impulse response fil
-

ters, 47

of ITrend trigger, 21, 22

with leading indicator, 231–234,


240

of moving averages, 13–15,


231–233

of Regularized filter, 189, 190

smoothing and, 119, 213, 214

in Stochastic RSI, 68


Laguerre filters, 215, 216–220

Laguerre RSI, 219–225

Laguerre transform, 215, 225

Lambert, Donald, 2

Leading indicators:


amount of lead from, 231–232

creating, 231, 235–240

net filter for, 234, 235

net gain of, 233–234

noise gain of, 232–233, 240

types of, 231


Limit orders:

versus market/stop orders,


23–24

trade entries on, 32


Losers, consecutive, in perfor
-
mance evaluation, 228


Market models, 152, 246

Market orders, versus limit orders,


23

Maximum drawdown, 228


Index 

Maximum Entropy Spectral

Analysis (MESA), 107, 119


MESA Software, 229–230, 246, 

247


Monte Carlo simulation, in perfor
-
mance evaluation, 230


Moving average convergence-

divergence (MACD) indicator,

7, 10


Moving averages. See also 

Exponential moving average 
(EMA); Simple moving aver-
age (SMA) 

equation for, 214

function of, 213

versus Instantaneous Trendline,


17–19

lag for, 13–15, 231–233

schematic of, 214

in Trend Mode strategies, 11,


165

weighted, 36, 47–48


Multipole smoothing filters,

201–211


NeuroShell Trade users, 247

Noise gain, of leading indicator,


232–233

Nyquist frequency, 12, 231


Oscillators. See also A/D 
Oscillator; CG Oscillator


complementary cycle, 11, 19

as indicators, 36, 46, 63, 149, 


165


Percentage of profitable trades,

228, 229


Performance:

expectation of, 228–230

of new trading systems, 245


Phasor, in cycle measurement, 
108–109 
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Pole of the transfer response, 

190


Prices:

cyclic component computation,


112–118

mean reversion of, 36

normalization of, 1–10


Probability density function 
(PDF):


calculating, 1, 3

Gaussian, 1–5, 10


Profit Factor, 228, 229

Profit per trade, 228


Quadrature component, of phasor,

110, 111, 112, 119


A Random Walk Down Wall Street 

(Malkiel), 227–228

Regularization, 187–191, 211

Relative Strength Index (RSI):


Fisher, 105

function of, 67

in indicator comparison, 64

introduction of, 107

Laguerre, 219–225


Relative Vigor Index (RVI):

adaptive, 124, 139–149

advantage of, 63

calculating, 55, 57–61

as cycle indicator, 56–57

versus Daily Raw Figure, 56

equation for, 55

Fisher, 99–104

function of, 55, 61, 245

in indicator comparison, 63–65

Stochastic, 74, 84–89, 105


Rocket Science for Traders 

(Ehlers), 37, 245


Satchwell, Chris, 187

Selling Power, defined, 55

Sigma, defined, 1


Simple moving average (SMA):

calculating, 241–243

as FIR filter, 47


Sinewave Indicator:

advantages of, 152, 153

function of, 151, 153–163

as noncausal filter, 231


Slippage, 24, 32

Smoothed Adaptive Momentum:


function of, 165–174

performance of, 175

as trading strategy, 174–186


Smoothing. See also Filters

with CG Oscillator, 47

in cycle trading, 33

of Instantaneous Trendline, 19

lag and, 119, 213, 214

with leading functions, 21–23, 


32

of leading indicator, 240

regularization as, 187


Standard deviation, 1, 10

Stochastic Indicators:


comparing, 74, 89

computing, 67–73, 75–89, 105

Fisher transform of, 74, 


89–105 
Stochastic RSI:


advantage of, 68

computing, 67–73

in indicator comparison, 65

performance of, 74


Stop orders, versus limit orders, 
23–24 

Super Smoother filters:

advantage of, 246

for momentum, 165

three-pole, 201, 206–211, 246

two-pole, 201–206, 246


Systematic trading, 227


Technical analysis, 228, 245

TradeStation users, 247
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Trading signals:

for Cyber Cycle, 36–46

Fisherized, 10, 104–105

for Instantaneous Trendline,


21–32

lag and, 213

for Stochastic Indicators, 74
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