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Introduction

Artificial vision with a main objective of automatic perception and
interpretation of the universe observed by a system containing one or
several cameras is a relatively new field of investigation. It leads to a
surprisingly large range of problems, and most of these are not currently
resolved in a reliable way. Although a general theory is not close to being
reached, significant progress has been made recently, theoretically as well as
methodologically.

In the visible world, images of luminance are the result of two physical
processes: the first one is linked to reflectance properties of the surface of
observed objects, while the second one corresponds to the projection of
these same objects on the light sensitive plate of the sensor used. From a
mathematical standpoint, in order to interpret the observed scene, we must
solve an inverse problem, i.e. infer the surface geometry (3D) of objects
present, from the purely 2D content of the image or from logged images.

This reputedly complex problem in the context of computer vision is solved
by man with surprising ease. However, the human vision system operation is
clearly not founded on a single concept. Examining the implemented processes
during short or long distance vision is sufficient proof. In the first case, the
existing disparity between left and right retinal images makes it possible for
man to obtain indepth information by triangulation (stereoscopy) relating to
its close environment which is vital in particular to manually capture objects.
In the second case, when looking at long distance, or even more so when
contemplating a picture, stereoscopy is obviously no help in interpreting the
observed scene. Even under these conditions, however (total lack of direct 3D
information), man is able to estimate the form and spatial position of objects he
observes in the vast majority of cases. This requires mental processes, from 2D
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14 Visual Perception through Video Imagery

information extracted from a luminance image, able to infer 3D information.
These are based on the unconscious use of prior knowledge relating to the
principle of retinal image composition and the form of 3D objects surrounding
us. The surprising capabilities of the human vision system are because this
knowledge is continuously enhanced from early childhood.

In the last few decades, researchers in the artificial vision community have
attempted to develop perception systems that would work from data emanating
from video cameras. This book presents a few tools emerging from recent
advances in the field.

In Part 1, the reader will find three chapters dedicated to calibration
or self-calibration of video sensors. Chapter 1 presents a finite estimation
approach of the intrinsic parameters of a video camera, greatly inspired by
the world of photogrammetry. It is based on the interpretation of images from
a calibration test chart which is not generally known with great precision.
Chapter 2 addresses the complex self-calibration problem from a series
of matching points between different images from a single scene. The
recommended method is based on an elegant and simple decomposition
of Kruppa equations. Chapter 3 explores the self-calibration problem of
cameras with specific movements making the implementation of simplified
development of the main matrix possible.

Part 2 mainly involves the estimation of the relative object/sensor position
by introducing prior knowledge (CAD object model). The reader will
discover how to treat the localization problem of a rigid object observed by a
monocular system. The formalism presented is then extended to understand
cases as different as multi-ocular localization and hand-eye calibration, and
research on the posture of articulated objects such as robotic arms.

Part 3 addresses volume information inference in two chapters. Chapter 5
discusses the reconstruction problem of a fixed scene observed by a
multi-ocular system. The notions homo-log points, epipolar geometry,
fundamental matrix, essential matrix and trifocal tensor are first introduced
as well as different approaches for obtaining these entities. The problem of
dense matching between image pairs is addressed before a few reconstruction
examples are shown. Chapter 6 discusses the notion of active dynamic vision.
It is the control of the path of a camera embedded in a robotic arm in order
to reconstruct the surrounding scene. An underlying problem involves the
definition of optimal movements necessary for the reconstruction of different
primitives (points, straight lines, cylinders). Finally, perception strategies are
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proposed in order to ensure a complete reconstruction taking inter-object
blanking into consideration.

The recognition of forms in images is the heart of Part 4. Chapter 7 is
dedicated to proposing tools for the identification in a database of the images
containing visual elements identical to those contained in a request image;
the differences of acquisition between images which could involve the point
of view, conditions of illumination and global composition of the scene
observed. The methods presented are based on a common principle: the use
of quasi-invariants associated with local descriptors. These are tested against
large image databases.
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Chapter 1

Calibration of Vision Sensors

1.1. Introduction

Calibration of a vision system consists of determining a mathematical
relation existing between the three-dimensional (3D) coordinates of the
reference markers of a scene and the two-dimensional (2D) coordinates of
these same reference markers projected and detected in an image.

Determining this relation is an uphill task in vision, particularly for
reconstruction, where it is necessary to infer 3D information from data
extracted from the 2D image. In reality, the field of application is broader and
calibration proves to be essential since it is necessary to establish a relation
between an image and the 3D world: recognition and localization of objects,
dimensional control of parts, and reconstruction of the environment for the
navigation of a robot.

A complete analysis of the calibration of a vision system must take into
account all the photometric, optic and electronic phenomena present in the
image acquisition chain.

In general, a system that enables the calibration of a camera is made up of:

– a calibration test card (grid or standard object), generally consisting of
reference markers from which 3D coordinates are accurately inferred in its
local reference coordinate system;

Chapter written by Jean-Marc LAVEST and Gérard RIVES.
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20 Visual Perception through Video Imagery

– an image acquisition system for the digitization and storage of test card
images;

– an algorithm of correlating 2D reference marker detected in the images
with their counterparts of the test card;

– a calculation algorithm of transformation matrix perspective of the
camera, relating the calibration test card mark with that of the image.

Generally, the problem of calibrating CCD cameras unfolds in two ways,
namely, the geometric study of calibration (calculation of the projection
matrix) and a radiometric calibration (uniformity of brightness in an image).
The first problem is widely covered, whereas the latter is less studied.

In this chapter, we will approach the problem of geometric calibration of
a video sensor in a didactic way and will solve it first using linear methods
and then using non-linear methods. Often, written works talk about weak or
strong calibration; the distinction is at the level of an overall estimate of the
projection matrix (weak case) or in each parameter estimation which forms
this matrix (strong case). The continuation of this work will deal with the
problem of strong calibration of vision sensors.

1.2. General formulation of the problem of calibration

The process of calibration is a monitored process often requiring the
operator’s attention. This is a static process, which is carried out offline,
before using the camera for a precise visual task. Once the camera is
calibrated, its parameters must remain fixed throughout its use. Each time
we wish to modify the focus, the focal distance, and even the opening of
lens, the camera will have to be recalibrated. Many works in the last 20
years have made it possible to obtain fairly complex and precise methods for
assimilating a vision system in a metrological collection. The reader can refer
to the following link for an exhaustive view of the major publications in the
field: http://iris.usc.edu/Vision-Notes/bibliography.

1.2.1. Formulation of the problem

Let us consider an image acquisition system (Figure 1.1).

Calibration of the system consists of determining the transformation
(R3, R2), which makes it possible to analytically express the process of
image formation.
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Figure 1.1. System of acquiring images

P(X,Y,Z)

Z

p

Y

X

Figure 1.2. Geometry of the image formation system
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1.2.1.1. Modeling the camera and lens: pin-hole model

Traditional geometric optics prefers the use of models with thick or thin
lenses. The difficulty of expressing vergency constraints in a simpler way
compels us to resort to the pin-hole model in which all rays pass through
the same point (optical center). The photosensitive cell (image plane) is
located at a distance f from this center and represents the focal distance or
selection of the objective.

Let us note that the image obtained is normally inverted when compared to
a naked eye view. To overcome this problem, we artificially place the image
plane in front of the optical center (from the physics point of view, this artifice
is carried out by reading the CCD matrix in such a manner as to obtain the
inversion of the image).

Z

p

P(X,Y,Z)

Y

X

Figure 1.3. Image plane defined in front of the optic center

1.2.1.2. Formation of images: perspective projection

In works on this subject, we find several types of image projection:
orthographic, scale orthographic, para-perspective and perspective. It is this
last family of projection that will capture our attention due to it being the best
suited in the physical reality of vision sensors.
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Figure 1.4. Notation of the different reference marks

In this section, we will use the following notations:

– Rc: camera reference (−z axis meeting the optical axis);

– Rw: reference marker related to object modeling;

– (0, u, v): image reference (considering the effect of digitization).

1.2.1.3. Changing lens/camera reference point

This first point change makes it possible to express the coordinates of the
test card or the reference instrument (positioned in the surroundings) in the
reference point relating to the camera. As we can see, this point change is
expressed by a transformation made up of a rotation and a translation.

Pc = (M1) · Pw (1.1)

Pc =
(

R T
0 1

)⎡⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Xc

Yc

Zc

1

⎤⎥⎥⎦ (1.2)

with

– Pw 3D coordinates of a test card reference point, indicated in the
modeling reference;

– Pc coordinates of the same 3D point, indicated in the camera reference
point.
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The rotation and translation matrices (R(3×3) and T(3×1)) are defined in
the camera reference marker. Coupling of (R, T ) in the same matrix notation
makes it necessary to use a notation in homogenous coordinates.

1.2.1.4. Changing of the camera/image point

Changing from the camera point to the image point is related to perspective
projection equations.

Traditionally these equations are of the form:

x = Xcf/Zc

y = Ycf/Zc

z = f

(1.3)

In homogenous coordinates, the system is written as:⎡⎣sxsy
s

⎤⎦ =

⎡⎣f 0 0 0
0 f 0 0
0 0 1 0

⎤⎦Pc (1.4)

It must be noted that while changing (R3, R2), homogenous notations
introduce a multiplicative factor s.

Demonstration ⎧⎪⎨⎪⎩
sx = fXc

sy = fYc

s = Zc

(1.5)

by substituting s: {
x = Xcf/Zc

y = Ycf/Zc

(1.6)

1.2.1.5. Changing of coordinates in the image plane

Remark. It is necessary to include the step difference, according to coordinates
x and y, relative on the one hand to the elementary pixel form on the CCD
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matrix and on the other to the rhythmic sampling of the video signal.⎡⎣susv
s

⎤⎦ =

⎡⎣1/dx 0 u0

0 1/dy v0

0 0 1

⎤⎦⎡⎣sxsy
s

⎤⎦ (1.7)

This leads to traditional equations for changing the point (camera
coordinate pixel to pixel coordinate):{

u = x/dx + u0

v = y/dy + v0

(1.8)

– (u0, v0) represent coordinates (in pixel) in the image, intersection of the
optical axis and the image plane (origin of reference point change);

– (dx, dy) are respectively the dimensions according to x and y of an
elementary pixel of the CCD matrix (see Figure 1.5).

1.2.2. General expression

The complete system of image formation is thus expressed by the following
relation: ⎡⎣susv

s

⎤⎦ =

⎡⎣1/dx 0 u0

0 1/dy v0

0 0 1

⎤⎦⎡⎣f 0 0 0
0 f 0 0
0 0 1 0

⎤⎦

×

⎡⎢⎢⎢⎣
R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤⎥⎥⎥⎦
(1.9)

where:

– (Xw, Yw, Zw) are the 3D coordinates of the calibration point pertaining
to the reference instrument;

– (u, v) are the 2D pixel coordinates in the projection image of this point;

– (u0, v0, f, dx, dy) are called the intrinsic parameters of calibration. They
belong to the system of acquisition;
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Figure 1.5. Coordinate system on the CCD matrix

– (R(11,...,33), T(x,y,z)) are called the extrinsic parameters of calibration.
They provide the localization of the reference instrument in the camera
reference point, while shooting a picture.

⎡⎣susv
s

⎤⎦ = MintMext

⎡⎢⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ = M(3×4)

⎡⎢⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ (1.10)

M is called the calibrating matrix of the system.

It contains 12 elements, which can be divided into:

– 5 intrinsic parameters pertaining to the camera. Generally, we use the
Mint matrix in the form: ⎡⎣f/dx 0 u0 0

0 f/dy v0 0
0 0 1 0

⎤⎦ (1.11)
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By showing:

fx = f/dx

fy = f/dy

}
−→ (fx/fy = dy/dx

)
(1.12)

The dx/dy ratio represents the pixel ratio; at known dx (supplied by the
camera maker), the intrinsic parameter estimation is reduced to the calculation
of 4 parameters (fx, fy, u0, v0).

– 12 independent extrinsic parameters (9 for rotation (R11 . . . R33) and 3
for translation (T(x,y,z))) which are independent of the camera.

In other words, there are a total of 16 parameters.

1.2.2.1. General formulation of the problem of calibration

To calibrate a vision system is to be capable of determining all the
parameters intervening in the analytical expression of the image formation
illustrated in (1.9).

1.3. Linear approach

Problem. Given n number of 3D-2D pairs (Xw, Yw, Zw; u, v) (expression
(1.10)) between a test card and its image, determine the 16 parameters of
image formation.

Resolving the problem of calibration by the linear method has the
advantage of not requiring initial values of calibration parameters to
find a solution. We will see that this is expensive in practice and that
the performances of such an approach are limited. Faugeras and Toscani
[FAU 87] proposed this method at the beginning of the 1980s. In the 1940s, a
similar approach known as DLT (Direct Linear Transform) was introduced by
the photogrammetric community.

1.3.1. Principle

Let the 3D-2D projection between a reference mark and its image be:⎡⎣susv
s

⎤⎦ =

⎡⎣m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

⎤⎦
⎡⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ (1.13)

where (m11 . . . m34) are the 12 unknown elements of the system to be solved.
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By substituting s, we obtain:⎧⎪⎪⎨⎪⎪⎩
u =

m11Xw + m12Yw + m13Zw + m14

m31Xw + m32Yw + m33Zw + m34

v =
m21Xw + m22Yw + m23Zw + m24

m31Xw + m32Yw + m33Zw + m34

(1.14)

using the following equations drawn from matrix expression (1.9):

m1(1,2,3) =
f

dx
R1(1,2,3) + u0R3(1,2,3)

m14 =
f

dx
Tx + u0Tz

m2(1,2,3) =
f

dy
R2(1,2,3) + v0R3(1,2,3)

m24 =
f

dy
Ty + v0Tz

m3(1,2,3) = R3(1,2,3)

m34 = Tz.

It is possible to rewrite the system to solve (1.14) as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·
·
·

Xi
w Y i

w Zi
w 1 0 0 0 0 −uiXi

w −uiY i
w −uiZi

w −ui

0 0 0 0 Xi
w Y i

w Zi
w 1 −viXi

w −viY i
w −viZi

w −vi

·
·
·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11

m12

·
·
·

m32

m33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(1.15)
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Index i represents the pairing between the 3D standard reference marker
and the 2D reference marker detected in the image. Each pair paves the way
to write 2 equations, the minimum number necessary for solving the problem
thus being 6 pairs.

Solving an overdetermined system (AX = 0) amounts to searching for the
eigenvector associated with the smallest eigenvalue of A. Generally, we use
the SVD (Singular Value Decomposition [PRE 92]) algorithm.

By normalizing m3(1,2,3), we obtain the third vector of rotation matrix
R3(1,2,3):

Tz = m34 (1.16)⎛⎝m21

m22

m23

⎞⎠ ·
⎛⎝m31

m32

m33

⎞⎠ = v0 (1.17)

⎛⎝m11

m12

m13

⎞⎠ ·
⎛⎝m31

m32

m33

⎞⎠ = u0 (1.18)

∥∥m2(1,2,3) − v0R3(1,2,3)

∥∥ = f/dy (1.19)∥∥m1(1,2,3) − u0R3(1,2,3)

∥∥ = f/dx (1.20)(
m2(1,2,3) − v0R3(1,2,3)

)
/(f/dy) = R2(1,2,3) (1.21)(

m1(1,2,3) − u0R3(1,2,3)

)
/(f/dx) = R1(1,2,3) (1.22)

Thus, the 16 parameters of image formation are completely determined.

1.3.2. Notes and comments

This method is very easy to implement. Solving a linear system is
inexpensive in computing times. However, the results obtained are not very
stable. The stability of a method refers to its aptitude to give similar results
(on the intrinsic parameters) for different behaviors of the test card.

Let us note that the preceding division allows us to foresee a problem on
the estimation level of rotation R. Indeed, we are never certain that:

R1(1,2,3) ∧ R2(1,2,3) = R3(1,2,3) (1.23)
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In other words, it is never certain that the rotation matrix R is really
conditioned like a rotation matrix. Therefore, a palliative solution consists of
modifying the perspective projection matrix to add an extra term to it, which
can be interpreted like the non-orthogonality of the optical axis as compared
to the CCD sensor, which makes it possible to ensure the orthogonality of the
three rotation vectors.

In fact, in the linear approach, the rotation matrix is not parametrized in a
satisfactory manner. It will be advisable to use its division according to Euler’s
angles (α, β, γ), respectively, around the axes (x, y, z) of the camera point.
In these conditions, the results are that the system to be solved is no longer
linear. Moreover, no phenomenon of optical distortion is taken into account in
the process of image formation.

Nevertheless, this method obtains a very good initial estimation in the
process of non-linear optimization.

1.4. Non-linear photogrammetric approach

In this section, we approach the problem of calibration of CCD cameras
based on the formalism used in photogrammetry. The projection model used
for the process of image formation refers to the pin-hole optical model,
which is the approximation of the optical model of thin lens. This approach
is different from the preceding one due to a precise modeling of the optical
distortion phenomena caused on the surface of the lenses and also due to the
implementation of a non-linear optimization process minimizing a criterion
of reprojection of the reference marker in images which is expressed in pixels.

The notation conventions in photogrammetry are slightly different from
those used in artificial vision. Also, traditionally, the data are no longer
expressed in the camera reference marker but in the reference frame of the
world, which remains fixed irrespective of the position of the camera. We
will thus transform the usual photo-grammetric notations in such a manner to
determine the formalism belonging to our community.

Let us consider the following notations:

– RW − XY Z is a direct 3D point. It is the reference frame of the world,
which will also be used as the modeling base of the object.

– o − uv is the 2D image reference frame, whose origin is located at the
top left corner of the image.
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– RC − xyz is the 3D reference frame of the camera, whose origin is at
the optic center c and whose z axis is confused with the optic axis. x, y are
respectively parallel to o − uv.

The intrinsic parameters in the sensor to be determined are: the principal
point o− u0v0, the focal distance f , the pixel size of the CCD matrix (dx, dy)
or their ratio and, finally, the optical distortion parameters introduced by the
camera lens.

Y

Z

X

P

u

v

z

x
y

RC
f

v0

u0

RW

Figure 1.6. Pin-hole model, image geometry and coordinate systems

The extrinsic parameters are the rotation matrix R as well as the translation
vector T between Rc − xyz and Rw − XY Z.

The method described in this chapter strictly follows the least squares
approach; we will try to minimize the measuring errors in the image,
representing the difference between a point detected in the image and a
projected 3D point in the corresponding test card.

1.4.1. Mathematic model

Let there be a perspective projection between a 2D image and a 3D object
(assumed to be pin-hole). The relation between a point and its projection in
the image is described by the following expression:⎛⎝xi

yi

zi

⎞⎠ = λi

⎡⎣R
⎛⎝Xi

Yi

Zi

⎞⎠+ T

⎤⎦ (1.24)
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where:

– (xi, yi, zi) is an image point defined in the camera reference point (see
Figure 1.6 with z̄i ≡ f , i.e., the focal distance of the camera);

– λi is a scaling factor introduced while changing from R3 to R2;

– (Xi, Yi, Zi) are the coordinates of the test card point defined in the
reference frame of the surrounding W − XY Z;

– (Tx, Ty, Tz) is the translation vector;

– R is the rotation matrix expressed in the camera point and parametrized
according to Euler’s three angles: α rotation around x axis, β around y axis,
and γ around z axis:

R =

⎛⎜⎜⎜⎜⎜⎝
cos γ cos β

cos γ sinβ sinα
− sin γ cos α

cos γ sinβ cos α
+ sin γ sin α

sin γ cos β
cos γ cos α

+ sin γ sinβ sinα
sin γ sinβ cos α

− cos γ sinα

− sinβ cos β sinα cos β cos α

⎞⎟⎟⎟⎟⎟⎠ (1.25)

By eliminating λi in (1.24) and by removing the index i, we obtain the
following expressions called the colinearity equations in photogrammetry:

x = f
r11X + r12Y + r13Z + Tx

r31X + r32Y + r33Z + Tz

y = f
r21X + r22Y + r23Z + Ty

r31X + r32Y + r33Z + Tz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.26)

If we express (x, y) in the pixel coordinate system of the image, we obtain:

x = (u + ex − u0)dx − dox

y = (v + ey − v0)dy − doy

}
(1.27)

In this expression, ex and ey are respectively the measuring errors
according to the x and y coordinates, (i.e., the corrections to be made in
the measurements to ensure that there is a perfect correspondence with the
data resulting from the projection function). dox, doy are the components of
optical distortion, which are divided into two parts: radial and tangential
distortions (i.e., dox = doxr + doxt and doy = doyr + doyt). Here, we
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introduce two forms that are commonly used in photogrammetry [AME 84]:

doxr =
(
u − u0

)
dx
(
a1r

2 + a2r
4 + a3r

6
)

doyr =
(
v − v0

)
dy
(
a1r

2 + a2r
4 + a3r

6
)
}

(1.28)

doxt = p1

[
r2 + 2

(
u − u0

)2
dx2
]
+ 2p2

(
u − u0

)
dx
(
v − v0

)
dy

doyt = p2

[
r2 + 2

(
v − v0

)2
dy2
]
+ 2p1

(
u − u0

)
dx
(
v − v0

)
dy

⎫⎬⎭ (1.29)

where in expressions (1.27), (1.28) and (1.29):

– u, v are the image coordinates in the image reference point;

– u0, v0 are the coordinates of the principal point in the referential image;

– a1, a2, a3 are the polynomial coefficients that model the radial distortion;

– p1, p2, p3 are the polynomial coefficients that model the tangential
distortion;

– dx, dy represent the scale factors of the elementary pixel form;

– parameter r =
√

(u − u0)2dx2 + (v − v0)2dy2, is the radial distance
from the principal point. Since r can take significant values (based on the
size of the image), r4 and r6 sometimes become enormous; expression
(1.28) can then lead to a numerical instability during the estimation of the
different parameters. A means of circumventing this difficulty is to rewrite
this expression in the following way:

doxr =
(
u − u0

)
dx
(
a1

(
r2 − r2

0

)
+ a2

(
r4 − r4

0

)
+ a3

(
r6 − r6

0

))
doyr =

(
v − v0

)
dy
(
a1

(
r2 − r2

0

)
+ a2

(
r4 − r4

0

)
+ a3

(
r6 − r6

0

))
}

(1.30)

which assumes that the distortion is zero for a radial distance r0.

By substituting (1.27), (1.28) and (1.29) in (1.26), and by showing fx = f
dx

and fy = f
dy

, we obtain the following system:

u+ex =u0+doxr+doxt+fx
r11X+r12Y +r13Z+Tx

r31X+r32Y +r33Z+Tz
=P (Φ)

v+ey =v0+
(
doyr+doyt

)fx

fy
+fy

r21X+r22Y +r23Z+Ty

r31X+r32Y +r33Z+Tz
=Q(Φ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(1.31)
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where in (1.31), Φ is a vector of 15 parameters, i.e.:

Φ =
[
u0, v0, a1, a2, a3, p1, p2, fx, fy, Tx, Ty, Tz, α, β, γ

]T
1.4.2. Solving the problem

Let us again consider the colinearity equations defined in expression (1.31):(
ex

ey

)
=
(

P (Φ) − u

Q(Φ) − v

)
= V (Φ) (1.32)

Presently, the problem is to determine the value of Φ, which reduces:

S =
n∑

i=1

(
e2
xi

+ e2
yi

)
.

In (1.32), P (Φ) and Q(Φ) are non-linear functions of Φ and therefore
minimization is a non-linear optimization problem.

A method to solve this problem is to make a linearization of (1.32) from an
initial value Φ0 (generally provided by the results of the linear resolution of
the problem of calibration described in section 1.3) and calculate a correction
ΔΦ. Then, we add ΔΦ to Φ0, which becomes the new initial value: the
process must be repeated until the convergence of the system is obtained.

Let there be n 3D reference markers and their corresponding reference
markers in the image; we can write the 2 × n linearized equation system in
matrix form:

V(Φ) = V(Φ0) −
15∑
i=1

∂V
∂Φi

ΔΦi (1.33)

V = L − AΔΦ (1.34)

Thus, L represents the common value of the criterion and A represents the
Jacobian matrix of the system, around the current vector Φ0.
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Let the weighting matrix of measures be1 W then the resolution in the
context of least squares of (1.34) amounts to estimating:

min
ΔΦ∈�15

(
VTWV

)
(1.35)

The solution of (1.35) is given by:

ΔΦ =
(
ATWA

)−1(ATWL
)

(1.36)

Demonstration. Let Ω = VTWV. In the solution of the system, we have,
∂Ω
∂Φ = 0, i.e.:

∂Ω
∂Φ

= 2VTW
∂V
∂Φ

= −2VTWA = 0, =⇒ ATWV = 0.

By replacing V from its expression in (1.34), the above equation becomes:

ATW
(
L − AΔΦ

)
= ATWL − ATWAΔΦ = 0

which leads to the solution of ΔΦ:

ΔΦ =
(
ATWA

)−1(ATWL
)
.

1.4.3. Multi-image calibration

Error in measurements is one of the main causes for obtaining bad results
in calibration (which are in the image as well as on the test card). To mitigate
this problem, it is possible to combine, in the same system, several images
coming from the same camera but for different spatial positions (rotation
and/or translation). In this case, the intrinsic parameters of the sensor are
the same for all images and calibration estimates the following vector of
parameters:

Φ9+6m =
[
x0, y0, a1, a2, a3, p1, p2, fx, fy, T

1
x , T 1

y , T 1
z ,

α1, β1, γ1, . . . , Tm
y , Tm

z , αm, βm, γm
]T

1. Generally, W is a diagonal matrix 2n × 2n. If all measurements are made with the same
precision and if there is no correlation between the parameters, then W is the identity matrix:
i.e., W = I.
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The matrix A of (1.34) is therefore of the form:

A2mn×(9+6m) =

⎡⎢⎢⎢⎢⎢⎣A1
2mn×9

| A11
2n×6 0

| . . .
| Aii

2n×6

| . . .
| 0 Amm

2n×6

⎤⎥⎥⎥⎥⎥⎦
where m is the number of images and n is the number of reference markers
per image. The total number of equations is (2mn) and the total number of
parameters is (9 + 6m). Redundancy r is given by: r = 2mn − 9 − 6m
and it is much more significant than in the case of calibration with a single
image. The multi-image approach, from an experimental point of view, leads
to quality results and ensures a greater reproducibility of the estimation of the
internal parameters of the sensor.

1.4.4. Self-calibration by bundle adjustment

1.4.4.1. Redefinition of the problem

The main idea comes from the following observation: quality test cards
of calibration are difficult to achieve: the mechanical stability of the set for a
precision < 0.05 mm is obtained only with specific materials and a precise
measurement of 3D reference markers used is expensive. Moreover, the
variability of the angular fields based on applications leads to the usage of
different test cards adapted to experimental conditions.

Self-calibration by bundle adjustment is a multi-image approach, which
jointly allows a re-estimation of the three-dimensional structure of the test
card and an estimation of the intrinsic and extrinsic traditional parameters of
the sensor. In other words, we calibrate the camera and reconstruct the test
card simultaneously.

Let the colinearity equations be:

u + ex = u0 +
(
doxr + doxt

)
/dx

+
(

f

dx

)
r11X + r12Y + r13Z + Tx

r31X + r32Y + r33Z + Tz
= P (Φ)

v + ey = v0 +
(
doyr + doyt

)
/dy

+
(

f

dy

)
r21X + r22Y + r23Z + Ty

r31X + r32Y + r33Z + Tz
= Q(Φ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.37)
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To simplify writing, we removed the indices, without loss of generality, but
the colinearity expressions go well with all the reference markers (Xi, Yi, Zi)
of n reference markers of the test card projecting itself in (vj , vj) in m images.

If we wish to calibrate the sensor and to calculate the coordinates of the
reference marker of the test card, then, the parameter vectors to be estimated
take the following form:

Φ9+6m+3∗n =
[
x0, y0, a1, a2, a3, p1, p2, fx, fy,

X1,Y1,Z1, . . . ,Xn,Yn,Zn,

T 1
x , T 1

y , T 1
z , α1, β1, γ1, . . . , Tm

y , Tm
z , αm, βm, γm

]T
Problem. Find Φ, which reduces

∑m
j=1

∑n
i=1(e

2
xij

+ e2
yij

).

1.4.4.2. Estimation of redundancy

Number of unknown elements

9 (intrinsic parameters) + 3∗n (test card reference marker)

+ 6∗m (extrinsic parameters).

Number of equations

2∗m∗n.

The redundancy of the system r = 2∗m∗n − (9 + 3∗n + 6∗m) is ensured
without much difficulty. For a test card of 11 reference markers, for example,
a minimum of 3 images allows overdetermination of the system.

1.4.4.3. Solution for a near scale factor

Intrinsic parameters. In a traditional way, the matrix of the intrinsic
parameters is always determined in a near scale factor. The usual introduction
of the factor (dx = 1) makes it possible to fix the set of parameters in an
arbitrary unit of pixels.

Extrinsic parameters. From the time we estimate, within the process, the
three-dimensional coordinates of the reference marker of the test card, the
extrinsic geometry of the system is also fixed to a near scale factor. Indeed,
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it is always possible to find a more voluminous test card observed from afar,
which would strictly give the same image.

This metric loss is not of much importance for the calibration of a simple
camera where only the intrinsic parameters represent an interest for the user.
Nevertheless, to facilitate convergence, two reference markers of the test card
will not be reconstructed and will impose the metric system. We will also
impose that one of the coordinates of an unspecified point among n remains
fixed to solidify the total extrinsic geometry of the reconstructed scene.

1.4.4.4. Initial conditions

It is obvious that the optimization of such a non-linear system requires
initial conditions in the field of convergence. In the experimental part, we
will show that this constraint is resolved without difficulties from the time
of observing the test card under different orientation behaviors. This amounts
to ensuring the significant angles of triangulation for the estimation of test card
reference marker.

The values of each term of the initial vector of calibration can be provided
with the help of the linear approach of calibration or more simply from the
data creator for intrinsic parameters and from a localization algorithm such as
that of Dementhon [DEM 95] for extrinsic parameters.

1.4.5. Precision calculation

From an estimate in the context of least squares (1.34) and (1.35), it is
possible to calculate an estimate of the residual vector V:

V̂ =
[
A
(
ATWA

)−1ATW − I
]
L (1.38)

as well as the estimate of the standard error of unit weight, which represents
an estimate a posteriori of σ0 (scalar) noise on the reference marker detected
in the image.

σ̂2
0 =

VTWV
N − P

(1.39)

where P is the total number of estimated parameters. The value of the
covariance matrix associated with Φ parameters is given by:

CΦ =
(
ATWA

)−1
(1.40)



Calibration of Vision Sensors 39

Thus, for each parameter φi, it is possible to calculate its detection
precision (standard deviation):

σ̂2
φi

= σ̂2
0cii (1.41)

A method for measuring the reliability (quality) of an adjustment in the
context of least squares is to calculate the relative redundancy of the system
[TOR 81], i.e.:

q = tr
[
I − A

(
ATWA

)−1AT
]

=
r

N
(1.42)

where in (1.39) and (1.41), r represents redundancy, N is the total number
of measurement equations and cii is the ith diagonal element of covariance
matrix CΦ. As we can observe, the relative redundancy for a multi-image
calibration is much more significant than that for a simple calibration. It
results in a greater reliability in the multi-image calibration results, qmulti =

r
2mn = 1− 9+6m

2mn , when compared to simple-image resolution, qsingle = 1− 15
2n .

If m > 1, then qmulti > qsingle.

1.5. Results of experimentation

1.5.1. Bundle adjustment for a traditional lens

This first part presents an example of calibration on a 1/2" camera equipped
with a 10 mm lens.

1.5.1.1. Initial and experimental conditions

For this experiment, the polynomial distortion coefficients (a1, a2, a3,
p1, p2) are initialized at zero. The test card (Xi, Yi, Zi, i ∈ [1, n]) is roughly
measured and point coordinates are truncated to several centimeters; let
us note that the multi-image approach makes it possible to use planar test
cards, which largely facilitates their manufacture and in obtaining a rough
model. The relative initial camera/test card positions (Rj , Tj , j ∈ [1, m]) are
estimated by Dementhon’s algorithm [DEM 95] applied to plane objects.

The position of the principal point (u0, v0) is placed in the middle of the
image and the focal distance (fx, fy) is roughly estimated by the knowledge
of the focal distance of the lens (10 mm, for example) and the elementary pixel
size of the CCD matrix (ranging from 9 to 15 μm according to sensors).
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The series of analyzed images must obligatorily form a beam of converging
views in order to enforce the angles of triangulation to obtain reconstruction
of the test card. Finally, the approach is based on an accurate detection of test
card reference marker (see [LAV 98]).

1.5.1.2. Sequence of classic images

The images presented in Figure 1.7 show a sample of 15 photoshots taken
to calibrate a camera equipped with a 10 mm lens. The test card is obtained
from a plane plate and is equipped with retroreflective chips. The photographic
device integrates annular high frequency lighting, which makes it possible to
obtain good quality images of the chips used, irrespective of the observation
angle of the object.

Figure 1.7. Partial sequence of 15 photos taken for self-calibration (768 × 576 pixels)

In order to highlight the convergence of the algorithm, we deliberately
chose to leave the solution for the internal parameters of focal distance (1,500
pixels instead of 1,000), i.e., with an error of 50%. In some iterations, the
algorithm is stabilized around a minimum, which leads to residues of about
0.025 pixels on each coordinate (see Table 1.1).

The curves in Figure 1.8 show the convergence of fx, u0 and v0; the
minimum expression (1.35) will be attained at the end of 12 iterations.

Remarks:

– The convergence strategy does not pose a particular problem for this
series of data, but we will see that this is not always the case for lenses
displaying a strong radial distortion. For these images, all parameters
(intrinsic, extrinsic and test card coordinates) are estimated from the first
iteration, i.e., on the whole for 15 images and a test card with 18 reference
markers (11 + 15 ∗ 6 + 3 ∗ 18 = 155 parameters):
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Camera : JAI M10

Lens : 10 mm Ernitec

Digitization card : Silicon Graphics

Algorithm : Bundle adjustment

Number of images : 15

Number of measurements : 270

Residues ex ave and e-type (pix) 9.711e-05 2.555e-02

Residues ey ave and e-type (pix) (pix) 2.480e-06 2.367e-02

σ0 (pix) 2.917e-02

value σ

fx(pix) 977.11 2.94e-01

fy(pix) 977.50 2.86e-01

u0(pix) 365.01 2.54e-01

v0(pix) 267.64 3.75e-01

a1 +1.955e-07 3.11e-09

a2 +6.427e-14 4.82e-14

a3 −1.437e-18 2.17e-19

p1 +1.154e-06 5.42e-08

p2 −6.077e-07 9.04e-08

Table 1.1. Bundle adjustment: Jai M10 camera and 10 mm lens
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Figure 1.8. Convergence of fx, u0, v0
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Figure 1.9. Distortion according to radius (a) and residues in convergence (b) (enlarged
1,000 times) of a set of measuring reference markers (768 × 576 pixel format)

– In the solution, we recalled the residues of convergence (ex, ey)
corresponding to expression (1.36). Each cross represents a point of
measurement resulting from one of the m images and the associated residue
vector undergoes a multiplicative factor of 1,000 in Figure 1.9b. Homogenous
distribution of residue vectors and their random orientation translates the
non-correlation of errors in solution.

Flexibility in use. The use of the approach described in this chapter proves
very flexible and enables calibrations with flexible test cards based on the focal
distance of the lens used. The results of the residues obtained in comparison
with traditional approaches using a test card measured with precision testify
the reliability of the algorithm.

1.5.2. Specific case of fish-eye lenses

This section deals with the specific case of fish-eye lenses. The principal
deformation generated by a lens with short focal length is a radial deformation.
The more the lens presents a small focal distance, the broader its angular
field of observation. Rays converging on the CCD matrix have an increasingly
significant incidental angle on the very important front diopter of the lens and
consequently move away from the assumption of paraxial optics. Therefore,
the curvature radii of the lenses induce a dominating radial phenomenon.

The strategy to model the strong deformations is intuitive; it consists of
increasing the order of polynomial distortion. For considering strong radial
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distortions, it is necessary to have the polynomial order at 5. On the other
hand, several writings of the criterion can be considered.

1.5.2.1. Traditional criterion

Formula (1.28), which was previously explained, changes into:

doxr =
(
u − u0

)
dx
(
a1r

2 + a2r
4 + a3r

6 + a4r
8 + a5r

10
)

doyr =
(
v − v0

)
dy
(
a1r

2 + a2r
4 + a3r

6 + a4r
8 + a5r

10
)
}

(1.43)

The distortion polynomial will be composed of five terms instead of three.
As Li highlights it in [LI 94], since r can take a maximum value of

√
2

2 L
(where L represents the size of the image), r2 . . . r10 can take very high values
and expression (1.43) can then become numerically unstable.

1.5.2.2. Zero distortion at r0

To resolve this disadvantage, it is possible to rewrite expression (1.43) in
the following way:

doxr =
(
u − u0

)
dx
(
a1

(
r2 − r2

0

)
+ a2

(
r4 − r4

0

)
+ a3

(
r6 − r6

0

)
+ a4

(
r8 − r8

0

)
+ a5

(
r10 − r10

0

))
doyr =

(
v − v0

)
dy
(
a1

(
r2 − r2

0

)
+ a2

(
r4 − r4

0

)
+ a3

(
r6 − r6

0

)
+ a4

(
r8 − r8

0

)
+ a5

(
r10 − r10

0

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.44)

or further:

doxr =
(
u − u0

)
dx

5∑
i=1

(
ai

(
r2i − r2i

0

))
doyr =

(
v − v0

)
dy

5∑
i=1

(
ai

(
r2i − r2i

0

))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.45)

Therefore, expression (1.45) forces the distortion to take a zero value for
a fixed radial distance r0. In this equation, there is a variation of the focal
distance in solution, which, in the first approximation, will be equal to: Δf =
f
r0

dr0.
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Nevertheless, [LAV 00a] shows that this does not solve any aspect of the
fact that the coefficients have numerically very low values when compared to
parameters of focal distance, for example. This aspect can, however, be taken
into account by a third expression of the criterion.

1.5.2.3. Normalization of distortion coefficients

Normalization consists of compensating the significant values of rn by
normalizing all distances as compared to the focal length f :(

u − u0

)
dx −→ (u − u0

)
dx/f(

v − v0

)
dy −→ (v − v0

)
dy/f

}

It becomes:

r′2 =
((

u − u0

)dx

f

)2

+
((

v − v0

)dy

f

)2

=
r2

f2

or even, in distortion expression:

do′xr =
(
u − u0

)dx

f

(
a1r

′2 + · · · + a5r
′10)

do′xt = p1

[
r′2 + 2

(
u − u0

)2 dx2

f2

]
+ 2p2

(
u − u0

)dx

f

(
v − v0

)dy

f

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.46)

which we can rewrite by putting f in factor:

do′xr =
1
f

(
u − u0

)
dx

5∑
i=1

(
ai

f2i
r2i

)

do′xt =
1
f

[
p1

f

(
r2 + 2

(
u − u0

)2 dx2

f2

)
+ 2

p2

f

(
u − u0

)
dx
(
v − v0

)
dy

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(1.47)

This new expression shows a form, which is entirely similar to that defined
in (1.28), as compared to the near focal length. Then, the total criterion takes
the following form:

e′x =
X

Z
+ do′xr + do′xt −

(
u − u0

)dx

f

e′y =
Y

Z
+ do′yr + do′yt −

(
v − v0

)dy

f

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.48)
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Figure 1.10. Example of photoshots (format: 768 × 576 pixels)

The interest of this rewriting lies in the fact that any significant value of
(r2i) in the distortion polynomial is compensated by (f2i). We will see in the
experimental part that the values of (ai) will remain close to the unit.

1.5.2.4. Experiments

Part of the test sequence to calibrate is presented in Figure 1.10. We
can note that we are in the presence of a very strong radial distortion. An
exhaustive comparison of the behavior of these three criteria is analyzed in
[LAV 00a] and the results presented in Table 1.2 implement the normalized
equation of colinearity expressions.

General notes

– The convergence of the calibration algorithm requires some precautions
to calibrate a sensor displaying such a distortion. By releasing a set of
parameters from the first iteration, the algorithm systematically diverges
choosing a solution, which consists of sending the object to infinity. This is
particularly true as we move far from the final solution since the coefficients
of radial and tangential distortion are initialized at zero.

– To enforce the parameters, we adopt an approach, which blocks the
focal distance and the principal point (fx, fy, u0, v0) as long as the average
criterion is not passed under a threshold, which is fixed here at 0.6 pixels. Thus,
the algorithm will initially estimate distortions, localizations and the geometry
of the test card, and then optimize all the parameters as soon as the threshold
is crossed. This parameter blocking comes within a Levenberg-Marquardt
procedure of optimization while acting on the derivatives of the system
(starting value of fx, fy fixed at 400 pixels or 40% of the solution).
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Camera : JAI M300

Lens : 3.5mm TV-lens

Digitization card : Silicon Graphics

Algorithm : Bundle adjustment

Number of images : 20

Number of measurements : 360

Residues ex ave and e-type (pix) 9.631e-05 4.98e-02

Residues ey ave and e-type (pix) −1.309e-05 3.78e-02

Std error of unit weight (pix) 5.15e-02

value σ

fx(pix) 326.89 1.82e-01

fy(pix) 327.29 2.00e-01

u0(pix) 396.67 1.78e-01

v0(pix) 258.22 1.81e-01

a1 3.985e-01 4.51e-03

a2 1.892e-02 2.16e-02

a3 4.557e-01 4.54e-02

a4 −3.921e-01 4.22e-02

a5 2.261e-01 1.46e-02

p1 7.304e-06 1.27e-04

p2 1.253e-03 1.97e-04

Table 1.2. Fish-eye calibration. Normalized criterion

Comments

– We observe the harmonization of the order of magnitude of radial
distortion coefficients in Table 1.2. The variation between the terms does not
exceed a factor of 10.

– The distortion in the image edge is higher than 200 pixels (Figure 1.11).

– The decrease of the criterion is carried out without much difficulty. From
0.6 pixels, the 185 parameters are estimated at the same time. All decreasing
curves present the same “break” in the vicinity of the solution (0.25 pix) before
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Figure 1.11. Convergence and distortion of the normalized criterion

dropping towards the final solution; this rupture is not because of the release
of parameter in our part, but due to the choice of the Levenberg-Marquardt
strategy of convergence.

– The residues in solution are about 0.05 pixels.

– In Figure 1.12, let us note the presence of some outliers (important
standard of vector), which can be removed by simple filtering on the values
of residues.

Figure 1.12. Residues in convergence (×1,000)

The calibration of lenses with short focal length is based on three major
reference markers: a precise detection of markings in images, an adapted
optimization criterion and a convergence strategy, which will gradually
release the parameters to avoid the local minimum pitfall.



48 Visual Perception through Video Imagery

The approach presented on self-calibration by bundle adjustment offers
the advantage of quickly obtaining a test card adapted to these specific
lenses. Of the three criteria given, two hold our attention more particularly:
the second, which consists of fixing a zero distortion at a distance r0 from
the principal point, and the third, which introduces a normalization of the
distortion coefficients. In terms of residues in solution and for a constant size
of the image, the two criteria are appreciably equivalent; the second offers
the advantage of maintaining a practically constant size of the image before
and after correction of distortion. As for the third, it offers a more favorable
numerical conditioning.

The writing of a new hybrid criterion considering the advantages of the last
two must bring a satisfactory solution to this problem. Figure 1.13 shows a
sensor view before and after compensation of the distortion phenomena. The
size of the final image is increased by 400 pixels in line and column, and leads
to a real observation field of the lens of 120 degrees.

Figure 1.13. Initial image (format: 768 × 576 pixels) and corrected image
(format: 1,168 × 976 pixels)

1.5.3. Calibration of underwater cameras

1.5.3.1. Theoretical notes

This section deals with certain concepts related to the calibration of
underwater cameras. [LAV 00b] shows the passage of links on the change of
focal distance and the modification of distortion curves between the use of
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video sensor in air and in water. It is then possible to calibrate the sensor in
air and to foresee its operation in a medium of unspecified index.

The following laws must be verified for water:

1) When the camera is plunged in water, we must observe a multiplicative
factor of 1.333 on the focal distance value measured in air:

fwater = nwater ∗ fair (1.49)

2) Let u be the distorted image of a point in air and du be the distortion
correction made to obtain a perfect projection point.

Let u′ be the distorted image of the same point in water and du′ the
distortion correction made to obtain a perfect projection point, then:

1.333(u + du) = u′ + du′ (1.50)

1.5.3.2. Experiments

The experimental part consists of calibrating an underwater camera in air
and then in water and of analyzing the calibration results taking into account
the theoretical relations expressed in the preceding section.

1.5.3.3. The material

We use an experimental underwater camera made with a Sony CCD sensor.
The entire optical device is known (index, dimension and localization of each
diopter).

1.5.3.4. Results in air

We calibrated the sensor from 12 images presented in Figure 1.14. The
effect of radial distortion is significant and the black circle visible at the edge
of the image comes from the increase in the angular field of the camera in air.
It will disappear when the latter is immersed in water. From these experiments
we come to the following conclusions:

– We used an expression of the radial distortion in normalized writing, for
a polynomial of order 5 (see section 1.5.2.3).

– Table 1.3 shows the results in the convergence of the system. The residues
are about 0.04 pixels. The algorithm is stabilized for fx = 376 pixels and
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Figure 1.14. Calibration in air (768 × 576 pixels)

fy = 376 pixels, which corresponds to an angular field of observation of 110
degrees when the distortion is compensated.

– Radial distortion is represented in Figure 1.15a. It takes huge values and
beyond 320 pixels (black circle) it no longer corresponds to the physical
measurements taken in the images. To represent the compensated view of
distortion (Figure 1.15b), we increased the size of the image of 400 pixels
(rows and columns). This image corresponds to the sixth view of the sequence
(Figure 1.14).

1.5.3.5. Calibration in water

Similarly, we calibrated the underwater camera in water with the help of
an analysis of 12 views represented in Figure 1.16. As we emphasized before,
the black circle at the edge of the image disappeared and this tends to show
that there is a modification of the internal behavior of the sensor during index
change. Let us finally note that the angular field was strongly reduced and that
the distortion at the edge of the image seems less significant than in air.
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Results: Calibration in air (index = 1)

Camera : Sony underwater
Lens : 4 mm
Sampling card : Silicon Graphics
Algorithm : Bundle adjustment

Number of images : 12
Number of measurements : 283

Ave residues ex and σ (pixel) 2.69e-05 4.15e-02
Ave residues ey and σ (pixel) 1.49e-04 4.45e-02

value σ

fx(pix) 375.65 3.39e-01
fy(pix) 375.81 3.06e-01
u0(pix) 390.87 5.59e-02
v0(pix) 291.75 7.31e-02
a1 6.63e-01 7.52e-03
a2 −1.15e-00 5.02e-02
a3 6.83e+00 1.73e-01
a4 −1.20e+01 2.65e-01
a5 8.95e+00 1.56e-01
p1 −1.02e-03 1.98e-04
p2 1.22e-04 1.91e-04

Table 1.3. Bundle adjustment in the air on an underwater camera
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Figure 1.15. Radial distortion and corrected image (1,168 × 976 pixels)
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Figure 1.16. Sequence of photoshots for calibration in water (768 × 576 pixels)

Notes

– At convergence, the focal distance of the underwater device was
stabilized around 500 pixels (instead of 376), which leads to an angular field
in water nearing 90 degrees.

– The curve of radial distortion is plotted in Figure 1.17a. It is considerably
less significant than for the experiment in air.

Figure 1.17b presents one of the calibration views after compensation of
distortions.
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Figure 1.17. Radial distortion and corrected underwater image (968 × 776 pixels)
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Calibration in water (media index = 1.333)
Underwater camera

Camera : Sony underwater
Lens : 4 mm
Digitization card : Silicon Graphics
Algorithm : Bundle adjustment

Number of images : 13
Number of measurement : 325

Ave. residues Ex and σ (pixel) 1.36e-05 4.641e-02
Ave. residues Ey and σ (pixel) −3.17e-05 5.164e-02

value σ

fx(pix) 499.12 5.51e-01
fy(pix) 501.97 5.22e-01
u0(pix) 391.81 9.27e-02
v0(pix) 292.30 1.25e-01
a1 7.52e-01 1.06e-02
a2 −1.84e-00 7.22e-02
a3 9.88e-00 2.54e-01
a4 −1.73e+01 4.11e-01
a5 1.30e+01 2.57e-01
p1 −1.66e-03 2.32e-04
p2 1.62e-03 1.76e-04

Table 1.4. Bundle adjustment. Underwater camera

1.5.3.6. Relation between the calibration in air and in water

Focal Distance. The theoretical laws of air/water passage are verified in
experiments:

– The distance between the nodal point image and the CCD matrix
undergoes a multiplicative factor equivalent to the index in which the camera
is plunged (see [LAV 00b]).

– Table 1.5 shows the relationship between the focal distances in air and
in water. If we integrate the determination uncertainties of focal distances
estimated by the process of calibration, this ratio is very close to 1.333.
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f-air f-water ratio (f-water/f-air)

fx(pix) 375.65 499.12 1.329

fy(pix) 375.81 501.97 1.336

Table 1.5. Comparison of the focal distance in air and in water

Coordinates of the principal point (U0, V0). The position of the principal
point (intersection of the optical axis and CCD matrix) is relatively stable
between the two experiments (Table 1.6).

Air Water

u0(pixels) 390.87 391.81

v0(pixels) 291.76 292.30

Table 1.6. Comparison of the coordinates of the principal point in air and in water

Distortion. Figure 1.18a shows a joint representation of the distortion curves
obtained from the series of measurements in air and water. We can observe the
importance of the radial effect during the experimentation in air.

If it is assumed that this distortion is mainly radial, the curves must then
verify:

1.333
(
u + dair(u)

)
= u′ + dwater(u′)

Figure 1.18b shows the prediction of distortion curves in water obtained
from data calculated in air. As we can note, the superposition is extremely
good. Since the view field in air is larger than in water, prediction of distortion
of the edge of image in water corresponds to very precise measurements in air
since this part of the image is perfectly visible. This is not the case for images
in water because of the experimental difficulty in obtaining correct views of
the edges of images there.

It seems obvious that the use of an underwater camera can be freed from
in situ calibration. In fact, underwater shots are not always easy to obtain
especially if we want to take shots of convergent images, uniformly distributed
on a CCD sensor. Then, a pre-calibration in air is a remarkable solution and
leads to very interesting results.
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Figure 1.18. Distortions: (a) curves drawn from air measurements and water measurements,
(b) superposition distortion in water and prediction of distortion in water from distortion in air

Figure 1.19. Distortion: (a) original view (768 × 576 pixels), (b) non-distorted
view (968 × 776 pixels) from data obtained in water, (c) non-distorted view

from data predicted from air

1.5.4. Calibration of zooms

1.5.4.1. Recalling optical properties

Changing the focal distance. Change of the focal distance induced in a zoom
is obtained by the displacement of a moving block of convergent lenses. This
modification in diopter configuration causes an apparent enlargement of the
image. However, the transformation undergone by the image is not a simple
affinity and we show [LAV 93] that the perspective properties of the device
are largely modified.

Two major modifications must be taken into account:

– Modification of the focal distance (fx, fy).
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– Modification (often significant) of the distance between the optical center
equivalent to the device and the object (Tz). This phenomenon taking place
as a result of the displacement of the principal reference marker of the thick
optical model can induce axial displacements of a significant amplitude (see
[LAV 93] for more details).

To conclude, the zoom action induces modifications on the intrinsic and
extrinsic parameters of the vector of calibration.

From a purely theoretical point of view, it will be advisable to consider
as many independent principal reference markers as (zoom/focusing)
configurations of the lens.

In practice, however, it should be noted that the estimate precision of the
principal point decreases with the increase in the focal distance. Indeed, the
higher the focal distance, the more the perspective model tends towards the
orthographical model in scale, which no longer allows the determination of
(u0, v0) (we have compensation with Tx and Ty parameters).

For a zoom with great enlargement, the solution consists of joining the
principal point with the expanding focus to determine the average coordinates
of (u0, v0) adapted to the zoom considered [LI 96]. This approximation is
particularly valid since the phenomenon of axial translation of the zoom is
significant.

1.5.4.2. Estimate of the principal point

This estimate is done by analyzing a sequence of images by zooming.
Each point of the same object is followed throughout the sequence and we
estimate the line in the context of least squares passing by each coordinate
(see Figure 1.21). The calculation of the intersection of beam lines provides
the expansion focus of the zoom.

Figure 1.20. Camera equipped with a zoom
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Figure 1.21. Determination of expanding focus

Figure 1.22. Active head of the Sweden’s Royal Institute of Technology (KTH-Stockholm)

1.5.4.3. Experiments

Calibration of a zoom must be obtained for all configurations of focal
distance and the useful focusing by the device. Figure 1.23 shows the sampling
realized during experiments. The amplitudes of displacements are normalized.

Figure 1.23. Tested configurations (zones in gray correspond to zoom
combinations/focusing realized during the experiments)
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Figure 1.24. Surface representing the variations of the focal distance according to
the focusing and zoom adjustment

Figures 1.24 shows the calibration results of zooms, which equip the active
head of KTH in Stockholm (Professor Eklundh); see Figure 1.22. The curves
highlight the effect coupled on the focal distance of a zoom change and also
of a focusing change. An exhaustive analysis of the results can be found in
[LI 95].
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Chapter 2

Self-Calibration of Video Sensors

2.1. Introduction

This chapter deals with the fundamental problem of self-calibration of
a camera with the help of a set of points paired between various images.
A method is developed based on Kruppa equations, which are well-known
in the context of this application. We make use of the decomposition of
fundamental matrix in singular values to derive remarkably simplified Kruppa
equations in a purely algebraic method. This enables us, in particular, to solve
the problem of choosing two Kruppa equations among the larger group of
equations derived using the traditional method. In this method, the equations
are derived very simply and we by no means make use of the geometric
interpretation with an absolute conic as a base, or that related to infinite
plane, and we do not explicitly use epipoles, whose estimate is known to be
unstable. Finally and especially, this method is implemented, compared and
tested successfully to find the intrinsic parameters of various cameras from
noisy synthetic data and several real images. It is also shown that the quality
of the results obtained makes it possible to validate the approach until reliable
3D measurements are obtained with the help of images.

A camera is a projective machine [FAU 92, FAU 93, HAR 92b], which
makes it possible to obtain the image m, in the retinal plane, from a point M in
space. This is obtained by intersecting the retinal plane with the optical radius,
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61



62 Visual Perception through Video Imagery

which passes by the center of projection or the optical center and by the point
M. This operation is linear in projective coordinates and uses a rank 3 3×4
matrix, known as the perspective projection matrix, which depends on five
intrinsic parameters and six other parameters, known as extrinsic parameters,
which determine the position and orientation of the camera (3 of rotation and
3 of translation).

Calibration of a camera consists of estimating its perspective projection
matrix, which enables us to trace its set of intrinsic and extrinsic parameters.
This is generally carried out by means of a certain number of landmarks
whose 3D coordinates and their 2D projections are easily identifiable and
known with high degree of accuracy. This technique, very much used by the
photogrammetry community [ZEL 52, FAI 75, SLA 80, WOL 83] and that of
computer vision [BRO 71, TSA 87, TSA 86, FAU 86, TOS 87] in order to
trace the retina metrics, is however very difficult and constraining owing to
the fact that it requires the use of a set of very precise 3D and 2D landmarks,
which are often not available in the case of the application considered.

The self-calibration of a camera thus consists of tracing its intrinsic
parameters, and thus the retina metrics, without using 3D landmarks. Only
the information present in the images is accessible i.e., we have only 2D
landmarks extracted from images taken by the camera to be self-calibrated. In
the past decade, this problem of capital importance in several applications has
attracted the attention of the computer vision community, which developed
a fine analysis of the constraints that the intrinsic parameters of a moving
camera taking various views must respect. In this chapter, we will only
consider the case where the intrinsic parameters are assumed to be constant.
For recent works related to self-calibration in the case of variable intrinsic
parameters, or complementary works on calibration by specific movements
or stereoscopic systems see [HEY 97, POL 98, POL 99, AGA 98, AGA 99,
LOU 00a, DEV 96, VIE 94, VIE 99, VIE 96b, VIE 96a, ENC 94].

In the case of 2 images perceived by a camera whose intrinsic parameters
are supposed to be constant, we can show that the knowledge of at least 8
points paired between the two views makes it possible to reach, in a unique
way, a 3×3 matrix of row 2 known as the fundamental matrix from which
two polynomial constraints on the intrinsic parameters can be exhibited.
Various approaches were developed in order to show these constraints. In
this chapter we will focus on a detailed presentation of the approach known
as Kruppa equations, which enable us to efficiently solve the problem of
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self-calibration. To achieve this, we will start by presenting the approach
known as Huang-Faugeras constraints [HUA 89] and the approach developed
by Trivedi [TRI 88], as they constitute a good introduction to Kruppa
equations. The approach known as Huang-Faugeras constraints [HUA 89]
indeed makes it possible to deduce, by way of a fundamental matrix structure,
a polynomial equation of order 8 in the intrinsic parameters, whereas the
Trivedi approach [TRI 88] makes it possible to show that there exists not only
1 but 2 polynomial constraints of order 8. Then, Luong [LUO 92, LUO 97]
showed that the polynomial Huang-Faugeras constraint can be divided
into two independent polynomial relations, equivalent to two of Trivedi’s
equations. A purely geometric approach, and its only algebraic equivalent are
then presented in order to simplify these constraints and to reduce their order
from 8 to 4. These new polynomial constraints, known as Kruppa equations
in honor of the Austrian mathematician Erwin Kruppa, are then remarkably
simplified by way of decomposition into singular values of the fundamental
matrix.

Several approaches of self-calibration were developed within the computer
vision community. As a complement to what is presented in this chapter, see
the works by Luong [LUO 92], Zeller [ZEL 96a, ZEL 96b], Heyden and
Åström [HEY 96], Pollefeys and Van Gool [POL 97b, POL 97a] and Luong
and Faugeras [LUO 97]. Some authors were interested in particular types of
movements to self-calibrate. Thus, Hartley [HAR 97a] showed that in the
case of a pure rotation, self-calibration can be solved with the assistance of a
linear algorithm. Other cases of interest, of which some include stereoscopic
systems, were studied by Armstrong et al. [ARM 96, ZHA 93, HOR 94,
BRO 96, HOR 98]. Lastly, an inventory of critical movements of the cameras
for which Kruppa equations degenerate and do not provide information or
provide only a partial information on the intrinsic parameters (translatory
movements, planes, rotation around a point, etc.) was started by Zeller in
[ZEL 96a] and was continued by Sturn [STU 97] and Zisserman et al.
[ZIS 98].

This chapter is organized as follows. This first section provides an
introduction to the problem of self-calibration; section 2.2 contains some
fundamental notations and reminders; section 2.3 is devoted to recalling
Huang-Faugeras constraints [HUA 89] and those of Trivedi [TRI 88],
which constitute a good introduction to Kruppa equations. The latter are
then derived in section 2.4, initially with the help of a traditional geometric
approach and then with the help of an algebraic approach, which will make it
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possible to simplify them remarkably. The last section is finally devoted to
the presentation of some experimental results on synthetic and real data.

2.2. Reminder and notation

A projective camera model is assumed. This model appeals to projective
geometry, of which some basic recalls and concepts can be found in [MOH 93,
FAU 93, MUN 92].

This model projects a 3D point M = [x, y, z]t in space in a 2D point m =
[u, v]t in the image, through projection matrix 4 × 3, which is noted by P

sm̂ = PM̂ (2.1)

where s is an arbitrary scale factor, but non-zero, and the notation p̂ is such
that if p = [x, y, . . .]t, then p̂ = [x, y, . . . , 1]t.

We consider a system of stereo cameras and provide two 2D points m1 and
m2 resulting from the projection of the same physical point M in space. Then,
we have the 2 following relations:

s1m̂1 = P1M̂, s2m̂2 = P2M̂ (2.2)

If we place ourselves in the reference mark associated with the 1st camera,
the projection matrices are then given by:

P1 = [A | 0], P2 = [A′R | A′t],

where R and t respectively represent the rotation matrix and the translation
vector associated with the rigid movement between the 2 cameras. Note that
a similar relation exists in the case of the two views taken by a single moving
camera.

Matrix A and matrix A′ are the matrices known as intrinsic parameters.
They are given by the following well-known form [FAU 95]:

A =

⎡⎢⎣αu −αu cot θ u0

0 αv/ sin θ v0

0 0 1

⎤⎥⎦ , A′ =

⎡⎢⎣α
′
u −α′

u cot θ′ u′
0

0 α′
v/ sin θ′ v′0

0 0 1

⎤⎥⎦ (2.3)
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where the parameters αu (resp. α′
u) and αv (resp. α′

v) correspond to the focal
distances in pixels along the image axes, and θ (resp. θ′) represents the angle
between the 2 axes of the image and (u0, v0) (resp. (u′

0, v
′
0)) the coordinates

of the principal point in the reference mark image (i.e., the point defined by
the intersection of the optical axis with the image plane).

The ratio αv

αu
(resp. α′

v

α′
u

) is known under the name of aspect ratio or scale
factor. When the 2 images are consequently acquired by the same camera,
θ = θ′ and αv

αu
= α′

v

α′
u

, even if the focal distances are not identical. Practically, θ
and θ′ are very close to π

2 for real cameras. [FAU 93]. Moreover, if the pixels
are square, which is the case for many recent cameras, the aspect ratio or scale
factor is equal to one.

By eliminating the scalars s1 and s2 and M of 2 projection equations, we
obtain the following relation, which connects two 2D points resulting from the
same physical point M:

m̂2
tFm̂1 = 0 (2.4)

In this equation, the matrix F, known as the fundamental matrix, is given
by:

F = A′∗[t]×RA−1 (2.5)

where A′∗ = (A′−1)t is the adjoint matrix of A′ and the notation [x]×
represents the anti-symmetric matrix [x]× such that x×y = [x]×y irrespective
of y:

[x]× =

⎡⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎦
The fundamental matrix F describes the epipolar geometry between the 2

views considered.

We finally conclude by recalling what is the essential matrix given by
E = [t]×R. This matrix E is related to the fundamental matrix F through
relation (2.5), which becomes (in the case of two identical cameras):

F = A∗EA−1 (2.6)
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This makes it possible to write E as a function of F, as follows:

E = AtFA (2.7)

As noted by Trivedi [TRI 88], the symmetric matrix EEt is independent of
rotation R since:

EEt = [t]×RRt
(
[t]×
)t = [t]×

(
[t]×
)t

(2.8)

By substituting equation (2.7) in these equations and since:

FA = A∗E (2.9)

we obtain:

FKFt = A∗[t]×
(
[t]×
)tA−1 (2.10)

where K is the symmetric matrix AAt, which will intervene later on during
algebraic derivations of Kruppa equations.

2.3. Huang-Faugeras constraints and Trivedi’s equations

Before presenting the Kruppa equations in a simplified way in the
following section, we recall Huang-Faugeras constraints here [HUA 89] and
also Trivedi’s equations [TRI 88] and we discuss their equivalence.

2.3.1. Huang-Faugeras constraints

As the essential matrix E is the product [t]×R of an antisymmetric matrix
by a matrix of rotation, its row is always 2. According to Huang and Faugeras
[HUA 89], for the matrix to be essential, it is necessary and it is enough that it
satisfies the constraint of row 2, plus the constraint that the 2 non-zero singular
values of E must be equal. This last constraint is equivalent to:

trace2
(
EEt
)− 2 trace

((
EEt
)2) = 0 (2.11)

Using relation (2.7), we then obtain the following constraint, which uses
only the fundamental matrix F and matrix A, which is unknown in the case of
the self-calibration problem,

trace2
(
AtFAAFtA

)− 2 trace
((

AtFAAFtA
)2) = 0 (2.12)
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Owing to the fact that the fundamental matrix is like det(F) = 0, the
constraint of row on E is always verified. On the other hand, equation (2.12)
is a polynomial constraint of order 8 in the coefficients of A, i.e., of order 8
in intrinsic parameters. This constraint can then be used within the context of
the self-calibration application: given a moving camera observing a certain
number of characteristic points, each movement will create a fundamental
matrix, which will make it possible to write a polynomial constraint in the
coefficients of A. In principle, this paves the way for recovering the intrinsic
parameters of the camera with a sufficient number of movements.

2.3.2. Trivedi’s constraints

Another manner to approach the constraints on F and A is to proceed
as Trivedi did in [TRI 88], making good use of the particular shape of
the symmetric matrix EEt, which depends only on the parameters of the
translation vector t to derive a set of 2 independent polynomial constraints.
By developing equation (2.8), we find the matrix S = EEt in the following
form:

S =

⎡⎢⎣t
2
2 + t23 −t1t2 −t1t3

−t2t1 t23 + t21 −t2t3

−t3t1 −t3t2 t21 + t22

⎤⎥⎦
Owing to the fact that the symmetric matrix EEt depends only on the 3

parameters of the translation vector t, the 3 diagonal elements and the three
non-diagonal elements of S are connected by the following 3 relations:

4S2
ij −
(
trace(S) − 2Sii

) ∗ ( trace(S) − 2Sjj

)
= 0 (2.13)

1 ≤ i, j ≤ 3 (2.14)

These three polynomial constraints, which correspond only to 2
independent equations and an identity by considering the nullity of the
determinant of E, are of degree four in the coefficients of E, and thus of
degree eight in the coefficients of A.

These 2 constraints can then be used within the context of an application
of self-calibration by following the same protocol as that described in the
preceding section about Huang-Faugeras constraint. However, here we will
have 2 equations for each movement, instead of only one as in the preceding
case.
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2.3.3. Discussion

Luong [LUO 92, LUO 97] showed that the polynomial constraint given by
(2.12) and known as Huang-Faugeras can be divided into two independent
polynomial relations which are equivalent to the 2 Trivedi’s equations
given by (2.14). Like Luong, we can notice that the equations obtained
from Trivedi and Huang-Faugeras constraints present the disadvantage
of corresponding to polynomials of order 8 in the matrix coefficients of
intrinsic parameters A, whereas, as it will be seen in the following section,
Kruppa equations correspond to 2 polynomials of degree two only in matrix
coefficients K = AAt, and thus of degree four in matrix coefficients of
intrinsic parameters A. This explains the complete idea of the approach with
the help of Kruppa equations, the idea being mainly based on the handling
of polynomials of smaller degree. The simplified Kruppa equations that we
will present later on in this chapter have the uniqueness of avoiding explicit
calculation of epipoles, known to be unstable, [LUO 98] and making use of
the fundamental matrices between different views used in order to achieve a
reliable estimate of the intrinsic parameters.

2.4. Kruppa equations

In this section, we start by finding the well-known Kruppa equations in the
field of self-calibration by a purely geometric interpretation using the absolute
conic [FAU 90, MAI 92]. We then develop a purely algebraic second approach,
i.e., without using the absolute conic or infinite plane [ZEL 96a, POL 97a],
which will then be used in order to simplify these equations to a great extent.

2.4.1. Geometric derivation of Kruppa equations

Geometric derivation of Kruppa equations is based on a significant
projective invariant, i.e. the absolute conic, which enables us to geometrically
express the rigidity constraint of a movement. Let us take a point
M̃t = [x1, x2, x3, x4]; the absolute conic Ω is defined as the intersection of
the quadratic equation x2

1 + x2
2 + x2

3 + x2
4 = 0 with the infinite plane Π∞. The

absolute conic Ω is thus defined by x2
1 + x2

2 + x2
3 = 0 and x4 = 0 equations.

[FAU 95]. Therefore, it is easy to show that each point m belonging to
the projection ω of Ω in the second image belongs to the cone of equation
mtA−tA−1m = 0. Thus, the matrix of intrinsic parameters A defines the
equation of the absolute conic image. If the intrinsic parameters do not vary,
the absolute conic image is invariant when the camera is moved.
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Figure 2.1. Geometric interpretation of Kruppa equations

As illustrated in Figure 2.1, there are 2 planes Π1 and Π2 made by a straight
line OO′ and a tangent to Ω. These 2 planes intersect the retinal planes with
two pairs of straight lines tangential to ω, which are connected by epipolar
homography.

The set of tangents in a cone also form a cone, known as dual cone. The
matrix of dual cone ω has an equation ltAAtl = 0, where l is a line tangent
to ω. This implies that for any point m on tangents to ω in the second image,
we have:

(e′ × m)tAAt(e′ × m) = 0

The epipolar line Ftm corresponding to m in the first image is also a
tangent at ω. Consequently, the invariance of ω in rigid transformation gives:(

Ftm
)tAAt

(
Ftm
)

= 0

These equations in a simple manner express the constraint that the tangent
epipolar lines to ω in the second image correspond to the tangent epipolar lines
to ω in the first image, and induce two quadratic equations in the coefficients
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of K = AAt corresponding to the two well-known Kruppa equations:

FAAtFt = β
(
[e′]×
)tAAt

(
[e′]×
)
, (2.15)

where β is a non-zero, arbitrary scalar. Since the intrinsic parameters are five
in number, theoretically, three views are sufficient to calculate them.

2.4.2. An algebraic derivation of Kruppa equations

In this section, an algebraic derivation of Kruppa equations is developed.
We start by deriving a solution for the epipole e′ in the second image, given
by Fte′ = 0, using equation (2.5), which gives the form of the fundamental
matrix. This gives:

A−tRt
(
[t]×
)tA−1e′ = 0 (2.16)

Owing to the fact that ([t]×)tt = 0, we obtain the following solution for e′:

e′ = λAt, (2.17)

where λ is a non-zero scalar. This also gives the following relation for t:

t = λ′A−1e′, (2.18)

where λ′ = 1/λ. Equation (2.18) allows us to obtain the following relation for
the [t]×1 matrix:

[t]× = λ′ det
(
A−1
)
At[e′]×A (2.19)

By substituting the latter relation in equation (2.10), we directly get Kruppa
equations:

FKFt = γ[e′]×K
(
[e′]×
)t

, (2.20)

where γ is a non-zero scalar. We observe that since ([e′]×)t = −[e′]×,
equation (2.20) is identical to equation (2.15), which was geometrically
derived. Since FKFt is a symmetric matrix, equation (2.20) corresponds to

1. Using the relation [Mu]× = det(M)M∗[u]×M−1, where M is a non-singular matrix.
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the following scalar equations obtained by eliminating γ:

FKFt
11(

[e′]×K
(
[e′]×
)t)

11

=
FKFt

12(
[e′]×K

(
[e′]×
)t)

12

=
FKFt

22(
[e′]×K

(
[e′]×
)t)

22

=
FKFt

13(
[e′]×K

(
[e′]×
)t)

13

=
FKFt

23(
[e′]×K

(
[e′]×
)t)

23

=
FKFt

33(
[e′]×K

(
[e′]×
)t)

33

(2.21)

where Aij refers to matrix element A, indexed by i, j. However, these
equations are linearly dependent, as we have:(

FKFt − γ[e′]×K
(
[e′]×
)t)e′ = 0 (2.22)

Now, only 2 independent equations remain among the pair of equations
given by (2.21). These equations are polynomials of order 2 in the coefficients
of K and thus of 4 in the coefficients of A. This makes them, a priori, more
suitable for the problem of self-calibration than the Huang-Faugeras equations
[HUA 89] or those of Trivedi [TRI 88] presented in the preceding section.
Therefore, a possible protocol is to start by estimating K, then A from K, by
Cholesky’s decomposition2.

However, at this stage, some questions arise on the choice of using 2
equations among all those given by (2.22). This problem can be solved,
either by the choice of a parametrization of epipolar geometry as in [FAU 90,
MAY 92], or by arbitrarily taking an equation in order to estimate the
scale factor and to reflect it on the rest by arbitrarily choosing 2 among the
remaining 5 [BOU 98]. The idea of taking all equations into account can also
be considered. The approach described in the following section will make it
possible to easily answer the question relating to the most convenient choice
of equations, by directly deriving 3 equations. These equations have a close
link with those deduced by Luong [LUO 92] with the help of a different
step, based on changing rather astute reference marks, which amounts to
generalizing Kruppa equations by considering that the absolute conic can

2. Cholesky’s decomposition of a positive definite matrix B is a matrix C such that B = CtC
[GOL 89].
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have 2 different images in each retina. It is this same idea of Luong that is
found in the recent article by Hartley [HAR 97b], where he derives Kruppa
equations directly from F, by operating changes of reference mark identical
to those of Luong. These equations are identical to those presented in the
following section, but this chapter presents a different and a remarkably
simple approach. We can also note the fact that nowadays, no experimental
result has been produced on these simplified equations of Kruppa. Luong
used his simplified relations to show the similarity in the Trivedi and
Huang-Faugeras constraints. Hartley followed this method to show that
Kruppa relations can be directly expressed from the fundamental matrix but
no experimental result was reported. In the following section, the method
presented by us is implemented, compared and successfully tested to find
the intrinsic parameters of various cameras from noisy synthetic data and
several real images. It is also shown that the quality of the results obtained
makes it possible to validate the approach to a great extent, until reliable 3D
measurements are obtained from images.

2.4.3. Simplified Kruppa equations

In this section, in a purely algebraic method, we use the decomposition
in singular values [GOL 89] of the fundamental matrix to derive remarkably
simplified Kruppa equations. This makes it possible, in particular, to solve the
problem of selecting two Kruppa equations to use among the larger group of
equations derived using the traditional method and not explicitly requiring an
estimate of epipoles:

F = UDVt (2.23)

Owing to the fact that F is of row 2, the diagonal matrix D is of form:

D =

⎡⎣r 0 0
0 s 0
0 0 0

⎤⎦
r and s are the square roots of eigenvalues of the FF t matrix, whereas U and
V are 2 orthogonal matrices.

Using equation (2.23), the epipole in the second image e′ can therefore be
deduced in a very simple manner. Indeed:

Fte′ = VDtUte′ = 0 (2.24)
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Since D is a diagonal matrix whose last element is zero, this gives us the
following direct solution for e′:

e′ = δUm, m = [0, 0, 1]t, δ 	= 0.

As a result, the matrix [e
′
]x is equal to:

[e′]× = μUMUt, (2.25)

where μ is a non-zero scalar and M = [m]× is given by:

M =

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦
By incorporating equation (2.25) into (2.19) and then into (2.10), we obtain

a new expression of Kruppa equations:

FKFt = νUMUtKUMtUt, ν 	= 0 (2.26)

By multiplying the two members of (2.26) by Ut and U, respectively, and
since U is an orthogonal matrix, we finally obtain the following well simplified
equations:

DVtKVDt = νMUtKUMt (2.27)

Owing to the simple forms of D and M, equations (2.27) correspond only to
3 linearly dependent equations. In fact, by denoting u1, u2 and u3 the vector
columns of matrix U, and v1, v2 and v3 the vector columns of matrix V, the
expressions are simplified as follows:

DVtKVDt =

⎡⎢⎣r2v1
tKv1 rsv1

tKv2 0

srv2
tKv1 s2v2

tKv2 0
0 0 0

⎤⎥⎦

MUtKUMt =

⎡⎢⎣ u2
tKu2 −u2

tKu1 0

−u1
tKu2 u1

tKu1 0
0 0 0

⎤⎥⎦
which finally gives the following 3 linearly dependent equations:

r2v1
tKv1

u2
tKu2

=
rsv1

tKv2

−u2
tKu1

=
s2v2

tKv2

u1
tKu1

(2.28)
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In these 3 equations, only 2 are independent, which are Kruppa simplified
equations deduced in a simple way by algebraic method.

In addition to this new and very simplified way that leads to Kruppa
equations, it is to be noted that the use of SVD (singular value decomposition)
mainly allowed us to automatically deduce 3 equations among the 6 present
in the original formula. The problem of choosing the 3 equations was solved
either by the choice of a parametrization of epipolar geometry as in [FAU 90,
MAY 92] or by arbitrarily taking an equation in order to estimate the scale
factor and to reflect it on the rest by arbitrarily choosing 2 among the
remaining 5 [BOU 98].

We can notice that in the case of a calibrated camera, the matrix of intrinsic
parameters can be assumed to be equal to identity matrix 3× 3. Consequently,
considering the essential matrix E instead of the fundamental matrix F, it is
easy to show that equation (2.28) is reduced to r2 = s2, which implies that
r = s, as shown in [HUA 89] and mentioned previously in section 2.3.

In the following section, we implement and test the method described until
now to determine the intrinsic parameters of different cameras from various
real images.

2.5. Implementation

In this section, we implement Kruppa equations by minimizing the
non-linear criterion, which is associated to them. According to the approach
described in [ZEL 96a, ZEL 96b], the equations derived in section 2.4.3 are
treated within a non-linear optimization context and are solved in an iterative
way. The choice of criterion, that of the initial conditions and the optimization
method are presented and discussed.

2.5.1. The choice of initial conditions

Let SF = [r, s,u1
t,u2

t,v1
t,v2

t]t be the 14 × 1 vector formed by the
SVD parameters of F. Let ρi(SF,K)

φi(SF,K) , i = 1 . . . 3 be the 3 ratios defined by
equation (2.28). Each pair of image defines a fundamental matrix, which
makes it possible to write two polynomial equations in the parameters of K:

ρ1

(
SF,K

)
φ2

(
SF,K

)− φ1

(
SF,K

)
ρ2

(
SF,K

)
= 0

ρ1

(
SF,K

)
φ3

(
SF,K

)− φ1

(
SF,K

)
ρ3

(
SF,K

)
= 0

(2.29)
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This system of equations is of degree two in 5 unknown (elements of the
matrix A). An initial approximation of the principal point in the image is given
by the center of the image. Moreover, if angle θ is supposed to be equal to π

2 ,
the number of unknown factors in (2.29) is reduced to two, i.e. the elements
K11 and K22 of the matrix K connected to parameters αu and αv. Thus, the
system of (2.29) becomes unknown pair by pair and can be solved analytically.

The system can have a maximum of 22 = 4 solutions of which some can
be eliminated by taking into account the constraints. Thus, K11 and K22 must
be such that the matrix K is real and is defined positive and the aspect ratio
or scale factor must be close to the unit. By having M images acquired with
constant intrinsic parameters, N ≤ M(M−1)

2 fundamental matrices can be
estimated and produce N systems of the form (2.29), which have a maximum
of 4N solutions for αu and αv. Several strategies can be used in order to
choose good initial conditions for αu and αv among the set of 4N solutions.
Three different strategies were tested (choice of an arbitrary solution, an
average solution and a median solution), which enabled us to note that the
various solutions were so close that they produced practically no variation on
the results of non-linear optimization of the criterion, which we will present
in the following section.

2.5.2. Optimization

Let πij(SF,K) be the difference of ratios ρi(SF,K)
φi(SF,K) − ρj(SF,K)

φj(SF,K) and let

σ2
πij

(SF,K) be its variance, approximated by3:

σ2
πij

(
SF,K

)
=

∂πij

(
SF,K

)
∂SF

ΛSF

∂πij

(
SF,K

)
∂SF

t

, (2.30)

where ΛSF
is the 14×14 covariance matrix associated with SF and ∂πij(SF,K)

∂SF

is the Jacobian of πij(SF,K) in SF.

Since SF is a function of F, its covariance matrix ΛSF
is estimated by:

ΛSF
=

∂SF

∂F
ΛF

∂SF

∂F

t

, (2.31)

3. If x is a random vector of average x0 and of covariance matrix Λx, the vector matrix

y = f(x) is equal in the first order to Λy = ∂f(x0)
∂x0

Λx
∂f(x0)

∂x0

t
; see [FAU 93] for more details.
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where ΛF is the 9 × 9 fundamental covariance matrix4 and ∂SF

∂F is the
Jacobian value of SF in F. This last stage, i.e., the estimation of SVD
derivatives, is explained in [PAP 00a, PAP 00b]. Variances σ2

πij
(SF,K) are

used for weighing residues πij(SF,K) based on the confidence granted to
equations.

Matrix K is the solution of the non-linear problem:

K=arg min
K̃

N∑
i=1

(
π2

12(SFi
, K̃)

σ2
π12

(SFi
, K̃)

+
π2

13(SFi
, K̃)

σ2
π13

(SFi
, K̃)

+
π2

23(SFi
, K̃)

σ2
π23

(SFi
, K̃)

)
(2.32)

As each fundamental matrix gives 2 independent equations and K has 5
unknown factors, a minimum of 3 pairs of views are necessary. Minimization
of the sum of differences of square ratios πij(SF,K) in (2.32) experimentally
provided better results than the minimization of the sum of square polynomials
of (2.29) [LUO 97]. Although the third equation (i.e., π23(SF,K)) in (2.32) is
dependent on the other two [LUO 97], it can also be added in the criterion.

Minimization of (2.32) is carried out using the Levenberg-Marquardt
algorithm [AND 94], by using the initial solutions as estimated in the
preceding part. In addition to the estimate of K, the minimization procedure
of (2.32) also makes it possible to estimate its covariance matrix [AND 94].
Matrix A is extracted from K in three steps: A−t is estimated by Cholesky’s
decomposition of K−1, transposed and is finally inversed to obtain A.

2.6. Experimental results

The approach presented was validated on synthetic and real results, and
the estimate of matrix A was used to trace the measurements of 3D angle
and the ratios of 3D segment lengths directly from a set of images. This, in
addition to A, requires an estimate of the homography of infinite plane H∞
carried out by initially considering the essential matrix, from the associated
fundamental matrix using (2.7), and by breaking it up into a rotation matrix
R and translation t, such that E = [t]×R (see [HAR 92a] for more details).
Finally, H∞ is estimated from R and A.

4. This matrix is assumed to be given, for example, by the procedure described in [CSU 97].
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2.6.1. Estimation of angles and length ratios from images

Knowledge of A enables us to obtain 3D Euclidean measurements from
images. Thus, the angle between two 3D segments L1 and L2 can be estimated
as follows [ZEL 96a, ZEL 96b].

Let l1, l′1 and l2, l′2 be the projections of L1 and L2 in 2 images. Using
Laguerre’s formula, the cosine of the angle between L1 and L2 is given by:

cos
(
L1, L2

)
=

∣∣S(v1,v2

)∣∣√
S
(
v1,v1

)
S
(
v2,v2

) , (2.33)

where v1 and v2 are the projections in the first image of the intersections of
L1 and L2 with the infinite plane, and:

S
(
m,n
)

= mtA−tA−1n (2.34)

Points v1 and v2 are determined by:

v1 = l1 × H∞tl′1, v2 = l2 × H∞tl′2, (2.35)

where H∞ is the homography of infinite plane, which is given by H∞ =
ARA−1.

In addition to angle measurements, length ratios can also be estimated. Let
A, B, C and D be four 3D points, whose corresponding 2D projections are:
(a, a′), (b, b′), (c, c′) and (d, d′). Therefore, we can show [ZEL 96a] that the
length ratio of 3D segments AB and CD is given by:

AB

CD
=

√
S
(
Vab, Vab

)
S
(
Vcd, Vcd

) · S
(
Vac, Vac

)
S
(
Vbc, Vbc

)− S2
(
Vac, Vbc

)
S
(
Vab, Vab

)
S
(
Vac, Vac

)− S2
(
Vab, Vac

)
·
√

S
(
Vbd, Vbd

)
S
(
Vcd, Vcd

)− S2
(
Vbd, Vcd

)
S
(
Vbc, Vbc

)
S
(
Vbd, Vbd

)− S2
(
Vbc, Vbd

) ,
(2.36)

where:

vij = lij × Ht
∞l′ij , ij ∈ {ab, ac, bc, bd, cd} (2.37)
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is the projection in the 1st image of intersection points of the straight line
defined by 3D points I and J and infinite plane, and lij is the straight line
defined by image points i and j, given by vectorial product i × j. Operator
S(·, ·) is defined by (2.34).

2.6.2. Experiments with synthetic data

In this section, we give some experimental results drawn from noisy
synthetic data. These results particularly illustrate the sensitivity to noise
of the measured angles and the 3D length ratios calculated from estimated
images and intrinsic parameters.

Three rigid displacements of cameras were simulated and 300 3D points
randomly distributed according to Gaussian law were projected on the four
positions of simulated cameras. Various values of Gaussian noise were
considered. The six fundamental matrices were estimated and their SVD were
calculated. Minimization of (2.32) was carried out with 4 unknown factors,
i.e., the angle between the axes was assumed to be known and equal to π/2.
The intrinsic parameters of the simulated camera are given in Table 2.1. The
estimated parameters are given in Table 2.2. The left column indicates the
standard variation of the noise added to points in the image, whereas the
second column indicates the intrinsic parameters estimated by the method
presented. In order to validate the approach within the required context as
that of 3D measurement, we give an analysis of the errors made by estimating
3D angles and length ratios carried out with the help of a few segments
connecting synthetic 3D points. 100 angles and 100 length ratios were thus
calculated from a set of randomly selected synthetic 3D points. We then used
noisy projections of the 3D points used, as well as the intrinsic parameters
estimated from images to find the angles and the length ratios of the points
selected from (2.33). The average and standard variations of the relative
error between the actual values and the estimated values are summarized
in Table 2.2. The third column of this table contains angle measurements
whereas the fourth column relates to length ratios. The values in between

840 0 310

0 770 270

0 0 1

Table 2.1. Real intrinsic parameters of A
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brackets relate to errors when we use intrinsic parameters and non-estimated
real fundamental matrices. The only source of error considered is then that
associated with noisy 2D points. To some extent, these values represent a
limit beyond which it is impossible to proceed since in this case A and F are
perfectly known. Table 2.2 makes it possible to verify that the introduction
of estimated parameters in the measuring process increases the error slightly,
which validates the estimate of parameters using the proposed method.

Std. Var. Estimated Matrix A Angles Rel. Err. Length ration Rel. Err.

Noise Ave. Std. Var. Ave. Std. Var.

840.732 −1.44521e-14 310.058 0.0038 0.0064 0.0192 0.0705

0.0 0 770.606 270.606 (4.95e-06) (7.95e-06) (1.94e-05) (6.32e-05)

0 0 1

840.216 0 310.905 0.0076 0.0130 0.0190 0.0438

0.1 0 770.008 267.742 (0.0059) (0.0099) (0.0200) (0.0505)

0 0 1

828.684 1.39949e-14 320.451 0.0466 0.0726 0.0972 0.1748

0.5 0 769.914 262.45 (0.0449) (0.0776) (0.0924) (0.1921)

0 0 1

836.937 0 329.008 0.0971 0.2534 0.1290 0.2738

1.0 0 752.633 289.929 (0.0999) (0.3480) (0.1336) (0.2864)

0 0 1

830.949 2.81749e-14 327.062 0.1220 0.2895 0.1657 0.2789

1.5 0 770.784 261.244 (0.1034) (0.2397) (0.1716) (0.3125)

0 0 1

Table 2.2. Results of synthetic data

2.6.3. Experiments with real data

The following results were obtained from a dataset of fundamental matrices
estimated on several sequences of real images taken by a traditional camera in
Santorini island (house sequence and Orthodox Church sequence) and in Crete
(sequence of Knossos Palace) in Greece.

In all these sequences, the fundamental matrices were estimated from
points paired by the method described in [ZHA 95] and the angle θ was
assumed to be known and equal to π/2; the matrix K in (2.32) is thus
parametrized with four unknown factors. More experimental results can be
found in [LOU 99, LOU 00b].
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(a) (b)

Figure 2.2. Images 4 and 5 of the house sequence

The first experiment uses eight images of size 709 × 429 of a house at
Santorini in Greece. Images 4 and 5 of this sequence are shown in Figures 2.2a
and b. Self-calibration was carried out using 28 fundamental matrices defined
by all pairs of images. The matrix of the intrinsic parameters estimated is
shown in Table 2.3. Figures 2.3a and b illustrate the line segments used to
calculate the angles indicated in Table 2.4. More precisely, the left column
indicates the pair of line segments used to define the angle, the second column
indicates the real value of the angle, the third column gives the cosine of the
angle estimated from images by (2.33) and finally, the fourth column gives
the angles corresponding to the estimated cosines. The estimated intrinsic
parameters also help to calculate the length ratios using the segments shown in
Figures 2.3c and d. The estimated length ratios are shown in Table 2.5. The left
column indicates the pair of line segments used, the middle column gives the
true ratio values and the right column gives the sizes estimated from images
using (2.36). Finally, Figure 2.4 illustrates various views of a 3D model of the
house. This model was reconstructed from the estimate of intrinsic parameters
of the camera.

709.32 −1.96171e-14 353.646

0 736.494 183.207

0 0 1

Table 2.3. House sequence: matrix of estimated intrinsic parameters
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Figure 2.3. Line segments of the house sequence: (a)–(b) segments used for measuring angles,
(c)–(d) segments used for measuring length ratios

Line segments of Figures 2.3a–b

Angle Real Estimated Estimated

segments angle (deg) cosine angle (deg)

0 – 1 0 0.991603 7.430145

1 – 2 0 0.995566 5.397296

2 – 3 90 0.0187033 88.928315

3 – 4 90 0.00298511 89.828965

5 – 6 0 0.999325 2.106069

7 – 8 0 0.999797 1.153783

7 – 9 0 0.999875 0.906795

10 – 11 0 0.99365 6.460356

9 – 12 0 0.999659 1.495708

6 – 9 90 0.0194928 88.883073

Table 2.4. House sequence: in situ observation and angle estimation
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Line segments of Figures 2.3c–d
Line Segment Real length ratio Estimated length ratio

0 – 1 1.0 0.9352
2 – 3 1.0 1.11188
4 – 5 1.0 0.866016
6 – 7 1.0 0.994141
8 – 9 1.0 1.40652

10 – 11 2.0 2.06752
12 – 13 1.0 0.950633
10 – 14 1.0 1.04678
8 – 15 1.0 0.875412

16 – 17 1.0 1.02571

Table 2.5. House sequence: in situ observation and estimated length ratios

(a) (b)

(c)

Figure 2.4. Top and side views of the 3D model reconstructed from the house sequence and
the estimated intrinsic parameters. Note the orthogonality and the parallelism of the

reconstructed walls. Images (a) and (b) show the 3D positions of the camera
used and (c) includes the texture in the reconstructed surfaces
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(b)(a)

Figure 2.5. Images 1 and 2 of the Orthodox Church sequence

In the second experiment, we treat the six images of a sequence
representing an Orthodox Church at Santorini in Greece. Images 1 and
2 of the sequence are illustrated in Figures 2.5a and b. These images are
of dimensions of 709 × 429 pixels. Self-calibration was carried out using
16 fundamental matrices defined by a set of images. The matrix of the
estimated parameters is given in Table 2.6. Tables 2.7 and 2.8 give angles

604.926 0 377.86
0 712.944 313.882
0 0 1

Table 2.6. Church sequence: matrix of estimated intrinsic parameters

Line segments of Figures 2.6a–b

Angle True Angle Cosine
segments estimate (deg) Estimate angle (deg)

0 – 1 0 0.999697 1.411016
1 – 2 90 0.051252 87.062189
3 – 4 0 0.999969 0.448352
5 – 6 90 0.0126704 89.274019
1 – 6 0 0.999958 0.524615
7 – 8 90 0.00205859 89.882051

9 – 10 0 0.99978 1.202867
2 – 11 90 0.0227189 88.698188
2 – 12 90 0.048568 87.216162
1 – 13 90 0.0302124 88.268694
3 – 14 90 0.0859321 85.070376

15 – 16 90 0.0640689 86.326605

Table 2.7. Church sequence: in situ observation and estimated angles
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Line segments of Figures 2.6c–d
Line segments Real length ratio Estimated length ratio

0 – 1 1.0 1.07089
2 – 3 1.0 1.11651
4 – 5 1.0 0.92611
6 – 7 1.0 1.04813
8 – 9 1.0 0.861372

10 – 11 1.0 1.02708
12 – 13 1.0 0.936046
14 – 15 1.0 0.960333
16 – 17 1.0 1.05697
18 – 19 1.0 0.930897

Table 2.8. Church sequence: in situ observation and estimated length ratios

and length ratios calculated from images estimated, intrinsic parameters and
line segments in Figures 2.6a–b and c–d, respectively. Two views of the
reconstructed 3D model are shown in Figure 2.7.
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Figure 2.6. Line segments of the Orthodox Church sequence: (a)-(b) line segments used for the
measurement of 3D angles, (c)-(d) line segments used for the measurement of 3D length ratios
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(a) (b)

Figure 2.7. The top and front views of the 3D model of the church reconstructed from the
estimated intrinsic parameters: (a) shows the camera positions. Note the orthogonality and

parallelism of the walls and the isosceles triangle which forms the dome

Figure 2.8. Images 1 and 2 of Knossos sequence

The third experiment relates to a triplet of images of the Palace of Knossos
in Crete. Two images of size 880 × 579 are illustrated in Figures 2.8.
Self-calibration was carried out using three associated fundamental matrices.
Figure 2.9 shows several views of the 3D model reconstructed with and
without texture.

2.7. Conclusion

In this chapter, we were interested in the fundamental problem of
self-calibration of a camera from a set of points paired between various
images. We mainly focused on the well-known Kruppa equation method.
After an introduction to these equations and a reminder regarding how to
obtain them by geometric approach and its algebraic equivalent, we presented
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(a)

(b)

(c)

(d)

Figure 2.9. Top and side views of the 3D Knossos model reconstructed using estimated
intrinsic parameters: (a) and (b) show the top and side views of the model, with (a) illustrating

the 3D positions of the camera. (c) and (d) show the two side views with texture

new simplified Kruppa equations with the help of the decomposition of the
fundamental matrix into singular values. Finally and mainly, this method
was implemented, compared and successfully tested to find the intrinsic
parameters of various cameras from noisy synthetic data and several real
images. The quality of results obtained enabled us to validate the approach
until reliable 3D measurements were obtained from images.
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Chapter 3

Specific Displacements for Self-calibration

3.1. Introduction: interest to resort to specific movements

Position of the problem

Let us consider the observation of three-dimensional scenes in which one or
several fixed objects are moving. Our point of view is that of a single camera,
which can move in this scene. Generally this camera will not be calibrated and
will be able to change its focal length, orientation, focus and aperture, thus all
visual sensor parameters.

Thus, we are interested in the study of the movement of such cameras
or that of observed objects. This also involves the analysis of the structure
of three-dimensional scenes and the modeling of these cameras in terms of
equations. More precisely, we are interested in recovering the scene structure,
object/camera movement and camera calibration using singular cases, i.e.
taking specific cases into account.

This study can be applicable to several cameras: it is sufficient to consider
that the change in camera corresponds to a spatial displacement of the sensor.
However, a more detailed study would be necessary if several cameras are
simultaneously used to film the same scene.

Chapter written by Diane LINGRAND, François GASPARD and Thierry VIÉVILLE.
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Use of specific cases

There are specific cases for which general methods for the estimation of
movement do not apply. For example, in the case of a purely rotating object,
the principal matrix discussed in the previous chapters does not exist and hence
methods based on its estimation cannot be used. In this case, we are interested
in another quantity, homography, which connects the points from one image
to another.

In practice, a number of video sequences present specific cases: a
pedestrian or a car move while remaining in contact with the ground (thus
yielding a surface movement or planar movement), a monitoring camera is
generally fixed, a robot moves only according to certain fixed degrees of
freedom, etc. (thus without movement).

On the other hand, such particular cases can provide simplified equations
making it possible to obtain information that cannot be observed in general:
hence, we can, on the one hand, determine the parameters that generally cannot
be determined and, on the other hand, obtain simpler equations which enable
a more exact numerical estimation. In practice, we are almost always in the
presence of, or close to, a particular case of a system whose movements are
controlled (vehicle, robot, camera placed on a support).

Similarly, even in a non-critical particular case, the result is better with a
simplified model, consisting of lesser parameters than that with a more general
model [VIÉ 99].

Study of singularities

The study of specific cases is thus motivated by two factors: the first
concerns the simplification of equations and reduction of parameters to be
estimated, and the second is the fact that in a specific case, erroneous data can
completely defeat the estimation. Thus, as explained in [TOR 97], considering
the line interpolation from a set of almost colinear points, some outliers
can completely bias the estimation. On the other hand, certain authors, for
example [TRI 98a], have noticed that many cameras and geometry of scenes
correspond to degenerated cases and it is necessary to study and exploit
the properties of these specific cases in order to ensure the general method
stability.

Definitions of such “degenerated cases” or of “degenerated data” have been
given by different authors. Torr [TOR 95] considers data that does not allow
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us to determine the solution to the movement problem in a unique way as
degenerated. As for Sturm [STU 97b], he considers that a set of images is
critical when there are several solutions to the Euclidean calibration problem
(in this case, it shows that the hyperplane at infinity cannot be identified in a
single way and that the affine reconstruction cannot be carried out).

Sturm [STU 97a] carried out a complete study of critical cases and an
exhaustive study concerning all the specific cases was recently carried out by
Lingrand [LIN 99].

3.2. Modeling: parametrization of specific models

3.2.1. Specific projection models

The most commonly used model is the perspective projection model.
However, different approximations have been used, especially by Aloimonos
[ALO 90], Dementhon [DEM 89], Horaud and Christy [HOR 94, HOR 97],
and Soatto and Perona [SOA 95].

Poelman and Kanade [POE 94] used the para-perspective model on
sequence of images and found better results than for the orthographic model
when the translation movement along the optical axis or orthogonal to the
optical axis is significant. However, it is necessary to know the optical
center as well as the focal distance for the para-perspective model. If these
parameters are not known, then the orthographic model is equivalent to it.

Boufama and Weinshall [BOU 94] carried out a comparison of
orthographic and perspective projection models with algorithms using
invariants on three sequence of images with different view field sizes. The
orthographic model proves to be more effective for a small view field and
the perspective model is more effective for a bigger view field; thus, authors
use an algorithm combining these two approaches. This type of approach by
stratification has been used by other authors for movement. Lingrand and
Viéville [LIN 95] used the orthographic model in cases where movement of
the camera preserves its retinal plane. Quan [QUA 96] used the same model,
but for sequence of images.

From the works of Lingrand [LIN 99], we can summarize the principle of
perspective projection and its diverse approximations presented in Figure 3.1.
Note that the latter split into two stages comprising the projection of 3D points
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Perspective projection Para-perspective projection

Orthoperspective projection Orthographic projection

approximate itself in

Figure 3.1. Perspective projection and its various approximations. The arrows indicate the
hierarchy existing between these different approximations

for the observed object in an auxiliary plane passing through the “mean” point,
followed by a central projection:

– Perspective projection: projection modeled using a pinhole assumption;
all light rays pass through the optical center of the sensor.

– Para-perspective projection: projection of 3D points in the direction of
observation from the average point on the auxiliary plane parallel to the image
plane.
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– Orthoperspective projection: orthogonal projection on the auxiliary plane
for which the normal is given by the direction of observation of the average
point.

– Orthographic projection to scale: orthogonal projection on the auxiliary
plane parallel to the image plane.

The perspective model is the most general one. It can be approximated
under similar experimental conditions in a para-perspective or
orthoperspective projection. These two approximations can be approximated
by orthographic projection.

Taking into account the poor algebraic simplification of the perspective
projection, this is used, see for example [ALO 90], only in the case of
its orthographic approximation. On the other hand, some authors, having
developed algorithms for specific cases in orthographic projection [TOM 91,
POE 93, KOE 84], have succeeded in generalizing their methods to
para-perspective cases, which was not possible for orthoperspective cases.
Finally, since orthoperspective projection has the same validity field as
para-perspective projection and is more complicated than the latter, we
consider only para-perspective or orthographic approximations in the
following.

The para-perspective model has the advantage of making the projection
equations linear but has the disadvantage of introducing two additional
parameters. The orthographic model combines the advantages of making the
equations linear without introducing additional parameters.

These two models are related to the scene through a mean depth point but
preserve both scale factors (close objects appear bigger than far away objects).

However, the para-perspective model remains more precise than the
orthographic model, as it takes into account the position of objects in the
periphery (seen through a different angle).

Lingrand [LIN 99] proposes a general projection model, which models
integrate all

κm =

⎛⎜⎝α̂u γ λβ̂u + μu0 (1 − μ)û0

0 α̂v λβ̂v + μv0 (1 − μ)v̂0

0 0 μ (1 − μ)

⎞⎟⎠M = AM (3.1)
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In this model, we distinguish two types of parameters:

– Modal parameters: λ and μ.

– Intrinsic parameters: αu, αv, βu, βv, u0, v0 and γ.

The modal parameters λ ∈ {0, 1} and μ ∈ {0, 1} determine the projection
model.

λ μ

Pure perspective projection 1 1

Orthographic projection 0 0

Para-perspective projection 1 0

3.2.2. Specifications of internal parameters of the camera

The projection models are parametrized by intrinsic parameters, which are
assumed constant by most of the self-calibration methods. However, in active
vision applications, this is not correct anymore [VIÉ 94b]. However, different
remarks can be made.

Enciso [ENC 95] has experimentally shown that the ratio αu

αv
of the scale

factors is constant for ordinary cameras (cameras, camescopes, etc.) and that
the orthogonal parameter γ can be taken as negligible. Willson [WIL 94]
has confirmed this property for visual sensors of high quality. Luong and
Viéville [LUO 96], Tomasi and Kanade [TOM 92] as well as Zisserman and
Liebowitz [ZIS 98] have removed the orthogonal parameter from their works.
Heyden and Åström [HEY 97] have used these properties and have thus shown
that by knowing the focus expansion and the orthogonal parameter, we can
carry out a reconstruction with close similarities. Pollefeys and Van Koch
[POL 97] have generalized these results by proving that self-calibration is
possible in cases where the intrinsic parameters vary as soon as we know that
γ = 0. Moreover, for Pollefeys and Van Koch, to consider that all intrinsic
parameters are constant is not a realistic hypothesis whereas to consider that
they are all variable is too general. Hence, in [POL 97], they always use
the hypothesis of the knowledge of certain intrinsic parameters or the linear
relations between them, from Kruppa equations [FAU 93], obtaining a relation
between the singular values of constraints: these have to be non-zero in order
to avoid any singularity.
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Studies on the variation of focal length and zoom ([BOB 94], [ENC
95] and [GAS 97]) have highlighted that the coordinates of a main point
can be considered as constants during weak focal length variations but that
it was difficult to model the displacement of the principal point during a
large focal length variation. Lavest [LAV 92] as well as Enciso [ENC 95]
and [POL 95] used the zoom and also other parameters such as the focus
change for reconstruction, or vergence, exactly like Bobet [BOB 94], within
the framework of a stereoscopic head. Brooks and De Agapito [BRO 96]
also studied the self-calibration of a stereo head as well as the associated
degeneration, whereas Gaspard studied zoom in the case of monocular
sequences [GAS 96]. Heyden [HEY 97] pursued his studies with the objective
of a Euclidean reconstruction by variation of the focal length on a sequence
of images.

3.2.3. Taking into account specific displacements

Taking specific displacements into account was studied first and is
still widely used. This is due to several reasons. The first one is that
many movements of objects or cameras are specific: a car on a highway,
movements made by robotic systems whose degree of freedom is restricted or
constrained, etc. The second reason is more mathematical: the fundamental
matrix corresponding to the perspective projection vanishes for pure rotation,
while the fact certain components of the movement are equal to zero can also
simplify the expression of the fundamental matrix by reducing its number of
parameters.

The study of pure rotation was conducted by a number of authors. Some of
them assume that the intrinsic parameters are constant, while others consider
that they can vary; some consider that the rotation is unknown, while others
consider that its angle or its axis is known. Hartley [HAR 94b] considers a
sequence of images taken by a camera in the axis of pure rotation passing
through its optical center. Moreover, considering that the intrinsic parameters
of the camera are constant, Hartley shows with algebraic reasoning that it is
easy to find the intrinsic parameters of the camera. Later on, De Agapito and
Hayman [AGA 98] studied the case of pure rotation with variable intrinsic
parameters. Viéville [VIÉ 94a], in the case where the angle of rotation is
known, calculated the intrinsic parameters, the optical center, the axis of
rotation and the coordinates of 3D points to a close scale factor by carrying
out at least four different rotations on the same axis, for two axes, and by
following at least two points.
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More recently, different authors have studied a certain number of specific
cases. Sturm [STU 97A] studied the conditions of general self-calibration
method degeneration and made explicit all critical movements for which
self-calibration methods cannot be applied. Horaud and Christy [HOR 97]
carried out Euclidean and affine reconstructions using different controlled
movements by a robot (known movement with known parameters).

The case of pure translation has been less widely studied. However,
Armstrong and Zisserman [ARM 94] as well as Pollefeys and Van Gool
[POL 96] studied translation, and translation and zoom combinations.

Sturm [STU 97a], Wiles and Brady [WIL 96], and Armstrong and
Zisserman [ARM 96] were interested in the reconstruction of scenes by
planar movement. Sturm showed that we cannot remove the ambiguity on
solutions without additional information while Wiles, Brady, Armstrong and
Zisserman studied the different camera models for planar movement as well
as the simplification of fundamental and homography matrices that follow
them. Sturm also considered linear movements.

More generally, a certain number of authors studied specific cases and
explained the related simplifications in the expressions of the fundamental
matrix or homography in order to be able to avoid, on the one hand,
critical equations and, on the other hand to benefit from a smaller number
of parameters. Viéville and Lingrand [VIÉ 96b, VIÉ 99] examined these
specific cases of translations and rotations and put in place a criterion for
automatic selection of cases corresponding in the best way to the data. Torr
and Zisserman [TOR 95] followed the same method in order to improve
their estimation method of basic parameters of the robust algorithm of
RANSAC: PLUNDER (Pick Least UNDEgenerate Randomly). Torr was
closely interested in methods of model selection. Clarke [CLA 97] in his
thesis studied another sample of specific cases of movement but with constant
intrinsic parameters and without explaining the process of selecting the case.

From the algebraic developments of [VIÉ 99], it was shown that if we only
consider algebraic constraints of a degree higher than 4, all specific models
are models of:

– axis rotations or pure rotations with fixed intrinsic parameters;

– pure translations with or without variations of intrinsic parameters;

– frontal movement with fixed intrinsic parameters;

– movements leaving the retina invariant;
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Displacement class Parametrization, constraint N

[p*t1r*] F = 0 0

[p1t5r0] F =

⎛⎜⎝0 −1 0
1 0 0
0 0 0

⎞⎟⎠ 0

[p1t[34]r0] F =

⎛⎜⎝ 0 0 a

0 0 b

−a −b 0

⎞⎟⎠, ‖F‖ = 1 1

[p1t2r0] F =

⎛⎜⎝ 0 c a

−c 0 b

−a −b 0

⎞⎟⎠, ‖F‖ = 1 2

[p2t[34]r1] F =

⎛⎜⎝0 0 a

0 0 b

c d e

⎞⎟⎠, ‖F‖ = 1 4

[p2t[234]r0] F =

⎛⎜⎝ 0 f a

−f 0 b

c d e

⎞⎟⎠, cb − ad = 0, ‖F‖ = 1 4

Table 3.1. Models of movements leading to a specific form of the principal linear matrix in
relation to parameters; N is the number of the degrees of freedom of the model

which are the linear models given in Tables 3.1 and 3.2 from the following
conventions:

[p1] Constant intrinsic parameters
[p2] Variable intrinsic parameters

[t1] No translation
[t2] Non-zero translation along the optical axis
[t34] Zero translation along the optical axis
[t5] Translation only along the optical axis

[r0] No rotation
[r1] Rotation along the optical axis
[r2] General rotation

This gives, in a certain sense, an exhaustive view of all the specific cases
of visual displacements, which can be perceived by non-calibrated monocular
vision. Detailed development is given by Lingrand [LIN 99].
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3.2.4. Relation with specific properties in the scene

The case of planar scenes has been widely studied as it corresponds in
the case of perspective model of the camera, to the study of homography
(i.e. collineation), just as in the case of pure rotation. Gaspard and Viéville
[GAS 96] used homography to extract different planar structures in
non-calibrated monocular scenes. Triggs [TRI 98b] studied self-calibration in
the case of planar scenes but with constant intrinsic parameters.

Torr and Fitzgibbon [TOR 98b] studied different hypotheses concerning
the relation between the correspondence of points for three consecutive
images by considering them two at a time: homography then homography
(H-H), homograph then, fundamental matrix (H-F), fundamental matrix
then homography (F-H), or fundamental matrix, fundamental matrix (F-F).
These authors proposed an automatic identification mechanism for one of the
cases and then in the presence of homography, with the help of the GRIC
criterion [TOR 98a], determined whether it refers to a plane structure or a
pure rotation. This algorithm makes it possible to overcome the problem of
point tracking on a sequence of images. It avoids the images posing problems
and allows us to find the structure in a robust way.

Similarly, in Table 3.2, as analyzed in [VIÉ 96c], all specific cases where
the projected movement is described by a specific linear homography as
compared to the parameters as listed; this including “pure rotation” cases
where the homography H∞ is that of an infinite plane, i.e., cases without
translation. The specific homography cases connected to a planar movement
and dependent on the orientation of this plane as compared to the rotation,
translation, or to the optical axis are explained in [LIN 99].

3.3. Self-calibration of a camera

In the field of self-calibration of a camera, a number of authors [MAY 92,
VIÉ 96a, HAR 94a, SHA 94b] defined the symmetric matrix K:

K = AAT

≡

⎛⎜⎜⎝
α2

u + u2
0 + α2

v cot(θ)2 u0v0 − α2
v cot(θ) u0

u0v0 − α2
v cot(θ) a2

v

1
sin(θ)2

+ v2
0 v0

u0 v0 1

⎞⎟⎟⎠ (3.2)
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Displacement classification Parametrization N

[p*t1r0] H = I 0

[p1t[34]r0] H =

⎛⎜⎝0 0 a

0 0 b

0 0 1

⎞⎟⎠ 2

[p2t1r0] H =

⎛⎜⎝c 0 a

0 c b

0 0 1

⎞⎟⎠ 4

[p1t[34]r1] H =

⎛⎜⎝ c d a

−d c b

0 0 1

⎞⎟⎠ 4

[p2t[34]r1]/ H =

⎛⎜⎝a b c

d e f

0 0 1

⎞⎟⎠ 6

[p2t[234]r2] H =

⎛⎜⎝a b c

d e f

g h 1

⎞⎟⎠ 8

Table 3.2. Specific homography models whose constraints are linear as compared to the
components; N is the number of parameters of the model. We can always assume

H22 = 1 to remove the non-determination of the scale factor in this case

This is in correspondence with the matrix of intrinsic parameters A as
shown in the following equations:

u0 =
K02

K22

v0 =
K12

K22

a =
K11

K22
− v2

0

b =
K01

K22
− u0v0

αv =
√

a − b

θ = arccos
(√

b/a
)

c =
K00

K22
− u2

0 − b

αu =
√

c
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which are defined as soon as K22 	= 0, a > b ≥ 0, and c ≥ 0 in an
unambiguous way so that by definition αu ≥ 0 and αv ≥ 0. This matrix is in
fact the inverse of the matrix which parametrizes the “absolute conic”, which
geometrically characterizes the calibration of a camera (see [MAY 92]).

If we make explicit the fact that R is an orthogonal matrix in the definition
H∞ = A′RA−1 we obtain:

K′ ≡ H∞ KHT
∞ (3.3)

which corresponds to five independent linear equations and we derive:

s̃K′ s̃ ≡ FKFT (3.4)

which corresponds to the two equations of Kruppa that define the
self-calibration of a camera [MAY 92]. The present derivation method is
algebraically the simplest one [ZEL 94].

Unfortunately, in general, we have for N + 1 views, 5(N + 1) parameters
to calculate while 2N equations are available. Hence, it is necessary to
introduce additional constraints, for example, that these parameters are
constant [LUO 95] or that some of them are fixed [HEY 97].

In these two cases, Kruppa equations are numerically very unstable
[LUO 95] except if the disparity between them is significant [ZEL 94].

In a simpler way, we can use a three parameter projection model to
represent the projection of a point M, whose coordinates are expressed in the
frame of reference attached to the camera. On a point m of the retina:

Zm = AM with A =

⎛⎝f 0 u0

0 f v0

0 0 1

⎞⎠ (3.5)

Here, we suppose that the two axes of the retinal plane are orthogonal and
that the ratio between the horizontal and the vertical focal lengths is known
and is equal to 1.

Different authors have experimentally proved that this model is sufficient
for regularly used cameras [VIÉ 95a] and also for visual sensors of high
quality [WIL 94] or, more recently [BOU 98, HEY 97].
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3.3.1. Usage of pure rotations or points at the horizon

The affine calibration is known, if we have an estimation of the
homography transformation corresponding to the infinite plane (i.e., to the
horizon) H∞. This is the case for a pure rotation or when we can identify at
least four remote points. In this case, from (3.3) we can directly calculate the
calibration parameters of a view from those of the previous views. We can
thus propagate the calibration information within the sequence of images,
knowing this affine calibration in only one of these views [VIÉ 96a]. More
generally, it is necessary to introduce 5 other constraints, for example, by
assuming constant calibration parameters [HAR 94b, VIÉ 96].

In the last case, it was proved that at least two rotations are necessary, i.e.,
three views [VIÉ 96], which gives a relatively heavy experimental paradigm.
More precisely, two rotations around different axes are required to select the
intrinsic parameters [HAR 94b, VIÉ 96c]. Indeed, one rotation does not allow
us to pick the horizontal and vertical scale factor but a linear combination of
these two parameters [VIÉ 94a].

Identifying the H∞ matrix, which corresponds to the “rotational” part
of the displacement, can be done using different methods as discussed by
[VIÉ 96c].

[VIÉ] proposes the simplest calibration method from pure rotations and
especially the most numerically stable and most efficient to implement since it
requires only one single rotation and provides an explicit solution in the least
squared sense. Now, let us explain this method.

A plausible assumption practice [ENC 95, WIL 94] consists of considering
only the following three parameters: the focal length f and the position of the
principal point (u0, v0). This is sufficient to define calibration.

In this case we have:

u0 =
K02

K22

v0 =
K12

K22

f2 =
K00K22 − (K02

)2(
K22
)2
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=
K11K22 − (K12

)2(
K22
)2 (3.6)

and matrix K verifies two homogenous quadratic constraints:

θ =
Π
2

=⇒ K01K22 = K02K12

αu = αv =⇒ K00K22 − (K02
)2 = K11K22 − (K12

)2 (3.7)

The first is connected to the fact that we neglect the parameter of linear
distortion and the second is connected to the fact that the ratio of the
horizontal/vertical scale is known and leads to unity.

Hence, from (3.3), using (3.7), we obtain two quadratic equations on each
set of parameters with respect to (u0, v0, f

2). These equations can be used as
measurement equations in a recursive estimation process as tried by Heyden
[HEY 97]; then, we are able to calibrate automatically after three rotations,
even in the case of variable parameters.

However, note that if these equations are effective, they are not used in
practice as they are numerically unstable.

Moreover, [VIÉ 99] show that the usage of the three parameter model
does not give a particular form to Kruppa equations. Indeed, equation (3.4)
is equivalent to:

K′ ≡ (F + sxT
)
K
(
F + sxT

)T
for an undetermined vector x which can always be chosen to verify the
constraints of (3.7), which certainly simplifies the equations but does not
bring about any changes.

This explains why it is necessary to use specific displacements.

3.3.2. Pure rotation and fixed parameters

Let us assume that we perform a pure rotation without modifying the
intrinsic parameters. In practice, if we perform a zoom, we not only modify
the intrinsic parameters but generate a translation of the optical center; hence,
we induce parallax (displacement of points on the retina depends on the depth
of the point), which is very difficult to analyze.

Thus, a safe paradigm is to propose such an “aerobic” paradigm to
self-calibrate a camera: rotation zoom.
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In this case, we have t = 0 and A = A′, and we can estimate H• ≡ H∞
since the retinal movement of the points corresponds to this homography.
Moreover, this verifies the property det(H∞) = 1 making it possible to fix
the scale ratio. We then obtain:

H∞ =
H•

det
(
H•
) 1

3

and ρ =
Au

det(A)

=⇒ O =
H∞ − H−1∞

2
= sin(θ)K ρ̃

(3.8)

This form is equivalent to the Luong decomposition of the matrix H∞
[VIÉ 96] but the algebraic form proposed here is simpler and numerically
more effective. Note that the matrix O verifies two algebraic constraints:
det(O) = trace(O) = 0.

Although, in general, at least two rotations are necessary, in the case of a
model with three parameters, by eliminating ρ, we obtain the following linear
equations (in u0, v0, f

2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O00 − u0O
20 = 0

O11 − v0O
21 = 0(

O01 + O10
)− u0O

21 − v0O
20 = 0

O20f2 + O00u0 + O01v0 + O02 = 0

O21f2 + O10u0 + O11v0 + O12 = 0

(3.9)

that are redundant and can be resolved to the least squares, which makes it
possible to obtain an explicit solution given here:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 =
O20 3O00 +

(
O00 − O11

)
O21 2O20 +

(
O01 + O10

)
O21 3

O20 2O21 2 + O20 4 + O21 4

v0 = −
(− O01 − O10

)
O20 3 +

(
O00 − O11

)
O21O20 2 − O21 3O11

O20 2O21 2 + O20 4 + O21 4

f 2 = −
(
O21O11 + O20O01

)
v0

O20 2 + O21 2 −
(
O20O00 + O21O10

)
u0

O20 2 + O21 2

− O21O12 + O20O02

O20 2 + O21 2
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and defined except if:

O20 = −sin(θ)
f

uy = 0 and O21 =
sin(θ)

f
ux = 0 (3.10)

which corresponds to a rotation around the optical axis. This is a configuration
that is easy to avoid.

This then leads to a recommendation to calibrate a camera by making a
pure rotation or by making a rotational movement by seeing at least 4 points
at the horizon. It is perhaps the simplest and the most efficient strategy.

Moreover, we can also easily calculate, if necessary, the vector ρ since:
Oρ = 0 as well as the angle of rotation from equation (3.8).

3.3.3. Rotation around a fixed axis

Let us now assume that it is impossible to make a pure rotation, for
example, when the camera makes a zoom: in this case the optical center may
be far behind the mechanical center of the camera and always varies with
the focal length [ENC 95, WIL 94]. Hence, it is not possible to assume pure
rotation for a zoom except for some very specific hardware such as [PAH 92].

To easily generalize the previous approach to such cases, we assume that
we carry out a rotation around a fixed axis in, let us say, direction u, this
vector being unary 1 (i.e. ‖u‖ = 1) and passing through a point C, which is
the “center of rotation”. In fact, we can choose any point on the axis of rotation
Δ and to simplify the calculations, we take the point C such that �OC ⊥ u.
We note by θ, the angle of rotation.

It is known [BEA 95, VIÉ 94a, VIÉ 95b] that such a rigid displacement is
characterized by the fact that the resulting translation of off-centering the axis
of rotation is orthogonal to this axis.

More precisely [VIÉ 94a, VIÉ 99], we can write the precise form taken by
the fundamental matrix

F ≡ ‖C‖
[

sin(θ) f̃0

+
(
1 − cos(θ)

) [
f1 fT

2 + f2 fT
1

]] (3.11)
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with:

f0 = λ2 2
det(A)

A
C ∧ u
‖C‖

f1 = λA−1T u

f2 = λA−1T C ∧ u
‖C‖

while:

fT
0 f1 = 0 (3.12)

which is the single constraint between these vectors [VIÉ 99].

If we assume that we know the fundamental matrix (up to a close scale
factor) and the angle of rotation θ, then, we can explicitly calculate the intrinsic
parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u0 = f0
0 − γ f0

2 /f2
0

v0 = f1
0 − γ f1

2 /f2
0

f =

√
γ
(
f0
0 f0

2 + f1
0 f1

2 + f2
0 f2

2

)− γ2
((

f0
2

)2 +
(
f1
2

)2)
f2
0

(3.13)

up to a variable indetermination γ.

Similarly, we can make explicit two linear equations:{
f1
2

(
f2
0 u0 − f0

0

)− f0
2

(
f2
0 v0 − f1

0

)
= 0

f2 + u2
0 + v2

0 − (f0
0 u0 + f1

0 v0 + μf2
2

)
/f2

0 = 0
(3.14)

with:

μ =
f0
2

(
f2
0 u0 − f0

0

)
+ f1

2

(
f2
0 u0 − f1

0

)(
f0
2

)2 +
(
f1
2

)2
The first equation gives us a linear equation with respect to (u0, v0) to be

solved with at least two displacements; the second directly gives the focal
length from the estimation of (u0, v0).
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Hence, two rotations around fixed axes are necessary to self-calibrate a
visual sensor. Numerical considerations suggest using a horizontal and a
vertical rotation [VIÉ 94a].

We can also use these two equations as measurement equations on a
Kalman filter.

Furthermore, we also obtain the extrinsic parameters:

u ≡ AT f1 and C ≡ u ∧ A−1 f0 (3.15)

Here, as soon as the intrinsic parameters are estimated, we recover the
direction of the axis of rotation and its position up to a scale factor, for this
monocular system.

It is necessary to note that these equations are degenerated only if:

f2
0 =

2
f2

[
C0u1 − C1u0

]
= 0 (3.16)

i.e. if, in the image plane, the principal point and the projections of the axis of
rotation and of point C are colinear. In practice, this situation arises only in
the case where the rotation is around the optical axis, as in the preceding case.

From a theoretical point of view, we can say that this case is a simple
extension of a case of pure rotation where the component related to the
translation can be eliminated. The result is, by itself, less interesting since
we do not have an explicit solution for the three parameters, but only two
equations. However, they are very simple, linear, and can be easily used in
the estimation process.

Hence, we are now faced with a second process of active self-calibration,
whose performances have been studied by [VIÉ 94a] and which obtain a
precision of 3–4 pixels for the principal point and 1 to 2% for the focal length.

3.4. Perception of depth

3.4.1. Usage of pure translations

To calibrate a camera, the best movement is a rotation, since movements
in the image do not depend on the depth. On the contrary, to perceive the
distance of an object from the camera, pure translation is the most appropriate
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movement, since movements in the image are inversely proportional to the
depth:

m′ =
Z

Z ′m +
1
Z ′ s =⇒ π′ =

1
Z ′ =

‖m′ ∧ m‖
‖m′ ∧ s‖ (3.17)

where m and m′ are two corresponding points related to the perspective
projection of a 3D point M for two different image acquisitions. The depth of
this point with respect to each image Z and Z ′, respectively. s corresponds to
the expansion focus due to the pure translation.

In this case, the vector s is easily estimated up to a scale factor from at least
two points, since ⎡⎣m ∧ m′︸ ︷︷ ︸

d

⎤⎦T

s = 0. (3.18)

For two couples of points and by considering the vectors d1 and d2 defined
in (3.18) we have s ≡ d1 ∧ d2.

Here we consider a translation without modification of intrinsic parameters.

m

M

t

s

Z

Figure 3.2. Geometric elements for a pure translation

The depth Z is the Euclidean distance along the optical axis from the
optical center point. We also consider the proximity π = 1

Z , this parameter
being numerically better conditioned in the equations.
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To reconstruct the point, it is necessary to know the intrinsic parameters
since M′ = Z ′A−1m′. However, without this, we can still estimate a quantity,
which makes it possible to decide the relative distance of the two points as
compared to the camera or if a point is at the horizon (i.e. π � 0). In fact,
we are in a case of an “affine calibration” since the collineation of the plane at
infinity is simply defined by H∞ = I.

The calculation of proximity is better conditioned for points m′
non-colinear with s, i.e., far away from this point in the image. The point s =
At is the projection of the translation on the retina, called the expansion focus
or the epipole according to the context, since these definitions are equivalent.
This means that it will be better to use lateral translations (horizontal or
vertical) rather than longitudinal ones (aligned with the optical axis).

Regarding parametrization of the movement in this very common case (for
example, see [SHA 94a, VAN 94]), we have:

F = s̃ and H∞ ≡ I (3.19)

which are thus very easy to use.

In particular, the anti-symmetry of the fundamental matrix is characteristic
due to a pure translation, which makes it possible to detect such a condition
and also to control external parameters in order to obtain such a type of
movement.

In the case of a planar object in pure translation, [VIÉ 99] show that the
corresponding homography is of the form:

H ≡ I +
s
‖s‖νT (3.20)

This homography is characterized by the fact that two of its eigenvalues are
equal and that we can easily calculate the underlying parameters (of course, to
a close scale factor):

s ≡ u1a ∧ u1b; ν =
λ0/λ1 − 1

s
‖s‖

Tu0

u0 (3.21)

where u1a and u1b are the two eigenvectors corresponding to the same
eigenvalue λ1, while u0 is the eigenvector corresponding to the other
eigenvalue λ0.
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Thus, it is easy to detect if a homography corresponds to a planar movement
of pure translation and to calculate its characteristics, as in the calibrated case
(see [FAU 93] for a review).

3.4.2. Retinal movements

Pure translation is not the only type of specific movement that facilitates
the visual perception of the structure of the observed scene. Another class of
displacements, which is also useful are movements leaving the image plane
(the retina) invariant.

It is shown [LIN 96] that it corresponds to a rigid movement such that:

t2 = u0 = u1 = 0 (3.22)

i.e., it is composed of a rotation around the optical axis and horizontal and
vertical translations.

In this case, the calibration parameters can be fixed or variable.

Hence, we have a fundamental matrix of the form:

F =

⎛⎝ 0 0 λt1

0 0 −λt0

F 20 F 21 F 22

⎞⎠ (3.23)

with:

F 20 =
f ′

f

(− F 02 cos(θ) − F 12 sin(θ)
)

F 21 =
f ′

f

(
F 02 sin(θ) − F 12 cos(θ)

)
F 22 = −(F 02u′

0 + F 20u0 + F 12v′0 + F 21v0

)
This matrix is subject to four constraints:

F 00 = F 01 = F 10 = F 11 = 0 (3.24)

and [VIÉ 99] proves that reciprocally these constraints involve either t0 =
t1 = t2 = 0, while the matrix is either undefined or u0 = u1 = t2 = 0, which
shows that these conditions are characteristic of a retinal displacement.
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From this matrix, we can easily obtain the optimal:

– angle of rotation, in the least square sense:

θ = arctan
(

F 21

F 20

)
− arctan

(
F 12

F 02

)
(3.25)

– the direction of translation: t ≡ s ≡ (F 02, F 12, 0)T ;

– the variation in the focal length:

f ′

f
=

√√√√(F 20
)2 +

(
F 21
)2(

F 02
)2 +

(
F 12
)2 (3.26)

– and a linear equation on the positions of the principal point across the
expression F 22, while these four conditions completely define the matrix F,
which by itself has 4 degrees of freedom.

The last two equations correspond to the Kruppa equations for
self-calibration, whereas the first two give us related the extrinsic parameters.

We can also characterize the matrix H∞ =
(

a −b c
b a d
0 0 1

)
, allowing us to

obtain:

– the angle of rotation: θ = arctan( b
a),

– the new calibration parameters from the preceding ones:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u′
0 = c +

f ′

f

(
cos(θ)u0 − sin(θ)v0

)
v′0 = d +

f ′

f

(
cos(θ)v0 + sin(θ)u0

)
f ′ = f

√
a2 + b2

(3.27)

whereas it is not possible to self-calibrate in this case. If the parameters are
constant, then we calculate the coordinates of the principal point but not the
focal length. This situation corresponds to a pure rotation around the optical
axis and we find the same singularities already pointed out in this case.
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If we consider the observation of a planar structure during a retinal
movement, we obtain a homography matrix of the form:

H =

⎛⎝a b du

c d dv

0 0 1

⎞⎠ (3.28)

which is thus an affine transformation of the image. Reciprocally, such a
transformation corresponds either to (i) a retinal movement t2 = s2 = u0 =
u1 = 0 or (ii) to the fronto-parallel movement of a plane [VIÉ 99, VIÉ 96b].

In the general cases, where parameters vary, it is not possible to infer these
six coefficients since there are 11 unknown quantities and generally, there
are no usable constraints at this stage. On the other hand, in the case where
calibration parameters are constant [VIÉ 99, VIÉ 96b], we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = 2 arctan(Z)

t0 = λ cos(α)

t1 = λ sin(α)

n0 =
t0
(
H00 − H11

)
+ t1
(
H01 − H10

)(
t0
)2 +

(
t1
)2

n1 =
t1
(
H11 − H00

)
+ t0
(
H01 − H10

)(
t0
)2 +

(
t1
)2

(3.29)

with: (
1 + H00 + H11 + H11H00 − H01H10

)
Z2 + 2

(
H01 − H10

)
Z

+
(
1 − H00 − H11 + H11H00 − H01H10

)
= 0

and: α = 1
2 arctan(2 α1

α2
) defined by:

α1 =
(
H11H01 + H00H10

)− cos(θ)
(
H01 + H10

)
+ sin(θ)

(
H11 − H00

)
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α2 =
((

H00
)2 +

(
H01
)2 − (H10

)2 − (H11
)2)

− 2
(

cos(θ)
(
H11 − H00

)
+ sin(θ)

(
H10 + H01

))
Hence, we have two solutions for the displacement as in the calibrated case

[VIÉ 96b].

Moreover, we are left with a linear equation for the intrinsic parameters
(u0, v0):

sin(α)
(
H02 − u0

(
1 − H00

)
+ v0H

01
)

= cos(α)
(
H12 + u0H

10 − v0

(
1 − H11

)) (3.30)

while there is no constraint on the focal length.

Note that the specific case of affine movement, i.e., a simple translation of
the image, corresponds to a pure translation of a fronto-parallel plane without
variation in intrinsic parameters. In this case s ≡ (du, dv, 0). It is interesting
to have such a geometric interpretation for a given explicit model.

3.4.3. Variation of the focal length

Another specific movement that helps us to give an indication on the depth
is the “zoom” corresponding to the change in the focal length, as studied by
several authors [POL 95, ENC 96, LAV 93, GAS 97].

The key point is that the zoom does not correspond only to a simple
variation of intrinsic parameters but also to a translation of the optical center
during the increase or decrease of the focal length. More precisely, such a
translation cannot be put into direct relation with the variation of the principal
point as the mechanical process (screw, slide, etc.) can be rather complex and
is not always deterministic [BOB 94, ENC 94]. Similarly, we cannot truly
fix the variation of the principal point [WIL 93, VIÉ 95a] as compared to
other parameters and it is necessary to assume a non-deterministic variation
of these parameters.

Hence, we suppose that there is a translation primarily along the optical
axis, but not necessarily.

On the other hand, a zoom is carried out without any rotation of the image
plane [WIL 94].
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Under these assumptions, the fundamental matrix has the following form:

F =

⎛⎜⎝ 0 −λt2 λft1 − F 01v0

λt2 0 −λft0 + F 01u0

−λf ′t1 + F 01v′0 λf ′t0 − F 01u′
0 F 22

⎞⎟⎠ (3.31)

with:

F 22 =
(
u0v

′
0 − v0u

′
0

)
F 01 − u0F

20 − u′
0F

02 − v0F
21 − v′0F

12

which is constrained by:

F 00 = 0, F 11 = 0, F 01 = −F 10 (3.32)

this condition being necessary and sufficient.

In this case, we have 4 independent parameters since the 7 degrees of
freedom of a fundamental matrix obey 3 constraints. More precisely, by
knowing (u0, v0, f), we can recover, if F 01 = −λt2 	= 0 (which is expected
for a zoom, while if t2 = 0, it will be the previous case):

t ≡

⎛⎜⎝ F 12 − F 01u0

−F 02 − F 01v0

fF 01

⎞⎟⎠ and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′

0 =
f ′

f
u0 −

f ′

f F 12 + F 21

F 01

v′0 =
f ′

f
v0 +

f ′

f F 02 + F 20

F 01

(3.33)

Hence, we recover t up to a scale factor and also recover the variation of
the position of the principal point.

On the other hand, we cannot recover f ′/f as this expansion factor is an
unknown factor of the parametrization of the movement [VIÉ 96c]. Equations
(3.31) with det(F) = 0 and equations (3.33) being equivalent, we cannot
recover another parameter. Thus, the “zoom”, which is precisely a variation of
the focal distance, does not enable the estimation of this variation at this stage.
Even if we were assuming a “perfect” zoom with t0 = t1 = 0, we obtain an
estimation of (u0, v0) and (u′

0, v
′
0) but not an estimation relative to the focal

length.
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If we are able to estimate the affine calibration, i.e., the homography of the
points at the horizon, we then obtain a matrix of the form:

H∞ ≡

⎛⎜⎜⎜⎜⎜⎝
f ′

f
0 u′

0 − u0
f ′

f

0
f ′

f
v′0 − v0

f ′

f

0 0 1

⎞⎟⎟⎟⎟⎟⎠ (3.34)

which makes it possible to directly follow the evolution of the calibration
parameters in coherence with equation (3.3).

Similarly, if we consider the observation of a planar structure [VIÉ 99,
GAS 97], the matrix of the associated homography is then an algebraic object
with 7 degrees of freedom:

H ≡

⎛⎜⎜⎜⎜⎜⎝
f ′

f
+ s0ν0 s0ν1 u′

0 − u0
f ′

f
+ s0ν2

s1ν0 f ′

f
+ s1ν1 v′0 − v0

f ′

f
+ s1ν2

s2ν0 s2ν1 1 + s2ν2

⎞⎟⎟⎟⎟⎟⎠ (3.35)

and verifies only one constraint:

H01H20H20 − H00H21H20 − H10H21H21 + H11H21H20 = 0

If the plane is not fronto-parallel, we obtain:

– 2 degrees of freedom for the projection of the translation up to a scale
factor:

s ≡ (H01H20, H10H21, H20H21
)

– 2 evolution equations of the principal point:⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′

0 =
f ′

f
u0 +

H01

H21
+

f ′

f

H01H22 − H02H21

H01H20 − H00H21

v′0 =
f ′

f
v0 +

H10

H20
+

f ′

f

H10H22 − H12H20

H10H21 − H11H20
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However, again, we do not get any equation for f ′

f , since the 3 remaining
degrees of freedom are related to the normal n of the plane, parametrized by
ν = A−T A−T n

d ,

ν =

⎛⎜⎜⎝
μH20

μH21

μH22 − 1
s2

⎞⎟⎟⎠ with μ =
f ′

f

2(
H00 + H11

)
s2 − H20s0 − H21s1

are also functions of f ′

f , while s2 here is supposed to be different from 0.

This indetermination phenomenon is explained by the fact that a zoom
corresponds to an expansion of space, which is not measured in the monocular
case (see [VIÉ 96a] for an algebraic development). We can also interpret this
mechanism by noticing that in the first order [VIÉ 00], we only estimate the
“collision time”, which combines the relative variation of the focal length with
the variation of the distance of the object along the optical axis.

This calibration problem, unless a pre-calibration on a known object
[LI 96] is used or unless a more specific model [POL 95] is used, requires, a
priori, to work with a projective or affine model as, for example, in [HAY 96].

However, the caveat was overcome by Gaspard [GAS 97] who noticed that
the form of the given matrix in (3.34) is characteristic of a fronto-parallel plane
as seen in (3.15) with:

H ≡

⎛⎜⎜⎜⎜⎜⎝
f ′

f
0 u′

0 − u0
f ′

f
+ s0n2

0
f ′

f
v′0 − v0

f ′

f
+ s1n2

0 0 1 + s2n2

⎞⎟⎟⎟⎟⎟⎠ (3.36)

and then developed a paradigm that makes it possible to distinguish it from
other fronto-parallel planes, if the plane at the horizon is present in the scene,
thus resolving the problem of estimating f ′

f .

The knowledge of the value of H∞, corresponding to an affine calibration
of the camera makes it possible to construct the scene observed. Such
reconstructions are of interest since affine transformations preserve the
medium, parallelism, order of depth, etc. A number of perceptual tasks such
as the positioning of a point as compared to a plane [ROB 93], its application



118 Visual Perception through Video Imagery

to avoid obstacles [ZEL 94] or the calculation of the convex casing of an
object of the scene [ROB 93], without explicit knowledge of the intrinsic
parameters of the camera can be realized in this way.

Reconstruction of the depth from a fronto-parallel plane

The similarity of the homography formed between a fronto-parallel
plane and the collineation of the plane at infinity leads us to consider a
reconstruction, not from H∞ but from a homography H corresponding to a
fronto-parallel plane.

By taking the vectorial product with m′, in the equation m′ = H∞m+ 1
z s

[GAS 96] which parametrizes the retinal movement, we obtain:

m′ ∧ H∞ m +
m′ ∧ s

Z
≡ 0

where H∞ = H − s νT , with ν = (0, 0, 1
d)T .

A step further:

m′ ∧ Hm +
(

1
Z

− 1
d

)(
m′ ∧ s

)
≡ 0

Then, we reconstruct 1
Z̃

with:

1
Z̃

=
1
Z

− 1
d

(3.37)

The reconstructed depth is then Z̃, related to the depth, as represented in
Figure 3.3, by:

Z̃ =
Z

1 − Z
d

By following the direction of the translation, which is a priori unknown,
we thus reconstruct either the depth z or its inverse.

A similar case occurs when retrieving H∞ among a set of homographs.
As explained [ROB 95b], we can estimate the relative position of points as
compared to a plane. This makes it possible to find the triangles related to
the extremes of the scene (in depth). If we now assume that points are at the
horizon, we can sort the scene depths. However, we could also mismatch the
horizon plane with the closest plane in this case.
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Figure 3.3. Reconstruction of the depth from a fronto-parallel plane following the direction of
translation, a priori unknown, we reconstruct either the depth Z or its inverse

If we assume s is known, i.e., the direction of the translation, we can then
differentiate the closest from the farthest from the enclosed equation. In the
case of a zoom, we can assume this known sign since the fact of carrying
out a zoom (or a back zoom) will control the direction of the translation in
Z. Specific cases relating not only to the nature of movement but also to
the geometry of the observed scene make it possible for us to obtain here a
reconstruction of the scene, with depth ordered since the function represented
in Figure 3.3 is strictly increasing.

3.5. Estimating a specific model on real data

Constitution of a set of measurements

In practice, an early vision module detects points of interest in an image,
corresponding to the points of the strongest curvature of the image intensity
signal (corners, junctions between two lines, spots, etc.) in such a way that
they are correctly localized. Very often the Harris corner detector [HAR 88]
is used as described in detail by [ZHA 95] in this context, but we can also
suggest interactive methods [BOU 97], which make it possible to have a better
control over the choice of the data and allow us to refine the localization using
correlation methods.

In any case, it is necessary to accept the idea that there are erroneous
data, for example, because of ambiguity in the image, erroneous matching,
or because the point belongs to a non-rigid object or because its movement
does not correspond to the movement to be evaluated.
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If we consider a sequence of images, we have to face the following
problem: (a) on the one hand it is necessary to have maximum disparity
between the images, which will help to estimate the movement so that the
numerical conditioning of these equations is correct, while (b) we will
also need a minimum disparity to easily put into correspondence the visual
landmarks from one image to the other.

We easily overcome this problem by following each point in the sequence
of images using consecutive images and by applying the equations to the
two extreme images of the sequence. By doing so, we also remove unstable
measurement points, which will not be followed along the entire sequence;
we avoid ambiguities relating to one aspect of the viewed scene in a particular
angle, etc. To obtain correct accuracy for the measurement, we can (for
example, see [VIÉ 94a]) interpolate the path of each point using a polynomial
model or using splines to obtain an under-pixel precision.

Definition of an estimation criterion

In practice, it is interesting to estimate not only the parameters of the
different models analyzed here, but also to be able to determine the best model
given a dataset. Such procedures have been analyzed by [LIN 99] and then
tackled again at the level of software integration [VIE 01].

In order to eliminate a fundamental matrix [TOR 95, ZHA 95], a useful
criterion is based on the distance of the point to the epipolar line defined by
matrix F:

F• = arg min
F

⎡⎢⎢⎣⊎
{m}

(
m′TFm

)2√[(
F̄Tm′)0]2 +

[(
F̄Tm′)1]2

⎤⎥⎥⎦ . (3.38)

Assuming that each data point has an identical precision, this quantity is
expressed in pixel2 and corresponds to the mean quadratic distance of the
point to its epipolar in each image.

If we freeze the denominator, we obtain a simple quadratic criterion with
respect to the components of F, hence leading to linear equations, which
suggests minimizing this criterion in an iterative manner [HAR 95]. There
are also variants of this criterion which are adapted to the calculation of the
structure of the scene and not only to its movement [STU 96], whereas if we
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consider that each measurement point is defined with a given precision, the
criterion can be weighted accordingly.

More generally, it is a non-linear quadratic criterion and the notation
⊎

depends on the selected statistical criterion: for the least squares method, it
is a simple sum, whereas in the case of robust methods such as least squares
medians, it corresponds to a median [HUB 81]. Other methods such as
RANSAC [BOL 81] are based on the separation of errors in increasing order
to remove the highest ones, i.e. those which run a higher risk of mismatching
(for example, see [SHA 93, ZHA 95]).

Perhaps we can recommend, among all these methods, a very simple
mechanism of random picking, which is defined as: randomly pick a minimum
number of measurements and estimate the corresponding parameter. Then,
calculate the error for all the measurements. Select a maximum error
threshold and count the number of measurements that are below this
threshold. This method is statistically justified and is very easy to implement.

In any case, once a parameter is estimated, it is necessary to refine using
some least squares criteria coherent data to eliminate the influence of additive
noise [ROU 87]. At this stage, such a criterion can be statistically biased and
the method in [KAN 92], implemented in [VIE 01] avoids this problem.

A step further, new methods that take into account the physical nature of
the parameters have been introduced and are, in the case of local minimization,
faster and more effective [GAS 00].

In the case of the estimation of a homography matrix, we can write1 a
similar criterion [VIÉ 96c]:

H• = arg min
H

⎡⎢⎣⊎
{m}

∥∥∥((h2
)T m

)
m′ − Hm

∥∥∥2((
h2
)T m

)2

⎤⎥⎦ (3.39)

1. The relation m′ = Hm
((h2)T m)

is a vectorial form of:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u′ =

H00u + H01v + H02

H20u + H21v + H22

v′ =
H10u + H11v + H12

H20u + H21v + H22

1 = 1

by noting H =

[
[h0]T

[h1]T

[h2]T

]
.
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which corresponds to the quadratic distance in pixel2 of the prediction error of
the displacement model and has the same properties as the preceding criterion.

Beyond this formulation, other methods propose to estimate linear criteria
by introducing new intermediate parameters [MEE 91, TRI 98a, TAU 91,
LEE 99] whose redundancy has to be tackled later. For example, [LEE 99]
proposed a reprojection method on a linearization of the initial problem, which
is biased [KAN 96], even if this bias is negligible in practice [LEE 99]. Other
mechanisms are based on the “renormalization” of the criterion, as developed
by [CHO 99].

3.5.1. Application of the estimation mechanism to model inference

It appears that the methods discussed previously are very robust with
respect to erroneous data and make it possible to distinguish different
movements in the scene. Thus, we can collect the displacement measurement
of the main part of the scene (for example, the movement of the background
compared to the camera or that of an object largely covering the view field).
Then, by reapplying the methods on the measurements, which have been
rejected during this first estimation, we can expect to calculate the movement
of another object in movement and iteratively, to segment the objects on the
basis of their movement.

In our case, it is also necessary to compare different models applied
to the same dataset. To this purpose, we consider that the minimized
quadratic criterion corresponds, under Gaussian additive noise hypothesis,
to a distribution χ2, i.e., if we note by ε2m, the quadratic error of each
measurement given in criteria (3.38) or (3.39):

χ2
d =

∑
{m} ε2m/σ2

card({m}) − N
(3.40)

where σ2 is the variance in pixel2 of the measurement, about one pixel. Here
N is the number of parameters of the model, and card({m}) is the number of
measurements.

Thus, we can compare two distributions using the Fisher test [VIE 01] or
from the family of tests of Akaike [LIN 99]. [VIE 01] shows that we compare
these values of χ2 under assumptions that are never verified (linearity, additive
Gaussian noise, etc.) and so propose, for example, a comparison of the type:

χ2
d′ ≶ χ2

de
−κ d′−d

d′
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for d′ > d with κ ∈ [1 . . . 10] to be adjusted according to the application. It
has also been experimentally noted [LIN 99] that for good data, these different
tests give equivalent results, whereas for data which are more disturbed, no test
actually makes a distinction possible. The choice of this comparison criterion
is thus not critical.

Hence, with such a paradigm we can select a model with a minimum
number of parameters (even if, in the absolute, its residual error is higher),
i.e. best adapted to the data.

3.5.2. Some experimental results

Let us finally propose some experimental results, which illustrate these
developments.

These experiments have been conducted in [VIÉ 99] and then completed
by [LIN 99] as well as [GAS 96] and reported in [VIÉ 01].

Figures 3.4 and 3.5 show us two experimental results, which make it
possible to test the inference mechanism proposed here, for both interior or
exterior scenes.

Pure X-Translation 0.83

Pure Translation + Zoom 1.83 

Pure Z-Translation 88.3

Pure Translation 1.51

No Displacement 63.8

X-Rotation + Z-Translation 6.31

Figure 3.4. Partial view of the hierarchy of models for a specific displacement, i.e.
a translation along the X axis. For details, see the text

The “cost” of the model is given in pixels; it is the square root of the mean
quadratic error between the position of the measurement point in the image
and the position predicted by the model, which is a standard in the field (for
example, see [LUO 93, TOR 97, ZHA 94]).
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Pure X-Translation 156.3 Pure Z-Translation 493.02

Pure Translation 140.57

No Displacement 53.2

Zoom +  X-Translation 1.52

Pure Y-Translation 197.61

Zoom +  Z-Translation 1.02

Rotation + Zoom +  Z-Translation 2.03

Rotation +  Z-Translation 28.04

Figure 3.5. Partial view of the hierarchy of models for a specific displacement, i.e.
a zoom of the camera. For details, see the text

In both cases, the model corresponds to the type of expected movement.
In [LIN 99] other experimental results have been obtained with manual
movements of the camera, which qualitatively corresponded to a specific
movement; in each of the cases, they have been estimated by a coherent
model with respect to the displacement being carried out.

As a complement to this series of experiments, from a small hierarchy
of models [GAS 96] has shown that with this method we can separate
different objects of the scene which present planar structures, as illustrated
in Figure 3.6. On the left of Figure 3.6, we see the segmentation of planar
structures, including the bottom of the plane. This allows us to estimate
the plane at the horizon and thus the rotational part of the movement. On
the right, the same system helps to separate two objects in movement, each
vehicle being seen as a planar object. This type of approach has also been
used to drive a vehicle or for other visual tasks [VIÉ 96c].

Figure 3.6. Detection of planar structures: estimation by parametric modeling in a complex
environment of different movements (on the right) or view planes (on the left)
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These results are characteristic of the estimation methods, which are all
based on the kind of random selection methods refined by “non-linear least
squares” optimization [CHO 99, MEE 91, TAU 91, KAN 96, ZHA 97].

3.5.3. Application at the localization of a plane

Calibrations from planes have been recently studied in [STU 99].
Assuming that the position of the points in the plane is a priori known,
we try, from its observation in the retina, to estimate the position of this
plane in space and possibly to estimate the camera intrinsic parameters. The
representation of the projection of a point in this plane in the retina can be
obtained from a homography [FAU 93]. Indeed, a 3D point M expressed in
the absolute index R and belonging to the plane P of normal n (‖n‖ = 1),
situated at a distance d from the origin of the index verifies:

nT M = d ⇐⇒ nT M
d

= 1 (3.41)

The projection of this point is:

Z ′m′ = AM′ (3.42)

where M′ is the point M expressed in the index R′ connected to the camera.
By explicitly writing the change of index between R and R′, and from rotation

R =
( rT

0

rT
1

rT
2

)
and translation t, we obtain:

m′ ≡ A [RM + t]

m′ ≡ A
[
R +

t nT

d

]
M

m′ ≡ HM

More precisely and without loss of generality, we can choose R in such a
way that n = (0, 0, 1)T and d = 1 (study of the equation plane Z = 1). Thus,
we obtain:

λH = A
[
R + t zT

]
(3.43)

From a view, we can then estimate the homography H, i.e. 9 equations
parametrized by 10 unknown quantities (λ + A︸︷︷︸

3

+ R︸︷︷︸
3

+ t︸︷︷︸
3

).
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In the case where the intrinsic parameters are known, we can determine
R and t (position of the plane) from (3.43) by removing λ. Indeed, from the
quadratic constraints on the vectors of the rotation matrix, we can write:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = λA−1 Hz − Rz

r0 = λA−1 Hx with x = (1, 0, 0)T

r1 = λA−1 Hy with y = (0, 1, 0)T

r2 = r0 ∧ r1

λ =

√
kx + ky

k2
x + k2

y

with kx = xT HT A−T A−1Hx

and ky = yT HT A−T A−1Hy

(3.44)

Having estimated 7 parameters, there are two equations, which are a
function of the intrinsic parameters.

Factorized Kruppa equations

We describe these equations from the quadratic constraints on r0 and r1

and we obtain:

rT
0 r0 = rT

1 r1 and rT
0 r1 = 0 (3.45)

i.e.:

xT HTK−1 Hx = yT HTK−1 Hy and xT HTK−1 Hy = 0

with:

K−1 =
(
AAT

)−1 ≡

⎛⎜⎝ 1 0 −u0

0 1 −v0

−u0 −v0 u2
0 + v2

0 + f2

⎞⎟⎠
These equations are linear in f2 and quadratic in (u0, v0).

Hence, we can either:

– use a system where the focal distance (in pixels) is known and, as a
consequence, estimate the coordinates of the principal point (u0 and v0); or
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– calculate f from u0 and from v0, since the position of the principal point
is determined by another method [LAV 93].

Using synthetic data, drawn randomly (position of the plane and intrinsic
parameters), we note that the resolution of these equations is unstable, as
presented in Figure 3.7 in the case where we try to estimate the focal length
according to the principal point.
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Figure 3.7. Illustration of the instability of the resolution

Case of several images

Now let us consider the case of a zoom where we observe a plane with
different focal lengths. As earlier, we model the zoom only by assuming
that rotation R does not vary during the zoom. In this case we have,
if N is the number of images, 9N equations and 7N + 3 unknowns:
λi︸︷︷︸
N

+ Ai︸︷︷︸
3N

+ R︸︷︷︸
3

+ ti︸︷︷︸
3N

. However, these equations are not independent

since if Hi is the homography for the image i, we have:

– ∀i, j Hi[3, 1] = Hj [3, 1]

– ∀i, j Hi[3, 2] = Hj [3, 2]
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– a third non-linear constraint.2

Then, there remain only 6N + 3 independent equations for 6N + 4
unknowns since we can, from the constraints, fix a common scale factor for
all homographies. We are not able to calibrate the camera by observing a
fixed plane with a zoom.

Specific cases

Given that the equations connecting the intrinsic parameters of the system
depend directly on the constraints of the rotation matrix, it is suitable to
consider certain specific cases when, for example, the plane is vertical,
horizontal, or fronto-parallel. In the latter situation, where the rotation is
around the optical axis3, the homography is of the following form:

Hz ≡

⎛⎜⎝f cos(α) −f sin(α)
(
f t0 + u0

(
1 + t2

))
f sin(α) f cos(α)

(
f t1 + v0

(
1 + t2

))
0 0

(
1 + t2

)
⎞⎟⎠ (3.46)

Thus, there are 7 + 1 unknowns and 5 + 1 equations. Moreover, we have
only one quadratic equation according to f and the scale factor k. As a
consequence, such degenerated situations have to be taken into account in a
calibration application. If we now consider a rotation around the axis y, the

2.

∀i, j − Hj [3, 1]2Hj [1, 2]Hi[2, 2] + Hj [3, 1]Hj [1, 2]Hi[2, 1]Hj [3, 2]

+ Hj [1, 1]Hj [3, 2]Hj [3, 1]Hi[2, 2] − Hj [1, 1]Hj [3, 2]2Hi[2, 1]

+ Hi[1, 2]Hj [3, 1]2Hj [2, 2] − Hi[1, 2]Hj [3, 1]Hj [2, 1]Hj [3, 2]

− Hi[1, 1]Hj [3, 2]Hj [3, 1]Hj [2, 2] + Hi[1, 1]Hj [3, 2]2Hj [2, 1]

= 0

between Hi and Hj .
3. As a convention, the positions of the points, known a priori, in the (2D) plane are then
expressed in an index, such that, the corresponding 3D points belong to the equation plane
Z = 1.



Specific Displacements for Self-calibration 129

homography is written in the form:

Hy ≡

⎛⎜⎝f cos(α) − u0 sin(α) 0 f
(
sin(α) + t0

)
+ u0

(
cos(α) + t2

)
−v0 sin(α) f f t1 + v0

(
cos(α) + t2

)
− sin(α) 0 cos(α) + t2

⎞⎟⎠
(3.47)

The specific form of this rotation is used in section 3.5.3.1 to calibrate the
system.

Minimization of a criterion based on the gradient of the image

Traditional estimation of algorithms of movement are based on the
detection of outlines or corners and then put in correspondence with
correlation algorithms. From the correspondence of these points, a criterion
generally minimizing the distance between a point of the second image and
the prediction of its position from the point of the first image is minimized. A
more direct method, described in [ROB 95a], consists of directly maximizing
the sum of the slope of the re-projected points. Indeed, the slope of a bend
point is a maximum local and, in the case of estimation of a homography, for
example, the slope of the re-projected point ∇(mi)∇(mi)=∇(H(x)·Mi) is
also a local maximum as represented in Figure 3.8. We then define a function
of “cost” as a sum of the squares of the slope of the re-projected points:

C(x) =
∑

i

∥∥∇(H(x) · Mi

)∥∥2. (3.48)

Figure 3.8. Minimization of a criterion based on the slope of the image
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Figure 3.9. Usage of a rotating table to generate singular movements in rotation

3.5.3.1. Rotation in pitch and calibration from a plane

To illustrate the importance of the special cases, we consider a sequence
of images obtained by using a rotating table. We have 8 images of a plane in
rotation on an axis parallel to the y axis of the camera and the homography
obtained must be in the form described by equation (3.47).

If α is different from 0, the ratio Hy[2,1]
Hy[3,1] allows us to estimate v0, as

represented in Figure 3.10. Without any assumption on the angle of rotation,
we can, from Hx, also detect when the plane is fronto-parallel. Indeed, in this
case, we have H[3, 1] = H[3, 2] = 0. Moreover, if we can control the rotation
of the plane, either from a rotating table or from a turret, we can position the
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Figure 3.10. Estimation of v0 during a rotation
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Figure 3.11. Relation between the angle of rotation and H[2, 1]

plane in such a way that it is fronto-parallel to the camera without knowing
the intrinsic parameters (see Figure 3.11).

Moreover, Taylor series expansion of H[2,1] gives us:

H[2, 1] ≡ −v0α + O
(
α3
)

Figure 3.11 represents the results obtained by interpolating a line to the
least squares according to α. The coefficient of linear correlation obtained is
.99826.

Finally, a decomposition of H[1, 1] in Taylor series yields:

H[1, 1] ≡ f − u0α − 1
2
fα2 + O

(
α3
)
.

This quadratic equation according to α leads to an extremum when
α = −u0

f (see Figure 3.12).

An interpolation in the least squares sense yields:

H[1, 1](α) ≈ −.0001527491602α2 − .003552077403α + 1.005639344

After deriving this quadratic equation, we obtain αmax ≈ −10.60. By
considering a focal distance of approximately 2,300 of approximately 2,300
pixels, we obtain u0 = 425.
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Figure 3.12. Quadratic variations of H[1, 1](α)

Calibrated structural analysis with a zoom

In the case where the matrix of intrinsic parameters A as well as H∞
is known, we can, in order to estimate the related homography, minimize a
criterion based on three parameters: tz

d and two angles θ and φ corresponding
to the normal n expressed in spherical coordinates. Since, in the case of a
zoom, the translation is small with respect to the distance between the plane
and the camera d, such a criterion is non-linear and unstable at the same
time. However, in the first stage, and in order to start the minimization of the
criterion, we can estimate tz

d by considering that the plane is fronto-parallel
and then minimize the criterion according to θ and φ.

In order to experiment this minimization, we use a sequence during which
the focal distance varies from 1,200 to 2,300 pixels (Figure 3.13). After an
estimation of tz

d for the two planes (manual selection), we obtain the results
presented in Figure 3.13 by considering the first and the last image of the
sequence.

Now, by minimizing the criterion compared to θ and φ, we get the
following results for the fronto-parallel plane:

θ = 0.607 and φ = 0.101 =⇒ n = (.0830, .0577, .9949)

The normal thus estimated is very much along the optical axis and by
considering the second plane, we obtain:

θ = 0.172 and φ = 0.430 =⇒ n = (.411, .0712, .909)
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Figure 3.13. Representation of the criterion according to tz
d

As expected (see Figure 3.14), we note a significant increase in the first
coefficient of the normal as compared to the fronto-parallel plane.

Figure 3.14. Estimation of the proximity by local refining

Moreover, in spite of the fact that this estimation becomes very unstable
when we consider zooms of weak magnitude, it becomes stable again by
considering the translations carried out by a robotized precision system.

Non-calibrated case

Now, we minimize a criterion as compared to the 8 coefficients of the
homography H and use a sequence of images captured during a zoom of 2,250
pixels to 1,550 pixels on a scene containing several planes (Figure 3.15).
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Figure 3.15. Non-calibrated planes and zoom

We obtain the following results.

Plane number Homography

1

⎛⎜⎝ .6860 −0.0019 119.4010
−0.0013 0.6891 87.7284

−2.3880E − 6 −2.8038E − 7 1

⎞⎟⎠
2

⎛⎜⎝ 0.6908 −6.0502E − 4 118.0713
−3.1525E − 4 0.6901 87.2886
−1.4058E − 6 4.3485E − 8 1

⎞⎟⎠
3

⎛⎜⎝ 0.6870 −0.0025 119.6178
−0.0012 0.6880 88.0802

−1.6964E − 6 −2.7720E − 6 1

⎞⎟⎠
4

⎛⎜⎝ 0.6769 0.0149 119.2439
−0.0088 0.7023 87.0714

−2.5382E − 5 3.3070E − 5 1

⎞⎟⎠
Table 3.3. Results: uncalibrated case

From equation (3.35), we can conclude that planes 3 and 2 are
fronto-parallel and that plane number 3 is the farthest. The normal of
plane number 4 has a significant component following the y axis. Finally,
the comparison of H00

1 and H11
1 allows us to affirm that plane 1 is not

fronto-parallel. In this case, the difference is smaller since the distance
between the camera and the plane becomes significant and the coefficients
connected to the normal are multiplied by 1

d as well as by the magnitude of
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the translation in the homography. Hence, the minimization becomes unstable
when we consider either small focal length variations or planes far away from
the camera.

Depth and zoom

From the fronto-parallel plane of Figure 3.14, we estimate H∞. Hence, we
can, for each strong sloping point of the first image, minimize a criterion from
δm,H∞.

We assume that the translation is small as compared to the depth of the
3D point. When the user selects a point, we look for the point with the stronger
slope in the neighborhood and finally minimize the non-linear criterion. Take
for example the four points in Figure 3.14.

For the first two points, we obtain the results in Figure 3.16, representing
the value of the criterion according to δm,H∞ .
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Figure 3.16. Variation of criterion according to δm,H∞ for points 1 and 2

As expected, the proximity of point number 1 is more significant than
that of point number 2. Point number three has zero proximity and is thus
considered to be at infinity, as described in Figure 3.17.

Finally, if we minimize the criterion for point number 4, we highlight a
problem, which appears when the curve and the line defined by H∞ m and
m0 have the same direction. The points projected in the second image are
then displaced along the curve and the minimum value of C(δm,H∞) has no
relation with the proximity of the point but has a relation with the structure of
the curve. The calculation of the orientation of the slope makes it possible to
take into account this “sliding” effect.
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Figure 3.17. Variation of criterion according to δm,H∞ for points number 3 and 4

3.6. Conclusion

Within the framework of visual perception related to robotic problems,
we are interested in the analysis of non-calibrated monocular sequences of
images, by taking into account specific cases (camera models, evolution of
internal parameters of the camera, displacement of objects in the scene of the
camera, structure of the scene) leading to specific equations. Thus, we have
seen that such singularities generally make it possible to recover the movement
or the structure, and this is always done with better precision, as this type of
approach reduces the number of parameters brought into play. A step further, it
seems important to be able to detect and manage the cinematic and geometric
properties that arise from it. An examination of these specific cases on two
images, and then on a sequence of images, shows that the complexity of the
problem requires an adapted processing.
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Chapter 4

Localization Tools

4.1. Introduction

This chapter is dedicated to the problem of localization of objects by
computer vision. It refers to relocating the spatial position of the CAD model
of an observed object by a video sensor in such a way that the latter is in
conformity with the contents of the analyzed images. The reader will later on
find the description of the techniques, which make it possible to process the
case of localization of a rigid object by monocular vision. Its formalism will
then be extended to understand cases as diverse as multi-ocular localization
and hand-eye calibration, by conducting research on the posture of articulated
objects such as robotic arms.

This very general problem can be addressed in various ways according to
the context: the simplest case being monocular localization (usage of a single
camera) of a rigid object. This point has been extensively discussed in other
works during the last two decades.

Different approaches can be classified according to:
– the manipulated projection model (orthographic [KAN 81], scaled

orthographic [DEM 92], para-perspective [HOR 95a], perspective [LOW 85,
HOR 87, HOR 89, DHO 89, DHO 90]);

– the nature of paired primitive (points [HOR 89, DEM 92], lines [KAN 81,
LOW 85, HOR 87, DHO 89], circles [DHO 90]);
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– the resolution method (analytical [KAN 81, HOR 89, DHO 89, DHO 90],
iterative [LOW 85, DHO 89, DEM 92, HOR 95a], by collection of hypotheses
[HOR 87]).

From this vast choice, we have adopted the method first proposed by
Lowe [LOW 85] for its elegance and especially for the possibility to adapt its
formalism to various contexts.

Indeed, we will see how to chronologically understand the monocular
localization of a rigid object, the multi-ocular localization of the same object,
the study of the posture of an articulated object of “hand manipulator” type
and hand-eye calibration, which is very useful when the off-set camera is
mounted on a robotic system. With the adopted generic approach based on
the minimization of a non-linear criterion, the initialization phase will be the
subject of one section. Finally, we will present how an estimation of errors
associated with different realized measurements can be obtained with the
help of a technique of propagation of uncertainties.

4.2. Geometric modeling of a video camera

This section succinctly tackles the problem of geometric modeling of CCD
sensors according to the commonly adopted formalism in the field of computer
vision [BRO 71, FAI 87, TSA 86, FAU 87, HOR 95b].

4.2.1. Pinhole model

The projection model generally used to understand the process of
formation of video images refers to the pinhole model or “eye of a needle”
which corresponds to an approximation of the optical model with fine lenses.
It is based on the assumption that all optical rays pass through a single point,
called the “optical center”, before hitting the photosensitive plate of the
sensor (see Figure 4.1).

The intrinsic parameters associated with this camera model are:

1) focal distance f (orthogonal distance of the optical center to the image
plane);

2) co-ordinates (u0, v0) of the principal point (intersection of the optical
axis and the image plane assumed to be orthogonal);

3) horizontal and vertical dimensions of the pixels of the CCD matrix
(dx, dy) or in practice their ratio (κ = dy/dx) since a perspective projection
is always defined as a close scale factor.
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Figure 4.1. The pinhole model and the system of co-ordinates used

NOTE 4.1. The reader will note that to avoid manipulation of an inversed
image, it is customary to represent the image in a plane situated in front of
the optical center and distanced from the latter by a distance f .

4.2.2. Perspective projection of a 3D point

Let P = (X, Y, Z) be a point defined in the world reference mark
Rw; its counterpart in the camera reference mark Rc will be noted by
P ′ = (X ′, Y ′, Z ′). By assuming that the relative positioning of the reference
mark Rw in reference mark Rc is represented by a parametric rotation matrix
of Euler’s three angles (α rotation on the x axis, β on the y axis and γ on the
z axis) noted by Rαβγ and a translation vector of components (u, v, w) noted
by Tuvw, the relation connecting P to P ′ is (these parameters are named as
extrinsic parameters):⎛⎝X ′

Y ′

Y ′

⎞⎠ =

⎡⎣Rαβγ

⎛⎝X

Y

Z

⎞⎠+ Tuvw

⎤⎦
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Let p = (x, y, f) be the intersection of the image plane and the line passing
through the optical center of the camera and the point P ′. The respective
co-ordinates of these points are connected by the following relations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = f
X ′

Z ′ = f
r11X + r12Y + r13Z + u

r31X + r32Y + r33Z + w

y = f
Y ′

Z ′ = f
r21X + r22Y + r23Z + v

r31X + r32Y + r33Z + w

(4.1)

where the coefficients rij represent the different elements of the rotation
matrix Rαβγ .

However, during their detection, the primitives are parametrized in the
natural image reference mark Rn conventionally situated at the top-left corner
of the latter (see Figure 4.1). Let p be a point in the image with co-ordinates
(u, v) and (x, y, f) in Rn and Rc, respectively. The moving from one reference
mark to another is defined by the following relations:{

x = (u − u0)

y = (v − v0)κ
(4.2)

Note that equations (4.1) and (4.2) impose a common unity, which is equal
to the horizontal pixels of the image, to the co-ordinates (x, y, f) of point p.

Different intrinsic parameters of the pinhole model (f, u0, v0, κ) are
obtained during the calibration stage of the sensor, which we will tackle again.
For the moment, we will consider that the parametrization of primitive images
is expressed in the camera reference mark with the help of system (4.2).

4.3. Localization of a voluminous object by monocular vision

4.3.1. Introduction

In this section, we describe a technique first proposed by Lowe [LOW 85]
to calculate, from a video image, the relative position of a voluminous object
as compared to the reference mark associated with the sensor, which observes
it. We have referred to this approach for its formalism, which adapts to
numerous situations, as seen later. Here, it refers to resolving an inverse
geometric problem. Indeed, from a set of mappings between detected 2D
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Figure 4.2. Model defined in its reference mark Rm (left)
and solution for the problem in reference mark Rc (right)

primitives in an image and the corresponding elements of the voluminous
model of the observed object, we look for the spatial attitude of the latter to
be coherent with its pairs, i.e., the position of the object in the space, which
realizes the coincidence between the perspective projections of 3D primitives
with their counterparts in the image (see Figure 4.2).

4.3.2. Mappings

The initial algorithm proposed by Lowe [LOW 85] works from the pairs
between line segments, but we will show that this approach changes easily to
cases where the observed object is characterized by a set of interest points; in
addition, these two types of pairs can be mixed within the same procedure for
attitude research.

4.3.2.1. Matching of lines

Let us suppose an edge of the object to be delimited by points P 1
i and P 2

i
in the reference mark of the model Rm. Let us assume that this edge created
in the image, by perspective projection, a segment characterized by any point
pi = (xi, yi, f) and a vector −→vi = (ai, bi, 0). It is possible to define a specific
plane, called an “interpretation plane”, passing through the optical center of
the camera and containing this image segment. This plane is characterized by
its unitary normal

−→
Ni, which can be easily estimated from the image elements
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Figure 4.3. Interpretation plane relative to matching of lines

mentioned earlier:

−→
Ni =

−→opi ∧ −→vi

‖−→opi ∧ −→vi‖ (4.3)

Since points P 1
i and P 2

i belong to this interpretation plane (see Figure 4.3),
their co-ordinates have to verify the following relations:⎧⎪⎨⎪⎩

−→
Ni · P 1

i
′ =

−→
Ni ·
[
RαβγP 1

i + Tuvw

]
= 0

−→
Ni · P 2

i
′ =

−→
Ni ·
[
RαβγP 2

i + Tuvw

]
= 0

(4.4)

NOTE 4.2. In equations (4.3) and (4.4), the mathematical symbols “∧” and “.”
represent the vector product and the scalar product, respectively. Moreover,
in order to simplify certain equations, we omit the vectorial symbol in the
normals of the interpretation planes.

4.3.2.2. Pairing of points

When the object is characterized by interest points, the mapping stage
defines the matching between a point Pi whose co-ordinates are expressed in
the reference mark of the model Rm and the localization of its perspective
projection in the image plane pi. Hence, it is possible to go back to the
previous case by defining for each pi point, two interpretation planes
qualified as “quasi-horizontal” and “quasi-vertical”, of normals N1

i and N2
i
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Figure 4.4. Interpretation planes relative to pairing of points

respectively (see Figure 4.4).

N1
i =

−→opi ∧ −→
Y∥∥−→opi ∧ −→
Y
∥∥

N2
i =

−→opi ∧ −→
X∥∥−→opi ∧ −→
X
∥∥

where
−→
X = (1, 0, 0) and

−→
Y = (0, 1, 0) are unitary vectors of axes X and Y ,

respectively, of the camera reference mark. As a solution, the two relations,
which impose the alignment of points pi and P ′

i have to be verified:

⎧⎪⎨⎪⎩
N1

i · P ′
i = N1

i ·
[
RαβγPi + Tuvw

]
= 0

N2
i · P ′

i = N2
i ·
[
RαβγPi + Tuvw

]
= 0

(4.5)
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4.3.3. Criterion to minimize

In order to include within the same framework the calculations for the
two types of pairing mentioned above (see equation systems (4.4) and (4.5)),
we will consider the couples (P j

i , N j
i ) corresponding to a 3D point of the

object and to the normal (or to one) of the associated interpretation plane(s),
respectively. With this notation, N1

i = N2
i for a matching between lines and

P 1
i = P 2

i for a pairing between points.

As a solution to our localization problem, n points of the paired model will
have to be found in their respective interpretation planes. However, following
the detection of primitives, which are not precise in images, and sometimes
following imperfections in the model of the observed object, this alignment
cannot be perfectly carried out. Hence, it is necessary for us to define a
criterion to minimize. With concerns of simplicity, we propose to consider the
orthogonal distance of the 3D point to the associated interpretation plane in
[DHO 89].

By definition, such a plane passes through the origin of the camera
reference mark Rc and is parametrized by a unitary normal; the distance
mentioned is equal to a simple scalar product:

D
(
N j

i , P j
i

′)
= N j

i · P j
i

′
= N j

i ·
[
RαβγP j

i + Tuvw

]
(4.6)

Let F(α, β, γ, u, v, w,N j
i , P j

i ) be the functional, which for any couple
(P j

i , N j
i ) associates the value defined in (4.6). The objective of the

localization method is to then find the vector of parameters (α, β, γ, u, v, w),
which minimize the following criterion:

E =
n∑

i=1

2∑
j=1

[
D
(
N j

i , P j
i

′)]2

=
n∑

i=1

2∑
j=1

F
(
α, β, γ, u, v, w,N j

i , P j
i

)2

This criterion is not linear. Hence, its minimization requires the
implementation of an iterative process of the Newton-Raphson type or the
Levenberg-Marquard type (see [PRE 92] for theoretical details concerning
these techniques) in order to estimate the sought state vector.
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4.3.4. Solving the problem using the Newton-Raphson method

Let A be the state vector corresponding to a rotation and any translation,
and Ak be the state vector relative to the rotation and translation determined
at stage k of the iterative process:

A =

⎛⎜⎜⎜⎜⎝
a1

a2

·
·

a6

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
α

β
·
·
w

⎞⎟⎟⎟⎟⎠

Ak =

⎛⎜⎜⎜⎜⎝
a1k

a2k

·
·

a6k

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
αk

βk

·
·

wk

⎞⎟⎟⎟⎟⎠

Let us write the development limited to order 1 of the functional F in the
neighborhood of Ak:

F(A, N j
i , P j

i

) � F(Ak, N
j
i , P j

i

)
+

∂F(A, N j
i , P j

i

)
∂A

∣∣∣∣
A=Ak

(
A − Ak

)
� F(Ak, N

j
i , P j

i

)
+

6∑
l=1

∂F(A, N j
i , P j

i

)
∂al

∣∣∣∣
A=Ak

(
al − alk

)

By assuming that A is the expected solution, then F(A, N j
i , P j

i ) = 0 and
we can write the following approximation:

−F(Ak, N
j
i , P j

i

) � ∂F(A, N j
i , P j

i

)
∂A

∣∣∣∣
A=Ak

(
A − Ak

)
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By assuming that Δal = al − alk for l ∈ [1, 6] and by considering the set
of n pairs, we obtain the following linear system:

−F(Ak, N
1
1 , P 1

1

)
=

∂F(A, N1
1 , P 1

1

)
∂α

∣∣∣∣
A=Ak

Δα + · · ·+ ∂F(A, N1
1 , P 1

1

)
∂w

∣∣∣∣
A=Ak

Δw

...
...

...
...

−F(Ak, N
2
n, P 2

n

)
=

∂F(A, N2
n, P 2

n

)
∂α

∣∣∣∣
A=Ak

Δα + · · ·+ ∂F(A, N2
n, P 2

n

)
∂w

∣∣∣∣
A=Ak

Δw

The latter having 6 unknown values, it is necessary to process a minimum
of 3 pairs providing 2 equations each. It can be noted as matrices:

[F ] = [J ][ΔA]

Its solution in the direction of least squares, for (n > 3), is given by:

[ΔA] =
([t

J
]
[J ]
)−1[t

J
]
[F ]

This amounts to calculating of the corrective vector ΔA, which minimizes
the sum of the distances to the square of the points in the model of the
interpretation planes. By knowing the corrective vector ΔA, it is possible to
again calculate the state vector Ak+1 using the following relation:

Ak+1 = Ak + ΔA

If the initial conditions A0 are selected carefully, around 10 iterations are
sufficient to realize the convergence, since the limit test can be based on the
norm of the vector ΔA.

4.3.5. Calculation of partial derivatives

Obtaining the Jacobian matrix [J ] requires the estimation of a number
of partial derivatives. We will see how to simplify these calculations,
especially those associated with Euler angles. Remember that the functional
F(A, N j

i , P j
i ) is equal to the following scalar product:

F(A, N j
i , P j

i

)
= N j

i ·
[
RαβγP j

i + Tuvw

]
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where Rαβγ is equal to the product of the three matrices of elementary rotation
around each axis of the reference mark.

Rαβγ = RγRβRα

=

⎛⎝cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎞⎠⎛⎝cos β 0 − sinβ

0 1 0
sinβ 0 cos β

⎞⎠⎛⎝1 0 0
0 cos α − sinα

0 sinα cos α

⎞⎠

If we consider, for example, the partial derivative of the functional
F(A, N j

i , P j
i ) in comparison to angle β, we have to calculate as follows:

∂F(A, N j
i , P j

i

)
∂β

= N j
i ·

∂
[
RγRβRαP j

i + Tuvw

]
∂β

= N j
i ·
[
Rγ

∂Rβ

∂β
RαP j

i

]

In order to simplify these expressions, at each stage of the iterative
process, we modify the position of the model in its reference mark Rm.
Let Ak be the state vector found at stage k. Then, we calculate the points
P j

i |k = Rαkβkγk
P j

i + Tukvkwk
, which become the new characteristic points

of the model.

Very simply, at each stage, this amounts to choosing a reference mark
relative to the last calculated position in such a way that the calculation of
all partial derivatives is done for a vector of zero parameter. The criterion to
minimize at stage k + 1 is thus:

Ek+1 =
n∑

i=1

2∑
j=1

[
F(Ak = 0, N j

i , P j
i |k
)

+
6∑

l=1

∂F(A, N j
i , P j

i |k
)

∂al

∣∣∣∣
A=0

Δal

]2

Hence, the partial derivatives are trivial. Indeed, noting by (N j
ix, N j

iy, N
j
iz)

the components of the normal N j
i , we obtain:

Rα = Rβ = Rγ = I3×3

∂Rα

∂α
=

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠ ∂Rβ

∂β
=

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ ∂Rγ

∂γ
=

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠
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from which:

∂F(A, N j
i , P j

i )
∂α

∣∣∣∣
A=0

= N j
izY

k
i − N j

iyZ
k
i

∂F(A, N j
i , P j

i )
∂u

∣∣∣∣
A=0

= N j
ix

∂F(A, N j
i , P j

i )
∂β

∣∣∣∣
A=0

= N j
ixZk

i − N j
izX

k
i

∂F(A, N j
i , P j

i )
∂v

∣∣∣∣
A=0

= N j
iy

∂F(A, N j
i , P j

i )
∂γ

∣∣∣∣
A=0

= N j
iyX

k
i − N j

ixY k
i

∂F(A, N j
i , P j

i )
∂w

∣∣∣∣
A=0

= N j
iw

or even, in a condensed manner:

∂F(A, N j
i , P j

i )
∂Rαβγ

∣∣∣∣
A=0

= P j
i |k ∧ N j

i

∂F(A, N j
i , P j

i )
∂Tuvw

∣∣∣∣
A=0

= N j
i

The estimation of the state vector relative to stage (k + 1) is obtained by:{
Rαk+1βk+1γk+1 =

[
RΔαΔβΔγ

] · [Rαkβkγk

]
Tuk+1vk+1wk+1 =

[
RΔαΔβΔγ

] · Tukvkwk
+ TΔuΔvΔw

4.3.6. Results

In this section, we present an experiment realized with the localization
algorithm described above, with the objective of giving an indication of its
precision. In order to know the correct field, we will work with the synthesis
data.

Let a parallelepiped be placed in a given attitude (see Figure 4.5 left). After
regularly sampling its visible vertices, we carried out the following process
100 times:

1) for each vertex, the projection in the image plane of sampled points and
the approximation in the direction of least squares of the line passing perfectly
through the latter. This stage provides the pairs (segments 2D/ vertex 3D)
necessary for the algorithm (see Figures 4.5 right and 4.6 left, respectively);

2) then, an estimation of the localization of the parallelogram (Figure 4.6
right).
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Figure 4.5. Synthesis image (left) and paired image segments (right)

Figure 4.6. Edges of the paired model in the initial position of the iterative calculation (left)
and visualization of the result (right)

However, before each localization experiment, the intrinsic parameters
of the camera as well as the perspective projection of the tested points
along the edge are disturbed by an additive Gaussian noise. Repetition of
the experiment makes it possible to calculate the statistics of the standards
to the true field for different parameters of localization (α, β, γ, u, v, w).
Two perturbation cards are used (see Table 4.1); the first corresponds to the
optimal case (finely calibrated camera and careful detection of primitive
images). The results obtained are classified in Table 4.2 for the two parameter
cards. It is necessary for us to add that, to be complete, the height of the
object is 200 mm, that it is situated at 800 mm of the camera and that the
focal distance f is taken to be equal to 1,000 pixels.
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Sampled projection points f u0 v0

card 1 0.1 pixel 10 pixels 1 pixel 1 pixel

card 2 1 pixel 100 pixels 10 pixels 10 pixels

Table 4.1. Standard deviations for additive Gaussian noises

α β γ u v w

set 1 0.1 degree 0.1 degree 0.03 degree 0.5 mm 0.5 mm 2.4 mm

set 2 0.9 degree 0.9 degree 0.1 degree 4.9 mm 4.9 mm 28.6 mm

Table 4.2. Statistical results (standard deviation) on the precision of localization

4.4. Localization of a voluminous object by multi-ocular vision

In this section, we will show that the previous method is easily generalized
while using several cameras (see [BRA 94, BRA 96]), if the relative
positioning between the different sensors is known in advance.

4.4.1. Mathematical developments

Let us consider the multi-ocular case represented in Figure 4.7. Without
loss of generality, we accept the reference mark of the first camera Rc1 as
the reference mark and we will look for the localization of the object in this
reference mark.

Let (P j
i , N j

i ) be a pairing couple between a point of the model of the object
and an interpretation plane defined in the reference mark associated with the
lth camera Rcl. The only remarkable difference as compared to the monocular
case is that, when we express these primitives in the reference mark Rc1, the
interpretation plane associated with N j

i no longer passes through the origin
of the reference mark, which slightly modifies equation (4.6). If Rl1 and Tl1

represent the rotation and translation, respectively, which make it possible for
the reference mark Rcl to pass to reference mark Rc1, then the previously
defined functional is written as:

F(α, β, γ, u, v, w,N j
i , P j

i

)
= Rl1N

j
i ·
[
RαβγP j

i + Tuvw

]
− Rl1N

j
i · Tl1
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Figure 4.7. Localization by multi-ocular vision

where the symbol “·” denotes the scalar product, Rl1N
j
i corresponds to the

normal of the interpretation plane expressed in the reference mark Rc1 and
the expression Rl1N

j
i ·Tl1 is just the orthogonal distance of the interpretation

plane to the optical center of the first camera.

4.4.2. Calculation of partial derivatives

As for the calculation of partial derivatives, it proves to be only slightly
modified:

∂F(A, N j
i , P j

i )
∂Rαβγ

∣∣∣∣
A=0

= P j
i |k ∧ Rl1N

j
i

∂F(A, N j
i , P j

i )
∂Tuvw

∣∣∣∣
A=0

= Rl1N
j
i

4.4.3. Results

Here, we present the results obtained with a trinocular system (see
Figure 4.8). Figures 4.9 and 4.10 visualize the 2D/3D pairs that are created.
Of course, let us point out the reverse of a method based on 3D reconstruction
of primitive images by triangulation that a primitive paired in an image does
not necessarily have to be visible and a fortiori be paired in other images. The
result of the localization is represented in Figure 4.11.
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Figure 4.8. Images obtained by a trinocular acquisition system

Figure 4.9. Edges of paired models in each image

Figure 4.10. Paired image segments

Figure 4.11. Final localization
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In order to give some indications on the benefits of the multi-camera
approach, we again take the experiments described in section 4.3.6 using
on the one hand card 2 of the additive noise and, on the other hand, by
successively considering 1, 2, or 3 cameras. The results of these experiments
are presented in Table 4.3. The relative availability of the cameras is
approximately identical to that of the real cases (Figure 4.8). These results
illustrate the benefits of several cameras in terms of localization precision, the
latter appearing mainly on the translation parameter w along the optical axis.

α β γ u v w

1 camera 0.8 degree 1.1 degree 0.1 degree 4.7 mm 3.2 mm 29.9 mm

2 cameras 0.9 degree 1.0 degree 0.3 degree 5.1 mm 2.8 mm 9.3 mm

3 cameras 0.7 degree 0.9 degree 0.3 degree 4.7 mm 2.6 mm 7.0 mm

Table 4.3. Statistical results (standard deviation) on the localization precision
according to the number of cameras used

4.5. Localization of an articulated object

Now we address the problem of localization of objects whose configuration
is dependant on the internal degrees of freedom (see [LOW 85, DHO 93]).

4.5.1. Mathematical development

For example, let us consider an articulated object of “robotic hand” type
having q degrees of freedom able to correspond to rotoidal or prismatic
articulations. The state vector characterizing the position of such an object is
noted by A = (α, β, γ, u, v, w, θ1, . . . , θq). Let P j

i be a point of the object
expressed in the reference mark of definition Rm. Its position in the reference
mark camera is obtained by the following calculation:

P j
i

′
=
[
Tθq

]∗ · · · [Tθ1

]∗[Tαβγuvw

]
P j

i

where different matrices [T] are of size 4 × 4 and characterize rigid
displacements (use of homogenous co-ordinates for points P j

i ).

The matrix [Tαβγuvw] corresponds to the extrinsic parameters of
positioning of the object in the reference mark camera. The matrices [Tθl

] are
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relative to different internal parameters. The symbol ∗ indicates that the matrix
[Tθl

] is taken as equal to the identity matrix if the lth degree of freedom of the
object has no influence on the position of point P j

i . According to the nature of
relations, we have two types of equations:

1) Rotoidal relations give the following equation:

Tθl
= TCl

· Rθl
· −TCl

with (taking the help of quaternion formalism of parameter Rθl
):

TCl
=

⎡⎢⎢⎢⎢⎣
1 0 0 Xl

0 1 0 Yl

0 0 1 Zl

0 0 0 1

⎤⎥⎥⎥⎥⎦

Rθl
=

⎡⎢⎢⎢⎢⎣
q2
0 + q2

1 − q2
2 − q2

3 2
(
q1q2 − q0q3

)
2
(
q1q3 + q0q2

)
0

2
(
q1q2 + q0q3

)
q2
0 − q2

1 + q2
2 − q2

3 2
(
q2q3 − q0q1

)
0

2
(
q1q3 − q0q2

)
2
(
q2q3 + q0q1

)
q2
0 − q2

1 − q2
2 + q2

3 0

0 0 0 1

⎤⎥⎥⎥⎥⎦

where Cl = (Xl, Yl, Zl) is a point on the axis of rotation, q0 = cos(θl/2),
q1 = Ul · sin(θl/2), q2 = Vl · sin(θl/2), and q3 = Wl · sin(θl/2) with θl as
the angle of rotation and Δl = (Ul, Vl, Wl) as the unitary vector of the axis of
rotation.

2) The prismatic relations give the following formula where θl represents
the amplitude of the translation and Δl = (Ul, Vl, Wl) corresponds to the
unitary vector of the translation direction:

Tθl
=

⎡⎢⎢⎢⎢⎣
1 0 0 θl · Ul

0 1 0 θl · Vl

0 0 1 θl · Wl

0 0 0 1

⎤⎥⎥⎥⎥⎦
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4.5.2. Calculation of partial derivatives for intrinsic parameters

Elementary calculation of derivatives gives us the following matrices, for a
rotoidal relation and a prismatic relation, respectively:

∂Tθl

∂θl

∣∣∣∣
θl=0

=

⎡⎢⎢⎢⎣
0 −Wl Vl 0

Wl 0 −Ul 0
−Vl Ul 0 0
0 0 0 0

⎤⎥⎥⎥⎦ ∂Tθl

∂θl

∣∣∣∣
θl=0

=

⎡⎢⎢⎢⎣
0 0 0 Ul

0 0 0 Vl

0 0 0 Wl

0 0 0 0

⎤⎥⎥⎥⎦
from which it is easy to show that the corresponding elements of the Jacobian
matrix are equal to a mixed product and a scalar product:

∂F(A, N j
i , P j

i

)
∂θl

∣∣∣∣
θl=0

=N j
i ·
[
Δl ∧ P j

i |k
] ∂F(A, N j

i , P j
i

)
∂θl

∣∣∣∣
θl=0

=N j
i · Δl

4.5.3. Results

The following images are relative to the implementation of this algorithm in
order to calculate the attitude of a robotic arm. Figure 4.12 represents the pairs
realized between the CAD model of the object and the segments detected in
the image. The various attitudes successively obtained during the convergence
of the process are presented in Figure 4.13 (left). The right-hand side of the
same figure illustrates the final estimated exposure.

Figure 4.12. Pairs realized: (left) model, (right) image
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Figure 4.13. Results: (left) convergence of the algorithm, (right) superposition of
the video image and of the model in the expected attitude

4.6. Hand-eye calibration

4.6.1. Introduction

In this section, we will address the hand-eye calibration problem. This
amounts to, while using a video camera mounted on an articulated system of
active turret or hand manipulator type, determining the relative position of the
sensor compared to the terminal organ. This makes it possible to express the
information extracted from the image (for example, localization of an object)
in the reference mark of the articulated system reference and hence simplify
its order.

4.6.2. Presentation of the method

Let us consider a robotic hand equipped with a mounted camera (see
Figure 4.14). The analysis of the problem evoked leads us to define the
following reference marks:

– Rr reference mark of articulated arm reference;

– Re reference mark connected to the effector;

– Rc camera reference mark;

– Rm reference mark of the definition of the model of the observed object

whose relative positions are quantified by rigid transformations:
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Figure 4.14. Hand-eye calibration

– [L] localization of the observed object in the camera reference mark (can
be estimated with the help of the monocular localization technique explained
earlier);

– [X] hand-eye transition matrix (which we are studying);

– [E] positioning of the effector reference mark in the absolute reference
mark Rr (matrix provided by the geometric model of the robot and the reading
of the top-encoders);

– [L] localization of the observed object in the reference mark Rr.

Almost all hand-eye calibration methods proposed in other works (see
[SHI 89, TSA 89, WAN 92, HOR 93]) amount to resolving the matrix equation
system of the form:

AlmX = XBlm (4.7)

The experimental method is as follows. The robot moves in its workplace
and occupies a series of n successive positions by acquiring each time an
image of a reference test chart. For each image couple of indices l and
m, respectively, it proves possible to form an equation of type (4.7). The
transformation Blm is obtained by composing the positions of the effector
(matrices [El] and [Em]) to the two filming moments. As for transformation
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Alm, it begins from the two localizations of the test chart in the referential
of the camera (matrices [Ll] and [Lm]). Considering the set of image pairs,
we obtain an equation system of type (4.7), from which it is possible to
extract the elements of the matrix X using different techniques (see previous
references). However, let us note that solving the problem arising from this
method requires the total estimation of 6 ∗ n + 6 parameters.

As a result we propose a new method [REM 98] working from identical
data (n images of a reference test chart). However, we note that the position
of the test chart sample in the camera reference mark can be expressed, for
the lth image, by the composition of the following matrix: [X]−1[El]−1[T].
Whatever the number of images acquired, the problem thus formulated
possesses only 12 parameters, which correspond to the degrees of freedom of
rigid transformations [X] and [T].

4.6.3. Geometric constraint

To estimate these 12 unknown values, we will, as in the earlier methods,
find with the help of an iterative method how to minimize the distances to
the interpretation planes. Let (P j

i , N j
i ) be a pair couple; P j

i being a point in
the test chart and N j

i defining an interpretation plane in the camera reference
mark. The usual functional F is written by expressing the paired entities in the
absolute reference mark of the robot Rr:

F(X,T,El, N
j
i , P j

i

)
= REl

RXN j
i ·
[[

RT P j
i + TT

]
− [REl

TX + TEl

]]
where REl

RXN j
i and REl

RXN j
i · [REl

TX + TEl
] represent the normal

of the interpretation plane and its distance from the origin expressed in the
reference mark Rr, respectively.

4.6.4. Results

A comparative study [REM 98] conducted from synthetic data has shown
that the recommended method assures a better resistance to noise.

On the real experimental plane, we carried out hand-eye calibration of a
Cartesian robot at six degrees of freedom. For this experiment, we used a
camera equipped with a large object angle of focal length 3.8 mm.

Without knowing the real values of the parameters of rigid transformations
X and T, we cannot quantify, a priori, the precision of the results but we have
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Figure 4.15. Experimental device to validate the precision of the estimation

imagined an experimental device making it possible to highlight the quality of
the latter. The camera, fixed tightly on the hand manipulator, is initially placed
approximately 50 cm from a plate pierced with a hole of 1.0 cm diameter. Then
we position an “LED” such that we obtain the alignment of the latter with the
optical center of the camera and the inner bore of the plate (see Figure 4.15).

Knowledge of the hand-eye transformation makes it possible for us to
directly order the displacement of the camera in the space of the robot. If the
estimation of X is precise, it is possible for us to apply a rotation to the camera
reference mark without changing its origin; this transformation must preserve
the achieved alignment. Since the camera is equipped with a short focal length
objective, it is possible to apply rotations of quite strong amplitude (of order
80o) while preserving the plate in the vision field of the camera.

This experiment is illustrated in Figure 4.16, which represents the images
delivered by the camera mounted for several configurations of the robotic set,
leaving the optical center of the camera unchanged. Figure 4.17 represents
the partial enlargement of previous images showing good preservation of the
initial alignment.

Figure 4.16. Images delivered by a mounted camera
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Figure 4.17. Partial enlarging of images in Figure 4.16 validating the conservation
of the initial alignment

4.7. Initialization methods

All localization methods presented earlier use non-linear minimization
algorithms and hence require an initialization of the value of the expected
position, in the convergence field of the algorithm.

The method presented here has the advantage of being able to pass
through the initialization conditions and of being very efficient, but has
the disadvantage of generally providing results with slightly inferior
accuracy. Thus, it becomes a perfect candidate for the initialization of earlier
algorithms. Moreover, the quality of initialization provided makes it possible
to strongly limit the number of iterations and thus their cost. The idea put
forth by Dementhon is to try to go back steadily to the perspective projection
model, starting from the hypothesis of the scaled orthographic projection.
Indeed, these two projection models are differentiated by a factor (1 + ε)
where ε represents the depth of the object as compared to its distance from
the camera.

The advantage of this method is that it reduces the number of calculations
to be carried out. It specifically helps to avoid a systematic inversion of the
matrix (at each iteration of the method), since we work on a matrix that is
pseudo-inversed and predetermined and depends only on three-dimensional
points chosen in the model. Owing to this aspect, the Dementhon method
proves to be of great interest for a process working in real-time.

4.7.1. Initial hypotheses

– Knowledge of the model of the observed object, defined in the reference
mark Rm.
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– Acquisition of an image of the object.

– Mapping between the detected points in the image and the characteristic
points of the object.

4.7.2. Objective

To correlate the camera reference mark (Rc) and the model reference mark
(Rm) and to find the rotation and translation to be applied to the model in order
to place it in space, in an attitude conforming to the image.

Z

X

Y

P
0

P i

Z

X

P
0

P i

Y

X

Y

Zp
i

Figure 4.18. a) Reference mark of the model (Rm); b) reference mark of the camera (Rc)

Points pi i ∈ [1, n] are images of points Pi by perspective projection. We
will note by (Xi, Yi, Zi) the co-ordinates of Pi in the reference mark (Rm) and
by (X ′

i, Y
′
i , Z ′

i) the co-ordinates of Pi after the sought rotation and translation.

As homogenous co-ordinates, we have:⎛⎜⎜⎜⎝
X ′

i

Y ′
i

Z ′
i

1

⎞⎟⎟⎟⎠ =

(
R(3×3) T(3×1)

0(1×3) 1

)⎛⎜⎜⎜⎝
Xi

Yi

Zi

1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
ix iy iz u

jx jy jz v

kx ky kz w

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Xi

Yi

Zi

1

⎞⎟⎟⎟⎠
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or even:

X ′
i =
(
ix, iy, iz, u

) ·
⎛⎜⎜⎜⎝

Xi

Yi

Zi

1

⎞⎟⎟⎟⎠ =
(
I(1×3), u

) · (Pi(3×1)

1

)

Y ′
i =
(
jx, jy, jz, v

) ·
⎛⎜⎜⎜⎝

Xi

Yi

Zi

1

⎞⎟⎟⎟⎠ =
(
J(1×3), v

) · (Pi(3×1)

1

)

Z ′
i =
(
kx, ky, kz, w

) ·
⎛⎜⎜⎜⎝

Xi

Yi

Zi

1

⎞⎟⎟⎟⎠ =
(
K(1×3), w

) · (Pi(3×1)

1

)

I, J, K are director vectors of the camera reference mark (Rc) expressed
in the reference mark of the model (Rm) in the position corresponding to the
solution of the problem.

4.7.3. Under the hypothesis of perspective projection

With pi = (xi, yi, zi(= f)) correlated with Pi = (Xi, Yi, Zi), we obtain:

xi =
X ′

if

Z ′
i

=
f(I, u) ·

(
Pi

1

)
(K, w) ·

(
Pi

1

)
=⇒ xi(K, w) ·

(
Pi

1

)
= f(I, u) ·

(
Pi

1

) (4.8)

yi =
Y ′

i f

Z ′
i

=
f(J, v) ·

(
Pi

1

)
(K, w) ·

(
Pi

1

)
=⇒ yi(K, w) ·

(
Pi

1

)
= f(J, v) ·

(
Pi

1

) (4.9)
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xi

(
K · Pi

w
+ 1
)

=
f

w
(I, u) ·

(
Pi

1

)
(4.10)

yi

(
K · Pi

w
+ 1
)

=
f

w
(J, v) ·

(
Pi

1

)
(4.11)

By supposing that:

εi =
K · Pi

w
=

kxXi + kyYi + kzZi

w

I∗ =
f

w
(I, u) =

f

w

(
ix, iy, iz, u

)
=
(
I1, I2, I3, I4

)
J∗ =

f

w
(J, v) =

f

w

(
jx, jy, jz, v

)
=
(
J1, J2, J3, J4

)
by considering all the correspondences, we obtain the following two linear
systems:

xi

(
1 + εi

)
= I∗ ·

(
Pi

1

)
=⇒ (Pi, 1

) · I∗ = xi

(
1 + εi

)
(4.12)

i ∈ [1, n]

yi

(
1 + εi

)
= J∗ ·

(
Pi

1

)
=⇒ (Pi, 1

) · J∗ = yi

(
1 + εi

)
(4.13)

These can be re-written as:⎡⎢⎢⎣
X1 Y1 Z1 1
· · · ·
· · · ·

Xn Yn Zn 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

I1

I2

I3

I4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
x1

(
1 + ε1

)
·
·

xn

(
1 + εn

)
⎤⎥⎥⎦ (4.14)

⎡⎢⎢⎣
X1 Y1 Z1 1
· · · ·
· · · ·

Xn Yn Zn 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

J1

J2

J3

J4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
y1

(
1 + ε1

)
·
·

yn

(
1 + εn

)
⎤⎥⎥⎦ (4.15)

Only vectors I∗, J∗ and coefficients εi are unknown in this system.
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Figure 4.19. Scaled orthographic projection

4.7.4. Under the hypothesis of scaled orthographic projection

We consider plane Π passing through the origin P0 of the reference mark
of the model (Rm) and parallel to the image plane.

In scaled orthographic projection, we project the object in this plane and
then we carry out a perspective projection on the image plane (changing the
scale according to the distance).

The sought solution is that the distance between plane Π and the origin of
the camera reference mark is equal to the component w of the translation.

Let Pi be a point of the model and P ′′
i its orthographic projection on plane

Π. In the camera reference mark, P ′′
i has (X ′

i, Y
′
i , w) as co-ordinates and

p′′i (x
′′
i , y

′′
i ) as image with:

x′′
i =

X ′
if

w
and y′′i =

Y ′
i f

w

x′′
i =

f

w
(I, u)

(
Pi

1

)
and y′′i =

f

w
(J, v)

(
Pi

1

)
i ∈ [1, n]

(4.16)

It appears that the term neglected between the two projection models is just
xiεi or yiεi with εi = (K · Pi)/w.
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K · Pi is equal to the distance, according to the optical axis, between point
Pi and the origin P0 of (Rm). If this origin is judiciously selected (bar center
of the object), neglecting εi amounts to neglecting the depth of the object
(according to the optical axis) as compared to its distance from the optical
center. This hypothesis is often realistic. The fact that εi is multiplied by xi or
yi shows us that we will always have an interest to keep the object as centered
as possible in the image, in order to minimize the error introduced by the
scaled orthographic projection.

The originality of the Dementhon method remains in a progressive shift
from the scaled orthographic projection model, to the perspective projection
model.

4.7.5. Development of the algorithm

1) t=0 and εi(t)=εi(0)=0 for i∈ [1, n] (scaled orthographic projection).

2) Calculation of vectors I∗ and J∗ with the help of 2 linear systems (4.15,
4.16) (resolution in the direction of least squares):

A =

⎡⎢⎣X1 Y1 Z1 1
· · · ·
· · · ·

Xn Yn Zn 1

⎤⎥⎦ ,

Sx =

⎡⎢⎢⎢⎣
x1(1 + ε1(t))

·
·
·

xn(1 + εn(t))

⎤⎥⎥⎥⎦ ,

Sy =

⎡⎢⎢⎢⎣
cy1(1 + ε1(t))

·
·
·

yn(1 + εn(t))

⎤⎥⎥⎥⎦ ,

(4.17)

AI∗ = Sx AJ∗ = Sy (4.18)

If n > 4, the systems are over-determined and we use a minimization in
the direction of least squares:

tAAI∗ = tASx =⇒ I∗ = (tAA)−1 tASx = A+Sx

tAAJ∗ = tASy =⇒ J∗ = (tAA)−1 tASy = A+Sy

(4.19)
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A+ is called the pseudo-inverse matrix of matrix A. This matrix can be
pre-calculated as it depends only on points Pi of the model paired to the image
points:

NI =
√

I2
1 + I2

2 + I2
3 NJ =

√
J2

1 + J2
2 + J2

3

3) I = (I1, I2, I3)/(NI) J = (J1, J2, J3)/(NJ)K = I ∧ J J = K ∧ I

w =
f

NI
=

f

NJ
u = I4 · w

f
v = J4 · w

f

4) t = t + 1, calculation of new εi(t) = K·Pi

w

If |(εi(t) − εi(t − 1))/n| < threshold, then I, J, K, u, v, w define the
position sought, otherwise return to stage 2. Generally, the convergence needs
4 to 5 iterations without requiring the study of specific initial conditions.

4.7.6. Specific case of a planar object

In the case of perfectly flat objects, it is necessary to bring a modification
to the Dementhon algorithm. Indeed, the matrix tAA is only in row 2. If we
arrange it to express the co-ordinates of the model in such a way that all values
of z are zero, we can only calculate the components I1, I2, I4 and J1, J2, J4

of vectors I∗ and J∗, respectively.

Let us recall that:

I∗ =
(
I1, I2, I3, I4

)
=

f

w

(
ix, iy, iz, u

)
J∗ =

(
J1, J2, J3, J4

)
=

f

w

(
jx, jy, jz, v

)
.

The vectors (ix, iy, iz) and (jx, jy, jz) being unitary, we can write relation
(4.21) as: (

f

w
ix

)2

+
(

f

w
iy

)2

+
(

f

w
iz

)2

=
(

f

w
jx

)2

+
(

f

w
jy

)2

+
(

f

w
jz

)2
(4.20)
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By including as unknowns: ⎧⎪⎪⎨⎪⎪⎩
x =

f

w
iz

y =
f

w
jz

(4.21)

we obtain the first expression:

x2 − y2 =
(

f

w
jx

)2

+
(

f

w
jy

)2

−
(

f

w
ix

)2

−
(

f

w
iy

)2

(4.22)

Moreover, the two vectors, (ix, iy, iz) and (jx, jy, jz), are orthogonal and
form a base with (kx, ky, kz), from where relation (4.24) develops from the
zero scalar product:(

f

w
ix

)(
f

w
jx

)
+
(

f

w
iy

)(
f

w
jy

)
+ xy = 0 (4.23)

This leads us to a system of two equations with two unknowns:{
x2 − y2 = A

xy = B
(4.24)

with: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A =
(

f

w
jx

)2

+
(

f

w
jy

)2

−
(

f

w
ix

)2

−
(

f

w
iy

)2

B = −
[(

f

w
ix

)(
f

w
jx

)
+
(

f

w
iy

)(
f

w
jy

)] (4.25)

from where one equation of the second degree in x2 (4.27) has as solutions
(4.28):

x4 − Ax2 − B2 = 0 (4.26)

x2 =
A ±√

A2 + 4B2

2
(4.27)

However, since
√

A2 + 4B2 is bigger than A, their difference is always
negative and their sum is positive. Thus, there is only one positive solution in
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x2, which gives us two actual solutions for x:

x = ±
√

A +
√

A2 + 4B2

2
(4.28)

Given relation (4.25) connecting y and x, and for a non-zero value of x:

y =
B

x
(4.29)

For specific cases where x = 0, the value of y is extracted from expression
(4.25).

y = ±√−A (4.30)

The Dementhon algorithm applied to specific cases of planar objects leads
to two solution couples (I∗i ,J

∗
i ) for each iteration of the system and thus to

two distinct attitudes of the object in space.

Within the framework of this study, we have tested two methods to
select one of the two attitudes for each iteration. These two approaches
differ from the criterion used to separate the two solutions. The first
measures the remainders of the two linear systems, which are processed.
The second calculates a criterion linked to the re-projection of 3D points in
the image plane. These two approaches will be called system-criterion and
image-criterion, respectively, for the rest of this chapter. The corresponding
criteria are:

Arg min
k∈[1,2]

(∥∥AI∗k − Sx

∥∥+
∥∥AJ∗

k − Sy

∥∥) (4.31)

Arg min
k∈[1,2]

i=n∑
i=1

√√√√(xi − fXk′
i

Zk′
i

)2

+

(
yi − fY k′

i

Zk′
i

)2

(4.32)

The experiments carried out provided identical results for the two criteria.

It is necessary to note a double modification of the Horaud and Christy
method [HOR 95a] in the direction of:

– usage of the segment instead of points;

– replacement of orthographic projection by para-perspective.
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4.8. Analytical calculations of localization errors

This section is devoted to the calculation of localization errors related to
the utilization of the earlier methods. It is clear that the possibility of finding
at the same time the physical magnitude and the estimation of uncertainties,
which are attached to them, is crucial for the determination of the adequacy of
the methods for the envisaged works.

The calculation chain must start from the data, a priori, on the uncertainties
of localization of primitive images, to then end at the effective uncertainties
on the localization parameters.

One of the major steps consists of obtaining the covariance matrices related
to the normal parameters of the interpretation planes, which are used in our
alignment equations.

4.8.1. Uncertainties in the estimation of a line equation

We start from the pixel data (pi = (xi, yi)i=1...n) provided by a curve
detector. Following Ayache [AYA 89] we will assume that each curve point is
affected by a Gaussian noise.

The Hessian equation for the support line of the points is:

−x sin θ + y cos θ + c = 0,

where θ represents the angle of the line with the abscissa axis, and c represents
the distance marked from the line to the origin point.

Here, the Gaussian noise is not isotropic. Its orientation is orthogonal to
that of the line support. This choice amounts to saying that in the direction of
the line, the position of the point is perfectly known; this is obviously false but
this knowledge does not help in the determination of the line. The advantage
here is to reduce by a factor of two the internal estimation parameters (the
“harmful” parameters).

In a reference mark formed from a unitary director vector of the line
and of its normal, each point will have a covariance matrix C for which all
coefficients will be zero, with the exception of C22 = σ2

p .

If R is the rotation matrix, which transforms the natural reference mark of
the image in that connected to the line, the covariance matrix of each point in
the natural reference mark of the image will be: tRCR.
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The determination of a line equation from the points disturbed by a
Gaussian noise is a traditional problem of linear least squares. Often, this
problem (and the determination of the related covariance matrix) is treated
by writing the line equation in the form y = ax + b (or x = ay + b) and by
minimizing the sum of type

∑n
i=1(yi − axi − b)2.

Since this method can lead to a serious bias, we use the traditional result
even though it is perhaps lesser known:

THEOREM 4.1 (Hessian minimization). Consider the criterion:

S =
n∑

i=1

(− xi sin θ + yi cos θ + c
)2

.

If x̄ and ȳ are the mean values of (xi), ((yi), respectively) and Var(x) and
Var(y) are their respective variances, and Cov(x, y) their covariance, then:

tan(2θ) = 2 Cov(x, y)/
(
Var(x) − Var(y)

)
, and c = x̄ sin θ − ȳ cos θ.

Two values of θ differing from π/2 seem to be the result of the calculation,
but it is only illusory since Cov(x, y) and (Var(x) − Var(y)) have the signs
of the sine and of the cosine respectively.

This result can be found in a number of works on probability and also in
[PAV 77].

At present, the covariance matrix of the triplet (a, b, c) remains to be
calculated, where a = − sin θ and b = cos θ. With the help of Maple
software, we obtain the following result:

Let N = σ2
p(b2 Var(x) − 2abCov(x, y) + a2 Var(y)) and D =

n(Var(x) − Var(y))2 + 4 Cov2(x, y).

The matrix is then:

Cov =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b2N

D
−abN

D

b(ȳa − x̄b)N
D

−abN

D

a2N

D
−a(ȳa − x̄b)N

D

b(ȳa − x̄b)N
D

−a(ȳa − x̄b)N
D

(ȳa − x̄b)2N
D

+
σ2

p

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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It is to be noted that if we use primitive points and non-segments, the above
results are completely applicable. Of course, it is necessary to consider the two
interpretation planes (quasi-horizontal and quasi-vertical); the error relating to
each of the two lines defining them is given by the horizontal and the vertical
standard deviation of the considered point.

4.8.2. Errors in normals

For each segment, the uncertainty on the normal to the interpretation plane
can be at present calculated using standard techniques.

We will perform two calculations, by specially detailing the first one:

– calculation of covariance for a normal;

– calculation of covariance for n normals.

The second calculation is very similar to the first one even though it is more
complicated. It is not possible to restrict ourselves to the first one because of
the common dependence of all equations towards the intrinsic parameters of
the camera. Whatever it may be, the description of the first calculation will
make it possible to perceive the method more easily.

Error in a normal. The line equation supporting the segment is: ax+by+c = 0
with a2 + b2 = 1. A unitary normal can then be written as:

⎛⎝nx

ny

nz

⎞⎠=

⎛⎜⎜⎜⎜⎜⎜⎝

afx

D

bfy

D

c+au0+bv0

D

⎞⎟⎟⎟⎟⎟⎟⎠ , where D=
√

a2f2
x + b2f2

y +
(
c + au0 + bv0

)2
.

where we noted that fx = f , fy = f/k.

We will assume that we know the covariance matrix of the coefficients
(a, b, c) and also:

– the position of the projection of the optical center (u0, v0). Here we have
the hypothesis that these two variables are independent of the others and are
also mutually independent; as a consequence, the corresponding matrix is
diagonal with diagonal elements: σ2

u0
and σ2

v0
;
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– the focal parameters of the camera fx and fy. Here, we put forward the
hypothesis that these two variables are independent of the others and are also
mutually independent; as a consequence, the corresponding matrix is diagonal
with diagonal elements: σ2

fx
and σ2

fy
.

The global covariance matrix on the normal is then:

C
(
nx, ny, nz

)

= J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
a Cov(a, b) Cov(a, c) 0 0 0 0

Cov(a, b) σ2
b Cov(b, c) 0 0 0 0

Cov(a, c) Cov(b, c) σ2
c 0 0 0 0

0 0 0 σ2
u0

0 0 0

0 0 0 0 σ2
v0

0 0

0 0 0 0 0 σ2
fx

0

0 0 0 0 0 0 σ2
fy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
tJ,

where J is the Jacobian matrix of the transformation connecting t(nx, ny, nz)
(the unitary normal) to the parameters (a, b, c, u0, v0, fx, fy).

Errors in the calculations of n normals. Let Ci be the covariance matrix
relative to the segment si of the image, for i = 1 . . . n. The covariance matrix
Wk on n normals Ni corresponding to n segments si is written as:

Wk =

J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 (0)3×3 (0)3×3 (0)3×3 (0)3×3 (0)3×1 (0)3×1 (0)3×1 (0)3×1

(0)3×3 C2
...

...
...

...
...

...
...

... (0)3×3
. . . (0)3×3

...
...

...
...

...
...

... (0)3×3 Cn−1 (0)3×3
...

...
...

...

(0)3×3 (0)3×3 (0)3×3 (0)3×3 Cn (0)3×1 (0)3×1 (0)3×1 (0)3×1

(0)1×3 · · · · · · · · · (0)1×3 σ2
u0

0 0 0

(0)1×3 · · · · · · · · · ... 0 σ2
v0

0 0

(0)1×3 · · · · · · · · · ... 0 0 σ2
fx

0

(0)1×3 · · · · · · · · · (0)1×3 0 0 0 σ2
fy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

tJ,
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where J is the Jacobian matrix of the transformation connecting the unitary
normals (Ni)i=1...n to the vector of parameters ((si)i=1...n, u0, v0, fx, fy).

This Jacobian matrix is very similar to that described in the previous
section. Its dimension is 3n×(3n + 4); the column i contains only 7 non-zero
components, corresponding to the partial derivatives of equation i relating to
components nxi, nyi, nzi of Ni, and ai, bi, ci, u0, v0, fx, fy.

4.8.3. Uncertainties in final localization of polyhedral objects

As we have just seen, the final localization of polyhedral objects is
obtained by iteratively improving the attitude of the model by minimization
of a criterion based on the adequacy of the edges of the model to the
interpretation planes of the segments of the image.

4.8.3.1. Covariance matrix associated with the localization parameters

We localize the object by minimizing the distance of the extremities of the
edges of the model to the interpretation planes of the corresponding image
segments. Hence, each pairing between an edge of the model and an image
segment leads to an elaboration of the two equations, which expresses the
relation of these extremities to the corresponding plane, which is in turn
expressed by the nullity of the scalar product between the normal vector to
the plane and the co-ordinates of the point.

Let us consider the covariance matrix Wk calculated in the previous
section. Once again, we pass the uncertainty in the normals represented by
Wk to that in the localizations by calculating the new Jacobian matrix Jf

associated with this latter transformation.

Let us recall that at each stage k of the iterative process permitting the
resolution of our equations, the variation of the localization parameters is
given by:

ΔAk = J+
f Fk

where J+ is the pseudo-inverse of J .

Immediately, we deduce the covariance of ΔAk, CovΔAk
= J+Wk

tJ .

We must express CovAk
in the correct reference mark. Indeed, each

iteration (as we have explained earlier) changes the reference mark to
facilitate the calculation of the partial derivatives.
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The covariance matrix of our parameters, C, expressed in the camera
reference mark will then be:

C = JAk CovΔAk

tJAk

where JAk is the Jacobian of the transformation connecting the localization
parameters in the initial reference mark and those in the iteration reference
mark k:

JAk
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos γk

cos βk

sin γk

cos βk
0 0 0 0

− sin γk cos γk 0 0 0 0

cos γk tan βk sin γk tan βk 1 0 0 0

0 tzk
−tyk

1 0 0

−tzk
0 txk

0 1 0

tyk
−txk

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
α β γ u v w

1 camera 0.9 degree 1.2 degree 0.1 degree 5.3 mm 3.5 mm 28.6 mm
2 cameras 0.9 degree 1.1 degree 0.3 degree 5.2 mm 2.7 mm 9.7 mm
3 cameras 0.8 degree 0.9 degree 0.3 degree 4.9 mm 2.4 mm 6.9 mm

Table 4.4. Analytical results (standard deviation) on the localization precision
according to the number of cameras used

α β γ u v w
1 camera 100 100 99 100 100 99
2 cameras 99 100 100 100 100 99
3 cameras 100 99 100 100 100 99

Table 4.5. Percentage of analytical deviations vis-à-vis statistics verifying that the theoretical
value of the parameter is at least 3σ from the estimated value

Table 4.4 provides the standard deviation values calculated in an analytical
manner taking into account a noise on the detection of primitive visuals and
the intrinsic parameters of the camera corresponding to card 2. The values
presented are compared to the standard deviation obtained statistically and
already presented in Table 4.3. Table 4.5 indicates, out of 100 experiments
carried out with synthetic data, the number for which the theoretical value of
the parameter is included in the interval centered on the estimated value and
the estimated breadth +/−3σ.
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4.9. Conclusion

In this chapter, we have presented some techniques which allow the
retiming of a CAD model on the contents of a video image. These techniques
require the knowledge of pairs between the detected primitives in the image
and the three-dimensional entities corresponding to the model of the observed
object. They prove to be easy in their implementation and are relatively
precise in their use.

Besides, we have shown that this precision can be improved, mainly
for the translation parameter along the optical axis, by taking the help of a
multi-ocular system.

Moreover, the formalism developed adapts very easily to the problem of
looking for the posture of a hand manipulator type articulated object.

The problem of the estimation of hand-eye passage during the usage of
a camera mounted on a robot system (turret site/azimuth, hand manipulator)
can also be addressed in a similar manner; the proposed method restraining the
number of parameters to be estimated as compared to the previous techniques
proposed in other works.

Finally, we have shown, by propagation of uncertainties, how we can obtain
an estimation of the precision of the measured parameters.
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Chapter 5

Reconstruction of 3D Scenes from
Multiple Views

5.1. Introduction

This chapter deals with the problem of reconstruction of a fixed
voluminous scene observed from several points of view. The first part is
concerned with the definition of the specific geometry associated with this
observation method. The notions of homolog points, epipolar geometry,
fundamental matrix, essential matrix, trifocal tensor, are introduced, as well
as different approaches, which make their estimation possible. The second
part, which is more applicative, tackles the problem of dense matching
between stereoscopic image couples.

5.2. Geometry relating to the acquisition of multiple images

5.2.1. Geometry of two images

The study of the geometry relating to the acquisition of two images is
fundamental in computer vision. It intervenes as soon as we expect to treat
the problem of stereovision, which amounts to using the contents of the two
video images, which can be acquired simultaneously by a system equipped
with two cameras, or can be obtained sequentially by a single moving camera.

Chapter written by Long QUAN, Luce MORIN and Lionel OISEL.
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The main objective is the 3D reconstruction of the observed structure or in
the same manner, an estimation of the movement between the two places of
filming [FAU 90, FAU 92a, FAU 93, LUO 92, LUO 93, HAR 92b, HAR 95,
TOR 97a, ZHA 94].

This objective can be achieved when correspondence between homologous
points arising from the two images is established. To arrive at this result, it is
necessary to develop techniques, which make it possible to recover the couple
points of the image arising from the observation, from the two points of view,
from the same 3D entity of the observed scene. All this rests in the geometry
called epipolar, which characterizes the two images taken into consideration.
We present, in this chapter, an elegant algebraic representation of the epipolar
geometry.

5.2.1.1. Geometric aspect

Geometrically speaking, at any point on the first image, it is possible to
associate the line in the space based on the latter and the optical center of
the corresponding camera; this line projects in the second image in the form
of a line. The latter represents the position of all the points of this second
image, which can be potentially homologous to the point of the considered
first image (see Figure 5.1). The search for the homologous point to a point in
the first image is thus reduced to an examination of a line in the second image.
Another way of characterizing this geometric configuration is to note that two
homologous points and their correspondence in space are coplanar.

c
c’

e e’

l’

x

u u’

Figure 5.1. Epipolar geometry of two images. The couple of homologous points is u ⇔ u′.
The centers of the camera are c and c′. The epipoles are e and e′ in the first and second

image. The line l′ is the epipolar line of the point u
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The entire geometry connecting the two images arises from this fact. Thus,
any point in the first image corresponds to a line in the second, which is called
the epipolar line. The geometry that follows from it is also called epipolar
geometry. The points of intersection of the line joining the optical centers of
the two cameras with the two image planes are called epipoles. The latter can
be seen as the projection of the optical center of the camera in another image.
All epipolar lines of an image pass through the corresponding epipole. The set
of epipolar lines of an image thus form a beam of lines.

5.2.1.2. Algebraic aspect

Algebraically, this epipolar geometry is easily derived in the following
manner (already tackled in Chapter 2). Without loss of generality, we can
associate, with the two images, the following two projection matrices,
respectively: P3×4 = (I,0) and P′

3×4 = (A,a). Let u ⇔ u′ be a pair of
homologous points between the two images created from the observation of a
point in the space x.

The line in space associated with point u is given by the optical center
of the camera c = (0, 1)T and its direction x∞ = (I−1u, 0)T is given by
the infinite point of this line. The images of these two points in the second
image are: e′ = (A,a)c = a and u′∞ = (A,a)x∞ = Au, respectively. The
epipolar line is then given by l′ = e′×u′∞. By introducing the anti-symmetric
matrix [a]× associated with vector a to represent the vectorial product denoted
F = [a]×A, we have:

l′ = Fu.

As point u′ is found on the line l′, it verifies u′T l′ = 0 and from this we
deduce the fundamental relation of the epipolar geometry between the two
projections u and u′:

u′TFu = 0.

The matrix F associated with the two images is called the fundamental
matrix.

5.2.1.3. Properties of F

Let us examine the properties of this matrix:

– The matrix F is singular and of row 2 since it contains an anti-symmetric
matrix 3 × 3, of row 2. Geometrically, the set of epipolar lines passes through
a common point, i.e. the epipole. They form a beam of lines of dimension 1.
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– The core of F is the epipole in the first image. To find the other epipole,
it is sufficient to transpose F, i.e, FTe′ = 0, because if u′TFu = 0 gives the
epipolar geometry between the first and the second, transposing the set gives
the equation by considering the images in the reverse order.

– The number of degrees of freedom of F is 7. Algebraically, F has 9
(3 × 3) homogenous elements, which makes only 8 degrees of freedom. As
it is singular, there remain only 7 degrees of freedom. Geometrically, each
epipole accounts for 2 degrees of freedom and that is 4 in total for the two
epipoles. The two beams of epipolar lines are in homographic correspondence
to dimension 1, hence accounting for 3 degrees of freedom. This corresponds
to a total number of degrees of freedom equal to 7.

– The epipolar line in the second image is given by Fu and reciprocally by
FTu′ in the first.

For calibrated cameras, the image points are subjected to an affine
transformation defined by the intrinsic parameters of each camera. Given the
intrinsic parameters C and C′ of the two images and the calibrated image
points x = C−1u and x′ = C′−1u′, we obtain

x′TEx = 0,

where E = C′TFC. Matrix E is called the essential matrix. It possesses all the
properties of the fundamental matrix F and one more of its own: two non-zero
singular values are identical [HUA 89].

5.2.1.4. Estimation of the fundamental matrix

Each correspondence of points between two images u ⇔ u′ gives rise to a
linear equation u′TFu = 0 relative to the parameters of the matrix F, which
can be written as:

(u′u, u′v, u′, v′u, v′v, v′, u, v, 1)(f1, . . . , f9) = 0.

For N points in correspondence, we obtain a system of equations, which
are linear and homogenous:

AN×9f9 = 0.

5.2.1.5. 7 point algorithm

Since F has only 7 degrees of freedom, algebraically, it is sufficient to
have at least 7 points in correspondence to be able to resolve this system,



Reconstruction of 3D Scenes from Multiple Views 193

which results from it. However, with 7 points in correspondence, it is
impossible to obtain a single solution. By resolving the homogenous linear
system A7×9f9 = 0, a set of solutions f = xa + yb is determined with two
close homogenous parameters x and y. It is enough to add the corresponding
constraint to the fact that the determinant of F is zero. By analytically
developing this determinant, a cubic equation in x and y is obtained:

ax3 + bx2y + cxy2 + dy3 = 0.

This is equivalent to the Sturm method [STU 69], which determines the
epipolar geometry from 7 points in correspondence: a method already well
known in the last century. Even though the original version is more algebraic
and complicated as it is based on the usage of canonic projective bases, this
simplified version is easily implemented with numerical linear algebraic tools.

5.2.1.6. 8 point algorithm

If we add one (or more) correspondence point and ignore the row
constraint on the matrix F, the solution is very easily given by the linear
system A8×9f9 = 0. This algorithm of 8 points has also been known for a
long time and references can be found in [LON 81, FAU 95a].

Unfortunately, this linear algorithm is numerically unstable and can be
corrected by normalizing the data [HAR 95]. First of all, we transform the
image points by the relations ũ = Au and ũ′ = A′u′ in such a way that
the group of transformed points is centered and the mean distance of the
new points to the center is equal to 1. We then apply the linear method to
the transformed points Ã8×9f̃9 = 0. The solution f̃9 minimizing ‖Ã8×9f̃9‖
under the constraint ‖f̃9‖ = 1 is obtained by taking the singular vector line
corresponding to the smallest singular value. This solution still does not give
a matrix D̃ of row 2. It is enough to use the decomposition in the principal
SVD components so that it becomes the matrix D̃ of row 2. The original
fundamental matrix is given by:

F = A′T F̃A.

5.2.1.7. Optimal algorithms

To obtain a statistically optimal estimation, it is necessary to use a
numerical optimization method on geometric errors. An obvious way is to
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minimize the Euclidean distance between the point and the corresponding
epipolar line, i.e.:

min
F

∑
i

(
d2

i + d′2i
)
,

where d2
i = dist(ui,FTu′

i) and d′2i = dist(u′
i,Fui) by taking into account

the symmetry in the two images.

5.2.1.8. Robust algorithms which make it possible to eliminate false pairing
between a couple of points

When there are false mappings among all established pairs of homologous
points, the methods given by the robust statistics, RANSAC or the least square
median, based on a random sampling of a sub-set of homologous point pairs,
prove to be efficient. The principle consists of randomly selecting 7 point
correspondences and then estimating the fundamental matrix with this sample.
We retain the sample which maximizes the consensus (RANSAC) or which
minimizes the median error (LMS). Finally, an optimum estimation method
is applied on all the correspondences retained by RANSAC or LMS. The
only worry is the cost of this random sampling. With a sample size of 7, it
is sufficient to carry out 382 draws for 50% false correspondences, which is
perfectly reasonable.

An example of geometric estimation of two images is illustrated in
Figure 5.2.

Figure 5.2. Estimation of the epipolar geometry of two images
of the INRIA building in Grenoble
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5.2.2. Geometry of 3 images

The study of the geometry of 3 images is a natural extension of that
of 2 images. The objectives are always the same: namely, either the
three-dimensional reconstruction of the observed scene or an estimation of
the movement between the different image acquisitions or the dense mapping
of points between images [SHA 95, SPE 90, HAR 97, QUA 95, TOR 97b,
CAR 95, CAR 98, MOH 92].

Geometrically, it is sufficient to know the epipolar geometry between the
first image and the third, and between the second and the third so that the
correspondence point in the third image is completely determined, except
in the case of singular spatial disposition of the cameras. The point in the
third image is hence said to be transferred from the first to the second (see
Figure 5.3).

c

c’

c’’

x

u

u’

l’

l’’

u’’

Figure 5.3. Geometry of 3 images

Algebraically, this transfer relation is deduced in the following manner.
Let us take a triplet of correspondence points between the 3 images
(u ⇔ u′ ⇔ u′′), as well as the projection matrices for the 3 cameras:

P=(I,0), P′=(A,a), P′′=(B,b) where A=

⎛⎜⎝aT
1

aT
2

aT
3

⎞⎟⎠ B=

⎛⎜⎝bT
1

bT
2

bT
3

⎞⎟⎠ .
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For the point in space x = (x, y, z, t), using the first image, we obtain
x = (u, t). By projecting (u, t) on the second image, we have:

λ′u′ = (A,a)
(
u
t

)
From this vectorial equation, we find two possibilities for scalar t:

t1 =
aT

1 u − u′aT
3 u

u′a3 − a1

or

t2 =
aT

2 u − v′aT
3 u

v′a3 − a2
.

With one of the values of t, we can project the point in the space, which
is now known, in the third image. By correctly arranging the terms and by
introducing the vectors:

tij = aibT
j − bjaT

i ,

we obtain two equation systems with the two values of t:

λ′′u′′ =

⎛⎜⎜⎝
u′tT

31 − tT
11

u′tT
32 − tT

12

u′tT
33 − tT

13

⎞⎟⎟⎠u =

⎛⎜⎜⎝
v′tT

31 − tT
21

v′tT
32 − tT

22

v′tT
33 − tT

23

⎞⎟⎟⎠u

These two blocks of 3 equations are homogenous; by eliminating the scale
factor, we obtain 4 scalar equations on 9 tij vectors. It is very interesting to
observe that by continuing the index play of the tij vectors and by noting the
kth element of the tij vector with a third index k, the set of elements indexed
by i, j and k form a tensor with 3 indices T ij

k varying from 1 to 3 that we
call the trifocal tensor, which plays exactly the same role as the fundamental
matrix for two images. If we have to scrupulously respect the conventions on
the variant/covariant indices, this tensor has to be correctly presented as T ij

k .

We can note that the geometry of the lines drawn from the 3 images is
also governed by the same tensor. This has an important significance: the
estimation of the geometry between 3 images can be indifferently estimated
from homologous points or lines.
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In spite of a number of mathematically elegant properties of the trifocal
tensor, it does not provide an ideal parametrization to characterize the
geometry between 3 images and moreover, its numerical estimation still
remains precarious. The linear algorithm based on the usage of at least
7 homologous points or other combinations of points and lines provided
by estimation is still very approximate. Finally, the implementation of an
optimum estimation based on a numerical minimization is delicate because of
its 8 = 27 − 1 − 18 algebraic constraints connecting the various components
of the tensor.

On the contrary, the projective structure in space provides a minimum
parametrization [QUA 95, TOR 97b]. Indeed, in the case of 3 images, the
projective structure can be directly determined from the mapping of 6 points.
Let us assume that the projective and canonic coordinates of the sixth point
in space are (X, Y, Z, T ) if we choose for the first five the canonic projective
base of the projective space of dimension 3. It is the same for the points in each
of the images; the fifth and sixth points can be transformed in (u5, v5, w5) and
(u6, v6, w6) if we choose the canonic projective base for the first 4 in the image
plane. The image points and the points in space are connected by an unknown
projection matrix. By eliminating all entries of the projection matrix with the
image-space correspondence of 5 points, we obtain the following equation:

w6

(
u5 − v5

)
XY + v6

(
w5 − u5

)
XZ + u5

(
v6 − w6

)
XT

+ u6

(
v5 − w5

)
Y Z + v5

(
w6 − u6

)
Y T + w5

(
u6 − v6

)
ZT = 0.

This is an algebraic equation of unknowns X , Y , Z and T using only
one single image. Given 3 images, we will obtain a system of 3 equations.
With algebraic manipulations, we return to a cubic equation on one of the
unknowns:

aX3 + bX2T + cXT 2 + dT 3 = 0.

It is not by chance that this algorithm and the Sturm method, both lead to
resolving a polynomial of degree 3: an intrinsic duality is explained by Carlson
in [CAR 95, CAR 98].

To conclude, the trifocal tensor has interesting properties, but it does not
prove to be a good parametrization of the geometry between 3 images. A
robust method based on the algorithm of 6 points, followed by a numerical
optimization (of bundle adjustment type) probably corresponds to the most
satisfying solution at the moment.
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Figure 5.4. One of the three images of the small house made of wood used for the estimation
of the geometry of three images. The points used are circled in white

Figure 5.5. The projective reconstruction rectified from three non-calibrated images:
the points are shown as stars and the line segments as continuous lines.

The Euclidean reconstruction from 5 images: the segments are shown as dotted lines.
The 5 reference markers are {2, 5, 8, 10, 11} (see Figure 5.4)
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5.2.3. Geometry beyond 3 images

A legitimate and natural question to be asked is whether there are
constraints of similar type on more than 3 images. In fact, all these constraints
can be systematically derived in the following manner [TRI 95, FAU 95b].

Given that a point x is seen in N images:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λu = Px,

λ′u′ = P′x,

...

λ(N)u(N) = P(N)x.

these equations can be written in matrix form:⎛⎜⎜⎜⎝
P u 0 0 0
P′ 0 u′ 0 0
P′′ 0 0 · · · 0
P′′ 0 0 0 u(N)

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

M

⎛⎜⎜⎜⎜⎜⎝
x
−λ

−λ′

· · ·
−λ(N)

⎞⎟⎟⎟⎟⎟⎠ = 0,

The vector (x,−λ,−λ′, . . . ,−λ(N))T cannot be zero, hence the row
of the M matrix cannot exceed N + 4. This implies that all its minors
(N + 4) × (N + 4) are cancelled. Expansion of all these minors gives all the
imaginable geometric constraints between the multiple images.

Of course, these minors can be formed in different ways. When the minors
are formed only from elements involving two images, the expansion gives the
constraints of geometry between these 2 images. Similarly, when the minors
are formed from elements intervening in three images, the expansion gives the
constraints between these 3 images. Just as M has N + 4 columns and 3N
lines, it can only have a maximum of 4 projection matrices intervening in the
formation of the minors. Hence, there are geometric constraints for 4 images,
which we call quadrifocal constraints. Unfortunately, quadrifocal constraints
are not algebraically independent, i.e., they are easily decomposable in those
of 3 images and of 2 images. Moreover, these constraints are very redundant
because of Grassman intrinsic quadratic relations. The numerical exploitation
of these constraints is not yet completely elucidated.
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5.3. Matching

Now we present different algorithmic techniques, making it possible to
find the correspondence mapping between two views of the same rigid scene.
This stage called tracking or matching consists of identifying the points in the
images, which are projected from the same 3D physical point and which are
called correspondent or homologous points.

Our objective is to obtain a dense mapping, i.e., to find for each pixels of the
first image, all the homologous points for this pixel in the second image. The
simplification, which is generally carried out considers that luminance of the
two points in correspondence coming from the projection of the same 3D point
is identical (or very close). If the mapping problem seems simple to express
it is because it has been the subject of many works for a long time. Indeed, a
number of difficulties are faced following the type of scenes processed. It is
especially so in the case of:

– homogenous zones. In these regions, the set of pixels possess the same
value of luminance. The matching problem then consists of finding a good
pixel in the set possessing the same characteristics;

– occultation zones (see Figure 5.6). In this case, a pixel of an image does
not have a correspondence in the second image;

– contraction zones (see Figure 5.6). This corresponds to the case where
a projected object from face or profile does not cover the same surface in
the image. This means that a pixel in an image can correspond to several
pixels in the second image. A pixel having several pixels as correspondents
defines a contraction. In such a case, is it necessary to authorize a pixel to
have several correspondents or not? Symmetrically, is it necessary to authorize
several pixels to have the same correspondent in the second image?

A number of tracking algorithms exist (see state of the art in [ZHA 93]
and [DHO 89]). We do not propose an exhaustive description of the different
existing methods. However, we present the major classes of approach used to
achieve a dense mapping.

5.3.1. State of the art elements

As we have seen, the rigidity hypothesis associated with the perspective
projection model induces the possibility of using the epipolar geometry in
order to restrict the matching. This constraint is used in the majority of
algorithms presented.
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Figure 5.6. Example of occultations and contractions

The result of dense mapping is given in the form of a displacement vector
field, or a disparity field: it is an image whose value in each pixel is a vector
with two dimensions indicating the apparent movement of the pixel between
the two images; the movement vector applied to a pixel of the first image
gives the position of its correspondent in the second image. The disparity
vector has coordinates of integer values, which produces a pixel to pixel
correspondence (local methods, block-matching, and dynamic programming),
or of real coordinates, which allows a more precise estimation of the disparity
(optical flow, energy modeling). In cases where the epipolar constraint is
used, a single coordinate is sufficient to define the disparity vector.

5.3.1.1. Correlation

The correlation methods produce displacements of integer value
components: for a pixel in the right image, we study its correspondent(s)
in the left image. The method consists of using a resemblance criterion
for comparing a region enclosing the processed pixel with all the regions
centered on the associated epipolar line in the other image. The resemblance
criteria are based on a correlation coefficient [ASC 92]. The pixel in the left
image driving the strongest correlation coefficient is associated with the
current right pixel. It is clear that this type of technique does not solve the
problems posed by homogenous or disturbed zones. This is why less local
methods, taking into account the notion of continuity constraint in a region,
have been developed.
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5.3.1.2. Block-matching

The first method due to its frequent utilization, is a technique called
block-matching tackled in [TZI 94]. This algorithm has a multitude of
declinations and basically consists of cutting the image into blocks. For each
block that is generated, we search for the best block of same size in the
second image. Hence, it is possible to perform motion estimation in each
pixel by gradually decreasing the size of the blocks while beginning the
search for the displacement vector from the father block. This algorithm used
within the general framework of the motion estimation can be made more
robust by the usage of epipolar geometry. For a given block, the study of its
correspondent is done only in a zone close to the epipolar line associated with
its center [TAM 92].

5.3.1.3. Dynamic programming

The second method, specific to stereovision, consists of matching two
homologous epipolar lines (i.e., two lines whose points correspond). This
method calls for dynamic programming techniques while using, here also,
simple correlation coefficients to match the pixels [BLA 98]. The algorithm
begins to calculate the cost of the correlation resulting from the pairing of the
two first points. The table is then prepared following a horizontal, vertical, or
diagonal displacement. A cost is put on each case of the table corresponding
to a given pair. This cost is calculated by adding the minimum cost to arrive
up to this case and the cost of pairing.

For each line couple, we study the optimum path in the graph of possible
mappings (see Figure 5.7). This method presents an interest to introduce a
smoothing along the given epipolar line. It also makes it possible to respect
the constraint order along the epipolar line. On the other hand, its major
disadvantage is the absence of smoothing between neighboring epipolar lines.
The resulting disparity map presents significant disparity differences, line by
line, especially on the border of the occultation zones. Here also, a number
of declinations of this algorithm exist allowing two-dimensional smoothing
(for example, in close epipolar lines [COX 92]). Blanc, in his thesis, proposes
a state of the art for these different variations around dynamic programming
[BLA 98].

5.3.1.4. Association of the optical flow and epipolar geometry

In [DEM 96], an approach by optical flow calculation applied to the cases
of static image scenes is proposed. The invariance hypothesis of the brightness
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Figure 5.7. Dynamic programming

associated with the projection of a point m is given by:

dI(m, t)
dt

= 0

A Taylor expansion of this expression gives:

∇I · (mt+1 − mt

)
+ It = 0

where mi represents the point m at time i, ∇ is the spatial gradient operator
and It is the temporal gradient. From this, we find that the point mt+1 belongs
to the projective line of coordinates:

δ̃ =

⎡⎢⎣ Ix

Iy

It −∇I · mt

⎤⎥⎦ .

Similarly, by knowing the epipolar geometry (by calibration in the article),
it is possible to calculate the epipolar line associated with point mt in the
second image. Since point mt+1 must belong to this line and to “δ̃”, it is found
at their intersection.

In order to make the calculation of the flow more robust to noise, a
smoothing constraint is introduced by assuming that the disparity vector
is constant in a 7 × 7 block centered at point mt. For this to be valid, the
hypotheses of the parallel epipolar lines (pure translation between images,
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for example) and low variations in depth must be verified. Each point in the
neighborhood hence provides a line δ̃i, which intersects the epipolar line.
The selected homologous point is the barycenter of the intersection points
(a weighting function may be used to increase the role of the points close
to mt).

5.3.1.5. Energy modeling

The energy approaches that we present here are approaches to continuous
disparity values (the correspondent of a pixel can have real coordinates). Here,
the modeling of the problem is done in a global manner and gives a global
solution (it is the configuration for which the energy is minimum). The energy
function decomposes into two terms:

– the observation term that represents the constraints, which we impose
in each pixel independently and which must be verified by the displacement
vector;

– the smoothing term, which represents the inter-pixel dependence
constraints between neighboring displacements.

Here, we briefly present some methods requiring energy modeling:

– Method using the epipolar constraint: Ouali et al. in [OUA 96] proposed
such a modeling in order to track two stereoscopic images while detecting the
occultation zones. In their case, observation term is based on a resemblance
function (between two pixels) similar to a calculation of the correlation
coefficients. This coefficient is then weighed by the indicator of presence of an
occultation zone in the neighborhood of the considered pixel. The observation
term thus imposes on the data that two neighboring pixels have very close
disparity values. In order to take into account the possible discontinuities of
depth, this term is cancelled on luminance edges. Finally, a third energy term
is added to limit the number of occultation zones. An stochastic optimization
process constrained by the epipolar geometry assures that we obtain an
optimum solution, but at a very high calculation cost.

– Multi-grid multi-resolution method: Weng proposed a method, which
is inspired more directly from algorithms of optical flow calculation. As
emphasized in [WEN 92], these techniques present some problems in the case
of estimation of disparity maps (discontinuities of depth, significant disparity
values). In order to overcome these difficulties, Weng proposed a multi-grid
multi-resolution algorithm using information of intensity, curves and singular
points while modeling the occultations and discontinuities. In general, the
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results show that large displacements (of the order of 80 pixels) are estimated.
However, some problems arise in the case of weak textured images or in cases
where false matching of angles lead to a drift in the residual values calculation.

– Explicit 3D reconstruction method: Robert et al. in [ROB 96] studied the
problem of dense 3D reconstruction from a pair of stereoscopic images. Here,
the mapping stages and the calculation of depth are simultaneous. This implies
a prior knowledge of the calibration parameters of cameras. Knowing the
intrinsic and extrinsic parameters, they showed that finding the correspondent
p2 of a pixel p1 of the left image amounts to calculating the depth Z(p1) of
the corresponding 3D point. This problem is then formalized under the form
of partial differential equations (PDE) resolved using an iterative method.

5.3.2. Dense estimation algorithm based on optical flow

We now propose to describe in more detail a method for estimating a
dense field constrained by epipolar geometry. This method is based on energy
modeling.

5.3.2.1. Hypothesis for the conservation of brightness

The algorithm developed is inspired from the works carried out by Mémin
and Perez [MÉM 96b, MEM 96a]. Let I1 and I2 be the right and left images,
respectively. To facilitate easy writing, we will note by Ii(s) the value of
brightness of the image i, at point s.

The hypothesis of brightness conservation between the two projections
of the same point in space coupled with taking into account of the epipolar
constraint gives the following equation:

DFD(s) = I1(s) − I2(s + ds) = I1(s) − I2

(
s + �Ns + λs

�Vs

)
= 0 (5.1)

where ds is the displacement in the image, �Ns is the normal vector of the
right epipolar line associated with s, and �Vs is the vector director of the right
epipolar line (see Figure 5.8). For details concerning the validity conditions of
this hypothesis known as DFD (Displaced Frame Difference), see [FRA 91].

Under the hypothesis that λs
�Vs is small before s + �Ns, a linearization

around the position s + �Ns can be realized. Relation (5.1) is then written as
I2(s + �Ns) = Ĩ2(s):

DFD(s) = λs
�Vs · ∇Ĩ2(s) + Ĩ2(s) − I1(s)
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Figure 5.8. Epipolar constraint

where terms of equality permute, i.e. Ĩ2(s) = Ĩ2(s + �Ns) and ∇ is the vector
representing the spatial gradient.

5.3.2.2. Energy modeling

We now place ourselves within the Markovian framework (details are
given in [PÉR 98]). An estimation of the best disparity field agreeing with the
Bayesian criterion of MAP (maximum a posteriori) amounts to a problem
of global minimization of the following energy function:

H(λ) = H1

(
λs

)
+ αH2

(
λs

)
(5.2)

with α as the fixed weighting coefficient. H1 is a term related to the
observations in the images (linearized DFD):

H1 =
∑
s∈S

ρ
[
λs

�Vs · ∇Ĩ2(s) + Ĩ2(s) − I1(s)
]2

H2 enforces smoothing in the pixel neighborhood:

H2 = α
∑

<s,r>

ρ
∥∥λs

�Vs + �Ns − λr
�Vr − �Nr

∥∥2
where 〈s, r〉 is the set of couples formed by s and its 4 neighbors. H2 tends to
minimize the difference between the neighboring disparity vectors �ds and �dr

where �ds = λs
�Vs + �Ns and �dr = λr

�Vr + �Nr.
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These two terms also use robust estimators ρ, which make it possible to
authorize deviations either in comparison to the model (occultation zones)
or in comparison to smoothing (discontinuities of depth). Under certain
assumptions, the robust function amounts to a specific sum of quadratic
terms: a strong deviation in comparison to the model or to smoothing leads
to a low weighting of the associated energy. In addition, more details on the
functioning of robust estimators can be found in [HUB 81, PÉR 98].

5.3.2.3. Multi-resolution minimization diagram

In the majority of cases, the disparities reach values which are too large
for the Taylor expansion of DFD to be valid. This problem is solved using
a multi-resolution process. The fundamental matrix associated with a level of
resolution k is calculated from the fundamental matrix obtained at the finest
resolution level by a change of reference frame given by matrix M:

Fk = MkTFMk with M =

⎡⎣2 0 0
0 2 0
0 0 1

⎤⎦
where M = diag(2, 2, 1).

Thus, Fk matrix makes it possible to calculate the vectors �Nk
s and �V k

s for
each position s. The field of disparity vectors obtained at the resolution level
k is then projected at the resolution level k − 1 in order to start the process of
energy minimization.

For each resolution level k, we then look to carry out a global minimization
of H(λk), namely, to find the set of λk for which the value of H is minimum.
Since the energy function is convex, H(λk

s) admits a minimum, which is the
zero derivative point:

∂H(λs)
∂λs

= 0

For this, a multiresolution scheme based on Gauss-Seidel minimization
associated with an incremental formulation is implemented: in each point
s, we look for the minimum of H(λk

s) by freezing the other variables (the
function being quadratic, we obtain a closed form solution for this minimum).
After convergence, the weights associated with each pixel are evaluated. These
two stages are repeated until the final convergence.
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a b

Figure 5.9. Examples of image pairs (Armel sequences: image 1 (a) and image 50 (b))

Figure 5.10. Disparity field obtained on images 1 and 50;
the posted value is the norm of the disparity vector

5.4. 3D reconstruction

Once the disparity field is estimated, the 3D reconstruction consists of
recovering the 3D coordinates of the points from the coordinates of projections
in the images. This requires a calibration (possibly weak calibration) of the
camera parameters. From now on we will focus we assume to have two images
for which dense mapping has been done and we are on restoring the 3D
information.
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5.4.1. Reconstruction principle: retro-projection

We assume that the mapping carried out and the projection matrices P1

and P2 are known for each of the images. From these matrices, it is easy to
show the 3D point x corresponding to a point p1 of the first image knowing
its correspondent p2 in the second image. It is sufficient to resolve the system:{

p̃1 = P1x

p̃2 = P2x
(5.3)

This system provides four equations for three unknowns (we fix the last
homogenous coordinate of x at 1). The solution amounts to looking for the
intersection of the view lines (C1,p1) and (C2,p2). We talk of reconstruction
by triangulation or retro-projection.

If the mapping exactly verifies the epipolar constraint (i.e., p̃t
1Fp̃2 = 0),

and the projection matrices P1 and P2 are coherent with the fundamental
matrix F, the view lines intersect: the equations are interdependent and the
system amounts to a system of 3 equations with 3 unknowns for which x is
the only solution.

In the practical case where F and/or P1 and P2 are estimated from the
image data, estimation errors prevent us from having a perfect coherence
between F, P1, P2 and the mapping. Hence, we can:

– recalculate the epipolar geometry obtained from P1 and P2 and impose
its respect by projecting the correspondents on epipolar lines;

– resolve the system of least squares by going back to a system Ax = b
where x is the vector containing the coordinates of the 3D point; this
minimizes the Euclidean distance of the point to the 4 planes (on the condition
of normalizing the equations), but not the distance from the point to the viewed
lines;

– determine the 3D point which minimizes the distance to the view lines.

5.4.2. Projective reconstruction

In cases where we do not have a calibration of the camera parameters, it
is possible to produce geometric 3D information in the form of a projective
reconstruction. Here, the 3D points obtained correspond to a transformation
of the Euclidean scene by a 3D homography (general linear transformation of
homogenous 3D coordinates).
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The principle of the projective reconstruction is to find a couple of
projection matrices P1, P2 compatible with the image data and to use them
for the retro-projection as described earlier. We re-write projection equations
(5.3) in the following manner:

s1p̃1 = s2A1RA−1
2 p̃2 + A1t (5.4)

where p1 and p2 are the projections in images 1 and 2 from a point in the
space, si is a multiplicative factor associated with the point of the image i,
p̃i is the vector of homogenous coordinates associated with the point pi, Ai

is the matrix of intrinsic parameters associated with the image i, R and t are
the rotation and translation matrices of the reference frame of the first camera
towards that of the second camera.

For each pair of matched pixels, we then obtain three equations and two
additional unknowns (s1 and s2). By assuming that we have a significant
number of points in correspondence (dense disparity field calculated
previously), it is possible to know the matrices A1RA−1

2 and A1t. The latter,
however, will be known only up to a scale factor. If H is a 4 × 4 reversible
matrix, then A′

1 = A1H, A′
2 = A2H, and R′ = H−1RH are also solutions

of system (5.4).

From two views of the same scene, we find an infinite number of
matrices with intrinsic and extrinsic parameters compatible with the disparity
information. Each solution obtained is deduced from the real calibration
matrices by a projective transformation. Such a transformation is expressed in
matrix form by a 4 × 4 matrix defined up to a scale factor.

Thus, by knowing the fundamental matrix, Faugeras and Hartley showed
that we can calculate the second projection matrix P2 after having arbitrarily
fixed the first one as a canonic projection matrix (noted by P1) [BEA 94,
FAU 92b, HAR 92b, HAR 92a]. The second matrix (noted by P2) then
contains all the known geometric information:{

P1 =
[
I3×3 | 0

]
P2 =

[
N2 + e2bT | ce2

] (5.5)

where I3×3 is the identity matrix, e2 is the epipole in the second image, b is
any 3 × 1 vector and c is a real arbitrary value.

N2 is a solution of F12 =
[

0 −e2z e2y

e2z 0 −e2x

−e2y e2x 0

]
· N2.
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A specific solution for this system is given by the following formula:

N2 =

⎡⎢⎣ 0 −e2z e2y

e2z 0 −e2x

−e2y e2x 0

⎤⎥⎦ · F12

By knowing the fundamental matrix, it is possible to obtain a
reconstruction of the scene for a set of projection matrices which are
compatible with epipolar geometry [BOB 96, DEV 96].

Since each pair of matrices is derived from the other by a projective
transformation, the reconstruction will be called projective. This, in fact,
amounts to fixing a 3D projective reference frame associated with the first
camera (which can neither be orthogonal nor standardized). The aspect of
3D reconstruction in this reference mark will not correspond to the expected
form of the scene. In order to find an aspect which conforms more to reality,
it is advisable to change from a projective reconstruction to a Euclidean
reconstruction by fixing the projective transformation matrix applied to the
3D points expressed in homogenous coordinates.

Approximate values for 
intrinsic parameters

-  instrinsic parameters
-  known distances in the image
-  known objects

Projective
reconstruction

Figure 5.11. From a projective reference frame to a Euclidean reference frame
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5.4.3. Euclidean reconstruction

The Euclidean reconstruction of the scene can be carried out in the
following three cases:

– intrinsic and extrinsic parameters are known for the two cameras
(calibrated cameras);

– only intrinsic parameters are known for each of the cameras;

– we have the metric data of the scene.

5.4.3.1. Calibrated cameras

In this case, the projection matrices P1 and P2 are directly calculated from
the camera parameters by:

P1 = A1

[
R1 | t1

]
P2 = A2

[
R2 | t2

]
and then we use the retro-projection.

5.4.3.2. Known intrinsic parameters

In this case, the intrinsic parameters can be estimated by self-calibration, or
we know their rough value. In the latter case, we will talk of a quasi-Euclidean
reconstruction.

Hence, it is possible to recover the movement of the camera between the
two views (R, t) from the fundamental matrix. This calculation is done by the
intermediary of the essential matrix E obtained by the equation:

E = A2
TFA1 = t̂R.

Rotation R and translation t are then obtained by decomposing matrix E.
Luong compares the different methods in his thesis [LUO 92]. It is held as
the best decomposition making it possible to take into account the constraints
related to the nature of the essential matrix proposed by Tsai and Huang in
[TSA 84].

Here, the rotation is obtained only up to a Π, while the translation
is determined up to a scale factor. However, the latter ambiguity can be
overcome from a pair of points in correspondence in the two images. For
this, it is sufficient to reconstruct the corresponding 3D point and to modify
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the angle of rotation and the sign of translation until the reconstructed point is
situated in front of the two cameras. The translation is then known only up to
positive scale factor.

5.4.3.3. Known metric data in the scene

This method consists of using known metric data in the scene such as
points, lines, angles, distances, orthogonal relations, etc. to identify the 3D
homography, which makes it possible to shift from a projective reconstruction
to a Euclidean reconstruction of the 3D scene. Here, we again refer to the
algorithm developed by Boufama [BOU 94]. The hypothesis, a priori, is the
knowledge of a set of five non-coplanar points of the scene whose relative
positions are known. The global diagram of the algorithm is as follows:

1) a sequence of images (at least two) of a rigid scene is taken with a
camera;

2) interest points are extracted and tracked in the sequence;

3) 5 known points containing no subset of 4 coplanar points the 5 known
coplanar 4×4 points are chosen as basis for a relative reference frame and are
given coordinates;

4) the set of observations (image coordinates) is translated into a system
of non-linear equations whose resolution directly gives the three-dimensional
structure of the scene and the projection matrices.

This will then make it possible to obtain a three-dimensional reconstruction
of the scene [BOU 93].

5.4.3.3.1. Notes

– If the five points taken as a basis are not points whose 3D coordinates are
known, we find a projective reconstruction relative to the chosen base.

– If the ratios of the distance between the basis points are known, the
reconstruction obtained is said to be affine (to a close affine transformation).
This has the property to conserve the ratios of the length as well as parallelism.

This algorithm constitutes an example of using a priori knowledge on the
scene. From a more general point of view, the more the knowledge on the real
scene will be Euclidean (direction < distance < 3D coordinates), the more
Euclidean the reconstruction will be [BOU 94].
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5.5. 3D modeling

At the end of 3D reconstruction, a group of 3D points is available to
represent the scene. Each 3D point corresponds to a pixel of the first image,
which provides the color of the 3D point. 3D information can be kept in this
form or a more easily used representation can be envisaged according to the
expected application (visualization, synthesis of views, etc.).

5.5.1. Implicit model

The first method consists of keeping 3D information in the form of images
and the correspondence information without going up to the stage of 3D
reconstruction. This implicit representation of 3D information can be used to
generate another view by transfer, for example, using the method of epipolar
intersection.

Figure 5.12. Reconstruction by epipolar intersection

This method simply comes from the definition of epipolar geometry. It uses
epipolar lines in order to reconstruct a pixel by pixel image. This technique
introduced in [FAU 94] and referred again in [FAU 98] uses the following
idea: by knowing the matching of a pixel p1 of the first image with a pixel p2

of the second, the knowledge of the epipolar geometry between the first two
images and the virtual image is sufficient to determine the corresponding point
in the third view. This point is the intersection in the third image of the epipolar
line associated with p1 with that associated with p2. The reconstruction of the
complete image is then carried out using the set of couples in correspondence
in the two image sources.
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This technique is degenerated when the 3D point belongs to a trifocal
plane (plane formed by three optical centers, since in this case, the two
epipolar lines to intersect are identical). Blanc highlights examples of
degenerated reconstructions in this specific case [BLA 94]. The use
of a trifocal tensor connecting the 3 images makes it possible to avoid
degeneration due to the trifocal plane [SHA 95].

Other problems have also been faced when the 3D point to be reconstructed
is not the same as in the first two images (occultation). A possible solution is
obtained by considering the virtual image. For each pixel p3 of this image, we
look for the couple of points (p1,p2) of the first two images corresponding
to it. For this, we trace the curve of the points of I2 corresponding to the
points of the image I1 belonging to the epipolar line associated with p3. Point
p2 is then the first intersection point (point that is closest to the epipole)
between the epipolar line associated with p3 in the image I2 and this curve
(see Figure 5.13).

point kept

Place of the correspondants of the epipolar line 

Figure 5.13. Processing of occultation zones

The use of transfer methods seems attractive in the case of projective
reconstruction since only projective information (fundamental matrices)
and mappings are necessary. However, to specify the fundamental matrices
associated with the view to reconstruct, we have to either provide the position
of the virtual camera expressed in the same projective space as the model, or
know the position of the projected points in this image or have points, which
are already matched. In the two cases, it is generally necessary to introduce
Euclidean information and hence the method loses interest as compared to a
Euclidean reconstruction.
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5.5.2. Point sets

In this approach, we keep the group of reconstructed 3D points. This
information is generally represented in the form of a depth chart, i.e., an
image containing, in each pixel, its coordinate z expressed in the camera
reference frame. Hence, it is also necessary to keep the corresponding
image and the absolute position of the camera. The objective is to keep
and deteriorate the initial image information to the minimum possible. The
disadvantage of this approach is the problems of re-calibration if we wish
to project the group of points in another viewpoint. In a forward projection
where each point of the group is projected on a pixel of a new image, the
expansion or occultation zones give rise to “holes”, which must be overcome
by a process of interpolation. If we want to realize a backward projection to
avoid this problem, it is a question of finding, for each pixel of the image,
its correspondent in the starting image. Hence, it is necessary to determine
the intersection of the view line with the surface implicitly defined by the
group of points, by a process similar to that seen in the previous section, or to
interpolate the group of 3D points in a surface, which amounts to realizing a
model with facets.

5.5.3. Triangular mesh

Triangular mesh facets constitute a 3D representation very often used as an
output of the 3D reconstruction. Indeed, they present several advantages:

– The reconstructed scene is represented in the form of a continuous
surface, which projects itself in a continuous image; we thus avoid the
unknown sample problems faced during the projection of a group of dots.

– This representation is well adapted to polyhedral scenes, for which a
small number of facet planes make it possible to represent the scene.

– Textured triangular meshes constitute a standard representation of
synthetic scenes in computer graphics. We can thus benefit from the software
and the material available for the visualization.

– In a similar way, 3D triangular meshes are now included in
the compression-transmission norms of video data (MPEG4, SNHC); a
representation such as this will be efficiently compressed.

Triangular meshes are constituted from a set of 3D triangles forming a
continuous surface. They are defined by a set of vertex points and a set of arcs
connecting the vertices. In the case of 3D reconstruction, the vertices can be
defined in several ways.
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5.5.3.1. Interactive designation of mesh vertices

The vertices of the mesh are interactively designed. This allows an
“intelligent” description of the scene, with a minimum number of triangles
and a segmentation of the scene into semantic objects. An interactive
definition of the vertices also makes it possible to lighten the mapping phase;
only the vertices are tracked and reconstructed. The 3D position of the other
points of the scene is given by the planes of triangular facets.

5.5.3.2. Microfacets

On the contrary, the representation by microfacets consists of taking the set
of constructed 3D group of dots as mesh vertices. Thus, we do not miss out on
precision as compared to the group of points, even while having a continuous
surface [LEM 97]. On the other hand, the disadvantage of this representation
is that it is very voluminous.

5.5.3.3. Triangulation of the points of interest

To avoid an interactive procedure, some characteristic points detected and
tracked automatically can be used as mesh vertices. However, there is no
assurance that the triangular facets thus created correspond effectively to the
planar facets of the scene. The 3D surface thus generated does not reflect that
of the real 3D scene.

5.5.3.4. Adaptive triangulation

To assure the pertinence of triangular facets, an adaptive triangulation
determines the mesh vertices in such a way so as to respect a planarity
criterion of the points contained in each triangle.

Such a division is obtained by a recursive division: from an initial
arbitrary triangulation (division of the image into 2 triangles), we find the
planarity of each triangle; the triangles not respecting the planarity criterion
are progressively divided to obtain a set of triangles, which correspond
effectively to the planar zones in the 3D scene.

The planarity criterion can be constructed either from 3D data obtained
from the reconstruction, or from image data. A 3D planarity criterion is
based on the distance of the facet points to the plane passing through the 3
vertices. Hence, it is imperative to have a Euclidean reconstruction. We can
also propose a planarity criterion based only on image data. Indeed, for a set
of coplanar points, their projections in the two images are linked by a 2D
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homography. The homography associated with the plane passing through the
3 summits of a facet can be estimated in the following manner.

Let H(3×3) be the homogenous matrix representing this homography. For
each of the 3 vertices of the projected facets, pi

1 and pi
2, i = 1 . . . 3, we have:

Hp̃i
1 = λp̃i

2 (5.6)

These points verify the epipolar constraint, from where:

piT
1 HTFpi

1 = 0

By calculating the transpose of the left member and factorizing with the
coordinates of the points, we obtain:

piT
1 (FT · H + HTF)pi

1 = 0

Thus, any point pi
1 located in the facet plane belongs to the core of

(FT .H + HTF) irrespective of the point belonging to the plane. Three points
of the plane, which are non-linearly dependent, belong to the core of this
matrix. As a result, this matrix is zero:

FT · H + HTF = 0 (5.7)

Owing to the symmetry of the matrix, we obtain 6 homogenous equations.
This relation is valid for all the homographies consistent with F . Hence,
we have to specify the homography to estimate by introducing some points
belonging to the associated plane. For this, Robert et al. [ROB 95] showed
that if the epipolar constraint and equation (5.7) are verified, equation (5.6) is
equivalent to: [

p2,Fp1,Hp1

]
= 0 (5.8)

where [a,b, c] = aT .b × c represents the mixed product.

Each pair of points gives an equation. Hence, 3 pairs of points, which are
non-linearly dependent, are necessary to determine a single matrix H. By
knowing the epipolar geometry and the disparity field, we can thus calculate
the homography associated with the plane defined by any 3 points chosen in
image 1.
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The planarity criterion then measures the adequacy between the
homography H and the disparity field for the interior points of the triangular
facet. The distance criterion for a given triangle T is thus expressed in the
form of a Euclidean distance in the image by the expression:

DT =
1
n

∑
p1∈T

∥∥H p1 − p2

∥∥+
∥∥H−1 p2 − p1

∥∥ (5.9)

where ‖ ‖ represents the Euclidean norm on the Cartesian coordinates
(distance in pixels in the image) and n is the number of pixels of the triangle.

5.5.3.5. Regular triangulation

If the compactness of the grid is an important criterion for the expected
application, it is interesting to use a triangulation from among the following:

– tips positioned on a regular grid in the image, whose representation is
zero in cost (predefined summits and arcs);

– the hierarchical regular grid, with systematic subdivision, easily
represented by a tree;

– the Delaunay grid, entirely defined by the position of the tips.

a b

Figure 5.14. Final triangulation obtained by the estimation of the homography of each
triangle (a) and by the estimation of the plane of each facet (b)

5.6. Examples of applications

5.6.1. Virtual view rendering

Virtual views are views of the 3D scene reconstructed from a viewpoint
different from those which have been acquired.
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This can be realized by transfer from images and depth charts, or by
visualization of a reconstructed 3D model.

5.6.2. VRML models

We present below an example of a VRML model reconstructed from 2
images of the Armel sequence.

a b

Figure 5.15. Final VRML model (by a 3D cutting criterion – close to the original viewpoint
(a) and relatively distant (b))

Figure 5.16. Final VRML model – general idea of the geometric model

5.7. Conclusion

In this chapter, we have presented the basic techniques to resolve the
problem of reconstruction of a fixed voluminous 3D scene from several
points of view. At first, we presented the geometric notions related to this
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observation mode: homologous points, epipolar geometry, fundamental
matrix, essential matrix, trifocal tensor. Then we presented the practical
resolution of the problem of dense matching between stereoscopic image
couples.
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Chapter 6

3D Reconstruction by Active Dynamic Vision

6.1. Introduction: active vision

Techniques of active vision, which were created about 15 years ago,
draw their origin from a simulation attempt of the animal and human visual
system trying to recreate its adaptabilities. From a methodological point of
view, active vision, where perceived information is used within a feedback
loop, tries to improve the quality of perception when compared to the passive
traditional approach, where we restrict ourselves to observing, measuring and
interpreting data from the sensor. In fact, active vision consists of elaborating
the intelligent perception strategies, by controlling the parameters of the
sensor (position, speed, development, etc.). It can be defined as an intelligent
acquisition process of data in order to solve the problems raised while
designing a system of computer vision, i.e. their sensitivity to noise, their
weak precision and particularly their lack of reactivity.

If the general definition of active vision is simple, the motivations of
various researchers who took part in the introduction of these new techniques
are, however, very different. In fact, what we traditionally call active vision
can be divided into several sub-classes1.

Chapter written by Éric MARCHAND and François CHAUMETTE.
1. The terms “active vision”, “active perception”, “animate vision” and “purposive vision”,
which were retained in this typology draw their origin from the titles of the first articles
published in each of these fields (respectively known as “Active Vision” [ALO 87], “Active
Perception” [BAJ 88], “Animate Vision” [BAL 91] and “Purposive and qualitative active
vision” [ALO 90]).
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– active vision as explained by Aloimonos [ALO 87] is a theoretical
analysis of the vision process whose principal motivation is the optimization
of the visual task with the help of an active sensor;

– active perception is a concept introduced by Bajcsy [BAJ 88] attempting
to elaborate the perception strategies in order to improve the knowledge of
environment;

– animate vision [BAL 91] is based on the analysis of human perception.
Depending on the use of active binocular heads, it supports the aspects of
fixing and focusing on areas of gaze control. Ballard’s aim is to decrease the
algorithmic complexity of the perception process;

– purposive vision [ALO 90] aims to extract only relevant information
according to a given task.

As we can see, Aloimonos and Bajcsy (considering only the principal
authors) have radically different objectives. One seeks to simplify the
fundamental problems of vision by using an active observer and the other
seeks to improve knowledge on the environment observed by defining
adequate perception strategies. Though these two approaches have the use of
one or several mobile sensors as a common point, the motivations, methods
and tools used are very different.

These various aspects are, however, strongly interdependent. Thus, within
the framework of the problem of reconstruction of scenes, various aspects
of active vision can be implemented to carry out this task efficiently. More
precisely, these aspects appear in the two levels that we consider in this
chapter, i.e., a local level dedicated to 3D reconstruction of a particular
primitive, and a global level dedicated to complete reconstruction of the scene:

– at local level, the movements of the camera are constrained in such a
manner as to optimize the quality of the reconstruction results of particular
geometric primitives. In this level, we place ourselves in Aloimonos’ vision.
Moreover, the constraints necessary for a reliable, non-biased estimate of the
parameters of 3D primitives are, as we will see thereafter, the constraints on
the position of a primitive in the image and on the trajectory of the camera
as compared to this primitive. Automatic generation of these movements is
done using visual servoing. This aspect is similar to the concept of purposive
vision since only necessary information to the estimate of parameters of this
primitive is acquired and used. Moreover, the command laws used consider
only camera movements which make it possible to acquire 3D information.
Thus, any movement that does not bring information is not carried out;
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– the use of active vision at a local level is quite constraining since the
camera movements are strongly constrained. To mitigate this problem, a
second and more global level, based on the development of the perception
strategies was proposed: movements of the camera are then controlled in
a manner which enables the reconstruction of scenes made up of several
unknown objects. Here, it is a question of developing strategies of camera
movement making it possible to carry out complete exploration and focusing
on particular zones of the scene. Accordingly, we instead join the aspect of
“active perception” by Bajcsy and/or the purposive vision aspect where the
explicit intention is the reconstruction and 3D exploration.

As we can note, dissociating various aspects of active vision is neither
always possible nor desirable. Active vision thus consists of defining the set
of perception strategies making it possible to ensure the realization of a given
task. This relates to low level strategies (local and continuous), which make
it possible to achieve stable and robust methods of data acquisition, as well
as high level strategies (global and event-driven), which aim to define the set
of necessary actions in the realization of the nominal task. These two aspects
are strongly interdependent. The high level strategies must depend on reliable
bases and use data as precise as possible. On the other hand, data resulting
from low level strategies are not directly usable because they give only a partial
and incomplete vision of the environment. Thus, they are only of interest if we
consider a vast context, which is given by the strategy aspect of high level
perception.

In this chapter, we will first present a reconstruction method by dynamic
vision and then we will proceed to show that a process of active vision can
largely improve the quality of reconstruction. Finally, we will describe the
essential stages in the complete reconstruction of an unknown environment.

6.2. Reconstruction of 3D primitives

6.2.1. Reconstruction by dynamic vision: a rapid state of the art

The objective of reconstruction techniques by dynamic vision is to carry
out the 3D reconstruction of a scene from a sequence of images acquired
by a camera. We can classify the approaches treating this problem into two
principal categories: discrete techniques and continuous techniques:

– Discrete techniques are based on the displacement measurements of the
camera and the displacement corresponding to particular primitives in images
[AGG 87, CHI 89, VIA 92, CRO 92, WEN 92, WEL 89, ZHA 94, ZHA 95].
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These techniques depend on three fundamental stages: extraction of a set of
sufficiently relevant 2D primitives in the sequence of images, matching of the
selected primitives of image with image and reconstruction by triangulation.

– Continuous approaches are based on a formulation in terms of speed
[ADI 85, ADI 89, VER 90, WAX 87, ESP 87, BOU 93, NEG 87, XIE 89a].
The images are then acquired with a pace closer to video pace. From an image
processing point of view, this approach depends either on an estimate of the
apparent velocity field (optical flow) – which generally proves to be not very
reliable and unstable, particularly around the occluding contours [ADI 89,
WAX 87] – or on the sequence of objects of interest (token trackers) [ESP 87,
XIE 89b, BOU 93]. These approaches are generally very sensitive to noise
because of the weak movement that they impose between two successive
images. However, we will see that these defects can be removed using active
vision.

In this chapter, only the continuous techniques are considered. Discrete
techniques depend on the same diagram as that of stereovision. Since these
methods are described in Chapter 5, we will not discuss them again.

Similar to the problem of matching the primitives between two images,
the determination of the apparent velocity field is a difficult problem. Indeed,
noise present in the images leads to errors and instability in the estimate of
velocity fields, which imply errors, sometimes major ones, in the estimate of
the 3D structure of the scene. To carry out an estimate of the structure of
a scene, the movement of the camera must be known or estimated. If this
information is not available or not measurable, it is first necessary to proceed
with an estimation stage of this movement [AGG 88, SUB 87]. Among the
studies carried out in this vision, we find the works of [NEG 87, ADI 85].

Research by Negahdaripour and Horn [NEG 87] aims to determine, in
addition to camera movement, the orientation of a plane surface using not
the apparent velocity field, but the space and temporal derivatives of light
intensity f (i.e., ∇f = ( ∂f

∂X , ∂f
∂Y )T and ∂f

∂t ). The resolution of a non-linear
system is necessary to obtain the solution of the problem. Adiv [ADI 85]
considered it to be a non-static environment, since it takes into account the
potential presence of several mobile objects. The apparent velocity field is
initially segmented in elementary areas in which the movement is coherent
with that of a plane surface. The movement parameters of each of these areas
are calculated and then, if required, the areas having close movements are
joined. Each of these areas is supposed to correspond to the same rigid object.
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Since the segmentation of the velocity field is realized, the relative positions
between each object and the camera can be determined.

These methods consider that the movement of the camera is completely
unknown. However, if we place ourselves in a robotic context, this movement
is, if not controllable (or controlled), at least measurable with some precision.
By considering particular movements of the camera, Vernon and Tistarelli
[VER 90] strongly simplify the calculation of the apparent movement. Using
the velocity field thus calculated and the movement parameters of the camera,
a depth chart is then made.

Another approach was developed by Arbogast [ARB 91] in order
to reconstruct non-polyhedric objects. This is based on the concept of
spatio-temporal surface: it is about the surface described by a set of contours,
which move on the image plane in the course of time. The differential
properties of this spatio-temporal surface are analyzed, after having chosen
an adequate parametrization of this surface. For this, it uses a spherical
modeling of the camera by reconsidering Blake and Cipolla’s modeling
[BLA 90]. This leads to a very flexible parametrization and allows us to
simplify the equations obtained. Although the method is attractive from the
theoretical point of view, it presents the disadvantage of being very sensitive
to noise because of its differential aspect. Thus, the precision required on the
motion parameters is significant. In addition, this method does not allow us
to reconstruct surfaces that do not present any apparent contour (plane or
concave surfaces).

Finally, like discrete approaches, a class of method uses mapping of
particular primitives (token trackers). The problematic determination of
optical flow is thus not achieved and, as the continuous approaches imply
weak displacements of the camera, tracking is simplified and brings back
the problem of 2D sequence of primitives. Three similar methods were
proposed in this direction [RIV 87, ESP 87, XIE 89b, BOU 93]. Espiau and
Rives [RIV 87, ESP 87] considered the case of point type primitives. The
instantaneous measurement of 2D movement of a point in the image sequence
is used to refine the estimate of its 3D parameters at the time of sensor
displacement in the scene using a Kalman filter type recursive filtering. Xie
[XIE 89a, XIE 89b] extended this method to segments. Finally, this approach
is generalized to any type of parameterable geometric primitive in [BOU 93,
CHA 96]. This method will be described now.
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6.2.2. General principle

The camera is modeled in a traditional way by a perspective projection.
Without loss of generality, the focal distance of the camera is fixed to be equal
to 1. A point x = (x, y, z) coordinates in the camera frame is projected in
X = (X, Y, 1) coordinates with:

X =
1
z

x. (6.1)

Let Ps be a parameterable geometric primitive described by an equation of
the form:

h(x,p) = 0, ∀x ∈ Ps (6.2)

where h defines the nature of the primitive (point, line, sphere, etc.) and p
defines its parameter vector. The objective of the reconstruction is to estimate
the value of parameters p in order to reconstruct and localize primitive Ps

defined by h. Let Pi be the projection in the image of Ps. Primitive Pi can be
written as:

g(X,P) = 0, ∀X ∈ Pi (6.3)

where g defines the primitive nature and where the value of parameters P,
function of p, describes its configuration in the image.

In addition, using perspective projection equations (6.1), equation (6.2)
becomes:

h′(X, 1/z,p) = 0. (6.4)

If we exclude degenerated cases (such as ∂h′

∂z = 0, which occur, for
example, when a circle is projected in the image in the form of a segment
instead of an ellipse), the implicit functions theorem ensures the existence of
a function μ such that:

1/z = μ(X,pL) (6.5)

where pL is function of p.

For plane primitives (circle, etc.), function μ represents the plane in which
the primitive is placed. In a more general case of voluminous primitives
(cylinder (see Figure 6.1), sphere, torus, etc.), function g(X,P) represents the
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Surface
of the limbs

limbs

Figure 6.1. Projection of primitive (h) in the image (g)
and surface of the limbs (μ) in the case of a cylinder

projection in the image of limbs of the primitives and function μ, therefore
called the limb surface, expresses the relation between the points of Pi

and the corresponding points of Ps. Parameters pL, depending only on p,
describe the configuration of this surface in the pointer of the camera.

Let Tc = (V,Ω) be the kinematic torque of the camera where
V = (Vx, Vy, Vz) represents the translation speed of the camera and
Ω = (Ωx, Ωy, Ωz) represents its rotation speed. The variation of p, which
connects the projected primitive movement in the image to the camera
movement Tc can be explicitly calculated and expressed by:

Ṗ = LT
P

(
P,pL

)
Tc (6.6)

where LT
P(P,pL), known as the interaction matrix associated with P,

characterizes the interactions between the sensor and the primitive considered
[CHA 90, ESP 92].

The estimation of parameters p is carried out in two stages [BOU 93, CHA
96]: first, parameters pL characterizing the limb surface μ are obtained from
equation (6.6) using the measurement of Tc,P and Ṗ:

pL = pL

(
Tc,P, Ṗ

)
(6.7)
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With the help of geometric constraints on the type of primitive to be
reconstructed (line, cylinder, etc.), which are characterized by the equation
h(x,p) = 0, it is then possible to show, by intersection of the limb surface
with the center cone, the optical center of camera O and the generator,
g(X,P) = 0, with p parameters which characterize the studied primitive:

p = p
(
pL,P

)
. (6.8)

6.2.3. Some specific cases

6.2.3.1. Point

The estimation of position (x0, y0, z0) of a point can indeed be obtained
from this approach. In this simple case, the equation h of the primitive is given
by:

h(x,p) =

⎧⎪⎪⎨⎪⎪⎩
x − x0 = 0

y − y0 = 0

z − z0 = 0

(6.9)

Projection of the point in the image allows us to write the function g:

g(X,P) =

{
X − X0 = 0

Y − Y0 = 0
with

⎧⎪⎨⎪⎩
X0 =

x0

z0

Y0 =
y0

z0

(6.10)

Finally, surface μ is defined by:

1/z = μ
(
X,pL

)
= 1/z0. (6.11)

Depth z0 is obtained by way of equation (6.6) for point (see Appendix A):(
Ẋ0

Ẏ0

)
=

(−1/z0 0 X0/z0 X0Y0 −(1 + X2
0 ) Y0

0 −1/z0 Y0/z0 1 + Y 2
0 −X0Y0 −X0

)
Tc

(6.12)

which can be written in the form:

A
1
z0

= B (6.13)
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with:

A =
(

Vx − X0Vz

Vy − Y0Vz

)
and:

B =
(

αx

αy

)
=

(
X0Y0Ωx − (1 + X0

)2Ωy + Y0Ωz − Ẋ0(
1 + Y0

)2Ωx − X0Y0Ωy − X0Ωz − Ẏ0

)

The solution of the system is then given by:

1/z0 =
αx

(
X0Vz − Vx

)
+ αy

(
Y0Vz − Vy

)(
X0Vz − Vx

)2 +
(
Y0Vz − Vy

)2 (6.14)

Parameters x0 and y0 are then easily determined by:

x0 = X0z0, y0 = Y0z0

It is to be noted that a movement in the direction of point
(Vx = X0Vz, Vy = Y0Vz) does not make it possible to obtain its 3D position.

6.2.3.2. Line

A line can be represented by the intersection of two orthogonal planes:

h
(
x,p
)

=

{
A1x + B1y + C1z = 0

A2x + B2y + C2z + D2 = 0

with

⎧⎪⎪⎨⎪⎪⎩
A2

1 + B2
1 + C2

1 = 1

A2
2 + B2

2 + C2
2 = 1

A1A2 + B1B2 + C1C2 = 0.

(6.15)

A minimal and complete representation of a corresponding 2D line is given
by:

g(X,P) = X cos θ + Y sin θ − ρ = 0

with

⎧⎪⎪⎨⎪⎪⎩
cos θ = A1/

√
A2

1 + B2
1

sin θ = B1/
√

A2
1 + B2

1

ρ = −C1/
√

A2
1 + B2

1 .

(6.16)
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Moreover, function μ is easily obtained from (6.15):

1/z = μ
(
X,pL

)
= AX + BY + C with

⎧⎪⎪⎨⎪⎪⎩
A = −A2/D2

B = −B2/D2

C = −C2/D2

(6.17)

Finally, the relation between the movement of the line in the image (defined
by (ρ̇, θ̇)) and the speed of camera Tc is given by the interaction matrix
associated with parameters (ρ, θ) [ESP 92]:(

ρ̇

θ̇

)
=

(
λρ cos θ λρ sin θ −λρρ

(
1 + ρ2

)
sin θ −(1 + ρ2

)
cos θ 0

λθ cos θ λθ sin θ −λθρ −ρ cos θ −ρ sin θ −1

)
Tc

(6.18)

with λρ = −Aρ cos θ − Bρ sin θ − C, and λθ = B cos θ − A sin θ.

From the values measured from ρ, θ, ρ̇, θ̇ and Tc, it is now necessary to
estimate the parameters of the two planes, which define the line considered.

Parameters A1, B1 and C1 are immediately deduced from ρ and θ. Then, as
explained earlier, the parameters describing the function μ are determined by
using the measurement of the camera speed and the apparent velocity of the
line in the image which results from it. Thus, parameters A, B, C are given by
the resolution of the following linear system:⎧⎪⎪⎨⎪⎪⎩

−Aρ cos θ − Bρ sin θ − C = λρ

−A sin θ + B cos θ = λθ

A cos θ + B sin θ − Cρ = 0

(6.19)

where λρ and λθ are obtained from (6.18):⎧⎪⎪⎪⎨⎪⎪⎪⎩
λρ =

ρ̇ +
(
1 + ρ2

)(
ΩY cos θ − ΩX sin θ

)
VX cos θ + VY sin θ − ρVZ

λθ =
θ̇ + ρ

(
ΩX cos θ + ΩY sin θ

)
+ ΩZ

VX cos θ + VY sin θ − ρVZ
.

(6.20)

Finally, we obtain D2 = 1/
√

A2 + B2 + C2, A2 = −AD2, B2 = −BD2,
and C2 = −CD2.
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6.2.3.3. Cylinder

A cylinder is characterized by the following equation:

h(x,p) =
(
x − x0

)2 +
(
y − y0

)2 +
(
z − z0

)2
− (ux + vy + wz

)2 − r2 = 0
(6.21)

where r is the radius of the cylinder, (u, v, w) represents the directing vector of
the axis of the cylinder and (x0, y0, z0) are the coordinates of the point of the
axis of the cylinder nearest to the optical center O of the camera. The function
relative to the limb surface μ is given by:

1/z = μ(x,PL) = AX + BY + C

with

⎧⎪⎪⎨⎪⎪⎩
A = x0/

(
x2

0 + y2
0 + z2

0 − r2
)

B = y0/
(
x2

0 + y2
0 + z2

0 − r2
)

C = z0/
(
x2

0 + y2
0 + z2

0 − r2
) (6.22)

where A, B, and C are the normal vector components in the limb surface of
the cylinder. The image of a cylinder is made up of two lines whose parameters
ρ and θ can be expressed according to P parameters. The interaction matrix
associated with each line is given by equation (6.18), the only difference as
compared to the previous case being the value of pL parameters intervening in
λρ and λθ. Parameters pL are estimated by the resolution of the linear system
constructed from the interaction matrix associated with the two lines. It is
then possible to achieve parameters p. Let us note that the cylinder can also
be reconstructed using the projection of only one of its limbs [BOU 93].

Similar results can be obtained for other parameterable geometric
primitives. Circles and spheres, for example, are described in [BOU 93].

6.2.4. 3D reconstruction by active vision

The previously described method proves ineffective to precisely
reconstruct a geometric primitive. From its continuous aspect, it is confronted
with discretization errors and is, moreover, very sensitive to measurement
noise. Traditionally, in order to try to solve these problems and increase the
robustness of solutions, the processes of recursive filtering [MAT 89, BOU 89,
VIA 92, CRO 92] or the non-linear optimization processes [WEN 92] are
implemented. Another way of solving this problem is to use the paradigm of
the active vision [ALO 90, BAJ 88, SWA 93].
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6.2.4.1. 3D reconstruction by active vision: state of the art

Contrary to dynamic vision where it is only necessary to observe camera
movement, in the case of active vision, this movement is controlled. Although
works relating to active vision have multiplied during the past few years, few
researchers tried to know with regard to the problem of reconstruction from
movement whether there were trajectories of the observer, which are more
beneficial than others. However, this aspect is covered in the following chapter.

Sandini and Tistarelli proposed two approaches, one relying on a
co-operation between stereovision and movement [SAN 86] and the other
based on the use of a moving monocular system [SAN 90]. The first
approach, aiming at a robust estimate of a depth chart [SAN 86], uses a
moving stereoscopic sensor. The objective is to define displacement strategies
of the sensor, which enable the stereoscopic system to acquire reliable
information. Moreover, the stereovision must help the acquisition of 3D
information obtained from movement. Indeed, a stereoscopic sensor is
unsuited for acquiring reliable information on contours whose orientation
is close to epipolar lines, whereas the analysis of movement is problematic
on contours whose orientation in the image is close to projection in the
image from the direction of the translation movement. An optimization of
these two systems is obtained by controlling the camera in such a way that
the fixation point remains immobile along the image sequences, since the
trajectory of movement is itself a constraint on a vertical plane. The apparent
velocity field is obtained in two stages: the rotation velocities are obtained
by measuring the rotation angle of the camera around the axis x; then, the
translation components are obtained using this angle and the distance to the
fixation point obtained by stereovision. This information and the components
of normal velocity at contours allow a complete interpretation of the apparent
velocity field, which leads to the determination of a depth chart. This chart is
then fused with the depth chart obtained by stereovision.

The second approach suggested by Sandini and Tistarelli [SAN 90] uses an
active monocular approach in the sense that here also, the camera is controlled
in order to stabilize the fixation point along the image sequence (strategy close
to that of Aloimonos [ALO 87] in the study of the problem of “structure from
motion”). These constraints imposed on the movement of the scene in the
image make it possible to easily reach the parameters of camera movement.
The estimate of the 3D structure of the scene relies on the mapping of points,
the analysis of the apparent movement of these points in image sequences and
the estimate of the camera movement. It remains that the contribution of active
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vision in these two approaches is no longer obvious. A quantitative (and even
qualitative) study would have been interesting.

Huang and Aloimonos [HUA 91] are placed mainly within the context of
purposive vision to solve the problem of estimating structure from motion. The
studied problem deals with the localization of mobile objects with respect to
one another. The proposed solution makes it possible to avoid the difficult
stages of estimating the 3D movement and the estimation of the apparent
motion field. It depends only on the use of the spatial and temporal derivatives
of the function of light intensity and thus on the components perpendicular
to apparent velocity contours. This estimate is indeed much easier to obtain.
However, the depth chart thus determined will not be complete. The strategy of
camera displacement is very simple since it consists of a translation movement
along the optical axis. This approach gives good results which are relatively
robust to noises except of course in the area close to the optical axis.

6.2.4.2. Optimal 3D reconstruction of a primitive

The purpose of the method described here is to determine adequate camera
movements in order to obtain an optimal estimate of the characteristics of
the primitive. This optimization problem is approached under two different
aspects:

– suppression of discretization errors;

– minimization of the effects of measurement errors (measurement errors
in the images and measurements of camera movement).

6.2.4.2.1. Suppression of discretization errors

The 3D reconstruction method that was previously presented relies on
the apparent velocity measurement of the primitive in the image (i.e., Ṗ,
the velocity of the parameters representing the projection of the primitive).
However, this value Ṗ is not directly measurable; the values measured in the
sequence of images authorize only the measurement of ΔP, which represents
the variation of parameters P during the interval of time Δt between two
images. The use of ΔP/Δt instead of Ṗ in the estimate of 3D parameters of
the primitive can lead to gross errors. A manner of solving this problem is to
ensure the following equality:

Ṗ =
ΔP
Δt

, ∀t. (6.23)



238 Visual Perception through Video Imagery

Consequently, discretization will no longer have any effect on the quality
of reconstruction. Such a condition will be satisfied only if:

P̈ = · · · = P[n] = 0, ∀t. (6.24)

From (6.6), noted here by Ṗ = f(P,pL,T), it is possible to deduce:

P̈ = LT
P

(
P,pL

)
Ṫ +

∂f

∂P
Ṗ +

∂f

∂pL
ṗL. (6.25)

A condition sufficient to satisfy (6.24) is to constrain the camera
movements such that:

Ṗ = ṗL = 0, ∀t. (6.26)

Indeed, in this case T ∈ KerLT
P, ∀t. Using (6.26), we can show that

Ṫ ∈ KerLT
P, ∀t, from which we can deduce that P̈ = 0, ∀t. Therefore, a

recurrent method allows us to show that (6.24) is always verified.

In other words, a solution to remove discretization errors is that the limb
surface of the primitive remains motionless in the pointer of the camera and
that, moreover, 3D primitive projection appears in the same position in the
image when the camera is moving. It is possible to show that except in the
case of point and lines, the first condition Ṗ = 0 implies the second ṗL = 0,
which then reduces the problem to a fixation problem.

NOTE 6.1. The above suggested condition to remove discretization errors
is only sufficient, but not compulsorily necessary. Indeed, there are camera
movements such that P̈ = 0 with Ṗ 	= 0. For a point, for example, we can
show [BOU 93] that P̈ = 0 when the camera moves according to a translation
movement parallel to the image plane with constant velocity (i.e., Vx = V1,
Vy = V2 and Vz = Ωx = Ωy = Ωz = 0). Generally, calculating all the
solutions of the non-linear system (6.24) seems out of reach. Moreover, as
these solutions depend on the knowledge of ∂f

∂P and ∂f
∂pL

, they strongly depend
on the nature of the primitive considered. On the other hand, condition (6.26) is
valid irrespective of the nature of the primitive. Moreover, it has the advantage
of maintaining the primitive in the vision field of the camera throughout the
estimate process.
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6.2.4.2.2. Minimizing the effects of the measurement errors

The configuration of a primitive in the image influences the quality of its
estimate. It is thus shown in [BOU 93] that certain constraints on the primitive
position in the image and constraints on the camera movement are necessary
for a good parameter estimate of the primitive considered.

Let p be one of the parameters representing the primitive to be
reconstructed; then, errors on the estimate of p are closely related to
measurement errors on visual information P and Ṗ as well as on camera
movement T. If the measurement errors on P, Ṗ, and T are assumed to be
decorrelated, the uncertainty σp on the estimation of p can then be expressed
in the following manner:

(
σp

)2 =
m∑

i=1

(
∂p
∂Pi

)2(
σPi

)2 +
m∑

j=1

(
∂p
∂Ṗj

)2(
σṖj

)2 +
6∑

k=1

(
∂p
∂Tk

)2(
σTk

)2
.

(6.27)

where Pi(i=1...m), Ṗj(j=1...m) and Tk(k=1...6) are the different components of
P, Ṗ and T, respectively. Minimizing σp then amounts to minimizing each
term (∂p

∂a)2 where a represents each of the variables of Pi, Ṗj and Tk. Then,
there remains to determine the values of P such that:(

∂
(∂p

∂a

)2
∂Pj

)
= 0, ∀a and ∀j = 1 to m. (6.28)

Analytically determining the solution of such a system seems impossible.
Yet, the derivation of interesting specific solutions remains possible. Thus,
solutions were given for the principal geometric primitives (point, line,
cylinder, sphere, circle) [BOU 93]. For example:

– In the case of a point, the effects of measurement errors on its depth z
are minimized if the point constantly appears in the center of the image (i.e.,
X = Ẋ = Y = Ẏ = 0, ∀t) and if in addition we have Vz = Ωz = 0. This
means that the camera must move on a sphere whose center is the point to be
reconstructed.

– In the case of a line, the effects of measurement errors are minimized
if this appears centered and vertical (or horizontal) in the image and if, in
addition, Vy = Vz = Ωx = 0 (or Vx = Vz = Ωy = 0) (see Figure 6.2a).



240 Visual Perception through Video Imagery

(a) (b)D

Figure 6.2. Optimal movements of the camera for the (a) estimate of a line and (b) estimate of
a cylinder. For each of these illustrations, the drawing on the left represents the object to be
reconstructed as well as the trajectory of the camera (schematized by a triangle) and that on

the right represents the image perceived by the latter

– Lastly, in the case of a cylinder, the effects of measurement errors are
minimized if it is projected in two parallel symmetric vertical line forms (or
horizontal) in the image along with Vy = 0 (or) Vx = 0. The camera must
then move on a circle whose center is crossed by the axis of the cylinder and
is perpendicular to it (see Figure 6.2b).

The two tasks necessary for the process of optimal estimate of the 3D
parameters of a primitive are thus a fixing task and a focusing task. These
two tasks are similar to those specified by Sandini [SAN 90] or Aloimonos
[ALO 87] in the solutions they proposed to the problem of structure from
motion (let us recall that this task consisted of stabilizing fixation (“gaze
control”) point along the image sequence). The conclusions resulting from
[BOU 93], however, go much further since in each case, additional constraints
were imposed on the trajectory of the camera (suppression of movements in
the direction and around the optical axis in the case of point (Vz = Ωz = 0),
movement along the axis in the case of line (Vy = Vz = Ωx = 0) or cylinder
(Vy = 0)). Indeed, these movements do not bring any information within the
context of the 3D reconstruction process. Here, the principle of purposive
vision [ALO 90] is applied, where useless movements (or actions) are
removed.

6.2.5. Generation of camera movements

Visual servoing techniques [ESP 92, HUT 96] allow us to carry out
various movements automatically satisfying the constraints necessary for an
optimal estimate (fixation tasks and focusing tasks). Visual servoing consists
of introducing information extracted directly from the image in a command
loop directly and in closed loop. In our case, tasks are expressed as the
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regulation at zero of a task function combining a primary task (such that the
primitive appears in the image in its desired position) and a secondary task.
This secondary task is constructed in order to allow camera movements while
ensuring the realization of the primary task.

In section 6.2, we defined the interaction matrix L (see equation (6.6)). This
matrix is the basis of the mechanism of visual servoing because it makes it
possible to connect the movements of an object in the image to the movement
of the camera.

Vision tasks can be expressed as the zero regulation of the following task
function:

e1 = C
(
P − Pd

)
(6.29)

where P is a vector representing the set of visual information selected to
carry out the task (i.e., the current value of parameters representing the
primitive considered, measured in the image in each iteration of command
loop) and Pd represents its desired value. C, called the combination
matrix, can be defined by: C = WLT+

P (P, p̂L), where the parameters pL

used in the interaction matrix are estimated online using the 3D estimate
process, presented previously. W is defined as a full row matrix such as
KerW = KerLT

p (p, P̂). L+ indicates the pseudo-inverse of the matrix L.

If the task of specified vision does not constrain n degrees of robot freedom,
the redundancy available can be used to achieve a secondary task; then, we
obtain the following task function:

e = W+C
(
P − Pd

)
+
(
In − W+W

)
gT

s
(6.30)

where:

– W+ and In −W+W are two projection operators which ensure that the
camera movement due to the secondary task is compatible with the regulation
of P towards Pd. In fact, as a result of choosing W, In−W+W theoretically
belongs to kernel Ker LT

P, which implies that the realization of the secondary
task will not have any effect on the primary task (LT

P(In − W+W)gT
s = 0).

However, if the parameters p̂L are wrongly estimated, then the projection
operator In − W+W will not exactly belong to Ker LT

P and the secondary
task will introduce a disturbance in achieving the visual task.

– gs is a secondary task, which can be expressed as a gradient of a function
hs to be minimized (gs = ∂hs

∂r ). This cost function is thus minimized under
the constraint that e1 is realized.
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The control issue amounts to the regulation of the task function e. The
latter is perfectly achieved if, at each moment t: e(t) = 0. A general method
making it possible to regulate the task function e is presented in [SAM 91].
A simplified command law, which calculates the camera speed Tc and which
ensures an exponential decrease of the task function e is given by [CHA 90,
ESP 92]:

Tc = −λe − (In − W+W
)∂gT

s

∂t
(6.31)

where λ is a gain regulating the exponential convergence velocity of e.

We will now illustrate the control law used in the reconstruction process of
3D primitives for the particular case of the point.

The interaction matrix of a point is given by equation (6.12). By knowing
LP, it is easy to calculate its pseudo-inverse L+

P. LP being full row 2, we have

W = LT
P and thus W+ = LT+

P .

The secondary task gs is selected as equal to:

gs =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x(t) − x(0) − V1t

y(t) − y(0) − V2t

z(t) − z(0) + (X(t)V1 + Y (t)V2)t
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6.32)

where (x(t), y(t), z(t)) is the present position of the camera and
(x(0), y(0), z(0)) is its initial position. V1 and V2 are two constants that the
user chooses in order to obtain a constant velocity movement in the �x and �y
directions of the camera pointer. The choice of the third component gs allows
us to ensure the constraint ż = 0 canceling the discretization errors.

When the task is perfectly carried out (i.e., when X = Y = 0), we have:

Tc = −(I − W+W
)∂gs

∂t
=

z

1 + z2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−zV1

−zV2

0
V2

−V1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.33)
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which corresponds to a camera movement on a sphere centered on the point if
the value estimated from z is correct.

6.3. Reconstruction of a complete scene

The problem which interests us now is that of the complete reconstruction
of a scene containing several objects. Indeed, if the preceding method allows
a very precise and reliable estimate of parameters of the primitives concerned,
it makes it possible to rebuild only one primitive at a time. Thus, the purpose
of this section is to describe perception strategies capable of providing a
precise and complete 3D representation of the scene. In a way, the approach
used consists of automatically selecting relevant image information and then
successively focusing the camera on various objects of the scene in order to
reconstruct them. Exploration phases are particularly necessary in order to
ensure the completeness of the reconstruction.

6.3.1. Automatic positioning of the camera for the observation of the scene

The majority of works discussing observation or exploration of scenes
assume as known a complete model of the scene [COW 88, TAR 95]. The
problem is more complex if information on the scene is incomplete or zero
(i.e., if the sensor moves in an unknown environment). Then, it is necessary to
carry out an autonomous exploration task. Many articles [CON 85, WIX 94,
MAV 93, WHA 94] deal with this problem under different angles. Connoly
[CON 85] proposes using a laser sensor to determine a complete model of
the scene from a set of viewpoints. He describes the algorithm known as
planetarium, which uses decomposition in octree of the scene. The camera
moves on the surface of a regularly sampled sphere circumscribed at the
scene. The viewpoint making it possible to reveal the most important unseen
zone is selected. Maver and Bajcsy [MAV 93] use occlusions to determine
various viewpoints necessary to acquire 3D information of the hidden parts
of the environment. The sensor is composed of a camera and a laser plane.
In [WIX 94], Wixson describes strategies to find an object known in an
encumbered zone. He explores various strategies for the exploration of a 2D
world with the help of a 1D sensor. Two alternatives for the planetarium
algorithm are proposed: the first based on the search for the point of view
offering the maximum visibility of the still unknown zones and the second
supporting the point of view that minimizes sensor displacement. Another
strategy studied is based on the use of occluded edges. The principal
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interest of this method rests on the cost and the benefits of the perception
operations carried out.

6.3.2. Scene reconstruction: general principle

In addition to the basic general assumptions on the maximum size of the
scene and the nature of objects constituting it (in fact segments and cylinders),
the only data that we have are those provided by 2D images acquired by the
camera. The perception strategies presented thereafter are mainly based on the
use of this 2D information. One of the fundamental stages of our algorithm
is thus the creation of databases containing this information. The databases
mainly used, noted by ωφt

(where φt represents the position of the camera),
contain the list of segments corresponding to the projection of visible objects
of the scene in the image from the φt position. Each segment is associated
with information indicating its position in the image and whether or not it was
processed.

The algorithms of image processing that we use during visual control
phases and reconstruction authorize only a real-time sequence of a small
number of segments [BOU 93]. Hence, in order to respect the real-time
constraint, these databases cannot be created in each iteration of the estimate
process, but only at the end of reconstructing a primitive (i.e., when a
specified precision or a maximum number of iterations are reached).

In addition, a second database, noted by ΩΦt
, is also used. It regroups all

databases ωφi
, i = 1 to t. More precisely, ΩΦt

contains the set of segments,
which have not yet been subjected to a reconstruction at moment t and the
position of the camera from which they are observed.

From a viewpoint φt and using the already collected 3D information, it
is possible, by using an algorithm of launching rays, to calculate the zone
observed V (φt). Let us note by V(Φ) the space zone observed by the camera
from the beginning of the reconstruction process (i.e., 3D primitives and
known free space). We have:

V(Φt

)
=

t⋃
i=1

V
(
φi

)
, with Φt =

t⋃
i=1

φt (6.34)

The reconstruction of the scene will be completed when:

∀φt+1 ∈ E , V(Φt

) ∪ V
(
φt+1

)
= V(Φt

)
(6.35)
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where E defines the set of viewpoints, which can be reached by the camera
during the exploration process. This means that exploration is as complete
as possible if, for all the pertaining viewpoints at E , the camera observes an
already known zone. By using the information observed (i.e., the database
ΩΦt

and the partial chart of the environment), we can define strategies of
positioning the camera, which will ensure a reconstruction of the scene as
complete as possible. This exploration process, making it possible to calculate
the position φt+1, is made up of two distinct levels:

– a local exploration is carried out if a segment corresponding to a new
primitive appears in the vision field of the camera or if such a segment was
previously observed from another position of the camera. In this case, an
explicit calculation from a viewpoint is not necessary;

– on the other hand, in other cases, when all the previously observed
segments have been reconstructed, a more complex strategy must be
implemented in a manner to focus the camera on the zones of the scene which
have not been observed yet. Then, we will discuss global exploration.

6.3.3. Local focusing strategy

In order to minimize the displacement of camera, it is desirable to
implement a local strategy using the current knowledge on the scene in an
explicit way [MAR 99b]. This strategy is controlled by events detected in the
image and by previously acquired 3D information.

The approach is based on the following assumptions: the scene consists of
3D objects connected by topological relations; the projection of 3D objects
in the image can be represented by a graph where the nodes are the multiple
junctions and the arcs, contours. Each arc of this graph corresponds to a 2D
segment of the current database ωφt

(Figure 6.3b). These arcs are valued
according to their position in the image and the possible knowledge that we
have on the corresponding 3D primitive (i.e., whether they correspond or not
to the projection in the image of an already reconstructed primitive). If several
arcs of this graph prove to be the projection of non-reconstructed primitives,
a choice is made to know which one to select. This choice paving way for
minimizing the distance covered by the camera is realized using the graph and
the current database. We search for an untreated segment related to the one that
has just been reconstructed. If such a segment exists and is single, it is retained
and reconstructed. If such a segment does not exist or is not single (case of a
multiple junction), the segment whose position in the image is closest to an
optimal position for reconstruction is then retained.
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(a) (b)

Figure 6.3. (a) Acquired image (b) 2D databases
(segments in dotted lines were already reconstructed)

If all segments of ωφt
correspond to primitives that were already

reconstructed, we search for an untreated segment ΩΦt
in the total database.

The camera then moves to a position from which it had been observed
(backward return phase) and a reconstruction of the primitive associated with
this segment is carried out.

We finally obtain a 3D modeling of a part of the scene considered.
However, this modeling remains a low level modeling and is sometimes
incomplete. As regards the segments, it is desirable to go by a hierarchical
representation in terms of 3D segments, 3D junctions, polygons and, as
far as possible, sides, etc. The method developed for this purpose comes
on top of the algorithm of incremental reconstruction and depends on
prediction/hypothesis verification techniques. Due to uncertainties in
measurements and observations, we used a probabilistic approach. The
generation of an assumption is done using the present 3D model, and also
by being based on a certain number of very general deductions on the
characteristics of a polyhedric scene. Let us note that in no case are these
deductions opposed to assumptions that were initially realized on the type of
scenes that we decided to study (namely, any preliminary knowledge about
the number and localization of the primitives and objects of the scene). The
knowledge that we introduced is coded in Bayesian networks. Bayesian
networks indeed lend themselves very well to reasoning and decision-making
in the presence of uncertainty [PEA 88, DJI 96]. In our case, these networks
make it possible to put forth assumptions on the existence and localization of
new objects, then to propose the execution of an action leading to verify or
confirm this assumption and, finally, according to the result of verification
stage, to supplement the 3D model of the scene. The verification stage is
simultaneously based on the observations already carried out on the scene,
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and also on an acquisition of new information requiring a displacement of the
sensor (displacement that is automatically produced by visual control). Lastly,
modeling of the scene and creation of new objects (junctions, polygons, etc.)
depend on 3D and 2D information coming from the set of reconstruction
process already realized, and on the contribution of information introduced
by validated assumptions [MAR 99b].

Following this approach enables us to have a modeling of the scene in terms
of objects and no longer in terms of simple primitives like 3D segments (see
Figure 6.4).

(a) (b) (c)

Figure 6.4. “Polyhedral” scene (a) initial image of the scene (b) model acquired by making
use of only the incremental reconstruction module (c) reconstructed model by making use of

the prediction/hypothesis verification module

The local strategy that we presented ensures an effective reconstruction
of any primitive which was observed during the reconstruction process. It
does not call for an explicit calculation from new points of view and locally
minimizes the displacement of the camera. However, it does not ensure a
complete reconstruction of the scene. To solve this problem, a global strategy
must be implemented.

6.3.4. Completeness of reconstruction: selection of viewpoints

When all the primitives observed during local exploration phases are
reconstructed (the database ΩΦt

is empty), we must determine the viewpoints
of the camera allowing us to possibly discover new objects to be reconstructed
and thus ensure the completeness of reconstruction. Such viewpoints are
calculated using the current knowledge on the spatial geometry of the scene
and a representation of the already observed spatial zones.

6.3.4.1. Calculation of new viewpoints

Viewpoint search is carried out by minimizing a cost function F(φ), which
represents the quality of a viewpoint φ. We have retained three criteria, which
are integrated in this function:
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– discovered volume gain brought by the new position: since the purpose
of exploration is the acquisition of additional information on the scene, it is
imperative to model this gain in the cost function;

– displacement cost towards the new position: such a criterion is justified
by the fact that we wish to have a minimal length trajectory by avoiding camera
movements of great amplitude;

– accessibility: the new point of view must obviously be accessible to
camera.

Each of these criteria is associated with a value measurement in [0, 1]∪∞.
A value of measurement close to 0 indicates that there is maximum satisfaction
brought by this viewpoint with respect to the related criterion. On the other
hand, a value close to 1 indicates that the position does not have any interest
with respect to the related criterion. Lastly, an infinite value indicates that the
position is to be automatically rejected.

The gain brought by a new position φt+1 is defined by the volume of the
unobserved zone, which appears in the cone of camera vision when it moves
from φt to φt+1. The discovered zone from this position corresponds to the
G(φt+1) zone defined by (see Figure 6.5a):

G(φt+1

)
= V(φt+1

)− V(φt+1

) ∩ V(Φt

)
(6.36)

The measurement of gain related to position φt+1 is therefore given by:

g
(
φt+1

)
= 1 − volume

(G(φt+1

))
volume

(V(φt+1

)) (6.37)

NOTE 6.2. Zone G(φt) corresponds to a potentially discovered zone. In fact,
if a new object appears in the vision field, occlusions due to this object cause
the really observed zone G′(φt) to be smaller than (G′(φt) ⊆ G(φt)).

K

zones observed from the new position

Potential gain brought by the new postion

zones observed earlier

Axis i

Figure 6.5. Calculation of gain and cost function
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Cost measurement of displacement between two positions φt and φt+1 is
defined by calculating the distance between φt and φt+1. More precisely, this
cost is given by (see Figure 6.5b):

C(φt, φt+1

)
=

1
Nddl

Nddl∑
i=1

βi

∣∣qit
− qit+1

∣∣∣∣QiMax − QiMin

∣∣ (6.38)

where:

– Nddl represents the number of degrees of freedom of the robot;

– qi represents the articular coordinate of the axis i (φ = (q0, q1, . . . ,
qNddl

));

– |QiMax − QiMin | is the distance between two joint limits of the axis i;

– βi coefficients are weights, which make it possible to support
displacements on certain axes of the robot (rotation movements of the camera,
for example, can be preferred to translation movements).

Moreover, an additional constraint is associated with certain positions of
the robot. This constraint tends to ignore unattainable positions for the camera
because of the joint limits of the robot or due to the presence of obstacles. An
infinite penalty is given to a position if it is not accessible:

A(φ) =

{
0 if φ is accessible

∞ otherwise
(6.39)

Cost function F(φt+1) is defined by the weighted sum of these different
measurements:

F(φt+1

)
= A(φ) + α1g

(
φt+1

)
+ α2C

(
φt, φt+1

)
(6.40)

Determination of coefficients αi in an optimization problem of this type
is a non-trivial problem. We are contented to choose these coefficients in
an empirical way. However, their value fixes the associated priority order to
each criterion; accessibility of course has priority (the “binary” character of
its result makes any weighting process pointless). Moreover, the discovery of
new zones to be explored being our objective, we have chosen α1 > α2.
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6.3.4.2. Optimization

Each position φ can a priori be a solution to this optimization problem.
However, in order to overcome the problem, we authorize the camera to move
on the surface of a circumscribed sphere at the scene. The position of the
camera can then be described by a vector with five parameters (θ, ϕ, α, β, γ),
where θ and ϕ represent the latitude and the longitude of the camera on the
sphere, respectively, and α, β and γ represent the orientation of the camera.

It is also possible to move in the interior of this sphere if the accessibility
zones of the camera are restricted to already observed zones that do not
contain possible obstacles [MAR 99a]. To minimize F(φ), we chose to
use a traditional deterministic method of gradients type combined with a
diminishing step in various levels: first, we use huge increments in order
to determine the space area of parameters where the optimum of the F(φ)
function is probably located. Then, we reiterate the process from this
new position with a weaker increment. Contrary to stochastic methods of
simulated annealing, we can only ensure that convergence is carried out
towards the total minimum of the function. However, the gain in calculation
time is very important and the experiments showed that a correct optimum is
always reached in a lesser number of iterations. Moreover, the interest to find
a total minimum of the cost function did not appear fundamental to us insofar
as a position bringing important and additional information is found.

6.4. Results

The experiments presented in this chapter were carried out on the robotic
vision cell of IRISA composed of a CCD camera mounted on the effector of a
robot with 6 degrees of freedom.

The creation of databases ωφt
, including extraction of contours

(Shen-Castan filter and thresholding) and a polygonal approximation of
contours, was carried out in a SUN SPARCS Station 20 workstation in
1 second approximately. For 3D reconstruction phases by active vision,
image processing was carried out on a specialized chart. The processing
consists of following on the sequence of acquired images the 2D segment and
determining the parameters (ρ, θ) describing its position in the image. The
extraction and follow-up of the segment (in fact a list of contour points) were
carried out in 80 ms. The method used is described in [BOU 93]. It is based
on a local and reliable mapping of moving contour elements constituting
the selected line. The estimate of 3D parameters of primitives as well as
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the calculation of the command were also carried out in a SUN station at
a rate of 10 Hz. The calibration process employed depends on the method
suggested in [CHA 89]. Finally, calculation from a new viewpoint, resulting
from the minimization of functional (6.40), was carried out in approximately
1 second with accuracy of a centimeter and in approximately 10 seconds with
a precision in the order of a millimeter.

6.4.1. Reconstruction of 3D primitive: case of the cylinder

At first, we present results related to the reconstruction of a cylinder in
order to show the interest of this reconstruction method by active vision. More
complete results are described in [BOU 93]. In order to obtain a reliable and
non-biased estimate of its parameters, the cylinder must appear centered and
vertical or horizontal in the image (see Figure 6.6) during the movement of
the camera, which undergoes a rotation in constant distance of the axis of
the cylinder. The techniques of visual control were thus employed to carry
out this task in real-time: an iteration of command loop and an estimate are
simultaneously carried out in 100 ms. Figure 6.7 presents an error between the
estimated value of the radius and its actual value (i.e., ri − r∗) obtained using
an estimate based on the two limbs of the cylinder.

(a) (b)

Figure 6.6. Cylinder to be reconstructed before and after the focalization task

Stability tests were also carried out. The parameters of the cylinder were
estimated 50 times on the basis of different initial positions. The reported
results in Figure 6.7b show, for each of the 50 estimates, the estimated radius
r̂ as well as the standard deviation σr̂ on this estimate. For each estimate, the
error between the estimated value and the actual value is less than 0.1 mm and
the standard deviation on the set of averages is less than 0.02 mm. This shows
that the reconstruction algorithm is reliable, stable and precise.
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Figure 6.7. (a) estimate of radius Ri − R∗ (in mm); (b) stability tests

6.4.2. Perception strategies

The scene considered is made up of a cylinder and several polygons
arranged on different planes. Figure 6.8 shows an exterior view of the scene
and various objects that make it up.

Figure 6.8. Exterior view of the scene

6.4.2.1. Local exploration

Figure 6.9 represents images acquired before each optimal reconstruction.
Each of these images is associated with the corresponding 2D database.
Continuous lines show database elements, which have not been treated yet.
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(a) (b)

(c) (d)

Seen from position Ø0

Seen from position Ø2 Seen from position Ø6

Seen from position Ø1

Figure 6.9. Local exploration of the scene

Dotted lines represent segments corresponding to already reconstructed 3D
primitives.

Figure 6.9a shows the image acquired from the position φ0 of the camera.
No further reconstruction was carried out and only three segments are visible
from this position. We can note that the complete scene is not visible from
this position of the camera. The segment extracted from database ωφ0 is that
corresponding to the right side limb of the cylinder. After the reconstruction
phase of the cylinder, the camera is positioned in φ1 (Figure 6.9b). All
segments of the database ωφ1 were treated. After consultation of the global
database ΩΦ, we note that a segment was observed from the position
φ0 and was not reconstructed yet. The camera thus moves in φ0 and is
focused on the segment selected. After the estimation of this primitive, the
camera is positioned in φ2 (Figure 6.9c). Two segments corresponding to
non-reconstructed primitives appear in the database ωφ2 . The segment nearest
to the center of the image is selected and reconstructed. This process is
renewed until all primitives observed during this phase of local exploration
are estimated (Figure 6.9d corresponding to position φ6 of the camera). Let us
note that primitives that did not appear in the initial vision field of the camera
were discovered and reconstructed. The estimated scene at this stage of the
reconstruction process is presented in Figure 6.10.
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(a) (b)

Figure 6.10. Result of the local exploration of the scene considered: (a) reconstructed scene
and projection on a virtual plane of the non-observed zone; (b) side view representing the

reconstructed scene and the occluded zones

6.4.2.2. Total exploration

Figure 6.11 shows the different stages necessary for a complete exploration
of the scene. Each figure describes the reconstructed scene, the trajectory
of camera up to its current position and a visualization of the non-observed
zone. Figure 6.11a corresponds to position φ6 of the camera obtained as

a b c

d e f

g h

Figure 6.11. Various stages of total exploration (trajectory of camera, reconstructed scene,
and projection on the ground of the non-observed zone)
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Figure 6.12. Visualization of the reconstructed scene and polar view of the final
trajectory of the camera during total exploration

a result of local exploration described in the preceding section. The first
displacements of the camera (see Figures 6.11b and 6.11c) make it possible to
decrease the area of the non-explored scene. From position φ13 represented in
Figure 6.11d, a new primitive is detected marking the beginning of a second
phase of local exploration, which is completed in stage 24 (Figure 6.11f).
The two polygons at the top of the scene are then reconstructed. A new
total exploration brings the camera in φ25 (Figure 6.11g) where a segment
pertaining to the last object (a telephone card) appears. After a last local
exploration, allowing the reconstruction of 4 sides of the card, the camera
is in position φ30 (Figure 6.11h). At this stage, 97% of space was observed
thus ensuring a complete reconstruction of the scene. Figure 6.12 shows a
3D visualization of the scene such as it was reconstructed, as well as the
trajectory of the camera during total exploration.

Presently, we analyze the influence of the coefficients αi of equation
(6.40) on the path of camera. In particular, we highlight the importance of
considering the distance between two successive viewpoints in the energy
function. The scene consists of a cylinder and a polygon, which were
reconstructed during a phase of local exploration. The first strategy does not
take into account the distance covered by the camera and thus is mainly based
on a maximization of the zone discovered for each viewpoint (coefficient
α2 in equation (6.40) is zero). The second strategy takes into account this
distance and thus tends to decrease the total distance covered by the camera.
Figures 6.13b and 6.13c show the various trajectories carried out leading to a
total exploration of the scene. Figure 6.14a shows the volume percentage of
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(a) (b)

Figure 6.13. Total exploration of the scene: trajectory of the robot without taking
into account the displacement cost (α2 = 0) (a) and by taking into account

the displacement cost (α2 > 0) (b)
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Figure 6.14. Percentage of observed scene (a) and distance covered by camera (b)
according to the number of calculated viewpoints

the scene observed after each new position of the camera. Figure 6.14b shows
the cumulative distance covered by the camera for the two strategies. It will
be noted that if the distance covered is not taken into account, the camera
executes a trajectory in “bee flight” whereas such movements no longer occur
if the distance is introduced in energy function.

Let us finally note that in this case the residual zones that were not observed
(less than 3% of the total volume) correspond to occluded zones located under
cylinder and rectangle (see Figure 6.15) or to zones located in the periphery of
the scene. There are three solutions for this problem:
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Figure 6.15. Zones of the scene which remains to be observed (top view and front view)

– initially, it is possible to no longer limit ourselves to displacements
only on the surface of the sphere, but to be able to penetrate to its interior.
Accordingly, it is advisable to verify that the viewpoint is accessible to the
camera (i.e., whether it belongs to an already observed zone, which does not
contain an object);

– we can then use the same algorithm of total exploration as earlier but
by restricting ourselves to each small zone circumscribed in the residual
non-observed zones. Then, the gain brought by a new viewpoint will no longer
be negligible (see Figure 6.16).

– in addition, to solve the problems of occlusions, it also seems promising
to be focused on the occluded segments and to then observe the zones occluded
by these segments.

These different points are discussed (partly for the latter) in [MAR 96,
MAR 99a].

6.5. Conclusion

In this chapter, we presented a method allowing the reconstruction of a 3D
environment using a sequence of images acquired by a mobile camera. We
described a reconstruction process allowing a precise and robust estimate
of the parameters of a geometric primitive. Since this method is based on
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a b c

d e f

Figure 6.16. Reconstruction of a polyhedron (a) image of the scene, (b) two polygons were
reconstructed after a local exploration phase, (c) unobserved zones of the scene after this first
phase resulting from occlusions, (d) Scene model at the end of reconstruction, (e) unobserved
zones remaining at the end of total exploration (the unobserved zones are located inside the

polygon), (f) trajectory of the camera

particular movements of the camera, perceptive strategies making it possible
to carry out a succession of reconstructions and ensuring the completeness of
reconstruction were proposed. The experiments carried out on a robotic cell
showed the validity of our approach and also its limitations: constraints on the
movements of the camera imply a strong sequencing of reconstruction tasks.
Hence, it will be useful to determine the optimal movements of the camera
necessary for the simultaneous reconstruction of several primitives, and this
without notable degradation in the reconstruction quality. The reconstruction
of more complex objects is also considered. Then, it will no longer be
a question of globally regarding the object as a parameterable geometric
primitive, but of carrying out a local reconstruction of the object surface
using yet another active approach there. Perception strategies will have to be
implemented to ensure a complete reconstruction and to take into account the
problems linked to occlusions or topological changes of the object.

6.6. Appendix: calculation of the interaction matrix

Here, we present the calculation of the interaction matrix L in the case
of a point. The traditional equations of projected movement are then found;
see [ESP 92] for the calculation of matrices associated with other geometric
primitives.
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Let m(x, y, z) be the position of a point in the reference pointer camera.
Let T = (V,Ω) = (Vx, Vy, Vz, Ωx, Ωy, Ωz) be the camera speed. The relation
that links point movement ṁ to the camera speed T is given by:

ṁ = −V − Ω × m ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
ẋ = −Vx − Ωyz + Ωzy

ẏ = −Vy − Ωzx + Ωxz

ż = −Vz − Ωxy + Ωyx

(6.41)

From perspective equations X = x/z and Y = y/z, by deriving in relation
to time, we can write:⎧⎪⎪⎨⎪⎪⎩

dX

dt
=

∂X

∂x

dx

dt
+

∂X

∂z

dz

dt

dY

dt
=

∂Y

∂y

dy

dt
+

∂Y

∂z

dz

dt

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
Ẋ =

ẋ

z
− x

z2
ż

Ẏ =
ẏ

z
− y

z2
ż

(6.42)

By replacing in (6.42) the values of (ẋ, ẏ, ż) calculated by equation (6.41)
and by simplifying, we finally obtain:⎧⎪⎪⎨⎪⎪⎩

Ẋ = −1
z
Vx +

X

z
Vz + XY Ωx − (1 + X2

)
Ωy + Y Ωz

Ẏ = −1
z
Vy +

Y

z
Vz +

(
1 + Y 2

)
Ωx − XY Ωy − XΩz

We find the relation Ṁ = LTc with L defined by equation (6.12).
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Chapter 7

Shape Recognition in Images

7.1. Introduction

We can classify recognition systems into two major classes. The first class
is a group of general recognition systems and the second class is specialized
systems. These two classes differ from each other in the definition of similarity
between images.

The general systems are dedicated to non-specific search operations: we
do not seek a precise image, but a category of images, which in general is not
defined formally: are there city images or sunsets in the base? Requests such
as these are common in search systems on the web and in systems open to
the general public. This type of system frequently uses global descriptors of
images, based on the form, color, or texture, which make it possible to define
concepts of approximate similarity.

Vision or robotics applications often search for a specific object, which
requires a highly precise definition of sought similarity. We must then choose
specialized systems. An example is the recognition of objects. It is a classical
problem of vision, which is most of the time carried out using an exposure or
reconstruction algorithm; we try such a calculation with all the basic models,
and the one that gives acceptable results indicates the recognized object.
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Such a process is clearly complex in computing time; it obliges to consider
all the models successively and proceeds with a complex calculation for
each one of them. It is important to be able to uncouple recognition from its
application and to aim at a sub-linearity for the number of models stored in
the base. This is what we propose in the following sections.

After state of the art recognition systems, we present two methods whose
purpose is to recognize images, which represent the same object or, more
precisely, the same aspect of an object, but under different conditions. These
differences can relate to viewpoint, light conditions, composition of image, or
the position of various elements of the image. The two methods presented are
based on a common principle: use of quasi-invariants associated with local
descriptors. The description of this principle and its advantages is followed
by the presentation of two methods. They were tested with bases that did not
require the storage of descriptors on disk. In the last section, we consider the
problems arising from the usage of external disks like memory to store the
data.

7.2. State of the art

In this section, we present methods that find the 3D image or the object
corresponding to the requested image. This refers to the same image or object
seen under different conditions. We classify the existing methods in other
works into image searching methods, i.e., 2D objects and methods of 3D
object recognition. In the case of 3D objects, the additional difficulty is that
there are no invariants [BUR 90].

7.2.1. Searching images based on photometric data

The first group of image searching methods uses information on the
brightness of an object, i.e., its aspect, like signature. In this context, Swain
[SWA 91] used color. He showed that histograms of color can be used to map
objects. The largest defect of this approach is its lack of robustness with
respect to changes in luminosity. Several authors improved the performances
of this technique by introducing fairly robust measurements to changes in
luminosity. Thus, Funt [FUN 95] proposed to use distribution of color ratios
and showed that these ratios provide a color constant for an object. Slater
[SLA 96] showed that moments of color distribution are invariant to a change
of luminosity in the assumption of a linear model of luminous reflection.
Nayar [NAY 93] and Nagao [NAG 95] used photometric invariants based on
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reflection ratios. It is also possible to use histograms of local filters, which
were used by Schiele [SCH 96a].

Another approach of image search from photometric information is that
by Turk [TUR 91]. His method uses a large collection of images, which is
broken up into principal components. He used this method to find faces.
Components corresponding to the greatest eigenvalues represent fuzzy shapes
of faces. This approach was applied by Murase [MUR 95] to recognize
images of unspecified objects. The advantages of this method are its speed,
its generality and its robustness to small occlusions. On the other hand, it
requires centering of images and it is not robust to image transformations or
significant occlusions.

Lades [LAD 93], Rao [RAO 95], Wu [WU 95] and Schmid [SCH 96d]
used local measurements based on the image of gray levels. The signal is
locally characterized by adjustable filters in case of Rao, by Gabor transforms
in case of Wu and Lades, and by differential invariants in the case of Schmid.
For Lades, Rao and Wu, these filters are calculated on a grid, which is
centered on the object by a simple calculation of the center of the object. Rao
uses a circular grid while Wu and Lades use a rectangular grid. It is difficult
to position the grid as soon as the object is presented in front of a complex
background. In addition these methods do not allow us to recognize an object
from images of a portion of this object. This is due to the fact that the grid
cannot be positioned if only part of the object is given. On the other hand,
the use of a grid implies that some of its points represent little of the object.
Rao [RAO 95] thus proposes to use characteristic vectors comprising up to
45 components. With this purpose, this characterization is calculated in a
multi-scale context. To recognize an object in the presence of scaling, it is
necessary to relocate characteristic vectors in order to find the subsets of
components, which correspond to each other. Mapping is then done on a part
of the characterization and the results degrade significantly. To overcome
these disadvantages, Schmid calculated her descriptors in characteristic
points by detecting interest points [SCH 00]. In addition, Schmid [SCH 97]
showed that the use of semi-local constraints increases the performances of
recognition. These constraints locally represent the geometric feature of key
points.

7.2.2. Search for images based on geometric data

A second group of methods that looks for images uses geometric data such
as segments, junctions and ellipses. Such data are extracted beforehand from
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images and research is carried out using only these data. These methods thus
depend on the given symbolic data even if they use these data to calculate
numerical sizes. A certain number of approaches are based on the following
paradigm: calculation of assumption and verification. During the first
phase, characteristics are extracted from the sought image and then they are
associated with the characteristics of 2D model candidates. The exhaustive
search for all the possible candidates generates a polynomial calculation
cost. The major contribution of the various search systems was to control
and decrease the complexity of the phase of matching. For example, Ayache
and Faugeras [AYA 86] use a recursive evaluation of assumptions. Lamdan
[LAM 88] proposed to use methods of indexing and hashing to obtain
significant acceleration. In case of indexing, the association of characteristics
and the search for a basic model are replaced by a look-up table mechanism.
In a similar context, Rothwell et al. [ROT 93] used projective invariants as
indexing elements. In the case of 2D objects, such invariants can be calculated
for any object.

Other methods of image search are based on Hough transform.
They choose a model by searching for a point of accumulation in the
transformations space (see, for example, Ballard [BAL 81]). Grimson [GRI
90], however, showed that such an approach is not very robust to the noise
of an image. Indeed, in the presence of noise, it is not possible to distinguish
between two different models. To solve this problem, Gros [GRO 95] uses
invariants with similarities and only votes in Hough space if these invariants
match. This reduces the number of votes in Hough space and thus makes the
distinction of various candidates possible.

7.2.3. Recognition using a 3D geometric model

Geometric models of a 3D object are based on geometric characteristics
such as edges, junctions, ellipses, surfaces and volumes. A 3D model of the
object to be recognized is established with the help of these characteristics.
These models are often based on CAD1 models. Among the existing CAD
models, iron-wire modeling consists of a list of junctions and connections
between these junctions. As for constructive solid geometry, it models
an object by collective operations from voluminous primitives. Spatial
occupation representation describes the volume occupied by a 3D object.

1. CAD: computer-aided design. This design allows the automation of the design process and
manufacturing.
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Representation by surface envelope (B-Rep.) models an object by parts of
a surface. Besl et al. [BES 85] and Chin et al. [CHI 86] present a state of
the art of geometric models and object recognition systems based on such
modeling. These systems map a 2D image and a 3D geometric model. They
can be divided into methods based on a mechanism of prediction/verification,
on Hough transform or the use of an interpretation tree. Systems based
on a mechanism of prediction/verification relate some characteristics of
the model with some characteristics of the image. This allows an initial
calculation of the model-image transformation. This transformation is
used to project other characteristics of the model on the image and then to
verify the correspondence with the characteristics of the image. In case of
polyhedric objects, Huttenlocher et al. [HUT 90] and Lowe et al. [LOW 87]
developed such an approach. Bolles et al. [BOL 86] and Faugeras et al. [FAU
86] developed similar approaches in the case of depth images. However,
the exhaustive search for all the models existing in the base generates an
exponential calculation cost. The major contribution of various recognition
systems was to control and decrease the complexity of the pairing phase. For
example, Bolles et al. [BOL 86] use a search tree.

Kriegman et al. [KRI 90] presented an approach for curved models. An
implicit representation of these curves in the image is parametrized by the
position and orientation of the object. The calculation of these parameters
is reduced to the adjustment problem between the theoretical contour and
contour points in the image. Verification is carried out by comparing the
adjustment errors for various models.

Other works, such as Mundy et al. [MUN 90], calculate the transformations
between the detected primitive images and the primitives of CAD data. Then,
they use Hough transform in the parameter space of these transformations to
find a point of accumulation. This point of accumulation simultaneously gives
the corresponding model and the transformation between the image and the
model.

The trees of interpretation contain all the possible combinations between
primitives detected in the image and primitives of the model. These
combinations are organized in a tree, for example, the first level of the tree
contains combinations between an extracted primitive and the primitives
of the model. This tree creates an enormous space for research. It is thus
essential to introduce additional constraints, which ignore the exhaustive
course of the tree. Brooks [BRO 83], for example, developed such an
approach. Besides, his approach makes it possible to use constraints with a
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confidence interval in the case of generic objects. Grimson et al. [GRI 87,
GRI 89] used interpretation trees in the case of depth images. In the case of
gray level images, their approach is limited to 2D objects.

Lastly, for specific classes of 3D objects, it is possible to characterize an
object by way of a single view because there are invariants. As Zisserman [ZIS
95] showed, there are projective invariants for certain classes of 3D object,
such as polyhedrons, revolving surfaces, tubes and symmetric objects. These
invariants can thus be extracted from a view of such an object and it is then
possible to recognize the object from any point of view.

7.2.4. Recognition using a set of images

The idea of approaches using a set of images is to no longer use the
theoretical model located far away from images, but to use characteristic
images to represent an object. These images in the continuation of this
chapter are called model-images. To compare the image of a 3D object with
these model-images, we can apply one of the techniques of image search (2D
object) presented earlier.

Nayar et al. [NAY 93] and Schmid et al. [SCH 96c] modeled a 3D object
from 2D gray level images. As model-images, they used a set of images
regularly spaced on a circle or a sphere. From these images, search methods
cited previously make it possible to recognize the object and also its position
and posture.

Gros [GRO 95] determined the necessary model-images to represent a
3D object using a clustering algorithm. In the same way, Gdalyahu [GDA
96] used contours of model-images to represent an object. This approach
underlines the need to choose “good” views to represent the object. Such
views are intrinsically more stable and more representative of the object.

7.3. Principle of local quasi-invariants

Making use of local information provides natural robustness to partial
occlusions and translations in the image. This information is either obtained
by cutting images a priori (cutting into 9 sub-images, regular sampling of
image, etc.), or using segmentation tools. This second solution is finer, in the
sense that it can better take into account all small translations, but it is clearly
dependent on the quality of the extractor used. The principal quality of such
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a detector is repeatability, i.e., the aptitude to extract the same elements in
images taken under different conditions. Indeed, if we start from elements
that are so precise, but different, the continuation of the recognition process
cannot succeed.

The concept of quasi-invariant was introduced in vision in a theoretical
manner by Binford [BIN 93], and in an independent and pragmatic way by
Ben-Arie [BEN 90b, BEN 90a]. The quasi-invariants theory makes it possible
to define first order invariants in the case of perspective transformations. To
locate these quasi-invariants, let us commence by presenting the invariants
[GRO 93].

Let us take a quantity f , which we can calculate from an unspecified point
x of an image. It is said that f is invariant for a set of transformations T if:

∀t ∈ T f(x) = f(t(x)) (7.1)

In general, the set of transformations is a Lie group, i.e., a group
parametrized by coefficients (ai). In addition, using the coordinates of x, we
can note:

t(x) = Φ
(
x1, . . . , xn; a1, . . . , am

)
=

⎛⎜⎝φ1

(
x1, . . . , xn; a1, . . . , am

)
...

φn

(
x1, . . . , xn; a1, . . . , am

)
⎞⎟⎠ (7.2)

With this notation, the fact that f is an invariant is translated by:

∀a1 . . . am, a′1 . . . a′m

f
(
Φ
(
x1 . . . xn; a1 . . . am

))
= f
(
Φ
(
x1 . . . xn; a′1 . . . a′m

)) (7.3)

In practice, this invariance concept often appears too strong and
constraining. In fact, we insist that quantity f(t(x)) be the same for
all elements of T , including those which correspond to degenerated
transformations: with nearly zero ratio similarities plane view “on the
section”. Considering these transformations makes it necessary to manipulate
complex quantities (biratios, for example), which are sensitive to noise,
whereas the corresponding configurations cannot generate calculations
because according to the discretization of images, the points that we must
make use of are generally indistinguishable or known with almost zero
relative precisions.
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The constraint imposed on quasi-invariants is weaker: it is necessary
that there is a transformation t of parameters a such that the size measured
in image f(t(x)) is equal to the size measured in the scene, and that the
variation of f(t(x)) as compared to t is infinitely small in first order, or
another formulation, the derivative of f(t(x)) as compared to parameters of t
must be zero:

∀j ∈ {1 . . . m}
∂f ◦ Φ
∂aj

(x1 . . . xn; a1 . . . am)

=
n∑

i=1

[
∂if
(
Φ
(
x1 . . . xn; a1 . . . am

))∂φi

∂aj

(
x1 . . . xn; a1 . . . am

)]
=0.

(7.4)

If the second derivatives are also zero, then we talk about strong
quasi-invariant. As we see it, this constraint is only local: instead of imposing
nullity of all non-constant terms of Taylor’s development, we only impose
that of the term of order 1, or that of terms of order 1 and 2. For example, the
angle between two segments is a quasi-invariant and the ratio of three aligned
points is a strong quasi-invariant.

7.4. Photometric approach

In the following section, we present a method based on local photometric
information [SCH 96b]. An image is characterized by a set of local invariants
of gray levels calculated at the key points. After a presentation of the detector
of key points and invariants, we explain how to compare these invariants.
Then, we show that using an algorithm of vote and semi-local constraints
makes recognition robust and that a mechanism of indexing allows an
effective recognition of a base containing more than 1,000 images. The
experimental results presented show the possibility of recognizing in cases
of partial visibility, image transformations of the similar type, changes of
luminosity, additional characteristics and light perspective deformations.
Lastly, the extensions of this recognition method are briefly presented.

7.4.1. Key points

Calculating image descriptors for each pixel of the image induces too great
a quantity of information of which a majority is not very significant. Using key
points allows the selection of points with significant informative contents: in
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these points, the signal changes in two directions at a time. Moreover, key
points are local characteristics and are therefore stable in partial visibility
(occlusions).

A large variety of key point detectors exist in other works. In the context
of recognition, the extracted points must be repeatable and must present
significant informative contents. A comparison of several detectors under
varied and changing conditions [SCH 00] showed that the detector satisfying
the preceding criteria most was the Harris detector [HAR 88].

The essential idea of this detector is to use the autocorrelation function
to determine the positions where the signal changes in two directions at a
time. To avoid discrete calculations, the matrix related to the autocorrelation
function is calculated from the primary derivatives of the signal integrated on
a neighborhood. The eigenvalues of this matrix correspond to the principal
curves of the autocorrelation function. Two significant eigenvalues indicate
the presence of a key point.

Figure 7.1 presents the key points detected for the same scene in the case of
a rotation. The repeatability rate is 92%, i.e., 92% of the points detected in the
first image are detected in the second. Experiments with images taken under
different conditions showed that the average rate of repeatability is about 90%.
Moreover, 50% repeatability rate is sufficient if we use a robust recognition
method.

7.4.2. Differential invariants of gray levels

Local characterization is based on differential invariants of gray levels,
invariants in image rotations and translations. Using a multi-scale approach

Figure 7.1. Example of key points detected for the same scene in the case of a rotation.
Rotation between the left image and the image on the right is of 155 degrees.

Repeatability rate is 92%
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helps to make this characterization robust to changes in scale, and therefore
robust to matching. These invariants are thus quasi-invariants for a perspective
transformation [BIN 93]. Lastly, the characterization can be made robust to
illumination changes.

An image in the neighborhood of a point can be described by the set
of its derivatives. These derivatives can be calculated in a stable way using
convolutions with Gaussian derivatives.

For an image I and a scale factor σ, the “local jet” [KoE 87] of order N in
a point �x = (x1, x2) is defined by:

JN [I](�x, σ) =
{
Li1...in

(�x, σ) | (�x, σ) ∈ I × R
+; n = 0, . . . , N

}
with Li1...in

(�x, σ) convolution of image I with Gaussian derivatives Gi1...in
(σ)

where ik ∈ {x1, x2}.

The coefficient σ of the Gaussian function determines the quantity of
smoothing. This coefficient also corresponds to the definition of scale space
and it is significant in a multi-scale approach. Hereafter, the size of the
Gaussian will refer to σ.

The calculation of differential invariants from “local jet” [KoE 87,
HAA 94] makes it possible to obtain an invariance in image rotations. In this
chapter, a complete set of invariants up to order three has been used. Equation
(7.5) gives the formula in tensorial notation – this notation uses Einstein’s
convention of addition. We can notice that the first element represents the
average illumination, the second represents the square of the magnitude of the
gradient and the fourth represents the Laplacian

D(�x, σ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

LiLi

LiLijLj

Lii

LijLji

εij

(
LjklLiLkLl − LjkkLiLlLl

)
LiijLjLkLk − LijkLiLjLk

−εijLjklLiLkLl

LijkLiLjLk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.5)
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with Li1...in
calculated elements of “local jet” at position �x in scale σ. εij

is the Epsilon anti-symmetric 2D tensor defined by ε12 = −ε21 = 1 and
ε11 = ε22 = 0.

To obtain robustness in scaling, a multi-scale approach must be used
[LIN 94b, WIT 83] because there are no invariants in scale in a discrete
representation. If there is change in scale α between two images I1 and I2,
the derivatives between these two images are related by:

I1(�x) � Gi1...in
(σ) = αnI2(�u) � Gi1...in

(σα) (7.6)

where �x and �u are the positions in two images (α�x = �u) and Gi1...in
the

Gaussian derivatives of order n.

Equation (7.6) shows that the size of the Gaussian must be adjusted to
take into account scaling. This implies that the reference size of calculation
varies and induces a multi-scale approach. Since it is impossible to calculate
the invariants in all the scales, it is necessary to discretize the scale space.
Experiments showed that a calculation of mapping using differential invariants
is tolerant to a scale variation of 20%. To be robust in scaling up to a scale
factor of 2, it is sufficient to use σ between 0.48 and 2.07. For example, good
results were obtained with the following discretization: 0.48, 0.58, 0.69, 0.83,
1.00, 1.20, 1.44, 1.73, 2.07.

Characterization must also be robust in illumination change. There are
several possibilities to model a variation in luminosity, for example, by a
translation, an affine transformation, or a monotonous transformation. Here,
we have retained modeling by an affine transformation. Any quotient of two
derivatives is invariant in such a transformation. Thus, there are various ways
of making the descriptor �D invariant in an affine transformation. We chose
to divide by the adequate power of the gradient magnitude. Since it is also
necessary to eliminate illumination, our descriptor is of dimension 7.

7.4.3. Comparison of descriptors with Mahalanobis distance

It is traditional to model the uncertainty of descriptors (invariant vectors)
by a Gaussian distribution and to use Mahalanobis distance dM to compare
them. This distance takes into account the differences in the magnitude
nature of various components as well as covariance Λ of these components.
Given two descriptors �a and �b, Mahalanobis distance is defined by:

dM (�b,�a) =
√

(�b − �a)TΛ−1(�b − �a).
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The square of Mahalanobis distance follows a distribution law of χ2. Since
the square root is a bijection of R

+ in R
+, it is possible to use the fractile

table of this distribution for thresholding the distance. Indeed, the fractile
determines the threshold tk for which P (d2

M ≤ tk) = k%.

In order to obtain accurate results using this distance, it is important to
use a representative covariance matrix, i.e., one which takes into account the
noise of the signal, illumination variations and inaccuracy in the position of
key points. It is theoretically impossible to calculate this matrix by taking into
account realistic assumptions. To obtain an estimate, a set of key points is
followed in sequences of images. The descriptors (invariant vectors) calculated
for each series of points make it possible to obtain a covariance matrix. The
average of these matrices is then used for comparison.

Usage of Mahalanobis distance is difficult when we wish to carry out a fast
indexing method. However, it is possible to carry out a change of reference
mark in order to use the Euclidean distance dE . The covariance matrix is a
symmetric real and semi-defined positive matrix. Thus, it can be divided in
the following way: Λ−1 = PTDP with P an orthogonal matrix and D a
diagonal matrix. Then we get dM (�a,�b) = dE(

√
DP�a,

√
DP�b).

7.4.4. Voting algorithm

The voting algorithm enables us to select the image of the base which is
most similar to the request image. The idea of the algorithm is to compare the
descriptors of the request image with basic descriptors and to add the number
of times that an image of the base is selected.

An image base contains a set {Mk} of model-images. Each model-image
Mk is defined by descriptors calculated in key points of this model-image.
During the training process – or storage in the base – each descriptor is added
to the base with a link to the model k from which it was calculated. Formally,
the simplest image base consists of a table of couples (Dj , k).

The process of recognition consists of finding the model-image Mk̂ which
corresponds to request image I , i.e., the most similar image. For the request
image, a set of descriptors {Dl} is calculated at key points extracted on
this image. These descriptors are then compared with basic vectors {Dj}
by calculating Mahalanobis distance dM (Dl,Dj). If this distance is below
threshold t according to the distribution of χ2, the corresponding model
acquires a vote.
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The sum obtained is stored in a vector T (k). The model with the greatest
number of votes is regarded as the best matching one; the request image
corresponds to model Mk̂ for which k̂ = arg maxk T (k).

Figure 7.2a shows an example of a T (k) vector in the form of a histogram.
Model-image 0 is correctly recognized. However, other images have got scores
– or number of votes – of the same order.
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Figure 7.2. (a) Result of the voting algorithm: the number of votes is posted for each model
image of the base. Image 0 is correctly recognized. (b) Result obtained by adding semi-local

constraints. The semi-local constraints decrease the probability of false votes. Image 0 is
recognized in a much more discriminating manner than in the case of (a)

7.4.5. Semi-local constraints

A descriptor of the request image can vote for several model-images. A
great number of model-images or several very similar model-images increase
the probability that a descriptor votes for several models. To solve this
problem, we used semi-local constraints. These constraints impose for each
couple of paired points that the descriptors of neighboring points must match
and that their geometric configuration is compatible (see Figure 7.3). Similar
constraints were used by [VAN 91, ZHA 95].

For each basic key point and request image, the closest points p in the
image, in the context of Euclidean distance, are selected. Imposing that all
closest neighbors p are mapped correctly is equivalent to impose that there is
no error in detecting the key point (and that there is a 100% repeatability rate).
It is in fact sufficient to impose that at least 50% of the neighbors match.
An additional verification is possible by adding geometric constraints. For
example, angles defined by neighboring mapping points must match. Indeed,
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α1

a point of interest to the base 
and its closest neighbors

a paired point

α2

Figure 7.3. Example of semi-local constraints: neighbors of points as well as angles
which they define must correspond exactly

if it is assumed that the transformation between two images can locally be
approximated by a similarity – which is exact in the first order – the angles
must be locally consistent. Figure 7.3 illustrates this constraint with angles α1

and α2.

Figure 7.2 presents an example on the use of semi-local constraints. The
image on the right-hand side shows reduction in the number of votes when
constraints are applied to the example on the left. The score of the correctly
recognized object (model 0) is definitely more discriminating.

7.4.6. Multi-dimensional indexing

Without indexing, the complexity of the voting algorithm is in the order of
l × N , where l is the number of descriptors in the request image and N is the
total number of descriptors in the image base. Since N is large (about 150,000
in our tests), it is necessary to use an adequate structuring of the stored data.

The search structures were largely studied. A state of the art of all tree
structures, which allow a fast and/or compact access to data is presented in
[SAM 84]. The structure presented hereafter can be seen like an alternative of
a kD tree.

In this structure, each dimension of space is sequentially considered. The
access to data in a dimension is realized by one-dimensional samples of fixed
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size. Matching samples and their neighbors can be reached directly. An access
to neighbors is necessary to take into account uncertainties in measurements.
A sample is extended in a second dimension if the number of descriptors that
it contains is superior to the threshold given. Thus, the data structure can be
seen as a tree whose depth is at most equal to the number of dimensions of the
stored descriptors. The complexity of indexing is in the order of l (number of
descriptors of the request image).

This indexing technique leads to a very effective recognition. Our base
of test images contains 1,020 images, which are represented by 154,030
descriptors. The average time of recognition is less than 5 seconds on a
Sparc 10. These performances can be further improved by paralleling since
each descriptor is treated separately.

7.4.7. Experimental results

Experiments were conducted with an image base containing 1,020 images.
They exhibited the robustness of the method to image rotations, scaling,
illumination changes, limited variations of viewpoint, partial visibility and
the emergence of additional characteristics. The rate of recognition obtained
is above 99% for a variety of test images taken under different conditions.

The base used includes various types of images such as 200 masterpieces,
100 aerial images and 720 images of 3D objects (see Figure 7.4). The 3D
objects include the image base of Columbia. These images represent a large
variety. However, certain images of masterpiece and certain aerial images are
very similar. This induces ambiguities, which the method of recognition is able
to manage.

Figure 7.4. Some images of the base. The complete base contains 1,020 images
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In the case of 2D objects, an object is represented by an image in the base.
It is the same for the quasi-planar objects such as aerial images. A 3D object
must be represented by several images taken from different viewpoints. The
images are stored in the base with a change in the view angle of 20 degrees.

In what follows, three examples are presented for each type of image. For
each one of them, the right side image is stored in the base. This image is
recognized from any image on the left. Figure 7.5 presents the recognition of
a masterpiece in the case of an image rotation and scaling. This figure also
shows that recognition is possible if only a part of the image is found.

Figure 7.5. The image on the right is correctly recognizable from the images on the left. These
images underwent a rotation, a scaling even when only a part of the image is sought

Figure 7.6 presents an example of aerial image. It shows a correct
recognition in the case of image rotation and when only a part of the image
is sought for. In the case of aerial images, it is necessary to be robust to a
changing viewpoint and additional data (data present only on one of the
images). Buildings appear different because of the change in view angle. In
the same way, cars move, some disappear and others appear.

Figure 7.6. The image on the right is correctly recognizable from the images on the left.
These images are taken from different view angles (Istar property)
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Figure 7.7 presents the recognition of a 3D object. This object was
correctly recognized in the presence of a image rotation, a scaling, a change
in background of the image, and a partial visibility. Moreover, there is a
difference of 10 degrees of view angle between observations. It should be
noted that not only was the object recognized, but it is the most similar stored
image.

Figure 7.7. The image on the right is correctly recognizable from the images on the left.
The 3D object can be in front of a complex or partially visible background

A systematic evaluation of the method for a great number of test images
is presented in [SCH 96b]. These test images are taken under different
conditions: image rotation, scaling, change of luminosity, variation in
viewpoint and partial visibility. This evaluation can be summarized as
follows: perfect results (no error) are obtained in the case of rotations. Using
a multi-scale approach, the recognition rate reaches 100% up to a scaling
of factor 2. Such a factor seems to be a limit of this method. However, this
limit is not due to the characterization with invariants but to the stability of
the detector of key points. Indeed, the repeatability decreases rapidly when
the scale factor is greater than 1.6. In the case of changes in the illumination
intensity and the position of the source of light, the recognition rate also
reaches 100%.

Variation of viewpoint. Test images were taken from viewpoints different from
those of the images stored in the base. Each aerial image was taken from
4 different viewpoints. Only the first image is stored in the base. For these
images taken from different viewpoints, the recognition rate is 99%. The only
image that is not recognized correctly corresponds to an aerial image of the
port and contains only water on which there is no reliable key point.

In the case of 3D objects, the method is robust to the change of viewpoint
which is equal to 10 degrees at least. In the case of the base of Columbia,
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i.e. a benchmark for object recognition, the recognition rate obtained is 100%.
In this base, images are spaced in 20 degrees and the test images are spaced in
5 degrees.

Partial visibility. Pieces of different sizes were randomly extracted from
masterpiece images. The relative size of the extracted images varied between
10% and 100%. For the pieces whose relative size is higher or equal to 30%,
the recognition rate is 100%. For a relative size of 20%, the rate obtained
is 95%. For a relative size of 10%, the rate obtained is 90%. These high
recognition rates can be explained by the fact that the extracted points are
very discriminating and thus only few points are sufficient to recognize the
image correctly. Thus, it is possible to recognize an image even if only a part
of this image is used for searching.

7.4.8. Extensions

In the following section, we briefly present extensions of the approach
described earlier. In the case of 3D objects, a geometric verification based
on the trifocal tensor makes it possible to improve results [SCH 96c]. The
request image is mapped with the two most similar images of the base. The
mappings between these three images are used to estimate the trifocal tensor
in a robust manner. This enables the rejection of false pairings and thus helps
to make a robust vote. This tensor makes it possible, in addition, to project
additional information on the image used for research. For this purpose,
we add additional information to images of the base which model a 3D
object. Such an addition is illustrated in Figure 7.8a. This information is then
projected to label the request image. Figure 7.8b presents an example where
labeling is correctly projected on the request image.

The addition of a probabilistic model makes it possible to improve the
results as compared to of a simple algorithm of vote [SCH 99]. This model
allows us to take into account the variability of descriptors, their relevance,
as well as the variability of spatial configurations. The method is structured
for clearly separating the probability of correspondences based on descriptors
of spatial coherence of a correspondence set. For each descriptor of the
request image, several correspondences exist in the base. Each of these
correspondences is weighted by its variability and discriminance. The search
for coherent sets of correspondences reinforces each one of them. The
recognized model is that which obtains the greatest probability from these
sets. The experimental results presented for this method show a significant
gain.
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Figure 7.8. (a) Image of the base with added additional information. (b) Example of addition
of information on the request image. Additional information is correctly added

The multi-scale approach that was previously presented is limited to a scale
factor of 2. This is due to the quality of the extracted key points. For scale
factors superior to 2, these points are no longer repeatable [SCH 00], i.e.,
they are no longer localized at the same place. The key to success for such
a problem is the adequate representation of characterization in the scale space
[DUF 00]. It is shown how to extract key point in different scales and how to
compare two images of different resolution. The results show that the method
can be used for changes of scale up to a scale factor of 6. Figure 7.9 shows an
example of mapping in a significant scaling. The 16 pairings are correct.
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Figure 7.9. Example of mapping in the case of a significant scaling. The 16 pairings are
correct. The high resolution image (image on the right side) is projected on the low resolution

image with homography calculated from 16 pairings. The rotation angle is estimated at 34
degrees and the scaling at 5
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In the case of color images, the transposition of descriptors which have
just been presented is possible, except for some specific difficulties to be
solved [GRO 00]. These difficulties arise owing to the fact that there is only
one possible coding of color information, and that the influence of lighting
conditions on the value of pixels is a complex process, which we cannot
completely model. The selected solution consists of using the non-linear RGB
components, which are among the most common. A change of luminosity is
modeled by a diagonal matrix and a translation vector.

Once a transformation model of the pixels is chosen, the same diagram
as the previous one is followed: the detection of points, the calculation of
descriptors by formulae similar to those presented, which gives invariant
vectors whose dimension lies between 18 and 29. The methods of comparison
and vote are the same. The use of color makes it possible to improve the
results to an extent. The problem is that the point detector does not take into
account the photometric type of transformation, which is considered for
invariance. To circumvent this problem, it is necessary to pretreat the image
using the local standardization technique and to detect the points only in the
second time. Then, there is a greater improvement in the results.

7.5. Geometric approach

In this section, we are specifically interested in structured images, i.e.,
those where we can make use of segments to approach the contours of the
objects. They are thus generally images of scenes where manufactured objects
predominate which frequently occur, for example, in robotics manufacturing
applications. We present the basic algorithm and some extensions.

7.5.1. Basic algorithm

Initially, the algorithm seeks to determine whether two images represent
the same object or have a common part. For this, the following stages are
followed:

– We start by extracting the contours of images. Then, we approach
these contours by segments, which we connect between them by their ends;
according to the type of descriptors used, it can also be necessary to extract
the key point of the image.

– We enumerate the configurations on which we want to calculate
descriptors: it can be a group of 2 or 3 connected segments, or of
configurations including 1 or 2 segments and 1 or 2 key points.
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– We then calculate quasi-invariants on these configurations; these
quantities are based on calculations of angles or distance ratios to obtain a
simple quasi-invariance, which is equivalent to the invariance in the plane
similarities of the image, or the ratios of aligned points if we want an
invariance with affine transformations of the image.

– If only two images are considered, the descriptors are paired: we thus
find that the two images have close values. Since these descriptors are not very
discriminating, it is necessary to use a total constraint to remove ambiguities:
each time two descriptors are paired, we calculate the transformation between
the two corresponding configurations. Therefore, we retain the pairings that
have coherent transformations from a geometric viewpoint [GRO 98].

– If we confront an image in a set of images, we carry out paralleling: all
descriptors of the images of the base are gathered in an indexing structure
(tree structure in main memory or on disk). Each descriptor of the image to be
recognized is confronted with those in the base and, for each possible pairing,
we give a vote to the image of the corresponding base. To remove ambiguities,
it is possible to use transformations between configurations in the same way
and consider only the geometrically coherent votes [LAM 96].

Once the first pairing is made between two images, it is possible to easily
refine the first pairing carried out: we can calculate the epipolar geometry by a
robust method, or an approximation of the apparent movement by homography
and then supplement pairing by making use of this new information.

It is in addition possible to pair n images at the same time. In this case, we
pair the images two by two and then we consider the graph of pairings thus
realized that we prune to keep only the coherent pairings. Such a technique
enables us, by the use of intermediate images, to propagate pairings between
two images, which cannot be paired directly.

7.5.2. Some results

7.5.2.1. Pairing results

Let us schematically illustrate the method presented using some examples.
Figure 7.10 shows, on top, the first pairing carried out between two images
and, at the bottom, the one obtained after correction and improvement. The
paired points are those that carry the same number. We can notice that even
the non-polyhedric objects were paired. On the other hand, it is clear that if
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Figure 7.10. Initial pairings on top, those improved at the bottom

some “obvious” points were not paired, there are few errors of pairing. In this
case, we use angles and distance ratios calculated on the connected segment
pairs.

Figure 7.11 shows two images on the left for which the use of mixed
configurations points-segments is essential in obtaining correct results. In the
images on the right-hand side the paired elements are in red. Even without
classification, it is clear that there are many errors. This is a particularly
difficult case having made many techniques fail.

7.5.2.2. Results of indexing and recognition

Figure 7.12 illustrates the recognition process in the case where this
process is used to capture data in robotics; the image to recognize is pretreated
to extract primitives and the desired configurations from it, and the vote takes
place and three images of the base having the most (geometrically coherent)
votes are shown. Once the pairing is done, it is possible to calculate the
exposure of the object and then to seize it using tongs through visual control.
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Figure 7.11. Two images of engines (top) and their pairing (bottom).
The paired elements are marked by diamonds

Figure 7.13 shows typical recognition results. Images on the left are the
requests (which are not present in the base), images on the right are the
answers of the systems. The base contains images of engines and some other
images.
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Figure 7.12. Recognition of an object to capture data

7.6. Indexing of images

Since we work with several images, the difficulty of managing this
package of images arises, and using a DBMS and storing in a disk appears
a natural solution. Database techniques are then used to increase the search
speed and to minimize costs related to input-outputs. The databases indeed
know how to specifically organize the data on secondary memory, offer
structuring and indexing techniques accelerating research, and also offer
guarantees of reliability and coherence of competitive accesses, i.e. desirable
guarantees within a system of real interrogation.
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Unfortunately, databases have not been designed for the type of data that
we use and the storage of coded descriptors in the form of real unprecise
vectors presents some difficulties:

– The descriptors are real vectors whose dimension can be large. The
difficulty is then twofold. First, the comparative distance of the descriptors
uses all dimensions at the same time. Thus, we find ourselves looking within
large real spaces, without being able to separate dimensions and treat them
one after the other. In addition, the variability of descriptors demands that we
must explore space and not merely search for one particular point. Very often,
this type of exploration has an exponential complexity with the dimension of
space, which is a problem known as dimensionality curse [WER 96, LAM 97,
BER 98].

– When local descriptors are used, generally each image has between 50
to 600 descriptors. This imposes a strong constraint on the performances of
the system, because the response time felt by the user is that of 50 to 600
successive interrogations and not that due to only one. Moreover, the response
time must integrate the decision-making process.

– Different indexing systems of other works are tested using randomly
generated data sets, normally according to a uniform law, which is not the
case with real data. Thus, there is a risk of obtaining inferior performances as
compared to those reported by the designers.

This section therefore begins by describing specific techniques developed
for these data, by granting more details about two of them that appear more
promising to us and then presents some evaluation results of these techniques,
before concluding with some perspectives.

7.6.1. Traditional approaches

Multimedia indexing algorithms are classified into two main categories:
those which gather data according to their proximity (data-partitioning index
methods) and those which partition the multi-dimensional space a priori and
then store the data according to this partitioning (space-partitioning index
methods). All these approaches populate the space with image descriptors or
approximations of these descriptors.

All algorithms of the first category are derived from R-Tree [GUT 84],
which was originally known to index 2D data. The central concept is that
of a bounding box: the leaves of the tree refer to each object through its
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bounding box and the internal levels of the tree store the lower level bounding
boxes. Several criteria can be employed for deciding to include or preserve
two distinct lower level boxes [BER 96]. The principle of R-Tree was then
generalized to be applied to multi-dimensional data and there are alternatives:
SS-Tree [WHI 96] uses spheres instead of bounding boxes and SR-Tree
[KAT 97] uses the intersections of spheres and rectangles.

Lin, Jagadish and Faloutsos [LIN 94a] presented a technique with TV-Tree
where we distinguished dimensions which the system must systematically use,
those that it is unaware of and those that it can use to refine a search. The major
defect of this technique is that it requires a priori knowledge of the precise
distribution of data according to each dimension.

All these approaches use a filling factor equal to 50% at the time of bursting
of the nodes of the tree, which guarantees obtaining balanced trees and also
makes it possible to maximize the usage rate of pages on disk. However,
[BER 98] shows that this factor generally induces a probability of access to
each page of the index close to 100% during each research. Thus, there is a
high chance that the totality of the index will be covered, and this by means of
many random accesses to the disk.

Techniques in the second category divide multi-dimensional space
according to a complex and regular grid, as the grid-files do [NIE 84],
K-D-B-Tree [ROB 81], LSDh-Tree [HEN 98]. Then, the data are stored
in suitable boxes. These techniques soon become ineffective because the
number of boxes grows exponentially with the dimension of the descriptors
and finally exceeds that of the descriptors. Moreover, when the required point
is close to the borders of space division, research then has to explore the
neighboring boxes in large numbers (generally to realize that there is nothing
in each). The cost of a search is then prohibitive. The most modern techniques
like [AGR 98] or [HIN 99] are evaluated as effective for a low number of
dimensions and for less significant noise (ε).

7.6.2. VA-File and the Pyramid-Tree

[WEB 98] shows that above 10 dimensions, a sequential search becomes
more efficient than any navigation in an index, which invalidates the
approaches presented above. Recently, two methods were proposed to
overcome this obstacle: the VA-File and the Pyramid-Tree.

With the VA-File [WEB 98], Weber, Schek and Blott developed a method,
which aims to improve the performances of the sequential research. This
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technique manages two sets of data, the first containing descriptors and the
second containing an approximation of the latter. The latter file must save
them in the main memory to guarantee good performances.

During the creation of the index, to calculate approximations, the VA-File
divides each dimension d into 2bi boxes, so that the boxes approximately
contain the same number of points. Thus, there are 2b boxes, where
b =
∑

i bi, which are numbered from 0 to 2b − 1. The descriptors of the base
are then read one after the other and the approximation of each descriptor is
then equal to the number of boxes between the limits from which it emerges.
The approximation file is thus made up of pairs (identifying descriptor, box
number). Only information related to boxes containing at least one descriptor
is stored, thus avoiding the management of a large number of empty boxes.

At the time of research, the request descriptor undergoes the same process
of approximation. The algorithm compares the approximations between them
and then sequentially reads the contents of the boxes that will most likely
provide the closest neighbors, on the disk. The first stage thus acts as a filter,
which eliminates the boxes from the search (and thus the descriptors) which
do not have a chance of belonging to the answer, thus limiting the number of
comparisons to be made by sequential research.

Berchtold, Böhm and Kriegel, with Pyramid-Tree [BER 98], proposed a
method, which divides space [0, 1]d into 2 × d pyramids. Each pyramid has
its point placed at the center of the space (0.5, 0.5, etc.), has a base with a
surface of d−1 dimensions and is numbered. Each pyramid is then divided into
sections, parallel to its base. The sections close to the top are thus smaller than
those that are closer to the base. This space division has the property to create
a number of boxes growing linearly, and not exponentially, with dimension.

This double division allows any point of the multi-dimensional space to be
expressed as a pair (pyramid number, height in the pyramid). This contraction
of the multi-dimensional space allows the usage of a particularly effective
index for this type of data and interval type requests: B+-Tree. A page of
B+-Tree matches a specific section of a particular pyramid.

7.6.3. Some results

Results in terms of performance in recognition were provided in the
preceding sections. Here, we are interested in the speedy performances
according to three scenarios.
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7.6.3.1. Context of experiments

The experiments given below were carried out using two bases: the first
includes 413,412 invariant descriptors of dimension 24, which are descriptors
resulting from 1,826 images having 50 seconds of a film and varied fixed
images. The second base consists of 413,412 vectors of dimension 24 drawn in
a uniform and pseudo-random way. We tested various search scenarios using 3
algorithms: VA-Files, Pyramid Trees and sequential search. A typical research
consists of taking a request made up of 150 descriptors, which are not in the
base and to search for the 10 closest descriptors of the base. This gives 1,500
descriptors.

7.6.3.2. First experiment

The first scenario aims to study the influence of the dimension of the
descriptors over search time. For this, we constituted the bases of various
dimensions, by truncating real data, or by generating vectors of adequate size.
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Figure 7.14. Base of 413,412 descriptors, 150 request descriptors, real and uniform
distributions, increasing dimension of the descriptors

Mainly, we can notice that VA-Files have performances very close to those
of sequential research, except for few dimensions, but that is not the difficult
case for which this structure was developed.

On the contrary, Pyramid Trees have rapidly decreasing performances
and we did not carry out an experiment beyond 24 dimensions because the
computing time becomes crippling.

7.6.3.3. Second experiment

In the second experiment, we observed the influence of base size. There
too, VA-Files and sequential research are at par. We can notice that in spite of
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the reduced size of the base (1,816 images, which is little as compared to real
needs), we obtain a long computing time for online use: the users of search
sites on the Internet are accustomed to a search time of a few seconds, not of
a minute or more.
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Figure 7.15. Influence of base size, with a request of 150 descriptors
and descriptors of dimension 24

7.6.3.4. Third experiment

In the third experiment, the influence of the number of descriptors in the
request is studied. We observe a linear behavior which, once again, shows that
the limits of the current systems are not far.
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7.6.4. Some prospects

The present study remains compartmental, but it very well shows the way
that remains to be crossed to obtain a system that can manage many images
(from 100,000 to a million) while having response times like those obtained
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for textual research by the presently available engines on the Web. If this
objective is not achieved yet, it is important to move away from search paths
to arrive there.

Here are some proposals inspired from the use of VA-Files:

– First, we can try to visit only one box per request descriptor. To minimize
the problems involved in borders, we can duplicate the base with a double
system of boxes in staggered rows distributed on two machines. For a
descriptor, we then use the system, which keeps this descriptor farther away
from the borders between boxes.

– Then, we can try to use redundancy connected to the use of local
descriptors. Indeed, a request is not limited to searching for a correspondence
between a descriptor resulting from the request image and that coming from
the base, but proceeds mainly by accumulation of evidence. Thus, we can try
to not conduct interrogations until their end, but to stop the process as soon as
there is a strong probability of obtaining a good result. Such an algorithm
requires to be validated from the speed point of view as well as from the
recognition point of view.

– The distribution of descriptors is not uniform. Moreover, if some are
found in many images, others are very specific. The quantity of information
brought by each descriptor of the request image is thus not the same. We can
use a Bayesian formalism to estimate it. This can make it possible to choose
the order in which request descriptors are used and to prematurely stop the
research as indicated in the preceding point.

– A better management of hidden memory can limit the number of pages
loaded in the memory. For this, we can gather the descriptors of the request
image that are close and relate research on these descriptors.

– Since the dimension of descriptors is one of the sources of complexity
of the search, we can divide these descriptors to carry out, for example, 4
searches on descriptors of dimension 6 rather than only one on a descriptor
of dimension 24. These four searches can be made on different machines to
save time. On the other hand, these results should be synthesized, but the total
complexity should be decreased.

The tracks are thus numerous, but they remain to be explored and evaluated.

7.7. Conclusion

In this chapter, we presented two methods whose purpose is to enable
recognition of images that represent the same object, or more precisely the
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same aspect of an object, but under different conditions. These differences
can relate to viewpoint, illumination conditions, composition of image or
the position of the various elements of the image. The two methods that are
presented are based on a common principle: using quasi-invariants associated
with local descriptors. The principle and advantages of this approach were
presented. The two methods were then tested with respect to image databases
of great dimension but not requiring the storage of descriptors on disk. In the
last section, we dealt with specific problems related to the use of external
disks as a medium of storing data.
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3D reconstruction, 208, 235

A
adequate movement, 237

B
block-matching, 202
bundle adjustment, 36

C
calibration

linear, 27
multi-image, 35
of zooms, 55
photogrammetric, 30
strong, 20

calibration from planes, 125
Cholesky’s decomposition, 71
comparison of descriptors, 275
conic

absolute, 68
dual, 69

conservation of brightness, 205
constraints

Huang-Faugeras, 66
Trivedi, 67

contraction zones, 200
correlation, 201
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decomposition in singular values, 61
Dementhon algorithm, 168

dense estimation, 205
detector

Harris, 273
of points of interest, 267, 273

differential invariants
“local jet”, 274
of gray levels, 273

dynamic programming, 202

E
epipolar geometry, 65, 190
epipolar line, 191
epipoles, 191
equations

Kruppa equations, 61, 68
Euclidean reconstruction, 212
Euler’s angles, 147, 154
expansion focus, 109
exponential convergence, 242
extrinsic parameters, 147

F
facets, 216
factorized Kruppa equations, 126
fixation, 238
fixation point, 240
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focusing, 245
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fundamental matrix, 65
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hand-eye calibration, 164
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homologous points, 190
Hough transform, 268, 269
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indexing algorithm, 290
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Pyramid-Tree indexing algorithm, 291
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sequential search, 291
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TV-Tree, 291
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indexing of images, 288
interpretation plane, 150
intrinsic parameters, 96, 146

focal distance, 146
optical axis, 146
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Levenberg-Marquard, 152
Levenberg-Marquardt algorithm, 76
local invariants, 272
local photometric information, 272
localization of a voluminous object, 148

by monocular vision, 148
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localization of an articulated object, 161
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mechanism of prediction/verification, 269
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modeling of a video camera, 146
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of underwater cameras, 48
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multi-scale approach, 275
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Newton-Raphson, 152
nominal task, 227
non-linear optimization, 152
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parameters
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perception strategies, 252
perspective projection, 22
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projective reconstruction, 209
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geometric approach, 284
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reconstruction 3D, 227
reference mark

camera, 23, 24
image, 24
model, 23

retinal movement, 111

S
scale factor, 65
scaled orthographic projection, 172
searching images, 266

geometric data, 267
photometric data, 266

self-calibration
pure rotations, 103
pure translations, 108
rotation around a fixed axis, 106

self-calibration of a camera, 100
shape recognition, 265
singularities, 92

camera, 91
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structure, 91
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stereo cameras, 64
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vision references, 241

triangulation, 219
trifocal tensor, 196

V
velocity field, 228
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