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Preface

In July 2013, a group of around 30 women researchers in shape modeling attended
the Women in Shape Modeling (WiSh) workshop at the Institute for Pure and
Applied Mathematics (IPAM) in the University of California Los Angeles (UCLA)
campus to begin research collaborations on some of the major problems in shape
analysis and modeling. Participants from North America, Asia, Europe, and the
Middle East lived, ate, slept, and worked together for one week at IPAM, then
continued their collaborations from a distance. This proceedings volume contains
preliminary results from those collaborations and related work. We look forward
to future papers on these topics as participants continue their contributions to the
growing body of work on mathematical shape modeling.

WiSh participants worked on one of the four research questions below.

1. Team Leaders: Luminita Vese, Sibel Tari. Simultaneous spectral and spatial
analysis of shape, investigating a new distance-like shape operator from the
spectral point of view, adopting signatures developed in the spectral literature,
and solving similar symmetry detection problems. We also develop a connection
to image segmentation and registration using the yet unclear connection of the
new operator to the Ambrosio-Tortorelli functional.

2. Team Leaders: Aasa Feragen, Megan Owen. Dimensionality reduction and
visualization of data in tree-spaces, studying dimensionality reduction in shape
spaces where the shapes have the structure of a tree, such as classes of anatomical
trees like airways and blood vessels, medial axes of 2D shapes, or phylogenetic
trees. We develop techniques for low-distortion embedding into open books and
hyperbolic spaces whose geometric structure is similar to that of tree-space.

3. Team Leaders: Kathryn Leonard, Erin Wolf Chambers. Geometric shape seg-
mentation, exploring shape segmentation from a Gestalt perspective, using
information from the Blum medial axis of edge fragments in an image. We
combine existing edge saliency measures together with medial data to increase
support for or against hypothesized edge interpolation and develop techniques
for considering related appearance cues.
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4. Team Leaders: Marie-Paule Cani, Raphaelle Chaine. Representing and editing
self-similar details on 3D shapes, studying shape deformation and editing
techniques, such as elongating or compressing parts of a shape while maintaining
local style, copy-pasting details from one shape to another, or changing the
scale of details without changing lower resolution geometry. All are essential
for interactive shape design. Blending properties of implicit surfaces make them
good candidates for solving this problem. We explore the extension of multi-
resolution analysis to these surfaces and their deformations, enabling us to
characterize repetitive self-similarities, and develop methods for filtering details
out and generating them again after low resolution shape editing. An extension
studies multi-resolution editing of animated shapes.

It has been an honor to work with this exceptional group of women and with the
efficient staff at IPAM. We are grateful to IPAM, the National Science Foundation,
Microsoft Research, and the National Geospatial Agency for providing funding for
the workshop, and to the UCLA Department of Mathematics for sharing space with
us. In addition, the Association for Women in Mathematics (AWM), and President-
Elect Kristin Lauter in particular, played a key role in encouraging me to organize
a research collaboration workshop in conjunction with AWM. These workshops
are now a regular part of AWM’s offerings, and AWM activities at the annual
Joint Mathematics Meetings center on research topics emerging from collaboration
workshops.

Special thanks is due to my coeditor, Sibel Tari, who provided useful insights
during the workshop and invaluable help during the preparation of this manuscript,
and to Stacey Beggs at IPAM who worked creatively to solve several unexpected
issues during the course of the workshop.

California, USA Kathryn Leonard
May 2014
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Introduction

Modeling shapes is one of the most thought-provoking challenges in computational
imaging and perception. Let us consider, for example, a deceptively simple task
of comparing two shapes. Which properties of the shape should be the basis for
comparison if one desires to imitate common sense or intuitive nearness? This
question is hard to answer because such nearness is not absolute; it depends on
the context, e.g., other shapes in the same environment. A property that holds a
group of shapes together in one context may be an irrelevant detail or noise in
another context. Imagine a collection of circles and triangles drawn using a rich
variety of creative brushstrokes. By filtering out the brush effect as a useless detail,
a perception system can recover two categories, the circle and the triangle. The brush
effect – useless detail in one scenario – might, however, be the key feature holding
a wide variety of contour drawings together in another scenario containing a wide
range of basic shape contours drawn using regular pen and a zigzag brush. In this
case, the two brush types naturally characterize the two categories. Note, however,
that the goal of comparing shapes is not merely to construct equivalence relations on
a given set of shapes; continuous measures of context-dependent nearness and right
shape models that support them are what one needs. Formulating salient features
of shapes, selectively removing detail, constructing flexible coordinate frames and
shape spaces equipped with appropriate metrics, and computing in-betweens are all
parts of the attempt to capture the continuum of relations among shapes. Several
chapters in the book directly address these topics.

Two contributions (Chapters 8 and 9) by the M.P. Cani and R. Chaine team
are on saliency and detail. The material in both chapters heavily rests on medial
representation, a timeless paradigm in shape modeling. Medial representation is the
main paradigm in Chapters 6 and 7, too, respectively contributed by the K. Leonard
and E. W. Chambers and the S. Tari and L. Vese teams. In both chapters, the problem
of computing medial representations from complex images is tackled.

Computing shape representations from complex images is important because
shapes in the form of point clouds, surfaces, or characteristics functions are not
readily available; they must be extracted using discontinuities in images. This is not
an easy task. In order to make the process of shape extraction immune to noise,

xiii
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texture, contrast variations, so on and so forth, images need to be conditioned,
i.e., irrelevant details need to be suppressed and missing information due to weak
contrast or an occlusion must be recovered.

Intriguingly, conditioning of images requires prior knowledge on the nature of
shapes being investigated. This opens up a whole new set of challenges, the most
notably a need for communication between the processes of shape understanding
and image filtering. The earlier process of image filtering is a necessary step
before shape extraction. Nevertheless, its success heavily depends on the proper
choice of prior knowledge of the nature of shapes in the image. Defining mid-
level priors in the form of generic regularities and/or high-level priors in the form
of shape categories for filtering and shape extraction is a fundamental problem
of which solution rests on defining shapes via functions of certain regularity that
can be differentiated and incorporated into multi-objective optimization problems
involving both region and boundary terms. Chapter 1, a contribution by the S. Tari
and L. Vese team tackles the problem of automatically selecting high-level shape
priors when shapes are represented implicitly by real valued functions (fields)
defined on the shape domain. The applications of representing shapes implicitly
via fields are further investigated in two more contributions (Chapters 2 and 3) by
the members of the same team.

Applications drive theoretical development. Medical and biological applications
have been a major source of motivation in shape research. In Chapter 4, continuum
mechanics models are explored for the analysis of the cortical shape. In Chapter 5,
the A. Feragen and M. Owen team models the space of trees that stem from
anatomical shapes. Indeed, discrete computational structures such as trees and
graphs are indispensible tools in shape research. They are commonly employed to
express relationships among shape components.

Put together, the chapters in the book cover an entire spectrum in shape analysis
starting from raw images ending with shape-related decisions.

Ankara, Turkey Sibel Tari



Chapter 1
Automatic Prior Shape Selection for Image
Segmentation

Weihong Guo, Jing Qin, and Sibel Tari

Abstract Segmenting images with occluded and missing intensity information is
still a difficult task. Intensity based segmentation approaches often lead to wrong
results. High vision prior information such as prior shape has been proven to be
effective in solving this problem. Most existing shape prior approaches assume
known prior shape and segmentation results rely on the selection of prior shape.
In this paper, we study how to do simultaneous automatic prior shape selection and
segmentation in a variational scheme.

1.1 Introduction

Image segmentation has many important applications in object recognition, machine
learning, medical imaging, etc. In medical imaging for instance, segmentation of
anatomical structures is used to help in diagnosis, surgical planning and evaluation.
Intensity based image segmentation methods can be classified into region based,
edge-based and a combination of these two. Using image intensity information
alone however may not lead to desired results when the image to be segmented
has significant signal loss, poor image contrast and missing boundaries. Prior shape
based approaches are more effective in these cases. Most existing shape based
approaches assume the shape prior is given and a misleading prior shape might
lead to wrong segmentation. We use sparse optimization to automatically select
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prior shapes from a shape library and simultaneously segment images. The proposed
variational approach is able to automatically and adaptively select prior shape which
in turn guides segmentation. It is especially beneficial when there are objects with
multiple shapes to segment.

The rest of the paper is organized as follows: Sect. 1.2 introduces the proposed
model. Numerical results are presented in Sect. 1.3. Conclusion is drawn in Sect. 1.4.

1.2 Model Description

In this section, we start by reviewing the Ambrosio-Tortorelli approximation of the
Mumford-Shah model, then we describe how to apply it to form the shape library.
Lastly, we present the proposed segmentation model.

1.2.1 Ambrosio-Tortorelli Approximation of Mumford-Shah
Segmentation Functional

Given an image g.x/ defined on an open and bounded set ˝ � R
2 satisfying

g 2 L1.˝/, Mumford and Shah [1] proposed the following functional for image
segmentation

F MS.u; S/ D
Z

˝=S

�
˛jruj2 C ˇju � gj2

�
dx C H1.S/:

where H1 is the Hausdorff 1-dimensional measure in R
2, i.e.,

H1.S/ D sup
ı>0

H 1
ı .S/ D lim

ı!0
H 1

ı .S/

D lim inf
ı!0

( 1X
iD1

.diam.Ui //
d W

1[
iD1

Ui � S; diam.Ui / < ı

)
:

The functional is optimized in a weak sense and can be approximated by [2]

GAT
� .u; v/ D

Z
˝

�
�jrvj2 C ˛v2jruj2 C .v � 1/2

4�
C ˇju � gj2

�
dx:

Then the image segmentation is to find a piecewise C 1 function u.x/ and a function
v.x/, such that v.x/ ! 1 as � ! 0 in the L2.˝/-topology, i.e.,

lim
ı!0

Z
˝

jv � 1j2dx D 0:
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Neither Mumford-Shah model nor its Ambrosio-Tortorelli approximation can
work well for images with missing or occluded edge information. Shape prior is
required in this case to obtain a complete segmentation. We use sparse optimization
to search for prior shapes that adapt to images automatically.

1.2.2 Shape Descriptor Library

We start by reviewing edge strength functions presented in [3] to form a library.
Then we will describe how to use these functions to form our shape libraries. These
edge strength functions have distance function look and provide richer information
than the binary silhouette images (see Fig. 1.1). For notational simplicity, we use the
same notation to interchangeably represent a matrix and its vectorized version. For
the rest of the paper, we consider discrete models. For instance,

Z
˝

�
�jrvj2 C .v � 1/2

4�

�
dx (1.1)

is discretized as �krvk2
2 C kv�1k2

2

4�
.

For each binary image, we compute its edge strength function based on the
following diffusion model with Dirichlet boundary condition

vi D argmin
v

�krvk2
2 C kv � 1k2

2

4�
; v D 0 on the boundary of the i th binary image.

(1.2)

Fig. 1.1 Examples of silhouette images (top row) and their edge strength functions (bottom row)
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Given a library

A D
2
4 j j j

v1 v2 � � � vN

j j j

3
5 ;

our goal is to learn a prior shape v such that

v D As C w C e D
NX

iD1

si vi C w C e;

where w is discrepancy and e is random Gaussian noise. Considering the sparsity of
s and edge-like characteristic of w, we propose the following model:

min
s;w

krwk1 C ˇ ksk0 subject to kAs C w � vk2 � �;

where ˛; ˇ > 0 are parameters, and � is the standard deviation of the error. By
converting into the unconstrained minimization problem, the above model reads as

min
s;d

1

2
kAs C w � vk2

2 C ˛krwk1 C ˇ ksk0 :

Since the `0 problem is NP-hard, we make a relaxation and solve the following `1

problem

min
s;d

1

2
kAs C w � vk2

2 C ˛ krwk1 C ˇ ksk1 :

The reason that we use the edge strength function for shape rather than any other
informative indicator function (e.g., signed distance function) is that it has a natural
connection to the segmentation problem via Mumford and Shah. Note that the edge
strength function is nothing but the minimizer of (1.1). In the previous section we
have explained that the edge strength function approaches to the edge indicator in
the L2.˝/-topology as � ! 0. Interestingly, as we increase �, edge localization
weakens and v begins to act as a morphology coder: (1) v value at a domain point
is a monotonically decaying function of the distance from the point to the domain
boundary (the edge set); (2) the level curves of v are curvature dependent erosions of
the domain boundary [3]. Thus, in our model, unlike many other shape prior based
segmentation models, we do not distinguish inside and outside in the intermediate
steps.
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1.2.3 Proposed Segmentation Model

Given a reference image g.x/, we propose the following segmentation model:

min
u;v;s;d;h

1

2
ku � gk2

2 C ˛

2
kv � ruk2

2 C �

2
krvk2

2 C kv � 1k2
2

8�

C ˇ krwk1 C � ksk1 C W.h/

subject to As C w D v.h/:

where � represents point-wise product, W.h/ is a regularization term with respect
to h. Note that to make variables consistent in the above model kruk2

2 and krvk2
2

are the discretized versions of
R

˝
jruj2dx and

R
˝

jrvj2dx. Typically W.h/ is set as
krhk2

2.
The associated Lagrangian function is

L.u; h; v; s; w; t / D 1

2
ku � gk2

2 C ˛

2
kv � ruk2

2 C �

2
krvk2

2 C kv � 1k2
2

8�

C ˇ krwk1 C � ksk1 C W.h/ C �

2
kAs C w � v.h/ � tk2

2

where t is the scaled Lagrange multiplier and � is a positive parameter. Since v and h

are related and inseparable, we cannot directly apply the ADMM to solve the above
model. As such, we consider the following modified ADMM with approximate
subproblems:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

ukC1 D argmin
u

1

2
ku � gk2

2 C ˛

2

��vk � ru
��2

2
;

vkC1 D argmin
v

˛

2

��v � rukC1
��2

2
C �

2
krvk2

2 C kv � 1k2
2

8�

C �

2

��Ask C wk � v.hk/ � t k
��2

2

hkC1 D argmin
h

�

2

��Ask C wk � vkC1.h/ � t k
��2

2
C W.h/

skC1 D argmin
s

� ksk1 C �

2

��As C wk � vkC1.hkC1/ � t k
��2

2

wkC1 D argmin
d

ˇ krwk1 C �

2

��AskC1 C w � vkC1.hkC1/ � t k
��2

2

tkC1 D t k C �.vkC1.hkC1/ � .AskC1 C wkC1//

(1.3)
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The u-subproblem can be solved by applying the negative gradient flow

du

dt
D �2.u � g/ C ˛ div

	
.vk/2ru



: (1.4)

Likewise, the v-subproblem can be solved iteratively. The h-subproblem turns out
to be a registration problem. Moreover, the s-subproblem and the w-subproblem are
Lasso problems which can be directly solved by applying ADMM [4, 5].

1.3 Experiments

In this section, we show two numerical experiments to validate our proposed
method. By the assumption that the desired edge strength function v is a linear
combination of atoms in the library A, the atoms have to be linearly independent
which ensures the unique representation of v in the column space of A. In addition,
to avoid the interruptions of background during the learning process, we also restrict
the data fidelity term in the s-subproblem to the union of shape interiors associated
with atoms, which can be done by introducing the corresponding mask. In all our
experiments, the library consists of five independent atoms which are generated by
applying the model (1.2) to five binary shapes (see Fig. 1.2). The parameters for
both experiments are set as � D 8, ˛ D � D 1, and ˇ D 10�2.

At the first experiment, we test an image where a star is partially occluded by the
background rectangles. After running 13 iterations, the desired atom corresponding
to the star shape is learned from the library. The input image, the obtained edge
strength function v and the extracted boundary by thresholding v with 0:015

respectively are shown in Fig. 1.3. This example shows that the proposed algorithm
is able to find a matching shape from the library. At the second experiment, we test
an image where a star with missing parts is contaminated by uniformly distributed
Gaussian noise with zero mean and standard deviation � D 0:8. After 60 iterations,
the desired edge strength function v is obtained with noise reduction. The extracted
boundary by thresholding v with 0:04 is shown in Fig. 1.4. One can see that the
proposed method has a potential to supplement the insufficiency of input data by

Fig. 1.2 Atoms in the library used in the experiments
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Fig. 1.3 From left to right: the input image which has a star occluded partially by the background,
the output edge strength function v, and the extracted boundary

Fig. 1.4 From left to right: the input image which has a star in a noisy background with missing
parts, the output edge strength function v, and the extracted boundary

learning a prior shape from the library. The resultant edge strength images can be
further processed to obtain sharp boundaries of the objects by thresholding or other
more sophisticated algorithms.

1.4 Conclusion

Shape prior plays an important role in segmenting images with occlusive and miss-
ing information. In this paper, we used edge strength functions as atoms of a library
and applied sparse optimization methods to automatically and adaptively search
for a shape prior from the library to guide segmentation in a variational scheme.
Numerical experiments show that the proposed approach has some potentials in
segmenting images with missing information, random noise and structure noise.

Acknowledgements The authors would like to thank Luminita Vese from the Department of
Mathematics at the University of California, Los Angeles for insightful discussions. The joint
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Chapter 2
A Scalable Fluctuating Distance Field:
An Application to Tumor Shape Analysis

R. Alp Guler, Andac Hamamci, and Gozde Unal

Abstract Tumor growth involves highly complicated processes and complex
dynamics, which typically lead to deviation of tumor shape from a compact
structure. In order to quantify the tumor shape variations in a follow-up scenario,
a shape registration based on a scalable fluctuating shape field is described. In
the earlier work of fluctuating distance fields (Tari and Genctav, J Math Imaging
Vis 1–18, 2013; Tari, Fluctuating distance fields, parts, three-partite skeletons. In:
Innovations for shape analysis. Springer, Berlin/New York, pp 439–466, 2013),
the shape field consists of positive and negative values whose zero crossing
separates the central and the peripheral volumes of a silhouette. We add a non-
linear constraint upon the original fluctuating field idea in order to introduce
a “fluctuation scale”, which indicates an assumption about peripherality. This
provides the induction of an hierarchy hypothesis onto the field. When fixed, the
field becomes robust for scale changes for analysis of correspondence. We utilize the
scalable fluctuating field first in segmentation of the protruded regions in a tumor,
which are significant for the radiotherapy planning and assessment procedures.
Furthermore, the unique information encoded in the shape field is utilized as
an underlying shape representation for follow-up registration applications. The
representation performance of the scalable field for a fixed ‘fluctuation scale’ is
demonstrated in comparison to the conventional distance transform approach for
the registration problem.

2.1 Introduction

Tumor growth modeling is extensively studied using theoretical and experimental
approaches by a variety of disciplines. While majority of the current studies are
focused on modeling microscopic phenomena, mathematical models that operate
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at a macroscopic level are increasingly investigated through the analysis of clinical
medical images [23]. Inhomogeneous and anisotropic tumor growth mechanisms
lead to deviations of the tumor’s shape characteristics from a compact structure and
include protrusions. It is clear that extracting and quantifying the spatial information
that irregular tumor shape parts carry would be a helpful macroscopic research tool
for a better understanding of the dynamics of tumor growth.

As for clinical usage, the quantification and segmentation of the protruded and
peripheral tumor regions could play an important role in radiosurgical applications.
The goal of radiosurgery is to deliver a necrotic dose of radiation to the tumor
while minimizing the amount of radiation to healthy brain tissues, especially to
dose-sensitive tissues [39]. Series of beam configurations are determined as an
optimization problem for treatment planning process such that beams will intersect
to form a high dose at the tumor ROI. The rapid decrease at the edges of the
radiation beam, which corresponds to the between 80 and 20 % isodose lines, is
called the penumbra region and is generally located on the peripheral regions of the
tumor [22]. A model that allows the distinguished analysis of the peripheral regions
and segmentation of these parts that receive less radiation dose would not only be
useful for isodose planning, but also for evaluating the success of the operation on
protrusions and peripheral regions that are in close relation to critical anatomical
structures. We propose an interactive method to distinguish protruded-peripheral
parts using solely distance relations.

Segmentation or partitioning of shapes as boundary meshes is a problem of
great interest for geometric modeling and computer graphics fields. The parti-
tioning of the object represented by the mesh into meaningful parts, referred to
as part-type segmentation by Shamir[33], is highly motivated by the study of
human cognition [4, 18]. For an in-detail analysis of existing mesh segmentation
methods we refer to [10, 33], along with recent successful approaches [16, 21]
and a comparison of part-type segmentation techniques can be found in [1].
Distance functions described on the shape surfaces are commonly utilized for
shape decomposition. There is a variety of surface metrics, e.g. geodesic [14],
isophotic [24, 31], diffusion [11–13], volumetric part aware [25]. Though successful
with a mesh representation, adaptation of these decomposition methods that use
distance metrics to a volumetric representation would not be plausible. Additionally,
partitioning the protrusions of tumors would require the abstraction of peripheral
regions beforehand, else the association of partitioned boundary segments to the
tumor volume would not be possible.

A sound approach for regional shape partitioning is utilizing the medial axis of
symmetry, i.e. skeleton representation [6]. Partitioning shapes by associating regions
with medial locus branches is very common and also successfully utilized in medical
imaging [20, 30, 34, 35]. However, skeletal representations commonly suffer from
certain instabilities. One of the instabilities is due to boundary perturbations, which
are commonly addressed using smoothing or branch pruning approaches, which
involve discarding branches that contribute little to the reconstruction of the shape
[3, 7, 32]. For partitioning, choice of branches to prune would affect the resulting
decomposition drastically considering the highly compact shapes of tumors, which
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also tend to inherit symmetries. Another kind of instability occurs in the regions near
the junctions, which is mainly referred to as the ligature problem [2, 5]. A variety of
methods have been proposed to cope with the ligature problem, including detecting
transitional areas [28], a Bayesian formulation for estimating likely branches that
would produce the shape [15] or disconnected skeleton approaches [9, 26, 38].
Additional to these inconsistencies, the association of branches with protrusions
is not straightforward and even under slight deformation the abstraction of the
centrality of the shape is not possible for fold-symmetry cases, which are highly
possible for tumor shapes. Tari’s model of Three-Partite-Skeleton, which arises from
fluctuating distance fields [36] adresses this problem, which is highly motivating for
the purpose of protrusion segmentation.

The fluctuating distance field [36, 37] contains both positive and negative values,
and its zero crossing separates central and peripheral volumes. The maximum value
of the field can be considered as a rough approximation of the center point for the
shape in question, for instance the tumor, whereas the local minima correspond to
rough approximations of center points for the protruded parts on the shape. The
level curves encode the spatial relationships so explicitly that the separate protruded
parts can be segmented even using a watershed segmentation without any additional
processing. The extracted central region is compact and the peripheral region is
always partitioned, unless it is a perfect annulus. In this model, no control exists
over the ratio of region cardinality of positive field values to that of the negative
field values. However, such a property can be an advantage in forming a shape field
that respects a certain scale of central to peripheral regions of the shape. Particularly
for shapes of tumorous structures, where boundaries between peripherality versus
centrality is rather vague, variation of such a scale will introduce a flexibility in
following shape analysis stages.

In this paper, we describe a scalable fluctuating distance field as a tumor
description model. This model allows the user to interactively adjust the ratio
of positive and negative domain sizes. The corresponding parameter can be set
according to nature of the application. Thanks to this addition, a hierarchy of parts is
not to be abstracted from the field as in [37]. Instead, fields that represent different
hierarchical assumptions are formed, with the trade-off of losing linearity of the
formulation. Details about the formulation and implementation of the shape field
will be described in Sect. 2.2, where the fluctuation scale space that arises with the
new parameter is introduced and exemplified on 2D shapes and 3D tumor volumes.

The constructed shape fields will be used for an alignment of baseline and follow-
up tumor structures. In this registration problem, the distance transform is often
used as a shape representation that describes the spatial relationships within the
moving and fixed shapes [29]. The adjustment of the location of the zero-level
set of the new distance field impairs the effect of scale changes to the resulting
field for a fixed fluctuation scale, making the field a robust underlying shape
representation for registration purposes. The registration process is described in
Sect. 2.3 and experiments using both synthetic data and patient data are evaluated
in Sect. 2.3.1, where the scalable fluctuating distance representation is compared to
the conventional distance transform representation.
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2.2 Scalable Fluctuating Distance Field

The concept of fluctuating distance fields, introduced by Tari [37], involves the
exploitation of local and global spatial interactions to achieve a field that consists
of both negative and positive values. The zero-level set partitions the shape
domain into ˝C and ˝�, which corresponds to the central region, a coarse and
compact shape, and the peripheral region, which includes all the protrusions of
the tumor, respectively. The ridge points on the surface yields the Three-Partite
skeletons indicated. Our main motivation in using the fluctuating distance field is the
information inherently coded in the resulting level curves at the peripheral regions,
which will allow the explicit treatment to peripheral regions for further analysis. In
this section we will describe our modification of this method, which will provide the
required flexibility and interactivity for our purpose. We will follow by introducing
the arising scale-space and illustrating segmented protruded parts using different
fluctuation scales for 2D shapes and 3D tumor volumes.

The fluctuating distance field, !: ˝ ! R is a real valued function on a discrete
lattice, ˝ � Z � Z � Z, with a neighborhood system, N. ! is generated by the
minimization of linear combinations of regional and boundary energies, which are
described over the shape domain ˝, as a function of !.

2.2.1 Energy Terms

The regional energy consists of local and global terms that function as spatial
regularizers. Tari [37] proposed a global regional energy, which is the squared
average over the domain, connecting all the nodes using a global mean constraint:

EGlobal.!i;j;k/ D 1

j˝j
X

.l;m;n/2˝

!2
l;m;n (2.1)

Differentiating EGlobal.!i;j;k/ over ˝ leads to the following expression:

@EGlobal.!i;j;k/

@.!i;j;k/
D 2

j˝j
X

.l;m;n/2˝

!l;m;n (2.2)

which would be minimized if ! is composed of all zeros or is a fluctuating function,
where positive and negative values cancel each other.

The local regional energy functions as a smoothness term. We use the sum
of squared differences between neighboring pixels in a six neighborhood system,
N.i; j; k/ to obtain the required spatial smoothness for the ! field:
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ELocal.!i;j;k/ D
X

.l;m;n/2N.i;j;k/

.!l;m;n � !i;j;k/2 (2.3)

Differentiating this energy w.r.t !i;j;k results in the following expression, where Ł
corresponds to the seven-point discretization of the Laplacian operator:

@ELocal.!i;j;k/

@.!i;j;k/
D �2.!iC1;j;k C!i�1;j;k C !i;j C1;k C !i;j �1;k

C !i;j;kC1 C !i;j;k�1 � 6!i;j;k/

D �2Ł.!i;j;k/ (2.4)

The boundary energy is defined for formulating the interactions along the level
surfaces. The preservation of interactions between the nodes is imposed on the !

field using the usual distance transform as a bridge [37]. Thanks to this constraint,
central regions of the shape, where the distance transform has larger values have
much higher tendency to get positive ! values. The similarity to the distance
transform function is formulated as follows:

EBdry.!i;j;k/ D .!i;j;k � Di;j;k/2 (2.5)

where D denotes the distance transform of the shape. The derivative of EBdry w.r.t
!i;j;k is then given as follows:

@EBdry.!i;j;k/

@.!i;j;k/
D 2.!i;j;k � Di;j;k/ (2.6)

Minimization of the combination of these energies results in a ! field that has
low expected value, thus fluctuating (2.2), locally smooth (2.4) and resembling the
distance transform of the shape (2.6).

2.2.2 A Sign Constraint to Control Fluctuation Scale

The natural location of the zero-level curve under the given constraints often
becomes too close to the tumor boundaries, turning out to be a disadvantage
while estimating a deformation between two ! fields. In addition, the ability to
control the location of the zero crossing turns the ! field to a robust feature for an
interactive tool for segmenting the protrusions on the tumor. Therefore we describe
an additional global constraint to adjust the position of the zero crossing. The term
is constructed as a quadratic expression forcing the sum of the signs of all nodes to
be close to a predetermined ratio of the domain size, j˝j:
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ESign.!i;j;k/ D
X

.i;j;k/2˝

  X
.l;m;n/2˝

sign.!l;m;n/

!
� �j˝j

!2

(2.7)

where � 2 Œ�1; 1	 corresponds to the ratio of the intended sum of the signs of all !

points to the number of points in the shape domain j˝j. While minimizing (2.7), �

is chosen as the desired ratio of:

� D

P
.l;m;n/2˝

sign.!l;m;n/

j˝j D j˝Cj � j˝�j
j˝Cj C j˝�j (2.8)

Differentiating this energy w.r.t. !i;j;k would give:

@ESign.!i;j;k/

@.!i;j;k/
D 4

X
.i;j;k/2˝

  X
.l;m;n/2˝

sign.!l;m;n/

!
� �j˝j

!
� ı.!i;j;k/ (2.9)

For the approximation of the signum function in a differentiable manner, we used
a regularized Heaviside function, then the impulse function ı.z/ was approximated
as the derivative of H.z/:

sign.z/ D 2H.z/ � 1 ' 2



arctan.

z

�
/; ı.z/ ' 1



.

1

1 C . z
�
/2

/.
1

�
/ (2.10)

where � determines the steepness of the smoothed step and the impulse functions.

2.2.2.1 Formulation

The computation of ! is achieved by calculating the steady state solution to the
linear combinations of the energy derivatives, which are described above. The
combination of the energies is presented in a continuous formulation as follows:

•

˝

.!x;y;z � Dx;y;z/
2C
�

1

j˝j
•

˝

!.˛; ˇ; �/2 d˛dˇd�

�
C .r!.x; y; z/ /2C : : :

: : :

  •

˝

sign.!˛;ˇ;� /d˛dˇd�

!
� �j˝j

!2

dx dy dz (2.11)
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The solution is obtained by applying the method of gradient descent in the
following expression:

@!i;j;k.�/

@.�/
D � @.ˇ1ELocal.!i;j;k/ C ˇ2EGlobal.!i;j;k/ C �ESign.!i;j;k/ C ˇ3EBdry.!i;j;k//

@!i;j;k

where ˇ and � values are Lagrange multipliers for the given energies. As natural
choices, ˇ1, ˇ2, ˇ3 parameters can be interpreted as 1 [37]. � is the only Lagrange
multiplier that calibrates the relationship between the values of EBdry.!i;j;k/ and
ESign.!i;j;k/. � only affects convergence speed when it is within appropriate limits,
that is not larger than the maximum value of the D. We choose it as a normalization
to the ESign of the ! field with the desired size of j˝Cj using roughly a spherical
zero-level set assumption. The iterative scheme on ! is revealed after an artificial
time discretization in � :

!nC1
i;j;k � !n

i;j;k

��
D Ł.!i;j;k/ � 1

j˝j
X

.i;j;k/2˝

!n
i;j;k �

�
1

j˝j!
n
i;j;k � Di;j;k

�

��
X

.i;j;k/2˝

 X
.i;j;k/2˝

sign.!n
i;j;k/ � �j˝j

!
ı.!n

i;j;k/ (2.12)

For the third term above, as ! is calculated up to a scale, a weight of 1=j˝j is used
as a weighting between the D and the ! field.

2.2.3 A Space of Fluctuation Scales

The effect of the parameter � of the ESign term is not only to change the location
of the zero-level set. Its combination with the zero-mean constraint changes the
encoding characteristics of the whole domain. For instance, positive � values force
the negativity of the nodes that belong to ˝� much more compared to � D 0

to satisfy the zero mean constraint. The reason is that there are less number of
nodes that are negative, so those have to be more negative to satisfy the zero mean
condition. The opposite goes for the negative � values. This causes a diversity in the
characteristics of the fields as � changes. A separate normalization can be applied
to the positive and negative parts of the fields, which diminishes this effect if not
desired.

We depict the resulting fluctuation scale-space for a hand shape in Fig. 2.1a,
where !. Qx; �/ is presented for Qx on a vertical line on the hand shape domain and
the surface plot for the zero-crossing contour as a function of � is presented in (b).
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Fig. 2.1 (a) The normalized field !.x D Qx; �/, where Qx is shown by horizontal (top) and vertical
(bottom) red lines. Image obtained by sweeping � from 1 to �1. (b) Surface plot for !.x; y; �/ D 0

Fig. 2.2 From left to right: Input shape, ! for � > 0, ! for � D 0, ! for � < 0

Fig. 2.3 ˝� domain and watershed segmentation results for: left � > 0, right: � D 0

Notice that the zero-level set sweeps the whole domain smoothly from boundary to
central regions, as the information regarding ˝ is encoded for different scales of
peripherality.

The computed field is shown for three different � values (> 0; D 0; < 0) for the
symmetric shape silhouette in Fig. 2.2. Note that there are two levels of hierarchy
in the peripheral regions of the shape, which can be seen as five different parts at a
coarser level, later which are further differentiated into two separate parts. Varying
the fluctuation scale parameter, one can capture those two levels of scale (coarser
and finer) as can be observed in the resulting field with positive and negative �

values, respectively.
A similar effect is achieved for the leaf silhouette in Fig. 2.3. Using a simple

watershed segmentation [27], the resulting partitions reveal the three main leaves
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Fig. 2.4 The original ! field (left) [37], where the Lagrange multiplier � is chosen as zero in
Eq. 2.12 and five ! fields (right) calculated using increasing values for �, where �1 < �2 < �3 D 0

and �5 > �4 > �3 D 0. Upper row for both shapes is a contour plot of normalized ! and bottom
rows depict ! for solely ˝�

with � D 0, whereas the partitioning with the � > 0 field reveals the smaller
protrusions on those three leaves. Here, the encoding of coarse to fine shape details
nicely demonstrates the hierarchical aspect introduced into the fluctuating distance
field.

We show the original w field and the scalable w field for various � values
in Fig. 2.4 for an elephant and a cat silhouette. The first columns next to the
silhouettes show the original field followed by the fields with increasing values
of the fluctuation scale. The top picture is the whole w field, whereas the lower
depicts only its ˝� partition. Looking at the details at the legs of the fields more
closely, for instance, the elephant’s both front legs are merged in the original w
field, as well as for the scalable field for smaller � values. When � is increased (e.g.
see the rightmost field), the legs are separated, as can be observed in the ˝�-part
of the field. This is because where the two legs are joined, there is a single local
maximum with the original and low scale parameter fields, whereas there are two
separate local maxima for each leg with the high-scale-parameter field. The same
observation holds for the various shape fields over the cat. Note the rear-most leg
of the cat and its tail which share a joint single maximum, whereas that extremum
separates into two separate maxima for the tail and the rear leg towards the higher
�-scale. Another point to remark over these experiments is the interesting feature
of the low-�-fields when compared to the original w-field. Note the cat’s front legs,
and elephant’s rear legs, which seem to have a separate maximum for each leg in the
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original shape field. However, the low � shape fields facilitate to peek at those same
features first jointly then separately as the fluctuation scale varies from low to high.
As these experiments demonstrate, the hierarchy over the shape is not built from the
w-field as in [36], however, we modify the field itself to create the hierarchy that is
sought for.

2.2.4 Interactive Tumor Protrusion Segmentation

The segmentation of the protruded tumor regions is achieved using the information
in the negatively-valued regions of the ! field, which encapsulates local minima that
depicts separate protrusions. The tumor should be segmented prior to the calculation
of !, for this purpose we use the Tumor-Cut method [17]. A contrast enhanced T1
MRI axial slice is depicted in Fig. 2.5, along with the ! field calculated on the
tumor shape domain. Partitioning of the negatively-valued domain into protruded
parts can be performed using the watershed transform [27] on the ˝� field. The
parts segmented from the resulting ! field can be observed Fig. 2.6 for a sample 3D
tumor volume.

With the flexibility that ESign provides, the size of the positive compact part
˝C can be adjusted with user interference by medical experts or can be calculated

Fig. 2.5 Left: An axial slice of contrast enhanced T1 MRI of a patient with a tumor. Middle: !

field isocontours for the corresponding tumor slice. Right: ! field visualized

Fig. 2.6 From left to right: Tumor volume. Positive and negative parts of the proposed field.
Positive part of the field. Negative part of the field. Segmented protrusions of the tumor enveloped
in the negative part of the field. Segmented protrusions visualized with the positive part of the field
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Fig. 2.7 Visualizations of positive(opaque) and negative(transparent) parts of the tumor field
paired with corresponding segmentation results. The fluctuating distance field for each pair were
generated using the corresponding � value

automatically by relaxing the � parameter until a predetermined hypothesis regard-
ing the separated volumes are satisfied. The effect of � parameter on the resulting
protruded parts is presented in Fig. 2.7.

2.3 Tumor Follow-Up Registration Using ! Fields

In order to obtain a valid and unbiased comparison between the performances of !

field and the conventional distance transform D as underlying shape representations,
we chose attributes that are essential in many of the registration algorithms that were
proposed to calculate such deformations and combine them to end up with a basic
yet powerful registration routine.

As linear data terms are not capable of performing well in case of large
displacements, we used non-linear data terms and a coarse to fine warping approach
which is a well studied combination in the area of optical flow estimation [8].
We follow the traditional model, formulated by means of an energy optimization
problem, where deformation is calculated as a mapping between domains of shape
fields !1 and !2. The displacement field u 2 R

3 D .u1; u2; u3/ describes the
deformation between the tumor and the follow-up shape domains: u W ˝1 2 R

3 !
˝2 2 R

3. In the following: x 2 R
3 D .x1; x2; x3/. The assumption of constancy of

the underlying shape representation is formulated as:

!1.x/ � !2.x C u/ D 0

In addition to this data term, a regularization term based on the gradient of the
deformation field is utilized. Following the original Horn and Schunck optical flow
model [19], the combined functional F, where ˛ is a parameter that controls the
smoothness term:

F.u/ D
Z

˝1

.!1.x/ � !2.x C u//2 C ˛2.jru1j2 C jru2j2 C jru3j2/dx (2.13)

is minimized to yield the Euler-Lagrange equations, which are non-linear due to
the !2.x C u/ terms they contain. The first order Taylor expansions are used for
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those terms to obtain the linear system of three equations. First one of those three
equations (for each coordinate) is written as:

.!1.x/ � !2.x C u/ � r!2.x C u/ du/ !2x1
C ˛2div.ru1/ D 0 (2.14)

where !2xi
is the spatial derivative of !2 w.r.t xi and du 2 R

3 describes an unknown
update to the known variable u. In its solution, we adopted the warping scheme,
introduced in [8], where the deformation field u is set to zero at the coarsest level
and updated by unC1 D un C du, as soon as du is computed at each finer scale using
an inner loop of SOR iterations. !2.xCu/ is computed at the beginning of each outer
iteration by applying a warping process to !2.x/ using the deformation field, un. The
number of outer iterations depends on the downsampling factor. In order to achieve
the full potential of the model, instead of the conventional 0.5 downsampling factor,
we used a fixed value of 0.95 and a large number of outer iterations.

2.3.1 Registration Results and Discussion

Using both 2D synthetic shapes and real patient 3D tumor volumes, the performance
of the ! field as an underlying shape representation for tumor follow-up registration
is demonstrated against the distance transform, which is the conventional method to
impose spatial shape relationships to the registration procedure.

Synthetic data results for pre-smoothed distance transform, pre-smoothed nor-
malized distance trasform and fluctuating distance fields are respectively demon-
strated in Fig. 2.8. On the top row for each of the experiments, the white and gray
shapes denote the fixed and moving objects respectively, where the displacement
vector field is demonstrated using arrows. Local volume change for each of
the corresponding displacement field is generated using the determinant of the
deformation gradient (det.I C rxu/) and presented below. The values of the
determinant that are greater than 1 indicate a local expansion, whereas values less
than 1 indicate a local contraction.

The distance transform, D is invariant to rotation and translation, but it is
quite sensitive to scale changes[29]. Without a normalization, D representation
can perform well for deformations without scale changes only, which certainly
is not the case for tumor followup analysis. On the other hand, normalization
causes an ambiguity in the information preserved in D, leading to an estimation of
the deformation field that does not fully describe the change between the shapes.
However the ! field adopts less ambiguity, since the information is partitioned
to separate parts, which leads to a robust estimation of the deformation. ESign

constraint contributes highly to this robustness to scale change, for the ratio � will be
the same in ˝1 and ˝2. Our experiments are highly coherent with this description.
In Fig. 2.8, it is clear that D without a normalization fails to produce a smooth
vector field. In addition while the local volume change in the deformation fields
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Fig. 2.8 (a–c): Visualizations of deformation field vectors and volume change pairs for reg-
istration of each synthetic shape couples, generated using Left: Distance transforms. Middle:
Normalized High accuracy optical flow estimation based on a theory for warping.distance
transforms. Right: Scalable fluctuating distance fields

estimated using ! is in accordance with the change in the shapes, the normalized
D representation approaches fail to generate intuitive results. The expansions and
contractions at the peripheral regions in Fig. 2.8 reveal the counter-intuitive nature
of the displacement vectors generated using normalized D.

Our experiments with patient data are demonstrated in Fig. 2.9, where the
estimated 3D vector fields are visualized (on the left) for two pairs of tumor volumes
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Fig. 2.9 For both parts of the figure: Left: Displacement field vectors from gray initial tumor to
blue followup tumor. Middle: The displacement vectors to a specific segmented protrusion. Right:
Local volume change maps in initial tumor domain for selected axial slices of the tumor shapes,
the black contours denote the followup tumor. The maps on the left and right are generated from
the deformation fields calculated using normalized D and ! fields respectively

on each row. Those pairs of tumor volumes are obtained after a segmentation on
a pre-therapy and follow-up MRI scan and undergo a large change in terms of
global scale. In addition, we present the displacement fields to a specific protrusion
(Fig. 2.9 in the middle), which was segmented as described in Sect. 2.2.4. Various
2D cross sections are also depicted on the right along with the local volume change
maps using deformation gradient determinants as explained above. Considering
the large motion, necessity of regularization is quite larger in 3D tumor volumes
compared to the phantom data in Fig. 2.8. For that reason the differences in the
volume change maps are not as distinctive for the 3D volumes. But when these
subtle changes are analyzed, they reveal the strength of the ! field in contrast to
D. The volume change maps of the second tumor shape in Fig. 2.9 is a convincing
example: When the upper slice is analyzed it is clear that the deformation calculated
using ! field (on the right) describes the compression smoother, yet on the bottom
slice (right), it successfully represents the expansion while the distance transform
approach is too smooth to describe an expansion. A similar robust behavior can be
observed on the given local volume changes of the first tumor pair in Fig. 2.9.
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2.4 Conclusion

Motivated from physical significance and clinical relevance in follow-up problems,
we proposed a method to analyze the protruded and peripheral regions of tumor
shapes. In order to introduce a parameter to control the fluctuation scales, we
modified the fluctuating distance field [37] with an additional constraint on the ratio
of sizes of the positive and negative domains which indicate central and peripheral
shape regions respectively. This modification led to an interactive framework for
segmenting the protrusions and partitioning tumorous structures, albeit the loss of
the linearity of the original shape field model. The introduced nonlinear term due
to its variable scale parameter, i.e. the “fluctuation scale”, facilitates a hierarchical
encoding of parts of the shape silhouette. By varying the fluctuation scale from low
to high values, it is possible to observe the coarse to fine levels of hierarchy both in
the field and its segmentations even by utilizing a very simple segmentation method.

The scalable shape field becomes a potentially powerful underlying shape
representation for shape registration procedures, due to an increased robustness to
scale changes without losing the information it inherits particularly in terms of the
parts of a shape. For the registration application, the representation performance of
the field was demonstrated in comparison to the conventional distance transform by
observation of local volume changes in a tumor follow-up problem. Some counter-
intuitive local changes were obtained by the latter, while the expected expansion
and compression properties between pre-therapy and follow-up tumor volumes were
provided by the deformation field estimated between the part-based shape fields.
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Chapter 3
Part-Aware Distance Fields for Easy
Inbetweening in Arbitrary Dimensions

Sibel Tari

Abstract The motivation for this work is to explore a possible computer graphics
application for a part aware distance field developed recently. Computing in-
between shapes is chosen as a toy application. Rather than presenting a highly
competitive scheme which continuously morphs one shape into another, our aim
is to investigate whether in-betweens may be defined as ordinary averages once a
proper shape representation (e.g. a part aware field) is established. The constructions
are independent of the dimension of the space in which the shape is embedded as
well as the number of shapes to be averaged.

3.1 Introduction

In-between shapes are of enormous interest in both theory of shape perception [5]
and practice of computer graphics [3]. To compute in-betweens, the first shape needs
to be continuously morphed into the second shape. In this work, we explore whether
it is possible to express in-betweens by ordinary averages after choosing a proper
field representation for shapes.

The experimented field representation is a combination of two different fields:
The first field is activated on the interior whereas the second one on the exterior. The
interior one is the recent ! field [10, 11], which fluctuates to yield intuitive parts.
It is also possible to obtain a similar behaviour by switching eigenvectors [14]. The
exterior field is the v-field [13], which implicitly encodes local convexity/concavity
of the shape boundary.

A preview of the combined field f is given in Fig. 3.1. The input is a uniform
grid 3D point cloud describing a cat shape in a volume. The first column depicts the
entire field f . The next two columns depict its restriction to voxels of particular
value, i.e., some level sets. Observe that the field implicitly codes parts and
distances. Hence, we will call it a part-aware distance field. Given two fields
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Fig. 3.1 The field as real valued mapping from R3 ! R

computed from two different nD shapes, the idea is to define an in-between field
as a weighted average of the two fields. The average is also treated as a part-aware
field.

3.2 Computing the Field

The field f is computed as a solution to a linear system:

A f D b (3.1)

where A is an N � N matrix, where N is the number of points in a uniform
discretisation of our bounded domain of interest, namely a subset of R3 or R2

containing the shape and part of its exterior; f and b are respectively the vector
forms of the discretization of the function f and an external field b.

With a suitable ordering of the nodes as the ones belonging to the shape exterior,
the shape boundary and the interior, A can be expressed in the following form:

2
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�
0 0

0
�
�I
�

0
0 0

��L C ˛I
�

3
75C

2
40 0 0

0 0 0
0 0

�
ˇJ
�
3
5 (3.2)

where L is a discretisation of the Laplace operator, J stands for the matrix of ones, ˛

and ˇ are small scalars, say on the order of 1
N

; � on the other hand is a large scalar.
The matrix A is block-diagonal. Relative to the linear operator A, the function

space RN is a direct sum of three invariant subspaces: The second block serves to
relax the Dirichlet condition on the shape boundary; turning the boundary condition
(something that needs to be maintained) to an initial condition. Shape pairs are
placed on a common domain, say rectangular. Homogeneous Dirichlet conditions
are assumed on the domain boundary, whereas the ones on the shape boundary
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are relaxed. The first block on the left is positive definite matrix representing the
modification of the matrix representation of the negative graph Laplace operator by
some small multiple of the identity matrix, �L C ˛I. If � is selected very large,
the second block approximates Dirichlet type boundary condition on the shape
boundary, and the first two blocks becomes nothing but discretisation of the screened
Poisson PDE. The third block of A is additively decomposed into two matrices
where the one on the left �L C ˛I is the same with the first block, whereas the
block on the right is a rank-1 matrix. The entire third block is a rank-1 modification
of a symmetric positive definite matrix [2]. (J is rank-1.) Connection to rank-1
modification of the symmetric positive definite problems may help to interpret part-
awareness of the field f ; nevertheless, the system in (3.1) can be solved in numerous
ways, including explicit solvers without needing to store large matrices.

For ease of implementation, we will solve two linear systems: one for the
interior field and one for the exterior. For the interior field, the Dirichlet con-
ditions are imposed on the shape boundary. For the exterior field, the Dirichlet
conditions are imposed both on the shape and domain boundaries. This means that
we solve for two fields as described in [11, 12] and [13] respectively.

In the next section, we further discuss the interior field.

3.2.1 The Interior Field: Spectral Perspective

Let us consider a field u

P u D 1

where P is a positive definite operator subject to homogeneous Dirichlet conditions,
e.g. �L or �L C ˛I. Spectral theorem says that the solution u can be expressed
as a linear combination of the dot products of the right hand side 1 with each of
the eigenfunctions. The weights are inversely proportional to the corresponding
eigenvalues, making the flat mode the most dominant. The eigenfunctions of the
Laplace (in Euclidean setting) or Laplace-Beltrami (in manifold setting) are very
well studied; a great deal of shape analysis techniques are built on top of them, e.g.,
[9]. Interestingly, each mode, other than the first one, changes sign; thus, dividing
the shape domain into nodal domains (not exactly parts in the perceptual sense).
This naturally leads to an idea of obtaining a new operator by suppressing the flat
mode. Let us consider changing the order of the first and last modes by switching the
corresponding eigenvalues. Figure 3.2 depicts the fields constructed on cat shaped
domains using this hypothetical operator. Observe how parts are revealed. This idea
has been explored in [14].

The construction of the discussed hypothetical operator is expensive as it
requires an explicit computation of the eigenfunctions. Such computations for
volumes (rather than subsets of co-dimension 1) would be much more expensive.
Computations get further complicated due to our need to relax boundary conditions.
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Fig. 3.2 A hypothetical part-aware field constructed on a variety of cat shaped domains using a
hypothetical operator [14]. The operator is obtained by switching the first and the last modes of
the Laplace operator in order to suppress the flat mode. Observe that a central body is cut out and
peripheral parts are revealed

Fig. 3.3 Compare the modes of the third block of A (the top row) to those of the Laplace operator
(the bottom row). Notice the resemblance of the j th mode to the j C 1th mode of the Laplacian

In order to convey that our approach intuitively boils down to flat mode
suppression, we depict the modes of the restriction of the A matrix to the shape
interior (the third block). In the top row of Fig. 3.3, the first five modes are depicted.
Even the first mode oscillates. Compare these modes to those of the Laplace operator
depicted in the bottom row. Notice the resemblance of the j th mode to the j C 1th
mode of the Laplacian.

If the analysis is to be performed on a single shape, then the second block of
A is be removed (imposing boundary conditions on the shape boundary) to arrive
at a symmetric positive definite matrix, which is nothing but rank-1 modification
of the Laplace operator. The general A matrix may not be positive definite. In our
approach, positive definiteness becomes irrelevant because the field f is computed
by directly solving a linear equation: (3.1). That is, spectral entities are not used.

Below, we give the remaining details necessary to compute the field f. That is,
how to construct the right hand side. Solving (3.1) can be done in numerous ways.
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3.2.2 The Right Hand Side b

In our implementation the right hand side function b is a concatenation of three
vectors reflecting the three blocks of A.

b D
2
4b1

b2

b3

3
5 s.t. b1 D

2
64

b1

:::

bN1

3
75 I b2 D

2
64

bN1C1

:::

bN2

3
75 I b3 D

2
64

bN2C1

:::

bN3

3
75

There are N1 points in the exterior, N2 � N1 points on the shape boundary and
N3�N2 points on the interior. The middle group sets the relaxed Dirichlet conditions
on locations indicating the bounding surface of the point cloud. This is only to allow
averaging fields of different shapes. No parametric surface form is necessary. The
first group is the constant vector 1. The last group on the other hand is the discrete
Euclidean distance function of the shape interior.

3.3 Experimental Results

We start by depicting the field f W R3 ! R. A volumetric visualization with
high transparency has already been given for one cat shape (Fig. 3.1). A noteworthy
difference of the field from a signed distance function is that the new field changes
sign twice: (1) to distinguish shape interior from shape exterior; (2) to distinguish
central body from peripheral body. This causes a natural partitioning of the interior
into meaningful entities. To provide more intuition, in Fig. 3.4, we depict iso-level
surfaces that fall in certain ranges. We visualize corresponding sub volumes using
high transparency.

We used another cat shape. In Fig. 3.5, we depict some individual iso-level
surfaces. All of them are sampled from the interior. The blue surfaces are the ones
where f takes on negative values. Samples are ordered in increasing magnitude.
They code limbs and parts. As the level increases, only the most dominant parts
survive. The red surfaces are the ones where f takes on positive values. They code
central body. Samples are ordered in increasing magnitude.

In Figs. 3.6–3.9, we make parts explicit. Red opaque blob is the central part. In
each case, it is naturally distinguished by the second sign change of f . Saddle points
reveal other parts. To extract them, we simply call Matlab’s watershed routine,
which returns labeled groups. To convey 3D form, we used high transparency for
the peripheral parts. In the pdf form, figures can be zoomed. One can observe how
consistent and intuitive the parts are. Pay particular attention to the resemblance
of the red opaque central parts across the horses and centaurs. This coarse central
structure takes a different form for the gorilla (Fig. 3.9). We do not perform any pre-
or post-processing on the field. Of course further clever organizations are possible
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Fig. 3.4 Each figure depicts a range of iso-level surfaces. The respective volume is visualized
using high transparency

Fig. 3.5 Each figure depicts a single iso-level surface. All of the iso-level surfaces are sampled
from the interior. On the blue ones, f takes on negative values. On the red ones, f takes on
positive values
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Fig. 3.6 Parts for a horse and a centaur

Fig. 3.7 Parts for more horses

as in [12]. Our purpose is to show results in their un-polished raw forms. Because
we intend to remain implicit whenever possible, unless required otherwise in the
context of a particular task.
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Fig. 3.8 Parts for more centaurs

Fig. 3.9 Parts for gorillas

Our final three experiments are to illustrate algebraic operations on pairs of
fields (Figs. 3.10–3.12). Due to linearity of our construction, it mathematically
makes sense to compute a joint field of a (weighted) collection of shapes. What
we particularly wonder is how much it makes sense to apply algebraic operations
on collections (or pairs) of fields computed for individual shapes.

We start with an easy to interpret pair: a circle and a star of which centers
coincide. Figure 3.10 depicts ten weighted averages, starting with a weight of .1; 0/

and ending with a weight of .0; 1/. The first and last figures are the individual fields
for the circle and the star, followed by the parts extracted from the respective fields
as splits via saddle points (Matlab’s watershed command does this). The remaining
eight figures are the parts extracted from average fields. No post- or pre-processing
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Fig. 3.10 From a circle to a star, in-between shapes

is performed. We can observe the passage from a circle to a star. The initial averages
are less star-like whereas the later ones are more star-like. The average shape in this
case almost coincides with the union of the circle and the star. Of course, one can
not form weighted unions.

When we consider, averaging a vertical ellipse with a horizontal one (tall ellipse
and fat ellipse), the part structure of the mean field is similar to the part structure of
a square: a shape equidistant from either of the ellipses. In Fig. 3.11, we average the
fields of a dino and a lion. The input shapes are taken from [3]. As before,
the first and last framed pairs are the fields and parts. Finally, Fig. 3.12 depicts
some weighted averages of a sphere and a star-like composite of cylinders.

3.4 Some Discussions

From general paradigms point of view, the presented field best fits in the category of
the so-called functionally-based implicit models. In the eighties, functionally-based
implicit models were presented as then radical as well as promising alternatives
to parametric and mesh-based representations [1, 8]. The basic idea was simple:
instead of explicitly defining the model, namely a closed manifold of codimension
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Fig. 3.11 From a dino to a lion, in-between shapes

one, a function f W Rn ! R is constructed such that the three distinct values of the
signum function at a point in the domain determines whether the point belongs to
the interior, the boundary (the model), or the exterior. It is appropriate to say that f

is an implicit model defining function.
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Fig. 3.12 From a sphere to a star made of cylinders, in-betweens

Early implicit model defining functions were typically either (1) polynomials
of which roots indicate shape boundaries in the form of algebraic surfaces or
(2) Euclidean distance functions. Later on, in mathematical imaging and shape anal-
ysis, Euclidean distance functions gave way to smooth distance fields [13]. There
may be of course several different methods for constructing a smooth distance field,
but no matter how the field is computed – be it by minimizing an energy or solving
a screened Poisson or convolving – the key message is the same: take into account
the local context in which a domain point is situated. Thus, smooth distance fields
are more feature-aware where feature is boundary “curvature”.

Does curvature-aware (or concavity-aware) imply part aware? Well, part per-
ception is still an open problem. A classical paper by [4] relates part perception
to local curvature minima. But, there are also psychophysical experiments which
support that the boundary information is integrated relative to the interior; there
are long-range, interior specific interactions occurring at early levels that explain
formation of intermediate level representation [6]. There is even growing evidence
that long-range interactions by themselves are not the only means and the global
configuration can have an influence even on the perception of local features such as
angles. That is where the part-aware distance proposal [11] comes in. The approach
carries the concept of model implicitation one step further by capturing higher-
level characterization in an implicit manner, too. The representation is computed
from a single shape implied by a geometric point set. The resulting function
representation allows efficient manipulation of shape combinations, supporting
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algebraic operations. In our modeling we remain implicit all the time without
resorting to explicit features, assumed primitives, and explicitly designed geometric
flows.

An alternative part-aware distance has been independently proposed in computer
graphics [7]. Using the connection between a pair of surface points and a medial
point in the interior, a so called volumetric shape image distance is built. The
volumetric shape image distance is defined for each pair of surface mesh faces,
and the distance between a pair of faces is zero if both faces map to the same medial
point in the interior bounded by the surface; hence deemed to belong to the same
part. Part-aware metrics suggest a promising direction of research with obvious uses.
For example, in the context of partial shape matching, they may be used to limit the
context of descriptors. The role of parts can not be denied in key graphics problems,
e.g., co-analysis [15]. The part-aware surface metric [7], despite being an important
idea, is subject to certain computational limitations; hindering its use and making it
not as wide spread as diffusion distances defined over surfaces. Both the field f and
! eliminate these problems.

We explored the potential use of f field in a toy application of computing in-
between shapes. We have demonstrated that the fields of individual shapes can
be meaningfully averaged provided that an initial registration is performed. Our
proposal neither coincides nor replaces existing mean shape understandings. We
simply explore the representational limitations of a field based representation of
shapes.

All of the constructions are independent of the dimension of the Euclidean space
Rn in which the form is embedded.
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Chapter 4
A Biomechanical Model of Cortical Folding

Sarah Kim and Monica K. Hurdal

Abstract A principal characteristic of the geometry of the brain is its folding
pattern which is composed of gyri (outward hills) and sulci (inward valleys).
We present a preliminary two-dimensional biomechanical model of cortical folding
that is implemented computationally using finite elements. This model uses mechan-
ical properties such as stress, strain, and body forces, corresponding to axonal
tension, to model the shape of the brain during early cortical development. Despite
its simplicity, the proposed model can be used to demonstrate the plausibility of
tension generating cortical folds, as has been suggested in Van Essen (Nature
385(6614):313–318, 1997). In addition, this model is used to investigate folding
patterns on different domain sizes.

4.1 Introduction

The human cerebral cortex is a thin folded sheet of neural tissue forming the
outermost layer of the cerebrum (brain). Also called the gray matter, the cerebral
cortex is approximately 1–4.5 mm thick with an overall average thickness of
approximately 2.5 mm [7, 9]. It is a six-layered structure [17] and surrounds the
white matter (see Fig. 4.1a). The surface area of the adult human cortex is about
1;692 cm2 [14]. The highly convoluted shape of the cortex enables the large surface
area to be fitted within the relatively small size of the cortical volume which is about
458 cm3 [14, 25].

Each human brain folding pattern is unique. The cortex begins to fold during
the 26th week of gestation in humans (out of 40 gestational weeks) [5], forming
gyri (outward hills) and sulci (inward valleys). The cerebrum is separated into right
and left hemispheres by a deep sulcus called the longitudinal fissure. Other major
sulci separate the two hemispheres into six major lobes having specialized functions.
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Fig. 4.1 Representation of the human brain. (a) Cross-section of the adult human brain taken
perpendicular to the anterior-posterior axis (Adapted from [24]). (b) Computational model of the
cerebral cortex. Quadrilateral elements, where .xi ; yi / represents the Cartesian coordinates of the
i -th node, are used. The radius of the gray matter, white matter, and cortical thickness are given by
r2, r1, and d D r2 � r1 respectively

Primary sulci are most consistent in position across individuals while secondary
sulci, which appear later in cortical development, are highly variable in position and
appearance [9].

Understanding the underlying mechanisms in cortical folding will provide better
strategies to treat neurological diseases. Many neurological diseases and dysfunc-
tion have abnormal cortical folding patterns. For example, Down’s syndrome and
lissencephaly patients have smoother brains as compared to healthy brains [6, 26].
On the other hand, polymicrogyria is a developmental malformation of the brain
having an excessive number of small gyri on the cortex [2].

The mechanism producing cortical folding patterns is not fully understood.
Several biological hypotheses and mathematical models have been proposed to
elucidate the mechanisms involved in the development of cerebral cortical folding
patterns. One of the leading hypotheses is tension-based morphogenesis proposed
by Van Essen [25]. This hypothesis suggests that mechanical tension along axons
in the white matter pull interconnected regions toward one another and it is the
major inducing force for cortical convolution. This tension-based theory has been
a foundation for formulating elastic mechanical models of cortical folding; see for
example, [8, 15, 22].

Geng et al. [8] simulated the axonal tension forces at the lateral interior cortical
surfaces using a stress-strain model, and the numerical results were consistent
with the tension-based hypothesis. However, Xu et al. [28] have argued against
the tension-based hypothesis by providing experimental data of developing fer-
ret brains. According to their dissection data, Xu et al. claim that the location of
subcortical white matter, where tension is present, is too deep to affect cortical
folding. In addition, the dispersion of stress does not agree with Van Essen’s
hypothesis. Instead, Xu et al. support the differential cortical growth hypothesis of
Richman et al. [17].
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Richman et al. [17] have proposed that convolutional development of the brain
is due to differential growth of the cortical layers and a significant differential in
the elastic modulus of each cortical layer leads to cortical folding. They support
this hypothesis by comparing two extreme cases of abnormal brains to a normal
brain. In the normal brain, the outer cellular layers grow at a slightly faster rate than
the inner layers. In microgyric cortex, the outer cortical layers grow at a slightly
greater rate as compared to normal cortex while the inner cortical layers grow much
slower (less than half) than in normal cortex. Yet, in lissencephalic cortex, there is
no significant differential growth rate between cortical layers. Xu et al. [28] support
this hypothesis with their computational models and experimental data.

Bayly et al. [3] also support differential growth, where tangential growth of
the cortex is a mechanism driving cortical convolution. In contrast to Richman’s
differential growth hypothesis [17], Bayly et al. suggest cortical folding can be
explained by differential growth even if the stiffness of the cortex and interior
regions of the brain are similar. Other mechanical models of cortical folding pattern
development, such as [15, 16, 22], suggest a major mechanism inducing cortical
folding patterns is tangential cortical surface growth without the differential growth
rate of the outer and inner cortical layers. Other authors suggest chemical factors,
rather than mechanical factors, drive cortical folding [12, 19, 21].

In this paper, we propose a two-dimensional biomechanical model to elucidate
mechanisms of cerebral cortical folding. The proposed model is based on the
assumption that cortical convolutions are generated by axonal tension as suggested
by [25] and supported by [15, 16, 22]. Since cortical growth and expansion is thought
to occur preferentially along the tangential plane and tangential forces can be
associated with axons in the white matter [25], we focus our simulations on tension
due to tangential forces. By applying tension that pulls two regions on the cortical
surface tangentially, we investigate whether gyri are formed by tension pulling
interconnected regions toward one another. In addition, our model is able to simulate
the effects of axonal tension in different directions while some previous models only
considered axonal tension that pulls in the radial direction [22]. We investigate the
effects of tension magnitude and direction by comparing folding due to tension
pulling tangentially on a simulated cortical surface and tension pulling radially
toward the inside of the cortex. Further, we simulate cortical folding on brains of
different sizes to compare the degree of convolution between smaller brains and
larger brains.

4.2 Biomechanical Model

Our proposed biomechanical model of cortical folding uses the theory of elasticity
from classic solid mechanics. In this section, we describe the proposed model
structure, define material properties, and describe the theory that we use. We use
a finite element formulation to develop a numerical algorithm for the system of
partial differential equations governed by the theory.
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4.2.1 Brain Model Structure and Material Properties

We propose a two-dimensional semi-circular model geometry representing the
initial shape of the cerebral cortex. The outermost layer of the cortex, corresponding
to the gray matter, has radius r2, and the boundary between the white matter and gray
matter has radius r1. We assume a uniform cortical thickness given by d D r2 � r1.
For simplicity, we fix the location of the end points of the semi-circular model so
they do not move in any direction during simulations. The semi-circular model is
meshed into 200 quadrilateral elements (a schematic diagram is shown in Fig. 4.1b).
Element nodes are labeled counter-clockwise beginning from the bottom right inner
semi-circle.

The model structure is considered as an isotropic elastic material that has two
independent constants in their stiffness and compliance matrices. For a material
property matrix ŒD	 that makes a connection between the stresses and the strains,
we assume the plane stress condition is applied as follows:

ŒD	 D E

1 � 2

2
4 1  0

 1 0

0 0 1�
2

3
5 ; (4.1)

where E is Young’s modulus and  is Poisson’s ratio.
Brain tissue elasticity parameters are not readily available for a developing brain

and we assume they are similar to those for a mature brain. We select elasticity
parameters E and  for the brain tissue obtained from experimental and statistical
analysis in [18, 20, 23]. For our simulations, brain tissue elasticity parameters were
the root-mean-square values obtained from the computational results of [18] and
are E D 9;210:87 Pa and  D 0:458344. In addition, we use the data in [7, 16]
for cortical thickness and the radius of the human brain during gestation. All length
units were converted to inches and the unit of Young’s modulus was converted from
pascals (Pa) to psi.

4.2.2 Elasticity Theory and Finite Element Formulation

To explore several hypotheses regarding cortical folding, we assume that the
behavior of the given material is regulated and deformed by the theory of elasticity.
The governing coupled partial differential equations are vector equations with
the displacements u.x; y/ and v.x; y/ in the x and y directions, respectively, as
dependent variables [4].



4 A Biomechanical Model of Cortical Folding 45

We consider a static state, and equations of equilibrium can be stated as

@�x

@x
C @�xy

@y
C fx D 0 ;

@�xy

@x
C @�y

@y
C fy D 0 ;

(4.2)

where �x , �y , and �xy are stresses in the x and y directions, and the shear stress,
respectively, and fx and fy are body forces per unit area along the x- and y-axes
and which are assumed to be positive when acted along the positive axes. The body
forces represent tension along axons when we simulate cortical folding with the
proposed model.

By following the definition of strain which is used to measure changes in lengths
or in angles, the relationship between strains and displacements can be stated as

�x D @u

@x
;

�y D @v

@y
; (4.3)

�xy D @u

@y
C @v

@x
;

where �x and �y are the extensional strains in the x and y directions, respectively,
and �xy is the shear strain.

Applying the material property matrix ŒD	 in (4.1) gives the linear constitutive
equations

f� g D ŒD	f�g ; (4.4)

where f� g D f�x; �y; �xyg0 and f�g D f�x; �y; �xyg0. The set of equations in
(4.4) provided by the stress-strain relations together with (4.2) and (4.3) completes
the establishment of eight equations with eight unknowns: u; v; �x; �y; �xy; �x; �y;

and �xy.
In order to develop a finite element formulation for (4.2)–(4.4), we used a

weighted residual method, in particular Galerkin’s method [13]. We discretized
the domain using linear quadrilateral elements (see Fig. 4.1b). Each node has two
degrees of freedom, and both displacements are interpolated using shape functions
(see the Appendix). As a result, the element stiffness matrix ŒKe	 for elasticity is
expressed as

ŒKe	 D
Z

˝e

ŒB	0ŒD	ŒB	d˝ ;
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where ŒD	 is the material property matrix in (4.1) and ŒB	 is a 3�8 matrix evaluated
by the linear shape functions on the four nodes of each quadrilateral element.

During development, cortical folding changes are gradual and occur over a long
period of time. Linear constitutive equations are a reasonable choice as the brain
is undergoing no large deformations. Furthermore, Wittek et al. [27] show that the
choice of constitutive model of brain tissue has almost no influence on the computed
deformation field and suggest that one can use the simplest elastic linear model with
any reasonable value of Young’s modulus and Poisson’s ratio.

4.3 Results and Discussion

In this section, we describe numerical results of simulations using our proposed
model. We investigate the effect of tensions due to tangential (circumferential)
forces pulling interconnected regions. Next, we compare the effects of tangential
forces and radial forces. In addition, we simulate effects of the mechanical forces
on cortical folding on different domain sizes. In the results that follow, we represent
the initial geometric configuration of the model cortex as thin black curves and the
resulting deformed configuration is shown as dashed red curves. Arrows indicate
the direction in which forces are applied. For visualization purposes the arrows
are shown slightly interior of the model rather than on nodes where the forces are
applied.

4.3.1 Tension Pulling Interconnected Regions

Van Essen [25] proposed that the principal driving force for cortical folding
is mechanical tension along axons in the white matter. More specifically, he
suggested that outward folds or hills (called gyri) are generated by tension pulling
interconnected regions toward each other; on the other hand, inward folds or
valleys (called sulci), are formed between each pair of outward folds [25]. This
theory is persuasive since it explains compact wiring in the central nervous system.
The existence of tension along axons in sub-cortical white matter has been proven
through experimental studies but it has been argued that this tension is too deep to
affect cortical folding [28].

We use our mechanical model to simulate and investigate the direction of folding
due to pulling tension in the tangential direction. We use r2 D 4:0464 cm which
is the radius of the human brain at a gestational age of 28 weeks [1, 16]. Cortical
thickness is taken to be 2.5 mm which is the average thickness of the human cerebral
cortex reported by [7]. Tangential forces that represent tension along axons are
loaded at ten nodes and each force vector has magnitude of 0:01 lbf (pound force).
Each pair of tangential forces pulls toward one another (see arrows in Fig. 4.2a, b).
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Fig. 4.2 Tension pulling interconnected regions. Model parameters are Young’s modulus E D
9;210:87 Pa, Poisson’s ratio  D 0:458344, gray matter radius r2 D 4:0464 cm (28 weeks
gestational age), cortical thickness d D 2:5 mm. Tangential forces of 0:01 lbf are applied at 10
nodes (arrows in (a) and (b)). The initial representation of the cortex (black curves) folds because
each pair of tangential forces causes the cortex to pull together (dashed red curves)

These numerical results are consistent with the hypothesis of Van Essen. Each
pair of pulling tension forces generates outward folds. Not surprisingly, inward
folds are generated between the outward folds. In addition, when we simulated the
pulling tension by using our model on a two-dimensional planar domain that has
no curvature, the results of folding directions were also consistent with the tension-
based theory of Van Essen.

Increasing the magnitude of the tangential forces causes the resulting folds to be
deeper (see Fig. 4.3). Since our model uses realistic elastic parameters for the brain,
it can be used to predict the magnitude of axonal tension necessary to generate folds
of particular depths. For example, Fig. 4.3 shows that increasing the magnitude of
the pair of tangential forces along the mid-line of the cortex representation results in
a deep sulcus resembling the longitudinal fissure of the brain. By measuring specific
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Fig. 4.3 Increasing force magnitude. Tangential forces are applied at 10 nodes (arrows). The pair
of tangential forces that pull apart at two nodes near the center (mid-line) are 1.3 times the
magnitude (longer arrows) of the other applied tangential forces. The cortical convolutions (dashed
red curves) result in a deep sulcus, similar to the longitudinal fissure of the brain. Other parameters
are as in Fig. 4.2b

sulcal depths from magnetic resonance imaging (MRI) data, our model can be used
to estimate the magnitudes of axonal tension required to drive cortical convolution
for those sulci. As measurements of axonal tension are currently unknown [8], it
would be interesting to test these types of model predictions against experimental
data.

4.3.2 Tangential Versus Radial Tension Direction

We investigate how tension direction along axons affects cortical folding. Tension
in tangential directions on the surface and in radial directions (toward the center)
are simulated by adjusting the body force components, fx and fy . Figure 4.4 shows
the deformed configuration after radial forces are applied at (a) 4 nodes, and (b)
5 nodes, where the magnitude of each force vector is again 0:01 lbf (see arrows in
Fig. 4.4a, b). For comparison, the results of applying tangential forces to 10 nodes
where the magnitude of each force vector is 0:01 lbf (see Fig. 4.2a, b) is also shown
in Fig. 4.4a, b. Other parameters, such as E, , r2, and d , are the same as in Fig. 4.2.

Observe that the height of each fold is affected more by the radial forces than
the tangential forces of the same magnitude. When radial forces are applied, the
folds are deeper and the transition from a gyrus to a sulcus has increased curvature
(i.e. shaper) even though fewer radial force vectors are applied. In addition,
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Fig. 4.4 Radial forces versus tangential forces. Inward radial forces of 0:01 lbf are applied at
(a) 4 nodes and (b) 5 nodes (see arrows). Radial forces result in sulci that are deeper and more
highly curved (dashed red curves) than when tangential forces are applied. For comparison, the
effects of applying tangential forces of 0:01 lbf at 10 nodes that pull together in pairs are also
shown (dotted red curves; see also Fig. 4.2). All other parameters are the same as in Fig. 4.2

the radial forces also affect the overall height of the model. The overall deformed
configuration is “flatter” when inward radial forces are applied; in comparison,
applying tangential forces causes the deformed shape to more closely resemble the
height of the initial model configuration.

These simulation results indicate that increased tension along axons pulling
radially or tangentially may account for cortical regions where sulci occur. However,
radial forces account for deeper and sharper sulci as compared to tangential forces
of similar magnitudes. If one were to assume that tension along axons is similar in
magnitude regardless of direction of pull, then we hypothesize that tension due to
tangential forces plays an increased role in the smoother cortical folding patterns
of lissencephalic brains rather than tension pulling radially. Experimental data is
needed to support this hypothesis.
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4.3.3 Effects Due to Domain Size

Various studies investigate the degree to which cortical folding of the brain is
affected by initial cortical shape, cortical volume, surface area, cortical thickness,
and absolute mean curvature in sulcal regions [3, 10, 11]. In order to consider the
effects of brain size and cortical thickness on cortical folding, we vary values of
r2 and d to affect gray matter radius (and hence brain size) and cortical thickness,
respectively.

Simulation results in Fig. 4.5 change the value of r2 while cortical thickness
(d ), elastic parameters (E and ), and applied forces are the same as those used
to simulate tension pulling interconnected regions in Fig. 4.2b. The values of r2

increase in value in and represent the radius of the human brain taken at 11, 21, 28,
30, and 37 weeks gestational age [1, 16]. The simulation results show that the degree
of folding is proportional to the size of the brain—a smaller brain has a smoother
cortical sheet while a larger brain has a more convoluted cortex.

Simulation results in Fig. 4.6b–e use a variety of cortical thickness values (d )
reported in [7]. As the cortex becomes thinner, the degree of folding increases.
To display this phenomenon more clearly, we use values of d that span a larger
range (see Fig. 4.6a, f). These results are consistent with the simulation results of
Toro et al. [22].

To compare the simulation results across changing values of r2 and d , ratios
of brain radius to cortical thickness were arranged in Table 4.1. When the ratio of
brain radius to cortical thickness decreases, the degree of folding also decreases
(see Table 4.1).

Fig. 4.5 Changing gray matter radius r2. Values of r2 represent the gray matter radius taken at
various gestational ages (GA) [1, 16]: 11 weeks GA (r2 D 1:8351 cm), 21 weeks GA (r2 D
3:1303 cm), 28 weeks GA (r2 D 4:0464 cm), 30 weeks GA (r2 D 4:2966 cm), 37 weeks GA
(r2 D 5:1088 cm). All other applied forces and parameters are as in Fig. 4.2b
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Fig. 4.6 Changing cortical thickness d . (a) d D 1:5 mm, (b) d D 2:5 mm (overall average),
(c) d D 2:7 mm (medial cortex), (d) d D 3:0 mm (inferior cortex), (e) d D 3:5 mm (lateral
cortex), (f) d D 4:5 mm. All other applied forces and parameters are as in Fig. 4.2b

Table 4.1 Ratio of brain radius to cortical thickness and degree of cortical
folding

Parameters Ratio

r2 (mm) d (mm) r2=d Degree of folding
Figure 4.5 11 weeks 18.351 2.5 7.3404 Less folding

21 weeks 31.303 2.5 12.5212
30 weeks 42.966 2.5 17.1864
37 weeks 51.088 2.5 20.4352 More folding

Figure 4.6 (a) 40.464 1.5 26.9760 More folding
(b) 40.464 2.5 16.1856
(c) 40.464 2.7 14.9867
(d) 40.464 3.0 13.4880
(e) 40.464 3.5 11.5611
(f) 40.464 4.5 8.9920 Less folding
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These simulation results can be interpreted in two different ways. Species with
smaller cortices will tend to have a relatively smoother cortex, while those with
larger brains will tend to have a highly convoluted cortex when the same tangential
forces are applied. This interpretation agrees with that of [25]. An alternative
interpretation to these results is that as the brain grows, it is expected that more
cortical convolutions will develop.

These results show that it is possible for tangential tension to lead to folding,
particularly in larger brains. Interestingly, Xu et al. [28] have used data from
developing ferret brains to argue that significant axonal tension does not exist in
the cores of developing gyri; rather, considerable tension is present in subcortical
white matter regions where it is too deep to drive cortical convolutions. However,
our results show that a combination of both cortical thickness, gray matter radius,
and tangential tension influence cortical convolutions. Our results confirm that small
thickness and small gray matter radius, such as in the ferret, will not exhibit folding
due to tangential tension. In contrast, our results indicate that a larger brain radius
to cortical thickness ratio, such as in humans, will exhibit folding due to tension
(see Fig. 4.5; compare inner convolutions to outer convolutions). Thus, it is possible
that tensions due to tangential forces located in the upper white matter regions of
the human brain is enough to affect to cortical convolution development in gestation.
Therefore, it is not clear if the conclusions regarding folding pattern development in
the ferret can be applied to humans. Further experimental investigations are needed.

4.4 Conclusions

In this study, we have proposed a two-dimensional biomechanical model of
cortical folding. We assumed the body forces in elasticity theory [4] represent
axonal tension. Axonal tension has been suggested as a major mechanism driving
cortical convolution [25]. We applied tangential and radial forces at finite element
nodes on the boundary between the white matter and gray matter to study the effects
of axonal tension. In addition, the effects of folding due to the magnitude of the
tension vectors were examined, as were the effects of domain size and thickness.

Our proposed model provides an approach for studying the tension-based
hypothesis of cortical folding [25] numerically as well as theoretically. The ability
to freely set the direction of the applied tension vectors is an advantage of our
model. In addition, our proposed model uses plausible brain parameters. With our
model, we are able to show the effects of the magnitude of radial and tangential
forces affecting tension. Using realistic biophysical values of brain tissue elasticity
parameters, cortical gray matter radius, and cortical thickness, our model can
be used to estimate folding depth due to tension. Regarding domain size, in
particular cortical thickness and radius of the gray matter, our simulation results are
consistent with many previous studies and expectations concerning cortical folding
development.
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Our model can be improved to be more realistic by modifying it to be
three-dimensional and time-dependent on a growing domain. It is natural to expect
cortical convolution development in one stage will influence the convolutions in
the next developmental time step. A realistic 3D model requires the shape of the
brain during development and tissue elasticity parameters (Young’s modulus and
Poisson’s ratio) for a developing brain could also improve the model. In addition,
combining other theories with our model will enhance the understanding of the
mechanisms underlying cortical folding development. For example, the theory
of differential growth of inner and outer layers [17] should contribute to cortical
convolution. By combining these theories together, we will be able to investigate
cortical convolution development more in detail.
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Appendix

Linear Quadrilateral Element

In the non-dimensional coordinate system .�; �/ (see Fig. 4.7), the four shape
functions can be expressed as

N1 D 1

4
.1 � �/.1 � �/ ; N2 D 1

4
.1 C �/.1 � �/ ;

N3 D 1

4
.1 C �/.1 C �/ ; N4 D 1

4
.1 � �/.1 C �/ :

Fig. 4.7 Linear quadrilateral element
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At any point inside the element,
P4

iD1 Ni D 1. The displacement field is expressed
as

u D
4X

iD1

Ni ui ; v D
4X

iD1

Ni vi :

The shapes of the interpolation functions Ni are twisted planes whose height is 1

at i -th corner of the element and 0 at the other corners. The partial derivatives with
respect to the variables are linear functions [4].

References

1. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K.: The ontogeny of human
gyrification. Cereb. Cortex 5(1), 56–63 (1995)

2. Barkovich, A.: Current concepts of polymicrogyria. Neuroradiology 52, 479–487 (2010)
3. Bayly, P., Okamoto, R., Xu, G., Shi, Y., Taber, L.: A cortical folding model incorporating stress-

dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys.
Biol. 10, 016,005 (2013). doi:10.1088/1478-3975/10/1/016005

4. Bickford, W.: A First Course in the Finite Element Method, 2nd edn. Irwin Publishers, Burr
Ridges (1994)

5. Chi, J., Dooling, E., Gilles, F.: Gyral development of the human brain. Ann. Neurol. 1, 86–93
(1977)

6. Dobyns, W., Curry, C., Hoyme, H., Turlington, L., Ledbetter, D.: Clinical and molecular
diagnosis of Miller-Dieker syndrome. Am. J. Hum. Genet. 48(3), 584–594 (1991)

7. Fischl, B., Dale, A.: Measuring the thickness of the human cerebral cortex from magnetic
resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20), 11,050–11,055 (2000)

8. Geng, G., Johnston, L., Yan, E., Britto, J., Smith, D., Walker, D., Egan, G.: Biomechanisms
for modelling cerebral cortical folding. Med. Image Anal. 13, 920–930 (2009). doi:10.1016/j.
media.2008.12.005

9. Griffin, L.: The intrinsic geometry of the cerebral cortex. J. Theor. Biol. 166, 261–273 (1994)
10. Hofman, M.: Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain

Behav. Evol. 27(1), 28–40 (1985). doi:10.1159/000118718
11. Im, K., Lee, J.M., Lyttelton, O., Kim, S., Evans, A., Kim, S.: Brain size and cortical structure

in the adult human brain. Cereb. Cortex 18, 2181–2191 (2008). doi:10.1093/cercor/bhm244
12. Kriegstein, A., Noctor, S., Martinez-Cerdeno, V.: Patterns of neural stem and progenitor cell

division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).
doi:10.1038/nrn2008

13. Kwon, Y., Bang, H.: The Finite Element Method Using MATLAB, 2nd edn. CRC, Boca Raton,
Flordia (2000)

14. Lemaitre, H., Goldman, A., Sambataro, F., Verchinski, B., Meyer-Lindenberg, A., Weinberger,
D., Mattay, V.: Normal age-related brain morphometric changes: Nonuniformity across cortical
thickness, surface area and grey matter volume? Neurobiol. Aging 33(3), 617.e1–617.e9 (2012)

15. Nie, J., Guo, L., Li, G., Faraco, C., Miller, L., Liu, T.: A computational model of cerebral cortex
folding. Cereb. Cortex 15(12), 1900–1913 (2005). doi:10.1016/j.jtbi.2010.02.002

16. Raghavan, R., Lawton, W., Ranjan, S., Viswanathan, R.: A continuum mechanics-based model
for cortical growth. J. Theor. Biol. 187(2), 285–296 (1997)

17. Richman, D., Stewart, R., Hutchinson, J., Caviness, V.: Mechanical model of brain convolu-
tional development. Science 189, 18–21 (1975)

http://dx.doi.org/10.1088/1478-3975/10/1/016005
http://dx.doi.org/10.1016/j.media.2008.12.005
http://dx.doi.org/10.1016/j.media.2008.12.005
http://dx.doi.org/10.1159/000118718
http://dx.doi.org/10.1093/cercor/bhm244
http://dx.doi.org/10.1038/nrn2008
http://dx.doi.org/10.1016/j.jtbi.2010.02.002


4 A Biomechanical Model of Cortical Folding 55

18. Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of
the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med.
Robot. 1(3), 87–95 (2005)

19. Striegel, D., Hurdal, M.: Chemically based mathematical model for development of cerebral
cortical folding patterns. PLoS Comput. Biol. 5(9), e1000524 (2009)

20. Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of
hydrocephalus. J. Biomech. 37(8), 1263–1269 (2004)

21. Toole, G., Hurdal, M.: Turing models of cortical folding on exponentially and logistically
growing domains. Comput. Math. Appl. 66(9), 1627–1642 (2013)

22. Toro, R., Burnod, Y.: A morphogenetic model for the development of cortical convolutions.
Cereb. Cortex 15(12), 1900–1913 (2005)

23. Tyler, W.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)
24. University of Wisconsin and Michigan State Comparative Mammalian Brain Collections:

Comparative mammalian brain collections. Website: http://www.brainmuseum.org/. Last
accessed: 10 Jan 2014

25. Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in the central
nervous system. Nature 385(6614), 313–318 (1997)

26. Wisniewski, K.: Down syndrome children often have brain with maturation delay, retardation
of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7, 274–281 (1990)

27. Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing
brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8(1), 77–84
(2009)

28. Xu, G., Knutsen, A., Dikranian, K., Kroenke, C., Bayly, P., Taber, L.: Axons pull on the brain,
but tension does not drive cortical folding. J. Biomech. Eng. 132(7), 071,013 (2010). doi:10.
1115/1.4001683

http://www.brainmuseum.org/
http://dx.doi.org/10.1115/1.4001683
http://dx.doi.org/10.1115/1.4001683


Chapter 5
Quantification and Visualization of Variation
in Anatomical Trees

Nina Amenta, Manasi Datar, Asger Dirksen, Marleen de Bruijne,
Aasa Feragen, Xiaoyin Ge, Jesper Holst Pedersen, Marylesa Howard,
Megan Owen, Jens Petersen, Jie Shi, and Qiuping Xu

N. Amenta
University of California at Davis, Davis, CA, USA

M. Datar
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

A. Dirksen
Lungemedicinsk Afdeling, Gentofte Hospital, Hellerup, Denmark

M. de Bruijne
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
Erasmus MC, Rotterdam, The Netherlands

A. Feragen (�) • J. Petersen
Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
e-mail: aasa@diku.dk

X. Ge
Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA

J.H. Pedersen
Department of Cardiothoracic Surgery, Rigshospitalet, University
of Copenhagen, Copenhagen, Denmark

M. Howard
National Security Technologies, LLC (A Department of Energy Contractor), Las Vegas, NV, USA

M. Owen (�)
Department of Mathematics and Computer Science, Lehman College, City University
of New York, Bronx, NY, USA
e-mail: megan.owen@lehman.cuny.edu

J. Shi
School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tucson, AZ, USA

Q. Xu
Department of Mathematics, Florida State University, Tallahassee, FL, USA

© Springer International Publishing Switzerland & The Association
for Women in Mathematics 2015
K. Leonard, S. Tari (eds.), Research in Shape Modeling, Association
for Women in Mathematics Series 1, DOI 10.1007/978-3-319-16348-2_5

57

mailto:aasa@diku.dk
mailto:megan.owen@lehman.cuny.edu


58 N. Amenta et. al.

Abstract This paper presents two approaches to quantifying and visualizing
variation in datasets of trees. The first approach localizes subtrees in which
significant population differences are found through hypothesis testing and sparse
classifiers on subtree features. The second approach visualizes the global metric
structure of datasets through low-distortion embedding into hyperbolic planes in the
style of multidimensional scaling. A case study is made on a dataset of airway trees
in relation to Chronic Obstructive Pulmonary Disease.

5.1 Introduction

Tree-structured data appears in many medical imaging applications, e.g., airway
trees [14], blood vessel trees [18], dendrites [32] and galactograms [26]. Typically,
these anatomical trees vary both in tree topology and associated branch features
such as branch length or shape, and as a result there is no straight-forward way
to analyze the trees using standard Euclidean statistics. One way to integrate both
tree topology and branch features in a single parametric framework is by modeling
trees as residing in a non-linear, non-smooth tree-space [7, 14]. The non-linear,
non-smooth nature of tree-space creates several problems for data analysis. First,
statistics have to be redefined, as the standard statistical procedures such as finding
an average or a principal component, or performing classification, do not translate
directly to the tree-space setting. Second, even if we define classification algorithms
in tree-space, we do not know which parts of the anatomical tree are responsible
for causing class differences, for example, because each tree-space point represents
an entire tree structure. Third, due to the lack of statistical tools such as principal
component analysis, it is hard to visualize how distributions of trees vary in tree-
space. While recent work has resulted in basic statistical tools [5, 14, 27, 29], the
two latter problems are still unsolved. In this paper we investigate two approaches
to these two problems: First, we study the influence of local subtrees on the results
of hypothesis testing and classification, and the identification of subtrees which are
responsible for significant differences between two populations of trees. Second, we
use hyperbolic low-distortion embedding to visualize the global metric structure of
data living in tree-space. As a case study, we demonstrate the use of these techniques
on a population of airway trees from a lung cancer screening study.

This paper presents results from the 1-week collaboration workshop Women in
Shape: Modeling Boundaries of Objects in 2- and 3-Dimensions held at the Institute
of Pure and Applied Mathematics at UCLA, July 15–19 2013. At this workshop,
most of the authors of this paper spent a week working together on two projects
related to quantifying and visualizing variance in populations of trees, which are
described in Sects. 5.3 and 5.4, respectively.
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5.1.1 Tree-Space

A tree-space is any geometric space in which points represent trees. The tree-space
used in this paper, described in [14, 15], is a generalization of the phylogenetic
tree-space proposed by Billera et al. [7]. This tree-space, denoted Tn, contains all
rooted trees with n labeled leaves with vertices of degree at least 3, where the n leaf
labels are given by a fixed set of cardinality n. In this paper, the root of a tree is
not considered to be among the leaves. Furthermore, for any tree in this tree-space,
each edge has a k-dimensional vector associated with it. An example of such an
edge vector is a non-negative real number representing the edge length (i.e. k D 1);
a second example is the vector of l 3-dimensional landmark points sampled along a
branch centerline, giving k D 3 � l . For each edge, the landmark points are translated
so that the edge starts at the origin. We refer to the latter edge vector as the shape of
the edge. The trees in such a tree-space can, for instance, be used to model airways
in the lung. In this space, we will use edge shape with l D 5 to describe edges unless
otherwise stated.

We now give a description of our tree-space, Tn, for a fixed n, which is illustrated
for n D 4 in Fig. 5.1. All the trees in Tn with the same tree topology, or branching
order, form a lower-dimension Euclidean subspace in the tree-space. The dimension
of this subspace is mk, where m is the number of edges in the tree topology and
k is the dimension of the vector associated with each tree edge. Each tree edge in
the tree topology is put into correspondence with k of the subspace’s dimensions,
and a particular tree with that topology can be written as a km-dimensional vector
in that subspace, with the coordinates being the consecutive k-dimensional edge
vectors. That is, if a tree has edges e1; e2; : : : ; em, with corresponding edge vectors
`1 D .`1

1; `1
2; : : : ; `1

5/; : : : `m D .`1
m; `2

m; : : : ; `5
m/, then that tree corresponds to the
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Fig. 5.1 (a) Two adjacent quadrants in the tree space, T4, of trees with 4 leaves and edge vectors
of 1 dimension. Here, the edge vector, or length, is restricted to being non-negative and the pendant
edges are ignored, so the Euclidean subspaces are represented as quadrants. A quadrant contains
all trees with a given topology, and each tree with that topology is represented by the coordinates
corresponding to its internal edge lengths. (b) Representation of 5 of the 15 quadrants in the tree
space T4, with edge vectors of 1 dimension
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point .`1; : : : ; `m/. All trees within the subspace must map their k-dimensional edge
vectors to the km-dimensional vector in the same order, but what this order is does
not matter.

The Euclidean subspaces for each tree topology are glued together in the
following way. Consider a tree containing the edges e1; : : : ; em, where each edge
can be identified by the unique partition of the leaves it makes when it is removed
from the tree (i.e. removing the edge forms a forest of two trees, each of whose
leaves, including the root, forms one half of the partition). Let exactly one of
the edges, say e1, have an all 0 edge vector. Then this tree lies on the boundary
of the Euclidean subspace corresponding to its tree topology, and furthermore, it
actually lies in a lower dimensional Euclidean subspace E corresponding to trees
with only the edges e2; : : : ; em in their topologies. This lower dimensional subspace
E is also on the boundary of two other Euclidean subspaces, and we identify all such
common subspaces in all the Euclidean subspaces corresponding to tree topologies
to form Tn. See [15] and [7] for a more detailed description of the tree space.

The metric on Tn is induced by the Euclidean metric on each of its constituent
subspaces. Specifically, the distance between two trees with the same topology
is the Euclidean distance between the two points representing those trees in the
subspace for that tree topology. The distance between two trees with different
topologies is the length of the shortest path joining their points in tree space. Such
a path will consist of a sequence of line segments, each contained in exactly one of
the subspaces, and thus the path length is just the sum of the Euclidean lengths of
each segment.

Most importantly for this paper, tree space is a non-positively curved metric
space [7], which implies that there is a unique shortest path within the space between
any two trees, called the geodesic. The geodesic distance between two trees is
the length of the geodesic between them, and it can be computed in polynomial
time [30]. Certain statistics, such as means and first principal components, can also
be computed on trees in this space [5, 14, 27, 29].

While sections of tree-space are identical to higher dimensional Euclidean
spaces, tree-space itself is not a manifold. In particular, it has several singularities,
which have infinite negative curvature. One such singularity is at the origin, which
corresponds to the tree which has all 0 edge lengths or vectors. A simpler model of
this singularity in T4 is a corner: five Euclidean quadrants, glued together around
an single origin, see Fig. 5.1b. Singular points in tree-space also occur where the
higher dimensional Euclidean subspaces join together to form a space that locally
resembles an open book. An open book is a set of Euclidean half planes, or sheets,
which are identified along their boundary hyperplanes, which form the spine, see
Fig. 5.2.

5.1.2 The Fréchet Mean in Tree-Space

In Euclidean space, there are a number of equivalent definitions of the mean.
Some of these definitions cannot be carried over to tree-space, while those that
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Fig. 5.2 An occurrence of a
half open book with 3
2-dimensional sheets in
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can be carried over are no longer equivalent. One of the definitions of mean in
Euclidean space is the Fréchet mean, or barycenter, which minimizes the sum of
square distances to the input set. If fT1; T2; : : : ; Trg are a set of input trees, then
their Fréchet mean in tree-space is the tree t which minimizes

Pr
iD1 d.t; Ti /

2,
where d is the geodesic distance. The Fréchet mean was introduced for tree-space
independently by [5] and [27], both of whom also gave an algorithm to approximate
it based on a Law of Large Numbers holding in non-positively curved spaces [35].

5.2 Related Work

This paper studies two problems related to understanding variance in datasets of
trees: (i) detection of local subtree differences, and (ii) visualization of global
population-level geometry.

5.2.1 Local Significant Differences

Many data types represent entities which can be decomposed into parts or regions.
Examples are graph-structured data [13, 23], anatomical data which can be seg-
mented into different organs [17, 20] or even single anatomical organs where
additional spatial information is relevant; for instance, in the framework of shape
analysis [9, 10] where local analysis is made on correspondence points on biomed-
ical shape surfaces. A typical problem when studying such data is interpretability:
A classifier will often only predict a certain diagnosis or class, but in order to
understand the cause of the result (and, e.g. in diagnostic settings, react on it) one
also desires to know which parts of the collection caused a certain classification
outcome.
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While a large body of work has been done on classifying structured data, less
is known about how to identify which parts of a structure are relevant for the
classification problem. Most such work has been done in settings where there
is a correspondence between the parts constituting the data object: In analysis
of brain connectivity [19, 23], one usually has a matching between the nodes
in the dataset, while in voxel-based morphometry [3] or shape analysis [10],
registration is used to match different images to a template. A popular approach
to such problems is structured sparsity [4, 22, 23], which detects discriminative
substructures in data described by fixed-length Euclidean vectors with a known
underlying structure relating the vector coordinates. However, anatomical trees
usually cannot be described by fixed-length vectors without discarding parts of the
tree. Thus, these methods are not directly applicable.

5.2.2 Low-Distortion Embeddings

The standard technique for visualising population structure in high-dimensional or
non-Euclidean datasets is to extract the pairwise distances between data points, and
then use multidimensional scaling (MDS), which attempts to embed the points into
a lower dimensional Euclidean space such that the given distances between the
points are preserved. This is expressed mathematically as minimizing the sum of the
differences between original and embedded pairwise distances [8]. In a sequence
of work [2, 21, 28] Amenta, St. John et al. investigate visualization of sets of
phylogenetic, or evolutionary, trees using multidimensional scaling. In this work,
inter-tree distances are given by the Robinson-Foulds distance [34], which only
measures topological differences in the trees. More recently, Wilgenbusch et al.
[41] compare several non-linear versions of MDS on phylogenetic trees, and find
that a metric that places less weight on large distances gives more meaningful
visualizations. Chakerian and Holmes [11] use MDS with the geodesic distance
between trees [7]. A different approach is that of Sundberg et al. [36], who visualize
phylogenetic trees by projecting them onto a hypersphere; this approach does not
consider branch lengths, only tree topology.

All of these methods approach visualization through embedding into a Euclidean
space in a low-distortion way. However, embedding spaces need not be restricted
to only Euclidean spaces. For instance, low-distortion embedding of a general
metric into a tree has been considered for various measures of distortion [1, 6].
Low-distortion embedding of general metrics into hyperbolic spaces has also been
considered by Walter et al. [39, 40] and Cvetkovski and Crovella [12]. In this paper,
we use hyperbolic MDS for more truthful visualizations of tree variation.
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5.3 Quantification and Visualization of Local
Tree-Shape Differences

While previous work [14] developed methods for finding significant differences
between populations of trees, this work did not address the question of where these
changes came from. In this section we investigate different methods for detecting
where in a tree significant differences appear. In Sect. 5.3.1 we perform hypothesis
testing on nested subtrees in order to detect how significant changes take place
in particular subtrees. In Sect. 5.3.2 we develop a structured sparsity framework
which takes advantage of the tree-space geometry in order to handle the fact that
subtrees have variable topological structure. In both of these sections, we obtain
results on which subtrees induce significant differences. A disadvantage of the
methods developed in Sects. 5.3.1 and 5.3.2 is that they do not take correlation
between different subtrees into account. In Sect. 5.3.3 we therefore develop a
method that allows us to study how subtree differences correlate with each other.

Case study. We apply the developed methods to a case study of airway trees
from subjects with and without Chronic Obstructive Pulmonary Disease (COPD).
The 600 airway trees are from randomly selected subjects from the Danish Lung
Cancer Screening Trial [31], of which 300 were diagnosed with COPD at scan time
and 300 were symptom free. The hypothesis testing and classification experiments
performed in this chapter all have the common goal of separating the class of COPD
patients from the class of symptom free subjects.

The airway trees were extracted from low-dose (120 kV and 40 mAs) pulmonary
CT scans. To extract the tree, the airway lumen surface was extracted from the
images using the locally optimal path approach of [24] and then refined using
the optimal surface approach of [33]. Afterwards centerlines were computed by
front propagation within the refined lumen surface as described in [25]. The
resulting centerlines were disconnected in bifurcation regions and so Dijkstra’s
algorithm was used to connect them along shortest paths within an inverted distance
transform of the refined lumen surface. These centerlines were then represented by 6

equidistantly sampled landmark points. The airway trees were normalized by patient
height as an affine scaling parameter.

Airway trees are somewhat regular in the sense that some of the branches have
anatomical names and can be found in most human lungs. The subtrees rooted at
these branches feed different subdivisions of the lung at different hierarchical levels,
as schematically illustrated in Fig. 5.3. The Trachea is the root branch that feeds both
lungs. The left and right main bronchi (LMB, RMB) feed the left and right lungs.
The left upper lobe and lower lobe branches (LUL and LLB) feed the left upper and
lower lobes. The lower lobe splits into the branches L7–L10. The left upper lobe
branches into two subsections; the first feeds the three segments L1, L2 and L3, and
the branch feeding all of these is called L1C2C3. The second subsection feeds the
segments L4 and L5, and their parent is called L4C5. The right lung us subdivided
into the upper lobe, fed by the right upper lobe branch (RUL), and the middle- and
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Fig. 5.3 Airway tree (black) and sub-trees (LMB, red) and (LUL, blue)

lower lobes, both fed by the bronchus intermedius (BronchInt). The middle lobe
consists of the segments R4–R5, fed by the parent R4C5, and the lower lobe is fed
by the right lower lobe branch (RLL), and splits into the segments R7–R10.

Due to variation in airway tree topology, these branches are not always all
present. In our dataset, however, which has been automatically labeled using the
algorithm presented in [15], the following branches are consistently present:

Trachea, LMB, RMB, LUL, RUL, L1C2C3, LLB, BronchInt, and RLL: (5.1)

5.3.1 Permutation Tests for Subtree Statistics

In this section we perform subtree hypothesis testing using the tree-shape per-
mutation tests for equality of means and variances developed in [14] on the
nested subtrees defined by the subtree root branches (5.1). These tests are standard
permutation tests which, for samples G1 and G2 drawn from two different classes
of trees (in our experiments: healthy subjects and COPD patients), use test statistics
used for means and variances between classes defined as

tm D d.�.G1/; �.G2// and tv D jv.G1/ � v.G2/j;

respectively, where �.Gi / is the Fréchet mean of the trees in the i th class as defined
on p. 60, and v.Gi / denotes the variance of the i th class 1

.N �1/

P
t2Gi

d 2.t; �.Gi //.
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Under the null hypothesis, namely that there is no difference between the two
classes, the samples G1 and G2 are drawn from the same distribution on Tn, and
randomly permuting the elements of G1 and G2 should not affect the value of the
test statistic t�.

Form the two-class data set G D G1 [ G2 and consider partitions of G into
subsets of size N1 D jG1j and N2 D jG2j. Due to the size of G we cannot check
all possible permutations, but instead compute the test statistics .t�/m for means and
variances for the new subsets, m D 1; : : : ; M , for M random partitions of G into
sets of size N1 and N2. Comparing the .t�/m to the original statistic value t� for the
samples G1 and G2, we obtain a p-value approximating the probability of observing
t� under the null hypothesis:

p D 1 CP
.t

�

/m�t
�

;m2f1;:::;M g 1

M C 1
;

where the additional 1 is added to avoid p D 0.
Permutation tests for the two statistics were performed on each subtree with M D

1;000 permutations. The results are summarized in Table 5.1, and show significant
differences in several subtrees. These subtrees are identified by their root branches,
which are illustrated schematically in Fig. 5.3. In comparison, the same hypothesis
test was made on the individual branches (5.1) along with the segment branches R1–
R10, L1–L10, with results shown in Table 5.2. The tests on individually identified
branches show relatively fewer significant differences between the two populations,
emphasizing a need for considering the airway subtrees as entities rather than
collections of independent branches.

This suggests that the permutation test described here can be applied to study
local group differences between subtrees in a hierarchical manner.

Table 5.1 Case study:
Group comparison showing
results of permutation tests on
subtrees of the full airway
trees rooted at the branches
listed in (5.1). The
permutation test compares the
populations of airway trees
from COPD patients and
symptom free subjects

P-value P-value
Label mean variance

Full 0.0010 0.0060
RMB 0.0020 0.0939

RUL 0.2298 0.1668

BrInt 0.0050 0.1249

RLL 0.0300 0.0959

LMB 0.0859 0.0210
LUL 0.0320 0.0390
L123 0.0260 0.0410
LLB 0.5524 0.1588
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Table 5.2 Case study
benchmark: Permutation
tests for shape differences in
individual branches between
populations of airway trees
from healthy individuals and
COPD patients. P-values
below a threshold of 0:05 are
shown in bold

P-value P-value P-value P-value
Label mean variance Label mean variance

RMB 0.163 0.621 LMB 0.020 0.786

RUL 0.134 0.416 LUL 0.297 0.118

R1 0.410 0.363 L1 0.163 0.391

R2 0.116 0.255 L2 0.324 0.017
R3 0.329 0.854 L3 0.968 0.800

BronchInt 0.001 0.764 L45 0.078 0.312

R4 0.134 0.190 L4 0.372 0.570

R5 0.027 0.175 L5 0.023 0.050
R6 0.992 0.135 L6 0.260 0.833

RLL 0.001 0.865 LLB 0.177 0.112

R7 0.058 0.325 L7 0.496 0.611

R8 0.014 0.207 L8 0.466 0.900

R9 0.037 0.127 L9 0.146 0.026
R10 0.308 0.652 L10 0.855 0.162

L123 0.393 0.361

5.3.2 Subtree Classification

In the previous section we saw how hypothesis testing on subtrees allowed us
to learn about which subtrees differed significantly between two populations of
trees. While significant differences are interesting in their own right, we are often
particularly interested in finding predictive differences. In particular, we want to find
subtrees such that restricting prediction to these subtrees results in good predictive
performance, giving interpretable classifiers in the sense that we can detect which
tree changes are predictive.

5.3.2.1 Classification on Known Branches

A straight-forward approach to tree classification and identification of discrimi-
native substructures of trees is to use standard classification methods on vectors
whose coordinates correspond to a fixed set of identified branches. In our case,
these branches will be identified by their anatomical names, which create a natural
matching between the branches of different trees. Classification of such vectors
can return information about which branches are more discriminative, because
classifiers such as the support vector machine (SVM), include coordinate weights
that intuitively correspond to the relevance of the individual coordinate feature for
the classification problem. This method is simple, but has the disadvantage that it
can only use branches that are present in every single tree in the dataset. This method
will form a baseline to which our proposed methods are compared.
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Table 5.3 Mean ˙ standard
deviation of COPD
classification accuracy using
branch length (left) and
branch shape (right)

Accuracy Accuracy
Method length shape

LDA 0:56 ˙ 0:06 0:52 ˙ 0:06

QDA 0:55 ˙ 0:05 N/A

Mahalanobis 0:54 ˙ 0:05 N/A

kNN 0:53 ˙ 0:06 0:53 ˙ 0:06

SVM 0:56 ˙ 0:06 0:56 ˙ 0:06

Table 5.4 The mean and standard deviations of the SVM weight vectors on the COPD/healthy
classification. The largest weight vectors as well as those falling within one standard deviation are
highlighted

Branch SVM weight Branch SVM weight Branch SVM weight Branch SVM weight

RMB 2:0 ˙ 1:45 R5 2:8 ˙ 1:6 LMB �2:6 ˙ 1:6 L4 �1:4 ˙ 1:2

RUL 4:3 ˙ 1:6 R6 �1:7 ˙ 1:6 LUL 1:7 ˙ 2:1 L5 2:3 ˙ 1:6

R1 �0:7 ˙ 1:2 L6 1:5 ˙ 1:6 L123 �0:8 ˙ 1:4 RLL 2:6 ˙ 1:6

R2 4:9 ˙ 1:2 R7 1:4 ˙ 1:5 L1 �1:6 ˙ 1:2 LLB �3:6 ˙ 1:5
R3 �3:6 ˙ 1:4 R8 3:3 ˙ 2:2 L2 �3:2 ˙ 1:3 L7 �2:8 ˙ 1:3

BrInt �5:0 ˙ 1:6 R9 7:3 ˙ 1:5 L3 1:4 ˙ 1:3 L8 2:2 ˙ 1:5

R4 �0:4 ˙ 1:6 R10 2:9 ˙ 1:6 L45 3:6 ˙ 1:8 L9 3:2 ˙ 1:5
L10 5:2 ˙ 1:5

Since we could only use branches that were present in every single dataset tree,
we used the list of branches (5.1) along with the leaves fR1–R10, L1–L10g, which
are guaranteed to be present. We performed classification with linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), Mahalanobis distance,
k-nearest neighbor (kNN) using k D 5, and support vector machine (SVM) using
10 repetitions of 10-cross validation. The corresponding classification accuracies
are reported in Table 5.3. Note that the QDA and Mahalanobis distance are missing
for the shape branch features; this is because these both require a positive definite
covariance matrix, for which the data set was too small for the higher-dimensional
shape vectors.

While the mean classification accuracy is above chance for all classifiers, none
of them are significantly above chance. A common heuristic to find features which
are important in classification is to study the magnitudes of the coordinates of the
weight vector produced by the SVM algorithm, as shown in Table 5.4. Note that in
addition to the classification accuracy being very low, the weights of high magnitude
are scattered around the airway tree, not adding much in terms of interpretation.

The poor performance of classifiers on the set of all branches could be explained
by the fact that many branches are highly correlated. In such cases, the weights
might not carry much information. The poor classification accuracy may be
explained by the dimensionality of the data. This motivates our search for a
more predictive and interpretable classification algorithm by including subtree
information in the classifier.
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5.3.2.2 Structured Sparse Feature Selection Through Regularized
Logistic Regression on Subtree Similarity

Under a hypothesis that significant differences are found in local subtrees, we
incorporate local subtree structure into classification through a sparse classifier
taking subtree similarity as input. Logistic regression measures the relationship
between a categorical dependent variable (class label) and one or more independent
variables by using conditional probabilities as predicted values of the dependent
variable. The L1 regularized logistic regression, or the so-called sparse logistic
regression [38], regularizes the classifier by forcing the weight vector of the
classifier to have a small number of nonzero values. This results in implicit feature
selection and robustness to noise, as well as interpretability through the selected
subtree features. In addition to its solid theoretical foundation, this model is
computationally efficient [16].

Consider a set of n training examples T D f.x1; y1/; .x2; y2/; � � � ; .xn; yn/g from
which a tree classifier y D f .x/ will be learned. The i th tree is represented by a
D-dimensional feature vector xi D Œxi1; xi2; � � � ; xid	T where xij D d.Si

j ; �j /,
where Si

j is the j th subtree of the i th tree, �j is the Fréchet mean tree of all j th
subtrees in the training set, and d denotes geodesic distance between trees. The D

subtrees are rooted at the branches listed in (5.1). The values yi 2 f0; 1g indicate
the class labels of the two groups, modeling the conditional probability distribution
of the class label y given a feature vector x as:

p.y D 1jx; ˇ/ D 1

1 C exp.�ˇT x/
;

where ˇ 2 RD are the parameters of logistic model. The estimation of the
parameters ˇ is done by likelihood maximization, equivalent to minimizing the
negative log-likelihood

Ǒ D arg min
nX

iD1

� log p.yi jxi ; ˇ/:

Applying a sparse regularizer we obtain feature selection, interpretability and
reduced overfitting. This is done by adding a so-called lasso regularization term:

Ǒ D arg min
nX

iD1

� log p.yi jxi ; ˇ/ C �jjˇjj1;

where � is a parameter controlling the sparsity of ˇ, in the sense that fewer nonzero
coefficients of ˇ remain as � increases. The optimal � is chosen to optimize
classification accuracy by 5-fold cross validation.

The nested subtrees used will be correlated by definition. One way of handling
this is by adding an l2 norm regularization term as well, known as elastic net
regularization. This leads to an objective function
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Table 5.5 Results of the structured logistic classifier with lasso and elastic net
regularization. Classification results are averaged over 10 randomized folds,
and significant features are those where the distances to both class means were
kept as features in the classifier in all folds

Value of ˛ Classification result Significant features

1 (lasso) 65 ˙ 2:7 % Full

0:75 64:3 ˙ 2:1 % RMB, full

0:5 62:5 ˙ 2:4 % RMB, BronchInt, full

0:25 62:5 ˙ 2:3 % RMB, LMB, LLB, BronchInt, RLL, full

Ǒ D arg min
nX

iD1

� log p.yi jxi ; ˇ/ C �

�
˛jjˇjj1 C 1 � ˛

2
jjˇjj22

�
:

The results of the sparse classifiers for different values of ˛ are shown in Table 5.5.
Note that the classification performance is significantly better than that of the
standard classifiers on identified branches seen in Table 5.3. Moreover, note the
discriminative subtrees selected by the classifier. The fact that the lasso regularizer
results in only the full tree being selected is most likely a result of the correlation
between subtrees. As an l2 regularizer is also added, we obtain a tradeoff between
sparsity and including correlated subtrees.

5.3.3 Subtree Variance Correlation Testing

As the localized methods use features extracted from nested subtrees, we expect a
high degree of correlation between overlapping subtrees. Most of the previously
described methods do not take such correlations into account, and this may, in
particular, be a problem for the interpretability through selected features. Moreover,
it is interesting to know whether variation in non-overlapping subtrees is correlated.
In this section we provide a method for testing the correlation between variance in
the subtrees. We use the notation from Sect. 5.3.2.2.

To compare the variance between subtrees in the same airway tree, we use the
distance from the j -th subtree Si

j in tree i to the population mean �j of all j -th
subtrees in some class as a measure of the amount of variation in that subtree Si

j .
We compute the correlation between these distances, represented by the random
variable X and Y , for each pair of subtrees .j; k/, and measure whether deviation
from the mean subtree �j is correlated with deviation from the mean subtree �k .
To measure the correlation, we use Pearson’s sample correlation coefficient,

rxy D
Pn

iD1.xi � Nx/.yi � Ny/

.n � 1/sxsy

;
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Fig. 5.4 The plots in the lower triangle compare the distances between subtrees in the same tree
to their corresponding mean subtree of healthy patients. The plots along the diagonal are the
histograms of these distances when the subtree is fixed. The upper diagonal gives the correlation
of the distances plotted in the corresponding plot in the lower triangle

where Nx and Ny are the same means of the two distance variables X and Y, and sx

and sy are the sample standard deviations of the X and Y. This is equivalent to the
sample covariance divided by the sample standard deviations.

The results of applying this test to the airway data set is shown in Fig. 5.4.
Many of the subtree pairs exhibiting correlation in their variance are nested, as
expected. For example, variation is very correlated between the three subtrees RMB,
Bronchint, and RLL, where RLL is a subtree of Bronchint, which is itself a subtree
of RMB. Similarly, there is a high correlation in the variation between the nested
pairs LMB and LUL, and LMB and LLB. However, not all nested subtrees are
highly correlated. In particular, RUL is also a subtree of RMB, but variation in it
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is not very correlated with that in RMB – in fact, variance in RUL is not strongly
correlated with any other subtree. The trees are not separated by class as there was
no significant difference in the behavior of the two classes.

5.4 Visualization of NPC Information Spaces via
Low-Distortion Embedding into the Hyperbolic Disc

High-dimensional data is often embedded into lower dimensional spaces in order
to improve the efficiency of computations, or, with a two- or three-dimensional
embedding space, for visualization. Besides being high-dimensional and stratified,
the tree space Tn has negative curvature. While it is exactly this property that gives it
unique geodesics, it also means that the number of trees within a given neighborhood
can grow exponentially with the radius of the neighborhood. Our hypothesis was
that embedding point sets in Tn into lower-dimensional hyperbolic space, which
also has negative curvature, would allow embeddings with lower distortion and/or
lower total error. We explore the use of two different visualization techniques for
general metric distance matrices, Multi-Dimensional Scaling and Isomap.

Multidimensional Scaling (MDS) is a classical approach that maps the original
metric dataset to a target Euclidean space, usually of low dimension. It transforms
the input metric distance matrix into a set of coordinate positions for the data
points – in our case, each tree is a data point – such that the Euclidean distances
between the coordinates approximate the input distances as well as possible. Using
the new embedded coordinates, one can visualize dataset structure through the
embedded dataset, where inter-point distances have been preserved as well as
possible. Different definitions for what it means to preserve the distances “as
well as possible” produce different computational problems. Principle Components
Analysis (PCA) can be seen as a version of MDS, for which the problem has a global
solution, but other definitions of optimal distance preservation often lead to better
visualizations. These versions are all non-linear, so both the optimization criterion
and the method of optimization can lead to different results.

IsoMap [37] is a more recent method intended for points which lie on a lower-
dimensional surface in the high-dimensional space. It begins by constructing a
neighborhood graph connecting nearby points in the input space. Then, using this
graph, it approximates geodesic distances on the surface. Finally it applies MDS to
the matrix of geodesic distances.

While the standard approach in both of these methods is to use a Euclidean target
space for the embedding, in the past decades, hyperbolic multidimensional scaling
has also been proposed. In a nutshell, the original Euclidean distance in the target
space is replaced by the hyperbolic distance:

d.zi ; zj / D 2 tanh�1 jzi � zj j
j1 � zi Nzj j ; (5.2)
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where zi and zj denote two points in the target space. The modification in the
distance metric makes the computation of gradients non-trivial. Our goal was to
explore the question of whether hyperbolic space would be a more successful target
space for the visualization of distributions of trees, since tree space and hypoerbolic
space are both non-positive curved.

Recently, Cvetkovski and Crovella [12] introduced a method MDS-PD (metric
multidimensional scaling algorithm using the Poincaré disk model) which is based
on a steepest decent method with hyperbolic line search. We adapted this software
for our experiments with hyperbolic space, and we review the method here; more
details can be found in [12]. Complex coordinates are used to present the points
of the hyperbolic plane, making the Poincaré disk model a subset of the complex
plane C: D D fz 2 Cjjzj < 1g. The objective function to be minimized is the total
embedding error

E D c

nX
j D1

nX
kDj C1

cjk
	
djk � ıjk


2
:

where c and cjk are constants, djk is the hyperbolic distance between points zj and zk

(Eq. 5.2), and ıjk denotes the dissimilarity/distance between points zj and zk in the
input dissimilarity/distance matrix. More specifically, we use the Sammon Stress
Criterion, in which c and cjk are fixed based on ıjk as follows:

E D 1Pn
j D1

Pn
kDj C1 ıjk

nX
j D1

nX
kDj C1

	
djk � ıjk


2
ıjk

(5.3)

This criterion does not favor preserving large distances over small ones. The
algorithms starts with a set of random points in the Poincaré disk. In each iteration,
it moves each of the points along the gradient direction of the energy function shown
in Eq. 5.3 with a Mobius transform until one of the stopping tolerances is met or the
maximum iteration number is reached.

5.4.1 Experiments on Real and Synthetic Data

While much of tree-space looks locally like a Euclidean space, there are two local
features which are decidedly not Euclidean: corners and open books. A corner is
point concentration of negative curvature (see Fig. 5.1b), while an open book is
a set of Euclidean half-space attached together along their axes, or “spine” (see
Fig. 5.2). These two features, as well as the high dimension of the local Euclidean
space, are the sources of error for the low-distortion embedding. We generate
synthetic datasets that isolate the two features to determine how hyperbolic MDS
(HMDS) and hyperbolic isomap (HIsomap) treat them. We compare the results
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Table 5.6 Multiplicative
distortion of the embeddings

MDS Isomap HMDS HIsomap

CORNER 1:4 5:0 18:3 2:96

3SHEETS_2D 71:4 98:9 76:3 44:0

3SHEETS_3D 44:0 189:54 54:1 68:2

5SHEETS_2D 551:9 567:4 87:8 76:1

5SHEETS_3D 2;097:8 470:5 393:6 123:4

COPD_250 253:9 952:3 62:0 64:3

both qualitatively and quantitatively with embeddings done with classical MDS
and isomap. More specifically, the datasets are CORNER, in which 250 points are
generated by sampling the distance from the origin from a Gaussian distribution
N.0; 1/ and sampling an angle with one of the orthant boundaries uniformly from
the interval Œ0; 5


2
	; 3SHEETS_2D, in which 50 points are generated in each of 3

2-dimensional sheets; 3SHEETS_3D, in which 50 points are generated in each of
3 3-dimensional sheets; 5SHEETS_2D, in which 50 points are generated in each
of 5 2-dimensional sheets; 5SHEETS_3D, in which 50 points are in each of 5
3-dimensional sheets; and COPD, in which the lung airway trees of 125 healthy
patients and 125 patients with COPD are randomly selected. Within each sheet, the
50 points were generated by sampling from a symmetric normal distribution in the
underlying Euclidean space that is centered at the origin.

The multiplicative distortion for each embedding approach is summarized in
Table 5.6. The multiplicative distortion for a single distance between two points in
the dataset is original_distance=embedded_distance. The distortion for the whole
dataset is max_distortion=min_distortion, where max_distortion is the maximum
distortion of any two points and min_distortion is the minimum distortion for any
two points. HMDS and HIsomap perform the best for almost all of the datasets. The
embedded visualizations and the histograms for each dataset are found in Figs. 5.5
and 5.6.

Qualitatively, for CORNER, all methods were qualitatively able to group the
points in the same quadrant, and MDS performs best qualitatively, while the
hyperbolic Isomap performs better than the Isomap. For the two-dimensional open
books 3SHEETS_2D and 5SHEETS_2D, all methods also grouped the points by
their respective sheets. The two Euclidean methods overlaid all but two of the
sheets, while the two hyperbolic methods kept the sheets distinct, particularly
in 3SHEETS_2D, better representing the true geometry. Despite increasing the
dimension only by one, for 3SHEETS_3D it was much harder for the methods
to separate the distinct sheets. While MDS performed the best quantitatively, this
was not the case qualitatively, where the two hyperbolic methods gave better
sheet separation. All methods had trouble representing the more complex datasets
5SHEETS_3D and COPD, although quantitatively, the hyperbolic methods did a far
better job of reducing distortion.

The ideal histogram would place all of the distances in the column corresponding
to zero error. Although the embedded datasets in Fig. 5.5 do not provide much
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Fig. 5.5 The embedded datasets. For the CORNER, 3SHEETS_2D, 3SHEETS_3D,
5SHEETS_2D, and 5SHEETS_3D dataset embeddings, points have the same color if they
are located in the same quadrant or sheet. For the COPD dataset embeddings, the class of healthy
patients is colored in red, and the class of patients with COPD are colored in blue
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Fig. 5.6 The error histograms of the embedded datasets in Fig. 5.5. Every pair of points is binned
according to the error in the embedding, which is the difference between the original distance
between the pair of points, and the distance between them in the embedding
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qualitative insight for the more complex datasets, the histograms in Fig. 5.6 show
that the hyperbolic methods generally give the most accurate reduction to two
dimensions.

5.5 Discussion and Conclusion

We have considered two different approaches for quantifying and visualizing
variance in datasets of trees. In Sect. 5.3 the dataset trees were divided into nested
subtrees, in order to quantify the contribution of different subtrees in distinguishing
two populations of trees through either hypothesis testing or classification. These
approaches were applied to populations of airway trees from COPD patients and
healthy individuals, where the most discriminative subtrees were extracted for the
different tasks. In Sect. 5.4 visualization of population structure for datasets of trees
was studied through multidimensional scaling and isomap in a hyperbolic disc
as opposed to in the Euclidean plane. The choice of a hyperbolic visualization
space was motivated by the fact that tree-space itself has singular points which
are hyperbolic, and it thus seems likely that a hyperbolic visualization space can
give a more truthful rendering of the structure of the population of trees than
a Euclidean space. We demonstrate a quantitative and visual improvement in
dataset visualization on a set of synthetic datasets sampled from singular spaces
representing the types of singularities found in tree-space, as well as on a set of
airway trees.

These approaches supply a new set of tools, and give insight into new potential
solutions, for analysis of tree-structured data. Future work includes development of
structured sparsity methods using subtrees where the correlation between different
subtrees is explicitly taken into account, as well as low-distortion embedding into
more complex non-Euclidean visualization spaces whose geometry is similar to that
of tree-space.
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Chapter 6
Skeleton-Based Recognition of Shapes in Images
via Longest Path Matching

Gulce Bal, Julia Diebold, Erin Wolf Chambers, Ellen Gasparovic,
Ruizhen Hu, Kathryn Leonard, Matineh Shaker, and Carola Wenk

Abstract We present a novel image recognition method based on the Blum medial
axis that identifies shape information present in unsegmented input images. Inspired
by prior work matching from a library using only the longest path in the medial
axis, we extract medial axes from shapes with clean contours and seek to recognize
these shapes within “no isy” images. Recognition consists of matching longest paths
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from the segmented images into complicated geometric graphs, which are computed
via edge detection on the (unsegmented) input images to obtain Voronoi diagrams
associated to the edges. We present two approaches: one based on map-matching
techniques using the weak Fréchet distance, and one based on a multiscale curve
metric after reducing the Voronoi graphs to their minimum spanning trees. This
paper serves as a proof of concept for this approach, using images from three shape
databases with known segmentability (whale flukes, strawberries, and dancers). Our
preliminary results on these images show promise, with both approaches correctly
identifying two out of three shapes.

6.1 Introduction

We present a method and proof-of-concept for image recognition based on informa-
tion extracted from the Blum medial axis. Shape recognition and matching based
solely on contour points have been shown to perform weakly in the presence of
occlusion, partial data, and noise [4, 13, 21]. Unorganized point sets [5] representing
boundaries of shapes are often matched using assignment algorithms for graph
matching [10]. Another class of methods which use Hausdorff distance to match
the edge maps [13] has the advantage of not requiring correspondences of edge
features, but they do not necessarily preserve the integrity of shape parts. Global
shape representations which are translation, rotation, or scale invariant such as
coefficients of Fourier descriptors [19] may result in incorrect matchings due to
noise or occlusion. Historically, approaches based on the medial axis have suffered
from its instability and complexity in the presence of noise and pixelation. Our
approach is designed to bypass those problems while preserving the strengths of the
medial axis as a shape descriptor, including meaningful decomposition into parts
and stability despite occlusion. Furthermore, our matching techniques are designed
to be near-invariant to Euclidean motions (translation, rotation, and scaling).

While shape recognition based on the medial axis has been well-studied for
pre-segmented shapes [25], this project is among the first to perform recognition
using the medial axis on an unsegmented unknown image. The basic concept builds
on previous work which recognizes objects by matching longest paths in the medial
axis, but only in the limited setting where the input is a “nice” shape taken from
a particular hand-drawn catalog [3]. Here, we apply a similar philosophy to match
shapes in the much more challenging domain where the input is an arbitrary image.
As a result, we must apply edge detection and other techniques in order to identify
significant shape information present in the image. Additionally, whereas [3] uses
both the medial skeleton and the radius function, our current results use only the
skeleton because extracting reliable radius information from arbitrary edges in an
image presents additional challenges.

Since there is no common frame of reference between shapes from our canon-
ical library of possibilities and our input image, we must match an arbitrary
path (the longest path from the canonical image) into a messy geometric graph
(the Voronoi diagram of the edges detected from our image). We use two different
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approaches in this work, one based on map-matching using the weak Fréchet
distance and the other based on a multiscale curve matching into the minimum
spanning tree of the graph computed from the input image edges.

Our initial results indicate that both matching methods perform reasonably well,
clearly matching two of our three initial tests to the correct image. The algorithms
are reasonably efficient, although the map-matching approach is more computation-
ally intensive due to the exhaustive set of rotations and transformations that must be
tested. Testing on a larger database than our three-object set is required to determine
the full power of these methods.

6.2 Background

6.2.1 The Medial Axis

The medial axis of an object is the set of points which have more than one closest
point on the object’s boundary. It was first introduced by Blum as a tool for
recognizing shapes in biological images [6]. It is known that the medial axis has the
same homotopy type as the original shape [18], and therefore it gives a topologically
accurate but simpler representation of the shape of an object. In addition, the
geometry of the boundary curve is encoded in the geometry of the medial skeleton
and its radius function. The medial axis transform is the set of points in the medial
axis annotated with the radius of the largest inscribed ball centered at each point.
This structure can be used to recover the entirety of the original shape. Applications
and algorithms using this structure are numerous; see for example the survey by
Leymarie and Kimia and the many other references in [17].

6.2.2 Shape Recognition Using the Medial Axis

One of the main motivations for this work is the fact that medial-axis based
structures such as the shock graph have had notable success with the problem of
image recognition among a large database [22, 23, 25]. Each of these algorithms
catalogs a set of canonical shape categories by computing the shock graph (an
annotated version of the medial axis) for each of the shape instances. The next
step is to read input images and attempt to match the shock graphs of the input
images against the library of known shapes. These algorithms are based on dynamic
programming, and work efficiently since the shock graph is a tree whenever the
input shape is simply connected.

Another line of research motivating our work does not use the entire structure
of the medial axis, but instead does the matching strictly based on the longest path
in the medial axis and its associated radius function. Bai et al. [3] implemented
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and tested on a library of shapes containing 56 images total, with 4 objects per
shape class [2]. Their approach of removing a shape from the library and testing to
get the correct classification resulted in a success rate of 98.2 %. In addition, they
implemented and tested their method on a larger dataset [22] with 94.4 % accuracy.

Although this matching is naturally less successful for images with high radial
symmetry, they nonetheless successfully match input shapes to the correct class for
the vast majority of tested images. This is perhaps surprising, given how much rich
information about the medial axis is lost when only considering the single longest
path. However, the work has so far been applied only to catalogs of images with
hand-drawn, clean contours. In this paper, we apply a related method to recognize a
shape contained in an arbitrary (noisy) input image.

6.2.3 Map-Matching

Given a graph G embedded in Euclidean space Rd (most often R
2) and a polygonal

curve � also embedded in R
d , the map-matching problem asks for the path in G

which is closest to � , generally under some distance measure such as the Fréchet
distance or weak Fréchet distance. Recently, this problem has been considered in
both theoretical and applied settings due to its utility in GIS applications [1, 7, 8].
In this setting, one often has a trajectory (such as is given by a GPS unit placed in
a vehicle) which needs to be matched to the closest path on a known road network,
modeled as the graph G.

Our setting is slightly different: although the graphs we work with are extracted
from images and thus have embeddings in R

2, our input paths are not embedded
in the same frame of reference since the scales and orientations of the arbitrary
input images can be quite different from the reference images from the library.
This variation is somewhat similar to the notion of a graph isomorphism, but
here, our input graphs are geometric graphs rather than arbitrary ones. While fast
algorithms for Fréchet distance to a geometric graph have been looked at in some
limited settings, such as for trees [12], no one previously has considered the problem
where the input path is not given as an embedding into the same frame of reference
as the graph G, which adds considerably to the difficulty of the problem.

We perform map-matching via the weak Fréchet distance. Let �1; �2 W Œ0; 1	 !
R

2 be two curves in the plane. The weak Fréchet distance ıwF between them is
defined as:

ıwF.�1; �2/ D inf
˛1;˛2WŒ0;1	!Œ0;1	

max
t2Œ0;1	

k�1.˛1.t// � �2.˛2.t//k;

where ˛1 and ˛2 range over all continuous reparametrizations with ˛1.0/ D
˛2.0/ D 0 and ˛1.1/ D ˛2.1/ D 1, and jj:jj denotes the Euclidean norm. The
weak Fréchet distance is a well-suited distance measure for comparing curves as it
takes into account the continuity of the curves. In our setting, we consider the set
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T of translations, rotations, and scalings. And the related map-matching problem
that we address is to find for a geometric graph G, a curve � , and any admissible
transformation T 2 T, the path in G that minimizes the weak Frechet distance to
any T .�/.

6.2.4 H 1=2-Type Multiscale Curve Metric

Our other method of matching an input path into a geometric graph is via the H 1=2

multiscale curve metric, first introduced in [16], evaluated on a curve extracted
from the graph and the known longest medial path. The last decade has produced
a substantial body of work on finding shape metrics that respect the underlying
geometry of shape space, where a shape is modeled as a curve in R

2 possibly
modulo a group of transformations [14, 24, 26]. Unfortunately, these metrics are
computationally expensive and can be unwieldy to implement in any realistic
setting. The H 1=2-type metric is a middle-ground: a weakened linearization of
a Riemannian metric that is computationally fast. In other words, it computes
distances based on geometric quantities whereas the Fréchet distance does not.

For ease of exposition, results here are given for plane curves as objects in
C instead of R

2. We trust the reader can move naturally between these two
representations. Given a smooth arclength-parameterized open plane curve �.s/,
define an H 1=2 “norm”1 as:

k�k2
1
2

D
Z L

0

Z min.s;L�s/

0

ˇ.s; t/2 dt ds;

where L is the length of the curve, and the angle ˇ.s; t/ between the rays joining
�.s/ to �.s C t / and �.s � t / is given by:

ˇ.s; t/ � arg
�.s C t / � �.s/

�.s/ � �.s � t /
:

Moreover, ˇ gives rise to a metric on curves. Let ˙ be the set of homeomor-
phisms � W Œ0; 1	 ! Œ0; 1	 and �1; �2 be Lipschitz curves. Then:

L.�1; �2/ D inf
�2˙

Z Z
.ˇ1.s; t/ � ˇ2.�.s/; t//2 ds dt

1We are not viewing the space of plane curves as linear, but the integral defined is analogous to
Sobolev norms on function spaces and the integrand is analogous to a wavelet decomposition of � .
Additionally, the “norm” gives rise to a metric on curves in the standard way.
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gives the metric:

d 2.�1; �2/ D L.�1; �2/ C L.�2; �1/:

For a discretized curve sampled over dyadic intervals, we have:

k�k2
1
2

D
N �2k�1X

nD1C2k�1

KX
kD1

ˇ.n; k/22�k;

where N is the number of sampled points, K determines the maximum number of
dyadic intervals, and the angle ˇ is:

ˇ.n; k/ D arg
�.n C 2k�1/ � �.n/

�.n/ � �.n � 2k�1/
:

If � is an arclength parameterization of a Lipschitz graph, then the angles ˇ.n; k/

are, in a distributional sense, the same as the wavelet coefficients of � over the same
dyadic interval system. In this way, the collection of angles fˇ.n; k/g provides a
multiscale analysis of the curve � and, in turn, the Haar coefficients of � 0 provide a
fast computation for fˇ.n; k/g based on scaled second differences:

N �2k�1X
nD1C2k�1

KX
kD1

ˇ.n; k/22�k D
N �2k�1X

nD1C2k�1

KX
kD1

	
�.n C 2k/ � 2�.n/ C �.n � 2k/



2�k:

(6.1)

If �1 and �2 are sampled by M � N points, respectively, then � W f1; : : : ; M g !
f1; : : : ; N g and scales are limited by K � log2 M and we obtain the discrete
approximation to the continuous metric:

L.�1; �2/ 	 min
�2˙M;N

M�2k�1X
mD1C2k�1

KX
kD1

1

k2
jˇ1.m; k/ � ˇ2.�.m/; k/j2

which in turn can be computed using second differences as above.
The metric as defined is naturally translation invariant. In the discrete case,

rotation invariance is introduced by rotating the line joining �.nC2k/ and �.n�2k/

to be horizontal (a coarse approximation to the tangent line at �.n/) and scale
invariance is introduced by normalizing the average inter-point distances to be one.
See [16] for details and full generality of results.
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6.3 Method

6.3.1 Extracting Medial Axes From “Known” Images

In general, the medial axis of an object in a natural image is difficult to extract
automatically, as it requires segmenting the image, extracting the points on the
boundary of the object of interest, then computing the medial axis. We select
three image databases with known segmentability: whale flukes, strawberries, and
dancers. We use k-means clustering to extract an initial binary representation of the
object of interest, then apply morphological techniques to obtain a clean boundary.
We extract the centers and radii of the circumcircles of the Delaunay triangulation
of the boundary points and retain only those centers and radii corresponding to the
interior of the object, thereby obtaining the interior medial axis. See Fig. 6.1 for an
illustration of this process. For more details on this process, see [15].

To extract the longest path within the axis, we apply Dijkstra’s algorithm to find
the point P on the axis that is farthest from a randomly selected medial point, then
repeat Dijkstra’s algorithm to find the medial point Q farthest from P . Retracing
steps from Q to P generates the sequence of medial points along the longest path in
the medial axis. See Fig. 6.2 for an illustration of this process on our 3 test images.

6.3.2 Extracting Voronoi Edges from “Unknown”
Input Images

Given an input image, we smooth it as in [20]. See Fig. 6.3. Let f denote the noisy
input image and u the denoised (smooth) version. We obtain u by minimizing the
energy:

E .u/ D
Z

˝

.f � u/ dx C �

Z
˝

jruj dx; (6.2)

Fig. 6.1 Intermediate steps for extracting the medial axis from the whale image. The original
image can be seen in Fig. 6.6. Images above are (a) the initial cluster containing the whale fluke
resulting from k-means clustering, (b) the segmented whale fluke after morphological processing,
and (c) the resulting boundary points. The medial axis with longest path resulting from the
boundary displayed here can be seen in Fig. 6.2e
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(a) Voronoi vertices of strawberry (b) Voronoi vertices of whale fluke (c) Voronoi vertices of dancer

(d) Medial skeletons of strawberry (e) Medial skeletons of whalefluke (f) Medial skeletons of dancer

Fig. 6.2 Top row: Voronoi vertices with longest path highlighted. Bottom row: Medial skeletons
with longest path highlighted. These longest paths are shown matched to one another in
Figs. 6.12–6.14

where ˝ denotes the image domain and � 2 R>0 a weighting factor. The first term
ensures that u is similar to f and the second term forces u to be smooth everywhere
except at strong edges.

Next, we run a line segment detector (LSD) algorithm [11] on the smoothed
version in order to extract prominent edges and thus a likely boundary of a shape.
LSD locally detects straight contours on the image, giving subpixel results while
controlling the number of false detections per pixel. Contours are naturally defined
by the image gradient and level lines of the image which divide the transition
region from dark to light or the opposite. The algorithm works by finding the unit
vectors tangent to the level lines, thus computing the level line angle at each pixel.
The resulting vector field is then segmented into connected regions that share the
same level line angle up to a threshold. Each connected region is represented by a
geometrical object such as a rectangle. The principal axis of this object defines the
main direction which is chosen as the line segment.
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Giraffe Smoothed Giraffe Torbreck Smoothed Torbreck

Fig. 6.3 Examples of smoothed images

Fig. 6.4 Results of edge detection on smoothed images of a giraffe and a bottle

The output is a set of edges with noise, as in Fig. 6.4, which we process into a
Voronoi diagram to extract potential medial points. In doing so, we remove “outlier”
medial points (including points in the region external to the shape) by a dilation and
erosion process, as depicted in Fig. 6.5. That is, we first thicken the medial points
to form many connected point clusters and subsequently erode them (while still
maintaining connected structures). We then identify and delete all point clusters
in the processed image of a sufficiently small area, and/or those points that are
greater than a certain small distance away from the largest connected structures
in the image. We then compare the resulting image with the original input image
and delete all medial points in the input image corresponding to deleted points in
the processed image, yielding the desired image without outliers.
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Fig. 6.5 Removing “outlier” medial points for giraffe image. (a) Original image with all medial
points, followed by the resulting images after (b) dilation, (c) erosion, and (d) point deletion.
(e) Final image with remaining medial points

Next, our objective is to match the single longest path from each of our initial
image instances into the graph which, in each case, approximates the medial axis
of the shape that is present in each input image. We pursue this problem in two
different ways as outlined in the following two subsections.

6.3.3 Matching via Weak Fréchet Distance

Our first method of matching is based on map-matching via the weak Fréchet
distance. The related map-matching problem is to find for a geometric graph G

and a curve � a path in the graph that minimizes the weak Fréchet distance to � .
For a polygonal curve � with n vertices and a graph G with a total number of m

edges and vertices, the map-matching problem can be solved in O.mn log.mn//

time [27]. This algorithm constructs a “free space graph” which is essentially a
combinatorial representation of the product space of (parameterizations of) the
curve and the graph. Each vertex-edge pair is assigned a weight that equals their
Euclidean distance, and then a shortest path algorithm in this “free space graph”
(where the length of the path is computed as the maximum of the weights) computes
a path with minimum weak Fréchet distance. Please see [27] for more details.

In our setting, we consider the set T of translations, rotations, and scalings.
And the related map-matching problem that we address is to find for a geometric
graph G, a curve � , and any admissible transformation T 2 T, the path in G that
minimizes the weak Frechet distance to any T .�/. We sample T by applying a fairly
exhaustive set of scalings, translations, and rotations to the curve, and for each such
transformation we run the map-matching algorithm of Wenk et al. [27]. In particular,
we sample the transformation space as follows: We consider rotations by 0ı, 90ı,
180ı, and 270ı. We hold the aspect ratio constant and apply a single scaling factor;
the maximum scaling factor is determined such that the width of the (possibly
rotated) path equals the width of the graph, and the minimum scaling factor is
chosen to be half the maximum factor; this range is sampled in steps of 0:2. The two-
dimensional translation space is determined to consist of all translations such that
the bounding box of the (possibly scaled and rotated) path fits entirely inside the
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bounding box of the graph; the translation space is sampled in steps of 10 pixels.
As described in Sect. 6.4, the dimensions of each bounding box are several hundred
pixels by several hundred pixels. The resulting range of scales where between 1 and
2:4 for the strawberry, between 0:38 and 0:78 for the whale fluke, and between 0:6

and 1:2 for the dancer. We note that this method is computationally intensive for
each example, involving multiple tests for different possible orientations and sizes
of the path.

6.3.4 Matching via an H 1=2-Type Metric

Our second method of matching addresses the fact that the Fréchet based algorithm
described in Sect. 6.3.3 is especially difficult because the input medial axis graph can
be quite noisy and messy depending on how well our edge detection and smoothing
algorithms are able to isolate prominent shapes. Additionally, the second method
applies a metric that is invariant under Euclidean motion.

We first simplify the Voronoi graph to a tree to avoid cycles when computing
the longest path in the graph. We choose the minimum spanning tree because it
appears to capture the prominent shape features quite well, though other ways of
simplifying the input graph may be worth investigating. Note that in converting
the graph to a tree we may lose segments on the longest path. Suppose �1 is a
discrete representation of the longest path in the medial axis of a known object, and
we are given the Voronoi edges from an unknown image. Our method is as follows,
with curve matching running in O.MN log M/ time:

1. Compute the minimal spanning tree for the Voronoi edges.
2. Extract �2, the longest path in the Voronoi tree.
3. Resample �1 and �2 to have N D M D 128 equally spaced points.
4. Normalize scale so that each curve has an average inter-point distance of one.
5. Compute second differences as described in Eq. 6.1.
6. Extract second differences corresponding to every fourth point on �1 to allow for

flexible point matching (otherwise the points are matched one-to-one in order),
following the procedure outlined in Sect. 6.2.4.

7. Apply dynamic programming to find the matching of points of �1 to �2 that
minimizes the distance d 2.�1; �2/ between the curves.

8. Sum scaled second differences corresponding to the optimal matching to obtain
approximation to d 2.�1; �2/.

6.4 Results

The three images we use are of a strawberry, a whale fluke, and a dancer. Here we
match the medial axis extracted as described in Sect. 6.3.1 to the Voronoi diagram
of the same image extracted as described in Sect. 6.3.2. The dimensions of the
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Fig. 6.6 Input images: a strawberry, a whale fluke, and a dancer

(a) (b) (c)

Fig. 6.7 Results of edge detection: (a) strawberry, (b) whale fluke, and (c) dancer

bounding boxes of the Voronoi diagrams are 479�367 for the strawberry, 618�418

for the whale fluke, and 540 � 239 for the dancer. Results from the two matching
methods are comparable, and both seem promising.

6.4.1 Weak Fréchet Map-Matching Distance Results

For the dancer and the whale fluke, the transformation that minimized the weak
Fréchet distance over all sampled transformations was found correctly, see Figs. 6.8
and 6.9. The point matching computed by the weak Fréchet distance also appears
to be of good quality. The distance for the minimum transformation computed
for the dancer is so small (2:5 pixels), that the transformed dancer path and the
resulting matched path in the graph almost coincide. For the whale fluke, the
minimum computed transformation (11:2 pixels) is very close to the transformation
with the third smallest distance of 11:6 pixels which applies an additional 180ı
transformation to the whale path. For the strawberry, the path is found for multiple
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Fig. 6.8 Matching the dancer path into the dancer graph. The graph edges are shown in light
gray, and the path is shown in green. The algorithm finds the correct transformation with minimum
Fréchet distance 2:5 pixels (at scale 1:0 with no rotation). The transformed path is shown in black,
and the corresponding path in the graph in blue
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Fig. 6.9 Matching the whale path into the whale graph. The graph edges are shown in light gray,
and the path is shown in green. The algorithm finds the correct transformation with minimum
Fréchet distance 11:2 pixels (at scale 0:6 with 90ı rotation). The transformed path is shown in
black, and the corresponding path in the graph is blue. The red lines show the optimal point
matching

small scales at multiple positions at small distances (ranging between 8:1 to
about 13) in the graph, see Fig. 6.8. Out of the 4;368 sampled transformations per
sampled scale, 9.2 % of the transformations at scale 1:0 have a distance less than
15. At scale 1:2, this reduces to 5.5 %, and at scale 2:0 this reduces to only 0.07 %.
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Fig. 6.10 Matching the strawberry path into the strawberry graph. The algorithm finds too many
occurrences of the path at a small scale. The graph edges are shown in light gray, and the path
is shown in green. Results are shown for the minimum distance (8:1) at scale 1:0 (with a rotation
of 180ı), the minimum distance (8:9) at scale 1:2 (with a rotation of 270ı), and the minimum
distance (13:4) at scale 2:0 (with a rotation of 180ı). The transformed path is shown in black, and
the corresponding path in the graph in blue
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Fig. 6.11 Matching the dancer path into the strawberry graph (distance 8:9) and into the whale
fluke graph (distance 8:7). Both distances are larger than the distance into the dancer graph (2:5),
see Fig. 6.8

We believe that this is an artifact caused by the almost grid-like dense edge pattern
in the strawberry graph in combination with the very straight shape of the strawberry
path.

We also compared the dancer path to the strawberry graph, the whale fluke graph,
and the dancer graph. We computed the minimum weak Fréchet distance over all
sampled transformations. The computed minimum distances were 8:9 pixels for the
strawberry graph, 9:7 pixels for the whale fluke graph, and 2:5 for the dancer graph.
The dancer path therefore correctly determined the dancer graph as the graph it
matches best with, see Figs. 6.8 and 6.11.
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Fig. 6.12 Matching medial longest path from (a) whale (distance D 1:551), (b) dancer
(distance D 1:749), (c) berry (distance D 2:687) into the Voronoi tree longest path of the
whale fluke. Lines show the optimal point matching. The minimum distance into the messy graph
correctly classifies the unknown image as a whale
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Fig. 6.13 Matching medial longest path from (a) whale (distance D 1:424), (b) dancer
(distance D 1:314), (c) berry (distance D 2:602) into the Voronoi tree longest path of the dancer.
Lines show the optimal point matching. The minimum distance into the messy graph correctly
classifies the unknown image as a dancer

6.4.2 H 1=2 Metric Results

Initial results for matching the medial longest path to the Voronoi tree longest path
are correct for the two instances where the longest Voronoi path contains the desired
medial points. Apart from the strawberry image, where the Voronoi tree longest path
fails to contain edges belonging to the medial axis of the strawberry, the closest
match corresponds to the correct classification. In addition, the optimal matching
between points performs reasonably well. See Figs. 6.12–6.14. Note that the scale
of the curves has changed. This is because of the scale invariance we introduced by
normalizing inter-point distances to be one.

6.5 Discussion and Future Directions

Our matching techniques show enough promise to merit additional investigation.
We are curious about the success of the algorithms when the Voronoi diagram is
dense or grid-like, or where the longest path in the medial axis does not trace a
prominent shape feature (such as when the input image is nearly round with radial
symmetry).
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Fig. 6.14 Matching medial longest path from (a) whale (distance D 1:473), (b) dancer
(distance D 1:474), (c) berry (distance D 2:422) into the Voronoi tree longest path of the
strawberry. Lines show the optimal point matching. The minimum distance into the messy graph
incorrectly classifies the unknown image as a whale. Note that the longest path in the Voronoi tree
for the strawberry image does not contain any edges from the medial axis of the strawberry itself

6.5.1 Analysis of the Weak Fréchet Map-Matching Distance

Sampling the transformation space to minimize the weak Fréchet map-matching
works well for the dancer and the whale fluke. The strawberry graph exhibits a
grid-like dense edge pattern which causes the strawberry path to be found in many
locations in the graph, in particular for small scales. While this behavior is extreme
in the strawberry, it is also present in the whale fluke data, where the path with the
second smallest distance is located at a different location with an additional 180ı
rotation. We believe that the “small scale” problem could be overcome by analyzing
the distribution of distances for fixed scale and varying translations and rotations, in
order to identify transformations with significant distances. We will investigate this
direction in future research.

For the dancer path, the distance into the dancer graph was much smaller than
into the strawberry graph and the whale fluke graph. The minimum weak Fréchet
distance into the messy graph therefore correctly classifies the unknown image as a
dancer.

6.5.2 Analysis of the H 1=2-Type Metric

Matching longest paths using the H 1=2-type metric performs well for the two
cases, whale and dancer, where the longest path in the Voronoi tree contains edges
corresponding to the medial axis of the object of interest. Not surprisingly, it fails
for the third image, the strawberry, where no medial edges appear in the Voronoi
tree longest path. The strawberry image is particularly challenging, as the berry
itself contributes very few edges to the very complicated edge map seen in Fig. 6.7a
and contains several spurious edges in its interior. This illustrates the need for an
additional evaluation of relative importance of Voronoi vertices, perhaps through
classification of vertices as belonging to the foreground or background or noise.
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Fig. 6.15 Matching a semicircle into a curve composed of the union of a semicircle and a line.
Instead of matching semicircle to semicircle, the semicircle is matched to points away from the line

In addition, the optimal matching of points between the two longest paths
currently seems to favor matches that map the medial path into the length of the
Voronoi path. For example, in Fig. 6.12 the medial axis for the whale in the Voronoi
path starts at about the halfway point whereas the optimal matching begins at the
left of the path. Because the optimal matching can skip enough points to avoid
highly mismatching segments, it seems likely that a longer match will often be lower
cost for medial curve matching. At the same time, two curves that are identical
up to a point can correspond in a match that is too short. Figure 6.15 illustrates
this issue. For the larger scales, the differences in the ˇ angles (and their second
difference approximations) will grow as the points on the circles approach the points
on the line. Hence the lowest cost match avoids points toward the end of the circle
attached to the line. Penalizing skips that are longer than an average skip, or adding
the difference in the radius function values to the cost of matching two points may
improve the medial point correspondence.

6.5.3 Future Work

Our initial proof of concept for this approach is promising. Based on our results and
prior work in this area [3], we speculate that this approach will also work well to
capture the same shape in a different pose (such as a dancer in different positions).
Future work will consider a larger library of shapes as well as input images in
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different poses. There is also potential to include the radius function as well as
the longest path for improved recognition results, but it is not clear if the Voronoi
graphs from input images will prove too noisy to reliably calculate this information.

Both approaches perform better with a simpler Voronoi graph. We are currently
exploring methods for evaluating the saliency of either a particular Voronoi vertex
or (equivalently) an edge pair associated to a Voronoi vertex. In addition, both
approaches would benefit from using the information in the radius function on the
medial and Voronoi points that gives the distance to the corresponding edge points.
We anticipate substantial improvement from the combination of these modifications.

We also hope to reduce the cost of learning additional shape classes once a
sufficient number of classes have been learned. Learning the visual models for
classification of test objects requires a significant number of training samples. In the
method of one-shot learning [9], the information from previously learned categories
is used for training new categories, using a Bayesian prior and maximum a posteriori
(MAP) estimation. This model could be used to optimize and extend learning for the
current methods.
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Chapter 7
Revisiting Skeletons from Natural Images

Erkut Erdem and Sibel Tari

Abstract In the last two decades there have been several works promoting
shape fields that implicitly encode local convexity/concavity properties of the
shape boundary. These shape fields are formulated either as solutions to Poisson
type PDEs or via heuristic approximations to them. The v-field of Tari-Shah-Pien,
can be computed directly from a real image; thus, suggests a mechanism to bridge
low level visual processing and high level shape computations. We revisit Tari,
Shah and Pien’s v-field approach and extend its application to complex images with
texture. We relate v-field value at a skeleton point to the distance of the point from a
putative shape boundary, and use this relation to extract semantic image patches. At
the end of the chapter, we experimentally compare the medial locus computed from
the new v-field to that of Kimia et al.

7.1 Introduction

Real valued functions defined on the shape interior is a classical approach for
implicitly coding shape characteristics, with motivations reaching back to Gestalt
School [8]. There are several ways of defining these encoding maps. The most
common of such mappings is the distance transform which assigns each point in
the shape interior the points minimum distance to the boundary. During the last two
decades more informative variants implicitly coding boundary curvature have been
developed [1, 2, 4, 9, 12], all of which are formulated either as a solution to the
screened Poisson PDE or heuristic approximations to it.
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One potentially useful feature of the v field [9, 10] is that it can be computed
directly from a real image as the steady-state solution to a coupled set of PDEs:

@u

@t
D r � .v2ru/ � ˇ

˛
.u � f /I @u

@n

ˇ̌
ˇ̌
@˝

D 0 ; (7.1)

@v

@t
D r2v � 2˛jruj2v

�
� .v � 1/

�2
I @v

@n

ˇ̌
ˇ̌
@˝

D 0 (7.2)

where f W ˝ ! < is a given image defined on ˝ � <2 of which boundary is @˝,
and ˛, ˇ, � are the scale space parameters. The coupled set of equations define an
evolution for a smoothed image u and a function v. Notice that if u is fixed, (7.2)
becomes the minimiser of

Z
˝

 
�2

1 C 2˛�jruj2 jrvj2 C
�

v � 1

1 C 2˛�jruj2
�2
!

dx (7.3)

This means that v is a blurred form of 1
1C2˛�jruj2 where � is the blur radius. As

� ! 0, 1 � v can be thought as the probability of an edge. As � increases, however,
v starts to code the minimum distances to putative edges.

If the input image f is piecewise constant then v is the minimiser of

Z
˝

�2jrvj2 C .v � 1/2 dx (7.4)

subject to homogeneous Dirichlet conditions on the jump set. Thus, for silhouettes,
v or 1 � v is governed by the so-called Screened Poisson Equation. There is an
interesting relation between the level curves of v and evolution of fronts with
curvature dependent speed, which has been proven in [9]: Let r denote the arc-
length along the gradient lines of v and curv.x/ the curvature of the level curve of
v passing through the point x at x, then for a change ıv in the v value, one has to
move ır along the gradient lines, where ır is

ır.x/ 	 �

1 � v

�
1 C � curv.x/

2

�
ıv.x/ (7.5)

Thus, one can imagine a two-parameter family of level curves parameterized by and
v and �. Smoothing increases with increasing � and v.

Based on the above connection, a robust ridge (skeleton) detection scheme has
been proposed in [9, 10] via zero-crossings of d2jrvj

ds2 > 0. A sample result is shown
in Fig. 7.1 for a cat silhouette for two choices of �. The method also provides a

distinction between branches tracking protrusions (loci of points where d2jrvj
ds2 > 0,

where s is the arc length along the level curves) and those tracking indentations (loci
of points where d2jrvj

ds2 < 0).
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Fig. 7.1 Illustrative skeletons using the method in [9, 10]. The top row shows the level curves
of v. The red marks the critical locations where rv D 0. The bottom row depicts the skeletons
extracted

7.1.1 A Modified v

In principle, v, hence, shape skeletons, should be computable directly from a raw
image using the coupled PDEs (7.1) and (7.2) followed by the ridge extraction
scheme of Tari-Shah-Pien [10]. However, this is not practical due to texture, noise
and other possible complications. In this chapter, we revisit the approach in [10]
so that it can be developed towards a better tool to integrate low level and high
level visual processing, purely in a bottom-up fashion. To such end, we replace the
coupled PDEs with the following pair from [3]:

@u

@t
D r � ..cv/2ru/ � ˇ

˛
.u � f /I @u

@n

ˇ̌
ˇ̌
@˝

D 0 ; (7.6)

@v

@t
D r2v � 2˛jruj2v

�
� .v � 1/

�2
I @v

@n

ˇ̌
ˇ̌
@˝

D 0 : (7.7)

The difference between the former and the new coupled PDE set is the way the
image u is smoothed. Notice that the only difference is the replacement of the
diffusivity v in the update equation of u with cv. The new diffusivity function cv,
which steers the smoothing of u (hence indirectly affecting v), introduces high-level
influences into the diffusion process by considering image features computed in a
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wider context. The strength of these features of interests are denoted by the function
�, which is explicitly estimated at each image point, and is used to adjust the edge
diffusivity as follows:

cv D �v C .1 � �/V : (7.8)

If we have a measure � which attains higher values for meaningful occurrences of a
feature, we set V D 1 to diffuse faster at those points with lower �, but if � attains
lower values for meaningful occurrences, we set V D 0 to slow down the diffusion
where � is low. That is, the type of an influence is determined by the scalar V , which
is set either as 0 for boosting the feature of interest or 1 for eliminating it. If � D 1,
hence c D 1 at all image points, the set of PDEs is reduced to (7.1) and (7.2). This
is nothing but an approximation to [5].

7.2 From Images to Skeleton Pieces

Following the spirit in [10], we will use the same computational machinery for both
edge localization and medialness computations. The key point is to change � from
very low to very high. In Fig. 7.2, a sample case where four different v functions
obtained by varying � parameter are depicted. The localization of edges coded by
the function v deteriorates as � increases from 1 to 32. Notice that for � D 32,
the edge localization is very poor, and the v function resembles a distance function.
The value of the parameter � mainly determines the growth rate of the approximate
distance function. The rate of growth increases with the decreasing �. As a result,
v function encodes the medialness information more reliably. It is important to note
that just like the function in [10], the new v function is an implicit function of the
image gradient rather than the distance to shape boundary.

The overall scheme is illustrated in Fig. 7.3. The coupled PDE set is employed
twice in a row. In the first phase, � is set to a very low value to compute a good edge-
indicator v and a cartoon-like u. The rest of the scale space parameters are selected

Fig. 7.2 A cube image degraded by Gaussian noise with zero mean and non-constant variance
along with 2 % impulse noise and the v function computed via coupled equations using different �

values. As � increases, the behaviour changes from accurately locating the edges to coding medial
properties
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Fig. 7.3 From images to skeleton pieces

based on the intended smoothing of the image (the smoothing radius is
q

2˛
ˇ

and the

contrast threshold is
q

1
2˛�

). The higher level influences are also invoked via c [3].

For this first phase, the coupled PDE set (7.6) and (7.7), with high-level influences
in effect allows us to consider the visual content of the input image u in a better way.
The result u is a structure-preserving smoothing of the image f . The ambiguities
in the visual information are resolved during the joint smoothing process, which
eliminates the need for any preprocessing to obtain accurate object boundaries. The
outcome of the first phase is shown in the second column in Fig. 7.3.

Upon convergence, the parameters are reset: The value of � is significantly
increased, higher-level influences are shut down by setting c D 1 everywhere,

and the smoothing of u is shut down by letting
q

2˛
ˇ

! 0 without increasing the

contrast threshold. In the second phase, u does not change much. The v on the other
hand changes significantly as shown in the third column via its level curves. The
fourth column depicts the skeleton loci extracted from the final v via the method of
Tari-Shah-Pien [10].

A nice characteristics of this diffusivity formulation is that it allows one to
consider several features of interests at once since their effects are formulated as
a multiplier for the edge diffusivity v. For the first phase (the edge localization
phase) we compute cv by employing three different feature strength measures �dc,
�h, � te, from [3], which respectively denote directional consistency, edge continuity,
and texturedness. Such a choice, as detailed in [3], provides a structure-preserving
smoothing of f , which allows us to preserve global shapes while eliminating noise,
fine details and texture. Results for four more images are given in Fig. 7.4. Recall
that the loci can be split into two groups. From now on, our interest is restricted to
protrusion branches.
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Fig. 7.4 Four illustrative examples for “from real images to skeletons in 3 steps”. The skeleton
loci is obtained from the final v using the method of Tari-Shah-Pien [10] without any pre or post
processing

7.3 From Skeletons to Image Patches

The value of v at a point depends on the gradient jruj at the point and its neighbors.
(Recall that v function is a nonlinearly smoothed form of 1

1C2˛�jruj2 ) As a result,
one can not estimate the distance from a skeleton point to the nearest boundary,
namely the skeleton radius, using the value of v. Difficulties associated using the v

function for extracting boundaries has been previously reported in [7]. As a solution,
we propose to replace the direct dependency of v to jruj, just at a skeleton point,
with an indirect dependency through an absolute distance jd j such that the function
v attains its minimum at a distance jd j from the skeleton point.

We base our formulation on a ribbon-like section of a shape, i.e. a section having
a slowly varying width, and the skeleton points in that shape section. In Fig. 7.5,
we provide a graphical illustration, which shows a ribbon-like shape section with
the corresponding skeleton points (the dotted line). We consider a cross section
over this part, which is illustrated as a red line in the figure, and concentrate on a
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Fig. 7.5 An illustration of a
ribbon-like section of a shape
and its skeleton (the dotted
line)

one-dimensional analysis. Note that the boundaries at jd j distance from the skeleton
point are the putative edges. Ignoring the curvature effect, the evolution equation is
reduced to:

�
d 2

dx2
� 2˛jux j2

�
� 1

�2

�
v D � 1

�2
I �d � x � d (7.9)

with the conditions v.�d/ D v.d/ 	 0.
In Eq. (7.9), juxj is large at the putative edges, which makes 1

1C2˛�jruj2 have being
practically zero at x D ˙d . On the other hand, juxj is a small quantity unless v 	 0.
Therefore, it can be argued that the second and third terms in the left hand side
are negligible. Additionally, the term in the right hand side affects the scaling of
the solution, i.e. multiplying the right hand side by �2 does not make a qualitative
difference. Following these arguments, it can be claimed that the behavior is roughly
governed by

d 2v

dx2
D � 1

�2
I �d � x � d : (7.10)

Consequently,

v.0/ D d 2

2�2
: (7.11)

Using Eq. (7.11), the radius r of the maximal circle is given by

r D d D �
p

2v : (7.12)

Note that it is also possible to consider, that is to ignore only the middle term
in (7.9) without considering the case � ! 1:

�
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�2

�
v D � 1

�2
I �d � x � d (7.13)

In that case,

1 � v.x/ D
 

1 � e
2d
�

e
�2d

� � e
2d
�

!
e

�x
� �

 
1 � e

�2d
�

e
�2d

� � e
2d
�

!
e

x
�



108 E. Erdem and S. Tari

Thus,

r D d D � cosh�1

�
1

1 � v

�
(7.14)

In practice, we do not see much difference between the results obtained by (7.14)
and (7.12). Hence, we will use (7.12) as it is computationally less expensive.

In Figs. 7.6 and 7.7, we illustrate sample skeletal circles with the radii computed
using Eq. (7.12). Notice that the envelopes of the circles are quite in agreement with
the corresponding ribbon-like shape sections. But also note that when the shape
parts deviate from the ribbon-like structure, the resulting circles become slightly
larger and we lose some accuracy in the estimated distances to the putative edges.
As the part we consider deviates from ribbon-like, e.g., ear of an animal, radii are
overestimated. In practice, we may consider a conservative radius by ignoring

p
2.

The regularization inherent to our formulation is the main reason of these partially

Fig. 7.6 Sample skeletal circles with radii computed using Eq. (7.12)

Fig. 7.7 Circles associated with the skeleton points on selected branches for 12 horses
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inaccurate radii values, however it is also crucial for obtaining more coarse skeletons
(see Fig. 7.1). Unlike the distance transform that accurately encodes every detail
in the boundary via a one-to-one mapping, which provides a precise measure
of the minimum distance of the point to the shape boundary, our medialness
function encodes only the visually meaningful parts and ignores the secondary and
unimportant details.

7.4 Experimental Results

In this section we present two groups of experiments. In the first group, Figs. 7.8
and 7.9, we compare skeletons via our method to the ones by Kimia method [6, 11].
In the second group, Figs. 7.10 and 7.11, we depict how patches obtained by the
envelope of circles can be employed for figure-ground separation.

7.4.1 Experimental Comparison to Kimia’s Method

Our method, being linear, has enormous computational advantages over the method
of Kimia. This has been discussed extensively in [9, 10]. Here, we only do compare
resulting medial loci of the two respective approaches visually. We have chosen

Fig. 7.8 Our framework copes well with texture and produces visually more meaningful skeletons
(the bottom row) whereas Kimia’s method produces superfluous shocks and even on textureless
areas (the body of the horse or the bird) can not yield medial loci
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Fig. 7.9 (a) Kimia’s method applied to raw input. (b) Kimia’s method applied to our u-result. (c)
Tari-Shah-Pien method applied on our u-result

Fig. 7.10 An illustrative segmentation. (a) Input image. (b) Extracted skeletons. (c) Structured
image patches. (d)–(e) Background/foreground regions estimated by the first clustering phase
taking extra input from the user. (f) The refined separation result

three illustrative real images: an image containing a highly textured cheetah on
a uniform background, an image containing low textured horse on a textured
background , and a low-textured bird image (Figs. 7.8).

Since there are highly textured regions in the input images, the edge maps of the
images contain gaps and many spurious edges. As a consequence, Kimia’s method
produces many inaccurate and unintuitive shocks loci. (The contour fragments
where the shocks are extracted are shown in red colour in the top row images.)
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Fig. 7.11 Input images with Tari-Shah-Pien skeletons superimposed on them (the top row) and
resulting segmented figure regions (the bottom row). The suggested figure-ground segmentation
algorithm gives fairly good results even though simple texture features are used to describe the
structured image patches

The advantage of our method can be attributed to several factors. But one of
the factors is the robust structure preserving smoothing achieved via (7.6) [3]. This
step is independent of the loci extraction part. Therefore, in our next experiment,
to make a direct comparison between the two loci extraction methods given
respectively in [11] and [10], we apply Kimia’s shock extraction method on our
u-images. In Fig. 7.9, we depict three results: (a) Kimia’s method applied on a raw
input; (b) Kimia’s method applied on a denoised and de-textured image (structure
preserving smoothing applied to the raw image via (7.6)); and (c) Tari-Shah-Pien
method applied on the same denoised and de-textured image. As expected, the
shocks obtained from our u-images (in the middle) are much more intuitive than
the shocks obtained from raw images (on the left), but not as intuitive as the medial
loci via Tari-Shah-Pien method (on the right). Observe that, when Tari-Shah-Pien
method is used (on the right), unintuitive medial branches due to inaccuracies near
face or fez boundary terminate without corrupting the main branches capturing the
two rectangular areas.

7.4.2 Application to Figure-Ground Separation

Specifically, using extracted skeleton branches as input (Fig. 7.10b), we extract
patches from highly textured images and form them into coherent groups to obtain
semantic segments. The presented segmentation algorithm involves the following
steps: First, the structured image patches, which are of uniform characteristics
and which encode specific sections of the image, are determined (Fig. 7.10c).
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Each structured patch is then described by means of simple texture features such
as mean intensity, standard deviation, entropy, homogeneity of the co-occurrence
matrix. Following that, a k-means clustering with k D 5 is carried out on these
features. As the input images all contain objects which are distinguishable from
the surroundings by means of intensity or texture difference, at least one of the
resulting clusters includes the regions that correspond to background. At this point,
the labels (figure/background) are manually assigned to the clusters by taking an
input from the user. It is important to note that this is the only part of our algorithm
where the user intervention occurs. As can be seen in Fig. 7.10d–e, this intermediate
step provides a rough, but fairly good separation of the foreground from the
background. Now that a rough foreground/background separation is available, a
thorough analysis is performed to refine the separation result. The main idea of this
step is to restrict the attention to the initially estimated foreground portion of
the image during re-estimation of the separation. For that, first, the convex hull
enclosing the initial foreground region is estimated. Each pixel in the convex hull is
then described by means of the entropy value calculated within a squared window
centering the pixel (ignoring the pixels outside the convex hull), and an additional
clustering (k-means with k D 2) is performed on these entropy values. As a result,
the pixels are classified into two as foreground and background, yielding a more
accurate figure-ground segmentation than the initial separation result (Fig. 7.10f).

Figure 7.11 shows some extra test images and the corresponding figure-ground
segmentations. Although the foreground objects (birds and butterflies) have large
variations in texture, pose and scale patterns and simple texture features are used
to describe our structured image patches, the proposed algorithm gives fairly good
outcomes.
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Chapter 8
Towards Automated Filtering of the Medial Axis
Using the Scale Axis Transform

Jeannine Abiva and Lisa J. Larsson

Abstract This paper analyzes the problem of determining the optimal scaling to
prune the medial axis of spurious branches with the use of the Scale Axis Transform
(SAT) in R

2. This optimal scaling is found by minimizing the Fréchet distance
between the boundary of the true shape and the boundary of the SAT-filtered version
of the shape perturbed by noise. To compute the minimum, the noisy shape is filtered
using a variety of scalings s > 1 of the SAT algorithm. The optimal scaling is then
related to the level of noise used to perturb the true shape. The minimization problem
is repeated for various shapes and different noise levels. In applications such as
image recognition and registration, the medial axis is very relevant. However, it
is highly susceptible to noise along the boundary. The results presented here offer
crucial information to automate the de-noising process, by providing a link between
the level of noise and the optimal SAT scaling factor.

8.1 Introduction

The medial axis is an important tool in geometry processing as it is homotopy-
equivalent to the shape itself [14], and can be more efficient for shape modeling
[12, 13]. As such, it has found many applications, including shape recognition
[15, 21, 22, 24]. When dealing with shapes whose boundaries have been distorted
by noise, it is necessary to prune spurious parts of the medial axis in a robust way.
There have been a variety of approaches to address this problem [2, 3, 6, 15, 23].
A recent algorithm that produces pruned skeletons is the Scale Axis Transform
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(SAT) [9, 10, 17]. For any scale s < 1 and a class of scales greater than one,
topologically-consistent medial axes are produced [10]. Under this algorithm, the
medial axis is computed, then the radii of the medial balls are scaled by a factor s

to produce a new, enlarged shape. The medial axis of the new shape is computed,
and the radii of the medial balls are then scaled back by 1=s to obtain the simplified
skeleton.

When applying the SAT algorithm to de-noise the medial axes of a database of
shapes – for instance during the recognition process – it is not practical to find the
scale parameter s manually for each shape. Rather, a best guess should be posited
based on the level of the noise of the shape boundary relative to the size of the shape.
Previous work involving the SAT algorithm has demonstrated the effect of different
scales on the resulting medial axis with a view towards pruning [9, 10, 19]. In this
paper, we extend this idea by finding the best scaling to remove spurious branches
of the medial axis, which in turn will reconstruct a shape perturbed by noise. Using
a database of non-noisy shapes, we perturb them by a discrete set of realistic noise
levels. Noise on the shape boundary can be obtained, for example, by computing
the shape boundary from a pixelated image [20]. Therefore, given a noisy shape,
we call the SAT parameter s optimal if it minimizes the Fréchet distance between
the original and SAT-filtered shape. The process by which we compute the optimal
scaling is summarized in Fig. 8.1. By investigating the changes to the boundary and
the medial axis under different scale factors, we can assess how the topology of
the medial axis and the geometry of the shape change under each scaling and noise
regime.

The organization of this paper is as follows. In Sect. 8.2, we describe the previous
work that is used to identify optimal scale factors. This includes the details of the
Scale Axis Transform, previous definitions of distance between shapes, the realistic
boundary noise model we adopt, as well as a description of the software package
to visualize the results of the SAT algorithm and the medial axis. In Sect. 8.3, we
describe the method used to arrive at an optimal SAT scale factor. Section 8.4 then
presents the results of this methodology on different input shapes, and Sect. 8.5
follows with concluding remarks.

8.2 Previous Work

In this section, the Scale Axis Transform, as well as previous work on boundary
noise and shape distances, is described. This is followed by a summary of the
software package Mesecina, which allows for easy visualization of 2D and 3D shape
geometries, including the medial axis and the Scale Axis Transform. Now, we begin
by describing the SAT algorithm in more detail.
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Fig. 8.1 Finding Optimal SAT scale factors: This figure summarizes the methods of this paper.
The input is a smooth shape, denoted here as the Original Shape. The medial axis of the Original
Shape is then computed and noise is added to the shape boundary. This results in the Distorted
Shape. Then, the medial axis of the Distorted Shape is computed, and the s-Scale medial axis is
computed for a variety of scales s. The optimal scale is computed by comparing each SAT filtered
shape with the Original Shape

8.2.1 The Scale Axis Transform

In order to prune the medial axis of branches not contributing to the defining features
of a shape, Bálint Miklós developed the method known as the Scale Axis Transform
[9, 10, 17, 18]. The algorithm was inspired by the Medial Axis Transform and proved
to be useful in determining the skeleton of a noisy shape.

The medial axis of a shape O, denoted by M.O/, is the set of points x such that
there exists a radius r where at least two points on the inscribed ball B.x; r/ lie on
the shape boundary, @O. These balls are known as medial balls; and the medial axis
transform of O is the set of maximal medial balls, where no medial ball provides a
cover for another medial ball. That is,

MAT.O/ D fB.x; d.x; @O// j x 2 M.O/g:
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Because the medial axis transform is sensitive to the addition of noise to the
boundary of the shape O, shapes perturbed by noise will contain branches that are
unnecessary for classifying the overall shape. Thus, using the medial axis transform
to determine the important and defining features of a shape perturbed by noise can
be difficult. The scale axis transform can be used to remove the branches of the
medial axis that correspond to noise [9, 10, 17, 18].

Using the medial balls from the medial axis transform, the radii from the balls
are scaled by a factor s > 1, resulting in the set of balls

Os D
[

B.x;r/2MAT.O/
B.x; sr/:

By scaling the medial balls of MAT.O/, smaller balls are covered and are thus
disregarded from the medial axis transform of the new shape Os . Because the centers
of the medial balls remain the same, the medial axis of Os removes the points that
correspond to the covered balls. The scaling s is used to determine the parts of the
skeleton corresponding to noise along the boundary. By scaling the medial balls of
MAT(Os) by 1=s a simplified skeleton is produced. Therefore,

SATs.O/ D fB.x; r=s/ j B.x; r/ 2 MAT.Os/g

defines the Scale Axis Transform as the union of the scaled medial balls from
MAT.Os/ [10, 17, 18]. The algorithm is demonstrated in Fig. 8.2.

8.2.2 Shape Distance

Computing the distance between geometric objects has received much attention in
recent years, foremost for its utility in computational biology and computational
neuroscience. Measuring the differences in the shapes that comprise the human
brain, for instance, can offer insight into how diseases affect these regions and
can lead to advances in disease detection [11]. In the analysis of the lungs, a new
notion of geodesic distance was introduced to be able to compute statistics on the
tree structure of airway paths [7, 8]. In this paper, we require a notion of distance that
allows us to compare pairs of 2D shapes. This has been approached in previous work
through graph edits of the medial axis [21, 24], and by finding diffeomorphisms that
map one shape to another in an energy-minimizing manner [4].

To determine a relationship between the level of noise distorting a shape and
its optimal scaling under the SAT algorithm, the difference between an original
shape and its distorted version must be quantified. Although multiple ways of
approaching this task exist, the Fréchet distance between two curves will be used
here to numerically evaluate this difference. The Fréchet distance between two
curves is frequently referred to as the dog-walking distance, because it measures the
longest leash required if you were to walk along one curve while your dog walks
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Fig. 8.2 The Scale Axis Transform: This figure demonstrates the Scale Axis Transform
algorithm. (a) The input or original shape demonstrates exaggerated bumps along the boundary.
(b) With the (red) points along the boundary, the medial balls (denoted by the blue circles) are
computed. Note that the green region is the resulting shape when the medial balls are filled. (c) The
medial axis (denoted by the black lines) is extracted from the centers of the medial balls. With
the Scale Axis Transform, spurious branches of the medial axis transform are pruned. Here we
demonstrate the effect of the choice for the s scaling parameter of the Scale Axis Transform.
(d) With s D 1:2, the medial balls associated with the smaller bump on the left were filtered,
resulting in a simplified shape. (e) If s is increased to 1:3, the medial balls associated to both of the
bumps are filtered and the shape is simplified to a circle

along another path (Fig. 8.3). More concretely, the Fréchet distance between two
curves f and g is the infimum over all parameterizations ˛ and ˇ of Œ0; 1	 of the
maximum Euclidean distance between f .˛.t// and g.ˇ.t// for t 2 Œ0; 1	 [1] . The
advantage of the Fréchet distance is that it is straightforward to compute [1], and
works well on the boundaries of 2D simply-connected shapes.
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Fig. 8.3 The Fréchet Distance: This figure demonstrates the Fréchet distance between two
shapes. As with the Fréchet distance between two curves, the Fréchet distance between two shapes
can be thought of as the dog walking distance. Therefore the Fréchet distance between two shapes
is the longest leash required if one were to walk along the boundary of the shape and their dog
were to walk along the boundary of the other shape. Some candidates for the leash length are given
by the dotted lines. The Fréchet distance between the boundaries of the green and black shapes is
given by the length of the pink segment

Fig. 8.4 This shows the complicated medial axis that results when using an image whose boundary
was obtained from a pixelated image. (a) Bitmap image. (b) Resulting medial axis

8.2.3 Boundary Noise

In this paper, we assume that the noise arises naturally after segmenting the shape
boundary from a pixelated 2D image. This type of noise arises as a result of the
Mumford-Shah image segmentation process, for example [20]. Moreover, because
of the step-like noise added to the shape boundary, the medial axis is complicated
by many additional branches that reconstruct these unwanted features. Figure 8.4
demonstrates the type of medial axis that is typically obtained by using shapes with
this type of noisy boundary.
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Now because image data is commonly used as the basis for extracting geometric
shapes, as in medical resonance imaging (MRI), noise from pixelation of the shape
boundary is used here. More generally, previous work on filtering the medial axis
has considered classes of noise that can include this pixelation error as a special
case. For example, in [16], a noisy r-sample is considered, which is a reasonable
model for laser range data.

8.2.4 Mesecina

To determine the optimal scaling for the Scale Axis Transform, we relied on a geo-
metric visualization tool developed by Bálint Miklós called Mesecina [10, 17, 18].
Mesecina is an interactive tool that investigates geometric structures in both 2D and
3D. It allows a user to visualize multiple geometric algorithms simultaneously, such
as the Power Crust [2], various Delaunay and Voronoi diagrams, and the Scale Axis
Transform [10]. This tool offers a quick way to visualize relationships between a
variety of fundamental geometric structures.

The input to Mesecina is a point-sampling of the shape boundary. Using
Mesecina in 2D, a user can input data by simply drawing points in the window or by
importing a point-sampling of the boundary. Interactive data manipulation allows
a user to immediately visualize how geometric structures are modified when data
points are altered. Further, the parameters of the provided geometric algorithms can
easily be modified by the user.

8.3 Optimal Scale Factors

In this section, the procedure for computing optimal SAT scale factors is described.
This method combines previous work to suggest reasonable scale factors when
applying the Scale Axis Transform to problems where manual tuning is impractical.
Given a true shape whose piecewise smooth boundary is known, this process can
be decomposed into the following four steps: (A) Perturb the shape boundary by
noise; (B) Filter the noisy shape using the SAT algorithm; (C) Compute the Fréchet
distance between the boundaries of the original shape and the SAT-filtered noisy
shape; and (D) Find the scaling s� which minimizes the Fréchet distance. The details
of each step are explored further in the following paragraphs.
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8.3.1 Perturb Shapes by Noise

Let O denote the original shape, which has a piecewise smooth boundary @O. This
shape is given as an input to our problem. First, the boundary of this shape is
perturbed with pixelation noise. We denote by OO the pixelated shape obtained from
this rasterizaiton.

Now the level of noise in terms of the Fréchet distance to O, the original shape, is
characterized. Let f D @O, g D @ OO, and let ˛; ˇ be any parametrizations of Œ0; 1	.
Then the Fréchet distance between O and OO is given by:

F
�
O; OO

�
D inf

˛;ˇ
max
t2Œ0;1	

d
	
f .˛.t//; g.ˇ.t//



; (8.1)

where d.x; y/ denotes the Euclidean distance between points x; y � R
2. We

abbreviate the Fréchet distance by ı1 D F.O; OO/. Here, the subscript on ı indicates
that the pixelated shape has not yet undergone the SAT filtering (the scale s D 1

results in no change).
Recall that perturbing O by pixelation error results in a noisy medial axis (see

Fig. 8.4). We define any circumcenter of the noisy medial axis to be spurious if
it does not exist in the medial axis of the original un-pixelated shape. For smooth
shapes, the medial axis will still have many branches. For example in Fig. 8.1, the
Original Shape is the letter S. The medial axis of this shape has four branches,
that are used to reconstruct the corners on either end. Our aim in this study is
not to compute the simplest medial axis for a given shape but to prune branches
corresponding to the noise added.

8.3.2 Filter Noisy Shapes with the SAT Algorithm

Once the noise-perturbed shape OO is obtained, we use the Scale Axis Transform to
filter the medial axis. For a scale s > 1, the SAT-filtered noisy shape is given by

SATs. OO/:

This leads to a simplified medial axis, where redundant medial balls have been
filtered, as well as a simplified shape resulting from the union of these medial balls.
Higher values of s will result in a shape that has been oversimplified, whereas values
of s that are too close to 1 will not filter all spurious medial balls.
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8.3.3 Compute the Distance to the Original Shape

The distance to the original shape is computed using the Fréchet distance (8.1). The
Fréchet distance between the boundaries of the original shape and the SAT-filtered
noisy shape is given by:

ıs D F
	
O; SATs. OO/



:

In applications, one would have access to a set of shapes whose boundaries are
perturbed by noise, but not the original shapes. In this paper, we give evidence for
which scale factor of the SAT algorithm best filters the medial axis of the original
shape when the true shape is known. This information can then be used in cases
where the true shape is not known. To determine which scale factor is optimal, the
Fréchet distance is used to quantify the distance from the original shape for each
SAT scaling. A known feature of the SAT algorithm is that for certain scales s > 1,
the medial axis may become disconnected. In such cases the Fréchet distance is no
longer appropriate, and the Hausdorff distance will be used. The optimal scale will
typically occur before any topological changes in the medial axis.

8.3.4 Find the Optimal Scaling

After the previous steps are completed, all that remains is to compute the optimal
scale factor to prune the medial axis using the Scale Axis Transform. This is found as

s� D argmins>1 F
	
O; SATs. OO/



(8.2)

D argmins>1 ıs:

For each shape O, the noisy shape OO is processed with the SAT algorithm using
30 scales s 
 1 to find the minimizing factor s�. In this study we chose 30 equally-
spaced values of s in the range Œ1; 2	 based on the pruning results depicted in [9, 10,
19]. This process is repeated for different image sizes for each shape to establish
how the pixel noise affects the optimal scaling for each shape. See Fig. 8.1 for a
graphical summary of this process. Note that, in general, we do not expect to find
one global optimizer. For non-convex shapes it is possible that the distance described
in (C) has more than one local minimizer. We are concerned here with the behavior
of the global minimizer across shapes and noise levels. In the next section we present
the results of this optimization.
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8.4 Results for Six Test Shapes

In our analysis, six shapes were observed: a circle, an ellipse, a cloud, a clover, a
hand, and an elephant. All six objects were contained in the unit square to aid in
the comparability of the Fréchet distances. In Figs. 8.5–8.10, we present the Fréchet
distance between the boundaries of the original shape O and the SAT filtered noisy
shape OO. Each shape was pixelated with two criteria; their Fréchet distances are
depicted in Figs. 8.5–8.10a with the colors black and blue. Notice that s D 1 shows
the distance between the original shape and the noisy shape before the SAT filtering.
This characterizes the level of noise added to each shape.

For simple convex shapes, such as the circle and ellipse (Figs. 8.5 and 8.6),
favorable results are produced for a wide range of scalings, typically s > 1:05.
The Fréchet distance for the circle remains essentially constant for larger scalings.
The noise along the boundary of the circle results in a perturbation of the medial
center point. For the ellipse, the distance increases with the scaling (Fig. 8.6). This
is because for larger scalings, the SAT algorithm will eventually simplify the ellipse
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Fig. 8.5 Pictured here is (a) the Fréchet distances of the original circle and the distorted circle
with respect to the scale axis parameter, (b) an example of the medial axis of a noisy circle and (c)
its Scale Axis Transform
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Fig. 8.6 Pictured here is (a) the Fréchet distances of the original ellipse shape and the distorted
ellipse with respect to the scale axis parameter, (b) an example of the medial axis of a noisy ellipse
and (c) its Scale Axis Transform



8 Filtering the Medial Axis Using the Scale Axis Transform 125

1 1.5 2
0

0.05

0.1

0.15

0.2

SAT Scale Factor

Fr
ec

he
t D

is
ta

nc
e

(a) (b) (c)

Fig. 8.7 Pictured here is (a) the Fréchet distances of the original cloud shape and the distorted
cloud with respect to the scale axis parameter, (b) an example of the medial axis of a noisy cloud
and (c) its Scale Axis Transform
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Fig. 8.8 Pictured here is (a) the Fréchet distances of the original clover shape and the distorted
clover with respect to the scale axis parameter, (b) an example of the medial axis of a noisy clover
and (c) its Scale Axis Transform
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Fig. 8.9 Pictured here is (a) the Fréchet distances of the original hand shape and the distorted
hand with respect to the scale axis parameter, (b) an example of the medial axis of a noisy hand
and (c) its Scale Axis Transform
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Fig. 8.10 Pictured here is (a) the Fréchet distances of the original elephant shape and the distorted
elephant with respect to the scale axis parameter, (b) an example of the medial axis of a noisy
elephant and (c) its Scale Axis Transform

to a circle. For more complicated shapes (Figs. 8.7–8.10), such as the cloud, it was
observed that a minimum distance is obtained in the range of s D 1:1 to s D 1:3.
Afterwards, the distance between the true shape and the reconstruction of the noisy
shape increases. The SAT algorithm first simplifies the cloud to an ellipse, and
finally to a circle. It is natural that different shapes will behave differently when
perturbed by noise and subsequently filtered by the SAT algorithm. For highly non-
convex shapes, smaller scalings (e.g., closer to s D 1:1 than s D 1:3) should be
favored to avoid topological changes in the medial axis.

8.5 Discussion

In this paper, we investigated optimal scaling factors for the Scale Axis Transform
on a set of six shapes. The results gave insight into how well the medial axis of a
noisy shape can be filtered of its spurious branches using different scale factors for
the SAT algorithm. As a rule of thumb, s 2 Œ1:1; 1:3	 produced favorable results and
is well-suited for use in cases where tuning s to each shape is impractical.

Further, we believe that our results can be expanded. Although the focus here
was the Fréchet distance, other notions of shape distance can be explored. As was
mentioned, the Scale Axis Transform prunes the spurious branches from the medial
axis. Therefore, a natural next step is to explore the similarity of the two shapes by
comparing their skeletons [21, 22]. In addition, shape distance can also be defined
with a diffeomorphism mapping from one shape to another [4]. Therefore, other
shape distances can be used to further investigate the optimal scaling of the Scale
Axis Transform.

Although only 2D shapes were explored here, a study of 3D shapes is another
step that can be examined. Since the Scale Axis Transform also applies to 3D shapes,
we believe our methodology, with the use of the Fréchet distance for 3D shapes [5],
can be used to study the optimal scale factors for 3D images. As with our 2D study,
this extension will be useful in filtering images susceptible to pixelation noise, as is
often seen in 3D medical scans. Thus, a similar study in 3D may be valuable.
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Abstract Maintaining the local style and scale of 2D shape features during
deformation, such as when elongating, compressing, or bending a shape, is essential
for interactive shape editing. To achieve this, a necessary first step is to develop a
robust classification method able to detect salient shape features, if possible in a
hierarchical manner. Our aim is to overcome the limitations of existing techniques,
which are not always able to detect what a user immediately identifies as a shape
feature. Therefore, we first conduct a user study enabling us to learn how shape
features are perceived. We then propose and compare several algorithms, all based
on the medial axis transform or similar skeletal representations, to identify relevant
shape features from this perceptual viewpoint. We discuss the results of each
algorithm and compare them with those of the user study, leading to a practical
solution for computing hierarchies of salient features on 2D shapes.

9.1 Introduction

Natural objects typically include a hierarchy of shape features, from fine-scale
details to the main object. These features, such as those in the examples of Fig. 9.1,
are fundamental to our perception of the object. Similarly, digital models of shape
incorporate a number of features of various scales. During interactive shape editing,
artists should preferably not have to manually adjust or duplicate all these features
when deforming the parent shape, e.g., by bending, twisting, stretching or shrinking
it: this would be time-consuming, even for skilled artists. Therefore, research
in interactive shape design has sought methods that enable adjustments on the
parent shape while automatically preserving the style and aesthetics of small shape
features.

This paper takes a necessary step towards this challenging goal: it proposes
perceptually-based algorithms to detect shape features, in the case of 2D shapes.
Once shape features are detected, they can be carefully manipulated during defor-
mation processes. In this work, our first focus is defining what is meant by a
shape feature. Therefore, we use the results of a perceptual user study to guide our
definition of shape features. Secondly, we choose to use the medial axis transform
to detect features on 2D shapes, since this is likely to ease subsequent generalization
to 3D shapes, compared to other criteria, such as local curvature.

Fig. 9.1 Real shapes with perceptually salient features, such as seeds on strawberries, ridges on
leaves, and skin details on a chameleon
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Throughout this paper, S will denote a shape in R
2 that has a closed, piecewise

smooth boundary. As a subset of R2, S is a compact set.
The organization of this paper is as follows: In Sect. 9.2, we present previous

work. A user study conducted to understand human perception of shape features
is then motivated and described in Sect. 9.3; the results of this study are also
presented. Then, two classes of algorithms for detecting shape features are pro-
posed: a geometric algorithm is described in Sect. 9.4, followed by several methods
enabling the detection of features at different resolutions in Sect. 9.5. Section 9.6
then presents numerical tests of the new algorithms on a variety of interesting shapes
and compares this to an existing feature-detection algorithm. We conclude with a
discussion of these results and directions for future work.

9.2 Previous Work

9.2.1 The Medial Axis Transform

The medial axis can be defined equivalently in different ways, for instance, in terms
of maximally inscribed balls or the shock set of the eikonal flow from the shape
boundary [4, 7, 8, 16]. The following definition was presented in [3, 4].

Definition 9.1 (Medial Axis Transform). The Medial Axis Transform of S is
given by the set of locations M internal to the object with more than one
corresponding closest boundary point and their distance R from the boundary @S.

Remark. When the shape S is non-convex, an “exterior medial axis” can also be
defined. These are points in Sc that are equidistant to two or more closest points
along @S.

The shape S can be reconstructed as the union of balls centered along M of radius R.
These balls are maximal and have at least two contact points on the surface. The
exterior medial axis is not required for shape reconstruction.

It is often convenient to assume that S is simply connected; i.e., that it has no
holes. This simplifies the topology of the medial axis, in particular guaranteeing
no loops. In the remainder of this paper, we only focus on such simply connected
shapes.

The medial axis representation has been widely studied in computational geom-
etry. In practice, the medial axis can be approximated as a subset of the Voronoi
diagram of points sampled on the boundary of the shape [1]. In [13], the authors
edit the shock graph to systematically define the distance between two shapes for
recognition.
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(a) (b)

Fig. 9.2 Shapes with salient features. (a) The bumps protruding from the large sphere are salient.
(b) A shape with many salient features

9.2.2 Identifying Salient Features

In his seminal work [9], Michael Leyton characterizes features on 2D shapes using
curvature of the shape boundary: a salient feature of a 2D shape is identified by the
presence of two extrema of curvature of the same sign along the boundary, @S. The
two extrema should occur at the contact points of one medial ball of the medial axis
(or of the external medial axis).

Figure 9.2 shows a number of salient shape features that follow this definition:
the shape in (b) has many salient features; some are larger, such as what appears to
be the head of a bird, and others are smaller in scale. In our user study, we probe
whether, on average, parts like the bird’s head are perceived to be a shape feature or
part of the main shape. We do not restrict ourselves to any particular definition of
salience here, but rather use the results of the perceptual study to guide our definition
of shape feature.

Directly using skeletal representations to detect salient features has been pro-
posed in previous work. For example, in [12], the authors use a modification of the
medial axis transform, called the chord axis transform, and decompose shapes based
on the extremal chord strength. In [18], the authors use both skeletal and boundary
features and define a protrusion strength that is then used to decompose the shape.
The originality of our approach compared to these methods is the fact that we build
our work on a user study, enabling us to address the identification of perceptually
salient shape features.

Furthermore, there are many algorithms designed for pruning the medial axis
that can be applied to identifying shape features. These algorithms were developed
because the medial axis transform is known to be very sensitive to noise on the
shape boundary, resulting in spurious branches [1, 2, 5, 15, 17]. Much work has been
devoted to the pruning of these non-informative branches. The resulting algorithms,
aimed at detecting features in order to remove the less salient ones, should indeed
be considered with respect to our goal. These approaches filter points on the medial
axis depending on the geometric configuration of the contact points of the medial
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balls (e.g., the radius of medial balls combined with the angle between a center and
the contact points [2, 15], the radius of the ball circumscribing the contact points [5],
or the area enclosed by the contact points [14, 17]). More recently the Scale Axis
Transform (SAT) was developed, which uses a nonlinear scaling of the medial balls
to produce a hierarchy of simplified medial axes [6, 11]. This method is recalled in
more detail in Sect. 9.5, as we evaluated it with respect to the results of our user
study, and then build on it to propose a solution that better matches our goals.

To adhere to the results of the user study, we propose to extend the SAT in
order to take into account the length or thickness of medial branches. To compute
the length, we rely on the extended distance function (EDF) [10], which measures
the tubularity of a shape. A detailed description of EDF is given in Sect. 9.5; to
compute thickness, WEDF, an original weighted version of EDF, is then proposed.
Combining these branch characteristics with the SAT algorithm is one of the key
points of our solution.

9.3 User Study on Shape Feature Perception

A user study was conducted to determine the criteria for the perceptual identification
of features on a 2D shape. For that, given a collection of 2D shapes, we asked the
users to identify any shape features they considered different from the main shape.
This study was designed to gauge the consistency with which users identify shape
features, and both motivates and validates the algorithms we construct. The user
study consisted of a set of 44 shapes, that were printed on three sheets of paper.
The results for shapes with semantic content—i.e., shapes that looked like plants,
animals, or other naturally-occurring objects—were discarded to mitigate semantic
bias. The order and the orientation of the shapes was random, to reduce the influence
of similar shapes in adjacent positions.

Indeed, our aim in this study was to identify the geometric criteria that are
important in identifying shape features. For the non-specific, simply connected
shapes presented in the user study, we assumed that the partition of the shape into
a main shape plus shape features was independent from the shape’s orientation.
Before conducting the user study, we formed four hypotheses about the properties
of shape features in terms of the radius and orientation of the shape’s medial axis:

(H1) Any part of a shape delimited by two corresponding extrema of curvature of
the same sign (i.e., occurring at the contact points of one medial ball), is a shape
feature. This is Leyton’s criteria [9].

(H2) A junction of the medial axis (local Y shape) is important but neither
necessary nor sufficient to characterize a shape feature.

(H3) A change in thickness along the medial axis is more predictive of shape
features than a change in direction. Yet, it is neither necessary nor sufficient
to characterize a shape feature.
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(H4) If the main shape is not of larger radius than the features, it is of larger length.
Moreover, a part with smaller area is more likely to be a shape feature than a part
with smaller length.

Once the users obtained the set of printed shapes, we gave them the following
instruction:

(Q) We are trying to construct a hierarchy of a shape’s features. Highlight what
you think is NOT the main shape.

The user study was given to 24 people, the sheets were scanned and aligned, and
each pixel was averaged over the 24 forms. The average results in grayscale are
presented in Fig. 9.20. A summary of relevant results is given below:

The first hypothesis aims to verify the definition of salient shape feature given by
Leyton (see Sect. 9.2). This hypothesis was both validated and refuted by the user
study. Actually, Figs. 9.3a, b confirm (H1), while Fig. 9.3c and Fig. 9.3d refute it.

In Fig. 9.3a, nearly all users identify the nob on top as a shape feature, while the
white area is the main shape. This feature is delimited by two extrema of curvature of
the same sign. Figure 9.3b also confirms (H1). Although some users thought of the
lower and upper extremities as shape features, the majority considered those parts
to be the main shape, while the only feature delimited by two extrema of curvature
of the same sign was chosen to be a shape feature by the majority of the users.
In Fig. 9.3c, all four extremities should be considered shape features under (H1).
However, this is not observed, as the two extremities that are aligned are considered
by the majority of users to be the main shape. In Fig. 9.3d, the users both validate
and refute (H1). The small nob on the left side of the shape is overwhelmingly
characterized as a shape feature, this is in agreement with (H1). However, both the
large white areas are delimited by two extrema of curvature of the same sign, yet
they are considered the main shape. This is likely because of the larger size of these
areas compared to the thin connecting strip. In summary, there are cases that both
support and refute this hypothesis, so it cannot be used in isolation to identify shape
features.

The second hypothesis is concerned with junctions in the medial axis. (H2)
conjectures that a junction in the medial axis is important but neither sufficient
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Fig. 9.3 Results of the user study for (H1). (From the left) The first two shapes validate (H1), as
the majority of users choose shape features that are consistent with Leyton’s definition of salience.
The third shape disagrees with Leyton’s definition and (H1), as only two of the four salient parts
are identified as shape features. The fourth shape also disagrees with (H1), as the two larger areas
are salient features by this definition
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Fig. 9.4 Results of the user study for (H2). (From the top left) The first shape (a) confirms (H2)
because of the first and last prong of the comb—there is no junction here, yet they are shape
features. The shape in (b) also confirms (H2) because it was unclear which branch of the junction
was the shape feature—many thought it was all the main shape. Shape (c) confirms (H2), as there
is no junction for the right-most feature. In the bottom two figures, a junction is sufficient

nor necessary to characterize shape features. A junction refers to a meeting point
of three edges of the medial axis. The results here were quite interesting. There
were many cases (see Fig. 9.4) where a junction from the primary medial axis
branch was sufficient to characterize a shape feature (for example, Fig. 9.4d and
Fig. 9.4e. However, for the Y shape (Fig. 9.4b) the users did not reach a consensus
about which branch of the Y was the shape feature, and some users found there to
be no shape features. It is difficult to draw broad conclusions from this as the Y
shape has semantic information—it is shaped like a letter, which may influence the
perception of shape features in this case. In the top row, Fig. 9.4a, c have repeated
shape features. In the comb example (Fig. 9.4a) all the prongs are shape features,
even though the first and last do not occur at a junction of the medial axis. Similarly,
in Fig. 9.4c the right-most feature does not occur at a junction of the medial axis,
so a junction is not necessary in this case. These results demonstrate that junctions
in the medial axis are strong indicators of shape features, but not sufficient, and
suggest that repeated features should also be taken into account. Hypothesis (H2)
was therefore validated by the user study.

The third hypothesis considers whether it is more important to have a change in
shape thickness or a change in the direction of the shape to classify shape features. In
Fig. 9.5, there are three examples that support (H3). The results were not unanimous:
In Fig. 9.5a, some users highlighted the bottom left part as a feature, but most
decided that the main shape was the V to the left, and the feature was the nob to the
right. The left V has a consistent thickness, but not a consistent orientation, while the
thickness of the right nob is significantly reduced. This supports (H3). Figure 9.5b
also depicts mixed opinions, though the majority of users selected the thin right part
of the shape to be a shape feature, which is the part with the smallest thickness. The
results were similar for Fig. 9.5c. These results validate (H3). The example of the
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Fig. 9.5 Results of the user study for (H3). All three figures confirm (H3), which says that a
change in thickness is more important than a change in direction in identifying shape features
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Fig. 9.6 Results of the user study for (H4). All three figures confirm (H4), which says that the
measure (in length or area) of the main shape is larger than that of the shape feature

comb shape (Fig. 9.4a) illustrates that changes in thickness are not necessary nor
sufficient to determine a shape feature. The thickness of the main part is similar to
the thickness of the features in this example.

The fourth hypothesis addresses the case where the main shape is not as thick
or as long as the shape features. Figs. 9.6a, b show cases where the main shape
has the same thickness as the shape features. This validates (H4), as in these two
cases, the users identified shape features that have the smallest length. Therefore,
given a shape with nearly constant thickness, it is necessary and sufficient to use
length to successfully identify shape features. In Fig. 9.6c, a shape with non-constant
thickness is shown. In this case, length alone is not sufficient to characterize shape
features, as the thin feature is much longer than the main shape. For shapes with
non-constant thickness, a branch with a bigger area is more likely to be considered
the main shape.
In summary, these results show that:

• Two extrema of curvature of the same sign do not always identify shape features.
• Junctions in the medial axis are important for determining shape features, but are

neither necessary nor sufficient.
• Repeated parts can be considered features even when there is no junction in the

medial axis.
• Change in radius is more important than change in orientation to identify shape

features.
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• The length of a part of a shape is necessary and sufficient to identify shape
features when the thickness of the shape is nearly constant.

• A part of a shape with larger area is more likely to be considered the main shape
than a lengthier part of smaller area.

These conclusions have driven the construction of a geometric feature-detection
algorithm, based on the radius and orientation of the medial axis, which is presented
next.

9.4 Perceptually-Based Geometric Feature Detection

Our goal is to partition a 2D shape to separate the main part of the shape from
the shape features. The geometric approach presented in this section directly builds
on the results of the user study we just described: the input of the algorithm is
a 2D shape and the output is the features, given in terms of their medial axis
representation. The method involves first computing the medial axis, and then
partitioning it using criteria that combine branching information with variations in
radius of the medial balls.

9.4.1 Junctions in the Medial Axis

The most natural way to partition a 2D shape according to its medial axis is to
consider points where the topology of the medial axis changes, that is, to categorize
the branching parts as features. In Fig. 9.7, the small branch of the medial axis
corresponds to the raised bump on the main shape.

However, as confirmed by (H2) in the user-study, determining which branch
corresponds to the feature and which branch corresponds to the main shape requires
extra information in addition to the detection of junctions: in Fig. 9.7, there are three
branches of the medial axis, and while two correspond to what is visually perceived
as the main shape, one corresponds to the shape feature. Considering junctions of
the medial axis in isolation is therefore not sufficient. In practice, we combine it with
other information, namely changes of radius and of orientation among neighboring
branches. This corresponds to the conditions for identifying features in Algorithm 1
below.

Fig. 9.7 The medial axis (in white) for a shape (in blue). The junction in the medial axis indicates
a branching, which is a criteria for identifying shape features
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Fig. 9.8 Left: Although the medial axis has no junction, the nose is a shape feature. Right: The
radius and its derivatives are shown. The calculation starts at the tip of the feature and proceeds
towards the circle center

9.4.2 Changes in Radius

As demonstrated in the user study (H2), considering junctions is important but
neither sufficient nor necessary. Shape features may also arise along a single branch
of the medial axis. Figure 9.8 depicts a simple example, namely a sphere with a
small triangular outcropping, which can appear as a tail or a nose. The nose is a
shape feature, however there is no branch in the medial axis that would lead to its
detection. This suggests that along each branch, the radius must be considered, and
the branch will be further subdivided if there is a significant change in thickness.
A subdivision of the branch means that we split the branch into two branches and
add a new junction between the two.

One way to analyze the thickness is to consider the variation of the radius on
the medial axis. Analyzing the behavior of the medial axis in Fig. 9.8 one can
observe that there is a sudden increase in the second derivative (see the curves in
Fig. 9.8, right). Thus, we propose to use the variation of the radius along the curve
to further partition the medial axis. New junctions are added on simple branches
when a second order variation of the radius is detected.

9.4.3 Resulting Geometric Algorithm

Once the medial axis has been partitioned by considering both junction and
thickness information along branches, consistency of thickness and orientation at
each junction are considered sequentially to compute the shape decomposition we
are looking for. According to (H3), we first consider changes in thickness, and
when there is no change in thickness, we identify features based on directions.
Our method is summarized in Algorithm 1 below. Note that we implemented a
discrete version of the radius-based partitioning method just discussed: the medial
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Algorithm 1 Geometric feature detection algorithm
Input: Given S, and a three thresholds ", T and ˛ used for the second order variation of the
radius of branches, the relative change of thickness, and the relative angle between branches at
a junction, respectively.

Compute M, the medial axis.

Preprocessing:
if there is a second order change of radius along the skeleton, that is �2R D RiC1 � 2Ri C
Ri�1 > " then

Split the branch at this point (add a junction).
end if

Main Loop:
for each junction x in the medial axis do

Part I: Compare the radius between adjacent branches
for each branch bi entering the junction x do

1. Get the intersection point xi of bi with the circle centered at x of radius R.x/.
2. Compute the radius of the i th branch ri D R.xi /.

end for

Find r D maxi ri the maximum radius.
for each branch bi associated with the junction x do

if r � ri > T then
Label bi a feature.

else
Keep bi as the main shape.

end if
end for

Part II: Compare the orientation between adjacent branches
if All branches .bi / are labeled as the main shape then

for each branch bi associated with the junction x do
Compute the orientation �i of the branch bi at xi .
if for all j : j�i � �j j � 
 > ˛ then

Label bi a feature.
else

Keep bi the main shape.
end if

end for
end if

end for

axis is sampled into a graph of nodes with associated radius. Adjacent nodes refer to
neighboring points along this discretized graph. The second order derivative of the
radius is approximated by the second discrete differences (denoted by �2) on three
successive values of the radius along a branch.
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Results of this algorithm will be discussed in Sect. 9.6. This algorithm requires
different parameter values for comparing changes of radius along a branch (Pre-
processing), branch radii at junctions (Part I), and branch orientations (Part II).
These parameters can be tuned to get results that consistently match the user
study. Moreover the algorithm provides the relative importance of adjacent branches
at each junction: this leads to different levels of resolution. Of course, branches
of the same level are not necessarily topologically connected. Moreover, branch
importance is computed based on local information at each junction. A drawback of
this method could be its lack of computing global branch importance: branches of
the same level may be very different in thickness, for example. Using this algorithm
to detect hierarchies of shape features at different resolutions would require complex
tuning, with different families of values for the three parameters. We therefore
investigate an approach that uses a single resolution threshold, presented next.

9.5 Towards Multi-resolution Feature Detection

In this section, we develop an algorithm that can identify a hierarchy of shape
features of different scales. The starting point to achieve this goal is the Scale Axis
Transform, which achieves multiscale feature detection using a nonlinear scaling of
the medial balls. We first study the standard SAT algorithm and identify why it does
not match our goals. We then propose two extensions, based on different weightings
of the scaling function that use length and area criteria, respectively. The input to
the problem is again the 2D shape, and the output is a hierarchy of features based
on a thresholding parameter.

9.5.1 Using the Scale Axis Transform

The Scale Axis Transform is a method for pruning spurious branches from the medial
axis of 2D and 3D shapes [6, 11]. Given a shape, S, the first step of the algorithm
is to compute its medial axis M. Next, each ball of the medial axis is scaled by a
factor s > 0 (thus creating a non-linear scaling of S), and the union of these scaled
medial balls forms the s-scaled version of the shape S. If s > 1, then the shape
is dilated, if s < 1, then the shape is shrunk; s D 1 recovers the original shape.
Under a dilation, s > 1, there will be medial balls that no longer contribute to the
boundary of the s-scaled shape. These medial balls are removed. The inverse scaling
1
s

is then applied to the new medial balls, recovering a medial axis representation
of S where the parts of the medial axis corresponding to redundant medial balls are
now pruned. This method is very effective for pruning parts of the medial axis that
are artifacts of rasterized image boundaries and other boundary noise. Additionally,
when s > 1 is progressively increased, this method yields a hierarchy of medial
axes that correspond to progressively simpler versions of the input shape, S.
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Fig. 9.9 Shapes with features (bumps) of the same radius as the main shape. The radius of the
medial axis transform is nearly constant throughout the shape: the bumps will thus not be detected
as salient features using the classical SAT. However, in such cases, the user study clearly indicates
that the bump should still be identified as a feature, even without repetition

In [6], the authors show that for any scaling 0 < s < 1, the s-scaled shape is
homotopy equivalent to the input shape S. Moreover, for a class of scalings s > 1,
the s-scaled shape is also shown to be homotopy equivalent. The s-scaled shape
can be obtained as the appropriate level set of a multiplicatively-weighted distance
function, where the weight is the distance from the surface to the closest point on the
medial axis—the radius of the corresponding medial ball. These homotopy results
are valid in any spatial dimension. In [11], the authors extend the algorithm for
computing pruned medial surfaces in 3D.

Could the Scale Axis Transform be used for perceptual feature detection? Indeed,
defining a hierarchy of shape features according to their persistence under the SAT
non-linear scaling looks natural. However, since the SAT prunes features based on
the relative size of their medial balls as compared to neighboring balls, a shape part
will be identified as the main shape only if it is of larger radius than neighboring
parts. For example, in Fig. 9.9, the main part of the shape is of the same radius as
the features, meaning the SAT will fail to identify the features correctly—the whole
shape will be considered the main shape. Features that are attached to a support with
the same radius will not be pruned using the Scale Axis Transform. The next two
sections propose modifications of the SAT aimed at improving detection of shape
features when the part perceived as the main part of the shape is relatively thin.

9.5.2 Length-Weighted SAT

Results of the perceptual user study (H4) showed that the main shape may not be of
larger radius than features, but that it should be associated with some larger measure,
such as being longer. To be robust to such cases, our insight is to use the length of
each medial branch to weight the SAT scaling. In order to characterize the length of
a medial axis branch, we use the Extended Distance Function (EDF) proposed by
Lui et al. [10].



142 L.J. Larsson et al.

9.5.2.1 The Extended Distance Function

In [10], the authors propose to compute at each point of the medial axis a quantity
EDF (the Extended Distance Function), which measures the distance to the closest
extremity of the shape corresponding to a degree-1 node on the longest path of the
medial axis containing a given medial point. The set of medial balls corresponding
to this longest path is called a tube, and EDF is the distance to the closest extremity
of the tube. This quantity is defined for each point in the medial axis, and may
be infinite if the medial axis contains loops (this happens if there are holes in S).
The authors also introduce a notion of the center of a shape based on its medial
axis representation and EDF. They consider all paths along the medial axis, starting
from one degree-1 node, and reaching to another degree-1 node of the medial axis.
The midpoint of the path that is of maximal length is called the EMA (Extended
Medial Axis). If the medial axis is acyclic (no loops), then the EMA is finite, else it
is infinite. Figure 9.10 shows an example of EDF and EMA along the medial axis.

9.5.2.2 Feature Detection

Let S be simply connected. We propose a scaling factor based on the extended
distance function. We partition the medial axis into branches. A branch is defined as
a 1D subset of the medial axis on which EDF is continuous (such as straight parts
in Fig. 9.10). On a branch b, we consider the factor

Q̀.b/ D sup
x2b

fEDF.x/g :

We propose to tune the scaling factor of the SAT algorithm using the branch length
factor `.b/ 2 .0; 1	:

`.b/ D
Q̀.b/

maxb0

Q̀.b0/
:

Fig. 9.10 The medial axis of two shapes, the EDF along the medial axis (in color), and the EMA
(red dot)
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This leads to the following algorithm:

Algorithm 2 The SAT-EDF feature detection algorithm
Input: Given S, and some scaling threshold s > 1.
1. Compute M, the medial axis.
2. For each branch b of the medial axis, compute `.b/, the EDF-based length.
3. For each point xi along M, scale the medial ball of radius R.xi / by a factor s `.b/, where b

is the branch that contains xi .
4. If the medial ball of xi is contained in the union of other medial balls, label this medial point
as belonging to a shape feature.

9.5.3 Area-Weighted SAT

The length is important in determining shape features in cases where the medial
balls have nearly constant radii. Similarly, the area can also be important, as stated
in (H4). Parts of shapes can be very long, yet have small medial radius. In these
cases, the results of the user study suggest that the parts of the shape that have a
smaller area are more likely to be a shape feature. For these reasons, we propose a
weighted version of EDF that is a proxy for the area of a shape and can be easily
computed using the medial representation. This weighted EDF is then used to adjust
the scaling of the SAT algorithm to incorporate the area corresponding to a medial
branch.

9.5.3.1 The Weighted Extended Distance Function

We propose an extension of EDF, weighted EDF (WEDF), for simply connected
2D shapes that takes into account not only the length of the shape but also its
thickness. We can similarly define the WEMA which generalizes the EMA. WEDF
is a weighted variant of EDF, and corresponds to a weighted integral of the medial
radii along branches of the medial axis. For each point along the medial axis, there is
a path such that the area of the union of the medial balls along this path is maximal.
One can compute the area of the part of this tube that lies to the left and to the right
of the chosen medial point. WEDF is the smaller of these two areas. Recall that EDF
was similarly defined, in terms of medial length not shape area (see Sect. 9.5.2.1).

We first give some auxiliary definitions that will aid in defining WEDF. These
quantities are illustrated in Fig. 9.11.

1. For any point x along the medial axis that has exactly two contact points we
define two angles �1.x/ and �2.x/ as follows: Form a line between the two
contact points and x. The angle between these lines and the tangent of the medial
axis at x yield �1.x/ and �2.x/. Either the tangent or negative tangent can be
used to calculate these angles; this leads to different values of �1.x/ and �2.x/,
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Fig. 9.11 Computation of WEDF. The dashed area on the left corresponds to the quantity
Af .a/ of the medial endpoint a. The quantities relevant to compute WEDF, R.x/ sin.�1/ and
R.x/ sin.�2/, are illustrated

however, the same value of sin.�1.x// and sin.�2.x// will be obtained. The set of
medial points x with more than two corresponding boundary points has measure
zero, so it suffices to consider these two angles.

2. Let f be a connected curve within the medial axis, with endpoints a and c.
At these endpoints, Af .a/ and Af .c/ refer to the area of the circle sector of
the endpoint. This circle sector is defined by all boundary points of S that are
a distance R.x/ from the endpoint a or c, respectively. It can be computed
as follows: Compute the one-sided limits �1.a/ D limx!a �1.x/ and �2.a/ D
limx!a �2.x/ in radians, where the tangent is calculated to point towards the
extremity of the shape. Then Af .a/ D �1.a/C�2.a/

2
R.a/2.

See Fig. 9.11 for an illustration of �1, �2 and Af .

Definition 9.2. Let f be any connected curve within the medial axis, and let a and
c be the end points of f . We define the weight of f by:

W.f / D
Z

f

R.x/ .sin �1.x/ C sin �2.x// ds.x/ C Af .a/ C Af .c/;

where s is the arclength parametrization of f .

This new metric integrates the radius along the path f , and leads naturally to
definitions of the weighted analogs of EDF and EMA.

Definition 9.3. Let f be a simple path with endpoint a and c.

1. We first define the Weighted Extended Distance Function at a point x relative to
a simple path f as:

WEDFf .x/ D min
yDa;c

�Z y

x

R.t/ .sin �1.t/ C sin �2.t// ds.t/ C Af .y/

�
:
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2. We call the Weighted Extended Distance Function, or WEDF the following
quantity:

WEDF.x/ D sup
f 3x

˚
WEDFf .x/


:

In this paper we do not consider shapes with holes, or equivalently, we do not
consider medial axes with loops. The definition of WEDF above was made under
this assumption of no loops. The measure EDF is defined in a similar way, but allows
EDF to become infinite if there are loops in the medial axis [10]. We do not pursue
this extension because computationally, we require that WEDF be finite—the area
of the shape is finite even when there are holes. Intuitively, the WEDF measures
area, whereas EDF measures the length along the medial axis.

To define the Weighted Extended Medial Axis (WEMA), consider the path Qf in
the medial axis of maximal weight Qf D argmax W.f /. The WEMA is the point x

such that WEDF Qf .x/ D W. Qf /=2. For an example of the computation of WEDF
and WEMA and its comparison with EDF and EMA, see Fig. 9.12.

9.5.3.2 Construction of WEDF

To compute WEDF, we first discretize the medial axis and represent it as a weighted
graph. Then, starting from degree-1 nodes, we compute WEDF and work inwards
along the medial axis, updating WEDF for each new discretized medial point.
At each junction, we choose the maximum previous WEDF value to proceed.
This algorithm is analogous to the scheme for computing EDF [10]. The discrete
algorithm is summarized below:

(a) EDF (b) WEDF

(c) EDF (d) WEDF

Fig. 9.12 Comparison of EDF (a) and WEDF (b) for a shape with a thin feature and for a shape
with a slowly-changing radius (c)–(d)
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1. Initialize each degree-1 node xi with WEDF.xi / D Af .xi / where f is a path
bearing the node xi . Other nodes are initialized with infinite WEDF.

2. For each degree-1 node xi , if its neighbor xj is not degree-1, update

WEDF.xj / D min

�
WEDF.xj /; WEDF.xi / C jxi � xj j � g.xi / C g.xj /

2

�
;

where g.x/ D R.x/ .sin �1.x/ C sin �2.x//.
3. At any junction, wait until there is only one adjacent medial point with infinite

WEDF. When this is true, update the junction point using the largest of the finite
adjacent WEDF values (and the formula in step 2).

4. Terminate the algorithm when all discrete medial points have been visited
(equivalently, when all WEDF values are finite).

9.5.3.3 Feature Detection

Assume that S is simply connected. We propose a scaling factor based on WEDF
that is analogous to the EDF-based scaling. We partition the medial axis into
branches. A branch is defined as a 1D subset of the medial axis on which WEDF is
continuous. On a branch b, we consider the factor

Q!.b/ D sup
x2b

fWEDF.x/g :

We propose to tune the scaling factor of the SAT algorithm using the branch area
proxy !.b/ 2 .0; 1	:

!.b/ D Q!.b/

maxb0 Q!.b0/
:

This leads to the generalization of the Scale Axis Transform for feature detection
described in Algorithm 3. For a comparison of the SAT, SAT-EDF and SAT-WEDF
algorithms, see Fig. 9.13.

Algorithm 3 The SAT-WEDF feature detection algorithm
Input: Given S, and some scaling threshold s > 1.
1. Compute M, the medial axis.
2. For each branch b of the medial axis, compute !.b/, the WEDF-based area.
3. For each point xi along M, scale the medial ball of radius R.xi / by a factor s !.b/, where b

is the branch that contains xi .
4. If the medial ball of xi is contained in the union of other medial balls, label that a medial point
corresponding to a shape feature.
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Fig. 9.13 These figures show dilations for the SAT (darker blue in the back) and SAT-EDF
algorithms (light blue). On the left figure, since the radius is similar on all branches, the SAT
will not detect any features. For SAT-EDF, the dilation is decreasing, and therefore the yellow
parts of the medial axis are eventually considered features of the main shape (the blue part of the
medial axis). On the right, the SAT dilation is indicated in the back as well, and the other regions
correspond only to the dilation of the red point, for SAT-EDF (the color is the same blue as on
the left figure) and SAT-WEDF (give by a lighter color), respectively. For SAT-EDF, we can see
that the shape is less dilated on the parts that are not labeled as the main axis by EDF, and is
rapidly labeled as a feature of the main shape by the dilation process. This is not the case for the
SAT-WEDF region corresponding to the red point—it will never be eaten up since it belongs to the
biggest branch in terms of area. This figure explains the results of Fig. 9.19

9.6 Algorithm Results and Comparisons

In this section, we compare the four algorithms we have discussed for detecting
shape features—the geometric algorithm (cf. Algorithm 1), the standard Scale
Axis Transform, the SAT-EDF algorithm (cf. Algorithm 2), and the SAT-WEDF
algorithm (cf. Algorithm 3). Parts of the medial axis corresponding to the identified
features are highlighted in yellow, whereas the part of the axis corresponding to
the main shape are in blue. The geometric algorithm was based on local medial
information—radius and orientation of the medial branches. The SAT algorithm was
the medial pruning method that was the inspiration for the algorithms proposed [6].
As the Scale Axis Transform is not able to detect shape features when the medial
radii are nearly constant, SAT-EDF corrects for this by using branch length in the
SAT scaling. Similarly, to incorporate both length and thickness, the SAT-WEDF
algorithm uses a proxy for branch area in the SAT scaling. The shapes on which
we test the algorithms are similar to the shapes in the user study and have only the
main shape and one level of features to simplify the SAT-based results. Below, we
compare the results of these algorithms on a series of test shapes, and highlight the
strengths and weaknesses of each approach.

Note that for some of our tests (e.g., in Fig. 9.10), we used a simplified skeletal
representation instead of the exact medial axis. We did not notice any change in the
quality of results.
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(a) Geometric (b) SAT (c) SAT-EDF (d) SAT-WEDF

Fig. 9.14 Comparison of algorithm results. (a) The geometric algorithm, (b) The SAT, (c) EDF-
adjusted SAT with EMA in red, (d) WEDF-adjusted SAT with WEMA in red

(a) Geometric

t[SAT]

(c) SAT-EDF (d) SAT-WEDF

Fig. 9.15 Comparison of algorithm results. (a) The geometric algorithm, (b) The SAT, (c) EDF-
adjusted SAT with EMA in red, (d) WEDF-adjusted SAT with WEMA in red

(a) Geometric (b) SAT (c) SAT-EDF (d) SAT-WEDF

Fig. 9.16 Comparison of algorithm results. (a) The geometric algorithm, (b) The SAT, (c) EDF-
adjusted SAT with EMA in red, (d) WEDF-adjusted SAT with WEMA in red

In Fig. 9.14, the results of all four algorithms are shown on a shape with a thin
shape feature. In this case, all algorithms are consistent, and correctly identify the
thin branch as the shape feature.

In Fig. 9.15, the results of the algorithms are shown on a different shape. In
this case, the geometric algorithm, SAT-EDF and SAT-WEDF agree, and correctly
identify the shorter branch as a shape feature. However, the SAT algorithm cannot
identify the smaller branch because the shape has near-constant thickness. This
shows a case where the three algorithms proposed here outperform the SAT.

Figure 9.16 depicts a case where the geometric algorithm outperforms the SAT-
based algorithms. The geometric algorithm chooses the shape features which are
most consistent with the user study (see Fig. 9.3). The SAT algorithm does not detect
shape features due to the nearly constant medial radius of the shape. The SAT-EDF
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(a) Geometric (b) SAT

(c) SAT-EDF (d) SAT-WEDF

Fig. 9.17 Comparison of algorithm results. (a) The geometric algorithm, (b) The SAT, (c) EDF-
adjusted SAT with EMA in red, (d) WEDF-adjusted SAT with WEMA in red

and SAT-WEDF algorithms produce the same results (due to the near-constant
medial radius), choosing the longest path as the main shape and the smaller branches
as features, neglecting orientation.

On Fig. 9.17 however, the local character of the geometric algorithm leads to
a non-intuitive choice for the feature: the aligned segments are chosen as the
main shape, despite their small size compared to a large feature. The SAT-based
algorithms are able to identify the larger left part of the shape as part of the main
shape, because they employ a global strategy to identify shape features. However,
here all SAT-based algorithms use the same scaling factor: whereas SAT-WEDF
is already able to identify the right part as the feature, the SAT and SAT-EDF
algorithms do not. Eventually, for larger scaling, both the SAT and SAT-EDF
algorithms identify the same part as a feature.

In Fig. 9.18, the results are shown for two shapes with repeated features. The SAT
algorithm is unable to detect shape features due to the nearly-constant radius of the
medial balls for these two shapes. However, the geometric algorithm as well as SAT-
EDF and SAT-WEDF both detect the same shape features. For the shape with less
protruding shape features, these results are consistent with the user study. For the
shape in the first row, the end features are not detected. None of these algorithms
currently detect repeated shape features. In the first row of Fig. 9.18, the two end
segments may not be considered shape features without the middle three features.
This leads us to a possible extension of the current methods, based on the following
statement:

Repeated parts of a shape are likely to be perceived as shape features.

In Fig. 9.19, an example is shown where SAT-WEDF outperforms SAT-EDF. In this
case, the geometric algorithm, the SAT algorithm, and SAT-WEDF all correctly
identify the long, thin segment as the shape feature. For SAT-EDF, the algorithm
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(a) Geometric (b) SAT

(c) SAT-EDF (d) SAT-WEDF

(e) Geometric (f) SAT

(g) SAT-EDF (h) SAT-WEDF

Fig. 9.18 Comparison of algorithm results on two shapes. (a) and (e) The geometric, (b) and (f)
the SAT, (c) and (g) EDF-adjusted SAT with EMA in red, (d) and (h) WEDF-adjusted SAT with
WEMA in red

Fig. 9.19 Comparison of algorithm results. (a) The geometric algorithm, (b) The SAT, (c) EDF-
adjusted SAT with EMA in red, (d) WEDF-adjusted SAT with WEMA in red

considers this long thin feature to be the main shape, whereas the nob at the bottom
was identified as a feature. As this was considered to be part of the main shape in the
user study, these results show the sensitivity of SAT-EDF to long, thin shape parts.

These results demonstrate the strengths and weaknesses of four algorithms we tested
for detecting shape features. Our conclusions are given next.
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Fig. 9.20 Results of the user study. This shows the average pixel value for all users on all 44
shapes administered
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9.7 Discussion and Conclusion

In this paper, the perception of 2D shape features was measured via a user study.
This information was then used to construct three algorithms to identify shape
features. The first algorithm was a geometric algorithm based on change in radius
and orientation at junctions of the medial axis. This method offered results that were
consistent with the user study on most examples, but may fail as it is only based
on local criteria (see Fig. 9.17). The Scale Axis Transform uses global criteria and
performs well on many examples, but cannot identify features correctly on shapes
with near-constant thickness, whereas the user study shows very clear identification
of features on such shapes. We thus extended the SAT algorithm to incorporate
branch length (based on EDF) in the scaling. This method—SAT-EDF—is able to
identify features on a shape with near-constant thickness. However, the lengthier
branches are always considered the main shape, which is not consistent with the user
study. The last algorithm—SAT-WEDF—was able to handle cases with long and
thin features, as it uses both length and thickness information in the SAT scaling. In
this case, the last algorithm reproduced well the results of the user study. However,
the results of these algorithms on a set of test shapes indicated that all algorithms
should be coupled with a mechanism for detecting repeated shape features.

The benefit of using the SAT-based algorithms is that they immediately offer a
hierarchy of shape features by tuning the scaling threshold s. The shapes in this
paper were chosen to have only two level of details (main shape and features) in
order to identify perceptual features as defined by a tractable user study. These
two levels are adapted for handling shape deformation operations: properties of
the features may be preserved, while the main shape undergoes the deformation.
However, in future work we also intend to benefit from the multiresolution inherent
to the SAT based algorithms. By choosing an appropriate scaling factor, s, these
algorithms automatically find the features detected under that scaling. Determining
the scale of details on shapes is well-suited to be investigated in an expanded
perceptual study.
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