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Introduction

1.1

1.2

1.3

1.4

Substituting (1.1) into (1.2) and then differentiating with respect to w; we obtain

N M
Z (Z w;rd — tn> zl = 0. (1)
n=1 \j=0

Re-arranging terms then gives the required result.

For the regularized sum-of-squares error function given by (1.4) the corresponding
linear equations are again obtained by differentiation, and take the same form as

(1.122), but with A;; replaced by A;;, given by

Aij = Aij + )\Iij~ (2)

Let us denote apples, oranges and limes by a, o and [ respectively. The marginal
probability of selecting an apple is given by

p(a) = plalr)p(r) + p(alb)p(b) + p(alg)p(g)
3 1 3
= — 24 = 24— .6=0.34 3
10><0 —|—2><0 —|—1O><O6 0.3 3)
where the conditional probabilities are obtained from the proportions of apples in
each box.

To find the probability that the box was green, given that the fruit we selected was
an orange, we can use Bayes’ theorem

p(olg)p(g)
p(glo) = =252, 4)
(glo) (0)
The denominator in (4) is given by
plo) = plo|r)p(r) + p(o|b)p(b) + p(olg)p(g)
4 1 3
= Ex0.2+§x0.2+1—0x0.6—0.36 5)
from which we obtain 5 0.6 .
p(glo) = 0 X036 2 (6)

We are often interested in finding the most probable value for some quantity. In
the case of probability distributions over discrete variables this poses little problem.
However, for continuous variables there is a subtlety arising from the nature of prob-
ability densities and the way they transform under non-linear changes of variable.
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Solution 1.4

Consider first the way a function f(x) behaves when we change to a new variable y
where the two variables are related by = g(y). This defines a new function of y
given by

Fy) = fla(y)). )

Suppose f(z) has a mode (i.e. a maximum) at Z so that f’(z) = 0. The correspond-

ing mode of f(y) will occur for a value 3 obtained by differentiating both sides of
(7) with respect to y

@) =f(9@)g' () = 0. (8)
Assuming ¢'(y) # 0 at the mode, then f’(g(y)) = 0. However, we know that
1'(Z) = 0, and so we see that the locations of the mode expressed in terms of each
of the variables x and y are related by 7 = ¢(¥), as one would expect. Thus, finding
a mode with respect to the variable = is completely equivalent to first transforming
to the variable y, then finding a mode with respect to y, and then transforming back
to x.

Now consider the behaviour of a probability density p, (x) under the change of vari-
ables x = g(y), where the density with respect to the new variable is p,(y) and is
given by ((1.27)). Let us write ¢’'(y) = s|¢’(y)| where s € {—1,+1}. Then ((1.27))
can be written

py(y) = p=(9(y))sg ().
Differentiating both sides with respect to y then gives

Py (y) = spl(9w){d' W)} + sp2(9(v))g" (v). )

Due to the presence of the second term on the right hand side of (9) the relationship
Z = ¢g(y) no longer holds. Thus the value of = obtained by maximizing p, (z) will
not be the value obtained by transforming to p,(y) then maximizing with respect to
y and then transforming back to z. This causes modes of densities to be dependent
on the choice of variables. In the case of linear transformation, the second term on
the right hand side of (9) vanishes, and so the location of the maximum transforms
according to 7 = ¢(y).

This effect can be illustrated with a simple example, as shown in Figure 1.  We
begin by considering a Gaussian distribution p,(x) over = with mean p = 6 and
standard deviation 0 = 1, shown by the red curve in Figure 1. Next we draw a
sample of N = 50,000 points from this distribution and plot a histogram of their
values, which as expected agrees with the distribution p, ().

Now consider a non-linear change of variables from z to y given by

z=g(y) = In(y) —In(l —y) +5. (10)
The inverse of this function is given by

1
1 +exp(—z+5)

y=g9 '(2) (11)
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1.5

1.6

Solutions 1.5-1.6 9

Example of the transformation of

the mode of a density under a non- P (y)'
linear change of variables, illus- Y g1 (z)
trating the different behaviour com- - - =
pared to a simple function. See the ¥y |
text for details. |

0.5 '

Pz ()
0
0 5 . 10

which is a logistic sigmoid function, and is shown in Figure 1 by the blue curve.

If we simply transform p, (x) as a function of = we obtain the green curve p,(g(y))
shown in Figure 1, and we see that the mode of the density p,(x) is transformed
via the sigmoid function to the mode of this curve. However, the density over y
transforms instead according to (1.27) and is shown by the magenta curve on the left
side of the diagram. Note that this has its mode shifted relative to the mode of the
green curve.

To confirm this result we take our sample of 50, 000 values of z, evaluate the corre-
sponding values of y using (11), and then plot a histogram of their values. We see
that this histogram matches the magenta curve in Figure 1 and not the green curve!

Expanding the square we have

E[(f(2) —E[f(@)])!] = Elf(2)* - 2f()E[f(2)] + E[f(x)]*]
= E[f(2)"] - 2E[f(2)|E[f ()] + E[f ()"
E[f(z)*] - E[f(2)]?

as required.

The definition of covariance is given by (1.41) as
covlz,y] = Elzy] — E[z]E[y].
Using (1.33) and the fact that p(z, y) = p(x)p(y) when z and y are independent, we
obtain
Elzy] = Y pla,y)ay
r oy
> p@)z Y ply)y
x y

= E[z]E[y]
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and hence cov|x, y] = 0. The case where = and y are continuous variables is analo-
gous, with (1.33) replaced by (1.34) and the sums replaced by integrals.

1.7 The transformation from Cartesian to polar coordinates is defined by

r = rcosf (12)
y = rsinf (13)

and hence we have 22 + y? = 72 where we have used the well-known trigonometric
result (2.177). Also the Jacobian of the change of variables is easily seen to be

or Ox
oz, y) ar 00
a(r,0) dy By
ar 00
cosf) —rsinf
- sinf  rcosf ':T

where again we have used (2.177). Thus the double integral in (1.125) becomes

2m e e] 2
7 = / / exp(—%)rdrdQ (14)
0 0
> w\ 1
= 27r/0 exp (—ﬁ>§du (15)
u o0
= e (~5) (207, (1)
= 2mo? (17)

where we have used the change of variables 2 = u. Thus

I = (27702)1/2.

Finally, using the transformation y = x — p, the integral of the Gaussian distribution

becomes
h N(x|u 02) dr = o h exp —y—z dy
—o0 ’ (27r02)1/2 —o0 20?

1

(2m0?) 1/2
as required.

1.8 From the definition (1.46) of the univariate Gaussian distribution, we have

o 1 \/2 1
E[z] = / <27m2) exp {—W(x - u)2} xdx. (18)
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Now change variables using y = x — p to give

E[z] = h ! 1/2ex _ L (y+p)d 19
=) G Py —5.3Y (W 1) dy. (19)

We now note that in the factor (y + ) the first term in y corresponds to an odd
integrand and so this integral must vanish (to show this explicitly, write the integral
as the sum of two integrals, one from —oo to 0 and the other from 0 to oo and then
show that these two integrals cancel). In the second term, p is a constant and pulls
outside the integral, leaving a normalized Gaussian distribution which integrates to
1, and so we obtain (1.49).

To derive (1.50) we first substitute the expression (1.46) for the normal distribution
into the normalization result (1.48) and re-arrange to obtain

[l omfoor.

— 00

We now differentiate both sides of (20) with respect to o2

obtain

and then re-arrange to

1\ [ 1
<27r02> /_ooexp{—M(x—u)z}(z—,u)dezoz (21)

which directly shows that

E[(x — p)?] = var[z] = o> (22)
Now we expand the square on the left-hand side giving
E[z?] — 2uE[z] + p? = o°.
Making use of (1.49) then gives (1.50) as required.
Finally, (1.51) follows directly from (1.49) and (1.50)
El2’] — Elz]* = (p* + 0?) — p* = 0>,

For the univariate case, we simply differentiate (1.46) with respect to x to obtain

d 2\ _ L — H
a/\/’(xm,a)— N (z|p, 0?) o

Setting this to zero we obtain x = p.

Similarly, for the multivariate case we differentiate (1.52) with respect to x to obtain

TNl D) = N el )V {x— )" S (x  o))
= —Nxp,Z)=" (x—p),

where we have used (C.19), (C.20)" and the fact that X' is symmetric. Setting this
derivative equal to 0, and left-multiplying by 3, leads to the solution x = .

'NOTE: In the 1°" printing of PRML, there are mistakes in (C.20); all instances of x (vector)
in the denominators should be x (scalar).
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Solutions 1.10-1.11

1.10 Since z and z are independent, their joint distribution factorizes p(z, z) = p(z)p(2),

and so
Elz+2] = //(a; + 2)p(x)p(z) dzdz (23)
= /xp(x) dx + /zp(z) dz (24)
— Elz] +E[]. (25)

Similarly for the variances, we first note that
(x4 2 —Elz+2])* = (z — E[z])> + (z — E[2])* + 2(z — E[2])(z — E[2]) (26)

where the final term will integrate to zero with respect to the factorized distribution
p(z)p(z). Hence

var[z + 2] //x+z— [z + 2])?p(2)p(z) dz d=

= /( E[z]) dx+/(z— p(z)dz

= var(z) + var(z). (27)

For discrete variables the integrals are replaced by summations, and the same results
are again obtained.

We use /£ to denote In p(X|u, 0?) from (1.54). By standard rules of differentiation

we obtain
N

X Y @ n)
= — n— ).
on o —
Setting this equal to zero and moving the terms involving p to the other side of the

equation we get
|
7

and by multiplying ing both sides by 02 /N we get (1.55).

Similarly we have

N
a1 , N1
907 = 37grp 2T 1 = 5

n=1

and setting this to zero we obtain

N
N 1 1
202 2(02)2 P

n=1

Multiplying both sides by 2(?)?/N and substituting pn, for 1 we get (1.56).
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1.12 If m = n then x,,x,, = 22 and using (1.50) we obtain E[z2] = 1? + o2, whereas if

n # m then the two data points x,, and x,,, are independent and hence E[x,,z,,] =
E[z,]E[x,,] = p? where we have used (1.49). Combining these two results we
obtain (1.130).

Next we have
1 N
Elpy] = ~ ;E[xn] =1 (28)

using (1.49).

Finally, consider E[oZ; ]. From (1.55) and (1.56), and making use of (1.130), we
have

=
S)
zw
e
Il
=
2=
ME
VR
=
3
|
2|~
4
=
3
~—
[\V)

n=1 m=1
1 N 9 N 1 N N
= NZE l’i an :Em—i—WZmexl]
n=1 m=1 m=1 [=1
= u2+02—2<u2+102>+u2+102}
N N

N-—-1
= (N> o (29)
as required.

In a similar fashion to solution 1.12, substituting p for gy, in (1.56) and using (1.49)
and (1.50) we have

E i S — 2 — i - E 2 _2 2
n=1

N
1
= NZ(MQ—I—O‘Q—Q/LM-FMQ)

n=1
Define ) )
wiy = 5 (Wi +wji) wiy = 5 (wij = wjq). (30)

from which the (anti)symmetry properties follow directly, as does the relation w;; =

wy; + wis. We now note that

D D 1 D D 1 D D
Zzw?jmi% = 522“’1‘3‘%% - izzwjil’ﬂj =0 @D
i=1 j=1

i=1 j=1 i=1 j=1
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Solution 1.15

from which we obtain (1.132). The number of independent components in wlS] can be
found by noting that there are D? parameters in total in this matrix, and that entries
off the leading diagonal occur in constrained pairs w;; = w;; for j # 4. Thus we
start with D? parameters in the matrix wisj , subtract D for the number of parameters
on the leading diagonal, divide by two, and then add back D for the leading diagonal
and we obtain (D? — D)/2+ D = D(D +1)/2.

The redundancy in the coefficients in (1.133) arises from interchange symmetries
between the indices ij,. Such symmetries can therefore be removed by enforcing an
ordering on the indices, as in (1.134), so that only one member in each group of
equivalent configurations occurs in the summation.

To derive (1.135) we note that the number of independent parameters n (D, M)
which appear at order M can be written as

D 4 TM—1
n(D,M)=Y"Y "Y1 (32)
i1=112=1 in=1

D i IM—1
n(D,M):Z{Z---Zl} (33)

11=1 10=1 v =1

where the term in braces has M — 1 terms which, from (32), must equal n(i;, M —1).
Thus we can write

D
n(D, M) =Y " n(is, M 1) (34)
i1=1

which is equivalent to (1.135).

To prove (1.136) we first set D = 1 on both sides of the equation, and make use of
0! = 1, which gives the value 1 on both sides, thus showing the equation is valid for
D = 1. Now we assume that it is true for a specific value of dimensionality D and
then show that it must be true for dimensionality D + 1. Thus consider the left-hand
side of (1.136) evaluated for D + 1 which gives

D+1

((+M-20  (D+M-1) (D+M—1)
;(i—l)!(M—l)! = -y T D=

(D +M-1)ID+(D+M-1)M

N DIM!

which equals the right hand side of (1.136) for dimensionality D + 1. Thus, by
induction, (1.136) must hold true for all values of D.



Solution 1.16 15

Finally we use induction to prove (1.137). For M = 2 we find obtain the standard
result n(D,2) = 1D(D + 1), which is also proved in Exercise 1.14. Now assume
that (1.137) is correct for a specific order M — 1 so that

(D + M —2)!

D,M—-1)= . 36
(D ) =D-mar-1 (36)

Substituting this into the right hand side of (1.135) we obtain

D
(t+ M —2)!
D, M) = 37
n(D, M) Zl(il)!(Ml)! 37)
which, making use of (1.136), gives
(D+ M —1)!

DM)=——"+— 38

and hence shows that (1.137) is true for polynomials of order M . Thus by induction
(1.137) must be true for all values of M.

NOTE: In the 1% printing of PRML, this exercise contains two typographical errors.
On line 4, M6th should be M*" and on the Lh.s. of (1.139), N(d, M) should be
N(D, M).

The result (1.138) follows simply from summing up the coefficients at all order up
to and including order M . To prove (1.139), we first note that when M = 0 the right
hand side of (1.139) equals 1, which we know to be correct since this is the number
of parameters at zeroth order which is just the constant offset in the polynomial.
Assuming that (1.139) is correct at order M, we obtain the following result at order
M+1

=

+1
N(D,M+1) = n(D,m)

m=0

M
= Z n(D,m)+n(D,M + 1)

m=

o

D+ M)! (D+ M)!
D!M! (D —1)!(M +1)!
(D+ M) (M+1)+ (D+M)'D
D\(M +1)!
(D+ M +1)!
D\(M +1)!

which is the required result at order M + 1.
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Solutions 1.17-1.18

Now assume M > D. Using Stirling’s formula we have

(D + M)D+M =D=M

nD,M) = DI MMM
MD+M—D D\ PtM
= —  —  (1+=
D! MM ( M)
MPe=P D(D+ M)
>~y — 1+ ——F
D! M
(1+D)e " p
~ DI M

which grows like M P with M. The case where D >> M is identical, with the roles
of D and M exchanged. By numerical evaluation we obtain N (10,3) = 286 and
N(100,3) = 176,851.

Using integration by parts we have

Lz+1) = / ue” " du
0

[—e‘“ux]go + / ru”te " du = 0+ z'(x). (39)
0
For x = 1 we have
r(1) = / e tdu=[—e "] " =1. (40)
0

If = is an integer we can apply proof by induction to relate the gamma function to
the factorial function. Suppose that I'(x + 1) = z! holds. Then from the result (39)
we have I'(x + 2) = (z + 1)I'(x + 1) = (« + 1)!. Finally, I'(1) = 1 = 0!, which
completes the proof by induction.

On the right-hand side of (1.142) we make the change of variables u = 72 to give
1 o 1
35D / e P2 du = 55pI(D/2) (41)
0

where we have used the definition (1.141) of the Gamma function. On the left hand
side of (1.142) we can use (1.126) to obtain 7272, Equating these we obtain the
desired result (1.143).

The volume of a sphere of radius 1 in D-dimensions is obtained by integration

1
VD:SD/ D1 gy = 50
0

= (42)

For D = 2 and D = 3 we obtain the following results

4
Sy = 2, S3 = 4m, Vo = ma?, Vs = gﬂag. (43)
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The volume of the cube is (2a)”. Combining this with (1.143) and (1.144) we obtain
(1.145). Using Stirling’s formula (1.146) in (1.145) the ratio becomes, for large D,

volume of sphere ( e )D/ 21 44)

volume of cube 2D D

which goes to 0 as D — oo. The distance from the center of the cube to the mid
point of one of the sides is a, since this is where it makes contact with the sphere.
Similarly the distance to one of the corners is av/D from Pythagoras’ theorem. Thus
the ratio is v/D.

Since p(x) is radially symmetric it will be roughly constant over the shell of radius
r and thickness . This shell has volume Spr?~'e and since ||x||> = r? we have

/ p(x)dx ~ p(r)SprP e (45)
shell

from which we obtain (1.148). We can find the stationary points of p(r) by differen-
tiation
2

%p(r) x [(D =12 27t (=) | exo <—T2> =0 (49

o2 20

Solving for 7, and using D > 1, we obtain 7 ~ v/Do.

Next we note that

~ 2

p(T+e) (?—I—E)D_lexp[—(r—'—;)}
20

(T + €)?

202

= exp [— +(D—=1)In(r+ e)] . 47)

We now expand p(r) around the point 7. Since this is a stationary point of p(r)
we must keep terms up to second order. Making use of the expansion In(1 + z) =
x — 22/2 + O(2%), together with D >> 1, we obtain (1.149).

Finally, from (1.147) we see that the probability density at the origin is given by

(x=0)=
X = = —
p (2m02)1/2
while the density at ||x|| = 7' is given from (1.147) by

T

PHRER=1)= (2mo2)1/2 P\ To02 ) T (2mo2)1/2 P 2

where we have used 7" ~ /Do Thus the ratio of densities is given by exp(D/2).
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Solutions 1.21-1.24

1.21

1.22

1.23

1.24

Since the square root function is monotonic for non-negative numbers, we can take
the square root of the relation a < b to obtain a'/? < b'/2. Then we multiply both
sides by the non-negative quantity a'/? to obtain a < (ab)'/?.

The probability of a misclassification is given, from (1.78), by

p(mistake) = /p(X,Cg)dX+/ p(x,Cy)dx
R1

R

= /Rp(Cg|x)p(x)dx+/ p(C1|x)p(x) dx. (48)

R

Since we have chosen the decision regions to minimize the probability of misclassi-
fication we must have p(Cs|x) < p(C1|x) in region R4, and p(C;|x) < p(Cq|x) in
region Ry. We now apply the result a < b = a'/? < b/ to give

p(mistake) < 72{p(Cl|><)19(Cal><)}1/2p(><)dX

+ [ {p(Ci]x)p(Calx)} ?p(x) dx

Ra
- / (G )PP (Calx)p(x)} 2 dx (49)

since the two integrals have the same integrand. The final integral is taken over the
whole of the domain of x.

Substituting Ly; = 1 — dj; into (1.81), and using the fact that the posterior proba-
bilities sum to one, we find that, for each x we should choose the class j for which
1 — p(Cj|x) is a minimum, which is equivalent to choosing the j for which the pos-
terior probability p(C;|x) is a maximum. This loss matrix assigns a loss of one if
the example is misclassified, and a loss of zero if it is correctly classified, and hence
minimizing the expected loss will minimize the misclassification rate.

From (1.81) we see that for a general loss matrix and arbitrary class priors, the ex-
pected loss is minimized by assigning an input x to class the j which minimizes

Z Lijp(Crlx) = p(lx) Z Lijp(x|Cx)p(Cr)

and so there is a direct trade-off between the priors p(Cj,) and the loss matrix L.

A vector x belongs to class Cj, with probability p(Cx|x). If we decide to assign x to
class C; we will incur an expected loss of ), Lj;p(Ck|x), whereas if we select the
reject option we will incur a loss of A. Thus, if

J = argmin zk: Li.p(Cr|x) (50)
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1.26

Solutions 1.25-1.26 19

then we minimize the expected loss if we take the following action

choose CI%SS g, if mml_zk Lp(Crlx) < A; 51)
reject, otherwise.

For a loss matrix Ly; = 1 — Ij,; we have ), Lyp(Ci|x) = 1 — p(C;|x) and so we
reject unless the smallest value of 1 — p(C;|x) is less than A, or equivalently if the
largest value of p(C;|x) is less than 1 — A. In the standard reject criterion we reject
if the largest posterior probability is less than #. Thus these two criteria for rejection
are equivalent provided § =1 — \.

The expected squared loss for a vectorial target variable is given by
B(L] = [ [ Iy — et ) axe

Our goal is to choose y(x) so as to minimize E[L]. We can do this formally using
the calculus of variations to give

SE[L] N
5y (x) —/2()'( ) — t)p(t,x) dt = 0.

Solving for y(x), and using the sum and product rules of probability, we obtain

tp(t,x) dt
ywz/.z/wmma

/p(tX) dt

which is the conditional average of t conditioned on x. For the case of a scalar target
variable we have

i) = [ tptebe)at
which is equivalent to (1.89).

NOTE: In the 1% printing of PRML, there is an error in equation (1.90); the inte-
grand of the second integral should be replaced by var[t|x|p(x).
We start by expanding the square in (1.151), in a similar fashion to the univariate
case in the equation preceding (1.90),
Iy () = £l* = [ly (x) — E[t|x] + E[t[x] - t]*
= lly(x) = E[tIx]|* + (y(x) — E[t|x])" (E[t|x] - t)
HE[t[x] — )T (y(x) — E[t[x]) + [[E[t|x] - t[*.
Following the treatment of the univariate case, we now substitute this into (1.151)
and perform the integral over t. Again the cross-term vanishes and we are left with

Ewr=/Www—mhmwmwdx+/kmhﬂmwdx
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Solutions 1.27-1.28

1.27

1.28

from which we see directly that the function y(x) that minimizes E[L] is given by
E[t|x].

Since we can choose y(x) independently for each value of x, the minimum of the
expected L, loss can be found by minimizing the integrand given by

/M@—wmmw (52)

for each value of x. Setting the derivative of (52) with respect to y(x) to zero gives
the stationarity condition

/ﬂmw—ﬂqﬁ@@@w¢mmww

y(x) o
-q/ |mm—ﬂ%wuma—q/ ly(x) — 7 p(t]x) dt = 0

—o0 y(x)

which can also be obtained directly by setting the functional derivative of (1.91) with
respect to y(x) equal to zero. It follows that y(x) must satisfy

y(x) o
/ ww—w1mww—/ y(x) — (e A (53)

—oo y(x)
For the case of ¢ = 1 this reduces to
y(x) s
/ p(t|x)dt = / p(t|x) dt. (54)
—0o0 y(x)

which says that y(x) must be the conditional median of ¢.

For ¢ — 0 we note that, as a function of ¢, the quantity |y(x) — ¢|? is close to 1
everywhere except in a small neighbourhood around ¢ = y(x) where it falls to zero.
The value of (52) will therefore be close to 1, since the density p(t) is normalized, but
reduced slightly by the ‘notch’ close to ¢ = y(x). We obtain the biggest reduction in
(52) by choosing the location of the notch to coincide with the largest value of p(t),
i.e. with the (conditional) mode.

From the discussion of the introduction of Section 1.6, we have
h(p*) = h(p) + h(p) = 2h(p).
We then assume that for all k < K, h(p*) = k h(p). For k = K + 1 we have
h(p™*) = h(p"p) = h(p™) + h(p) = K h(p) + h(p) = (K + 1) h(p).
Moreover,

n/m m n m n m/m n
h(p™) = nh(p'/™) = —mh(p!/™) = — h(p™/™) = — h(p)
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and so, by continuity, we have that h(p®) = x h(p) for any real number .

Now consider the positive real numbers p and ¢ and the real number = such that
p = ¢”. From the above discussion, we see that

h(p)  h(g®)  xh(qg)  hlqg)

In(p)  In(¢") = In(q) In(g)
and hence h(p) o In(p).

1.29 The entropy of an M -state discrete variable x can be written in the form

1
p(xs)

H(x)=— ZP(%‘) Inp(x;) = Zp(z,) In (55)

The function In(z) is concave—~ and so we can apply Jensen’s inequality in the form
(1.115) but with the inequality reversed, so that

M 1
H(z) <In Zp(xi)m =InM. (56)

1.30 NOTE: In PRML, there is a minus sign ("’—") missing on the 1.h.s. of (1.103).
From (1.113) we have

KL(plo) =~ [ @) gy ds+ [ o) np(o) s 57)

Using (1.46) and (1.48)— (1.50), we can rewrite the first integral on the r.h.s. of (57)
as

- / p(z) Ing() dz = / Nl 0%)3 <ln(27r82) + M) dz

52

= % <1n<2ﬂ'82> + ;/N(x\u,UZ)(xQ — 2xm + m?) dx)

(58)

1 2 2_2 2
= 3 <ln(27rs?)—|—0 e 2,um+m >
S

The second integral on the r.h.s. of (57) we recognize from (1.103) as the negative
differential entropy of a Gaussian. Thus, from (57), (58) and (1.110), we have

0% 4+ p? — 2um + m?

KL(p|lq) = % (111(271’52) + = 11— ln(27ra2)>

_ ! In s +02+,u2—2pm—|—m2_1 .
2 o2 52
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Solutions 1.31-1.33

1.31

1.32

1.33

We first make use of the relation I(x;y) = H(y) — H(y|x) which we obtained in
(1.121), and note that the mutual information satisfies I(x;y) > 0 since it is a form
of Kullback-Leibler divergence. Finally we make use of the relation (1.112) to obtain
the desired result (1.152).

To show that statistical independence is a sufficient condition for the equality to be
satisfied, we substitute p(x,y) = p(x)p(y) into the definition of the entropy, giving

H(x,y) = //p(x,y)lnp(x,y)dxdy
— [ ppty) (0 + 1mp(y)} axay

_ / (%) In p() dx + / p(y) Inply) dy
= H(x)+ H(y).

To show that statistical independence is a necessary condition, we combine the equal-
ity condition
H(x,y) = H(x) + H(y)

with the result (1.112) to give

H(y[x) = H(y)-

‘We now note that the right-hand side is independent of x and hence the left-hand side
must also be constant with respect to x. Using (1.121) it then follows that the mutual
information I[x,y| = 0. Finally, using (1.120) we see that the mutual information is
a form of KL divergence, and this vanishes only if the two distributions are equal, so

that p(x,y) = p(x)p(y) as required.

When we make a change of variables, the probability density is transformed by the
Jacobian of the change of variables. Thus we have

yi

=p(y)lA| (59)
where | - | denotes the determinant. Then the entropy of y can be written

H(y) = —/p(Y) Inp(y)dy = — /p(X) In {p(x)|A|7'} dx = H(x) + In |A]
(60)

as required.

The conditional entropy H (y|z) can be written

H(ylz) = ZZP yilz;)p(x;) In p(y:|z;) 61)



1.34

Solution 1.34 23

which equals 0 by assumption. Since the quantity —p(y;|x;)Inp(y;|x;) is non-
negative each of these terms must vanish for any value z; such that p(x;) # 0.
However, the quantity p In p only vanishes for p = 0 or p = 1. Thus the quantities
p(y;|z;) are all either O or 1. However, they must also sum to 1, since this is a
normalized probability distribution, and so precisely one of the p(y;|x;) is 1, and
the rest are 0. Thus, for each value x; there is a unique value y; with non-zero
probability.

Obtaining the required functional derivative can be done simply by inspection. How-
ever, if a more formal approach is required we can proceed as follows using the
techniques set out in Appendix D. Consider first the functional

Under a small variation p(x) — p(x) + en(x) we have

Ip(z) + en(z)] = / p(a) () dz + ¢ / n()f () de

and hence from (D.3) we deduce that the functional derivative is given by

Similarly, if we define
Jpta)) = [ plo)tnplz) ds

then under a small variation p(z) — p(x) + en(x) we have
o) +ente)) = [ plo)mple) da
+€ {/ n(x) Inp(z)dz + /p(a:)p(lx)n(x) da:} + O(€?)
and hence 5
W =p(z) + L.

Using these two results we obtain the following result for the functional derivative
—Inp(z) — 1+ A1 + Xoz + A3(x — p)2.

Re-arranging then gives (1.108).

To eliminate the Lagrange multipliers we substitute (1.108) into each of the three
constraints (1.105), (1.106) and (1.107) in turn. The solution is most easily obtained
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Solutions 1.35-1.36

1.35

1.36

by comparison with the standard form of the Gaussian, and noting that the results

1

Moo= 1-gh (2m0?) (62)

Ay = 0 (63)
1

g = 4

A3 52 (64)

do indeed satisfy the three constraints.

Note that there is a typographical error in the question, which should read ”Use
calculus of variations to show that the stationary point of the functional shown just
before (1.108) is given by (1.108)”.

For the multivariate version of this derivation, see Exercise 2.14.

NOTE: In PRML, there is a minus sign ("—") missing on the L.h.s. of (1.103).

Substituting the right hand side of (1.109) in the argument of the logarithm on the
right hand side of (1.103), we obtain

] = - / p() Inp(x) de

- / p(z) (—;ln(%raz) - (9”205)2) de
% <1n(2m2) + % / p(x)(z — p)? dx)

= % (In(2m0?) + 1),

where in the last step we used (1.107).

Consider (1.114) with A = 0.5 and b = a + 2¢ (and hence a = b — 2¢),

0.5f(a)+0.5f(b) > f(0.5a+ 0.5b)
0.5£(0.5a + 0.5(a + 2¢)) + 0.5£(0.5(b — 2€) + 0.5b)
0.5f(a+e€)+0.5f(b—¢€)

We can rewrite this as
fb) = fb—e€) > flate)— f(a)

We then divide both sides by € and let € — 0, giving
f(6) > f'(a).

Since this holds at all points, it follows that f”(x) > 0 everywhere.
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To show the implication in the other direction, we make use of Taylor’s theorem
(with the remainder in Lagrange form), according to which there exist an z* such
that

F(2) = (o) + /(o) @ — o) + 5 /" (2*) (& — w0)".

Since we assume that f”/(z) > 0 everywhere, the third term on the r.h.s. will always
be positive and therefore

f(@) > f(xo) + f'(20)(x — x0)

Now let g = Aa + (1 — \)b and consider setting x = a, which gives

fla) > f(zo) + f'(xo)(a — x0)
= flzo) + f'(x0) (1 = N)(a—1)). (65)

Similarly, setting = = b gives

F(b) > f(wo) + (o) (A(b — a)). (66)
Multiplying (65) by A and (66) by 1 — A and adding up the results on both sides, we

obtain
Af(a) + (L= A)f(b) > f(xo) = f(Aa+ (1 = A)b)
as required.

1.37 From (1.104), making use of (1.111), we have

Hxyl = - [ [ pby)mpexy) axdy

~ [ [ pxy i ot o) axay

= [ #x.3) tnpto + npto) ey

—//p(x,y) Inp(y|x) dxdy — //p(x, y) Inp(x) dxdy
= [ [ ey iyl dxdy — [ pompx) dx

= Hly[x] + H[x].

1.38 From (1.114) we know that the result (1.115) holds for M = 1. We now suppose that
it holds for some general value M and show that it must therefore hold for M + 1.
Consider the left hand side of (1.115)

M+1 M
f (Z A:c) f (AM+1xM+1 +> Ax) (67)
=1

i=1

M
f </\M+1-’17M+1 + (1 — Aarg1) Zﬁﬂh) (68)

i=1
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Solution 1.39

1.39

where we have defined
by

= 69
1 —Av41 ()

i

We now apply (1.114) to give

M1 M
f (Z /\iwz') <A f(@asn) + (1= A f (Z 77¢$i> . (70)

We now note that the quantities )\; by definition satisfy

M+1

Z N\ =1 (71)
1=1

and hence we have

M
D Ai=1-Aun (72)
=1

Then using (69) we see that the quantities n; satisfy the property

M M

Zm = _ Z)‘i =1 (73)
=1

Thus we can apply the result (1.115) at order M and so (70) becomes

M+1

M+1 M
f <Z )\iivi) < >\M+1f($M+1)+(1—>\M+1)me(-’fz') = Z Aif (i) (74)
=1 =1 =1

where we have made use of (69).

From Table 1.3 we obtain the marginal probabilities by summation and the condi-
tional probabilities by normalization, to give

y y
z[0] 23 0 | 1 0] 1
1[1/3 13|23 z [0 1]12
11012
p(x) p(y) p(zly)

y

0

z [0 1212
1|0
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Figure 2 Diagram showing the relationship be-
tween marginal, conditional and joint en-
tropies and the mutual information.

From these tables, together with the definitions

H(z) = —Zp(aci)lnp(gvi) (75)
H(zly) = —Zzp(ﬂﬁi,yg‘)lﬂp(ﬂﬁﬂyj) (76)

and similar definitions for H(y) and H (y|z), we obtain the following results
(@ H(zx)=In3—2In2

(b) H(y)=In3—2In2

() H(ylr)=2In2

(d) H(zly)=2In2

() H(xz,y)=1In3

() I(z;y)=In3—3In2

where we have used (1.121) to evaluate the mutual information. The corresponding
diagram is shown in Figure 2.

1.40 The arithmetic and geometric means are defined as

) K K 1/K
EAZK;ZEk and fG:<l;[xk> ,

respectively. Taking the logarithm of Z 4 and Z¢, we see that

1 & 1 &
lnxA:ln<sz:xk> and lnszsz:lnxk.

By matching f with In and )\; with 1/K in (1.115), taking into account that the
logarithm is concave rather than convex and the inequality therefore goes the other
way, we obtain the desired result.
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1.41 From the product rule we have p(x,y) = p(y|x)p(x), and so (1.120) can be written
as

I(x;y) = —//p(XJ) Inp(y) dxdy+//p(x,y) Inp(y|x) dxdy

= —/p(y) Inp(y) dy+//p(x,y) Inp(y|x) dx dy
= H(y)— H(ylx). (77)

Chapter 2 Probability Distributions

2.1 From the definition (2.2) of the Bernoulli distribution we have

> plalp) = pla=0lu)+ple=1lp)

z€{0,1}
= (1-p+p=1
Z zp(z|p) = 0.p(x =0lp) + Lplx =1p) = p
z€{0,1}
> (w—wplalp) = pPplz=0lu)+ (1 - p)’p(z=1|p)
ze{0,1}
=121 —p) + (1= p)’n = p(l - p).
The entropy is given by
Hil = = > plals)p(eln)
z€{0,1}
= = Y - T e (1 - 2) 1 - )
ze{0,1}

= —(1=p)In(l —p) —plnp.

2.2 The normalization of (2.261) follows from

Mx—+mo+Mw——uo—(1§“>+<1;“>—L

The mean is given by
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To evaluate the variance we use

from which we have
var[z] = E[z?] — E[z]? = 1 — i°.
Finally the entropy is given by

r=-+1

Hia] = =) p(alu)Inp(z|n)

() ()

2.3 Using the definition (2.10) we have

N NY N N
<n> + <n1> ~ nl(N —n)! + (n—DUN+1-n)!
(N+1—-n)N!'+nN!  (N+41)!
n(N+1-n) nl(N+1-n)

_ <N + 1>. (78)
n

To prove the binomial theorem (2.263) we note that the theorem is trivially true
for N = 0. We now assume that it holds for some general value N and prove its
correctness for N + 1, which can be done as follows

N

A+ = 1+ (J;T)x"

n=0

2N

n=0

RO (RSN ROR

N
_ (N N+1\ o (N4 v
- (e () (1)

n=1

N—+1
_ Z <N+ 1>x” (79)
n

n=0
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Solutions 2.4-2.5

2.4

25

which completes the inductive proof. Finally, using the binomial theorem, the nor-
malization condition (2.264) for the binomial distribution gives

i (JD W1 — N = (1 u)Ni (Z) (1/_Lﬂ)n

n=0 n=0

N
_ AN H _
= (1-p) <1+ 1-#) =1 (80)

as required.
Differentiating (2.264) with respect to . we obtain
N
" (l—p ————| =0.
2 (e [ 5555

Multiplying through by ;2(1 — 1) and re-arranging we obtain (2.11).
If we differentiate (2.264) twice with respect to ;1 we obtain

T

n=1

We now multiply through by p?(1 — p)? and re-arrange, making use of the result
(2.11) for the mean of the binomial distribution, to obtain

E[n’] = Nu(l — p) + N?p2.
Finally, we use (1.40) to obtain the result (2.12) for the variance.
Making the change of variable ¢ = y + x in (2.266) we obtain

'(a)T(b) = /OOO 2! {/:O exp(—t)(t—x)b_ldt} dz. (81)

We now exchange the order of integration, taking care over the limits of integration

/ / Lexp(—t)(t — z)°~t dz dt. (82)

The change in the limits of integration in going from (81) to (82) can be understood
by reference to Figure 3. Finally we change variables in the z integral using x = tu
to give

L(a)T(b) = /ooexp( t)t“ltbltdt/o pt N1 — )t dp

_ +b)/ )P dp. (83)



Figure 3 Plot of the region of integration of (81)
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in (z,t) space.

2.6 From (2.13) the mean of the beta distribution is given by

2.7

E[,u] :/0 %M(Q‘H)l(l _'u)bfl d,u.

Using the result (2.265), which follows directly from the normalization condition for
the Beta distribution, we have

I'la+b) T'(a+1+b)  a

L(a)T'(b) T(a+1)I'(B) a+b

Elu] =

where we have used the property I'(x + 1) = 2I'(z). We can find the variance in the
same way, by first showing that

21 _ ['(a+0) Fa+2+b) (4io) 1 -1
Bl = Far <b>/ Tarore)” (s e

[la+b) T(a+24+b)  a a+1
L(a)l(b)T(a+2)T(b) (a+b)(a+1+0b)

Now we use the result (1.40), together with the result (2.15) to derive the result (2.16)
for var[yu]. Finally, we obtain the result (2.269) for the mode of the beta distribution
simply by setting the derivative of the right hand side of (2.13) with respect to p to
zero and re-arranging.

(84)

NOTE: In PRML, the exercise text contains a typographical error. On the third line,
“mean value of 2" should be “mean value of x”.

Using the result (2.15) for the mean of a Beta distribution we see that the prior mean
is a/(a + b) while the posterior mean is (a + n)/(a + b+ n + m). The maximum
likelihood estimate for p is given by the relative frequency n/(n+m) of observations
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Solutions 2.8-2.9

2.8

29

of x = 1. Thus the posterior mean will lie between the prior mean and the maximum
likelihood solution provided the following equation is satisfied for A in the interval
(0,1)

a (1= no_o_ a+n .
a+b n+m a+b+n+m
which represents a convex combination of the prior mean and the maximum likeli-
hood estimator. This is a linear equation for A which is easily solved by re-arranging

terms to give

1
T 1+ (mt+m)/(atb)

Since @ > 0,b > 0,n > 0,and m > 0, it follows that the term (n + m)/(a + b) lies
in the range (0, co) and hence A must lie in the range (0,1).

To prove the result (2.270) we use the product rule of probability

/{/xp(fﬂIy) da?}p(y) dy
_ / / op(a, ) d dy = / w(@)de =E,[o].  (85)

For the result (2.271) for the conditional variance we make use of the result (1.40),
as well as the relation (85), to give

Ey [Ez[2[y]]

E, [var,[z|y]] + vary [Eu[z[y] = E, [E.lz’|y] - x|y2]
+E, [E:[2y)?] — Ey [Ex [2[y])?

= E.[2%] — E,[2]* = var,[z]

where we have made use of E,, [E, [2?|y]] = E,[2?] which can be proved by analogy
with (85).

When we integrate over pps—1 the lower limit of integration is 0, while the upper

limitis 1 — ZJ]V:Q v since the remaining probabilities must sum to one (see Fig-
ure 2.4). Thus we have

1 23112/“
Par—1(f1s - ai—2) —/ o (s -y piar—1) dpear—1
0

- Mz, M-1 o\ oMl
H Mak 1] / MaM 1—1 (1 - Z ,u]> dﬂM—l-
0

In order to make the limits of integration equal to 0 and 1 we change integration
variable from g7 to ¢ using

M—2
pn—1 =1 <1 - Z w)
j=1
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which gives

pM—l(Hla ey M —2)
mM—2 9 M—2 apm—1tanp—1 1
= Cu [ [T m™ (1 - w) / (1L - e
L k=1 ] j=1 0
mM—2 9 M—2 apm—1tanp—1
_ F(OéM_l)F<OéM)
— C (e %% 1 1 _ . 86
| 1w ( ; uy> T(ars ¥ o) (86)

where we have used (2.265). The right hand side of (86) is seen to be a normalized
Dirichlet distribution over M — 1 variables, with coefficients a1, ..., apr—o, apr—1+
o, (note that we have effectively combined the final two categories) and we can
identify its normalization coefficient using (2.38). Thus

(g + ...+ an) '
F(Ozl) .. .F(aM72)F(aM71 + OéM)
Dlog + ...+ an)

I'(oar—1 + anr)
F(Oszl)F(OéM)

Cum

= (87)
I(o)...T(aar)
as required.
Using the fact that the Dirichlet distribution (2.38) is normalized we have
M
o — I'lag) - - T'(«
/Hukk tap = 1 1)F () (88)
k=1 (ao)

where | dp denotes the integral over the (M — 1)-dimensional simplex defined by
0 < pr < land ), pup = 1. Now consider the expectation of 1; which can be
written

_ F(QO) o ap—1
il = N T / v [ L™ du
B (o) . I(oq)---T(oy+1)---T'(ar) _
I(ay) - -T(an) Iy + 1) Qp

where we have made use of (88), noting that the effect of the extra factor of y; is to
increase the coefficient v; by 1, and then made use of I'(z + 1) = zI'(x). By similar
reasoning we have

var(p;] =
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Likewise, for j # [ we have

a0 a; o

e R s
o Y%M
a ad(ap+1)

2.11 We first of all write the Dirichlet distribution (2.38) in the form

M
Dir(pler) = K () [T ™
k=1

where

')
T(ay)---T(anm)

K(a) =

Next we note the following relation

M M

0 on—1 0
— e = 5[] ew (o — 1))
Oa; P Oay; P
M
= Hlnuj exp{(ar — 1)In pg}
k=1

M
= Inpy, H pEt
k=1

from which we obtain

1 1 M
Ellnp;] = K(a)/ / Iy [T dpny - - s
0 0 k=1
9 1 1 M
= K(a)ﬂ/ / HuZ"fldul..-duM
@j Jo 0 jiq
o 1
= aii
() 50, Kie)
0
= ——IhnhK(a).
O (=)

Finally, using the expression for K (), together with the definition of the digamma
function v(+), we have

Elln ;] = (a;) — ¢(ao).
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2.12 The normalization of the uniform distribution is proved trivially

b
1 b—a
dz = =1
/a b—a " " b_a

For the mean of the distribution we have

b 2 b 2 2
1 T b —a a+b
E[x]_/a b—axdm_[Q(b—a)] “2b—a) 2

a

The variance can be found by first evaluating
b 3 b 3 3 2 2
1 b® — b+b
E[ﬂcQ]:/ xde:[ x )] _ a’ _a’+ab+

and then using (1.40) to give

V&I‘[fﬂ] :E[.’EQ] *E[.’I}]Q _ a +(§b+b . (a—zb) — (b IQ(I) .

2.13 Note that this solution is the multivariate version of Solution 1.30.
From (1.113) we have

KL(pllg) = — / p(x) In g(x) dx + / p() I p(x) dx.

Using (2.43), (2.57), (2.59) and (2.62), we can rewrite the first integral on the r.h.s.
of () as

- / p(x) In g(x) dx

= /./\/(x|u, 22)% (DIn(27) +In|L| + (x — m) L™ (x — m)) dx
1

(DIn(27) + In |L| + Tr[L ™" (up" + X))
—pL7'm - m'L™' 4+ m"L " 'm). (89)

2

The second integral on the r.h.s. of () we recognize from (1.104) as the negative
differential entropy of a multivariate Gaussian. Thus, from (), (89) and (B.41), we
have

KL(pllg) = ;(w L "+ D)

—u'L"'m—m"L 'y 4+ m"L 'm — D)



36

Solution 2.14

2.14 As for the univariate Gaussian considered in Section 1.6, we can make use of La-

grange multipliers to enforce the constraints on the maximum entropy solution. Note
that we need a single Lagrange multiplier for the normalization constraint (2.280),
a D-dimensional vector m of Lagrange multipliers for the D constraints given by
(2.281),and a D x D matrix L of Lagrange multipliers to enforce the D? constraints
represented by (2.282). Thus we maximize

ity - - [ p<x>1np<x>dx+x( [0 dx—l)

+m" </p(x)xdx — H)
+Tr{L </p(x)(x—p,)(x—u)de—E>}. (90)

By functional differentiation (Appendix D) the maximum of this functional with
respect to p(x) occurs when

0=—1—-Inp(x) +A+mTx + Tr{L(x — p)(x — p)*}.
Solving for p(x) we obtain
p(x)=exp{A—1+m"x+ (x—p)'L(x—p)}. 1)

We now find the values of the Lagrange multipliers by applying the constraints. First
we complete the square inside the exponential, which becomes

T
1 1 1
A—1+ <x —p+ 2L1m> L <x —p+ 2L1m> +pTm — ZmTLflm.
We now make the change of variable
|
y=X—p+ §L m.
The constraint (2.281) then becomes

1 1
/exp {)\ —14+y"Ly+ p'm — 4mTL_lm} (y +pn— 2L_1m) dy = p.

In the final parentheses, the term in y vanishes by symmetry, while the term in
simply integrates to p by virtue of the normalization constraint (2.280) which now
takes the form

1
/exp {)\ —14+y"Ly+ pTm — 4mTle} dy = 1.

and hence we have
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where again we have made use of the constraint (2.280). Thus m = 0 and so the
density becomes

p(x) = exp {A — 1+ (x — 1) "L(x — )}

Substituting this into the final constraint (2.282), and making the change of variable
X — p = z we obtain

/exp {)\ -1+ zTLz} zz' dx = 3.
Applying an analogous argument to that used to derive (2.64) we obtain L = —%E.

Finally, the value of X is simply that value needed to ensure that the Gaussian distri-
bution is correctly normalized, as derived in Section 2.3, and hence is given by

1 1
A_lzm{@ﬂmﬂﬂm}'

From the definitions of the multivariate differential entropy (1.104) and the multi-
variate Gaussian distribution (2.43), we get

Hlx] = —/N(X|u,2)ln]\/(x|u,§])dx

(DIn2m) +In B[+ (x — p) "2 (x — p)) dx

N =

- /N(xm,E)
— % (DIn(27) + In ||+ Tr [E7'%])
= %(Dln(27r)+ln|2\+p)

We have p(x1) = N (21 |p1, 7 ") and p(xs) = N(@a|pa, 75 ). Since x = 2 + 5
we also have p(z|za) = N(x|p1 + 22,7, ). We now evaluate the convolution
integral given by (2.284) which takes the form

T\Y2 f e \1/2 [ T T
p(ﬂ?)Z(i) (ﬁ) /exp{_;(x_ﬂl_$2)2_22(-T2_M2)2}d$2~

92)
Since the final result will be a Gaussian distribution for p(x) we need only evaluate
its precision, since, from (1.110), the entropy is determined by the variance or equiv-
alently the precision, and is independent of the mean. This allows us to simplify the
calculation by ignoring such things as normalization constants.

We begin by considering the terms in the exponent of (92) which depend on x5 which
are given by

1
_5333(7'1 + 7o) + o {11 (2 — p1) + T2pta}

2 2

1 — _

— (n4) xQ—Tl(x 1) + Tapio Jr{ﬁ(ilC pi1) + Tapo}
T1+7'2 2(T1+T2)
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217

2.18

where we have completed the square over x5. When we integrate out z», the first
term on the right hand side will simply give rise to a constant factor independent
of x. The second term, when expanded out, will involve a term in x2. Since the
precision of z is given directly in terms of the coefficient of 22 in the exponent, it is
only such terms that we need to consider. There is one other term in 22 arising from
the original exponent in (92). Combining these we have

2
T o T 5 1 e,

-t 0" = —=
2 2(’7’1+7'2) 27’1+7'2

from which we see that 2 has precision 7,72 /(71 + 72).

We can also obtain this result for the precision directly by appealing to the general
result (2.115) for the convolution of two linear-Gaussian distributions.

The entropy of x is then given, from (1.110), by

Hz] = 11n{2”(“+72)}.

2 T1T2

We can use an analogous argument to that used in the solution of Exercise 1.14.
Consider a general square matrix A with elements A;;. Then we can always write

A = A® + A® where

Aij + Aji Aij — Aji

S _ A
A = 5 Ay = 5 93)
and it is easily verified that A® is symmetric so that A, = A%, and A* is antisym-
metric so that Af} = —Ajs-i. The quadratic form in the exponent of a D-dimensional

multivariate Gaussian distribution can be written

1 D D
3 2 D = i) (x5 — 1) (94)

i=1 j=1

where A = 27! is the precision matrix. When we substitute A = A® + A® into
(94) we see that the term involving A* vanishes since for every positive term there
is an equal and opposite negative term. Thus we can always take A to be symmetric.

We start by pre-multiplying both sides of (2.45) by uz, the conjugate transpose of
u;. This gives us

ulZu; = \ulu,. (95)
Next consider the conjugate transpose of (2.45) and post-multiply it by u;, which
gives us

uzTZTui = /\fujui. (96)
where A} is the complex conjugate of A\;. We now subtract (95) from (96) and use
the fact the X is real and symmetric and hence 3 = > to get

0=\ — \)ulu,.
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Hence A\ = )\; and so A\; must be real.

Now consider

T T
u; u;\; = u; Xuy
= uiTETuj
= (Eui)T 11j
= /\iu;-ruj,
where we have used (2.45) and the fact that 3 is symmetric. If we assume that

0 # \; # A; # 0, the only solution to this equation is that uj u; = 0, i.e., that u;
and u; are orthogonal.

If 0 # A\; = A\j # 0, any linear combination of u; and u; will be an eigenvector
with eigenvalue A = \; = A;, since, from (2.45),
Y(au; +bu;) = alu; +bAju;
= Aau; + buy).

Assuming that u; # u;, we can construct

u, = au;+ bu;
ug = cu;+du;

such that u, and ug are mutually orthogonal and of unit length. Since u; and u; are
orthogonal to uy, (k # i, k # j), so are u, and ug. Thus, u, and ug satisfy (2.46).

Finally, if A\; = 0, 3 must be singular, with u; lying in the nullspace of X. In this
case, u; will be orthogonal to the eigenvectors projecting onto the rowspace of X
and we can chose ||u;|| = 1, so that (2.46) is satisfied. If more than one eigenvalue
equals zero, we can chose the corresponding eigenvectors arbitrily, as long as they
remain in the nullspace of X, and so we can chose them to satisfy (2.46).

We can write the r.h.s. of (2.48) in matrix form as
D
Z Auul = UAUT = M,
i=1

where U is a D x D matrix with the eigenvectors uy, ..., up as its columns and A
is a diagonal matrix with the eigenvalues A1, ..., Ap along its diagonal.

Thus we have
U™U = UTUAUTU = A.

However, from (2.45)—(2.47), we also have that

UTSU = UTAU = UTUA = A,
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2.20

2.21

2.22

and so M = X and (2.48) holds.

Moreover, since U is orthonormal, U~! = U™ and so

D
7' = (UAUT) ' = (UT) "AT'UT = UATUT =) duu
i=1

Since uy, ..., up constitute a basis for R”, we can write
a=au; +asus+ ...+ apup,

where a1, . .., ap are coefficients obtained by projecting aon uy, ..., up. Note that
they typically do not equal the elements of a.

Using this we can write

T

a'Ya= (ajuj +...+apup) B (a;u; + ...+ apup)

and combining this result with (2.45) we get
~ T ~ T ~ A
(alul + ...+ CLDLID) (a1/\1u1 + ...+ CLD)\DUD) .
Now, since u;fuj = 1 only if i = j, and O otherwise, this becomes
a2+ ... +abAp

and since a is real, we see that this expression will be strictly positive for any non-
zero a, if all eigenvalues are strictly positive. It is also clear that if an eigenvalue,
A, 1S zero or negative, there exist a vector a (e.g. a = u;), for which this expression
will be less than or equal to zero. Thus, that a matrix has eigenvectors which are all
strictly positive is a sufficient and necessary condition for the matrix to be positive
definite.

A D x D matrix has D? elements. If it is symmetric then the elements not on the
leading diagonal form pairs of equal value. There are D elements on the diagonal
so the number of elements not on the diagonal is D? — D and only half of these are
independent giving
D? - D
7
If we now add back the D elements on the diagonal we get

D?-D D(D +1)
Z _~“4+p="""7
y " 2

Consider a matrix M which is symmetric, so that M™ = M. The inverse matrix
M ! satisfies
MM ! =1
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Taking the transpose of both sides of this equation, and using the relation (C.1), we
obtain -
M) M'=T"=1

since the identity matrix is symmetric. Making use of the symmetry condition for
M we then have .
(M) M=1I

and hence, from the definition of the matrix inverse,
T
(M) =M
and so M~ is also a symmetric matrix.

Recall that the transformation (2.51) diagonalizes the coordinate system and that
the quadratic form (2.44), corresponding to the square of the Mahalanobis distance,
is then given by (2.50). This corresponds to a shift in the origin of the coordinate
system and a rotation so that the hyper-ellipsoidal contours along which the Maha-
lanobis distance is constant become axis aligned. The volume contained within any
one such contour is unchanged by shifts and rotations. We now make the further

transformation z; = )\3 / Qyi fort =1,..., D. The volume within the hyper-ellipsoid
then becomes

D D D
/H dy; = HA?Q/H dz; = |S[2Vp AP
=1 i=1 =1

where we have used the property that the determinant of X is given by the product
of its eigenvalues, together with the fact that in the z coordinates the volume has
become a sphere of radius A whose volume is Vp AP .

Multiplying the left hand side of (2.76) by the matrix (2.287) trivially gives the iden-
tity matrix. On the right hand side consider the four blocks of the resulting parti-
tioned matrix:

upper left
AM -BD'CM = (A — BD’lc)(A — BD’lC)’1 =1
upper right
—~AMBD ! + BD ! + BD 'CMBD !
= —(A- BD_lc)(A - BD_lc)_lBD_1 +BD!
= -BD'+BD'=0
lower left

CM-DD 'CM=CM-CM =0
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2.25

2.26

2.27

2.28

lower right
~CMBD ' +DD '+DD !CMBD '=DD ' =1
Thus the right hand side also equals the identity matrix.

We first of all take the joint distribution p(X,,Xp, X.) and marginalize to obtain the
distribution p(x,,xp). Using the results of Section 2.3.2 this is again a Gaussian
distribution with mean and covariance given by

M z]aa Eab
= a 2 pu— .
w=i) =G )

From Section 2.3.1 the distribution p(x,,X;) is then Gaussian with mean and co-
variance given by (2.81) and (2.82) respectively.

Multiplying the left hand side of (2.289) by (A + BCD) trivially gives the identity
matrix I. On the right hand side we obtain
(A+BCD)(A™'-~A'B(C'+DA'B)"'DA™)
= I+BCDA'-B(C'+DA'B)"'DA!
~-BCDA'B(C™' +DA'B) " 'DA!
= I+BCDA'-BC(C'+DA'B)(C!'+DA'B)'DA™
I+ BCDA ! —-BCDA ' =1

From y = x + z we have trivially that E[y] = E[x] + E[z]. For the covariance we
have

covly] = E[(x-E[x+y-Ely))(x—Ex]+y—E[y])"]
= E[x-Ex)x—-ExX)"| +E[(y - Ely))(y - Ely])"]
+E[(x—Ex)(y —E[y)"] +E [(y - Ely])(x — E[x])"]

= cov[x]+ cov[z]i .

where we have used the independence of x and z, together with E [(x — E[x])] =
E [(z — E[z])] = 0, to set the third and fourth terms in the expansion to zero. For
1-dimensional variables the covariances become variances and we obtain the result
of Exercise 1.10 as a special case.

For the marginal distribution p(x) we see from (2.92) that the mean is given by the
upper partition of (2.108) which is simply g. Similarly from (2.93) we see that the
covariance is given by the top left partition of (2.105) and is therefore given by A™".

Now consider the conditional distribution p(y|x). Applying the result (2.81) for the
conditional mean we obtain

Hyix = Ap+b+ AAT'A(x —p) = Ax +b.
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Similarly applying the result (2.82) for the covariance of the conditional distribution
we have

covly|x] =L+ AAT'AT — AATIAATIAT = L7
as required.

We first define
X=A+ATLA (97)

and
W = —LA, andthus W = —ATLT = —ATL, (98)

since L is symmetric. We can use (97) and (98) to re-write (2.104) as
X W7t
(v 1)

and using (2.76) we get

X WT\ M ~MWTL"!
W L “\ -L'WM L'+ L 'WMW'L™!
where now .
M= (X-W'L'W) .
Substituting X and W using (97) and (98), respectively, we get

1 _
=A1

M= (A+A"LA-A"LL'LA)
~MWTL ' = AATLL ' = AT1AT
and
L '+L 'LAA'ATLL ™!
L' +AA AT,

L'+ L '"WMWTL!

as required.

Substituting the leftmost expression of (2.105) for R~! in (2.107), we get
At ATTAT Ap — ATSb
AA™Y ST AATIAT Sb
B A™' (Ap— ATSb) + A7'ATSD
~ \AA T (Ap—ATSb) + (ST + AATIAT) Sb
B pw—A"ATSb+ AT'ATSD
"\ Ap—AA'ATSb+b+ AATTATSH

- < A,f—b)



44

Solutions 2.31-2.32

2.31

2.32

Since y = x + z we can write the conditional distribution of y given x in the form
p(ylx) = N(ylp, + x,X,). This gives a decomposition of the joint distribution
of x and y in the form p(x,y) = p(y|x)p(x) where p(x) = N (x|u,, Xx). This
therefore takes the form of (2.99) and (2.100) in which we can identify p — .,
At - 3,A>Ib— p,and L' — X,. We can now obtain the marginal
distribution p(y) by making use of the result (2.115) from which we obtain p(y) =
N(y|py + py,, 2 + Ex). Thus both the means and the covariances are additive, in
agreement with the results of Exercise 2.27.

The quadratic form in the exponential of the joint distribution is given by
1 1
—5(x =) Ax—p) = 5(y - Ax—b)'L(y - Ax —b). (99)

We now extract all of those terms involving x and assemble them into a standard
Gaussian quadratic form by completing the square

1
— _EXT(A +A"LA)x +x" [Ap+ ATL(y — b)] + const

1
= —§(x —m)T(A +ATLA)(x — m)

1
+§mT(A + ATLA)m + const (100)

where
m=(A+A"LA)"" [Ap+ A"L(y — b)].

We can now perform the integration over x which eliminates the first term in (100).
Then we extract the terms in y from the final term in (100) and combine these with
the remaining terms from the quadratic form (99) which depend on y to give
1
= —in {L-LAA+ATLA)'A"L}y
+y" [{L-LA(A+A"LA)'A'L} Db
+LA(A+ATLA)'Ap]. (101)

We can identify the precision of the marginal distribution p(y) from the second order
term in y. To find the corresponding covariance, we take the inverse of the precision
and apply the Woodbury inversion formula (2.289) to give

{L-LAA+ALA)'ATL} " =L7'+ AA AT (102)

which corresponds to (2.110).

Next we identify the mean v of the marginal distribution. To do this we make use of
(102) in (101) and then complete the square to give

1 _
—i(y —v)T (L' + AATTAT) ' (y —v) + const
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where
v=(L"'"+AAT'A") (L' + AAT'AT) '+ LA(A + ATLA) 'Ap] .

Now consider the two terms in the square brackets, the first one involving b and the
second involving p. The first of these contribution simply gives b, while the term in
[ can be written

= (LT'+AATTAT)LAA+ATLA) 'Ap
= AT+AT'ATLA)I+AT'ATLA) A "Ap = Ap

where we have used the general result (BC)™' = C~'B~!. Hence we obtain
(2.109).

To find the conditional distribution p(x|y) we start from the quadratic form (99) cor-
responding to the joint distribution p(x,y). Now, however, we treat y as a constant
and simply complete the square over x to give

1 1

—5(x = m)"Alx — )~ 5(y — Ax ~b)"L(y ~ Ax — b)
1

= —§xT(A + ATLA)x +x" {Ap + AL(y — b)} + const

_ —%(x ~m)"(A + ATLA)(x — m)

where, as in the solution to Exercise 2.32, we have defined
m=(A+A"LA)"" {Ap+ATL(y — b)}

from which we obtain directly the mean and covariance of the conditional distribu-
tion in the form (2.111) and (2.112).

Differentiating (2.118) with respect to 32 we obtain two terms:

N
10 _
S e 1B = 5o S e — ) S )

For the first term, we can apply (C.28) directly to get

fﬁi 1n|2| — fﬁ (2,1)1“ — _

Ny
2 0% 2 52 :

For the second term, we first re-write the sum

N
Z(Xn — )" (x, —p) = NTr [2718} ,

n=1
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where
1 N
=N Z - "

Using this together with (C.21), in which « = X;; (element (3, j) in X), and proper-
ties of the trace we get

)
o5, [

0 1
= NTr[aZUE S]

> xn - (xp—p) = N %'s]

)y
_ -1 -1
= —NTr [2 azijz s]
ox
= —NT >oisyt
r[ﬁzw‘ > ]

= -N(x=7'szT),

where we have used (C.26). Note that in the last step we have ignored the fact that
Y;j = Xji, so that 0%/0%;; has a 1 in position (i, j) only and 0 everywhere else.
Treating this result as valid nevertheless, we get

l\')\)—l

N
a E —1 N —1 —1

Combining the derivatives of the two terms and setting the result to zero, we obtain

N N
52—1 =_—_yisy L

Re-arrangement then yields

as required.

2.35 NOTE: In PRML, this exercise contains a typographical error; [ [x,,X,,] should be
E [x,x},] on the Lh.s. of (2.291).

The derivation of (2.62) is detailed in the text between (2.59) (page 82) and (2.62)
(page 83).

If m = n then, using (2.62) we have E[x, x| = put + X, whereas if n 7é m then
the two data points x,, and x,,, are mdependent and hence E[xnxm} pp where
we have used (2.59). Combining these results we obtain (2.291). From (2.59) and
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(2.62) we then have

I
=
WE

&=

1 & 1
E 3] (xn N xm> (XE % Zx?)]
n=1 m=1 =1
L X N L
_ T T
S IR SR D
n=1 m=1 m=1 [=1

1
{uuT +2 -2 <uuT+ Z) + ppt + 2}
N-1
_ (N >z (103)

as required.

NOTE: In the 1% printing of PRML, there are mistakes that affect this solution. The
sign in (2.129) is incorrect, and this equation should read

pN) — p(N=1) N =),

—an—1%(
Then, in order to be consistent with the assumption that f(6) > 0 for # > 6* and
f(0) < 0for & < 6* in Figure 2.10, we should find the root of the expected negative
log likelihood. This lead to sign changes in (2.133) and (2.134), but in (2.135), these
are cancelled against the change of sign in (2.129), so in effect, (2.135) remains
unchanged. Also, x,, should be x,, on the L.h.s. of (2.133). Finally, the labels x and
pvr, in Figure 2.11 should be interchanged and there are corresponding changes to
the caption (see errata on the PRML web site for details).

Consider the expression for U(2N) and separate out the contribution from observation
TN to give

1 N
U(QN) - N Z(ﬂﬁn —p)?
n=1
N-1
_ 1 2 (N — M)2
N-1, (zn — p)?
- TN Tty
1 (xn — p)?

= oln-y ~ FON-y Ty

1
L R R (G DRy (104)

If we substitute the expression for a Gaussian distribution into the result (2.135) for
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the Robbins-Monro procedure applied to maximizing likelihood, we obtain

0 1 (xn —p)®
2
ofny = Ofn-1)tan-1 —Ino?y_ ) —
(N) (N-1) d0? 1){ (N0 " 32 T
D
= ofy_y tan-1
Y { Tin-1) 2U?N71>
aN—1
= oiv-nt o {@n =) —oly_y} (105)
(N—1)

Comparison of (105) with (104) allows us to identify

aN—-1 = 720?]\/71)
N
2.37 NOTE: In PRML, this exercise requires the additional assumption that we can use
the known true mean, g, in (2.122). Furthermore, for the derivation of the Robbins-
Monro sequential estimation formula, we assume that the covariance matrix is re-
stricted to be diagonal. Starting from (2.122), we have

N
S0 = k) )"
1 v T
S (xn — 1) (Xn — 1)
1

+t (xn —p) (xy — )"

N — 1
= N Ef\/][vL D"‘ﬁ(XN—H)(XN—M)T
1 _
= V4 N ((XN — ) (xy — )" — Sy ”) . (106)

From Solution 2.34, we know that

- Inp(x | 2 )
82% ML

1 N - ~) 7!
= S (307) (v - v - =300 (200)

1 1\ 2 _
= S (507 (e - - - =0Y)

. (N—1) ~N-1\ b
where we have used the assumption that 3}, ", and hence (ZML ) ,is diag-
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onal. If we substitute this into the multivariate form of (2.135), we get
N N-1
S = St
—2
AN - (E(N D) (v - v - = =07Y) 07y

where A 1 is a matrix of coefficients corresponding to ax_; in (2.135). By com-
paring (106) with (107), we see that if we choose

2 _ 2
A= (07)

we recover (106). Note that if the covariance matrix was restricted further, to the
form 021, i.e. a spherical Gaussian, the coefficient in (107) would again become a
scalar.

The exponent in the posterior distribution of (2.140) takes the form

1 .
gzl ) = 55 > (o

n=1
2
H 1 N Ho
=3 (*) *“( *2“) et

where ‘const.” denotes terms independent of ;. Following the discussion of (2.71)
we see that the variance of the posterior distribution is given by

1 N 1
012\,_02 ol

Similarly the mean is given by

-1 N
N 1 o 1
UN = <0_2 + 0(2)> (US + ? E 1‘n>

n=1
o? ol
= 108
NU%+02MO+NUS+UQMML (108)
(109)
From (2.142), we see directly that
171+N71+N—1+171+1 (110)
o3 o o o} o? o2 o% , o
We also note for later use, that
1 o>+ No2 o*+o03_,
T T 25 T 2 .2 (111)
oy o5o oN_10
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and similarly

1 0?4+ (N-1)0] (112)
02 a olo? '
N—1 0

Using (2.143), we can rewrite (2.141) as

2 2 NV
o 00 D ne1 Tn

= +
pN NU%—FUZMO No? +o?
N—
o*po + o Zn:ll Tn ngN
No3 + o2 Nog + 0%

Using (2.141), (111) and (112), we can rewrite the first term of this expression as

2 2 2 \N-1 2
N Zn:l In  On
2 2 2 )

oy (N—1)og+o ON-1

HN—1-

Similarly, using (111), the second term can be rewritten as

2
oN
o2 ON
and so
oy oy
UN = 5 —UN-—1+ —5TN. (113)
O'N_l ag
Now consider
plulpn,o%) = plplpy-1,05_1)p(zN|p, 0®)

= Npuluy-1, 05 )N (@nlp, o?)

1y = 2upN 1+ 17 2% — 2onp+ p?
€XPy 75 2 + o2
N-—1

2

B 1 (0 (uR—y = 2ppn—1 + %)
exp — = 02 02
N-—1

+012v_1($§v —2znp+ p?)
012\,_102

2 2
2 OX_10

1 (012\7—1 + o) = 2(0*un—1 + UJQV—lxN)M
exp — +C,

where C' accounts for all the remaining terms that are independent of . From this,
we can directly read off

1 o*4o}, 1 +i
2 2 2 2 2
oN ON_10 ON_1 o
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and

2 2
O°UN—1 +ON_ 1N
2 2
oy_,to
2 2
o I i ON-1
- 2 2 HN—1 2 2
on_,to ony_,toO
2 2
o o
N N
= —S—WUN-1t+ TN
o o2
N-1

N =

TN

and so we have recovered (110) and (113).

The posterior distribution is proportional to the product of the prior and the likelihood
function

p(plX) o< p(p Hp Xp |, 3

Thus the posterior is proportional to an exponentlal of a quadratic form in p given
by

N
1 1
— (1= 10) TS0 (1~ ) 52 % (%0 — )

N
1
— _§“T (B + NS ) ptpt <201u0 + ¥t an> + const

n=1
where ‘const.’ denotes terms independent of p. Using the discussion following
(2.71) we see that the mean and covariance of the posterior distribution are given by
_ RN R _
py = (BoPHNZTY T (30 e + 27 Ny (114)
=y = 4N (115)

where gy, 18 the maximum likelihood solution for the mean given by

1
Hyir, = Nz:lxn-
n=

If we consider the integral of the Gamma distribution over 7 and make the change of
variable bt = u we have

oo 1 o0
Gam(7|a,b)dr = / b7 L exp(—br)dr
| camrenar - o (~br)

1 o0
= butexp(—u)b' "% du
ol Y

= 1

where we have used the definition (1.141) of the Gamma function.
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2.42 We can use the same change of variable as in the previous exercise to evaluate the
mean of the Gamma distribution

E[r] = F(la,)/o b7 exp(—br) dT

1 o0
= — beu® exp(—u)b~ % du
ol =

~ TI'(a+1) a
bl(a) b
where we have used the recurrence relation I'(a + 1) = al'(a) for the Gamma

function. Similarly we can find the variance by first evaluating

E[r?] = F(la)/o b7 2 exp(—br) dr
= F(la) /000 blu M exp(—u)b™ o du
~ TI'(a+2) (a+DI'(a+1) ala+1)
h@) 0 B

and then using

ala+1) a®> a

var[r] = E[r?] — E[7]? = EEE TRt

Finally, the mode of the Gamma distribution is obtained simply by differentiation

a—1

% {Ta_l exp(—bT)} = [ - b] 7 L exp(—br) =0

T

from which we obtain
a—1

b

Notice that the mode only exists if @ > 1, since 7 must be a non-negative quantity.
This is also apparent in the plot of Figure 2.13.

mode[7] =

2.43 To prove the normalization of the distribution (2.293) consider the integral

Iz/_ exp <—|20|2) d:r:2/0 exp <—w> dx

and make the change of variable

24
202"
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Solution 2.44 53

Using the definition (1.141) of the Gamma function, this gives

2(20%)'10(1/q)
q

T 20% a0
I=2 —(20°u)" "V exp(—u) du =
0 q

from which the normalization of (2.293) follows.

For the given noise distribution, the conditional distribution of the target variable
given the input variable is

. — yx W)l
p(tlx,w,0%) = 2(202)1/4T°(1/q) oxXp (W) '

The likelihood function is obtained by taking products of factors of this form, over
all pairs {x,,, t,, }. Taking the logarithm, and discarding additive constants, we obtain
the desired result.

From Bayes’ theorem we have

(s A[X) o< p(X |, A)p(p, A),

where the factors on the r.h.s. are given by (2.152) and (2.154), respectively. Writing
this out in full, we get

N N N
p(, ) o [AYZexp 7/\7!12 exp )\,uzgcn 2 Zw2
BA o
(BN exp [—2 (12 = 20p0 + ) | A% Fexp (=bA)

where we have used the defintions of the Gaussian and Gamma distributions and we
have ommitted terms independent of x and A\. We can rearrange this to obtain

N
)\N/2)\a—1 B S 2 é 2 A
exp{ < + ;xn—}— 2,u0

N
()\(N"‘ﬂ))l/Qexp !_W (/1'2 _ Ni—ﬂ {5/1'0 +nz_ll‘n},u>]

and by completing the square in the argument of the second exponential,

| =

<6N0 + Zivzl xn) i
DT

N
1
)\N/2)\a—lexp o b+§zwi+§ﬁ03*
n=1

(AN + )% exp

_/\(N +ﬁ) o 6:“0 + Zilvzl Tn
2 a N+8
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we arrive at an (unnormalised) Gaussian-Gamma distribution,

N (ulpn, (N + B)A) ™) Gam (A|an, by),

with parameters

5#0 + 27]:’:1 T

N+
N
ay = a—i—?
1 & 3, N+p
_ 2 2 2
by = b+§§71$n+§ﬂo* 5 M-

2.45 We do this, as in the univariate case, by considering the likelihood function of A for

a given data set {x1,...,XnN}:
N | X
TTNVGenle, A7) o [A]Y2 exp (—2 > (xn = ) A(x, - u))
n=1 n=1

1
= AN ?exp (2Tr [AS]> ,

where S = > (%, — p)(x, — p)T. By simply comparing with (2.155), we see
that the functional dependence on A is indeed the same and thus a product of this
likelihood and a Wishart prior will result in a Wishart posterior.

2.46 From (2.158), we have
 pre(=brra=l r1/2 T 5
_— = ——(z — d
/O T'(a) (27r> eXp{ @ =n } ’

B S e

We now make the proposed change of variable z = 7A, where A = b+ (2 — 11)?/2,
yielding

e 1\ >
- A—a—l/Q a—1/2 .
ol C R A

ba 1 1/2 —a—1/2
“ i (a) A E
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where we have used the definition of the Gamma function (1.141). Finally, we sub-
stitute b + (z — p)?/2 for A, v/2 for a and v/2) for b:

F(—CL+1/2) a 1 e a—1/2
M) (%) Ay

+1)

2.47 Ignoring the normalization constant, we write (2.159) as

21— (wm1)/2
St(z|p, A\, v) o [1—!—)\@”#)}

- exp<— ”m[uWD. (116)

For large v, we make use of the Taylor expansion for the logarithm in the form

In(1 +¢) = e+ O(e?) (117)

to re-write (116) as

exp (-”gl In [1+Mx;”)2]>
~ exp (” - ! [W — 1)’ +0(V—2)]>

14

= exp <—W + O(u1)> :

2

We see that in the limit ¥ — oo this becomes, up to an overall constant, the same as
a Gaussian distribution with mean p and precision A. Since the Student distribution
is normalized to unity for all values of v it follows that it must remain normalized in
this limit. The normalization coefficient is given by the standard expression (2.42)
for a univariate Gaussian.
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Solutions 2.48-2.49

2.48 Substituting expressions for the Gaussian and Gamma distributions into (2.161), we

2.49

have

St A 0) = A7 (s (1)) Ganlal2./2)

_ (V/2)V/2 |A‘1/2 - nD/2nu/2—le—vn/26—nA2/2 dn
I'(v/2) (2m)P/2 J, '

Now we make the change of variable

v 1 !

which gives

v/2 (A(L/2
St(x|p, A, ) (v/2) |A [1/ 1

Z 4 A2
T(v/2) 2m)P7 |2 T2
/ 7_D/2+u/271677' dr
0

. I(v/2+d/2) |A‘1/2 [1+A2]—D/2—u/2
N I'(v/2) (mv)D/2 by

:| —D/2—V/2

as required.

The correct normalization of the multivariate Student’s t-distribution follows directly
from the fact that the Gaussian and Gamma distributions are normalized. From
(2.161) we have

/St (x|p, A,v) dx = //N(Xu,, (nA)_l) Gam (n|v/2,v/2) dndx
= //N(Xu, (nA)™") dx Gam (n|v/2,v/2) dn
= /Gam (nlv/2,v/2) dn = 1.

If we make the change of variable z = x — p, we can write

E[x] —/St(x|u,A,u)de—/St(z|O,A,1/)(z+u) dz.

In the factor (z + p) the first term vanishes as a consequence of the fact that the
zero-mean Student distribution is an even function of z that is St(—z|0, A, v) =
St(—z|0, A, v). This leaves the second term, which equals g since the Student dis-
tribution is normalized.
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The covariance of the multivariate Student can be re-expressed by using the expres-
sion for the multivariate Student distribution as a convolution of a Gaussian with a
Gamma distribution given by (2.161) which gives

[ St A= ) = )

cov|[x]

| [ i) ox = = )" ax a2, /2)

= / nilAflGam(ml//Q, v/2)dn
0

where we have used the standard result for the covariance of a multivariate Gaussian.
We now substitute for the Gamma distribution using (2.146) to give
cov[x] = 1 (5)”2 ~ 67”77/217”/2*2 dnA~!

I(v/2) \2 0

vT(v/2-2) _,

2 T'(v/2)

4 -1

v—2
where we have used the integral representation for the Gamma function, together
with the standard result I'(1 + z) = 2T'(x).

The mode of the Student distribution is obtained by differentiation

T'(v/2+D/2) |A|V? N e
/) <7w>D/2[ ] yAGT )

Provided A is non-singular we therefore obtain

Vi St(x|p, A, v) =

v

mode[x] = p.

2.50 Just like in univariate case (Exercise 2.47), we ignore the normalization coefficient,
which leaves us with

5 e ) )
1+ — =expy—|=-+—=|In|14+—
v 2 2 v

where A? is the squared Mahalanobis distance given by
A? = (x — p)TA(x — p).

Again we make use of (117) to give

exp{— <12/ + 12)) In [1 + Aj]} —exp{—A; +0(1/y)}.

As in the univariate case, in the limit ¥ — oo this becomes, up to an overall constant,
the same as a Gaussian distribution, here with mean g and precision A; the univariate
normalization argument also applies in the multivariate case.



58 Solutions 2.51-2.54

2.51 Using the relation (2.296) we have
1 = exp(iA) exp(—iA) = (cos A+ isin A)(cos A — isin A) = cos? A + sin” A.
Similarly, we have
cos(A—B) = Rexp{i(A— B)}
= Rexp(iA)exp(—iB)
= R(cos A+ isin A)(cos B —isin B)
cos Acos B + sin Asin B.
Finally

sin(A—B) = Sexp{i(A— B)}
= Sexp(id)exp(—iB)
S(cos A+ isin A)(cos B — isin B)

= sin Acos B — cos Asin B.

2.52 Expressed in terms of & the von Mises distribution becomes
p(§) ox exp {m cos(m_1/2f)} .
For large m we have cos(m~/2¢) =1 —m~'€2/2 + O(m~2) and so
p(€) o exp { —€%/2}
and hence p(6) oc exp{—m(0 — 6,)?/2}.
2.53 Using (2.183), we can write (2.182) as

N N N
E (cos By sin ,, — cos 0, sin By) = cos Oy g sin#,, — sin g cosf, = 0.
n=1 n=1 n=1

Rearranging this, we get

sin 6 sin @
Zn L 0 = tan 90,
>, cosb,  cosby

which we can solve w.r.t. 0, to obtain (2.184).

2.54 Differentiating the von Mises distribution (2.179) we have

1 .
P (0) = “Snlo(m) exp {mcos(6 — 6p)} sin(0 — 6)
which vanishes when 6 = 6, or when 6 = 6, + 7 (mod2w). Differentiating again
we have
1
p"(0) = exp {mcos(f — )} [sin®(0 — 6) + cos(d — 6p)] .

"~ 2nly(m)
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2.56

Solutions 2.55-2.56 59

Since Iy(m) > 0 we see that p”(0) < 0 when 6 = 6, which therefore represents
a maximum of the density, while p”(6) > 0 when 6 = 6, + 7 (mod27), which is
therefore a minimum.

NOTE: In the 1% printing of PRML, equation (2.187), which will be the starting
point for this solution, contains a typo. The “—" on the r.h.s. should be a “+”, as is
easily seen from (2.178) and (2.185).

From (2.169) and (2.184), we see that = 6. Using this together with (2.168)
and (2.177), we can rewrite (2.187) as follows:

N N
A(my) = (11] Z cos 9n> cos O™ + (11] Z sin 0n> sin 6™
n=1 n=1
= 7cosfcos O™ + 7sin O sin 65"
=7 (Cos2 65" + sin” 93“‘)

.

We can most conveniently cast distributions into standard exponential family form by
taking the exponential of the logarithm of the distribution. For the Beta distribution
(2.13) we have

Beta(u|a,b) = W exp{(a—1)Inpg+ (b—1)In(1 —p)}

which we can identify as being in standard exponential form (2.194) with

hp) = 1 (118)
g9(a,b) = E((Z)I:(Z)) (119)
w - (o)
n(a,b) = (‘b’:i) (121)

Applying the same approach to the gamma distribution (2.146) we obtain

Gam(Na, b) — I‘lza) exp {(a—1)In A —bA}.



60 Solution 2.57

from which it follows that

h(A) = 1 (122)
ba
b)) = —— 123
9(a,b) T'a) (123)
A
u(\) = <1n )\> (124)
nab) = (7 (125)
’ a—1)"
Finally, for the von Mises distribution (2.179) we make use of the identity (2.178) to
give
1 . .
(0109, m) = m exp {m cos 6 cos p + msin @ sin Oy }

from which we find

he) = 1 (126)
1

g(0o,m) 2nTo(m) (127)

u®) = <‘S’f§g> (128)

n(0o,m) = @‘gfjg{j)- (129)

2.57 Starting from (2.43), we can rewrite the argument of the exponential as
1 —1,,T Ty —1 L —
—§Tr[2 xx]+u2 X—§u2 .

The last term is indepedent of x but depends on p and X and so should go into g(n).
The second term is already an inner product and can be kept as is. To deal with
the first term, we define the D?-dimensional vectors z and A, which consist of the
columns of xx™ and X!, respectively, stacked on top of each other. Now we can
write the multivariate Gaussian distribution on the form (2.194), with

N
w - [1]
h(x) = (2m) P/
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2.58 Taking the first derivative of (2.226) we obtain, as in the text,
T hng(n) = g(n) [ hix)exp {70} uix) dx
Taking the gradient again gives
VT Ingn) = g [ Hexexp " ux) b ulxjui” dx

+Vg(n) / h(x) exp {n"u(x)} u(x) dx

Efu(x)u(x)’] - Efu(x)|E[u(x)"]
covlu(x)]

where we have used the result (2.226).

2.59

since f(x) integrates to 1.

2.60 The value of the density p(x) at a point x,, is given by h(,,), where the notation j(n)
denotes that data point x,, falls within region j. Thus the log likelihood function

takes the form
N N
Z Inp(x,) = Z Inhj(p).
n=1 n=1

We now need to take account of the constraint that p(x) must integrate to unity. Since
p(x) has the constant value h; over region i, which has volume A, the normalization
constraint becomes . h;A; = 1. Introducing a Lagrange multiplier A we then
minimize the function

N
> b + A (Z hil\; — 1)
n=1 %

with respect to hy, to give

ng
0=—+ XA
I + k

where ny, denotes the total number of data points falling within region k. Multiplying
both sides by hj, summing over k and making use of the normalization constraint,
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Solutions 2.61-3.1

2.61

Chapter 3

we obtain A = —N. Eliminating A\ then gives our final result for the maximum
likelihood solution for Ay in the form

ng 1
hp = ——.
TN Ag

Note that, for equal sized bins A, = A we obtain a bin height /i, which is propor-
tional to the fraction of points falling within that bin, as expected.

From (2.246) we have
K

p(x) = NVp)

where V (p) is the volume of a D-dimensional hypersphere with radius p, where in
turn p is the distance from x to its K" nearest neighbour in the data set. Thus, in
polar coordinates, if we consider sufficiently large values for the radial coordinate 7,
we have
-D

p(x) o r™ .
If we consider the integral of p(x) and note that the volume element dx can be
written as P~ dr, we get

/p(x)dxoc/7“_[)7"[)_1 dr:/r_ldr

which diverges logarithmically.

Linear Models for Regression

3.1

NOTE: In the 1% printing of PRML, there is a 2 missing in the denominator of the
argument to the ‘tanh’ function in equation (3.102).

Using (3.6), we have

2 14 e 2

l+e 22 14e2
1 —e 2@
14 e 2a
e —e @
ea _l’_ e—a
= tanh(a)




3.2

3.3

Solutions 3.2-3.3 63

If we now take a; = (x — j;)/2s, we can rewrite (3.101) as
y(x, w) = wo+Zw]—a(2a]—)

= W + Z 20’ 2a] —1 + 1)

M
= U+ Z uj tanh(a;),
j=1
where u; = w;/2,for j =1,...,M,and ug = wy + Z;‘il w;/2.
We first write
o(@"®) eV = PV
= 0V + 0,0 + .y oM

where ¢, is the m-th column of ® and v = ('I’T'I’)_1'I>Tv. By comparing this
with the least squares solution in (3.15), we see that

y=dwy, = ®(d7P) 1Tt

corresponds to a projection of t onto the space spanned by the columns of ®. To see
that this is indeed an orthogonal projection, we first note that for any column of ®,

Soj’
P(PTR)'Pp,; = [B(2D)RP] =g,
and therefore
V-1 ¢, = (@wu - ) g, =t" (2(@7®) 12T~ 1) p, =0
and thus (y — t) is ortogonal to every column of ® and hence is orthogonal to S.

If we define R = diag(ry, ..., ry) to be a diagonal matrix containing the weighting
coefficients, then we can write the weighted sum-of-squares cost function in the form

1
Ep(w) = §(t — dw)"R(t - dw).
Setting the derivative with respect to w to zero, and re-arranging, then gives
w* = (3"R®) ' "Rt

which reduces to the standard solution (3.15) for the case R = 1.

If we compare (3.104) with (3.10)—(3.12), we see that r,, can be regarded as a pre-
cision (inverse variance) parameter, particular to the data point (x,,, ¢, ), that either
replaces or scales (3.
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Solution 34

3.4

Alternatively, r,, can be regarded as an effective number of replicated observations
of data point (x,, t,,); this becomes particularly clear if we consider (3.104) with r,,
taking positive integer values, although it is valid for any r,, > 0.

Let

D
Yn = wWo+ Z Wi (i + €ni)

1=1
D
= Yn + § W;€ni
=1

where y,, = y(z,, w) and €,,; ~ N(0,0?) and we have used (3.105). From (3.106)
we then define

E = {gn - tn}z

N | —
] =

S
I
—

I
N | —
M=

n=1

| X D D 2
= 3 Z Yn + 2Yn Z Wi€ni + <Z wﬁm)
n=1 i=1 i=1
D
—2tpyn — 2tn Y Wi + 1
i=1

If we take the expectation of E under the distribution of €ni, We see that the second
and fifth terms disappear, since E[e,,;] = 0, while for the third term we get

D 2 D
E g Wi €ni = g w?aQ
i=1 i=1

since the ¢,,; are all independent with variance 2.

From this and (3.106) we see that
-~ 12
E [E} ~Ep+ §1 wlo?,

as required.



3.5

3.6

Solutions 3.5-3.6 65

We can rewrite (3.30) as
L (M
(St -a) <0
j=1

where we have incorporated the 1/2 scaling factor for convenience. Clearly this does
not affect the constraint.

Employing the technique described in Appendix E, we can combine this with (3.12)
to obtain the Lagrangian function

z{t g+ (Dwm—n)

and by comparing this with (3.29) we see immediately that they are identical in their
dependence on w.

Now suppose we choose a specific value of A > 0 and minimize (3.29). Denoting
the resulting value of w by w*(\), and using the KKT condition (E.11), we see that

the value of 7 is given by
M
n=_lwjV
j=1

We first write down the log likelihood function which is given by

InL(W,%) = —— 1n 1= - = Z — WP (x,))"S 7 (b, — WTo(x,)).

First of all we set the derivative with respect to W equal to zero, giving

N
- Z E_l(tn - WT¢’(X71))¢’(X71)T'

Multiplying through by 3 and introducing the design matrix ® and the target data
matrix T we have

PTOW = @' T
Solving for W then gives (3.15) as required.

The maximum likelihood solution for X is easily found by appealing to the standard
result from Chapter 2 giving

=% Z = WiiL(xn)) (tn = Wi (x,) "

as required. Since we are finding a joint maximum with respect to both W and 3
we see that it is Wy, which appears in this expression, as in the standard result for
an unconditional Gaussian distribution.
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3.7

3.8

From Bayes’ theorem we have

p(wt) oc p(tjw)p(w),

where the factors on the r.h.s. are given by (3.10) and (3.48), respectively. Writing
this out in full, we get

n=1

p(wlt) o [ﬁf\f (tn|WT¢(Xn)>ﬁ_1)] N (w|my, So)

o exp (—g(t —dw)T(t - <I>w)>
exp (500 = m) 85 v ) )

= exp(; (W' (Sg'+ 62 @) w—pt'dw — pw @'t + pt't
m; Sy 'w — w'S; mg + mESalmo)>

- exp(—; (W (Sg" + B2"®) w — (S; 'my + Bt) " w
—w' (Sg'mg + f®'t) + St't+ mg Sglmo)>

e (—i (w — my) TS (w - mN>>

1
exp (—2 (/BtTt +my Sy 'mg — m]TVSNlmN))

where we have used (3.50) and (3.51) when completing the square in the last step.
The first exponential corrsponds to the posterior, unnormalized Gaussian distribution
over w, while the second exponential is independent of w and hence can be absorbed
into the normalization factor.

Combining the prior
p(w) = N(wmy,Sy)
and the likelihood

B\ 5
PAN41][XN41, W) = <27r) exp <—2(t1\/+1 - WT¢N+1)2> (130)

where ¢ | = ¢(xn41), we obtain a posterior of the form
p(WltN11,XN41, my, Sn)

o exp <—;(w - mN)TS]_Vl(w —my) — %ﬂ(tNH - WT¢N+1)2> )



3.9

3.10

3.11

Solutions 3.9-3.11 67

We can expand the argument of the exponential, omitting the —1/2 factors, as fol-
lows

(w —my) 'Sy (w —my) + Btns — W dyy)?
= WTS;\,lw — 2WTSX,1mN
+ 6WT¢»%+1¢N+1W — 28w PN 1t 41 + const
=w(Sy' + BN 1On )W — 2w (S my + Sy 1tn 1) + const,

where const denotes remaining terms independent of w. From this we can read off
the desired result directly,

P(W\tNH, XN+1, My, SN) = N(W\mNH, SN+1),
with

Sy =SSN + BN 1PN (131)

and
my4; = SN+1(S;f1mN + BPN 1tN1)- (132)

Identifying (2.113) with (3.49) and (2.114) with (130), such that
x=w p=>my A '=Sy
y=itnvs A=dxna) =¢y,, b=0 L '= gL
(2.116) and (2.117) directly give
P(Wltn+1,XN+1) = N(Wimpy 1, Sy1)
where Sy, 1 and mpy . are given by (131) and (132), respectively.

Using (3.3), (3.8) and (3.49), we can re-write (3.57) as

p(t|x,t,a, 8) = /N(t|¢(x)Tw,ﬁ1)./\/(W|mN,SN)dw.

By matching the first factor of the integrand with (2.114) and the second factor with
(2.113), we obtain the desired result directly from (2.115).

From (3.59) we have
1
N 41(%) = 5+ ¢(x) Sn1d(x) (133)
where Sy 1 is given by (131). From (131) and (3.110) we get

Sny1 = (Sj_\/'l + ﬁ¢N+1¢%+1)_1
(SN¢N+151/2) (ﬂ1/2¢%+1SN)
14 BéN1SNON
SN 1PNSN

1+ BpN 1 Sndny1

N
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Using this and (3.59), we can rewrite (133) as

2 1 T 5SN¢N+1¢]F{I+1SN >
= = Sy —
Tanl) = 5t o) ( N ek Snonn ) T
BH(x)" SN P11 DN SNB(X)
1+ ﬁ(ﬁ%-ﬁ-lSN(ﬁN-&-l

Since Sy is positive definite, the numerator and denominator of the second term in
(134) will be non-negative and positive, respectively, and hence o3, ; (x) < 03/ (x).

= oy(x) - (134)

3.12 It is easiest to work in log space. The log of the posterior distribution is given by

lnp(w,Bt) = Inp(w +Zlnpt W p(xn),67")

M 1 _
= 71n/8 — §1n|SO| — g(w — mO)TS0 1(w —myg)

—bof3 + (a0 — 1) In g

—1 B — fZ{wTd) Xp) — tn}? + const.

Using the product rule, the posterior distribution can be written as p(w, g|t) =
p(w|3,t)p(B|t). Consider first the dependence on w. We have

Inp(w|g,t) = ﬁ wh [<I>T<I> +Sy } w+w' [ﬂso_lmo + 6'I’Tt] + const.
Thus we see that p(w|3, t) is a Gaussian distribution with mean and covariance given
by

my = Sy [S;'mg+ &'t (135)
Sy = B(Sy'+@"e). (136)

To find p(B|t) we first need to complete the square over w to ensure that we pick
up all terms involving 3 (any terms independent of 3 may be discarded since these
will be absorbed into the normalization coefficient which itself will be found by
inspection at the end). We also need to remember that a factor of (1//2) In 5 will be
absorbed by the normalisation factor of p(w|(3, t). Thus

g g

Inp(BJt) = ngS m0+2mNS mpy

N
lnﬂ—boﬁ—l—(ao—llnﬂ gz + const.
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We recognize this as the log of a Gamma distribution. Reading off the coefficients
of 3 and In § we then have

N

ay = ag+ DY (137)
1 N

by = b+ (:rnOTso-lm0 —mySy'my + Zti) : (138)
n=1

Following the line of presentation from Section 3.3.2, the predictive distribution is
now given by
pltbet) = [ [ A7 (t6060™w,57) A7 (whmy 57 81) aw
Gam (Blan,by) dB  (139)

We begin by performing the integral over w. Identifying (2.113) with (3.49) and
(2.114) with (3.8), using (3.3), such that

x=w p=>my A '=Sy
y=t A=ox)T=¢" b=0 L '=p"
(2.115) and (136) give
p(tlB) = N (tlp"my,37' + ¢ Sno)
= N(t|¢p"my,87" (1+¢"(So+ 0 d) '9)).

Substituting this back into (139) we get

pltbe X, = [N (1o . 575) Gam (3o, ) d,
where we have defined
s=1+¢ (So+¢ ¢) '
We can now use (2.158)- (2.160) to obtain the final result:
p(tx, X, t) = St (t|u, A, v)
where

u:(ﬁTmN )\:a—Ns_l v=2ay.
bn

For o« = 0 the covariance matrix Sy becomes

Sy = (B®T®)1. (140)
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Let us define a new set of orthonormal basis functions given by linear combinations
of the original basis functions so that

P(x) = Vo(x) (141)

where V is an M x M matrix. Since both the original and the new basis functions
are linearly independent and span the same space, this matrix must be invertible and
hence

$(x) = V().
For the data set {x,, }, (141) and (3.16) give

¥ =¢VT

and consequently
=0V "

where VT denotes (V~1)T. Orthonormality implies
Y =1

Note that (V™1)T = (VT)~1 as is easily verified. From (140), the covariance matrix
then becomes

Sy = ﬁ*l(q)T(I,)fl _ ﬁfl(va‘I,T\I,Vfl)fl _ ﬁflvTV.

Here we have used the orthonormality of the v;(x). Hence the equivalent kernel
becomes

k(x,x") = Bp(x)TSnp(x) = p(x)TVTVP(x') = 9(x)T9p(x')

as required. From the orthonormality condition, and setting j = 1, it follows that

N N
Zd}z(xn)wl(xn) = Z Vi(xn) = din

where we have used v, (x) = 1. Now consider the sum

N N N M
D Okx) = ) ) TP(xa) = > > hi(x)i(xn)
n=1 n]:[l n=1 i1=1

= D hix)dn =i (x) =1

which proves the summation constraint as required.
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This is easily shown by substituting the re-estimation formulae (3.92) and (3.95) into
(3.82), giving

(0%

E(my) = g It — @y + 5

_N—-~v ~v N

m%mN

2 272
The likelihood function is a product of independent univariate Gaussians and so can
be written as a joint Gaussian distribution over t with diagonal covariance matrix in
the form

p(t|w, 8) = N(t|@w, 37 Iy). (142)

Identifying (2.113) with the prior distribution p(w) = N (w|0, ™ 'I) and (2.114)
with (142), such that

x=>w pu=0 A'=a Iy

y=t A=® b=0 L !'= 31y,

(2.115) gives
p(tla, B) = N (1|0, 37 Iy + o ' ®dT).

Taking the log we obtain
__N 1 ~1 —1&dHT
Inp(tje, B) = 5 In(2m) 5 In ‘[3 In+a @ ‘

1
— §tT (B "Iy +a '@®")t. (143)

Using the result (C.14) for the determinant we have
7y + a7 e@"| = V|Iy+ fa @D
= 7V |y + o 2T B
= g Na™M ‘aIM + ,8<I'T<I"
= V"M |A

where we have used (3.81). Next consider the quadratic term in t and make use of
the identity (C.7) together with (3.81) and (3.84) to give

—%t (B 'y +a '@®") 't
_ —%tT [QIN — B® (aly + 307 ®) @Tﬂ] t
B
2

_B
2

,82
tt+ 3tT<I>A*1(1>Tt
1
t't + gm%AmN
T

(6
= Dt @mylt - Smbmy
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3.17

3.18

where in the last step, we have exploited results from Solution 3.18. Substituting for
the determinant and the quadratic term in (143) we obtain (3.86).

Using (3.11), (3.12) and (3.52) together with the definition for the Gaussian, (2.43),
we can rewrite (3.77) as follows:

st = [ pltiw Dp(wla) dw
= (2&)]\]/2 <;T)M/2/exp(ﬂED(w))exp (f%wTw> dw
= (Qi) v (;T)M/Q/exp (—E(w)) dw,

where E(w) is defined by (3.79).

We can rewrite (3.79)

g [t — Bwl* + %WTW
= g ('t— 2w + W' @w) + Tw'w

= % (BtTt—26t"®w + w' Aw)

where, in the last line, we have used (3.81). We now use the tricks of adding 0 =
miAmy — myAmy and using I = A~ A, combined with (3.84), as follows:

% (Bt — 25t @w + w'Aw)

1
=5 (BTt — 28t @A Aw + W' Aw)

1
=5 (Bt't—2myAw + w'Aw + myAmy — myAmy)

1 1
=5 (ﬁtTt - mJTvAmN) + §(W —my)"A(w — my).

Here the last term equals term the last term of (3.80) and so it remains to show that
the first term equals the r.h.s. of (3.82). To do this, we use the same tricks again:

1

1
3 (ﬁtTt — m%AmN) =3 (ﬂtTt —2myAmy + m]TvAmN)

('t —2myAA TRt + myy (ol + 5T @) my)
(Bt"t— 2my @ "t3 + fmy & Pmy + amymy)
(

Bt — ®dmpy)t (t — Pmy) + am%mN)

M\QM\HL\D\H[\DM—!

It — @mNH + 2mNmN
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as required.
From (3.80) we see that the integrand of (3.85) is an unnormalized Gaussian and

hence integrates to the inverse of the corresponding normalizing constant, which can
be read off from the r.h.s. of (2.43) as

(2m) M/ | A2,

Using (3.78), (3.85) and the properties of the logarithm, we get

Inp(tje, B) = %(lna —1In(27)) + g(lnﬂ —1In(27)) + ln/exp{—E(w)} dw
= %(lna — In(27)) + g(lnﬁ —In(27)) — E(my) — %ln |A| + % In(27)
which equals (3.86).

We only need to consider the terms of (3.86) that depend on «, which are the first,
third and fourth terms.

Following the sequence of steps in Section 3.5.2, we start with the last of these terms,
1
——1In|A|.
2

From (3.81), (3.87) and the fact that that eigenvectors u,; are orthonormal (see also
Appendix C), we find that the eigenvectors of A to be o+ \;. We can then use (C.47)
and the properties of the logarithm to take us from the left to the right side of (3.88).

The derivatives for the first and third term of (3.86) are more easily obtained using
standard derivatives and (3.82), yielding

1 /M +mT
— | —4+mymy | .
2\ « NTEN
We combine these results into (3.89), from which we get (3.92) via (3.90). The

expression for 7y in (3.91) is obtained from (3.90) by substituting

MO\ g
— \; + «

for M and re-arranging.

The eigenvector equation for the M x M real, symmetric matrix A can be written
as

Au; = nu;
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where {u;} are a set of M orthonormal vectors, and the M eigenvalues {7;} are all
real. We first express the left hand side of (3.117) in terms of the eigenvalues of A.
The log of the determinant of A can be written as

M M
In|A| = lnHm = Zlnm.
i=1 i=1

Taking the derivative with respect to some scalar @ we obtain

We now express the right hand side of (3.117) in terms of the eigenvector expansion
and show that it takes the same form. First we note that A can be expanded in terms
of its own eigenvectors to give

M

T

A= E (IAE
i=1

and similarly the inverse can be written as

M

Thus we have

Mo M
+Tr (Z ;uiug Z 1; (bju]T + ujb;-r)> (144)

where b; = du;/da. Using the properties of the trace and the orthognality of
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eigenvectors, we can rewrite the second term as

M M
1
Tr (Z Euiu? Z 1; (bju;r + ujb;»r)>
j=1

=1

Mo M
= Tr (Z %uiu;r Z 2njujbjT>
j=1

However,

which is constant and thus its derivative w.r.t. o will be zero and the second term in
(144) vanishes.

For the first term in (144), we again use the properties of the trace and the orthognal-
ity of eigenvectors to obtain

M
d 1 dn;
Tr(A'—A ) = —.
r< da > Zni da

i=1

We have now shown that both the left and right hand sides of (3.117) take the same
form when expressed in terms of the eigenvector expansion. Next, we use (3.117) to
differentiate (3.86) w.r.t. a, yielding

d M1 1 1 d
—1 = —- - -m?% ——Tr( A '—A
do np(tjaf) 2 o szmN 2 r< do >
1 /M
= 3 <—m%mN—Tr (A1)>
o
1 (M T 1
= — | ——mympy —
2 NN i +a

which we recognize as the r.h.s. of (3.89), from which (3.92) can be derived as de-
tailed in Section 3.5.2, immediately following (3.89).
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3.22 Using (3.82) and (3.93)—the derivation of latter is detailed in Section 3.5.2—we get
the derivative of (3.86) w.r.t. § as the r.h.s. of (3.94). Rearranging this, collecting the
(-dependent terms on one side of the equation and the remaining term on the other,
we obtain (3.95).

3.23 From (3.10), (3.112) and the properties of the Gaussian and Gamma distributions
(see Appendix B), we get

pt) = / / p(tiw, B)p(w]B) dwp(B) g

_ // (i)m exp {—g(t —ew)(t— @w)}

g\ 8
(27r> |So|1/2exp{—2(w—mO)TSal(w—mO)} dw

I(ag) 6§ 8" exp(—bo) d

T (en M«l::|s E //e p{ (t=&w) (tq)w)}

exp{2<w mo) TS (w mo>}dw

Bt N2 M2 exp(—by 3) A B

T (@) Mil:|s |)1/2// {_W my)" Sy (w—mN)} dw

exp {—g (tTt +m;S; 'my — m%SI_\,lmN)}
BN BMI2 exp(—boB) dB

where we have completed the square for the quadratic form in w, using

my = Sy [Sglmo + @Tt]
Sy’ = B(S;'+@"®)
aNy = Qg+ D)

n=1

N
1 _ _
by = by+ B (mEJFSO lmo — m%SNlmN -+ Zti) .

Now we are ready to do the integration, first over w and then 3, and re-arrange the
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terms to obtain the desired result

bao
pt) = 0 (2m)M/2|S | /2 / 575" exp(—by 3) A
((2m)M+N|Sg|)"/?
1 |SN|1/2 bgo F(aN)
(27r)N/2 \SO|1/2 b?VN T(ag)

3.24 Substituting the r.h.s. of (3.10), (3.112) and (3.113) into (3.119), we get

. N(t|<I>w,ﬁ’1I)N(w|mo,ﬁ’1SO) Gam (ﬁ‘ao,bo)

p(t) = N (wlmy, 3~1Sy) Gam (Blan, by) )

Using the definitions of the Gaussian and Gamma distributions, we can write this as

AN 8
(2) e (-5it-2wr?)

M/2
() 1o 2o (=t = o)™ - ) )

2w
I(ag) ~'bg° B~ exp(—boB)
g\""* g
{<27T> |SN|1/2exp (—2(w—mN)TSN1(W—mN)>

-1
r(aN>—1bﬁvNﬂaN—1exp<bNﬂ>} (46

Concentrating on the factors corresponding to the denominator in (145), i.e. the fac-
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Chapter 4

tors inside {...})™! in (146), we can use (135)—(138) to get

N (wmy, 37'Sy) Gam (Blan, by)

AN 8
<27T> ISy |2 exp( - g(WTS;W —w'Sy'my — mySy'w

+m%s;vlmN)>r<aN>—1b§;NﬂaN—l exp(~bw )

3 M/2 3
N <27T> ISy |2 exp(Q(WTSO_IWJFWT'i’T{’WWTSo_lmo
~w'®"t—m)Sy'w —tTdw + m}sz—vlmN)>

F(aN)flbizVNIBa0+N/2fl

1
exp (— (bo + 3 (mOTSO_ImO — m%S&lmN + tTt)) ﬁ)

™

5\ M2 P
— <2> ISn| "% exp <—2 ((w —mg)"So(w —myp) + [t — ‘I’W||2))
D(an) 03y 8o N2 exp(—bo ).

Substituting this into (146), the exponential factors along with g%+ N/2=1( 3 /27)M/2
cancel and we are left with (3.118).

Linear Models for Classification

4.1

Assume that the convex hulls of {x,,} and {y,,} intersect. Then there exist a point

z such that
zZ = Zanxn = Zﬂmym
n m

where (3, > 0 forall m and > 3, = 1. If {x,} and {y,,} also were to be
linearly separable, we would have that

wliz +wy = E anWrx,, +wy = E an(
n

n

since w'x,, + wy > 0 and the {c,} are all non-negative and sum to 1, but by the
corresponding argument

Wz 4wy = Z B Wy m + wo = Zﬁm(v/&\nym +wp) <0,
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which is a contradiction and hence {x,} and {y,,} cannot be linearly separable if
their convex hulls intersect.

If we instead assume that {x,, } and {y,, } are linearly separable and consider a point
z in the intersection of their convex hulls, the same contradiction arise. Thus no such
point can exist and the intersection of the convex hulls of {x,,} and {y,,} must be
empty.

For the purpose of this exercise, we make the contribution of the bias weights explicit
in (4.15), giving

Ep(W) = %Tr{(XW + 1wy — T)"(XW +1w; — T)}, (147)

where wy is the column vector of bias weights (the top row of W transposed) and 1
is a column vector of N ones.

We can take the derivative of (147) w.r.t. wy, giving
2Nw, + 2(XW — T)T1.
Setting this to zero, and solving for wg, we obtain
wo=t— WTx (148)

where

If we subsitute (148) into (147), we get
1 _ _
Ep(W) = §Tr{(XW +T-XW-T)"(XW+T-XW-T)},

where

T=1t" and X =1x".

Setting the derivative of this w.r.t. W to zero we get
W= (X™X)"'XTT = XIT,
where we have defined X = X — X and T = T — T.
Now consider the prediction for a new input vector x*,
y(x*) = W'x* +wq
Wik +t - W'k
oo /AT
——— (XT> (x* — ). (149)

If we apply (4.157) to t, we get

— 1
T TmT
t —_ — _b.
a Na T'1
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4.3

4.4

4.5

Therefore, applying (4.157) to (149), we obtain
aly(x*) = aTt+a’™T" (ﬁT>T (x* —x)
= a't=-p,
since aTTT = aT(T — T)T = p(1 — 1)T =07
When we consider several simultaneous constraints, (4.157) becomes
At, +b =0, (150)

where A is a matrix and b is a column vector such that each row of A and element
of b correspond to one linear constraint.

If we apply (150) to (149), we obtain

~ ~ T
Ay(x*) = At— ATT (XT ) (x* — %)
= A = —b’

o+

since ATT = A(T — T)T = b1 — b1” = 0". Thus Ay(x*) + b = 0.

NOTE: In the 1% printing of PRML, the text of the exercise refers equation (4.23)
where it should refer to (4.22).

From (4.22) we can construct the Lagrangian function
L=w"(my —m;)+\ (WTW - 1) .
Taking the gradient of L we obtain
VL = my;—m; +2\w (151)
and setting this gradient to zero gives

1
W = —ﬁ(mz — ml)

form which it follows that w o« my — my.
Starting with the numerator on the r.h.s. of (4.25), we can use (4.23) and (4.27) to

rewrite it as follows:

(mg — m1)2 = (WT(m2 — ml))2

= wi(my —m;)(my; —m;)'w
= wT'Spw. (152)
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Similarly, we can use (4.20), (4.23), (4.24), and (4.28) to rewrite the denominator of
the r.h.s. of (4.25):

SHsE = > (o —m) Y (g — ma)’

neCy keCq
2

= Z (WT(Xn - ml))2 + Z (WT(Xk — m2))

neCy keCo
= Z wl(x, —m)(x, —m;)"w

neCy

+ Z WT(Xk —my)(xg — mg)Tw
keCq

= wlSyw. (153)

Substituting (152) and (153) in (4.25) we obtain (4.26).

Using (4.21) and (4.34) along with the chosen target coding scheme, we can re-write
the 1.h.s. of (4.33) as follows:

neCy
Z {(xmle X, M )w Xom m}
meCy
N
<Z X, X NlmlmT> w—Nm;—
Ny
n€eCy
T T N
Z XX, — Nomom™ | w 4+ Nomy—
No
meCy
<Z xnx + Z xmx — (Nim; + Nomy)m T> w
neCy meCs
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We then use the identity

T T T T T
E (x; —my) (x; —myg) = g (xixi —x;mj —mgx; + mkmk)
1€Cy 1€Cy
= E XZ'X? — Nkmkm;g
1€Cy,

together with (4.28) and (4.36) to rewrite (154) as

<SW + Nll’l’llmrlr + NgmngT

1
_(N1m1 + Nng)N(Nlml + NQITIQ))W — N(m1 — mg)

N? N1 N.
<SW + (Nl — ]\;> mlmlT — }V 2 (mlmg + mgml)

N3 T
+ | Ny — —= | mom, |w— N(m; —my)

N
Ni + Ny)N; — N? N N.
— (Sw-l-( ! j\)fl !mym] — }VQ(mlmg—kmgmﬁ
Ny + Ny)Ny — N2
+( Lt ?\)72 2m2mg>w—N(m1—m2)
Ny N
= <SW + j\f 1 (mlm? —mm; —mym; + mgmg)> w
—N(m; — m5,)
Ny, N
— <SW—|— ?\flSB>W—N(m1—m2),

where in the last line we also made use of (4.27). From (4.33), this must equal zero,
and hence we obtain (4.37).

4.7 From (4.59) we have

1 _l—l—e_a—l
l4e@  14e@
B e ¢ B 1

1+e—a_e“+1:

1—0(a) = 1

o(—a).
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The inverse of the logistic sigmoid is easily found as follows

1
14e@

—a

= 1n{1_yy} — a=0"'(y)

Substituting (4.64) into (4.58), we see that the normalizing constants cancel and we
are left with

exp (=4 (c— )" B (x = 1)) (1)

exp (=3 (x = ) " 27 (x = 1)) p(C)

a = In

1
= -3 (XETX —xXp, — pl X+ pl S,

p(C1)
p(C2)

1 ) »(C
= (= p)" 7%= o (B iy — 3 Sp,) + EC;;

—x3Tx + xBp, + py Bx — py Tp,) +In

Substituting this into the rightmost form of (4.57) we obtain (4.65), with w and w
given by (4.66) and (4.67), respectively.

The likelihood function is given by

p{&n, tad{md) = [T T {p(dnlCh)me}

n=1k=1

and taking the logarithm, we obtain

N K
np (bt} {me}) = D 0D b {Inp(nlCr) +nmy} . (155)
n=1 k=1

In order to maximize the log likelihood with respect to m;, we need to preserve the
constraint ) |, m, = 1. This can be done by introducing a Lagrange multiplier A and

maximizing
K
Inp ({¢n, tn}H{m}) + A <Z T — 1) :
k=1
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4.10

Setting the derivative with respect to 7, equal to zero, we obtain

N

t
d o pa=o.
n=1 Tk
Re-arranging then gives
—TE\ = Ztnk = Ng. (156)
Summing both sides over k we find that A\ = — N, and using this to eliminate \ we

obtain (4.159).

If we substitute (4.160) into (155) and then use the definition of the multivariate
Gaussian, (2.43), we obtain

lnp({¢n7 n}|{7rk}
3 S S+ (B, )" G- ). (15T)

n=1 k=1

[\3\}—‘ ~—

where we have dropped terms independent of { s, } and 3.

Setting the derivative of the r.h.s. of (157) wur.t. p;,, obtained by using (C.19), to

zero, we get
N K
D) NFERICAET
n=1 k=1

Making use of (156), we can re-arrange this to obtain (4.161).
Rewriting the r.h.s. of (157) as

1 N K
~50 DDtk (I [B[+Tr [S7 (e, — ) (@ — )]}

n=1 k=1

we can use (C.24) and (C.28) to calculate the derivative w.rt. X 1. Setting this to
zero we obtain

DN | —

N T
SNtk {Z = (¢ — ) (b — )"} =00
k

n=1

Again making use of (156), we can re-arrange this to obtain (4.162), with Sy, given
by (4.163).

Note that, as in Exercise 2.34, we do not enforce that 3 should be symmetric, but
simply note that the solution is automatically symmetric.
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4.11 The generative model for ¢ corresponding to the chosen coding scheme is given by

p(¢|Cr) = Hp bry | Cr)

where
where in turn { ik, } are the parameters of the multinomial models for ¢.
Substituting this into (4.63) we see that

ar = Inp(¢|Ck)p(Ck)

iS]

M:

= Inp(Cx)+ ) Inp(¢,, |Ck)
m=1
M L
- hlp Ck‘ + Z Z¢ml ]-n:uk:ml)
m=1 =1
which is linear in ¢,,;.
4.12 Differentiating (4.59) we obtain
do e
da — (1+e9)

= o { 1 i*:_a }

_ 14+e @ 1
- U(a) 1+e—a_1+e—a

— o(a)(1 - o(a)).

4.13 We start by computing the derivative of (4.90) w.r.t. y,
oF 1—t, tn

- i (158)
Yn 1—yn Yn
_ Yn(L —tn) — tn(1 — yn)
yn(l - yn)
= (159)
yn(l - yn)
_ M (160)

Yn(1 = yn)
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414

4.15

From (4.88), we see that

ayn o 3a(an) _ - B B
da,  Oa, o(an) (1 —0o(an)) = yn(l = yn). (161)
Finally, we have

where V denotes the gradient with respect to w. Combining (160), (161) and (162)
using the chain rule, we obtain

VE = ——Va,

as required.

If the data set is linearly separable, any decision boundary separating the two classes

will have the property
T >0 ift, =1,
W ¢"{ < 0 otherwise.

Moreover, from (4.90) we see that the negative log-likelihood will be minimized
(i.e., the likelihood maximized) when y,, = o (wr@,,) = t, for all n. This will be
the case when the sigmoid function is saturated, which occurs when its argument,
wT ¢, goes to £00, i.e., when the magnitude of w goes to infinity.

NOTE: In PRML, “concave” should be “convex’ on the last line of the exercise.

Assuming that the argument to the sigmoid function (4.87) is finite, the diagonal
elements of R will be strictly positive. Then

vI®TREY = (vI®TR2) (R'/2®v) = |[RV?®v|" > 0

where R!/? is a diagonal matrix with elements (y,, (1 — yn))l/ ?,and thus ®"R® is
positive definite.

Now consider a Taylor expansion of £(w) around a minima, w*,

E(w) = E(w*) + % (w—w*)"H(w—w*)

where the linear term has vanished since w* is a minimum. Now let

w=w"+ v
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4.18

Solutions 4.16-4.18 87

where v is an arbitrary, non-zero vector in the weight space and consider

2
FE
g? =vI Hv > 0.

This shows that E(w) is convex. Moreover, at the minimum of E(w),
Hw-w")=0

and since H is positive definite, H™! exists and w = w* must be the unique mini-
mum.

If the values of the {t,,} were known then each data point for which ¢,, = 1 would
contribute p(t, = 1|¢(x,,)) to the log likelihood, and each point for which ¢,, = 0
would contribute 1 — p(t,, = 1|¢(x,)) to the log likelihood. A data point whose
probability of having ¢,, = 1 is given by m,, will therefore contribute

TP (tn = 1@(xn)) + (1 = m) (1 — p(tn = 1d(xn)))

and so the overall log likelihood for the data set is given by

N
ZW” Inp(t,=1]¢xn)) + (1 —m)In(1—p(tn =1]d(x,))). (163)

This can also be viewed from a sampling perspective by imagining sampling the
value of each ¢,, some number M times, with probability of ¢,, = 1 given by 7,,, and
then constructing the likelihood function for this expanded data set, and dividing by
M . In the limit M — oo we recover (163).

From (4.104) we have

Y etk ek 2

Tak = Zveai - <Z-€ai> :yk(l_yk)v
Y. etk el .

_Zv — "4444444*::‘7ykyj7 ]3# k.
Oa; (>, eai)2

Combining these results we obtain (4.106).

NOTE: In the 1% printing of PRML, the text of the exercise refers equation (4.91)
where it should refer to (4.106).

From (4.108) we have
oF tnk

aynk Ynk .
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4.19

Solution 4.19

If we combine this with (4.106) using the chain rule, we get

oF Z OF Oynk
8a,nj Ynik Gam
K
= - kz_; tnT’;ynk (ks — Ynj)
= Ynj tnj>
where we have used that Vn : ) ptnk = 1.

If we combine this with (162), again using the chain rule, we obtain (4.109).

Using the cross-entropy error function (4.90), and following Exercise 4.13, we have

) Yn — tn
_— = (164)
Yn yn(l - yn)
Also
Va, = ¢, (165)
From (4.115) and (4.116) we have
Oy, 0P(ay) 1
— = =——¢ % 166
8an 8an vV 27’[’ ( )
Combining (164), (165) and (166), we get
N
oF 8yn Yn — In |
VE = = ————c g, (167)
Z ayn aan 1 yn(l - yn) vV 27

In order to find the expression for the Hessian, it is is convenient to first determine

0 Yn—tn _ yn(l - yn) - (yn - tn)(l - Zyn)
Y Yn(1 = Yn) ya (1 —yn)? Ya (1 —yn)?
2
o - 7 (168)
ya (1 —yn)?
Then using (165)-(168) we have
N
0 Yn — tn ] 1
VVE = a. € a"qbnvyn
nZ_1 {8yn |:yn(1 - yn) V21
Yn — tn 1 _a?
- e (—2an)¢,Va,
(1 - yn) \Y4 27 ( )¢ }

e 2,
V2ryn(1 = yn)

— 2ypt, 1 —a2 )
e % — 2an,(Yn — tn)
yn) vV 2’/T

al Yo +1n
o n
B Z< Yn (1

n=1
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4.20 NOTE: In the 1°* printing of PRML, equation (4.110) contains an incorrect leading

4.21

minus sign (‘—’) on the right hand side.

We first write out the components of the M K x M K Hessian matrix in the form

0’E
Owkiawﬂ

N
= Zynk(fkj = Ynj)PniPni-
n=1

To keep the notation uncluttered, consider just one term in the summation over n and
show that this is positive semi-definite. The sum over n will then also be positive
semi-definite. Consider an arbitrary vector of dimension M K with elements wuy;.
Then

u'Hu = Z uriyk (Iej — yj)didrugi
ikl

= > byl — yy)be
ik

2
St - (z bkyk)
k k

where

by, = Z Uki P -

We now note that the quantities y, satisfy 0 < y, < 1and ), v, = 1. Furthermore,
the function f(b) = b? is a concave function. We can therefore apply Jensen’s
inequality to give

D ubh = ukflbr) = f (Z y/d%) = (Z ykbk:>
k k k k

and hence
u'Hu > 0.

Note that the equality will never arise for finite values of a; where ay, is the set
of arguments to the softmax function. However, the Hessian can be positive semi-
definite since the basis vectors ¢,,; could be such as to have zero dot product for a
linear subspace of vectors uy;. In this case the minimum of the error function would
comprise a continuum of solutions all having the same value of the error function.

NOTE: In PRML, (4.116) should read

®(a) = % {1+erf <\;§>}

Note that @ should be @ (i.e. not bold) on the 1.h.s.
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4.22

4.23

We consider the two cases where @ > 0 and a < 0 separately. In the first case, we
can use (2.42) to rewrite (4.114) as

D(a) = / N (6]0,1) d9+/0a \/12?exp (f) de

11 [V 2\ /3
= -4+ — e —u 2du
5t )

- ()

where, in the last line, we have used (4.115).

When a < 0, the symmetry of the Gaussian distribution gives
®(a) =1— P(—a).

Combining this with the above result, we get

D(a) = 1—;{1+erf (-\;‘5)}
- ()

where we have used the fact that the erf function is is anti-symmetric, i.e., erf(—a) =
—erf(a).

Starting from (4.136), using (4.135), we have

p(D)

[r@101p(6) a6
P (D | Ovar)p (Ovar)
/exp <—;(9 - 0MAP>A71(9 - 9MAP)> de

(27T)M/2
|A|1/2 ’

where A is given by (4.138). Taking the logarithm of this yields (4.137).

1

= p(D | Omar)p (Omar)

NOTE: In the 15" printing of PRML, the text of the exercise contains a typographical
error. Following the equation, it should say that H is the matrix of second derivatives
of the negative log likelihood.

The BIC approximation can be viewed as a large N approximation to the log model
evidence. From (4.138), we have

A = —VVInp(D|Oyap)p(Oriar)
= H—VVlnp(aMAp)
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and if p(@) = N (0|m, V), this becomes
A=H+V;"

If we assume that the prior is broad, or equivalently that the number of data points
is large, we can neglect the term V' compared to H. Using this result, (4.137) can
be rewritten in the form

1 _ 1
Inp(D) ~ Inp(D|Omar) — = (Omap — m)V, 1(HMAp —m) — B In |H| + const

2 (169)
as required. Note that the phrasing of the question is misleading, since the assump-
tion of a broad prior, or of large IV, is required in order to derive this form, as well
as in the subsequent simplification.

We now again invoke the broad prior assumption, allowing us to neglect the second
term on the right hand side of (169) relative to the first term.

Since we assume i.i.d. data, H = —VV In p(D|@yap) consists of a sum of terms,
one term for each datum, and we can consider the following approximation:

N
H:}an:Nﬁ
n=1

where H,,, is the contribution from the n** data point and

Combining this with the properties of the determinant, we have
In|H| = In|NH| = In (NM\ﬁ|) — MInN + In|H]|

where M is the dimensionality of 8. Note that we are assuming that H has full rank

M . Finally, using this result together (169), we obtain (4.139) by dropping the In |ﬁ|
since this O(1) compared to In V.

Consider a rotation of the coordinate axes of the M -dimensional vector w such that
w = (w),w,) where w'¢ = w)||¢|, and w_ is a vector of length M — 1. We
then have

[owtontmas = [ [ o (wylol) atwlupatun) duy aw.
= /wawmwm@%

Note that the joint distribution ¢(w 1, w)) is Gaussian. Hence the marginal distribu-
tion g(w) ) is also Gaussian and can be found using the standard results presented in
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Solutions 4.25-4.26

4.25

4.26

Section 2.3.2. Denoting the unit vector
1
e=_—:
]l

we have
q(w)) = N (w le"my,e"Sye).

Defining a = wj|||¢|| we see that the distribution of a is given by a simple re-scaling
of the Gaussian, so that

q(a) = N(a|l¢p ' my, ¢ " Sno)

where we have used ||¢|le = ¢. Thus we obtain (4.151) with p, given by (4.149)
and o2 given by (4.150).

From (4.88) we have that

do

Z = o0 -o)

a=0
1 1 1

Since the derivative of a cumulative distribution function is simply the corresponding
density function, (4.114) gives

de(A
Aol (0, 1)
da |,_,
1

= A\—.

V2T
Setting this equal to (170), we see that

V2
A= Tﬂ or equivalently A\ = g

This is illustrated in Figure 4.9.

First of all consider the derivative of the right hand side with respect to p, making
use of the definition of the probit function, giving

1\ 2 1
— exp ] — .
o 2021 02) [ (A2 1 02)1/2

Now make the change of variable a = p + 0z, so that the left hand side of (4.152)

becomes
e 1 1
P + —_— — =
/ (A + Aoz) (27702)1/2 exp{ 2z }adz

— o0
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where we have substituted for the Gaussian distribution. Now differentiate with
respect to 1, making use of the definition of the probit function, giving

1 [ 1, A )
27T/Ooexp{—Qz —?(,u—l—az) odz.

The integral over z takes the standard Gaussian form and can be evaluated analyt-
ically by making use of the standard result for the normalization coefficient of a
Gaussian distribution. To do this we first complete the square in the exponent

1 A2
—§z2 - 3(u + 02)?

1 1
= —5,22(1 +A20%) — 2\ o — 5)\2/12
1 2 1 Ap2o? 1
- _Z /\2 1 /\2 2\—1 1 )\2 2 -0 7/\2 2.
2[2’4— po(1+X20®) 7" (1+ U)+2(1+)\20_2) g\ K
Integrating over z then gives the following result for the derivative of the left hand
side
1 1 1 1 Mp?o?
N YR T
@m72 (11 A2o?) 12 eXp{ 2 T oY)

1 1 1 Ap?
= eXPY — =55y [ -
(27)1/2 (1 + \202)1/2 P75 (14 \202)

Thus the derivatives of the left and right hand sides of (4.152) with respect to j are
equal. It follows that the left and right hand sides are equal up to a function of o and
A. Taking the limit y — —oo the left and right hand sides both go to zero, showing
that the constant of integration must also be zero.

Neural Networks

5.1

5.2

NOTE: In the 1% printing of PRML, the text of this exercise contains a typographical
error. On line 2, g(+) should be replaced by A(-).

See Solution 3.1.

The likelihood function for an i.i.d. data set, {(x1,t1),..., (Xn,tn)}, under the
conditional distribution (5.16) is given by

N
[TV (taly(xn, w), 57'T) .
n=1
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Solution 5.3

5.3

If we take the logarithm of this, using (2.43), we get

N
Zln/\/(my(xn,w),ﬁ*ll)

n=1

y(xp, w )) (6Y) (t,, — y(xp, W)) + const

l\D\»—t

1\3\\%

y (%, W)||* + const,

i

where ‘const’ comprises terms which are independent of w. The first term on the
right hand side is proportional to the negative of (5.11) and hence maximizing the
log-likelihood is equivalent to minimizing the sum-of-squares error.

In this case, the likelihood function becomes

N
p(T|X,W,2) = HN<tn|Y(XnaW)’ 2)3

n=1

with the corresponding log-likelihood function

In p(T|X, w, )
N 1
_ L o \Ty—lg
=5 (In|X| + K In(27)) — 5 ng_l(tn Vo) X (tn —yn), (171)

where y,, = y(X,, w) and K is the dimensionality of y and t.

If we first treat 3 as fixed and known, we can drop terms that are independent of w
from (171), and by changing the sign we get the error function

1 _
E(W) - §Z<tn _Yn)TE 1(tn _Yn)‘
If we consider maximizing (171) w.r.t. 3, the terms that need to be kept are

——1n|2|—fz Yn TE ( _yn)'

By rewriting the second term we get

N 1 ZN
—1 T
—?ln|2|—§Tr 3 (tn*Yn)(tn*yn)

n=1



5.4

5.5

Solutions 5.4-5.5 95

Using results from Appendix C, we can maximize this by setting the derivative w.r.t.
>~ to zero, yielding

1 N
NZ _yn)T-

Thus the optimal value for 3 depends on w through y,, .

A possible way to address this mutual dependency between w and ¥ when it comes
to optimization, is to adopt an iterative scheme, alternating between updates of w
and X2 until some convergence criterion is reached.

Lett € {0, 1} denote the data set label and let k£ € {0, 1} denote the true class label.
We want the network output to have the interpretation y(x, w) = p(k = 1|x). From
the rules of probability we have

p(t =1]x) = Zpt—1|k (k|x) = (1 — e)y(x, w) + e(1 — y(x, w)).

The conditional probability of the data label is then
p(tlx) = p(t = 1jx)"(1 - p(t = 1|x)""*

Forming the likelihood and taking the negative logarithm we then obtain the error
function in the form

N
= {taIn [(1 = )y(xn, W) + e(1 — y(x,, W))]

(1= t) L = (1= y(xa, W) — (1 — y(x0, W))]}
See also Solution 4.16.

For the given interpretation of yy(x, w), the conditional distribution of the target
vector for a multiclass neural network is

K
p(tlwy, ..., wg) = Hy,tc"
k=1

Thus, for a data set of IV points, the likelihood function will be

N K
p(Tlw,...owi) = ][]

n=1k=1

Taking the negative logarithm in order to derive an error function we obtain (5.24)
as required. Note that this is the same result as for the multiclass logistic regression
model, given by (4.108) .
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5.6 Differentiating (5.21) with respect to the activation a,, corresponding to a particular
data point n, we obtain

oF 1 yn 1 Oy,
— = —ty,— . 172
da,, 8an + (1= )1fyn oa,, (172)
From (4.88), we have
Oyn
—— =yl —yn). 173
90, Y (1= yn) (173)
Substituting (173) into (172), we get
oE _tny( y)+(1_tn)y( Yn)
= Yn —1ln
as required.
5.7 See Solution 4.17.
5.8 From (5.59), using standard derivatives, we get
dtanh et et(e® —e ) n e e (e —e )
da et +e®  (eaqea)? el 4e (g0 4 ema)
et tet  1—e—e? 41
et +e ¢ (ev + e—a)2
_ 6211 —9 + 6—2a
(e +e=2)?

(ea o 6—(1)(6(1 o 6—(1)
(v + e ) (e + e )
= 1—tanh®(a)

5.9 This simply corresponds to a scaling and shifting of the binary outputs, which di-
rectly gives the activation function, using the notation from (5.19), in the form

y =20(a) — 1.

The corresponding error function can be constructed from (5.21) by applying the
inverse transform to y,, and ¢,,, yielding

E(w) = +t —|—y —l—( —;t )ln(l—?)
1§N 1+yn)+ (1 —t,)In(1 )} +NlIn2
= = n —lp) N1 —Yp n
2 L Y Y
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5.11
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where the last term can be dropped, since it is independent of w.

To find the corresponding activation function we simply apply the linear transforma-
tion to the logistic sigmoid given by (5.19), which gives

2
yla) = 20(a)—1= T

1—e @ ea/2 _ efa/Q

l14+e @  ea/24 e/
= tanh(a/2).

From (5.33) and (5.35) we have
ll;-THllZ‘ = uZT)\,u7 = )\7

Assume that H is positive definite, so that (5.37) holds. Then by setting v = u; it
follows that
A\ =u/Hu; >0 (174)

for all values of i. Thus, if H is positive definite, all of its eigenvalues will be
positive.

Conversely, assume that (174) holds. Then, for any vector, v, we can make use of

(5.38) to give
T
viHv = (Z ciui> H (Z cju]-)

( J

T
= <Z ciui> (Z )\jClej)
i J
= Z)\lcf >0

where we have used (5.33) and (5.34) along with (174). Thus, if all of the eigenvalues
are positive, the Hessian matrix will be positive definite.
NOTE: In PRML, Equation (5.32) contains a typographical error: = should be ~.

We start by making the change of variable given by (5.35) which allows the error
function to be written in the form (5.36). Setting the value of the error function
E(w) to a constant value C' we obtain

* 1 2
E(w )—0—52)\1-0% =C.

Re-arranging gives

> el =20 -2B(w*)=C
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Solutions 5.12-5.15

5.12

5.13

5.14

5.15

where C is also a constant. This is the equation for an ellipse whose axes are aligned
with the coordinates described by the variables {«;}. The length of axis j is found
by setting a; = 0 for all 7 # j, and solving for «; giving

which is inversely proportional to the square root of the corresponding eigenvalue.

NOTE: See note in Solution 5.11.

From (5.37) we see that, if H is positive definite, then the second term in (5.32) will
be positive whenever (w — w*) is non-zero. Thus the smallest value which F(w)
can take is £(w*), and so w* is the minimum of E(w).

Conversely, if w* is the minimum of E(w), then, for any vector w # w*, E(w) >
E(w™). This will only be the case if the second term of (5.32) is positive for all
values of w # w* (since the first term is independent of w). Since w — w* can be
set to any vector of real numbers, it follows from the definition (5.37) that H must
be positive definite.

From exercise 2.21 we know that a W x W matrix has W (W + 1)/2 independent
elements. Add to that the W elements of the gradient vector b and we get
W(W +1) WW4+1)+2W  W?4+3W  W(W +3)

2 +W= 2 2 9

We are interested in determining how the correction term

E(wij +¢€) — E(wi; —¢€)

> (175)

0= E'(wij) —
depend on €.
Using Taylor expansions, we can rewrite the numerator of the first term of (175) as

2
E(wij) + eE' (wgj) + %E”(w,-j) + O(€*)

2
— Blwig) + B (wy) — S (wi) + O() = 26B (wy) + O(e).
Note that the €2-terms cancel. Substituting this into (175) we get,

_ 2eE’(w,-j) + 0(63)

0 2e

— E’(wij) = 0(62).

The alternative forward propagation scheme takes the first line of (5.73) as its starting
point. However, rather than proceeding with a ‘recursive’ definition of dyy,/Ja;, we
instead make use of a corresponding definition for da;/0x;. More formally

o= e 3 D B
J

N (r“)l’i 8aj 835,
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5.17

Solutions 5.16-5.17 929

where Oy, /0a; is defined by (5.75), (5.76) or simply as dy;, for the case of linear
output units. We define Oa;/0z; = wj; if a; is in the first hidden layer and otherwise

8aj o 0aj 8al
ox; Z Oa; Ox; (176)
where 5
1
T = k(@) (177)

Thus we can evaluate Ji; by forward propagating da;/0x;, with initial value w;;,
alongside a;, using (176) and (177).

The multivariate form of (5.82) is

N

E = 5 Z(Yn - tn)T(YH - tn)

n=1

The elements of the first and second derivatives then become

OF 10¥n
O*E _ i\f: aynTaYn + (v —t )T *yn
ow;0w; | ow; Ow; Y b ow; Ow; |~

As for the univariate case, we again assume that the second term of the second deriva-
tive vanishes and we are left with

N
H-= Z B,B",
n=1

where B,, is a W x K matrix, K being the dimensionality of y,,, with elements

and

o aynk
(Bn)lk - awl .

Taking the second derivatives of (5.193) with respect to two weights w,- and w,; we

obtain
Oy Oyi
6wraws Z/ {8wr 8ws} p(x) dx

#32 [ {000~ el by @79
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Solutions 5.18-5.20

5.18

5.19

5.20

Using the result (1.89) that the outputs yy(x) of the trained network represent the
conditional averages of the target data, we see that the second term in (178) vanishes.
The Hessian is therefore given by an integral of terms involving only the products of
first derivatives. For a finite data set, we can write this result in the form

oy oy
awrawg N Z Z 5'wkr 310;1

which is identical with (5.84) up to a scaling factor.

If we introduce skip layer weights, U, into the model described in Section 5.3.2, this
will only affect the last of the forward propagation equations, (5.64), which becomes

D
Y = E wkaj E Uki Ty
i=1

Note that there is no need to include the input bias. The derivative w.r.t. ug; can be
expressed using the output {J; } of (5.65),

If we take the gradient of (5.21) with respect to w, we obtain

N OF N
VE(w) = Z 5o Van = > (Un — ta)Van,
n n=1

where we have used the result proved earlier in the solution to Exercise 5.6. Taking
the second derivatives we have

VVE(w) = Z {gyn Va,Vay, + (yn tn)VVan} .

n=1

Dropping the last term and using the result (4.88) for the derivative of the logistic
sigmoid function, proved in the solution to Exercise 4.12, we finally get

VVE Z yn yn vanvan = Z yn y”)bnbg

n=1
where b,, = Va,,.
Using the chain rule, we can write the first derivative of (5.24) as

N K

OE Oay,
T 2 s (179)
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From Exercise 5.7, we know that

oL
aank

= Ynk — tnk-

Using this and (4.106), we can get the derivative of (179) w.r.t. w; as

8ank c’)anl 0? Ank
811)1 aw] ZZ (Zynk Tt — ynt) dw, O, -+ (Ynk — nk)a 8w3>

n=1 k=1

For a trained model, the network outputs will approximate the conditional class prob-
abilities and so the last term inside the parenthesis will vanish in the limit of a large
data set, leaving us with

N E X Oa k@al
sz:nz::z::z:: nk(Ikt — Ynt) 81;- 81;;-'

NOTE: In PRML, the text in the exercise could be misunderstood; a clearer formu-
lation is: “Extend the expression (5.86) for the outer product approximation of the
Hessian matrix to the case of K > 1 output units. Hence, derive a form that allows
(5.87) to be used to incorporate sequentially contributions from individual outputs
as well as individual patterns. This, together with the identity (5.88), will allow the
use of (5.89) for finding the inverse of the Hessian by sequentially incorporating
contributions from individual outputs and patterns.”

From (5.44) and (5.46), we see that the multivariate form of (5.82) is

Consequently, the multivariate form of (5.86) is given by

Hyk = Z Z buib, (180)

n=1 k=1

where b, = Vanr = Vyni. The double index indicate that we will now iterate
over outputs as well as patterns in the sequential build-up of the Hessian. However,
in terms of the end result, there is no real need to attribute terms in this sum to
specific outputs or specific patterns. Thus, by changing the indexation in (180), we
can write it

J
= chc]T (181)
7j=1
where J = NK and
c; = bugrg)
n(j) = —-1HoK+1

k() = (—-1HoK+1
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with © and ® denoting integer division and remainder, respectively. The advantage
of the indextion in (181) is that now we have a single indexed sum and so we can use
(5.87)—(5.89) as they stand, just replacing by, with ¢z, letting L run from 0 to J — 1.

5.22 NOTE: The first printing of PRML contained typographical errors in equation (5.95).
On the rhs., Hyy should be My,. Moreover, the indices j and ;' should be
swapped on the r.h.s.

Using the chain rule together with (5.48) and (5.92), we have

oE, 0E, Oay
6w,(€2j) B 8%@
= O0rzj (182)
Thus,
0*E, _ O0zj

o) dwg),  ow),

and since z; is independent of the second layer weights,

PE, 90y

_ 9B, - OO

ow) owp) T ow?),
0’E,,  Oay

PO i 2
! Day dar guy)
= zjzj My,
where we again have used the chain rule together with (5.48) and (5.92).

If both weights are in the first layer, we again used the chain rule, this time together
with (5.48), (5.55) and (5.56), to get

8En o 8En 8a]-
ow'y 9a; gw')
8En 8ak
= xi —_—
Zk: 8ak 8aj
k

Thus we have

0°E 0 ( )
t— = x; b (a;) E w6 | .
(1) o, (1) " ! J ky =¥
Ow,;” Ow,i wji %

Now we note that x; and w,(f]) do not depend on w](}l),, while h'(a;) is only affected
in the case where j = j'. Using these observations together with (5.48), we get

0’E,, 9 9y O3y,

— " =z h (a;) ] E w'?s + z;h (a;)) E w'? . (183)
WA it SRTH] kj Ok i J kj 5

aw]‘i awj’i’ k k W s
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From (5.48), (5.55), (5.56), (5.92) and the chain rule, we have

86k - Z 32En 8ak/ 8aj/
3wj(v}-), o day, day: da;i 8w§}i),
= al/(a;) Y wi) My (184)
k/

Substituting this back into (183), we obtain (5.94).
Finally, from (182) we have

62En - 85k2j/
1) g,,2) N
Owy;" Owys Qwy;

Using (184), we get

O?E,

g5 szl (a;) S w® My + 660 (a;)2;
o) ow’) ! ) 2wk 2

1%

= xih’(aj) <5k1jj’ -+ Zw](jj)Mkk’> .
k:/

If we introduce skip layer weights into the model discussed in Section 5.4.5, three
new cases are added to three already covered in Exercise 5.22.

The first derivative w.r.t. skip layer weight wu,; can be written

OFE, 0F, Oay oE,
= = i 185
au;ﬂ- Gak 8’11,1” 8ak x ( )

Using this, we can consider the first new case, where both weights are in the skip
layer,

0?E, 0*E, Oay
= X
8uki auw 8ak 8ak/ 8uk@/
= MypziTi,

where we have also used (5.92).

When one weight is in the skip layer and the other weight is in the hidden-to-output
layer, we can use (185), (5.48) and (5.92) to get

O Bn OB, v
Qug; Ol dardaw gu)

= Mkk/zjxi'
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Finally, if one weight is a skip layer weight and the other is in the input-to-hidden
layer, (185), (5.48), (5.55), (5.56) and (5.92) together give

0*E, 0 (0B,
Ou; awﬁ,) B 8w <8ak )
_ Z 0°E,, Oay
Oay, Oay aw(l) i

= xxyh/(aj) E Mkk/wk,j?.
k/

5.24 With the transformed inputs, weights and biases, (5.113) becomes

Z5 = h (Z 17)]'1'51' + 17}]’0) .
Using (5.115)—(5.117), we can rewrite the argument of i(-) on the r.h.s. as

1
7 A b Wi;
zi:aw] (az; +b) +wjo — Z j

= iji:ci + Ezwﬁ + wjo — azw]‘i
(2 K3 (2

= Z Wjid; + wjo-
i

Similarly, with the transformed outputs, weights and biases, (5.114) becomes

?k = E @kaj'-‘ra)ko.

7

Using (5.118)—(5.120), we can rewrite this as

cypr +d = chkaj + cwgo + d
k

C <Z Wi 25 + wk()) + d.

By subtracting d and subsequently dividing by ¢ on both sides, we recover (5.114)
in its original form.

5.25 The gradient of (5.195) is given

VE =H(w — w")
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and hence update formula (5.196) becomes

w(™ =w(™ D — pH(wW ) — w*).

Pre-multiplying both sides with u]T we get

w” = ufw® (186)
= u;-FW(T_l) — pu;-FH(W(T_l) —w")
= WY — ppjuf (w - w)
= i =y (w7 — ), (187)

where we have used (5.198). To show that
wi = {1 = (1 = pny)"}w;

for 7 = 1,2, ..., we can use proof by induction. For 7 = 1, we recall that w(®) = 0
and insert this into (187), giving

1 0 0
wi = w® — pn; (w” —w))
= pnjwj

{1— (1= pnj) }wj.

Now we assume that the result holds for 7 = N — 1 and then make use of (187)

N N—-1 N—-1
wi™ = Wi — oy (Y — )
N-—-1
= 0"V (1~ ) + prjwy

= {1= =)V Y wi(1 = pny) + pnjwy
= {1 =pny) = =)V} w} + pnjw}
= {1-(—pn)"}w;

as required.

Provided that |1 — pn;| < 1 then we have (1 — pn;)” — 0 as 7 — oo, and hence
{1-1-p)V} - land w — w*.

If 7 is finite but ; > (p7)~', 7 must still be large, since 7;p7 > 1, even though
|1 — pn;| < 1.1If 7 is large, it follows from the argument above that w](-T) ~ wy.

If, on the other hand, 7; < (p7) ™, this means that pr); must be small, since pn,; 7 <
1 and 7 is an integer greater than or equal to one. If we expand,

T _

(L—=pn;)" =1—7pn; + O(pn7)
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5.26

and insert this into (5.197), we get

= {1 - (- pny) Y wl
{1 = —=7pn + O(pn})) } wi|

~ oyl < ]

uf

Recall that in Section 3.5.3 we showed that when the regularization parameter (called
a in that section) is much larger than one of the eigenvalues (called ); in that section)
then the corresponding parameter value w; will be close to zero. Conversely, when
« is much smaller than \; then w; will be close to its maximum likelihood value.
Thus « is playing an analogous role to pr.

NOTE: In PRML, equation (5.201) should read

(0

k

Xn

In this solution, we will indicate dependency on x,, with a subscript n on relevant
symbols.

Substituting the r.h.s. of (5.202) into (5.201) and then using (5.70), we get

2
1 O
Q, = 22};(277181:) (188)

2
k i

where J,,x; denoted Jy; evaluated at x,,. Summing (189) over n, we get (5.128).

By applying G from (5.202) to the equations in (5.203) and making use of (5.205)
we obtain (5.204). From this, we see that (3,,; can be written in terms of «,,;, which
in turn can be written as functions of (,,; from the previous layer. For the input layer,
using (5.204) and (5.205), we get

5nj = Z WjiQnj
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Thus we see that, starting from (190), T,, is propagated forward by subsequent appli-
cation of the equations in (5.204), yielding the (3,,; for the output layer, from which
Q,, can be computed using (5.201),

Qn = ; zk: gynk = Z ank

Considering 9%, /0w, s, we start from (5.201) and make use of the chain rule, to-
gether with (5.52), (5.205) and (5.207), to obtain

0y,

0wy

= Z (gynk) g (6nkr2ns)

k

= Z Ank (¢nkrzns + 5nk7‘ans> .
k

The backpropagation formula for computing §,,%, follows from (5.74), which is used
in computing the Jacobian matrix, and is given by

5nkr - h/(anr) Z wlr(snkl-

Using this together with (5.205) and (5.207), we can obtain backpropagation equa-
tions for ¢y, -,

¢nkr - g(Snkr
- g (h/(anr) Z wlrénkl>
l

= 1(anr)Bur Z Wiy Okt + h' (any) Z Wir Priki -
! l

5.27 Ifs(x,£) =x+ &, then
O3k _ Jrien 28
g, — ki€ 5

and since the first order derivative is constant, there are no higher order derivatives.
We now make use of this result to obtain the derivatives of y w.r.t. &;:

Z dy Os Oy 0
351 dsi 06 O0s;

:I’

8 8b 8sk o bi
D¢ agj Zask a¢; Oy =By
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5.28

Using these results, we can write the expansion of E as follows:

B o= g [[[ w60 - orsteimeane) g axar

i / / {y(x) — t}bT&p(€&)p(t|x)p(x) d€ dx dt
" ;// €7 ({y(x) — 1B + bb™) Ep(€)p(tIx)p(x) d€ dx dt.

The middle term will again disappear, since E[£] = 0 and thus we can write E on
the form of (5.131) with

- ;/// €' ({y(x) — t}B +bb") &p(&)p(t[x)p(x) € dx dt.

Again the first term within the parenthesis vanishes to leading order in £ and we are
left with

0 ~ / €7 (bb") £p(€)p(x) € dx
— 5 [ e (g€") (b7 p€)pt) de
= ;/Trace [I(bb™)] p(x)dx

1
= 5 [ vt ax= 5 [ ITyGolPpx) ax

where we used the fact that E[¢€7] = T

The modifications only affect derivatives with respect to weights in the convolutional
layer. The units within a feature map (indexed m) have different inputs, but all share
a common weight vector, w(™)  Thus, errors 6™ from all units within a feature
map will contribute to the derivatives of the corresponding weight vector. In this
situation, (5.50) becomes

aEn aE 80’ ’m) ’m,)
= 0 .
aw§m> ; dal™ j Z

Here ag-m) denotes the activation of the j'" unit in the m'™ feature map, whereas
wgm) denotes the i*® element of the corresponding feature vector and, finally, zj(;”)
denotes the i'" input for the ;' unit in the m'* feature map; the latter may be an

actual input or the output of a preceding layer.

Note that 5j(.m) = 0FE,/ 8a§m) will typically be computed recursively from the ds
of the units in the following layer, using (5.55). If there are layer(s) preceding the
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5.30

5.31

5.32
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convolutional layer, the standard backward propagation equations will apply; the
weights in the convolutional layer can be treated as if they were independent param-
eters, for the purpose of computing the Js for the preceding layer’s units.

This is easily verified by taking the derivative of (5.138), using (1.46) and standard
derivatives, yielding

o _ 1
Ow; Dy meN(wilpk, oF)

S A g o) 1)
J

Combining this with (5.139) and (5.140), we immediately obtain the second term of
(5.141).

Since the 155 only appear in the regularization term, 2(w), from (5.139) we have
OE  0Q
— = A
i Oy,

Using (2.42), (5.138) and (5.140) and standard rules for differentiation, we can cal-
culate the derivative of Q(w) as follows:

(191)

o1 1 Wi — fbj
0 - N (wilp;, 02 J
o1 z@: Zj, N (Wi|uj,’0]2l)ﬂj (wz‘u’] o ) 032'
w; — [
= —Z’yj(wl) lo’JZ J.

Combining this with (191), we get (5.142).

Following the same line of argument as in Solution 5.30, we need the derivative
of Q(w) wurt. ;. Again using (2.42), (5.138) and (5.140) and standard rules for
differentiation, we find this to be

00 1 1 1 (wi — p15)?
doj z@: 2 TN (wilujfﬂ?/)% (27T)1/2{ a5 exp< 207

+; exp <_ (w; — 51)2) (w; —Suj)2 }

0j 207 o}

Combining this with (191), we get (5.143).

NOTE: In the first printing of PRML, there is a leading A missing on the r.h.s. of
equation (5.147). Moreover, in the text of the exercise (last line), the equation of the
constraint to be used should read )", i (w;) = 1 for all 7"

Equation (5.208) follows from (5.146) in exactly the same way that (4.106) follows
from (4.104) in Solution 4.17.
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5.33

5.34

Just as in Solutions 5.30 and 5.31, ; only affect E through Q(w). However, 7; will
affect 7y, for all values of & (not just j = k). Thus we have

Z o002 877;.6. (192)

(977] ory, On;

From (5.138) and (5.140), we get
_ Z Y (wi)
i T
Substituting this and (5.208) into (192) yields

o Vi (w
oy 877] Z {(5 KT — TjTk

= Z{Wj—%‘ (wi)}
%

where we have used the fact that ) |, v (w;) = 1 for all 4.

From standard trigometric rules we get the position of the end of the first arm,
(:cgl), x(Ql)) = (L cos(6y), Ly sin(6y)) .

Similarly, the position of the end of the second arm relative to the end of the first arm
is given by the corresponding equation, with an angle offset of 7 (see Figure 5.18),
which equals a change of sign

(m@, :cg)) = (Lacos(0y + 0y — ), Ly sin(fy + 0 — m))
= — (LQ COS(91 + 92), LQ sin(91 -+ 92)) .

Putting this together, we must also taken into account that 6, is measured relative to
the first arm and so we get the position of the end of the second arm relative to the
attachment point of the first arm as

(.’El, .’EQ) = (L1 COS(Gl) — L2 COS(01 + 92), L1 sin(@l) — L2 sin(@l + 92)) .

NOTE: In the 1% printing of PRML, the Lh.s. of (5.154) should be replaced with
Yk = Yk(tn|xn). Accordingly, in (5.155) and (5.156), 74 should be replaced by
Ynk and in (5.156), t; should be ¢,,;.

We start by using the chain rule to write

aak 87r] 8ak
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Note that because of the coupling between outputs caused by the softmax activation
function, the dependence on the activation of a single output unit involves all the
output units.

For the first factor inside the sum on the r.h.s. of (193), standard derivatives applied
to the n'® term of (5.153) gives

8En Nnj o 7@

=— = . (194)
Om; S N 7
For the for the second factor, we have from (4.106) that
o,
?lir:ﬂ-j(jjk_ﬂ-k)' (195)

Combining (193), (194) and (195), we get

K
aEn Tnj
= = =2 —millik = k)
Oaj jz_; j
K K
= —Z%j(fjk—ﬂk)z—’Ynk-f-Z%j?Tk=7Tk—%ka
j=1 j=1

where we have used the fact that, by (5.154), Z]K:1 Ynj = 1 forall n.

NOTE: See Solution 5.34.
From (5.152) we have

aﬁl = Mkl
and thus
OFE, B 0F,
3% Otk .
From (2.43), (5.153) and (5.154), we get
OB, _ TNok  tol — Mk
aﬂkl Zk’ ﬂ-k”Nnk’ U;%(Xn>
Mkt — tni
= Yok (bnlxn) —5——
o2 (xp)

NOTE: In the 1%* printing of PRML, equation (5.157) is incorrect and the correct
equation appears at the end of this solution ; see also Solution 5.34.

From (5.151) and (5.153), we see that

OE, 0E, 0oy
dag Doy, daf’

(196)
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where, from (5.151),

aUk

—= = gy.. 1
dag Ok (197)

From (2.43), (5.153) and (5.154), we get

L/2
OB, 1 L 2L exp (b = 1l
80’k Zk}’ nk’ UL+1 20_1%‘
1 th _“k||2 ||tn _F‘k||2
+O'L P < 20} op

_ (L IItnukP)
= Tnk - 3 .
(0% Uk:

Combining this with (196) and (197), we get

OE;, [tn — ﬂk”2
=Y | L — ———— | .

dag ~ ™ ( 77

5.37 From (2.59) and (5.148) we have

Eft|x] = tp (t|x) dt

K
-/ 3 mu GO () o ) a

=1

—

Mw

() [ O (thag ), 02 0) e

£
Il
-

Tk (X) g, (%)

WE

e
Il
-

We now introduce the shorthand notation

tp = pi(x) and t= Z 7 (X))t
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Using this together with (2.59), (2.62), (5.148) and (5.158), we get
s*(x) =E [[[t - E[t[x]||*|x] = / [t —t[I°p (t]x) dt
K
_ / (tTt —tTE-tt+ ETE) >N (g (x), 03 (x)) dt
k=1
K
= Y ) {a;i I T e e ETE}
k=1

K
= ) me(x) {oF + |t — 7}
k=1
2

K
= Zﬂk(x) o+
k=1

K
e (x) — Z Ty (%)
l

Making the following substitions from the r.h.s. of (5.167) and (5.171),
X =W U= W)AP A7l = A
y=t A=g' b=yx,wur)—g wuapr L=,
in (2.113) and (2.114), (2.115) becomes
p(t) = N (t\gTWMAP +y(x, Waiap) — & Waap, 871 + gTA_lg)
= N (t\y(x,wMAp), 02) ,
where o2 is defined by (5.173).

Using (4.135), we can approximate (5.174) as
p(Dla, B) ~ p(D|wwmar, 8)p(Waap|)
1
/eXp {2 (W — wyap) ' A (w — WMAP)} dw,

where A is given by (5.166), as p(D|w, 3)p(w|«) is proportional to p(w|D, «, 3).
Using (4.135), (5.162) and (5.163), we can rewrite this as

N

p(Dler, B) = [ [N (tly(xn, Wrtar), 87N (Waiap|0, 07 'T)

n

(27T)W/2
|A|1/2 :

Taking the logarithm of both sides and then using (2.42) and (2.43), we obtain the
desired result.
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5.40 For a K-class neural network, the likelihood function is given by

5.41

Chapter 6

N K

H H Yk (Xru W)tnk

n k

and the corresponding error function is given by (5.24).

Again we would use a Laplace approximation for the posterior distribution over the
weights, but the corresponding Hessian matrix, H, in (5.166), would now be derived
from (5.24). Similarly, (5.24), would replace the binary cross entropy error term in
the regularized error function (5.184).

The predictive distribution for a new pattern would again have to be approximated,
since the resulting marginalization cannot be done analytically. However, in con-
trast to the two-class problem, there is no obvious candidate for this approximation,
although Gibbs (1997) discusses various alternatives.

NOTE: In PRML, the final “const” term in Equation (5.183) should be ommitted.

This solutions is similar to Solution 5.39, with the difference that the log-likelihood
term is now given by (5.181). Again using (4.135), the corresponding approximation
of the marginal likelihood becomes

p(Dle) = p(D|wuar)p(Waar|a)

1
/exp <—2(W—WMAP)TA(W—WMAP)> dw, (198)

where now
A =-VVnp(Dlw)=H+ al.

Performing the integral in (198) using (4.135) and then taking the logarithm on, we
get (5.183).

Kernel Methods

6.1

We first of all note that .J(a) depends on a only through the form Ka. Since typically
the number N of data points is greater than the number M of basis functions, the
matrix K = ®®" will be rank deficient. There will then be M eigenvectors of K
having non-zero eigenvalues, and N — M eigenvectors with eigenvalue zero. We can
then decompose a = a + a; where aﬁaL = 0 and Ka | = 0. Thus the value of
a is not determined by J(a). We can remove the ambiguity by setting a; = 0, or
equivalently by adding a regularizer term

€

T
—a|a|
2 J_
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to J(a) where € is a small positive constant. Then a = aj where a lies in the span

of K = ®®7 and hence can be written as a linear combination of the columns of
®, so that in component notation

M
an = Z ;9 (Xn)
i=1

or equivalently in vector notation

a=du (199)
Substituting (199) into (6.7) we obtain
1 A
J(u) = 5 (KPu- t)" (K®u —t) + 5uTq>TK~I»u
1 A
= 5 (22T Pu- t)" (2@ ®u—t) + Zu' @S Pu (200)

Since the matrix ®*® has full rank we can define an equivalent parametrization
given by

w = ®T®u
and substituting this into (200) we recover the original regularized error function
(6.2).

Starting with an initial weight vector w = 0 the Perceptron learning algorithm in-
crements w with vectors t,,¢p(x,,) where n indexes a pattern which is misclassified
by the current model. The resulting weight vector therefore comprises a linear com-
bination of vectors of the form ¢,,¢(x,,) which we can represent in the form

N
W= antno(xn) (201)
n=1

where «,, is an integer specifying the number of times that pattern n was used to
update w during training. The corresponding predictions made by the trained Per-
ceptron are therefore given by

y(x) = sign(w'¢(x))

N
= sign (Z Ozntn¢(Xn)T¢(X)>

n=1

N
= sign (Z antnk(xn,x)> )

n=1

Thus the predictive function of the Perceptron has been expressed purely in terms
of the kernel function. The learning algorithm of the Perceptron can similarly be
written as

ap — ay + 1
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6.3

6.4

6.5

for patterns which are misclassified, in other words patterns which satisfy

tn (WTd)(Xn)) > 0.

Using (201) together with «,,, > 0, this can be written in terms of the kernel function

in the form
N
tn (Z k:(xm,xn)) >0

m=1

and so the learning algorithm depends only on the elements of the Gram matrix.

The distance criterion for the nearest neighbour classifier can be expressed in terms
of the kernel as follows

D(x,%xn) =[x —x,]?
= x'x+ xen —2x'x,,
= k(x,x) + k(Xn,xp) — 2k(x,x,,)

where k(x,x,) = x'x,,. We then obtain a non-linear kernel classifier by replacing
the linear kernel with some other choice of kernel function.

(571

We can verify this by calculating the determinant of

2—-A -2
-3 4-X )’

setting the resulting expression equal to zero and solve for the eigenvalues ), yielding

An example of such a matrix is

A1 ~5.65 and Ay >~ 0.35,

which are both positive.

The results (6.13) and (6.14) are easily proved by using (6.1) which defines the kernel
in terms of the scalar product between the feature vectors for two input vectors. If
k1 (x,x") is a valid kernel then there must exist a feature vector ¢(x) such that

ki (x,x") = (%) ().

It follows that
cky(x,x') = u(x)Tu(x’)

where
u(x) = ¢*?¢(x)
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and so ck; (x,x”) can be expressed as the scalar product of feature vectors, and hence
is a valid kernel.

Similarly, for (6.14) we can write

FE)k1(x,x) f(x') = v(x)Tv(x)

where we have defined
v(x) = f(x)b(x).

Again, we see that f(x)k;(x,x’)f(x') can be expressed as the scalar product of
feature vectors, and hence is a valid kernel.

Alternatively, these results can be proved be appealing to the general result that
the Gram matrix, K, whose elements are given by k(x,,, X,,), should be positive
semidefinite for all possible choices of the set {x,,}, by following a similar argu-
ment to Solution 6.7 below.

Equation (6.15) follows from (6.13), (6.17) and (6.18).

For (6.16), we express the exponential as a power series, yielding

k(x,x') = exp(k (x,x))

ki (x,x)™
B S

m=0

Since this is a polynomial in k; (x, x") with positive coefficients, (6.16) follows from
(6.15).

(6.17) is most easily proved by making use of the result, discussed on page 295, that
a necessary and sufficient condition for a function k(x,x’) to be a valid kernel is
that the Gram matrix K, whose elements are given by k(X,,, X, ), should be positive
semidefinite for all possible choices of the set {x,,}. A matrix K is positive semi-
definite if, and only if,

a’Ka>0

for any choice of the vector a. Let K; be the Gram matrix for k;(x,x’) and let K,
be the Gram matrix for k2 (x, x"). Then

aT(K; +Kya=a"Kja+a"Kya>0

where we have used the fact that K; and K, are positive semi-definite matrices,
together with the fact that the sum of two non-negative numbers will itself be non-
negative. Thus, (6.17) defines a valid kernel.

To prove (6.18), we take the approach adopted in Solution 6.5. Since we know that
k1(x,x") and ko(x,x") are valid kernels, we know that there exist mappings ¢(x)
and )(x) such that

ki(x,x) = ¢(x)Tp(x)  and  ka(x,x') = h(x) TP (x).
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6.8

6.9

6.10

Hence
k(x,x") = ki(x,x)ka(x,x")
= ¢(x)"o(x)p(x) p(x)

w /
M N
= D m(X)bm(x) D> Un(x)n(x)

m=1 n=1

= 0D b0 () )

m=1n=1

K
= Y px)en(x)
k=1

T

= (%) p(x),

where K = M N and
Pr(%X) = (h—1)oN)+1 (X)P((k-1oN)+1(X),
where in turn © and © denote integer division and remainder, respectively.
If we consider the Gram matrix, K, corresponding to the L.h.s. of (6.19), we have
(K);; = k(xi, x5) = ks (d(x:), d(x5)) = (Ks),;

where K3 is the Gram matrix corresponding to k3(-,-). Since k3(-,-) is a valid
kernel,
uKu = uTK;zu > 0.

For (6.20), let K = X" AX, so that (K);; = x;] Ax;, and consider

u'Ku = u"™XTAXu
= vIAv >0

where , v = Xu and we have used that A is positive semidefinite.

Equations (6.21) and (6.22) are special cases of (6.17) and (6.18), respectively, where
kq(-,-) and kp(-,-) only depend on particular elements in their argument vectors.
Thus (6.21) and (6.22) follow from the more general results.

Any solution of a linear learning machine based on this kernel must take the form

N N
y(x) =) ank(xn,x) = (Z anf(xn)> f(x) = Cf(x).
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As discussed in Solution 6.6, the exponential kernel (6.16) can be written as an
infinite sum of terms, each of which can itself be written as an inner product of
feature vectors, according to (6.15). Thus, by concatenating the feature vectors of
the indvidual terms in that sum, we can write this as an inner product of infinite
dimension feature vectors. More formally,

exp (x"x'/0%) = > ¢, (%) h(x)
= Y)Y

where 9(x)" = [¢y(x)", ¢, (x)7, . ..]. Hence, we can write (6.23) as

where

XTX

() = exp <U) $(x).

NOTE: In the 1% printing of PRML, there is an error in the text relating to this
exercise. Immediately following (6.27), it says: |A| denotes the number of subsets
in A; it should have said: |A| denotes the number of elements in A.

Since A may be equal to D (the subset relation was not defined to be strict), ¢(D)
must be defined. This will map to a vector of 2!/P! Is, one for each possible subset
of D, including D itself as well as the empty set. For A C D, ¢p(A) will have 1s in
all positions that correspond to subsets of A and Os in all other positions. Therefore,
@(A1)T p(As) will count the number of subsets shared by A; and A,. However, this
can just as well be obtained by counting the number of elements in the intersection
of A; and A, and then raising 2 to this number, which is exactly what (6.27) does.

In the case of the transformed parameter 1(0), we have
g(0,x) = Mgy (202)

where M is a matrix with elements

;i

M;; =
00,

(recall that »(0) is assumed to be differentiable) and
gy = VyInp (x|2(0)) .
The Fisher information matrix then becomes

F = Ex[Mgyg,M']
= MEy [gyg,] M". (203)
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6.14

6.15

6.16

Substituting (202) and (203) into (6.33), we get
-1
k(x,x") = giMT (MIEx [gwgi] MT) Mg,
-1 —1.
= gyM' (M") By [gygy] M Mgy
—1
= guEx [gy8)]  8v (204)

where we have used (C.3) and the fact that 1)(6) is assumed to be invertible. Since
6 was simply replaced by 1(8), (204) corresponds to the original form of (6.33).

In order to evaluate the Fisher kernel for the Gaussian we first note that the covari-
ance is assumed to be fixed, and hence the parameters comprise only the elements of
the mean p. The first step is to evaluate the Fisher score defined by (6.32). From the
definition (2.43) of the Gaussian we have

g(p,x) =V, InN (x|p,S) = S7(x — p).
Next we evaluate the Fisher information matrix using the definition (6.34), giving

F = E, [g(p,x)g(n,x)"] = ST'Ex [(x — p)(x —p)"] S

Here the expectation is with respect to the original Gaussian distribution, and so we
can use the standard result

from which we obtain

Thus the Fisher kernel is given by
k(x,x') = (x — p)"S7H(x — p),
which we note is just the squared Mahalanobis distance.

The determinant for the 2 x 2 Gram matrix

(ko) ko)

equals
k($1,x1)k‘(l‘27$2) - If(331,332)27

where we have used the fact that k(x1, x2) = k(x2, 21). Then (6.96) follows directly
from the fact that this determinant must be non-negative for a positive semidefinite
matrix.

NOTE: In the 1% printing of PRML, a detail is missing in this exercise; the text
“where w ¢(x,,) = 0 for all n,” should be inserted at the beginning of the line
immediately following equation (6.98).
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We start by rewriting (6.98) as
W=w|+ W, (205)

where
N
w| = Zan¢(xn)~
n=1

Note that since w ¢(x,,) = 0 for all n,

wiw =0. (206)

Using (205) and (206) together with the fact that wJT_qb(xn) = 0 for all n, we can
rewrite (6.97) as

Jw) = f(wy+wo) o), ..., (w+wi) oxn))
+g (W) +wi) " (w) +w))
= f (wﬁcﬁ(xl), . ,Wﬁcj)(xN)) +yg (WEW” + WJT_WL) .

Since g(+) is monotonically increasing, it will have its minimum w.rt. w, atw, =
0, in which case

N
wW=w| = Z @ (Xn)

as desired.

NOTE: In the 15° printing of PRML, there are typographical errors in the text relating
to this exercise. In the sentence following immediately after (6.39), f(x) should be
replaced by y(x). Also, on the Lh.s. of (6.40), y(x,,) should be replaced by y(x).
There were also errors in Appendix D, which might cause confusion; please consult
the errata on the PRML website.

Following the discussion in Appendix D we give a first-principles derivation of the
solution. First consider a variation in the function y(x) of the form

y(x) = y(x) + en(x).
Substituting into (6.39) we obtain

1 N
Bly+ el = 53 [ (vl +6)+enta +) — 1) v(€) de.

Now we expand in powers of € and set the coefficient of €, which corresponds to the
functional first derivative, equal to zero, giving

N
> [ o+ €)= tahnia + €0(6) a6 = 0. (207)
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6.18

This must hold for every choice of the variation function 7(x). Thus we can choose

n(x) = 6(x - 2)

where (- ) is the Dirac delta function. This allows us to evaluate the integral over £
giving

N N
Z/{y(xn + E) - tn} 6(Xn + 5 - Z)V(ﬁ) dﬁ = Z {y(z) - tn} V(Z - Xn)'

Substituting this back into (207) and rearranging we then obtain the required result
(6.40).

From the product rule we have

With p(t, ) given by (6.42) and
flx—ap,t—t,) =N ([a: — 2, t —t,]7]0, 021)
this becomes
ij:lN ({x — Ty, t —t,]710, 021)
[N N ([z = @, t — t)T]0,021) dt

Zgzlf\/(x — x,]0,0%) N (t — t,]0,02)
ZZ:1N($ — Zp|0,02)

p(tfr) =

From (6.46), (6.47), the definition of f (a:, t) and the properties of the Gaussian dis-
tribution, we can rewrite this as

WE

p(tlr) = k(x, 20)N (t = 00, 0%)
n=1
N
_ Zk(a;,a:n)/\/ (t[tn, o) (208)
n=1
where ,
(s, ) N (z — 2,]0,0?)

- ZZ:H\/’(CE - xm|0,02)‘

We see that this a Gaussian mixture model where k(x, z,,) play the role of input
dependent mixing coefficients.
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Using (208) it is straightforward to calculate various expectations:

Eltlx] = /tp(t|x)dt

N
/tZk(x,xn)/\/ (t[tn, 0?) dt
n=1

N
Zk(az,zn)/t/\/(ttn,a2) dt
n=1

N
Z k(z,x,) ty
n=1

and
varftlz] = E [(t — E[t|a])?]

- / (t — Elt]a])? p(t]a) dt
N
- Zk(x,xn)/(tE[tm})2./\/(ttn,a2) dt

= Z k(z,x,) (0% + 83, — 2t E[t|2] + E[t|2]?)

N
= o —Etl] + ) k(x,z) 1.

n=1

6.19 Changing variables to z,, = x,, — §,, we obtain

N
E = % Z/ [(2n) — tn]” 9(Xpn — 2,) dzy,.

n=1
If we set the functional derivative of E with respect to the function y(x), for some
general value of x, to zero using the calculus of variations (see Appendix D) we have
0F
8y (%)

N
S / [y() — ta] 90 — 20)5(x — 7,) dz,
N

= > lyx) — ta] gl —x) = 0.

Solving for y(x) we obtain

y(x) =D kX, %n)tn (209)



124

Solutions 6.20-6.21

6.20

6.21

where we have defined

g(xn - X)

B an(xn _X).

This an expansion in kernel functions, where the kernels satisfy the summation con-
straint ) k(x,x,) = 1.

k(x,xp)

Given the joint distribution (6.64), we can identify ¢ ; with x, and t with x; in
(2.65). Note that this means that we are prepending rather than appending ¢, to t
and Cp 4, therefore gets redefined as

kT
CN+1:<IC{ CN)

It then follows that
He = 0 Hy = 0 Xp = t
Sww=c¢ Zp=Cyx Xu =35 =kT
in (2.81) and (2.82), from which (6.66) and (6.67) follows directly.

Both the Gaussian process and the linear regression model give rise to Gaussian
predictive distributions p(¢x.1|Xxn 1) so we simply need to show that these have
the same mean and variance. To do this we make use of the expression (6.54) for the
kernel function defined in terms of the basis functions. Using (6.62) the covariance
matrix C then takes the form

1
Cy=—-®®" + 371y (210)
«

where ® is the design matrix with elements ®,;, = ¢x(x,), and Iy denotes the
N x N unit matrix. Consider first the mean of the Gaussian process predictive
distribution, which from (210), (6.54), (6.66) and the definitions in the text preceding
(6.66) is given by

myyr = a Py 1) T (a1 @BT + 57 y) t.
We now make use of the matrix identity (C.6) to give
3T ('@ + 57 Ty) =B (BBT® +aly) BT = afSyD".
Thus the mean becomes

Mmy+y1 = ﬂ¢(XN+1)TSN¢'Tt

which we recognize as the mean of the predictive distribution for the linear regression
model given by (3.58) with my defined by (3.53) and S defined by (3.54).
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For the variance we similarly substitute the expression (210) for the kernel func-
tion into the Gaussian process variance given by (6.67) and then use (6.54) and the
definitions in the text preceding (6.66) to obtain

X (xng1) = o lo(xng) d(xNg) + 67
—a%(xn 1) @7 (' ®BT + 57 Iy) Bd(xni1)
= '+ ¢(XN+1)T(CY_IIM
—a?®" (0 '8BT4 ' Iy)  ®)p(xnya). (21D

We now make use of the matrix identity (C.7) to give
o Ty — o Ty (B0 1)@ + 87 y) Ba Ty
— (aI+387®) ' =Sy,

where we have also used (3.54). Substituting this in (211), we obtain

0% (xn+1) = ; 4+ p(xni1) T Snd(xn )

as derived for the linear regression model in Section 3.3.2.

From (6.61) we have

t.~ B t.~
P <[ tvivir ]) =N < [ tviver ] ‘ 0’C>

with C specified by (6.62).

For our purposes, it is useful to consider the following partition® of C:
_ [ Cw Cua
C= < Cab Caa ’

where C,, corresponds to tx1.. n+r and Cyy corresponds to t; . We can use
this together with (2.94)—(2.97) and (6.61) to obtain the conditional distribution

pn vt n) =N (tvir vzl A7) (212)
where, from (2.78)—(2.80),

A,, = Cuu—CauCy'Cha 213)
Aw = _Aaacabclﬁjl

The indexing and ordering of this partition have been chosen to match the indexing used in
(2.94)—(2.97) as well as the ordering of elements used in the single variate case, as seen in (6.64)—
(6.65).
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6.23

6.24

6.25

6.26

and
Bapp = —AsiAasti. v = CanCp't v (214)

Restricting (212) to a single test target, we obtain the corresponding marginal distri-
bution, where C,,, Cp, and Cy;, correspond to ¢, k and Cp in (6.65), respectively.
Making the matching substitutions in (213) and (214), we see that they equal (6.67)
and (6.66), respectively.

NOTE: In the 1% printing of PRML, a typographical mistake appears in the text

of the exercise at line three, where it should say ... a training set of input vectors
X1, .., XN,
If we assume that the target variables, ¢y,...,tp, are independent given the input

vector, X, this extension is straightforward.

Using analogous notation to the univariate case,
p(tn41|T) = N(tniam(xy 1), o(xn41)T),
where T is a N x D matrix with the vectors t1, ..., t} as its rows,
m(xyy1)t =kTCyT

and o(xx1) is given by (6.67). Note that Cy, which only depend on the input
vectors, is the same in the uni- and multivariate models.

Since the diagonal elements of a diagonal matrix are also the eigenvalues of the
matrix, W is positive definite (see Appendix C). Alternatively, for an arbitrary, non-
Zero vector X,

x"Wx =) "2 > 0.
i
If x"™Wx > 0 and x"Vx > 0 for an arbitrary, non-zero vector x, then

xT(W+V)x =x"Wx +x'Vx > 0.

Substituting the gradient and the Hessian into the Newton-Raphson formula we ob-
tain

arj\‘;‘” = an + (fol + ‘ATN)_1 [tN —ON — C&laN]
= (CR'+Wpy) ' [tn — oy + Wyay]
= CN(I + WNCN)71 [tN —ON + WNaN]
Using (2.115) the mean of the posterior distribution p(an 1|ty ) is given by
k'Cylay.
Combining this with the condition

—1 _*
CNaNZtN—O'N



6.27

Solution 6.27 127

satisfied by a’, we obtain (6.87).

Similarly, from (2.115) the variance of the posterior distribution p(ay 11|t ) is given
by

varfanpi[ty] = c—k'Cr'k+k'CH'Cn(I+ WxCy) 'Ci'k
= c—k'Cy [I-(Cy' +Wy)'Cy' | k
= ¢—k'Cy(Cy +Wy)"Wyk
= c—k"(Wy' +Cpy)'k
as required.

Using (4.135), (6.80) and (6.85), we can approximate (6.89) as follows:

ptsle) = [ ptvlavp(anio) day
p(tylay)p(ay|0)
/exp {—; (ay —ak) H(ay — a?v)} day

(27r)N/2
‘H|1/2 !

Taking the logarithm, we obtain (6.90).

1

= exp(¥(ay))

To derive (6.91), we gather the terms from (6.90) that involve Cy, yielding
1
-3 (aN'Cy'lay +In|Cn|+1In[Wy + Cy'|)
1 1
= —§a7VTC;V1a7V —5n |ICNWn +1.

Applying (C.21) and (C.22) to the first and second terms, respectively, we get (6.91).
Applying (C.22) to the L.h.s. of (6.92), we get

N 1 N N *
_%Z OIn|Wy + Cy'| day, —%ZTY ((WN—FCQI)_l 8W> dak,
n=1 n=1

oax 00, Oay, ) 00;
1 & OW \ Oar,
_ _ § W -1 n
= 5 e Tr <<CN N + I) CN 8@;) aej . (215)

Using the definition of W together with (4.88), we have
dW,,,, do’ (1 —o07)
day da},
= o,(1—03) —a?(1-0})

= on(1—o0p)(1-207)
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Solution 7.1

Chapter 7

and substituting this into (215) we the the r.h.s. of (6.92).

Gathering all the terms in (6.93) involving da}, /06; on one side, we get

day  OCy
(I+CNxWy) 26, ~ 06, (ty —on).

Left-multiplying both sides with (I + Cy'W y) ™!, we obtain (6.94).

Sparse Kernel Machines

71

From Bayes’ theorem we have

p(tx) o< p(x|t)p(t)

where, from (2.249),

1 L1
p00) = - D kX301
n=1

Here NV, is the number of input vectors with label ¢t (1 or —1)and N = N1+ N_;.
d(t,ty) equals 1 if t = t,, and O otherwise. Zj is the normalisation constant for
the kernel. The minimum misclassification-rate is achieved if, for each new input
vector, X, we chose ¢ to maximise p(Z|X). With equal class priors, this is equivalent
to maximizing p(x|t) and thus

1 1
+1 iff — k(x,x;) > — k(%,x;
N'H i:z;H ( ) N_y j:tjz_l ( j)

—1 otherwise.

1
|

Here we have dropped the factor 1/Zj, since it only acts as a common scaling factor.
Using the encoding scheme for the label, this classification rule can be written in the

more compact form
algy
t = sign (Z N—"k(i, Xn)> .

n=1 tn

Now we take k(x,x,,) = X' x,,, which results in the kernel density

1
p(x|t=+1) = Z x'x, =x'x".
+1
nity,=-+1
Here, the sum in the middle experssion runs over all vectors x,, for which ¢,, = +1

and X" denotes the mean of these vectors, with the corresponding definition for the
negative class. Note that this density is improper, since it cannot be normalized.
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However, we can still compare likelihoods under this density, resulting in the classi-
fication rule

i+ ifxTxt > xTx~,
"] —1 otherwise.

The same argument would of course also apply in the feature space ¢(x).

Consider multiplying both sides of (7.5) by v > 0. Accordingly, we would then
replace all occurences of w and b in (7.3) with yw and b, respectively. However,
as discussed in the text following (7.3), its solution w.r.t. w and b is invariant to a
common scaling factor and hence would remain unchanged.

Given a data set of two data points, x; € C; (t; = +1) and x5 € C_ (t2 =
—1), the maximum margin hyperplane is determined by solving (7.6) subject to the
constraints

wixi+b = +1 (216)
wix, +b = —1. (217)

We do this by introducing Lagrange multipliers A and 7, and solving
1
arg min {2||W|2 + A (WTX1 +b— 1) +n (wa2 +b+ 1)} .
w,b

Taking the derivative of this w.r.t. w and b and setting the results to zero, we obtain

0 = W+ x|+ 1%, (218)
0 = At (219)

Equation (219) immediately gives A\ = —n, which together with (218) give

w = \(x; — X3). (220)

For b, we first rearrange and sum (216) and (217) to obtain
2b = —w" (x; + x3).

Using (220), we can rewrite this as

A
b = —5 (Xl — XQ)T (Xl —+ X2)
A
= *5 ( r1I‘X1 — X2TX2) .

Note that the Lagrange multiplier A remains undetermined, which reflects the inher-
ent indeterminacy in the magnitude of w and b.
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Solutions 7.4-7.6

7.4 From Figure 4.1 and (7.4), we see that the value of the margin

1 1
p=-—— andso — = |w|>

Iw P’

From (7.16) we see that, for the maximum margin solution, the second term of (7.7)
vanishes and so we have

1
L(w,b,a) = §HWH2
Using this together with (7.8), the dual (7.10) can be written as
N

1
SIwlP =3 an = Sliwl?,

n

from which the desired result follows.

7.5 These properties follow directly from the results obtained in the solution to the pre-
vious exercise, 7.4.

7.6 Ifp(t=1|y) = o(y), then
p(t=—1ly) = 1-p(t=1ly) = 1 -0o(y) = o(-y),

where we have used (4.60). Thus, given i.i.d. data D = {(t1,%y), ..., (tn,XN)}s
we can write the corresponding likelihood as

N
p(D) = [T o) [ o=v) =T otnwn),

tn=1 by =—

where y,, = y(X,), as given by (7.1). Taking the negative logarithm of this, we get

—Inp(D)

N
—In H U(tnyn)
n=1

N
= Zlno(tnyn)
n=1
N
= Zln(1+exp(*tnyn))>
n=1

2 we

where we have used (4.59). Combining this with the regularization term \||w]|
obtain (7.47).



Solutions 7.7-7.9 131

7.7 We start by rewriting (7.56) as

N

N N
S0 06+ 3 ot pw W = S (il + )
n=1 n=1

an(e + En + WTd)(Xn) + b - tn)

i
IM="

N
= Gnle+ & — whe(x,) — b+ t),
n=1

where we have used (7.1). We now use (7.1), (7.57), (7.59) and (7.60) to rewrite this
as

N N N
L = Z(an + ,un)gn + Z(aﬂ + ﬁn)fn

nzll N N i N R
+§ Z Z - am)¢(X”)T¢(Xm) - Z(Mngn + ﬁnﬁn)
]\7:1 m=1 N . n=1
Z anfn + anﬁn - GZ(an +an) -+ Z(an — an)tn
n;l N n=1 n=1 .
Z Z - am)¢(xn)T¢(Xm) - bZ(a
n=1m=1 n=1

If we now eliminate terms that cancel out and use (7.58) to eliminate the last term,
what we are left with equals the r.h.s. of (7.61).

7.8 This follows from (7.67) and (7.68), which in turn follow from the KKT conditions,
(E9)—(E.11), for tiy,, &n s 1 and &,,, and the results obtained in (7.59) and (7.60).

For example, for p,, and &,,, the KKT conditions are

& =2 0
pn = 0
pnén = 0 (221)
and from (7.59) we have that

Combining (221) and (222), we get (7.67); similar reasoning for 7i,, and /f\n lead to
(7.68).

7.9 From (7.76), (7.79) and (7.80), we make the substitutions

x=w p=0 A= dagla)
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710

y=t A=® b=0 L= /gl

in (2.113) and (2.114), upon which the desired result follows from (2.116) and
(2.117).

We first note that this result is given immediately from (2.113)—(2.115), but the task
set in the exercise was to practice the technique of completing the square. In this
solution and that of Exercise 7.12, we broadly follow the presentation in Section
3.5.1. Using (7.79) and (7.80), we can write (7.84) in a form similar to (3.78)

N/2 M
P, a0, 5) = (ﬁ) WH“ [ewt-pnaw @2

27

where )
E(w) = §||t — dw|* + inAw

and A = diag(a).
Completing the square over w, we get

E(w) = 1

5 (w —m)TS ™ (w —m) + E(t) (224)

where m and X are given by (7.82) and (7.83), respectively, and
E(t) = % (A"t —m"S 'm). (225)
Using (224), we can evaluate the integral in (223) to obtain
[ew (~Bw) dw —exp (-BO} 20N PR @26)

Considering this as a function of t we see from (7.83), that we only need to deal
with the factor exp {—E(t)}. Using (7.82), (7.83), (C.7) and (7.86), we can re-write
(225) as follows

Et) = - (ft"t—-m"S 'm)

(Bt't—ptTeEE'ne 1p)

)

t' (BI- pexe' )t

t' (B1— BR(A + 32" @) '@t

—

(57 T+ 2ATIST)

l\DM—‘l\'JM—‘l\')M—‘l\')M—‘l\')M—‘l\')H—‘

Q/—\
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This gives us the last term on the r.h.s. of (7.85); the two preceding terms are given
implicitly, as they form the normalization constant for the posterior Gaussian distri-
bution p(t|X, a, ).

If we make the same substitutions as in Exercise 7.9, the desired result follows from
(2.115).

Using the results (223)—(226) from Solution 7.10, we can write (7.85) in the form of
(3.86):

N 1o 1 N
lnp(tX, e f) = 5+ 5 Zlnai —E(t) - 5 In[3[ - - In(2m). (227)
By making use of (225) and (7.83) together with (C.22), we can take the derivatives

of this w.r.t o, yielding

1 1 1

0
Inp(tX =_— —%; —-m. 228
o DX @, B) = 5 = SN — o (228)
Setting this to zero and re-arranging, we obtain
o = LmaBi _ 2
! m? m2’

(3 1

where we have used (7.89). Similarly, for 3 we see that

Inpt|X, o, §) = % (g — [t — ®m|? — Tr [2@%]) ) (229)

Using (7.83), we can rewrite the argument of the trace operator as

9
a8

TP = X®TP+[7IZA-[FIZA
= Z(@T®3+A)B - IZA
= (A+p2'®) ('@ +A)5 ' - 5'ZA
(I-AX)3 L (230)

Here the first factor on the r.h.s. of the last line equals (7.89) written in matrix form.
We can use this to set (229) equal to zero and then re-arrange to obtain (7.88).

We start by introducing prior distributions over « and (3,

pley) = Gam (o|ano,bpo),i=1,...,N,
p(B) = Gam(Blago,bso)-

Note that we use an independent, common prior for all ;. We can then combine this
with (7.84) to obtain

p(a, B, 4X) = p(t|X, e, B)p(x)p(3).
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Rather than maximizing the r.h.s. directly, we first take the logarithm, which enables
us to use results from Solution 7.12. Using (227) and (B.26), we get

N
N 1 1 N
Inp(e, 5,1X) = 5111[3 t3 E Ina; — E(t) — 5 In|X| — 511&(277)

N
~NInT(dao) " + Naaonbag + Y ((aao — 1) Ine; — baner:)
i=1

— lnl“(a/go)_1 +apoInbgy + (ago — 1) In B — bgo 3.
Using (228), we obtain the derivative of this w.r.t. c; as

1 1
2Ck7; 2

aa()—l

9 1o pla, B,H1X) =

1
aa' E” — §mf +

— bao-
Q5

Setting this to zero and rearranging (cf. Solution 7.12) we obtain

Ve + 2aa0 -2
- mf — 2ba0

new

K2 )

where we have used (7.89).

For 3, we can use (229) together with (B.26) to get

9 1IN 2 _ T ago—1
aﬁlnp(a,ﬁ,tX)2<ﬁ [t— ®m|*> - Tr [Z® @])+ 5 bso-

Setting this equal to zero and using (7.89) and (230), we get

1 |jt—®m| + 20

ﬁncw a50+2+N—Zi’yi'

7.14 If we make the following substitions from (7.81) into (2.113),
X=W g=m A_1:>E,
and from (7.76) and (7.77) into (2.114)
y=t A=¢x" b=0 L= 31,

(7.90) and (7.91) can be read off directly from (2.115).
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7.16
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Using (7.94), (7.95) and (7.97)—(7.99), we can rewrite (7.85) as follows

np(tX, o, 8) = —{N1n<2w>+1n|c I+ o gTC g

C- TcZ
—|—tT (C; —1 ‘ioz‘pz > t}
@; + i sz Pi

1 —
= 73 {NIn(27) +In|C_;| +t'C_jt}

r Cipipf C” t]

1
4= | =Injl+a; '/ Clp,| +t
2[ | i i Cliwil o+ @TC g,

1 q;
= L(Oéfi) + 5 [ln Q; — ln(ai + Si) + W:|

= L(O{,i) + )\(Ckz)

If we differentiate (7.97) twice w.r.t. o;, we get

2y 11 Lo !
do?  2\a?  (a;+s:)2)°

7

This second derivative must be negative and thus the solution given by (7.101) cor-
responds to a maximum.

Using (7.83), (7.86) and (C.7), we have
o B1- % (A +597R) 9T = 51— 5T

Substituting this into (7.102) and (7.103), we immediately obtain (7.106) and (7.107),
respectively.

As the RVM can be regarded as a regularized logistic regression model, we can
follow the sequence of steps used to derive (4.91) in Exercise 4.13 to derive the first
term of the r.h.s. of (7.110), whereas the second term follows from standard matrix
derivatives (see Appendix C). Note however, that in Exercise 4.13 we are dealing
with the negative log-likelhood.

To derive (7.111), we make use of (161) and (162) from Exercise 4.13. If we write
the first term of the r.h.s. of (7.110) in component form we get

i Z(tn - yn>¢nz = - Z ayn Oay, ¢m

ow; Oa, Ow;

n=1
= _Zyn — Yn ¢n]¢nzu

which, written in matrix form, equals the first term inside the parenthesis on the r.h.s.
of (7.111). The second term again follows from standard matrix derivatives.
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719

Chapter 8

NOTE: In the 1%° printing of PRML, on line 1 of the text of this exercise, “approxi-
mate log marginal” should be “approximate marginal”.

We start by taking the logarithm of (7.114), which, omitting terms that do not depend
on «v, leaves us with

. 1 1 1 2
Inp(w |a)+§ln|2| =—3 <1n|2 |+Z(wz) ai—lnai>,

where we have used (7.80). Making use of (7.113) and (C.22), we can differentiate
this to obtain (7.115), from which we get (7.116) by using v; = 1 — ;2.

Graphical Models

8.1

8.2

We want to show that, for (8.5),

K
Z...Zp(x):Z...an(a:k|pak):1.

T k=1

We assume that the nodes in the graph has been numbered such that z; is the root
node and no arrows lead from a higher numbered node to a lower numbered node.
We can then marginalize over the nodes in reverse order, starting with g

K—1
ZZp(x) = Z...ZP(LEK\D&K) Hp($k|Pak;)
€1 TK TK k=1

Z1

K—1
= > o> I plarlpap),

T rTr-1 k=1

since each of the conditional distributions is assumed to be correctly normalized and
none of the other variables depend on z i . Repeating this process K — 2 times we

are left with
> p(a|0) = 1.

Consider a directed graph in which the nodes of the graph are numbered such that
are no edges going from a node to a lower numbered node. If there exists a directed
cycle in the graph then the subset of nodes belonging to this directed cycle must also
satisfy the same numbering property. If we traverse the cycle in the direction of the
edges the node numbers cannot be monotonically increasing since we must end up
back at the starting node. It follows that the cycle cannot be a directed cycle.
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Comparison of the distribu- ]a ‘ b\ p(a,b) ‘
tion p(a,b) with the product of 6
marginals p(a)p(b) showing that 0] 0| 336.000
these are not equal for the given 0| 1| 264.000
joint distribution p(a, b, c). 1|0 | 256.000
1| 1] 144.000
lalb] pla)p(d) |
0 | 0 | 355200.000
0| 1| 244800.000
1|0 | 236800.000
1| 1| 163200.000

The distribution p(a, b) is found by summing the complete joint distribution p(a, b, ¢)
over the states of ¢ so that

pla,b) = > pla,b,c)
ce{0,1}
and similarly the marginal distributions p(a) and p(b) are given by
pla) = Z Z (a,b,¢) and p(b Z Z (a,b,c). (231)
be{0,1} ce{0,1} ac{0,1} ce{0,1}

Table 1 shows the joint distribution p(a,b) as well as the product of marginals
p(a)p(b), demonstrating that these are not equal for the specified distribution.

The conditional distribution p(a, b|c) is obtained by conditioning on the value of ¢
and normalizing

p(a,b,c)
Zae{o;} Zbe{(m} p(a’a b, C)
Similarly for the conditionals p(a|c) and p(b|c) we have

Z:be{0,1} p(a,b,c)
aef0,1} 2obefo} P(a:b;€)

p(a,ble) =

plale) = 5

and
ZaE{O,l} p(a) b> C)

p(ble) = |
ZaE{Oal} Zbe{o,1} p(a,b,c)

Table 2 compares the conditional distribution p(a, b|c) with the product of marginals
p(ale)p(b|c), showing that these are equal for the given joint distribution p(a, b, ¢)
forbothe¢=0and ¢ = 1.

(232)

In the previous exercise we have already computed p(a) in (231) and p(b|c) in (232).
There remains to compute p(c|a) which is done using

2 befoy Plasb,co)
Zbe{oﬂ} Zc€{0,1} p(a> b, C)

p(cla) =
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Table 2 Comparison of the condi- ’
tional distribution p(a,b|c) with the
product of marginals p(a|c)p(b|c) show-
ing that these are equal for the given
distribution.

p(b|c) evaluated by marginalizing and
conditioning the joint distribution of

Table 8.2.

Solutions 8.5-8.6

alb]c]plabdl) | [a]b]c]plale)p(ble) |
0/01]0 0.400 0/01]0 0.400
0]11]0 0.100 0[11]0 0.100
1{0]0 0.400 110]0 0.400
11110 0.100 11110 0.100
0]0]1 0.277 0]0]1 0.277
0111 0415 0111 0415
11011 0.123 11011 0.123
1111 0.185 1111 0.185

The required distributions are given in Table 3.

Table 3 Tables of p(a), p(cla) and ’ a ‘ p(a) ‘ ’ c ‘ a ‘ p(cla) ‘ “ p(blc)
0 | 600.000 0|0 | 0400 0|0 0.800

1 | 400.000 110 | 0.600 110 0.200

0| 1] 0.600 0| 1] 0400

1|11 0400 1]1] 0.600

Figure 4

8.5

8.6

Multiplying the three distributions together we recover the joint distribution p(a, b, ¢)
given in Table 8.2, thereby allowing us to verify the validity of the decomposition
p(a,b,c) = p(a)p(cla)p(blc) for this particular joint distribution. We can express
this decomposition using the graph shown in Figure 4.

Directed graph representing the joint distribution a c b

given in Table 8.2. ( ) .( ) .( )

NOTE: In PRML, Equation (7.79) contains a typographical error: p(t,|x,,w,3~!)
should be p(t,,|x,, w, 3). This correction is provided for completeness only; it does
not affect this solution.

The solution is given in Figure 5.

NOTE: In PRML, the text of the exercise should be slightly altered; please consult
the PRML errata.

In order to interpret (8.104) suppose initially that o = 0 and that y; = 1 — €
where ¢ < 1 fori = 1,..., K. We see that, if all of the x; = 0 then p(y =
1z1,...,7x) = 0 while if L of the z; = 1 then p(y = 1|zy,...,7x) = 1 — €&
which is close to 1. For e — 0 this represents the logical OR function in whichy =1
if one or more of the z; = 1, and y = 0 otherwise. More generally, if just one of
the x; = 1 with all remaining x;4; = 0 then p(y = 1|x1,...,2x) = p; and so
we can interpret 4; as the probability of y = 1 given that only this one z; = 1. We
can similarly interpret 1, as the probability of y = 1 when all of the z; = 0. An
example of the application of this model would be in medical diagnosis in which y



Figure 5

8.7

Solution 8.7 139

The graphical representation of the relevance
vector machine (RVM); Solution 8.5.

represents the presence or absence of a symptom, and each of the x; represents the
presence or absence of some disease. For the i*® disease there is a probability ji;
that it will give rise to the symptom. There is also a background probability i that
the symptom will be observed even in the absence of disease. In practice we might
observe that the symptom is indeed present (so that y = 1) and we wish to infer the
posterior probability for each disease. We can do this using Bayes’ theorem once we
have defined prior probabilities p(z;) for the diseases.

Starting with g, (8.11) and (8.15) directly gives

=Y wiiElz;] + b = by,
JED

o = Z W E[x;] + by = wa1by + by
je{z1}

and
Mg = Z ws;E[z;] 4+ by = wsz(wa1b1 + b2) + bs.
je{z2}

Similarly for 32, using (8.11) and (8.16), we get

covlzy, ] = Zwljcov[xl,xk} + I v = vy,

ke
COV[QZl,IQ] = Z U}QjCOV[l’l,J?k] + .[121}2 = W21V,
ke{x,}
cov(ry, x3] = Z wsjcov(zy, Tg] + 1303 = waawaq vy,
ke{x2}
cov[zy, xa] = Z W COV|[Ta, T ] + [oov5 = w%m + Vg,
ke{x,}
cov|zs, x3] = Z wsjCcov|xy, x| + logvs = wgg(wglvl + v3)

ke{xs}
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8.8

8.9

8.10

and

cov|zs, x3] = Z wsjcov(zs, i) + Is3vs = w§2(w§1u1 + vg) + v,
ke{zo}

where the symmetry of ¥ gives the below diagonal elements.

a 1L b, c | d can be written as
p(a, b, c|d) = p(ald)p(b, c|d).
Summing (or integrating) both sides with respect to ¢, we obtain
p(a;bld) = p(ald)p(bld)  or  a Il b|d,
as desired.

Consider Figure 8.26. In order to apply the d-separation criterion we need to con-
sider all possible paths from the central node x; to all possible nodes external to the
Markov blanket. There are three possible categories of such paths. First, consider
paths via the parent nodes. Since the link from the parent node to the node x; has its
tail connected to the parent node, it follows that for any such path the parent node
must be either tail-to-tail or head-to-tail with respect to the path. Thus the observa-
tion of the parent node will block any such path. Second consider paths via one of
the child nodes of node x; which do not pass directly through any of the co-parents.
By definition such paths must pass to a child of the child node and hence will be
head-to-tail with respect to the child node and so will be blocked. The third and
final category of path passes via a child node of x; and then a co-parent node. This
path will be head-to-head with respect to the observed child node and hence will
not be blocked by the observed child node. However, this path will either tail-to-
tail or head-to-tail with respect to the co-parent node and hence observation of the
co-parent will block this path. We therefore see that all possible paths leaving node
x; will be blocked and so the distribution of x;, conditioned on the variables in the
Markov blanket, will be independent of all of the remaining variables in the graph.

From Figure 8.54, we see that

p(a;b, ¢,d) = p(a)p(b)p(cla, b)p(d|c).

Following the examples in Section 8.2.1, we see that

pla,b) = Y plabe,d)
c d
p(@)p(b) Y plcla,b) Y p(dle)
c d

= pla)p(b).
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8.12
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Similarly,

> .plab,c,d)
Za Zb Zc p(a, b7 &) d)
p(dla, b)p(a)p(b)
p(d)
# plald)p(b|d)

in general. Note that this result could also be obtained directly from the graph in
Figure 8.54 by using d-separation, discussed in Section 8.2.2.

p(a, b|d> =

The described situation correspond to the graph shown in Figure 8.54 with a = B,
b= F,c=Gandd = D (cf. Figure 8.21). To evaulate the probability that the tank
is empty given the driver’s report that the gauge reads zero, we use Bayes’ theorem

p(D = 0[F = 0)p(F = 0)

p(F = 0[D = 0) = D=0

To evaluate p(D = 0|F = 0), we marginalize over B and G,

p(D=0|F =0)=> p(D=0/G)p(G|B,F =0)p(B) =0.748  (233)
B,G

and to evaluate p(D = 0), we marginalize also over F,

p(D=0)= > p(D=0|G)p(G|B, F)p(B)p(F) = 0.352. (234)
B,G,F

Combining these results with p(F' = 0), we get

p(F =0|D =0) =0.213.
Note that this is slightly lower than the probability obtained in (8.32), reflecting the
fact that the driver is not completely reliable.
If we now also observe B = 0, we longer marginalize over B in (233) and (234), but
instead keep it fixed at its observed value, yielding

p(F =0|D=0,B=0)=0.110

which is again lower than what we obtained with a direct observation of the fuel
gauge in (8.33). More importantly, in both cases the value is lower than before we
observed B = 0, since this observation provides an alternative explanation why the
gauge should read zero; see also discussion following (8.33).

In an undirected graph of M nodes there could potentially be a link between each
pair of nodes. The number of distinct graphs is then 2 raised to the power of the
number of potential links. To evaluate the number of distinct links, note that there



142

Solutions 8.13-8.15

Figure 6

8.13

8.14

8.15

are M nodes each of which could have a link to any of the other M — 1 nodes,
making a total of M (M — 1) links. However, each link is counted twice since, in
an undirected graph, a link from node a to node b is equivalent to a link from node
b to node a. The number of distinct potential links is therefore M (M — 1)/2 and so
the number of distinct graphs is 2/ (M ~1)/2_ The set of 8 possible graphs over three
nodes is shown in Figure 6.

oo do ob oo
Lo o 4

The set of 8 distinct undirected graphs which can be constructed over M = 3 nodes.

The change in energy is

E(zj=+1)— E(z; = -1)=2h—28 Y x; — 2ny,
i€ne(y)

where ne(j) denotes the nodes which are neighbours of z;.

The most probable configuration corresponds to the configuration with the lowest
energy. Since 7) is a positive constant (and h = § = 0) and z;,y; € {—1,+1}, this
will be obtained when x; = y; forallt =1,...,D.

The marginal distribution p(x,_1,x,) is obtained by marginalizing the joint distri-
bution p(x) over all variables except x,,_; and z,,,

P(Trn_1,%n) :Z Z Z Zp(x)

Tn—2 Tn+1 TN

This is analogous to the marginal distribution for a single variable, given by (8.50).

Following the same steps as in the single variable case described in Section 8.4.1,



8.16

8.17

Figure 7
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we arrive at a modified form of (8.52),

paa) = 5

Z wn72,nfl(xn72, xnfl) o [Z ¢1’2(.’E1, x2)] T ’l/)nfl,n(xnfh xn)

o (Tn—1)
Z '(/)n,n+1(l’n,l’n+1> . [Z wN—l,N(xN—hl‘N)] e,
(g (zn)

from which (8.58) immediately follows.

Observing xy = Xy will only change the initial expression (message) for the [3-
recursion, which now becomes

pa(xXn-1) = Yn_1,N(XN-1,XN).

Note that there is no summation over X y. p(x,,) can then be evaluated using (8.54)—
@8.57) forallm=1,...,N —1.

With N = 5 and z3 and x5 observed, the graph from Figure 8.38 will look like in
Figure 7. This graph is undirected, but from Figure 8.32 we see that the equivalent

The graph discussed in Solu- 7\ 7\
tion 8.17. \_/ N\
T T2 T3

Ty Is

directed graph can be obtained by simply directing all the edges from left to right.
(NOTE: In PRML, the labels of the two rightmost nodes in Figure 8.32b should be
interchanged to be the same as in Figure 8.32a.) In this directed graph, the edges
on the path from x5 to x5 meet head-to-tail at x3 and since x3 is observed, by d-
separation x5l x5|z3; note that we would have obtained the same result if we had
chosen to direct the arrows from right to left. Alternatively, we could have obtained
this result using graph separation in undirected graphs, illustrated in Figure 8.27.

From (8.54), we have

1
p(z2) = Eua(iﬂz)ﬂﬁ(xz)- (235)

o (22) is given by (8.56), while for p5(x2), (8.57) gives

pa(xe) = Z V2,3(%2, T3) g (23)

Z3

= 1) 3(wa, T3)pp(Ts3)
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Figure 8

8.18

8.19

The graph on the left is an T T2 z1 T2
undirected tree. If we pick
x4 to be the root node and
direct all the edges in the
graph to point from the root
to the leaf nodes (z1, x> and
xs5), we obtain the directed
tree shown on the right. T4 s T4 T

I3 Zs3

since x5 is observed and we denote the observed value Z3. Thus, any influence that
x5 might have on 113(Z3) will be in terms of a scaling factor that is indepedent of z-
and which will be absorbed into the normalization constant £ in (235) and so

p(132|333,$5) = p(172|333)-

The joint probability distribution over the variables in a general directed graphical
model is given by (8.5). In the particular case of a tree, each node has a single parent,
so pa,, will be a singleton for each node, k, except for the root node for which it will
empty. Thus, the joint probability distribution for a tree will be similar to the joint
probability distribution over a chain, (8.44), with the difference that the same vari-
able may occur to the right of the conditioning bar in several conditional probability
distributions, rather than just one (in other words, although each node can only have
one parent, it can have several children). Hence, the argument in Section 8.3.4, by
which (8.44) is re-written as (8.45), can also be applied to probability distributions
over trees. The result is a Markov random field model where each potential function
corresponds to one conditional probability distribution in the directed tree. The prior
for the root node, e.g. p(x1) in (8.44), can again be incorporated in one of the poten-
tial functions associated with the root node or, alternatively, can be incorporated as a
single node potential.

This transformation can also be applied in the other direction. Given an undirected
tree, we pick a node arbitrarily as the root. Since the graph is a tree, there is a
unique path between every pair of nodes, so, starting at root and working outwards,
we can direct all the edges in the graph to point from the root to the leaf nodes.
An example is given in Figure 8. Since every edge in the tree correspond to a two-
node potential function, by normalizing this appropriately, we obtain a conditional
probability distribution for the child given the parent.

Since there is a unique path beween every pair of nodes in an undirected tree, once
we have chosen the root node, the remainder of the resulting directed tree is given.
Hence, from an undirected tree with /N nodes, we can construct /N different directed
trees, one for each choice of root node.

If we convert the chain model discussed in Section 8.4.1 into a factor graph, each
potential function in (8.49) will become a factor. Under this factor graph model,
p(z,,) is given by (8.63) as

p(xn) = /‘Lfnfl,n—>xn (In)ﬂfn,nJrl_’xn (xn> (236)
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where we have adopted the indexing of potential functions from (8.49) to index the
factors. From (8.64)—(8.66), we see that

Hfr—1 n—an (wn) = Z wnfl,n(xnflvxn)ﬂmn_lﬂfn—l,n (xnfl) (237)
Tn—1
and
/’l’fn,n+1_’mn (xn) = Z ¢n,n+1(xn7 $n+1);u$n+1—>fn,n+1(anrl)' (238)
Tn+1

From (8.69), we further see that

/Ll’n—lﬂfn—l,n ("Eﬂfl) = N‘fn—z,n—l*ﬁvn—l (.CUn,l)

and
/’LIn+1*>fn,n+1 (xn-i-l) = an+l,n+24’zn+l (xn+1)-

Substituting these into (237) and (238), respectively, we get

/'I’fnflﬂz_’xn(xn) = Z wn—l,n(mn—17xn)/’tfn72.n71—>1'7171(mn—1) (239)

Tn—1

and

/Lfn,n+14'In (In) = Z d}n,n-i-l(‘rn?xn+1)“fn+1,n+2*>ln+1 (xn+1)~ (240)

Tn+1

Since the messages are uniquely identified by the index of their arguments and
whether the corresponding factor comes before or after the argument node in the
chain, we can rename the messages as

Hfnomn—1—Tn_1 (In—1> = ,uoc(wn—l)

and
Hfrginiz—Tnit (In—i-l) = Kp (‘TTH-l)‘

Applying these name changes to both sides of (239) and (240), respectively, we re-
cover (8.55) and (8.57), and from these and (236) we obtain (8.54); the normalization
constant 1/Z can be easily computed by summing the (unnormalized) r.h.s. of (8.54).
Note that the end nodes of the chain are variable nodes which send unit messages to
their respective neigbouring factors (cf. (8.56)).

We do the induction over the size of the tree and we grow the tree one node at a time
while, at the same time, we update the message passing schedule. Note that we can
build up any tree this way.

For a single root node, the required condition holds trivially true, since there are no
messages to be passed. We then assume that it holds for a tree with /N nodes. In the
induction step we add a new leaf node to such a tree. This new leaf node need not
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8.21

8.22

to wait for any messages from other nodes in order to send its outgoing message and
so it can be scheduled to send it first, before any other messages are sent. Its parent
node will receive this message, whereafter the message propagation will follow the
schedule for the original tree with N nodes, for which the condition is assumed to
hold.

For the propagation of the outward messages from the root back to the leaves, we
first follow the propagation schedule for the original tree with N nodes, for which
the condition is assumed to hold. When this has completed, the parent of the new
leaf node will be ready to send its outgoing message to the new leaf node, thereby
completing the propagation for the tree with /N + 1 nodes.

NOTE: In the 1% printing of PRML, this exercise contains a typographical error. On
line 2, f,(xs) should be fs(xs).

To compute p(xs), we marginalize p(x) over all other variables, analogously to
(8.61),

p(x) = 3 px).

x\xs

Using (8.59) and the defintion of F(z, X,) that followed (8.62), we can write this

Yorx) I II Filenxi)

e\ iene(f.) jEne(z:)\ fx
) IT Y2 T Einxs)

i€ne(fs) x\xs jene(wi)\ fs

fs(Xs) H Mmiefs(xi)a

i€ne(fs)

p(xs)

where in the last step, we used (8.67) and (8.68). Note that the marginalization over
the different sub-trees rooted in the neighbours of f; would only run over variables
in the respective sub-trees.

Let X, denote the set of variable nodes in the connected subgraph of interest and
X, the remaining variable nodes in the full graph. To compute the joint distribution
over the variables in X,, we need to marginalize p(x) over Xj,

p<Xa) = ZP(X)'

We can use the sum-product algorithm to perform this marginalization efficiently, in
the same way that we used it to marginalize over all variables but z,, when computing
p(z,,). Following the same steps as in the single variable case (see Section 8.4.4),
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we can write can write p(X,) in a form corresponding to (8.63),

p(Xa)

[ I D P, X0

seneX, X

[5G TT e (o). (241)

Sa s€neX,

Here, s, indexes factors that only depend on variables in X, and so X;, C X,
for all values of s,; s indexes factors that connect X, and X; and hence also the
corresponding nodes, s € X,. Xs C X} denotes the variable nodes connected to
xs via factor fy. The messages (t¢, ., (xs) can be computed using the sum-product
algorithm, starting from the leaf nodes in, or connected to nodes in, X;. Note that the
density in (241) may require normalization, which will involve summing the r.h.s. of
(241) over all possible combination of values for X,.

This follows from the fact that the message that a node, x;, will send to a factor f,
consists of the product of all other messages received by z;. From (8.63) and (8.69),
we have

ple) = JI mp—ei@)

s€ne(x;)
= w—n@) ] spea @)
t€ne(x;)\ fs

NOTE: In PRML, this exercise contains a typographical error. On the last line,
f(xs) should be f,(xs).

See Solution 8.21.
NOTE: In the 15" printing of PRML, equation (8.86) contains a typographical error.

On the third line, the second summation should sum over x5, not 5. Furthermore,
in equation (8.79), “/iz, ¢, (no argument) should be “fi,, 7, (x2)”.
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Starting from (8.63), using (8.73), (8.77) and (8.81)—(8.83), we get
5(1'1) = /’Lfa_’l'l (‘Tl)
> fal@r, ) pta, g, (22)

Z f(z T, 1'2)be—>$2 (xQ):uf — T2 (.’132)

Zfa T1, T2 Zfb Zo, X3 ch X, Tq)
Zzzfa(xl’ab o 332,$3)fc(x2,x4)

To T3 Ta

2.2 2 )

Similarly, starting from (8.63), using (8.73), (8.75) and (8.77)—(8.79), we get

5(1‘3) = :u’fb—>$3<’1‘3)
Zfb($27$3)ﬂm2—>fb($2)

T2

Zfb Lo, T3) L f, — o (T2) Hfo ey (T2)
Zfb T3, T3 Zfa L1, %2 ch T3, T4)
ZZZfa 1, 22) fo (T2, 73) fe (22, 24)

1 T2 T4

= 2.2 0 0

L1 T2 T4

Finally, starting from (8.72), using (8.73), (8.74), (8.77), (8.81) and (8.82), we get

plrr,w2) = fa(zy, m2) e, — g, (T1) oy g, (T2)
= fal@1, 22)pfy—a, (T2)pfo -y (T2)

= fa(r1,72) Zfb(@@:s) Z fo(z2,74)
= D> falwn, @) folws, w5) fo(ws, )

T3 T4

= > > bx)

T3 Xy
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We start by using the product and sum rules to write

p(a,x0) = play|za)p(ea) = Y p(x) (242)

X\ab

where x\ o, denote the set of all all variables in the graph except z,, and zy.

We can use the sum-product algorithm from Section 8.4 4 to first evaluate p(z,), by
marginalizing over all other variables (including x;). Next we successively fix x,
at all its allowed values and for each value, we use the sum-product algorithm to
evaluate p(xp|x,), by marginalizing over all variables except x;, and x,, the latter
of which will only appear in the formulae at its current, fixed value. Finally, we use
(242) to evaluate the joint distribution p(z, ).

An example is given by

l2=0 z=1 x=2
y=20 0.0 0.1 02
y=1| 00 01 02
y=2 0.3 0.1 0.0

for whichz = 2 and y = 2.

If a graph has one or more cycles, there exists at least one set of nodes and edges
such that, starting from an arbitrary node in the set, we can visit all the nodes in the
set and return to the starting node, without traversing any edge more than once.

Consider one particular such cycle. When one of the nodes n; in the cycle sends a
message to one of its neighbours ns in the cycle, this causes a pending messages on
the edge to the next node 73 in that cycle. Thus sending a pending message along an
edge in the cycle always generates a pending message on the next edge in that cycle.
Since this is true for every node in the cycle it follows that there will always exist at
least one pending message in the graph.

We show this by induction over the number of nodes in the tree-structured factor
graph.

First consider a graph with two nodes, in which case only two messages will be sent
across the single edge, one in each direction. None of these messages will induce
any pending messages and so the algorithm terminates.

We then assume that for a factor graph with NV nodes, there will be no pending
messages after a finite number of messages have been sent. Given such a graph, we
can construct a new graph with NV + 1 nodes by adding a new node. This new node
will have a single edge to the original graph (since the graph must remain a tree)
and so if this new node receives a message on this edge, it will induce no pending
messages. A message sent from the new node will trigger propagation of messages
in the original graph with N nodes, but by assumption, after a finite number of
messages have been sent, there will be no pending messages and the algorithm will
terminate.
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Chapter 9

Mixture Models and EM

9.1

9.2

9.3

9.4

Since both the E- and the M-step minimise the distortion measure (9.1), the algorithm
will never change from a particular assignment of data points to prototypes, unless
the new assignment has a lower value for (9.1).

Since there is a finite number of possible assignments, each with a corresponding
unique minimum of (9.1) w.r.t. the prototypes, {u,, }, the K-means algorithm will
converge after a finite number of steps, when no re-assignment of data points to
prototypes will result in a decrease of (9.1). When no-reassignment takes place,
there also will not be any change in {t,}.

Taking the derivative of (9.1), which in this case only involves x,,, w.r.t. i, we get
oJ
— =2 — = .
E k(X0 — i) = 2(1)

Substituting this into (2.129), with u, replacing 0, we get

Pt = 4 (i — p?)

where by (9.2), u¢!® will be the prototype nearest to x,, and the factor of 2 has been
absorbed into 7,,.

From (9.10) and (9.11), we have

x) =Y p(x[z)p(z) = Y [ (N (Xl Zh))*

z k=1

Exploiting the 1-of-K representation for z, we can re-write the r.h.s. as

ZH (TN (x| g, Zi)) Ik? _Z”J (xlps, 35)

j=1 k=1
where Ij; = 1if kK = j and O otherwise.

From Bayes’ theorem we have
p(X|6)p(6)
p(0|1X) = .
(01X) p(X

To maximize this w.r.t. @, we only need to consider the numerator on the r.h.s. and
we shall find it more convenient to operate with the logarithm of this expression,

Inp(X|6) + Inp(0) (243)

where we recognize the first term as the L.h.s. of (9.29). Thus we follow the steps
in Section 9.3 in dealing with the latent variables, Z. Note that the second term in
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(243) does not involve Z and will not affect the corresponding E-step, which hence
gives (9.30). In the M-step, however, we are maximizing over 8 and so we need to
include the second term of (243), yielding

Q(0)6°'Y) +1np(8).

Consider any two of the latent variable nodes, which we denote z; and z,,. We wish
to determine whether these variables are independent, conditioned on the observed
data x,...,xx and on the parameters p, 2 and 7. To do this we consider every
possible path from z; to z,,. The plate denotes that there are N separate copies of
the notes z,, and x,,. Thus the only paths which connect z; and z,,, are those which
go via one of the parameter nodes p, 3 or 7. Since we are conditioning on these
parameters they represent observed nodes. Furthermore, any path through one of
these parameter nodes must be tail-to-tail at the parameter node, and hence all such
paths are blocked. Thus z; and z,, are independent, and since this is true for any pair
of such nodes it follows that the posterior distribution factorizes over the data set.

In this case, the expected complete-data log likelihood function becomes
N K
Ez [np(X, Z|p, 2, ) Z > ) {In g + N (x|, 2)}
n=1 k=1

where (2, ) is defined in (9.16). Differentiating this w.r.t. ¥~ ', using (C.24) and
(C.28), we get

Ny
2

l\')\»—l

N K
Z Z Znk) — py) (X — Hk)T
n=1 k=1

where we have also used that Zle v¥(znk) = 1 for all n. Setting this equal to zero
and rearranging, we obtain

1 N K
Y= N Z Z'Y(an)(xn — ) (X0 — Nk)T'

Consider first the optimization with respect to the parameters {p;,, X, }. For this we
can ignore the terms in (9.36) which depend on In 7. We note that, for each data
point n, the quantities z,, are all zero except for a particular element which equals
one. We can therefore partition the data set into K groups, denoted X, such that all
the data points x,, assigned to component & are in group Xy. The complete-data log
likelihood function can then be written

K
np(X,Z | p, X, 7) = Z{ Z ln/\/(xn|u,€,2k)}.

k=1 \(neXy
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Solutions 9.8-9.9

9.8

9.9

This represents the sum of K independent terms, one for each component in the
mixture. When we maximize this term with respect to p;, and 35 we will simply
be fitting the k' component to the data set X, for which we will obtain the usual
maximum likelihood results for a single Gaussian, as discussed in Chapter 2.

For the mixing coefficients we need only consider the terms in In 75 in (9.36), but
we must introduce a Lagrange multiplier to handle the constraint ) _, 7, = 1. Thus

we maximize
N K K
Zzznklnﬂk + A <Z7Tk — 1)

n=1 k=1 k=1
which gives

Multiplying through by 75, and summing over k we obtain A = — N, from which we

have
T = — Ik = —
NN

where N}, is the number of data points in group Xy,.

Using (2.43), we can write the r.h.s. of (9.40) as

N K
1 J—
9 Z 27('2"1)(’(71 - Nj)TE 1(Xn - Mj) + const.,

n=1 j=1

where ‘const.” summarizes terms independent of 4 (for all 7). Taking the derivative
of this w.rt. p;,, we get

N

= ) (B = 2 x)

n=1
and setting this to zero and rearranging, we obtain (9.17).
If we differentiate (9.40) w.rt. 3, ', while keeping the v(z,,) fixed, we get

o lnp(X, 2l B )] = D7D un) (B~ e~ ) — 1))
n=1 k=1

where we have used (C.28). Setting this equal to zero and rearranging, we obtain
(9.19).

For 7, we add a Lagrange multiplier term to (9.40) to enforce the constraint

K
EZ:WkZZI
k=1



9.10

Solution 9.10

yielding
K
Ez [Inp(X, Z|p, B, 7)] + A (Z T — 1) :
k=1

Differentiating this w.r.t. T, we get

N,
Zv Znk) f—‘-)\—fk—l—)\
Tk

where we have used (9.18). Setting this equal to zero and rearranging, we get

Nk = —7Tk/\.

Summing both sides over k, making use of (9.9), we see that —\ = N and thus

T = N.

For the mixture model the joint distribution can be written

P(Xa,Xp) g Tkp(Xa, Xp k).

We can find the conditional density p(x;|x,) by making use of the relation

P(Xa, Xp)

Pk = )

For mixture model the marginal density of x, is given by

K
= Z ﬁkp(Xa“{Z)
k=1

where
p(xalk) = / p(xa, x0lk) dxy.

Thus we can write the conditional density in the form

K
Zﬂ_k}p(xaa Xb’k)

p(Xb|Xa) = =L

K
Z ij(XaU)
j=1

153
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9.11

9.12

Now we decompose the numerator using
p(Xm Xb|k) = p(xb|xa7 k)p(xa‘k)

which allows us finally to write the conditional density as a mixture model of the
form

p(xy[xa) = Z Akp(%p]Xa, k) (244)

where the mixture coefficients are given by

71'kp(xa|k)

Z 7T]p Xa |.7

and p(xp|Xq, k) is the conditional for component k.

Ak = p(k[xa) = (245)

As discussed in Section 9.3.2, y(z,1) — rnr as € — 0. X = €l for all k£ and
are no longer free parameters. 7 will equal the proportion of data points assigned
to cluster £ and assuming reasonable initialization of 7 and {p; }, 7 will remain
strictly positive. In this situation, we can maximize (9.40) w.r.t. { 1, } independently
of m, leaving us with

N K N K
ZZTW InN (x| py, €I) = ZZT <—|xn uk||2> + const.

n=1 k=1 n=1 k=1

which equal the negative of (9.1) upto a scaling factor (which is independent of

{4 h)-

Since the expectation of a sum is the sum of the expectations we have

Z B [x Z Ly

where E[x] denotes the expectation of x under the distribution p(x|k). To find the
covariance we use the general relation

covlx] = E[xx"] — E[x|E[x]"
to give
covlx] = E[xx'] - E[x]E[x]"
— Zﬂ'k]Ek xx"] — Ex|E[x]"

= Zﬂ'k {Zk + prpy } — EX]E[x]T.
k=1
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9.13 The expectation of x under the mixture distribution is given by

Z mREx[x Z T b

Now we make use of (9.58) and (9.59) to give

where we have used 7, = Ny /N, and the fact that (2, ) are posterior probabilities
and hence >, 7(znk) = 1.

Now suppose we initialize a mixture of Bernoulli distributions by setting the means
to a common value ), = g for k = 1,. .., K and then run the EM algorithm. In the
E-step we first compute the responsibilities which will be given by

TEP(X Tk
V(an): — p( n|lj'k> _ — =y

Zﬂjp(xn‘y’j) Zﬂ-j
=1 =1

and are therefore independent of n. In the subsequent M-step the revised means are
given by

= X

where again we have made use of 7, = Nj/N. Note that since these are again the
same for all k& it follows from the previous discussion that the responsibilities on the
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9.14

9.15

9.16

next E-step will again be given by y(z,x) = 7 and hence will be unchanged. The
revised mixing coefficients are given by

N

% D A(znk) = m

n=1

and so are also unchanged. Thus the EM algorithm has converged and no further
changes will take place with subsequent E and M steps. Note that this is a degenerate
solution in which all of the components of the mixture are identical, and so this
distribution is equivalent to a single multivariate Bernoulli distribution.

Forming the product of (9.52) and (9.53), we get

H (¢ ey, ) Hﬂ = H (x| ) i)™ -

k=1

If we marginalize this over z, we get

K K K
2L wdmm™ = 3 T eelme)™

z k=1 k=1
K
= E Uy X|H]

where we have exploited the 1-of- K coding scheme used for z.

.
—

This is easily shown by calculating the derivatives of (9.55), setting them to zero and
solve for ;. Using standard derivatives, we get

0 al Tni 1 — 2n
Ez|lnp(X,Z|p, ™) = Y(2zn o m
Opuri z{lnp( )] z:: g <Mki 1- Mm)
_ Z an: Tni — Z Y an),ukz
/“m(l - /“ﬂ)

Setting this to zero and solving for p;, we get

o Zn 'Y(an>xni

Hii =
Zn '7<an)
which equals (9.59) when written in vector form.

This is identical with the maximization w.r.t. 7, in the Gaussian mixture model,
detailed in the second half of Solution 9.9.
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9.17

9.18
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This follows directly from the equation for the incomplete log-likelihood, (9.51).
The largest value that the argument to the logarithm on the r.h.s. of (9.51) can have

is 1, since Vn, k : 0 < p(x,|py) < 1,0 < 7 < 1 and ZkK 7, = 1. Therefore, the
maximum value for In p(X|u, 7) equals 0.

From Solution 9.4, which dealt with MAP estimation for a general mixture model,
we know that the E-step will remain unchanged. In the M-step we maximize

Q(6,6°) +1np()

which in the case of the given model becomes,

N K D
Z Y(2nk) {lﬂm + Z [@ni In pgs + (1 — 245) In(1 — Mki)]}

n=1 k=1 i=1
K D K

+3 > {(a; = Vg + (b — )In(L — pji)} + Y (o —1)Inm  (246)
j=14'=1 =1

where we have used (9.55), (2.13) and (2.38), and we have dropped terms indepen-
dent of {p;,} and 7. Note that we have assumed that each parameter jix; has the
same prior for each ¢, but this can differ for different components k.

Differentiating (246) w.r.t. uy; yields

al Tni 1 — Ty ay 1 — by
Z V(an) - + -
M 1 — g Mri 1 — pgg

n=1

_Nkfki-l-a—l Np — Ngxp; +b—1
Hki 1 — i

where N}, is given by (9.57) and T} is the i*" element of X defined in (9.58). Setting
this equal to zero and rearranging, we get

NiZTpi +a—1
Hii =

— . 247
Ny4+a—1+b—-1 (247)

Note that if a;, = b, = 1 for all k, this reduces to the standard maximum likelihood
result. Also, as N becomes large, (247) will approach the maximum likelihood
result.

When maximizing w.r.t. 7, we need to enforce the constraint . Tk = 1, which
we do by adding a Lagrange multiplier term to (246). Dropping terms independent
of 7t we are left with

Z ’Y(an)lnﬂ'k‘f‘Z(Oél—l)hlﬂ'l-i-/\(Zﬂ'j—l).

n=1 k=1 =1 Jj=1
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9.19

Differentiating this w.r.t. T, we get

N +ap—1
Tk

+A

and setting this equal to zero and rearranging, we have
N +ar —1=—\m.

Summing both sides over k, using Zk 7, = 1, we see that —\ = N + o — K,
where « is given by (2.39), and thus

N+ ap —1
_ kTR o 248
™ Nt - K (248)

Also in this case, if a, = 1 for all k£, we recover the maximum likelihood result
exactly. Similarly, as IV gets large, (248) will approach the maximum likelihood
result.

As usual we introduce a latent variable z,, corresponding to each observation. The
conditional distribution of the observed data set, given the latent variables, is then

p(X|Z, p) Hp Xp| )"

Similarly, the distribution of the latent variables is given by

p(Z|m) = H T

The expected value of the complete-data log likelihood function is given by

N ok D M
ZZV Znk {lnﬁk-i—zzxmjlnﬂkij}

n=1 k=1 i=1 j=1
where as usual we have defined responsibilities given by

'7(an) = E[an] = M

Z ij(xn“‘j)
j=1

These represent the E-step equations.

To derive the M-step equations we add to the expected complete-data log likelihood
function a set of Lagrange multiplier terms given by

(m) S ()

k=1 i=1
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to enforce the constraint ) |, 7, = 1 as well as the set of constraints

M
Z Mrij = 1
j=1

for all values of 7 and k. Maximizing with respect to the mixing coefficients 7, and
eliminating the Lagrange multiplier A in the usual way, we obtain

Ng
T — ——

N

where we have defined N
Ny = Z Y(2nk)-
n=1

Similarly maximizing with respect to the parameters /.1, , and again eliminating the
Lagrange multipliers, we obtain

L&
Mhij = N, Z’Y(znk)xmj-

n=1

This is an intuitively reasonable result which says that the value of 4, for compo-
nent k is given by the fraction of those counts assigned to component k£ which have
non-zero values of the corresponding elements ¢ and j.

If we take the derivatives of (9.62) w.r.t. o, we get
M1 1
2 a 2

Setting this equal to zero and re-arranging, we obtain (9.63).

9 Bl p(t, wla )] =

%0 E [WTW] .

Taking the derivative of (9.62) w.r.t. 3, we obtain

9 N1 1
%E [Inp(t, wla, 8)] = 233 ;E [(tn — w"0,)?]. (249)
From (3.49)-(3.51), we see that
E [(tn - WTd’n)z] = E [ti —2t, W', + Tr[d)nd)EWWTH

— (ta —m%6,)? + Tr [6,61Sn] -

Substituting this into (249) and rearranging, we obtain

11
A=W (It — @my|®> + Tr (@ ®Sy]).
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9.22

9.23

NOTE: In PRML, a pair of braces is missing from (9.66), which should read

Ew I {p(t}X, w, B)p(w|)}] .

Moreover my should be m in the numerator on the r.h.s. of (9.68).

Using (7.76)—(7.83) and associated definitions, we can rewrite (9.66) as

Ew [InN (t}@w,37'T) + In N (w]0,A™")]

M
_ 2 T
= 5IEW Nnpg— glt— @w|* + lenai —Tr [Aww™] | + const
- ;<N1nﬂ -3 (It— ®m|* + Tr[®" X))
M
+ Z Ina; — Tr[A(mm™ + E)]) + const. (250)
i=1

Differentiating this w.r.t. a;, using (C.23), and setting the result equal to zero, we get

which we can rearrange to obtain (9.67).

Differentiating (250) w.r.t. 3 and setting the result equal to zero we get

JZ;;(“@mH%Tr [@"®%]) =0. (251)

Using (7.83), (C.6) and (C.7) together with the fact that A is diagonal, we can rewrite
®TPY as follows:

3Ty = STRA T (I+43TRA)
= T (I+p2A'ST) @A
= B(1-1+8" (57 '1+ 2A'0") @A)
_ 3 (1 ~A (A—1 + AT (B T+ BATBT) <I>A‘1>>
_ 5(1—A(A+5<1>T<1>)’1) — B(I-AY).
Using this together with (7.89), we obtain (9.68) from (251).

NOTE: In the 1°* printing of PRML, the task set in this exercise is to show that the
two sets of re-estimation equations are formally equivalent, without any restriction.
However, it really should be restricted to stationary points of the objective function.



9.24
9.25

9.26

Solutions 9.24-9.26 161

Considering the case when the optimization has converged, we can start with o, as
defined by (7.87), and use (7.89) to re-write this as

*
* 1—0%21'7;

o =

1 )

2
My

new
2

where af = o'V = q; is the value reached at convergence. We can re-write this as

af(mi +3y) =1
which is easily re-written as (9.67).
For (3, we start from (9.68), which we re-write as

1 t-emyf? Y
B* N BN

As in the a-case, * = "% = (3 is the value reached at convergence. We can

re-write this as
1
B* <N - Z%') = [t — ®my]?,
i

which can easily be re-written as (7.88).
This is analogous to Solution 10.1, with the integrals replaced by sums.

This follows from the fact that the Kullback-Leibler divergence, KL(q||p), is at its
minimum, O, when ¢ and p are identical. This means that

)
%KL(qllp) =0,

since p(Z|X, 0) depends on 6. Therefore, if we compute the gradient of both sides
of (9.70) w.r.t. @, the contribution from the second term on the r.h.s. will be 0, and
so the gradient of the first term must equal that of the l.h.s.

From (9.18) we get
N =" (). (252)

We get N}V by recomputing the responsibilities, y(2,, ), for a specific data point,
X, yielding

N]?CW _ Z ,Yold(znk) + ,yncw(zmk)' (253)

n#m
Combining this with (252), we get (9.79).

Similarly, from (9.17) we have

1
‘uzld = —0 Z 'YOId(an)Xn
k n
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and recomputing the responsibilities, (2% ), we get

1
Hzew = N]?ew ( Z 701d (an)xn + ’Ynew <ka)xm>

n#m

1 o o o new

= N pew ( kldukld - ld(zmk)xm + i (ka)xm>
k
1

_ W <(N£ew o ,Ynew(zmk) + 'YOld(ka)) :U‘Zld
k

_,yold (ka)xm + ’YHGW(ka)Xm>
H%Id + (7

where we have used (9.79).

new(

Zmk) = 7 (2mk) o
N]?ew (Xm: - /‘I’k’ld)»
9.27 Following the treatment of g, in Solution 9.26, (9.19) gives

1
N;sld

N
= = D k) (xn = g (%0 — pg )"
n=1

where NP4 is given by (252). Recomputing the responsibilities (2 ), and using
(253), we get

1
A (Z 7 i) (e = 1) (e = i)

n#m

+7" Y (Zmk) (Xm — 13™) (X — ll']léew)T)

1
= sy (VP ) G = ) G i)
k

9 ) (e = ™) (e — 1))

R old Zm T .
- Y N(newk) <(Xm _ M?d) (Xm _ uc];ld) _ 2k1d>
k
,.ynew ka new new )
+ Nr(lcw ) ((Xm — pp™) (Xm — py, )T - Zkld)
k

where we have also used (9.79).

For 7, (9.22) gives
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and thus recomputing v(z,x) we get

N
1
= N (Z VOld(znk) + ’Ynew(zmk))

n#m
1 O new
- N (Nﬂild -7 ld(zmk) + (ka))

old 7

old

new (

Zmk) V" (Zmk)
N + N

Approximate Inference

10.1

10.2

Starting from (10.3), we use the product rule together with (10.4) to get

o) = | q(znn{pffé)z)}dz

- /q(Z) In{p(xq(zz))p <X)} dz

p(XIZ)} )

= Z)[Inq———7r+Inp(X) | dZ

fa ({252 e
= —KL(¢llp)+Inp(X).

Rearranging this, we immediately get (10.2).

By substituting E[z;] = m; = py and E[z3] = my = p9 in (10.13) and (10.15),
respectively, we see that both equations are satisfied and so this is a solution.

To show that it is indeed the only solution when p(z) is non-singular, we first sub-
stitute E[z1] = my and E[z2] = my in (10.13) and (10.15), respectively. Next, we
substitute the r.h.s. of (10.13) for m; in (10.15), yielding
my = o — Moy Ay (1 — A Ava (M — pia) — )
= o — Ay Aoy AT Ao (my — o)
which we can rewrite as

mo (1 — A2_21A21A1_11A12) = W2 (1 — A2_21A21A1_11A12) .

Thus, unless Ay, Aoy AT* Ao = 1, the solution sy = ms is unique. If p(z) is non-
singular,
|A] = A11Ag2 — Ao1Ayp #0
which we can rewrite as
A AL Ag Ay # 1
as desired. Since s = my is the unique solution to (10.15), ;11 = m; is the unique
solution to (10.13).
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10.3 Starting from (10.16) and optimizing w.rt. ¢; (Z;), we get

M
KL(p|q) = —/p<Z> [Zlnq¢<zi>

= —/ <P (Z)Ing; (Z;)+p(Z) Zln qi (Zl)) dZ + const.

i#j

dZ + const.

= - /p(z)lnqj (Z;) dZ + const.

_ _/mqj (Z,) [/p(Z)H dZi] dZ,; + const.

i#£]
= _/Fj(zj)ln%' (Z;) dZ; + const.,

where terms independent of ¢; (Z;) have been absorbed into the constant term and

we have defined
£(2) = [r@]] iz
i#]

We use a Lagrange multiplier to ensure that ¢; (Z;) integrates to one, yielding

—/Fj<zj)1nqj (Z;) dZ; + A (/qj (Z;) dZ; — 1).

Using the results from Appendix D, we then take the functional derivative of this
w.r.t. ¢; and set this to zero, to obtain

From this, we see that
Aqj (Zj) = Fy(Z;).

Integrating both sides over Z;, we see that, since ¢; (Z;) must intgrate to one,

A—/Fj(zj)dzj—/ [/p(Z)H dZi] dz; =1,

i#]
and thus

w(2) = £,2) = [p@ ] az.

i#]
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The Kullback-Leibler divergence takes the form

KL(pl0) =~ [ o) g dx+ [ px) () ax

Substituting the Gaussian for ¢(x)we obtain

KL(pllq)

~ [0 {-gmim- Joxm 0 TE ) ot

% {n|S|+Tr(S7'E [(x — p)(x — )"]) } + const.

% S|+ p"S 'y — 20" 'Ex] + Tr (Z7'E [xx"]) }
+const. (254)

Differentiating this w.r.t. p, using results from Appendix C, and setting the result to
zero, we see that

p=E[x]. (255)
Similarly, differentiating (254) w.r.t. ¥~ ', again using results from Appendix C and
also making use of (255) and (1.42), we see that

¥ =E [xx"] — pp" = cov[x].

We assume that ¢(Z) = ¢(z)q(0) and so we can optimize w.r.t. ¢(z) and ¢(0) inde-
pendently.

For ¢(z), this is equivalent to minimizing the Kullback-Leibler divergence, (10.4),
which here becomes

p(z,0]X)
L(gllp)= // 1 @a0) dzde.

For the particular chosen form of ¢(8), this is equivalent to

KL(g|lp) = —/q(Z)andz—i—const.

_ , nP(ZWOvX)p(OO\X) 2+ cons
= /q( )1 2(2) dz + t.

= —/q(z)lnp(zQO’X)dz—i—const.7
q(z)

where const accumulates all terms independent of ¢(z). This KL divergence is min-
imized when ¢(z) = p(z|6, X), which corresponds exactly to the E-step of the EM
algorithm.
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To determine ¢(@), we consider

p(X,0,z) ,
/‘“”)/Q(Z”“qwm(z) dzd6

= /q(@)Eq(z) (lnp(X,0,z)] dO — /q(@) Ing (@) dO + const.

where the last term summarizes terms independent of ¢ (0). Since ¢(6) is con-
strained to be a point density, the contribution from the entropy term (which formally
diverges) will be constant and independent of 8. Thus, the optimization problem is
reduced to maximizing expected complete log posterior distribution

Eq(Z) [lnp (Xa 007 Z)] )
w.r.t. 6y, which is equivalent to the M-step of the EM algorithm.

10.6 We start by rewriting (10.19) as

4
D) = =z (1 [ ptaratayeae) 256)
so that
1+« 11—«

Yp = > and v, = 5 (257)

We note that
lim1 v = 0 (258)
lim1 Yy = 1 (259)
1=y = 7 (260)

Based on observation (258), we make a Maclaurin expansion of ¢(z)7¢ in v, as
follows

Q" =exp(ygIng) =1+ y,Ing+ O (7)) (261)

where ¢ is a shorthand notation for g(xz). Similarly, based on (259), we make a Taylor
expansion of p(x)?» in v, around 1,

p’* = exp(yplnp)
= p—(1—v)plnp+0 ((vp—1)%)
= p—7pp+0 (7)) (262)

where we have used (260) and we have adopted corresponding shorthand notation
for p(z).



Solution 10.7 167

Using (261) and (262), we can rewrite (256) as

D(pllq)
4
= (1 [0 () sma0 ()] a)
4
= 12 (1—/P+Vq (plng—plnp) d:c+0(7§)> (263)

where O (’yg) account for all higher order terms. From (257) we have

4 o 2l-a) 2
12t = 12  (1+0a)
4 2 _ (1—a)? _ 11—«
1_a2 e 1—a? (14 «a)
and thus
a1—>rnll—012’yq =1
lim ’yg = 0.

a—1 ].—0[2

Using these results together with (259), and (263), we see that

lim D(pllq) = — /p(lnq —Inp)dz = KL(p|lq).

The proof that « — —1 yields KL(g||p) is analogous.

10.7 NOTE: See note in Solution 10.9.

We take the p-dependent term from the last line of (10.25) as our starting point. We
can rewrite this as follows

—@ {/\0 (1= o)+ Y (an — M)2}

n=1
E[r] -
= 2{(/\0+N)u2+zwi2u(Aouo+Nx)}
n=1
_ _El] ot N (= doto VT 2+§:$2_()\0mu0+1\7x)2
) 0 P+ N 2ot X+ N

where in the last step we have completed the square over . The last two terms
are indepenedent of ;1 and hence can be dropped. Taking the exponential of the
remainder, we obtain an unnormalized Gaussian with mean and precision given by
(10.26) and (10.27), respectively.
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10.8

10.9

For the posterior over 7, we take the last two lines of (10.28) as our starting point.
Gathering terms that multiply 7 and In 7 into two groups, we can rewrite this as

N+1 1
(ao—l—;— — 1) InT — (bo+2E >T+const.

Taking the exponential of this we get an unnormalized Gamma distribution with
shape and inverse scale parameters given by (10.29) and (10.30), respectively.

N

> (@ =) 4 o (= po)

n=1

NOTE: See note in Solution 10.9.

If we substitute the r.h.s. of (10.29) and (10.30) for a and b, respectively, in (B.27)
and (B.28), we get

2a9 + N +1
E[r] = ~
200 + B [Mo(s = 10) + S0 (o — )2
var[r] = 200 + N +1 _
2 (b + 3 [l — o) + 2y — )
E[7]

b+ 3E [Mo(s = o) + 0, (@ — 1)

From this we see directly that

Jim Efr] = —
o E [Zn:1($n - N)Q]
lim var[r] = 0

as long as the data set is not singular.

NOTE: In the 1% printing of PRML, an extra term of 1/2 should be added to the
r.h.s. of (10.29), with consequential changes to (10.31) and (10.33), which should
read

and

respectively.
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Assuming ag = bg = g = 0, (10.29), (10.30) and (B.27) give

N
— 2
N
1 2
12 (o
=1

n
Z - 25571//‘ +:u2)
n

1 1
T

N

Taking the expectation of this under ¢(u), making use of (10.32), we get

1 1 , ,
= 2 n
E[7] N+1nz($” Tnt +NIE[])
N
_ N 1 2 1 2
T N+t (NE[T] * +N;x”>

which we can rearrange to obtain (10.33).

10.10 NOTE: In the 1% printing of PRML, there are errors that affect this exercise. L,
used in (10.34) and (10.35) should really be £, whereas L,,, used in (10.36) is given
in Solution 10.11 below.

This completely analogous to Solution 10.1. Starting from (10.35), we can use the
product rule to get,

— m)g(m)In M
L = ;;Q(m Jg(m)1 { Z|m)q(m)}

q(
Z,m|X) p(X
=¥ zzj q(Z|m)q(m)n {W}

= S a@manin { LA L px),

Rearranging this, we obtain (10.34).
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10.11 NOTE: Consult note preceding Solution 10.10 for some relevant corrections.

We start by rewriting the lower bound as follows

B o) In p(Z,X,m)
L= 2D a@ml 1{<Z|m>< >}
s Zq (Zlm)q(m) {In p(Z, X|m) + In p(m) — I q(Z{m) — In g(m)}

= Z q(m) <1np(m) —Ing(m)

S 4(Zlm) {In p(Z, X|m) 1nq<Z|m>})
= ) a(m){In(p(m) exp{Ln}) —Ing(m)}, (264)

where

We recognize (264) as the negative KL divergence between ¢(m) and the (not nec-
essarily normalized) distribution p(m) exp{L,, }. This will be maximized when the
KL divergence is minimized, which will be the case when

qg(m) o< p(m) exp{ L}

10.12 This derivation is given in detail in Section 10.2.1, starting with the paragraph con-
taining (10.43) (page 476) and ending with (10.49).

10.13 1In order to derive the optimal solution for g(p;,, Aj) we start with the result (10.54)
and keep only those term which depend on g, or Ay, to give

Ing*(py, Ax) = ln/\/(uk\mo, (ﬁoAk)fl) + In W(AL|Wo, 1vp)

+ZE Znk| In N (Xn|uk, ) + const.

n=1

1 1 _
= *@(Mk —mp)" Ag(py, —mg) + = In|Ay| — ZTr (Akwo 1)
9 2 2
N
vo—D—1 1
+% InfAr] =5 ZE[an](Xn — ) Ak (0 — )

N
1
+5 (Z E[znk]> In |Ay| + const. (265)

n=1
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Using the product rule of probability, we can express In ¢* (g5, Ax) as In ¢* (pog | Ak)
+ Ing*(Ayg). Let us first of all identify the distribution for p;,. To do this we need
only consider terms on the right hand side of (265) which depend on ., giving

In q*(per,|Ar)

N N
1
= gk |Bo+ D Elear]| Ak + piAs ﬂomO+ZE[znk]xn]
n=1 n=1
—+const.

1 _
—iuf [Bo + Ni] Agpey, + ey Ay [Bomo + NypX] + const.

where we have made use of (10.51) and (10.52). Thus we see that In ¢* (s |Ax)
depends quadratically on g, and hence ¢* (| Ay ) is a Gaussian distribution. Com-
pleting the square in the usual way allows us to determine the mean and precision of
this Gaussian, giving

" (pp|Ar) = N (py,|my, BrAr) (266)
where

Br = Po+ Ni

1
my = B (Bomyg + NpXy) .

Next we determine the form of ¢*(Aj) by making use of the relation

Ing*(A) = Inq" (g, Ar) — Ing” (pg | A).
On the right hand side of this relation we substitute for In ¢*(p;,, Ax) using (265),

and we substitute for In ¢* (| Ay ) using the result (266). Keeping only those terms
which depend on A, we obtain

1 1 _
lnq*(Ak) = _%(ll’k — mO)TAk(/.Lk - mo) + 5 In ‘Ak| — §Tr (Akwo 1)

N
vo—D —1 1
T A 5 DBl )" A~ 10
1 (& 3
k
t3 (;E[an]> In |Ag| + 7(!% —my,) " Ay (p, — my)

1
-5 In [Aj| + const.

-D-1 1
= %lnmk\ - §Tr (Akw,;l) + const.
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Solution 10.14

10.14

Here we have defined

N

Wit = Wg' + Gy, — mo) (py, — mo) ™ + Z]E[an](xn — ) (% — )"
n=1
—Br(py, — my) (g, — mk:)T
_ N _
= W, 4+ NiSi + ﬁoﬁ:- ]]ifk (X — my)(Xp — my) " (267)
N
Vp = Uy-+ Z]E[an]
n=1
= + Nk7
where we have made use of the result
N N
D Elenilxaxn = > Elznk](xn — %) (% — Ke)" + NiXiX,
n=1 n=1
= NgSk + NpXpX, (268)

and we have made use of (10.53). Note that the terms involving p;, have cancelled
out in (267) as we expect since ¢*(Ay) is independent of p,,.

Thus we see that ¢*(Ay,) is a Wishart distribution of the form

¢ (Ar) = W(AR Wy, ).

We can express the required expectation as an integration with respect to the varia-
tional posterior distribution ¢* (g, Ax) = ¢* (py,|Ax)g* (Ag). Thus we have

Epu, Ax [(Xn — ) AR (xn — Hk)]

- / / Tr{ A (n — 1) (o — 1)} 0 (gl A ) (Ar) dp dA L.

Next we use the result ¢*(py,|Ax) = N (py|my, B Ay) to perform the integration
over u,;, using the standard expressions for expectations under a Gaussian distribu-
tion, giving
Elpp] = my
Elpppi) = mymp + 57 A

from which we obtain the expectation with respect to p,, in the form

By, [(Xn — ) (X — Mk)T]
= XpX, — X,mp —myx, +mym; + 5, AL

= (%, —my)(x, —my)" + ﬁ;lAlzl.
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Finally, taking the expectation with respect to A we have

Eu, Ax [(Xn - :“k)TAk (xn — Uk)]
= /Tr {Ak [(Xn — mk)(xn — mk)T + ﬁlzlAlzl] } q*(Ak) dlx;€
/{ )T Ak(x — myp) + DB g"(Ar) dAy
= Dﬂk + Vk( Xp — mk)TWk(xn — mk)

as required. Here we have used ¢*(Ax) = W(Ar|Wy, k), together with the stan-
dard result for the expectation under a Wishart distribution to give E[Ay] = v, W.

By substituting (10.58) into (B.17) and then using (B.24) together with the fact that
> & N = N, we obtain (10.69).

To derive (10.71) we make use of (10.38) to give
Ellnp(Dl|z, pu, A)]

N K
% DD Eleni] {EMn [Awl) — E[(xn — p) Ak (0 — 1)) = DIn(2m)} .

n=1 k=1

We now use E[z,x] = r, together with (10.64) and the definition of 1~\k given by
(10.65) to give

| MK N
E[llnp(D|z, u, A)] = B ZZrnk{lnAk

n=1 k=1
—DB = v(xn — my) T Wi (x, — my,) — Dln(27r)}.

Now we use the definitions (10.51) to (10.53) together with the result (268) to give
(10.71).

We can derive (10.72) simply by taking the logarithm of p(z|7) given by (10.37)

E[lnp(z E[zpk|E[ln 4]

HMZ
Mw

1 k=1

and then making use of E[z,;] = 7, together with the definition of 7, given by
(10.65).

The result (10.73) is obtained by using the definition of p(7) given by (10.39) to-
gether with the definition of 7, given by (10.66).
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For the result (10.74) we start with the definition of the prior p(u, A) given by

(10.40) to give
Eflnp(p, A)] =
K
%Z {DIn By — Dn(2r) + Efln |Ax|] — BoE[(py, — mo) " Ag(py — mo)] }
k=1
K
+ KInB(Wo,v0) + ) {(VO_QD_UIE[In |Akl] — ;Tr(ngE[Ak])} .

k=1

Now consider the term E[(pt;, —mg)T A (pe, —mo)]. To evaluate this expression we
first perform the expectation with respect to ¢* (| Ax) then the subsequently per-
form the expectation with respect to ¢* (A ). Using the standard results for moments
under a Gaussian we have

Elp,] = my
Elpypt] = mypmy + 6 AL

and hence

Epuoae [ — m0) " Ak (py, — mo)] = Tr (Ep, a, [As(pty, — mo) (k) — mo) ")
= Tr(Ea, [Ae(B;'A}" +mym) — mom; — mymj + mem;)|)
= Kﬂk_l + (my, — mg) "E[Ax](my — my).
Now we use (B.80) to give E[Ay] = v, W} and E[ln A;] = In /N\k from (10.65) to
give (10.74).
For (10.75) we take use the result (10.48) for ¢*(z) to give

N
Ellng(z)] => > Elzns] Inry
n=1 k=1
and using E[z,,;] = 7, we obtain (10.75).

The solution (10.76) for E[ln g(7r)] is simply the negative entropy of the correspond-
ing Dirichlet distribution (10.57) and is obtained from (B.22).

Finally, we need the entropy of the Gaussian-Wishart distribution ¢(g, A). First of
all we note that this distribution factorizes into a product of factors ¢(p;,, Ax) and
the entropy of the product is the sum of the entropies of the individual terms, as is
easily verified. Next we write

Ing(py, Ap) = Ing(py|Ag) +Ing(Ag).

Consider first the quantity E[ln ¢(u;,|A)]. Taking the expectation first with respect
to ;. we can make use of the standard result (B.41) for the entropy of a Gaussian to
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give
1 D
By q(uy|AN)] = Ea, |51n|Ax+ 3 (In 6 — 1 - In(2))

= %m?\'k + g (InBx — 1 —1In(27m)).

The term E[ln ¢(Ay,)] is simply the negative entropy of a Wishart distribution, which
we write as —H[q(Ay)].

10.18 We start with 3., which appears in (10.71), (10.74) and (10.77). Using these, we can
differentiate (10.70) w.r.t. ﬂ,;l ,to get

ot D

ot 2

Setting this equal to zero and rearranging the terms, we obtain (10.60). We then

consider my, which appears in the quadratic terms of (10.71) and (10.74). Thus
differentiation of (10.70) w.r.t. my, gives

oL
8mk

(=Ni — Bo + Br) -

= —Nivp (kak — Wkik) — ﬂoljk (kak — ka0> .

Setting this equal to zero, using (10.60) and rearranging the terms, we obtain (10.61).

Next we tackle {Wy, v }. Here we need to perform a joint optimization w.r.t. Wy
and v foreach k = 1,..., K. Like (i, W, and vy appear in (10.71), (10.74) and
(10.77). Using these, we can rewrite the r.h.s. of (10.70) as

K
1 ~
5 Z <Nk InAy — Npvp {TI' (Ska) + Tr (Wk (ik — mk) (ik — mk)T>}
k
+In Kk — ,[))Oljk (mk — mO)TWk (mk — mo) + (I/o - D — 1) In Kk

— T (W5 'Wy) — In Ay, + 2H [q(Ak]> (269)

where we have dropped terms independent of { W, v}, In Kk is given by (10.65),

~D—-1 ~ uD
Yk ; In Ay ”’“2 (270)

Hlg(Ak] = —In B(Wy,vy) —
where we have used (10.65) and (B.81), and, from (B.79),

D

D 1—i

In B(Wy, 13,) = %mwk\ - VkT -~ mr <”’“+2@> . 271)
=1

Restricting attention to a single component, &k, and making use of (270), (269) gives

1 - D
5 (e + 10— ) In K, - é—kTr (WiFy) — In B(Wy, 3,) + ”kT 272)
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where
F, = Wal + NSk + N (ik — mk) (ik — mk)T
+8o (my, — my) (my — mg) "
Ny + Bo

as we shall show below. Differentiating (272) w.r.t. v, making use of (271) and
(10.65), and setting the result to zero, we get

1 dIn A ~
0 = ((Nk—FVO—Vk) - k—lnAk—Tr(Wka)
2 Vi
D vp+1—1
1 dIn A
= 3 <(Nk + vy — Vk;) dny K —Tr (Wka) —I—D) . (274)
k

Similarly, differentiating (272) w.r.t. Wy, making use of (271), (273) and (10.65),
and setting the result to zero, we get

1 _ _
0 = 5((Nk+1/0—yk)Wkl—Fk+Wkl)
1 _ _
- 2<(Nk+uo—uk)Wk1—W01—NkSk
N, _ _ _
_Nk’f‘)ﬁo (% — mo) (X — my) " + W 1) (275)

We see that the simultaneous equations (274) and (275) are satisfied if and only if

0 = Np+vy—u
0 = W51+Nksk+M(ik—mo)(ik—mO)T—W,;l
Ny + Bo

from which (10.63) and (10.62) follow, respectively. However, we still have to derive
(273). From (10.60) and (10.61), derived above, we have

my, — Bomg + NpXy,
Bo + Ny,
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and using this, we get

Ni (X — my) (Xg — mk)T + Bo (Mg — myg) (my — mo)T =

NFET — NX (Bomg + NipXp)"  Bomo + NiXp

X N —T
g /30 + N ,80 + N KXk
Ni(Bomg + NiXy)(Bomo + NpXp)™® n Bo(Bomo + NieXg)(Bomg + NpXi) ™
(Bo + Ni)? (Bo + Ni)?
(Bomg + NgXi)T  Bomg + NiXp, T "
— Pom - + .
fomo Bo + Ny, Bo + Ng, Pomyg -+ fomomy

We now gather the coefficients of the terms on the r.h.s. as follows.
Coefficients of XX} :
N NN N 5ulV?
Bo+Ni  Bo+ N (Bo+Np)* (o + Ni)?
I S . Y
"B+ Ne Bo+ Nk (Bot+ N2 (Bo+ Ni)?
NiB2 + N2y + N2Bo + N — 2(N2Bo + NP) + NP + BN

(Bo + Ni.)?
_ NuB3+ BN _ Nifo(Bo+ Nik) _ Nibo
(Bo + Ni)? (Bo + Ni)? Bo + Ni

Coefficients of X}, mg and moi;g (these are identical):

 NiBo n BoNE n B3 Ny, ~ Nibo
Bo+ Nk (Bo+Nip)?  (Bo+ Np)2  Bo+ Ny
Ni.Bo 2Nk  Nifo

"~ Bo+ Ni _50+Nk __ﬁo-f'Nk

Coefficients of momy :

Niwf3g Gy 2053
(Bo + Ni)? " (Bo + Nk)2  Bo+ Ni o
BE(Nk+5o) 268 43
(Bo + Ni)? Bo + Nk ’
B3 — 203 + 85 + NiBo _ Ni.Bo
Bo + Ni Bo + Nk

Thus

Ny, (R — my) (Xp —my) " + By (my, — mg) (my, — my)"
Ni.SBo

- VA (X —myp) (X —myg)"  (276)
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as desired.

Now we turn our attention to o, which appear in (10.72) and (10.73), through
(10.66), and (10.76). Using these together with (B.23) and (B.24), we can differ-
entiate (10.70) w.r.t. ay; and set it equal to zero, yielding

or oln7 . O0lnC
Py = WNet(ao—1)— (o= 1) ar;:k—lnﬂ'k_%ak@
- [NH(aO_l)—(ak—m{w1<ak>—¢1<a>§i}
oo

+ip(@) — (o) — (@ )37 + (o)
[N + (0 — 1) = (o — D] {1 () — (@)} =0 (277)

where t(-) and )4 () are di- and trigamma functions, respectively. If we assume that
ag > 0, (10.58) must hold for (277) to hold, since the trigamma function is strictly
positive and monotoncally decreasing for arguments greater than zero.

Finally, we maximize (10.70) w.rt. ., subject to the constraints » x Tnk = 1 for
allm =1,..., N. Note that r,;, not only appears in (10.72) and (10.75), but also in
(10.71) through Ny, X and Sy, and so we must substitute using (10.51), (10.52) and
(10.53), respectively. To simplify subsequent calculations, we start by considering
the last two terms inside the braces of (10.71), which we write together as

1

K
5 Z v Tr (W5, Qp) (278)
k=1

where, using (10.51), (10.52) and (10.53),

N
Qe = ZT”’“ (xn — Xg) (% — i)+ Njo (K — my,) (K —my) "

n=1
N

= Z TnkXnX, — 2Nk:Xka + NkaXk
n=1
= T B = T T
+NiXpX, — NpmyX;, — NpXemy, + Nymgpm,,
N

= Z Tk (X — M) (%, —my)" . (279)

n=1

Using (10.51), (278) and (279), we can now consider all terms in (10.71) which
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depend on 7y, and add the appropriate Lagrange multiplier terms, yielding

1 _
5 Z ZT‘nk (hlAk — Dﬂk 1)
k=1 n=1
| KX
-5 SN rarvn (%0 — my) " Wi (x,, — my)
k=1 n=1
K N K
DR NATES 35 AT 3 (5 i |
k=1 n=1 k=1 n=1 k=1
Taking the derivative of this w.r.t. rg, and setting it equal to zero we obtain
1 D 1
0= 2lnAk—ﬁ—§1/k( —mk)TWk (Xn—mk;)

+In7, —Inrpe —1— M\,

Moving In r,, to the 1.h.s. and exponentiating both sides, we see that for each n,

~ 1
Tk OX 7TkA]1€/2 exp {— -~y (x, — mk)T Wi (x, — mk)}

which is in agreement with (10.67); the normalized form is then given by (10.49).
10.19 We start by performing the integration over 7 in (10.80), making use of the result
Elm] = =
Q
to give

K
~ (&% ~ _
p(RID) =" é“ //N(X|“kaAk Dl Ax) dpy, dA.
k=1

The variational posterior distribution over p and A is given from (10.59) by

a(p, Ar) = N (e lmy, (BrAr) ™) W(ALIW, vk).

Using this result we next perform the integration over .. This can be done explicitly
by completing the square in the exponential in the usual way, or we can simply
appeal to the general result (2.109) and (2.110) for the linear-Gaussian model from
Chapter 2 to give

/N(§|uk, Alzl)./\/’ (uk|mk, (ﬁkAk)il) d/.Lk = N (§|mk, (1 + ,8,;1) A;l) .

Thus we have

K
p(i(\|D) = Z % /N (5{\|m]€, (1 + ﬁ;1> A,;l) W(Ak|Wk, I/k) dAy.
k=1
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The final integration over Ay is the convolution of a Wishart with a Gaussian. Omit-
ting multiplicative constants which are independent of X we have

/N (i\mk, (1 + 6;1) Alzl) W(Ak|Wk, l/k) dA L
1 Y ~
. / |Ak|1/2+(l/k—D—1)/2 eXp{_WTr [Ak(x _ mk)(x _ mk)T]
1 _
—5Tr (AW, ] } dAy.

We can now perform this integration by observing that the argument of the integral is
an un-normalized Wishart distribution (unsurprisingly since the Wishart is the conju-
gate prior for the precision of a Gaussian) and so we can write down the result of this
integration, up to an overall constant, by using the known normalization coefficient
for the Wishart, given by (B.79). Thus we have

/N (5E|mk, (1 + ﬁk_l) A,:l) W(Ak|Wk, I/k) dA

1 7(l/k+1)/2
W @ m & - m)T
g (1+5.1)
1 7(1/;“—"—1)/2
x I+ ———Wi(X—my)(X—my)"
(1+5:1)

where we have omitted factors independent of X since we are only interested in the
functional dependence on X, and we have made use of the result |AB| = |A||B| and
omitted an overall factor of [W'|. Next we use the identity

I+ab™|=(1+a"b)

where a and b are D-dimensional vectors and I is the D x D unit matrix, to give

//\/ (X[mg, (1+8;,") ALY WA Wi, vi) dAy,

1 —(Vk+1)/2
xX 14+ ———— (5(\ — mk)TWk@ — mk) .
{ (1+5:7)

We recognize this result as being a Student distribution, and by comparison with the
standard form (B.68) for the Student we see that it has mean my,, precision given
by (10.82) and degrees of freedom parameter vy, + 1 — D. We can re-instate the
normalization coefficient using the standard form for the Student distribution given
in Appendix B.
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10.20 Consider first the posterior distribution over the precision of component k given by
0 (Ar) = W(ALWi, ).

From (10.63) we see that for large NV we have v, — Ny, and similarly from (10.62)
we see that W, — N 1S,;1. Thus the mean of the distribution over Ay, given by
E[Ag] = vy Wy — S;l which is the maximum likelihood value (this assumes that
the quantities 7, reduce to the corresponding EM values, which is indeed the case
as we shall show shortly). In order to show that this posterior is also sharply peaked,
we consider the differential entropy, H[A ] given by (B.82), and show that, as N}, —
0o, H[Ax] — 0, corresponding to the density collapsing to a spike. First consider
the normalizing constant B(W,, v;,) given by (B.79). Since W, — N, 18;1 and
Vg — N,

i/ = Ny +1—i
—In B(Wg,vg) — —7k (DIn Ny, + In |Sg| — Dln2)—|—21n1‘ <’“2> '
i=1

We then make use of Stirling’s approximation (1.146) to obtain

Np+1-i\ N,
InT <’“+22> ~ ZF (I Ny —In2 - 1)

which leads to the approximate limit

N D
—lnB(Wk,I/k) — = k

N,
(InN, —In2 —In Ny +In2+1) — 7’“m|sk|
N,
= —%(ln|8k\+D). (280)

Next, we use (10.241) and (B.81) in combination with W, — N,;ls,gl and v, —
N, to obtain the limit

N,
Efn|A] — Dln?’c +DIn2 — DIn N, — In |Sy|
= —ln|Sk\,

where we approximated the argument to the digamma function by Ny /2. Substitut-
ing this and (280) into (B.82), we get

H[A] — 0

when N, — oo.

Next consider the posterior distribution over the mean p,, of the k*" component given
by
0" (| Ak) = N (py [, BrAr).

From (10.61) we see that for large IV the mean my, of this distribution reduces to
X}, which is the corresponding maximum likelihood value. From (10.60) we see that
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10.21

10.22

81 — Ny and Thus the precision Sy Ay — Orvpg Wi — NkS,;1 which is large for
large N and hence this distribution is sharply peaked around its mean.

Now consider the posterior distribution ¢*(7r) given by (10.57). For large N we
have o, — Ny and so from (B.17) and (B.19) we see that the posterior distribution
becomes sharply peaked around its mean E[r;] = «ap/@ — Ny /N which is the
maximum likelihood solution.

For the distribution ¢*(z) we consider the responsibilities given by (10.67). Using
(10.65) and (10.66), together with the asymptotic result for the digamma function,
we again obtain the maximum likelihood expression for the responsibilities for large
N.

Finally, for the predictive distribution we first perform the integration over 7, as in
the solution to Exercise 10.19, to give

K
p&ID) = Y0 % [ [N Rl Au)aliag, M) dpg d
k=1

The integrations over p;, and Ay are then trivial for large IV since these are sharply
peaked and hence approximate delta functions. We therefore obtain

N
p(X|D) = WkN(iliknwk)
k=1
which is a mixture of Gaussians, with mixing coefficients given by Ny /N.

The number of equivalent parameter settings equals the number of possible assign-
ments of K parameter sets to K mixture components: K for the first component,
times K — 1 for the second component, times KX — 2 for the third and so on, giving
the result K'!.

The mixture distribution over the parameter space takes the form

Q(G) = % Z QK(GN)

where 0,, = {p;,, X, 7}, k indexes the components of this mixture and ® = {0, }.
With this model, (10.3) becomes

L(qg) = /Q(G)ln{p(;(((’;;))} de

K!
1
- mZ/qK(OH)Inp(X,OH)dOH
T k=1

K! K!
_IE!Z/QK(OH)IH <I§' Zqﬁ/(eﬁ/)) dem

K'=1

= /q(@) Inp(X, ) dO—/q(H) Ing(60)dé + In K!
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where ¢(60) corresponds to any one of the K! equivalent ¢, (0,,) distributions. Note
that in the last step, we use the assumption that the overlap between these distribu-
tions is negligible and hence

/%(9) In g, (0)d0 ~0

when k # K/.

When we are treating 7 as a parameter, there is neither a prior, nor a variational
posterior distribution, over . Therefore, the only term remaining from the lower
bound, (10.70), that involves 7 is the second term, (10.72). Note however, that
(10.72) involves the expectations of Inm;, under ¢(7), whereas here, we operate
directly with 7, yielding

N
Eq[Inp(Zm)] =Y > rulnmy.

Adding a Langrange term, as in (9.20), taking the derivative w.r.t. 7 and setting the
result to zero we get

N
“kia=0, (281)
Tk

where we have used (10.51). By re-arranging this to
Nk = —)\ﬂ’k

and summing both sides over k, we see that —\ = Z x Ni. = N, which we can use
to eliminate A from (281) to get (10.83).

The singularities that may arise in maximum likelihood estimation are caused by a
mixture component, k, collapsing on a data point, x,,, i.e., 7g, = 1, p, = X,, and

However, the prior distribution p(u, A) defined in (10.40) will prevent this from
happening, also in the case of MAP estimation. Consider the product of the expected
complete log-likelihood and p(u, A) as a function of Ay:

IEq(Z) [lnp(X|Z7 H, A)p(uv A)}
1 N
= D) Zrkn (ln |Ak| - (Xn - “k)TAk(Xn - “k))
n=1
+In[Ag| — Bo(pey, — mo) " Ag(py, — my)
+(wo—D —1)In|Ag| —Tr [WalAk] + const.

where we have used (10.38), (10.40) and (10.50), together with the definitions for
the Gaussian and Wishart distributions; the last term summarizes terms independent
of Ag. Using (10.51)-(10.53), we can rewrite this as

(vo + Ni, — D) In |Ak| —Tr [(Wal + ﬁo([lzk — mo)(uk — mo)T + NkSk)Ak] ,
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Figure 9

10.25

10.26

lllustration of the true log marginal likelihood for a 4
Gaussian mixture model (x) and the correspond-
ing variational bound obtained from a factorized
approximation (o) as functions of the number of
mixture components, K. The dashed arrows em-
phasize the typical increase in the difference be-
tween the true log marginal likelihood and the
bound. As a consequence, the bound tends to
have its peak at a lower value of K than the true
log marginal likelihood.

0 <---—-X
Y ——"—

0 <--X
O €--mmmmmmmnnn X

K

where we have dropped the constant term. Using (C.24) and (C.28), we can compute
the derivative of this w.r.t. Ay and setting the result equal to zero, we find the MAP
estimate for Ay, to be

1
I wl T
N _D + Bo(p my)(p mgy) + NiSg).
I/()+Nk D( 0 O( k 0)( k 0) k k)

From this we see that |A,:1| can never become 0, because of the presence of W !
(which we must chose to be positive definite) in the expression on the r.h.s.

As the number of mixture components grows, so does the number of variables that
may be correlated, but which are treated as independent under a variational approxi-
mation, as illustrated in Figure 10.2. As a result of this, the proportion of probability
mass under the true distribution, p(Z, 7, p, 3| X), that the variational approximation
q(Z,m, u,3) does not capture, will grow. The consequence will be that the second
term in (10.2), the KL divergence between ¢(Z, 7, i, 3) and p(Z, 7, p, X|X), will
increase. Since this KL divergence is the difference between the true log marginal
and the corresponding the lower bound, the latter must decrease compared to the
former. Thus, as illustrated in Figure 9, chosing the number of components based on
the lower bound will tend to underestimate the optimal number of components.

Extending the variational treatment of Section 10.3 to also include 3, we specify the
prior for 3

p(B) = Gam (B|co, do) (282)
and modify (10.90) as

p(t,w,a, B) = p(tlw, B)p(w|a)p(a)p(B) (283)

where the first factor on the r.h.s. correspond to (10.87) with the dependence on (3
made explicit.

The formulae for ¢*(«), (10.93)-(10.95), remain unchanged. For ¢(w), we follow
the path mapped out in Section 10.3, incorporating the modifications required by the
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changed treatment of 3; (10.96)—(10.98) now become
Ing*(w) = Eﬁ [lnp(t|w B)] + Eq [lnp(w|a)] + const

= Z{ T, — t}— ww+const

1
= —in (E[a}I + E[ﬂ]@TQ) w + E[B]lwT®"t + const.
Accordingly, (10.100) and (10.101) become

Sy = (E[I+E[B)®T®)

For ¢(3), we use (10.9), (282) and (283) to obtain

Ing*(B) Ew [lnp(tjw, 3)] + lnp(ﬁ) + const

Z{w b —tn}’

which we recognize as the logarithm of a Gamma distribution with parameters

111,8—— (co—1)InpB —dof3

B N
N Ty
1 N 2
dN = dO -+ §E El (WT¢n — tn)

do + % (Tr (2T®E [ww']) +t't) — t" PE[w]
= dy+ = (Ht—<I)mNH +Tr (2" ®Sy))

where we have used (10.103) and, from (B.38),

E[w] = my. (284)
Thus, from (B.27), c
E[5] = - (28

In the lower bound, (10.107), the first term will be modified and two new terms
added on the r.h.s.We start with the modified log likelihood term:

B [Ew I pltiw, 9] = 5 (E[F] ~ n(2r)) ~ SB[t - Sw|]

2
5 (few) = oy~ ()

2d Y (|t - dwl|* + Tr (8" @Sy ))
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10.27

where we have used (284), (285), (10.103) and (B.30). Next we consider the term
corresponding log prior over 3:

E [Inp(3)] (co — DE[Ing] — doE[B] 4+ coIndy — InT'(cg)
= (co—1)(W(en) —Indy) — d;;N + colndy — InT(cp)

where we have used (285) and (B.30). Finally, from (B.31), we get the last term in
the form of the negative entropy of the posterior over (3:

—E[lng*(8)] = (exn — 1)¢(en) +Indy — eny —InT'(en).

Finally, the predictive distribution is given by (10.105) and (10.106), with 1/ re-
placed by 1/E[5].

Consider each of the five terms in the lower bound (10.107) in turn. For the terms
arising from the likelihood function we have

N
E[lnp(tw)] = —g In(27) + %lnﬁ - g]E [Z<t" - WT¢n)2]

n=1

N N
= —Eln(27r) + Elnﬁ

g
—5 {1 2E[W' ] t 4 Tr (E[ww'|2"®) }.
The prior over w gives rise to
M M E
E[llnp(w|a)] = —5 In(27) + ?E[ln al — %E[WTW}.
Similarly, the prior over « gives
Ellnp(a)] = aglnby + (ag — D)E[lna] — bpE[a] — InT'(ay).

The final two terms in £ represent the negative entropies of the Gaussian and gamma
distributions, and are given by (B.41) and (B.31) respectively, so that

1 M
—E[lng(w)] = 3 In [Sy| + ?(1 + In(27)).
Similarly we have

—E[lng(a)] = —(an, — D¢(an) + any + InT'(an) + Inby.

Now we substitute the following expressions for the moments

E[W} = my
E[WWT} = mNm% + SN

Eja] = %
Ellna] = 4¢(an)—Inby.

and combine the various terms together to obtain (10.107).
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10.28 NOTE: In PRML, Equations (10.119)—(10.121) contain errors; please consult the
PRML Errata for relevant corrections.

We start by writing the complete-data likelihood, given by (10.37) and (10.38) in a
form corresponding to (10.113). From (10.37) and (10.38), we have

p(X,Z|7T,/1,,A) = p(X‘Z K, )(Z|7T)

N
- HH (kN (¢ |y, ALT)) T

which is a product over data points, just like (10.113). Focussing on the individual
factors of this product, we have

K K
p(Xn,Zn|7T,M, H WkN Xn|ﬂ‘lm 1))an = eXp{ZZ"k <lnﬂ—k
k=1

k=1
1 D 1
T3 In|Ag| - 5 In(27) — §<Xn — ) TA(x — Mk)) }

Drawing on results from Solution 2.57, we can rewrite this in the form of (10.113),

with
Appy,
Ly
Ay
n=| LA, (286)
In g k=1,... K
Xn,
%xnxg
u(xn,zn) = | %nk 7% (287)
1
2
1 k=1,...K
K
h(xn,zn) = [ [ ((2m) P72 (288)
k=1
g(n) =
where we have introduce the notation
Vi
\P]

[Vk]kzl,...,K =

VK



188

Solution 10.28

.
and the operator M which returns a vector formed by stacking the columns of the
argument matrix on top of each other.

Next we seek to rewrite the prior over the parameters, given by (10.39) and (10.40),
in a form corresponding to (10.114) and which also matches (286). From, (10.39),
(10.40) and Appendix B, we have

plm,p,A) = Dir(mlog) [N (melmo, (BoAr) ™) W (Ax[Wo, 1)

k=1

KD/2 K
= C(a) <ﬂo> B(Wy, VO)Kexp{Z(ao —1)Inmg

2T
k=1

Uo—D

+ In |Ag| — %Tf (Ax [Bo(pey, — mo)(py — mp)" + WO])}

we can rewrite this in the form of (10.114) with 1) given by (286),

Bomyg .
-1 (ﬁomomg + Wo_1>
X0 = ~fo/? (289
(vo — D)/2

g — 1 k=1,.. K

g(n) =1

3 KD/2
o) = Clon) () BOWaw)

and vy replaces v in (10.114) to avoid confusion with v in (10.40).

Having rewritten the Bayesian mixture of Gaussians as a conjugate model from the
exponential family, we now proceed to rederive (10.48), (10.57) and (10.59). By
exponentiating both sides of (10.115) and making use of (286)—(288), we obtain
(10.47), with p,j, given by (10.46), from which (10.48) follows.

Next we can use (10.50) to take the expectation w.r.t. Z in (10.121), substituting 7,
for E[z,] in (287). Combining this with (289), (10.120) and (10.121) become

vN=v9+N=14+N
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and
[ Bomy X
_1 T —1 N 1o 7
> (fomomg + W 3XnX,
UNXN — —Bo/2 + Z Tnk fl%
(vo— D)/2 n=1 5
L ap — 1 k=1,.. K 1 k=1,.. K
[ Bomg + NiXy,
-5 (ﬁomomOT + Wy + N (Sk + ikig))
- —(Bo + Ny)/2 (290)
(vo — D + Ng)/2
- ap — 14 N k=1,.. K

where we use vy instead of v in (10.119)—(10.121), to avoid confusion with vy,
which appears in (10.59) and (10.63). From the bottom row of (287) and (290), we
see that the inner product of i and v x 5 gives us the r.h.s. of (10.56), from which
(10.57) follows. The remaining terms of this inner product are

Z {NEAk (Bomg + NpXy)

K
k=1

1 §
— §TI‘ (Ak [ﬁomomg + WO_I + N (Sk + ikig)J)
1 1
- 5(50 + Nk)I«LEAkMk + 5(7/0 + Ni — D) In |A‘}

Restricting our attention to parameters corresponding to a single mixture component
and making use of (10.60), (10.61) and (10.63), we can rewrite this as

1 1 1
- iﬁkuEAkuk + Bepi Apmy, — §ﬁkm;£Akmk + B In |A]

1 1
+ iﬁkmzAkmk - §Tr (Ak [ﬁomomoT + Wy + Ni(Sk + XXy,

1
+ 5= D= 1)l A]

The first four terms match the logarithm of N (1, |my, (ﬁkAk)fl) from the r.h.s.
of (10.59); the missing D /2[In ), — In(27)] can be accounted for in f(vn, x ). To
make the remaining terms match the logarithm of W (A |Wo, 1) from the r.h.s. of
(10.59), we need to show that

T — =T T
Bomomy + NpXipX;, — Spmpm;y,
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10.29

equals the last term on the r.h.s. of (10.62). Using (10.60), (10.61) and (276), we get

Bomomy + NipXipX), — fpmypmy
Bomomy + NpXpX;, — fomom;, — NpX,my,
= Bomem, — Bymom}, + NpX.X; — NpXpm) + Bpmpm} — Bymzm;
= 50m0mg - 60m0m;£ - 50mkzmoT —+ ﬂomkm}f
—Q—Nkiki’]g — Nkikm;f — Nkmki;f + Nkmkmz
= Bo(my —mp)(my —my)" + Ni (X — my)(X — my) "
BoNk _

= 3o+ Nk (X — myg) (X, —myg) "

Thus we have recovered In W (A;| Wy, 1) (missing terms are again accounted for
by f(vn, X)) and thereby (10.59).

NOTE: In the 1* printing of PRML, the use of \ to denote the varitional param-
eter leads to inconsistencies w.r.t. exisiting literature. To remedy this A should be
replaced by n from the beginning of Section 10.5 up to and including the last line
before equation (10.141). For further details, please consult the PRML Errata.

Standard rules of differentiation give

dln(z) 1

dr  x
d?In(z) 1
dx? 2

Since its second derivative is negative for all value of z, In(z) is concave for 0 <
T < 00.

From (10.133) we have
g(n) = min{nz — f(z)}
= min{nz —In(x)}.

We can minimize this w.r.t. z by setting the corresponding derivative to zero and

solving for z:
d 1 1
79 = 77 —_ - = 0 — €r = —.
dx x n

Substituting this in (10.133), we see that

o) =1—1n (;) |

If we substitute this into (10.132), we get

(&) = min {m— 1+1In <717> }
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Again, we can minimize this w.r.t. 77 by setting the corresponding derivative to zero

and solving for 7:
d 1 1
—f =r— — = 0 — ’[7 = —,
dn n x
and substituting this into (10.132), we find that

@) = %x 14l (1;) — In().

NOTE: Please consult note preceding Solution 10.29 for relevant corrections.

Differentiating the log logistic function, we get

d —x -1 —x —x
. Ino = (1 +e ) e " =o(x)e (291)
and, using (4.88),
d2 —x —x __ 2 —x
= Ino=oc(z)(1 —0o(x))e™™ —o(x)e™ = —o(x)’e

which will always be negative and hence In o (z) is concave.

From (291), we see that the first order Taylor expansion of In o (z) around & becomes
Ino(z) =Ino(€) + (z — o(&)e ¢+ O ((z — xi)?) .
Since In o () is concave, its tangent line will be an upper bound and hence

Ino(z) <Ino(€) + (x — &a(€)e s, (292)

Following the presentation in Section 10.5, we define

n=o(&e " (293)
Using (4.60), we have
_ —£__¢
n = 0’(5)6 - 1 4 675
1
= 1+ et =0o(=¢)
= 1-0(¢)
and hence
o§)=1-n
From this and (293)
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10.31

Using these results in (292), we have

Ino(x) <In(l—n)+2a2n—n[n(l —n) —1Inn|.

By exponentiating both sides and making use of (10.135), we obtain (10.137).

NOTE: Please consult note preceding Solution 10.29 for relevant corrections.

Taking the derivative of f(x) w.r.t. z we get

df 1 Lo —apo 1 (x)
2SSt 2 (/2 _pm/2) = T anh (2
dz er/2 4 e==/2 2 (6 ¢ ) 2 tan 2

where we have used (5.59). From (5.60), we get

1= 4 (- (3)).

Since tanh(z/2)? < 1 for finite values of z, f”(x) will always be negative and so

f(x) is concave.

Next we define y = 22, noting that y will always be non-negative, and express f as

a function of y:

fly) = —1n {exp (“f) Fexp (—?) } |

We then differentiate f w.r.t.y, yielding

- {l(9) )
1 _

and, using (5.60),
azf 1 ?
_ Vi AV AR
- 8y<tah<z>{m h(z>} )

(294)

(295)

(296)

We see that this will be positive if the factor inside the outermost parenthesis is

positive, which is equivalent to

\;ytanh <\§7> > % {1 — tanh? (?) } :
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If we divide both sides by tanh (,/7/2), substitute a for ,/7/2 and then make use
of (5.59), we can write this as

l - et +e B et —e @
6(1 — e—a ea + e—(l
(e® + «ff“)2 — (e® — e’a)2
(@ —e™2) (e® 4+ e~ @)
4

e2a _ 6—2a'

S|

Taking the inverse of both sides of this inequality we get

a< % (e2a — 672‘1) .

If differentiate both sides w.r.t. @ we see that the derivatives are equal at ¢ = 0 and
for a > 0, the derivative of the r.h.s. will be greater than that of the 1.h.s. Thus, the
r.h.s. will grow faster and the inequality will hold for @ > 0. Consequently (296)
will be positive for y > 0 and approach +oo as y approaches 0.

Now we use (295) to make a Taylor expansion of f(z?) around &2, which gives

f@®) = f(E)+ (@ =)&) +0 (" - €)?)

> —In {exp <§> + exp <—§> } — (2% - 52)41§tanh (g) .

where we have used the fact that f is convex function of 22 and hence its tangent
will be a lower bound. Defining

) = 41§tanh (g)

we recover (10.143), from which (10.144) follows.

We can see this from the lower bound (10.154), which is simply a sum of the prior
and indepedent contributions from the data points, all of which are quadratic in w. A
new data point would simply add another term to this sum and we can regard terms
from the previously arrived data points and the original prior collectively as a revised
prior, which should be combined with the contributions from the new data point.

The corresponding sufficient statistics, (10.157) and (10.158), can be rewritten di-
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rectly in the corresponding sequential form,

my =Sy <So_1m0 + Z(tn - 1/2)¢n>

and

192]
=1
|

n=1

N
Sot +2) A& d. o

n=1
N—-1

= S H2) Mé)dadn +2MEN) NN

n=1

= Syl +2M(EN) PN

The update formula for the variational parameters, (10.163), remain the same, but
each parameter is updated only once, although this update will be part of an iterative
scheme, alternating between updating m and S ;v with £ kept fixed, and updating
&nv with mpy and Sy kept fixed. Note that updating £ will not affect mpy_; and
Sn_1. Note also that this updating policy differs from that of the batch learning
scheme, where all variational parameters are updated using statistics based on all

data points.

10.33 Taking the derivative of (10.161) w.r.t. &,, we get

2Q
9&n

L ey L ey (TR T g e
o6 €)= 5 = X (&) (4nE [ww'] & = &) + A(60) 2

1 1 / T T, e2
@U(fn)(l —o(z)) - 3~ A (&) (P [ww'] ¢ —£72)
1

1
N (&) (0K [ww'] ¢ — £7)

where we have used (4.88) and (10.141). Setting this equal to zero, we obtain
(10.162), from which (10.163) follows.
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NOTE: In the 1%° printing of PRML, there are a number of sign errors in Equation
(10.164); the correct form is

SN 1 _
||s0| FmaSymy

o3 ot - b et

We can differentiate £ w.r.t. &, using (3.117) and results from Solution 10.33, to

obtain
oL 1 _10SN 1 ISy , )
%, 2Tr (S 2, ) + -Tr <aNaN 2%, > + N(&n)E (297)

where we have defined

1
Tg-1
—m; S, my

£E = S >

ay =Sy'my. (298)
From (10.158) and (C.21), we get
Sy a(sy)” 087!
= —5,~—=-Sn SN

= —SN2XN(6)Pnd, SN
Substituting this into (297) and setting the result equal to zero, we get
1 _
—5Tr ((Sy' +anay) Sw2X (§n)dnénSn) + N (&n)€, = 0.

Rearranging this and making use of (298) we get

& = ¢.S~n(Sy +anay)Snon
¢n (Sy + mymy) ¢,
where we have also used the symmetry of Sy.

NOTE: See note in Solution 10.34.
From (2.43), (4.140) and (10.153), we see that

p(W)h(w,€) = (2m)" V2|8, 7/

exp{—lw <S +22)\ §n)Pn® )

ol el )

exp{ mOS m0+2—+)\£n }HO‘ n)-

n=1
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10.36

10.37

Using (10.157) and (10.158), we can complete the square over w, yielding

N

p(w)h(w,€&) = (2m) 72|87 [] o(&n)

n=1

esxp {—é(w — my) TSy (w nw)}

1
exp{2m]TVSN1mN meS moz + X&n 52}

Now we can do the integral over w in (10.159), in effect replacing the first exponen-
tial factor with (271)"V/2 |Sy| /2 Taking logarithm, we then obtain (10.164).

If we denote the joint distribution corresponding to the first j factors by p;(0,D),
with corresponding evidence p;(D), then we have

p,(D) = / p;(6.D)d6 = / py1(0.D) f,(0) A6
— p, (D) / Py (61D)f;(6) o
~ p;(D) / 45-1(0)£;(8) 48 = p;_,(D)Z;.

By applying this result recursively we see that the evidence is given by the product
of the normalization constants
D) =]]%-
J

Here we use the general expectation-propagation equations (10.204)—(10.207). The
initial ¢(0) takes the form
qlnlt 0) H f (3

120
where }‘:0(0) = fo(@). Thus
°0) < [] £i(0)
i#0
and ¢"*V(0) is determined by matching moments (sufficient statistics) against
\9(0) £o(6) = gt (0).

Since by definition this belongs to the same exponential family form as ¢"*V(8) it

follows that
7"V () = qinir(0) = ¢"°(6) fo(6).
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Thus
ZO qnew (9)
q\°(6)

Z= [ d@O1n0)20 = [ ¢6)a0 =1,

The ratio is given by

fo(8) = = Zofo(0)

where

1 1
(0) o0 ml? s 1o - m )

X exp {—10T0 <1 — 1) +6" <1m - 1mn)}
2 v v, v Un

from which we obtain the variance given by (10.215). The mean is then obtained by
completing the square and is therefore given by

m\" = o\» (vilm — v;lmn)
= o\ (vilm — vilmn) + 0\ —im — v\"vglm
= o\ (v'—v, ) m+ v\t (m —m,,)
Hence we obtain (10.214).

The normalization constant is given by
Zp = /./\/(Om\",v\”I) {1 - w)N(x,]0,1I) + wN (x,]0,al)} d6.

The first term can be integrated by using the result (2.115) while the second term
is trivial since the background distribution does not depend on 6 and hence can be
taken outside the integration. We therefore obtain (10.216).

NOTE: In PRML, a term v\" D should be added to the r.h.s. of (10.245).

We derive (10.244) by noting

VonInZz, = ivm\n / q\"(0)f.(0)d6
- 5 [iono{- -0} w
B m\n [ ]
T o\ v\’

We now use this to derive (10.217) by substituting for Z,, using (10.216) to give

1

Ve InZ, = —(1—w)N(x,/m\", (v\" + 1)I) ———
v\r 41

1
pn’U\n + 1

(xn — m\n)

(xn — m\n)
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where we have defined

pn = (1— w)Zi/\/(xn|m\", W+ D) =1— Zﬂ/\/(xnm,al).

n

Similarly for (10.245) we have
1
VoelnZy= 5 Voo [0 (0)1,6)d0

1 T D
= Zin / ¢\ () £.(0) {2(1)\”)2 (m\* -~ 6) (m\"-8) - 2v\n} de

_ 1 T Ty, \n \n |2 D
- W{E[G 6] —2E[0"]m\" + |m\"|*} — g\

Re-arranging we obtain (10.245). Now we substitute for Z,, using (10.216) to give

1
VonInZz, = Z—(l —w)N (x,|m\", (v\" + 1)T)

1

E YRR [—
2(v\r +1)2

I S D
I3 —m 20\ + 1)

Next we note that the variance is given by

vI =E[00"] —E[O|E[0"]
and so, taking the trace, we have

Dv =TE[0"6] - E[0T]|E[0]

where D is the dimensionality of 8. Combining the above results we obtain (10.218).

Sampling Methods

11.1

Since the samples are independent, for the mean, we have

2[7]= 33 [ sCmEa = 1SRl =l

Using this together with (1.38) and (1.39), for the variance, we have

wli] - [(-3[7)]

- E[P?| -EUT.
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Now note

E[f(z9), /(z™)] = {Eﬁ$+EUﬂ(ﬁ3;£Z

= E[f*] + dmevar[f],

where we again exploited the fact that the samples are independent.

Hence
. 1 & 1<
var M = E [L Zf(z(m))LZf(z(k))] — E[f]?
1 Lm:i k=1
- H;E{E[fwamkvar[f] — E[f]?
1
= zvar[f]
1 2
= JE[(/-E)]

From (1.27) we have,
py(y) = p:(h(y)) 7' (y)].

Differentiating (11.6) w.r.t. 4 and using the fact that p, (h(y)) = 1, we see that
py(y) = p(y)-

Using the standard integral

1 1
/Hdu:tanl <E>+C
a4+ u a a

where C'is a constant, we can integrate the r.h.s. of (11.8) to obtain
o1 . 1
z=h{y)= [ pl)dy=—tan™ (y) +
o ™ 2

where we have chosen the constant C' = 1/2 to ensure that the range of the cumula-
tive distribution function is [0, 1].

Thus the required transformation function becomes

y=h'(z) = tan <7T <z _ ;)) .

We need to calculate the determinant of the Jacobian
6('2 15 22)
(Y1, 2)
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In doing so, we will find it helpful to make use of intermediary variables in polar

coordinates
0 = tan~' 2 (299)
21
r? = zf + zg (300)
from which it follows that
z1 = rcosf (301)
zo = rsinf. (302)
From (301) and (302) we have
O(z1,22) cos 0 sin 0
a(r,0) —\ —rsinf rcosb
and thus 5
8(2":2)2) = r(cos® 0 4 sin? @) = r. (303)
From (11.10), (11.11) and (300)—(302) we have
—21n 2\ "
h = 21< o > = (—2m7?) " cos 0 (304)
r
—2Inr2\ "/
Yo = 2o ( ;W > = (—21n7"2)1/2 sin 6 (305)
r
which give

Oy1,y2) _ ( —2cos0 (—2Inr?) =1 —2sinf (—2Inr?) /2 p 1 )

a(r,0) —sin9(—21nr2)1/2 cos@(—anr2)1/2
and thus
o(r,0) _ o(y1,y2)| _ —1 2 2\ "L T
3. 9) —’ 90.0) —( 2r~"(cos” f + sin 9)) =-3
Combining this with (303), we get
' (21, 22) ' 0(z1,22) O(r,0)
(y1,y2) a(r,0) 9(y1,y2)
0(#1, 22) a(r,0) r?
= = —— 30
o0r,6) | |8y, 2)| ~ 2 (300

However, we only retain the absolute value of this, since both sides of (11.12) must
be non-negative. Combining this with

1
p(zh Zz) = p
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which follows from the fact that z; and z, are uniformly distributed on the unit circle,

we can rewrite (11.12) as
L

p(y1,y2) = 2—7“ . (307)
T

By squaring the left- and rightmost sides of (304) and (305), adding up the results
and rearranging, we see that

1
= e (—3 (2 2) )
which toghether with (307) give (11.12).

Since E [z] = 0,
Ely] = E[p +Lz] = p.

Similarly, since E [zzT] =1,

covly] = Elyy']| —E[y]E[y"]
= E [(u +Lz) (u+ LZ)T] —ppt
LLT
.

The probability of acceptance follows directly from the mechanism used to accept or
reject the sample. The probability of a sample z being accepted equals the probability
of a sample v, drawn uniformly from the interval [0, kg(z)], being less than or equal
to a value p(z) < kq(z), and is given by is given by

p(z) 1 e
p(z)
p(acceptance|z) = / du = .
( ”) o ka(z) kq(z)

Therefore, the probability of drawing a sample, z, is

¢(z)p(acceptance|z) = g(z) ,Z((ZZ)) - ’% (308)

Integrating both sides w.rt. z, we see that kp(acceptance) = Z,,, where

Z, = /5(z) dz.
Combining this with (308) and (11.13), we obtain

q(z)p(acceptance|z) 1

p(acceptance) - ZP(Z) = p(z)

as required.
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11.7

NOTE: In PRML, the roles of y and z in the text of the exercise should be swapped
in order to be consistent with the notation used in Section 11.1.2, including (11.16);
this is opposite to the notation used in Section 11.1.1.

We will suppose that y has a uniform distribution on [0, 1] and we seek the distribu-
tion of z, which is derived from

z="btany + c.
From (11.5), we have
dy
= - 309
q(z) = p(y) dz‘ (309)

From the inverse transformation

y = tan '(u(z)) = tan™* (Z ; c)

where we have implicitly defined u(z), we see that

dy d 1 du

- = 7

dz du an”"(u) dz
_ 1 du
14w dz

1 1

14+ (z—e)2/b2 b

Substituting this into (309), using the fact that p(y) = 1 and finally absorbing the
factor 1/b into k, we obtain (11.16). .

NOTE: In PRML, equation (11.17) and the following end of the sentence need to
modified as follows:

q(z) = kidiexp{-Xi (z —2))}  Zic1i <2< Ziin
where Z;_1 ; is the point of intersection of the tangent lines at z;_; and z;, A; is the
slope of the tangent at z; and k; accounts for the corresponding offset.

We start by determining g(z) with coefficients k. such that q(2) = p(2) everywhere.
From Figure 11.6, we see that

q(z) = p(z)
and thus, from (11.17),

A(z) = kdiexp(=Ai(zi — 2))
)

kidi = p(2). (310)
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Next we compute the normalization constant for ¢ in terms of &;,

Z, = / U(2)dz

K . Ziit1
— Zki)\i/ exp (—Ai(z — z;)) dz
i=1 z

- Zi—1,i
= Eki (311)
=1

where K denotes the number of grid points and

_ Ziit1
kz‘ = kz)\z/ exXp (_)\Z(Z_Z’l>> dz

Zi—1,i

= k (exp{—Xi (Zic1s — 2)} —exp{—X\i (Ziis1 — 2z:)}).  (312)

Note that Zp ; and /Z\K, K +1 equal the lower and upper limits on z, respectively, or
—oo/+00 where no such limits exist.

NOTE: See correction detailed in Solution 11.8

To generate a sample from ¢(z), we first determine the segment of the envelope
function from which the sample will be generated. The probability mass in segment
i is given from (311) as k;/Z,. Hence we draw v from U (v|0, 1) and obtain

1 ifv<k/Z,
i=S m YTk 2y <v <Y ki) Zy, 1<m <K
K otherwise.

Next, we can use the techniques of Section 11.1.1 to sample from the exponential
distribution corresponding to the chosen segment ¢. We must, however, take into
account that we now only want to sample from a finite interval of the exponential
distribution and so the lower limit in (11.6) will be Z;_; ;. If we consider the uni-
formly distributed variable w, U (w0, 1), (11.6), (310) and (311) give

w = h(z)—/ q(z)dz
ks : o~
= E)\i exp ()\izi)/ exp (—\;z) dz

k; N
= = exp (\izi) [exp (—NiZi—1,i) — exp (—\i2)].
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11.10

11.11

Thus, by drawing a sample w* and transforming it according to

1 k; ~
25 = —Injw'=——"——exp(—NZi—1,)
Ai ki exp (Aiz;)

1 ~ —~ ~
= )\ hl[ (EXP {_)\izifl,i} — €Xp {_/\izi,i-i-l}) — exXp (_/\izifl,i)]

T

where we have used (312), we obtain a sample from ¢(z).

NOTE: In PRML, “z(Y) = 0” should be “2(®) = 0” on the first line following
Equation (11.36)

From (11.34)—(11.36) and the fact that E [z(T)] = ( for all values of 7, we have

Ez(f) |:(Z(7'))2i| — O'5EZ<T*1) |:(Z(T*1))2i| +O.25EZ(,—,1) |:(Z(7‘*1) +1)2i|
+0.25E, 1) [(z<T—1> N 1)2}
1
= B {(Z(H)ﬂ Ty (313)

With 20 =0 specified in the text following (11.36), (313) gives
1 1

E.q) [(2(1))2} = Eo {(Z(O))Z} n a=3.

Assuming that

B 2 k
E. [(z< ) } =
(313) immediatly gives
k1 k+1
k+1

Eaey [(F) ] =5 +5= "5

and thus ) -

E.o [(27)] = 2.

This follows from the fact that in Gibbs sampling, we sample a single variable, 2y,
at the time, while all other variables, {z; };, remain unchanged. Thus, {2]}; 4, =
{zi }izr and we get

p*(z)T(z,Z/) = p* Zkv{Zz}zyék)p*(zk‘{zz}#k)
* Zk'{zz}zgék) * {%}z#k) (Z
*(
)

p*(
P*( P*( {2 Yizr)
= p"(zl{# }#k)p*({z Yir)p* (2
p*( P (2,
p*(z

{zi}ize)

TSI

*(znl{z iz )p™ (2 {2 ik

(2, 2),

where we have used the product rule together with 7'(z, z") = p* (2}, [{2i }izk)-

*
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Gibbs sampling is not ergodic w.r.t. the distribution shown in Figure 11.15, since the
two regions of non-zero probability do not overlap when projected onto either the z; -
ot the zp-axis. Thus, as the initial sample will fall into one and only one of the two
regions, all subsequent samples will also come from that region. However, had the
initial sample fallen into the other region, the Gibbs sampler would have remained
in that region. Thus, the corresponding Markov chain would have two stationary
distributions, which is counter to the definition of the equilibrium distribution.

The joint distribution over x, x and 7 can be written
p(x, 1, 7o, s0,a,0) = N (z[p, 771) N (plpo, s0) Gam (7a,b).
From Bayes’ theorem we see that
p(ul, 7, po, s0) < N (e, 71) N (ual o, 50)
which, from (2.113)—(2.117), is also a Gaussian,
N (uln,'s)
with parameters

-1
Sog +7T

o= §(rz+sy o).

w)
|
|

Similarly,
p(rle,mya,b) < A (e, 71) Gam (7la,b)

which, we know from Section 2.3.6, is a gamma distribution
Gam (7'|a, /b\>
with parameters

~ +1
a = a+ =
2

~ 1
b = b+§(x—;z)2.

NOTE: In PRML, o should be o in the last term on the r.h.s. of (11.50).
If we take the expectation of (11.50), we obtain

] = E|m+al—m)+o(l-a?)"y]

wi +a (Elz] — p) + o4 (1 — a2)1/2

Hi-

E[v]
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Now we can use this together with (1.40) to compute the variance of 2,

7 K2

var[7] = E[(z{)2}f]E[z{]2

= E [(M + o (2 — i) + 0y (1 *a2)1/2 V)? *M?

= o’E[(z — m)*] + 07 (1 - a®)E V7]

_ 2
= o0;

where we have used the first and second order moments of z; and v.
11.15 Using (11.56), we can differentiate (11.57), yielding
OH 0K
or; or;
and thus (11.53) and (11.58) are equivalent.
Similarly, differentiating (11.57) w.r.t. z; we get
OH 0K
0z; 0z
and from this, it is immediately clear that (11.55) and (11.59) are equivalent.

i

11.16 From the product rule we know that
p(r|z) o p(r, z).

Using (11.56) and (11.57) to rewrite (11.63) as

par) = o exp(~Hizx)
1
— Eexp(—E(Z)—K(r))

= o (Il ) o (-E(a).

Thus we see that p(z, r) is Gaussian w.r.t. r and hence p(r|z) will be Gaussian too.

11.17 NOTE: In the 1°* printing of PRML, there are sign errors in equations (11.68) and
(11.69). In both cases, the sign of the argument to the exponential forming the second
argument to the min-function should be changed.

First we note that, if H(R) = H(R'), then the detailed balance clearly holds, since
in this case, (11.68) and (11.69) are identical.

Otherwise, we either have H(R) > H(R') or H(R) < H(R'). We consider the
former case, for which (11.68) becomes

1 1
E exp(—H(R))(SV?
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since the min-function will return 1. (11.69) in this case becomes

1 1 1 1
—exp(—H(R'))6V=exp(H(R') — H(R)) = — exp(—H(R))§V =.
Zy 2 Zy 2
In the same way it can be shown that both (11.68) and (11.69) equal

1 1

when H(R) < H(R').

Continuous Latent Variables

121

Suppose that the result holds for projection spaces of dimensionality M. The M +
1 dimensional principal subspace will be defined by the M principal eigenvectors
uy, ..., uy together with an additional direction vector u;; whose value we wish
to determine. We must constrain u,s; such that it cannot be linearly related to
uy,...,uys (otherwise it will lie in the M -dimensional projection space instead of
defining an M + 1 independent direction). This can easily be achieved by requiring
that ups 11 be orthogonal to uy, . . ., uyy, and these constraints can be enforced using
Lagrange multipliers 11, ..., 7.
Following the argument given in section 12.1.1 for u; we see that the variance in the
direction w1 is given by u& 415up 1. We now maximize this using a Lagrange
multiplier A\y;41 to enforce the normalization constraint uL 41un1 = 1. Thus we
seek a maximum of the function

M

u}/[HSuMH + At (1 - u}4+1uM+1) + Z niu}ﬁrlui.

i=1

with respect to u,;41. The stationary points occur when

M
0=2Sunry1 — 2 p41up41 + Zmui-

i=1

Left multiplying with ujT, and using the orthogonality constraints, we see thatn; = 0
for j =1,..., M. We therefore obtain

SllM+1 = AM4+1UM+1

and so uyso1 must be an eigenvector of S with eigenvalue uy; ;. The variance
in the direction up/ is given by u}, 1Sup1 = Ay and so is maximized by
choosing ujsy1 to be the eigenvector having the largest eigenvalue amongst those
not previously selected. Thus the result holds also for projection spaces of dimen-
sionality M + 1, which completes the inductive step. Since we have already shown
this result explicitly for M = 1 if follows that the result must hold for any M < D.
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12.2

12.3

Using the result (C.24) we can set the derivative of J with respect to U to zero to
obtain A
0=(S"+S)U-UMH" +H).

We note that S is symmetric so that ST = S. Similarly we can choose H to be sym-
metric without loss of generality since any non-symmetric component would cancel

from the expression for .J since the latter involves a trace of H times a symmetric
matrix. (See Exercise 1.14 and its solution.) Thus we have

SU = UH.
Clearly one solution is take the columns of U to be eigenvectors of S. To discuss the
general solution, consider the eigenvector equation for H given by

HY = ¥L.

Since H is a symmetric matrix its eigenvectors can be chosen to be a complete
orthonormal set in the (D — M )-dimensional space, and L will be a diagonal matrix
containing the corresponding eigenvalues, with ¥ a (D—M ) x (D— M )-dimensional
orthogonal matrix satisfying 7 & = 1.

If we right multiply the eigenvector equation for S by W we obtain
SU¥ = UHY = UYL
and defining U = U¥ we obtain
SU = UL

so that the columns of I~J are the eigenvectors of S, and the elements of the diagonal
matrix L are the corresponding eigenvalues.

Using the cyclic property of the trace, together with the orthogonality property
T W the distortion function can be written

J =Tr(UTSU) = Tr(¥TUTSUW) = Tr(USU) = Tr(L).

Thus the distortion measure can be expressed in terms of the sum of the eigenvalues
of S corresponding to the (D — M) eigenvectors orthogonal to the principal subspace.

By left-multiplying both sides of (12.28) by v., we obtain

1 T T T
—v; XX Vi *—)\Z‘V-Vi *—/\7‘
N v ¢

where we have used the fact that v; is orthonormal. From this we see that
T 2
X = N,

from which we in turn see that u; defined by (12.30) will have unit length.
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Using the results of Section 8.1.4, the marginal distribution for this modified proba-
bilistic PCA model can be written

p(x) = N(x|Wm + p, 0T+ WIS™'W).

If we now define new parameters

W = x/2w

p = Wm+p
then we obtain a marginal distribution having the form
p(x) = N (x|, o1 + WTW)

Thus any Gaussian form for the latent distribution therefore gives rise to a predictive
distribution having the same functional form, and so for convenience we choose the
simplest form, namely one with zero mean and unit covariance.

Sincey = Ax + b,
p(ylx) =d(y — Ax —b)

i.e. a delta function at Ax + b. From the sum and product rules, we have
ply) = /p(y, x)dx = /p(YX)p(X) dx
= /6(y — Ax — b)p(x) dx.
When M = D and A is assumed to have full rank, we have
x=A"'(y - b)
and thus

ply) = N(A'(y —Db)|p, %)
= N(y|Ap+b,AZAT).

When M > D,y will be strictly confined to a D-dimensional subspace and hence
p(y) will be singular. In this case we have

x=A""(y—b)

where AT is the left inverse of A and thus

p(y) N (A %y —b)|p, =)

N (ylAu +b, ((A*L)T 2_1AL)_1> .
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12.6

12.7

12.8

12.9

The covariance matrix on the last line cannot be computed, but we can still compute
p(y), by using the corresponding precision matrix and constraining the density to be
zero outside the column space of A:

ply) = N (yrAu+b, ((A—L)Tz—lA—L)‘1> 5(y — AAL(y—b) —b).

Finally, when M < D, we can make use of (2.113)=(2.115) and set L~! = 0 in
(2.114). While this means that p(y|x) is singular, the marginal distribution p(y),
given by (2.115), is non-singular as long as A and 3 are assumed to be of full rank.

Omitting the parameters, W, p and o, leaving only the stochastic variables z and
x, the graphical model for probabilistic PCA is identical with the the ‘naive Bayes’
model shown in Figure 8.24 in Section 8.2.2. Hence these two models exhibit the
same independence structure.

From (2.59), the multivariate form of (2.270), (12.31) and (12.32), we get
Elx] = E,[Ex [x|z]]

E, [Wz + u]

.

Combining this with (2.63), the covariance formula corresponding to (2.271), (12.31)
and (12.32), we get

covix] = E,[covx[x|z]] + covx [Ex[x]|z]]
E, [0°I] + cov, [Wz + p

= o’I+E, [(Wz+u—Ez Wz + p)) (Wz + p — E, [Wz + p])"
= 0’1+ E, [Wzz'W"]
= o’ I+ WWT,

NOTE: In the 1% printing of PRML, equation (12.42) contains a mistake; the co-
variance on the r.h.s. should be 0?M !,

By matching (12.31) with (2.113) and (12.32) with (2.114), we have from (2.116)
and (2.117) that
p(zlx) = N (z|I+0*W'W) '"WoI(x — p), T+ 0 >W W)™ )
= N (zZM "W (x —p),c?M™),
where we have also used (12.41).
By expanding the square in the last term of (12.43) and then making use of results
from Appendix C, we can calculate the derivative w.r.t. it and set this equal to zero,

yielding
N

—NC—1N+C—1an =0. (314)

n=1
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Rearrangning this and making use of (12.1), we get
M =X.
Using results from Appendix C, we can differentiate the r.h.s. of (314) w.r.t. , giving
~NC™ 1

If 02 > 0, C will be positive definite, in which case C~* is also positive definite,
and hence the log likelihood function will be concave with a unique maximum at g.

Taking 02 — 0 in (12.41) and substituting into (12.48) we obtain the posterior mean
for probabilistic PCA in the form

(Wi, W) "Wy (x — X).

Now substitute for Wy, using (12.45) in which we take R = I for compatibility
with conventional PCA. Using the orthogonality property UT, U, = I and setting
o2 = 0, this reduces to

L~Y/?U%,(x — X)

which is the orthogonal projection is given by the conventional PCA result (12.24).

For 02 > 0 we can show that the projection is shifted towards the origin of latent
space by showing that the magnitude of the latent space vector is reduced compared
to the o2 = 0 case. The orthogonal projection is given by

Zopth = LX;MU]TV[(X —X)

where L), and U), are defined as in (12.45). The posterior mean projection is given
by (12.48) and so the difference between the squared magnitudes of each of these is
given by
2 2
[ Zoren]|” — |[E[z[x]]

- x-%)T (UML;j“UM - WMLM_lM*WE/IL) (x — )

= x-%)"Uy{L"' =L+ '} Uyx-x)
where we have use (12.41), (12.45) and the fact that . and M are symmetric. The
term in curly braces on the last line is diagonal and has elements 0%/ \;(\; + o?)
which are all positive. Thus the matrix is positive definite and so the contraction

with the vector U/ (x — X) must be positive, and so there is a positive (non-zero)
shift towards the origin.

Substituting the r.h.s. of (12.48) for E[z|x] in (12.94), we obtain,

~ —1 _
Xp = W (Wi W) Wy (%, — X).
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12.14

12.15

From (12.45) we see that

-1

(Wl\T/ILWML)il - (LM - 0'2]:)

and so
~ T —
xn, = Uy Uy, (x5 — X).
This is the reconstruction of x,, — X using the M eigenvectors corresponding to

the M largest eigenvalues, which we know from Section 12.1.2 minimizes the least
squares projection cost (12.11).

If we substitute D — 1 for M in (12.51), we get

(D—-1)((D—1)—1) 2D? - 2D +2—-D?+4+3D —2
DD-1)+1- =
_ D*+D D(D+1)
a 2 2

as required. Setting M = 0in (12.51) given the value 1 for the number of parameters
in C, corresponding to the scalar variance parameter, o-2.

NOTE: In PRML, a term M /2 1In(27) is missing from the summand on the r.h.s. of
(12.53). However, this is only stated here for completeness as it actually does not
affect this solution.

Using standard derivatives together with the rules for matrix differentiation from
Appendix C, we can compute the derivatives of (12.53) w.r.t. W and o

1

aiWE[lnp (X, ZI, W,0%)] =3 {012()(” —R)E[z,]" - UZWE[znzg]}

n=1

and
0 AR
2 _ T T
@]E[lnp(x,zm,w,a )] = 21 {ME[znzn]W w
1 <12 1 T T = D
togillen =X = "W (%) — 5

Setting these equal to zero and re-arranging we obtain (12.56) and (12.57), respec-
tively.
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12.16 We start by noting that the marginal likelihood factorizes over data points as well as
the individual elements of the data points,

(X[, W,0?) — / W(Z)p(X|Z, 1. W, 02) dZ

N
- 1I / ()P 18, W, 0% iz
n=1

N D
- H /p(zn) HN(xni‘Wizn + piy0?)dz,  (315)
n=1 i=1

where z,,; denotes the i'"" element of x,,, ;1; denotes the i'" element of p and w; the
i*® row of W. If we assume that any missing values are missing at random (see page
441 of PRML), we can deal with these by integrating them out of (315). Let x{, and
x,' denote the observed and missing parts of x,,, respectively. Using this notation,

we can rewrite (315) as

N
pXlnW,o") = ] [ptm) T] Monlwizn + .0
n=1

T €EXY,

H N (20| Wiz + pj, 0°) dx}y dz,,

Tnj EX!

N

H /p(Zn) H N($ni|wizn + i 02) dz,
n=1 T €XY,
N
n=1

p(x5 |, W, 0?).

Thus we are left with a ‘reduced’ marginal likelihood, where for each data point, x,,,
we only need to consider the observed elements, x?) .

Now we can derive an EM algorithm for finding the parameter values that maxi-
mizes this ‘reduced’ marginal likelihood. In doing so, we shall find it convenient to
introduce indicator variables, ¢,;, such that ¢,,; = 1 if x,,; is observed and ¢,,; = 0
otherwise. This allows us to rewrite (12.32) as

D
p(x|z) = HN(.’E,;‘WZ'Z + pi, o)t

i=1

and the complete-data log likelihood as

n=1 =1

N D
Inp(X,Zlp, W,o) = Z {lnp(zn) + me- In N (2| Wizpn + ,ui,gz)} .
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Following the path taken in Section 12.2.2, making use of (12.31) and taking the
expectation w.r.t. the latent variables, we obtain

L1 (B [2a2T))

(v
E [lnp(X, Z|AU/7W70)] - - 2{2 111(271’) + 2 n

n=1

1
2 T T
+ Z an{ln 27TJ (xTLL Mni) - ;E[Zn] Wi (xnz - ,uni)

1
b T (B [z, ww) } }

Taking the derivative w.r.t. ;1; and setting the result equal to zero, we obtain

N

1
new __
i N E lnilni-
Zm:l bmi n=1

In the E step, we compute the sufficient statistics, which due to the altered form of
p(x|z) now take slightly different shapes. Equation (12.54) becomes

E[Zn] = M;1WEYn

where y,, is a vector containing the observed elements of x,, minus the correspond-
ing elements of "%, W,, is a matrix formed by the rows of W corresponding to
the observed elements of x,, and, accordingly, from (12.41)

M, = WIW, +¢’L

Similarly,
E [znzﬂ = o’M, ! + E[z,]E[z,]".

The M step is similar to the fully observed case, with

Wiew = [ZynE[zn}T [ZE[znzﬂ]

2 new
Onew = E E lni { Tni — My )
Zn 1 Zz 1ni =1 i=1

—2E[z,]" (W) (5 — p2ov)

K2

+Tr (E [znzﬂ (W?GW)T w?ew> }

new

where w}'°" equals the i row W ey

In the fully observed case, all t,; = 1,y, = xn, W, = W and p™*¥ = X, and
hence we recover (12.54)—(12.57).
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NOTE: In PRML, there are errors in equation (12.58) and the preceding text. In
(12.58), X should be X™ and in the preceding text we define €2 to be a matrix of size

M x N whose n'? column is given by the vector E|z,,].

Setting the derivative of J with respect to p to zero gives

N

OZ—Z(xn—u—Wzn)

n=1

from which we obtain

1 1
_ 2 =S "Wz, —x— Wz
[.L N;X N; Z X Z

Back-substituting into J we obtain

N

T =) (k0 — %X = W(z, —2)|*

n=1

We now define X to be a matrix of size N x D whose n'" row is given by the vector
x,, — X and similarly we define Z to be a matrix of size D x M whose n'" row is
given by the vector z,, — z. We can then write J in the form

J=Tr{(X-ZW")(X-zZW")"}.

Differentiating with respect to Z keeping W fixed gives rise to the PCA E-step
(12.58). Similarly setting the derivative of .J with respect to W to zero with {z,,}
fixed gives rise to the PCA M-step (12.59).

Analysis of the number of independent parameters follows the same lines as for
probabilistic PCA except that the one parameter noise covariance o1 is replaced by
a D parameter diagonal covariance ¥. Thus the number of parameters is increased
by D — 1 compared to the probabilistic PCA result (12.51) giving a total number of
independent parameters of

D(M +1) — M(M —1)/2.

To see this we define a rotated latent space vector z = Rz where R is an M x M or-

thogonal matrix, and similarly defining a modified factor loading matrix W = WR.
Then we note that the latent space distribution p(z) depends only on z'z = z'Z,
where we have used RTR = 1. Similarly, the conditional distribution of the ob-
served variable p(x|z) depends only on Wz = Wz. Thus the joint distribution
takes the same form for any choice of R. This is reflected in the predictive distri-
bution p(x) which depends on W only through the quantity WW™' = WWT and

hence is also invariant to different choices of R.
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Solutions 12.20-12.22

12.20

12.21

12.22

The log likelihood function is given by

InL(p, W, ®) = Inp(x,|p, C)
n=1

= > {-m[C - (x0 — 1)TC (30— )}

where C is defined by (12.65). Differentiating with respect to u* and setting the
derivative to zero we obtain

Pre-multiplying by C and re-arranging shows that g is given by the sample mean
defined by (12.1). Taking the second derivative of the log likelihood we obtain

9?InL
opuTou
Since C is a positive definite matrix, its inverse will also be positive definite (see

Appendix C) and hence the stationary point will be a unique maximum of the log
likelihood.

By making use of (2.113)—(2.117) together with (12.31) and (12.64), we obtain the
posterior distribution of the latent variable z, for a given value of the observed vari-
able x, in the form

—-NC.

p(z|x) = N(z|GWTT ! (x — x).
where G is defined by (12.68). Since the data points are drawn independently from
the distribution, the posterior distribution for z,, depends only on the observation x,,
(for given values of the parameters). Thus (12.66) follows directly. For the second
order statistic we use the general result

E[z,2z,] = cov|z,] + E[z,|E[z,]"
from which we obtain (12.67).

NOTE: In PRML, Equations (12.69) and (12.70) contain minor typographical errors.
On the L.h.s. W% and ¥"*" should be W .., and ¥ ..., , respectively.

For the M step we first write down the complete-data log likelihood function, which
takes the form

N
IDLC = Z{lnp(zn)+lnp(xn|zn)}

n=1

l\DP—‘

N
= fz ~MIn(27) — 2"z, — DIn(27) — In |¥|

—(Xn —X—-Wz,)T¥ ! (x, —X - Wzn)}
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Now take the expectation with respect to {z, } to give

N
E,[InLc] = % Z {~In|¥| - Tr (E[z,z; W T'W)
n=1
+2E[z,]" W' ¥ (x, —X)} — NTr (ST ') + const.

where S is the sample covariance matrix defined by (12.3), and the constant terms
are those which are independent of W and W. Recall that we are making a joint
optimization with respect to W and W. Setting the derivative with respect to WT
equal to zero, making use of the result (C.24), we obtain

N N
0=—20"'"W Y Elz,z,] + 20" Y [(xn — DE[z,]"].

n=1

Pre-multiplying by ¥ and re-arranging we then obtain (12.69). Note that this result
is independent of W.

Next we maximize the expected complete-data log likelihood with respect to W. For
convenience we set the derivative with respect to ¥ ! equal to zero, and make use
of (C.28) to give

N N
0=NT -W ZE[znz,Tl]] W' +2 ) (x, —X)E[z,]" | W - NS.
n=1 n=1

This depends on W, and so we can substitute for W, in the second term, using
the result (12.69), which simplifies the expression. Finally, since W is constrained to
be diagonal, we take set all of the off-diagonal components to zero giving (12.70) as
required.

The solution is given in figure 10. The model in which all parameters are shared
(left) is not particularly useful, since all mixture components will have identical pa-
rameters and the resulting density model will not be any different to one offered
by a single PPCA model. Different models would have arisen if only some of the
parameters, e.g. the mean p, would have been shared.

We can derive an EM algorithm by treating 7 in (2.160) as a latent variable. Thus
given a set of i.i.d. data points, X = {x,,}, we define the complete-data log likeli-
hood as

N
Inp(X,n|p, A, v) = Z {InN (x5|p2, (o A) ") + In Gam (n,|v/2,v/2) }

where 7 is an IN-dimensional vector with elements 7,,. The corresponding expected
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Figure 10 The left plot shows the ™ (—~ ) 7
graphical model correspond- Z};
ing to the general mixture of
probabilistic PCA. The right s ]
plot shows the correspond-
ing model were the param- |~ Wi w

eter of all probabilist PCA
models (u, W and o°) are 4

— M X n
shared across components.
In both plots, s denotes
the K-nomial latent variable ™~ o} o?
that selects mixture compo- K

nents; it is governed by the
parameter, .

complete-data log likelihood is then given by

N
&, lnp(X, nlps, A, )] = —3 3" {D(n(2r) ~ Eflnn,]) - In|A

+Eny) (x"Ax = 2x"Ap+ p"Ap) +2InT(v/2)
—v(ny —In2) — (v —2)E[lnn,] + E[n,]} (316)

where we have used results from Appendix B. In order to compute the necessary
expectations, we need the distribution over 7, given by

N
pIX, A v) = ] pOinlxn, 1 A, v)

;1
o [TV (nlpr, (0 A)™1) Gam (v /2, v/2) .

From Section 2.3.6, we know that the factors in this product are independent Gamma
distributions with parameters

v+ D
a, =

2
b — v+ (%0 — p) T A(X, — p)
" 2

and the necessary expectations are given by

Eln] = 3
Ellnn,] = (a,)—1Inb,.

In the M step, we calculate the derivatives of (316) w.r.t.  and 3, set these equal to
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zero and solve for the respective parameter, to obtain

S Elnalx,
S Eln,]

1 & -
Ay, = (N ;E[nn](xn — pr) (Xn — NML)T>

Also for v, we calculate the derivative of (316) and set the result equal to zero, to get

() - (5)+ ;i {E[lnn,] — Elna]} = 0.

Unfortunately, there is no closed form solution w.r.t. v, but since v is scalar, we can
afford to solve this equation numerically.

125Y0

Following the discussion of section 12.2, the log likelihood function for this model
can be written as

ND N
L(p, W, ®) = ——ln(Qw)——ln|WWT+<I>|
N

Z (xn — )" (WWT + &) (x, — 1)},

l\?\»ﬁ

where we have used (12.43).

If we consider the log likelihood function for the transformed data set we obtain

ND N
La(p,W,®) = ——111(277) - —ln|WWT + 9P|

_,Z{Axn_ )T(WWT + @) (Ax, — )}

Solving for the maximum likelihood estimator for p in the usual way we obtain

N
1 -
Ha = E Ax, = AX = Apyy,.

n=1

Back-substituting into the log likelihood function, and using the definition of the
sample covariance matrix (12.3), we obtain
N D N
La(p, W, ®) = ———In(27) — — 5 In [WWT 4 &|

N
f% > Tr{(WWT + @) "ASAT}.

n=1
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12.26

We can cast the final term into the same form as the corresponding term in the origi-
nal log likelihood function if we first define

d,=AP AT, Wa = AW.

With these definitions the log likelihood function for the transformed data set takes
the form

ND
LA<[I,A,WA,‘PA) = —711’1(277) — —ln|WAWA + (PAl

_72{ T(WAWRL +®a) (% — pa)} — NIn|A[.

This takes the same form as the original log likelihood function apart from an addi-
tive constant — In |A|. Thus the maximum likelihood solution in the new variables
for the transformed data set will be identical to that in the old variables.

We now ask whether specific constraints on ® will be preserved by this re-scaling. In
the case of probabilistic PCA the noise covariance ® is proportional to the unit ma-
trix and takes the form o%1. For this constraint to be preserved we require AAT =1
so that A is an orthogonal matrix. This corresponds to a rotation of the coordinate
system. For factor analysis @ is a diagonal matrix, and this property will be pre-
served if A is also diagonal since the product of diagonal matrices is again diagonal.
This corresponds to an independent re-scaling of the coordinate system. Note that in
general probabilistic PCA is not invariant under component-wise re-scaling and fac-
tor analysis is not invariant under rotation. These results are illustrated in Figure 11.

If we multiply (12.80) by K we obtain (12.79) so that any solution of the former will
also be a solution of the latter. Let a; be a solution of (12.79) with eigenvalue )\; and
let a; be a solution of (12.80) also having eigenvalue \;. If we write a; = a; +b; we
see that b; must satisfy Kb; = 0 and hence is an eigenvector of K with eigenvalue
0. It therefore satisfies

Z bpik (%, x) = 0

for all values of x. Now consider the eigenvalue projection. We see that

=

6;Fqb(x) = Z¢(X)Tanz¢(xn)

n=1
N N
= Zanzk Xn, X +anzk Xn,X) = Zanik(xnv)()
n=1 n=1

and so both solutions give the same projections. A slightly different treatment of the
relationship between (12.79) and (12.80) is given by Scholkopf (1998).
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Figure 11 Factor analysis is covariant under a componentwise re-scaling of the data variables (top plots), while
PCA and probabilistic PCA are covariant under rotations of the data space coordinates (lower plots).
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12.27

12.28

12.29

In the case of the linear kernel, we can rewrite the 1.h.s. of (12.80) as

N
Ka;, = Zk(xnaxm)aim
N

1
T
= E XnXmQmi
1

m

and substituting this in (12.80), we get

N
E X X ami = N\ Na;
namimi — \g -

m=1
Next, we left-multiply both sides by x,, and sum over n to obtain

N N
NS Z X Qi = N IN anam.

m=1 n=1

Finally, we divide both sides by N and define

N
u; = § XnQijn
n=1

to recover (12.17).

If we assume that the function y = f(z) is strictly monotonic, which is necessary to
exclude the possibility for spikes of infinite density in p(y), we are guaranteed that
the inverse function z = f~!(y) exists. We can then use (1.27) to write

df—t
dy |’

p(y) =q(f () ‘ (317)

Since the only restriction on f is that it is monotonic, it can distribute the probability
mass over x arbitrarily over y. This is illustrated in Figure 1 on page 9, as a part of
Solution 1.4. From (317) we see directly that

NOTE: In the 1% printing of PRML, this exercise contains two mistakes. In the
second half of the exercise, we require that y; is symmetrically distributed around 0,
not just that —1 < y; < 1. Moreover, yo = 33 (not y2 = y3).
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If z; and 2z, are independent, then

cov]zi, ze] = //(zl — Z1)(22 — Z2)p(21, 29) dz1 d2o
[ =20t - zpeaptea) as d

= /(z1 —z1)p(21) dz /(z2 — Z9)p(22) dzo
= 0,

where

% = Elx] = / zip(z1) da.

For 1, we have

p(y2ly1) = 6(y2 — 1),

i.e., a spike of probability mass one at y7, which is clearly dependent on y;. With y;
defined analogously to z; above, we get

covlyr, yo] = //(yl = 1) (Y2 — Y2)P(y1, y2) dyr dyo
- // Y1 (y2 — 92)p(y2|y1)p(y1) dy: dyz

= /(Z/f —y172)p(y1) dys

where we have used the fact that all odd moments of y; will be zero, since it is
symmetric around zero.

Sequential Data

13.1

Since the arrows on the path from x,, to x,,, with m < n — 1, will meet head-to-tail
at x,_1, which is in the conditioning set, all such paths are blocked by z,,_; and
hence (13.3) holds.

The same argument applies in the case depicted in Figure 13.4, with the modification
that m < n — 2 and that paths are blocked by x,,_1 or z,,_.
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13.2 We first of all find the joint distribution p(x,...,x,) by marginalizing over the

variables X, 11, ..., XN, to give
p(Xh"'vXTL) = Z"'Zp(xla"wXN)
Xn+1 XN
N

= > > ) [ pxmlxm-a)

Xn41 XN m=2
n
= p(xl) H p(Xm|xm—1)-

m=2

Now we evaluate the required conditional distribution

p(X1,. .., Xp)

N Zp(xl,...,xn)

p(x1) H P(Xm[Xm—1)

_ m=2

= P .
ZP(XI) H P(Xm[Xm—1)
X m=2

We now note that any factors which do not depend on x,, will cancel between nu-
merator and denominator, giving

p(xn|X17 cee 7Xn—1)

P(Xn|Xn—1)

Zp(Xn|Xn—1)

= p(Xn|Xn—1)

p(Xn|X1, -y Xp1)

as required.

For the second order Markov model, the joint distribution is given by (13.4). The

marginal distribution over the variables xy, . .., X, is given by
Xy, Xy) = Z -~-Zp(x1,...,xN)
Xn+41 XN
N
= Z "'ZP(Xl)P(X2|X1) H P(Xm [Xm—1, Xm—2)
Xn+1 XN m=3

= p(Xl)p(X2|X1) H p(Xm|Xm—1,Xm—2)-

m=3
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The required conditional distribution is then given by

p(xq,.. xn)

Zp X1,

Xn

p(xn‘xla s 7X7’L71)

n

p XQ‘Xl H p Xm‘xmfhxme)

ZP(Xl)P(X2|X1)

Again, cancelling factors independent of x,, between numerator and denominator
we obtain

=R

p(xm|xmflv meZ)
3

3
I

p(Xn|xn—1> xn—2>

Zp(xn‘xn—la Xn—2)

Xn

- p(xn‘xn—la Xn—2)-

p(xn|xlv"'7xn—1) -

Thus the prediction at step n depends only on the observations at the two previous
steps x,,—1 and x,,_» as expected.

From Figure 13.5 we see that for any two variables x,, and x,,,, m # n, there is a
path between the corresponding nodes that will only pass through one or more nodes
corresponding to z variables. None of these nodes will be in the conditioning set
and the edges on the path meet head-to-tail. Thus, there will be an unblocked path
between x,, and x,,, and the model will not satisfy any conditional independence or
finite order Markov properties.

The learning of w would follow the scheme for maximum learning described in
Section 13.2.1, with w replacing ¢. As discussed towards the end of Section 13.2.1,
the precise update formulae would depend on the form of regression model used and
how it is being used.

The most obvious situation where this would occur is in a HMM similar to that
depicted in Figure 13.18, where the emmission densities not only depends on the
latent variable z, but also on some input variable u. The regression model could
then be used to map u to x, depending on the state of the latent variable z.

Note that when a nonlinear regression model, such as a neural network, is used, the
M-step for w may not have closed form.

Consider first the maximization with respects to the components 7 of 7r. To do this
we must take account of the summation constraint

K
Zﬂ'k =1.
k=1
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We therefore first omit terms from Q (6, 8,4) which are independent of 7, and then
add a Lagrange multiplier term to enforce the constraint, giving the following func-
tion to be maximized

~ K K
Q= Z'V(Zlk)lnﬂ'k + A <Z7rk — 1) .
k=1

k=1
Setting the derivative with respect to 7, equal to zero we obtain
1
0="(z16)— + A (318)
Tk

We now multiply through by 75, and then sum over k£ and make use of the summation

constraint to give
K

A=— ny(zlk).

k=1
Substituting back into (318) and solving for A we obtain (13.18).

For the maximization with respect to A we follow the same steps and first omit
terms from Q (6, 0,4) which are independent of A, and then add appropriate La-
grange multiplier terms to enforce the summation constraints. In this case there are
K constraints to be satisfied since we must have

K
Y Ap=1
k=1

forj =1,..., K. We introduce K Lagrange multipliers A\; for j = 1,..., K, and
maximize the following function

N K K K
Q Zzzg(zn 1jaznk)lnA]k+Z)\ (ZA]k_:l)
k=1

n=2 j=1 k=1

Setting the derivative of @ with respect to A, to zero we obtain
N
1

0= Zé(zn_l,j, znk)A—ﬂc + ;. (319)
n=2

Again we multiply through by A, and then sum over k£ and make use of the sum-
mation constraint to give

N K
= - Z Zg(znfl,jy an)

n=2 k=1

Substituting for \; in (319) and solving for Aj; we obtain (13.19).
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Suppose that a particular element 7, of 7 has been initialized to zero. In the first
E-step the quantity «(zyy) is given from (13.37) by

alz1r) = mep(X1|Py)

and so will be zero. From (13.33) we see that v(z1) will also be zero, and hence in
the next M-step the new value of 7, given by (13.18) will again be zero. Since this
is true for any subsequent EM cycle, this quantity will remain zero throughout.

Similarly, suppose that an element A, of A has been set initially to zero. From
(13.43) we see that {(z,—1,;, 2nk) Will be zero since p(znk|2n—1,;) = Aji equals
zero. In the subsequent M-step, the new value of Ay, is given by (13.19) and hence
will also be zero.

Using the expression (13.17) for Q(6, 8,4) we see that the parameters of the Gaus-
sian emission densities appear only in the last term, which takes the form

N K N K
Z Y(Znk) I p(xp|@y) = ZZ'Y Znk) lnN (Xn|prg, 2 )
n=1 k=1 n=1 k=1

Mz

K
D 1 1
> (e { = em) = I = 06— B = ) |-
=1

n=1k

We now maximize this quantity with respect to p; and Xj. Setting the derivative
with respect to p,, to zero and re-arranging we obtain (13.20). Next if we define

N = Z’Y(znk)

§k = ZV(an)(Xn—Nk)(Xn—Nk)T

n=1
then we can rewrite the final term from Q(6, 0,)4) in the form

N D

N, 1 ~
In(2m) — 5 In[Sy| - 5Tr (zglsk) :
Differentiating this w.r.t. 2;1 , using results from Appendix C, we obtain (13.21).

Only the final term of Q(6, 6°'? given by (13.17) depends on the parameters of the
emission model. For the multinomial variable x, whose D components are all zero
except for a single entry of 1,

N K N K D
ZZ')/ Znk hlp xn|¢k ZZV(an) Zl‘nz lnﬂki-

n=1 k=1 n=1 k=1 =1
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Now when we maximize with respect to pz; we have to take account of the con-
straints that, for each value of & the components of j;; must sum to one. We there-
fore introduce Lagrange multipliers { A } and maximize the modified function given

by
N K
ZZ Znk anzlnuk1+z)\k (Zukz - 1)
n=1 k=1

Setting the derivative with respect to i, to zero we obtain

N
X
0= E V(znk) 22 4+ A
=1 Hki

Multiplying through by p1;, summing over ¢, and making use of the constraint on
fui together with the result ) . z,,; = 1 we have

N

A= — Z Y(Znk)-

n=1

Finally, back-substituting for A;, and solving for px; we again obtain (13.23).

Similarly, for the case of a multivariate Bernoulli observed variable x whose D com-
ponents independently take the value O or 1, using the standard expression for the
multivariate Bernoulli distribution we have

N K
> 4(zar) mnp(xaley,)

n=1 k=1
N K
Z Z Znk Z {xnz In ,Ukz ( xni) h’l(l - ,Ukz)} .
n=1 k=1

Maximizing with respect to (ix; we obtain

N

J— n=
Hki =

Z V(an)

which is equivalent to (13.23).

We can verify all these independence properties using d-separation by refering to
Figure 13.5.

(13.24) follows from the fact that arrows on paths from any of x4, ..., X, to any of
Xn+1,- - -, Xy meet head-to-tail or tail-to-tail at z,,, which is in the conditioning set.
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(13.25) follows from the fact that arrows on paths from any of x;,...,X,_1 to X,
meet head-to-tail at z,,, which is in the conditioning set.

(13.26) follows from the fact that arrows on paths from any of x;,...,x,_1 to z,
meet head-to-tail or tail-to-tail at z,,_;, which is in the conditioning set.

(13.27) follows from the fact that arrows on paths from z,, to any of x,,41,...,Xn
meet head-to-tail at z,, 1, which is in the conditioning set.

(13.28) follows from the fact that arrows on paths from x,,; to any of X, 12,...,Xn
to meet tail-to-tail at z,,,1, which is in the conditioning set.

(13.29) follows from (13.24) and the fact that arrows on paths from any of x4, ...,
X,—1 to X, meet head-to-tail or tail-to-tail at z,,_,, which is in the conditioning set.

(13.30) follows from the fact that arrows on paths from any of xy,...,Xy§ t0 Xy
meet head-to-tail at z 11, which is in the conditioning set.

(13.31) follows from the fact that arrows on paths from any of x;,..., Xy to ZN 11
meet head-to-tail or tail-to-tail at z , which is in the conditioning set.

We begin with the expression (13.10) for the joint distribution of observed and latent
variables in the hidden Markov model, reproduced here for convenience

N
(X Z|0 21 [Hp Zn‘zn 1 ] H p(Xm’Zm)

where we have omitted the parameters in order to keep the notation uncluttered. By
marginalizing over all of the latent variables except z,, we obtain the joint distribu-
tion of the remaining variables, which can be factorized in the form

W) = T )

Zn—12Zn+1 ZN

n
= (2 2 vte) [ vlenleny
m=2

Znp—1

:]:

p(Xz|Zl)
=1

N

Z Z H P(Zm|Zm—1) p(x1|2;)

Zn+1 zny m=n+1 l=n+1

The first factor in square brackets on the r.h.s. we recognize as p(Xy, ..., Xn, Zy).
Next we note from the product rule that

(X1, XN, Zn)
p(xla cees Xn, Zn)
Thus we can identify the second term in square brackets with the conditional distri-

bution p(X, 11, ..., XN|X1,--.,Xn, %, ). However, we note that the second term in
square brackets does not depend on X1, ..., x,. Thus we have the result

P(Xn+17- . 'aXN|X17 s 7Xn7Zn) =

p(xlv .. .,XN,Zn) = P(Xl, cee 7Xnazn)p(xn+17 cee 7XN|Zn>~
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Dividing both sides by p(z,,) we obtain
P(X1, .y, XN |2Zn) = (X1, - ooy Xn|Z0)P(Xnt1s - - - s XN |Z0)-
which is the required result (13.24).
Similarly, from (13.10) we have
P(Xiy ooy Xny 21y e ey Zn) = D(X1y e oy Xppe 15215 -+ + 3 Z1e1)P(Zn | Zr—1 ) (X |2

It follows that

p(Xh ey Xp—1yZ71, ... 7Z77,71|Xn7 Zn) - p(XI’ Co X B 7Z7l)
p(Xn|zn)p(2zn)
p(Xl, ey Xp—1,Z1,. .. 7zn71)p(zn|zn71)
B p(zn)

where we see that the right hand side is independent of x,,, and hence the left hand
side must be also. We therefore have the following conditional independence prop-

erty
p(Xl, sy Xp—1,%1, .- - 7zn71‘xn7 Zn) = p(Xb ey Xp—1,%1, . .- 7Zn71‘zn)'
Marginalizing both sides of this result over z;,...,z,_; then gives the required

result (13.25).

Again, from the joint distribution we can write

p(xh ey Xp—1,%1, - .- 7Z7L) = p(xla ey Xp—1,%1, .- - 7Zn—1)p(zn|zn—1)~

We therefore have

o p(xlv"wxnfl)zlv-'wzn)
p(Xb“-aXn—17Z17-~-azn—2|zn—lvzn) —
p(zn|Zn—1)p(Zn—1)
_ p(Xla'"7Xn—17Z17"'7Zn—1)
p(znfl)

where we see that the right hand side is independent of z,, and hence the left hand
side must be also. This implies the conditional independence property

p(Xla s Xp—1,2Z1, ... 7Zn—2|zn—lvzn) = p(X17 s Xpn—1,27, ... 7Zn—2|zn—1)-

Marginalizing both sides with respect to z1, . . ., z,,_» then gives the required result
(13.26).

To prove (13.27) we marginalize the both sides of the expression (13.10) for the joint
distribution with respect to the variables x1, . . ., x,, to give

p(xn+1;-~ XN>Zn7Z7L+1 Z Zp Zl Hp Zm|Zm 1 Hp(xl‘zl)
m=2

Zn—1 =1

3

N

Pl iz fnn) | 33 H plmlzn—) [] plxlz)

Znt1 zZzN m=n-+42 l=n+1
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The first factor in square brackets is just
Z Zp(Zh?Zn) :p(zn)

and so by the product rule the final factor in square brackets must be

p(xn+17 cee 7XN|Zna Zn+1)~

However, the second factor in square brackets is itself independent of z,, which
proves (13.27).

To prove (13.28) we first note that the decomposition of the joint distribution p(X, Z)
implies the following factorization

P(X,Z) =p(X1,. .., Xny 21, - o Z0)D(Zng1]20)P(Xnt1|Znt1)
p(xn+27 e s XN Zp41y 7ZN|Z’n+1)'

Next we make use of

P(Xni1s - XN Zng1) = Z"'ZZ”'ZZ"'ZP(X’Z)

Xn z Zp Zn42 zZN

= p(zn+1)p(xn+l|Zn+1)p(xn+27 ey XN|zn+1)'

If we now divide both sides by p(x,, 11, Zn+1) We obtain

p(xn+27 L) XN‘Zn+17 Xn+1) = p(Xn+27 B 7XN|zn+1)

as required.
To prove (13.30) we first use the expression for the joint distribution of X and Z to
give

PN Xoznn) = Y Y p(X, Z)p(zn i1 |zn)p(Xn 41 |Zn 1)

zy zZN

= p(X,zN1)P(XN41]ZN 1)

from which it follows that

p(xN1X,zZN 1) = p(XNy1|ZN41)

as required.

To prove (13.31) we first use the expression for the joint distribution of X and Z to
give

pzni,Xozy) = Y > (X, Z)p(zn i |zn)

ZN -1

= p(X,zn)p(zN41l2N)
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from which it follows that

p(zn+1lzn, X) = p(zn11|zN)
as required.
Finally, to prove (13.29) we first marginalize both sides of the joint distribution

(13.10) with respect to z1, . ..,Z,—2,Zp11, - - - ZN tO give
[ n—1 n—1
p(X7Zn—1> Zn) = Z t Z p(Zl) H p(zm|zm—1) H P(X1|Zl)
Z Zp—2 2 =1

(2|2 —1)p(Xn|2n)

ZZ H P(Zon|Zm 1) H p(xi|z)

Zn41 zny m=n-+1 l=n+1

The first factor in square brackets is p(xXi,...,X,—1,%,—1). The second factor in
square brackets is

Z ~--Zp(an,...,xN,zn,...,zN) = p(Xpt1s--y XNy Zn)-
Zn 1 zZN

Thus we have

p(Xv Zn—1, Zn) - p(xla e Xp—1, anl)
p<zn|Zn—1)p(xn‘zn)p(xn+la <y XN, Zn)
and dividing both sides by p(z,,, z,,—1) = p(2n|Zn—1)p(2,—1) We obtain (13.28).

The final conclusion from all of this exhausting algebra is that it is much easier
simply to draw a graph and apply the d-separation criterion!

13.11 From the first line of (13.43), we have
E(anla Zn) = p(znfh anx)

This corresponds to the distribution over the variables associated with factor f,, in
Figure 13.5,i.e. z,,—1 and z,,.

From (8.69), (8.72), (13.50) and (13.52), we have

p(znfl’ ZN> o8 fn(znflu Zn, Xn)/izn_lﬂfn (znfl):uznﬂfn(zn)
P(2Zn|Zn—1)P(Xn|Zn )l fn—1—2, \ (Zn—1)f, 11—z, (Zn)
= p(zn|Zn—1)p(Xn|zn)(zn-1)B(2n). (320)
In order to normalize this, we use (13.36) and (13.41) to obtain

YD pE1za) = D BE)p(Xalzn Y P(2al201)(20)

Zn Zn-—1 Zn Zn—1

= Y Blen)olza) = p(X)
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which together with (320) give (13.43).

First of all, note that for every observed variable there is a corresponding latent vari-
able, and so for every sequence X (") of observed variables there is a corresponding
sequence Z (™) of latent variables. The sequences are assumed to be independent
given the model parameters, and so the joint distribution of all latent and observed
variables will be given by

R
p(X,Z|0) = [[ (X", 2 ]6)
r=1

where X denotes {X ("} and Z denotes {Z("}. Using the sum and product rules
of probability we then see that posterior distribution for the latent sequences then
factorizes with respect to those sequences, so that

p(X,Z|0)

> p(X.Z|0)

R
[[px",20)0)

r=1

R
Z H (X", Z")|9)
R) r=1

{ (X(r) Z(r) 19) }
>z P(X, Z]6)

p(Z7 X", 6).

p(Z|X,0) =

(1)

N

’:]:u i =

_g
Il
—

Thus the evaluation of the posterior distribution of the latent variables, correspond-
ing to the E-step of the EM algorithm, can be done independently for each of the
sequences (using the standard alpha-beta recursions).

Now consider the M-step. We use the posterior distribution computed in the E-step
using 0,4 to evaluate the expectation of the complete-data log likelihood. From our
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13.13

13.14

expression for the joint distribution we see that this is given by

Q(0,0,4) = Ez[lnp(X,Z|0)]

R
> p(X", z<”|0>]

r=1

M:o

p(Z XM, 0014) In p(X, Z|6)

r=1

R N K K

Z’y ZY,;) lnﬂk—l—ZZZZﬁ z,” 1], fgf )In Ajp

1 k=1 r=1n=2 j=1 k=1
R N K

D IPIPIRICHINTICELTA]
r=1 n=1 k=1

We now maximize this quantity with respect to 7v and A in the usual way, with La-
grange multipliers to take account of the summation constraints (see Solution 13.5),
yielding (13.124) and (13.125). The M-step results for the mean of the Gaussian
follow in the usual way also (see Solution 13.7).

M) =

‘3
Il

Using (8.64), we can rewrite (13.50) as

oz,) = Z Fo(zn, {21, 2Zn-1}), (321)

Z1ye-yZn—1

where F),(-) is the product of all factors connected to z,, via f,,, including f,, itself
(see Figure 13.15), so that

n

Fp(zn, {21, 201 }) = hiz) [ | filzi2i0), (322)

=2

where we have introduced h(z,) and f;(z;,2;_1) from (13.45) and (13.46), respec-
tively. Using the corresponding r.h.s. definitions and repeatedly applying the product
rule, we can rewrite (322) as

Fo(Zn, {21,y Zn—1}) = D(X1, oo, Xy Z1y e -+, 2.

Applying the sum rule, summing over zi,...,Z,—1 as on the rh.s. of (321), we
obtain (13.34).

NOTE: In PRML, the reference to (8.67) should refer to (8.64).

This solution largely follows Solution 13.13. Using (8.64), we can rewrite (13.52)
as

B(zn) = Y Fos1(zns{Zns1,- - 20), (323)

Zn+15--ZN
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where F,, 1 (+) is the product of all factors connected to z,, via f,, 11, including f,,
itself so that

N
Foi1(zn,{Znt1,-..,28}) = H fi(Zi—1,2:)

1=n-+1
N
= p(ZnJrl‘Zn)p(XnJrl‘szrl) H fi(zi—lazi)
i=n-+2
= P(Zn+1]20)p(Xn+1|Zn11) - - p(2n]2N-1)p(XN[2N) (324)

where we have used (13.46). Repeatedly applying the product rule, we can rewrite
(324) as

Fn+1(zna {Zn-‘rla e 7ZN}) = p(xn-i-la ey XN Zp4 1, 7ZN|Zn)'
Substituting this into (323) and summing over z,,41, . . . , 2N, we obtain (13.35).

NOTE: In the 1% printing of PRML, there are typographic errors in (13.65); ¢,
should be ¢, ! and p(z,|z_1) should be p(z,|z,_1) on the rh.s.

We can use (13.58), (13.60) and (13.63) to rewrite (13.33) as

6(zn) (s ) (T 0) Blz)
- p(X)

a(z0) (T ) Blz)
B p(X)
= @(2n)B(2n)-

We can rewrite (13.43) in a similar fashion:

(Zn)p(Xn|20)P(Z0|Zn—1) B(2n)
p(X)

a(zn) (Hm 1 M> (Hl nt1 Cl) )P(%n|20)P(Z0 |20 —1)
nX)

= ¢, a(zn)p<xn|zn> (Zn|Zn 1) (Zn)

S(anlazn) -

NOTE: In the 1° printing of PRML, Inp(x41|z,) should be In p(z,,1|z,) on the
r.h.s. of (13.68) Moreover p(. . .) should be Inp(. ..) on the r.h.s. of (13.70).

We start by rewriting (13.6) as
N
p(X1s-- XN, 21,5 2N) = p(21)p(X1|21) HP(Xn|Zn)P(Zn|Zn—1)-

n=2
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Taking the logarithm we get

Inp(xy,...,XN,21,-.-,2ZN)
N
=Inp(z) +Inp(xilzn) + ) (p(xalzn) +np(znz-1))
n=2

where, with the first two terms we have recovered the r.h.s. of (13.69). We now use
this to maximize over z1, ..., Zy,

Z1,--ZN

N
max {w(zl) + Z Inp(xn|2,) + lnp(zn|zn_1)]}

n=2

= max
Z2,---ZN

In p(x2|z2) + max {Inp(z2|21) + w(z1)}

—

M=

+ [Inp(xn|2n) +lnp(zn|zn1)]}

[
w

n

N
= max {w(zz) + Z Inp(xy,|z,) + lnp(zn|zn_1)]} (325)
BN n=3

where we have exchanged the order of maximization and summation for z, to re-
cover (13.68) for n = 2, and since the first and the last line of (325) have identical
forms, this extends recursively to all n > 2.

13.17 The emission probabilities over observed variables x,, are absorbed into the corre-
sponding factors, f,,, analogously to the way in which Figure 13.14 was transformed
into Figure 13.15. The factors then take the form

h(z1) = p(zi|ui)p(xi|z1, u1) (326)
fn(zn—lyzn) = p(zn|zn—1;un)p(xn|zn7un)- (327)

13.18 By combining the results from Solution 13.17 with those from Section 13.2.3, the
desired outcome is easily obtained.

By combining (327) with (13.49) and (13.50), we see that

&(Zn) = Z p(zn|zn—17 un)p(xn|zn; un)a(zn—l)

Zn—1

corresponding to (13.36). The initial condition is given directly by (326) and corre-
sponds to (13.37).

Similarly, from (327), (13.51) and (13.52), we see that

B(zn) = ZP(Zn+1|zmun+1)p(xn+1\zn+1a Wy, 11)5(Zn41)

Zn+1
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which corresponds to (13.38). The presence of the input variables does not affect the
initial condition B(zy) = 1.

Since the joint distribution over all variables, latent and observed, is Gaussian, we
can maximize w.r.t. any chosen set of variables. In particular, we can maximize
w.r.t. all the latent variables jointly or maximize each of the marginal distributions
separately. However, from (2.98), we see that the resulting means will be the same in
both cases and since the mean and the mode coincide for the Gaussian, maximizing
w.r.t. to latent variables jointly and individually will yield the same result.

Making the following substitions from the Lh.s. of (13.87),
X=2,, p=>p,, A=V,
y=2z, A=A b=0 L'=T,
in (2.113) and (2.114), (2.115) becomes
P(2,) = N (20| A, 1. T + AV, A"),
as desired.
If we substitute the r.h.s. of (13.87) for the integral on the r.h.s. of (13.86), we get
N (zn |, Vi) = N (x,|C2z,, 2)N (20, |Apt,, 1, Pr_1).

The r.h.s. define the joint probability distribution over x,, and z,, in terms of a con-
ditional distribution over x,, given z,, and a distribution over z,,, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewrite this into a con-
ditional distribution over z,, given x,, and a distribution over x,,, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
X=2z, p=>Ap, , A'=>P,
y=%x, A=C b=0 L'=3

in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of (13.91).
From (2.114), we have that

(20 |%0) = N(2n|pty, Vi) = N (2, M(CTE "%, + P L Ap, 1), M), (328)
where we have used (2.117) to define

M= (P, +C'=7'C)™". (329)

Using (C.7) and (13.92), we can rewrite (329) as follows:
M = (P,,+C'E='C)!
P, ,-P, . C'z+cCP, ,CH'CP,_,
- I-P,.,C*'x+cCP,,CHCP,_,
I-K,C)P,_,
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13.22

13.23

which equals the r.h.s. of (13.90).
Using (329), (C.5) and (13.92), we can derive the following equality:
Mc's™' = (P, +CTZ'O) Tz

= P, ,C'(CP,_,C"+%)!'=K,.
Using this and (13.90), we can rewrite the expression for the mean in (328) as fol-
lows:

M(CTS 'x, + P, ' Ap, ;) = MC'S 'k, +I-K,C)Apu, ,

K.,x,+Apn,  —K,CApu,,_,
Al’l’nfl + KTL(XTL - CANTL71)7

which equals the r.h.s. of (13.89).
Using (13.76), (13.77) and (13.84), we can write (13.93), for the case n = 1, as
1N (z1|py, Vi) = N (z1|po, Vo) N (x1[Czy, 3).

The r.h.s. define the joint probability distribution over x; and z; in terms of a con-
ditional distribution over x; given z; and a distribution over z;, corresponding to
(2.114) and (2.113), respectively. What we need to do is to rewrite this into a con-
ditional distribution over z; given x; and a distribution over X;, corresponding to
(2.116) and (2.115), respectively.

If we make the substitutions
X=2z p=>p, A=V,
y=x; A=C b=0 L'!'=3

in (2.113) and (2.114), (2.115) directly gives us the r.h.s. of (13.96).
Using (13.76) and (13.77) we can rewrite (13.93) as

c10(z1) = N (z1|pg, Vo) N (x1|Cz1, X) .
Making the same substitutions as in Solution 13.22, (2.115) and (13.96) give

p(x1) =N (x1/Cpy, B + CV,CT) = c1.
Hence, from the product rule and (2.116),

a(z1) = p(zifx1) = N (21|, Vi)
where, from (13.97) and (C.7),
v, = (vil+ctslo)!

Vo~ VoCT (T +CV,CT) ' CV,
(I-K,C)V,
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and
p = Vi(C'Z7'x1 4+ Vi'p)
to + K (x1 — Cpyg)
where we have used
v.c'st = vt K, CV,CTe!
= Vo (1= (E+CVoC) ' eveet) =7

= V,C" <1 — (Z+CVv,CT) T av,CT

+(Z+CV,CT) T - (T4 CV,CT) z> o
= V,CT(Z+CV,CT) ' =K,.

This extension can be embedded in the existing framework by adopting the following
modifications:

A’:[‘g‘ ?] c=[C c].

This will ensure that the constant terms a and c are included in the corresponding
Gaussian means for z,, and x,, forn =1,..., N.

Note that the resulting covariances for z,,, V,,, will be singular, as will the corre-
sponding prior covariances, P, _;. This will, however, only be a problem where
these matrices need to be inverted, such as in (13.102). These cases must be handled
separately, using the ‘inversion’ formula

_ P, 0
/ 1 _ n—1
(Pnfl) - |: 0 0 :| )

nullifying the contribution from the (non-existent) variance of the element in z,, that
accounts for the constant terms a and c.

NOTE: In PRML, the second half on the third sentence in the exercise should read:
“...inwhichC =1, A =1and I" = 0.” Moreover, in the following sentence m,
and V|, should be replaced by p, and Py; see also the PRML errata.

Since C = 1,Py = 0 and ¥ = 02, (13.97) gives

2
99
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Solution 13.25

Substituting this into (13.94) and (13.95), we get

L
:ul - IU’O 0_8+0_

(5E1 - ,UO)

1 2. )
= ———(ogz1+o
o2 4o 0 Ho

where 0% replaces V. We note that these agree with (2.141) and (2.142), respec-
tively.

We now assume that (2.141) and (2.142) hold for IV, and we rewrite them as

1 N
pun = oy (zﬂo + ﬁiﬁ?) (330)
0'0 g
2 2
2 009
= 0 331
N NoZ+o (331)
where, analogous to (2.143),
| N
Hx = 5 D e (332)
n=1
Since A =1andI' = 0, (13.88) gives
Py =o% (333)
substituting this into (13.92), we get
Ky, = N (334)
N NO'sz +o
Using (331), (333), (334) and (13.90), we get
2
ON
‘7]2\7+1 = <1 - 0_]2V+O_> 012\,
2 2
oNO
= — (335)
oy to

530 /(53 + )
(02020* 4+ 02Nod)/(c2 + o)
olo?
(N+1)02+0
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Using (330), (332), (334), (335) and (13.89), we get

2

UNt1 = WUN T N (TN+1 — UN)
+ J]2V+O' +
(Rt + o)
= —(oyx o
O_JQV+O_ NEN+1 HN
2 2 2 N
o oNO 1 1
= x — — JR—
1 N+1
_ 2 (N+1)
= ON11 (JgNO‘F o2 Hr )

Thus (330) and (331) must hold forall N > 1.

13.26 NOTE: In the 1% printing of PRML, equation (12.42) contains a mistake; the covari-
ance on the r.h.s. should be 602M ~!. Furthermore, the exercise should make explicit
the assumption that po = 0 in (12.42).

From (13.84) and the assumption that A = 0, we have
P(Zn|X1,. .., Xn) = p(2n|Xn) = N (2n|p,,, Vin) (336)

where p,, and V,, are given by (13.89) and (13.90), respectively. Since A = 0 and
I'=1,P,_, = Iforall n and thus (13.92) becomes

K, = P, ,CT(CP,_CT+x)"’
= WT(WWT 4 0%1) (337)

where we have substituted W for C and oI for X. Using (337), (12.41), (C.6) and
(C.7),(13.89) and (13.90) can be rewritten as

Ky = K. x,
= WT(WWT40%1) 'x,
= MWk,
V, = I-K,C)P,_,=1-K,W

= I-W' (WWT 15 ' W

= (oWTW 1)

= o (WTW + 021)_1 =o’M™!
which makes (336) equivalent with (12.42), assuming p = 0.

13.27 NOTE: In the 1% printing of PRML, this exercise should have made explicit the
assumption that C = I in (13.86).
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Solution 13.28

13.28

From (13.86), it is easily seen that if 3 goes to 0, the posterior over z,, will become
completely determined by x,,, since the first factor on the r.h.s. of (13.86), and hence
also the L.h.s., will collapse to a spike at x,, = Cz,.

NOTE: In PRML, this exercise should also assume that C = 1., Moreover, V
should be replaced by Py, in the text of the exercise; see also the PRML errata.

Starting from (13.75) and (13.77), we can use (2.113)—(2.117) to obtain
p(z1]x1) = N (z1|py, V1)
where

p = Vi(CTZ7'x +Pylpy) =x (338)

VvV, = (Pjl+C's7C) =% (339)

since Py — oo and C = I note that these results can equally well be obtained from
(13.94),(13.95) and (13.97).

Now we assume that for N

N
_ 1
By = xN—Nzlxn (340)
A% = iE (341)
NN

and we note that these assumptions are met by (338) and (339), respectively. From
(13.88) and (341), we then have

1
Py=Vy=3 (342)

since C =T and I' = 0. Using this together with (13.92), we obtain

Ky = PyCT(CPyCT+3) "
= Py(Py+X)"

-1
1. (1
~ls(lses)
-1
1 (N+1
= —3(—-%
v (55)
1
I
N+1
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Solution 13.29 243
Substituting this into (13.89) and (13.90), making use of (340) and (342), we have

1
Byt = BN TNy (XN41— By)

= Xy+ (XN4+1 — XN)

N +1

1 1 1 &
= [ 177 _
N+1XN+1+< N+1>Nz1
N+1

1 _
RSP I

n=1
1 1
= I-—1I) =X
Vi < N1 ) N
1
—
N+1
Thus, (340) and (341) holds forall N > 1.

NOTE: In the 1% printing of PRML, g 5, should be p,, on the r.h.s. of (13.100)
Multiplying both sides of (13.99) by a(z,,), and then making use of (13.98), we get

e (sl V1) = () / Bt ) (%0112 01 )p(Zn 11 120) A 11

(343)
Using (2.113)~(2.117), (13.75) and (13.84), we have

~

a(2n)p(Zni1|2n) = N (Zn|tt,, Vi) N (Zn11|AzZ,, T)
= N (zni1|Ap,, AV, A +T)N (z,/m,,M,,) (344)

where
m, =M, (AT 'z,,.1 +V, ',) (345)

and, using (C.7) and (13.102),

M, = (ATT'A+V,)"" (346)
= V,—-V,AT (T +AV,AT) " AV,
— V, - V,ATP_'AV, (347)
= I-V,A"P'A)V,
(I-J3,A)V, (348)

Substituting the r.h.s. of (344) into (343) and then making use of (13.85)—(13.88) and
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(13.98), we have

o (walfns V) = [ Bl s )N (21| Ay, P)
N(anmnan) dzn+1

= /E(Zn+1)cn+1a(zn+1)/\/ (zn|mnaMn) dz, 41
= CnJrl/'Y(ZnJrl)N(znlmnan) dzn+1

= cn+1/N<Zn+1|ﬁn,vn)N(zn|mn,Mn) dz, 1.

Thus, from this, (345) and (2.113)—(2.115), we see that

f, = M, (AT G, +V, 'n,) (349)
V, = M,ATT 'V, . . T"'AM, + M,,. (350)

Using (347) and (13.102), we see that

M,A'T™" = (V-V,ATP'AV,) AT}
V,A" (I-P,'AV,A")T"!
V,A"(I-P,'AV, A" P 'T+P,'T)T'
= V,AT(I-P,'P,+P,'T)T"
= V,ATP =17, (351)

and using (348) together with (351), we can rewrite (349) as (13.100). Similarly,
using (13.102), (347) and (351), we rewrite (350) as

V, = M,A'T 'V, . T"'AM, + M,
= J,Vod'+V, - V,ATP; AV,
- V., +J, <\7n+1 - Pn> Jr

13.30 NOTE: See note in Solution 13.15.

The first line of (13.103) corresponds exactly to (13.65). We then use (13.75),
(13.76), (13.84) and (13.98) to rewrite p(z,|2n—1), P(Xn|Zn), @(Zn—1) and 5(zy,),
respectively, yielding the second line of (13.103).
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13.32
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Substituting the r.h.s. of (13.84) for a(z,,) in (13.103) and then using (2.113)—(2.117)
and (13.86), we get
§(zZn—1,2n)
N (Znlttn—1, Vi 1) N (2n| Az 1, T) N (%,|Cz, B) N (zn|ﬁn, \A/n>
N (za|pn, Vi) en
N(zn|Aun_1,Pn_1)N(zn_l\mn_l,Mn_l)N<zn|ﬁn,<\/n>
N (2o |Apty, 1, Prt)
= N(zn,1|mn,1,Mn,1)N(znmnﬁn) (352)

where m,,_; and M,,_; are given by (345) and (346). Equation (13.104) then fol-
lows from (345), (351) and (352).

NOTE: In PRML, V|, should be replaced by P in the text of the exercise; see also
the PRML errata.

We can write the expected complete log-likelihood, given by the equation after
(13.109), as a function of u, and Py, as follows:

1
Q6,6 = —5n Py
1 N _ _ _
—5Ezjg0 (21 Py 'z — 2 Py g — o Ptz + p Py g (353)
1 _ _
= 3 <1n Pyt —Tr [PO 1EZ|0014 [zlz;r —Zi g — MoZp + Hoﬂg]} ), (354)

where we have used (C.13) and omitted terms independent of p1, and Py.

From (353), we can calculate the derivative w.r.t. i, using (C.19), to get

) B _
99 optp, — 2P Elzy].

Oty

Setting this to zero and rearranging, we immediately obtain (13.110).

Using (354), (C.24) and (C.28), we can evaluate the derivatives w.r.t. P,

Q) 1
ap-1 =35 (PO - E[le?] - ]E[Zl]ﬂoT - l‘OE[Zrlr] + #ONOT) :
0

Setting this to zero, rearrangning and making use of (13.110), we get (13.111).

13.33 NOTE: In PRML, the first instance of A" on the second line of equation (13.114)

should be transposed.
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Expanding the square in the second term of (13.112) and making use of the trace
operator, we obtain

N

2 Z — Az, 4) F_l (zp, — Azn_l)]

n=

—_

Ezo

N
= ]EZIQ %ZTI‘ (]._‘71 {AanlzzflAT

n=2

T AT — Az, 2] + znzg})] . (355)
Using results from Appendix C, we can calculate the derivative of this w.rt. A,
yielding
9Q

0A
Setting this equal to zero and solving for A, we obtain (13.113).

=T 'AE [zn 1z 1] ~-T'E [znzTTZ_l] .

Using (355) and results from Appendix C, we can calculate the derivative of (13.112)
wrt. T'%, to obtain

0Q N - 1 &
=3 N-odp o 3 nZQ (AE (2,120 || AT —E[z,2] ] AT

— AE [z,_12,,| + E 2,2 ]).

Setting this equal to zero, substituting A"*" for A and solving for I', we obtain
(13.114).

13.34 NOTE: In PRML, the first and third instances of C"¢" on the second line of equation
(13.116) should be transposed.

By making use of (C.28), equations (13.115) and (13.116) are obtained in an identi-
cal manner to (13.113) and (13.114), respectively, in Solution 13.33.

Chapter 14 Combining Models

14.1 The required predictive distribution is given by
p(t|x, X, T) =
Zp Z /p(t|X7 eh,Zh,h)p(0h|X,T,h) doha (356)

Zp
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where
p(T|X, h)
N
o p(Oh) [ ] p(tnlxn, 6, h)
n=1

N
= p(0|h>H(Zp<tn,znhxn,e,h>) (357)
n=1

Znh

p(0x|X, T, h) =

The integrals and summations in (356) are examples of Bayesian averaging, account-
ing for the uncertainty about which model, h, is the correct one, the value of the cor-
responding parameters, 8, and the state of the latent variable, z;,. The summation
in (357), on the other hand, is an example of the use of latent variables, where dif-
ferent data points correspond to different latent variable states, although all the data
are assumed to have been generated by a single model, h.

14.2 Using (14.13), we can rewrite (14.11) as

1 < ’
Ey {M z_:lem(x)}

Ecowm

1 = :
m=1
1 M M
= 3 2 D Bxlen(a(x)]
m=1 [=1
M
1 1
= M2 ZIEX MEAV

where we have used (14.10) in the last step.

14.3 We start by rearranging the r.h.s. of (14.10), by moving the factor 1/M inside the
sum and the expectation operator outside the sum, yielding

E, [Z Alfm(x)?] .

If we then identify €,,(x) and 1/M with x; and A; in (1.115), respectively, and take
f(z) = 2%, we see from (1.115) that

Mo 2 Mo
(Z Mem(x)> <D qpem®)
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14.4

14.5

14.6

Since this holds for all values of x, it must also hold for the expectation over x,
proving (14.54).

If E(y(x)) is convex, we can apply (1.115) as follows:

Eay = %ZEX[E

M
1
—FE(y
M ]
m=1
M

= Ecowu <m_1 " )]

where \; = 1/M fori = 1,..., M in (1.115) and we have implicitly defined ver-
sions of Fay and Fco corresponding to F(y(x)).

WV

To prove that (14.57) is a sufficient condition for (14.56) we have to show that (14.56)
follows from (14.57). To do this, consider a fixed set of y,,,(x) and imagine varying
the v, over all possible values allowed by (14.57) and consider the values taken by
ycom(x) as a result. The maximum value of ycon(x) occurs when oy, = 1 where
Yk(X) = ym(x) for m # k, and hence all ov,,, = 0 for m # k. An analogous result
holds for the minimum value. For other settings of «,

ymin(X) < Ycom (X) < ymaX(X)’

since ycom (x) is a convex combination of points, ¥, (X), such that

Vm > Ymin (X) < Ym (X) < Ymax (X)
Thus, (14.57) is a sufficient condition for (14.56).

Showing that (14.57) is a necessary condition for (14.56) is equivalent to show-
ing that (14.56) is a sufficient condition for (14.57). The implication here is that
if (14.56) holds for any choice of values of the committee members {y,,(x)} then
(14.57) will be satisfied. Suppose, without loss of generality, that oy, is the smallest
of the «v values, i.e. a < au, for k # m. Then consider y;(x) = 1, together with
Ym(x) = 0 for all m # k. Then ymin(x) = 0 while ycom(x) = «y and hence
from (14.56) we obtain o, > 0. Since ak is the smallest of the « values it follows
that all of the coefficients must satisfy ay, > 0. Similarly, consider the case in which

Ym(x) = 1 for all m. Then ymin(X) = Ymax(x) = 1, while ycom(x) = D, .
From (14.56) it then follows that Zm a,, = 1, as required.

If we differentiate (14.23) w.r.t. o, We obtain

oE 1 /2, —am/2 = (m) o—m/2 (m)
a5 (e¥m/= 4 emm )an I(ym (%) # tn) m Zw

n=1
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Solutions 14.7-14.9 249

Setting this equal to zero and rearranging, we get

S Iy (k) £ ) eom2
Zn w;m) - em /2 _|_e*0¢m/2 - edm 1’
Using (14.16), we can rewrite this as
1
=€
eam + 1 m
which can be further rewritten as
o 1—en
€m

from which (14.17) follows directly.

Taking the functional derivative of (14.27) w.rt. y(x), we get
)
50y Bt [oxp =ty ()] = = D texp {—ty(x)} p(t|x)p(x)
t

= {exp{y(x)}p(t = —1|x) — exp {—y(x)} p(t = +1]x)} p(x).
Setting this equal to zero and rearranging, we obtain (14.28).

Assume that (14.20) is a negative log likelihood function. Then the corresponding
likelihood function is given by

N

exp(—FE) = H exp (—exp {—tn fm(xn)})

n=1

and thus
p(tnlxn) o exp (—exp {—tn fm(xn)}) -

We can normalize this probability distribution by computing the normalization con-
stant

Z = exp (= exp {fm(xn)}) + exp (= exp {— i (xn)})

but since Z involves f,,(x), the log of the resulting normalized probability distribu-
tion no longer corresponds to (14.20) as a function of f,,(x).

The sum-of-squares error for the additive model of (14.21) is defined as
1
_ _ 2
E= 3 E (tn — fm(xn))".

n=1

Using (14.21), we can rewrite this as

1w 1 2
5 Z(tn - fm—l(xn) - §amym(x)) ’
n=1
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Solutions 14.10-14.11

where we recognize the two first terms inside the square as the residual from the
(m — 1)-th model. Minimizing this error w.rt. y,,(x) will be equivalent to fitting
Ym(X) to the (scaled) residuals.

14.10 The error function that we need to minimize is

{tn}

Taking the derivative of this w.r.t. ¢ and setting it equal to zero we get

dE

{tn}
Solving for ¢ yields
= 2t
{tn}
where N' = [{t,,}|,i.e. the number of values in {¢,}.

14.11 NOTE: In PRML, the text of this exercise contains mistakes; please refer to the
PRML Errata for relevant corrections.

The misclassification rates for the two tree models are given by

R. _ 1004100 1
400 + 400 ~ 4
R, _ 0F200 1
400 + 400 ~ 4

From (14.31) and (14.32) we see that the pruning criterion for the cross-entropy case
evaluates to

100. 100 300 . 300
Cxont(Ta) = —2( —In— In 2\~ 1.12 4+ 2\
et (Th) (400 " 100 " 100 400) * *
400 . 400 200, 200 O 0 200 200
Oxent(Tg) = ——In— " ln"" = — In— — " In=— 1+ 2)
xent (T53) 200 200 400 200 200 “400 400 200 T
~ 0.69+ 2\

Finally, from (14.31) and (14.33) we see that the pruning criterion for the Gini index
case become

300 300\ 100 100 3
Cami(Ta) = 2 [m (1 - 400> + 200 (1 400>] +2X =7 +2)

400 400\ 200 200
Cami(Ts) = ——(1—— )+ (1-"
Gini(Th) 400 < 400) T 100 ( 400)

0 0\ 200/ 200 1
NI 2N = 12N
100 ( 400> T 100 ( 400) TeATS T
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Thus we see that, while both trees have the same misclassification rate, B performs
better in terms of cross-entropy as well as Gini index.

Drawing on (3.32), we redefine (14.34) as

K
p(t]6) = > mN (¢ WT¢,37'T)

k=1

and then make the corresponding changes to (14.35)—(14.37) and @) (0, 001(1); also
t will be replaced by T to align with the notation used in Section 3.1.5. Equation
(14.39) will now take the form

9°1d Z’Ynk {— Ht WTqan2} + const.

Following the same steps as in the single target case, we arrive at a corresponding
version of (14.42):

W, = (#"R;®) TR, T
For 3, (14.43) becomes

Q0.0 =35 3 { D o w1}
2 2 I "

n=1 k=1

and consequently (14.44) becomes

1 Y& 2
= 5D > vk |[tn — W, ||
n=1 k=1

Q\'—‘

Starting from the mixture distribution in (14.34), we follow the same steps as for
mixtures of Gaussians, presented in Section 9.2. We introduce a K -nomial latent
variable, z, such that the joint distribution over z and ¢ equals

p(t,z) = p(t|z)p H (twie, 87 m)™

Given a set of observations, {(,, ¢, )}N_,, we can write the complete likelihood
over these observations and the corresponding z, ..., zy, as

N K
HH (TN (tal Wi . B71))

Taking the logarithm, we obtain (14.36).
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14.14

14.15

14.16

Since Q(6,6°'%) (defined by the unnumbered equation preceeding (14.38)) has ex-
actly the same dependency on 7 as (9.40), (14.38) can be derived just like the corre-
sponding result in Solution 9.9.

The predictive distribution from the mixture of linear regression models for a new

input feature vector, a, is obtained from (14.34), with ¢ replaced by dA) Calculating
the expectation of ¢ under this distribution, we obtain

t|¢7 Zﬂ-k‘E t|¢7wk‘> ]

Depending on the parameters, this expectation is potentially K-modal, with one
mode for each mixture component. However, the weighted combination of these
modes output by the mixture model may not be close to any single mode. For exam-
ple, the combination of the two modes in the left panel of Figure 14.9 will end up in
between the two modes, a region with no signicant probability mass.

This solution is analogous to Solution 14.12. It makes use of results from Section
434 in the same way that Solution 14.12 made use of results from Section 3.1.5.
Note, however, that Section 4.3 .4 uses k as class index and K to denote the number
of classes, whereas here we will use ¢ and C, respectively, for these purposes. This
leaves k and K for mixture component indexing and number of mixture components,
as used elsewhere in Chapter 14.

Using 1-of-C' coding for the targets, we can look to (4.107) to rewrite (14.45) as

t|¢> Zﬂ-knykc

and making the corresponding changes to (14.46)—(14.48), which lead to an expected
complete-data log likelihood function,

0 GOId Z Z Tnk {ln ) + Z tneln ynkc}

n=1 k=1

corresponding to (14.49).

As in the case of the mixture of logistic regression models, the M step for 7 is the
same as for other mixture models, given by (14.50). In the M step for Wy, ... , Wg,
where

Wi = [Wii,. .., Wi

we can again deal with each mixture component separately, using an iterative method
such as IRLS, to solve

N
vwch = Z Ynk (ynkc - tnc) qbn =0
n=1
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where we have used (4.109) and (14.51). We obtain the corresponding Hessian from
(4.110) (NOTE: In the 1% printing of PRML, the leading minus sign on the r.h.s.
should be removed.) and (14.52) as

N
Hk - kackaéQ - Z YnkYnkec (Ic& - ynk&) ¢n¢5

n=1

If we define v (t|x) in (14.58) as

i (t]x) = Z A i (]%),

we can rewrite (14.58) as

M
p(t\x) = Tk Z )\mk(bmk t|X

1 m=1

M=

B
Il

M
Z Tl Ak Pk (E]X).

1m=1

]~

=~
Il

By changing the indexation, we can write this as

p(t)x) = Z mei(tlx),

where L = KM,l = (k—1)M + m, m = T Ak and ¢(-) = ¢pi(-). B
construction, 17; > 0 and Zl =1

Note that this would work just as well if 7, and \,,;, were to be dependent on x, as
long as they both respect the constraints of being non-negative and summing to 1 for
every possible value of x.

Finally, consider a tree-structured, hierarchical mixture model, as illustrated in the
left panel of Figure 12. On the top (root) level, this is a mixture with two components.
The mixing coefficients are given by a linear logistic regression model and hence are
input dependent. The left sub-tree correspond to a local conditional density model,
11(t|x). In the right sub-tree, the structure from the root is replicated, with the
difference that both sub-trees contain local conditional density models, ¥ (¢|x) and
V3 (tfx).

We can write the resulting mixture model on the form (14.58) with mixing coeffi-
cients

m(x) = o(vix)
m(x) = (1-o(vix))o(vyx)
m(x) = (1-o(vix))(l-o(vsx)),
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Figure 12 Left: an illustration of a

Solution 14.17

hierarchical mixture model,
where the input depen-
dent mixing coefficients
are determined by linear
logistic models associated
with interior nodes; the
leaf nodes correspond to
local (conditional) density
models. Right: a possi-
ble division of the input a(t|x)  P3(t]x)
space into regions where

different mixing coefficients

dominate, under the model

illustrated left.

2

1

where o () is defined in (4.59) and v, and v, are the parameter vectors of the logistic
regression models. Note that 71 (x) is independent of the value of v5. This would
not be the case if the mixing coefficients were modelled using a single level softmax
model,
u;fx
(%) = —2

Zj 6u]TX ’

where the parameters uy, corresponding to 7 (x), will also affect the other mixing
coeffiecients, 7;..;,(x), through the denominator. This gives the hierarchical model
different properties in the modelling of the mixture coefficients over the input space,
as compared to a linear softmax model. An example is shown in the right panel
of Figure 12, where the red lines represent borders of equal mixing coefficients in
the input space. These borders are formed from two straight lines, corresponding to
the two logistic units in the left panel of 12. A corresponding division of the input
space by a softmax model would involve three straight lines joined at a single point,
looking, e.g., something like the red lines in Figure 4.3 in PRML; note that a linear
three-class softmax model could not implement the borders show in right panel of
Figure 12.



