

jcarlson
1_58053_413_9.jpg

SIP

Understanding the Session
Initiation Protocol

For a complete listing of the Artech House Telecommunications Library,
turn to the back of this book.

SIP

Understanding the Session
Initiation Protocol

Alan B. Johnston

Artech House
Boston � London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
Johnston, Alan.

SIP: Understanding the Session Initiation Protocol/ Alan Johnston.
p. cm. � (Artech House telecommunications library)

Includes bibliographical references and index.
ISBN 1-58053-168-7 (alk. paper)
1. Computer network protocols. I. Title II. Series.

TK5105.55 .J64 2000
004.6�2�dc21 00-050817

CIP

British Library Cataloguing in Publication Data
Johnston, Alan

SIP: Understanding the Session Initiation Protocol. � (Artech House
telecommunications library)

1. Computer network protocols
I. Title
004.6�2

ISBN 1-58053-413-9

Cover design by Lisa Johnston

© 2001 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording, or by any information storage and retrieval system, with-
out permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

International Standard Book Number: 1-58053-168-7
Library of Congress Catalog Card Number: 00-050817

10 9 8 7 6 5 4 3 2 1

For Lisa

.

Contents

Foreword xiii

Preface vii

1 SIP and the Internet 1

1.1 Signaling Protocols 1

1.2 The Internet Engineering Task Force 2

1.3 A Brief History of SIP 3

1.4 Internet Multimedia Protocol Stack 3

1.4.1 Physical Layer 4

1.4.2 Internet Layer 4

1.4.3 Transport Layer 5

1.4.4 Application Layer 7

1.5 Utility Applications 7

1.6 DNS and IP Addresses 8

1.7 URLs 10

vii

1.8 Multicast 10

1.9 ABNF Representation 11

References 12

2 Introduction to SIP 15

2.1 A Simple SIP Example 15

2.2 SIP Call with Proxy Server 23

2.3 SIP Registration Example 28

2.4 Message Transport 30

2.4.1 UDP Transport 30

2.4.2 TCP Transport 31

References 33

3 SIP Clients and Servers 35

3.1 SIP User Agents 35

3.2 SIP Gateways 36

3.3 SIP Servers 39

3.3.1 Proxy Servers 39

3.3.2 Redirect Servers 42

3.3.3 Registration Servers 45

3.4 Acknowledgment of Messages 45

3.5 Reliability 46

3.6 Authentication 47

3.7 Encryption 48

3.8 Multicast Support 50

3.9 Firewalls and NAT Interaction 50

References 52

viii SIP: Understanding the Session Initiation Protocol

4 SIP Request Messages 53

4.1 Methods 53

4.1.1 INVITE 54

4.1.2 REGISTER 57

4.1.3 BYE 58

4.1.4 ACK 60

4.1.5 CANCEL 63

4.1.6 OPTIONS 65

4.1.7 INFO 66

4.1.8 PRACK 68

4.2 SIP URLs and URIs 70

4.3 Tags 72

4.4 Message Bodies 73

References 74

5 SIP Response Messages 75

5.1 Informational 76

5.1.1 100 Trying 77

5.1.2 180 Ringing 77

5.1.3 181 Call Is Being Forwarded 77

5.1.4 182 Call Queued 78

5.1.5 183 Session Progress 78

5.2 Success 200 OK 79

5.3 Redirection 80

5.3.1 300 Multiple Choices 81

5.3.2 301 Moved Permanently 81

5.3.3 302 Moved Temporarily 81

5.3.4 305 Use Proxy 81

5.3.5 380 Alternative Service 82

5.4 Client Error 82

5.4.1 400 Bad Request 82

Contents ix

5.4.2 401 Unauthorized 82

5.4.3 402 Payment Required 83

5.4.4 403 Forbidden 83

5.4.5 404 Not Found 83

5.4.6 405 Method Not Allowed 83

5.4.7 406 Not Acceptable 84

5.4.8 407 Proxy Authentication Required 84

5.4.9 408 Request Timeout 84

5.4.10 409 Conflict 84

5.4.11 410 Gone 85

5.4.12 411 Length Required 85

5.4.13 413 Request Entity Too Large 85

5.4.14 414 Request-URI Too Long 85

5.4.15 415 Unsupported Media Type 85

5.4.16 420 Bad Extension 85

5.4.17 421 Extension Required 86

5.4.18 480 Temporarily Unavailable 86

5.4.19 481 Call Leg/Transaction Does Not Exist 86

5.4.20 482 Loop Detected 86

5.4.21 483 Too Many Hops 87

5.4.22 484 Address Incomplete 87

5.4.23 485 Ambiguous 88

5.4.24 486 Busy Here 89

5.4.25 487 Request Canceled 89

5.4.26 488 Not Acceptable Here 89

5.5 Server Error 89

5.5.1 500 Server Internal Error 90

5.5.2 501 Not Implemented 90

5.5.3 502 Bad Gateway 90

5.5.4 503 Service Unavailable 90

5.5.5 504 Gateway Timeout 90

5.5.6 505 Version Not Supported 90

5.6 Global Error 91

x SIP: Understanding the Session Initiation Protocol

5.6.1 600 Busy Everywhere 91

5.6.2 603 Decline 91

5.6.3 604 Does Not Exist Anywhere 91

5.6.4 606 Not Acceptable 91

References 92

6 SIP Headers 93

6.1 General Headers 93

6.1.1 Call-ID 94

6.1.2 Contact 95

6.1.3 CSeq 96

6.1.4 Date 98

6.1.5 Encryption 98

6.1.6 From 99

6.1.7 Organization 99

6.1.8 Retry-After 100

6.1.9 Subject 100

6.1.10 Supported 101

6.1.11 Timestamp 101

6.1.12 To 101

6.1.13 User Agent 102

6.1.14 Via 102

6.2 Request Headers 104

6.2.1 Accept 104

6.2.2 Accept-Contact 105

6.2.3 Accept-Encoding 106

6.2.4 Accept-Language 106

6.2.5 Authorization 107

6.2.6 Hide 107

6.2.7 In-Reply-To 108

6.2.8 Max-Forwards 108

6.2.9 Priority 108

6.2.10 Proxy-Authorization 109

6.2.11 Proxy-Require 110

Contents xi

6.2.12 Record-Route 110

6.2.13 Reject-Contact 111

6.2.14 Request-Disposition 111

6.2.15 Require 111

6.2.16 Response-Key 112

6.2.17 Route 112

6.2.18 RAck 112

6.2.19 Session-Expires 112

6.3 Response Headers 113

6.3.1 Proxy-Authenticate 113

6.3.2 Server 113

6.3.3 Unsupported 113

6.3.4 Warning 114

6.3.5 WWW-Authenticate 114

6.3.6 RSeq 116

6.4 Entity Headers 116

6.4.1 Allow 117

6.4.2 Content-Encoding 117

6.4.3 Content-Disposition 117

6.4.4 Content-Length 117

6.4.5 Content-Type 118

6.4.6 Expires 118

6.4.7 MIME-Version 119

References 119

7 Related Protocols 121

7.1 SDP�Session Description Protocol 121

7.1.1 Protocol Version 124

7.1.2 Origin 124

7.1.3 Session Name and Information 124

7.1.4 URI 124

7.1.5 E-mail Address and Phone Number 124

7.1.6 Connection Data 125

xii SIP: Understanding the Session Initiation Protocol

7.1.7 Bandwidth 125

7.1.8 Time, Repeat Times, and Time Zones 125

7.1.9 Encryption Keys 126

7.1.10 Media Announcements 126

7.1.11 Attributes 127

7.1.12 Use of SDP in SIP 127

7.2 RTP�Real-time Transport Protocol 130

7.3 RTP Audio Video Profiles 133

7.4 PSTN Protocols 135

7.4.1 Circuit Associated Signaling 135

7.4.2 ISUP Signaling 135

7.4.3 ISDN Signaling 135

References 136

8 Comparison to H.323 137

8.1 Introduction to H.323 137

8.2 Example of H.323 139

8.3 Versions 144

8.4 Comparison 144

8.4.1 Encoding 145

8.4.2 Transport 147

8.4.3 Addressing 148

8.4.4 Complexity 148

8.4.5 Feature Implementations 149

8.4.6 Vendor Support 149

8.4.7 Conferencing 149

8.4.8 Extensibility 150

8.5 Comparison Summary 151

References 151

Contents xiii

9 Call Flow Examples 153

9.1 SIP Call with Authentication, Proxies, and
Record-Route 153

9.2 SIP Call with Stateless and Stateful Proxies with
Called Party Busy 161

9.3 SIP to PSTN Call Through Gateway 164

9.4 PSTN to SIP Call Through Gateway 169

9.5 Parallel Search 172

9.6 H.323 to SIP Call 177

References 183

10 Future Directions 185

10.1 Changes to RFC 2543 185

10.2 SIP Working Group Design Teams 186

10.2.1 Call Control 187

10.2.2 Convergence with PacketCable Distributed Call
Signaling (DCS) Extensions 188

10.2.3 Call Flows 188

10.2.4 SIP/H.323 Interworking 188

10.2.5 Home Extension 188

10.2.6 SIP Security 188

10.2.7 SIP for Telephony 189

10.3 Other Related Drafts 189

References 189

About the Author 191

Index 193

xiv SIP: Understanding the Session Initiation Protocol

Foreword

The Internet now challenges the close to $1 trillion world telecom industry.
A renaissance in communications is taking place on the Internet. At its
source are new communication protocols that would be impractical on the
centralized control systems of circuit-switched networks used in telecommu-
nications.

The Internet and the World Wide Web can be technically defined only
by their protocols. Similarly, IP telephony and the wider family of IP com-
munications are defined by several key protocols, most notably by the Ses-
sion Initiation Protocol, or SIP.

The previously closed door of telecommunications is now wide open to
web developers because of SIP and its relation to the web HTTP 1.1 protocol
and the e-mail SMTP protocol. IP communications include voice/video,
presence, instant messaging, mobility, conferencing, and even games. We
believe many other communication areas are yet to be invented. The integra-
tion of all types of communications on the Internet may represent the next
�killer application" and generate yet another wave of Internet growth.

As explained in this book, SIP is a close relative of the HTTP 1.1 and
SMTP protocols. This represents a revolution in communications because it
abandons the telecom signaling and control models developed for telephony
over many years in favor of Internet and web-based protocols. Users and
service providers obtain not only seamless integration of telephony and con-
ferencing with many other World Wide Web and messaging applications,

xv

but also benefit from new forms of communications, such as presence and
instant messaging.

Mobility can also be managed across various networks and devices
using SIP. Location management is now under user control, so that incom-
ing �calls� can be routed to any network and device that the called party may
prefer. Users may even move across the globe to another service provider and
maintain not only their URL �number�, but also their personal tailored serv-
ices and preferences. The end user gains control over all possible preferences,
depending on various parameters such as who the other party is, what net-
work he is on and what devices he is using, as well as time of day, subject, and
other variables.

The new dimension in communications called �presence� enables
users for the first time to indulge in �polite calling� by first sensing presence
and preferences of the other party, before making a call. In its turn, presence
can trigger location- and time-dependent user preferences. Users may want
to be contacted in different ways, depending on their location and type of
network access.

E-commerce will also benefit from IP communications. Extremely
complex telecom applications, as found in call centers, have become even
more complex when integrated with e-mail and web applications for
e-commerce. Such applications, however, are quite straightforward to imple-
ment using SIP, due to its common structure with the web and e-mail. For
example, both call routing and e-mail routing to agents�based on various
criteria such as queue length, skill set, time of day, customer ID, the web
page the customer is looking at, and customer history�can be reduced to
simple XML scripts when using SIP and another IETF standard, the Call
Processing Language (CPL). These examples are in no way exhaustive, but
are mentioned here as a way of introduction.

This book starts with a short summary of the Internet, the World Wide
Web, and its core protocols and addressing. Though familiar to many read-
ers, these chapters provide useful focus on issues for the topics ahead. The
introduction to SIP is made easy and understandable by examples that illus-
trate the protocol architecture and message details. Finally, in the core of the
book, a methodical and complete explanation of SIP is provided. We refer
the reader to the Table of Contents for a better overview and navigation
through the topics.

Alan Johnston has made significant contributions toward the use of
SIP for communications over the Internet. I had the privilege of watching
Alan in meetings with some of the largest telecom vendors as he went
methodically line by line over hundreds of call flows, which were then

xvi SIP: Understanding the Session Initiation Protocol

submitted as an Internet Draft to the Internet Engineering Task Force
(IETF) and implemented in commercial systems. Alan combines in this
book his expertise and methodical approach with page turning narrative and
a discreet sense of humor.

I could not help reading the book manuscript page by page, since eve-
rything from Internet basics, protocols, and SIP itself is explained so well, in
an attractive and concise manner.

Henry Sinnreich
Distinguished Member of Engineering

WorldCom
Richardson, Texas

July 2000

Foreword xvii

.

Preface

When I began looking into the Session Initiation Protocol (SIP) in October
1998, I had prepared a list of a half dozen protocols relating to Voice over IP
and Next Generation Networking. It was only a few days into my study that
my list narrowed to just one: SIP. My background was in telecommunica-
tions, so I was familiar with the complex suite of protocols used for signaling
in the Public Switched Telephone Network. It was readily apparent to me
that SIP would be revolutionary in the telecommunications industry. Only a
few weeks later I remember describing SIP to a colleague as the �SS7 of
future telephony��quite a bold statement for a protocol that almost no one
had heard of, and that was not even yet a proposed standard!

Nearly 2 years later, I have continued to work almost exclusively with
SIP since that day in my position with WorldCom, giving seminars and
teaching the protocol to others. This book grew out of those seminars and
my work on various Internet-Drafts.

This revolutionary protocol was also the discovery of a radical stan-
dards body�the Internet Engineering Task Force (IETF). Later, I attended
my first IETF meeting, which was for me a career changing event. To inter-
act with this dedicated band of engineers and developers, who have quietly
taken the Internet from obscurity into one of the most important technologi-
cal developments of the late 20th century, for the first time was truly
exciting.

Just a few short years later, SIP has taken the telecommunications
industry by storm. The industry press contains announcement after

xix

announcement of SIP product and service support from established vendor
startups, and from established carriers. As each new group and company joins
the dialog, the protocol has been able to adapt and grow without becoming
unwieldy or overly complex. In the future, I believe that SIP, along with a
TCP/IP stack, will find its way into practically every intelligent electronic
device that has a need to communicate with the outside world.

With my telecommunications background, it is not surprising that I
rely on telephone examples and analogies throughout this book to explain
and illustrate SIP. This is also consistent with the probability that telecom-
munications is the first widely deployed use of the protocol. SIP stacks will
soon be in multimedia PCs, laptops, palmtops, and in dedicated SIP tele-
phones. The protocol will be used by telephone switches, gateways, wireless
devices, and mobile phones. One of the key features of SIP, however, is its
flexibility; as a result, the protocol is likely to be used in a whole host of
applications that have little or nothing to do with telephony. Quite possibly
one of these applications, such as instant messaging, may become the next
�killer application� of the Internet. However, the operation and concepts of
the protocol are unchanged regardless of the application, and the telephone
analogies and examples are, I feel, easy to follow and comprehend.

The book begins with a discussion of the Internet, the IETF, and the
Internet Multimedia Protocol Stack, of which SIP is a part. From there, the
protocol is introduced by examples. Next, the elements of a SIP network are
discussed, and the details of the protocol in terms of message types, headers,
and response codes are covered. In order to make up a complete telephony
system, related protocols, including Session Description Protocol (SDP) and
Real-Time Transport Protocol (RTP), are covered. SIP is then compared to
another signaling protocol, H.323, with the key advantages of SIP high-
lighted. Finally, the future direction of the evolution of the protocol is
examined.

Two of the recurring themes of this book are the simplicity and state-
less nature of the protocol. Simplicity is a hallmark of SIP due to its text-
encoded, highly readable messages, and its simple transactional model with
few exceptions and special conditions. Statelessness relates to the ability of
SIP servers to store minimal (or no) information about the state or existence
of a media session in a network. The ability of a SIP network to use stateless
servers that do not need to record transactions, keep logs, fill and empty buff-
ers, etc., is, I believe, a seminal step in the evolution of communications sys-
tems. I hope that these two themes become apparent as you read this book
and learn about this exciting new protocol.

xx SIP: Understanding the Session Initiation Protocol

The text is filled with examples and sample SIP messages. I had to
invent a whole set of IP addresses, domain names, and URLs. Please note
that they are all fictional�do not try to send anything to them.

I would first like to thank the group of current and former engineers at
WorldCom who shared their knowledge of this protocol and gave me the
opportunity to author my first Internet-Draft document. I particularly thank
Henry Sinnreich, Steve Donovan, Dean Willis, and Matt Cannon. I also
thank Robert Sparks, who I first met at the first seminar on SIP that I ever
presented. Throughout the whole 3-hour session I kept wondering about the
guy with the pony tail who seemed to know more than me about this brand
new protocol! Robert and I have spent countless hours discussing fine points
of the protocol. In addition, I would like to thank him for his expert review
of this manuscript prior to publication�it is a better book due to his thor-
oughness and attention to detail. I also thank everyone on the IETF SIP list
who has assisted me with the protocol and added to my understanding of it.

A special thanks to my wife Lisa for the terrific cover artwork and the
cool figures throughout the book.

Finally, I thank my editor Jon Workman, the series editor and
reviewer, and the whole team at Artech for helping me in this, my first
adventure in publishing.

Preface xxi

.

1
SIP and the Internet

The Session Initiation Protocol (SIP) is a new signaling protocol developed
to set up, modify, and tear down multimedia sessions over the Internet [1].
This chapter covers some background for the understanding of the protocol.
SIP was developed by the Internet Engineering Task Force (IETF) as part of
the Internet Multimedia Conferencing Architecture, and was designed to
dovetail with other Internet protocols such as TCP, UDP, IP, DNS, and
others. This organization and these related protocols will be briefly intro-
duced. Related background topics such as Internet URLs, IP multicast rout-
ing, and ABNF representations of protocol messages will also be covered.

1.1 Signaling Protocols

This book is about the Session Initiation Protocol, which is a signaling pro-
tocol. As the name implies, the protocol allows two end-points to establish
media sessions with each other. The main functions of signaling protocols
are as follows:

• Location of an end-point;

• Contacting end-point to determine willingness to establish a session;

• Exchange of media information to allow session to be established;

• Modification of existing media sessions;

1

• Tear-down of existing media sessions.

The treatment of SIP in this book will be from a telephony perspective.
This is likely to be one of the first applications of SIP, but not the only one.
SIP will likely be used to establish a whole set of session types that bear
almost no resemblance to a telephone call. The basic protocol operation,
however, will be the same. As a result, this book will use familiar telephone
examples to illustrate concepts.

1.2 The Internet Engineering Task Force

SIP was developed by the Internet Engineering Task Force (IETF). To quote
The Tao of the IETF [2]: �The Internet Engineering Task Force is a loosely
self-organized group of people who make technical and other contributions
to the engineering and evolution of the Internet and its technologies.� The
two document types used within the IETF are Internet-Drafts (I-Ds) and
Request for Comments (RFCs). I-Ds are the working documents of the
group; anyone can author one on any topic and submit it to the IETF. There
is no formal membership in the IETF; anyone can participate. Every I-D
contains the following paragraph on the first page: �Internet-Drafts are docu-
ments valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use
Internet-Drafts as reference material or to cite them other than as work in
progress.�

Internet standards are archived by the IETF as the Request for Com-
ments, or RFC, series of numbered documents. As changes are made in a
protocol, or new versions come out, a new RFC document with a new
number is issued, which �obsoletes� the old RFC. Some I-Ds are cited in this
book; I have tried, however, to restrict this to mature documents that are
likely to become RFCs by the time this book is published. A standard begins
life as an I-D, then progresses to an RFC once there is consensus and there
are working implementations of the protocol. Anyone with Internet access
can download any I-D or RFC at no charge using the World Wide Web, ftp,
or e-mail. Information on how to do so is on the IETF web site:
http://www.ietf.org.

The IETF is organized into working groups, which are chartered to
work in a particular area and develop a protocol to solve that particular area.
Each working group has its own archive and mailing list, which is where
most of the work gets done. The IETF also meets three times per year.

2 SIP: Understanding the Session Initiation Protocol

1.3 A Brief History of SIP

SIP was originally developed by the IETF Multi-Party Multimedia Session
Control Working Group, known as MMUSIC. Version 1.0 was submit-
ted as an Internet-Draft in 1997. Significant changes were made to the pro-
tocol and resulted in a second version, version 2.0, which was submitted
as an Internet-Draft in 1998. The protocol achieved Proposed Standard
status in March 1999 and was published as RFC 2543 [3] in April 1999.
In September 1999, the SIP working group was established by the IETF
to meet the growing interest in the protocol. An Internet-Draft contain-
ing bug fixes and clarifications to SIP was submitted in July 2000,
referred to as RFC 2543 �bis�. This document will be first published as an
Internet-Draft then as an RFC with a new RFC number, which will obso-
lete RFC 2543. To advance from Proposed Standard to Draft Standard,
a protocol must have multiple independent interworking implementa-
tions and limited operational experience. To this end, forums of interoper-
ability tests, called �bakeoffs,� have been organized by the SIP working
group. Three interoperability �bakeoffs� took place for SIP in 1999, with
more planned for 2000. The final level, Standard, is achieved after opera-
tional success has been demonstrated [4]. With the documented interoper-
ability of the bakeoffs, SIP should move to Draft Standard status
sometime in early 2001.

SIP incorporates elements of two widely used Internet protocols:
HTTP (Hyper Text Transport Protocol) used for web browsing and SMTP
(Simple Mail Transport Protocol) used for e-mail. From HTTP, SIP bor-
rowed a client-server design and the use of uniform resource locators (URLs).
From SMTP, SIP borrowed a text-encoding scheme and header style. For
example, SIP reuses SMTP headers such as To, From, Date, and Subject.
In keeping with its philosophy of �one problem, one protocol�, the IETF
designed SIP to be a pure signaling protocol. SIP uses other IETF protocols
for transport, media transport, and media description. The interaction of SIP
with other Internet protocols such as IP, TCP, UDP, and DNS will be
described in the next section.

1.4 Internet Multimedia Protocol Stack

Figure 1.1 shows the four-layer Internet Multimedia Protocol stack. The lay-
ers shown and protocols identified will be discussed.

SIP and the Internet 3

1.4.1 Physical Layer

The lowest layer is the physical and link layer, which could be an Ethernet
local area network (LAN), a telephone line (V.90 or 56k modem) running
Point-to-Point Protocol (PPP), or a digital subscriber line (DSL) running
asynchronous transport mode (ATM), or even a multi-protocol label switch-
ing (MPLS) network. This layer performs such functions as symbol
exchange, frame synchronization, and physical interface specification.

1.4.2 Internet Layer

The next layer in Figure 1.1 is the Internet layer. Internet Protocol (IP) [5] is
used at this layer to route a packet across the network using the destination
IP address. IP is a connectionless, best-effort packet delivery protocol. IP
packets can be lost, delayed, or received out of sequence. Each packet is
routed on its own, using the IP header appended to the physical packet. IP
address examples in this book use the current version of IP, Version 4. IPv4
addresses are four octets long, usually written in so-called �dotted decimal�
notation (for example, 207.134.3.5). Between each of the dots is a decimal
number between 0 and 255. At the IP layer, packets are not acknowledged. A
checksum is calculated to detect corruption in the IP header, which could
cause a packet to become misrouted. Corruption or errors in the IP payload,
however, are not detected; a higher layer must perform this function if neces-
sary. IP uses a single octet protocol number in the packet header to identify
the transport layer protocol that should receive the packet. IP addresses used
over the public Internet are assigned in blocks by the Internet Assigned

4 SIP: Understanding the Session Initiation Protocol

Signaling Media Utility

SDP

H.323 SIP RTP DNS DHCP

UDP

IP

AALx

ATM

PPP

Ethernet MPLSV.90

TCP

Media coding

Application layer

Physical/Link
layer

Internet layer

Transport layer

Figure 1.1 The Internet Multimedia Protocol stack.

Number Association (IANA). As a result of this centralized assignment, IP
addresses are globally unique. This enables a packet to be routed across the
public Internet using only the destination IP address. Various protocols are
used to route packets over an IP network, but they are outside of the scope of
this book. Subnetting and other aspects of the structure of IP addresses are
also not covered here. There are other excellent sources [6] that cover the
entire suite of TCP/IP protocols in more detail.

1.4.3 Transport Layer

The next layer shown in Figure 1.1 is the transport layer. It uses a two-octet
port number from the application layer to deliver the datagram or segment to
the correct application layer protocol at the destination IP address. Some
port numbers are dedicated to particular protocols�these ports are called
�well-known� port numbers. For example, HTTP uses the well-known port
number of 80, while SIP uses the well-known port number of 5060. Other
port numbers can be used for any protocol, and they are assigned dynami-
cally from a pool of available numbers. These so-called �ephemeral� port
numbers are usually in the range 49152�65535. There are two commonly
used transport layer protocols, Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) described in the next sections.

1.4.3.1 TCP

Transmission Control Protocol [7] provides reliable, connection-oriented
transport over IP. TCP uses sequence numbers and positive acknowledgments
to ensure that each block of data, called a segment, has been received. Lost seg-
ments are retransmitted until they are successfully received. Figure 1.2 shows
the message exchange to establish and tear down a TCP connection. A TCP
server �listens� on a well-known port for a TCP request. The TCP client sends
a SYN (synchronization) message to open the connection. The SYN message
contains the initial sequence number the client will use during the connection.
The server responds with a SYN message containing its own initial sequence
number, and an acknowledgment number, indicating that it received the SYN
from the client. The client completes the three-way handshake with an ACK
or a DATA packet with the AK flag set to the server acknowledging the server�s
sequence number. Now that the connection is open, either client or server can
send data in DATA packets called segments.

Each time a sender transmits a segment, it starts a timer. If a segment is
lost in transmission, this timer will expire. Deducing a lost segment, the
sender will resend the segment until it receives the acknowledgment. The

SIP and the Internet 5

FIN message closes the TCP connection. The sequence of four messages
shown in Figure 1.2 closes the connection. The ephemeral port numbers
used in the connection are then free to be used in establishing other connec-
tions. TCP also has built-in mechanisms for flow control. During the SYN
processing, a window size representing the initial maximum number of unac-
knowledged segments is sent, which starts at 1 and increases exponentially up
to a maximum limit. When network congestion and packet loss occur, the
window resets back to 1 and gradually ramps back up again to the maximum
limit. A TCP segment header contains 24 octets. Errored segments are
detected by a checksum covering both the TCP header and payload.

1.4.3.2 UDP

User Datagram Protocol [8] provides unreliable transport across the Internet.
It is a best-effort delivery service, since there is no acknowledgment of sent
datagrams. Most of the complexity of TCP is not present, including
sequence numbers, acknowledgments, and window sizes. UDP does detect
errored datagrams with a checksum. It is up to higher layer protocols, how-
ever, to detect this datagram loss and initiate a retransmission if desired.

6 SIP: Understanding the Session Initiation Protocol

SYN

SYN/AK

ACK

DATA

FIN

...

ACK

ACK

FIN

TCP Client TCP Server

Figure 1.2 Opening and closing a TCP connection.

1.4.4 Application Layer

The top layer shown in Figure 1.1 is the application layer. This includes sig-
naling protocols such as SIP and media transport protocols such as Real-time
Transport Protocol (RTP), which is introduced in Section 7.2. Figure 1.1
includes H.323, introduced in Chapter 8, an alternative signaling protocol to
SIP developed by the International Telecommunications Union (ITU). Ses-
sion Description Protocol (SDP), described in Section 7.1, is shown above
SIP in the protocol stack because it is carried in a SIP message body. HTTP,
SMTP, FTP, and Telnet are all examples of application layer protocols.
Because SIP can use any transport protocol, it is shown interacting with both
TCP and UDP in Figure 1.1. The use of TCP or UDP transport for SIP will
be discussed in the next chapter.

1.5 Utility Applications

Two utility applications are also shown in Figure 1.1 as users of UDP. The
most common use of the Domain Name System (DNS, well-known port
number 53) is to resolve a symbolic name (such as domain.com, which is
easy to remember) into an IP address (which is required by IP to route the
packet). Also shown is the Dynamic Host Configuration Protocol (DHCP).
DHCP allows an IP device to download configuration information upon ini-
tialization. Common fields include a dynamically assigned IP address, DNS
addresses, subnet masks, maximum transmission unit (MTU), or maximum
packet size, and server addresses for mail and web browsing. Figure 1.3 shows
the layer interaction for processing a request. At the top, a URL from the user
layer is input to the application layer. URLs, described later in this chapter,
are names used to represent resources, hosts, or files on the Internet. The
application passes the generated request (for example, a HTTP GET request,
which requests a web page download), the URL, and the port number to the
transport layer. The transport layer uses a utility to resolve the domain name
extracted from the URL into an IP address. The IP address, datagram (or
segment, depending on the transport layer protocol used), and protocol
number identifying the transport protocol are then passed to the Internet
layer. The Internet layer then passes the packet to the physical layer along
with a media access control (MAC) address for routing, in the case of a LAN.
A response is processed by reversing the above steps. A response received at
the physical layer flows back up the layers, with the header information being
stripped off and the response data passed upwards towards the user. The
main difference is that no utility is used in response processing.

SIP and the Internet 7

1.6 DNS and IP Addresses

Domain Name Service [9] is used in the Internet to map a symbolic name
(such as www.amazon.com) to an IP address (such as 100.101.102.103).
DNS is also used to obtain information needed to route e-mail messages,
and, in the future, SIP messages. The use of names instead of numerical
addresses is one of the Internet�s greatest strengths because it gives the Inter-
net a human, friendly feel. Domain names are organized in a hierarchy. Each
level of the name is separated by a dot, with the highest level domain on the
right side. (Note that the dots in a domain name have no correspondence to
the dots in an IP address written in dotted decimal notation.) Top-level
domains are shown in Table 1.1. There is also a set of country domains such
as: us (United States), uk (United Kingdom), ca (Canada), au (Australia),
and so on. Each of these top-level domains has just one authority that assigns
that domain to a user or group.

8 SIP: Understanding the Session Initiation Protocol

Application

Transport

Internet

Physical

Utility

URL from user

Request message, URL,
and port number

Datagram or segment
and protocol number

Packet and MAC address
(if on a LAN)

Domain
name

IP address

Figure 1.3 Request processing in the Internet Protocol stack.

Once a domain name has been assigned, the authority places a link in
their DNS server to the DNS server of the user or group who has been
assigned the domain. For example, when company.com is allocated to a
company, the authoritative DNS server for the top-level com domain entry
for company contains the IP address of the company�s DNS server(s). A
name can then be further qualified by entries in the company�s DNS server
to point to individual servers in their network. For example, the company�s
DNS server may contain entries for www.company.com, ftp.company.com,
and smtp.company.com. A number of types of DNS record types are
defined. The DNS records used to resolve a host name into an IP address are
called address records, or A records. Other types of records include CNAME
(or canonical name or alias records), MX (or mail exchange records), and
TXT(or free-form text records). Another type of DNS record is a PTR, or
pointer record, used for reverse lookups. Reverse lookups are used to map an
IP address back to a domain name. These records can be used, for example in
generating server logs that show not only the IP addresses of clients served,
but also their domain name.Web browsing provides an example of the use of
the DNS system. When a user types in a web address, such as www.artech-
house.com, the name must be resolved to an IP address before the browser
can send the request for the index web page from the Artech House web
server. The web browser first launches a DNS query to the IP address for its
DNS server, which has been manually configured or set up using DHCP. If

SIP and the Internet 9

Table 1.1
Internet Top-Level Domains

Domain Description

com Company

net Network

int Internet

org Not for Profit Organization

edu University or College

gov U.S. Government

mil U.S. Military

arpa ARPAnet

the DNS server happens to have the name�s A record stored locally (cached)
from a recent query, it will return the IP address. If not, the DNS root server
will then be queried to locate the authoritative DNS server for Artech House,
which must contain the A records for the artechhouse.com domain. The
HTTP GET request is then sent to that IP address, and the web browsing
session begins. There is only one authoritative DNS server for a domain, and
it is operated by the owner of the domain name. Due to a very efficient cach-
ing scheme built into DNS, a DNS request often does not have to route all
the way to this server. DNS is also used by an SMTP server to deliver an
e-mail message. An SMTP server with an e-mail message to deliver initiates a
DNS request for the MX record of the domain name in the destination
e-mail address. The response to the request allows the SMTP server to con-
tact the destination SMTP server and transfer the message. A similar process
has been proposed for locating a SIP server using SRV, or server, DNS
records.

1.7 URLs

Uniform resource locators [10] are names used to represent addresses or loca-
tions in the Internet. URLs are designed to encompass a wide range of proto-
cols and resource types in the Internet. The basic form of a URL is
scheme:specifier. For example: http://www.artechhouse.com/search/search.
html. The token http identifies the scheme or protocol to be used, in this
case HTTP. The specifier follows the �:� and contains a domain name
(www.artechhouse.com), which can be resolved into an IP address and a file
name (/search/search.html). URLs can also contain additional parameters or
qualifiers relating to transport. For example telnet://host.company.com:24
indicates that the Telnet Protocol should be used to access host.com-
pany.com using port 24. New schemes for URLs for new protocols are easily
constructed, and dozens have been defined, such as mailto, tel, https, and so
on. The SIP URL scheme will be introduced in Section 2.2 and described in
detail in Section 4.2.

1.8 Multicast

In normal Internet packet routing, or unicast routing, a packet is routed to a
single destination. In multicast routing, a single packet is routed to a set of
destinations. Single LAN segments running a protocol such as Ethernet,

10 SIP: Understanding the Session Initiation Protocol

offer the capability for packet broadcast, where a packet is sent to every node
on the network. Scaling this to a larger network with routers is a recipe for
disaster, as broadcast traffic can quickly cause congestion. An alternative
approach for this type of packet distribution is to use a packet reflector that
receives packets and forwards copies to all destinations that are members of a
broadcast group. This also can cause congestion in the form of a �packet
storm� [11]. For a number of years, the Internet MBONE, or Multicast
Backbone Network, an overlay of the public Internet, has used multicast
routing for high-bandwidth broadcast sessions. Participants who wish to join
a multicast session send a request to join the session to their local MBONE
router. That router will then begin to broadcast the multicast session on that
LAN segment. Additional requests to join the session from others in the
same LAN segment will result in no additional multicast packets being sent,
since the packets are already being broadcast. If the router is not aware of any
multicast participants on its segment, it will not forward any of the packets.
Routing of multicast packets between routers uses special multicast routing
protocols to ensure that packet traffic on the backbone is kept to a mini-
mum. Multicast Internet addresses are reserved in the range 224.0.0.0 to
239.255.255.255. Multicast transport is always UDP, since the handshake
and acknowledgments of TCP are not possible. Certain addresses have been
defined for certain protocols and applications. The scope or extent of a mul-
ticast session can be limited using the time-to-live (TTL) field in the IP
header. This field is decremented by each router that forwards the packet,
limiting the number of hops the packet takes. SIP support for multicast will
be discussed in Section 3.8. Multicast is slowly becoming a part of the public
Internet as service providers begin supporting it.

1.9 ABNF Representation

The meta-language Augmented Backus-Naur Format (ABNF) [12] is used
throughout RFC 2543 [13] to describe the syntax of SIP, as well as other
Internet protocols. An example construct used to describe a SIP message is as
follows:

SIP-message = Request | Response

This is read: A SIP message is either a request or a response. SIP-
message on the left side of the �equals� sign represents what is being
defined. The right side of the �equals� sign contains the definition. The �|� is

SIP and the Internet 11

used to mean logical OR (note: �/� is used in place of �|� in some ABNF
grammars). Next, Request and Response are defined in a similar manner
using ABNF:

Request = Request-Line *(general-header|request-header|

entity-header) CRLF [message-body] ; Comment

Request-Line will be defined in another ABNF statement. Elements
enclosed in () are treated as a single element. The �*� means the element may
be repeated, separated by at least one space. The minimum and maximum
numbers can be represented as x*y, which means a minimum of x and maxi-
mum of y. Since the default values are 0 and infinity, a solitary �*� (as in this
example) indicates any number is allowed, including none. CRLF is defined
as a carriage return line feed, or the ASCII characters that are written in
Internet hexadecimal notation as 0x10 and 0x13. Other common ABNF
representations include SP for space (ASCII 0x32). A message body is
optional in a Request, and is enclosed in square brackets [] to indicate this.
Comments in the ABNF begin with a semicolon �;� and continue to the end
of the line. Lines continue the same ABNF definition when they are
indented. Tokens are defined in ABNF as any set of characters besides con-
trol characters and separators. Display names and other components of a SIP
header that are not used by the protocol are considered tokens; they are sim-
ply parsed and ignored. For example:

List = �"List"� �:� #1 token

The �#1� indicates at least one token separated by commas. In this text,
few references to ABNF will be made. Instead, SIP messages and elements
will be introduced by description and example rather than by using ABNF.

References

[1] Leiner, B., et al., �A Brief History of the Internet,� The Internet Society,
http://www.isoc.org/internet/history/brief.html.

[2] Malkin, G. and the IETF Secretariat, �The Tao of the IETF�A Guide for New
Attendees of the Internet Engineering Task Force,� http://www.ietf.org/tao.html.

[3] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999.

[4] Bradner, S., �The Internet Standards Process: Revision 3,� RFC 2026, 1996.

[5] �Internet Protocol,� RFC 791, 1981.

12 SIP: Understanding the Session Initiation Protocol

[6] Wilder, F., A Guide to the TCP/IP Protocol Suite, Norwood, MA: Artech House, 1998.

[7] �Transmision Control Protocol,� RFC 793, 1981.

[8] Postal, J., �User Datagram Protocol,� RFC 768, 1980.

[9] Manning, B., �DNS NSPA RRs,� RFC 1348, 1992.

[10] Berners-Lee, T., L. Masintes, and M. McCahill, �Uniform Resource Locators,� RFC
1738, 1994.

[11] Hersent, O., D. Gurle, and J. Petit, IP Telephony Packet-based Multimedia Communica-
tions Systems, Harlow, England: Addison-Wesley, 2000, Chapter 8.

[12] Crocker, D., �Standard for the Format of ARPA Internet Text Messages,� RFC 822,
1982.

[13] Handley, M., et al., �SIP: Session Initiation Protocol�, RFC 2543, 1999, Appendix C.

SIP and the Internet 13

.

2
Introduction to SIP

Often the best way to learn a protocol is to look at examples of its use. While
the terminology, structures, and format of a new protocol can be confusing
at first read, an example message flow can give a quick grasp of some of the
key concepts of a protocol. The example message exchanges in this chapter
will introduce SIP.

The first example shows the basic message exchange between two SIP
devices. The second example shows the message exchange when a SIP proxy
server is used. The third example shows SIP registration. The chapter con-
cludes with a discussion of SIP message transmission using UDP and TCP.

The examples will be introduced using call flow diagrams between a
called and calling party, along with the details of each message. Each arrow in
the figures represents a SIP message, with the arrowhead indicating the direc-
tion of transmission. The thick lines in the figures indicate the media stream.
In these examples, the media will be assumed to be Real-timeTrasnport Pro-
tocol (RTP) [1] packets containing audio, but it could be another protocol.
Details of RTP are covered in Section 7.2.

2.1 A Simple SIP Example

Figure 2.1 shows the SIP message exchange between two SIP-enabled
devices. The two devices could be SIP phones, hand-helds, palmtops, or cell

15

phones. It is assumed that both devices are connected to an IP network such
as the Internet and know each other�s IP address.

The calling party, Tesla, begins the message exchange by sending a SIP
INVITE message to the called party, Marconi. The INVITE contains the
details of the type of session or call that is requested. It could be a simple
voice (audio) session, a multimedia session such as a video conference, or it
could be a gaming session.

The INVITE message contains the following fields:

INVITE sip:marconi@radio.org SIP/2.0

Via: SIP/2.0/UDP lab.high-voltage.org:5060

To: G. Marconi <sip:Marconi@radio.org>

From: Nikola Tesla <sip:n.tesla@high-voltage.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 INVITE

Subject: About That Power Outage...

Contact: sip:n.tesla@high-voltage.org

Content-Type: application/sdp

Content-Length: 158

16 SIP: Understanding the Session Initiation Protocol

INVITE

180 Ringing

200 OK

ACK

200 OK

BYE

Media Session

Tesla Marconi

Figure 2.1 A simple SIP example.

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org

s=Phone Call

c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The fields listed in the INVITE message are called headers. They have
the form Header: Value CRLF. The first line of the request message,
called the start line, lists the method, which is INVITE, the Request-URI
(Uniform Resource Indicator), then the SIP version number (2.0), all sepa-
rated by spaces. Each line of a SIP message is terminated by a CRLF. The
Request-URI is a special form of SIP URL and indicates the resource to
which the request is being sent. SIP URLs and URIs are discussed further in
Sections 2.2 and 4.2, respectively.

The first header following the start line is a Via header. Each SIP
device that originates or forwards a SIP message stamps its own address in
a Via header, usually written as a host name that can be resolved into an
IP address using a DNS query. The Via header contains the SIP Version
number (2.0), a �/�, then UDP for UDP transport, a space, then the host-
name or address, a colon, then a port number, in this example the �well-
known� SIP port number 5060. Transport of SIP using TCP, UDP, and
port numbers are covered later in this chapter.

The next headers are the To and From headers, which show the origi-
nator and destination of the SIP request. When a name label is used, as in
this example, the SIP URL is enclosed in brackets and used for routing the
request. The name can be displayed during alerting.

The Call-ID header has the same form as an e-mail address but is
actually an identifier used to keep track of a particular SIP session. The origi-
nator of the request creates a locally unique string, then usually adds an �@�
and its host name to make it globally unique. The combination of the local
address (From header), remote address (To header), and Call-ID identifies
the �call leg.� The call leg is used by both parties to identify this call because
they could have multiple calls set up between them. Subsequent requests for
this call will refer to this call leg.

The next header shown is the CSeq, or command sequence. It con-
tains a number, followed by the method name, INVITE in this case. This
number is incremented for each new request sent. In this example, the com-
mand sequence number is initialized to 1, but it could start at another value.

Introduction to SIP 17

The Via headers plus the To, From, Call-ID, and CSeq headers rep-
resent the minimum required header set in any SIP message. Other headers
can be included as optional additional information, or information needed
for a specific request type. A Contact header is included in this message,
which contains the SIP URL of Tesla; this URL can be used to route mes-
sages directly to Tesla. The optional Subject header is present in this exam-
ple. It is not used by the protocol, but could be displayed during alerting to
aid the called party in deciding whether to accept the call. The same sort of
useful prioritization and screening we all routinely do using the Subject

and From headers in an e-mail message is also possible with a SIP INVITE

request. Additional headers are present in this INVITE message, which con-
tain the media information necessary to set up the call.

The Content-Type and Content-Length headers indicate that the
message body is Session Description Protocol (SDP) [2] and contains 158
octets of data1. A blank line separates message body from the header list,
which ends with the Content-Length header. In this case, there are seven
lines of SDP data describing the media attributes that the caller Tesla desires
for the call. This media information is needed because SIP makes no assump-
tions about the type of media session to be established�the caller must spec-
ify exactly what type of session (audio, video, gaming) that he wishes to
establish. The SDP field names are listed in Table 2.1, and will be discussed
detail in Section 7.1, but a quick review of the lines shows the basic informa-
tion necessary to establish a session. This includes the:

• connection IP address (100.101.102.103);

• media format (audio);

18 SIP: Understanding the Session Initiation Protocol

1. The basis for the octet count of 158 is shown in the following table, where the CR LF at
the end of each line is shown as a ©® and the octet count for each line is shown on the
right-hand side:

LINE
TOTAL

v=0©® 05
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org©® 59
s=Phone Call©® 14
c=IN IP4 100.101.102.103©® 26
t=0 0©® 07
m=audio 49170 RTP/AVP 0©® 25
a=rtpmap:0 PCMU/8000©® 22
XXX���

Total 158

• port number (49170);

• media transport protocol (RTP);

• media encoding (PCM µ Law);

• sampling rate (8000 Hz).

INVITE is an example of a SIP request message. There are five other
methods or types of SIP requests currently defined in the SIP specification2.

The next message in Figure 2.1 is a 180 Ringing message sent in
response to the INVITE. This message indicates that the called party Mar-
coni has received the INVITE and that alerting is taking place. The alerting
could be ringing a phone, flashing a message on a screen, or any other
method of attracting the attention of the called party, Marconi.

Introduction to SIP 19

Table 2.1
SDP Data

SDP parameter Parameter name

v=0 Version number

o=Tesla 2890844526 2890844526 IN
IP4 lab.high-voltage.org

Origin containing name

s=Phone Call Subject

c=IN IP4 100.101.102.103 Connection

t=0 0 Time

m=audio 49170 RTP/AVP 0 Media

a=rtpmap:0 PCMU/8000 Attributes

2. Six methods are defined in the base specification RFC 2543. The two other methods de-
scribed in this text are still in Internet-Draft stage; they are, however, SIP working group
items and will shortly be assigned their own RFC numbers.

The 180 Ringing is an example of a SIP response message. Responses
are numerical and are classified by the first digit of the number. A 180

response is an �informational class� response, identified by the first digit
being a 1. Informational responses are used to convey non-critical informa-
tion about the progress of the call. SIP response codes were based on HTTP
version 1.1 response codes with some extensions and additions. Anyone who
has ever browsed the World Wide Web has likely received a �404 Not

Found� response from a web server when a requested page was not found.
404 Not Found is also a valid SIP �client error class� response in a call to an
unknown user. The other classes of SIP responses are covered in Chapter 5.

Response code number in SIP alone determines the way the response is
interpreted by the server or the user. The reason phrase, Ringing in this
case, is suggested in the standard, but any text can be used to convey more
information. For instance, 180 Hold your horses, I m trying to

wake him up! is a perfectly valid SIP response.
The 180 Ringing response has the following structure:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP lab.high-voltage.org:5060

To: G. Marconi <sip:marconi@radio.org>

From: Nikola Tesla <sip:n.tesla@high-voltage.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 INVITE

Content-Length: 0

The message was created by copying many of the headers from the
INVITE message, including the Via, To, From, Call-ID, and CSeq, then
adding a response start line containing the SIP version number, the response
code, and the reason phrase. This approach simplifies the message processing
for responses.

Note that the To and From headers are not reversed in the response
message as one might expect them to be. Even though this message is sent to
Marconi from Tesla, the headers read the opposite. This is because the To

and From headers in SIP are defined to indicate the direction of the request,
not the direction of the message. Since Tesla initiated this request, all mes-
sages will read To: Marconi From: Tesla.

When the called party decides to accept the call (i.e., the phone is
answered), a 200 OK response is sent. This response also indicates that the
type of media session proposed by the caller is acceptable. The 200 OK is an
example of a �success class� response. The 200 OK message body contains
Marconi�s media information:

20 SIP: Understanding the Session Initiation Protocol

SIP/2.0 200 OK

Via: SIP/2.0/UDP lab.high-voltage.org:5060

To: G. Marconi <sip:marconi@radio.org>

From: Nikola Tesla <sip:n.tesla@high-voltage.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 INVITE

Contact: sip:marconi@radio.org

Content-Type: application/sdp

Content-Length: 155

v=0

o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org

s=Phone Call

c=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

This response is constructed the same way as the 180 Ringing

response. The media capabilities, however, must be communicated in a SDP
message body added to the response. From the same SDP fields as Table 2.1,
the SDP contains:

• end-point IP address (200.201.202.203);

• media format (audio);

• port number (60000);

• media transport protocol (RTP);

• media encoding (PCM µ Law);

• sampling rate (8000 Hz).

The final step is to confirm the media session with an �acknowledg-
ment� request. The confirmation means that Tesla can support the media
session proposed by Marconi. This exchange of media information allows the
media session to be established using another protocol, RTP in this example.

ACK sip:marconi@radio.org SIP/2.0

Via: SIP/2.0/UDP lab.high-voltage.org:5060

To: G. Marconi <sip:marconi@radio.org>

From: Nikola Tesla <sip:n.tesla@high-voltage.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 ACK

Content-Length: 0

Introduction to SIP 21

The command sequence, CSeq, has the same number as the INVITE,
but the method is set to ACK.

At this point, the media session begins using the media information
carried in the SIP messages. The media session takes place using another pro-
tocol, typically RTP.

This message exchange shows that SIP is an end-to-end signaling pro-
tocol. A SIP network, or SIP server is not required for the protocol to be
used. Two end-points running a SIP protocol stack and knowing each
other�s IP addresses can use SIP to set up a media session between them.

Although less obvious, this example also shows the client-server
nature of the SIP protocol. When Tesla originates the INVITE request, he
is acting as a SIP client. When Marconi responds to the request, he is act-
ing as a SIP server. After the media session is established, Marconi originates
the BYE request and acts as the SIP client, while Tesla acts as the SIP
server when he responds. This is why a SIP-enabled device must contain
both SIP server and SIP client software�during a typical session, both are
needed. This is quite different from other client-server Internet protocols
such as HTTP or FTP. The web browser is always an HTTP client, and the
web server is always an HTTP server, and similarly for FTP. In SIP, an end-
point will switch back and forth during a session between being a client and a
server.

In Figure 2.1, a BYE request is sent by Marconi to terminate the media
session:

BYE sip:n.tesla@high-voltage.org SIP/2.0

Via: SIP/2.0/UDP tower.radio.org:5060

To: Nikola Tesla <sip:n.tesla@high-voltage.org>

From: G. Marconi <sip:marconi@radio.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 BYE

Content-Length: 0

The Via header in this example is populated with Marconi�s host
address. The To and From headers reflect that this request is originated by
Marconi, as they are reversed from the messages in the previous transaction.
Tesla, however, is able to identify the call leg and tear down the correct
media session.

The confirmation response to the BYE is a 200 OK:

SIP/2.0 200 OK

Via: SIP/2.0/UDP tower.radio.org:5060

22 SIP: Understanding the Session Initiation Protocol

To: Nikola Tesla <sip:n.tesla@high-voltage.org>

From: G. Marconi <sip:marconi@radio.org>

Call-ID: 123456789@lab.high-voltage.org

CSeq: 1 BYE

Content-Length: 0

The response echoes the CSeq of the original request: 1 BYE.

2.2 SIP Call with Proxy Server

In the SIP message exchange of Figure 2.1, Tesla knew the IP address of
Marconi and was able to send the INVITE directly to that address. This
will not be the case in general�an IP address cannot be used like a tele-
phone number. One reason is that IP addresses are often dynamically
assigned due to the shortage of IP version 4 addresses. For example, when
a PC dials in to an Internet Service Provider (ISP) modem bank, an IP
address is assigned using DHCP to the PC from a pool of available addresses
allocated to the ISP. For the duration of the session, the IP address does
not change, but it is different for each dial-in session. Even for an �always
on� Internet connection such as a DSL line, a different IP address can
be assigned after each reboot of the PC. Also, an IP address does
not uniquely identify a user, but identifies a node on a particular physi-
cal IP network. You have one IP address at your office, another at home, and
still another when you log on remotely when you travel. Ideally, there
would be one address that would identify you wherever you are. In fact, there
is an Internet protocol that does exactly that, with e-mail. SMTP uses a
host or system independent name (an e-mail address) that does not corre-
spond to a particular IP address. It allows e-mail messages to reach you
regardless of what your IP address is and where you are logged on to the
Internet.

SIP uses e-mail-like names for addresses. SIP uses URLs like most
Internet protocols. SIP URLs can also handle telephone numbers, transport
parameters, and a number of other items. A full description, including exam-
ples, can be found in Section 4.2. For now, the key point is that a SIP URL is
a name that is resolved to an IP address by using SIP proxy server and DNS
lookups at the time of the call, as will be seen in the next example.

Figure 2.2 shows an example of a more typical SIP call with a type of
SIP server called a �proxy server.� In this example, the caller Schroedinger
calls Heisenberg through a SIP proxy server. A SIP proxy operates in a similar
way to a proxy in HTTP and other Internet protocols. A SIP proxy does not

Introduction to SIP 23

set up or terminate sessions, but sits in the middle of a SIP message exchange,
receiving messages and forwarding them. This example shows one proxy, but
there can be multiple proxies in a signaling path.

Because Schroedinger does not know exactly where Heisenberg is cur-
rently logged on, a SIP proxy server is used to route the INVITE. First, a
DNS lookup of Heisenberg�s SIP URL domain name (munich.de) is per-
formed, which returns the IP address of the proxy server proxy.munich.de,
which handles that domain. The INVITE is then sent to that IP address:

INVITE sip:werner.heisenberg@munich.de SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Subject: Where are you exactly?

Contact: sip:schroed5244@aol.com

Content-Type: application/sdp

Content-Length: 159

24 SIP: Understanding the Session Initiation Protocol

INVITE

180 Ringing

200 OK

ACK

200 OK

BYE

Media Session

INVITE

180 Ringing

200 OK

Schroedinger Proxy server Heisenberg

Figure 2.2 SIP call example with proxy server.

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

t=0 0

c=IN IP4 100.101.102.103

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The proxy looks up the SIP URL in the Request-URI (sip:werner.hei-
senberg@munich.de) in its database and locates Heisenberg. This completes
the two-step process:

• DNS lookup by user agent to locate the IP address of the proxy;
Database lookup is performed by the proxy to locate the IP address.

• The INVITE is then forwarded to Heisenberg�s IP address with the
addition of a second Via header stamped with the address of the proxy:

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP proxy.munich.de:5060;branch=83842.1

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Contact: sip:schroed5244@aol.com

Content-Type: application/sdp

Content-Length: 159

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

c=IN IP4 100.101.102.103

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

From the presence of two Via headers, Heisenberg knows that the
INVITE has been routed through a proxy server. The 180 Ringing

response is sent by Heisenberg to the proxy:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP proxy.munich.de:5060;branch=83842.1

Via: SIP/2.0/UDP 100.101.102.103:5060

Introduction to SIP 25

To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Content-Length: 0

Again, this response contains the Via headers, and the To, From,
Call-ID, and CSeq headers from the INVITE request. The response is then
sent to the address in the first Via header, proxy.munich.de to the port
number listed in the Via header: 5060, in this case. Notice that the To

header now has a tag added to it to identify this particular call leg. In more
complicated examples, it is possible that a single INVITE can be �forked� and
be sent to multiple locations simultaneously. The only way responses from
multiple places can be identified (as opposed to a retransmission of a single
response) is by the different tags on the To headers of the responses.

The proxy receives the response, checks that the first Via header has its
own address (proxy.munich.de), removes that Via header, then forwards the
response to the address in the next Via header: IP address
100.101.102.103, port 5060. The resulting response sent by the proxy
to Schroedinger is:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Content-Length: 0

The use of Via headers in routing and forwarding SIP messages
reduces complexity in message forwarding. The request required a database
lookup by the proxy to be routed. The response requires no lookup because
the routing is imbedded in the message in the Via headers. Also, this ensures
that responses route back through the same set of proxies as the request.

The call is accepted by Heisenberg, who sends a 200 OK response:

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.munich.de:5060;branch=83842.1

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg7 <sip:werner.heisenberg@munich.de>;

tag=314159

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

26 SIP: Understanding the Session Initiation Protocol

CSeq: 1 INVITE

Contact: sip:werner.heisenberg@200.201.202.203

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

s=Phone Call

c=IN IP4 200.201.202.203

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The proxy forwards the 200 OK message to Schroedinger after remov-
ing the first Via header:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Contact: sip:werner.heisenberg@200.201.202.203

Content-Type: application/sdp

Content-Length: 159

v=0

o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203

c=IN IP4 200.201.202.203

t=0 0

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The presence of the Contact header with the SIP URL address of Hei-
senberg in the 200 OK allows Schroedinger to send the ACK directly to Hei-
senberg bypassing the proxy. This request, and all future requests continue to
use the tag in the To header:

ACK sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

Introduction to SIP 27

CSeq: 1 ACK

Content-Length: 0

This shows that the proxy server is not really �in the call.� It facilitates
the two end-points locating and contacting each other, but it can drop out of
the signaling path as soon as it no longer adds any value to the exchange. A
proxy server can force further messaging to route through it by inserting a
Record-Route header, which is described in Section 6.2.12. In addition, it
is possible to have a proxy server that does not retain any knowledge of the
fact that there is a session established between Schroedinger and Heisenberg
(referred to as �call state information�). This is discussed in Section 3.3.1.

Note that the media is always end-to-end and not through the proxy.
In SIP the path of the signaling messages is totally independent of the path of
the media. In telephony, this is described as the separation of control channel
and bearer channel.

The media session is ended when Heisenberg sends a BYE message:

BYE sip:schroed5244@aol.com SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060

To: E. Schroedinger <sip:schroed5244@aol.com>

From: Heisenberg <sip:werner.heisenberg@munich.de>;

tag=314159

Call-ID: 10@100.101.102.103

CSeq: 2000 BYE

Content-Length: 0

Note that Heisenberg�s CSeq was initialized to 2000. Each SIP device
maintains its own independent CSeq number space. This is explained in
some detail in Section 6.1.3. Schroedinger confirms with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060

To: E. Schroedinger <sip:schroed5244@aol.com>

From: Heisenberg <sip:werner.heisenberg@munich.de>;

tag=314159

Call-ID: 10@100.101.102.103

CSeq: 2000 BYE

Content-Length: 0

2.3 SIP Registration Example

Not discussed in the previous example is the question of how the database
accessed by the proxy contained Heisenberg�s current IP address. There

28 SIP: Understanding the Session Initiation Protocol

are many ways this could be done using SIP or other protocols. The mecha-
nism for accomplishing this using SIP is called �registration� and is shown in
Figure 2.3.

In this example, Heisenberg sends a SIP REGISTER request to the SIP
registrar server. The SIP registrar server receives the message and knows as a
result the IP address of Heisenberg. Contained in the REGISTER message is
the SIP URL address of Heisenberg. The registrar server stores the SIP URL
and the IP address of Heisenberg in a database that can be used, for example,
by the proxy server in Figure 2.2 to locate Heisenberg. When a proxy server
with access to the database receives an INVITE request addressed to Heisen-
berg (i.e., an incoming call), the request will be proxied to the stored IP
address.

This registration has no real counterpart in the telephone network, but
it is very similar to the registration a wireless phone performs when it is
turned on. A cell phone sends its identity to the base station (BS), which then
forwards the location and phone number of the cell phone to a home loca-
tion register (HLR). When the mobile switching center (MSC) receives an
incoming call, it consults the HLR to get the current location of the cell
phone.

The REGISTER message is sent to the SIP registrar server, not to
another SIP end device:

REGISTER sip:registrar.munich.de SIP/2.0

Via: SIP/2.0/UDP 200.201.202.203:5060

To: Werner Heisenberg <sip:werner.heisenberg@munich.de>

From: Werner Heisenberg <sip:werner.heisenberg@munich.de>

Introduction to SIP 29

REGISTER
Contact: sip:werner.heisenberg@munich.de

200 OK

Heisenberg Registrar server

Figure 2.3 SIP registration example.

Call-ID: 23@200.201.202.203

CSeq: 1 REGISTER

Contact: sip:werner.heisenberg@munich.de

Content-Length: 0

The Request-URI in the start line of the message contains the address
of the registrar server. In a REGISTER request, the To header is the resource
that is being registered, in this case sip:werner.heisenberg@munich.de. This
results in the To and From headers usually being the same, although an
example of third-party registration is given in Section 4.1.2. The SIP URL in
the Contact address is stored by the registrar, along with the IP address of
Heisenberg.

The registrar server acknowledges the successful registration by sending
a 200 OK response to Heisenberg. The response echoes the Contact infor-
mation that has just been stored in the database:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 200.201.202.203:5060

To: Werner Heisenberg <sip:werner.heisenberg@munich.de>

From: Werner Heisenberg <sip:werner.heisenberg@munich.de>

Call-ID: 23@200.201.202.203

CSeq: 1 REGISTER

Contact: sip:werner.heisenberg@munich.de

Content-Length: 0

Registration can be automatically performed on initialization of a SIP
device.

2.4 Message Transport

As discussed in Chapter 1, SIP is a layer four, or application layer, protocol in
the Internet Multimedia Protocol stack shown in Figure 1.1. It can use either
TCP or UDP for transport layer, both of which use IP for the Internet layer.
How a SIP message is transported using these two protocols will be described
in the following sections.

2.4.1 UDP Transport

When using UDP, each SIP request or response message is usually carried by
a single UDP datagram or packet. Most SIP messages easily fit in a single
datagram. For a particularly large message body, there is a �compact form� of

30 SIP: Understanding the Session Initiation Protocol

SIP that saves space in representing some headers with a single character.
This is discussed in Chapter 6. Figure 2.4 shows a SIP BYE request exchange
during an established SIP session using UDP.

The source port is chosen from a pool of available port numbers (above
49172), or sometimes the default SIP port of 5060 is used. The lack of hand-
shaking or acknowledgment in UDP transport means that a datagram could
be lost and a SIP message along with it. The checksum, however, enables
UDP to discard errored datagrams, allowing SIP to assume that a received
message is complete and error-free. The reliability mechanisms built into SIP
to handle message retransmissions are described in Section 3.5. The reply is
also sent to port 5060, or the port number listed in the top Via header.

2.4.2 TCP Transport

TCP provides a reliable transport layer, but at a cost of complexity and trans-
mission delay over the network. The use of TCP for transport in a SIP

Introduction to SIP 31

BYE

200 OK

200.201.202.203

UDP Datagram
Source IP: 100.101.102.103

Source port: 41270
Destination IP: 200.201.202.203

Destination port: 5060

UDP Datagram
Source IP: 200.201.202.203

Source port: 60134
Destination IP: 100.101.102.103

Destination port: 5060

100.101.102.103

Figure 2.4 Transmission of SIP messages using UDP.

message exchange is shown in Figure 2.5. This example shows an INVITE

sent by a user agent at 100.101.102.103 to a type of SIP server called a �redi-
rect server� at 200.201.202.203. A SIP redirect server does not forward
INVITE requests like a proxy, but looks up the destination address and
instead returns that address in a redirection class (3xx) response. The 302

Moved Temporarily response is acknowledged by the user agent with an
ACK message. Not shown in this figure is the next step, where the INVITE
would be re-sent to the address returned by the redirect server.

As in the UDP example, the �well-known� SIP port number of 5060 is
chosen for the destination port, and the source port is chosen from an available
pool of port numbers. Before the message can be sent, however, the TCP con-
nection must be opened between the two end-points. This transport layer
datagram exchange is shown in Figure 2.5 as a single arrow, but it is actually a
three-way handshake between the end-points as shown in Figure 1.2. Once the
connection is established, the messages are sent in the stream. The Content-

32 SIP: Understanding the Session Initiation Protocol

Open TCP Connection

200.201.202.203

Source IP: 100.101.102.103
Source port: 41270
Destination IP: 200.201.202.203
Destination port: 5060

INVITE

sent in TCP stream

302 Moved

sent in TCP stream

ACK

sent in TCP stream

Close TCP Connection

100.101.102.103

Figure 2.5 Transmission of SIP messages using TCP.

Length header is critical when TCP is used to transport SIP, since it is used to
find the end of one message and the start of the next.

The 302 Moved Temporarily response is sent in the stream in the
opposite direction. The acknowledgment ACK also is sent in the TCP stream.
Because this concludes the SIP session, the connection is then closed. The
connection must stay up until the call is established. After that, it can be
safely closed without ending the media session. The TCP connection would
then need to be reopened to terminate the session with a BYE request.

References

[1] RTP is defined by RFC 1889, �RTP: A Transport Protocol for Real-Time Applica-
tions,� by H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, 1996.

[2] SDP is defined by RFC 2327, �SDP: Session Description Protocol,� by M. Handley
and V. Jacobson, 1998.

Introduction to SIP 33

.

3
SIP Clients and Servers

The client-server nature of SIP has been introduced in the example message
flows of Chapter 2. In this chapter, the types of clients and servers in a SIP
network will be introduced and defined.

3.1 SIP User Agents

A SIP-enabled end-device is called a SIP user agent (UA). The main purpose
of SIP is to enable sessions to be established between user agents. As the
name implies, a user agent takes direction or input from a user and acts as an
agent on their behalf to set up and tear down media sessions with other user
agents. In most cases, the user will be a human, but the user could be another
protocol, as in the case of a gateway described in the next section. A user
agent must be capable of establishing a media session with another user
agent. Since SIP may be used with any transport protocol, there is no
requirement that a UA must support either TCP or UDP for message trans-
port. The standard states, however, that a UA should support both TCP and
UDP [1].

A UA must maintain state on calls that it initiates or participates in. A
minimum call state set includes the local and remote URL, Call-ID, local
and remote CSeq headers along with any state information necessary for the
media. This information is used to store the call leg and for reliability. The
remote CSeq storage is necessary to distinguish between a re-INVITE and a

35

retransmission. A re-INVITE is used to change the session parameters of an
existing or pending call. It uses the same Call-ID, but the CSeq is incre-
mented because it is a new request. A retransmitted INVITE will contain the
same Call-ID and CSeq as a previous INVITE. Even after a call has been
terminated, call state must be maintained by a user agent for at least 32 sec-
onds in case of lost messages in the call tear-down [2].

User agents silently discard an ACK for an unknown call leg. Requests
to an unknown URL receive a 404 Not Found Response. A user agent
receiving a BYE request for an unknown call leg responds with a 481

Transaction Does Not Exist. Responses from an unknown call leg are
also silently discarded. These silent discards are necessary for security. Other-
wise, a malicious user agent could gain information about other SIP user
agents by spamming fake requests or responses.

A minimum user agent implementation includes support of the meth-
ods INVITE and ACK. Although not required to understand every response
code defined, a minimal implementation must to be able to interpret any
unknown response based on the class (first digit of the number) of the
response. That is, if an undefined 498 Wrong Phase of the Moon

response is received, it must be treated as a 400 Client Error.
The types of user agents defined in the standard include minimum,

basic, redirection, firewall friendly, negotiation, and authentication. These
are detailed in Table 3.1. A user agent server responds to an unsupported
request with a 501 Not Implemented response.

Most SIP devices support much more than the minimum implementa-
tion, and often include support for authentication. A SIP user agent contains
both a client application and a server application. The two parts are user
agent clients (UAC) and user agent servers (UAS). The UAC initiates
requests while the UAS generates responses. During a session, a user agent
will usually operate as both a UAC and a UAS.

A SIP user agent must also support SDP for media description. Other
types of media descriptions can be used in bodies, but SDP support is man-
datory. Details of SDP are in Section 7.1.

3.2 SIP Gateways

A SIP gateway is an application that interfaces a SIP network to a network
utilizing another signaling protocol. In terms of the SIP protocol, a gateway
is just a special type of user agent, where the user agent acts on behalf of
another protocol rather than a human. A gateway terminates the SIP

36 SIP: Understanding the Session Initiation Protocol

signaling path and can also terminate the media path, although this is not
always the case. For example, a SIP to H.323 gateway terminates the SIP sig-
naling path and converts the signaling to H.323, but the SIP user agent and
H.323 terminal can exchange RTP media information directly with each
other without going through the gateway. An example of this is described in
Section 9.6.

A Public Switched Telephone Network (PSTN) gateway terminates
both the signaling and media paths. SIP can be translated into, or interwork
with, common PSTN protocols such as Integrated Services Digital Network
(ISDN), ISDN User Part (ISUP), and other Circuit Associated Signaling
(CAS) protocols, which are briefly described in Section 7.4. A PSTN gate-
way also converts the RTP media stream in the IP network into a standard
telephony trunk or line. The conversion of signaling and media paths allows
calling to and from the PSTN using SIP. Examples of these gateways are
described in Sections 9.3 and 9.4. Figure 3.1 shows a SIP network connected
via gateways with the PSTN and a H.323 network.

In the figure, the SIP network, PSTN network, and H.323 networks
are shown as �clouds,� which obscure the underlying details. Shown con-
necting to the SIP cloud are SIP IP telephones, SIP-enabled PCs, and corpo-
rate SIP gateways with attached telephones. The clouds are connected by
gateways. Shown attached to the H.323 network are H.323 terminals and
H.323-enabled PCs. The PSTN cloud connects to ordinary analog �black�

SIP Clients and Servers 37

Table 3.1
User Agent Types

User agent type Supports

Minimum INVITE, ACK, SDP, response classes

Basic Minimum plus BYE

Redirection Basic plus Contact header

Firewall friendly Redirection plus Route, Record-Route, and de-
fault proxy server

Negotiation Firewall plus OPTIONS, Warning, 380
response

Authentication Negotiation plus 401 response, WWW-
Authenticate, and Authorization headers

telephones (so called because of the original color of their shell), digital
ISDN telephones, and corporate private branch exchanges (PBXs). PBXs
connect to the PSTN using shared trunks and provide line interfaces for
either analog or digital telephones.

Gateways are sometimes decomposed into a media gateway (MG) and
a media gateway controller (MGC). An MGC is sometimes called a �call
agent� because it manages call control protocols (signaling), while the MG
manages the media connection. This decomposition is transparent to SIP,
and the protocols used to decompose a gateway are not described in this
book.

Another difference between a user agent and a gateway is the number
of users supported. While a user agent typically supports a single user, a gate-
way can support hundreds or thousands of users. A PSTN gateway could
support a large corporate customer, or an entire geographic area. As a result,
a gateway does not REGISTER every user it supports in the same way that a
user agent might. Instead, a non-SIP protocol can be used to inform proxies
about gateways and assist in routing. One protocol that has been proposed
for this is the Telecommunications Routing over IP (TRIP) protocol [3].

38 SIP: Understanding the Session Initiation Protocol

SIP network

PSTN

H.323
network

Black
phones

Corporate SIP
Gateway

SIP
Enabled

PC SIP Phone

SIP/H.323
Gateway

SIP/PSTN
Gatway

Black
Phones

Black Phone Corporate
PBX

ISDN
Phone

H.323
Terminal

H.323 Enabled
PC

Figure 3.1 SIP network with gateways.

3.3 SIP Servers

SIP servers are applications that accept SIP requests and respond to them. A
SIP server should not be confused with a user agent server or the client-server
nature of the protocol, which describe operation in terms of clients (origina-
tors of requests) and servers (originators of responses to requests). A SIP
server is a different type of entity. The types of SIP servers discussed in this
section are logical entities. Actual SIP server implementations may contain a
number of server types, or may operate as a different type of server under dif-
ferent conditions. Because servers provide services and features to user agents,
they must support both TCP and UDP for transport. Figure 3.2 shows the
interaction of user agents, servers, and a location service. Note that the proto-
col used between a server and the location service or database is not in general
SIP and is not discussed in this book.

3.3.1 Proxy Servers

A SIP proxy server that receives a SIP request from a user agent acts on behalf
of the user agent in forwarding or responding to the request. A proxy server

SIP Clients and Servers 39

User agent

Redirect or
registration server

Proxy server

User agent

Location
service

or
database

SIP

SIP SIP

RTP media

Figure 3.2 SIP user agent, server, and location service interaction.

typically has access to a database or a location service to aid it in processing
the request (determining the next hop). The interface between the proxy and
the location service is not defined by the SIP protocol. A proxy can use any
number of types of databases to aid in processing a request. Databases could
contain SIP registrations, or any other type of information about where a
user is located. The example of Figure 2.2 introduced a proxy server as a
facilitator of SIP message exchange providing user location services to the
caller.

A proxy server is different from a user agent or gateway in two key
ways:

1. A proxy server does not issue a request; it only responds to requests
from a user agent.(A CANCEL request is the only exception to this
rule.)

2. A proxy server has no media capabilities.

Figure 3.3 shows the client server interaction of two user agents and a
proxy server.

A proxy server can be either stateless or stateful. A stateless proxy server
processes each SIP request or response based solely on the message contents.
Once the message has been parsed, processed, and forwarded or responded
to, no information about the message is stored�no call leg information is
stored. A stateless proxy never retransmits a message, and does not use any
SIP timers. A stateless proxy has no memory of any requests or responses it
has sent or received. A stateless proxy is still capable of detecting message

40 SIP: Understanding the Session Initiation Protocol

Proxy ServerUser Agent

Client

SERVER

User Agent

Server

ClientServer
Server Server

Figure 3.3 User agent and proxy server client/server interaction.

looping since SIP uses a statelesss method to implement loop detection using
Via headers.

A stateful proxy server keeps track of requests and responses received in
the past and uses that information in processing future requests and
responses. For example, a stateful proxy server starts a timer when a request is
forwarded. If no response to the request is received within the timer period,
the proxy will retransmit the request, relieving the user agent of this task, as
described in Section 3.5. Also, a stateful proxy can require user agent authen-
tication, as described in Section 3.6.

A special type of stateful proxy server can receive an INVITE request,
then forward it to a number of locations at the same time. This �forking�
proxy server keeps track of each of the outstanding requests and the response
to each, as shown in Figure 3.4. This is useful if the location service or data-
base lookup returns multiple possible locations for the called party that need
to be tried.

A stateful proxy usually sends a 100 Trying response when it receives
an INVITE. A stateless proxy never sends a 100 Trying response. A 100

Trying response received by a proxy is never forwarded�it is a single hop
only response.

SIP Clients and Servers 41

Calling user agent Forking proxy server

SIP PC

SIP cell phone

SIP phone

INVITE
INVITE

branch = 2

INVITE
branch = 1

INVITE
branch =3

Figure 3.4 Forking proxy operation.

A proxy handling a TCP request must be stateful, since a user agent
will assume reliable transport and rely on the proxy for retransmissions on
any UDP hops in the signaling path1.

The only limit to the number of proxies that can forward a message is
controlled by the Max-Hops header, which is decremented by each proxy
that touches the request. If the Max-Hops count goes to zero, the proxy dis-
cards the message and sends a 483 Too Many Hops response back to the
originator. Via headers are used to detect message looping. Before forward-
ing a message, a proxy makes sure its own address is not present in the list of
Via headers. If it is and the branch tag (described in Section 6.1.14)
matches, then the message has looped and a 482 Loop Detected response
is sent after the message is discarded.

A SIP session timer [4] has been proposed to limit the time period over
which a stateful proxy must maintain state information. In the initial
INVITE request, a Session-Expires header indicates a timer interval after
which stateful proxies may discard state information about the session. User
agents must tear down the call after the expiration of the timer. The caller
can send re-INVITEs to refresh the timer, enabling a �keep alive� mechanism
for SIP. This solves the problem of how long to store state information in
cases where a BYE request is lost or misdirected, or in other security cases
described in later sections. The details of this implementation are described
in Section 6.2.19.

3.3.2 Redirect Servers

A redirect server was introduced in Figure 2.5 as a type of SIP server that
responds to, but does not forward requests. Like a proxy sever, a redirect
server uses a database or location service to look up a user. The location
information, however, is sent back to the caller in a redirection class
response, which concludes the transaction. Figure 3.5 shows a call flow that
is very similar to the example of Figure 2.2, except the server uses redirection
instead of proxying to assist Schroedinger locate Heisenberg.

The INVITE contains:

INVITE sip:werner.heisenberg@munich.de SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060

42 SIP: Understanding the Session Initiation Protocol

1. TCP usually provides end-to-end reliability for applications. In SIP, however, TCP only
provides single-hop reliability. End-to-end reliability is only achieved by a chain of TCP
hops or TCP hops interleaved with UDP hops and stateful proxies.

To: Heisenberg <sip:werner.heisenberg@munich.de>

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 9@100.101.102.103

CSeq: 1 INVITE

Subject: Where are you exactly?

Contact: sip:schroed5244@aol.com

Content-Type: application/sdp

Content-Length: 159

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

t=0 0

c=IN IP4 100.101.102.103

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The redirection response to the INVITE is sent by the redirect server:

SIP/2.0 302 Moved Temporarily

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>;

tag=052500

From: E. Schroedinger <sip:schroed5244@aol.com>

SIP Clients and Servers 43

INVITE
302 Moved temporarily

200 OK
INVITE

ACK

ACK

200 OK

BYE

Media Session

Schroedinger Heisenberg
Redirect server

Figure 3.5 Example with redirect server.

Call-ID: 9@100.101.102.103

CSeq: 1 INVITE

Contact: sip:werner.heisenberg@200.201.202.203

Content-Length: 0

Schroedinger acknowledges the response:

ACK sip:werner.heisenberg@munich.de SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=052500

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 9@100.101.102.103

CSeq: 1 ACK

Content-Length: 0

This exchange completes this call attempt, so a new INVITE is gener-
ated with a new Call-ID and sent directly to the location obtained from the
Contact header in the 302 response from the redirect server:

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0

Via: SIP/2.0/UDP 100.101.102.103:5060

To: Heisenberg <sip:werner.heisenberg@munich.de>

From: E. Schroedinger <sip:schroed5244@aol.com>

Call-ID: 10@100.101.102.103

CSeq: 1 INVITE

Subject: Where are you exactly?

Contact: sip:schroed5244@aol.com

Content-Type: application/sdp

Content-Length: 159

v=0

o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103

s=Phone Call

t=0 0

c=IN IP4 100.101.102.103

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The call then proceeds in the same way as Figure 2.2, with the messages
being identical. Note that in Figure 3.5, a 180 Ringing response is not
sent; instead, the 200 OK response is sent right away. Since 1xx informa-
tional responses are optional, this is a perfectly valid response by the UAS if
Heisenberg responded to the alerting immediately and accepted the call. In
the PSTN, this scenario is called �fast answer.�

44 SIP: Understanding the Session Initiation Protocol

3.3.3 Registration Servers

A SIP registration server was introduced in the example of Figure 2.3. A reg-
istration server accepts SIP REGISTER requests; all other requests receive a
501 Not Implemented response. The contact information from the
request is then made available to other SIP servers within the same adminis-
trative domain, such as proxies and redirect servers. In a registration request,
the To header contains the name of the resource being registered, and the
Contact headers contain the alternative addresses or aliases.

Registration servers usually require the registering user agent to be
authenticated, using means described in Section 3.6, so that incoming calls
can not be hijacked by an unauthorized user. This could be accomplished by
an unauthorized user registering someone else�s SIP URL to point to their
own phone. Incoming calls to that URL would then ring the wrong phone.
Depending on the headers present, a REGISTER request can be used by a
user agent to retrieve a list of current registrations, clear all registrations, or
add a registration URL to the list. These types of requests are described in
Section 4.1.2.

3.4 Acknowledgment of Messages

Most SIP requests are end-to-end messages between user agents. That is,
proxies between the two user agents simply forward the messages they receive
and rely on the user agents to generate acknowledgments or responses.

There are some exceptions to this general rule. The CANCEL method
(used to terminate pending calls or searches and discussed in detail in Section
4.1.5) is a hop-by-hop request. A proxy receiving a CANCEL immediately
sends a 200 OK response back to the sender and generates a new CANCEL,
which is then forwarded to the next hop. (The order of sending the 200 OK

and forwarding the CANCEL is not important.) This is shown in Figure 4.4.
Other exceptions to this rule include 4xx, 5xx, and 6xx responses to

an INVITE request. While an ACK to a 2xx or 3xx response is generated by
the end-point, a 4xx, 5xx, or 6xx response is acknowledged on a hop-by-
hop basis. A proxy server receiving one of these responses immediately gener-
ates an ACK back to the sender and forwards the response to the next hop.
This type of hop-by-hop acknowledgment is shown in Figure 4.2.

ACK messages are only sent to acknowledge responses to INVITE

requests. For responses to all other request types, there is no acknowledg-
ment. A lost response is detected by the UAS when the request is
retransmitted.

SIP Clients and Servers 45

3.5 Reliability

SIP has reliability mechanisms defined, which allow the use of unreliable
transport layer protocols such as UDP. When SIP uses TCP, these mecha-
nisms are not used, since it is assumed that TCP will retransmit the message
if it is lost and inform the client if the server is unreachable.

For SIP transport using UDP, there is always the possibility of mes-
sages being lost or even received out of sequence, because UDP guarantees
only that the datagram is error-free. As a result, SIP user agents and servers
never perform checks to determine if a message has been corrupted in trans-
mission�it is always assumed to be uncorrupted. It does check, however, to
make sure that the UAC has not errored by creating a request missing
required headers. Reliability mechanisms in SIP include:

• retransmission timers;

• increasing command sequence CSeq numbers;

• positive acknowledgments.

SIP timer T1 is started by a UAC or a stateful proxy server when a new
request is generated or sent. If no response to the request (as identified by a
response containing the identical local address, remote address, Call-ID,
and CSeq) is received when T1 expires, the request is re-sent. If a provisional
(informational class 1xx) response is received, the UAC or stateful proxy
server ignores T1 and starts a new longer timer T2. No retransmissions are
sent until T2 expires.

After a request is retransmitted, the timer period is doubled until T2 is
reached. After that, the remaining retransmissions occur at T2 intervals. This
capped exponential backoff process is continued until a maximum of 10
retransmissions at increasing intervals are sent. A stateful proxy server that
receives a retransmission of a request discards the retransmission and contin-
ues its retransmission schedule based on its own timers. Typically, it will
resend the last provisional response.

For INVITE request, the retransmission scheme is slightly different.
After a provisional (1XX) response is received, the INVITE is not retransmit-
ted using timer T2.

A stateful proxy must store a forwarded request or generated response
message for 32 seconds [2]. After that, only state information need be stored
if required. An example message flow involving two user agents, a state-
ful proxy, two lost messages (shown by �X� in the figure), and three

46 SIP: Understanding the Session Initiation Protocol

retransmissions is shown in Figure 3.6. In this example, the OPTIONS sent by
the stateful proxy server to the UAS is lost. As a result, it is retransmitted
when the proxy�s T1 timer expires and no response is received. The 200 OK

forwarded by the proxy is also lost. When timer T2 in the UAC expires with-
out a final response (non 1xx response), the OPTIONS is retransmitted.
When the proxy receives the retransmitted OPTIONS, it deduces that the 200
OK was lost and resends it. The proxy recognizes the 200 OK as a retransmis-
sion and does not forward it.

Suggested default values for T1 and T2 are 500ms and 4 seconds,
respectively [5]. Longer values are allowed but not shorter ones, because this
will generate more message retransmissions.

Note that gaps in CSeq number do not always indicate a lost message.
In the authentication examples in the next section, not every request (and
hence CSeq) generated by the UAC will reach the UAS if authentication
challenges occur by proxies in the path.

3.6 Authentication

Authentication in SIP takes two general forms. One is the authentication
of a user agent by a proxy, redirect, or registration server. The other is

SIP Clients and Servers 47

OPTIONS
100 Trying

UAC Stateful Proxy UAS

X
OPTIONS

OPTIONS

200 OK
200 OK

X
OPTIONS

200 OK

T1

T2

Packet
Loss!

Figure 3.6 SIP reliability example.

the authentication of a user agent by another user agent. A proxy or
redirect server might require authentication to allow a user agent to access
a service or feature. For example, a proxy server may require authentica-
tion before forwarding an INVITE to a gateway or invoking a service. A
registration server may require authentication to prevent incoming call
hijacking as described previously. User agents can authenticate each other to
verify who they are communicating with, since From headers are easily
forged2.

A proxy requiring authentication replies to an unauthenticated INVITE

with a 407 Proxy Authorization Required response containing a
Proxy-Authenticate header with the form of the challenge. After send-
ing an ACK for the 407, the user agent can then resend the INVITE with a
Proxy-Authorization header containing the credentials. User agent, redirect,
or registrar servers typically use 401 Unauthorized response to challenge
authentication containing a WWW-Authenticate header, and expect the
re-INVITE to contain an Authorization header containing the user
agent�s credentials. A user agent�s credentials are usually an encrypted user-
name and password, as in the example of Section 9.1

A call flow involving both proxy and user agent authentication is
shown in Figure 3.7.

3.7 Encryption

While authentication is used as a means of access control and identity confir-
mation, encryption is used for privacy. SIP messages intercepted during ses-
sion setup reveal considerable information, including:

• Both parties� SIP URLs and IP addresses;

• The fact that the two parties have established a call;

• The IP addresses and port numbers associated with the media,
allowing eavesdropping.

48 SIP: Understanding the Session Initiation Protocol

2. The ability to forge From headers is present in SMTP, where it is virtually a feature. A
preference setting in an e-mail program sets your name and e-mail address, which need
not correspond to the address or domain that is used to send the message. This allows a
user to send multiple e-mail addresses from the same e-mail account by simply changing
the From address before sending a message. Only a detailed examination of a full set of
SMTP headers will show that the e-mail was sent from another address.

SIP supports the encryption of both message bodies and message head-
ers. The encryption of message bodies makes it more difficult for an
eavesdropper to listen in. Also, an uninvited third party, knowing all the
SDP information could guess the RTP SSRC number and send unwanted
media to either party, so-called media �spamming�. Encryption of headers
such as To, From, and Call-ID can hide the parties in a media session.
Headers containing information used by proxies to route the requests and
responses, however, must not be hidden or the messages will become
unroutable. These headers must either be left in the clear, or the proxies
must be able to decrypt and encrypt the headers. The details of how
this can be done is described in Section 6.1.5 on the Encryption header
and Section 6.2.6 on the Hide header.

SIP Clients and Servers 49

INVITE

INVITE

INVITEINVITE

INVITE

407 Proxy-Authorization Required

UAC Stateful proxy UAS

100 Trying

ACK

401 Unauthorized

ACK
401 Unauthorized

ACK

100 Trying
200 OK

200 OK

ACK ACK

Media Session

Proxy-Authenticate: 1

Authorization: 1

WWW-Authenticate: 2

Authorization: 1, 2

WWW-Authenticate: 2

Authorization: 2

Authorization: 2Authorization: 1, 2

Figure 3.7 Authentication call flow.

3.8 Multicast Support

SIP support for UDP multicast has been mentioned in previous sections.
There are two main uses for multicast in SIP.

SIP registration can be done using multicast, by sending the REGISTER
message to the well-known �All SIP Servers� URL sip:sip.mcast.net at IP
address 224.0.1.75.

The second use for multicast is to send a multicast session invitation.
This effectively allows a conference call to be established with a single
request. An INVITE with a partially defined Request-URI can be sent
using multicast. For example, a multicast INVITE could be sent to
sip:*@wcom.com, which would invite all WorldCom employees with SIP
phones receiving the request to respond. Responses to a multicast request
are also sent by multicast. To limit congestion, only a limited set of
responses is allowed by the standard.

A proxy can forward a unicast INVITE request to a multicast address.
The use of multicast is recorded in a SIP message using the maddr parameter
in the Via header, as discussed in Section 6.1.14.

This built-in support of multicast is a powerful feature of SIP. For
example, multicast could be used to implement a �home extension� feature,
which makes a set of SIP phones on a LAN segment behave like telephone
extensions at a house. A proxy implementing this feature would convert a
unicast INVITE to a multicast INVITE, which would cause all the�exten-
sions� to ring at the same time. While this could be done using only unicast
INVITEs and a forking proxy, using multicast is much simpler and more
flexible.

Media sessions can be multicast because RTP also supports multicast,
allowing conference calling without a conference �bridge.� This is not really,
however, a feature of SIP, but rather a feature of SDP and RTP, which also
support multicast.

3.9 Firewalls and NAT Interaction

Most corporate LANs or intranets connect to the public Internet through a
firewall. A firewall is a router that is used to protect the LAN behind it from
various kinds of attacks and unauthorized access. Sometimes they are used to
prevent users behind the firewall accessing certain resources in the Internet.
In the simplest deployment, a firewall can be thought of as a one-way
gate�it allows outgoing packets from the intranet to the Internet, but blocks

50 SIP: Understanding the Session Initiation Protocol

incoming packets from the Internet unless they are responses to queries.
Only certain types of requests from the Internet will be allowed to pass
through the firewall, such as HTTP requests to the corporate web server,
SMTP e-mail messages, or DNS queries to the authoritative DNS for the
corporate domain. The firewall does this by keeping track of TCP connec-
tions opened and filtering ports.

Firewalls pose a particularly difficult challenge to SIP sessions. Because
SIP can use TCP, configuring a firewall to pass SIP is not too difficult. This
does not help the media path, however, which uses UDP and will be blocked
by most firewalls. A firewall needs to understand SIP, be able to parse an
INVITE request, extract the IP addresses and port numbers from the SDP,
and open up �pin holes� in the firewall to allow this traffic to pass. The hole
can then be closed when a BYE is sent or a session timer expires3.

Network address translators (NATs) also cause serious problems for
SIP. A NAT can be used to conserve IPv4 addresses, or can be used for secu-
rity purposes, to hide the IP address and LAN structure behind the NAT. It
is used on a router or firewall that provides the only connection of a LAN to
the Internet, a so-called stub network. A NAT allows non-unique IP
addresses to be used internally within the LAN. When a packet is sent from
the LAN to the Internet, the NAT changes the non-globally unique address
(usually addresses in the range 10.x.x.x, 172.16.x.x - 172.29.x.x and
192.168.x.x) in the packet header to a globally unique address from a pool
of available addresses. Addresses can also be statically assigned. This means
that every node on the network does not have to have a globally unique IP
address. Responses from the Internet are translated back to the non-unique
address. A NAT, however, is not completely transparent to higher layers. For
a signaling protocol such as SIP, a NAT can cause particular problems.

Because responses in SIP are routed using Via headers, a device behind
a NAT will stamp its non-routable private IP address in its Via header of
messages that it originates. When the request is forwarded outside the intra-
net by the NAT, the UDP and IP packet headers will be rewritten with a
temporarily assigned global Internet address. The NAT will keep track of the
binding between the local address and the global address so that incoming
packets can have the UDP and IP headers rewritten and routed correctly.
However, IP addresses in a SIP message, such as Via headers, or IP addresses
in SDP message bodies will not be rewritten and will not be routable. To

SIP Clients and Servers 51

3. A change to SDP is needed to accomplish this, because both the source and destination
IP addresses and port numbers must be contained in the SDP to be visible to the firewall.
See Section 7.1 on SDP fields.

solve the message routing problem, SIP has a mechanism for detecting if a
NAT is present in a SIP message path. Each proxy or user agent that receives
a request checks the received IP address with the address in the Via header. If
the addresses are different, there is a NAT between them. The unroutable
Via header is fixed with a received tag containing the actual global IP
address. Outside the NAT, the response is routed using the received IP
address. Inside the NAT, the Via address is used. This does solve the mes-
sage response routing problem, but not the media problems.

Another problem with NATs is the time span of the NAT address
binding. For a TCP connection, this is not an issue�the binding is main-
tained as long as the connection is open. For a UDP SIP session, the time
period is determined by the application. If a binding were removed before a
BYE was sent terminating the session, the connection would effectively be
closed and future signaling impossible. For this reason, a NAT-aware SIP
proxy server is the best solution to these problems. The proxy would rewrite
the media IP addresses in the message setup and would not allow the NAT to
remove the address binding until a BYE was sent or a session timer had
expired.

References

[1] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Section 1.5.2.

[2] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Section
10.1.2.

[3] Rosenberg, J., H. Salama, and M. Squire, �Telephony Routing over IP (TRIP),� IETF
Internet-Draft, Work in Progress.

[4] Donovan, S., and J. Rosenberg, �The SIP Session Timer,� IETF Internet-Draft, Work
in Progress.

[5] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Section
10.4.1.

52 SIP: Understanding the Session Initiation Protocol

4
SIP Request Messages

This chapter covers the types of SIP requests called methods. Six are
described in the SIP specification document [1]. Two more methods are
work items of the SIP working group and will likely achieve RFC status in
the near future. Other proposed methods are still in the early stages of devel-
opment, or have not yet achieved working group consensus (some of these
are described in Chapter 10). After discussing the eight methods, this chapter
concludes with a discussion of SIP URLs and URIs, tags, and message
bodies.

4.1 Methods

SIP requests or methods are considered �verbs� in the protocol, since they
request a specific action to be taken by another user agent or proxy server.
The INVITE, REGISTER, BYE, ACK, CANCEL, and OPTIONS methods are the
original six methods in version 2.0 of SIP. The INFO and PRACK methods are
described in separate Internet-Drafts that are likely to become RFCs in the
near future.

A proxy does not need to understand a request method in order to for-
ward the request. A proxy treats an unknown method as if it were an
OPTIONS; that is, it forwards the request to the destination if it can. This
allows new features and methods useful for user agents to be introduced
without requiring support from proxies that may be in the middle. A user

53

agent receiving a method it does not support replies with a 501 Not

Implemented response. Method names are case sensitive.

4.1.1 INVITE

The INVITE method is used to establish media sessions between user agents.
In telephony, it is similar to a Setup message in ISDN or an initial address
message, or IAM, in ISUP. (PSTN protocols are briefly introduced in
Section 7.4.) Responses to INVITEs are always acknowledged with the ACK
method described in Section 4.1.4. Examples of the use of the INVITE

method are described in Chapter 2.
An INVITE usually has a message body containing the media informa-

tion of the caller. In addition, it can also contain quality of service
(QoS) or security information. A QoS or security message body could carry a
token used to authorize the reservation of bandwidth or access to some other
resource in the IP network. If an INVITE does not contain media
information, the ACK contains the media information of the user agent server
(UAS). An example of this call flow is shown in Figure 4.1. If the media
information contained in the ACK is not acceptable, then the called party
must send a BYE to cancel the session�a CANCEL cannot be sent because the
session is already established. A media session is considered established

54 SIP: Understanding the Session Initiation Protocol

INVITE

100 Trying

180 Ringing

200 OK
sdp UAS

ACK
sdp UAC

Media Session

UAC UAS

Figure 4.1 INVITE with no SDP message body.

when the INVITE, 200 OK, and ACK messages have been exchanged
between the user agent client (UAC) and the UAS. The media session con-
tinues until a BYE is sent by either party to end the session, as described in
Section 4.1.3.

A UAC that originates an INVITE creates a globally unique Call-ID
that is used for the duration of the call. A CSeq count is initialized (which
need not be set to 1, but must be an integer) and incremented for each new
request for the same Call-ID. The To and From headers are populated with
the remote and local addresses. With the exception of the addition of tags,
which are described in Section 4.3, the To and From headers cannot be
modified or changed during the call.

An INVITE sent for an existing call leg references the same Call-ID as
the original INVITE. Sometimes called a re-INVITE, the request is used to
change the session characteristics. The CSeq command sequence number is
incremented so that a UAS can distinguish the re-INVITE from a retransmis-
sion of the original INVITE.

A CANCEL sent with a CSeq that matches a re-INVITE only cancels the
change in media session requested�the established media session continues
until a BYE is sent by either party. The same is true if the re-INVITE is
refused or fails in any way. A re-INVITE should not be sent by a UAC until a
final response to the initial INVITE has been received. There is an additional
case where two user agents simultaneously send re-INVITEs to each other.
This is handled in the same way with a Retry-After header. This condi-
tion is called �glare� in telephony, and occurs when both ends of a trunk
group seize the same trunk at the same time.

An Expires header in an INVITE indicates to the UAS how long the
call request is valid. For example, the UAS could leave an unanswered
INVITE request displayed on a screen for the duration of specified in the
Expires header. Once a session is established, the Expires header has no
meaning�the expiration of the time does not terminate the media session.
Instead, a Session-Expires header [2] can be used to place a time limit
on an established session.

An example INVITE request with a SDP message body is shown below:

INVITE <sip:411@salzburg.aut>;user=phone SIP/2.0

Via: SIP/2.0/UDP salzburg.edu.aut:5060

To: <sip:411@salzburg.aut>;user=phone

From: Christian Doppler <sip:C.doppler@salzburg.edu.aut>

Call-ID: 12-45-A5-46-F5@salzburg.edu.aut

CSeq: 1 INVITE

SIP Request Messages 55

Subject: Train Timetables

Contact: sip:c.doppler@salzburg.edu.aut

Content-Type: application/sdp

Content-Length: 152

v=0

o=doppler 2890842326 2890844532 IN IP4 salzburg.edu.aut

s=Phone Call

c=IN IP4 50.61.72.83

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

In addition to the required headers, this request contains the optional
Subject header. Note that this Request-URI contains a phone number.
Phone number support in SIP URLs is described in Section 4.2.

The mandatory and optional headers in an INVITE request are shown
in Table 4.1.

56 SIP: Understanding the Session Initiation Protocol

Table 4.1
Mandatory and Optional Headers in an INVITE Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Contact

Accept

Accept-Encoding

Accept-Language

Authorization

Content-Language

Content-Disposition

Content-Encoding

Date

Encryption

Expires

Hide

In-Reply-To

Max-Forwards

MIME-Version

Organization

Priority

Proxy-Authorization

Proxy-Require

Record-Route

Require

Response-Key

Route

Server

Session-Expires

Subject

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

4.1.2 REGISTER

The REGISTER method is used by a user agent to notify a SIP network of its
current IP address and the URLs for which it would like to receive calls.
As mentioned in Section 2.3, SIP registration bears some similarity to cell
phone registration on initialization. Registration is not required to enable a
user agent to use a proxy server for outgoing calls. It is necessary, however, for a
user agent to register to receive incoming calls from proxies that serve that
domain unless some non-SIP mechanism is used by the location service to
populate the SIP URLs and IP addresses of user agents. A REGISTER request
may contain a message body although its use is not defined in the standard [3].
Depending on the use of the Contact and Expires headers in the REGISTER
request, the registrar server will take different action. Examples of this are
shown in Table 4.2. If no expires parameter or Expires header is present, a
SIP URL will expire in 1 hour. The presence of an Expires header sets
the expiration of SIP URLs with no expires parameter. If an expires

SIP Request Messages 57

Table 4.2
Types of Registrar Actions and Contact Headers

Request headers Registrar action

Contact: *
Expires: 0

Cancel all registrations

Contact: sip:galvani@bologna.edu.it;
expires=30

Add URL to current registrations; registration

expires in 30 minutes

Contact: sip:galvani@bologna.edu.it
Expires: 30

Add URL to current registrations; registration

expires in 30 minutes

Contact: sip:galvani@bolognauni.edu;
expires=45

Contact: sip:l.galvani@bologna.it
Expires: 30

Add all URLs to current registrations in
preference order listed; first URL expires in
45 minutes, second in 30 minutes

Contact: sip:galvani@bologna.edu.it ;
action=proxy ;q=0.9

Contact:mailto:galvani@bologna.edu.it;
q=0.1probability;

Add URLs to current registrations using
specified preference SIP requests should be
proxied; SIP URL expires in 60 minutes (de-
fault); mailto URL does not expire

No Contact header present Return all current registrations in response

parameter is present, it sets the expiration time for that Contact only.
Non-SIP URLs have no default expiration time.

The CSeq is incremented for a REGISTER request. The use of the
Request-URI, To, From, and Call-ID headers in a REGISTER request is
slightly different than for other requests. The Request-URI contains only
the domain of the registrar server with no user portion. The REGISTER

request may be forwarded or proxied until it reaches the authoritative regis-
trar server for the specified domain. The To header contains the SIP URL of
the user agent that is being registered. The From contains the SIP URL of the
sender of the request, usually the same as the To header. It is recommended
that the same Call-ID be used for all registrations by a user agent.

A user agent sending a REGISTER request may receive a 3xx redirec-
tion of 4xx failure response containing a Contact header of the location to
which registrations should be sent.

A third-party registration occurs when the party sending the registra-
tion request is not the party that is being registered. In this case, the From
header will contain the URL of the party submitting the registration on
behalf of the party identified in the To header. Chapter 3 contains an exam-
ple of a first-party registration. An example third-party registration request
for the user Euclid is shown below:

REGISTER sip:registrar.athens.gr SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060

To: sip:euclid@athens.gr

From: sip:secretary@academy.athens.gr

Call-ID: 2000-July-07-23:59:59.1234@201.202.203.204

CSeq: 1 REGISTER

Contact: sip:euclid@parthenon.athens.gr

Contact: mailto:euclid@geometry.org

Content-Length: 0

The mandatory and optional headers in a REGISTER request are shown
in Table 4.3.

4.1.3 BYE

The BYE method is used to terminate an established media session. In
telephony, it is similar to a release message. A session is considered estab-
lished if an INVITE has received a success class response (2xx) and an ACK

has been sent. A BYE is sent only by user agents participating in the session,
never by proxies or other third parties. It is an end-to-end method so

58 SIP: Understanding the Session Initiation Protocol

responses are only generated by the other user agent. A user agent responds
with a 486 Unknown Call Leg to a BYE for an unknown call leg.

This method may not contain a message body. A BYE can be sent by
either the caller or the called party in a session. A BYE always increments the
CSeq. A BYE sent for a pending request cancels the request, but a final
response must still be issued for the INVITE by the UAS.

A BYE should not be used to cancel pending requests because it
will not be forked like an INVITE and may not reach the same set of
user agents as the INVITE. An example BYE request looks like the
following:

BYE sip:info@hypotenuse.org SIP/2.0

Via: SIP/2.0/UDP port443.hotmail.com:5060

To: <sip:info@hypotenuse.org>;tag=63104

From: sip:pythag42@hotmail.com

Call-ID: 34283291273@port443.hotmail.com

SIP Request Messages 59

Table 4.3
Mandatory and Optional Headers in a REGISTER Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Accept

Accept-Encoding

Accept-Language

Authorization

Contact

Content-Disposition

Content-Type

Content-Encoding

Date

Encryption

Expires

Hide

Max-Forwards

MIME-Version

Organization

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

Record-Route

Require

Retry-After

Response-Key

Route

Server

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

CSeq: 47 BYE

Content-Length: 0

The mandatory and optional headers in a BYE request are shown in
Table 4.4.

4.1.4 ACK

The ACK method is used to acknowledge final responses to INVITE requests.
Final responses to all other requests are never acknowledged. Final responses
are defined as 2xx, 3xx, 4xx, 5xx, or 6xx class responses. The CSeq number
is never incremented for an ACK, but the CSeq method is changed to ACK.
This is so that a UAS can match the CSeq number of the ACK with the
number of the corresponding INVITE.

An ACK may contain an application/sdp message body. This is
permitted if the initial INVITE did not contain a SDP message body. If the
INVITE contained a message body, the ACK may not contain a message

60 SIP: Understanding the Session Initiation Protocol

Table 4.4
Mandatory and Optional Headers in a BYE Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Accept

Accept-Encoding

Accept-Language

Authorization

Content-Disposition

Content-Encoding

Content-Language

Content-Type

Date

Encryption

Expires

Hide

Max-Forwards

MIME-Version

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

Record-Route

Require

Response-Key

Route

Server

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

body. The ACK may not be used to modify a media description that has
already been sent in the initial INVITE; a re-INVITE must be used for this
purpose. This is used in some interworking scenarios with other protocols
where the media characteristics may not be known when the initial INVITE
is generated and sent. An example of this is described in Section 9.6.

For 2xx responses, the ACK is end-to-end, but for all other final
responses it is done on a hop-by-hop basis when stateful proxies are involved.
The end-to-end nature of ACKs to 2xx responses allows a message body to be
transported. An ACK generated in a hop-by-hop acknowledgment will con-
tain just a single Via header with the address of the proxy server generating
the ACK. The difference between hop-by-hop acknowledgments to a
response end-to-end acknowledgments is shown in the message fragments of
Figure 4.2.

A stateful proxy receiving an ACK message must determine whether or
not the ACK should be forwarded downstream to another proxy or user agent
or not. That is, is the ACK a hop-by-hop ACK or an end-to-end ACK. This is
done by comparing the To (including tags), From, CSeq, and Call-ID

headers to those of any non-2xx final responses sent. If there is not an exact
match, the ACK is proxied toward the UAS. Otherwise, the ACK is for this
hop and is not forwarded by the proxy. The call flows of Chapter 9 show

SIP Request Messages 61

UACStateful ProxyUAS

.

.

.

200 OK (end to end) 200 OK (end to end)

ACK (end to end)
ACK (end to end)

410 Gone (hop by hop)
410 Gone (hop by hop)

ACK (hop by hop)
ACK (hop by hop)

Figure 4.2 End-to-end versus hop-by-hop acknowledgments.

examples of both types of ACK handling. An example ACK containing SDP
contains:

ACK sip:laplace@mathematica.org SIP/2.0

Via: SIP/2.0/TCP 128.5.2.1:5060

To: Marquis de Laplace <sip:laplace@mathematica.org>;tag=90210

From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>

Call-ID: 152-45-N-32-23-W@128.5.2.1

CSeq: 3 ACK

Content-Type: application/sdp

Content-Length: 143

v=0

o=bowditch 2590844326 2590944532 IN IP4 salem.ma.us

s=Bearing

c=IN IP4 128.5.2.1

t=0 0

m=audio 32852 RTP/AVP 0

a=rtpmap:0 PCMU/8000

The mandatory and optional headers in an ACK message are shown in
Table 4.5.

62 SIP: Understanding the Session Initiation Protocol

Table 4.5
Mandatory and Optional Headers in an ACK Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Authorization

Contact

Content-Length

Content-Disposition

Content-Encoding

Date

Encryption

Hide

Max-Forwards

MIME-Version

Proxy-Authorization

Proxy-Require

Record-Route

Require

Route

Server

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

4.1.5 CANCEL

The CANCEL method is used to terminate pending searches or call attempts.
It can be generated by either user agents or proxy servers. A user agent uses
the method to cancel a pending call attempt it had earlier initiated. A forking
proxy can use the method to cancel pending parallel branches after a success-
ful response has been proxied back to the UAC. CANCEL is a hop-by-hop
request and receives a response generated by the next stateful element. The
difference between a hop-by-hop request and an end-to-end request is shown
in Figure 4.3. The CSeq is not incremented for this method so that proxies
and user agents can match the CSeq of the CANCEL with the CSeq of the
pending INVITE that it corresponds to.

A proxy receiving a CANCEL forwards the CANCEL to the same set of
locations with pending requests that the initial INVITE was sent to. A proxy
does not wait for responses to the forwarded CANCEL requests, but responds
immediately. A user agent confirms the cancellation with a 200 OK response
and replies to the INVITE with a 487 Request Canceled response. A
CANCEL whose intent is to cancel all pending requests should not contain a
tag in the To header, even if provisional responses have been returned con-
taining a tag. This is so that all branches of a forked INVITE will be can-
celed, not just the one that has returned the provisional response.

If a final response has already been received, a user agent should not
generate a CANCEL. Instead, the user agent will need to send an ACK and a

SIP Request Messages 63

UAC Stateful proxy UAS

.

.

.

Request (end to end) Request (end to end)

Response (end to end)
Response (end to end)

Request (hop by hop)
Request (hop by hop)

Response (hop by hop)
Response (hop by hop)

Figure 4.3 End-to-end versus hop-by-hop requests.

BYE to terminate the session. This is also the case in the race condition where
a CANCEL and a final response cross in the network, as shown in Figure 4.4.
In this example, the CANCEL and 200 OK response messages cross between
the proxy and the UAS. The proxy still replies to the CANCEL with a 200 OK,
but then also forwards the 200 OK response to the INVITE. The 200 OK

response to the CANCEL sent by the proxy only means that the CANCEL

request was received and has been forwarded - the UAC must still be pre-
pared to receive further final responses. No 487 response is sent in this sce-
nario. The session is canceled by the UAC sending an ACK then a BYE in
response to the 200 OK.

Since it is a hop-by-hop request, a CANCEL may not contain a message
body. An example CANCEL request contains:

CANCEL sip:i.newton@cambridge.edu.gb SIP/2.0

Via: SIP/2.0/UDP 10.downing.gb:5060

To: Isaac Newton <sip:i.newton@cambridge.edu.gb>

64 SIP: Understanding the Session Initiation Protocol

UAC Stateful Proxy UAS
INVITE
CSeq: 1 INVITE

200 OK
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

I
CSeq: 1 I
NVITE

NVITE

CANCEL
CSeq: 1 CANCEL

C
CSeq: 1 C

ANCEL
ANCEL

200 OK
CSeq: 1 CANCEL

200 OK
CSeq: 1 CANCEL

200 OK
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

ACK
CSeq: 1 ACK

200 OK
CSeq: 2 BYE

BYE
CSeq: 2 BYE

Figure 4.4 Race condition in call cancellation.

From: Rene Descartes <sip:visitor@10.downing.gb>

Call-ID: 42@10.downing.gb

CSeq: 32156 CANCEL

Content-Length: 0

The mandatory and optional headers in a CANCEL request are shown in
Table 4.6.

4.1.6 OPTIONS

The OPTIONS method is used to query a user agent or server about its capa-
bilities and discover its current availability. The response to the request lists
the capabilities of the user agent or server. A proxy never generates an
OPTIONS request. A user agent or server responds to the request as it would
to an INVITE (i.e., if it is not accepting calls, it would respond with a 4xx or
6xx response). A success class (2xx) response can contain Allow, Accept,
Accept-Encoding, Accept-Language, and Supported headers indicat-
ing its capabilities.

SIP Request Messages 65

Table 4.6
Mandatory and Optional Headers in a CANCEL Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Accept

Accept-Encoding

Accept-Language

Authorization

Content-Language

Date

Encryption

Hide

In-Reply-To

Max-Forwards

MIME-Version

Proxy-Authorization

Proxy-Require

Record-Route

Require

Response-Key

Server

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

An OPTIONS request may not contain a message body. A proxy deter-
mines if an OPTIONS request is for itself by examining the Request-URI. If
the Request-URI contains the address of the proxy, the request is for the
proxy. Otherwise, the options is for another proxy or user agent and
the request is forwarded. An example OPTIONS request and response
contains:

OPTIONS sip:proxy.carrier.com SIP/2.0

Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk

To: sip:proxy.carrier.com

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

Call-ID: 9352812@cavendish.kings.cambridge.edu.uk

CSeq: 1 OPTIONS

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk;tag=512A6

To: sip:proxy.carrier.com

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

Call-ID: 9352812@cavendish.kings.cambridge.edu.uk

CSeq: 1 OPTIONS

Allow: INVITE, OPTIONS, ACK, BYE, CANCEL, REGISTER

Accept-Language: en, de, fr

Content-Length: 0

The mandatory and optional headers in an OPTIONS request is the
same as Table 4.3 except Retry-After is not an allowed header.

4.1.7 INFO

The INFO [4] method is used by a user agent to send call signaling informa-
tion to another user agent with which it has an established media session.
This is different from a re-INVITE since it does not change the media charac-
teristics of the call. The request is end to end, and is never initiated by prox-
ies. A proxy will always forward an INFO request�it is up to the UAS to
check to see if the call leg is valid. INFO requests for unknown call legs receive
a 481 Unknown Call Leg response.

An INFO method typically contains a message body. The contents may
be signaling information, a mid-call event, or some sort of stimulus. INFO

has been proposed to carry certain PSTN mid-call signaling information
such as ISUP USR messages. Section 9.3 contains an example of the use of
the INFO method.

66 SIP: Understanding the Session Initiation Protocol

The INFO method always increments the CSeq. An example INFO

method is:

INFO sip:poynting@mason.edu.uk SIP/2.0

Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk

To: John Poynting <sip:nting@mason.edu.uk>;tag=432485820183

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

Call-ID: 18437@cavendish.kings.cambridge.edu.uk

CSeq: 6 INFO

Content-Type: plain/text

Content-Length: 16

USR.51a6324127

The mandatory and optional headers in an INFO request are shown in
Table 4.7.

SIP Request Messages 67

Table 4.7
Mandatory and Optional Headers in an INFO Request

Mandatory headers Optional headers

Call-ID

Cseq

From

To

Via

Accept

Accept-Encoding

Accept-Language

Authorization

Contact

Content-Length

Content-Disposition

Content-Encoding

Date

Encryption

Expires

Hide

In-Reply-To

Max-Forwards

MIME-Version

Organization

Priority

Proxy-Authorization

Proxy-Require

Record-Route

Require

Response-Key

Route

Server

Subject

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

4.1.8 PRACK

The PRACK [5] method is used to acknowledge receipt of reliably transported
provisional responses (1xx). The reliability of 2xx, 3xx, 4xx, 5xx, and 6xx

responses to INVITEs is achieved using the ACK method. However, in cases
where a provisional response, such as 180 Ringing, is critical in determin-
ing the call state, it may be necessary for the receipt of a provisional response
to be confirmed. The PRACK method applies to all provisional responses
except the 100 Trying response, which is never reliably transported.

A PRACK is generated by a UAC when a provisional response has been
received containing a RSeq reliable sequence number and a Supported:

100rel header. The PRACK echoes the number in the RSeq and the CSeq of
the response in a RAck header. The message flow is as shown in Figure 4.5.
In this example, the UAC sends the 180 Ringing response reliably by
including the RSeq header. When no PRACK is received from the UAC after
the expiration of SIP timer T1, the response is retransmitted. The receipt of
the PRACK confirms the delivery of the response and stops all further trans-
missions. The 200 OK response to the PRACK stops retransmissions of the
PRACK request. The call completes when the UAC sends the ACK in response
to the 200 OK.

Reliable responses are retransmitted using the same exponential back-
off mechanism used for final responses to an INVITE. The combination
of Call-ID, CSeq number, and RAck number allows the UAC to match
the PRACK to the provisional response it is acknowledging. As shown in
Figure 4.5, the PRACK receives a 200 OK response, which can be distin-
guished from the 200 OK to the INVITE by the method contained in the
CSeq header. The detailed use of the method is described in Sections 6.2.18
and 6.3.7 (where the RAck and RSeq headers are described) and in Section
9.3 (where a PRACK is used to acknowledge receipt of a 183 Session Pro-

gress response in PSTN interworking).
The PRACK method always increments the CSeq. A PRACK may con-

tain a message body. An example exchange contains:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk

To: Descartes <sip:rene.descartes@metaphysics.org>

From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981

Call-ID: 5@lucasian.trinity.cambridge.edu.uk

RSeq: 314

CSeq: 1 INVITE

Content-Length: 0

68 SIP: Understanding the Session Initiation Protocol

PRACK sip:rene.descartes@metaphysics.org SIP/2.0

Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk

To: Descartes <sip:rene.descartes@metaphysics.org>

From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981

Call-ID: 5@lucasian.trinity.cambridge.edu.uk

CSeq: 2 PRACK

RAck: 314 1 INVITE

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk

SIP Request Messages 69

UAC UASINVITE
Supported: 100rel
CSeq: 1 INVITE

100 Trying
CSeq: 1 INVITE

180 Ringing
CSeq: 1 INVITE
RSeq: 314

X
180 Ringing
CSeq: 1 INVITE
RSeq: 314

PRACK
CSeq: 2 PRACK
RAck: 314 1 INVITE

200 OK
CSeq: 2 PRACK

200 OK
CSeq: 1 INVITE

ACK
CSeq: 1 ACK

Media Session

T1

Figure 4.5 Use of reliable provisional responses.

To: Descartes <sip:rene.descartes@metaphysics.org>

From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981

Call-ID: 5@lucasian.trinity.cambridge.edu.uk

CSeq: 2 PRACK

Content-Length: 0

The mandatory and optional headers in a PRACK request are shown in
Table 4.8.

4.2 SIP URLs and URIs

The addressing scheme of SIP uniform resource locators and uniform
resource indicators has been previously mentioned. SIP URLs are used in a

70 SIP: Understanding the Session Initiation Protocol

Table 4.8
Mandatory and Optional Headers in a PRACK Request

Mandatory headers Optional headers

Call-ID

Content-Length

CSeq

From

To

Via

Accept

Accept-Encoding

Accept-Language

Authorization

Contact

Content-Length

Content-Disposition

Content-Encoding

Date

Encryption

Expires

Hide

In-Reply-To

Max-Forwards

MIME-Version

Organization

Priority

Proxy-Authorization

Proxy-Require

Record-Route

Require

Response-Key

Route

Server

Subject

Supported

Timestamp

Unsupported

Supported

User Agent

Warning

WWW-Authenticate

number of places including the To, From, and Contact headers, as well as the
Request-URI, which indicates the destination. SIP URLs are similar to the
mailto URL [6] and can be used in hyperlinks on web pages, for example.
SIP URLs can include telephone numbers. The information in a SIP URL
indicates the way in which the resource (user) should be contacted using SIP.

An example SIP URL contains the scheme sip a �:�, then a user-

name@host or IPv4 address followed by an optional �:�, then the port
number, or a list of �;� separated URI parameters:

sip:joseph.fourier@transform.org:5060;transport=udp;user=ip

;method=INVITE;ttl=1;maddr=240.101.102.103?Subject=FFT

Some SIP URLs, such as a REGISTER Request-URI do not have a
username, but begin with the host or IPv4 address. In this example, the port
number is shown as 5060, the well-known port number for SIP. If the port
number is not present, 5060 is assumed. The transport parameter indicates
UDP is to be used, which is the default. TCP is an alternative transport
parameter.

The user parameter is used by parsers to determine if a telephone
number is present in the username portion of the URL. The assumed default
is that it is not, indicated by the value ip. If a telephone number is present, it
is indicated by the value phone. This parameter must not be used to guess at
the characteristics or capabilities of the user agent. For example, the presence
of a user=phone parameter must not be interpreted that the user agent is a
SIP telephone (which may have limited display/processing capabilities). In a
telephony environment, IP telephones and IP/PSTN gateways may in fact
use the reverse assumption, interpreting any digits in a username as digits
regardless if user=phone is present.

The method parameter is used to indicate the method to be used. The
default is INVITE. This parameter has no meaning in To or From headers,
but can be used in Contact headers for registration, for example.

The ttl parameter is the time-to-live, which must only be used if the
maddr parameter contains a multicast address and the transport parameter
contains udp. The default value is 1. This value scopes the multicast session
broadcast, as described in Section 1.8.

The maddr usually contains the multicast address to which the request
should be directed, overriding the address in the host portion of the URL. It
can also contain, however, a unicast address of an alternative server for
requests. The maddr parameter is required for SIP URLs in Record-Route

and Route headers.

SIP Request Messages 71

The method, maddr, ttl, and header parameters must not be
included in To or From headers, but may be included in Contact headers or
in Request-URIs. In addition to these parameters, a SIP URL may contain
other user-defined parameters.

Following the �?� parameter, names can be specified to be included in
the request. This is similar to the operation of the mailto URL, which
allows Subject and Priority to be set for the request. Additional headers
can be specified, separated by a �&�. The header name body indicates that
the contents of a message body for an INVITE request is being specified in
the URL.

If the parameter user=phone is present, then the username portion of
the URL can be interpreted as a telephone number. This allows additional
parameters in the username portion of the URL. An example username
showing these parameters is:

#70w555-1212;isub=1000;postd=pp555.1212

In this example, the dialed digit string, interpreted by a PSTN gateway,
would be the DTMF digit # then 70 (to cancel call waiting, for example),
wait for second dial tone w, the digits 555-1212. Additional parameters
include an ISDN subaddress of 1000, and a post dial digits of two 1-second
pauses pp, then 555.1212. This example shows both types of optional visual
separators allowed, either �-� or �.� as the separator.

4.3 Tags

A tag is a cryptographically random number with at least 32 bits of random-
ness, which is added to To and From headers to uniquely identify a call leg.
The examples of Chapter 3 and Chapter 9 show the use of the tag header
parameter. The To header in the initial INVITE will not contain a tag. If it
is possible that the caller may establish multiple sessions with the called
party, the caller adds a tag to the From header. Excluding 100 Trying, all
responses will have a tag added to the To header. A tag returned in a 200 OK

response is then incorporated into the call leg and used in all future requests
for this Call-ID. A tag is never copied across calls. Any response generated
by a proxy will have a tag added by the proxy.

If a UAC receives responses containing different tags, this means that
the responses are from different UASs, and hence the INVITE has been
forked. It is up to the UAC as to how to deal with this situation. For exam-
ple, the UAC could establish separate sessions with each of the responding

72 SIP: Understanding the Session Initiation Protocol

UAS. The call legs would contain the same From, Call-ID, and CSeq, but
would have different tags in the To header. The UAC also could CANCEL or
BYE certain legs and establish only one session.

The exception to the rule about always using the tag in subsequent
requests applies to the CANCEL method. If the intent of a CANCEL is to cancel
all pending call attempts, regardless of forking, tags are not used in the
CANCEL, even if they have been received in a provisional response. Individual
pending legs of a call can be cancelled by sending CANCEL containing the
appropriate tag. Note that tags are not part of the URL but are part of the
header, and always placed outside any �<>�.

4.4 Message Bodies

Message bodies in SIP may contain various types of information. They may
contain SDP information, which can be used to convey media information
or QoS or even security information.

The optional Content-Disposition header is used to indicate the
intended use of the message body. If not present, the function is assumed to
be session, which means that the body describes a media session. Besides ses-
sion, the other defined function is render, which means that the message
body should be presented to the user or otherwise used or displayed. This
could be used to pass a small JPEG image file or URL.

The format of the message body is indicated by the Content-Type

header described in Section 6.4.5. If a message contains a message body, the
message must include a Content-Type header. All user agents must support
a Content-Type of application/sdp. The encoding scheme of the mes-
sage body is indicated in the Content-Encoding header. If not specified,
the encoding is assumed to be text/plain. The specification of a
Content-Encoding scheme allows the message body to be compressed.

The Content-Length header contains the number of octets in the
message body. If there is no message body, the Content-Length header
should still be included but has a value of 0. Because multiple SIP messages
can be sent in a TCP stream, the Content-Length count is a reliable way
to detect when one message ends and another begins. If a Content-Length
is not present, the UAC must assume that the message body continues until
the end of the UDP datagram, or until the TCP connection is closed,
depending on the transport protocol.

Message bodies can have multiple parts if they are encoded using Mul-
tipart Internet Mail Extensions (MIME) [7]. Message bodies in SIP,

SIP Request Messages 73

however, should be small enough so that they do not exceed the UDP MTU
of the network. Proxies may reject requests with large message bodies with a
413 Request Entity Too Large response, since processing large mes-
sages can load a server.

References

[1] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999.

[2] Donovan, S., and J. Rosenberg, �The SIP Session Timer,� IETF Internet-Draft, Work
in Progress.

[3] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999. Section 8.1,
Body Inclusion, states that the use of message bodies in REGISTER requests is for fur-
ther study. It has been proposed that this could be used by a user agent to upload a call
processing language script to run a feature on a proxy.

[4] Donovan, S., �The SIP INFO Method,� RFC 2976, 2000.

[5] Rosenberg, J., and H. Schulzrinne, �Reliability of Provisional Responses,� IETF
Internet-Draft, Work in Progress.

[6] Hoffman, P., L. Masinter, and J. Zawinski, �The mailto URL Scheme,� RFC 2368,
1998.

[7] Freed, N., and N. Borenstein, �Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies,� RFC 2045, 1996.

74 SIP: Understanding the Session Initiation Protocol

5
SIP Response Messages

This chapter covers the types of SIP response messages. A SIP response is a
message generated by a UAS or a SIP server to reply to a request generated by
a UAC. A response may contain additional headers containing information
needed by the UAC. Or, it may be a simple acknowledgement to prevent
retransmissions of the request by the UAC. Many responses direct the UAC
to take specific additional steps. The responses are discussed in terms of
structure and classes. Then, each request type is discussed and examined in
detail.

There are six classes of SIP responses. The first five classes were bor-
rowed from HTTP; the sixth was created for SIP. The classes are shown in
Table 5.1.

If a particular SIP response code is not understood by a UAC, it must
be interpreted by the class of the response. For example, an unknown 599

Server Unplugged response must be interpreted by a user agent as a 500
Server Failure response.

The reason phrase is for human consumption only�the SIP proto-
col uses only the response code in determining behavior. Thus, a 200

Call Failed is interpreted the same as 200 OK. The reason phrases listed
here are the suggested ones from the standard document [1]. They can be
used to convey more information, especially in failure class responses�the
phrase is likely to be displayed to the user. Response codes in the range x00-
x79 were borrowed from HTTP, perhaps with a slightly different reason

75

phrase1. New response codes created for SIP begin at x80 to avoid conflicts
with future HTTP response codes.

5.1 Informational

The informational class of responses 1xx are used to indicate call progress.
Informational responses are end-to-end responses and may contain message
bodies. The exception to this is the 100 Trying response, which is only a
hop-by-hop response. Any number of informational responses can be sent by
a UAS prior to a final response (2xx 6xx) being sent. The first informational
response received by the UAC confirms receipt of the INVITE, and stops
retransmission of the INVITE, as described in Section 3.5. For this reason, the
standard recommends that a server return a 1xx response if it may take longer
than 200ms before it sends a final response. This minimizes INVITE

76 SIP: Understanding the Session Initiation Protocol

Table 5.1
SIP Response Classes

Class Description Action

1xx Informational: Indicates status of
call prior to completion

If first informational response, the
client should switch from timer T1 to
timer T2 for retransmission

2xx Success: request has succeeded If for an INVITE, ACK should be sent;
otherwise, stop retransmissions of re-
quest

3xx Redirection: server has returned
possible locations

The client should retry request at
another server

4xx Client error: the request has failed
due to an error by the client

The client may retry the request if
reformulated according to response

5xx Server failure: the request has failed
due to an error by the server

The request may be retried at another
server

6xx Global failure: the request has failed The request should not be tried again
at this or other servers

1. Not all HTTP response codes are supported in SIP. For example, HTTP supports a
number of success class responses�only one (200 OK) makes sense in SIP. Only the
response codes described in RFC 2543 and supporting RFCs are supported in SIP.

retransmissions in the network. Further informational responses have no
effect on INVITE retransmissions. A stateful proxy receiving a retransmission
of an INVITE will resend the last provisional response sent to date. Informa-
tional responses are optional�a UAS can send a final response without first
sending an informational response. While final responses to an INVITE

receive an ACK to confirm receipt, provisional responses are not acknowl-
edged, except using the PRACK method described in Section 4.1.8. For
non-INVITE requests, a 1xx response changes the UAC retransmission
timer from T1 to T2.

5.1.1 100 Trying

This special case response is only a hop-by-hop request. It is never forwarded
and may not contain a message body. A forking proxy must send a 100

Trying response, since the extended search being performed may take a sig-
nificant amount of time. This response can be generated by either a proxy
server or a user agent. It only indicates that some kind of action is being
taken to process the call�it does not indicate that the user has been located.

5.1.2 180 Ringing

This response is used to indicate that the INVITE has been received by
the user agent and that alerting is taken place. This response is important
in interworking with telephony protocols, and it is typically mapped to
messages such as an ISDN Progress or ISUP Address Complete Message
(ACM) [2]. For this reason, it might be sent reliably and acknowledged using
the PRACK method. When the user agent answers immediately, a 200 OK is
sent without a 180 Ringing; this scenario is called the �fast answer� case in
telephony.

A message body in this response could be used to carry QoS or security
information, or to convey ring tone or animations from the UAS to the
UAC.

5.1.3 181 Call Is Being Forwarded

This response is used to indicate that the call has been handed off to another
end-point. This response is sent when this information may be of use to the
caller. Also, because a forwarding operation may take longer for the call to be
answered, this response gives a status for the caller.

SIP Response Messages 77

5.1.4 182 Call Queued

This response is used to indicate that the INVITE has been received, and will
be processed in a queue. The reason phrase can be used to indicate the esti-
mated wait time or the number of callers in line, as shown in Figure 5.1.

A message body in this response can be used to carry music on hold or
other media.

5.1.5 183 Session Progress

The 183 Session Progress [3] response indicates that information about the
progress of the session (call state) is present in the message body media infor-
mation. A typical use of this response is to allow a UAC to hear ring tone, busy
tone, or a recorded announcement in calls through a gateway into the PSTN.
This is because call progress information is carried in the media stream in the
PSTN. A one-way media connection or trunk is established from the calling
party�s telephone switch to the called party�s telephone switch in the PSTN
prior to the call being answered. In SIP, the media session is established after
the call is answered�after a 200 OK and ACK have been exchanged between
the UAC and UAS. If a gateway used a 180 Ringing response instead, no
media path would be established between the UAC and the gateway, and the

78 SIP: Understanding the Session Initiation Protocol

INVITE

182 3 Ahead of you

ACK

Media Session

Caller Call Center

182 2 Ahead of you

182 1 Ahead of you

200 OK

Figure 5.1 Call queuing example with call processing center.

caller would never hear ring tone, busy tone, or a recorded announcement
(e.g., �The number you have dialed has changed, the new number is ...�)
since these are all heard in the media path prior to the call being answered.
Figure 5.2 shows an example where a SIP caller does not hear a recorded
announcement coming from the PSTN. Figure 5.3 shows the use of the 183
Session Progress allowing an early media session to be established prior
to the call being answered. The PSTN interworking scenarios in Chapter 9
show this in detail.

5.2 Success 200 OK

There is only one success class response defined currently in SIP: 200 OK.
The success class response has two uses in SIP. When used to accept a session

SIP Response Messages 79

Caller Gateway Telephone
switch

INVITE sip:555-1111@gateway.com;user=phone

100 Trying

180 Ringing

No media path
established

IAM CdPn=555-1111

ACM

One way voice path

Telephone switch plays
recorded annoucement:

REL

502 Bad gateway

ACK
RLC

"Why
did
the
call

fail?"

"The number you have
dialed has changed.
The new number is
555-2222.�

Figure 5.2 PSTN interworking without early media.

invitation, it will contain a message body containing the media properties of
the UAS (called party). When used in response to other requests, it indicates
successful completion or receipt of the request. The response stops further
retransmissions of the request. In response to an OPTIONS, the message body
may contain the capabilities of the server. A message body may also be pres-
ent in a response to a REGISTER request. For 200 OK responses to BYE,
CANCEL, INFO, and PRACK, a message body is not permitted.

5.3 Redirection

Redirection class responses are generally sent by a SIP server acting as a redi-
rect server in response to an INVITE, as described in Section 3.3.2. A UAS,
however, can also send a redirection class response to implement certain
types of call forwarding features. There is no requirement that a UAC receiv-
ing a redirection response must retry the request to the specified address. The

80 SIP: Understanding the Session Initiation Protocol

Caller Gateway
Telephone

switch
INVITE sip:555-2222@gateway.com;user=phone
sdp Caller

100 Trying

183 Session Progress
sdp Gateway

Media path

IAM CdPn=555-2222

ACM

One way voice path

Telephone switch
plays ring tone

ANM200 OK
sdp Gateway

ACK

Caller hears
ring tone in RTP

Media path Two way voice path

Figure 5.3 PSTN interworking with early media.

UAC could be configured to automatically generate a new INVITE upon
receipt of a redirection class response without requiring user intervention.

To prevent looping, the server must not return any addresses contained
in the request Via header, and the client must check the address returned in
the Contact header against all other addresses tried in an earlier call
attempt. Note that this type of transaction looping is different from request
looping.

5.3.1 300 Multiple Choices

This redirection response contains multiple Contact headers, which indi-
cate that the location service has returned multiple possible locations for the
SIP URL in the Request-URI. The order of the Contact headers is
assumed to be significant. That is, they should be tried in the order in which
they were listed in the response.

5.3.2 301 Moved Permanently

This redirection response contains a Contact header with the new perma-
nent URL of the called party. The address can be saved and used in future
INVITE requests.

5.3.3 302 Moved Temporarily

This redirection response contains a URL that is currently valid but that is
not permanent. As a result, the Contact header should not be cached across
calls unless an Expires header is present, in which case the location is valid
for the duration of the time specified.

5.3.4 305 Use Proxy

This redirection response contains a URL that points to a proxy server who
has authoritative information about the calling party. The caller should
resend the request to the proxy for forwarding. This response could be sent
by a UAS that is using a proxy for incoming call screening. Because the proxy
makes the decisions for the UAS on acceptance of the call, the UAS will only
respond to INVITE requests that come from the screening proxy. Any
INVITE request received directly would automatically receive this response
without user intervention.

SIP Response Messages 81

5.3.5 380 Alternative Service

This response returns a URL that indicates the type of service that the called
party would like. An example might be a redirect to a voicemail server.

5.4 Client Error

This class of response is used by a server or UAS to indicate that the request
cannot be fulfilled as it was submitted. The specific client error response or
the presence of certain headers should indicate to the UAC the nature of the
error and how the request can be reformulated. The UAC should not resub-
mit the request without modifying the request based on the response. The
same request, however, can be tried in other locations. A forking proxy
receipt of a 4xx response does not terminate the search. Typically, client
error responses will require user intervention before a new request can be
generated.

5.4.1 400 Bad Request

This response indicates that the request was not understood by the server. An
example might be a request that is missing required headers such as To,
From, Call-ID, or CSeq. This response is also used if a UAS receives multi-
ple INVITE requests (not retransmissions) for the same Call-ID.

5.4.2 401 Unauthorized

This response indicates that the request requires the user to perform authen-
tication. This response is generally sent by a user agent, since the 407 Proxy

Authentication Required (Section 5.4.8) is sent by a proxy that
requires authentication. The exception is a registrar server, which sends a
401 Unauthorized response to a REGISTER message that does not contain
the proper credentials. An example of this response is:

SIP/2.0 401 Unathorized

Via: SIP/2.0/UDP proxy.globe.org:5060;branch=2311ff5d.1

Via: SIP/2.0/UDP 173.23.43.1:5060

To: <sip:printer@maps-r-us.com>;tag=19424103

From: Copernicus <sip:copernicus@globe.org>

Call-ID: 123456787@173.23.43.1

CSeq: 1 INVITE

WWW-Authenticate: Digest realm="Global Phone Company",

domain = globe.org�, nonce="8eff88df84f1cec4341ae6e5a359",

82 SIP: Understanding the Session Initiation Protocol

opaque="", stale="FALSE", algorithm="MD5"

Content-Length: 0

The presence of the WWW-Authenticate header is required to give the
calling user agent a chance to respond with the correct credentials. A typical
authentication exchange using SIP digest is shown in Figure 3.8. Note that
the follow-up INVITE request may use the same Call-ID as the original
request. In fact, some authentication implementations may fail if the
Call-ID is changed from the initial request to the retried request with the
proper credentials.

5.4.3 402 Payment Required

This response is a placeholder for future definition in the SIP protocol. It
could be used to negotiate call completion charges.

5.4.4 403 Forbidden

This response is used to deny a request without giving the caller any recourse.
It is sent when the server has understood the request, found the request to be
correctly formulated, but will not service the request. This response is not
used when authorization is required.

5.4.5 404 Not Found

This response indicates that the user identified by the SIP URL in the
Request-URI can not be located by the server, or that the user is not cur-
rently signed on with the user agent.

5.4.6 405 Method Not Allowed

This response indicates that the server or user agent has received and under-
stood a request but is not willing to fulfill the request. An example might be a
REGISTER request sent to a user agent, or an INFO request sent to a proxy
server. An Allow header must be present to inform the UAC what methods
are acceptable. This is different from the case of an unknown method, in
which a 500 Server Error response is returned. Note that a proxy will
forward request types it does not understand.

SIP Response Messages 83

5.4.7 406 Not Acceptable

This response indicates that the request can not be processed due to a
requirement in the request message. The Accept header in the request did
not contain any options supported by the UAS.

5.4.8 407 Proxy Authentication Required

This request sent by a proxy indicates that the UAC must first authenticate
itself with the proxy before the request can be processed. The response
should contain information about the type of credentials required by the
proxy in a Proxy-Authenticate header. The request can be resubmitted
with the proper credentials in a Proxy-Authorization header. Unlike in
HTTP, this response may not be used by a proxy to authenticate another
proxy.

SIP/2.0 407 Proxy Authorization Required

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Proxy-Authenticate: Digest realm="SIP",

domain=sampling.org, nonce=

"9c8e88df84df1cec4341ae6cbe5a359",

opaque="", stale="FALSE", algorithm="MD5"

Content-Length: 0

5.4.9 408 Request Timeout

This response is sent when an Expires header is present in an INVITE

request, and the specified time period has passed. This response could be sent
by a forking proxy or a user agent. The request can be retried at any time by
the UAC, perhaps with a longer time period in the Expires header or no
Expires header at all.

5.4.10 409 Conflict

This response indicates that the request cannot be processed due to a conflict
in the request. This response is used by registrars to reject a registration with
a conflicting action parameter.

84 SIP: Understanding the Session Initiation Protocol

5.4.11 410 Gone

This response is similar to the 404 Not Found response but contains the
hint that the requested user will not be available at this location in the future.
This response could be used by a service provider when a user cancels their
service.

5.4.12 411 Length Required

This response can be used by a proxy to reject a request containing a message
body but no Content-Length header. A proxy that takes a UDP request
and forwards it as a TCP request could generate this response, since the use
of Content-Length is more critical in TCP requests.

5.4.13 413 Request Entity Too Large

This response can be used by a proxy to reject a request that has a message
body that is too large. A proxy suffering congestion could temporarily gener-
ate this response to save processing long requests.

5.4.14 414 Request-URI Too Long

This response indicates that the Request-URI in the request was too long
and cannot be processed correctly. There is no maximum length defined for
a Request-URI in the SIP standard document.

5.4.15 415 Unsupported Media Type

This response sent by a user agent indicates that the media type contained in
the INVITE request is not supported. For example, a request for a video con-
ference to a PSTN gateway that only handles telephone calls will result in
this response. The response should contain headers to help the UAC refor-
mulate the request.

5.4.16 420 Bad Extension

This response indicates that the extension specified in the Require header is
not supported by the proxy or user agent. The response should contain a
Supported [3] header listing the extensions that are supported. The UAC
could resubmit the same request without the extension in the Require

header or submit the request to another proxy or user agent.

SIP Response Messages 85

5.4.17 421 Extension Required

This response [4] indicates that a server requires an extension to process the
request that was not present in a Supported header in the request. The
required extension should be listed in a Required header in the response.
The client should retry the request adding the extension to a Supported

header, or try the request at a different server that may not require the
extension.

5.4.18 480 Temporarily Unavailable

This response indicates that the request has reached the correct destination,
but the called party is not available for some reason. The reason phrase
should be modified for this response to give the caller a better understanding
of the situation. The response should contain a Retry-After header indi-
cating when the request may be able to be fulfilled. For example, this
response could be sent when a telephone has its ringer turned off, or a �do
not disturb� button has been pressed. This response can also be sent by a
redirect server.

5.4.19 481 Call Leg/Transaction Does Not Exist

This response indicates that a response referencing an existing call or transac-
tion has been received for which the server has no records or state informa-
tion.

5.4.20 482 Loop Detected

This response indicates that the request has been looped and has been routed
back to a proxy that previously forwarded the request. This loop detection is
done in a stateless way in SIP using the Via headers. Each server that for-
wards a request adds a Via header with its address to the top of the request. A
branch parameter is added to the Via header, which is a hash function of
the Request-URI, and the To, From, Call-ID, and CSeq number. A sec-
ond part is added to the branch parameter if the request is being forked.

Upon receipt of a request, a proxy will search the Via headers for one
with its own address. If one matches, and the branch computed from the
current request matches the branch in the Via header, the request is dis-
carded and this response is returned to the UAC. The reason the branch

parameter must be checked is to allow a request to be routed back to a proxy,
provided that the Request-URI has changed. This could happen with a call

86 SIP: Understanding the Session Initiation Protocol

forwarding feature. In this case, the Via headers would differ by having dif-
ferent branch parameters.

5.4.21 483 Too Many Hops

This response indicates that the request has been forwarded the maximum
number of times as set by the Max-Forwards header in the request. This is
indicated by the receipt of a Max-Forwards: 0 header in a request. In the
following example, the UAC included a Max-Forwards: 4 header in the
REGISTER request. A proxy receiving this request five hops later generates a
483 response:

REGISTER sip:registrar.timbuktu.tu SIP/2.0

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=45347.1

Via: SIP/2.0/UDP 198.20.2.4:6128;branch=917a4d4.1

Via: SIP/2.0/UDP 18.56.3.1:5060;branch=7154.1

Via: SIP/2.0/TCP 101.102.103.104:5060;branch=a5ff4d3.1

Via: SIP/2.0/UDP 168.4.3.1:5060

To: sip:explorer@geographic.org

From: sip:explorer@geographic.org

Call-ID: 67483010384@168.4.3.1

CSeq: 1 REGISTER

Max-Forwards: 0

Contact: sip:explorer@national.geographic.org

Content-Length: 0

SIP/2.0 483 Too Many Hops

Via: SIP/2.0/UDP 201.202.203.204:5060;branch=45347.1

Via: SIP/2.0/UDP 198.20.2.4:6128;branch=917a4d4.1

Via: SIP/2.0/UDP 18.56.3.1:5060;branch=7154.1

Via: SIP/2.0/TCP 101.102.103.104:5060;branch=a5ff4d3.1

Via: SIP/2.0/UDP 168.4.3.1:5060

To: <sip:explorer@geographic.org>;tag=a5642

From: sip:explorer@geographic.org

Call-ID: 67483010384@168.4.3.1

CSeq: 1 REGISTER

Content-Length: 0

5.4.22 484 Address Incomplete

This response indicates that the Request-URI address is not complete. This
could be used in an overlap dialing scenario in PSTN interworking where
digits are collected and sent until the complete telephone number is

SIP Response Messages 87

assembled by a gateway and routed [4]. Note that the follow-up INVITE

requests may use the same Call-ID as the original request. An example of
overlap dialing is shown in Figure 5.4.

5.4.23 485 Ambiguous

This request indicates that the Request-URI was ambiguous and must be
clarified in order to be processed. This occurs if the username matches a
number of registrations. If the possible matching choices are returned in
Contact headers, then this response is similar to the 300 Multiple

Choices response. They are slightly different, however, since the 3xx

response returns equivalent choices for the same user, but the 4xx response
returns alternatives that can be different users. The 3xx response can be

88 SIP: Understanding the Session Initiation Protocol

Caller Gateway
Telephone

switch
INVITE sip:31455512@gateway.com

484 Address incomplete
IAM

ACK

INVITE sip:314555123@gateway.com

SAM
484 Address incomplete

ACK

INVITE sip:3145551234@gateway.com

SAM

ACM
100 Trying

Figure 5.4 Overlap dialing to the PSTN with SIP.

processed without human intervention, but this 4xx response requires a
choice by the caller, which is why it is classified as a client error class
response. This response is the only 4xx response in which a Contact header
may be present. A server configured to return this response must take user
registration privacy into consideration, otherwise a vague or general
Request-URI could be used by a rogue user agent to try to discover SIP
URLs of registered users.

5.4.24 486 Busy Here

This response is used to indicate that the user agent cannot accept the call at
this location. This is different, however, from the 600 Busy Everywhere

response, which indicates that the request should not be tried elsewhere. In
general, a 486 Busy Here is sent by a UAS unless it knows definitively that
the user cannot be contacted. This response is equivalent to the busy tone in
the PSTN.

5.4.25 487 Request Canceled

This response can be sent by a user agent that has received a CANCEL request
for a pending INVITE request. A 200 OK is sent to acknowledge the
CANCEL, and a 487 is sent in response to the INVITE.

5.4.26 488 Not Acceptable Here

This response indicates that some aspect of the proposed session is not
acceptable and may contain a Warning header indicating the exact reason.
This response has a similar meaning to 606 Not Acceptable, but only
applies to one location and may not be true globally as the 606 response
indicates.

5.5 Server Error

This class of responses is used to indicate that the request cannot be proc-
essed because of an error with the server. The response may contain a
Retry-After header if the server anticipates being available within a spe-
cific time period. The request can be tried at other locations because there are
no errors indicated in the request.

SIP Response Messages 89

5.5.1 500 Server Internal Error

This server error class response indicates that the server has experienced some
kind of error that is preventing it from processing the request. The reason
phrase can be used to identify the type of failure. The client can retry the
request again at this server after several seconds.

5.5.2 501 Not Implemented

This response indicates that the server is unable to process the request
because it is not supported. This response can be used to decline a request
containing an unknown method. A proxy, however, will forward a request
containing an unknown request method. Thus, a proxy will forward an
unknown SELF-DESTRUCT request, assuming that the UAS will generate
this response if the method is not known.

5.5.3 502 Bad Gateway

This response is sent by a proxy that is acting as a gateway to another net-
work, and indicates that some problem in the other network is preventing
the request from being processed.

5.5.4 503 Service Unavailable

This response indicates that the requested service is temporarily unavailable.
The request can be retried after a few seconds, or after the expiration of the
Retry-After header. Instead of generating this response, a loaded server
may just refuse the connection.

5.5.5 504 Gateway Timeout

This response indicates that the request failed due to a timeout encountered
in the other network to which that the gateway connects. It is a server error
class response because the call is failing due to a failure of the server in access-
ing resources outside the SIP network.

5.5.6 505 Version Not Supported

This response indicates that the request has been refused by the server
because of the SIP version number of the request. The detailed semantics of
this response have not yet been defined because there is only one version of
SIP (version 2.0) currently implemented. When additional version numbers

90 SIP: Understanding the Session Initiation Protocol

are implemented in the future, the mechanisms for dealing with multiple
protocol versions will need to be detailed.

5.6 Global Error

This response class indicates that the server knows that the request will fail
wherever it is tried. As a result the request should not be sent to other loca-
tions. Only a server that has definitive knowledge of the user identified by
the Request-URI in every possible instance should send a global error class
response. Otherwise, a client error class response should be sent. A Retry-

After header can be used to indicate when the request might be successful.

5.6.1 600 Busy Everywhere

This response is the definitive version of the 486 Busy Here client error
response. If there is a possibility that the call to the specified Request-URI

could be answered in other locations, this response should not be sent.

5.6.2 603 Decline

This response has the same effect as the 600 Busy Everywhere but does
not give away any information about the call state of the server. This
response could indicate the called party is busy, or simply does not want to
accept the call.

5.6.3 604 Does Not Exist Anywhere

This response is similar to the 404 Not Found response but indicates that the
user in the Request-URI cannot be found anywhere. This response should
only be sent by a server that has access to all information about the user.

5.6.4 606 Not Acceptable

This response can be used to implement some session negotiation capability
in SIP. This response indicates that some aspect of the desired session is not
acceptable to the UAS, and as a result, the session cannot be established. The
response may contain a Warning header with a numerical code describing
exactly what was not acceptable. The request can be retried with a different
media session information. An example of simple negotiation with SIP is
shown in Figure 5.5. If more complicated negotiation capability is required,
another protocol should be used.

SIP Response Messages 91

References

[1] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999.

[2] Anttalainen, T., Introduction to Telecommunications Network Engineering, Artech
House: Norwood, MA, 1999.

[3] Donovan, S., et al., �SIP 183 Session Progress Message,� IETF Internet-Draft, Work in
Progress.

[4] Rosenberg, J., and H. Schulzrinne, �The SIP Supported Header,� IETF Internet-Draft,
Work in Progress.

[5] Camarillo, G., and A. Roach, �Best Current Practice for ISUP to SIP Mapping,� IETF
Internet-Draft, Work in Progress.

92 SIP: Understanding the Session Initiation Protocol

UAC UAS

INVITE
sdp UAC1

606 Not acceptable

ACK

INVITE
sdp UAC2

100 Trying

.

.

.

Figure 5.5 Session negotiation with SIP.

6
SIP Headers

This chapter describes the headers present in SIP messages. There are four
types of SIP headers: general, request, response, and entity. They are
described using this grouping in the following sections. Except as noted,
headers are defined in the SIP specification [1].

SIP headers in most cases follow the same rules as HTTP headers [2].
Headers are defined as header:field where header is the case-insensitive
token used to represent the header, and field is the case-insensitive set of
tokens that contain the information. Except when otherwise noted, their
order in a message is not important. Header fields can continue over multiple
lines as long as the line begins with at least one space or horizontal tab char-
acter. Unrecognized headers are ignored by proxies. Many common SIP
headers have a compact form, where the header name is denoted by a single
lower-case character. These headers are shown in Table 6.1

Headers can be either end-to-end or hop-by-hop. Hop-by-hop headers
are the only ones that a proxy may insert, or with a few exceptions, modify. A
proxy should never change the header order. Because SIP typically involves
end-to-end control, most headers are end-to-end. The hop-by-hop headers
that may be inserted by a proxy are shown in Table 6.2.

6.1 General Headers

The set of general headers includes all of the required headers in a SIP mes-
sage. General headers can be present in both requests and responses. These

93

headers are created by user agents and cannot be modified by proxies, with a
few exceptions.

6.1.1 Call-ID

The Call-ID header is mandatory in all SIP requests and responses. It is
part of the call leg used to uniquely identify a call between two user agents. A

94 SIP: Understanding the Session Initiation Protocol

Table 6.1
Compact Forms of SIP Headers

Header Compact Form

Call-ID i

Contact m

Content-Encoding e

Content-Length l

Content-Type c

From f

Subject s

To t

Via v

Table 6.2
Hop-by-Hop Headers that May Be Inserted by Proxies

Hop-by-hop headers

Hide

Organization

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

Record-Route

Route

Call-ID must be unique across calls, except in the case of a Call-ID in reg-
istration requests. All registrations for a user agent should use the same
Call-ID. A Call-ID is always created by a user agent and is never modified
by a server.

The Call-ID is usually made up of a local-id, which should be a cryp-
tographically random identifier, the @ symbol, and a host name or IP
address. Because a user agent can ensure that its local-id is unique within its
domain, the addition of the globally unique host name makes the Call-ID
globally unique. Some security is provided by the randomness of the
Call-ID, because this prevents a third party from guessing a Call-ID and
presenting false requests. The compact form of the Call-ID header is i.

Examples of Call-ID are shown in Table 6.3.

6.1.2 Contact

The Contact header is used to convey a URL that identifies the resource
requested or the request originator, depending on whether it is present in a
request or response. Once a Contact header has been received, that URL
can be cached and used for routing future requests. For example, a Contact
header in a 200 OK response to an INVITE can allow the acknowledgment
ACK message and all future requests during this call to bypass proxies and go
directly to the called party. However, the presence of Record-Route head-
ers in an earlier request or default proxy routing configuration in a user agent
may override that behavior. When a Contact URL is used in a Request-
URI, all URL parameters are allowed with the exception of the method

parameter, which is ignored.

SIP Headers 95

Table 6.3
Examples of Call-ID Headers

Header Meaning

Call-ID: 34a5d553192cc35@15.34.3.1 A hexadecimal UUID is used, along with a
host IPv4 address

Call-ID: 2000-JUL-07-23-12@digitalari.com A local-id made up of a time stamp including
fractional seconds along with a domain name

i: 35866383092031257@port34.carrier.com The compact form is used, with a local-id as a
random decimal number

Contact headers must be present in INVITE requests and 200 OK

responses to invitations. If the user agent is behind a firewall, the Contact
address will be the firewall proxy address. Otherwise, the use of the user
agent�s URL will result in the call failing because of the firewall blocking any
direct routed SIP requests. Contact headers may also be present in 1xx,
2xx, 3xx, and 485 responses. Only in a REGISTER request, a special Con-
tact:*, along with an Expires: 0, header is used to remove all existing
registrations. Examples of Contact headers in registrations are shown in
Table 4.3. Otherwise, wild carding is not allowed. A Contact header may
contain a display name that can be in quotes. If a display name is present, the
URL will be enclosed in <>. If any header parameters are present, the URL
will also be enclosed in <>, with the header parameters outside the <>, even if
no display name is present.

There are three additional parameters defined for use in Contact

headers: q, action, and expires. They are placed at the end of the URL or
URI and separated by semicolons.

The qvalue parameter is used to indicate relative preference, which is
represented by a decimal number in the range 0 to 1. The qvalue is not a
probability, and there is no requirement that the qvalues for a given list of
Contacts add up to 1. The action parameter is only used in registration
Contact headers, and is used to specify proxy or redirect operation by
the server. The expires parameter indicates how long the URL is valid and
is also only used in registrations. The parameter either contains an integer
number of seconds or a date in SIP form (see Section 6.1.4). Examples are
shown in Table 6.4.

6.1.3 CSeq

The command sequence CSeq header is a required header in every request.
The CSeq header contains a decimal number that increases for each request.
Usually, it increases by 1 for each new request, with the exception of CANCEL
and ACK requests, which use the CSeq number of the INVITE request to
which it refers.

The CSeq count is used by UASs to determine out-of-sequence
requests or to differentiate between a new request (different CSeq) or a
retransmission (same CSeq). The CSeq header is used by UACs to match a
response to the request it references. For example, a UAC that sends an
INVITE request then a CANCEL request can tell by the method in the CSeq
of a 200 OK response if it is a response to the invitation or cancellation
request. Examples are shown in Table 6.5.

96 SIP: Understanding the Session Initiation Protocol

Each user agent maintains its own command sequence number space.
For example, consider the case where user agent 1 establishes a session to user
agent 2 and initializes its CSeq count to 1. When user agent 2 initiates a
request (such as a INVITE or INFO, or even BYE) it will initialize its own
CSeq space, totally independent of the CSeq count used by user agent 1. The
examples of Chapter 9 show this behavior of CSeq.

SIP Headers 97

Table 6.4
Examples of Contact Headers

Header Meaning

Contact: sip:bell@telephone.com A single SIP URL without a display name.

Contact: Lentz <h.lentz@petersburg.edu> A display name with the URL is enclosed in < > ;
the display name is treated as a token and
ignored.

Contact: M. Faraday <faraday@effect.org>,
�Faraday� <mailto:faraday@pop.effect.org>

Two URLs are listed, the second being a non-SIP
URL with a display name enclosed in quotes.

m: <morse@telegraph.org; transport=tcp>;
expires= �Fri, 13, Oct 1998 12:00:00 GMT�

The compact form of the header is used for a
single URL. The URL contains a port number and
a URL parameter contained within the < >. An
expires header parameter uses a SIP date en-
closed in the quotes.

Table 6.5
CSeq Header Examples

Header Meaning

CSeq: 1 INVITE The command sequence number has been initialized to 1
for this initial INVITE

CSeq: 432 INFO The command sequence number is set to 432 for this
INFO request

CSeq: 6787 INVITE If this was the first request by the user agent for this
Call-ID, then either the CSeq was initialized to 6787, or
the previous request generated for this Call-ID (either an
INVITE or other request) would have had a CSeq of 6786
or lower

6.1.4 Date

The Date header is used to convey the date when a request or response is
sent. The format of a SIP date is based on HTTP dates, but allows only the
preferred Internet date standard referenced by RFC 1123 [3]. To keep user
agent date and time logic simple, SIP only supports the use of the GMT time
zone. This allows time entries that are stored in date form rather than second
count to be easily converted into delta seconds without requiring knowledge
of time zone offsets. A Date example is shown below:

Date: Fri, 13 Oct 1998 23:29:00 GMT

6.1.5 Encryption

The Encryption header is used to specify the portion of a SIP message that
has been encrypted. All information after the header is assumed to have been
encrypted. Encryption provides a level of privacy for end users who wish to
keep media information private from third parties who could intercept SIP
INVITE or 200 OK messages. The encryption is done using the public key of
the recipient of the request (as identified by the To header). The public key is
carried in the Response-Key header, but the private key is transmitted
using some non-SIP method. Only headers that are not used by proxies in
routing requests may be encrypted. Because proxies can have logic to use
almost any header field to determine routing, there is no way to be sure that
an encrypted request will be processed by a proxy in the same way as an
unencrypted one.

An INVITE request with an encrypted message body is shown below:

INVITE sip:schottky@diode.org SIP/2.0

Via: sip/2.0/UDP room203.lab.bell.com:5060

From: <sip:brattain@lab.bell.com>

To: <sip:schottky@diode.org>

Call-ID: 3a34-d654-21b6-49f0@lab.bell.com

Content-Length: 175

Encryption: MD5

84d7c249cfa12febedb30da41f9c12eb3db7f039e2f38a4716e4

012040123be09109c5871cc2cd0848b99bc8399e9d33bf8e1d9bf

662b190bf6199c01034e98f54eb0d989d84c570d9a47980e22357

ed23d09ba452e34

98 SIP: Understanding the Session Initiation Protocol

6.1.6 From

The From header is a required header that indicates the originator of the
request. It is one of two addresses used to identify the call leg. The From

header contains a URL, but it may not contain the transport, maddr, or
ttl URL parameters. A From header may contain a tag, used to identify a
particular call. If it is possible that two end-points may have multiple calls
between them with identical Call-IDs, then the initiator of the session
must include a tag in the From header. A From header may contain a dis-
play name, in which case the URL is enclosed in <>. If there is both a URL
parameter and a tag, then the URL including any parameters must be
enclosed in <>. Examples are shown in Table 6.6.

6.1.7 Organization

The Organization header is used to indicate the organization to which the
originator of the message belongs. It can also be inserted by proxies as a mes-
sage is passed from one organization to another. Like all SIP headers, it can
be used by proxies for making routing decisions and by user agents for mak-
ing call screening decisions. An example is below:

Organization: WorldCom

SIP Headers 99

Table 6.6
Examples of From Header

Header Meaning

From: sip:armstrong@hetrodyne.com A single SIP URL without a display name.

From: Thomas Edison
<sip:edison@electric.com>

A display name is used, so the URL is enclosed in
< > ; the display name is treated as a token and ig-
nored

f: �James Bardeen�
<555.1313@telephone.com;user=phone>

Using the compact form of the header, a display
name in quotes along with a SIP URL with a pa-
rameter inside the < >.

From:<911@emergency.com;
user=phone> ;tag=d632a2

Both a URL parameter and tag are used, so URL is
enclosed in < >.

6.1.8 Retry-After

The Retry-After header is used to indicate when a resource or service may
be available again. In 503 Service Unavailable responses, it indicates
when the server will be available. In 404 Not Found, 600 Busy Every-

where, and 603 Decline responses, it indicates when the called user agent
may be available again.

The header can also be included by proxy and redirect servers in
responses if a recent registration was removed with a Retry-After header
indicating when the user may sign on again. The contents of the header can
be either an integer number of seconds or a SIP date. An optional comment
enclosed in () can be included to provide more information. A duration
parameter can be used to indicate how long the resource will be available
after the time specified. Examples of this header are shown in Table 6.7.

6.1.9 Subject

The optional Subject header is used to indicate the subject of the media
session. It can be used by user agents to do simple call screening. The con-
tents of the header can also be displayed during alerting to aid the user in
deciding whether to accept the call. The compact form of this header is s.
Some examples are:

Subject: More good info about SIP

s: Are you awake, yet??

100 SIP: Understanding the Session Initiation Protocol

Table 6.7
Examples of Retry-After Header

Header Meaning

Retry-After: 3600 Request can be retried again in 1 hour.

Retry-After: Sat, 21 May 2000 08:00:00 GMT Request can be retried after the date listed.

Retry-After: Fri, 1 Oct 2000 18:05:00 GMT
(I�m at lunch.)

Header contains comments.

Retry-After: Mon, 29 Feb 2000 13:30:00 GMT;
duration=1800

Request can be retried after the specified date
for 30 minutes.

6.1.10 Supported

The Supported header [4] is used to list one or more options implemented
by a user agent or server. It is typically included in responses to OPTIONS

requests. If no options are implemented, the header is not included. If a
UAC lists an option in a Supported header, proxies or UASs may use the
option during the call. If the option must be used or supported, the
Require header is used instead. An example of the header is:

Supported: rel100

6.1.11 Timestamp

The Timestamp header is used by a UAC to mark the exact time a request
was generated in some numerical time format. A UAS must echo the header
in the response to the request and may add another numerical time entry
indicating the amount of delay. Unlike the Date header, the time format is
not specified. The most accurate time format should be used, including a
decimal point. Examples are shown in Table 6.8.

6.1.12 To

The To header is a required header in every SIP message used to indicate the
recipient of the request. Any responses generated by a user agent will contain
this header with the addition of a tag if more than one Via header is present,
as described in Section 4.3. Any response generated by a proxy must have a
tag added to the To header. If a tag has been added to the header in a 200
OK response, it is used throughout the call and incorporated into the call leg.
The To header is never used for routing�the Request-URI is used for

SIP Headers 101

Table 6.8
Examples of Timestamp Header

Header Meaning

Timestamp: 235.15 Client has stamped a start
time for the request

Timestamp: 235.15 .95 This header from the re-
sponse has the delay time
added by the server

this purpose. An optional display name can be present in the header, in
which case the SIP URL is enclosed in <>. If the URL contains any parame-
ters or username parameters, the URL must be enclosed in <> even if no dis-
play name is present. The compact form of the header is t. Examples are
shown in Table 6.9.

6.1.13 User Agent

The User-Agent header is used to convey information about the user agent
originating the request. Based on the HTTP header of the same name [2], it
can contain manufacturer information, software version, or comments. The
field may contain multiple tokens, with the ordering assumed to be from
most general to most specific. This information can be used for logging or for
generating a specific response for a specific user agent. Examples include:

User-Agent: Acme SIP Phone v2.2

User-Agent: IP Carrier Gateway Av6.4

6.1.14 Via

The required Via header is used to record the SIP route taken by a request
and is used to route a response back to the originator. A user agent generat-
ing a request records its own address in a Via header in the request. While
the ordering of most SIP headers is not significant, the Via headers order is

102 SIP: Understanding the Session Initiation Protocol

Table 6.9
Examples of To Header

Header Meaning

To: sip:babage@engine.org;tag=2443a8f7 A single SIP URL with a tag and without
a display name

To: Thomas Edison
<sip:edison@electric.com>

A display name is used, so the URL is
enclosed in < >; the display name is
treated as a token and ignored

t: �Jim B.� <brattain@bell.org> A display name in quotes along with a
SIP URL enclosed within < >.

To: <+1-314-555-1212@carrier.com
;user=phone>;tag=8f7f7ad6675

Both a URL parameter and tag are used,
so URL is enclosed in < >.

significant because it is used to route responses. A proxy forwarding the
request adds a Via header containing its own address to the top of the list of
Via headers. A proxy adding a Via header always includes a branch tag
containing a cryptographic hash of the To, From, Call-ID, and Request-

URI headers. A proxy or user agent generating a response to a request copies all

SIP Headers 103

Response received by server

Does the first
Via header match

server address
?

Discard
Message

Remove first
Via header

YES

YES

YES

YES

NO

NO

NO

NO

Second Via
header

?

Response is for
this server
process.

maddr
parameter

present
?

Forward response
to multicast

address in maddr.

received
parameter

present
?

Forward response
to address

in received.

Forward response
to address in
Via header.

Figure 6.1 Via forwarding decision tree.

the Via headers from the request in order into the response, then sends the
response to the address specified in the top Via header. A proxy receiving a
response checks the top Via header to ensure that it matches its own address.
If it does not, the response has been misrouted and should be discarded. The
top Via header is then removed, and the response forwarded to the address
specified in the next Via header. This is shown in detail in the decision tree
in Figure 6.1.

Via headers contain protocol name and version number and transport
(SIP/2.0/UDP, SIP/2.0/TCP, etc.) and may contain port numbers, and
parameters such as received, hidden, branch, maddr, and ttl. A
received tag is added to a Via header if a user agent or proxy receives the
request from a different address than that specified in the top Via header.
This indicates that a NAT or firewall proxy is in the message path. If present,
the received tag is used in response routing. The hidden parameter indi-
cates that the Via header has been encrypted. A branch parameter is added
to Via headers by proxies, which is computed as a hash function of the
Request-URI, and the To, From, Call-ID and CSeq number. A second
part is added to the branch parameter if the request is being forked as shown
in Figure 3.4. The maddr and ttl parameters are used for multicast trans-
port and have a similar meaning as the equivalent SIP URL parameters. The
header can also contain optional comments. The compact form of the header
is v. Examples are given in Table 6.10.

6.2 Request Headers

Request headers are added to a request by a UAC to modify or give addi-
tional information about the request.

6.2.1 Accept

The Accept header is defined by HTTP [2] and is used to indicate accept-
able message Internet media types [4] in the message body. The header
describes media types using the format type/sub-type commonly used in
the Internet. If not present, the assumed acceptable message body format is
application/sdp. A list of media types can have preferences set using
qvalue parameters. The wildcard �*� can be used to specify all sub-types.
Examples are given in Table 6.11.

104 SIP: Understanding the Session Initiation Protocol

6.2.2 Accept-Contact

The Accept-Contact [4] header specifies which URLs the request may be
proxied to. Some additional parameters are also defined for Contact head-
ers such as media, duplex, and language. This header is part of the caller

SIP Headers 105

Table 6.10
Examples of Via Header

Header Meaning

Via: SIP/2.0/UDP 100.101.102.103 IPv4 address using unicast UDP transport and
assumed port of 5060.

Via: SIP/2.0/TCP cube451.
office.com:60202 (My Temporary Office)

Domain name using TCP transport and port
number 60202 with a comment in ().

Via: SIP/2.0/UDP
120.121.122.123;branch=56a234f3.1

Proxy added Via header with branch.

v: SIP/2.0/UDP proxy.garage.org
;branch=7c8f3423423a3.3

Compact form with domain name using UDP; third
search location of forking proxy

Via: SIP/2.0/TCP 192.168.1.2
;received=12.4.5.50

IPv4 address is non-globally unique. Request has
been forwarded through a NAT which changed
the IP address to a globally unique one.

Via:SIP/2.0/UDP host.user.com:4321;
;maddr=224.1.2.3 ;ttl=15

The address is a multicast address specified in
maddr with a specified TTL.

Via:SIP/2.0/UDP B4hfdWi43koDrtu6sfgl
;hidden

An encrypted Via header.

Table 6.11
Examples of Accept Header

Header Meaning

Accept: application/sdp This is the default assumed even if no Ac-
cept header is present

Accept: text/* Accept all text encoding schemes

Accept: application
/h.245;q=0.1,
application/sdp;q=0.9

Use SDP if possible, otherwise, use H.245

preferences extensions to SIP, which have been defined to give some control
to the caller in the way a proxy server processes a call.

6.2.3 Accept-Encoding

The Accept-Encoding header, defined in HTTP [2], is used to specify
acceptable message body encoding schemes. Encoding can be used to ensure
a SIP message with a large message body fits inside a single UDP datagram.
The use of qvalue parameters can set preferences. If none of the listed
schemes are acceptable to the UAC, a 406 Not Acceptable response is
returned. If not included, the assumed encoding will be text/plain.
Examples include:

Accept-Encoding: text/plain

Accept-Encoding: gzip

6.2.4 Accept-Language

The Accept-Language header, defined in HTTP [2], is used to specify
preferences of language. The languages specified can be used for reason
phrases in responses, informational headers such as Subject, or in message
bodies. The HTTP definition allows the language tag to be made of a pri-
mary tag and an optional sub-tag. This header could also be used by a proxy
to route to a human operator in the correct language. The language tags are
registered by IANA. The primary tag is an ISO-639 language abbreviation.
The use of qvalues allows multiple preferences to be specified. Examples
are shown in Table 6.12.

106 SIP: Understanding the Session Initiation Protocol

Table 6.12
Examples of Accept-Language Header

Header Meaning

Accept-Language: fr French is the only acceptable language.

Accept-Language: en, ea Acceptable languages include both
English and Spanish

Accept-Language: ea ;q=0.5 en;
q=0.9, fr ;q=0.2

Preferred languages are English,
Spanish, and French, in that order

6.2.5 Authorization

The Authorization header is used to carry the credentials of a user agent
in a request to a server. It can be sent in reply to a 401 Unauthorized

response containing challenge information, or it can be sent first without
waiting for the challenge if the form of the challenge is known (e.g., if it has
been cached from a previous call). The authentication mechanism for SIP
digest is described in Section 3.6. When using pretty good privacy (PGP),
the PGP signature is calculated across the nonce, realm, request method,
request version, and all header fields in order after the Authorization

header. Examples are shown in Table 6.13.

6.2.6 Hide

The Hide header is used by user agents or proxies to request that the next
hop proxy encrypts the Via headers to hide message routing path informa-
tion. The header contains either route or hop depending on the type of serv-
ice requested. The route option is used to request that all future proxies
encrypt the message routing information. This is done by each proxy
encrypting the current plain view Via headers, then including the Hide:

route header in the forwarded request. The hop option is used to request
that only the next proxy should perform the encryption. The proxy receiving
the request encrypts all the plain view headers, then removes the Hide header
before forwarding the request. As the response to the request is routed back

SIP Headers 107

Table 6.13
Examples of Authorization Header

Header Meaning

Authorization: Digest username="Cust1",
realm="SIP Telephone Company",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", uri="sip:proxy.sip-com.com",
response=�e56131d19580cd833064787ecc�

This HTTP digest authorization header contains
the credentials of Cust1; the nonce was sup-
plied by the SIP server located at the uri
specified. The response contains the encrypted
username and password. No opaque string is
present.

Authorization: pgp version=5.0;
realm="Gateway Password Required";
nonce="76e63aff71";
signature="kdD2+kdflk2adfkijfhFWQncvej"

This PGP authorization header contains the
PGP version number, a nonce supplied by the
challenger and a ASCII-armored signature

through the same set of proxies, the proxies decrypt each Via header they
encrypted and use that information to route the response back to the reques-
tor. The following example would result in an encrypted Via header:

Hide: hop

6.2.7 In-Reply-To

The In-Reply-To header is used to indicate the Call-ID that this request
references or is returning. For example, a missed call could be returned with a
new INVITE and the Call-ID from the missed INVITE copied into the
In-Reply-To header. This allows the UAS to determine that this is not an
unsolicited call, which could be used to override call screening logic, for
example. Examples of this header are as follows:

In-Reply-To: a8-43-73-ff-43@company.com

In-Reply-To: 12934375@persistance.org,

12934376@persistance.org

6.2.8 Max-Forwards

The Max-Forwards header is used to indicate the maximum number of
hops that a SIP request may take. The value of the header is decremented by
each proxy that forwards the request. A proxy receiving the header with a
value of zero discards the message and sends a 483 Too Many Hops

response back to the originator. An example is:

Max-Forwards: 10

6.2.9 Priority

The Priority header is used by a UAC to set the urgency of a request.
Defined values are non-urgent, normal, urgent, and emergency. This
header could be used to override screening or by servers in load-shedding
mechanisms. Because this header is set by the user agent, it may not be possi-
ble for a carrier network to use this field to route emergency traffic, for exam-
ple. An example is:

Priority: emergency

108 SIP: Understanding the Session Initiation Protocol

6.2.10 Proxy-Authorization

The Proxy-Authorization header is to carry the credentials of a user agent
in a request to a server. It can be sent in reply to a 407 Proxy Authentica-

tion Required response containing challenge information, or it can be
sent first without waiting for the challenge if the form of the challenge is
known (e.g., if it has been cached from a previous call). The authentication
mechanism for SIP digest is described in Section 3.6. When using PGP, the
PGP signature is calculated across the nonce, realm, request method, request
version, and all header fields in order after the Proxy-Authorization

header. A proxy receiving a request containing a Proxy-Authorization

header searches for its own realm. If found, it processes the entry. If the cre-
dentials are correct, any remaining entries are kept in the request when it is for-
warded to the next proxy. An example of this is in Figure 6.2.

Examples are shown in Table 6.14.

SIP Headers 109

Proxy server 2

INVITE

407 Proxy
Authentication required

INVITE

Proxy server 1SIP phone

INVITE

100 Trying

INVITE
INVITE

100 Trying
100 Trying

.

.

.

407 Proxy
A requireduthentication

407 Proxy
A requireduthentication

.

.

.

Figure 6.2 Multi-proxy authentication example.

6.2.11 Proxy-Require

The Proxy-Require header is used to list features and extensions that a
user agent requires a proxy to support in order to process the request. A 420

Bad Extension response is returned by the proxy listing any unsupported
feature in an Unsupported header. Because proxies by default ignore head-
ers and features they do not understand, the use of a Proxy-Require

header is needed for the UAC to be certain that the feature is understood by
the proxy. If the support of this option is desired but not required, it is listed
in a Supported header instead. An example is:

Proxy-Require: timer

6.2.12 Record-Route

The Record-Route header is used to force routing through a proxy for all
subsequent requests in a session between two user agents. Normally, the pres-
ence of a Contact header allows user agents to send messages directly
bypassing the proxy chain used in the initial request (that probably involved
database look-ups to locate the called party). A proxy inserting its address
into a Record-Route header overrides this and forces future requests to
include a Route header containing the address of the proxy that forces this
proxy to be included.

110 SIP: Understanding the Session Initiation Protocol

Table 6.14
Examples of Proxy-Authorization Header

Header Meaning

Proxy-Authorization: Digest
username="Customer1",
realm="SIP Telephone Company",
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", uri="sip:proxy.sip.com",
response="e56131d19580cd833064787ecc"

This digest authorization header contains the
credentials of Customer1; the nonce was sup-
plied by the SIP server located at the URI
specified; the response contains the encrypted
username and password; no opaque string is
present.

Proxy-Authorization: pgp version=5.0;
realm="Gateway Password Required";
nonce="76e63aff71";
signature="kdD2+kdflk2ajudgHgFWQncvej"

This PGP authorization header contains the
PGP version number, a nonce supplied by the
challenger, and a ASCII-armored signature

A proxy, such as a firewall proxy, wishing to implement this inserts the
header containing its own address, or adds its address to an already present
Record-Route header. The URL is constructed from the Request-URI of
the request and a maddr parameter containing the URL of the proxy server.
The UAS copies the Record-Route header into the 200 OK response to the
request. The header is forwarded unchanged by proxies back to the UAC.
The UAC then stores the Record-Route proxy list plus a Contact header
if present in the 200 OK for use in a Route header in all subsequent requests.
Because Record-Route is bi-directional, messages in the reverse direction
will also traverse the same set of proxies. Chapter 9 contains an example of
the use of the Record-Route and Route headers. Examples are:

Record-Route: <sip:me@home.com;maddr=proxy1.carrier.com>,

<sip:me@home.com;maddr=firewall33.corporation.com>

Record-Route:<sip:visitor54@lobby.hotel.com;maddr=139.23.1.44>

6.2.13 Reject-Contact

The Reject-Contact [4] header specifies the URLs to which the request
may not be proxied. Some additional parameters are also defined for Con-
tact headers such as media, duplex, and language when used in this
header. This header, along with Accept-Contact and Request-

Dispositon are part of the SIP caller preferences extensions. An example is:

Reject-Contact: sip:admin@boss.com

6.2.14 Request-Disposition

The Request-Disposition [4] header can be used to request servers to
either proxy or redirect, or initiate serial or parallel (forking) searches. An
example is:

Request-Disposition: redirect

6.2.15 Require

The Require header is used to list features and extensions that a UAC
requires a UAS to support in order to process the request. A 420 Bad

Extension response is returned by the UAS listing any unsupported fea-
tures in an Unsupported header. If support or use of a feature is desirable
but not required, the Supported header is used instead. An example is:

SIP Headers 111

Require: rel100

6.2.16 Response-Key

The Response-Key header is used by a client to request that the response to
the request should be encrypted with the public key carried in this header.
An example is:

Response-Key: pgp version="2.6", encoding="ascii",

key="Ha=tu3f=poe$f1eityu4cnae2g=j6&yudkd[sg8-]

dkh7uplglyidjk"

6.2.17 Route

The Route header is used to force routing for a request through a path speci-
fied in the header field. The path was extracted from a Record-Route

and/or Contact header received in an earlier request within the same call.
Chapter 9 contains an example of the use of the Record-Route and Route

headers. Examples of Route headers constructed from the example
Record-Route headers in Section 6.2.12 are:

Route: <sip:me@home.com;maddr=firewall33.corporation.com>,

<sip:me@home.com;maddr=proxy1.carrier.com>

Route: <sip:visitor54@lobby.hotel.com;maddr=139.23.1.44>

6.2.18 RAck

The RAck header [6] is used within a response to a PRACK request to reliably
acknowledge a provisional response that contained a RSeq header. The RAck
header echoes the CSeq and the RSeq from the provisional response. The
reliable sequence number is incremented for each response sent reliably. An
example is:

RAck: 8342523 1 INVITE

6.2.19 Session-Expires

The Session-Expires header [7] is used to place a time limit on a media
session. The header can only be used in INVITE requests and 200 OK

responses to INVITEs. The header can only be used if a Supported: timer

header was present in the current or previous request or response. A user
agent supporting this feature must tear down an existing media session with a

112 SIP: Understanding the Session Initiation Protocol

BYE when the session timer started by the Session-Expires header
expires. The timer can be extended with a re-INVITE with a new
Session-Expires header. Examples are:

Session-Expires: 60

Session-Expires: Fri, 1 Apr 2000 11:59:00 GMT

6.3 Response Headers

Response headers are added to a response by a UAS or SIP server to give
more information than just the response code and reason phrase. They are
generally not added to a request.

6.3.1 Proxy-Authenticate

The Proxy-Authenticate header is used in a 407 Proxy Authenti-

cation Required authentication challenge by a proxy server to a UAC. It
contains the nature of the challenge so that the UAC may formulate cre-
dentials in a Proxy-Authorization header in a subsequent request.
Examples are shown in Table 6.15.

6.3.2 Server

The Server header is used to convey information about the UAS generating
the response. The use and contents of the header are similar to the User-

Agent header in Section 6.1.13. An example is:

Server: Dotcom Announcement Server B3

6.3.3 Unsupported

The Unsupported header is used to indicate features that are not supported
by the server. The header is used in a 420 Bad Extension response to a
request containing an unsupported feature listed in a Require header.
Because multiple features may have been listed in the Require header, the
Unsupported header indicates all the unsupported features�the rest can be
assumed by the UAC to be supported. An example is:

Unsupported: rel100

SIP Headers 113

6.3.4 Warning

The Warning header is used in a response to provide more specific informa-
tion than the response code alone can convey. The header contains a three-
digit warning code, a warning agent that indicates what server inserted the
header, and warning text enclosed in quotes used for display purposes.
Warning codes in the 1xx and 2xx range are specific to HTTP [2]. The SIP
standard defines 12 new warning codes in the 3xx class. The breakdown of
the class is shown in Table 6.16. The complete set of defined warning codes
is listed in Table 6.17.

Examples are:

Warning: 302 proxy "Incompatible transport protocol"

Warning: 305 room132.hotel.com:5060 "Incompatible media

type"

6.3.5 WWW-Authenticate

The WWW-Authenticate header is used in a 401 Unauthorized authen-
tication challenge by a user agent or registrar server to a UAC. It contains the
nature of the challenge so that the UAC may formulate credentials in a
Proxy-Authorization header in a subsequent request. SIP supports
HTTP basic and digest authentication mechanisms, as well as PGP [8].
Examples are shown in Table 6.18.

114 SIP: Understanding the Session Initiation Protocol

Table 6.15
Examples of Proxy-Authenticate Header

Header Meaning

Proxy-Authenticate: Digest
realm="SIP Telephone Company",
domain = �sip-company.com�,
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", stale="FALSE",
algorithm="MD5"

HTTP digest challenge header

Proxy-Authenticate: pgp version=5.0;
realm="Gateway Password Required";
nonce="76e63aff71";
signature="djflk2adfkijfhudgHgFWQncvej"

PGP challenge

SIP Headers 115

Table 6.16
SIP Warning Code Breakdown

Warning code range Error type

30x, 31x, 32x SDP keywords

33x Network services

34x, 35x, 36x Reserved for future use

37x QoS parameters

38x Reserved

39x Miscellaneous

Table 6.17
SIP Warning Code List

Warning
Code Description

300 Incompatible network protocol

301 Incompatible network address formats

302 Incompatible transport protocol

303 Incompatible bandwidth units

304 Media type not available

305 Incompatible media format

306 Attribute not understood

307 Session description parameter not understood

330 Multicast not available

331 Unicast not available

370 Insufficient bandwidth

399 Miscellaneous Warning

6.3.6 RSeq

The RSeq header [6] is used in a provisional (1xx class) responses to
INVITEs to request reliable transport. The header may only be used if the
INVITE request contained the Supported: rel100 header. If present in a
provisional response, the UAC should acknowledge receipt of the response
with a PRACK method, as described in Section 4.1.8. The RSeq header con-
tains a reliable sequence number that is an integer randomly initialized by the
UAS. Each subsequent provisional response sent reliably for this call leg will
have a monotonically increasing RSeq number. The UAS matches the reli-
able sequence number and CSeq from the RAck in a PRACK request to a sent
response to confirm receipt and stop all retransmissions of the response. An
example is:

RSeq: 2345263

6.4 Entity Headers

Entity headers are used to provide additional information about the message
body or the resource requested. This term comes from HTTP [2] where it
has a more specific meaning. In SIP, �entity� and �message body� are used
interchangably.

116 SIP: Understanding the Session Initiation Protocol

Table 6.18
Examples of WWW-Authenticate Header

Header Meaning

WWW-Authenticate: Digest
realm="SIP Telephone Company",
domain = �sip-company.com�,
nonce="9c8e88df84f1cec4341ae6e5a359",
opaque="", stale="FALSE",
algorithm="MD5"

HTTP digest
challenge

WWW-Authenticate: pgp version=5.0;
realm="Gateway Password Required";
nonce="76e63aff71";
signature="D2+kk2adfkjfhudgHgFWQncvej"

PGP challenge

6.4.1 Allow

The Allow header is used to indicate the methods supported by the user
agent or proxy server sending the response. The header must be present in a
405 Method Not Allowed response and should be included in a positive
response to an OPTIONS request. An example is:

Allow: INVITE, ACK, BYE, INFO, OPTIONS, CANCEL

6.4.2 Content-Encoding

The Content-Encoding header is used to indicate that the listed encoding
scheme has been applied to the message body. This allows the UAS to deter-
mine the decoding scheme necessary to interpret the message body. Multiple
listings in this header indicate that multiple encodings have been used in the
sequence in which they are listed. Only encoding schemes listed in an
Allow-Encoding header may be used. The compact form is e. Examples
include:

Content-Encoding: text/plain

e: gzip

6.4.3 Content-Disposition

The Content-Disposition header is used to describe the function of a
message body. Defined values include session, icon, alert, and render.
The value session indicates that the message body contains information to
describe a media session. The value render indicates that the message body
should be displayed or otherwise rendered for the user. If a message body is
present in a request or a 2xx response without a Content-Disposition,
the function is assumed to be session. For all other response classes with mes-
sage bodies, the default function is render. An example is:

Content-Function: session

6.4.4 Content-Length

The Content-Length is used to indicate the number of octets in the mes-
sage body. A Content-Length: 0 indicates no message body. As described in
Section 2.4.2, this header is used to separate multiple messages sent within a
TCP stream. If not present in a request, a 411 Length Required response
can be sent. If not present in a UDP message, the message body is assumed to
continue to the end of the datagram. If not present in a TCP message, the
message body is assumed to continue until the connection is closed. The

SIP Headers 117

Content-Length octet count does not include the CRLF that separates the
message headers from the message body. It does, however, include the CRLF
at the end of each line of the message body. An example octet calculation is
in Chapter 2, footnote 3 (page 18). The Content-Length header is not a
required header to allow dynamically generated message bodies, where the
Content-Length may not be known a priori. The compact form is l. Examples
include:

Content-Length: 0

l: 287

6.4.5 Content-Type

The Content-Type header is used to specify the Internet media type [9] in
the message body. Media types have the familiar form type/sub-type. If
this header is not present, application/sdp is assumed. If an Accept

header was present in the request, the response Content-Type must con-
tain a listed type, or a 415 Unsupported Media Type response must be
returned. The compact form is c. Examples include:

Content-Type: application/sdp

c: text/html

6.4.6 Expires

The Expires header is used to indicate the time interval in which the
request or message contents is valid. When present in an INVITE request, the
header sets a time limit on the completion of the INVITE request. That is,
the UAC must receive a final response (non-1xx) within the time period or
the INVITE request is automatically canceled with a 408 Request Time-

out response. Once the session is established, the value from the Expires
header in the original INVITE has no effect�the Session-Expires

header (Section 6.2.19) must be used for this purpose. When present in a
REGISTER request, the header sets the time limit on the URLs in Contact

headers that do not contain an expires parameter. Table 4.3 shows exam-
ples of the Expires header in registration requests. The header is not
defined for any other method types. The header field may contain a SIP date
or a number of seconds. Examples include:

Expires: 60

Expires: Fri, 15 Apr 2000 00:00:00 GMT

118 SIP: Understanding the Session Initiation Protocol

6.4.7 MIME-Version

The MIME-Version header is used to indicate the version of Multipurpose
Internet Mail Extensions Protocol used to construct the message body. SIP,
like HTTP, is not considered MIME-compliant because parsing and seman-
tics are defined by the SIP standard, not the MIME Specification [10]. Ver-
sion 1.0 is the default value. An example is:

MIME-Version: 1.0

References

[1] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Section 6.

[2] Fielding, R., et al.,�Hypertext Transfer Protocol � HTTP/1.1,� RFC 2068, June
1999.

[3] Braden, R., �Requirements for Internet Hosts: Application and Support,� RFC 1123,
1989.

[4] Rosenberg, J., and H. Schulzrinne, �The SIP Supported Header,� IETF Internet-Draft,
Work in Progress.

[5] Schulzrinne, H., and J. Rosenberg, �SIP Caller Preferences and Callee Capabilities,�
IETF Internet-Draft, Work in Progress.

[6] Rosenberg, J., and H. Schulzrinne, �Reliability of Provisional Responses,� IETF
Internet-Draft, Work in Progress.

[7] Donovan, S., and J. Rosenberg, �The SIP Session Timer,� IETF Internet-Draft, Work
in Progress.

[8] Elkins, M.,�MIME Security with Pretty Good Privacy (PGP),� RFC 2015, 1996.

[9] Postel, J., �Media Type Registration Procedure,� RFC 1590, 1994.

[10] Freed, M., and N. Borenstein, �Multipurpose Internet Mail Extensions (MIME). Part
One: Format of Internet Message Bodies,� RFC 2045, 1996.

SIP Headers 119

.

7
Related Protocols

The Session Initiation Protocol (SIP) is one part of the protocol suite that
makes up the Internet Multimedia Conferencing architecture as shown in
Figure 1.1. In this chapter, other related Internet protocols mentioned or ref-
erenced in other sections are introduced, along with details on the use of the
protocol with SIP. This is by no means a complete discussion of multimedia
communication protocols over the Internet. First, SDP, the media descrip-
tion language, will be discussed. Then the RTP and RTCP media transport
protocols will be discussed. The application of RTP/AVP profiles that link
SDP and RTP will then be then covered. The chapter concludes with a brief
discussion of signaling protocols in the PSTN. The H.323 protocol will be
discussed and compared to SIP in the next chapter.

7.1 SDP�Session Description Protocol

The Session Description Protocol, defined by RFC 2327 [1], was developed
by the IETF MMUSIC working group. It is more of a description syntax
than a protocol in that it does not provide a full-range media negotiation
capability. The original purpose of SDP was to describe multicast sessions set
up over the Internet�s multicast backbone, the MBONE. The first applica-
tion of SDP was by the experimental Session Announcement Protocol
(SAP) [2] used to post and retrieve announcements of MBONE sessions.

121

SAP messages carry a SDP message body, and was the template for SIP�s use
of SDP. Even though it was designed for multicast, SDP has been applied to
the more general problem of describing general multimedia sessions estab-
lished using SIP.

As seen in the examples of Chapter 3, SDP contains the following
information about the media session:

• IP Address (IPv4 address or host name);

• Port number (used by UDP or TCP for transport);

• Media type (audio, video, interactive whiteboard, etc.);

• Media encoding scheme (PCM A-Law, MPEG II video, etc.).

In addition, SDP contains information about the following:

• Subject of the session;

• Start and stop times;

• Contact information about the session.

Like SIP, SDP uses text coding. An SDP message is composed of a series of
lines, called fields, whose names are abbreviated by a single lower-case letter,
and are in a required order to simplify parsing. The set of mandatory SDP
fields is shown in Table 2.1. The complete set is shown in Table 7.1.

SDP was not designed to be easily extensible, and parsing rules are
strict. The only way to extend or add new capabilities to SDP is to define a
new attribute type. However, unknown attribute types can be silently
ignored. A SDP parser must not ignore an unknown field, a missing manda-
tory field, or an out-of-sequence line. An example SDP message containing
many of the optional fields is shown below:

v=0

o=johnston 2890844526 2890844526 IN IP4 43.32.1.5

s=SIP Tutorial

i=This broadcast will cover this new IETF protocol

u=http://www.digitalari.com/sip

e=Alan Johnston alan@wcom.com

p=+1-314-555-3333 (Daytime Only)

c=IN IP4 225.45.3.56/236

b=CT:144

t=2877631875 2879633673

122 SIP: Understanding the Session Initiation Protocol

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=video 23422 RTP/AVP 31

a=rtpmap:31 H261/90000

The general form of a SDP message is:

x=parameter1 parameter2 ... parameterN

The line begins with a single lower-case letter x. There are never any
spaces between the letter and the =, and there is exactly one space between

Related Protocols 123

Table 7.1
SDP Field List in Their Required Order

Field Name
Mandatory/
Optional

v= Protocol version number m

o= Owner/creator and session identifier m

s= Session name m

i= Session information o

u= Uniform Resource Identifer o

e= Email address o

p= Phone number o

c= Connection information m

b= Bandwidth information o

t= Time session starts and stops m

r= Repeat times o

z= Time zone corrections o

k= Encryption key o

a= Attribute lines o

m= Media information m

a= Media attributes o

each parameter. Each field has a defined number of parameters. Each line
ends with a CRLF. The individual fields will now be discussed in detail.

7.1.1 Protocol Version

The v= field contains the SDP version number. Because the current version
of SDP is 0, a valid SDP message will always begin with v=0.

7.1.2 Origin

The o= field contains information about the originator of the session and ses-
sion identifiers. This field is used to uniquely identify the session. The field
contains:

o=username session-id version network-type address-type

address

The username parameter contains the originator�s login or host or - if
none. The session-id parameter is a Network Time Protocol (NTP) [3]
timestamp or a random number used to ensure uniqueness. The version is
a numeric field that is increased for each change to the session, also recom-
mended to be a NTP timestamp. The network-type is always IN for Inter-
net. The address-type parameter is either IP4 or IP6 for IPv4 or IPv6
address either in dotted decimal form or a fully qualified host name.

7.1.3 Session Name and Information

The s= field contains a name for the session. It can contain any non-zero
number of characters. The optional i= field contains information about the
session. It can contain any number of characters.

7.1.4 URI

The optional u= field contains a uniform resource indicator (URI) with
more information about the session.

7.1.5 E-mail Address and Phone Number

The optional e= field contains an e-mail address of the host of the session. If
a display name is used, the e-mail address is enclosed in <>. The optional p=
field contains a phone number. The phone number should be given in

124 SIP: Understanding the Session Initiation Protocol

globalized format, beginning with a +, then the country code, a space or -,
then the local number. Either spaces or - are permitted as spacers in SDP. A
comment may be present in ().

7.1.6 Connection Data

The c= field contains information about the media connection. The field
contains:

c=network-type address-type connection-address

The network-type parameter is defined as IN for the Internet. The address type
is defined as IP4 for IPv4 addresses. The connection-address is the IP address
that will be sending the media packets, which could be either multicast or
unicast. If multicast, the connection-address field contains:

connection-address=base-multicast-address/ttl/number-of-

addresses

where ttl is the time-to-live value, and number-of-addresses indicates
how many contiguous multicast addresses are included starting with the
base-multicast-address.

7.1.7 Bandwidth

The optional b= field contains information about the bandwidth required. It
is of the form:

b=modifier:bandwidth-value

The modifier is either CT for conference total or AS for application
specific. CT is used for multicast session to specify the total bandwidth that
can be used by all participants in the session. AS is used to specify the band-
width of a single site. The bandwidth-value parameter is the specified
number of kilobytes per second.

7.1.8 Time, Repeat Times, and Time Zones

The t= field contains the start time and stop time of the session.

t=start-time stop-time

Related Protocols 125

The times are specified using NTP timestamps. For a scheduled session, a
stop-time of zero indicates that the session goes on indefinitely. A
start-time and stop-time of zero for a scheduled session indicates that
it is permanent. The optional r= field contains information about the repeat
times that can be specified in either in NTP or in days (d), hours (h), or min-
utes (m). The optional z= field contains information about the time zone off-
sets. This field is used if a reoccurring session spans a change from
daylight-savings to standard time, or vice versa.

7.1.9 Encryption Keys

The optional k= field contains the encryption key to be used for the media
session. The field contains:

k=method:encryption-key

The method parameter can be clear, base64, uri, or prompt. If the
method is prompt, the key will not be carried in SDP; instead, the user will
be prompted as they join the encrypted session. Otherwise, the key is sent in
the encryption-key parameter.

7.1.10 Media Announcements

The optional m= field contains information about the type of media session.
The field contains:

m=media port transport format-list

The media parameter is either audio, video, application, data, or
control. The port parameter contains the port number. The transport
parameter contains the transport protocol, which is either RTP/AVP or udp.
(RTP/AVP stands for Real-time Transport Protocol [4] / audio video profiles
[5], which is described in Section 7.3.) The format-list contains more
information about the media. Usually, it contains media payload types
defined in RTP audio video profiles. More than one media payload type can
be listed, allowing multiple alternative codecs for the media session. For
example, the following media field lists three codecs:

m=audio 49430 RTP/AVP 0 6 8

126 SIP: Understanding the Session Initiation Protocol

One of these three codecs can be used for the audio media session. If the
intention is to establish three audio channels, three separate media fields
would be used. For non-RTP media, Internet media types should be listed in
the format-list. For example,

m=application 52341 udp wb

could be used to specify the application/wb media type.

7.1.11 Attributes

The optional a= field contains attributes of the preceding media session.
This field can be used to extend SDP to provide more information about the
media. If not fully understood by a SDP user, the attribute field can be
ignored. There can be one or more attribute fields for each media payload
type listed in the media field. For the RTP/AVP example in Section 7.1.10,
the following three attribute fields could follow the media field:

a=rtpmap:0 PCMU/8000

a=rtpmap:6 DVI4/16000

a=rtpmap:8 PCMA/8000

Other attributes are shown in Table 7.2. Full details of the use of these attrib-
utes are in the standard document [1].

7.1.12 Use of SDP in SIP

The default message body type in SIP is application/sdp. The calling
party lists the media capabilities that they are willing to receive in SDP in
either an INVITE or in an ACK. The called party lists their media capabilities
in the 200 OK response to the INVITE.

Because SDP was developed with scheduled multicast sessions in mind,
many of the fields have little or no meaning in the context of dynamic ses-
sions established using SIP. In order to maintain compatibility with the SDP
protocol, however, all required fields are included. A typical SIP use of SDP
includes the version, origin, subject, time, connection, and one or more
media and attribute fields as shown in Table 2.1. The origin, subject, and
time fields are not used by SIP but are included for compatibility. In the
SDP standard, the subject field is a required field and must contain at least
one character, suggested to be s=- if there is no subject. The SIP standard,

Related Protocols 127

however, allows the subject field to be omitted for two-party sessions. The
time field is usually set to t=0 0.

SIP uses the connection, media, and attribute fields to set up sessions
between user agents. Because the type of media session and codec to be used
are part of the connection negotiation, SIP can use SDP to specify multiple
alternative media types and to selectively accept or decline those media types.
When multiple media codecs are listed, the caller and called party�s media
fields must be aligned�that is, there must be the same number, and they
must be listed in the same order. The SIP standard recommends that an
attribute containing a=rtpmap: be used for each media field [6]. A media

128 SIP: Understanding the Session Initiation Protocol

Table 7.2
SDP Attribute values

Attribute Name

a=rtpmap: RTP/AVP list

a=cat: Category of the session

a=keywds: Keywords of session

a=tool: Name of tool used to create SDP

a=ptime: Length of time in milliseconds for each packet

a=recvonly Receive only mode

a=sendrecv Send and receive mode

a=sendonly Send only mode

a=orient: Orientation for whiteboard sessions

a=type: Type of conference

a=charset: Character set used for subject and information fields

a=sdplang: Language for the session description

a=lang: Default language for the session

a=framerate: Maximum video frame rate in frames per second

a=quality: Suggests quality of encoding

a=fmtp: Format transport

stream is declined by setting the port number to zero for the corresponding
media field in the SDP response. In the following example, the caller Tesla
wants to set up an audio and video call with two possible audio codecs and a
video codec in the SDP carried in the initial INVITE:

v=0

o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org

s=-

c=IN IP4 100.101.102.103

t=0 0

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 49172 RTP/AVP 32

a=rtpmap:32 MPV/90000

The codecs are referenced by the RTP/AVP profile numbers 0, 8, and
32. The called party Marconi answers the call, chooses the second codec for
the first media field and declines the second media field, only wanting a
PCM A-Law audio session.

v=0

o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org

s=-

c=IN IP4 200.201.202.203

t=0 0

m=audio 60000 RTP/AVP 8

a=rtpmap:8 PCMA/8000

m=video 0 RTP/AVP 32

If this audio-only call is not acceptable, then Tesla would send an ACK

then a BYE to cancel the call. Otherwise, the audio session would be estab-
lished and RTP packets exchanged. As this example illustrates, unless the
number and order of media fields is maintained, the calling party would not
know for certain which media sessions were being accepted and declined by
the called party.

One party in a call can temporarily place the other on hold (i.e., sus-
pending the media packet sending). This is done by sending an INVITE with
identical SDP to that of the original INVITE but with the IP address set to
0.0.0.0 in the c= field. The call is made active again by sending another
INVITE with the IP address set back to that of the user agent.

Related Protocols 129

7.2 RTP�Real-time Transport Protocol

Real-time Transport Protocol [4] was developed to enable the transport of
real-time packets containing voice, video, or other information over IP. RTP
is defined by IETF Proposed Standard RFC 1889. RTP does not provide any
quality of service over the IP network�RTP packets are handled the same as
all other packets in an IP network. However, RTP allows for the detection of
some of the impairments introduced by an IP network, such as:

• packet loss;

• variable transport delay;

• out of sequence packet arrival;

• asymmetric routing.

As shown in the protocol stack of Figure 1.1, RTP is an application
layer protocol that uses UDP for transport over IP. RTP is not text encoded,
but uses a bit-oriented header similar to UDP and IP. RTP version 0 is only
used by the vat audio tool for MBONE broadcasts. Version 1 was a pre-RFC
implementation and is not in use. The current RTP version 2 packet header
is shown in Figure 7.1. RTP was designed to be very general; most of the
headers are only loosely defined in the standard; the details are left to profile
documents. The 12 octets are defined as:

• Version (V). This 2-bit field is set to 2, the current version of RTP.

• Padding (P). If this bit is set, there are padding octets added to the
end of the packet to make the packet a fixed length. This is most
commonly used if the media stream is encrypted.

• Extension (X). If this bit is set, there is one additional extension fol-
lowing the header (giving a total header length of 14 octets). Exten-
sions are defined by certain payload types.

• CSRC count (CC). This 4-bit field contains the number of content
source identifiers (CSRC) are present following the header. This

130 SIP: Understanding the Session Initiation Protocol

V SSRCITimestampSequence NumberPTMCCP X

Figure 7.1 RTP packet header.

field is only used by mixers that take multiple RTP streams and out-
put a single RTP stream.

• Marker (M). This single bit is used to indicate the start of a new
frame in video, or the start of a talk-spurt in silence-suppressed
speech.

• Payload Type (PT). This 7 bit field defines the codec in use. The
value of this field matches the profile number listed in the SDP.

• Sequence Number. This 16-bit field is incremented for each RTP
packet sent and is used to detect missing/out of sequence packets.

• Timestamp. This 32-bit field indicates in relative terms the time
when the payload was sampled. This field allows the receiver to
remove jitter and to play back the packets at the right interval
assuming sufficient buffering.

• Synchronization Source Identifier (SSRCI). This 32-bit field identi-
fies the sender of the RTP packet. At the start of a session, each par-
ticipant chooses a SSRC number randomly. Should two participants
choose the same number, they each choose again until each party is
unique.

• CSRC Contributing Source Identifier. There can be none or up to
15 instances of this 32-bit field in the header. The number is set by
the CSRC Count (CC) header field. This field is only present if the
RTP packet is being sent by a mixer, which has received RTP pack-
ets from a number of sources and sends out combined packets. A
non-multicast conference bridge would utilize this header.

RTP allows detection of a lost packet by a gap in the Sequence Num-

ber. Packets received out of sequence can be detected by out-of-sequence
Sequence Numbers. Note that RTP allows detection of these transport-
related problems but leaves it up to the codec to deal with the problem. For
example, a video codec may compensate for the loss of a packet by repeating
the last video frame, while an audio codec may play background noise for the
interval. Variable delay or jitter can be detected by the Timestamp field. A
continuous bit rate codec such as PCM will have a linearly increasing
Timestamp. A variable bit rate codec, however, which sends packets at
irregular intervals, will have an irregularly increasing Timestamp, which can
be used to play back the packets at the correct interval.

The RTP Control Protocol (RTCP) is a related protocol also defined
in RFC 1889 that allows participants in an RTP session to send each other

Related Protocols 131

quality reports and statistics, and exchange some basic identity information.
The four types of RTCP packets are shown in Table 7.3. RTCP has been
designed to scale to very large conferences. Because RTCP traffic is all over-
head, the bandwidth allocated to these messages remains fixed regardless of
the number of participants. That is, the more participants on a conference,
the less frequently RTCP packets are sent. For example, in a basic two-
participant audio RTP session, the RTP/AVP profile states that RTCP pack-
ets are to be sent about every 5 seconds; for four participants, RTCP packets
can be sent every 10 seconds. Sender reports (SR) or receiver reports (RR)
packets are sent the most frequently, with the other packet types being sent
less frequently. The use of reports allows feedback on the quality of the con-
nection including information such as:

• number of packets sent and received;

• number of packets lost;

• packet jitter.

In a multimedia session established with SIP, the information needed
to select codecs and send the RTP packets to the right location is carried in
the SDP message body. Under some scenarios, it can be desirable to change
codecs during an RTP session. An example of this relates to the transport of
dual tone multiple frequency (DTMF) digits. A low bit rate codec that is
optimized for transmitting vocal sounds will not transport the superimposed
sine waves of a DTMF signal without introducing significant noise, which

132 SIP: Understanding the Session Initiation Protocol

Table 7.3
RTCP Packet Types

Packet type Name Description

SR Sender report Sent by a participant that both sends and receives RTP
packets

RR Receiver report Sent by a participant that only receives RTP packets

SDES Source description Contain information about the participant in the session
including e-mail address, phone number, and host

BYE Bye Sent to terminate the RTP session

APP Application specific Defined by a particular profile

may cause the DTMF digit receiver to fail to detect the digit. As a result, it is
useful to switch to another codec when the sender detects a DTMF tone.
Because a RTP packet contains the payload type, it is possible to change
codecs �on the fly� without any signaling information being exchanged
between the user agents. On the other hand, switching codecs in general
should probably not be done without a SIP signaling exchange (re-INVITE)
beacuse the call could fail if one side switches to a codec that the other does
not support. The SIP re-INVITE message exchange allows this change in
media session parameters to fail without causing the established session to
fail.

The use of random numbers for CSRC provides a minimal amount of
security against �media spamming� where a literally uninvited third party
tries to break into a media session by sending RTP packets during an estab-
lished call. Unless the third party can guess the CSRC of the intended
sender, the receiver will detect a change in CSRC number and either ignore
the packets or inform the user that something is going on. This behavior for
RTP clients, however, is not universally accepted, because in some scenarios
(wireless hand-off, announcement server, call center, etc.) it might be desir-
able to send media from multiple sources during the progress of a call.

RTP supports encryption of the media. In addition, RTP can use IPSec
[7] for authentication and encryption.

7.3 RTP Audio Video Profiles

The use of profiles enables RTP to be an extremely general media transport
protocol. The current audio video profiles defined by RFC 1890 are listed in
Table 7.4. The profile document makes the following specifications for RTP:

• UDP is used for underlying transport;

• RTP port numbers are always even, the corresponding RTCP port
number is the next highest port, always an odd number;

• No header extensions are used.

For each of the profiles listed in Table 7.4, the profile document lists details
of the codec, or a reference for the details is provided. Payloads in the range
96�127 can be defined dynamically during a session. The minimum payload
support is defined as 0 (PCMU) and 5 (DVI4). The document recommends
dynamically assigned port numbers, although 5004 and 5005 have been

Related Protocols 133

registered for use of the profile and can be used instead. The standard also
describes the process of registering new payload types with IANA. There are
other references for a tutorial description of many of these audio codecs [8]
and video codecs [9].

The information in the first three columns of Table 7.4 is also con-
tained in the SDP a=rtpmap: field, which is why the attribute is optional.

134 SIP: Understanding the Session Initiation Protocol

Table 7.4
RTP/AVP Audio and Video Payload Types

Payload Codec Clock Description

0 PCMU 8000 ITU G.711 PCM µ-Law Audio 64kbps

1 1016 8000 CELP Audio 4.8kbps

2 G721 8000 ITU G721 ADPCM Audio 32kbps

3 GSM 8000 European GSM Audio 13kbps

5 DVI4 8000 DVI ADPCM Audio 32kbps

6 DVI4 16000 DVI ADPCM 64kbps

7 LPC 8000 Experimental LPC Audio

8 PCMA 8000 ITU G.711 PCM A-Law Audio 64kbps

9 G722 8000 ITU G.722 Audio

10 L16 44100 Linear 16 bit Audio 705.6kbps

11 L16 44100 Linear 16 bit Stereo Audio 1411.2kbps

14 MPA 90000 MPEG-I or MPEG-II Audio Only

15 G728 8000 ITU G.728 Audio 16kb/s

25 CELB 90000 CelB Video

26 JBEG 90000 JBEG Video

28 NV 90000 nv Video

31 H261 90000 ITU H.261 Video

32 MPV 90000 MPEG-I and MPEG-II Video

33 MP2T 90000 MPEG-II transport stream Video

7.4 PSTN Protocols

Three types of PSTN signaling protocols are mentioned in this text: Circuit
Associated Signaling (CAS), ISDN (Integrated Services Digital Network), and
ISUP (ISDN User Part). They will be briefly introduced and explained. How
these protocols work in the PSTN today are covered in other references [8].

7.4.1 Circuit Associated Signaling

This type of signaling is the oldest currently used in the PSTN today. The
signaling information uses the same audio circuit as the voice path, with dig-
its and characters represented by audio tones. These are the tones that used
to be barely discernible on long-distance calls before ring tone is heard. The
tones are called multi-frequency (MF) tones. They are similar to the tones
used to signal between a telephone and a central office switch, which are
DTMF tones. Long post dial delay is introduced because of the time taken to
out-pulse long strings of digits. Also, CAS is susceptible to fraud, as fraudu-
lent tones can be generated by the caller to make free telephone calls. This
type of signaling is common in trunk circuits between a central office and a
corporation�s private branch exchange (PBX) switch.

7.4.2 ISUP Signaling

ISDN User Part is the protocol used between telephone switches in the
PSTN for call signaling. It is used over a dedicated packet-switched network
that uses Signaling System #7 (SS7) for transport. This signaling method was
developed to overcome some of the delay and security problems with CAS.
There are examples of ISUP signaling in the call flow examples of Chapter 9.
The adoption of this out-of-band signaling protocol was the first step taken
by telecommunications carriers away from circuit-switched networks and
towards packet-switched networks. The final step will be moving the bearer
channels onto a packet-switched network.

7.4.3 ISDN Signaling

Integrated Services Digital Network signaling was developed for all-digital
telephone connections to the PSTN. The most common types of interfaces
are the basic rate interface (BRI) and the primary rate interface (PRI). A BRI
can contain two 64-kbps B-channels for either voice or data and a 16 kbps
D-channel for signaling. BRI can be used over conventional telephone lines
but requires an ISDN telephone or terminal adapter. PRI uses a 1.544-Mbps

Related Protocols 135

link called a T-1 or a DS-1, which is divided up into 23 B-channels and one
D-channel, with each channel being 64 kbps. The H.323 protocol, described
in Chapter 9, reuses a subset of the ISDN Q.931 signaling protocol used
over the D-channel.

References

[1] Handley, M., and V. Jacobson, �SDP: Session Description Protocol,� RFC 2327,
1998.

[2] Handley, M., C. Perkins, and E. Whelan, �Session Announcement Protocol,�
Internet-Draft, Work in Progress.

[3] Mills, D., �Network Time Protocol (Version 3): Specification, Implementation, and
Analysis,� RFC 1305, 1992

[4] Schulzrinne, H., et al., �RTP: A Transport Protocol for Real-time Applications,� RFC
1889, 1996.

[5] Schulzrinne, H., �RTP Profile for Audio and Video Conferences with Minimal Con-
trol,� RFC 1890, 1996.

[6] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Appendix B.

[7] Kent, S., and R. Atkinson, �Security Architecture for the Internet Protocol,� RFC
2401, 1998.

[8] Anttalainen, T., Introduction to Telecommunications Network Engineering, Artech
House: Norwood, MA, 1999.

[9] Schaphorst, R., Videoconferencing and Videotelephony: Technology and Standards, 2nd
Ed., Artech House: Norwood, MA, 1999.

136 SIP: Understanding the Session Initiation Protocol

8
Comparison to H.323

This chapter compares SIP to another IP telephony signaling protocol: the
International Telecommunications Union (ITU) recommendation H.323,
entitled �Packet-based Multimedia Communication.� H.323 is introduced
and explained using a simple call flow example. H.323 and SIP are then
compared.

8.1 Introduction to H.323

H.323 [1] is an umbrella recommendation that covers all aspects of multime-
dia communication over an IP network. It is part of the H.32x series1 of
protocols that describes multimedia communication over ISDN, broadband
(ATM)2, telephone (PSTN), and packet (IP) networks, as shown in
Table 8.1. Originally developed for video conferencing over a single LAN

137

1. In this chapter, the use of an x instead of a digit does not imply that all digits (0�9) in
the range are included. In this case H.32x does not include H.325 to H.329, which have
yet to be defined.

2. In this context, broadband means transported over an Asynchronous Transfer Mode
(ATM) network. In anticipation of the universal deployment of ATM networks by carri-
ers, the ITU developed a suite of protocols to support conventional telephony over ATM
networks. For example, Q.2931 is the extension of Q.931 ISDN over ATM. Today, the
term is used to mean high bandwidth connections�faster than modem speeds.

segment, the protocol has been extended to cover the general problem of
telephony over the Internet. The first version was approved by the ITU in
1996, and it was adopted by early IP telephony networks because there
were no other standards. Version 2 was adopted in 1998 to fix some of the
problems and limitations in version 1. Version 3 was adopted in 1999 and
includes modifications and extensions to enable communications over a
larger network. H.323 has been designed to be backward compatible, so a
version 1 compliant terminal can communicate with a version 3
gatekeeper.

H.323 references a number of other ITU and IETF protocols to com-
pletely specify the environment. Each element of the network is defined and
standardized. Figure 8.1 shows the main elements: terminals, gatekeepers,
gateways, and multipoint control units (MCUs). An H.323 terminal is an
end device in the network. It originates and terminates media streams that
could be audio, video, or data, or a combination of all three. At a minimum,
all H.323 terminals must support basic G.711 PCM audio transmission.
Support of video and data are optional. An H.323 gatekeeper is a server that
controls a zone, which is an administrative domain in H.323. If a gatekeeper
is present, all terminals within that zone must register with and defer to the
gatekeeper on authorization decisions to place or accept a call. A gatekeeper
also provides services to terminals in a zone, such as gateway location, address
translation, bandwidth management, feature implementation, and registra-
tion. A gatekeeper is not a required element in an H.323 network, but a ter-
minal�s capabilities without one are severely limited. A gateway is another
optional element in an H.323 network. It interfaces the H.323 network
with another protocol network, such as the PSTN. An MCU provides

138 SIP: Understanding the Session Initiation Protocol

Table 8.1
ITU H.32x Family of Standards

Protocol Title

H.320 Communication over ISDN networks

H.321 Communication over broadband ISDN (ATM) networks

H.322 Communication over LANs with guaranteed QoS

H.323 Communication over LANs with non-guaranteed QoS (IP)

H.324 Communication over PSTN (V.34 modems)

conferencing services for terminals, which are restricted to small conferences
of three participants without a MCU.

Some of the protocols referenced by H.323 are shown in Table 8.2.
H.225 is used for registration, admission, and status (RAS), which is used for
terminal to gatekeeper communication. A subset of Q.931 is used for call
setup signaling between terminals. H.245 is used for control signaling or
media negotiation and capability exchange between terminals. T.120 is used
for multipoint graphic communications. H.323 audio codecs are specified in
the ITU G.7xx series. Video codecs are specified in the H.26x series. H.323
also references two IETF protocols, RTP and RTCP, for the media trans-
port. The H.235 recommendation covers privacy and encryption, while
H.450 covers supplementary services such as those commonly found in the
PSTN (e.g., call forwarding, call hold, call park, etc.).

The protocols referenced by H.323 are not suggestions; they are
requirements. For example, only ITU approved and standardized codecs
(G.7xx) can be used by H.323 terminals.

8.2 Example of H.323

Figure 8.2 shows a simple call flow involving two terminals and a gatekeeper.
The call begins with an exchange of H.225 RAS messages between the

Comparison to H.323 139

PSTN

H.323
network

Telephone

Terminal

Terminal

Gateway

Gatekeeper MCU

Figure 8.1 Elements of an H.323 network.

calling terminal and the gatekeeper. It is assumed that both terminals have
already registered with the gatekeeper using the Registration Request (RRQ)
message. The calling terminal opens a TCP connection to the gatekeeper and
sends an Admission Request (ARQ) message to the gatekeeper containing the
address of the called terminal and the type of session desired. The address
could be specified as an H.323 alias, E.164 telephone number, e-mail
address, or a URL. The gatekeeper knows about all calls in the zone it con-
trols; it decides if the user is authorized to make a call and if there is enough
bandwidth or other resources available. In this example, there is enough
bandwidth, so the gatekeeper allows the call to continue by sending an
Admission Confirmation (ACF) message. The ACF indicates to the calling
terminal that end-point message routing, or the direct exchange of H.225
call signaling messages with the called terminal, is to be used. Alternatively,
the gatekeeper can require gatekeeper routed signaling, where the gatekeeper
acts like a proxy and forwards all messages between the terminals. The gate-
keeper has also translated the address in the ARQ into an IP address that was
returned in the ACF. The RAS TCP connection to the gatekeeper can now be
closed.

140 SIP: Understanding the Session Initiation Protocol

Table 8.2
Protocols Referenced by H.323

Protocol Description

H.225 Registration, Admission, and Status (RAS)

Q.931 Call Signaling

H.245 Control Signaling (Media Negotiation)

T.120 Multipoint Graphic Communication

G.7xx Audio Codecs

H.26x Video Codecs

RTP Real-time Transport Protocol (RTP)

RTCP RTP Control Protocol (RTCP)

H.235 Privacy and Encryption

H.450 Supplementary Services

The calling terminal is now able to open a TCP connection to the called
terminal using the well-known H.225 port number 1720 and send a Q.931
Setup message to the called terminal. The called terminal responds with a Call
Proceeding response to the calling terminal. The called terminal must also get
permission from the gatekeeper before it accepts the call, so an ARQ is sent to
the gatekeeper. When it receives the ACF from the gatekeeper, the called ter-
minal begins alerting the user, and sends an Alerting message to the calling ter-
minal. When the user at the calling terminal answers, a Connect message is
sent. There is no acknowledgment of messages because all these messages are
sent using TCP, which provides reliable transport. These call signaling

Comparison to H.323 141

ACF

TerminalCapabilitySet

RTP media session

ARQ

Calling H.323
terminal

Gatekeeper Called H.323
Terminal

TerminalCapabilitySetAck

Call Proceeding

ACF
ARQ

Setup

Alerting
Connect

TerminalCapabilitySet

TerminalCapabilitySetAck

OpenLogicalChannel

OpenLogicalChannelAck

OpenLogicalChannel

OpenLogicalChannelAck

MasterSlaveDetermination

MasterSlaveDeterminationAck

Figure 8.2 H.323 call flow example.

messages used in H.323 are a subset of the Q.931 recommendation that cov-
ers ISDN D-channel signaling.

The next stage is the connection negotiation, which is handled by H.245
control signaling messages. A second TCP connection between the two termi-
nals is opened by the calling terminal using the port number selected by the
called terminal and returned in the Connect message. The TerminalCapa-
bilitySet message sent contains the media capabilities of the calling
terminal, listing supported codecs. It is acknowledged with a TerminalCa-
pabilitySetAck response from the called terminal. The called terminal
then sends a TerminalCapabilitySet message containing its media capa-
bilities, which receives a TerminalCapabilitySetAck response.

The H.323 protocol requires that one terminal be selected as the master
with the other as the slave. This is accomplished using MasterSlaveDeter-
mination messages exchanged between the terminals. The messages contain
the terminal type of the terminal and a random number. Terminal types are
hierarchical, which determines the master. If the terminal type is the same,
the random number determines the master. The message is acknowledged
with a MasterSlaveDeterminationAck message.

The final phase of the call setup is the opening of two logical channels
between the terminals. These channels are used to set up and control the
media channels. The H.245 OpenLogicalChannel message sent in the
H.245 control signaling connection contains the desired media type, includ-
ing the codec that has been determined from the exchange of capabilities. It
also contains the port number of the logical channel opened to control the
media. The media control channel is RTCP. Because RTCP uses UDP for
transport, no TCP connection is established. The terminal, however, will lis-
ten on that port for UDP datagrams. The message is acknowledged with an
OpenLogicalChannelAck message.

Now, the terminals begin sending RTP media packets and also RTCP
control packets using the IP addresses and port numbers exchanged in the
OpenLogicalChannel messages.

Figure 8.3 shows a call tear-down sequence, which either terminal may
initiate. In this example, the called terminal sends an EndSessionCommand

message in the H.245 control signaling channel. The other terminal
responds with an EndSessionCommand message in the H.245 control sig-
naling channel, which can now be closed. The called terminal then opens an
RAS TCP connection to the gatekeeper (unless one is already open) and
sends a Disengage Request (DRQ) message and receives a Disengage Confir-
mation (DCF) message from the gatekeeper. This way, the gatekeeper knows
that the resources used in the call have now been freed up. A Call Detail

142 SIP: Understanding the Session Initiation Protocol

Record (CDR) or other billing record can be written and stored by the gate-
keeper. Next, a Q.931 Release Complete (RLC) message is sent in the call sig-
naling connection, which can then be closed. Finally, the other terminal
opens a RAS TCP connection to the gatekeeper (unless one is already open)
and sends a DRQ to the gatekeeper and receives a DCF response. The RAS
TCP connection can then be closed.

The call flows in Figures 8.2 and 8.3 show direct end-point signaling,
where the calling terminal opens TCP connections to the called terminal and
exchanges H.225 and H.245 messages. In the ACF response to the calling
terminal, the gatekeeper can require gatekeeper routed signaling, where the
call signaling and control signaling channels are opened with the gatekeeper,
who then opens the channels with the called terminal. In this way, the gate-
keeper stays in the signaling path and proxies all messages. This allows the
gatekeeper to know the exact call state and be able to invoke features.

Comparison to H.323 143

DCF

EndSessionCommand

Media Session

DRQ

Calling
H.323

Terminal
Gatekeeper

Called
H.323

Terminal

EndSessionCommand

RLC

DCF

DRQ

Figure 8.3 H.323 call tear-down sequence.

8.3 Versions

There are three versions of H.323, which reflect the evolution of this proto-
col. H.323 is fully backward compatible, so gatekeepers and terminals must
support flows and mechanisms defined in all three versions. Version 1
was approved in 1996 and was titled �Visual Telephone Systems over Net-
works with Non-guaranteed Quality of Service�. The example call flow in
Figure 8.2 shows the version 1 call setup. Not unexpectedly given the
number of messages and TCP connections, this process was very slow, some-
times taking 30 seconds or more to establish a call. While this may have been
acceptable for a protocol designed for video conferencing over a single LAN
segment, it is not acceptable for an IP telephony network designed to provide
a similar level of service to the PSTN.

Version 2 included alternative call setup schemes to speed up the call
setup. Two schemes were added to H.323, called FastStart and H.245 tun-
neling. FastStart is shown in Figure 8.4, in which the Setup message contains
the TerminalCapabilitySet information. This saves multiple messages
and round trips. In H.245 tunneling, a separate H.245 control channel is
not opened. Instead, H.245 messages are encapsulated in Q.931 messages in
the call signaling channel. This saves overhead in opening and closing a sec-
ond TCP connection.

Version 3 of H.323 introduced some more functionality to gatekeep-
ers. In the earlier versions, calling was generally assumed to be limited to a
single H.323 zone or through a gateway to the PSTN. H.323 did not define
a standard for calls that needed to be routed outside of a zone through
another gatekeeper. Version 3 introduced gatekeeper-to-gatekeeper signaling
using H.225 RAS messages. Figure 8.5 shows a call setup from one zone to
another showing version 3 gatekeeper-to-gatekeeper signaling. In this exam-
ple, gatekeeper 1 forwards the ARQ to gatekeeper 2 who provides the IP
address of the called party and allows the call to proceed with an ACF to gate-
keeper 1. If gatekeeper 2 cannot locate the called party, or otherwise does not
permit the call to proceed, a Admission Denial (ADN) is sent instead. A simi-
lar exchange of DRQ messages is required on call tear-down.

8.4 Comparison

This section will compare H.323 with SIP in the following areas: encoding,
transport, addressing, complexity, feature implementations, vendor support,
conferencing, and extensibility.

144 SIP: Understanding the Session Initiation Protocol

8.4.1 Encoding

H.323 uses Abstract Syntax Notation 1 (ASN.1) to represent the protocol.
Messages are encoded using packed encoding rule (PER). This binary encod-
ing scheme is used to minimize the number of bits required to transport a
given field. This is achieved by setting very tight conditions on what a par-
ticular field may contain in terms of characters and length, and by compress-
ing the resulting string. For example, an H.323 alias address is limited to 256
characters. In comparison, there is no limit to the number of characters in
SIP URLs3. An ASN.1 PER encoder and decoder stack is required on every
H.323 device, which adds to the complexity. In addition, any test sets used
for troubleshooting or monitoring must have specific software to decode a
H.323 message�otherwise all that can be displayed is a hex dump that needs
to be broken down by hand. Test sets for other ITU protocols such as SS7,

Comparison to H.323 145

ACF

OpenLogicalChannel

RTP media session

ARQ

Calling
H.323

Terminal

Gatekeeper Called
H.323

Terminal

OpenLogicalChannelAck

Call Proceeding

ACF
ARQ

Setup (fastStart)

Alerting

Connect (fastStart)

OpenLogicalChannel

OpenLogicalChannelAck

Figure 8.4 H.323 version 2 FastStart call setup.

ISUP, and ISDN are expensive compared to the sets needed for a text-
encoded protocol.

SIP uses Augmented Backus Naur Format (ABNF) for representation,
and text-based encoding, where the contents of each field are extremely flexi-
ble and loosely defined. For example, few headers in SIP have a fixed length.
Parser logic is borrowed from HTTP parsers and can be implemented in sim-
ple text languages such as Perl. In addition, any packet sniffer can display a
SIP message (unless it is encrypted) since the headers and parameters are in
plain text.

146 SIP: Understanding the Session Initiation Protocol

ARQ

ARQ

ACF

ARQ

ACF

ACF

Setup

Calling
H.323

Terminal

Gatekeeper 1 Called
H.323

Terminal

Gatekeeper 2

Call Proceeding

Alerting

Connect

Figure 8.5 H.323 version 3 gatekeeper-to-gatekeeper communication

3. This type of limitation on addressing may seem reasonable, but development of advanced
services in the Internet has shown otherwise. For example, the use of CGI scripting in
URLs in the Internet has proven to be extremely powerful for web sites, which often re-
sults in URLs much longer than this H.323 limitation. For example, searching for ietf sip
at the �Northern Light� search engine generates a customized search results page with the
following URL that has 184 characters: http://www.northernlight.com/nlquery.fcg?ho=
groucho&po=5125&qr=ietf+sip&cb=0&ccfor+-IP+%28Internet+Protocol%29&cl=1&
clsub_1_0=20096& cn_1=IP+%28Internet+Protocol%29&db=97044288&orl=

8.4.2 Transport

H.323 requires TCP for reliable message transport. Since H.323 does not
have timers and message retransmission schemes, UDP can not be used.
H.323 opens multiple TCP connections to establish a session. A connection
must be opened with the gatekeeper for the exchange of H.225 RAS mes-
sages. A connection must be opened with the other terminal for the exchange
of Q.931 call signaling messages. Finally, one H.245 call control connection
must be established for each media session. The H.225 channels can be
closed once the call is established (although they must then be opened again
to terminate the call), but the H.245 control channels must remain open for
the duration of the call. H.245 tunneling in version 2 allows the use of a sin-
gle TCP connection but at a cost of additional processing.

TCP introduces additional round-trip delays in H.323 message
exchanges due to the handshake SYN/ACK exchange during the opening of
the TCP connection, as shown in Figure 1.2. In addition, if the Setup mes-
sage is larger than the MTU of the network (maximum packet size), it must
be sent in two TCP segments. The slow-start algorithm of TCP requires an
ACK to be received for the first segment before the second segment can be
sent, causing an additional round-trip delay. There is discussion about modi-
fying H.323 to run over UDP, which may occur in another version of the
protocol.

SIP can use either UDP or TCP for transport. If SIP uses TCP, a single
TCP connection is established from the UAC to the UAS or proxy. The con-
nection can be closed after the call is established, then reopened again to ter-
minate the call. If the simpler UDP transport is used, no connections need be
opened or closed�datagrams are simply sent as needed, and lost messages
are handled by SIP. Most SIP implementations have chosen UDP over TCP
for efficient and low-latency transport.

8.4.3 Addressing

H.323 addressing uses a number of schemes. Addresses include H.323 ali-
ases, e-mail addresses, phone numbers, URLs, and others. Unless an H.323
terminal knows the IP address of the called terminal, a gatekeeper is required
to resolve the address.

The use of URLs by H.323 might seem similar to SIP; however, in
H.323, the URL only references a location (the protocol is always assumed to
be H.323). SIP can even use H.323 URLs to locate an H.323 terminal, which
would then be called using H.323. SIP, through the use of DNS queries, can

Comparison to H.323 147

place calls using SIP URLs without requiring a proxy server to do address
resolution.

8.4.4 Complexity

A quick comparison of the complexity of SIP and H.323 can be seen by com-
paring the call flows of Figure 2.2 for SIP and Figure 8.2 for H.323. The
message count of 4 versus 18 sent to set up a call is indicative. Others have
compared page counts in the standards documents (178 versus 736) [2],
although this is not always a fair comparison criteria!

The choice of signaling protocol also has other less obvious impacts on
complexity. The more demands a protocol makes on a system�s storage and
processing resources, the more expensive the system will be. This complexity
is sometimes discussed in terms of scalability, which refers to the ability of a
network to grow from a handful of users to hundreds of thousands of users
without running into major problems, limitations, or cost barriers, or the
ability to build palm-sized basic devices all the way up to huge servers. The
amount of call state information, the number of messages processed per call,
and the complexity of encoding and decoding messages all play a critical role
in the scalability of a protocol.

H.323 was originally developed for use over a single LAN segment. As
a result, it has many scalabilty issues. Some of these issues have been
addressed in later versions of the protocol, but others remain. The biggest
problem relates to the scalability of a gatekeeper, of which there can only be
one in a zone. The call state and connection information stored for each call
limits the number of simultaneous calls through an H.323 zone. Also,
important areas such as message loop detection can only be implemented in a
stateful way.

SIP design was based largely on HTTP, which is an example of an
extremely successful IETF protocol that has successfully survived years of
exponential growth. Many implementers expect that SIP will also undergo a
similar growth rate with similar positive results. The use of UDP transport
and stateless proxies should allow for more dense servers and gateways than
H.323. SIP�s use of stateless techniques for message loop detection and other
proven scalable protocols such as DNS should also add to its scalability.

8.4.5 Feature Implementations

Both SIP and H.323 can implement features common to the PSTN network
such as call forwarding and call transfer. H.323 specifies details of these

148 SIP: Understanding the Session Initiation Protocol

features in the H.450 supplementary services recommendation. Because the
IETF standardizes protocols but not services, the SIP standard does not spec-
ify how the features are to be implemented. Some PSTN-like features in SIP
require some additional extensions (described in Chapter 10) that are still
being developed.

The main difference between SIP and H.323 relates to non-PSTN fea-
tures. Because SIP uses Internet URLs and places no limitations on the type
and number of sessions that it can be used to establish, many new advanced
services and features on the Internet will likely make use of SIP rather than
H.323.

8.4.6 Vendor Support

The 3-year head start that H.323 has over SIP is reflected in the marketplace
today. Most commercial Voice-over-IP implementations in early 2000 use
H.323 for signaling. Nearly all vendors of H.323 products, however, are also
developing SIP products that will come to market starting in 2000. In addi-
tion, there are startup companies that are developing SIP-only products to
enable advanced services. The list of vendors participating in the bake-off
interoperability tests shows some of the depth of support that SIP is gaining
in the marketplace.

8.4.7 Conferencing

H.323 terminals are permitted to perform conferencing with only three
other parties. Conferences larger than three parties require the use of a mul-
tipoint conference unit (MCU). The MCU receives media streams from each
participant and mixes them together on a single stream. The MCU also has
built in conference management features, such as floor and microphone con-
trol, and conference statistics.

SIP places no restrictions on the number of parties with which a SIP
user agent may establish media sessions. SIP also supports multicast confer-
encing without requiring a separate conferencing unit. Basic conference
management and statistics are provided by RTCP.

MCUs have been built to handle medium sized conferences but are not
likely to be scalable to the size of conferences currently handled by multicast
on the Internet today. While H.323 terminals can support multicast, MCUs
are still a required element in the conference, and many of the MCU func-
tions overlap with functions in RTCP [2].

Both SIP and H.323 utilize multicast for registration and server
discovery.

Comparison to H.323 149

8.4.8 Extensibility

H.323 can be extended to implement new features and functionality. Due to
the ASN.1 PER encoding scheme and other constraints, however, extension
�hooks� built into the protocol must be used to achieve this. If there is no
place holder built in to the protocol in a particular place, then it cannot be
extended there. Also, fields have strict limitations on content and length that
support current features, which could limit future features.

In SIP, new methods, response codes, and headers can be easily added.
Because unknown response codes can be interpreted by their class, and
unknown headers can be ignored, some interoperability is possible even
between SIP devices with different extensions implemented.

8.5 Comparison Summary

SIP and H.323 were developed by different organizations with different
requirements and perspective on the world. It is likely that SIP and H.323
will co-exist for a number of years to come. Table 8.3 summarizes this com-
parison.

150 SIP: Understanding the Session Initiation Protocol

Table 8.3
SIP and H.323 Comparison Summary

Area SIP H.323

Transport TCP, UDP, or other TCP only

Conferencing IP multicast MCU required

Encoding Text Binary

Type of spec Signaling only Umbrella�covers all aspects

Vendor support Growing Strong

Features PSTN and Internet Mainly PSTN

Versions Only one implemented Three implemented (V1, V2, and V3)

Server types Proxies, redirect, registrars�
stateful or stateless

Gatekeeper�stateful only

Loop detection Stateless Stateful

References

[1] �Packet-based Multimedia Communications Systems,� International Telecommunica-
tions Union Recommendation H.323.

[2] Rosenberg, J., and H. Schulzrinne, �A Comparison of SIP and H.323 for Internet
Telephony,� Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Cambridge, UK, July 1998.

Comparison to H.323 151

.

9
Call Flow Examples

In this chapter, many of the concepts and details presented in the preceding
chapters will be illustrated with examples. Each example includes a call flow
diagram, a discussion of the example, followed by the message details. Each
message is labeled in the figure with a message number for easy reference. For
more examples of the protocol, refer to the SIP specificaton [1] and the SIP
call flows [2] documents.

The purpose of the examples in this chapter is to illustrate aspects of
the SIP protocol. The interoperation scenarios with the PSTN and with a
H.323 network are not intended to fully define the interworking or show a
complete parameter mapping between the protocols. Likewise, simplifica-
tions such as minimal authentication and direct client-to-gateway messaging
are used to make the examples more clear.

9.1 SIP Call with Authentication, Proxies, and Record-Route

Figure 9.1 shows a basic SIP call between two SIP user agents involving two
proxy servers. Rather than perform a DNS query on the SIP URL of the called
party, the calling SIP phone sends the INVITE request to a proxy server for
address resolution. The proxy server requires authentication to perform this
service and replies with a 407 Proxy Authorization Required

response. Using the nonce from the challenge, the caller resends the INVITE

153

with the caller�s username and password credentials encrypted. The proxy
checks the credentials, and finding them to be correct, performs the DNS
lookup on the Request-URI. The INVITE is then forwarded to the proxy
server listed in the DNS SRV record that handles the language.org

domain. That proxy then looks up the Request-URI and locates a registra-
tion for the called party. The INVITE is forwarded to the destination UAS, a
Record-Route header having been inserted to ensure that the proxy is pres-
ent in all future requests by either party. This is because a direct routed SIP
message to Ada would be blocked by the firewall.

154 SIP: Understanding the Session Initiation Protocol

INVITE
sip:ada@language.org

407 M2

RTP media packets

ACK M3

Babbage
12.26.17.91

Proxy
Server

15.16.17.18
Ada

1.2.3.4
DNS

Server

Firewall
Proxy

10.14.92.1
Location
Server

INVITE
sip:ada@language.org SRV

language.org?

INVITE M8

7.8.9.10 M7

100 M5

ada?
M10

1.2.3.4
M11

INVITE M12

180 M13

200 M16

100 M9

180 M14

200 M17

180 M15

200 M18

ACK M19 ACK M20

BYE M21BYE M22

200 M23 200 M24

M1

M4
M6

Figure 9.1 SIP-to-SIP call with authentication, proxies, and record-route.

The called party receives the INVITE request and sends 180 Ringing

and 200 OK responses, which are routed back to the caller using the Via

header chain from the initial INVITE. The ACK sent by the caller includes a
Route header built from the Record-Route and Contact headers in the
200 OK response. This routing skips the first proxy but includes the firewall
proxy. The media session begins with the user agents exchanging RTP and
RTCP packets.

The call terminates when the called party, Ada, sends a BYE, which
includes a Route header generated from the Record-Route header and the
Contact header in the INVITE. Note that the CSeq for the called user agent
is initialized to 1000. The acknowledgement of the BYE with a 200 OK

response causes both sides to stop sending media packets.

M1 INVITE sip:ada@language.org SIP/2.0 ⇐Request-URI
Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1 INVITE ⇐CSeq initialized to 1
Contact: <sip:babbage@analyticalsoc.org>

Subject: RE: Software

User-Agent: Difference Engine 1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91 ⇐Babbage�s IP address
m=audio 49170 RTP/AVP 0 ⇐Port number
a=rtpmap:0 PCMU/8000 ⇐Codec info

M2 SIP/2.0 407 Proxy Authentication Required

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1 INVITE

Proxy-Authenticate: Digest ⇐Authentication
realm="SIP Telephone Company", challenge
domain =�sip-company.com�,

nonce="9c8e88df84f1cec4341ae6e5a359",

opaque="", stale="FALSE", algorithm="MD5"

Call Flow Examples 155

M3 ACK sip:ada@language.org SIP/2.0

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1 ACK ⇐CSeq not incremented
method set to ACK

M4 INVITE sip:ada@language.org SIP/2.0XX X⇐INVITE resent with
Via: SIP/2.0/UDP 12.26.17.91:5060XXXXXXX XXXXXcredentials
From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: sip:ada@language.org

Call-ID:f6-32-9a-34-91-e7

@analyticalsoc.org ⇐Call-ID unchanged
CSeq: 2 INVITE ⇐CSeq incremented
Proxy-Authorization:Digest

username="Babbage", ⇐Credentials
realm="SIP Telephone Company",

nonce="9c8e88df84f1cec4341ae6e5a359",

opaque="", uri="sip:proxy.sip-company.com",

response="e56131d19580cd833064787ecc"

Contact: sip:babbage@analyticalsoc.org

Subject: RE: Software

User-Agent: Difference Engine 1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M5 SIP/2.0 100 Trying ⇐Provisional response
Via: SIP/2.0/UDP 12.26.17.91:5060 indicates credentials
From: Charles Babbage Xaccepted by proxy

<sip:babbage@analyticalsoc.org>

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

M6 DNS Query: SRV language.org?

M7 DNS SRV Record: 10.14.92.1

156 SIP: Understanding the Session Initiation Protocol

M8 INVITE sip:ada@language.org SIP/2.0

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

Contact: sip:babbage@analyticalsoc.org

Subject: RE: Software

User-Agent: Difference Engine 1

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M9 SIP/2.0 100 Trying ⇐Provisional response
Via:SIP/2.0/UDP 15.16.17.18:5060; not forwarded

XXXXXXXXXXXXXXXXXXXXXxXXXbranch=3f31049.1 by proxy
Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

M10 Location Service Query: ada?

M11 Location Service Response: 1.2.3.4

M12 INVITE sip:ada@1.2.3.4 SIP/2.0

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: sip:ada@language.org

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

Contact: sip:babbage@analyticalsoc.org

Subject: RE: Software

User-Agent: Difference Engine 1

Record-Route: <sip:ada@language.org; ⇐Record-route added
maddr=10.14.92.1> by proxy

Call Flow Examples 157

Content-Type: application/sdp

Content-Length: 137

v=0

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91

s=-

t=0 0

c=IN IP4 12.26.17.91

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M13 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>

To: <sip:ada@language.org>;tag=65a3547e3 ⇐Tag added by
Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org called party
CSeq: 2 INVITE

M14 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

M15 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

M16 SIP/2.0 200 OK ⇐Call accepted
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.org

Record-Route: <sip:ada@language.org;XX XXXXXXX⇐ Copied from
XXXXXXXXXXXXXXXXXXXXXxXXXXmaddr=10.14.92.1> INVITE

Content-Type: application/sdp

158 SIP: Understanding the Session Initiation Protocol

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4 ⇐Ada�sIPaddress
m=audio 52310 RTP/AVP 0 ⇐Port number
a=rtpmap:0 PCMU/8000 ⇐Codec information

M17 SIP/2.0 200 OK

Via: SIP/2.0/UDP 15.16.17.18:5060;branch=3f31049.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>ÿ

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.org

Record-Route: <sip:ada@language.org;maddr=10.14.92.1>ÿ

Content-Type: application/sdp

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4

m=audio 52310 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M18 SIP/2.0 200 OK

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

Contact: sip:ada@drawingroom.language.org

Record-Route: <sip:ada@language.org;maddr=10.14.92.1>

Content-Type: application/sdp

Content-Length: 126

v=0

o=Ada 2890844536 2890844536 IN IP4 1.2.3.4

s=-

t=0 0

c=IN IP4 1.2.3.4

Call Flow Examples 159

m=audio 52310 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M19 ACK sip:ada@drawingroom.language.org ⇐Sent to firewall
XXXXXXXXXXXXXXXXXXXXXxXXXXSIP/2.0 proxy due to

Via: SIP/2.0/UDP 12.26.17.91:5060 Record-Route
From: Charles Babbage <sip:babbage@analyticalsoc.org> header
To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 ACK

Route: <sip:ada@drawingroom.language ⇐Created from Record-
XXXXXXXXXXXXXXXXXXXXXxXXXX.org;maddr=1.2.3.4> Route header

in 200 OK

M20 ACK sip:ada@drawingroom.language.org SIP/2.0

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 12.26.17.91:5060

From: Charles Babbage <sip:babbage@analyticalsoc.org>

To: <sip:ada@language.org>;tag=65a3547e3

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 2 INVITE

M21 BYE sip:babbage@analyticalsoc.org SIP/2.0

Via: SIP/2.0/UDP 1.2.3.4:5060

From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.org>

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1000 BYE ⇐CSeq initialized to 1000
Route: <sip:babage@analyticsoc.org;

XXXXXXXXXXXXXXXXXXXXXxXXXXmaddr=12.26.17.91> ⇐From Record-
Route header

M22 BYE sip:babbage@analyticalsoc.org SIP/2.0

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 1.2.3.4:5060

From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.org>

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1000 BYE

M23 SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.14.92.1:5060;branch=24105.1

Via: SIP/2.0/UDP 1.2.3.4:5060

From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.org>

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1000 BYE

160 SIP: Understanding the Session Initiation Protocol

M24 SIP/2.0 200 OK

Via: SIP/2.0/UDP 1.2.3.4:5060

From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3

To: Charles Babbage <sip:babbage@analyticalsoc.org>

Call-ID: f6-32-9a-34-91-e7@analyticalsoc.org

CSeq: 1000 BYE

9.2 SIP Call with Stateless and Stateful Proxies with Called
Party Busy

Figure 9.2 shows an example of a SIP with a stateless proxy server and a stateful
proxy server. The call is not completed because called party is busy. The called
user agent initially sends a 180 Ringing response but then sends a 600

Busy Everywhere response containing a Retry-After header to indicate
that the call is being rejected. The stateful proxy returns a 100 Trying

response to the INVITE, and also acknowledges the 600 Busy Everywhere

response with an ACK. The stateless proxy does not send a 100 Trying and
forwards the 600 Busy Everywhere and the ACK sent by the caller user
agent. Also note that the initial INVITE does not contain a message body.

M1 INVITE sip:schockley@transistor.org SIP/2.0

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

Call Flow Examples 161

INVITE M1

Shannon

600 M11

600 M8

100 M3

Stateless proxy
server

Stateful proxy
server Schockley

I M2NVITE
I M4NVITE

180 M6

600 M10

180 M7
180 M5

ACK M9

ACK M12 ACK M13

sampling.org 9.8.7.6 10.9.8.7 67.3.2.1

Figure 9.2 SIP call example with stateless and stateful proxies with busy called party.

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Date: Sat, 8 Jul 2000 08:23:00 GMT ⇐Optional date header
Content-Length: 0 ⇐Optional Content-Length header

M2 INVITE sip:schockley@transistor.org SIP/2.0 X⇐Stateless proxy
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1 does not send

X Via: SIP/2.0/UDP discrete.sampling.org:5060 100 Trying
From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Date: Sat, 8 Jul 2000 08:23:00 GMT

Content-Length: 0

M3 SIP/2.0 100 Trying ⇐Stateful proxy does
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1XX XXsend 100 Trying
Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Content-Length: 0

M4 INVITE sip:schockley@transistor.org SIP/2.0

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=ff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Date: Sat, 8 Jul 2000 08:23:00 GMT

Content-Length: 0

M5 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 10.9.8.7:52103;branch=ff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Content-Length: 0

162 SIP: Understanding the Session Initiation Protocol

M6 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Content-Length: 0

M7 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Content-Length: 0

M8 SIP/2.0 600 Busy Everywhere ⇐Schockley is busy
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=ff7d.1

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

M9 ACK sip:schockley@transistor.com SIP/2.0 ⇐Stateful proxy
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=5f7e.1 ACKs response
From: Shannon <sip:shannon@sampling.org>;tag=aa34

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 ACK

Content-Length: 0

M10 SIP/2.0 600 Busy Everywhere

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=1.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>;tag=429

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

Call Flow Examples 163

M11 SIP/2.0 600 Busy Everywhere ⇐Stateless proxy does
Via: SIP/2.0/UDP discrete.sampling.org:5060 not ACK response
From: Shannon <sip:shannon@sampling.org>;tag=429

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 INVITE

Retry-After: Sun, 9 Jul 2000 11:59:00 GMT

Content-Length: 0

M12 ACK sip:schockley@transistor.com SIP/2.0

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>;tag=429

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 ACK

Content-Length: 0

M13 ACK sip:schockley@transistor.com SIP/2.0

Via: SIP/2.0/UDP 9.8.7.6:5060;branch=5.1

Via: SIP/2.0/UDP discrete.sampling.org:5060

From: Shannon <sip:shannon@sampling.org>;tag=429

To: Schockley <sip:shockley@transistor.com>;tag=1

Call-ID: adf8gasdd7fld@discrete.sampling.org

CSeq: 1 ACK

Content-Length: 0

9.3 SIP to PSTN Call Through Gateway

In the example shown in Figure 9.3, the calling SIP phone places a telephone
call to the PSTN through a PSTN gateway. The SIP phone collects the
dialed digits and puts them into a SIP URL used in the Request-URI and
the To header. The caller may have dialed either the globalized phone
number 1-202-555-1313 or they may have just dialed a local number
555-1313, and the SIP phone added the assumed country code and area code
to produce the globalized URL. The SIP phone has been preconfigured with
the IP address of the PSTN gateway, so it is able to send the INVITE directly
to gw.carrier.com. The gateway initiates the call into the PSTN by selecting
an SS7 ISUP trunk to the next telephone switch in the PSTN. The dialed
digits from the INVITE are mapped into the ISUP Initial Address Message
(IAM). The ISUP Address Complete Message (ACM) is sent back by the
PSTN to indicate that the trunk has been seized. Progress tones are generated
in the one-way audio path established in the PSTN. In this example, ring
tone is generated by the far end telephone switch. The gateway maps the

164 SIP: Understanding the Session Initiation Protocol

ACM to the 183 Session Progress response containing SDP indicating
the RTP port that the gateway will bridge the audio from the PSTN. Upon
reception of the 183, the caller�s UAC begins receiving the RTP packets sent
from the gateway and presents the audio to the caller so they know that the
call is progressing in the PSTN.

The call completes when the called party answers the telephone, which
causes the telephone switch to send an Answer Message (ANM) to the gate-
way. The gateway then cuts the PSTN audio connection through in both
directions and sends a 200 OK response to the caller. Because the RTP media

Call Flow Examples 165

I sip:+12125551212@gw.carrier.comNVITE

PRACK M5

200 M11

ACM M3

Ringing voltage

RTP packets

ANM M7

183 M4

Answer

DTMF digit

200 M8

IAM M2

SIP
caller PSTN gateway

ISUP
telephone

switch
Telephone

+1-202-555-1212

M1

Ring tone

ACK M9

RTP packets PCM speech Analog speech

DigitINFO M10

BYE M12 REL M13

RLC M15200 M14 Hangup

50.60.70.80

200 M6

8.19.19.06

Figure 9.3 SIP to PSTN call through gateway.

path is already established, the gateway echoes the SDP in the 183 but causes
no changes to the RTP connection. The UAC sends an ACK to complete the
SIP signaling exchange. Because there is no equivalent message in ISUP, the
gateway absorbs the ACK.

The call terminates when the caller sends the BYE to the gateway. The
gateway maps the BYE to the ISUP Release message or REL. The gateway
sends the 200 OK to the BYE and receives a RLC from the PSTN. These two
messages have no dependency on each other; if, for some reason, either
the SIP or PSTN network does not respond properly, one does not want
resources held in the other network as a result.

M1 INVITE sip:+12025551313@gw.carrier.com;user=phone SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <sip:+12025551313@gw.carrier.com;user=phone>

Call-ID: 49235243082018498@television.tv

CSeq: 1 INVITE

Supported: 100rel

Contact: sip:filo.farnsworth@television.tv

Content-Type: application/sdp

Content-Length: 154

v=0

o=FF 2890844535 2890844535 IN IP4 8.19.19.06

s=-

t=0 0

c=IN IP4 8.19.19.06

m=audio 5004 RTP/AVP 0 8 ⇐Two alternative codecs,
a=rtpmap:0 PCMU/8000 PCM µ-Law or
a=rtpmap:8 PCMA/8000 PCM A-Law

M2 IAM

CdPN=2-2-555-1313, NPI=E.164,

NOA=National ⇐Gateway maps telephone
USI=Speech number from SIP URL

into called party number

M3 ACM

M4 SIP/2.0 183 Session Progress

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <+12025551313@gw.carrier.com;user=

phone>;tag=37 ⇐Tag and brackets added

166 SIP: Understanding the Session Initiation Protocol

Call-ID: 49235243082018498@television.tv

CSeq: 1 INVITE

RSeq: 08071

Content-Type: application/sdp

Content-Length: 139

v=0

o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80

s=-

t=0 0

c=IN IP4 50.60.70.80

m=audio 62002 RTP/AVP 0 ⇐Gateway selects M-Law codec
a=rtpmap:0 PCMU/8000

M5 PRACK sip:+12025551313@gw.carrier.com;user=phone SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>;tag=37

To: <sip:+12025551313@gw.carrier.com;user=phone>

Call-ID: 49235243082018498@television.tv

CSeq: 2 PRACK

RAck: 08071 1 INVITE

Content-Length: 0

M6 SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>;tag=37

To: <sip:+12025551313@gw.carrier.com;user=phone>

Call-ID: 49235243082018498@television.tv

CSeq: 2 PRACK

M7 ANM

M8 SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <+12025551313@gw.carrier.com;user=phone>;tag=37

Call-ID: 49235243082018498@television.tv

CSeq: 1 INVITE

Content-Type: application/sdp

Content-Length: 139

v=0

o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80

s=-

t=0 0

c=IN IP4 50.60.70.80

Call Flow Examples 167

m=audio 62002 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M9 ACK sip:+12025551313@gw.carrier.com;user=phone SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <+12025551313@gw.carrier.com;user=phone>;tag=37

Call-ID: 49235243082018498@television.tv

CSeq: 1 ACK

M10 INFO sip:filo.farnsworth@television.tv SIP/2.0

Via: SIP/2.0/UDP 50.60.70.80:5060

From: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37

To: <sip:filo.farnsworth@television.tv>

Call-ID: 49235243082018498@television.tv

CSeq: 1 INFO

Content-Type: text/plain

Content-Length: 10

DTMF �"9"

M11 SIP/2.0 200 OK

Via: SIP/2.0/UDP 50.60.70.80:5060

From: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37

To: <sip:filo.farnsworth@television.tv>

Call-ID: 49235243082018498@television.tv

CSeq: 1 INFO

M12 BYE sip:+12025551313@gw.carrier.com;user=phone SIP/2.0

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <+12025551313@gw.carrier.com;user=phone>;tag=37

Call-ID: 49235243082018498@television.tv

CSeq: 2 BYE ⇐CSeq incremented

M13 REL

CauseCode=16 Normal Clearing

M14 SIP/2.0 200 OK

Via: SIP/2.0/UDP 8.19.19.06:5060

From: <sip:filo.farnsworth@television.tv>

To: <+12025551313@gw.carrier.com;user=phone>;tag=37

Call-ID: 49235243082018498@television.tv

CSeq: 2 BYE

M15 RLC

168 SIP: Understanding the Session Initiation Protocol

9.4 PSTN to SIP Call Through Gateway

Figure 9.4 shows a call originating from a telephone in the PSTN that termi-
nates on a SIP phone in the Internet. The compact form of SIP is used
throughout the example. Note that there is no compact form for CSeq due
to an oversight in the standard document.

M1 Setup

CdPN=6512345, NPI=E.164,XXXXXXX

NOA=International ⇐Dialed telephone number
CgPN=4567890, NPI=E.164,

NOA=International ⇐PSTN caller�s number
USI=Speech

M2 INVITE sip:+6512345@incoming.com ⇐Number mapped
;user=phone SIP/2.0 into SIP URL

v: SIP/2.0/UDP 65.3.4.1 ⇐Compact form of headers
f: <sip:+45.67890@incoming.com;user=phone>; Caller includes tag

tag=6a589b1

Call Flow Examples 169

Setup CdPn=+6512345 M1

100 M3

180 M7

INVITEsip:+6512345@gw.carrier.com M2

ISDN
telephone

switch

PSTN
gateway

RTP packetsPCM speech

ACK M13

Proxy
server

SIP
phoneDatabase

+6512345? M4

sip-phone@home.com M5

I sipphone@home.com M6NVITE

180 M8Alterting M9

Connect M12 200 M11 200 M10

Figure 9.4 PSTN to SIP phone through gateway.

t: <sip:+65.12345@incoming.com;user=phone>

i: a3-65-99-1d@65.3.4.1

CSeq: 1 INVITE

c: application/sdp

l: 126

v=0

o=- 2890844535 2890844535 IN IP4 65.3.4.1

s=-

t=0 0

c=IN IP4 65.3.4.1

m=audio 62432 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M3 SIP/2.0 100 Trying

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: sip:+65.12345@incoming.com;user=phone

i: a3-65-99-1d@65.3.4.1

CSeq: 1 INVITE

M4 Service Query: +65-12345

M5 Location Service Response:

sip:user@home.com ⇐Number maps to SIP URL

M6 INVITE sip:user@home.com SIP/2.0

v: SIP/2.0/UDP 176.5.8.2:5060;branch=942834822.1

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: sip:+65.12345@incoming.com;user=phone

i: a3-65-99-1d@65.3.4.1

CSeq: 1 INVITE

c: application/sdp

l: 126

v=0

o=- 2890844535 2890844535 IN IP4 65.3.4.1

s=-

t=0 0

c=IN IP4 65.3.4.1

m=audio 62432 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M7 SIP/2.0 180 Ringing

v: SIP/2.0/UDP 176.5.8.2:5060;branch=942834822.1

170 SIP: Understanding the Session Initiation Protocol

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.com;user=phone>;

tag=8657 ⇐Called party
i: a3-65-99-1d@65.3.4.1 adds tag

M8 SIP/2.0 180 Ringing

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.com;user=phone>;tag=8657

i: a3-65-99-1d@65.3.4.1

M9 Alerting

M10 SIP/2.0 200 OK

v: SIP/2.0/UDP 176.5.8.2:5060;branch=942834822.1

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.com;user=phone>;tag=8657

i: a3-65-99-1d@65.3.4.1

CSeq: 1 INVITE

m: sip:user@home.com

c: application/sdp

l: 125

v=0

o=- 2890844565 2890844565 IN IP4 7.8.9.10

s=-

t=0 0

c=IN IP4 7.8.9.10

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M11 SIP/2.0 200 OK

v: SIP/2.0/UDP 65.3.4.1

f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1

t: <sip:+65.12345@incoming.com;user=phone>;tag=8657

i: a3-65-99-1d@65.3.4.1

CSeq: 1 INVITE

m: sip:user@home.com

c: application/sdp

l: 125

v=0

o=- 2890844565 2890844565 IN IP4 7.8.9.10

s=-

Call Flow Examples 171

t=0 0

c=IN IP4 7.8.9.10

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M12 Connect

M13 ACK sip:user@home.com SIP/2.0

v: SIP/2.0/UDP 65.3.4.1

f: <sip+45.67890@incoming.com;user=phone>;tag=6a589b1

t: <sip+65.12345@incoming.com;user=phone>;tag=8657

i: a3-65-99-1d@65.3.4.1

CSeq: 1 ACK

9.5 Parallel Search

In this example the caller receives multiple possible locations for the called
party from a redirect server. Instead of trying the locations one at a time, the
user agent implements a parallel search for the called party by simultaneously
sending the INVITE to three different locations, as shown in Figure 9.5. The
SIP specification gives an example of this behavior in a proxy server, which is
called a forking proxy [3].

In this example the first location responds with a 404 Not Found

response. The second location responds with a 180 Ringing response,
while the third location returns a 180 Ringing then a 200 OK response.
The caller then sends an ACK to the third location to establish the call.
Because one successful response has been received, a CANCEL is sent to the
second location to terminate the search. The second location sends a 200 OK

to the CANCEL and a 487 Request Cancelled to the INVITE.
This example shows some customized reason phrases in messages M7,

M10, and M11.

M1 INVITE sip:faraday@effect.org;user=ip SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000 ⇐Port 60000 is used
From: J.C. Maxwell instead of 5060
<sip:james.maxwell@kings.cambridge.edu.uk> ⇐Long header

line wrapped
To: <sip:faraday@effect.org;user=ip>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE ⇐CSeq initialized to 54
Contact:<sip:james.maxwell@kings.cambridge.edu.uk>

Content-Type: application/sdp

172 SIP: Understanding the Session Initiation Protocol

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 4

a=rtpmap:4 DVI/8000

M2 SIP/2.0 300 Multiple locations ⇐Redirect server returns
Via: SIP/2.0/UDP 7.9.18.12:60000 three locations
From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To:<sip:faraday@effect.org;user=ip>;tag=1024

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE

Call Flow Examples 173

ACK M3

I faraday@effect.orgNVITE

Babbage Redirect
server

RTP media packets
CANCEL M13

180 M9

ACK M8

Royal
society

Common room
(Faraday)

SIP
phone

300 M2

404 M7

I faraday@lab.royalsoc.org M4NVITE

I +44.555.1212@sip-phone.effect.org M5NVITE

I faraday@commonroom.club.gb M6NVITE

180 M10
200 M11
ACK M12

200 M14
487 M15

M1

Figure 9.5 Parallel search example.

Contact:<sip:faraday@lab.royalsoc.gb>

Contact:<sip:+44.555.1212@sip-phone.effect.org;user=phone>

Contact: <sip:michael.faraday@commonroom.club.gb>

M3 ACK sip:faraday@effect.org;user=ip

Via: SIP/2.0/UDP 7.9.18.12:60000

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=1024

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 54 INVITE

M4 INVITE sip:faraday@lab.royalsoc.gb SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:

60000;branch=1 ⇐Each INVITE has
From: J.C. Maxwell unique branch ID
<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip> ⇐Tag is not copied
Call-ID: mNjdwWjkBfWrd@7.9.18.12 ⇐Call-ID unchanged
CSeq: 55 INVITE ⇐CSeq incremented
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 4

a=rtpmap:4 DVI/8000

M5 INVITE sip:+44.555.1212@sip-phone.effect.org;

user=phone SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=2

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

Contact: <sip:james.maxwell@kings.cambridge.edu.uk>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

174 SIP: Understanding the Session Initiation Protocol

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 4

a=rtpmap:4 DVI/8000

M6 INVITE sip:faraday@commonroom.club.gb SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=3

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

Contact: <sip:james.maxwell@kings.cambridge.edu.uk>

Content-Type: application/sdp

Content-Length: 129

v=0

o=max 2890844521 2890844521 IN IP4 7.9.18.12

s=-

t=0 0

c=IN IP4 7.9.18.12

m=audio 32166 RTP/AVP 4

a=rtpmap:4 DVI/8000

M7 SIP/2.0 404 The member you have requested is not available

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=1

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=f6

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

M8 ACK sip:faraday@lab.royalsoc.gb SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=f6

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 ACK

M9 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=2

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

Call Flow Examples 175

M10 SIP/2.0 180 Please wait while we locate Mr. Faraday

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=3

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

M11 SIP/2.0 200 Mr. Faraday at your service?

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=3

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

User-Agent: PDV v4

Contact: <sip:faraday@commonroom.club.gb>

Content-Type: application/sdp

Content-Length: 131

v=0

o=max 2890844521 2890844521 IN IP4 6.22.17.89

t=0 0

c=IN IP4 6.22.17.89

m=audio 43782 RTP/AVP 4

a=rtpmap:4 DVI/8000

M12 ACK sip:faraday@commonroom.club.gb;user=ip SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=3

From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=531

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 ACK

M13 CANCEL sip:+44.555.1212@sip-phone.effect.org;

user=phone SIP/2.0

Via: SIP/2.0/UDP 7.9.18.12:60000;branch=2 ⇐Cancels search
From: J.C. Maxwell

<sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 CANCEl ⇐ CSeq not incremented,
method set to CANCEL

M14 SIP/2.0 200 OK ⇐CANCEL acknowledged
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=2

176 SIP: Understanding the Session Initiation Protocol

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip>;tag=6321

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 CANCEL

M15 SIP/2.0 487 Request Cancelled ⇐Final response to INVITE
Via: SIP/2.0/UDP 7.9.18.12:60000;branch=2

From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>

To: <sip:faraday@effect.org;user=ip;tag=6321>

Call-ID: mNjdwWjkBfWrd@7.9.18.12

CSeq: 55 INVITE

9.6 H.323 to SIP Call

In this example, a H.323 terminal calls a SIP-enabled PC through a
H.323/SIP gateway. The gateway does signaling translation between the pro-
tocols but allows the two end-points to exchange media packets directly with
each other. The full details of SIP/H.323 interworking are being developed
in the SIP working group [4].

In this example, shown in Figure 9.6, the initial message exchange is
between the calling H.323 terminal and the H.323 gatekeeper. The gate-
keeper resolves the H.323 alias into an address served by the H.323/SIP gate-
way. The ACF response indicates that gatekeeper-routed signaling is required,
so the Q.931 and H.245 TCP connections are opened to the gatekeeper,
which opens TCP connections to the gateway. The calling H.323 terminal
sends a Q.931 Setup message to the gatekeeper, which proxies it to the
H.323/SIP gateway. The gateway then looks up the H.323 alias and resolves
it to the SIP URL of the called party. It constructs an INVITE from the
Setup message and forwards it to a SIP proxy, which forwards it to the
called party. Note that because the Setup message does not contain any
media information, the INVITE does not contain any media information
either. The called party sends a 180 Ringing then a 200 OK to indicate
that the call has been answered. The media information present in the SDP
message body is stored by the gateway, which sends Alerting and Con-

nect messages to the gatekeeper, which proxies them to the calling H.323
terminal. The gateway holds off sending the ACK response to the INVITE

until the H.245 media exchange is completed between the H.323 terminal
and the gateway. Once that is complete, the negotiated media capabilities are
returned in the ACK and the media session begins.

Call Flow Examples 177

M1 ARQ

address(h323alias=Stibitz)

M2 ACF

gatekeeper routed signaling

178 SIP: Understanding the Session Initiation Protocol

H.323
Terminal

Proxy
server

RTP media packets

Sip/H323
gateway

SIP PC

ARQ M1

Gatekeeper

AFC M2

Setup M3 Setup M4
ARQ M5

AFC M6
INVITE M7

INVITE M9
100 M8

180 M10
180 M11
200 M15

Alerting M12Alerting M13

Connect M16Connect M17

TCS M19
TCS M18

TSCAck M21
TCSAck M20

TCS M22TCS M23

TSCAck M25TCSAck M24

MSD M27MSD M26

MSDAck M28MSDAck M29

OLC M31OLC M30

OLCAck M32OLCAck M33
OLC M34OLC M35

OLCAck M37OLCAck M36 ACK M38 ACK M39

1.28.18.57 2.3.4.5 3.4.5.6 4.30.19.04

200 M14

Figure 9.6 H.323 to SIP call.

M3 Setup

Cd address(h323alias=Stibitz)

Cg address(h323alias=Burroughs)

M4 Setup

Cd address(h323alias=Stibitz)

Cg address(h323alias=Burroughs)

M5 ARQ

M6 ACF

M7 INVITE sip:stibitz@proxy.com SIP/2.0

Via: SIP/2.0/TCP 2.3.4.5 ⇐TCP used for transport
From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>

Call-ID: 526272332146783569054

CSeq: 43252 INVITE ⇐CSeq initialized
Contact: sip:burroughs@h323-gateway.com to 43252
Content-Length: 0

M8 100 Trying

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Content-Length: 0

M9 INVITE sip:gstibitz123@snailmail.com SIP/2.0

Via: SIP/2.0/UDP 3.4.5.6:5060;

branch=452.1 ⇐Proxy forwards with UDP
Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Contact: sip:burroughs@h323-gateway.com

M10 SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 3.4.5.6:5060; branch=452.1

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call Flow Examples 179

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Content-Length: 0

M11 SIP/2.0 180 Ringing

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Content-Length: 0

M12 Alerting

M13 Alerting

M14 SIP/2.0 200 OK

Via: SIP/2.0/UDP 3.4.5.6:5060

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Contact: <sip:gstibitz123@snailmail.com>

Content-Type: application/sdp

Content-Length: 134

v=0

o=George 2890844576 2890844576 IN IP4 4.30.19.04

s=-

t=0 0

c=IN IP4 4.30.19.04

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M15 SIP/2.0 200 OK

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call-ID: 526272332146783569054

CSeq: 43252 INVITE

Contact: <sip:gstibitz123@snailmail.com>

Content-Type: application/sdp

Content-Length: 134

v=0

o=George 2890844576 2890844576 IN IP4 4.30.19.04

180 SIP: Understanding the Session Initiation Protocol

s=-

t=0 0

c=IN IP4 4.30.19.04

m=audio 5004 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Content-Length:0

M16 Connect

M17 Connect

M18 TerminalCapabilitySet

M19 TerminalCapabilitySet

M20 TerminalCapabilitySetAck

M21 TerminalCapabilitySetAck

M22 TerminalCapabilitySet

M23 TerminalCapabilitySet

M24 TerminalCapabilitySetAck

M25 TerminalCapabilitySetAck

M26 MasterSlaveDetermination

M27 MasterSlaveDetermination

M28 MasterSlaveDeterminationAck

M29 MasterSlaveDeterminationAck

M30 OpenLogicalChannel

g711uLaw 1.28.18.57 60002

M31 OpenLogicalChannel

g711uLaw 1.28.18.57 60002

M32 OpenLogicalChannelAck

M33 OpenLogicalChannelAck

Call Flow Examples 181

M34 OpenLogicalChannel

g711uLaw 4.30.19.04 5004

M35 OpenLogicalChannel

g711uLaw 4.30.19.04 5004

M36 OpenLogicalChannelAck

M37 OpenLogicalChannelAck

M38 ACK sip:gstibitz123@snailmail.com SIP/2.0

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call-ID: 526272332146783569054

CSeq: 43252 ACK

Content-Type: application/sdp

Content-Length: 130

v=0

o=- 2890844577 2890844577 IN IP4 1.28.18.57

s=-

t=0 0

c=IN IP4 1.28.18.57

m=audio 60002 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M39 ACK sip:gstibitz123@snailmail.com SIP/2.0

Via: SIP/2.0/UDP 3.4.5.6:5060;branch=452.1

Via: SIP/2.0/TCP 2.3.4.5

From: <sip:burroughs@h323-gateway.com>

To: <sip:stibitz@proxy.com>;tag=1926

Call-ID: 526272332146783569054

CSeq: 43252 ACK

Content-Type: application/sdp

Content-Length: 130

v=0

o=- 2890844577 2890844577 IN IP4 1.28.18.57

s=-

t=0 0

c=IN IP4 1.28.18.57

m=audio 60002 RTP/AVP 0

a=rtpmap:0 PCMU/8000

182 SIP: Understanding the Session Initiation Protocol

References

[1] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Section 16.

[2] Johnston, A., et al., �SIP Telephony Call Flow Examples,� IETF Internet-Draft, Work
in Progress.

[3] Handley, M., et al., �SIP: Session Initiation Protocol,� RFC 2543, 1999, Forking
Proxy Example.

[4] Agrawl, H., R. Roy, and V. Palawat, �SIP-H.323 Interworking Requirements,� IETF
Internet-Draft, Work in Progress.

Call Flow Examples 183

.

10
Future Directions

This chapter discusses some of the current work items and design teams of
the SIP working group as of July 2000, just prior to the IETF 48th Meeting.
The extensions discussed here are currently only in Internet-Draft form, the
precursor to the Request for Comments. For the latest on these extensions,
check the IETF web site. Because Internet-Drafts are archived for only 6
months, some of the drafts mentioned in this chapter may no longer exist or
may have a different name.

10.1 Changes to RFC 2543

Since the SIP protocol RFC 2543 was published, the SIP working group has
maintained a list of bug fixes, clarifications, typos, and other minor modifica-
tions [1]. As of this writing, there is a document containing these modifica-
tions, published as an Internet-Draft in 2000. The chartered goal of the
working group is to move SIP from its current Proposed Standard status to
Draft Standard status. As a result, only minor changes will be made to the
protocol, or else it will have to recycle back to Proposed Standard status and
begin the standards process again. Most of the extensions that are working
group items and that are close to RFC status have been described in previous
chapters. These new methods, headers, and response codes are summarized
in the following three tables. Table 10.1 lists the new proposed SIP methods

185

or request message types. The first two, INFO and PRACK, are covered in
Sections 4.1.7 and 4.1.8 and are close to RFC status. Two other methods,
REFER and COMET are still being discussed and may change form before
being standardized. SUBSCRIBE and NOTIFY have been developed in
a related IETF working group called PINT. Table 10.2 lists the proposed
new headers, all of which are covered in Chapter 7. Table 10.3 lists the two
new proposed response codes, 183 and 421, both of which are covered in
Chapter 5.

These new extensions to SIP will be documented in stand-alone RFCs.
Future revisions to the RFC 2543 standard will roll these RFC documents
into a single RFC.

10.2 SIP Working Group Design Teams

Design teams in the IETF are loosely organized voluntary groups of indi-
viduals working towards a common goal, usually an Internet-Draft docu-
ment, that is of interest to the wider working group. In short, a design team
is like a working group but on a much smaller scale. There are design teams
working within the SIP IETF working group on the following areas: call
control, convergence with PacketCable DCS extensions, call flows,
SIP/H.323 interworking, home extension, SIP security, and SIP telephony.
New design teams are constantly being formed as issues are raised at IETF
meetings and from the mailing list.

186 SIP: Understanding the Session Initiation Protocol

Table 10.1
Proposed SIP Methods

Method name Description

INFO Mid-call signaling information exchange (Section 4.1.7) [2]

PRACK Acknowledgment of provisional responses (Section 4.1.8) [3]

REFER Call transfer [4]

SUBSCRIBE Request Notification of Call Event [5]

NOTIFY

COMET

Notification of Subscribed Call Event [5]

Call Preconditions; Met [6]

10.2.1 Call Control

This chartered work item is to extend the SIP protocol to enable call controls
such as call transfer and attended transfer, common features in the PSTN.
Because the design of SIP is for end-device control rather than third-party
call control, these extensions are not trivial. The initial work in this area
defined new headers such as Bye-Also to initiate blind transfers. Blind
transfers, also called unattended transfers, do not allow the party performing
the transfer operation any way of knowing if the transfer succeeded or failed.
A new approach, however, has been taken lately to instead define a new
method REFER [4] that allows both unattended and attended transfer
operations.

Future Directions 187

Table 10.2
Proposed SIP Headers

Header Name Description Section

Accept-Contact Caller preference for allowed URIs for proxy operation [7] 6.2.2

RAck Reliable provisional response acknowledgement number [3] 6.2.18

Reject-Contact Caller preference for rejected URIs for proxy operation [7] 6.2.13

Request-Disposition Caller preference for type of server operation [7] 6.2.14

RSeq Reliable provisional responses sequence number [3] 6.3.6

Session-Expires Time limit on media session using Session Timer [8] 6.2.19

Supported Lists options implemented by a User Agent or server [9] 6.1.10

Transfer-To URL for attended transfer [4]

Table 10.3
Proposed SIP Response Codes

Response code Description

183 Session Progress Carries message body prior to final response
[10]

421 Extension Required A proxy to requires an extension [9]

10.2.2 Convergence with PacketCable Distributed Call Signaling (DCS)
Extensions

This work item involves the standardization of some of the extensions pro-
posed to SIP by the PacketCable DCS group. This group led by the Cable-
Labs consortium [10] has developed a set of protocol extensions for their
application in providing home telephone service using the Data over Cable
Service Interface Specification (DOCSIS) [11]. In the future, some of these
proprietary extensions may be adopted into the SIP specification. Some of
the extensions relate to billing, caller privacy, INVITE with no ring, QoS
setup, etc. For example, COMET is defined in a DCS draft [6].

10.2.3 Call Flows

This work item involves the preparation of an informational RFC containing
examples of the SIP protocol. The current draft [12] includes examples of the
protocol�s use both in an all IP environment as well as with gateways to the
PSTN. The draft also includes example SIP messages developed for testing
during the bakeoffs. A future Internet-Draft will include the use of the
REFER method to implement common PSTN features.

10.2.4 SIP/H.323 Interworking

This working group design team is developing requirements [13] and recom-
mendations for a standard interworking function for the signaling conversion
between SIP and H.323. This design team is composed of experts on SIP from
the IETF as well as experts on H.323 from the ITU Study Group 16.

10.2.5 Home Extension

This working group design team is developing call flows and implementation
recommendations for how to implement home extensions to mimic current
analog telephone behavior, as described in Section 3.8.

10.2.6 SIP Security

This working group design team is investigating security for SIP beyond the
current use of SIP Digest and IPSec. The issue of security encompasses areas
such as encryption, privacy of addresses, URLs, and IP addresses.

188 SIP: Understanding the Session Initiation Protocol

10.2.7 SIP for Telephony

This working group design team works on interworking and encapsulation
of PSTN protocols with SIP. The SIP-T document [14] (formerly called
�SIP Telephony Best Current Practices,� or �SIP+�) is an umbrella docu-
ment that describes the use of SIP for communication between media gate-
ways (PSTN to SIP to PSTN calls only) to achieve feature transparency to
the PSTN devices. It specifies the use of:

• SIP version 2.0 in RFC 2543;

• MIME multipart specification [15];

• ISUP MIME type [16];

• INFO method [2];

• SIP/ISUP mapping draft [17];

• Network address point (NAP) to be defined in a future draft.

10.3 Other Related Drafts

Some other work items in the SIP working group relate to the SIP protocol
without introducing new behavior or elements to the protocol. For exam-
ple, the SIP Management Information Base (MIB) chartered work item has
defined a standard MIB [18] for use by SNMP network management
systems to control and manage SIP devices including user agents and serv-
ers. The DHCP SIP Option draft [19] specifies an extension to DHCP
(Section 3.8) to allow a SIP user agent to locate a SIP server using DHCP.
The SIP extension framework document [20] describes how the protocol
should be extended. SIP will likely make use of the caller preferences lan-
guage (CPL) [21] for uploading feature scripts being developed by the
IPTEL working group.

References

[1] Henning Schulzrinne has maintained this list of fixes on his excellent SIP web page at
http://www.cs.columbia.edu/sip/. Information about how to subscribe to the SIP work-
ing group e-mail list or how to read the list archive is available on the SIP working
group official charter web page at http://www.ietf.org/html.charters/sip-charter.html.

[2] Donovan, S., �The SIP INFO Method,� RFC 2976, 2000.

Future Directions 189

[3] Rosenberg, J., and H. Schulzrinne, �Reliability of Provisional Responses,� IETF
Internet-Draft, Work in Progress.

[4] Sparks, R., �SIP Call Control: TRANSFER,� IETF Internet-Draft, Work in Progress.

[5] Petrack S., and L. Genroy, �The PINT Service Protocol,� RFC 2848, 2000.

[6] Marshall, W., et al., �Architectural Considerations for Providing Carrer Class Teleph-
ony Services Utilizing SIP-based Distributed Call Ceontrol Mechanisms,� IETF
Internet-Draft, Work in Progress.

[7] Schulzrinne, H., and J. Rosenberg, �SIP Caller Preferences and Callee Capabilities,�
IETF Internet-Draft, Work in Progress.

[8] Donovan, S., and J. Rosenberg, �The SIP Session Timer,� IETF Internet-Draft, Work
in Progress.

[9] Rosenberg, J., and H. Schulzrinne, �The SIP Supported Header,� IETF Internet-Draft,
Work in Progress.

[10] Donovan, S., et al., �SIP 183 Session Progress Message,� IETF Internet-Draft, Work in
Progress.

[11] Information about PacketCable and DOCSIS is available at http://www.cablelabs.com.

[12] Johnston, A., et al., �SIP Telephony Call Flow Examples,� IETF Internet-Draft, Work
in Progress.

[13] Agrawl, H., R. Roy, and V. Palawat, �SIP-H.323 Interworking Requirements,� IETF
Internet-Draft, Work in Progress.

[14] Zimmer, E., et al., �MIME Media Types for ISUP and QSIG Objects,� IETF
Internet-Draft, Work in Progress.

[15] Levinson, E., �The MIME Multipart/Related Content Type,� RFC

[16] Zimmer, E., �SIP Best Current Practice for Telephony Interworking,� IETF Internet-
Draft, Work in Progress.

[17] Camarillo, G., and A. Roach, �Best Current Practice for ISUP to SIP Mapping,� IETF
Internet-Draft, Work in Progress.

[18] Lingle, K., J. Maeng, and D. Walker, �Management Information Base for Session Ini-
tiation Protocol,� IETF Internet-Draft, Work in Progress.

[19] Nair, G., and H. Schulzrinne, �DHCP Option for SIP Servers,� IETF Internet-Draft,
Work in Progress.

[20] Rosenberg, J., and H. Schulzrinne, �Guidelines for Authors of SIP Extensions,� IETF
Internet-Draft, Work in Progress.

[21] Lennox, J., and H. Schulzrinne, �CPL: A Language for User Control of Interent
Telephony Services,� IETF Internet-Draft, Work in Progress.

190 SIP: Understanding the Session Initiation Protocol

About the Author

Robert M. Frieden is a professor of telecommunications at Penn State Uni-
versity, where he teaches courses in management, law, and economics. He
also provides legal, management, and market forecasting consultancy services
in such diverse fields as personal and mobile communications, satellites, and
international telecommunications business development. Professor Frieden
has written several books, published dozens of articles in academic journals
and provided commentary in a variety of trade periodicals. In 1999, he and
three colleagues completed a ten-year project culminating in the publication
of a three-volume comprehensive treatise on communications law.

Professor Frieden has previously served as deputy director of interna-
tional relations at Motorola Satellite Communications, Inc., where he pro-
vided a broad range of business development, strategic planning, policy
analysis, and regulatory functions for the IRIDIUM mobile satellite venture.
He has also held senior policy-making positions in international telecommu-
nications at the Federal Communications Commission and the National
Telecommunications and Information Administration. In the private sector
he practiced law in Washington, D.C., and served as assistant general counsel
at PTAT System, Inc., where he handled corporate, transactional, and regu-
latory issues for the first U.S. private undersea fiber optic cable company.
Professor Frieden received a B.A., with distinction, from the University of
Pennsylvania in 1977 and a J.D. from the University of Virginia in 1980.

191

.

Index

ABNF. See Augmented Backus-Naur
Format

Abstract Syntax Notation 1, 145, 150
Accept-Contact header, 105�6, 111
Accept-Encoding header, 106
Accept header, 104�5, 118
Accept-Language header, 106
ACF. See Admission Confirmation message
Acknowledgment response concepts and

uses, 5, 21�22, 32, 36,
53�55, 60�62, 77

H.323 to SIP call, 177
parallel search, 172
positive, 46
proxy server, 45
SIP to PSTN call, 166

ACM. See Address Complete message
Action parameter, 96
Address Complete message, 77, 164
Address Incomplete response, 87�88
Addressing, 9, 124�25, 147�48
Admission Confirmation message, 140,

141, 143, 144, 177
Admission Denial message, 144
Admission Request message, 140, 141, 144
ADN. See Admission Denial message

Alerting message, 141, 177
Alias address, 9, 145, 147�48, 177
Allow-Encoding header, 117
Allow header, 117
Alternative Service response, 82
Ambiguous response, 88�89
ANM. See Answer message
Answer message, 165
Application layer, 7
ARQ. See Admission Request message
ASN.1. See Abstract Syntax Notation 1
Asynchronous transport mode, 4
ATM. See Asynchronous transport mode
Attributes field, 127�28
Audio video profiles, 133�34
Augmented Backus-Faur Format, 11�12,

146
Authentication

call flow example, 153�61
forms, 47�49
proxy authentication required, 84
registration server, 45
user agent, 36

Authorization header, 107

Bad Extension response, 85, 111, 113

193

Bad gateway, 90
Bad Request response, 82
Bakeoff, 3
Bandwidth field, 125
Bandwidth-value parameter, 125
Base station, 29
Basic rate interface, 135
Binding, address, 51�52
Blind transfer, 185
Branch parameter, 104
Branch tag, 103
BRI. See Basic rate interface
Broadband communications, 137
BS. See Base station
Busy Everywhere response, 91, 100
Busy Here response, 89, 91
Bye-also header, 185
Bye request, 22, 28, 30�31, 33, 51, 52,

53, 54, 58�60, 73, 166

Cached record, 10
Call agent. See Media gateway controller
Call control, 185
Call Detail Record, 142�43
Called Party Busy message, 161�64
Caller preference language, 187
Call flow, changes to, 186
Call flow examples
Authentication, Proxies, and Record-Route,

153�61
H.323 protocol, 139�43
H.323 to SIP, 177�82
parallel search, 172�77
PSTN to SIP, 169�72
SIP to PSTN, 164�69
stateless and stateful proxies, 161�64

Call-ID header, 94�95
Call is being forwarded, 77
Call leg/transaction does not exist, 86
Call Proceeding response, 141
Call state information, 28
Call queued, 78
Cancel request, 53, 54, 63�66, 40, 45,

73, 172
Canonical name record, 9
CAS. See Circuit Associated Signaling
CDR. See Call Detail Record

Checksum, 6, 31
Circuit Associated Signaling, 37, 135
Client Error response

functions, 82
types, 82�89

Client-server protocol, 22, 39, 40
Cname record. See Canonical name record
Comet message, 184, 186
Command sequence header, 46, 47, 55, 58,

59, 60, 63, 67, 68, 96�98, 169
Complexity, 148
Conferencing, 149
Conflict response, 84
Connection-address parameter, 125
Connection Data field, 125
Connectionless protocol, 4
Connect message, 141, 142, 177
Contact header, 95�97, 110, 118
Content-Disposition header, 117
Content-Encoding header, 117
Content-Length header, 117�18
Content source identifier, 130, 131, 133
Content-Type header, 118
CPL. See Caller preference language
Cseq header. See Command sequence

header
CSRC. See Content source identifier
CSRC Contributing Source Identifier

field, 131
CSRC count field, 130�31

Date header, 98
DCF. See Disengage Confirmation message
DCS. See Distributed Call Signaling
Decline response, 91, 100
DHCP. See Dynamic Host Configuration

Protocol
Digital subscriber line

always-on attribute, 23
as physical layer, 4

Disengage Confirmation message, 142
Disengage Request message, 142, 144
Distributed Call Signaling, 186
DNS. See Domain Name Service
Does not exist anywhere, 91
Domain Name Service, 4, 7�10, 147, 148
Dotted decimal notation, 4

194 SIP: Understanding the Session Initiation Protocol

DRQ. See Disengage Request message
DSL. See Digital subscriber line
DTMF. See Dual tone multiple frequency
Dual tone multiple frequency, 132�33,

135
Dynamic Host Configuration Protocol, 4,

7�8, 23, 187

E-mail Address and Phone Number field,
124�25

Encoding, 145�46
Encryption, 48�49
Encryption header, 98
Encryption Keys field, 126
EndSessionCommand message, 142
End-to-end header, 93
End-to-end signaling protocol, 22, 28,

58�59, 61, 63
Entity header. See Header, entity
Ephemeral port number, 5
Expires header, 118
Expires parameter, 96
Extensibility, 150
Extension field, 130
Extension Required response, 86

Fast answer, 44, 77
Feature implementations, 148�49
Fields, Session Description Protocol,

122�23
Fin message, 6
Firewall, 50�51
Forbidden response, 83
Forked proxy, 41, 50, 63, 72, 73, 77, 82
Format-list parameter, 126�27
Forwarding response, 77�78
Free-form text record, 9
From header, 99

G.711 PCM transmission, 138
G.7xx protocol, 139, 140
Gatekeeper, H.323 protocol, 138, 143,

144, 177
Gateway

functions, 36�38
H.323 network, 138�39, 177
PSTN to SIP call, 169�72
ringing response, 78�79

SIP to PSTN call, 164�69
Gateway timeout response, 90
General header. See Header, general
Get request, 10
Global Error response, 91�92
Gone response, 85

H.225 protocol, 143, 147
H.235 protocol, 139, 140
H.245 protocol, 139, 140, 143, 144,

147, 177
H.255 protocol, 139, 140
H.26x protocol, 139, 140
H.323 protocol

addressing, 147�48
call flow, 139�43, 177�82, 147
complexity, 148
concepts, 37�38, 136, 137�39, 150
conferencing, 149
encoding, 145�46
extensibility, 150
feature implementations, 148�49
interworking, 186
vendor support, 149
versions, 144

H.32x protocol, 137
H.450 protocol, 139, 140
Handshaking, 31, 32, 147
Header, entity, 116

allow, 117
content-disposition, 117
content-encoding, 117
content-length, 117�18
content-type, 118
expires, 118
MIME-version, 119

Header, general
acknowledgment, 61�62
authentication, 48
bye, 60
call-ID, 94�95
changes to, 184, 185
command sequence, 96�97
concepts and types, 17�19, 20, 22, 73,

84�87, 93�94
contact, 95�96
date, 98

Index 195

Header, general (continued)
encryption, 49, 98
from, 99
forged, 48
info, 67
invite, 55�56
missing, 82
network address translator, 51�52
organization, 99
prack, 68�70
proxy server, 26�28
register, 30, 57�59
retry-after, 100
subject, 100
supported, 101
timestamp, 101
to, 101�2
uniform resource locator, 71�72
user agent, 35, 102
via, 102�4

Header, request
accept, 104�5
accept-contact, 105�6
accept-encoding, 106
accept-language, 106
authorization, 107
ide, 107�8
in-reply-to, 108
max-forwards, 108
priority, 108
proxy-authorization, 109�10
proxy-require, 110
rack, 112
record-route, 110�11
reject-contact, 111
request-disposition, 111
require, 111�12
response key, 112
route, 112
session-expires, 112�13

Header, response
proxy-authenticate, 113
rseq, 116
server, 113
unsupported, 113�14
warning, 114
WWW-authenticate, 114, 116

Hidden parameter, 104
Hide header, 107
HLR. See Home location register
Home extension, 186
Home location register, 29
Hop-by-hop header, 93�94
Hop-by-hop request, 63�64
Hop-by-hop response, 76
HTTP. See Hypertext Transfer Protocol
Hypertext Transfer Protocol, 3, 5, 51,

75�76, 148

IAM. See Initial Address Message
IANA. See Internet assigned number

association
IETF. See Internet Engineering Task Force
Info message, 53, 66�67, 184
Informational response

functions, 76�77
types, 77�79

Initial Address Message, 164
In-Reply-To header, 108
Integrated Services Digital Network, 37,

135�37, 146
Integrated Services Digital Network

Progress, 77
Integrated Services Digital Network User

Part, 37, 135, 146, 164
Integrated Services Digital Network User

Part Address Complete
Message, 77

International Telecommunications Union,
138�39, 145

Internet Assigned Number Association,
4�5

Internet Engineering Task Force, 1�3,
138�39, 148, 183, 184

Multi-Party Multimedia Session Control
Working Group, 3, 121

Internet layer, 30
Internet Multimedia Protocol, 4�5, 7
Internet Multimedia Protocol stack, 3�7
Internet Protocol, 4, 137, 144
Internet layer routing, 4
Internet Protocol address

functions, 23
routing to, 4�5

196 SIP: Understanding the Session Initiation Protocol

Internet Protocol Security, 133
Internet Service Provider, 23
Interworking, SIP/H.323, 186
Invite request

authentication, 48
changes to, 186
concepts and uses, 16�19, 24�25, 26,

31�32, 36, 41, 44, 53�56,
60�61, 72, 83

contact header in, 96
expires header in, 118
H.323 to SIP call, 177
multicast, 50
parallel search, 172
response to, 76�77, 80�81, 116
retransmission, 46
session-expires header in, 112�13
SIP to PSTN call, 164

IP. See Internet Protocol
IPSec. See Internet Protocol Security
ISDN. See Integrated Services Digital

Network
ISP. See Internet Service Provider
ISUP. See Integrated Services Digital

Network User Part
ITU. See International Telecommunica-

tions Union

LAN. See Local area network
Language tag, 106
Length Required response, 85, 117
Local area network

firewall uses, 50�51
as physical layer, 4

Loop Detected response, 86�87

MAC. See Media access control
Maddr parameter, 71, 71�72, 104, 111
Mail exchange record, 9
Management Information Base, 187
Marker field, 131
MasterSlaveDetermination message, 142
Max-Forwards header, 108
Maximum transmission unit, 7, 74
MBONE. See Multicast Backbone

Network

MCU. See Multipoint conference unit;
Multipoint control unit
Media access control, 7
Media Announcements field, 126�27
Media gateway, 38
Media gateway controller, 38
Media parameter, 126
Media session, 22, 28, 35, 49, 58, 122
Message body

acknowledgment message, 60�62
cancel message, 64�65
default type, 127
informational response, 76�78
information types, 73�74
invite message, 54
prack message, 68�70
register message, 57
Session Announcement Protocol, 122
success response, 80

Method Not Allowed response, 83, 117
Method parameter, 71�72, 95, 126
MF. See Multi-frequency
MG. See Media gateway
MGC. See Media gateway controller
MIB. See Management Information Base
MIME. See Multipurpose Internet Mail

Extension
MIME-Version header, 119
MMUSIC. See Internet Engineering Task

Force, Multi-Party Multimedia
Session Control Working Group

Mobile switching center, 29
Moved Permanently response, 81
Moved Temporarily response, 81
MPLS. See Multi-protocol label switching
MSC. See Mobile switching center
MTU. See Maximum transmission unit
Multicast

concepts, 10�11, 125
uses, 50, 149

Multicast Backbone Network, 11, 121
Multicast session invitation, 50
Multi-frequency, 135
Multiple Choice response, 81
Multipoint conference unit, 149
Multipoint control unit, 138�39
Multi-protocol label switching, 4

Index 197

Multipurpose Internet Mail Extension, 73,
119

MX record. See Mail exchange record

NAT. See Network address translator
Network address translator, 51�52
Network Time Protocol, 124, 126
Network-type parameter, 124, 125
Not Acceptable Here response, 89
Not Acceptable response, 84, 91, 106
Not Found response, 83, 100, 172
Notify message, 184
Not Implemented response, 90
NTP. See Network Time Protocol

OpenLogicalChannel message, 142
Options request

concepts and uses, 47, 53
response to, 80, 101, 117

Organization header, 99
Origin field, 124
Out-of-sequence request, 96

Packed encoding rule, 145, 150
Packet broadcast, 11
PacketCAble Distributed Call Signaling,

186
Packet delivery protocol, 4
Packet storm, 11
Packing routing. See Routing
Padding field, 130
Parallel search, 172�77
Payload, Internet Protocol, 4
Payload Type field, 131
Payment required response, 83
PBX. See Private branch exchange
PER. See Packed encoding rule
Physical layer

Internet Multimedia Protocol, 4, 7
Pointer record, 9
Point-to-Point Protocol, 4
Port number, 5, 31, 32, 104
PPP. See Point-to-Point Protocol
Prack request, 53, 68�70, 77, 112,

116, 184
PRI. See Primary rate interface
Primary rate interface, 135�36
Priority header, 108

Private branch exchange, 38, 135
Private key encryption, 98
Protocol Version field, 124
Proxy-Authenticate header, 113
Proxy Authentication Required response,

84, 153�161
Proxy-Authorization header, 109�10, 113,

114
Proxy-Require header, 110
Proxy server

authentication, 47�49
functions, 23�28, 39�44, 93
message acknowledgment, 45
multicast uses, 50
network address translator use, 52
request messages, 53�54
stateful, 41, 46�47
stateless, 40�41
See also Forked proxy

PSTN. See Public Switched Telephone
Network

PTR. See Pointer record
Public key encryption, 98, 112
Public Switched Telephone Network,

37�38, 135�38, 148�49
interworking and encapsulation, 187

PSTN to SIP call, 169�72
SIP to PSTN call, 164�69

Q.931 protocol, 139, 140, 142, 143, 144,
147, 177

QoS. See Quality of Service message
Quality of Service message, 54
Queuing response, 78
Qvalue parameter, 96, 104

RAck header, 112
RAS. See Registration, admission, and

status
Real-time Transport Protocol

audio video profiles, 133�34
features, 7, 37, 50, 130�33
H.323 reference, 139�40

Real-time Transport Protocol Control
Protocol, 131�32

H.323 application, 139, 149
Received tag, 104
Receiver report, 132

198 SIP: Understanding the Session Initiation Protocol

Record-Route header, 110�12, 153�61
Redirection response

functions, 80�81
types, 81�82

Redirect server, 43�44, 47�48
Refer message, 184, 185
Register request

concepts and uses, 29�30, 45, 53,
57�58, 140

contact header in, 96
expires header in, 118
response to, 82

Registration
gateway versus user agent, 38
multicast, 50
SIP example, 28�30
third-party, 58

Registration, admission, and status, 139,
140, 143, 147

Registration server, 45, 47
Re-invite request, 35�36, 55, 133
Reject-Contact header, 111
Release Complete message, 143, 166
Release message, 166
Reliability

mechanisms, 46�47
prack acknowledgment, 68�70

Repeat Time field, 125�26
Request Canceled response, 89, 172
Request-Disposition header, 111
Request Entity Too Large response, 85
Request for Comment 1889, 131
Request for Comment 1890, 133�34
Request for Comment 2327, 121
Request for Comment 2543, 3, 183�84
Request header. See Header, request
Request message, 30, 53�54

See also Acknowledgment message; Bye
message; Cancel message; Invite
message; Prack message; Register
message

Request Timeout response, 84
Request-URI header, 101�2, 111, 164
Request-URI Too Long response, 85
Require header, 101, 111�12, 113
Response header. See Header, response
Response-key header, 98, 112

Response message
classes, 75�76
concepts, 20�23, 26�27, 30, 44
multicast, 50
See also Client error message; Global

failure message; Information
message; Redirection message;
Server failure message; Success
message

Retransmission timer, 46�47
Retry-after header, 100
Reverse lookup, 9
RFC. See Request for Comment
Ringing response, 19�20, 25�26, 44, 68,

77, 172, 177
RLC. See Release Complete message
Route header, 112
Routing, unicast, 10

See also Multicast
RR. See Receiver report
RRQ. See Registration Request message
RSeq header, 112, 116
RTCP. See Real-time Transport Protocol

Control Protocol
RTP. See Real-time Transport Protocol

SAP. See Session Announcement Protocol
SDP. See Session Description Protocol
Security, 186
Self-destruct request, 90
Sender report, 132
Sequence Number field, 131
Server

functions, 39
registration, 45
See also Proxy server; User agent server

Server Error message
functions, 89�91
types, 90�91

Server header, 113
Server Internal Error response, 90
Service Unavailable response, 90, 100
Session Announcement Protocol, 121�22
Session Description Protocol

concepts, 121�24
field parameters, 124�27
message body, 51, 55, 60, 62, 73

Index 199

Session Description Protocol(continued)
uses, 127�29, 165

Session-Expires header, 112�13
Sessionid parameter, 124
Session Initiation Protocol, 3, 15�23
Session Name and Information field, 124
Session negotiation, 92
Session Progress response, 78�79, 165
Setup message, 141, 144, 147
Signaling protocol, 1�2
Signaling System 7, 135, 145
Simple Mail Transfer Protocol, 3, 10,

23, 51
SIP. See Session Initiation Protocol
SMTP. See Simple Mail Transfer Protocol
Spamming, 49
SR. See Sender report
SS7. See Signaling System 7
SSRCI field. See Synchronization Source

Identifier field
Stateful proxy, 41, 46�47, 61, 64,

161�64
Stateless proxy, 40�41, 148, 161�64
Stub network, 51
Subject header, 100, 106
Subscribe message, 184
Success response, 79�80
Supported header, 101, 110, 111, 112, 116
Synchronization message, 5�6
Synchronization Source Identifier field, 131

T.120 protocol, 139, 140
Tag, 72�73, 99, 103, 104, 106
TCP. See Transmission Control Protocol
Tear-down sequence, 142�43, 144
Telecommunications Routing over Internet

Protocol, 38
Temporarily Unavailable response, 86
TerminalCapabilitySet message, 142, 144
Text coding, 122
Third-party registration, 58
Time field, 125�126
Timestamp field, 131
Timestamp header, 101
Time-to-live field, 11, 71�72, 104
Time Zone field, 125�26
To header, 101�2, 164

Too Many Hops response, 87, 108
Transmission Control Protocol

firewall and NAT, 51
functions, 5�6
H.323 protocol, 140�42, 144, 147,

177
message transport, 31�33, 35, 39
reliability, 46

Transport, message, 147
Transport layer

functions, 30
Internet Multimedia Protocol, 5�6, 7

Transmission Control Protocol, 31�33
User Datagram Protocol, 30�31

TRIP. See Telecommunications Routing
over Internet Protocol
Trying response, 68, 76, 77
TTL. See Time-to-live field
TXT. See Free-form text record

UA. See User agent
UAC. See User agent client
UAS. See User agent server
UDP. See User Datagram Protocol
Unattended transfer, 185
Unauthorized Authentication challenge,

114
Unauthorized response, 82�83, 107
Unicast routing, 10�11
Uniform Resource Indicator, 72, 124
Uniform Resource Locator, 3, 7, 10, 23,

70�72
Unsupported header, 110, 113�14
Unsupported Media Type response, 85,

118
Use Proxy response, 81
User agent

authentication, 47�49
functions, 35�36
message acknowledgment, 45
types, 37

User agent client, 36, 55, 68, 72, 75,
80, 82

User agent header, 102
User agent server, 36, 39, 45, 75, 81
User Datagram Protocol

firewall and NAT, 51�52

200 SIP: Understanding the Session Initiation Protocol

User Datagram Protocol (continued)
functions, 6
message transport, 30�31, 35, 39
multicast transport, 11
Real-time Transport Protocol, 130, 142
reliability, 46, 147

Username parameter, 124
User parameter, 71�72
Utility application, 7�8

Vendor support, 149
Version field, 130
Version Not Supported response, 90�91
Via header, 102�4, 105

Warning code, 115
Warning header, 91, 114
Working Group, 184�87
WWW-Authenticate header, 114, 116

Index 201

	Contents
	1 SIP and the Internet
	1.1 Signaling Protocols
	1.2 The Internet Engineering Task Force
	1.3 A Brief History of SIP
	1.4 Internet Multimedia Protocol Stack
	1.4.1 Physical Layer
	1.4.2 Internet Layer
	1.4.3 Transport Layer
	1.4.4 Application Layer

	1.5 Utility Applications
	1.6 DNS and IP Addresses
	1.7 URLs
	1.8 Multicast
	1.9 ABNF Representation

	References
	2 Introduction to SIP
	2.1 A Simple SIP Example
	2.2 SIP Call with Proxy Server
	2.3 SIP Registration Example
	2.4 Message Transport
	2.4.1 UDP Transport
	2.4.2 TCP Transport

	References
	3 SIP Clients and Servers
	3.1 SIP User Agents
	3.2 SIP Gateways
	3.3 SIP Servers
	3.3.1 Proxy Servers
	3.3.2 Redirect Servers
	3.3.3 Registration Servers

	3.4 Acknowledgment of Messages
	3.5 Reliability
	3.6 Authentication
	3.7 Encryption
	3.8 Multicast Support
	3.9 Firewalls and NAT Interaction

	References
	4 SIP Request Messages
	4.1 Methods
	4.1.1 INVITE
	4.1.2 REGISTER
	4.1.3 BYE
	4.1.4 ACK
	4.1.5 CANCEL
	4.1.6 OPTIONS
	4.1.7 INFO
	4.1.8 PRACK

	4.2 SIP URLs and URIs
	4.3 Tags
	4.4 Message Bodies

	References
	5 SIP Response Messages
	5.1 Informational
	5.1.1 100 Trying
	5.1.2 180 Ringing
	5.1.3 181 Call Is Being Forwarded
	5.1.4 182 Call Queued
	5.1.5 183 Session Progress

	5.2 Success 200 OK
	5.3 Redirection
	5.3.1 300 Multiple Choices
	5.3.2 301 Moved Permanently
	5.3.3 302 Moved Temporarily
	5.3.4 305 Use Proxy
	5.3.5 380 Alternative Service

	5.4 Client Error
	5.4.1 400 Bad Request
	5.4.2 401 Unauthorized
	5.4.3 402 Payment Required
	5.4.4 403 Forbidden
	5.4.5 404 Not Found
	5.4.6 405 Method Not Allowed
	5.4.7 406 Not Acceptable
	5.4.8 407 Proxy Authentication Required
	5.4.9 408 Request Timeout
	5.4.10 409 Conflict
	5.4.11 410 Gone
	5.4.12 411 Length Required
	5.4.13 413 Request Entity Too Large
	5.4.14 414 Request- URI Too Long
	5.4.15 415 Unsupported Media Type
	5.4.16 420 Bad Extension
	5.4.17 421 Extension Required
	5.4.18 480 Temporarily Unavailable
	5.4.19 481 Call Leg/ Transaction Does Not Exist
	5.4.20 482 Loop Detected
	5.4.21 483 Too Many Hops
	5.4.22 484 Address Incomplete
	5.4.23 485 Ambiguous
	5.4.24 486 Busy Here
	5.4.25 487 Request Canceled
	5.4.26 488 Not Acceptable Here

	5.5 Server Error
	5.5.1 500 Server Internal Error
	5.5.2 501 Not Implemented
	5.5.3 502 Bad Gateway
	5.5.4 503 Service Unavailable
	5.5.5 504 Gateway Timeout
	5.5.6 505 Version Not Supported

	5.6 Global Error
	5.6.1 600 Busy Everywhere
	5.6.2 603 Decline
	5.6.3 604 Does Not Exist Anywhere
	5.6.4 606 Not Acceptable

	References
	6 SIP Headers
	6.1 General Headers
	6.1.1 Call- ID
	6.1.2 Contact
	6.1.3 CSeq
	6.1.4 Date
	6.1.5 Encryption
	6.1.6 From
	6.1.7 Organization
	6.1.8 Retry- After
	6.1.9 Subject
	6.1.10 Supported
	6.1.11 Timestamp
	6.1.12 To
	6.1.13 User Agent
	6.1.14 Via

	6.2 Request Headers
	6.2.1 Accept
	6.2.2 Accept- Contact
	6.2.3 Accept- Encoding
	6.2.4 Accept- Language
	6.2.5 Authorization
	6.2.6 Hide
	6.2.7 In- Reply- To
	6.2.8 Max- Forwards
	6.2.9 Priority
	6.2.10 Proxy- Authorization
	6.2.11 Proxy- Require
	6.2.12 Record- Route
	6.2.13 Reject- Contact
	6.2.14 Request- Disposition
	6.2.15 Require
	6.2.16 Response- Key
	6.2.17 Route
	6.2.18 RAck
	6.2.19 Session- Expires

	6.3 Response Headers
	6.3.1 Proxy- Authenticate
	6.3.2 Server
	6.3.3 Unsupported
	6.3.4 Warning
	6.3.5 WWW- Authenticate
	6.3.6 RSeq

	6.4 Entity Headers
	6.4.1 Allow
	6.4.2 Content- Encoding
	6.4.3 Content- Disposition
	6.4.4 Content- Length
	6.4.5 Content- Type
	6.4.6 Expires
	6.4.7 MIME- Version

	References
	7 Related Protocols
	7.1 SDPÛSession Description Protocol
	7.1.1 Protocol Version
	7.1.2 Origin
	7.1.3 Session Name and Information
	7.1.4 URI
	7.1.5 E- mail Address and Phone Number
	7.1.6 Connection Data
	7.1.7 Bandwidth
	7.1.8 Time, Repeat Times, and Time Zones
	7.1.9 Encryption Keys
	7.1.10 Media Announcements
	7.1.11 Attributes
	7.1.12 Use of SDP in SIP

	7.2 RTPÛReal- time Transport Protocol
	7.3 RTP Audio Video Profiles
	7.4 PSTN Protocols
	7.4.1 Circuit Associated Signaling
	7.4.2 ISUP Signaling
	7.4.3 ISDN Signaling

	References
	8 Comparison to H. 323
	8.1 Introduction to H. 323
	8.2 Example of H. 323
	8.3 Versions
	8.4 Comparison
	8.4.1 Encoding
	8.4.2 Transport
	8.4.3 Addressing
	8.4.4 Complexity
	8.4.5 Feature Implementations
	8.4.6 Vendor Support
	8.4.7 Conferencing
	8.4.8 Extensibility

	8.5 Comparison Summary

	References
	9 Call Flow Examples
	9.1 SIP Call with Authentication, Proxies, and Record- Route
	9.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy
	9.3 SIP to PSTN Call Through Gateway
	9.4 PSTN to SIP Call Through Gateway
	9.5 Parallel Search
	9.6 H. 323 to SIP Call

	References
	10 Future Directions
	10.1 Changes to RFC 2543
	10.2 SIP Working Group Design Teams
	10.2.1 Call Control
	10.2.2 Convergence with PacketCable Distributed Call Signaling (DCS) Extensions
	10.2.3 Call Flows
	10.2.4 SIP/ H. 323 Interworking
	10.2.5 Home Extension
	10.2.6 SIP Security
	10.2.7 SIP for Telephony

	10.3 Other Related Drafts

	References
	About the Author
	Index

