

ffirs.qxd 2/2/04 11:39 AM Page iii

Cybernetic
Analysis for
Stocks and

Futures
Cutting-Edge DSP Technology

to Improve Your Trading

JOHN F. EHLERS

John Wiley & Sons, Inc.

ffirs.qxd 2/2/04 11:39 AM Page vi

ffirs.qxd 2/2/04 11:39 AM Page i

Cybernetic
Analysis for
Stocks and

Futures

ffirs.qxd 2/2/04 11:39 AM Page ii

Founded in 1807, John Wiley & Sons is the oldest independent publish-
ing company in the United States. With offices in North America, Europe,
Australia, and Asia, Wiley is globally committed to developing and marketing
print and electronic products and services for our customers’ professional
and personal knowledge and understanding.

The Wiley Trading series features books by traders who have survived
the market’s ever changing temperament and have prospered—some by rein-
venting systems, others by getting back to basics. Whether a novice trader,
professional, or somewhere in between, these books will provide the advice
and strategies needed to prosper today and well into the future.

For a list of available titles, visit our Web site at www.WileyFinance.com.

ffirs.qxd 2/2/04 11:39 AM Page iii

Cybernetic
Analysis for
Stocks and

Futures
Cutting-Edge DSP Technology

to Improve Your Trading

JOHN F. EHLERS

John Wiley & Sons, Inc.

ffirs.qxd 2/2/04 11:39 AM Page iv

Copyright © 2004 by John F. Ehlers. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or oth-
erwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through pay-
ment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright
.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies con-
tained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

Some of the charts in this book were created using TradeStation, copyright © TradeStation
Securities, Inc., 2000–2004.

TradeStation and EasyLanguage are registered trademarks of TradeStation Technologies, Inc.,
an affiliate of TradeStation Securities.

For general information on our other products and services, or technical support, please con-
tact our Customer Care Department within the United States at 800-762-2974, outside the
United States at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Ehlers, John F., 1933-
Cybernetic analysis for stocks and futures : cutting-edge DSP

technology to improve your trading / John F. Ehlers.
p. cm.

Includes bibliographical references.
ISBN 0-471-46307-8
1. Corporations—Valuation. 2. Chief executive officers—Rating of.

3. Investment analysis. I. Title.

HG4028.V3 E365 2004

332.63'2042—dc22 2003021212

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

ffirs.qxd 2/2/04 11:39 AM Page v

To Elizabeth—my friend,

my companion, my wife

ffirs.qxd 2/2/04 11:39 AM Page vi

ffirs.qxd 2/2/04 11:39 AM Page vii

Acknowledgments

Iwould like to thank Mike Burgess, Rod Hare, and Mitchell Duncan, who
took time out of their busy schedules to read and critique the early
manuscripts of this book. Their efforts transformed the original terse

descriptions of computer code and the often rambling musings and thought
processes of an engineer into a readable document having a rational flow
for you, the reader.

Tools are very important in our technological age. I would like to thank
TradeStation Technologies for their platform, which made the develop-
ment of trading systems possible. I would also like to thank eSignal for
making their platform available for indicator development and Chris Kryza
for converting my code to eSignal Formula Script. Additionally, I would
like to thank Steve Ward, who made the resources of NeuroShell Trader
available, thus enabling readers to extend the usefulness of my indicators
by using neural networks and genetic algorithms.

I would also like to thank Mike Barna for showing me how to apply the
coin toss methodology to trading strategy evaluation.

J. F. E.

vii

ffirs.qxd 2/2/04 11:39 AM Page viii

ftoc.qxd 2/2/04 11:40 AM Page ix

Introduction

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

Contents

xi

The Fisher Transform 1

Trends and Cycles 11

Trading the Trend 21

Trading the Cycle 33

The CG Oscillator 47

Relative Vigor Index 55

Oscillator Comparison 63

Stochasticization and Fisherization
of Indicators 67

Measuring Cycles 107

Adaptive Cycle Indicators 123

The Sinewave Indicator 151

Adapting to the Trend 165

Super Smoothers 187

Time Warp—Without Space Travel 213

Evaluating Trading Systems 227

Leading Indicators 231

Simplifying Simple Moving Average
Computations 241

Conclusion 245
For More Information 247
Notes 249
Index 251

ix

ftoc.qxd 2/2/04 11:40 AM Page x

flast.qxd 2/2/04 11:40 AM Page xi

Introduction

“This is a synopsis of my book,” Tom said abstractly.

A s Sir Arthur C. Clarke has noted, any significantly advanced technol-
ogy is indistinguishable from magic. The advances made in com-
puter technology in the past two decades have been dramatic and

can qualify as nearly magical. The computer on my desk today is far more
powerful than that which was available to the entire national defense sys-
tem just 30 years ago. Software for traders, however, has not kept pace.
Most of the trading tools available today are neither different from nor
more complex than the simple pencil-and-paper calculations that can be
achieved through the use of mechanical adding machines. True, these cal-
culations are now made with blinding speed and presented in colorful and
eye-grabbing displays, but the power and usefulness of the underlying pro-
cedures have not changed. If anything, the relative power of the calcula-
tions has diminished because the increased speed of information exchange
and increased market capitalization have caused fundamental shifts in the
technical character of the market. These shifts include increased volatility
and shorter periods for the market swings.

Cybernetic Analysis for Stocks and Futures promises to bring magic to
the art of trading by introducing wholly new digital signal-processing tech-
niques. The application of digital signal processing offers the advantage of
viewing old problems from a new perspective. The new perspective gained
by digital signal processing has led me to develop some profoundly effective
new trading tools. The advances in trading tools, along with the continuing
advancements in hardware capabilities, virtually ensure the continued ap-
plication of digital signal processing in the future. Traders who master
the new concepts, therefore, will find themselves at a great advantage when

xi

flast.qxd 2/2/04 11:40 AM Page xii

xii Introduction

approaching the volatile market of the twenty-first century. If you like code,
you will love this book. Every new technique, indicator, and automatic trad-
ing system is defined in exquisite detail in both EasyLanguage code for use
in TradeStation and in eSignal Formula Script (EFS) code. They are also
available as compiled DLLs to be run in NeuroShell trader.

Chapter 1 starts the wizardry off with a bang by challenging the con-
ventional wisdom that market prices have a Gaussian probability density
function (PDF). Just think about it. Do prices really have several events
separated by a standard deviation from the mean across the screen as you
would expect with a Gaussian PDF? Absolutely not! If the PDF is not
Gaussian, then attaching significance to the one-sigma points in trading
systems is, at best, just plain wrong. I show you how to establish an approx-
imate Gaussian PDF through the application of the Fisher transform.

I derive a new zero-lag Instantaneous Trendline in Chapter 2. By divid-
ing the market into a trend component and a cycle component, I create a
zero-lag cycle oscillator from the derivation. These results are put to work
by designing an automatic trend-following trading strategy in Chapter 3
and an automatic cycle-trading strategy in Chapter 4.

Several new oscillators are then derived. These include the CG
Oscillator in Chapter 5 and the Relative Vigor Index (RVI) in Chapter 6. The
performance of the Cyber Cycle Oscillator, the CG Oscillator, and the RVI
are compared in Chapter 7. Noting that a favorite technical analysis tool is
the Stochastic Relative Strength Index (RSI), where the RSI curve is sharp-
ened by taking the Stochastic of it, I then show you in Chapter 8 how to
enhance the oscillators by taking the Stochastic of them and also applying
the Fisher transform.

In Chapter 9 I give an all-new exciting method of measuring market
cycles. Using the Hilbert transform, a fast-reacting method of measuring
cycles is derived. The validity and accuracy of these measurements are
then demonstrated using several stressing theoretical waveforms. In
Chapter 10 I then show you how to use the measured Dominant Cycle
length to make standard indicators automatically adaptive to the measured
Dominant Cycle. This adaptation makes good indicators stand out and
sparkle as outstanding indicators. In Chapter 11, the cycle component
of the Dominant Cycle is synthesized from the cycle measurement and
displayed as the Sinewave Indicator. The advantages of the Sinewave
Indicator are that it can anticipate cyclic turning points and that it is not
subject to whipsaw trades when the market is in a trend. I continue the
theme of adapting to the measured Dominant Cycle in Chapter 12 by show-
ing you how to use the measurement to design an automatic trend-
following trading strategy. The performance of the strategies I disclose is
on par with or exceeds that of commercially available strategies.

flast.qxd 2/2/04 11:40 AM Page xiii

Introduction xiii

Chapter 13 provides you with several types of filters that give vastly
superior smoothing with a minimum penalty in lag. Computer code is pro-
vided for these filters, as well as tables of coefficient values. Another way
to obtain superior smoothing is through the use of Laguerre polynomials.
Laguerre polynomials enable smoothing to be done using a very short
amount of data, as I explain in Chapter 14.

One of the problems with using backtests of automatic trading strate-
gies is that they don’t necessarily predict future performance. I describe a
technique in Chapter 15 that will enable you to use the theory of probabil-
ity to visualize how your trading strategy could perform. It also illustrates
what historical parameters are important to make this assessment. In
Chapter 16 I show you how to generate leading indicators, along with the
penalty in increased noise that you must accept when these indicators are
used. I conclude in Chapter 17 by showing you how to simplify the coding
of simple moving averages (SMAs).

Many of the digital signal-processing techniques described in this book
have been known and used in the physical sciences for many years. For
example, Maximum Entropy Spectral Analysis (MESA) algorithm was orig-
inally developed by geophysicists in their exploration for oil. The small
amount of data obtainable from seismic exploration demanded a solution
using a short amount of data. I successfully adapted this approach and pop-
ularized it for the measurement of market cycles. More recently, the use of
digital signal processing has exploded in consumer electronics, making
devices such as CDs and DVDs possible. Today, complete radio receivers
are constructed without the use of analog components. As we expand DSP
use by introducing it to the field of trading, we will see that digital signal
processing is an exciting new field, perfect for technically oriented traders.
It allows us to generalize and expand the use of many traditionally used
indicators as well as achieve more precise computations.

I begin each chapter with a Tom Swifty. Perhaps this is a testament to
my adolescent sense of humor, but the idea is to anchor the concept of the
chapter in your mind. A Tom Swifty is a play on words that follows an
unvarying pattern and relies for its humor on a punning relationship
between the way an adverb describes the speaker and at the same time
refers significantly to the import of the speaker’s statement, as in, “I like

fuzzy bunnies,” said Tom acutely. The combinations are endless. Since
this book contains magic, perhaps I should have selected Harry Potter as a
hero rather than Tom Swift.

Throughout this book my objective is to not only describe new tech-
niques and tools but also to provide you the means to make your trading
more profitable and therefore more pleasurable.

flast.qxd 2/2/04 11:40 AM Page xiv

flast.qxd 2/2/04 11:40 AM Page xv

Cybernetic
Analysis for
Stocks and

Futures

flast.qxd 2/2/04 11:40 AM Page xvi

c01.qxd 2/2/04 10:43 AM Page 1

CHAPTER 1

The Fisher
Transform

“I don’t see any chance of a market recovery,”

said Tom improbably.

The focus of my research for more than two decades has been
directed toward applying my background in engineering and signal
processing to the art of trading. The goal of this book is to share the

results of this research with you. Throughout the book I will demonstrate
new methods for technical analysis of stocks and commodities and ways to
code them for maximum efficiency and effectiveness. I will discuss meth-
ods for modeling the market to help categorize market activity. In addition
to new indicators and automatic trading systems, I will explain how to turn
good-performing traditional indicators into outstanding adaptive indica-
tors. The trading systems that subsequently evolve from this analysis will
seriously challenge, and often exceed, the consistent performance and
profit-making capabilities of most commercially available trading systems.
While much of what is covered in this book breaks new ground, it is not
simply innovation for innovation’s sake. Rather, it is intended to challenge
conventional wisdom and illuminate the shortcomings of many prevailing
approaches to systems development.

In this chapter we plunge right into an excellent example of challenging
conventional wisdom. I know at least a dozen statistically based indicators
that reference “the one-sigma point,” “the three-sigma point,” and so on.
Sigma is the standard deviation from the mean. In order to have a standard
deviation from the mean, one must know the probability density function
(PDF). A Gaussian, or Normal, PDF is almost universally assumed. A
Gaussian PDF is the familiar bell-shaped curve used to describe IQ distribu-
tion in the population and a host of other statistical descriptions. The
Gaussian PDF has long “tails” that describe events that have a wide deviation

1

c01.qxd 2/2/04 10:43 AM Page 2

2 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

from the mean with relatively low probability. With a Gaussian PDF, 68.26
percent of all occurrences fall within plus or minus one standard deviation
from the mean, 95.44 percent of occurrences fall within plus or minus two
standard deviations, and 99.73 percent of all occurrences fall within plus or
minus three deviations. In other words, the majority of all cases fall within
the one-sigma “boundary” with a Gaussian PDF. If an event falls outside the
one-sigma level, then certain inferences have been drawn about what can
happen in the future.

The real question here is whether the Gaussian PDF can be used to reli-
ably describe market activity. You can easily answer that question yourself.
Just think about the way prices look on a bar chart. Do you see only 68 per-
cent of the prices clustered near the mean price? That is, do you see 32 per-
cent of the prices separated by more than one deviation from the mean?
And, do you see prices spike away from the mean nearly 5 percent of the
time by two standard deviations? How often do you even see price spikes
at all? If you don’t see these deviations, a Gaussian PDF is not a good
assumption.

The Fisher transform is a simple mathematical process used to convert
any data set to a modified data set whose PDF is approximately Gaussian.
Once the Fisher transform is computed, we can then analyze the trans-
formed data set in terms of its deviation from the mean.

The Commodity Channel Index (CCI), developed by Donald Lambert,
is an example of reliance on the Gaussian PDF assumption. The equation to
compute the CCI is

Price − Moving Average
CCI = ��� (1.1)

0.015 * Deviation

Deviation is computed from the difference of prices and moving aver-
age values over a period. The period of the moving average over which the
computation is done is selectable by the user. The CCI can be viewed as the
current deviation normalized to the standard deviation. But what gives
with the 0.015 term? Well, conveniently enough, the reciprocal of 0.015 is
66.7, which is close enough to one standard deviation of a Gaussian PDF
for most technical analysis work. The premise is that if prices exceed a
standard deviation, they will revert to the mean. Therefore, the common
rules are to sell if the CCI exceeds +100 and buy if the CCI is less than −100.
Needless to say, the CCI can be improved substantially through the use of
the Fisher transform.

Suppose prices behave as a square wave. If you tried to use the price
crossing a moving average as a trading system, you would be destined for
failure because the price has already switched to the opposite value by the
time the movement is detected. There are only two price values. Therefore,

c01.qxd 2/2/04 10:43 AM Page 3

3 The Fisher Transform

FIGURE 1.1 The Probability Distribution of a Square Wave Has Only Two Values

the probability distribution is 50 percent that the price will be at one value
or the other. There are no other possibilities. The probability distribution of
the square wave is shown in Figure 1.1. Clearly, this probability function
does not remotely resemble a Gaussian probability distribution.

There is no great mystery about the meaning of a probability density or
how it is computed. It is simply the likelihood the price will assume a given
value. Think of it this way: Construct any waveform you choose by arrang-
ing beads strung on a series of parallel horizontal wires. After the wave-
form is created, turn the frame so the wires are vertical. All the beads will
fall to the bottom, and the number of beads on each wire will stack up to
demonstrate the probability of the value represented by each wire.

I used a slightly more sophisticated computer code, but nonetheless
the same idea, to create the probability distribution of a sinewave in Figure
1.2. In this case, I used a total of 10,000 “beads.” This PDF may be surpris-
ing, but if you stop and think about it, you will realize that most of the sam-
pled data points of a sinewave occur near the maximum and minimum
extremes. The PDF of a simple sinewave cycle is not at all similar to a
Gaussian PDF. In fact, cycle PDFs are more closely related to those of a
square wave. The high probability of a cycle being near the extreme values
is one of the reasons why cycles are difficult to trade. About the only way
to successfully trade a cycle is to take advantage of the short-term
coherency and predict the cyclic turning point.

The Fisher transform changes the PDF of any waveform so that the
transformed output has an approximately Gaussian PDF. The Fisher trans-
form equation is

1 + x
y = 0.5 * ln � (1.2)� 1 − x �

Where x is the input
y is the output
ln is the natural logarithm

c01.qxd 2/2/04 10:43 AM Page 4

4 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 1.2 Sinewave Cycle PDF Does Not Resemble a Gaussian PDF

The transfer function of the Fisher transform is shown in Figure 1.3.
The input values are constrained to be within the range −1 < X < 1.

When the input data is near the mean, the gain is approximately unity. For
example, go to x = 0.5 in Figure 1.3. There, the Y value is only slightly larger
than 0.5. By contrast, when the input approaches either limit within the

FIGURE 1.3 The Nonlinear Transfer of the Fisher Transform Converts Inputs (x Axis) to
Outputs (y Axis) Having a Nearly Gaussian PDF

c01.qxd 2/2/04 10:43 AM Page 5

5 The Fisher Transform

FIGURE 1.4 The Fisher-Transformed Sinewave Has a Nearly Gaussian PDF Shape

range, the output is greatly amplified. This amplification accentuates the
largest deviations from the mean, providing the “tail” of the Gaussian PDF.
Figure 1.4 shows the PDF of the Fisher-transformed output as the familiar
bell-shaped curve, compared to the input sinewave PDF. Both have the
same probability at the mean value. The transformed output PDF is nearly
Gaussian, a radical change from the sinewave PDF.

I measured the probability distribution of U.S. Treasury Bond futures
over a 15-year span from 1988 to 2003. To make the measurement, I created
a normalized channel 10 bars long. The normalized channel is basically the
same as a 10-bar Stochastic Indicator. I then measured the price location
within that channel in 100 bins and counted up the number of times the
price was in each bin. The results of this probability distribution measure-
ment are shown in Figure 1.5. This actual probability distribution more
closely resembles the PDF of a sinewave rather than a Gaussian PDF. I then
increased the length of the normalized channel to 30 bars to test the hypoth-
esis that the sinewave-like probability distribution is only a short-term phe-
nomenon. The resulting probability distribution is shown in Figure 1.6. The
probability distributions of Figures 1.5 and 1.6 are very similar. I will leave it
to you to extend the probability analysis to any market of your choice. I pre-
dict you will get substantially similar results.

So what does this mean for trading? If the prices are normalized to fall
within the range from −1 to +1 and subjected to the Fisher transform,
extreme price movements are relatively rare events. This means the turn-
ing points can be clearly and unambiguously identified. The EasyLanguage

c01.qxd 2/2/04 10:43 AM Page 6

6 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 1.5 Probability Distribution of Treasury Bond Futures in a 10-Bar Channel over
15 Years

FIGURE 1.6 Probability Distribution of Treasury Bond Futures in a 30-Bar Channel over
15 Years

c01.qxd 2/2/04 10:43 AM Page 7

7 The Fisher Transform

Inputs: Price((H+L)/2),
Len(10);

Vars: MaxH(0),
MinL(0),
Fish(0);

MaxH = Highest(Price, Len);

MinL = Lowest(Price, Len);

Value1 = .5*2*((Price - MinL)/(MaxH - MinL) - .5)

+ .5*Value1[1];

If Value1 > .9999 then Value1 = .9999;

If Value1 < -.9999 then Value1 = -.9999;

Fish = 0.25*Log((1 + Value1)/(1 - Value1)) + .5*Fish[1];

Plot1(Fish, “Fisher”);

Plot2(Fish[1], “Trigger”);

FIGURE 1.7 EasyLanguage Code to Normalize Price to a 10-Day Channel and
Compute Its Fisher Transform

code to do this is shown in Figure 1.7 and the eSignal Formula Script (EFS)
code is shown in Figure 1.8. Value1 is a function used to normalize price
within its last 10-day range. The period for the range is adjustable as an
input. Value1 is centered on its midpoint and then doubled so that Value1
will swing between the −1 and +1 limits. Value1 is also smoothed with an
exponential moving average whose alpha is 0.5. The smoothing may allow
Value1 to exceed the 10-day price range, so limits are introduced to pre-
clude the Fisher transform from blowing up by having an input value larger
than unity. The Fisher transform is computed to be the variable “Fish”.
Both Fish and Fish delayed by one bar are plotted to provide a crossover
system that identifies the cyclic turning points.

c01.qxd 2/2/04 10:43 AM Page 8

8 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Fisher Transform

***/

function preMain() {

setStudyTitle(“Fisher Transform”);

setCursorLabelName(“Fisher”, 0);

setCursorLabelName(“Trigger”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

setDefaultBarThickness(2, 0);

setDefaultBarThickness(2, 1);

}

var Value1 = null;

var Value1_1 = 0;

var Fish = null;

var Fish_1 = 0;

var vPrice = null;

var aPrice = null;

function main(nLength) {

var nState = getBarState();

if (nLength == null) nLength = 10;

if (aPrice == null) aPrice = new Array(nLength);

if (nState == BARSTATE_NEWBAR && vPrice != null) {

aPrice.pop();

aPrice.unshift(vPrice);

if (Value1 != null) Value1_1 = Value1;

if (Fish != null) Fish_1 = Fish;

}

vPrice = (high() + low()) / 2;

aPrice[0] = vPrice;

if (aPrice[nLength-1] == null) return;

var MaxH = high();

var MinL = low();

var temp;

FIGURE 1.8 EFS Code to Normalize Price to a 10-Day Channel and Compute Its Fisher
Transform

c01.qxd 2/2/04 10:43 AM Page 9

9 The Fisher Transform

for(i = 0; i < nLength; ++i) {

MaxH = Math.max(MaxH, aPrice[i]);

MinL = Math.min(MinL, aPrice[i]);

}

Value1 = .5 * 2 * ((vPrice - MinL) /

(MaxH - MinL) - .5) + .5 * Value1_1;

if(Value1 > .9999) Value1 = .9999;

if(Value1 < -.9999) Value1 = -.9999;

Fish = 0.25 * Math.log((1 + Value1) /

(1 - Value1)) + .5 * Fish_1;

return new Array(Fish, Fish_1);

}

FIGURE 1.8 (Continued)

The Fisher transform of the prices within an eight-day channel is plot-
ted below the price bars in Figure 1.9. Note that the turning points are not
only sharp and distinct, but they also occur in a timely fashion so that prof-
itable trades can be entered. The Fisher transform is also compared to a
similarly scaled moving average convergence-divergence (MACD) indica-
tor in Figure 1.9. The MACD is representative of conventional indicators
whose turning points are rounded and indistinct in comparison to the
Fisher transform. As a result of the rounded turning points, the entry and
exit signals are invariably late.

c01.qxd 2/2/04 10:43 AM Page 10

10 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 1.9 The Fisher Transform of Normalized Prices Has Very Sharp Turning Points
When Compared to Conventional Indicators such as the MACD

KEY POINTS TO REMEMBER

•	 Prices almost never have a Gaussian, or Normal, probability distribution.
•	 Statistical measures based on Gaussian probability distributions, such

as standard deviations, are in error because the probability distribu-
tion assumption underlying the calculation is in error.

•	 The Fisher transform converts almost any input probability distribu-
tion to be nearly a Gaussian probability distribution.

•	 The Fisher transform, when applied to indicators, provides razor-sharp
buy and sell signals.

c02.qxd 2/2/04 10:44 AM Page 11

CHAPTER 2

Cycles
Trends and

“That took the wind out of my sails,” said Tom disgustedly.

To a trader, Trend Modes and Cycle Modes are synonymous with selec-
tion of a trading strategy. In an uptrend the obvious strategy is to buy
and hold. Similarly, in a downtrend the strategy is to sell and hold.

Conversely, the best strategy in a Cycle Mode is to top-pick and bottom-fish.
Traders usually use some variant of moving averages to trade the Trend
Mode and some oscillator to trade the Cycle Mode. In either case, the lag
induced by the calculations is one of the biggest problems for a trader.

To an analyst, Trend Modes and Cycle Modes are best described by
their frequency content. Prices in Trend Modes vary slowly with respect to
time. Therefore, Trend Modes disregard high-frequency components and
use only the slowly varying low-frequency components. Moving averages
are low-pass filters that allow only the low-frequency components to pass
to their output, and that is why they are effective for Trend Mode trading.
Oscillators are high-pass filters that almost completely disregard the low-
frequency components.

I will use these concepts to create a complementary oscillator and
moving average. Most important, both the oscillator and the moving aver-
age have essentially no lag. The elimination of lag is crucial to the trading
indicators and systems developed from them in later chapters. I consider
the creation of these zero-lag tools one of the most important develop-
ments described in this book. Searching for zero-lag tools has long been the
focus of my research, and I have used descriptors such as Instantaneous

Trendline in previous publications. The techniques I show you in this chap-
ter are entirely new, even if the names are similar.

11

c02.qxd 2/2/04 10:44 AM Page 12

12 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

I will start with the well-known exponential moving average (EMA) to
derive an optimum mathematical description of Trend Mode and Cycle
Mode components. The equation for an EMA is

Output = α * Input + (1 − α) * Output[1] (2.1)

Where α is a number less than 1 and greater than 0

In words, this equation means we take a fraction of the current price and
add to it the filtered output one bar ago multiplied by the quantity (1 − α).
With these coefficients, if the input is unchanging (zero frequency), the out-
put will eventually converge to the input value. That is, this filter has unity
gain at zero frequency. We can describe this filter in terms of its transfer
response, which is the output divided by its input. By using Z transform nota-
tion, we let Z−1 denote one bar of lag as a multiplicative operator. Doing this,
the transfer response of Equation 2.1 can be solved using algebra as

Output α
H(z) = � = �� (2.2)

Input 1 − (1 − α) * Z−1

We can test Equation 2.2 by letting Z−1 equal +1 (zero frequency). When
we do this, it is easy to see that the numerator is equal to the denominator,
and so the gain is unity. The high-frequency attenuation of this filter can be
tested at the highest possible frequency, the Nyquist frequency, by letting Z−1

equal −1. Using daily samples, the highest frequency we can analyze is 0.5
cycles per day (a two-bar cycle). This is the Nyquist frequency for daily data.
The two-bar cycle attenuation is [α. /(2 − α)]. The general attenuation
response of the EMA as a function of the frequency is shown in Figure 2.1.
The period of a cycle component in Figure 2.1 can be calculated as the reci-
procal of frequency. For example, a frequency of 0.1 cycles per day corre-
sponds to a 10-bar period for that cycle component.

In principle, all we have to do to create a high-pass filter is subtract the
transfer response of the low-pass filter from unity. The logic is that a trans-
fer response of 1 represents all frequencies, and subtracting the low-pass
response from it leaves the high-pass response as a residual. However,
there is one problem with this approach: The high-frequency attenuation of
the low-pass filter of Equation 2.2 is not infinite (i.e., the transfer response
is 0) at the Nyquist frequency. A finite high-frequency response in the low-
pass filter will lead to a gain error in the transfer response of the high-pass
filter. The finite attenuation problem is eliminated by averaging two
sequential input samples rather than using only a single input sample. In
this case, the transfer response of the averaged-input low-pass filter is

c02.qxd 2/2/04 10:44 AM Page 13

13 Trends and Cycles

FIGURE 2.1 EMA Frequency Response (α = 0.05)

α
�� * (1 + Z−1)
2

H(z) = �� (2.3)
1 − (1 − α) * Z−1

Equation 2.3 guarantees that the transfer response of the low-pass fil-
ter will be 0 when Z−1 = −1. The general frequency response of the averaged-
input EMA is shown in Figure 2.2.

The lag of a simple moving average is approximately half the average
length. For example, a 21-bar moving average has a lag of 10 bars. The
alpha of an equivalent EMA is related to the length of a simple moving
average as

2α = �� (2.4)
Length + 1

Using Equation 2.4, an EMA using α = 0.05 is equivalent to a 39-bar sim-
ple moving average. A 39-day simple moving average has a 19-day lag,
approximately half its length. Examination of Figure 2.3 shows that the very
low-frequency lag of an EMA whose α = 0.05 is indeed 19 days. Although the
lag decreases as frequency is increased, it is of little consequence because

c02.qxd 2/2/04 10:44 AM Page 14

14 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 2.2 Smoothed-Input EMA Frequency Response (α = 0.05)

FIGURE 2.3 Smoothed-Input Lag Response (α = 0.05)

c02.qxd 2/2/04 10:44 AM Page 15

= ����

= ���

15 Trends and Cycles

the filtered amplitude is so small at these frequencies. The real impact of lag
of all moving averages is the value of the lag at very low frequencies.

With Equation 2.3 we now have the capacity to construct a high-pass
filter. We will subtract Equation 2.3 from unity as

α
�� * (1 + Z−1)
2

HP(z) = 1 − �� (2.5)
1 − (1 − α) * Z−1

1 − (1 − α) * Z−1 − �
α

� * (1 + Z−1)
2

1 − (1 − α) * Z−1

� α
1 − ��� * (1 − Z−1)

2
1 − (1 − α) * Z−1

Sharper attenuation can be obtained by using higher-order filters.
However, I have learned that higher-order filters not only have greater lag,
but they also have transient effects that impress false artifacts on their out-
puts. This is somewhat like ringing a bell: The ringing is more a function of
the bell itself rather than a filtered response of a driving force. A reasonable
compromise is the use of a second-order Gaussian filter. A second-order
Gaussian low-pass filter can be generated by taking an EMA and immedi-
ately taking another identical EMA of the first EMA. This can be represented
by squaring the transfer response. We can therefore obtain a second-order
Gaussian high-pass filter response by squaring Equation 2.5 as

� α
1 − ���

2

* (1 − 2 * Z−1 + Z−2)
2

HP(z) = ���� (2.6)
1 − 2 * (1 − α) * Z−1 + (1 − α)2 * Z−2

Equation 2.6 is converted to an EasyLanguage statement as

HPF = (1 − α/2)2 * (Price − 2 * Price[1] + Price[2])
+ 2 * (1 − α) * HPF[1] − (1 − α)2 * HPF[2]; (2.7)

The transfer responses of Equations 2.6 and 2.7 (they are the same) are
plotted in Figure 2.4.

Figure 2.4 shows that only frequency periods longer than 40 bars (fre-
quency = 0.025 cycles per day) are significantly attenuated. Thus we have
created a high-pass filter with a relatively sharp cutoff response. Since the
output of this filter contains essentially no trending components, it must be
the cycle component of price.

c02.qxd 2/2/04 10:44 AM Page 16

16 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 2.4 Transfer Response of a Second-Order High-Pass Gaussian Filter (α = 0.05)

The complementary low-pass filter that produces the Instantaneous
Trendline is found by subtracting the high-pass components of Equation
2.6 from unity. Skipping over the tedious algebra to put both elements of
this subtraction over a common denominator, the equation for the low-pass
Instantaneous Trendline is

IT(z) =

α
�
4

2

�
α
�
2

2

�
3
�

4
α2

�

����
1 − 2 * (1 − α) * Z−1 + (1 − α)2Z−2

� � � �Z−1 − Z−2α − α −+
(2.8)

Equation 2.8 is converted to an EasyLanguage statement as

InstTrend = (α − (α/2)2) * Price + (α2/2) * Price[1]
− (α − 3α2/4) * Price[2]) + 2 * (1 − α)
* InstTrend[1] − (1 − α)2 * InstTrend[2]; (2.9)

Figure 2.5 shows the attenuation of the Instantaneous Trendline filter
and how only the low-frequency components are passed. The attenuation
characteristic of the Instantaneous Trendline in Figure 2.5 is almost identi-
cal to that of the EMA shown in Figure 2.2.

The most important feature of the Instantaneous Trendline is that it

c02.qxd 2/2/04 10:44 AM Page 17

17 Trends and Cycles

FIGURE 2.5 Frequency Response of the Instantaneous Trendline Filter (α = 0.05)

has zero lag. That’s right—zero lag! The lag is 0 because Instantaneous
Trendline was created by subtracting the transfer response of a high-pass
filter from unity. Since the high-pass filter has a very small amplitude at low
frequencies, the resulting low-frequency lag of the difference is just the lag
of unity, which is 0. Figure 2.6 shows the lag profile of the Instantaneous
Trendline as a function of frequency. While the lag does increase to 13 bars
at an approximate frequency of 0.005 cycles per day (200-day period), a fre-
quency that low is more important to investors than to traders.

The importance of the zero lag feature of the Instantaneous Trendline
is demonstrated by comparing its response to an EMA having an equivalent
alpha. Figure 2.7 gives this comparison in response to real market data. It
is clear that the two averages have about the same degree of smoothing,
but that the Instantaneous Trendline has zero lag. If it is more convenient,
you can think of the Instantaneous Trendline as a centered moving average.
The major advantage of the Instantaneous Trendline compared to the cen-
tered moving average is that it can be used up to the right edge of the chart.
That means that real indicators and trading systems can be built using it as
a component. It is also clear that the lag of the Instantaneous Trendline is
so small that a trader can begin to think about creating indicators and trad-
ing systems as a function of the price crisscrossing it. In later chapters we
will develop such indicators and trading systems.

c02.qxd 2/2/04 10:44 AM Page 18

18 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 2.6 Lag of the Instantaneous Trendline Filter (α = 0.05)

FIGURE 2.7 Instantaneous Trendline Has Much Less Lag than an EMA (α = 0.05)

c02.qxd 2/2/04 10:44 AM Page 19

19 Trends and Cycles

KEY POINTS TO REMEMBER

•	 The Instantaneous Trendline has zero lag.
•	 The Instantaneous Trendline has about the same smoothing as an EMA

using the same alpha.
•	 An EMA is a low-pass filter.
•	 Higher-order Gaussian filters are the equivalent of applying the EMA

multiple times.
•	 Using filters higher than second order is not advisable because of the

ringing transient responses of the higher-order filters.
•	 A complementary cycle oscillator to the Instantaneous Trendline ex-

ists as a second-order high-pass filter.
•	 The lag of the complementary cycle oscillator is 0.

c02.qxd 2/2/04 10:44 AM Page 20

c03.qxd 2/2/04 10:44 AM Page 21

CHAPTER 3

Trading
the Trend

“The market is going up,” said Tom trendedly.

Having an Instantaneous Trendline with zero lag (Equations 2.8 and
2.9) is a good beginning to generate a responsive trend-following
system. The system would be even more responsive if it contained

a trigger that preceded the Instantaneous Trendline rather than following it
and offering a confirming signal. A leading trigger can be generated by
adding a two-day momentum of the Instantaneous Trendline to the Instan-
taneous Trendline itself.

The rationale for the leading trigger is that adding the two-day momen-
tum to the current value in a trend is predicting where the Instantaneous
Trendline will be two days from now. When plotting the trigger on the cur-
rent bar, the trigger must lead the Instantaneous Trendline by two bars. On
a more mathematical level, the lag of the trigger is shown in Figure 3.1. The
figure shows that the low-frequency lead is two bars and the worst-case lag
occurs at a frequency of 0.25 cycles per day (a four-bar cycle period). The
lag is of no concern because the attenuation of the Instantaneous Trendline
(shown in Figure 2.5) makes the amplitude of the components in the vicin-
ity of 0.25 cycles per day almost irrelevant to the overall response.

There is a price to pay for achieving the lead response of the trigger.
That price is that leading functions cause a higher-frequency gain in the fil-
ter instead of attenuation, which has a smoothing effect. Therefore, high-
frequency gain causes the resulting transfer response to look more ragged
than the original function. This is the case for any momentum function. The
gain response of the trigger has a maximum of 9.5 dB at a frequency of 0.25
cycles per day, as shown in Figure 3.2. In this case, the gain does not

21

c03.qxd 2/2/04 10:44 AM Page 22

22 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 3.1 Lead and Lag of the Trigger as a Function of Frequency

FIGURE 3.2 Gain Response of the Trigger

c03.qxd 2/2/04 10:44 AM Page 23

23 Trading the Trend

severely affect the smoothness of the trigger because the Instantaneous
Trendline has an attenuation of 26 dB at 0.25 cycles per day, as shown in
Figure 2.5. Therefore, using both terms to compute the net attenuation, the
worst-case high-frequency smoothing attenuation is still about 16 dB. This
means the trigger will have about the same degree of smoothness as the
Instantaneous Trendline.

The Instantaneous Trendline and the Trigger of the trend-following sys-
tem are shown as indicators in Figure 3.3; the EasyLanguage code to create
these indicator lines is shown in Figure 3.4, and the eSignal Formula Script
(EFS) code is shown in Figure 3.5. The process for creating a trend-
following trading system from the indicators is simple. One unique aspect
of the code is that the ITrend is forced to be a finite impulse response
(FIR)-smoothed version of price for the first seven bars of the calculation.
This initialization is included to cause the ITrend to converge more rapidly
to its correct value from the beginning transient. The strategy enters a long
position when the trigger crosses over the Instantaneous Trendline and
enters a short position when the trigger crosses under the Instantaneous
Trendline. However, an effective trading system is more than following a
simple set of indicators.

First, experience has shown that greater profits result from using limit
orders rather than market orders or stop orders. Market orders are self-
explanatory. Stop orders mean the market must be going in the direction of
the trade before the order is filled. For example, for long-position trades, the
stop order must be placed above the current price. Thus, the price must

FIGURE 3.3 Crossing of the Trigger and Instantaneous Trendline are Trading Signals

c03.qxd 2/2/04 10:44 AM Page 24

24 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Inputs: Price((H+L)/2),
alpha(.07);

Vars: Smooth(0),
ITrend(0),
Trigger(0);

ITrend = (alpha - alpha*alpha/4)*Price

+ .5*alpha*alpha*Price[1] - (alpha
- .75*alpha*alpha)*Price[2] + 2
*(1 - alpha)*ITrend[1] - (1 - alpha)

*(1 - alpha)*Itrend[2];

If currentbar < 7 then ITrend = (Price + 2*Price[1]

+ Price[2]) / 4;

Trigger = 2*Itrend - ITrend[2];

Plot1(Itrend, “ITrend”);

Plot2(Trigger, “Trig”);

FIGURE 3.4 EasyLanguage Code for the ITrend Indicator

increase from its current level before you get stopped into the long-position
trade. This means you necessarily give up some of the profits you would
otherwise have gotten if you had entered on a market order at the instant of
your signal. You can lose additional profits from stop orders due to slippage.
Slippage is the difference between your stop value and the price at which
your order actually got filled. In fast markets slippage can be substantial. If
limit orders are placed for the long position, the limit price must be below
the current price. That is, the market must move against your anticipated
trade before you get a fill. This means that if the price drops sufficiently so
that your limit order is filled, you have captured additional profits if the
price subsequently reverses and goes in the direction of your signal.
Furthermore, if there is any slippage in filling the limit order, the slippage
will be negative because it is going in the direction opposite to your
intended trade. When the price turns around and goes in the direction of
your signals, you have therefore captured the slippage as profit. In the
EasyLanguage trading strategy code of Figure 3.6, I have set the level of the
limit order to be 35 percent of the current bar’s range added onto the clos-
ing price of the current bar (in the case of a short signal) or subtracted from
the closing price of the current bar (in the case of a long signal). The 35 per-
cent is the input variable RngFrac, and is an optimizable parameter.

c03.qxd 2/2/04 10:44 AM Page 25

25 Trading the Trend

/***

Title: Instantaneous Trendline

***/

function preMain() {

setPriceStudy(true);

setStudyTitle(“Instantaneous Trendline”);

setCursorLabelName(“IT”, 0);

setDefaultBarThickness(2, 0);

}

var a = 0.05;

var IT = 0;

var IT1 = 0;

var IT2 = 0;

var Price = 0;

var Price1 = 0;

var Price2 = 0;

function main() {

if (getBarState() == BARSTATE_NEWBAR) {

IT2 = IT1;

IT1 = IT;

Price2 = Price1;

Price1 = Price;

}

Price = close();

IT = (a-((a/2)*(a/2)))*Price + ((a*a)/2)*Price1

- (a-(3*(a*a))/4)*Price2 + 2*(1-a)*IT1
- ((1-a)*(1-a))*IT2;

return (IT);

}

FIGURE 3.5 EFS Code for the ITrend Indicator

Unfortunately, not all trading signals are perfect. In fact, with the
crossover strategy that I have developed it is possible to be on the wrong
side of the trade for a substantial period from time to time. For this reason,
I have added a rule that if the price goes against your position by more than
some percentage, the strategy will correct itself and automatically reverse
to the opposite position. The percentage is supplied as the input variable

c03.qxd 2/2/04 10:44 AM Page 26

26 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Inputs: Price((H+L)/2),
alpha(.07),
RngFrac(.35),
RevPct(1.015);

Vars: Smooth(0),
ITrend(0),
Trigger(0);

ITrend = (alpha - alpha*alpha/4)*Price

+ .5*alpha*alpha*Price[1] – (alpha
- .75*alpha*alpha)*Price[2] + 2
*(1 – alpha)*ITrend[1] – (1 - alpha)

*(1 - alpha)*ITrend[2];

If currentbar < 7 then ITrend = (Price + 2*Price[1]

+ Price[2]) / 4;

Trigger = 2*Itrend - ITrend[2];

If Trigger Crosses Over ITrend then Buy Next Bar at

Close – RngFrac*(High - Low) Limit;

If Trigger Crosses Under ITrend then Sell Short Next

Bar at Close + RngFrac*(High - Low) Limit;

If MarketPosition = 1 and Close < EntryPrice/RevPct

then Sell Short Next Bar On Open;

If MarketPosition = -1 and Close > RevPct*EntryPrice

then Buy Next Bar on Open;

FIGURE 3.6 EasyLanguage Code for the Instantaneous Trendline Trading Strategy

RevPct. RevPct is an optimizable parameter, but I find that the default
value of 1.5 percent (RevPct = 1.015) is a relatively robust number. The
same strategy for EFS code is given in Figure 3.7.

I applied the strategy code of Figures 3.6 and 3.7 to several currency
futures because it is well known that currencies tend to trend. I addition-
ally introduced a $2,500 money management stop to further avoid giving
back accumulated profits. Doing this, I achieved the trading results shown
in Table 3.1. The time span is on the order of a quarter century, and a rela-
tively large number of trades are taken. The Instantaneous Trend Strategy
consists of only a few independent parameters. Since the ratio of the num-
ber of trades to the number of parameters is large and since the trading
took place over a large time span, it is highly unlikely that the strategy has

c03.qxd 2/2/04 10:44 AM Page 27

27 Trading the Trend

/***

Title: ITrend Trading Strategy

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0

==

Fix History:

06/27/2003 - Initial Release

1.0.0

==

***/

//External Variables

var grID = 0;
var nBarCount = 0;
var xOver = 0;
var nStatus = 0;
var nEntryPrice = 0;
var nDirection = 0;
var nLimitPrice = 0;
var nAdj1 = null;

var aPriceArray = new Array();
var aITrendArray = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“ITrend Strategy”);

setCursorLabelName(“ITrend”, 0);

setCursorLabelName(“Trig”, 1);

(continued)

FIGURE 3.7 EFS Code for the Instantaneous Trendline Trading Strategy

c03.qxd 2/2/04 10:44 AM Page 28

28 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aITrendArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha, RngFrac, RevPct) {

var x;

var nPrice;

if (getCurrentBarIndex() == 0) return;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

if (RngFrac == null) {

RngFrac = 0.35;

}

if (RevPct == null) {

RevPct = 1.015;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

if (nAdj1 == null) nAdj1 = (high()-low()) * 0.20;

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

FIGURE 3.7 (Continued)

c03.qxd 2/2/04 10:44 AM Page 29

29 Trading the Trend

aITrendArray.pop();

aITrendArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

if (aPriceArray[2] == 0) return;

if (nBarCount < 7) {

aITrendArray[0] = (nPrice

+ 2*aPriceArray[1]
+ aPriceArray[2])/4;

}

else {

aITrendArray[0] = (Alpha

- Alpha*Alpha/4)*nPrice
+ 0.5*Alpha*Alpha*aPriceArray[1]
- (Alpha - 0.75*Alpha*Alpha)
* aPriceArray[2] + 2*(1-Alpha)
*aITrendArray[1] - (1-Alpha)

*(1-Alpha)*aITrendArray[2];

}

if (aITrendArray[2] == 0) return;

nTrig = 2 * aITrendArray[0] - aITrendArray[2];

nStatus = 0;

if (Strategy.isLong()) nStatus = 1;

if (Strategy.isShort()) nStatus = -1;

var bReverseTrade = false;

if (nStatus == 1 && close()

< (nEntryPrice/RevPct)) {

ReverseToShort();

bReverseTrade = true;

} else if (nStatus == -1 && close()

> (RevPct*nEntryPrice)) {

ReverseToLong();

bReverseTrade = true;

(continued)

FIGURE 3.7 (Continued)

c03.qxd 2/2/04 10:44 AM Page 30

30 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

//check for new signals

if (bReverseTrade == false) {

if (nTrig > aITrendArray[0]) {

if (xOver == -1 && nStatus != 1) {

nLimitPrice = Math.max(low(), (close()

- (high()-low())*RngFrac));
LongLimit(nLimitPrice);

nDirection = 1;

}

xOver = 1;

} else if (nTrig < aITrendArray[0]) {

if (xOver == 1 && nStatus != -1) {

nLimitPrice = Math.min(high(), (close()

+ (high()-low())*RngFrac));

ShortLimit(nLimitPrice);

nDirection = -1;

}

xOver = -1;

}

}

if (!isNaN(aITrendArray[0])) {

return new Array(aITrendArray[0],_

nTrig);

}

}

function LongLimit(nPrice) {

Strategy.doLong(“Long”, Strategy.LIMIT,_

Strategy.THISBAR, Strategy.DEFAULT,_

nPrice);

nEntryPrice = nPrice;

drawShapeRelative(0, low()-nAdj1, Shape.UPARROW,_

““, Color.lime, Shape.ONTOP, gID());

return;

}

function ShortLimit(nPrice) {

Strategy.doShort(“Short”, Strategy.LIMIT,_

Strategy.THISBAR, Strategy.DEFAULT,_

nPrice);

FIGURE 3.7 (Continued)

c03.qxd 2/2/04 10:44 AM Page 31

31 Trading the Trend

nEntryPrice = nPrice;

debugPrintln(getCurrentBarIndex()

+ “ short “ + nPrice);

drawShapeRelative(0, high()+nAdj1,Shape.DOWNARROW,_

““, Color.maroon, Shape.ONTOP, gID());

return;

}

function ReverseToLong() {

Strategy.doLong(“Reverse to Long”,_

Strategy.MARKET, Strategy.NEXTBAR,_

Strategy.DEFAULT);

DrawShapeRelative(1, low(1)-nAdj1,_

Shape.UPARROW, ““, Color.lime,_

Shape.ONTOP, gID());

nEntryPrice = open(1);

nStatus = 1;

nDirection = 0;

nLimitPrice = 0;

return;

}

function ReverseToShort() {

Strategy.doShort(“Reverse to Short”,_

Strategy.MARKET, Strategy.NEXTBAR,_

Strategy.DEFAULT);

drawShapeRelative(1, high(1)+nAdj1,_

Shape.DOWNARROW, ““, Color.maroon,_

Shape.ONTOP, gID());

nEntryPrice = open(1);

nStatus = -1;

nDirection = 0;

nLimitPrice = 0;

return;

}

//== gID function assigns unique identifier to_

graphic/text routines

function gID() {

grID ++;

return(grID);

}

FIGURE 3.7 (Continued)

c03.qxd 2/2/04 10:44 AM Page 32

32 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

TABLE 3.1	 Sample Trading Results Using the Instantaneous
Trendline Strategy

Number Percent Profit Max
Future Net Profit of Trades Profitable Factor DD

EC (4/81–3/03) $201,812 230 42.2% 1.89 ($26,775)
JY (9/81–3/03) $221,312 229 48.5% 2.50 ($11,712)
SF (6/76–3/03) $129,175 337 45.1% 1.52 ($15,387)

been curve fitted. Curve fitting is a weakness of many technical analysis
trading strategies.

Please allow me to brag about the Instantaneous Trendline Strategy.
(Perhaps it is not bragging, because as Muhammed Ali said, “It ain’t brag-
ging if you can really do it.”) The performance results of this strategy are
comparable to, or exceed, the performance of commercial systems costing
thousands of dollars. You can create synthetic equity growth curves using
the established percentage of profitable trades and profit factors. This is
explained in Chapter 15. You will find the equity growth trading the cur-
rencies in Table 3.1 to be remarkably consistent.

KEY POINTS TO REMEMBER

•	 The Instantaneous Trendline has zero lag.
•	 The Instantaneous Trendline has about the same smoothing as an

exponential moving average (EMA) using the same alpha.
•	 The smoothing enables the use of a trading trigger that has a two-bar

lead.
•	 Trading signals are generated by the crossing of the Trigger line and the

Instantaneous Trendline.
•	 Trade entries are made on limit orders to capture a larger range of the

trade and to eliminate slippage losses.
•	 Major losses are avoided by recognizing when a trade is on the wrong

side and reversing position.
•	 The Instantaneous Trendline Strategy can be optimized for application

to many stocks and commodity markets.

c04.qxd 2/2/04 10:45 AM Page 33

CHAPTER 4

the Cycle
Trading

“It happens again and again,” said Tom periodically.

Equation 2.5 described a high-pass filter that isolated the cycle mode
components. Essentially all that need be done to generate a cycle-
based indicator is to plot the results of this equation. However, some

smoothing is required to remove the two-bar and three-bar components
that detract from the interpretation of the cyclic signals. These compo-
nents can be removed with a simple finite impulse response (FIR)1 low-
pass filter as

Smooth = (Price + 2 * Price[1] + 2 * Price[2] + Price[3])/6; (4.1)

The lag of the Smooth filter of Equation 4.1 is 1.5 bars at all frequen-
cies. Figure 4.1 demonstrates that the Smooth filter eliminates the two- and
three-bar cycle components. The Smooth filter is to be used as an addi-
tional filter to remove the distracting very-high-frequency components,
thus creating an indicator that is easier to interpret for trading.

The EasyLanguage code to make a cycle component indicator is given
in Figure 4.2 and the eSignal Formula Script (EFS) code is given in Figure
4.3. I call this the Cyber Cycle Indicator. After the inputs and variables are
defined, the smoothing filter of Equation 4.1 and the high-pass filter of
Equation 2.7 are computed. They are followed by an initialization condition
that facilitates a rapid convergence at the beginning of the input data. A
trading trigger signal is created by delaying the cycle by one bar.

Trading the Cyber Cycle Indicator is straightforward. Buy when the
Cycle line crosses over the Trigger line. You are at the bottom of the cycle

33

c04.qxd 2/2/04 10:45 AM Page 34

34 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 4.1 A Four-Element FIR Filter Eliminates Two- and Three-Bar Cycles

Inputs: Price((H+L)/2),
alpha(.07);

Vars: Smooth(0),
Cycle(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)
Cycle[1] - (1 - alpha)(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Plot1(Cycle, “Cycle”);

Plot2(Cycle[1], “Trigger”);

FIGURE 4.2 EasyLanguage Code for the Cyber Cycle Indicator

c04.qxd 2/2/04 10:45 AM Page 35

35 Trading the Cycle

/***

Title: Cyber Cycle

***/

function preMain() {

setStudyTitle(“High Pass Filter”);

setCursorLabelName(“HPF”,0);

setDefaultBarThickness(2, 0);

}

var a = 0.07;

var HPF = 0;

var HPF1 = 0;

var HPF2 = 0;

var Price = 0;

var Price1 = 0;

var Price2 = 0;

function main() {

if (getBarState() == BARSTATE_NEWBAR) {

HPF2 = HPF1;

HPF1 = HPF;

Price2 = Price1;

Price1 = Price;

}

Price = close();

HPF = ((1-(a/2))*(1-(a/2))) * (Price - 2*Price1

+ Price2) + 2*(1-a)*HPF1 - ((1-a)*(1-a))*HPF2;

return (HPF);

}

FIGURE 4.3 EFS Code for the Cyber Cycle Indicator

at this point. Sell when the Cycle line crosses under the Trigger line. You
are at the top of the cycle in this case. Figure 4.4 illustrates that each of the
major turning points is captured by the Cycle line crossing the Trigger line.
To be sure, there are crossings at other than the cyclic turning points. Many
of these can be eliminated by discretionary traders using their experience
or others of their favorite tools.

c04.qxd 2/2/04 10:45 AM Page 36

36 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 4.4 The Cyber Cycle Indicator Catches Every Significant Turning Point

One of the more interesting aspects of the Cyber Cycle is that it was
developed simultaneously with the Instantaneous Trendline. They are
opposite sides of the same coin because the total frequency content of the
market being analyzed is in one indicator or the other. This is important
because the conventional methods of using moving averages and oscilla-
tors can be dispensed with. The significance of this duality is demonstrated
in Figure 4.5.

A low-lag four-bar weighted moving average (WMA) is plotted in Figure
4.5 for comparison with the action of the Instantaneous Trendline. Note that
each time the WMA crosses the Instantaneous Trendline the Cyber Cycle
Oscillator is also crossing its zero line. Since there is essentially no lag in the
Instantaneous Trendline we can, for the first time, use an indicator overlay
on prices in exactly the same way we have traditionally used oscillators.
That is, when the prices cross the Instantaneous Trendline you can start to
prepare for a reversal when prices reach a maximum excursion from the
Instantaneous Trendline. Since there is only a small lag in the Instantaneous
Trendline, it represents a short-term mean of prices. This being the case, we
can use the old principle that prices revert to their mean.

But what is the best way to exploit the mean reversion? The false sig-
nals arising from use of the Cyber Cycle are more problematic for automatic
trading systems. The first thing that must be understood about indicators is
that they are invariably late. No indicator can precede an event from which
it is derived. This is particularly important when trading short-term cycles.

c04.qxd 2/2/04 10:45 AM Page 37

37 Trading the Cycle

FIGURE 4.5 The Instantaneous Trendline and Cyber Cycle Oscillator are Duals

We need an indicator that predicts the turning point so the trade can be
made at the turning point or even before it occurs. In the code of Figure 4.2
we know we induce 1.5 bars of lag due to the calculation of Smooth. The
cycle equation contributes some small amount of lag also, perhaps half a
bar. The Trigger lags the Cycle by one bar, so that their crossing introduces
at least another bar of lag. Finally, we can’t execute the trade until the bar
after the signal is observed. In total, that means our trade execution will be
at least four bars late. If we are working with an eight-bar cycle, that means
the signal will be exactly wrong. We could do better to buy when the signal
says sell, and vice versa.

The difficulties arising from the lag suggest a way to build an automatic
trading strategy. Suppose we choose to use the trading signal in the oppo-
site direction of the signal. That will work if we can introduce lag so the
correct signal will be given in the more general case, not just the case of an
eight-bar cycle. Figure 4.6 is the EasyLanguage code for the Cyber Cycle
strategy. It starts exactly the same as the Cyber Cycle Indicator. I then
introduce the variable Signal, which is an exponential moving average of
the Cycle variable. The exponential moving average generates the desired
lag in the trading signal. As derived in Rocket Science for Traders,2 the rela-
tionship between the alpha of an exponential moving average and lag is

1α = � (4.2)
Lag + 1

c04.qxd 2/2/04 10:45 AM Page 38

38 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Inputs: Price((H+L)/2),
alpha(.07),
Lag(9);

Vars: Smooth(0),
Cycle(0),
alpha2(0),
Signal(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)
Cycle[1] - (1 - alpha)(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

alpha2 = 1 / (Lag + 1);

Signal = alpha2*Cycle + (1 - alpha2)*Signal[1];

If Signal Crosses Under Signal[1] then Buy Next_

Bar on Open;

If Signal Crosses Over Signal[1] then Sell Short Next_

Bar on Open;

If MarketPosition = 1 and PositionProfit

< 0 and BarsSinceEntry > 8 then Sell This Bar;

If MarketPosition = -1 and PositionProfit

< 0 and BarsSinceEntry > 8 then Buy To Cover This Bar;

FIGURE 4.6 EasyLanguage Code for the Cyber Cycle Trading Strategy

This relationship is used to create the variable alpha2 in the code and
the variable Signal using the exponential moving average.

The trading signals using the variable Signal crossing itself delayed by
one bar are exactly the opposite of the trading signals I would have used if
there were no delay. But, since the variable Signal is delayed such that the
net delay is less than half a cycle, the trading signals are correct to catch
the next cyclic reversal.

The idea of betting against the correct direction by waiting for the next
cycle reversal can be pretty scary because that reversal may “never” happen
because the market takes off in a trend. For this reason I included two lines

c04.qxd 2/2/04 10:45 AM Page 39

39 Trading the Cycle

of code that are escape mechanisms if we were wrong in our entry signal.
These last two lines of code in Figure 4.6 reverse the trading position if we
have been in the trade for more than eight bars and the trade has an open
position loss.

The EFS code for the Cyber Cycle Trading Strategy is given in Figure 4.7.
The trading strategy of Figures 4.6 and 4.7 was applied to Treasury

Bond futures because this contract tends to cycle and not stay in a trend
for long periods. The performance response from January 4, 1988 to March
3, 2003, a period in excess of 15 years, produced the results shown in Table
4.1. These performance results, and the consistent equity growth depicted
in Figure 4.8, exceed the results of most commercially available trading
systems designed for Treasury Bonds.

/***

Title: Cyber Cycle Trading Strategy

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0

==

Fix History:

06/27/2003 - Initial Release

1.0.0

==

***/

//External Variables

var grID = 0;

var nBarCount = 0;

var nStatus = 0; //0=flat, -1=short,_

1=long

//var nTrigger = 0; //buy/sell on next open

var nBarsInTrade = 0;

var nEntryPrice = 0;

(continued)

FIGURE 4.7 EFS Code for the Cyber Cycle Trading Strategy

c04.qxd 2/2/04 10:45 AM Page 40

40 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

var nAdj1 = 0;

var nAdj2 = 0;

var aPriceArray

var aSmoothArray

var aCycleArray

var aSignalArray

= new Array();

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

//setPriceStudy(true);

setStudyTitle(“CyberCycle Strategy”);

//setShowCursorLabel(false);

setCursorLabelName(“Signal “, 0);

setCursorLabelName(“Signal1”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aSignalArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha, Lag) {

var x;

var nPrice;

var nAlpha2;

FIGURE 4.7 (Continued)

c04.qxd 2/2/04 10:45 AM Page 41

41 Trading the Cycle

if (getCurrentBarIndex() == 0) return;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

if (Lag == null) {

Lag = 20;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

nBarsInTrade++;

//variables for image alignment

nAdj1 = (high()-low()) * 0.20;

nAdj2 = (high()-low()) * 0.35;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aSignalArray.pop();

aSignalArray.unshift(0);

}

//Cyber Cycle formula

nPrice = (high()+low()) / 2;

(continued)

FIGURE 4.7 (Continued)

c04.qxd 2/2/04 10:45 AM Page 42

42 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aPriceArray[0] = nPrice;

if (aPriceArray[3] == 0) return;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2]) / 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

//create the actual trading signals

nAlpha2 = 1 / (Lag + 1);

aSignalArray[0] = nAlpha2 * aCycleArray[0]

+ (1.0 - nAlpha2) * aSignalArray[1];

//process our trading strategy code

//=================================

nStatus = 0;

if (Strategy.isLong() == true) nStatus = 1;

if (Strategy.isShort() == true) nStatus = -1;

//currently not in a trade so look for a trigger

if (nBarCount > 10 && nStatus == 0) {

//signal cross down - we buy

if (aSignalArray[0] < aSignalArray[1]_

FIGURE 4.7 (Continued)

c04.qxd 2/2/04 10:45 AM Page 43

43 Trading the Cycle

&& aSignalArray[1]

>= aSignalArray[2]) {

goLong();

}

//signal cross up - we sell

if (aSignalArray[0] > aSignalArray[1]_

&& aSignalArray[1]

<= aSignalArray[2]) {

goShort();

}

}

//currently in a trade so look for profit stop_

or reversal

else if (nBarCount > 10 && nStatus != 0) {

if (nStatus == 1) { //in a long trade

//if trade is unprofitable after_

8 bars, exit position

if (close() - nEntryPrice

< 0 && nBarsInTrade > 8) {

closeLong();

}

//otherwise, check for trigger in_

other direction

if (aSignalArray[0]

> aSignalArray[1]_

&& aSignalArray[1]

<= aSignalArray[2]) {

goShort();

}

} else if (nStatus == -1) { //in a_

short trade

//if trade is unprofitable after_

8 bars, exit position

if (nEntryPrice - close() < 0_

&& nBarsInTrade > 8) {

closeShort();

}

//otherwise, check for trigger in_

other direction

if (aSignalArray[0]

< aSignalArray[1]_

(continued)

FIGURE 4.7 (Continued)

c04.qxd 2/2/04 10:45 AM Page 44

44 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

&& aSignalArray[1]

>= aSignalArray[2]) {

goLong();

}

}

}

return new Array(aSignalArray[0],_

aSignalArray[1]);

}

//enter a short trade

function goShort() {

drawShapeRelative(1, aSignalArray[1],_

Shape.DOWNARROW, ““,

Color.maroon, Shape.ONTOP|Shape.BOTTOM,

gID());

Strategy.doShort(“Short Signal”,_

Strategy.MARKET, Strategy.NEXTBAR,

Strategy.DEFAULT);

nStatus = -1;
nEntryPrice = open(1);
nBarsInTrade = 1;

}

//exit a short trade

function closeShort() {

drawShapeRelative(-0, aSignalArray[0],_

Shape.DIAMOND, ““,

Color.maroon, Shape.ONTOP|Shape.TOP, gID());

Strategy.doCover(“Cover Short”,_

Strategy.MARKET, Strategy.THISBAR,_

Strategy.ALL);

nStatus = 0;

nEntryPrice = 0;

}

//enter a long trade

function goLong() {

drawShapeRelative(1, aSignalArray[1],_

FIGURE 4.7 (Continued)

c04.qxd 2/2/04 10:45 AM Page 45

45 Trading the Cycle

Shape.UPARROW, ““,

Color.lime, Shape.ONTOP|Shape.TOP, gID());

Strategy.doLong(“Long Signal”, Strategy.MARKET,_

Strategy.NEXTBAR, Strategy.DEFAULT);

nStatus = 1;
nEntryPrice = open(1);
nBarsInTrade = 1;

}

//exit a long trade

function closeLong() {

drawShapeRelative(0, aSignalArray[0],_

Shape.DIAMOND, ““,

Color.lime, Shape.ONTOP|Shape.BOTTOM, gID());

Strategy.doSell(“Sell Long”, Strategy.MARKET,_

Strategy.THISBAR, Strategy.ALL);

nStatus = 0;

nEntryPrice = 0;

}

//== gID function assigns unique identifier to

graphic/text routines

function gID() {

grID ++;

return(grID);

}

FIGURE 4.7 (Continued)

TABLE 4.1	 Fifteen-Year Performance of the Cyber
Cycle Trading System Trading
Treasury Bond Futures

Net profit $93,156
Number of trades 430
Percent profitable 56.7%
Profit factor 1.44
Max drawdown ($12,500)
Profit/trade $216.64

c04.qxd 2/2/04 10:45 AM Page 46

46 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 4.8 Cyber Cycle Trading System 15-Year Equity Growth Trading Treasury
Bonds

KEY POINTS TO REMEMBER

•	 All indicators have lag.
•	 The Instantaneous Trendline and the Cyber Cycle Indicator are com-

plementary. This enables traders to use indicators overlaid on prices
the same way conventional oscillators are used.

•	 A viable cycle-based trading system delays the signal slightly less than
a half cycle to generate leading turning point entry and exit signals.

•	 Major losses are avoided by recognizing when a trade is on the wrong
side and reversing position.

c05.qxd 2/2/04 10:45 AM Page 47

CHAPTER 5

The CG Oscillator

“Add up this list of n numbers and then divide the sum by n,”

said Tom meanly.

In this chapter I describe a new oscillator that is unique because it is
smoothed and has essentially zero lag. The smoothing enables clear
identification of turning points and the zero-lag aspect enables action

to be taken early in the move. This oscillator, which is the serendipitous
result of my research into adaptive filters, has substantial advantages over
conventional oscillators used in technical analysis. The CG in the name of
the oscillator stands for the center of gravity of the prices over the window
of observation.

The center of gravity (CG) of a physical object is its balance point. For
example, if you balance a 12-inch ruler on your finger, the CG will be at its
6-inch point. If you change the weight distribution of the ruler by putting a
paper clip on one end, then the balance point (i.e., the CG) shifts toward
the paper clip. Moving from the physical world to the trading world, we can
substitute the prices over our window of observation for the units of
weight along the ruler. Using this analogy, we see that the CG of the win-
dow moves to the right when prices increase sharply. Correspondingly, the
CG of the window moves to the left when prices decrease.

The idea of computing the center of gravity arose from observing how
the lags of various finite impulse response (FIR) filters vary according to
the relative amplitude of the filter coefficients. A simple moving average
(SMA) is an FIR filter where all the filter coefficients have the same value
(usually unity). As a result, the CG of the SMA is exactly in the center of the
filter. A weighted moving average (WMA) is an FIR filter where the most
recent price is weighted by the length of the filter, the next most recent
price is weighted by the length of the filter less 1, and so on. The weighting

47

c05.qxd 2/2/04 10:45 AM Page 48

48 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

terms are the filter coefficients. The filter coefficients of a WMA describe
the outline of a triangle. It is well known that the CG of a triangle is located
at one-third the length of the base of the triangle. In other words, the CG of
the WMA has shifted to the right relative to the CG of an SMA of equal
length, resulting in less lag. In all FIR filters, the sum of the product of the
coefficients and prices must be divided by the sum of the coefficients so
that the scale of the original prices is retained.

The most general FIR filter is the Ehlers Filter,1 which can be written as

N

� ci * Pricei

N

�
i = 0Ehlers Filter = �� (5.1)

ci

i = 0

The coefficients of the Ehlers Filter can be almost any measure of vari-
ability. I have looked at momentum, signal-to-noise ratio, volatility, and
even Stochastics and Relative Strength Index (RSI) values as filter coeffi-
cients. One of the most adaptive sets of coefficients arose from video edge
detection filters, and was the sum of the square of the differences between
each price and each previous price. In any event, the result of using differ-
ent filter coefficients is to make the filter adaptive by moving the CG of the
coefficients.

While I was debugging the code of an adaptive FIR filter, I noticed that
the CG itself moved in exact opposition to the price swings. The CG moves
to the right when prices go up and to the left when prices go down.
Measured as the distance from the most recent price, the CG decreased
when prices rose and increased when they fell. All I had to do was to invert
the sign of the CG to get a smoothed oscillator that was in phase with the
price swings and had essentially zero lag.

The CG is computed in much the same way as we computed the Ehlers
Filter. The position of the balance point is the summation of the product of
position within the observation window times the price at that position
divided by the summation of prices across the window. The mathematical
expression for this calculation is

N

� (xi + 1) * Pricei

N

�
i = 0CG = �� (5.2)

Pricei

i = 0

In this expression I added 1 to the position count because the count
started with the most recent price at zero, and multiplying the most recent
price by the position count would remove it from the computation. The

c05.qxd 2/2/04 10:45 AM Page 49

49 The CG Oscillator

Inputs: Price((H+L)/2),
Length(10);

Vars: count(0),
Num(0),
Denom(0),
CG(0);

Num = 0;
Denom = 0;
For count = 0 to Length - 1 begin

Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);

End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;

Plot1(CG, “CG”);

Plot2(CG[1], “CG1”);

FIGURE 5.1 EasyLanguage Code to Compute the CG Oscillator

EasyLanguage code to compute the CG Oscillator is given in Figure 5.1 and
the eSignal Formula Script (EFS) code is given in Figure 5.2.

In EasyLanguage, the notation Price[N] means the price N bars ago.
Thus Price[0] is the price for the current bar. Counting for the location is
backward from the current bar. In the code the summation is accomplished
by recursion, where the count is varied from the current bar to the length
of the observation window. The numerator is the sum of the product of the
bar position and the price, and the denominator is the sum of the prices.
Then the CG is just the negative ratio of the numerator to the denominator.
A zero counter value for CG is established by adding half the length of the
observation window plus 1. Since the CG is smoothed, an effective
crossover signal is produced simply by delaying the CG by one bar.

An example of the CG Oscillator is shown in Figure 5.3. In this case, I
selected the length to be an eight-bar observation window. It is clear that
every major price turning point is identified with zero lag by the CG
Oscillator and the crossovers formed by its trigger. Since the CG Oscillator
is filtered and smoothed, whipsaws of the crossovers are minimized. The
relative amplitudes of the cyclic swings are retained. The resemblance of
the CG Oscillator to the Cyber Cycle Indicator of Chapter 4 is striking. I will
compare all the oscillator type indicators in a later chapter.

c05.qxd 2/2/04 10:45 AM Page 50

50 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: CG Oscillator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/27/2003

Version: 1.0.0

==

Fix History:

06/27/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nPrice = 0;
var nCG = 0;

var aPriceArray = new Array();
var aCGArray = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“CG Osc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;

aCGArray[x] = 0.0;

FIGURE 5.2 EFS Code to Compute the CG Oscillator

c05.qxd 2/2/04 10:45 AM Page 51

51 The CG Oscillator

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

var nValue1;

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 10;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aPriceArray.pop();

aPriceArray.unshift(0);

aCGArray.pop();

aCGArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += (1.0 + x) * (aPriceArray[x]);

(continued)

FIGURE 5.2 (Continued)

c05.qxd 2/2/04 10:45 AM Page 52

52 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nDenom += (aPriceArray[x]);

}

if (nDenom != 0) nCG = -nNum/nDenom

+ (OscLength+1)/2;

aCGArray[0] = nCG;

//return the calculated values

if (!isNaN(aCGArray[0])) {

return new Array(aCGArray[0],_

aCGArray[1]);

}

}

FIGURE 5.2 (Continued)

FIGURE 5.3 The CG Oscillator Accurately Identifies Each Price Turning Point

c05.qxd 2/2/04 10:45 AM Page 53

53 The CG Oscillator

The appearance of the CG Oscillator varies with the selection of the
observation window length. Ideally, the selected length should be half the
dominant cycle length because half the dominant cycle fully captures
the entire cyclic move in one direction. If the length is too long, the CG
Oscillator is desensitized. For example, if the window length is one full
dominant cycle, half the data pulls the CG to the right and the other half of
the data pulls the CG to the left. As a result, the CG stays in the middle of
the window and no motion of the CG Oscillator is observed. On the other
hand, if the window length is too short, you are missing the benefits of
smoothing. As a result of this case, the CG Oscillator contains higher-
frequency components and is a little too nervous for profitable trading.

KEY POINTS TO REMEMBER

•	 The CG in an FIR filter is the position of the average price within the fil-
ter window length.

•	 The CG moves toward the most recent bar (decreases) when prices
rise and moves away from the most recent bar (increases) when prices
fall. Thus the CG moves exactly opposite to the price direction.

•	 The CG Oscillator has essentially zero lag.
•	 The CG Oscillator retains the relative cycle amplitude, similar to the

Cyber Cycle Indicator.

c05.qxd 2/2/04 10:45 AM Page 54

c06.qxd 2/2/04 10:45 AM Page 55

CHAPTER 6

Relative Vigor
Index

“Get to the back of the boat,” said Tom sternly.

This chapter describing the Relative Vigor Index (RVI) uses concepts
dating back over three decades and also uses modern filter and digi-
tal signal processing theory to realize those concepts as a practical

and useful indicator. The RVI merges the old concepts with the new tech-
nologies. The basic idea of the RVI is that prices tend to close higher than
they open in up markets and tend to close lower than they open in down
markets. The vigor of the move is thus established by where the prices
reside at the end of the day. To normalize the index to the daily trading
range, the change in price is divided by the maximum range of prices for
the day. Thus, the basic equation for the RVI is

Close − Open
RVI = �� (6.1)

High − Low

In 1972, Jim Waters and Larry Williams published a description of their
A/D Oscillator.1 In this case, A/D means accumulation/distribution rather
than the usual advance/decline. Waters and Williams defined Buying Power
(BP) and Selling Power (SP) as

BP = High − Open
SP = Close − Low

where the prices were the open, high, low, and closing prices for the day.

The two values, BP and SP, show the additional buying strength relative to

the open and the selling strength relative to the close to obtain an implied

55

c06.qxd 2/2/04 10:45 AM Page 56

� �
� � ��

����

56 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

measure of the day’s trading. Waters and Williams combined the measure-
ment as the Daily Raw Figure (DRF). DRF is calculated as

BP + SP
DRF = �� (6.2)

2 * (High − Low)

The maximum value of 1 is reached when a market opens trading at the
low and closes at the high. Conversely, the minimum value of 0 is reached
when the market opens trading at the high and closes at the low. The day-
to-day evaluation causes the DRF to vary radically and requires smoothing
to make it usable.

We can expand the equation for the DRF as

DRF =

=

=

1
�
2

1
�
2

1
�
2

�High − Open + Close − Low
�����High − Low

High − Low + Close − Open
High − Low

Close − Open
1 + (6.3)

High − Low

Clearly, the equation for the DRF is identical with the daily RVI expres-
sion except for the additive and multiplicative constants. It seems there are
no new ideas in technical analysis. However, smoothing must be done to
make the indicator practical. This is where modern filter theory contributes
to the successful implementation of the RVI. I use the four-bar symmetrical
finite impulse response (FIR) filter (described in Equation 4.1 and Figure 4.1)
to independently smooth the numerator and the denominator.

The RVI is an oscillator, and we are therefore only concerned with
the cycle modes of the market in its use. The sharpest rate of change for
a cycle is at its midpoint. Therefore, in the ascending part of the cycle we
would expect the difference between the close and open to be at a maxi-
mum. This is like a derivative in calculus, where the derivative of a
sinewave produces a negative cosine wave. The derivative is therefore a
waveform that leads the original sinewave by a quarter cycle. Also, from
calculus, integration of a sinewave over a half-cycle period results in
another sinewave delayed by a quarter cycle. Summing over a half cycle
is basically the same as mathematically integrating, with the result that
the waveshape of the sum is delayed by a quarter wavelength relative to
the input. The net result of taking the differences and summing produces
an oscillator output in phase with the cyclic component of the price. It is
also possible to generate a leading function if the summation window is

c06.qxd 2/2/04 10:45 AM Page 57

57 Relative Vigor Index

less than a half wavelength of the Dominant Cycle. If a cycle measure-
ment is not available, you can sum the RVI components over a fixed
default period. A nominal value of 8 is suggested because this is approxi-
mately half the period of most cycles of interest.

Calculating the RVI is straightforward. The numerator, consisting of
Close − Open, is filtered in the four-bar symmetrical FIR filter before the
terms are summed. The denominator, consisting of High − Low, is indepen-
dently filtered in the four-bar symmetrical FIR filter before it is summed.
The numerator and denominator are summed individually and the RVI is
then computed as the ratio of the numerator to the denominator. Since the
numerator and denominator are lagged the same amount due to filtering,
the lag is removed by taking their ratio.

The rules for the use of the RVI are flexible. Just remember that it is an
oscillator that is basically in phase with the cyclic component of the mar-
ket prices. I prefer crossing line indicators because they are unambiguous
in their signals. A simple Trigger line is just the RVI delayed by one bar.

The RVI oscillator is shown in Figure 6.1. The responsiveness and clar-
ity of the signals are self-explanatory. The EasyLanguage code to compute
the RVI is shown in Figure 6.2, and its eSignal Formula Script (EFS) code is
shown in Figure 6.3.

FIGURE 6.1 The RVI Gives Crisp Indications of the Cyclic Turning Point

c06.qxd 2/2/04 10:45 AM Page 58

58 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Inputs: Length(10);

Vars: Num(0),
Denom(0),
count(0),
RVI(0),
Trigger(0);

Value1 = ((Close – Open) + 2*(Close[1]

- Open[1]) + 2*(Close[2] - Open[2])
+ (Close[3] - Open[3]))/6;

Value2 = ((High – Low) + 2*(High[1]

- Low[1]) + 2*(High[2] - Low[2])
+ (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length -1 begin

Num = Num + Value1[count];

Denom = Denom + Value2[count];

End;

If Denom <> 0 then RVI = Num / Denom;

Trigger = RVI[1];

Plot1(RVI, “RVI”);

Plot2(Trigger, “Trigger”);

FIGURE 6.2 EasyLanguage Code to Compute the RVI

/***

Title: RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

FIGURE 6.3 EFS Code to Compute the RVI

c06.qxd 2/2/04 10:45 AM Page 59

59 Relative Vigor Index

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables

var aRVIArray

var aValue1Array

var aValue2Array

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“RVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

aRVIArray[x] = 0.0;
aValue1Array[x] = 0.0;
aValue2Array[x] = 0.0;
aValue3Array[x] = 0.0;

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

(continued)

FIGURE 6.3 (Continued)

c06.qxd 2/2/04 10:45 AM Page 60

60 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aRVIArray.pop();

aRVIArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

aValue2Array.pop();

aValue2Array.unshift(0);

}

aValue1Array[0] = ((close()-open())

+ 2*(close(-1)-open(-1))
+ 2*(close(-2)-open(-2))
+ (close(-3)-open(-3))) / 6;

aValue2Array[0] = ((high()-low())

+ 2*(high(-1)-low(-1))
+ 2*(high(-2)-low(-2))
+ (high(-3)-low(-3))) / 6;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];

FIGURE 6.3 (Continued)

c06.qxd 2/2/04 10:45 AM Page 61

61 Relative Vigor Index

}

if (nDenom != 0) aRVIArray[0] = nNum/nDenom;

//return the calculated values

{

return new Array(aRVIArray[0],_

aRVIArray[1]);

}

}

FIGURE 6.3 (Continued)

KEY POINTS TO REMEMBER

•	 The RVI concept is that prices close higher than they open in up mar-
kets and close lower than they open in down markets.

•	 The RVI is a normalized oscillator, where the movement is normalized
to the trading range of each bar.

•	 Lag-canceling four-bar symmetrical FIR filters are used to produce a
readable indicator.

c06.qxd 2/2/04 10:45 AM Page 62

c07.qxd 2/2/04 10:46 AM Page 63

CHAPTER 7

Oscillator
Comparison

“Let’s play musical chairs,” said Tom deceitfully.

In the previous three chapters I have described three different oscilla-
tors using three different principles. There is probably no need for
more than one oscillator in your technical trading arsenal if it is a good

one. It is my experience that a number of traders suffer from the “paralysis
of analysis.” Rather than searching for the ideal combination of tools—or
worse, changing the mix of tools for every situation—it is better to settle
on the few tools that work the best for you on average. The three oscilla-
tors are for your consideration. The only way to know which of the three is
best is to do a comparison on the same chart using the same data for each.
This comparison is shown in Figure 7.1.

Frankly, I don’t see a nickel’s worth of difference between the three
oscillators in this particular example. All three indicate the relative cycle
amplitude and correctly identify each major turning point as it occurs. If
anything, the Relative Vigor Index (RVI) is slightly less susceptible to whip-
saw indications. Nonetheless, I am partial to the Cyber Cycle because I
know it contains only the theoretical cycle components that comprise an
oscillator. I have seen greater differences between the oscillators in other
data samples.

The differences will become more apparent when you insert these
oscillators as part of an automatic trading strategy. In these applications
one oscillator may give a signal one bar earlier than the others at critical
times for the strategy. It’s also true that one oscillator may have fewer
short-term crossovers that lead to whipsaw trades. In any event, you now
have three excellent tools for your own technical analysis. It may be that
one of the oscillators will outperform the others in your application.

63

c07.qxd 2/2/04 10:46 AM Page 64

64 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 7.1 Comparison of the Cyber Cycle, CG, and RVI Oscillators

It may be constructive to compare just one of the oscillators I have
developed to several other oscillators that are in common use on a chart
using the same data as before. This standardized comparison is useful to
assess the relative lag of the trading signals and the degree to which whip-
saw signals are produced. Two of the more popular oscillators are the
Relative Strength Index (RSI) and the Stochastic. These are compared to
the Cyber Cycle in Figure 7.2, where eight-bar periods are used for compa-
rable scaling. Whoa! Clearly, the RSI and Stochastic are more erratic than
the Cyber Cycle. Waiting for confirmation for the indicators to cross the
signal lines is the conventional way of minimizing the erratic behavior of
the indicators. Waiting for confirmation means that the RSI and Stochastic
trading signals are invariably late or that the signal is missed altogether. I
could cite many more examples and many more comparison indicators,
but the purpose of this book is to generate tools you can use in your own
work. Since you have the code, you can test your own examples. You can
also compare these new tools to your other favorite indicators.

c07.qxd 2/2/04 10:46 AM Page 65

65 Oscillator Comparison

FIGURE 7.2 Cyber Cycle is Smoother and Signals are More Timely than Those of an
RSI or Stochastic

KEY POINTS TO REMEMBER

•	 The Cyber Cycle, CG, and RVI oscillators all carry relative cycle ampli-
tude information.

•	 The Cyber Cycle, CG, and RVI all indicate major turning points with
minimum lag.

•	 The Cyber Cycle, CG, and RVI are vastly superior to standard indicators.

c07.qxd 2/2/04 10:46 AM Page 66

c08.qxd 2/2/04 10:47 AM Page 67

CHAPTER 8

Stochasticization
and Fisherization

of Indicators

“I’m of greater value to you every day,” said Tom appreciatively.

There is an indicator I wish I had invented because it works pretty
well. This indicator is called the Stochastic RSI. Since I didn’t invent
it, the best I can do is to describe it and then proceed to shamelessly

adapt some of its principles to create even better indicators. All of these
indicators will be described and compared in this chapter.

The name of the Stochastic RSI is descriptive of how it is calculated.
First an RSI Indicator is computed from recent prices; then a Stochastic
Indicator is computed using the RSI as the input variable. Finally, a
weighted moving average of the Stochastic is taken to smooth it so that a
workable output can be viewed.

An RSI averages the difference in ascending closing prices over a
selected period separately from averaging the difference in descending
closing prices. For a shorthand notation, I will call these Closes Up (CU)
and Closes Down (CD). The RSI is the ratio of CU to the sum of CU and CD.
If there are no CD in the selected period, the ratio is unity (1). If there are
no CU in the selected period, the ratio is 0. So, if the length exactly coin-
cides with half the period of a perfect cycle, the RSI will swing between
0 and 1. It is common to multiply the ratio by 100 to display the RSI as a
percentage.

A Stochastic Indicator1 (definitely not a stochastic random variable) is
computed by finding the highest value and the lowest value over a selected
period. The Stochastic Indicator is the ratio of the difference between the
current and lowest values and the difference between the highest and low-
est values. It is also common to multiply this ratio by 100 to display the
Stochastic Indicator as a percentage.

67

c08.qxd 2/2/04 10:47 AM Page 68

68 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

The EasyLanguage and EFS codes to derive the Stochastic RSI from
RSI and Stochastics are given in Figures 8.1 and 8.2, respectively. Before
the Stochastic RSI is plotted, it is smoothed by a weighted moving average
to provide a pleasing display with minimal lag. The Trigger line displayed is
the Signal line delayed by one bar. The crossing of the Stochastic RSI Signal
and a Trigger line constitutes buy and sell signals of the indicator. I have
taken the liberty of scaling the Stochastic RSI to swing between −1 and +1.
My scaling is selected so that I can directly apply the Fisher transform to it
to generate razor-sharp entry and exit signals.

The amazing thing about the Stochastic RSI is that, after all the com-
putations, the trading signals have almost no lag. The primary reason for
this is that both the RSI and the Stochastic Indicators are ratios, so that lag
in the numerator is canceled by lag in the denominator. The performance of
the Stochastic RSI is shown in Figure 8.3. Unlike the Cyber Cycle and CG
Oscillator, the Stochastic RSI tends not to retain the relative amplitudes of
the cycles. This amplitude standardization can be an advantage to traders
because it removes some of the interpretive aspects of the oscillators. In
Figure 8.3, the Stochastic RSI clearly captures every major turning point in
a timely manner.

This is the good part. If taking the Stochastic of a standard indicator
produces a better indicator, it is reasonable that a superlative indicator can
be created by applying the same process to an already good indicator. The
EasyLanguage and EFS codes for transforming the Cyber Cycle of Figure
4.4 into a Stochastic Cyber Cycle are given in Figures 8.4 and 8.5, respec-
tively. The EasyLanguage and eSignal Formula Script (EFS) codes for

Inputs:	 RSILength(8),

StocLength(8),

WMALength(8);

Value1 = RSI(Close, RSILength) - Lowest(RSI(Close,

RSILength), StocLength);

Value2 = Highest(RSI(Close, RSILength), StocLength)

- Lowest(RSI(Close, RSILength), StocLength);

If Value2<> 0 then Value3 = Value1 / Value2;

Value4 = 2*(WAverage(Value3, WMALength) - .5);

Plot1(Value4, “StocRSI”);

Plot2(Value4[1], “Trig”);

FIGURE 8.1 EasyLanguage Code to Compute the Stochastic RSI

c08.qxd 2/2/04 10:47 AM Page 69

69 Stochasticization and Fisherization of Indicators

/***

Title: Stochastic RSI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nAvgUpClose = 0;
var nAvgDnClose = 0;
var ntAvgUpClose = 0;
var ntAvgDnClose = 0;
var nValue3 = 0;
var nValue4 = 0;
var nTrig = 0;
var bInitialized = false;

var nRS = 0;
var nRSI = 0;

var aRSIArray = new Array();
var aValue3Array = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“StochasticRSI”);

(continued)

FIGURE 8.2 EFS Code to Compute the Stochastic RSI

c08.qxd 2/2/04 10:47 AM Page 70

70 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

setCursorLabelName(“StocRSI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<70; x++) {

aRSIArray[x] = 0.0;

aValue3Array[x] = 0.0;

}

}

//== Main processing function

function main(RSILength, StocLength, WMALength) {

var x;

var nDiff;

var nDivBy;

var nValue1;

var nValue2;

//initialize parameters if necessary

if (RSILength == null) {

RSILength = 8;

}

if (StocLength == null) {

StocLength = 8;

}

if (WMALength == null) {

WMALength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//initialize the basic RSI calculation

if (bInitialized == false) {

nAvgUpClose = 0.0;

nAvgDnClose = 0.0;

for (x=0; x<RSILength; x++) {

FIGURE 8.2 (Continued)

c08.qxd 2/2/04 10:47 AM Page 71

71 Stochasticization and Fisherization of Indicators

nDiff = close(-x)

- close(-(x+1));

if (nDiff > 0) {

nAvgUpClose += nDiff;

}

else {

nAvgDnClose

+= Math.abs

(nDiff);

}

}

nAvgUpClose /= RSILength;

nAvgDnClose /= RSILength;

nRS = nAvgUpClose / nAvgDnClose;

nRSI = 100.0 - (100.0 / (1.0

+ nRS));

bInitialized = true;

}

//continue the RSI calculation on subsequent_

bars

else {

if (getBarState() == BARSTATE_NEWBAR) {

nAvgUpClose = ntAvgUpClose;

nAvgDnClose = ntAvgDnClose;

if (!isNaN(nRSI)) {

aRSIArray.pop();

aRSIArray.unshift(0);

aValue3Array.pop();

aValue3Array.unshift(0);

nTrig = nValue4;

}

}

nDiff = close(0) - close(-1);

if (nDiff > 0) {

ntAvgUpClose = ((nAvgUpClose

* (RSILength-1)) + nDiff)
/ RSILength;

ntAvgDnClose = ((nAvgDnClose

* (RSILength-1)) + 0)

/ RSILength;

}

(continued)

FIGURE 8.2 (Continued)

c08.qxd 2/2/04 10:47 AM Page 72

72 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

else {

ntAvgUpClose = ((nAvgUpClose

* (RSILength-1)) + 0)

/ RSILength;

ntAvgDnClose = ((nAvgDnClose

* (RSILength-1))
+ Math.abs(nDiff))
/ RSILength;

}

nRS = ntAvgUpClose / ntAvgDnClose;

nRSI = 100.0 - (100.0 / (1

+ nRS));
aRSIArray[0] = nRSI;

}

//calculate the StocRSI using the RSI Array we_

have created.

nValue1 = nRSI - Lowest(StocLength);

nValue2 = Highest(StocLength)

- Lowest(StocLength);

nValue3 = 0;

if (nValue2 != 0) nValue3 = (nValue1

/ nValue2);

aValue3Array[0] = nValue3;

//compute weighted moving average

nValue4 = 0;

nDivBy = 0;

for (x=0; x<WMALength; x++) {

nValue4 += (aValue3Array[x]

* (WMALength-x));

nDivBy += (WMALength-x);

}

nValue4 = nValue4 / nDivBy;

nValue4 = 2.0 * (nValue4 - 0.5);

//return the calculated values

if (!isNaN(nValue4)) {

return new Array(nValue4, nTrig);

FIGURE 8.2 (Continued)

c08.qxd 2/2/04 10:47 AM Page 73

73 Stochasticization and Fisherization of Indicators

}

}

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aRSIArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aRSIArray[x]);

}

return(nTmp);

}

FIGURE 8.2 (Continued)

converting the CG Indicator of Figure 5.3 into a Stochastic CG are given in
Figures 8.6 and 8.7, respectively. Finally, the EasyLanguage and EFS codes
to stochasticize the Relative Vigor Index (RVI) of Figure 6.1 are provided in
Figures 8.8 and 8.9, respectively. In each case, I have simply added the code
to take the Stochastic of the indicators and scaled the resulting indicators
to range between −1 and +1. This scaling was done because the next step of

c08.qxd 2/2/04 10:47 AM Page 74

74 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 8.3 The Stochastic RSI Captures Turning Points in a Timely Manner

the indicator creation is to take the Fisher transform for sharper, better-
defined entry and exit signals. The Trigger is just the indicator delayed by
one bar and scaled to swing between −0.98 and +0.98. Shrinking the size of
the Trigger gives a better-defined crossover when the indicator moves
away from the extreme values.

The three stochasticized indicators are compared in Figure 8.10. They
are clearly similar, although I like the Stochastic Cyber Cycle because the
buy/sell indications are based purely on the cycle content of the data. On
the other hand, it is clear that the Stochastic RVI is more regular with fewer
whipsaws. In any event, you have all the tools to make your own selection.
The input parameters for each of the indicators enable you to optimize the
indicator period, if desired, when used with a specific security.

In Chapter 1, I pointed out that the probability density functions of
sinewaves are not Gaussian and that creating sharp indicators from them is
difficult because the indications come after the movement has already
started. The Stochasticized Indicators all look somewhat like sinewaves.
Therefore, we should be able to create razor-sharp trading signals by apply-
ing the Fisher transform to them. This is exactly what I have done in the
indicator codes of Figures 8.11 through 8.16. I have limited the amplitude
swings to absolute values of 0.99 to avoid getting huge output amplitudes
from the Fisher transform. The trading signals, as before, are given by the
crossing of the Signal line and the Trigger line. The Trigger line is simply the
Signal line delayed by one bar.

c08.qxd 2/2/04 10:47 AM Page 75

75 Stochasticization and Fisherization of Indicators

{***

Stochastic Cyber Cycle

***}

Inputs: Price((H+L)/2),

alpha(.07),

Len(8);

Vars:	 Smooth(0),

Cycle(0),

MaxCycle(0),

MinCycle(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

MaxCycle = Highest(Cycle, Len);

MinCycle = Lowest(Cycle, Len);

If MaxCycle <> MinCycle then Value1 = (Cycle

- MinCycle) / (MaxCycle - MinCycle);

Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2]

+ Value1[3]) / 10;
Value2 = 2*(Value2 - .5);

Plot1(Value2, “Cycle”);

Plot2(.96*(Value2[1] + .02), “Trigger”);

Plot3(0,”Ref”);

FIGURE 8.4 EasyLanguage Code to Compute the Stochastic Cyber Cycle

/***

Title: Stochastic Cyber Cycle

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

(continued)

FIGURE 8.5 EFS Code to Compute the Stochastic Cyber Cycle

c08.qxd 2/2/04 10:47 AM Page 76

76 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

**/

//External Variables

var nBarCount = 0;
var nValue2 = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();
var aCycleArray = new Array();
var aValue1Array = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“StochasticCyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aValue1Array[x] = 0.0;

FIGURE 8.5 (Continued)

c08.qxd 2/2/04 10:47 AM Page 77

77 Stochasticization and Fisherization of Indicators

}

}

//== Main processing function

function main(Alpha, OscLength) {

var x;

var nPrice;

var nMaxCycle;

var nMinCycle;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

(continued)

FIGURE 8.5 (Continued)

c08.qxd 2/2/04 10:47 AM Page 78

78 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nTrig = nValue2;

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2]) / 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha) * (1

- 0.5*Alpha) * (aSmoothArray[0]
- 2*aSmoothArray[1] +

aSmoothArray[2]) + 2*(1-Alpha)

* aCycleArray[1] - (1-Alpha)
* (1- Alpha) * aCycleArray[2];

}

nMaxCycle = Highest(OscLength);

nMinCycle = Lowest(OscLength);

if (nMaxCycle != nMinCycle) aValue1Array[0]

= (aCycleArray[0]-nMinCycle) / (nMaxCycle

- nMinCycle);

nValue2 = (4*aValue1Array[0]

+ 3*aValue1Array[1] + 2*aValue1Array[2]
+ aValue1Array[3]) / 10;

nValue2 = 2 * (nValue2 - 0.5);

if (!isNaN(nValue2)) {

return new Array(nValue2,

(0.96*(nTrig+0.02)));

}

}

FIGURE 8.5 (Continued)

c08.qxd 2/2/04 10:47 AM Page 79

79 Stochasticization and Fisherization of Indicators

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aCycleArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aCycleArray[x]);

}

return(nTmp);

}

FIGURE 8.5 (Continued)

{***

Stochastic CG Oscillator

***}

Inputs: Price((H+L)/2),

Length(8);

Vars:	 count(0),

Num(0),

Denom(0),

CG(0),

(continued)

FIGURE 8.6 EasyLanguage Code to Compute the Stochastic CG

c08.qxd 2/2/04 10:47 AM Page 80

80 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

MaxCG(0),

MinCG(0);

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin

Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);

End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;

MaxCG = Highest(CG, Length);

MinCG = Lowest(CG, Length);

If MaxCG <> MinCG then Value1 = (CG - MinCG) / (MaxCG

- MinCG);
Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2]

+ Value1[3]) / 10;
Value2 = 2*(Value2 - .5);

Plot1(Value2, “CG”);

Plot2(.96*(Value2[1] + .02), “Trigger”);

Plot3(0,”Ref”);

FIGURE 8.6 (Continued)

/***

Title: Stochastic CG Oscillator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

FIGURE 8.7 EFS Code to Compute the Stochastic CG

c08.qxd 2/2/04 10:47 AM Page 81

81 Stochasticization and Fisherization of Indicators

==

***/

//External Variables

var nPrice = 0;

var nCG = 0;

var nValue2 = 0;

var nTrig = 0;

var aPriceArray

var aCGArray

var aValue1Array

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“StochasticCGOsc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;
aCGArray[x] = 0.0;
aValue1Array[x] = 0.0;

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

(continued)

FIGURE 8.7 (Continued)

c08.qxd 2/2/04 10:47 AM Page 82

82 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

var nMaxCG;

var nMinCG;

var nValue1;

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aPriceArray.pop();

aPriceArray.unshift(0);

aCGArray.pop();

aCGArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

nTrig = nValue2;

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += (1.0 + x)

* (aPriceArray[x]);

nDenom += (aPriceArray[x]);

}

FIGURE 8.7 (Continued)

c08.qxd 2/2/04 10:47 AM Page 83

83 Stochasticization and Fisherization of Indicators

if (nDenom != 0) nCG = -nNum/nDenom

+ (OscLength+1)/2;

aCGArray[0] = nCG;

nMaxCG = Highest(OscLength);

nMinCG = Lowest(OscLength);

nValue1 = 0;

if (nMaxCG != nMinCG) nValue1 = (nCG

- nMinCG) / (nMaxCG - nMinCG);
aValue1Array[0] = nValue1;

nValue2 = (4*aValue1Array[0]

+ 3*aValue1Array[1] + 2*aValue1Array[2]
+ aValue1Array[3]) / 10;

nValue2 = 2.0 * (nValue2 - 0.5);

//return the calculated values

if (!isNaN(nValue2)) {

return new Array(nValue2,

(0.96*(nTrig+0.02)));

}

}

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aCGArray[x]);

}

return(nTmp);

(continued)

FIGURE 8.7 (Continued)

c08.qxd 2/2/04 10:47 AM Page 84

84 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aCGArray[x]);

}

return(nTmp);

}

FIGURE 8.7 (Continued)

{**

Stochastic Relative Vigor Index (RVI)

***}

Inputs: Length(8);

Vars:	 Num(0),

Denom(0),

count(0),

RVI(0),

MaxRVI(0),

MinRVI(0);

Value1 = ((Close - Open) + 2*(Close[1] - Open[1])

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1])

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin

Num = Num + Value1[count];

Denom = Denom + Value2[count];

End;

FIGURE 8.8 EasyLanguage Code to Compute the Stochastic RVI

c08.qxd 2/2/04 10:47 AM Page 85

85 Stochasticization and Fisherization of Indicators

If Denom <> 0 then RVI = Num / Denom;

MaxRVI = Highest(RVI, Length);

MinRVI = Lowest(RVI, Length);

If MaxRVI <> MinRVI then Value3 = (RVI - MinRVI)

/ (MaxRVI - MinRVI);

Value4 = (4*Value3 + 3*Value3[1] + 2*Value3[2]

+ Value3[3]) / 10;
Value4 = 2*(Value4 - .5);

Plot1(Value4, “RVI”);

Plot2(.96*(Value4[1] + .02), “Trigger”);

Plot3(0,”Ref”);

FIGURE 8.8 (Continued)

/***

Title: Stochastic RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nValue4 = 0;
var nTrig = 0;

(continued)

FIGURE 8.9 EFS Code to Compute the Stochastic RVI

c08.qxd 2/2/04 10:47 AM Page 86

86 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

var aRVIArray

var aValue1Array

var aValue2Array

var aValue3Array

= new Array();

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“StochasticRVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

aRVIArray[x] = 0.0;
aValue1Array[x] = 0.0;
aValue2Array[x] = 0.0;
aValue3Array[x] = 0.0;

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

var nMaxRVI;

var nMinRVI;

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 8;

}

FIGURE 8.9 (Continued)

c08.qxd 2/2/04 10:47 AM Page 87

87 Stochasticization and Fisherization of Indicators

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aRVIArray.pop();

aRVIArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

aValue2Array.pop();

aValue2Array.unshift(0);

aValue3Array.pop();

aValue3Array.unshift(0);

nTrig = nValue4;

}

aValue1Array[0] = ((close()-open())

+ 2*(close(-1)-open(-1)) + 2*(close(-2)
- open(-2)) + (close(-3)-open(-3)))

/ 6;

aValue2Array[0] = ((high()-low())

+ 2*(high(-1)-low(-1)) + 2*(high(-2)
- low(-2)) + (high(-3)-low(-3))) / 6;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];

}

if (nDenom != 0) aRVIArray[0] = nNum/nDenom;

(continued)

FIGURE 8.9 (Continued)

c08.qxd 2/2/04 10:47 AM Page 88

88 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nMaxRVI = Highest(OscLength);

nMinRVI = Lowest(OscLength);

if (nMaxRVI != nMinRVI) aValue3Array[0]

= (aRVIArray[0]-nMinRVI)

/ (nMaxRVI-nMinRVI);

nValue4 = (4*aValue3Array[0]

+ 3*aValue3Array[1] + 2*aValue3Array[2]
+ aValue3Array[3]) / 10;

nValue4 = 2.0 * (nValue4 - 0.5);

//return the calculated values

if (!isNaN(nValue4)) {

return new Array(nValue4,

(0.96*(nTrig+0.02)));

}

}

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aRVIArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

FIGURE 8.9 (Continued)

c08.qxd 2/2/04 10:47 AM Page 89

89 Stochasticization and Fisherization of Indicators

nTmp = Math.min(nTmp, aRVIArray[x]);

}

return(nTmp);

}

FIGURE 8.9 (Continued)

FIGURE 8.10 Comparison of the Stochasticized Indicators

{***

Fisher Cyber Cycle

***}

Inputs: Price((H+L)/2),

alpha(.07),

Len(8);

Vars: Smooth(0),

(continued)

FIGURE 8.11 EasyLanguage Code to Compute the Fisher Stochastic Cyber Cycle

c08.qxd 2/2/04 10:47 AM Page 90

90 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Cycle(0),

MaxCycle(0),

MinCycle(0),

Lead(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

MaxCycle = Highest(Cycle, Len);

MinCycle = Lowest(Cycle, Len);

If MaxCycle <> MinCycle then Value1 = (Cycle

- MinCycle) / (MaxCycle - MinCycle);
Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2]

+ Value1[3]) / 10;

Value3 = .5*Log((1+1.98*(Value2-.5))/(1-1.98

*(Value2-.5)));

Plot1(Value3, “Cycle”);

Plot2(Value3[1], “Trigger”);

Plot3(0,”Ref”);

FIGURE 8.11 (Continued)

/***

Title: Fisher Cyber Cycle

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

FIGURE 8.12 EFS Code to Compute the Fisher Stochastic Cyber Cycle

c08.qxd 2/2/04 10:47 AM Page 91

91 Stochasticization and Fisherization of Indicators

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var nValue3 = 0;

var aPriceArray = new Array();

var aSmoothArray = new Array();

var aCycleArray = new Array();

var aValue1Array = new Array();

//== PreMain function required by eSignal to set

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“FisherCyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aValue1Array[x] = 0.0;

}

}
(continued)

FIGURE 8.12 (Continued)

c08.qxd 2/2/04 10:47 AM Page 92

92 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//== Main processing function

function main(Alpha, OscLength) {

var x;

var nPrice;

var nValue2;

var nMaxCycle;

var nMinCycle;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

nTrig = nValue3;

}

FIGURE 8.12 (Continued)

c08.qxd 2/2/04 10:47 AM Page 93

93 Stochasticization and Fisherization of Indicators

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2]) / 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha) * (1

- 0.5*Alpha) * (aSmoothArray[0]
- 2*aSmoothArray[1] +

aSmoothArray[2]) + 2*(1-Alpha)

* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

nMaxCycle = Highest(OscLength);

nMinCycle = Lowest(OscLength);

if (nMaxCycle != nMinCycle) aValue1Array[0]

= (aCycleArray[0]-nMinCycle)

/ (nMaxCycle - nMinCycle);

nValue2 = (4*aValue1Array[0]

+ 3*aValue1Array[1] + 2*aValue1Array[2]
+ aValue1Array[3]) / 10;

nValue3 = 0.5 * Math.log((1 + 1.98

* (nValue2-0.5)) / (1 - 1.98
* (nValue2-0.5)));

//return the calculated values

if (!isNaN(nValue3)) {

return new Array(nValue3, nTrig);

}

}

(continued)

FIGURE 8.12 (Continued)

c08.qxd 2/2/04 10:47 AM Page 94

94 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aCycleArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aCycleArray[x]);

}

return(nTmp);

}

FIGURE 8.12 (Continued)

c08.qxd 2/2/04 10:47 AM Page 95

95 Stochasticization and Fisherization of Indicators

{***

Fisher CG

***}

Inputs: Price((H+L)/2),

Length(8);

Vars:	 count(0),

Num(0),

Denom(0),

CG(0),

MaxCG(0),

MinCG(0),

Lead(0);

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin

Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);

End;

If Denom <> 0 then CG = -Num/Denom + (Length + 1) / 2;

MaxCG = Highest(CG, Length);

MinCG = Lowest(CG, Length);

If MaxCG <> MinCG then Value1 = (CG - MinCG) /

(MaxCG - MinCG);

Value2 = (4*Value1 + 3*Value1[1] + 2*Value1[2] +

Value1[3]) / 10;

Value3 = .5*Log((1+1.98*(Value2-.5))/(1-1.98

*(Value2-.5)));

Plot1(Value3, "CG");

Plot2(Value3[1], "Trigger");

Plot3(0,"Ref");

FIGURE 8.13 EasyLanguage Code to Compute the Fisher Stochastic CG

c08.qxd 2/2/04 10:47 AM Page 96

96 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Fisher Stochastic CG Oscillator
Coded By: Chris D. Kryza (Divergence Software, Inc.)
Email: c.kryza@gte.net
Incept: 06/19/2003
Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nPrice = 0;

var nCG = 0;

var nValue3 = 0;

var nTrig = 0;

var aPriceArray

var aCGArray

var aValue1Array

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“FisherStochasticCGOsc”);

setCursorLabelName(“CG”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

FIGURE 8.14 EFS Code to Compute the Fisher Stochastic CG

c08.qxd 2/2/04 10:47 AM Page 97

97 Stochasticization and Fisherization of Indicators

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;
aCGArray[x] = 0.0;
aValue1Array[x] = 0.0;

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

var nMaxCG;

var nMinCG;

var nValue1;

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aPriceArray.pop();

aPriceArray.unshift(0);

aCGArray.pop();

aCGArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

(continued)

FIGURE 8.14 (Continued)

c08.qxd 2/2/04 10:47 AM Page 98

98 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nTrig = nValue3;

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += (1.0 + x)

* (aPriceArray[x]);

nDenom += (aPriceArray[x]);

}

if (nDenom != 0) nCG = -nNum/nDenom

+ (OscLength+1)/2;

aCGArray[0] = nCG;

nMaxCG = Highest(OscLength);

nMinCG = Lowest(OscLength);

if (nMaxCG != nMinCG) aValue1Array[0]

= (nCG - nMinCG) / (nMaxCG - nMinCG);

nValue2 = (4*aValue1Array[0]

+ 3*aValue1Array[1] + 2*aValue1Array[2]
+ aValue1Array[3]) / 10;

nValue3 = 0.5 * Math.log((1 + 1.98

* (nValue2-0.5)) / (1 - 1.98
* (nValue2-0.5)));

//return the calculated values

if (!isNaN(nValue3)) {

return new Array(nValue3, nTrig);

}

}

FIGURE 8.14 (Continued)

c08.qxd 2/2/04 10:47 AM Page 99

99 Stochasticization and Fisherization of Indicators

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aCGArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aCGArray[x]);

}

return(nTmp);

}

FIGURE 8.14 (Continued)

{***

Fisher RVI

***}

Inputs: Length(8);

Vars:	 Num(0),

Denom(0),

count(0),

(continued)

FIGURE 8.15 EasyLanguage Code to Compute the Fisher Stochastic RVI

c08.qxd 2/2/04 10:47 AM Page 100

100 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

RVI(0),

Lead(0),

MaxRVI(0),

MinRVI(0);

Value1 = ((Close - Open) + 2*(Close[1] - Open[1])

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1])

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin

Num = Num + Value1[count];

Denom = Denom + Value2[count];

End;

If Denom <> 0 then RVI = Num / Denom;

MaxRVI = Highest(RVI, Length);

MinRVI = Lowest(RVI, Length);

If MaxRVI <> MinRVI then Value3 = (RVI - MinRVI)

/ (MaxRVI - MinRVI);

Value4 = (4*Value3 + 3*Value3[1] + 2*Value3[2]

+ Value3[3]) / 10;

Value5 = .5*Log((1+1.98*(Value4 - .5))/(1-1.98*(Value4

- .5)));

Plot1(Value5, “RVI”);

Plot2(Value5[1], “Trigger”);

Plot3(0,”Ref”);

FIGURE 8.15 (Continued)

c08.qxd 2/2/04 10:47 AM Page 101

101 Stochasticization and Fisherization of Indicators

/***

Title: FisherStochastic RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nValue5 = 0;
var nTrig = 0;

var aRVIArray = new Array();
var aValue1Array = new Array();
var aValue2Array = new Array();
var aValue3Array = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“FisherStochasticRVI”);

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

addBand(0, PS_SOLID, Color.black, 1, -55);

//initialize arrays

for (x=0; x<70; x++) {

(continued)

FIGURE 8.16 EFS Code to Compute the Fisher Stochastic RVI

c08.qxd 2/2/04 10:47 AM Page 102

102 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aRVIArray[x] = 0.0;
aValue1Array[x] = 0.0;
aValue2Array[x] = 0.0;
aValue3Array[x] = 0.0;

}

}

//== Main processing function

function main(OscLength) {

var x;

var nNum;

var nDenom;

var nValue4;

var nMaxRVI;

var nMinRVI;

//initialize parameters if necessary

if (OscLength == null) {

OscLength = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aRVIArray.pop();

aRVIArray.unshift(0);

aValue1Array.pop();

aValue1Array.unshift(0);

aValue2Array.pop();

aValue2Array.unshift(0);

aValue3Array.pop();

aValue3Array.unshift(0);

FIGURE 8.16 (Continued)

c08.qxd 2/2/04 10:47 AM Page 103

103 Stochasticization and Fisherization of Indicators

nTrig = nValue5;

}

aValue1Array[0] = ((close()-open())

+ 2*(close(-1)-open(-1))
+ 2*(close(-2)-open(-2))
+ (close(-3)-open(-3))) / 6;

aValue2Array[0] = ((high()-low())

+ 2*(high(-1)-low(-1))
+ 2*(high(-2)-low(-2))
+ (high(-3)-low(-3))) / 6;

nNum = 0;

nDenom = 0;

for (x=0; x<OscLength; x++){

nNum += aValue1Array[x];

nDenom += aValue2Array[x];

}

if (nDenom != 0) aRVIArray[0] = nNum/nDenom;

nMaxRVI = Highest(OscLength);

nMinRVI = Lowest(OscLength);

if (nMaxRVI != nMinRVI) aValue3Array[0]

= (aRVIArray[0]-nMinRVI)

/ (nMaxRVI-nMinRVI);

nValue4 = (4*aValue3Array[0]

+ 3*aValue3Array[1] + 2*aValue3Array[2]
+ aValue3Array[3]) / 10;

nValue5 = 0.5 * Math.log((1 + 1.98

* (nValue4-0.5)) / (1 - 1.98
* (nValue4-0.5)));

//return the calculated values

if (!isNaN(nValue5)) {

return new Array(nValue5, nTrig);

}

}

(continued)

FIGURE 8.16 (Continued)

c08.qxd 2/2/04 10:47 AM Page 104

104 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

SUPPORT FUNCTIONS

***/

function Highest(nPeriod) {

var x;

var nTmp = -999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.max(nTmp, aRVIArray[x]);

}

return(nTmp);

}

function Lowest(nPeriod) {

var x;

var nTmp = 999999999.0;

for (x=0; x<nPeriod; x++) {

nTmp = Math.min(nTmp, aRVIArray[x]);

}

return(nTmp);

}

FIGURE 8.16 (Continued)

The three Fisherized indicators are compared in Figure 8.17. In all
cases, the Fisher transform provides a means to filter the undesired whip-
saw signals by ignoring line crossovers that happen at an absolute ampli-
tude of less than 2. It appears that the Fisher RVI is the superior oscillator
because, almost without exception, it provides trading signals several bars
in advance of the other indicators. That makes it a really good indicator
because the other two are not slouches in their own right. Any or all of the
three can be a profound addition to your technical analysis tools.

c08.qxd 2/2/04 10:47 AM Page 105

105 Stochasticization and Fisherization of Indicators

FIGURE 8.17 Fisherized Indicators Give Razor-Sharp Trading Signals

KEY POINTS TO REMEMBER

•	 New, easier-to-read oscillators can be created by applying the Stochastic
calculation to existing indicators.

•	 The Stochastic RVI is an extraordinarily smooth and consistent oscil-
lator.

•	 Performing a Fisher transform on amplitude-limited oscillators pro-
vides a way to eliminate whipsaw signals by ignoring crossovers that
occur at amplitudes less than 2.

•	 The Fisher RSI provides consistently timely signals with surgical pre-
cision.

c08.qxd 2/2/04 10:47 AM Page 106

c09.qxd 2/2/04 10:47 AM Page 107

CHAPTER 9

Measuring Cycles

“Looks like rain,” said Tom precipitously.

I t is obvious that cycles exist in the market. They can be found on any
chart by the most casual observer. What is not so clear is how to iden-
tify those cycles in real time and how to take advantage of their exis-

tence. When Welles Wilder first introduced the Relative Strength Index
(RSI), I was curious as to why he selected 14 bars as the basis of his calcu-
lations. I reasoned that if I knew the correct market conditions, then I
could make indicators such as the RSI adaptive to those conditions. Cycles
were the answer. I knew cycles could be measured. Once I had the cyclic
measurement, a host of automatically adaptive indicators could follow.

Measurement of market cycles is not easy. The signal-to-noise ratio is
often very low, making measurement difficult even using a good measure-
ment technique. Additionally, the measurements theoretically involve
simultaneously solving a triple infinity of parameter values. The parame-
ters required for the general solutions were frequency, amplitude, and
phase. Some standard engineering tools, like fast Fourier transforms
(FFTs), are simply not appropriate for measuring market cycles because
FFTs cannot simultaneously meet the stationarity constraints and produce
results with reasonable resolution. Therefore I introduced Maximum
Entropy Spectral Analysis (MESA) for the measurement of market cycles.
This approach, originally developed to interpret seismographic informa-
tion for oil exploration, produces high-resolution outputs with an excep-
tionally short amount of information. A short data length improves the
probability of having nearly stationary data. Stationary data means that fre-
quency and amplitude are constant over the length of the data. I noticed
over the years that the cycles were ephemeral. Their periods would be

107

c09.qxd 2/2/04 10:47 AM Page 108

108 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

continuously increasing and decreasing. Their amplitudes also were chang-
ing, giving variable signal-to-noise ratio conditions. Although all this is
going on with the cyclic components, the enduring characteristic is that
generally only one tradable cycle at a time is present for the data set being
used. I prefer the term Dominant Cycle to denote that one component. The
assumption that there is only one cycle in the data collapses the difficulty
of the measurement process dramatically.

Assuming that only one cycle is present in the data enables the mea-
surement to be made using a frequency discriminator. A frequency discrimi-
nator basically measures the differential phase between successive samples.
Since there are 360 degrees in each cycle, dividing 360 by the differential
phase produces the measured cycle length. For example, if the differential
phase is 20°, the resulting cycle length would be 360/20 = 18 bars. That is, an
18-bar cycle is changing phase at the rate of 20° per sample so that 360° (one
cycle) is reached after 18 samples. Pretty simple! The most significant fact is
that, in theory, the cycle measurement can be attained in just two samples.

To make the phase measurements, we need to describe the cycle in
terms of a phasor instead of the conventional waveform with which we are
familiar. The relationship between the cycle waveform and the phasor is
shown in Figure 9.1. Imagine the phasor as the arrow whose tail is pinned
at the origin and is rotating counterclockwise. A shadow cast by the arrow-
head would then trace out the sinewave cycle. That is, as the phasor
rotates, the peak amplitude is reached, followed by the zero crossing, fol-
lowed by the minimum cycle amplitude, and then back to zero, and so on.
One complete rotation of the phasor describes a cycle.

The phasor can be broken into two components, called the InPhase
and Quadrature components, as shown in Figure 9.2. The phase angle for
any given sample is easily found as the arctangent of the ratio of these two
components.

FIGURE 9.1 A Phasor Can Represent a Cycle

c09.qxd 2/2/04 10:47 AM Page 109

Measuring Cycles 109

FIGURE 9.2 The Phase Angle Is the Arctangent of the Ratio of the Quadrature and
InPhase Components

The trick is to break the analytic waveform (the cyclic component of
prices in the form with which we are familiar) into the InPhase and
Quadrature components. This is done with the Hilbert transform.1 The
Hilbert transform is theoretically an infinite series; to make it practical for
traders I have truncated the series at four elements. The equation for the
Quadrature component in EasyLanguage notation is

Q = 0.0962 * Price + 0.5769 * Price[2] − 0.5769
* Price[4] − 0.0962 * Price[6]; (9.1)

The lag of the Quadrature component is half the filter length, or three
bars. Therefore the InPhase component is just the price delayed by three
bars, or

I = Price[3]; (9.2)

To test the speed of the cycle-measuring process, I created a single
cycle of a 20-bar sinewave. I then applied the Hilbert transform, computed
the phase angles, and used a discriminator to measure the cycle period.
The results of this experiment are shown in Figure 9.3. These results are
impressive. An accurate measurement of the cycle period is made within
four samples of the beginning of the cycle. That four-sample lag is just the
lag of the Hilbert transform plus one more sample because the phase dif-
ference between samples is required for the computation of the period.

Before getting too excited about these results, please recall that
this is a purely monochromatic theoretical waveform having an infinite
signal-to-noise ratio. Furthermore, the waveform is already detrended
because the cycle swings about the zero line. In the real world we must

c09.qxd 2/2/04 10:47 AM Page 110

110 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 9.3 The Hilbert Transform Enables Rapid Measurement of the Cycle Period

detrend the signal to extract the cyclic component and then also deal
with the noise that is superimposed on the signal. In other words, we
need to compute the cyclic component of the market prices as we did in
Figure 4.2 before we compute the cycle period.

The EasyLanguage and eSignal Formula Script (EFS) codes for com-
puting the cycle period are shown in Figures 9.4 and 9.5, respectively. The
description of the calculation is done with reference to Figure 9.4. After
defining the inputs and declaring the variables, the first three lines of code
recover the cyclic component, just as in Figure 4.2. The cyclic component
is used to compute the Quadrature (Q1) and InPhase (I1) components of
the Hilbert transform. One penalty for truncating the infinite series in com-
puting the Quadrature component is that its amplitude is attenuated for the
longer cycle periods. The last term in the computation of Q1 is a straight-
line amplitude correction. Since the period is not yet known at this point in
the code, and since the period is a relatively slowly varying function from
sample to sample, it is satisfactory to use the period computed one bar ago
in this compensation. I found this feedback compensation to be the most
robust approach.

There is another amplitude compensation scheme that is possible. In
the case of a pure cycle I can think of the InPhase component being Cos (θ)

c09.qxd 2/2/04 10:47 AM Page 111

Measuring Cycles	 111

Inputs:	 Price((H+L)/2),

alpha(.07);

Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

I2(0),

Q2(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC

= 6.28318 / MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Plot1(Period, “Period”);

FIGURE 9.4 EasyLanguage Code to Compute the Cycle Period

c09.qxd 2/2/04 10:47 AM Page 112

112 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Cycle Period
Coded By: Chris D. Kryza (Divergence Software, Inc.)
Email: c.kryza@gte.net
Incept: 06/19/2003
Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray

var aSmoothArray

var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Cycle Period”);

setCursorLabelName(“Period”, 0);

setDefaultBarFgColor(Color.blue, 0);

FIGURE 9.5 EFS Code to Compute the Cycle Period

c09.qxd 2/2/04 10:47 AM Page 113

Measuring Cycles 113

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aQ1[x] = 0.0;
aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;

}

}

//== Main processing function

function main(Alpha) {

var x;

var nDC;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

(continued)

FIGURE 9.5 (Continued)

c09.qxd 2/2/04 10:47 AM Page 114

114 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2]) / 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

FIGURE 9.5 (Continued)

c09.qxd 2/2/04 10:47 AM Page 115

Measuring Cycles 115

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1]) / (1
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

//Need a 5 bar Median filter of DeltaPhase here_

(MedianDelta)

nMedianDelta = Median(5, aDeltaPhase);

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

return(aPeriod[0]);

}

function Median(nBars, aArray) {

var aTmp = new Array();

(continued)

FIGURE 9.5 (Continued)

c09.qxd 2/2/04 10:47 AM Page 116

116 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two_

middle elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 9.5 (Continued)

c09.qxd 2/2/04 10:47 AM Page 117

� ��

Measuring Cycles 117

and the Quadrature component being Sin (θ). Then, a compensation for
amplitude error in the Quadrature component can be computed from the
simple trigonometric identity

Sin2(θ) = 1 − Cos2(θ)

and normalizing amplitudes. While this is a great theory, and it works on the-
oretical waveforms, I could not obtain satisfactory compensation on real
price data because of the noise present in that data. I therefore use the feed-
back amplitude compensation in the code.

The computation of the DeltaPhase starts with a conditional IF state-
ment to preclude the possibility of dividing by 0. Some explanation for the
rest of the line is required. The phase angle measured for the current bar is
ArcTan (I1/Q1) and the phase angle for one bar ago is ArcTan (I1[1]/Q1[1]).
The differential phase calculation is simplified using the trigonometric
identity

A − B
ArcTan (A) − ArcTan(B) = ArcTan (9.3)

1 + AB

A six-bar cycle is as short as we need to measure. A six-bar cycle has a
phase shift of 60° per bar, or 1.047 radians per bar. Since the differential
phase has a maximum of about one radian, a reasonable approximation is
that the angle in radians is approximately equal to the arctangent of that
angle. This is the approximation we have applied to the computation of the
differential angle in the code.

After the DeltaPhase is first computed, some limits must be estab-
lished. First, the DeltaPhase must always be positive because time cannot
run backward. If we get a negative DeltaPhase computation, it is either due
to noise or because the two absolute phase measurements have split a
quadrant of the phasor. (The arctangent is positive in quadrants 1 and 3 and
is negative in quadrants 2 and 4.) In the case of a negative DeltaPhase, it is
satisfactory to substitute the previous calculation. Instead, if the
DeltaPhase is less than 0.1 radians I limit it to 0.1 radians. This is because a
DeltaPhase smaller than 0.1 radians implies the period is greater than 63
bars (2 * π/0.1). The other limit is to not compute a period of less than six
bars. This is done by limiting the DeltaPhase to 1.1 radians.

The actual calculation of the cycle period is perhaps the easiest part of
the code to understand. In a nutshell, the concept is to divide the
DeltaPhase into 2π because 2π represents one full cycle of phases in radian.
measure. In practice, DeltaPhase is very noisy, varying by a large amount
from bar to bar. If DeltaPhase were used directly, substantial smoothing
would be required to recover a reasonable Dominant Cycle. There is a

c09.qxd 2/2/04 10:47 AM Page 118

118 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

more efficient way of smoothing. The best kind of filter to use on spiky data
is a median filter. Therefore I filter the DeltaPhases over five samples in a
median filter to give the variable MedianDelta. MedianDelta is then divided
into 2π to compute the Dominant Cycle. Measuring theoretical sinewave.
periods, I found there is a bias of about 0.5 in the period measurement, and
therefore added a compensation term to remove that bias. The Dominant
Cycle is smoothed in an exponential moving average having α = 0.33 for a
relatively rapid response for the feedback term in the computation of Q1. I
call this variable the Instantanteous Period (InstPeriod). The InstPeriod is
then smoothed again in an exponential moving average having α = 0.15.
This value was selected to reach the full cycle length measurement in one
cycle of a 20-bar signal, starting from 0.

I have conducted a number of rigorous tests to examine the quality of
the cycle measurement. First among these is to examine the start-up tran-
sient in a way similar to the single cycle measurement of Figure 9.3. The
final results are shown in the bottom subgraph of Figure 9.6. In this case,
I continue the 20-bar cycles after the first one. The InstPeriod comes up
to a 20-bar measurement at 8 bars after initiation. This is consistent with
the 1.5-bar lag of the smoothing filter plus the four-bar lag for the Hilbert

FIGURE 9.6 Measurement of a Single 20-Bar Cycle

c09.qxd 2/2/04 10:47 AM Page 119

Measuring Cycles 119

transform plus the 2.5-bar lag of the median filter. The smoothing of the
period output is due to the exponential moving average. I could have used
less smoothing. However, cycle periods tend to change relatively slowly in
real data, and the greater amount of smoothing is desirable when lag is of
less concern. These results should be viewed in context. For example, an
FFT would take about 16 cycles of data to make a measurement of compa-
rable resolution. Yes, you read it correctly—16 full cycles of data would be
required by an FFT for equivalent results. Even MESA would take a large
fraction of the cycle to make the first measurement.

With any measurement algorithm, one crucial test is whether the algo-
rithm makes a correct measurement over a wide range of input data. To
this end I created a theoretical sinewave whose period gradually increased
from 6 bars to 40 bars. Figure 9.7 shows this waveform and shows that the
measurement of its cycle periods is very accurate.

Another transient and accuracy test is to measure how fast the mea-
surement algorithm can follow the switch from a 30-bar cycle to a 15-bar
cycle and back. In Figure 9.8, the data consists of two cycles of a 30-bar

FIGURE 9.7 Measurement of a Chirped Waveform Whose Period Increases from 6 Bars
to 40 Bars

c09.qxd 2/2/04 10:47 AM Page 120

120 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 9.8 Measurement of Cycle Periods Varying from 30-Bar Cycles to 15-Bar
Cycles and Back

cycle, four cycles of a 15-bar cycle, and two more cycles of a 30-bar cycle.
This is a severe test, requiring the measurement to slew over a wide range
between harmonically related cycles. This test shows that the measure-
ment is within reasonable range of the actual period within 15 samples,
switching either way.

The basic message here is that the cycle measurement has a lag of
about 8 bars, as demonstrated in Figure 9.6, up to a lag of about 15 bars in
one of the most stressing situations. This lag should be recognized when
the measurement is used in trading.

Figure 9.9 shows the cycle period measurement of real data. This mea-
surement is far more responsive than the more common measurements.
Measurement accuracy can be tested by counting bars between major suc-
cessive lowest lows or major successive highest highs and comparing the
count to the measurement at that point. There are five bars per horizontal
unit as a tip to help speed up your bar count. Please recall that there is
about an eight-bar lag in the cycle measurement waveform.

c09.qxd 2/2/04 10:47 AM Page 121

Measuring Cycles	 121

FIGURE 9.9 Cycle Measurement of Real Data

KEY POINTS TO REMEMBER

•	 The Hilbert transform enables the cycle period to be measured in as
few as four bars.

•	 The cyclic component must be extracted from the data and then used
to measure the Dominant Cycle period.

•	 The frequency discriminator to measure the Dominant Cycle period
just sums the differential phases between bars until the sum reaches
360°—a full cycle.

•	 A five-bar median filter creates the differential phase to be summed.
•	 Summing the median differential phase enables the cycle measure-

ment to be made using only five samples.
•	 The lag of measuring the Dominant Cycle period is about eight bars.
•	 The Dominant Cycle period measurement technique described in this

chapter is the most responsive technique available.

c09.qxd 2/2/04 10:47 AM Page 122

c10.qxd 2/2/04 10:50 AM Page 123

CHAPTER 10

Adaptive Cycle
Indicators

“The dinosaurs did not survive,” said Tom adaptively.

Having made the cycle period measurements as in Chapter 9, one
brute force application would be to note the most recent highest
high and then count forward the number of bars equal to half the

dominant cycle period to locate the next buying opportunity. Fortunately,
we can be much more sophisticated in our analysis using indicators. If indi-
cators work moderately well using fixed lengths in their computation, then
these indicators should sparkle when the length is adaptive to a fraction of
the measured dominant cycle.

I developed several oscillator-type indicators in Chapters 4 through 6. I
will now revisit each of these and examine the improvements that result
from using a Dominant Cycle measurement to make their computational
length adaptive to the current market conditions. In each case, I compare
the adaptive version of the indicator to the static version. I also compare
the three adaptive indicators to each other for you to judge which is prefer-
able. Since I use the same price chart throughout this book for consistency,
and because you can test these indicators on your own computer using
your own data, I will not bore you with agonizing details regarding indica-
tor performance and comparisons.

ADAPTIVE CYBER CYCLE

The most simple cycle indicator was the Cyber Cycle, which was extracted

from the price series in Chapter 4 by filtering out the trend component.

The filter itself was derived in Chapter 2. This filter used the coefficient

123

c10.qxd 2/2/04 10:50 AM Page 124

124 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

α = 0.07. The EasyLanguage and eSignal Formula Script (EFS) codes for
the adaptive version of the Cyber Cycle Indicator are shown in Figures 10.1
and 10.2, respectively. Here, the Dominant Cycle is computed exactly as in
Chapter 9. A fixed value of alpha is used to make the Dominant Cycle
period measurement; then the measured Dominant Cycle is used to com-
pute the coefficient alpha1. It is commonly recognized that the exponential
moving alpha is related to the length of a simple moving average by the
equation α = 2/(Length + 1). In this case, I use the Dominant Cycle period
as the length in the computation of alpha1. This enables the Cyber Cycle
Indicator to be adaptive to the measured Dominant Cycle period. A trigger
signal consisting of the adaptive cycle delayed by one bar is also included
in the indicator. Crossings of the adaptive cycle indicator and the trigger
signal represent the buy and sell opportunities identified by this indicator.

Figure 10.3 shows the Adaptive Cyber Cycle Indicator compared to the
static Cyber Cycle. This comparison shows that the adaptive indicator gen-
erally emphasizes the cyclic swings and is often one bar earlier in produc-
ing buy and sell signals.

ADAPTIVE CG INDICATOR

The CG Oscillator, derived in Chapter 5, finds the center of gravity of a
fixed-length data sample as the sampling window is moved from bar to
bar. The Adaptive CG Indicator uses half the measured Dominant Cycle
period as the adaptive length of this variant of the CG Oscillator. The
EasyLanguage and EFS codes for the adaptive version of the CG Oscillator
are shown in Figures 10.4 and 10.5, respectively. Here, the dominant cycle
is computed exactly as in Chapter 9. A fixed value of alpha is used to make
the dominant cycle period measurement. The variable IntPeriod is com-
puted as the integer portion of a four-bar weighted moving average of the
Period. Since the weighted coefficients are divided by twice their sum,
IntPeriod is the integer value of half the Dominant Cycle period. An integer
value is required to sum the numerator and denominator in the subsequent
code. Since the length of the summing varies with the length of the mea-
sured Dominant Cycle period, the CG is adaptive to it.

Figure 10.6 shows the Adaptive CG Indicator compared to the static
CG Oscillator. This comparison in this data set does not display any dra-
matic change in the indicator as a result of making it adaptive.

ADAPTIVE RELATIVE VIGOR INDEX

The RVI, derived in Chapter 6, finds the difference of the close minus

the open, normalized to the difference of the high and low. This ratio was

c10.qxd 2/2/04 10:50 AM Page 125

125 Adaptive Cycle Indicators

{***

Adaptive Cycle

***}

Inputs: Price((H+L)/2),

alpha(.07);

Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Length(0),

Num(0),

Denom(0),

alpha1(0),

AdaptCycle(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

(continued)

FIGURE 10.1 EasyLanguage Code for the Adaptive Cyber Cycle

c10.qxd 2/2/04 10:50 AM Page 126

126 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Period = .15*InstPeriod + .85*Period[1];

alpha1 = 2 / (Period + 1);

AdaptCycle = (1 - .5*alpha1)*(1 - .5*alpha1)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1
- alpha1)*AdaptCycle[1] - (1 - alpha1)*(1
- alpha1)*AdaptCycle[2];

If currentbar < 7 then AdaptCycle = (Price

- 2*Price[1] + Price[2]) / 4;

Plot1(AdaptCycle, “AdaptCycle”);

Plot2(AdaptCycle[1], “Trigger”);

FIGURE 10.1 (Continued)

/***

Title: Adaptive Cyber Cycle Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();

FIGURE 10.2 EFS Code for the Adaptive Cyber Cycle

c10.qxd 2/2/04 10:50 AM Page 127

127 Adaptive Cycle Indicators

var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1

var aACycleArray

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Adaptive CyberCycle”);

setCursorLabelName(“Cycle”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aQ1[x] = 0.0;
aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;
aACycleArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha) {

var x;

var Alpha1;

var nDC;

var nMedianDelta;

//initialize parameters if necessary

(continued)

FIGURE 10.2 (Continued)

c10.qxd 2/2/04 10:50 AM Page 128

128 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

if (Alpha == null) {

Alpha = 0.07;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aACycleArray.pop();

aACycleArray.unshift(0);

FIGURE 10.2 (Continued)

c10.qxd 2/2/04 10:50 AM Page 129

129 Adaptive Cycle Indicators

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1] + aPriceArray[2])
/ 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1]) / (1
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

(continued)

FIGURE 10.2 (Continued)

c10.qxd 2/2/04 10:50 AM Page 130

130 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

Alpha1 = 2 / (aPeriod[0] + 1);

if (nBarCount < 7) {

aACycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2])/4;

}

else {

aACycleArray[0] = (1 - 0.5*Alpha1)

* (1 - 0.5*Alpha1)
* (aSmoothArray[0]
- 2*aSmoothArray[1] +

aSmoothArray[2]) + 2*(1

- Alpha1) * aACycleArray[1]
- (1-Alpha1) * (1-Alpha1)
* aACycleArray[2];

}

//return the calculated values

if (!isNaN(aACycleArray[0])) {

return new Array(aACycleArray[0],_

aACycleArray[1]);

}

}

FIGURE 10.2 (Continued)

c10.qxd 2/2/04 10:50 AM Page 131

131 Adaptive Cycle Indicators

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two middle

elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 10.2 (Continued)

c10.qxd 2/2/04 10:50 AM Page 132

132 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 10.3 Adaptive Cyber Cycle Indicator Is More Responsive to Cyclic Price
Variations than Static Cyber Cycle Indicator

{***

Adaptive CG

***}

Inputs: Price((H+L)/2),

Vars:

alpha(.07);

Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

count(0),

Num(0),

Denom(0),

CG(0),

IntPeriod(0);

FIGURE 10.4 EasyLanguage Code to Compute the Adaptive CG Indicator

c10.qxd 2/2/04 10:50 AM Page 133

133 Adaptive Cycle Indicators

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Value1 = .15*InstPeriod + .85*Value1[1];

IntPeriod = intportion(Value1 / 2);

Num = 0;

Denom = 0;

For count = 0 to IntPeriod - 1 begin

Num = Num + (1 + count)*(Price[count]);

Denom = Denom + (Price[count]);

End;

If Denom <> 0 then CG = -Num/Denom + (IntPeriod + 1)

/ 2;

Plot1(CG, “CG”);

Plot2(CG[1], “Trigger”);

FIGURE 10.4 (Continued)

c10.qxd 2/2/04 10:50 AM Page 134

134 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Adaptive CG Oscillator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();
var aCycleArray = new Array();
var aDeltaPhase = new Array();
var aPeriod = new Array();
var aInstPeriod = new Array();
var aQ1 = new Array();
var aI1 = new Array();
var aCGArray = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Adaptive CG”);

setCursorLabelName(“CG”, 0);

FIGURE 10.5 EFS Code to Compute the Adaptive CG Indicator

c10.qxd 2/2/04 10:50 AM Page 135

135 Adaptive Cycle Indicators

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aQ1[x] = 0.0;
aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;
aCGArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha) {

var x;

var nCG = 0;

var nDC;

var nIntPeriod;

var nNum;

var nDenom;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

(continued)

FIGURE 10.5 (Continued)

c10.qxd 2/2/04 10:50 AM Page 136

136 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aCGArray.pop();

aCGArray.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1]
+ aPriceArray[2]) / 4;

FIGURE 10.5 (Continued)

c10.qxd 2/2/04 10:50 AM Page 137

137 Adaptive Cycle Indicators

}

else {

aCycleArray[0] = (1 - 0.5*Alpha) * (1

- 0.5*Alpha) * (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha) * (1-
Alpha) * aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1]) / (1
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

(continued)

FIGURE 10.5 (Continued)

c10.qxd 2/2/04 10:50 AM Page 138

138 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nIntPeriod = Math.floor((4*aPeriod[0]

+ 3*aPeriod[1] +

2*aPeriod[3] + aPeriod[4]) / 20);

nNum = 0;

nDenom = 0;

for (x=0; x<nIntPeriod; x++){

nNum += (1.0 + x)

* (aPriceArray[x]);

nDenom += (aPriceArray[x]);

}

if (nDenom != 0) nCG = -nNum/nDenom

+ (nIntPeriod+1)/2;

aCGArray[0] = nCG;

//return the calculated values

if (!isNaN(aCGArray[0])) {

return new Array(aCGArray[0],

aCGArray[1]);

}

}

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

FIGURE 10.5 (Continued)

c10.qxd 2/2/04 10:50 AM Page 139

139 Adaptive Cycle Indicators

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two middle_

elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 10.5 (Continued)

computed over a fixed period. The Adaptive RVI Indicator uses half the
measured Dominant Cycle period as the adaptive length of this variant of
the RVI. The EasyLanguage and EFS codes for the adaptive version of the
RVI are shown in Figures 10.7 and 10.8, respectively. Here the Dominant
Cycle is computed exactly as in Chapter 9. A fixed value of alpha is used to
make the Dominant Cycle period measurement. The variable Length is
computed as the integer portion of a four-bar weighted moving average of
the period. Since the weighted coefficients are divided by twice their sum,

c10.qxd 2/2/04 10:50 AM Page 140

140 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 10.6 Adaptive CG Indicator Compared to Static CG Oscillator

{***

Adaptive RVI

***}

Inputs: Price((H+L)/2),

Vars:

alpha(.07);

Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

count(0),

Length(0),

Num(0),

Denom(0),

RVI(0),

MaxRVI(0),

FIGURE 10.7 EasyLanguage Code to Compute the Adaptive RVI

c10.qxd 2/2/04 10:50 AM Page 141

141 Adaptive Cycle Indicators

MinRVI(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;
Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Length = intportion((4*Period + 3*Period[1]

+ 2*Period[3] + Period[4]) / 20);

Value1 = ((Close - Open) + 2*(Close[1] - Open[1])

+ 2*(Close[2] - Open[2]) + (Close[3] - Open[3]))/6;

Value2 = ((High - Low) + 2*(High[1] - Low[1])

+ 2*(High[2] - Low[2]) + (High[3] - Low[3]))/6;

Num = 0;

Denom = 0;

For count = 0 to Length - 1 begin

Num = Num + Value1[count];

Denom = Denom + Value2[count];

End;

If Denom <> 0 then RVI = Num / Denom;

Plot1(RVI, “RVI”);

Plot2(RVI[1], “Trigger”);

FIGURE 10.7 (Continued)

c10.qxd 2/2/04 10:50 AM Page 142

142 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Adaptive RVI

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();
var aCycleArray = new Array();
var aDeltaPhase = new Array();
var aPeriod = new Array();
var aInstPeriod = new Array();
var aQ1 = new Array();
var aI1 = new Array();
var aRVIArray = new Array();
var aV1Array = new Array();
var aV2Array = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Adaptive RVI”);

FIGURE 10.8 EFS Code to Compute the Adaptive RVI

c10.qxd 2/2/04 10:50 AM Page 143

143 Adaptive Cycle Indicators

setCursorLabelName(“RVI”, 0);

setCursorLabelName(“Trig”, 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aQ1[x] = 0.0;

aI1[x] = 0.0;

aDeltaPhase[x] = 0.0;

aPeriod[x] = 0.0;

aInstPeriod[x] = 0.0;

aRVIArray[x] = 0.0;

aV1Array[x] = 0.0;

aV2Array[x] = 0.0;

}

}

//== Main processing function

function main(Alpha) {

var x;

var nRVI = 0;

var nDC;

var nLength;

var nNum;

var nDenom;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

(continued)

FIGURE 10.8 (Continued)

c10.qxd 2/2/04 10:50 AM Page 144

144 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aRVIArray.pop();

aRVIArray.unshift(0);

aV1Array.pop();

aV1Array.unshift(0);

aV2Array.pop();

aV2Array.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

FIGURE 10.8 (Continued)

c10.qxd 2/2/04 10:50 AM Page 145

145 Adaptive Cycle Indicators

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1] + aPriceArray[2])
/ 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha) * (1

- 0.5*Alpha) * (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha) * (1-
Alpha) * aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1])
/ (1 + aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

nPhaseSum = 0;
nOldPhaseSum = 0;
nDC = 0;

if (nMedianDelta == 0) {

(continued)

FIGURE 10.8 (Continued)

c10.qxd 2/2/04 10:50 AM Page 146

146 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

nLength = Math.floor((4*aPeriod[0]

+ 3*aPeriod[1] +

2*aPeriod[3] + aPeriod[4]) / 20);

aV1Array[0] = ((close()-open())

+ 2*(close(-1)-open(-1))
+ 2*(close(-2)-open(-2))
+ (close(-3)-open(-3))) / 6;

aV2Array[0] = ((high()-low())

+ 2*(high(-1)-low(-1))
+ 2*(high(-2)-low(-2))
+ (high(-3)-low(-3))) / 6;

nNum = 0;

nDenom = 0;

for (x=0; x<nLength; x++){

nNum += aV1Array[x];

nDenom += aV2Array[x];

}

if (nDenom != 0) nRVI = nNum/nDenom;

aRVIArray[0] = nRVI;

//return the calculated values

if (!isNaN(aRVIArray[0])) {

return new Array(aRVIArray[0],_

aRVIArray[1]);

}

FIGURE 10.8 (Continued)

c10.qxd 2/2/04 10:50 AM Page 147

147 Adaptive Cycle Indicators

}

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two middle

elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 10.8 (Continued)

c10.qxd 2/2/04 10:50 AM Page 148

148 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 10.9 The Adaptive RVI Is More Responsive to Shorter Cycle Variations than
the Static RVI

FIGURE 10.10 Adaptive Indicator Comparison

c10.qxd 2/2/04 10:50 AM Page 149

149 Adaptive Cycle Indicators

Length is the integer value of half the Dominant Cycle period. An integer
value is required to sum the numerator and denominator in the subsequent
code. Since the length of the summing varies with the length of the mea-
sured Dominant Cycle period, the RVI is adaptive to it.

Figure 10.9 shows the Adaptive RVI compared to the static RVI. As with
the other adaptive indicators, the contributions of the shorter cycle periods
are emphasized when compared to their static variants.

Figure 10.10 shows the three adaptive indicators compared to each
other. As with their static variants, all show about the same performance.
Perhaps the message is that once the cyclic component is extracted from
the data correctly, most oscillator-type indicators have about the same per-
formance. It may be true that one indicator performs better in one data set
than another. The bottom line is that you now have in your toolbox three
independently derived indicators from which to choose. It then becomes a
matter of personal preference.

KEY POINTS TO REMEMBER

•	 The adaptive indicators all use the measured Dominant Cycle as their
adaptive criterion.

•	 The Adaptive Cyber Cycle adapts to the full Dominant Cycle period in
the computation of its alpha1 filter parameter.

•	 The Adaptive CG Oscillator uses the integer portion of the half
Dominant Cycle period in the computation of the filter center of
gravity.

•	 The Adaptive RVI uses the integer portion of the half Dominant Cycle
period in the computation of the vigor ratio.

•	 All three adaptive indicators demonstrate similar performance.

c10.qxd 2/2/04 10:50 AM Page 150

c11.qxd 2/2/04 10:58 AM Page 151

CHAPTER 11

The Sinewave
Indicator

“I can forecast the future,” said Tom predictably.

Causal filters can never predict the future. In fact, all have lag. The
purpose of making good indicators adaptive in Chapter 9 was to
eliminate as much lag as possible, not to make a prediction. With the

Sinewave Indicator we are trying to create a noncausal filter that can pre-
dict the turning point of market cycles. Anticipation of the cyclic turning
points is a major advantage of the Sinewave Indicator when compared to
other oscillators, such as the RSI and Stochastic Indicators, that must wait
for confirmation.

In Chapter 9 I showed you how to measure the period of the dominant
market cycle for any bar in the data series. However, this measurement does
not tell us where we are within that cycle. To locate the position of the cycle,
we must measure the phase of the Dominant Cycle. Knowing the phase of
the cycle, we can take the sine of the measured phase to create an artificial
oscillator-type indicator. That is, the cyclic component of the market data is
synthesized as a pure sinewave. Any lag we created in the process of mea-
suring the phase can be mathematically removed. Furthermore, simply
adding 45° to the measured phase creates an artificial phase lead. This is the
noncausal factor. The phase is advanced on the presumption that the mea-
sured cycle has existed (at least briefly) in the past and will continue (at
least briefly) into the future. Advancing the phase by 45° and taking a sine of
the advanced phase angle produces an oscillator waveshape that leads the
original sinewave by one-eighth of a cycle. The two sinewaves therefore
cross 1⁄16 of a cycle before the peak cycle turning point and before the valley
turning point. For a 16-bar Dominant Cycle, this gives an ideal 1-bar advance
warning of the absolute Dominant Cycle turning points. For a 48-bar cycle,

151

c11.qxd 2/2/04 10:58 AM Page 152

152 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

the advance extends to 3 bars. For an eight-bar Dominant Cycle, the
advance warning is theoretically only half a bar.

My simplified model of the market consists of a trend and a cycle. There
are certainly additional components present in real markets, but we are ignor-
ing them in this simplified model. I call the highest-amplitude cycle the
Dominant Cycle. Experience bears out that the assumption of the presence of
a single Dominant Cycle is a workable approximation. Knowing the Dominant
Cycle period, the phase of this Dominant Cycle can be measured. But if the
market goes into a pure trend, there is no cycle. In this case, the phase ceases
to advance. If the phase does not advance, then the two sinewave waveshapes
of the Sinewave Indicator cannot cross. If the two waveshapes do not cross,
the Sinewave Indicator produces no cyclic buy or sell signals. This avoidance
of false whipsaw signals is a distinct advantage over traditional oscillators. In
practice, the phase does not exactly stop; the phase does languish and the
phase waveshape appears distinctly different than the constant rate of change
that is produced when the market is in a cycle mode. The phase varies
between 0° and 360°. If the cycle period is changing, there is an occasional
crossing of the Sinewave Indicator lines to correct the phase angle for the cur-
rent cycle period measurement. In these cases, the Sinewave Indicator lines
do not appear to be sinewaves in the vicinity of the crossing. Therefore, these
occasional bad crossing signals are easy to identify.

We obtain the Sinewave Indicator by plotting the sine of the measured
phase angle. This gives us an oscillator that always swings between the lim-
its of −1 and +1. We enhance the usability of this oscillator by plotting the
sine of the phase angle advanced by 45°. The effect of plotting these two
lines is shown for both the phasor and time domain presentations in Figure
11.1. Adding 45° clearly advances the phasor from a 45° slant to the vertical
position. This phase advance means the LeadSine waveform will crest
before the Sine crests. The LeadSine and Sine lines cross 22.5°, or 1⁄ of a16

cycle, before the turning point of the cycle is reached. If the market has a
cycle of 16 bars or less, this is a signal to enter or exit a trade immediately.
If the market has a longer cycle, there is some built-in anticipation time
before you pull the trigger.

FIGURE 11.1 Phasor and Time Domain Views of the Sinewave Indicator

c11.qxd 2/2/04 10:58 AM Page 153

153 The Sinewave Indicator

Compared to conventional oscillators such as the Stochastic or RSI,
the Sinewave Indicator has two major advantages. These are as follows:

1.	 The Sinewave Indicator anticipates the Cycle Mode turning point
rather than waiting for confirmation.

2.	 The phase does not advance when the market is in a Trend Mode.
Therefore the Sinewave Indicator does not tend to give false whipsaw
signals when the market is in a Trend Mode.

An additional advantage is that the anticipation signal is obtained
strictly by mathematically advancing the phase. Momentum is not em-
ployed. Therefore, the Sinewave Indicator signals are no more noisy than
the original signal.

The EasyLanguage and eSignal Formula Script (EFS) codes to mea-
sure Dominant Cycle phase and then to synthesize the Sinewave are
described with reference to Figures 11.2 and 11.3, respectively. The initial
part of the code measures the Dominant Cycle exactly as in Chapter 9. The
measured period must be further smoothed using an exponential moving
average (α = 0.15) because there is no further smoothing in the computa-
tion of the phase. The variable DCPeriod is the integer portion of the
smoothed Dominant Cycle period because it is used to sum over the period
and only an integer variable can be used for this purpose. Otherwise,
rounding errors cause erratic results. The cycle component of the data is
multiplied individually with the sine and cosine of the Dominant Cycle
period, and these two products are summed individually over one com-
plete cycle. These sums are known as the real part and the imaginary part
of the data. It is well known that the arctangent of their ratio is the phase of
cycle component. The arctangent function can go to infinity, and the code
precludes a computational problem if the ImagPart variable is smaller than
0.001. The arctangent function is also subject to ambiguities, depending on
in which phase quadrant the computation resides. In EasyLanguage, it is
simplest to resolve these ambiguities by rotating the DCPhase by 90° and
then adding another 180° if ImagPart is negative. If converting this code to
another language, care should be taken when dealing with the arctangent
function. First, most computer languages represent angles in terms of radi-
ans rather than degrees. Second, the ambiguity resolution scheme I used is
not universally appropriate for all languages. The Sine Indicator is plotted
simply as the sine of the phase angle of the Dominant Cycle and the
LeadSine Indicator is plotted as the sine of the phase angle plus 45°, giving
it the desired leading property.

The Sinewave Indicators are plotted against both theoretical analytic
waveforms and real-world data to demonstrate their performance. Figure
11.4 shows a theoretical 20-bar cycle sinewave analytic waveform. Note

c11.qxd 2/2/04 10:58 AM Page 154

154 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

{***

Sinewave Indicator

***}

Inputs: Price((H+L)/2),

alpha(.07);

Vars:	 Smooth(0),

Cycle(0),

I1(0),

Q1(0),

I2(0),

Q2(0),

DeltaPhase(0),

MedianDelta(0),

MaxAmp(0),

AmpFix(0),

Re(0),

Im(0),

DC(0),

alpha1(0),

InstPeriod(0),

DCPeriod(0),

count(0),

SmoothCycle(0),

RealPart(0),

ImagPart(0),

DCPhase(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

{Cycle = Price;}

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);
I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

FIGURE 11.2 EasyLanguage Code to Compute the Sinewave Indicator

c11.qxd 2/2/04 10:58 AM Page 155

155 The Sinewave Indicator

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318 /

MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Value1 = .15*InstPeriod + .85*Value1[1];

{Compute Dominant Cycle Phase}

DCPeriod = IntPortion(Value1);

RealPart = 0;

ImagPart = 0;

For count = 0 To DCPeriod - 1 begin

RealPart = RealPart + Sine(360 * count

/ DCPeriod) * (Cycle[count]);

ImagPart = ImagPart + Cosine(360 * count

/ DCPeriod) * (Cycle[count]);

End;

If AbsValue(ImagPart) > 0.001 then DCPhase

= Arctangent(RealPart / ImagPart);

If AbsValue(ImagPart) <= 0.001 then DCPhase = 90

* Sign(RealPart);

DCPhase = DCPhase + 90;

If ImagPart < 0 then DCPhase = DCPhase + 180;

If DCPhase > 315 then DCPhase = DCPhase - 360;

Plot1(Sine(DCPhase), “Sine”);

Plot2(Sine(DCPhase + 45), “LeadSine”);

FIGURE 11.2 (Continued)

how the LeadSine crosses over the Sine immediately prior to each peak
and valley in the price waveform. The LeadSine always crosses the Sine
line before the turning point in the cycle, giving advance indication of the
cyclic turning point. The amount of advance warning relative to the length
of the cycle is less for the shorter cycles.

The Sinewave Indicator is plotted in the bottom graph for the standard
data set in Figure 11.5. The market is in a trend at the left side of the chart
in August and September. We know this because the wiggles in the

c11.qxd 2/2/04 10:58 AM Page 156

156 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Sine Wave Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();
var aCycleArray = new Array();
var aDeltaPhase = new Array();
var aPeriod = new Array();
var aInstPeriod = new Array();
var aQ1 = new Array();
var aI1 = new Array();
var aV1Array = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Sine Wave”);

setCursorLabelName(“Sine”, 0);

setCursorLabelName(“LeadSine”, 1);

setDefaultBarFgColor(Color.blue, 0);

FIGURE 11.3 EFS Code for the Sinewave Indicator

c11.qxd 2/2/04 10:58 AM Page 157

157 The Sinewave Indicator

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<70; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aQ1[x] = 0.0;
aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;
aV1Array[x] = 0.0;

}

}

//== Main processing function

function main(Alpha) {

var x;

var nDC;

var nDCPeriod;

var nRealPart;

var nImagPart;

var nDCPhase = 0.0;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

(continued)

FIGURE 11.3 (Continued)

c11.qxd 2/2/04 10:58 AM Page 158

158 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aV1Array.pop();

aV1Array.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1] + aPriceArray[2])
/ 4;

}

else {

FIGURE 11.3 (Continued)

c11.qxd 2/2/04 10:58 AM Page 159

159 The Sinewave Indicator

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0] - 2
*aSmoothArray[1] + aSmoothArray[2])

+ 2*(1-Alpha) * aCycleArray[1]
- (1-Alpha) * (1-Alpha)
* aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1])
/ (1 + aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

aV1Array[0] = 0.15*aPeriod[0]

+ 0.85*aV1Array[1];

(continued)

FIGURE 11.3 (Continued)

c11.qxd 2/2/04 10:58 AM Page 160

160 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//compute dominant cycle phase

nDCPeriod = Math.floor(aV1Array[0]);

nRealPart = 0.0;

nImagPart = 0.0;

for (x=0; x<nDCPeriod; x++) {

nRealPart += Math.sin(DegToRad_

(360*x/nDCPeriod))

* (aCycleArray[x]);

nImagPart += Math.cos(DegToRad_

(360*x/nDCPeriod))

* (aCycleArray[x]);

}

if (Math.abs(nImagPart) > 0.001) nDCPhase

= RadToDeg(Math.atan_

(nRealPart/nImagPart));

if (Math.abs(nImagPart) <= 0.001) nDCPhase

= 90 * (nRealPart<0 ? -1 : 1);

nDCPhase += 90;

if (nImagPart < 0) nDCPhase += 180;

//return the calculated values

if (!isNaN(nDCPhase)) {

return new Array(Math.sin(DegToRad_

(nDCPhase)), Math.sin(DegToRad_

(nDCPhase+45)));

}

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

FIGURE 11.3 (Continued)

c11.qxd 2/2/04 10:58 AM Page 161

161 The Sinewave Indicator

//== Convert Radians to Degrees

function RadToDeg(nValue) {

var nTmp;

nTmp = nValue * (180 / Math.PI);

return(nTmp);

}

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two_

middle elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

(continued)

FIGURE 11.3 (Continued)

c11.qxd 2/2/04 10:58 AM Page 162

162 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 11.3 (Continued)

Sinewave Indicator do not cross. In other words, the Sinewave Indicator
indicates that some kind of trend-following system should be used. Then
there are three clear cyclic turning points until the trend is indicated again
in November. This is a case where the phase is unwinding and there is no
clear cyclic crossover in the indicator. The Sinewave Indicator then has six
successive sterling turning points identified until the trend returns at the
right side of the chart, near the end of February.

FIGURE 11.4 The Sinewave Indicator Always Gives an Advanced Turning Point
Warning

c11.qxd 2/2/04 10:58 AM Page 163

163 The Sinewave Indicator

FIGURE 11.5 The Sinewave Indicator Gives Correct Cycle Signals

KEY POINTS TO REMEMBER

•	 The Sinewave Indicator is a noncausal predictive filter based on the
premise that the Dominant Cycle has existed in the immediate past and
will continue into the immediate future.

•	 The phase has a constant rate of change when the market is in a Cycle
Mode.

•	 The phase languishes when the market is in a Trend Mode, and can
even have a negative rate of change.

•	 The Sinewave Indicator consists of the sine of the Dominant Cycle
phase and the sine of the Dominant Cycle phase advanced by 45°.

•	 The Sinewave Indicator gives entry and exit signals 1⁄16 of a cycle period
in advance of the cycle turning point.

•	 The Sinewave Indicator seldom gives false whipsaw signals when the
market is in a Trend Mode.

c11.qxd 2/2/04 10:58 AM Page 164

c12.qxd 2/2/04 10:59 AM Page 165

CHAPTER 12

Adapting to
the Trend

“I have no idea,” said Tom thoughtlessly.

A t this point, I have developed enough tools for you that you can now
start putting them together to create some serious trading strate-
gies. This chapter gives you the beginning of one such strategy. You

can use this strategy as a beginning and add your own rules to increase the
percentage winners.

In previous chapters, I derived and adapted oscillator-type indicators
with the goal of having the indicators move with the cycle component of
the market with as little lag as possible. Most technical analysis trend-
following techniques don’t use oscillators; they use moving averages or
some variation thereof. In this chapter I will show you how to use the cycle
measurement both as a trend indicator and as a trading system.

The slopes from any given point in a cycle to the same point in the next
cycle are exactly the same. It doesn’t matter whether the point you select is
the peak, the valley, or anyplace in between; the slope between the same
points in idealized cycles is zero. If there is a difference in the amplitudes
between successive samples, either the cycle period has changed or the mar-
ket is in a trend. Since the cycle periods morph very slowly from cycle to cycle,
it is more likely that the one-cycle momentum is an indication of the trend.

Our approach to forming this trading strategy is to measure the
Dominant Cycle period and then use that measured period to take a one-
cycle momentum. Momentum functions are notoriously noisy, so I smooth
the momentum using the three-pole Super Smoother filter described in the
next chapter. It is just that simple. The EasyLanguage and eSignal Formula
Script (EFS) codes to compute the Smoothed Adaptive Momentum are
shown in Figures 12.1 and 12.2, respectively.

165

c12.qxd 2/2/04 10:59 AM Page 166

166 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

{***

Smoothed Adaptive Momentum

***}

Inputs: Price((H+L)/2),

alpha(.07),

Cutoff(8);

Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Num(0),

Denom(0),

a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

FIGURE 12.1 EasyLanguage Code to Compute the Smoothed Adaptive Momentum

c12.qxd 2/2/04 10:59 AM Page 167

Adapting to the Trend 167

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Value1 = Price - Price[IntPortion(Period - 1)];

a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 - coef4;

Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2]

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;

Plot1(Filt3, “Filt3”);

Plot2(0, “Ref”);

FIGURE 12.1 (Continued)

/***

Title: Smoothed Adaptive Momentum Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

(continued)

FIGURE 12.2 EFS Code to Compute the Smoothed Adaptive Momentum

c12.qxd 2/2/04 10:59 AM Page 167

Adapting to the Trend 167

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Value1 = Price - Price[IntPortion(Period - 1)];

a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 - coef4;

Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2]

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;

Plot1(Filt3, “Filt3”);

Plot2(0, “Ref”);

FIGURE 12.1 (Continued)

/***

Title: Smoothed Adaptive Momentum Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

(continued)

FIGURE 12.2 EFS Code to Compute the Smoothed Adaptive Momentum

c12.qxd 2/2/04 10:59 AM Page 168

168 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nBarCount = 0;

var aPriceArray = new Array();
var aSmoothArray = new Array();
var aCycleArray = new Array();
var aDeltaPhase = new Array();
var aPeriod = new Array();
var aInstPeriod = new Array();
var aQ1 = new Array();
var aI1 = new Array();
var aFiltArray = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“Smoothed Adaptive Momentum”);

setCursorLabelName(“Filt3”, 0);

setDefaultBarFgColor(Color.blue, 0);

addBand(0.0, PS_SOLID, 1, Color.black, -10);

//initialize arrays

for (x=0; x<150; x++) {

aPriceArray[x] = 0.0;

aSmoothArray[x] = 0.0;

aCycleArray[x] = 0.0;

aQ1[x] = 0.0;

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 169

Adapting to the Trend 169

aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;
aFiltArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha, Cutoff) {

var x;

var nValue1;

var nDC;

var nOffset;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

Alpha = 0.07;

}

if (Cutoff == null) {

Cutoff = 8;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

(continued)

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 170

170 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aFiltArray.pop();

aFiltArray.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1] + aPriceArray[2])
/ 4;

}

else {

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 171

Adapting to the Trend 171

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

- aI1[1]/aQ1[1]) / (1 + aI1[0]
*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

nOffset = Math.floor(aPeriod[0])-1;

(continued)

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 172

172 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

if (nOffset < 0) nOffset = 0;

nValue1 = aPriceArray[0]

- aPriceArray[nOffset];

nA1 = Math.exp(-3.14159 / Cutoff);

nB1 = 2*nA1 * Math.cos(DegToRad(1.738 * 180

/ Cutoff));

nC1 = nA1 * nA1;

nCoef2 = nB1 + nC1;

nCoef3 = -(nC1 + nB1 * nC1);

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;

if (nBarCount < 4) {

aFiltArray[0] = nValue1;

}

else {

aFiltArray[0] = nCoef1*nValue1

+ nCoef2*aFiltArray[1]
+ nCoef3*aFiltArray[2]
+ nCoef4*aFiltArray[3];

}

//return the calculated values

if (!isNaN(aFiltArray[0])) {

return(aFiltArray[0]);

}

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 173

Adapting to the Trend 173

}

//== Convert Radians to Degrees

function RadToDeg(nValue) {

var nTmp;

nTmp = nValue * (180 / Math.PI);

return(nTmp);

}

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two middle

elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

(continued)

FIGURE 12.2 (Continued)

c12.qxd 2/2/04 10:59 AM Page 174

174 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

else {

return(1);

}

}

FIGURE 12.2 (Continued)

Figure 12.3 suggests that the uptrend starts when the indicator crosses
up through the zero line and a downtrend starts when the indicator crosses
down through the zero line.

I converted the Smoothed Adaptive Momentum Indicator to an auto-
matic strategy by writing the trading rules to buy each time the filter
crosses up through zero and to sell short each time the filter crosses down
through zero. I also added a money management stop. This simple but ele-
gant trend-following automatic trading strategy produced the results
shown in Table 12.1. The EasyLanguage and EFS codes for the Smoothed
Adaptive Momentum strategy are in Figures 12.4 and 12.5, respectively.

FIGURE 12.3 Smoothed Adaptive Momentum as a Trend Indicator

c12.qxd 2/2/04 10:59 AM Page 175

Adapting to the Trend	 175

TABLE 12.1	 Sample Trading Results Using the

Smoothed Adaptive Momentum Trading Strategy

Number Percent Profit
Future Net Profit of Trades Profitable Factor Max DD

EC (4/81–3/03) $112,112 196 40.3% 2.03 ($8,137)
JY (9/81–3/03) $160,950 277 39.7% 2.01 ($13,450)
SF (6/76–3/03) $157,337 523 38.8% 1.64 ($13,587)

{***

Smoothed Adaptive Momentum

***}

Inputs: Price((H+L)/2),

alpha(.07),

Cutoff(8);

Vars:	 Smooth(0),

Cycle(0),

Q1(0),

I1(0),

DeltaPhase(0),

MedianDelta(0),

DC(0),

InstPeriod(0),

Period(0),

Num(0),

Denom(0),

a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);

Smooth = (Price + 2*Price[1] + 2*Price[2]

+ Price[3])/6;

Cycle = (1 - .5*alpha)*(1 - .5*alpha)*(Smooth

- 2*Smooth[1] + Smooth[2]) + 2*(1 - alpha)*Cycle[1]
- (1 - alpha)*(1 - alpha)*Cycle[2];

(continued)

FIGURE 12.4 EasyLanguage Code for the Smoothed Adaptive Momentum Strategy

c12.qxd 2/2/04 10:59 AM Page 176

176 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

If currentbar < 7 then Cycle = (Price - 2*Price[1]

+ Price[2]) / 4;

Q1 = (.0962*Cycle + .5769*Cycle[2] - .5769*Cycle[4]

- .0962*Cycle[6])*(.5 + .08*InstPeriod[1]);

I1 = Cycle[3];

If Q1 <> 0 and Q1[1] <> 0 then DeltaPhase = (I1/Q1

- I1[1]/Q1[1]) / (1 + I1*I1[1]/(Q1*Q1[1]));

If DeltaPhase < 0.1 then DeltaPhase = 0.1;

If DeltaPhase > 1.1 then DeltaPhase = 1.1;

MedianDelta = Median(DeltaPhase, 5);

If MedianDelta = 0 then DC = 15 else DC = 6.28318

/ MedianDelta + .5;

InstPeriod = .33*DC + .67*InstPeriod[1];

Period = .15*InstPeriod + .85*Period[1];

Value1 = Price - Price[IntPortion(Period - 1)];

a1 = expvalue(-3.14159 / Cutoff);

b1 = 2*a1*Cosine(1.738*180 / Cutoff);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 - coef3 -coef4;

Filt3 = coef1*Value1 + coef2*Filt3[1] + coef3*Filt3[2]

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Value1;

If Filt3 Crosses Over 0 then Buy Next Bar on Open;

If Filt3 Crosses Under 0 then Sell Short Next Bar

on Open;

FIGURE 12.4 (Continued)

c12.qxd 2/2/04 10:59 AM Page 177

Adapting to the Trend 177

/***

Title: Smoothed Adaptive Momentum Trading

Strategy

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

**/

//External Variables

var nBarCount = 0;

var aPriceArray

var aSmoothArray

var aCycleArray

var aDeltaPhase

var aPeriod

var aInstPeriod

var aQ1

var aI1

var aFiltArray

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

var nStatus = 0;
var nEntryPrice = 0;
var nStop = 0;
var nPVal = 0;
var nSVal = 0;

var grID = 0;

(continued)

FIGURE 12.5 EFS for the Smoothed Adaptive Momentum Strategy

c12.qxd 2/2/04 10:59 AM Page 178

178 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“Smoothed Adaptive Momentum

Strategy”);

setShowCursorLabel(false);

//initialize arrays

for (x=0; x<150; x++) {

aPriceArray[x] = 0.0;
aSmoothArray[x] = 0.0;
aCycleArray[x] = 0.0;
aQ1[x] = 0.0;
aI1[x] = 0.0;
aDeltaPhase[x] = 0.0;
aPeriod[x] = 0.0;
aInstPeriod[x] = 0.0;
aFiltArray[x] = 0.0;

}

}

//== Main processing function

function main(Alpha, Cutoff, StopAmt, PointValue) {

var x;

var nValue1;

var nDC;

var nOffset;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;

var nMedianDelta;

//initialize parameters if necessary

if (Alpha == null) {

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 179

Adapting to the Trend 179

Alpha = 0.07;

}

if (Cutoff == null) {

Cutoff = 8;

}

if (StopAmt == null) {

StopAmt = 1000.0;

}

if (PointValue == null) {

PointValue = 50;

}

nSVal = StopAmt;

nPVal = PointValue;

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aSmoothArray.pop();

aSmoothArray.unshift(0);

aCycleArray.pop();

aCycleArray.unshift(0);

aQ1.pop();

aQ1.unshift(0);

aI1.pop();

aI1.unshift(0);

aDeltaPhase.pop();

aDeltaPhase.unshift(0);

(continued)

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 180

180 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aInstPeriod.pop();

aInstPeriod.unshift(0);

aPeriod.pop();

aPeriod.unshift(0);

aFiltArray.pop();

aFiltArray.unshift(0);

}

aPriceArray[0] = (high()+low()) / 2;

aSmoothArray[0] = (aPriceArray[0]

+ 2*aPriceArray[1] + 2*aPriceArray[2]
+ aPriceArray[3]) / 6;

if (nBarCount < 7) {

aCycleArray[0] = (aPriceArray[0]

- 2*aPriceArray[1] + aPriceArray[2])
/ 4;

}

else {

aCycleArray[0] = (1 - 0.5*Alpha)

* (1 - 0.5*Alpha)
* (aSmoothArray[0]
- 2*aSmoothArray[1]
+ aSmoothArray[2]) + 2*(1-Alpha)
* aCycleArray[1] - (1-Alpha)
* (1-Alpha) * aCycleArray[2];

}

aQ1[0] = (0.0962*aCycleArray[0]

+ 0.5769*aCycleArray[2]
- 0.5769*aCycleArray[4]
- 0.0962*aCycleArray[6]) * (0.5 + 0.08
* aInstPeriod[1]);

aI1[0] = aCycleArray[3];

if (aQ1[0] != 0 && aQ1[1] != 0) {

aDeltaPhase[0] = (aI1[0]/aQ1[0]

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 181

Adapting to the Trend 181

- aI1[1]/aQ1[1]) / (1
+ aI1[0]*aI1[1]/(aQ1[0]*aQ1[1]));

}

if (aDeltaPhase[0] < 0.1) aDeltaPhase[0]

= 0.1;

if (aDeltaPhase[0] > 1.1) aDeltaPhase[0]

= 1.1;

nMedianDelta = Median(5, aDeltaPhase);

if (nMedianDelta == 0) {

nDC = 15;

}

else {

nDC = 6.28318 / nMedianDelta + 0.5;

}

aInstPeriod[0] = 0.33 * nDC + 0.67

* aInstPeriod[1];

aPeriod[0] = 0.15*aInstPeriod[0]

+ 0.85*aPeriod[1];

nOffset = Math.floor(aPeriod[0])-1;

if (nOffset < 0) nOffset = 0;

nValue1 = aPriceArray[0]

- aPriceArray[nOffset];

nA1 = Math.exp(-3.14159 / Cutoff);

nB1 = 2*nA1 * Math.cos(DegToRad(1.738 * 180

/ Cutoff));

nC1 = nA1 * nA1;

nCoef2 = nB1 + nC1;

nCoef3 = -(nC1 + nB1 * nC1);

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;

if (nBarCount < 4) {

aFiltArray[0] = nValue1;

}

else {

(continued)

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 182

182 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aFiltArray[0] = nCoef1*nValue1

+ nCoef2*aFiltArray[1]
+ nCoef3*aFiltArray[2]
+ nCoef4*aFiltArray[3];

}

// if currently flat, look for a trade entry

if (nStatus == 0) {

if (nStatus <= 0 && aFiltArray[0]

> 0 && aFiltArray[1] <= 0) {

goLong();

}

else if (nStatus >= 0 && aFiltArray[0]

< 0 && aFiltArray[1] >= 0) {

goShort();

}

}

else {

// in a long trade

if (nStatus == 1) {

// if stop hit, sell long

if (low() <= nStop) {

if (open() <= nStop) {

closeLong(open());

}

else {

closeLong(nStop);

}

}

// check for reversal signal

else if (aFiltArray[0]

< 0 && aFiltArray[1] >= 0) {

goShort();

}

}

// in a short trade

else if (nStatus == -1) {

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 183

Adapting to the Trend 183

// if stop hit, cover short

if (high() >= nStop) {

if (open() >= nStop) {

closeShort(open());

}

else {

closeShort(nStop);

}

}

// check for reversal signal

else if (aFiltArray[0]

> 0 && aFiltArray[1] <= 0) {

goLong();

}

}

}

}

//== gID function assigns unique identifier to

graphic/text routines

function gID() {

grID ++;

return(grID);

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

//== Convert Radians to Degrees

function RadToDeg(nValue) {

var nTmp;

(continued)

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 184

184 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

nTmp = nValue * (180 / Math.PI);

return(nTmp);

}

function Median(nBars, aArray) {

var aTmp = new Array();

var nTmp;

var result;

var x;

//transfer elements to temp array

x = 0;

while(x < nBars) {

aTmp[x] = aArray[x++];

}

//sort array in asc order

aTmp.sort(SortAsc);

//if odd # of elements, just take middle

if (nBars % 2 != 0) {

result = aTmp[(nBars+1) / 2]

aTmp = null;

return(result);

}

//if even # elements, take average of two middle

elements

else {

nTmp = nBars/2;

result = (aTmp[nTmp] + aTmp[nTmp+1])/2;

aTmp = null;

return (result);

}

}

function SortAsc(arg1, arg2) {

if (arg1<arg2) {

return(-1)

}

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 185

Adapting to the Trend 185

else {

return(1);

}

}

//enter a short trade

function goShort() {

drawShapeRelative(1, high(1), Shape.

DOWNARROW, ““,

Color.maroon, Shape.ONTOP|Shape.BOTTOM,_

gID());

Strategy.doShort(“Short”, Strategy.MARKET,

Strategy.NEXTBAR, Strategy.DEFAULT);

nEntryPrice = open(1);

nStop = (nEntryPrice + nSVal

/ nPVal);

nStatus = -1;

}

//close a short trade

function closeShort(nPrice) {

drawShapeRelative(0, low(), Shape.UPARROW, ““,

Color.blue, Shape.ONTOP|Shape.BOTTOM, gID());

Strategy.doCover(“Short Stopped Out”,

Strategy.STOP, Strategy.THISBAR, Strategy.ALL,

nPrice);

nStatus = 0;

}

//enter a long trade

function goLong() {

drawShapeRelative(1, low(1), Shape.UPARROW, ““,

Color.lime, Shape.ONTOP|Shape.TOP, gID());

Strategy.doLong(“Long”, Strategy.MARKET,_

Strategy.NEXTBAR, Strategy.DEFAULT);

nEntryPrice = open(1);

nStop = (nEntryPrice - nSVal

/ nPVal);

nStatus = 1;

}

(continued)

FIGURE 12.5 (Continued)

c12.qxd 2/2/04 10:59 AM Page 186

186 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//close a long trade

function closeLong(nPrice) {

drawShapeRelative(0, high(), Shape._

DOWNARROW, ““,

Color.blue, Shape.ONTOP|Shape.TOP, gID());

Strategy.doSell(“Long Stopped Out”,_

Strategy.STOP, Strategy.THISBAR,_

Strategy.ALL, nPrice);

nStatus = 0;

}

FIGURE 12.5 (Continued)

KEY POINTS TO REMEMBER

•	 It really does matter if you measure the Dominant Cycle.
•	 The trend component is measured by taking the momentum across one

full Dominant Cycle.

c13.qxd 2/2/04 10:59 AM Page 187

CHAPTER 13

Super Smoothers

“That evens it out,” said Tom smoothly.

Amethod of smoothing called regularization was introduced to
traders by Dr. Chris Satchwell.1 He starts with an exponential mov-
ing average as

F = α * G + (1 − α) * F[1] (13.1)

Where F[1] means the value of F one sample ago. This is EasyLanguage
notation. If Equation 13.1 is collected on one side of the equation and
squared as in Equation 13.2, and differentiation with respect to F is per-
formed, then its minimum coincides with Equation 13.1. This shows that
the exponential moving average can be derived by minimizing an associ-
ated function. In equation 13.2, D denotes differentiation.

D(F − α * G − (1 − α) * F[1])2/D(F) = 0 (13.2)

A least-squares component of an error function can be derived from
the argument of the numerator of Equation 13.2 and a penalty term for the
curvature can be introduced to achieve regularization. The penalty term
comes from the mathematics of finite differences, where the second part of
Equation 13.3 is based on the second derivative of F with respect to time.

E = (F − α * G − (1 − α) * F[1])2 + λ * (F − 2 * F[1] + F[2])2 (13.3)

Differentiating Equation 13.3 with respect to F and equating to 0 gives

2 * (F − α * G − (1 − α) * F[1]) + 2 .* λ * (F − 2 * F[1] + F[2]) = 0 (13.4)

187

c13.qxd 2/2/04 10:59 AM Page 188

188 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Rearranging, Equation 13.4 is written more conveniently as

F = (α * G + (1 − α + 2 * λ) * F[1] − λ * F[2])/(1 + λ) (13.5)

There are no explicit constraints on the value of the regularization con-
stant λ. However, just a small amount of experimentation shows that
unreasonable results can be obtained if the regularization constant is too
large. For example, Figure 13.1 shows the transfer response of the
Regularized filter for α = 0.33 and λ = 10. In this case, the filter has more
than a 6-dB gain at a frequency of 0.03 cycles per day (a 33-bar cycle). That
means that the 33-bar period components in the input waveform will be
amplified rather than smoothed.

It is ideal if the frequency components we want to pass through the fil-
ter are not amplified at all and the frequency components we want to reject
are attenuated by the filter. The ideal goal is approximately met in a
Regularized filter if the relationship between alpha and lambda is main-
tained as

λ = expvalue (0.16/α) (13.6)

For example, if α = 0.33, then the ideal value of lambda is 1.624. The
filter transfer response for this pair of parameters is shown in Figure 13.2.

FIGURE 13.1 Transfer Response of the Regularized Filter (α = 0.33, λ = 10)

c13.qxd 2/2/04 10:59 AM Page 189

Super Smoothers 189

The frequency response is almost flat from zero frequency to 0.05 cycles
per day. From that point on, the higher-frequency components are increas-
ingly attenuated.

One amazing characteristic of Regularized filters is that their zero-
frequency lag is determined solely by the alpha parameter, regardless of the
value of lambda that is used. An example of the Regularized filter lag
response is shown in Figure 13.3 for the ideal value of lambda. The rela-
tionship of the zero-frequency lag and alpha in an exponential moving aver-
age is

1α = � (13.7)
Lag + 1

It therefore follows that if the zero-frequency lag is 2, then α = 0.33 and
vice versa.

Recalling from Chapter 2 that the transfer response of an exponential
moving average is expressed as

Output α
H(z) = � = �� (13.8)

Input 1 − (1 − α) * Z−1

FIGURE 13.2 Transfer Response of the Regularized Filter (α = 0.33, λ = 1.624)

c13.qxd 2/2/04 10:59 AM Page 190

= ���� �

190 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 13.3 Lag Response of the Regularized Filter (α = 0.33, λ = 1.624)

If the delay factor Z−1 is 1/(1 − α), the denominator goes to 0 and thus
the transfer response goes to infinity. This is called a pole of the transfer

response. Don’t worry: Since α must be less than unity, and since the delay
can only have integer values, the pole condition is never attained—rather it
is a descriptor of the transfer response. In this case, the denominator is a
first-order polynomial of Z−1.

The Regularized filter transfer response is written as

α
�

+ λ
�
1Output

Input α λH(z) = (13.9)(1 −
1 − �

1
+ 2λ)
� Z−1 +
λ

Z−2�
λ

�
1 +
+

Equation 13.9 shows that the transfer response now has a second-
order polynomial in the denominator. From the fundamental theorem of
algebra, we know that an Nth-order polynomial can be factored into
N roots. Roots of a polynomial are those values of the variable where the
polynomial goes to 0. Therefore, an Nth-ordered polynomial produces
N poles in the transfer response of a filter. The more poles a filter has, the
sharper its attenuation curve becomes with respect to frequency. Visualize
the transfer response as a circus tent; the filtering you get is like rolling a

c13.qxd 2/2/04 10:59 AM Page 191

Super Smoothers 191

marble off the tent without actually getting to a tent pole. The more poles
you have in the tent, the faster you can make the marble roll. The fact that
the Regularized filter has one more pole than an exponential moving aver-
age is why it has superior smoothing.

The flat transfer response of an idealized Regularized filter and its
being derived by taking multiple derivatives are reminiscent of Butter-
worth filters. Butterworth filters are analog filters (as opposed to digital fil-
ters) that are called maximally flat because the first N derivatives of an
Nth-ordered Butterworth filter are 0 at zero frequency.

BUTTERWORTH DIGITAL FILTERS

Years ago I translated analog Butterworth filters to their digital approxima-
tions. The transfer response is characterized by a single variable—the cut-
off frequency. The cutoff frequency is that frequency where the input is
attenuated by 3 dB. Below the cutoff frequency, the input frequency com-
ponents are passed to the output; above the cutoff frequency, the input
frequency components are rejected to the extent possible by the filter
characteristics. Since traders are more comfortable with period, which is
the reciprocal of frequency, the equations for the Butterworth digital filters
are characterized in terms of the cutoff period.

The equations for a two-pole Butterworth digital filter, in Easy-
Language notation, are

a = ExpValue (−1.414 * 3.14159/Cutoff);
b = 2 * a * Cosine (1.414 * 180/Cutoff);

Butter = ((1 − b + a * a)/4) * (Price + 2 * Price[1] + Price[3]) (13.10)

+ b * Butter[1] + a * a * Butter[2];

The EasyLanguage and eSignal Formula Script (EFS) codes to imple-
ment the two-pole Butterworth digital filter are given in Figures 13.4 and
13.5, respectively.

It may be more convenient for some readers to implement the filter as
a function of a given Cutoff Period. Table 13.1 is provided for this case. In a
prior work,2 I have also given tables for Gaussian filters.

As opposed to the Regularized filter, the order of Butterworth filters
can be increased indefinitely to increase the sharpness of the filter rejec-
tion. For traders, this quickly reaches the point of diminishing returns
because increasing the number of poles in the filter means the lag of the fil-
ter is also increased. A three-pole filter gives just about the limit of tol-
erable lag for a selected cutoff period. The equations for a three-pole
Butterworth filter, in EasyLanguage format, are

c13.qxd 2/2/04 10:59 AM Page 192

192 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

{**

Two Pole Butterworth Filter

**}

Inputs: Price((H+L)/2),

Period(15);

Vars:	 a1(0),

b1(0),

coef1(0),

coef2(0),

coef3(0),

Butter(0);

a1 = expvalue(-1.414*3.14159 / Period);

b1 = 2*a1*Cosine(1.414*180 / Period);

coef2 = b1;

coef3 = -a1*a1;

coef1 = (1 - b1 + a1*a1) / 4;

Butter = coef1*(Price + 2*Price[1] + Price[3])

+ coef2*Butter[1] + coef3*Butter[2];

If CurrentBar < 3 then Butter = Price;

Plot1(Butter, “Butter”);

FIGURE 13.4 EasyLanguage Code to Compute the Two-Pole Butterworth Filter

a = ExpValue (−3.14159/Cutoff);

b = 2 * a * Cosine (1.738 * 180/Cutoff);

c = a * a;

Butter = ((1 − b + c) * (1 − c)/8) * (Price + 3 * Price[1] (13.11)
+ 3 * Price[3] + Price[4])
+ (b + c) * Butter[1] − (c + b * c)
* Butter[2] + c * c * Butter[3];

The EasyLanguage and EFS codes to implement the three-pole Butter-
worth digital filter are given in Figures 13.6 and 13.7, respectively.

Table 13.2 lists the coefficients of three-pole Butterworth filters as a
function of their cutoff period. It is provided as a convenience for readers
who may want only to quickly access the coefficient values rather than
compute them.

c13.qxd 2/2/04 10:59 AM Page 193

Super Smoothers 193

/***

Title: 2 Pole Butterworth Filter

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nPrice = 0;

var nBarCount = 0;

var aPriceArray = new Array();

var aButterArray = new Array();

//== PreMain function required by eSignal to set

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“2-Pole Butterworth”);

setCursorLabelName(“Butter”, 0);

setDefaultBarFgColor(Color.blue, 0);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aButterArray[x] = 0.0;

}

(continued)

FIGURE 13.5 EFS Code for the Two-Pole Butterworth Filter

c13.qxd 2/2/04 10:59 AM Page 194

194 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

//== Main processing function

function main(Period) {

var x;

var nA1;

var nB1;

var nCoef1;

var nCoef2;

var nCoef3;

//initialize parameters if necessary

if (Period == null) {

Period = 15;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aButterArray.pop();

aButterArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nA1 = Math.exp(-1.414 * 3.14159 / Period);

nB1 = 2*nA1 * Math.cos(DegToRad(1.414 * 180

/ Period));

FIGURE 13.5 (Continued)

c13.qxd 2/2/04 10:59 AM Page 195

Super Smoothers 195

nCoef2 = nB1;

nCoef3 = -nA1 * nA1;

nCoef1 = (1 - nB1 + nA1 * nA1) / 4;

if (nBarCount < 3) {

aButterArray[0] = aPriceArray[0];

}

else {

aButterArray[0] = nCoef1*(aPriceArray[0]

+ 2*aPriceArray[1] + aPriceArray[2])
+ nCoef2*aButterArray[1]
+ nCoef3*aButterArray[2];

}

//return the calculated values

if (!isNaN(aButterArray[0])) {

return(aButterArray[0]);

}

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

FIGURE 13.5 (Continued)

c13.qxd 2/2/04 10:59 AM Page 196

196 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

TABLE 13.1 Two-Pole Butterworth Filter Coefficients

Y = A[0] * X[0] + A[1] * X[1] + A[2] * X[2] + B[1] * Y[1] + B[2] * Y[2];

Cutoff Period A[0] A[1] A[2] B[1] B[2]

2 0.285784 0.571568 0.285784 −0.131366 −0.011770
4 0.203973 0.407946 0.203973 0.292597 −0.108489
6 0.130825 0.261650 0.130825 0.704171 −0.227470
8 0.088501 0.177002 0.088501 0.975372 −0.329377

10 0.063284 0.126567 0.063284 1.158161 −0.411296
12 0.047322 0.094643 0.047322 1.287652 −0.476938
14 0.036654 0.073308 0.036654 1.383531 −0.530147
16 0.029198 0.058397 0.029198 1.457120 −0.573914
18 0.023793 0.047586 0.023793 1.515266 −0.610438
20 0.019754 0.039507 0.019754 1.562309 −0.641324
22 0.016658 0.033317 0.016658 1.601119 −0.667753
24 0.014235 0.028470 0.014235 1.633667 −0.690607
26 0.012303 0.024607 0.012303 1.661342 −0.710555
28 0.010739 0.021477 0.010739 1.685157 −0.728112
30 0.009454 0.018908 0.009454 1.705862 −0.743678
32 0.008386 0.016773 0.008386 1.724025 −0.757571
34 0.007490 0.014980 0.007490 1.740086 −0.770045
36 0.006729 0.013459 0.006729 1.754388 −0.781305
38 0.006079 0.012158 0.006079 1.767204 −0.791520
40 0.005518 0.011037 0.005518 1.778753 −0.800827

{***

Three Pole Butterworth Filter

***}

Inputs: Price((H+L)/2),

Period(15);

Vars:	 a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Butter(0);

a1 = expvalue(-3.14159 / Period);

b1 = 2*a1*Cosine(1.738*180 / Period);

c1 = a1*a1;

FIGURE 13.6 EasyLanguage Code to Compute the Three-Pole Butterworth Filter

c13.qxd 2/2/04 10:59 AM Page 197

Super Smoothers 197

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = (1 - b1 +c1)*(1 - c1) / 8;

Butter = coef1*(Price + 3*Price[1] + 3*Price[2]

+ Price[3]) + coef2*Butter[1] + coef3*Butter[2]
+ coef4*Butter[3];

If CurrentBar < 4 then Butter = Price;

Plot1(Butter, “Butter”);

FIGURE 13.6 (Continued)

/***

Title: 3 Pole Butterworth Filter

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables

var nPrice = 0;
var nBarCount = 0;

var aPriceArray = new Array();
var aButterArray = new Array();

(continued)

FIGURE 13.7 EFS Code to Compute the Three-Pole Butterworth Filter

c13.qxd 2/2/04 10:59 AM Page 198

198 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//== PreMain function required by eSignal to set

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“3-Pole Butterworth”);

setCursorLabelName(“Butter”, 0);

setDefaultBarFgColor(Color.blue, 0);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aButterArray[x] = 0.0;

}

}

//== Main processing function

function main(Period) {

var x;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

var nA1;

var nB1;

var nC1;

//initialize parameters if necessary

if (Period == null) {

Period = 15;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

FIGURE 13.7 (Continued)

c13.qxd 2/2/04 10:59 AM Page 199

Super Smoothers 199

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aButterArray.pop();

aButterArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nA1 = Math.exp(-3.14159 / Period);

nB1 = 2*nA1 * Math.cos(DegToRad(1.738 * 180

/ Period));

nC1 = nA1 * nA1;

nCoef2 = nB1 + nC1;

nCoef3 = -(nC1 + nB1 * nC1);

nCoef4 = nC1 * nC1;

nCoef1 = (1 - nB1 + nC1) * (1 - nC1) / 8;

if (nBarCount < 4) {

aButterArray[0] = aPriceArray[0];

}

else {

aButterArray[0] = nCoef1

* (aPriceArray[0]
+ 3*aPriceArray[1] + 3*aPriceArray[2]
+ aPriceArray[3])
+ nCoef2*aButterArray[1]
+ nCoef3*aButterArray[2]

+ nCoef4*aButterArray[3];

}

//return the calculated values

if (!isNaN(aButterArray[0])) {

return(aButterArray[0]);

(continued)

FIGURE 13.7 (Continued)

c13.qxd 2/2/04 10:59 AM Page 200

200 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

FIGURE 13.7 (Continued)

TABLE 13.2 Three-Pole Butterworth Filter Coefficients

Y = A[0] * X[0] + A[1] * X[1] + A[2] * X[2] + A[3] * X[3] + B[1] * Y[1] + B[2] * Y[2]
+ B[3] * Y[3];

Cutoff
Period A[0] A[1] A[2] A[3] B[1] B[2] B[3]

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0.170149
0.100733
0.050373
0.027610
0.016541
0.010629
0.007213
0.005111
0.003750
0.002831
0.002188
0.001726
0.001385
0.001128
0.000931
0.000778
0.000656
0.000558
0.000479
0.000414

0.510448
0.302200
0.151118
0.082830
0.049622
0.031887
0.021640
0.015334
0.011250
0.008492
0.006565
0.005179
0.004156
0.003385
0.002794
0.002333
0.001967
0.001674
0.001437
0.001242

0.510448
0.302200
0.151118
0.082830
0.049622
0.031887
0.021640
0.015334
0.011250
0.008492
0.006565
0.005179
0.004156
0.003385
0.002794
0.002333
0.001967
0.001674
0.001437
0.001242

0.170149
0.100733
0.050373
0.027610
0.016541
0.010629
0.007213
0.005111
0.003750
0.002831
0.002188
0.001726
0.001385
0.001128
0.000931
0.000778
0.000656
0.000558
0.000479
0.000414

−0.336246
0.398405
1.080990
1.505892
1.783327
1.976163
2.117205
2.224560
2.308883
2.376806
2.432658
2.479376
2.519020
2.553078
2.582648
2.608560
2.631451
2.651819
2.670059
2.686486

−0.026816
−0.247486
−0.607116
−0.934652
−1.200263
−1.412114
−1.582459
−1.721388
−1.836396
−1.932941
−2.015013
−2.085571
−2.146834
−2.200500
−2.247883
−2.290012
−2.327708
−2.361631
−2.392315
−2.420202

0.001867
0.043214
0.123145
0.207880
0.284610
0.350920
0.407548
0.455938
0.497514
0.533488
0.564848
0.592385
0.616731
0.638395
0.657784
0.675232
0.691011
0.705347
0.718425
0.730403

c13.qxd 2/2/04 10:59 AM Page 201

Super Smoothers 201

MULTIPOLE SMOOTHING FILTERS

The transfer responses of Butterworth filters have polynomials in both the
numerator and denominator. For example, the transfer response of a two-
pole Butterworth filter is

Output A[0] + A[1]Z−1 + A[2]Z−2

H(z) = � = ��� (13.12)
Input 1 + B[1]Z−1 + B[2]Z−2

There is a polynomial in the numerator as well as the denominator. The
significance of the polynomial in the numerator is that it represents the
finite impulse response (FIR) part of the filter. This part is like a simple
moving average. The denominator forms the iterative part of the filter cal-
culation and is the infinite impulse response (IIR) part of the filter. The FIR
part of the filter sharpens the filter rejection response, but it also con-
tributes to lag in the response. Recognizing that the parts of a Butterworth
filter are separable, I form the multipole super smoothing filters by simply
deleting the polynomial in the numerator. Since the transfer response must
be unity when Z − 1 = −1, I replace the polynomial with the fixed coefficient
C[0] = 1 − B[1] + B[2]. The EasyLanguage and EFS codes for the two-pole
Super Smoother are given in Figures 13.8 and 13.9, respectively. The coeffi-
cients are in Table 13.3.

The transfer response of the two-pole Super Smoother is shown in
Figure 13.10. Note that it is almost identical to the transfer response of the
Regularized filter shown in Figure 13.2. The difference between the two is
that the characteristics of the Super Smoother are determined by a single
parameter and the flatness of the passband response is guaranteed.

The order of Super Smoother filters can be increased indefinitely to
increase the sharpness of the filter rejection, just as with Butterworth fil-
ters. The EasyLanguage and EFS codes to implement the three-pole Super
Smoother filter are given in Figures 13.11 and 13.12, respectively.

Table 13.4 lists the coefficients of three-pole Super Smoother filters as
a function of their cutoff period. It is provided as a convenience for readers
who may want only to quickly access the coefficient values rather than
compute them.

Figure 13.13 shows that a three-pole Super Smoother filter has far
more attenuation in the reject band than the two-pole filters of Figures 13.2
and 13.10. The passbands are identical in all three cases.

c13.qxd 2/2/04 10:59 AM Page 202

202 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

{**

Two Pole Super Smoother

**}

Inputs: Price((H+L)/2),

Period(15);

Vars:	 a1(0),

b1(0),

coef1(0),

coef2(0),

coef3(0),

Filt2(0);

a1 = expvalue(-1.414*3.14159 / Period);

b1 = 2*a1*Cosine(1.414*180 / Period);

coef2 = b1;

coef3 = -a1*a1;

coef1 = 1 - coef2 – coef3;

Filt2 = coef1*Price + coef2*Filt2[1] + coef3*Filt2[2];

If CurrentBar < 3 then Filt2 = Price;

Plot1(Filt2, “Filt2”);

FIGURE 13.8 EasyLanguage Code to Compute the Two-Pole Super Smoother Filter

/***

Title: Two Pole Super Smoother

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

FIGURE 13.9 EFS Code to Compute the Two-Pole Super Smoother Filter

c13.qxd 2/2/04 10:59 AM Page 203

Super Smoothers 203

==

***/

//External Variables

var nPrice = 0;

var nBarCount = 0;

var aPriceArray = new Array();

var aFiltArray = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“2-Pole Super Smoother”);

setCursorLabelName(“Filt2”, 0);

setDefaultBarFgColor(Color.blue, 0);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aFiltArray[x] = 0.0;

}

}

//== Main processing function

function main(Period) {

var x;

var nA1;

var nB1;

var nCoef1;

var nCoef2;

var nCoef3;

//initialize parameters if necessary

if (Period == null) {

Period = 15; (continued)

FIGURE 13.9 (Continued)

c13.qxd 2/2/04 10:59 AM Page 204

204 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aFiltArray.pop();

aFiltArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nA1 = Math.exp(-1.414 * 3.14159 / Period);

nB1 = 2*nA1 * Math.cos(DegToRad(1.414 * 180_

/ Period));

nCoef2 = nB1;

nCoef3 = -nA1 * nA1;

nCoef1 = 1 - nCoef2 - nCoef3;

if (nBarCount < 3) {

aFiltArray[0] = aPriceArray[0];

}

else {

aFiltArray[0] = nCoef1*aPriceArray[0]_

+ nCoef2*aFiltArray[1]
+ nCoef3*aFiltArray[2];

}

//return the calculated values

if (!isNaN(aFiltArray[0])) {

return(aFiltArray[0]);

FIGURE 13.9 (Continued)

c13.qxd 2/2/04 10:59 AM Page 205

Super Smoothers 205

}

}

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

FIGURE 13.9 (Continued)

TABLE 13.3 Two-Pole Super Smoother Coefficients

Y = C[0] * X[0] + B[1] * Y[1] + B[2] * Y[2];

Cutoff Period C[0] B[1] B[2]

2 1.143136 −0.13137 −0.01177
4 0.815892 0.292597 −0.10849
6 0.523299 0.704171 −0.22747
8 0.354005 0.975372 −0.32938

10 0.253135 1.158161 −0.4113
12 0.189286 1.287652 −0.47694
14 0.146616 1.383531 −0.53015
16 0.116794 1.45712 −0.57391
18 0.095172 1.515266 −0.61044
20 0.079015 1.562309 −0.64132
22 0.066634 1.601119 −0.66775
24 0.05694 1.633667 −0.69061
26 0.049213 1.661342 −0.71056
28 0.042955 1.685157 −0.72811
30 0.037816 1.705862 −0.74368
32 0.033546 1.724025 −0.75757
34 0.029959 1.740086 −0.77005
36 0.026917 1.754388 −0.78131
38 0.024316 1.767204 −0.79152
40 0.022074 1.778753 −0.80083

c13.qxd 2/2/04 10:59 AM Page 206

206 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 13.10 Transfer Response of the Two-Pole Super Smoother Filter

{***

Three Pole Super Smoother

***}

Inputs: Price((H+L)/2),

Period(15);

Vars:	 a1(0),

b1(0),

c1(0),

coef1(0),

coef2(0),

coef3(0),

coef4(0),

Filt3(0);

a1 = expvalue(-3.14159 / Period);

FIGURE 13.11 EasyLanguage Code to Compute the Three-Pole Super Smoother Filter

c13.qxd 2/2/04 10:59 AM Page 207

Super Smoothers 207

b1 = 2*a1*Cosine(1.738*180 / Period);

c1 = a1*a1;

coef2 = b1 + c1;

coef3 = -(c1 + b1*c1);

coef4 = c1*c1;

coef1 = 1 - coef2 – coef3 - coef4;

Filt3 = coef1*Price + coef2*Filt3[1] + coef3*Filt3[2]

+ coef4*Filt3[3];

If CurrentBar < 4 then Filt3 = Price;

Plot1(Filt3, “Filt3”);

FIGURE 13.11 (Continued)

/***

Title: Three Pole Super Smoother

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 07/09/2003

Version: 1.0.0

==

Fix History:

07/09/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nPrice = 0;
var nBarCount = 0;

var aPriceArray = new Array();
var aFiltArray = new Array();

(continued)

FIGURE 13.12 EFS Code to Compute the Three-Pole Super Smoother Filter

c13.qxd 2/2/04 10:59 AM Page 208

208 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“3-Pole Super Smoother”);

setCursorLabelName(“Filt3”, 0);

setDefaultBarFgColor(Color.blue, 0);

//initialize arrays

for (x=0; x<10; x++) {

aPriceArray[x] = 0.0;
aFiltArray[x] = 0.0;

}

}

//== Main processing function

function main(Period) {

var x;

var nA1;

var nB1;

var nC1;

var nCoef1;

var nCoef2;

var nCoef3;

var nCoef4;

//initialize parameters if necessary

if (Period == null) {

Period = 15;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

FIGURE 13.12 (Continued)

c13.qxd 2/2/04 10:59 AM Page 209

Super Smoothers 209

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aFiltArray.pop();

aFiltArray.unshift(0);

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

nA1 = Math.exp(-3.14159 / Period);

nB1 = 2*nA1 * Math.cos(DegToRad(1.738 * 180

/ Period));

nC1 = nA1 * nA1;

nCoef2 = nB1 + nC1;

nCoef3 = -(nC1 + nB1 * nC1);

nCoef4 = nC1 * nC1;

nCoef1 = 1 - nCoef2 - nCoef3 - nCoef4;

if (nBarCount < 3) {

aFiltArray[0] = aPriceArray[0];

}

else {

aFiltArray[0] = nCoef1*aPriceArray[0]

+ nCoef2*aFiltArray[1]
+ nCoef3*aFiltArray[2]
+ nCoef4*aFiltArray[3];

}

//return the calculated values

if (!isNaN(aFiltArray[0])) {

return(aFiltArray[0]);

}

}

(continued)

FIGURE 13.12 (Continued)

c13.qxd 2/2/04 10:59 AM Page 210

210 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

//== Convert Degrees to Radians

function DegToRad(nValue) {

var nTmp;

nTmp = nValue * (Math.PI / 180);

return(nTmp);

}

FIGURE 13.12 (Continued)

TABLE 13.4 Three-Pole Super Smoother Filter Coefficients

Y = C[0] * X[0] + B[1] * Y[1] + B[2] * Y[2] + B[3] * Y[3];

Cutoff Period C[0] B[1] B[2] B[3]

2 1.361195 −0.33625 −0.02682 0.001867
4 0.805867 0.398405 −0.24749 0.043214
6 0.402981 1.08099 −0.60712 0.123145
8 0.22088 1.505892 −0.93465 0.20788

10 0.132326 1.783327 −1.20026 0.28461
12 0.085031 1.976163 −1.41211 0.35092
14 0.057706 2.117205 −1.58246 0.407548
16 0.04089 2.22456 −1.72139 0.455938
18 0.029999 2.308883 −1.8364 0.497514
20 0.022647 2.376806 −1.93294 0.533488
22 0.017507 2.432658 −2.01501 0.564848
24 0.01381 2.479376 −2.08557 0.592385
26 0.011083 2.51902 −2.14683 0.616731
28 0.009027 2.553078 −2.2005 0.638395
30 0.007451 2.582648 −2.24788 0.657784
32 0.00622 2.60856 −2.29001 0.675232
34 0.005246 2.631451 −2.32771 0.691011
36 0.004465 2.651819 −2.36163 0.705347
38 0.003831 2.670059 −2.39232 0.718425
40 0.003313 2.686486 −2.4202 0.730403

c13.qxd 2/2/04 10:59 AM Page 211

Super Smoothers	 211

FIGURE 13.13 Transfer Response of a Three-Pole Super Smoother Filter

KEY POINTS TO REMEMBER

•	 A Regularized filter has smoothing superior to that of an exponential
moving average because an extra pole in the transfer response is intro-
duced.

•	 The α and λ parameters of the Regularized filters can be independently
assigned.

•	 The optimum relationship between α and λ for a flat passband re-
sponse is approximately α = exp (0.16/ λ).

•	 A Butterworth filter is an analog filter whose response is maximally
flat at zero frequency.

•	 A Butterworth digital filter is generated via an approximate translation
from the analog version.

•	 Butterworth filters can have an arbitrarily large number of poles.
•	 The passband of Butterworth filters is prescribed by a single parame-

ter. That parameter is the Cutoff Period, where the attenuation of the
filter is 3 dB.

•	 The Super Smoother filter is formed by retaining the IIR part of a
Butterworth digital filter.

•	 You can return to this chapter for equations to compute smoothing fil-
ters or to look up tables of their coefficients.

c13.qxd 2/2/04 10:59 AM Page 212

c14.qxd 2/2/04 11:38 AM Page 213

CHAPTER 14

Without Space
Time Warp—

Travel

“I only get Newsweek,” said Tom timelessly.

One of the most frustrating aspects of technical analysis is trying to
avoid whipsaw trades. When the moving averages are made
smoother to avoid these whipsaws, the lag produced by the

smoothing often renders the signals ineffective. The dilemma therefore is
how to strike a balance between the amount of smoothing that can be
obtained and the amount of lag that can be tolerated. In this chapter, I
introduce a new tool to address the smoothing versus lag problem more
effectively. In particular, you will learn another way to create better
smoothing filters.

A moving average is a simple concept involving sampled data. One
averages the data over the last N samples, moves forward one sample and
averages over the new set of N samples, and so on. For each new set of N

samples, only the oldest sample is discarded and one new sample is added.
The average is done over a fixed number of samples and moved forward
one sample at a time. In this way the average moves. An engineer views the
process differently. From this perspective, the data moves down a fixed
delay line that is tapped to get the output of each sample, and the tap out-
puts are added together to produce the moving average. This process is
depicted in the schematic of Figure 14.1 for a four-bar moving average. In
Figure 14.1, the symbol Z−1 means that there is one unit of delay. In the case
of daily data, the delay would be one day. The filter response in terms of the
Z transform is

H(z) = 1 + Z−1 + Z−2 + Z−3 (14.1)

213

c14.qxd 2/2/04 11:38 AM Page 214

214 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 14.1 Schematic of a Moving Average

The equation for the moving average, in EasyLanguage format, is

Filt = (Price + Price[1] + Price[2] + Price[3])/4; (14.2)

That is, successively older data samples from the newest sample are
averaged to obtain the filtered output. The tapped delay line concept is
favored by engineers because more generalized finite impulse response
(FIR) filters can be developed by changing the relative amplitudes of the
samples. For example, if we wanted the middle two samples to have twice
the weight of the newest sample and oldest sample in our four-sample
example, the schematic diagram would be as shown in Figure 14.2.

The equation for the FIR filter, in EasyLanguage format, is

Filt = (Price + 2 * Price[1] + 2 * Price[2] + Price[3])/6; (14.3)

This is exactly the same filter used to eliminate the two-bar and three-
bar cycle components in Figure 4.1. The multipliers on price are called the
coefficients of the filter. Note that the filter is always normalized to the sum
of the coefficients. This normalization is done so that the output will be the
same as the input if all the samples have the same value. In engineering
terms, the direct current, or zero frequency (DC) gain is equal to unity. The
FIR filter can be made to have additional smoothing by making the filter
longer. However, the lag of a FIR filter is approximately half the filter
length. The result is that if we want greater smoothing we must accept the
additional lag in conventional filters.

FIGURE 14.2 Schematic of a Four-Element FIR Filter

c14.qxd 2/2/04 11:38 AM Page 215

215 Time Warp—Without Space Travel

Conventional filters use the Z transform to describe the filter transfer
characteristic, where Z−1 denotes a unit delay. There are a semi-infinite
number of orthonormal functions for transform arithmetic. One such func-
tion is formed from Laguerre polynomials. The mathematical expression
for a kth-order Laguerre transfer response is

1 − γ Z−1 − γ
H(z) = � � (14.4)

1 − γZ−1 � 1 − γZ−1 �
k − 1

The Laguerre transform can be represented as an exponential moving
average (EMA) low-pass filter (the first term) followed by a succession of all-
pass elements instead of unit delays (the k − 1 terms). All terms have exactly
the same damping factor γ. We see that these are all pass networks by exam-
ining the frequency response. When frequency is 0, the Z−1 term has a value
of 1, and therefore the element evaluates to (1. − γ)/(1. − γ) = 1. Similarly,
when frequency is infinite, Z−1 has a value of −1, and therefore the element
evaluates to (−1. − γ)/(1. + γ) = −1. The element has a unity gain at all fre-
quencies between 0 and infinity, and therefore is an all-pass network.
However, the phase from input to output shifts over the frequency range,
causing the lag to be variable as a function of frequency. The degree to which
the lag is variable depends on the value of the damping factor γ. For example,
the lag, or group delay, for γ = 0.6 and γ = 0.8 is shown in Figure 14.3.

Therefore, we can make a filter using the Laguerre elements instead
of the unit delay, whose coefficients are also [1 2 2 1]/6 as with the FIR fil-
ter. The difference is that we have warped the time between the delay line
taps. The schematic of the Laguerre filter is shown in Figure 14.4.

FIGURE 14.3 All-Pass Network Lag Is a Function of Frequency and Damping Factor

c14.qxd 2/2/04 11:38 AM Page 216

216 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 14.4 Schematic of a Laguerre Filter

The EasyLanguage and eSignal Formula Script (EFS) codes for a four-
element Laguerre Filter are given in Figures 14.5 and 14.6, respectively. L0
is the output of the first section and is just an EMA. The following three
sections are identical in their form. The four sections of the Laguerre delay
line are summed exactly the same way as a linear delay line for a FIR filter.
The Laguerre output is the Filt variable. An identical-length FIR filter is
also computed for comparison.

Inputs: Price((H+L)/2),
gamma(.8);

Vars: L0(0),
L1(0),
L2(0),
L3(0),
Filt(0)
FIR(0);

L0 = (1 - gamma)*Price + gamma*L0[1];

L1 = -gamma*L0 + L0[1] + gamma*L1[1];

L2 = -gamma*L1 + L1[1] + gamma*L2[1];

L3 = -gamma*L2 + L2[1] + gamma*L3[1];

Filt = (L0 + 2*L1 + 2*L2 + L3) / 6;

FIR = (Price + 2*Price[1] + 2*Price[2] + Price[3]) / 6;

Plot1(Filt, “Filt”);

Plot2(FIR, “FIR”);

FIGURE 14.5 EasyLanguage Code for the Laguerre Filter

c14.qxd 2/2/04 11:38 AM Page 217

217 Time Warp—Without Space Travel

/***

Title: Laguerre Filter

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables

var aL0

var aL1

var aL2

var aL3

var aPriceArray

= new Array();

= new Array();

= new Array();

= new Array();

= new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle("LaguerreFilter");

setCursorLabelName("Filt", 0);

setCursorLabelName("FIR", 1);

setDefaultBarFgColor(Color.blue, 0);

setDefaultBarFgColor(Color.red, 1);

//initialize arrays

for (x=0; x<5; x++) {

aPriceArray[x] = 0.0;
aL0[x] = 0.0;
aL1[x] = 0.0;

(continued)

FIGURE 14.6 EFS Code for the Laguerre Filter

c14.qxd 2/2/04 11:38 AM Page 218

218 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

aL2[x] = 0.0;
aL3[x] = 0.0;

}

}

//== Main processing function

function main(Gamma) {

var x;

var nFilt;

var nFIR;

//initialize parameters if necessary

if (Gamma == null) {

Gamma = 0.80;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aPriceArray.pop();

aPriceArray.unshift(0);

aL0.pop();

aL0.unshift(0);

aL1.pop();

aL1.unshift(0);

aL2.pop();

aL2.unshift(0);

aL3.pop();

aL3.unshift(0);

}

FIGURE 14.6 (Continued)

c14.qxd 2/2/04 11:38 AM Page 219

219 Time Warp—Without Space Travel

aPriceArray[0] = (high()+low()) / 2;

aL0[0] = (1.0-Gamma) * aPriceArray[0]

+ Gamma*aL0[1];
aL1[0] = -Gamma*aL0[0] + aL0[1] + Gamma*aL1[1];

aL2[0] = -Gamma*aL1[0] + aL1[1] + Gamma*aL2[1];

aL3[0] = -Gamma*aL2[0] + aL2[1] + Gamma*aL3[1];

//calculate LaGuerre filter

nFilt = (aL0[0] + 2*aL1[0] + 2*aL2[0]

+ aL3[0]) / 6;
//calculate FIR filter

nFIR = (aPriceArray[0] + 2*aPriceArray[1]

+ 2*aPriceArray[2] + aPriceArray[3]) / 6;

//return the calculated values

if (!isNaN(nFilt)) {

return new Array(nFilt, nFIR);

}

}

FIGURE 14.6 (Continued)

The results of the Laguerre and FIR filters are shown in Figure 14.7.
Remember that all filters have identical lengths. The FIR filter has a lag of
only 1.5 bars and only moderately smooths the price data. On the other
hand, the Laguerre filter is dramatically smoother and also has significant
lag. You can decrease the smoothing and the lag by decreasing the damping
factor. When the damping factor is reduced to 0, the Laguerre filter is iden-
tical to the FIR filter. This is a simple way to control the action of a moving
average and still use only a few data samples in the calculation.

The story does not end with conventional filters. As I am fond of say-
ing, “Truth and science always triumph over ignorance and superstition.” If
we can generate superior smoothing with very short filters, it follows that
we should be able to create superior indicators using very short data
lengths also. The use of shorter data lengths means that we can make the
indicators more responsive to changes in the price. The Laguerre RSI will
be used as an example.

Welles Wilder defined the RSI as

c14.qxd 2/2/04 11:38 AM Page 220

= ���

220 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 14.7 Four-Element Laguerre Filter Is Dramatically Smoother than a
Conventional Four-Element FIR Filter

RSI = 100 − 100/(1 + RS)

where RS = (Closes Up)/(Closes Down)
= CU/CD

RS is shorthand for Relative Strength. That is, CU is the sum of the dif-
ference in closing prices over the observation period where that difference
is positive. Similarly, CD is the sum of the difference in closing prices over
the observation period where that difference is negative, but the sum is
expressed as a positive number. When we substitute CU/CD for RS and
simplify the RSI equation, we get

100RSI = 100 − �CU
1 + ��

CD

100CD = 100 − ��
CU + CD

100CU + 100CD − 100CD
CU + CD

100CU
RSI = ��

CU + CD

c14.qxd 2/2/04 11:38 AM Page 221

221 Time Warp—Without Space Travel

In other words, the RSI is the percentage of the sum of the delta closes
up to the sum of all the delta closes over the observation period. In the
EasyLanguage and EFS codes of Figures 14.8 and 14.9, respectively, I have
generated an RSI over Laguerre time rather than linear time, using only
four data samples. In this case, I used a damping factor of 0.5, but you can
adjust the damping factor to best suit your own data.

An example of the results for the four-element Laguerre RSI is shown
in Figure 14.10 below the price charts. The 20 percent and 80 percent signal
levels are also plotted. Note that the excursions of the RSI are typically
lock to lock and that the recovery is rapid at each major price reversal. A
typical use of the Laguerre RSI is to buy after the line crosses back over the

Inputs: gamma(.5);

Vars: L0(0),
L1(0),
L2(0),
L3(0),
CU(0),
CD(0),
RSI(0);

L0 = (1 – gamma)*Close + gamma*L0[1];

L1 = - gamma *L0 + L0[1] + gamma *L1[1];

L2 = - gamma *L1 + L1[1] + gamma *L2[1];

L3 = - gamma *L2 + L2[1] + gamma *L3[1];

CU = 0;

CD = 0;

If L0 >= L1 then CU = L0 - L1 Else CD = L1 - L0;

If L1 >= L2 then CU = CU + L1 - L2 Else CD = CD + L2

- L1;
If L2 >= L3 then CU = CU + L2 - L3 Else CD = CD + L3

- L2;

If CU + CD <> 0 then RSI = CU / (CU + CD);

Plot1(RSI, “RSI”);

Plot2(.8);

Plot3(.2);

FIGURE 14.8 EasyLanguage Code to Compute a Laguerre RSI Indicator

c14.qxd 2/2/04 11:38 AM Page 222

222 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

/***

Title: Laguerre RSI Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 06/19/2003

Version: 1.0.0

==

Fix History:

06/19/2003 - Initial Release

1.0.0

==

***/

//External Variables
var aL0 = new Array();
var aL1 = new Array();
var aL2 = new Array();
var aL3 = new Array();
var aPriceArray = new Array();
var nRSI = 0;

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(false);

setStudyTitle(“LaguerreRSI”);

setCursorLabelName(“RSI”, 0);

setDefaultBarFgColor(Color.blue, 0);

addBand(0.80, PS_SOLID, 2, Color.black, -55);

addBand(0.20, PS_SOLID, 2, Color.black, -56);

//initialize arrays

for (x=0; x<5; x++) {

aPriceArray[x] = 0.0;

FIGURE 14.9 EFS Code to Compute a Laguerre RSI Indicator

c14.qxd 2/2/04 11:38 AM Page 223

223 Time Warp—Without Space Travel

aL0[x] = 0.0;
aL1[x] = 0.0;
aL2[x] = 0.0;
aL3[x] = 0.0;

}

}

//== Main processing function

function main(Gamma) {

var x;

var nCD;

var nCU;

//initialize parameters if necessary

if (Gamma == null) {

Gamma = 0.50;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

aPriceArray.pop();

aPriceArray.unshift(0);

aL0.pop();

aL0.unshift(0);

aL1.pop();

aL1.unshift(0);

aL2.pop();

aL2.unshift(0);

aL3.pop();

aL3.unshift(0);

(continued)

FIGURE 14.9 (Continued)

c14.qxd 2/2/04 11:38 AM Page 224

224 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

aPriceArray[0] = close();

aL0[0] = (1.0-Gamma) * aPriceArray[0] + Gamma

*aL0[1];

aL1[0] = -Gamma*aL0[0] + aL0[1] + Gamma*aL1[1];

aL2[0] = -Gamma*aL1[0] + aL1[1] + Gamma*aL2[1];

aL3[0] = -Gamma*aL2[0] + aL2[1] + Gamma*aL3[1];

nCU = 0;

nCD = 0;

if (aL0[0] >= aL1[0]) {

nCU = aL0[0] -aL1[0];

}

else {

nCD = aL1[0] - aL0[0];

}

if (aL1[0] >= aL2[0]) {

nCU = nCU + aL1[0] - aL2[0];

}

else {

nCD = nCD + aL2[0] - aL1[0];

}

if (aL2[0] >= aL3[0]) {

nCU = nCU + aL2[0] - aL3[0];

}

else {

nCD = nCD + aL3[0] - aL2[0];

}

if (nCU + nCD != 0) {

nRSI = nCU / (nCU + nCD);

}

return(nRSI);

}

FIGURE 14.9 (Continued)

c14.qxd 2/2/04 11:38 AM Page 225

225 Time Warp—Without Space Travel

FIGURE 14.10 A Laguerre RSI Reacts Rapidly to Price Changes

20 percent level and sell after the price crosses back down over the 80 per-
cent level. Of course, just as with the conventional RSI, more elaborate
trading rules can be created.

KEY POINTS TO REMEMBER

•	 The Laguerre transform provides a time warp such that the low-
frequency components are delayed much more than the high-
frequency components.

•	 Time distortion enables very smooth filters to be built using a short
amount of data.

•	 Indicators can also be created using the time warp.
•	 Time-warped indicators react faster because a shorter amount of data

is used.

c14.qxd 2/2/04 11:38 AM Page 226

c15.qxd 2/2/04 11:38 AM Page 227

CHAPTER 15

Evaluating
Trading Systems

“I got the first three wrong,” said Tom forthrightly.

There are basically two ways to trade using technical analysis—dis-
cretionarily and systematically. Discretionary traders can, and have,
made spectacular amounts of money with their techniques. They

integrate their life’s experience, knowledge of the markets, and technical
indicators to make their trading decisions. In fact, I have used a large frac-
tion of this book to describe new indicators to be used as tools. Systematic
traders, on the other hand, do not need to know very much about the mar-
ket or have much experience. Instead, they rely on the trading signals auto-
matically produced by rules implemented by computer programs. They
have the confidence to rely on the computerized systems because the per-
formance statistics can be reproduced by backtesting. That is not to say
that hypothetical performance is perfect. There can be sharp differences
between hypothetical performance and real trading results. For example,
hypothetical trading does not involve financial risk, and the ability to with-
stand losses or to adhere to a particular trading system in the face of these
losses is not considered. Implementation issues, such as slippage and com-
mission, can only be included as allowance factors. Furthermore, the trad-
ing system can have performance in the future significantly different from
its past performance due simply to the randomness of events. Since back-
tests are always done with the benefit of hindsight, there are all kinds of
ways to cheat on reported performance. This chapter is about what you
can realistically expect from your trading system rather than how to cheat
the statistics.

Many people equate speculation in the market to gambling. Their
beliefs are reinforced by popular books such as A Random Walk Down

227

c15.qxd 2/2/04 11:38 AM Page 228

228 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Wall Street.1 This belief persists although it is patently false and intellectu-
ally dishonest. More serious investors look at fundamental considerations
such as P/E ratios, Sales, Debt, and so on, and give scant attention to tech-
nical analysis. The technique described in this chapter uses some gaming
concepts not only to show that there is merit to trading using technical
analysis trading systems, but also to enable you to visualize what equity
growth performance you can reasonably expect from your system.

There are a number of statistics that are important if you are putting
your hard-earned money at risk. Maximum drawdown is important because
it, plus required margin, is the absolute minimum amount of money you
should have in your account to avoid a margin call with reasonable proba-
bility. The number of consecutive losers is a test of how strong your stom-
ach must be to trade the system. The average profit per trade is important to
know because you must cover your transaction costs (commission plus
slippage) before you can start making money for yourself.

Taking away all the details of the particular system, there are two sta-
tistics that enable you to assess what performance you can expect. These
are the percentage of profitable trades and the Profit Factor. It is desirable
to have as high a percentage of winners as possible, but this need not be
greater than 50 percent to be profitable if you make more on winning
trades than you lose on losing trades. Profit Factor is the ratio of Gross
Winnings to Gross Losses. In terms of gaming, it is the payout probability.
By determining whether a trade is a winner or a loser using the percentage
wins and a random number generator, applying the payout probability to
each trade, and summing the randomly selected trades, you can provide
realistic expectations for the equity growth produced by the system. Only
in this sense can randomization be introduced to establish performance.
Simply winning or losing is not a random occurrence.

We can create an equity growth simulator and plot the results in an
Excel spreadsheet. First we need to insert the two important statistics. In
cell A1, type “% Winners” and in cell A2 type 45. In cell B1, type “Profit
Factor” and in cell B2 type 1.5. The values of 45 and 1.5 are only initial val-
ues. The entries into cells A2 and B2 are system statistics that you can
change to visualize their impact on equity growth.

In cell A3 input =RAND(). This creates a random number having a
uniform probability density in the range between 0 and 1. This random
number is compared to the probability of a win by inserting =IF(A3 <
B1/100,B2,0) into cell B3. This conditional statement says that if the
random number falls within the winning probability then assign the pay-
out probability (the Profit Factor) to the trade, otherwise assign a value
of −1 to the trade. This is the outcome of the trade. In cell C3 input =B3.
Copy all of row 3 into row 4. Then change cell C4 to be =C3 + B4. This

c15.qxd 2/2/04 11:38 AM Page 229

229 Evaluating Trading Systems

sums the trades in column C. Next copy all of row 4 and paste into rows
5 through 500. Column C now becomes the equity growth for the ran-
domized set of trades using only the percent winners and Profit Factor.
This equity growth changes every time you press F9, causing the spread-
sheet to recalculate.

You can plot the equity curve for ease of interpretation. To do this, high-
light cells C3 through C500. Then click on the chart wizard and input the
data as requested. First, select a line type chart and click on the type shown
in the upper left corner of the thumbnail examples. Click Next. Then click
Finish. Your chart is done! Now you are free to experiment with the kind of
equity growth you can expect from your trading system. Just press F9 to
recompute the spreadsheet. You will create a new randomized equity
growth curve because all the random numbers have changed. Repeat as
often as you desire to get a feeling that you know what to expect. Figures
15.1 and 15.2 are just two examples I ran using the default statistics. Note
that although exactly the same statistics are used, the equity curves are dra-
matically different. The message is that you should not blindly accept an
equity curve (real or hypothetical) from a vendor without also finding out
what the Profit Factor and Percent Profitable statistics were.

To see what a nice equity growth curve looks like, change cell A2 to 50
and cell B2 to 2.0. MESA Software is among the few systems developers
that have systems with statistics such as these. You can see the backtested

FIGURE 15.1 Hypothetical Equity Growth for %Profitable = 45 and Profit Factor = 1.50

c15.qxd 2/2/04 11:38 AM Page 230

230 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 15.2 Another Hypothetical Equity Growth Example for %Profitable = 45 and
Profit Factor = 1.50

equity curves of some of our systems at www.mesa-systems.com. Next,
explore what the lower-limit statistics might be for a profitable trading sys-
tem. My experience is that the boundary is 42 in cell A2 (for percentage
winners) and 1.5 (for Profit Factor) in cell B2.

KEY POINTS TO REMEMBER

•	 Profit Factor and Percentage Winners of a trading system are all you
need to create a Monte Carlo equity curve of that system.

•	 A real equity curve is only one of the possibilities that can be produced
by a Monte Carlo equity curve.

•	 A Monte Carlo simulation can be used to evaluate the expected perfor-
mance of any trading system.

c16.qxd 2/2/04 11:38 AM Page 231

CHAPTER 16

Leading
Indicators

“Leading indicators are neat,” said Tom predictably.

There are two basic kinds of leading indicators: causal and noncausal
filters. Causal filters depend on data and noncausal filters can be pre-
dictive from almost any other basis, including gut feelings. The Sine-

wave Indicator described in Chapter 11 is an example of a noncausal filter.
The purpose of this chapter is to derive the limitations and usefulness of
causal predictive filters. It is a fundamental principle that causal filters can-
not predict a specific event because their very value depends on that event.
That is to say, causal filters cannot anticipate a transient response. However,
they can and do act as reliable indicators of steady-state responses.

All moving averages have lag. A moving average is depicted as the
dashed line relative to the original function (the solid line) in Figure 16.1a.
The difference between the two lines d is a constant value in the case of a
continuous trend. Similarly, the lag k is also a constant value. The leading
indicator is created by adding the difference between the original function
and its moving average to the function itself. Adding the difference neces-
sarily places the indicator with a negative lag relative to the original func-
tion, as depicted in Figure 16.1b. Negative lag makes this filter a leading
indicator. The amount of lead is exactly equal to the amount of lag of the
moving average.

Since the amount of lead of the leading indicator is dependent on the
lag of a moving average, it is instructive to examine the lag of an exponen-
tial moving average as a function of its smoothing parameter alpha.
Imagine an original function that increases by 1 with each sample. The
function will have a value of I on the Ith sample. If the moving average has
a lag of k, then the moving average will have a value of (I − k) on the Ith day.

231

c16.qxd 2/2/04 3:25 PM Page 232

232 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 16.1 How Leading Indicators Are Constructed
a. A moving average has a lag k and a difference d.
b. Adding the moving average difference yields a lead k.

Similarly, the moving average will have had a value of (I − 1 − k) on the
(I − 1)th day. Putting these values in the equation for an exponential mov-
ing average, we have

(I − k) = α * I + (1 − α) * (I − 1 − k) (16.1)

Solving for alpha in terms of the delay k, we have the relationship

α = 1/(k + 1) (16.2)

Or, conversely

k = 1/α − 1 (16.3)

Equation 16.3 tells how much lead we can expect from our leading indi-
cator. From Chapter 2, the transfer response is the ratio of the output to the
input. Thus the transfer response of the leading indicator can be written as

Output α * Z−1

H(z) = � = 2 − ��
Input 1 − (1 − α) * Z−1

2 + (α − 2) * Z−1

= �� (16.4)
1 − (1 − α) * Z−1

But there is a price to be paid for getting the leading function. That price
is noise gain. If we let Z−1 = 1 in Equation 16.4, we get the zero frequency

c16.qxd 2/2/04 3:25 PM Page 233

Leading Indicators 233

(constant input) gain. Doing this algebra, the gain of this filter is unity. That
is, if the input is constant we get exactly the same output from the filter.
The output cannot be leading because there is no trend to the input.
Letting Z−1 = −1, the value of the transfer response at the Nyquist (highest
possible) frequency is obtained. Doing this, the filter gain for a two-bar
cycle is (4 − α)/(2 − α). So the noise gain varies from 2 when α = 0 to 3 when
α = 1. If the lead is three bars, Equation 16.2 gives α = 0.25, and therefore the
noise gain is 2.14, slightly more than 6 dB. Figure 16.2 shows how the noise
gain varies with frequency for the case when α = 0.25.

Noise gain is not a good thing. The noise gain can be reduced by fol-
lowing the leading indicator filter with an exponential moving average. As
I indicated earlier, all moving averages have lag. So, if an alpha of the mov-
ing average is selected to have less lag than the lead of the leading indica-
tor, an indicator having a net leading function can still be produced. As an
example, selecting α = 0.33 results in an exponential moving average that
has a lag of only two bars. The attenuation at Z−1 = 1 is 0.2, which gives a
greater attenuation than the noise gain of the leading indicator. The net
gain of the composite filter is shown in Figure 16.3. While there is still some
noise gain in the vicinity of a 20-bar cycle (frequency = 0.05), the net filter
has a net smoothing effect over most of the frequency range.

FIGURE 16.2 Noise Gain of a Leading Indicator

c16.qxd 2/2/04 11:38 AM Page 234

234 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

FIGURE 16.3 Net Gain of a Leading Indicator

The leading characteristic is still present in the net filter, as shown in
Figure 16.4. As predicted, the lead is one bar at very low frequencies. That
is, the trend indication will lead by one bar. However, the net filter has a lag
of approximately 2.5 bars for cycle components near 20-bar cycles. Also,
higher-frequency lag settles down to be about half a bar. The interpretation
of the lag response is that the filter predicts a continuation of a trend by 1
bar, lags abrupt changes by about 0.5 bars, and lags smooth changes that
can be fitted by segments of a 20-bar sinewave by as much as 2.5 bars.
That’s the law of physics—you cannot get something for nothing. Causal fil-
ters can have a predictive capability over some portion of the frequency
response, but not at all frequencies. There is no magic predictor.

The EasyLanguage and eSignal Formula Script (EFS) codes to compute
several leading indicators are given in Figures 16.5 and 16.6, respectively. In
these codes, the leading indicator is compared to an exponential moving
average whose α = 0.5. This exponential moving average has a lag of only a
half bar. The relative positions of the leading indicator and the exponential
moving average show when the market is in an uptrend or a downtrend as in
the example in Figure 16.7. The alphas of the leading indicator are provided
as inputs for ease of modification of the indicator. For example, the continu-
ation of the trend is more clearly identified if α1 is reduced to a value of 0.15.
The impact of giving the indicator greater lead is shown in Figure 16.8.

c16.qxd 2/2/04 11:38 AM Page 235

Leading Indicators	 235

FIGURE 16.4 The Net Filter Has a Low-Frequency Leading Characteristic

Inputs: Price((H+L)/2),

alpha1(.25),

alpha2(.33);

Vars:	 Lead(0),

NetLead(0),

EMA(0);

Lead = 2*Price +(alpha1 - 2)*Price[1]

+ (1 - alpha1)*Lead[1];

NetLead = alpha2*Lead + (1 - alpha2)*NetLead[1];

EMA = .5*Price + .5*EMA[1];

Plot1(NetLead, “Lead”);

Plot2(EMA, “EMA”);

FIGURE 16.5 EasyLanguage Code to Compute Leading Indicators

c16.qxd 2/2/04 11:38 AM Page 236

236 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

**

Title: Leading Indicator

Coded By: Chris D. Kryza (Divergence Software, Inc.)

Email: c.kryza@gte.net

Incept: 09/02/2003

Version: 1.0.0

==

Fix History:

09/02/2003 - Initial Release

1.0.0

==

***/

//External Variables
var nPrice = 0;
var nBarCount = 0;

var aPriceArray = new Array();
var aLead = new Array();
var aNetLead = new Array();
var aEMA = new Array();

//== PreMain function required by eSignal to set_

things up

function preMain() {

var x;

setPriceStudy(true);

setStudyTitle(“Leading Indicator”);

setCursorLabelName(“Lead”, 0);

setCursorLabelName(“EMA”, 1);

setDefaultBarFgColor(Color.red, 0);

setDefaultBarFgColor(Color.blue, 1);

//initialize arrays

for (x=0; x<10; x++) {

FIGURE 16.6 EFS Code to Compute Leading Indicators

c16.qxd 2/2/04 11:38 AM Page 237

Leading Indicators 237

aPriceArray[x] = 0.0;
aLead[x] = 0.0;
aNetLead[x] = 0.0;
aEMA[x] = 0.0;

}

}

//== Main processing function

function main(Alpha1, Alpha2) {

var x;

//initialize parameters if necessary

if (Alpha1 == null) {

Alpha1 = 0.25;

}

if (Alpha2 == null) {

Alpha2 = 0.33;

}

// study is initializing

if (getBarState() == BARSTATE_ALLBARS) {

return null;

}

//on each new bar, save array values

if (getBarState() == BARSTATE_NEWBAR) {

nBarCount++;

aPriceArray.pop();

aPriceArray.unshift(0);

aLead.pop();

aLead.unshift(0);

aNetLead.pop();

aNetLead.unshift(0);

aEMA.pop();

aEMA.unshift(0);

(continued)

FIGURE 16.6 (Continued)

c16.qxd 2/2/04 11:38 AM Page 238

238 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

}

nPrice = (high()+low()) / 2;

aPriceArray[0] = nPrice;

aLead[0] = 2 * aPriceArray[0] + (Alpha1 - 2.0)

* aPriceArray[1] + (1.0 - Alpha1)
* aLead[1];

aNetLead[0] = Alpha2 * aLead[0]

+ (1.0 - Alpha2) * aNetLead[1];

aEMA[0] = 0.5 * aPriceArray[0] + 0.5 * aEMA[1];

//return the calculated values

if (!isNaN(aNetLead[0]) && !isNaN(aEMA[0])

&& nBarCount > 20) {

return new Array(aNetLead[0], aEMA[0]);

}

}

FIGURE 16.6 (Continued)

c16.qxd 2/2/04 11:39 AM Page 239

Leading Indicators 239

FIGURE 16.7 Leading Indicator (α1 = 0.25, α2 = 0.33) and EMA

FIGURE 16.8 Leading Indicator (α1 = 0.15, α2 = 0.33) and EMA Provides a Clearer
Picture of the Trend Continuation

c16.qxd 2/2/04 11:39 AM Page 240

240 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

KEY POINTS TO REMEMBER

•	 Adding the difference between price and an exponential moving aver-
age to the price itself creates a leading indicator.

•	 The leading indicator always has noise gain.
•	 Smoothing the leading indicator with another exponential moving

average can mitigate noise gain.
•	 Constants can be selected to provide a net lead for the indicator at low

frequencies.
•	 The leading indicator has a lagging signal at price turning points.

c17.qxd 2/2/04 11:39 AM Page 241

CHAPTER 17

Simplifying Simple

Computations
Moving Average

“One topic has to be last,” said Tom finally.

A simple moving average (SMA) of length N is computed by adding N

values and dividing the sum by N. The process is repeated on a bar-
by-bar basis. What could be easier? While conceptually easy, the

coding for long moving averages can be tedious because there are so
many terms. The tedium can be reduced by putting the summation in a
loop. But looping is difficult to do in some applications, such as Excel.
Another simplifying approach is to drop off the oldest value and add a
new value to the moving average. But this requires computing the initial
value of the long moving average at least once. I will show you two ways
to compute the SMA with ease.

In Z transform notation, a unit delay is represented by Z−1. The transfer
response is the output of the filter divided by its input. Thus, the transfer
response of an eight-bar SMA would be written as

H(z) = (1 + Z−1 + Z−2 + Z−3 + Z−4 + Z−5 + Z−6 + Z−7)/8 (17.1)

This same expression, written in EasyLanguage where a delay of N

bars is represented in square brackets as [N], is shown in Equation 17.2.

SMA = (Price + Price[1] + Price[2] + Price[3] + Price[3]
+ Price[4] + Price[5] + Price[6] + Price[7])/8; (17.2)

241

c17.qxd 2/2/04 11:39 AM Page 242

242 CYBERNETIC ANALYSIS FOR STOCKS AND FUTURES

Equation 17.1 is a simple finite series that can be written most gener-
ally in fractional form as

−NY(z) 1 − z
H(z) = � = (N + 1) (17.3)��−1 � /X(z) 1 − z

where Y(z) is the filter output and X(z) is the filter input.
Equation 17.3 is identical to Equation 17.1 if N = 7, and is therefore an

SMA. When we carry out the cross multiplication of Equation 17.3, we
obtain

Y(z) = (X(z)(1 − z−N) + Y(z)z−1)/(N + 1) (17.4)

Equation 17.4 provides the means to program an arbitrarily long SMA
using just a few terms. The EasyLanguage equivalent of Equation 17.4 is

SMA = (Price − Price[N] + SMA[1])/(N + 1); (17.5)

Another SMA programming trick can be accomplished by recognizing
that we don’t have to do the filtering all at one time. Rather, we can cascade
filters. That means we can filter the output of a previous filter that takes the
output of a previous filter, and so on. Cascading filters are represented by
multiplication in Z transforms. Therefore, the SMA transfer response of
cascaded filters can be written as

K − 1
−2)/2KH(z) = (1 + z−1)(1 + z−2)(1 + z−4) . . . (1 + z (17.6)

For example, if K = 3, we would have an eight-bar SMA. As a test, we
can expand Equation 17.6 to be

H(z) = (1 + z−1)(1 + z−2)(1 + z−4)/8

= (1 + z−1 + z−2 + z−3)(1 + z−4)/8

= (1 + z−1 + z−2 + z−3 + z−4 + z−5 + z−6 + z−7)/8 (17.7)

Thus, Equation 17.7 shows that the cascaded filters expand to be identi-
cal with an SMA. In EasyLanguage, the cascaded filters would be written as

c17.qxd 2/2/04 11:39 AM Page 243

243 Simplifying Simple Moving Average Computations

Value1 = Price + Price[1];

Value2 = Value1 + Value1[2];

Value3 = Value2 + Value2[4];
(17.8)

SMA = Value3/8;

KEY POINTS TO REMEMBER

•	 An N-bar SMA can be written in an iterative form similar to an expo-
nential moving average.

•	 An N-bar SMA can be written as K iterative two-element averages,
where N = 2K .

c17.qxd 2/2/04 11:39 AM Page 244

bconclu.qxd 2/2/04 10:42 AM Page 245

CONCLUSION

But Wait—
There’s More!

In the Introduction, I said my goal was to revolutionize the art of trad-
ing by introducing the concept of modern digital signal processing. I
hope you agree that this has led to the development of some pro-

foundly effective new trading tools. More important, I hope that these new
trading tools have given you a new perspective on how to view the market
as well as how to technically analyze it. Perhaps I have even changed your
perspective from thinking technical analysis is bad to thinking that it is
often practiced badly. My tools address the practice of technical analysis.

Cybernetic Analysis for Stocks and Futures was written on several
levels. At one level, you have been given cookbook codes for trading sys-
tems with which you can begin trading immediately. The historical perfor-
mance of these systems is on par with, or exceeds, the performance of
commercial systems that would cost you thousands of dollars to purchase.
At another level, you have genuinely new analysis tools, such as the Fisher
transform, the CG Oscillator, the RVI, and the Hilbert transform discrimi-
nator to measure the Dominant Cycle period, and unique ways to combine
concepts. These indicators and automatic trading strategies view the mar-
ket from an entirely new perspective and therefore augment your existing
tools. I invite you to read the book again—perhaps more than once—and
reach the highest level possible. That level constitutes a deep understand-
ing of both the market and our analysis processes.

If you have read my previous book, Rocket Science for Traders (Wiley,
2001), you see that I address some of the same topics. I even use similar ter-
minology. For instance, I develop an Instantaneous Trendline in Chapter 2.
This Instantaneous Trendline is as close as anyone can come to nearly zero

245

bconclu.qxd 2/2/04 10:42 AM Page 246

246 Conclusion

lag in a smoothing filter. It therefore represents an improvement. Since
eliminating lag is extremely important to traders, the ideas put forward
herein are improvements over my previous works.

As another example, the Hilbert Transform cycle period method in
Chapter 9 is a substantial improvement over the three alternate discrimi-
nators I previously described. The improvement is made possible through
two innovations that reduce lag in the computation. The first of these inno-
vations is the recovery of the cycle component of the prices, which saves at
least four bars of lag in the detrending operation. The second innovation is
using a median filter to obtain a better estimate of the change of phase
from sample to sample. The previous approaches required the multiplica-
tion of data samples. Since the data comprises both signal and noise, the
multiplication produced products in the form of (S + N)(S + N) = S 2 + SN +
NS + N 2. That is, the product now has three noise terms that must be
removed by filtering instead of just one term in the original data. Filtering
produces lag. Therefore, avoiding a solution requiring the multiplication of
data samples reduces lag in the net result.

The Super Smoothers described in Chapter 13 are also improvements
over higher-order Butterworth filters. Only after reading about regulariza-
tion did I realize that the Butterworth filter consists of finite impulse
response (FIR) and infinite impulse response (IIR) components, and that
the FIR component could be removed, leaving a nearly maximumly flat
amplitude response in the filter passband. Not only are the desirable char-
acteristics of the Butterworth filter retained, but several bars of lag are
removed due to the removal of the FIR component. The result is the Super
Smoothers described.

This book is by no means the final word on digital signal processing as
it applies to trading. For example, Ehlers filters are in a continuing state of
research, evolution, and design. Through continued effort I hope to gener-
ate more accurate models of the market that will lead to greater profits for
traders. I encourage you to join me in this quest for greater accuracy and
precision. Please check www.mesasoftware.com for my latest technical
articles. You can apply the tools in this book in a jillion ways to improve
your own trading. For example, plot the two-pole Super Smoother and the
three-pole Super Smoother using the same Period for each. You will almost
immediately see a trading system jump at you from the crossings of the two
lines. I look forward to hearing of your successes and invite you share the
new horizons you reach in your adventures in the market.

bfmi.qxd 2/2/04 10:42 AM Page 247

For More Information

Research is an ongoing process for me. The latest reports of my research
can be found in technical papers and Power Point seminars on my Internet
site, www.mesasoftware.com.

Users of TradeStation may wish to avoid the work of keying in the code
and the agony of debugging the indicators and strategies. In this case, the
EasyLanguage Archive (ELA) files are available for direct transfer into your
TradeStation2000I platform. The files are automatically translated when
transferred into TradeStation 7.0. Similarly, eSignal users may want the elec-
tronic version of the eSignal Formula Script (EFS) codes. Your can pur-
chase the ELA or EFS files from my website at www.mesasoftware.com, or
by contacting me at:

MESA Software
P.O. Box 1801
Goleta, CA 93116
(800) 633-6372

NeuroShell Trade users can obtain the DLLs and templates for the
indicators and systems in this book by contacting Ward Systems Group.

Good trading!
John F. Ehlers

247

bfmi.qxd 2/2/04 10:42 AM Page 248

bnotes.qxd 2/2/04 10:43 AM Page 249

Notes

CHAPTER 4

1. John Ehlers, Rocket Science for Traders, John Wiley & Sons, New York,
2001, Chap. 14.

2. Rocket Science for Traders, Chap. 3.

CHAPTER 5

1. Rocket Science for Traders, Chap. 18.

CHAPTER 6

1. Perry Kaufman, The New Commodity Trading Systems and Methods.

New York: Wiley, 1987, p. 102–103.

CHAPTER 8

1. The Stochastic Indicator’s name is an arbitrary “term of art” chosen
by its original proponents. It has nothing to do with the statistical term
stochastic, which is defined as a randomly determined sequence of
events.

CHAPTER 9

1. Rocket Science for Traders, Chap. 6.

249

bnotes.qxd 2/2/04 10:43 AM Page 250

250	 Notes

CHAPTER 13

1. Chris 	Satchwell, PhD, “Regularization,” Stocks & Commodities

Magazine, July 2003, p. 38.
2.	 Rocket Science for Traders, Chap. 15.

CHAPTER 15

1. Burton G. Malkiel, A Random Walk Down Wall Street, W.W. Norton &
Co., New York, 1973–2003.

bindex.qxd 2/2/04 10:42 AM Page 251

Index

Adaptive cycle indicators:

CG Indicator, 124, 132–140, 149

Cyber Cycle, 123–124, 125, 132,

149

Relative Vigor Index, 124,

139–149

A/D Oscillator, 55–56

Butterworth filters:

analog, 191, 211

digital, 191–200, 211

versus Super Smoothers, 246

Buying Power, defined, 55

Center of gravity (CG), 47–48
CG Oscillator:

adaptive, 124, 132–140, 149

calculating, 48–52

example of, 49, 52

Fisher, 95–99

function of, 47–48, 53, 245

in indicator comparison, 63–65

Stochastic, 68–73, 79–84

Commodity Channel Index
(CCI), 2

Currency, trend tendencies of, 26

Curve fitting, 32

Cyber Cycle Indicator:

adaptive, 123–124, 125–132, 149

Fisher, 89–94

in indicator comparison, 63–65

versus Instantaneous Trendline,
36, 37, 46

lag in, 36–37

Stochastic, 68, 74, 75–79

trading on, 33–35

Cyber Cycle strategy:

EFS code for, 38–45

performance of, 45

trading with, 37, 39, 46

Cycle measurement:

accuracy of, 118–120

methods of, 107

process of, 108–118, 121, 246

Cycle Mode:

mathematical description of, 12

Sinewave Indicator in, 163

as trading strategy, 11, 33–46

Cycles:

components of, 108–110

in market model, 152

trading difficulty of, 3

trend indicators in, 165

turning points in, 3, 5, 7, 151, 163

Daily Raw Figure (DRF), 56

DeltaPhase computation, 117–119

Discretionary trading, 227

Dominant Cycle:

in adaptive indicators, 123, 124,

139, 149

in market model, 152

251

bindex.qxd 2/2/04 10:42 AM Page 252

252

Dominant Cycle (Continued):
in measurement process, 108,

117, 118, 121, 245
phase of, 151
in Sinewave Indicator, 153, 163
for Smoothed Adaptive

Momentum, 165, 186

EasyLanguage Archive (ELA), 247
EasyLanguage code:

for Adaptive CG Oscillator,
132–133

for Adaptive Cyber Cycle,
125–126

for Adaptive RVI, 140–141
for CG Oscillator, 49
for Cyber Cycle Indicator, 34
for Cyber Cycle strategy, 38
for cycle period computation,

111
for Fisher CG Oscillator, 95
for Fisher Cyber Cycle, 89–90
for Fisher RVI, 99–100
for Instantaneous Trendline,

26–31
for ITrend indicator, 24
for Laguerre filter, 216
for Laguerre RSI, 221
for leading indicators, 234, 235
for price normalization, 5–7
for Relative Vigor Index, 58
for Sinewave Indicator, 154–155
for Smoothed Adaptive

Momentum, 166
for Smoothed Adaptive

Momentum strategy, 175–176
for Stochastic CG Oscillator,

79–80
for Stochastic Cyber Cycle, 75
for Stochastic RSI, 68
for Stochastic RVI, 84–85
for three-pole Butterworth filter,

196–197

Index

for three-pole Super Smoother
filter, 206–207

for two-pole Butterworth filter,
192

for two-pole Super Smoother fil-
ter, 202

Ehlers filters, 48, 246
Equity growth simulator, in perfor-

mance evaluations, 228–230
eSignal Formula Script (EFS):

for Adaptive CG Oscillator,
134–139

for Adaptive Cyber Cycle,
126–131

for Adaptive RVI, 142–147
for CG Oscillator, 50–52
for Cyber Cycle Indicator, 35
for Cyber Cycle strategy, 39–45
for cycle period computation,

112–116
for Fisher CG Oscillator, 96–99
for Fisher Cyber Cycle, 90–94
for Fisher RVI, 101–104
for ITrend indicator, 25
for Laguerre filter, 217–219
for Laguerre RSI, 222–224
for leading indicators, 234,

236–238
to normalize price, 7, 8
for Relative Vigor Index, 58–61
for Sinewave Indicator, 156–162
for Smoothed Adaptive

Momentum, 167–174
for Smoothed Adaptive

Momentum strategy, 177–186
for Stochastic CG Oscillator,

80–84
for Stochastic Cyber Cycle,

75–79
for Stochastic RSI, 69–73
for Stochastic RVI, 85–89
for three-pole Butterworth filter,

197–200

bindex.qxd 2/2/04 10:42 AM Page 253

253 Index

for three-pole Super Smoother

filter, 207–210

for two-pole Super Smoother

filter, 202–205

eSignal Formula Script (EFS)

electronic version, 247

Exponential moving average

(EMA):

calculating, 12–13, 187

in cycle measurement, 118,

119

versus Instantaneous Trendline,

17–19

lag and, 37, 233

in leading indicator creation,

232–234, 239, 240

Fast Fourier transforms (FFTs),

107, 119

Filters. See also Smoothing

Butterworth, 191–200, 211

cascading, in SMA program
-

ming, 242

causal, 151, 231, 234

coefficients of, 48, 214

Ehlers, 48, 246

finite impulse response (FIR),

23, 33, 47–48, 201, 214, 219,

221

Gaussian, 15, 16

high-pass, 12, 15, 19

infinite impulse response (IIR),

201

Laguerre, 215, 216–220

low-pass, 16, 19

median, 118, 121, 246

noncausal, 151, 163, 231

Regularized, 188–191, 211

for Relative Vigor Index, 56

Smooth, 33

Super Smoother, 165, 201–211

time distortion used with, 215,

221, 225

Finite impulse response (FIR)

filters:

Butterworth, 246

in cycle trading, 33

equation for, 214

for Instantaneous Trendline, 23

lag and, 47–48

versus Laguerre filter, 219, 220

in smoothing, 201, 214

Fisher transform:

computing, 7–10

equation for, 3

function of, 2, 10, 245

versus MACD, 7, 10

for stochastic indicators, 74,

89–105

Stochastic RSI application, 68

transfer function of, 4

Frequency discriminator, 108

Gaussian probability density func
-
tion (PDF):

function of, 1–2, 10

versus sinewave cycle PDF, 3–5

Hilbert transform:

as analysis tool, 245, 246

for cycle components, 109, 110

function of, 121

lag and, 118–120

Infinite impulse response (IIR),

201, 246

InPhase component, of phasor,

108, 109, 110

Instantaneous Period (InstPeriod),

118

Instantaneous Trendline:

versus Cyber Cycle Indicator,

36, 37, 46

lag of, 16–19, 36, 245–246

versus moving average, 17–19

parameters for, 26–32

bindex.qxd 2/2/04 10:42 AM Page 254

254

Instantaneous Trendline
(Continued):

performance of, 32

trigger for, 21–24

Lag:

in all pass networks, 215

of Butterworth filter, 191

in Cyber Cycle Indicator,

36–37

eliminating, 11, 151, 246

of finite impulse response fil
-

ters, 47

of ITrend trigger, 21, 22

with leading indicator, 231–234,

240

of moving averages, 13–15,

231–233

of Regularized filter, 189, 190

smoothing and, 119, 213, 214

in Stochastic RSI, 68

Laguerre filters, 215, 216–220

Laguerre RSI, 219–225

Laguerre transform, 215, 225

Lambert, Donald, 2

Leading indicators:

amount of lead from, 231–232

creating, 231, 235–240

net filter for, 234, 235

net gain of, 233–234

noise gain of, 232–233, 240

types of, 231

Limit orders:

versus market/stop orders,

23–24

trade entries on, 32

Losers, consecutive, in perfor
-
mance evaluation, 228

Market models, 152, 246

Market orders, versus limit orders,

23

Maximum drawdown, 228

Index

Maximum Entropy Spectral

Analysis (MESA), 107, 119

MESA Software, 229–230, 246,

247

Monte Carlo simulation, in perfor
-
mance evaluation, 230

Moving average convergence-

divergence (MACD) indicator,

7, 10

Moving averages. See also

Exponential moving average
(EMA); Simple moving aver-
age (SMA)

equation for, 214

function of, 213

versus Instantaneous Trendline,

17–19

lag for, 13–15, 231–233

schematic of, 214

in Trend Mode strategies, 11,

165

weighted, 36, 47–48

Multipole smoothing filters,

201–211

NeuroShell Trade users, 247

Noise gain, of leading indicator,

232–233

Nyquist frequency, 12, 231

Oscillators. See also A/D
Oscillator; CG Oscillator

complementary cycle, 11, 19

as indicators, 36, 46, 63, 149,

165

Percentage of profitable trades,

228, 229

Performance:

expectation of, 228–230

of new trading systems, 245

Phasor, in cycle measurement,
108–109

bindex.qxd 2/2/04 10:42 AM Page 255

255 Index

Pole of the transfer response,

190

Prices:

cyclic component computation,

112–118

mean reversion of, 36

normalization of, 1–10

Probability density function
(PDF):

calculating, 1, 3

Gaussian, 1–5, 10

Profit Factor, 228, 229

Profit per trade, 228

Quadrature component, of phasor,

110, 111, 112, 119

A Random Walk Down Wall Street

(Malkiel), 227–228

Regularization, 187–191, 211

Relative Strength Index (RSI):

Fisher, 105

function of, 67

in indicator comparison, 64

introduction of, 107

Laguerre, 219–225

Relative Vigor Index (RVI):

adaptive, 124, 139–149

advantage of, 63

calculating, 55, 57–61

as cycle indicator, 56–57

versus Daily Raw Figure, 56

equation for, 55

Fisher, 99–104

function of, 55, 61, 245

in indicator comparison, 63–65

Stochastic, 74, 84–89, 105

Rocket Science for Traders

(Ehlers), 37, 245

Satchwell, Chris, 187

Selling Power, defined, 55

Sigma, defined, 1

Simple moving average (SMA):

calculating, 241–243

as FIR filter, 47

Sinewave Indicator:

advantages of, 152, 153

function of, 151, 153–163

as noncausal filter, 231

Slippage, 24, 32

Smoothed Adaptive Momentum:

function of, 165–174

performance of, 175

as trading strategy, 174–186

Smoothing. See also Filters

with CG Oscillator, 47

in cycle trading, 33

of Instantaneous Trendline, 19

lag and, 119, 213, 214

with leading functions, 21–23,

32

of leading indicator, 240

regularization as, 187

Standard deviation, 1, 10

Stochastic Indicators:

comparing, 74, 89

computing, 67–73, 75–89, 105

Fisher transform of, 74,

89–105
Stochastic RSI:

advantage of, 68

computing, 67–73

in indicator comparison, 65

performance of, 74

Stop orders, versus limit orders,
23–24

Super Smoother filters:

advantage of, 246

for momentum, 165

three-pole, 201, 206–211, 246

two-pole, 201–206, 246

Systematic trading, 227

Technical analysis, 228, 245

TradeStation users, 247

bindex.qxd 2/2/04 10:42 AM Page 256

256

Trading signals:

for Cyber Cycle, 36–46

Fisherized, 10, 104–105

for Instantaneous Trendline,

21–32

lag and, 213

for Stochastic Indicators, 74

in systematic trading, 227

Trading strategies, 11. See also

specific strategies

cycle-based, 33–46

evaluating, 227–230

tools for, 63–65, 165, 245–246

trend-based, 21–32

Transaction costs, 228

Transfer response:

of Butterworth filter, 191, 201

Laguerre, 215

of leading indicator, 232

of Regularized filter, 188–191,

211

of three-pole Super Smoother

filter, 211

of two-pole Super Smoother fil
-

ter, 201, 206

Treasury Bond futures:

Cyber Cycle strategy for, 45, 46

probability distribution of, 5, 6

Trend Mode:

mathematical description of,

12

Sinewave Indicator in, 163

Index

as trading strategy, 11, 21–32,

165

Trends:

in market model, 152

one-cycle momentum as indica
-

tor of, 165

Trigger:

lead/lag of, 21, 22

smoothness of, 21–23, 32

Ward Systems Group, 247

Waters, Jim, 55, 56

Weighted moving average (WMA),

36, 47–48

Whipsaws:

avoiding, 213

Fisher transform and, 104, 105

oscillators and, 63

Sinewave Indicator and, 153,

163

with Stochastic RVI, 74

Wilder, Welles, 107

Williams, Larry, 55, 56

Zero-lag tools:

CG Oscillator, 47

creation of, 11

Instantaneous Trendline, 16–19,

32

Z transform:

filter response and, 213, 215

SMA application, 241, 242

	Contents
	Introduction
	CHAPTER 1 The Fisher Transform
	CHAPTER 2 Trends and Cycles
	CHAPTER 3 Trading the Trend
	CHAPTER 4 Trading the Cycle
	CHAPTER 5 The CG Oscillator
	CHAPTER 6 Relative Vigor Index
	CHAPTER 7 Oscillator Comparison
	CHAPTER 8 Stochasticization and Fisherization of Indicators
	CHAPTER 9 Measuring Cycles
	CHAPTER 10 Adaptive Cycle Indicators
	CHAPTER 11 The Sinewave Indicator
	CHAPTER 12 Adapting to the Trend
	CHAPTER 13 Super Smoothers
	CHAPTER 14 Without SpaceTime Warp—Travel
	CHAPTER 15 EvaluatingTrading Systems
	CHAPTER 16 Leading Indicators
	CHAPTER 17 Simplifying Simple Moving Average Computations
	CONCLUSION But Wait—There’s More!

