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Foreword

“We will be remembered only if we give to our younger generations,
a prosperous and safe India”

Dr. A. P. J. Abdul Kalam
Honorable Former President of India

In recent years, the scourge of terrorism has been affecting the whole world.
India has suffered a number of casualties as a result of bomb blasts in market
areas, indiscriminate firing in crowded places and suicide attacks. The ter-
rorist attack on the Parliament in December 2001 and later in Mumbai on
November 26, 2008 have resulted in intensifying counter-terrorism operations
to thwart such acts in the future. In order to effectively counter the terrorist
operations, there is the need for accurate and timely intelligence commonly
known as actionable intelligence, or, as I would like call it, predictive intelli-
gence.

There are different types of intelligence inputs, which are needed to form
a complete and reliable information package on which the security agencies
can take pre-emptive action. These can be communication intercepts, photo
imagery, human-sourced inputs, etc. However, in proximity to or within impor-
tant area such as official premises and airports, video surveillance has become
a very important tool to counter terrorists or anti-social acts. While many
cities in the country have established video-based networks as part of Smart
City projects, the suggestions from this book will greatly help the city ad-
ministration in many ways, such as control of traffic, crowd control and crime
control and detection, to name a few.

With the recently developed IP-based systems and smart cameras, which
also have filters for human facial and behavioral identification, the intelligent
video surveillance will go a long way in enhancing various applications. Un-
doubtedly, these require complex algorithmic solutions and are a daunting
task for scientists. Dr. Maheshkumar Kolekar has therefore taken a vital step
in writing this book, explaining certain concepts and solutions as well as giv-
ing illustrations, figures, and photographs to explain his hypothesis.

I am therefore delighted to introduce the book, Intelligent Video Surveil-
lance Systems, written by Dr. Maheshkumar Kolekar. I am very happy that as
a follow-up to the research project being undertaken by him at IIT Patna, he
has decided to compile the details into a book. It is also noteworthy that this
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book on video surveillance is coming out in the early stages of the field, which
is under rapid development. This book therefore can play a significant role in
bringing about the understanding and subsequent maturity of the field.

Though many research papers are available, they provide limited perspec-
tives about the field, its application potential, and the techniques. This book
gives a broad view about the available techniques, implementation aspects,
emerging techniques, and algorithms. I have particularly liked the idea that
instead of searching for concepts from a variety of papers, the author has at-
tempted to introduce and compile different implementation details, which will
allow ease in further research.

Over the past few years, the author was working on a project, “Abnormal
Human Activity Recognition to Enhance Security,” which was sponsored by
the principal scientific advisor to the government of India. Being a member
of the project monitoring committee, I had the opportunity to evaluate his
project work. Since this topic is very important from a security point view, I
have always encouraged Dr. Kolekar to continue his research work in this field
and asked him to motivate more students to work in this area. As a result
of that he has initiated an elective course on intelligent video surveillance in
IIT Patna and I am happy to know that this is now a very popular course in
the institute. I came to know that many students of different disciplines such
as electrical engineering, computer science and engineering, and mechatronics
engineering joined this course in 2018. Seeing this trend, I am sure that in the
coming years, this course and resultant research will become very popular in
other technical institutes and universities, and this book will be very useful for
such courses. Also, I urge the faculty members of other institutes to initiate
similar courses, since this is a very important area in today’s scenario.

These days, many public or open places are equipped with cameras to mon-
itor the security of that area. This increased adaptation of security cameras to
survey public areas has caused a digital data explosion that human operators
have difficulty keeping up with. Even though humans are the most intelligent
creatures in this world, there are many shortcomings in human-operated sys-
tems. At the moment, the best solution to attain a safe environment requires
automatic tools for human operators to monitor the digital camera images.
Due to the fatigue factor, human observers cannot pay full attention to several
video screens for periods of long duration. In order to support human oper-
ators, automatic abnormal human activity recognition and tracking systems
are introduced in the surveillance video for security in public places such as
railway stations, airports, and banks.

Normally, for working on an intelligent video surveillance systems course,
understanding of digital image processing, digital video processing, and ma-
chine learning are pre-requisites. But to allow easier adaptation, the author
has devoted the first and second chapters to digital image processing and dig-
ital video processing, respectively, and explains machine-learning algorithms
such as HMM with implementation details in a chapter on human activity
recognition to make this book self-sufficient. The flow of the chapters is also
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logical. The first two chapters are on basic concepts in image and video pro-
cessing, to create background for the readers in this area. Chapter 3 explains
background modelling, which is the first building block of any surveillance
system. Object classification, human activity recognition, and video object
tracking are discussed in Chapters 4, 5, and 6, respectively. Chapter 7 de-
scribes various camera models used for surveillance, and in the final Chapter
8, the author discusses some techniques and applications that have been im-
plemented in various domains.

The chapters in the book describe various machine learning concepts and
demonstrate practical applications of advanced techniques, such as hidden
Markov models, support vector machine, convolutional neural network, and
deep learning. Instead of explaining many concepts in brief, the author has
tried to explain a few important concepts at length, with required imple-
mentation details for surveillance application. I am sure that by reading this
book, readers can easily implement various algorithms and understand video
surveillance-related concepts. I wish Dr. Maheshkumar Kolekar, the author
of this book, fellow researchers working in related areas, and other readers of
the book further success in their endeavors in enhancing better security and
to be of service to humanity.
Jai Hind.

Air Marshal Bhushan Gokhale (Retired)
PVSM, AVSM, VM
26 January, 2018
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Preface

Nowadays, visual surveillance is going to be an important tool for making
the world more secure. Everybody wants to secure their places of work and
residence, and entrepreneurs are also ready to invest in making such surveil-
lance systems. The objective of this book is to present the recent progress that
has been made in video surveillance systems, and enlist the latest techniques
and algorithms that have been developed. Human activity recognition is an
important building block of any video surveillance system. It will help us to
recognize humans and describe their actions and activities, from information
acquired by video cameras. This is a really challenging task and researchers
are proposing many new techniques and algorithms for it.

Although there are few books dealing with various aspects of video surveil-
lance, a book comprehensively covering the image processing, video process-
ing, algorithm, and implementation aspects of video surveillance is urgently
needed. This book covers video surveillance systems including background
modeling, foreground detection, blob segmentation, activity recognition, in-
dividual behavior recognition, group behavior recognition, and tracking of
human objects. Chapters 1 and 2 introduce basic concepts of image process-
ing and video processing, respectively.

Chapter 3 focuses on background modeling, which is the first building
block of any conventional video surveillance system. This chapter also includes
shadow removal and foreground extraction. Chapter 4 describes techniques of
object classification, which include recent techniques based on deep convolu-
tional neural network and region-based convolutional neural network models.
Chapter 5 tackles human activity recognition problems in detail, exploring
various techniques including dynamic time warping. This chapter also covers
a few classifiers based on machine learning techniques, such as hidden Markov
model and support vector machine. From all recognized human activities, ab-
normal activities will be classified using some domain knowledge. Chapter 6
considers more complex scenarios of tracking multiple objects and handling
challenges such as occlusion of objects. This includes classification of multiple
interacting objects from videos. Multi-object tracking scenarios like handling
of partial views and occlusions will be done using camera networks, as de-
scribed in Chapter 7. Persons observed by a multi-camera system may appear
in different views simultaneously or at different times depending on the over-
lap between views. Chapter 7 describes different types of surveillance cameras.
Chapter 7 also addresses implementation aspects of surveillance systems, such
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as camera network, placement, camera calibration, camera communication,
camera coordination, and cooperation. Chapter 8 covers the implementation
aspect of video surveillance systems and emerging techniques in visual surveil-
lance systems for various applications such as baggage exchange detection, and
fence crossing detection. Chapter 8 also explains the use of surveillance sys-
tems for military and transportation applications.

This book can be utilized in several ways depending on the course level and
desired learning objectives. Chapters 1 to 6 are sufficient for an undergraduate
course on video surveillance. Chapters 3 to 8 are sufficient for a postgraduate
course for the students with image and video processing backgrounds. One
can design a postgraduate course for those students who do not have image
and video processing backgrounds by including Chapters 1 to 8. Chapters 5
to 8 are very useful for PhD research scholars, scientists, and engineers who
wish to understand algorithms and implementation in surveillance. I hope that
the design methodologies, algorithms, and applications discussed throughout
this book will provide guidelines for researchers and developers working on
vision-based applications. This book contains 18 algorithms and their imple-
mentation details with results. This book can also serve as a reference book for
undergraduate and graduate students with interests in other courses such as
computer vision, machine learning, image processing, and video processing.

I would like to mention that I became interested in this area because
of Professor Somnath Sengupta (IIT Kharagpur), Professor K. Palaniappan
(University of Missouri, Columbia, MO), and Air Marshal B. N. Gokhale
P.V.S.M., A.V.S.M., V.M. (Retd). I would like to mention thanks to the Hon-
orable R. Chidambaram, Principal Scientific Advisor to the Government of
India, for sanctioning my project related to video surveillance, which created
my interest in this area and motivated me to write this book. I would like to
thank Shri G. P. Srivastava, Scientific Consultants PSA office, and Shri Neeraj
Sinha, Scientist G, PSA office, for their support and encouragement. I would
like to mention my sincere thanks to Professor Pushpak Bhattacharya, Direc-
tor IIT Patna, for his valuable suggestion in implementing machine learning
algorithms such as hidden Markov model-based classifiers.

I would like to thank Professor P. K. Biswas (IIT Kharagpur), Professor A.
K. Roy (IIT Kharagpur), Professor Subhasis Chaudhuri (IIT Bombay, Mum-
bai), Professor Vikram Gadre (IIT Bombay, Mumbai), Professor A. N. Raj-
gopalan (IIT Madras, Chennai), and Shri J. K. Mukherjee (BARC Mumbai)
for their support in the valuable discussion about many concepts explained
in this book. I acknowledge the solid support received for data recording and
testing from the students of IIT Patna, especially Pranjali Manesh Kokare,
Prateek Sharma, Deepanway Ghosal, Shobhit Bhatnagar, Durgesh Kumar,
Garima Gautam, Himanshu Rai, Kanika Choudhary, and Deba Prasad Dash.
I extend my special thanks to Aastha Sharma, senior acquisitions editor, CRC
Press, Taylor & Francis Group, New Delhi, who helped me at every stage of
the development process of the book.

I would like to thank my mother Sushila H. Kolekar, my wife Priti, and
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daughters Samruddhi and Anwita, for their constant support and encourage-
ment. Today the dream of my mother came true.

Dr. Maheshkumar H. Kolekar
Associate Professor, EE Dept.
IIT Patna
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Chapter 1

Basics of Image Processing

Visual information has a bigger impact on people. Nowadays, with the advent
of digital technologies, producing digital images and videos is becoming in-
creasingly easy. Since the digital image and video databases are of huge size,
there is a need to develop tools to assist in the synthesis and analysis of digital
image and video sequences.

The aim of this chapter is to provide an overview of the existing techniques
in digital image processing to the reader. In this chapter, an introduction to
digital image processing (DIP), the DIP system, important components of
DIP, commonly used methods for DIP, image segmentation, and some appli-
cations of DIP are discussed. Digital video is just a sequence of images, and
hence most of the image processing techniques can be extended to video pro-
cessing. Additional video processing techniques mainly involve motion analysis
and video compression, which will be discussed in the next chapter.

1.1 Introduction to Digital Image Processing

With the advent of digital technologies, acquiring digital images is be-
coming increasingly easy. Images can be acquired by using a variety of devices
such as still cameras, video cameras, x-ray devices, ultrasound, electron micro-
scopes, and radar. Image processing is used for a variety of purposes, including
entertainment, education, medical, business, industrial, military, surveillance,
and security. The goal in each case is to extract useful information from the
image.

1.1.1 Why Digital Image Processing?

Images are avaliable everywhere because of the fast development in im-
age acquisition tools. Nowadays, many mobile handsets come with image and
video recording facility. Hence, there is a need to process these images and
videos to get more information. Digital image processing is motivated by the
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following applications:
Improvement of pictorial information for human perception: This type of ap-
plication involves improving the quality of images for human perception. Typ-
ical applications are noise filtering, contrast enhancement, deblurring, and re-
mote sensing.
Image processing for autonomous machine applications: This has various ap-
plications in industry, such as quality control and assembly automation.
Efficient storage and transmission: To process the image so that the required
disk space for storing the image can be reduced. It is possible to compress the
image so that it can be transmitted with low bandwidth channel.

1.1.2 What Is Digital Image?

The term image is a 2-D light intensity function f(x, y), where x and y
denote spatial coordinates and f denotes an intensity value at that point.
If we discretize an image f(x, y) both in spatial coordinates and intensity, a
digital image will be formed. A digital image is simply a matrix whose row
and column indices identify the coordinates of a point in the image, and the
corresponding matrix element value identifies the gray level at that point. The
element of such a digital image is called a pixel, which is an abbrevation of
a picture element. Intensity values of pixels are defined by bits. Since 8-bit
intensity range has 256 possible values, 0 to 255 is called gray scale. RGB color
images use 8-bit intensity ranges for each color. Since RGB images contain
3× 8 bit intensities, they are also referred to as 24-bit color images.

Image size should not be confused with the size of the real-world repre-
sentation of an image. Image size specifically describes the number of pixels
within a digital image. The real-world representation of a digital image re-
quires one additional factor called resolution. Resolution is the spatial scale of
the image pixels. For example, an image of 3300× 2550 pixels with a resolu-
tion of 300 pixels per inch (ppi) would be a real-world image size of 11′′×8.5′′.

1.1.3 What Is Digital Image Processing?

Digital image processing uses computer algorithms to perform some oper-
ations on an image to extract some useful information from it. In DIP, input
is an image and output is a processed image. As shown in Figure 1.1, DIP
includes acquisition of input image and processing an image to deliver a mod-
ified image. Here, an image of pears is segmented based on the color of each
pear (see ebook for color).

Digital image processing is preferred because it has many advantages over
analog image processing. DIP avoids problems such as noise and signal distor-
tion. It allows the use of matrix operations to be applied to the input image.
Hence, DIP offers better performance and better implementation methods
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FIGURE 1.1: Digital image processing system

that would not be possible with analog processing.

1.2 Digital Image Processing System

The elements of a general purpose system capable of performing the image
processing operation are acquisition, storage, processing, communication, and
display.

1.2.1 Image Acquisition

This is the first step of a DIP system, because without an image, no pro-
cessing is possible. To capture an image, we use a digital camera. After illu-
mination of the object of interest, the light reflected from the object has to
be captured by the camera. The light reflected from the object of interest is
focused by some image sensor so that the camera can record the scene. An
image sensor consists of a 2-D array of cell, and each cell represents a pixel.
An image sensor is capable of converting incident light into a voltage, which
in turn is converted into a digital number. More incident light means higher
voltage, and higher intensity value at that point. When the camera is captur-
ing an image, incident light is allowed to enter for a small duration called an
exposure time. During this exposure time, charges start accumulating in each
cell, which is controlled by the shutter. If the exposure time is too small or
too large, the result is an underexposed or overexposed image, respectively.
Digital images can also be obtained by conversion of analog images into digital
images with a scanner. There are some advanced methods of image acquisition
such as three-dimensional (3-D) image acquisition. The 3-D image acquisition
uses two or more cameras that have been aligned precisely around a target to
create a 3-D or stereoscopic scene. Some satellites use 3-D image acquisition
techniques to build accurate models of different surfaces.
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Digital Image
Processing Methods

Image Enhancement

Image Restoration

Image Segmentation

Image Compression

Image Reconstruction

Image Morphing

Image Recognition

Image Mosaicing

Image Watermarking

Image Registration

FIGURE 1.2: Digital image processing methods
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1.2.2 Storage

The storage of image information is very important for its long-term preser-
vation. The recommended storage medium is the hard drive. Hard drives are
viable for 3 to 10 years, with an average of about 5 years. Images can be com-
pressed to reduce their size for storage and increase the transmission speed.
Image compression techniques are broadly classified into lossless and lossy.
Lossless compression file formats save some space without changing the image
data. Lossy compression saves some space at the cost of data. JPEG is a well-
known format of lossy image compression. Lossy compression should be used
whenever the storage space is one of the more important constraints than loss
of some original data. Lossy compression is most effective at reducing file size
and increasing transmission speed.

1.2.3 Processing

An image is processed by using some mathematical operations or sig-
nal processing techniques, or a computer algorithm, to generate the modi-
fied output image or parameters related to an image. Since the image is a
two-dimensional matrix of intensity values, standard signal-processing or sta-
tistical techniques are applied. The computer system processes the image using
some algorithms and generates the output image. Adobe Photoshop is also an
example of image processing.

1.2.4 Communication

Since image size is usually large, the key consideration in the transmis-
sion of an image is bandwidth. If we want to transmit an image over a low
bandwidth channel, we first compress the image to reduce its size and then
decompress the image at the receiver end to reproduce the original input. An
image usually contains lot of redundancy that can be exploited to achieve
compression. Lossless compression is used for medical imaging and legel docu-
ments. Lossless compression reduces the size of the image without errors, but
only to a certain extent. Beyond this point, errors are introduced, and such
compression is called lossy compression. JPEG is one of the popular lossy im-
age compression formats. Since in image compression a small loss in quality
is usually not noticeable, lossy methods are used for storing and transmitting
natural images such as photographs.

1.2.5 Display

For displaying digital images, flat TV-screens, or computer monitors, or
printing devices are used. Early printers, such as dot matrix and daisywheel
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(a) (b)

FIGURE 1.3: (a) Original image, (b) Segmented image

printers, were called impact printers because they operated by striking an ink
ribbon against the paper. The printer that uses non-impact technology, such
as ink-jet or laser technology, provides better quality at higher speed than
impact printers.

1.3 Digital Image Processing Methods

Figure 1.2 shows the commonly used methods for processing the digital
image. In this section, we will discuss those methods in brief.

1.3.1 Image Enhancement

Enhancement means improving the quality of an image for some specific
application by some ad-hoc technique. It improves the appearance of an im-
age by increasing the dominance of some features. It should be noted that
enhancement of certain features can be acheived at the cost of suppressing
others. An example of image enhancement is noise removal using media filter-
ing.

1.3.2 Image Restoration

Restoration is an attempt to estimate the original image by applying effec-
tive inversion of the degrading phenomenon. This method requires knowledge
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of the degradation phenomenon. An example of image restoration is removing
motion blur in an image of a fast-moving object.

1.3.3 Image Segmentation

The segmentation process usually refers to making different parts of an
image. The segmentation renders an image into more meaningful parts, which
helps for analysis of the image. It is mainly used to extract objects or regions
in images. In image segmentation, a label is assigned to every pixel based on
some visual characteristics, such as color, intensity, texture, or depth. The
pixels with the same label constitute a region. Hence, the result of image seg-
mentation is a set of regions. The different regions can be different objects in
the image and background. Hence, all the different regions collectively cover
the entire image. If segmentation is done well, then all sccessive stages in im-
age analysis are made simpler.

Since image segmentation has wide applications, several algorithms have
been developed. For image segmentation, usually two approaches are followed,
namely discontinuity based and similarity based. In the discontinity-based ap-
proach, an image is partitioned into parts based on discontinuties in intensity
values. These discontinuties are at the boundaries of objects. Hence, edge de-
tection operators are used to detect edges, and these edge pixels are linked
properly to identify the object boundaries. Canny edge detection and Lapla-
cian edge detection techniques are used in this approach.

In the similarity-based approach, we assume that the pixels of the same
object have some similarity. The image is partitioned into different regions
that are similar according to some predefined criteria. The examples of this
approach are thresholding, region growing, and region splitting and merging.
Practically, the intensity values of pixels of the same object change slightly
because of variation in illumination and noise. Hence, to improve the segmen-
tation performance, these techniques are modified based on domain knowledge
of a particular application.

1.3.4 Image Compression

Image compression is used to reduce the amount of memory required to
store a digital image and transmit it at low bandwidth. It is used in image
transmission applications which include broadcast television, remote sensing
via satellite, and other long-distance communication systems. Image storage
is required for several purposes, such as document, medical images, magnetic
resonance imaging (MRI), radiology, and motion pictures. Image-compression
algorithms are divided into lossy or lossless. In lossless compression, informa-
tion content is not modified. Compression is achieved by reducing redundancy
and this is used for archival purposes, as well as for medical imaging and legal
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FIGURE 1.4: (a) Original image, (b) Compressed JPEG image (27:1)

documents. In lossy compression, information content is reduced and it is not
recoverable. Lossy compression methods are epecially used at low bit rates,
which introduce compression artifacts. Lossy methods are especially used for
natural images such as photographs. Figure 1.4 shows the original image and
JPEG compressioned image with compression ratio 27:1. Though image 1.4
(b) is compressed 27 times the size of the original image, its quality is suffi-
ciently good.

1.3.5 Image Reconstruction

Image reconstruction is a technique used to create 2-D and 3-D images
from sets of 1-D projections. It is used in the common imaging modalities,
such as CT (computed tomography), MRI (magnetic resonance imaging), and
PET (positron emission tomography). These modalities are very useful in the
medicine and biology field. The CT image is generated by using several im-
ages that are acquired from x-ray projection data at different angles around
the patient. In image reconstruction, image quality is based on radiation dose.
Images of acceptable quality can be reconstructed at lower radiation doses.
Image reconstruction is performed using two types of methods, namely ana-
lytical reconstruction and iterative reconstruction.

1.3.5.1 Analytical Reconstruction

The most commonly used analytical reconstruction methods on commer-
cial CT scanners are all in the form of filtered back-projection (FBP). It uses
a 1-D filter on the projection data before back-projecting (2-D or 3-D) the
data onto the image space. This is widely used on clinical CT scanners be-
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FIGURE 1.5: Three frames are shown from a sequence morphing from child
to woman. The middle image represents the morphing process.

cause of its computational efficiency and numerical stability. Flohr et al. have
presented a review of analytical CT image reconstruction methods [14].

1.3.5.2 Iterative Reconstruction

Nowadays, iterative reconstruction is prefered over conventional FBP tech-
niques because of the following advantages:
1) In iterative reconstruction, important physical factors such as focal spot
and detector geometry, photon statistics, x-ray beam spectrum, and scatter-
ing can be incorporated more accurately.
2) Interative reconstruction produces images with lower noise and higher spa-
tial resolution.
3) As compared to FBP, beam hardening artifacts, windmill artifacts, and
metal artifacts are reduced in iterative reconstruction.
4) As per recent clinical studies, iterative reconstruction algorithms have
demonstrated radiation dose reduction upto 65% compared with the FBP-
based reconstruction approach.
5) The apperance of images from iterative reconstruction may look differ-
ent, since there is an intrinsic difference in data handling between FBP-based
reconstruction and iterative reconstruction.

1.3.6 Image Morphing

Morphing is a process of transforming one image to another through a
seamless transition. It is a technique that allows to blending two images, cre-
ating a sequence of in-between pictures. When played, this sequence converts
the first image into the second, creating animation effect. This type of special
effect is used to depict some technological processes and fantasy sequences.
Figure 1.5 shows morphing of child to woman. Morphing algorithms are used
to create convincing slow-motion effects by morphing between each individual
frame using optical flow technology. Morphing techniques are used to enhance
multimedia projects, presentations, movies, education, and training.
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As the morphing proceeds, the first image is gradually faded out, while
the second image is gradually faded in. The in-between images contain both
images according to some percentage. The middle image contains fifty percent
of the source as well as the destination image. It involves the image process-
ing techniques of cross-fading and warping. The correspondence between the
source and destination image is developed using points and lines. Sometimes
features such as intensities and optical flow are used to find correspondence be-
tween the two images. For image morphing, algorithms such as mesh warping,
field morphing, radial basis functions, thin plate splines, energy minimization,
and multilevel free-form deformations are used.

1.3.7 Image Recognition

Image recognition determines whether the image contains some specific
object or not. This task is very easy for humans, but is very difficult for ma-
chines. The existing algorithms are only for specific objects such as human
faces, vehicles, animals, geometric objects, or characters. Some of the recog-
nition problems are as follows:
Object recognition: In this problem, one or several prespecified objects can be
recognized with their 2-D positions in the image or 3-D poses in the video.
Identification: An individual instance of an object is recognized, such as iden-
tification of the face of a specific person, or identification of a specific vehicle.
Detection: The specific object is detected in the image or the video sequence.
Examples are detection of possible abnormal cells in medical images, and de-
tection of a vehicle in a road-traffic monitoring system.

Several specialized tasks based on recognition are as follows:
Content-based image retrieval : This is a technique of finding all the images
from the larger dataset of images that have a specific content. For example we
can make a query such as, “show me all images similar to image X.” Then the
CBIR module displays all images similar to X by finding similarities relative
to the target image.
Pose estimation: This is a technique of estimating the position or orientation
of a specific object relative to the camera. For example, the application of
assisting a robot arm in retrieving objects from a conveyor belt.
Optical character recognition (OCR): This is a technique of identifying printed
or handwritten text characters in images. It is used to encode the text in a
format such as ASCII. This format can be easily edited.

1.3.8 Image Mosaicing

Image mosaicing is a method of creating one image by combining infor-
mation from many images, for better understanding. The amount of data
collected by the camera is very small compared to what is seen by the human
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FIGURE 1.6: A photographic mosaic of fields and the growing condition of
crops, acquired by drone

eye. Nowadays, there are special cameras with complex lenses to increase the
field of view. However, we can increase the field of view of a normal camera
by combining information from many images. Image mosaicing enables us to
combine together many small images into one large image. The term photo-
mosaic means compound photographs created by stitching together a series
of adjacent pictures of a scene. Figure 1.6 shows a typical example of the mo-
saic of the pictures of fields and growing condition of crops acquired by drone
for agricultural purpose. Many products are already available in the digital
photography market to allow photos or even a video stream from a hand-
held camera to be stitched together into a wide-field mosaic. The technique
is used for the applications in video compression, digital steadycam, digital
video editing, and matte placement software.

1.3.9 Image Watermarking

Image watermarking is the technique of embedding information into a dig-
ital image in order to attach ownership. Watermarking is performed in such a
way that it is difficult to remove. If the image is copied, then the watermark
information is also carried with the copy. If the watermark information is vis-
ible in the image, it is called visible watermarking. Usually the information is
text or a logo that indicates the ownership of a particular group. An example
of a visible watermark is the logo at the corner of transmitted video included
by a television broadcaster to inform viewers about the owner of the media. In
invisible watermarking, information is added as digital data to an image, but
it cannot be perceived as such. In steganography applications, the invisible
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watermark contains secret messages embedded in the digital signal.

1.3.10 Image Registration

Image registration is the technique of transforming different sets of data
into one coordinate system. The different sets of data may be multiple pho-
tographs, data from different sensors, data acquired at different times, or
data acquired from different viewpoints. It is necessary to integrate the data
obtained from these different measurements. Image registration is used for
various applications, such as medical image registration.

For monitoring tumors, images of the patient are acquired from different
viewpoints. These images are registered in order to combine images from dif-
ferent viewpoints. This helps doctors with disease dignosis. In astrography,
different images of space are registered for analysis purposes. The computer
performs transformations on one image to make major features align with a
second image using some control points. Image registration is used to create
panoramic images. Many different techniques of image registration can be im-
plemented in real-time devices such as cameras and camera phones.

1.4 Digital Image Segmentation

This is the technique of partitioning a given digital image into meaningful
parts with respect to a particular application. Image segmentation is used to
locate objects in images. Image segmentation is mainly used for analysing im-
ages. In other words, it is the process of assigning a label to every pixel in an
image based on certain visual characteristics. The set of different regions gen-
erated by image segmentation collectively cover the entire image. Each pixel
in the segmented region is similar to other pixels in the region with respect
to some characteristic, such as color, intensity, texture, and depth.

For understanding any image, digital image segmentation is an important
step. It is used to identify objects in a scene and extract their features, such
as size and shape. In object-based video compression, image segmentation is
used to identify moving objects in a scene. To enable mobile robots to find
their path, image segmentation is used to identify objects that are at different
distances from a sensor using depth information.
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FIGURE 1.7: Classification of image segmentation approaches

1.4.1 Classification of Image Segmentation Techniques

The image segmentation approaches are broadly classified as similarity-
based approaches and discontinuity-based approaches as shown in Figure 1.7.
The similarity-based approach is based on partitioning an image into regions
that are similar according to predefined criteria. This approach can be further
classified as thresholding, region growing, and region splitting and merging.
Region in an image is a group of connected pixels with similar properties. The
thresholding-based approach can be further classified as global thresholding,
adaptive thresholding, optimal thresolding, and local thresholding.

The discontinuity-based approach is to partition an image into different
regions based on abrupt changes in intensity, such as edges in an image. In the
edge detection-based approach, the edges are identified to detect the region or
object boundaries. Detected edges are linked together to improve the perfor-
mance. Edge linking techniques can be further classified as local processing,
regional processing, and global processing. The Hough transform-based global
processing method is widely used for edge linking.

1.4.2 Edge Detection

Edge detection is the process of detecting sharp discontinuities in an im-
age. The discontinuities are abrupt changes in pixel intensity that charac-
terize boundaries of objects in the image. Since edges often occur at object
boundaries, this is used for object extraction. The edges can be extracted by
convolving the image with the edge detection operator. Some edge detection
operators are the Sobel, Canny, Prewitt, and Roberts operators.
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FIGURE 1.8: (a) Step edge, (b) Line edge, (c) Ramp edge, (d) Roof edge

1.4.2.1 Classification of Edges

Pixels at which the intensity of an image function changes abruptly are
called edge pixels. These edge pixels can be detected by computing intensity
differences in local image regions. Edges can be broadly classified into step
edge, line edge, ramp edge, and roof edge, as shown in Figure 1.8. The step
edge has a perfect transition from one segment to another. In the case of step
edge, the image intensity abruptly changes from one side of the discontinuity
to the other side. If a segment of an image is narrow, it necessarily has two
edges in close proximity. This arrangement is called a line edge. Ramp edge
occurs when there is smoother transition from one region to other. It is useful
for modeling the blurred edge. Two nearby ramp edges in a line structure are
called a roof.

1.4.2.2 Gradient Operator

The gradient of an image f at location (x, y) is given as:

∇f = grad(f) =

[
gx
gy

]
=

 ∂f
∂x

∂f
∂y

 (1.1)

The magnitude of the gradient vector is given by

mag(∇f) =
√
g2x + g2y (1.2)

The direction of the gradient vector measured with respect to the x-axis is
given by

α(x, y) = tan−1
[
gx
gy

]
(1.3)

Obtaining the gradient requires computing the partial derivatives ∂f/∂x
and ∂f/∂y at every pixel location. The digital approximations of the partial
derivatives about the pixel location (x, y) are given as

gx =
∂f

∂x
=
∂f(x, y)

∂x
= f(x+ 1, y)− f(x, y) (1.4)
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FIGURE 1.9: Roberts mask

and

gy =
∂f

∂y
=
∂f(x, y)

∂y
= f(x, y + 1)− f(x, y) (1.5)

The above two equations can be implemented by using the mask given in Fig-
ure 1.9 . When diagonal edge direction is of interest, a Roberts cross-gradient
operator is used. Consider the 3 × 3 image region shown in Figure 1.10. The
Roberts operator compute gradient uses the following equations:

gx =
∂f

∂x
= (z9 − z5) (1.6)

gy =
∂f

∂y
= (z8 − z6) (1.7)

Roberts masks are not symmetric about the center point. The smallest sym-
metric mask is of size 3×3. These masks are useful for computing the direction
of an edge. The simplest 3 × 3 mask is the Prewitts mask, which is given as
follows:

gx =
∂f

∂x
= (z7 + z8 + z9)− (z1 + z2 + z3) (1.8)

gy =
∂f

∂y
= (z3 + z6 + z9)− (z1 + z4 + z7) (1.9)

To give more emphasis on the central pixel, the Sobel operator uses a weight of
2 in the center coefficient, which provides smoothing. Sobel masks are prefer-
able because they have better noise supression.

gx =
∂f

∂x
= (z7 + 2z8 + z9)− (z1 + 2z2 + z3) (1.10)

gy =
∂f

∂y
= (z3 + 2z6 + z9)− (z1 + 2z4 + z7) (1.11)

It is to be noted that the sum of all coefficients of any edge detection
mask is zero. Hence, a response of mask is zero in areas of constant intensity.
Computing the gradient magnitude using Equation 1.2 requires squares and
square roots calculations, which pose a computational burden, so an equation
used to approximate gradient values is

M(x, y) ≈ |gx|+ |gy| (1.12)

It still preserves relative changes in intensity levels.
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FIGURE 1.10: Image region of size 3 x 3 (z represents intensity values) and
various edge operators

1.4.2.3 Laplacian Operator

The gradient operator discussed above detects the edges based on the first
derivative of the image. The second derivative can be computed by differenti-
ating the first derivative. The Laplacian operator searches for zero crossings
in the second derivative of the image to find edges. Since the Laplacian of an
image highlights regions of rapid intensity change, it is prefered than above
other edge detectors. The shape of the Laplacian operator looks like Mexican
hat as shown in Figure 1.11.

For images, there is a single measure, similar to the gradient magnitude,
that measures the second derivative, which is obtained by taking the dot prod-
uct of ∇ with itself.

∇.∇ =

 ∂
∂x

∂
∂y

 .
 ∂

∂x

∂
∂y

 (1.13)

∇.∇ =
∂2

∂x2
+

∂2

∂y2
(1.14)

The operator ∇.∇ = ∇2 is called the Laplacian operator.
When the Laplacian operator is applied to the function f , we get

∇2f =
∂2f

∂x2
+
∂2f

∂y2
(1.15)
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The Laplacian operation can be expressed in terms of the difference equation
given below

∂f

∂x
= f(x+ 1, y)− f(x, y) (1.16)

and

∂2f

∂x2
= f(x+ 1, y)− 2f(x, y) + f(x− 1, y) (1.17)

Also

∂2f

∂y2
= f(x, y + 1)− 2f(x, y) + f(x, y − 1) (1.18)

This implies that

∇2f = [f(x+ 1, y) + f(x− 1, y) + f(x, y+ 1) + f(x, y− 1)]− 4f(x, y) (1.19)

The masks corresponding to Equation 1.19 are shown in Figure 1.12 (a).
The Laplacian operator subtracts the intensity values of each of the neigh-

boring pixels from the central pixel. When a discontinuity is present within
the neighborhood of the pixel, the reponse of the Laplacian operator is a non-
zero positive or negative value. The discontinuity will be in the form of point,
line, or edge. One of the limitations of the Laplacian operator is that being
an approximation to the second derivative, it is sensitive to noise in the im-
age. To overcome this problem, the image is smoothed using a Gaussian filter
before applying the Laplacian operators to reduce the high frequency noise
components. Based on the pre-processing, the following Laplacian operators
are developed:
1. Marr-Hildreth edge detector
2. Canny edge detector

1.4.2.4 Marr Hildreth Edge Detector

At an edge, sudden intensity change will give rise to a peak or trough in
the first derivative and zero crossing in the second derivative. Marr and Hil-
dreth argued that the intensity changes depend on image scale. Hence, we can
use the operators of different sizes for edge detection. The large operators are
used for blurry edges and small operators are used for sharp edges.

Marr and Hildreth proposed that the most satisfactory operator fulfilling
the above-mentioned condition is the filter ∇2G with G as a two-dimensional
Gaussian function. The detailed steps of the algorithm are presented in Algo-
rithm 1.

G(x, y) = e−(
x2+y2

2σ2
) (1.20)
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FIGURE 1.11: Laplacian operator (Mexican hat shape)

where σ is the standard deviation.

∇2G =
∂2G

∂x2
+
∂2G

∂y2
(1.21)

The Laplacian of Gaussian (LoG) is

∇2G =
x2 + y2 − 2σ2

σ4
e−(

x2+y2

2σ2
) (1.22)

The Gaussian part of ∇2G blurs the image, thus reducing the intensity of
the structures, including noise. Gaussian is smooth in both the spatial and
frequency domains, and thus is less likely to introduce ringing not present in
the original image. ∇2 being isotropic, it avoids the use of multiple masks to
calculate the strongest response at any point in the image.

Since both the Gaussian and Laplacian kernels are usually much smaller

Algorithm 1 Marr Hildreth Edge Detection Algorithm
Input: Input image
Output: Image containing detected edges

1: Smooth the image using a Gaussian Low-pass filter to reduce error due to noise.
2: Apply 2-D laplacian mask shown in Figure 1.12 to the image. This Laplacian will be

rotation invariant. It is often called the Mexican Hat operator because of its shape
which is shown in Figure 1.11.

3: Loop through Laplacian and look for sign changes. If there is a sign change and the
slope across this sign change is greater than some threshold, consider this pixel as an
edge.

than the image, this method usually requires less computations. For real-
time application, the LoG kernel can be calculated in advance so only one
convolution needs to be performed at run-time on the image. If the threshold
is zero, we may observe closed-loop edges. This is called the spaghetti effect.
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FIGURE 1.12: Laplacian masks

FIGURE 1.13: (a) Horizontal line mask, (b) Vertical line mask, (c) +45

degree line mask, (d) -45 degree mask

We can avoid this by using a positive threshold.

1.4.2.5 Isolated Point Detection

A Laplacian mask is used to detect an isolated point. The intensity at an
isolated point will be quite different from its surroundings. Hence, the isolated
point will be easily detectable by the Laplacian mask that is shown in Figure
1.12. If the absolute value of the response of the Laplacian mask at any point
exceeds a specified threshold T , then that point is considered an isolated point.
Such points are labeled 0, thus producing a binary image.

1.4.2.6 Line Detection

Figure 1.13 shows the line masks for horizontal line, vertical line, +45o

line, and −45o line. Figure 1.14 shows the responses of these masks to the
image shown in Figure 1.14(a).

1.4.2.7 Canny Edge Detector

The Canny edge detection algorithm is considered the optimal edge detec-
tor. Canny wanted to improve the performance of edge detectors available in
the 1980s, and in 1986, he proposed an Algorithm 2 for edge detection that is
very popular and efficient (see Figure 1.15). In it, the following list of criteria
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FIGURE 1.14: (a) Original image, (b) Response of horizontal line mask,

(c) Response of vertical line mask, (d) Response of +45 degree line mask, (e)

Response of -45 degree line mask

FIGURE 1.15: Photograph of John Canny
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is used to improve the performance:
(1) Low Error Rate:
Probability of detecting real edge points should be increased, and probability
of detecting non-edge points should be decreased.
(2) The edge points should be well localized:
The distance between the real edge pixels and the detected edge pixels should
be at a minimum.
(3) Only one response to a single edge:
There should be only one response to one real edge pixel.

The Canny edge detector first smooths the image to reduce noise. Then it
finds the image gradient to highlight regions with high spatial derivatives. Af-
ter this, all those pixels in these regions that are not at maxima are supressed.
Hysteresis is now used to further reduce the gradient array. Hysteresis is used
to check the remaining pixels that have not been suppressed. Hysteresis uses
two thresholds, and if the magnitude is below the low threshold (T1), it makes
the pixel as non-edge. If the magnitude is above the high threshold (T2), it
makes it edge. If the magnitude is between two thresholds, then it is set to
zero unless there is a path from this pixel to a pixel which is an edge.

Other gradient-based algorithms like the Prewitt filter are not efficient

Algorithm 2 Canny Edge Detection Algorithm
Input: Input image f(x, y)
Output: Image containing detected edges

1: Smooth the image using a Gaussian low-pass filter to reduce the noise.
2: Compute the gradient magnitude and angle for pixel where gradient has large magni-

tude to create edges.
3: Apply non-maxima suppression to the gradient magnitude image.
4: Use double thresholding and connectivity analysis to detect and link edges.
5: Edge tracking by hysteresis

when there is more noise. Moreover, parameters like kernel filter and coef-
ficients are not adjustable. In contrast, the Canny edge detection algorithm
is an adaptive algorithm in which parameters like standard deviation for the
Gaussian filter and the threshold values are adjustable. In comparison with the
Sobel, Prewitt, and Roberts operators, the Canny edge detection algorithm is
computationally expensive. The Canny edge detection algorithm presented in
Algorithm 2 performs better than all these operators, as shown in Figure 1.16.

1.4.3 Edge Linking

In the edge detection technique, sometimes the edge becomes discontin-
uous, and therefore we need a technique that can link these broken edges.
In practice, noise and non-uniform illumination introduce spurious intensity
discontinuities. Hence, the generated output has breaks in the boundary. As
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FIGURE 1.16: The figure indicates that the Canny detector performs better

as compared to other detectors

a remedy, various techniques for linking edges are used.

1.4.3.1 Local Processing

For linking edge points, one of the easiest ways is to link pixels with sim-
ilar characteristics. After the image had undergone edge detection, a small
neighborhood (3× 3 or 5× 5) of pixels is analyzed, and the similar pixels are
linked. Similarity is established by two principle properties:
1. The strength of the response of the edge detection operator used to detect
the edge pixel.
2. The direction of the operator.
For example, if we use gradient operator to produce the edge pixel, similarity
can be deduced by:
For edge strength similarity∣∣∣∇f(x, y)−∇f(x

′
, y
′
)
∣∣∣ ≤ T (1.23)

where T is the non-negative threshold.
For direction similarity ∣∣∣α(x, y)− α(x

′
, y
′
)
∣∣∣ ≤ A (1.24)
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where α(x, y) is the direction of the gradient, α(x, y) = tan−1
Gy
Gx

, and A is an
angle threshold.

1.4.3.2 Regional Processing

This technique is used for linking pixels on a regional basis, with the de-
sired outcome being an approximation of the boundary of the region. Two
approaches are used for regional processing, (1) functional approximation and
(2) polygonal approximation. In functional approximation, we fit a 2-D curve
to the known point. The main interest lies in the fast execution that yields an
approximation to essential features of the boundary such as extreme points.
Polygonal approximations can capture the essential shape features of a region,
such as vertices of the polygon.

1.4.3.3 Global Processing Using Hough Transform

Local and regional processing are applicable in situations where knowledge
about pixels belonging to individual objects is at least partially available.
In regional processing, it makes sense to link a given set of pixels only if
we know that they are part of the boundary of a meaningful region. If we
have no knowledge about the object boundaries, all pixels are candidates
for linking and thus have to be accepted or eliminated based on predefined
global properties. In the global approach, we see whether sets of pixels lie on
curves on a specified shape. These curves form the edges or region boundaries
of interest. Global processing can be done by Hough transform. The Hough
transform is a feature extraction technique used in image analysis. The basic
idea of Hough transform is as follows:
1. Each straight line in Figure 1.17 can be described by an equation, y =
mx+ c.
2. Each white point, if considered in isolation, could lie on an infinite number
of straight lines.
3. In the Hough transform, each point votes for every line it could be on.
4. The line with the most votes wins.

Any line can be represented by two numbers. We can also represent a line
by using (ρ, θ).

ρ = xcosθ + ysinθ (1.25)

Since we can use (ρ, θ) to represent any line in the image space as shown in
Figure 1.18 (a), we can represent any line in the image space as a point in the
plane defined by (ρ, θ), as shown in Figure 1.18 (b). This is called Hough space.
The detailed algorithm of the Hough tranform is presented in Algorithm 3.

Some of the applications of the Hough transfrom in image analysis are
as follows: The detection of groups of parallel lines can be used as important
clues for text extraction. In applications involving autonomous navigation of
air vehicles, Hough transform is used to extract two parallel edges of the
principal runway. While analyzing soccer videos, the appearance of two or
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FIGURE 1.17: Each white point could lie on an infinite number of straight

lines

FIGURE 1.18: Each white point could lie on an infinite number of straight

lines

Algorithm 3 Hough Transform Algorithm
Input: Input image
Output: Linked edges

1: Create ρ and θ for all possible lines
2: Create an array A indexed by ρ and θ
3: for for each point (x, y) do
4: for Each angle θ do
5: ρ = xcosθ + ysinθ
6: A[ρ, θ] = A[ρ, θ] + 1
7: if A > Threshold then
8: return line
9: end if

10: end for
11: end for
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FIGURE 1.19: Green color lines are the lines linked by Hough transform

(see ebook for color)

three parallel field lines in bird’s eye view is used to indicate the occurrence
of the gate, as shown in Figure 1.19.

1.4.4 Thresholding

Thresholding is the most basic approach of image segmentation, where the
given image is partitioned into regions based on intensity values. Suppose that
the gray-level histogram corresponds to an image, f(x, y), composed of white
objects in a dark background, in such a way that object and background pixels
have gray levels grouped into two dominant modes. One obvious way to ex-
tract the objects from the background is to select a threshold T that separates
the objects from the background. As shown in Figure 1.20(b), the valley point
of the histogram of the cameraman is selected as threshold T . Then any point
(x, y) for which f(x, y) > T is called an object point; otherwise, the point
is called a background point. In other words, the segmented image g(x, y) is
given by

g(x, y) =

{
1 if f(x, y) > T
0 if f(x, y) <= T

Figure 1.20(c) shows the segmented cameraman image using threshold T .

1.4.4.1 Multiple Thresholding

Multiple thresholding classifies a point (x, y) as belonging to the back-
ground if f(x, y) <= T1, to one object class if T1 < f(x, y) <= T2, and to the
other object class if f(x, y) > T2. The segmented image g(x, y) is given as

g(x, y) =

 a if f(x, y) > T2
b if T1 < f(x, y) <= T2
c if f(x, y) <= T1
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FIGURE 1.20: Segmentation of cameraman image based on threshold T

where a,b,c are any three distinct intensity values. The success of thresholding
is directly related to the width and depth of the valleys separating the his-
togram modes. Key factors affecting properties of valleys are: the separation
between peaks, the noise content in the image, the relative size of objects and
background, the uniformity of the illumination source, and the uniformity of
the reflectance properties of the image.

Equation 1.26 represents the threshold selection. If T depends on f(x, y)
only, then the selected threshold is called the global threshold. If T depends on
pixel location (x, y) and local property in a neighbourhood centered at (x, y),
the selected threshold is called the local threshold.

T = T [x, y, p(x, y), f(x, y)] (1.26)

1.4.4.2 Global Thresholding

Algorithm 4 is used to obtain threshold T automatically. In general, if T0
is larger, the algorithm will perform fewer iterations. The initial threshold T
can be selected as average intensity of the image. Global thresholding uses a
fixed threshold for all pixels in the image. Hence, it works only if the intensity
histogram of the given image contains two separate peaks corresponding to
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FIGURE 1.21: (a) Original image, (b) Global thresholding, (c) Local (adap-

tive) thresholding

Algorithm 4 Global Thresholding Algorithm
Input: Input image
Output: Segmented image

Select an initial estimate for T
Select a parameter T0 to control the number of iterations
Loop:
Segment the image using T into two groups of pixels: G1 consisting of all pixels with
gray level > T and G2 consisting of pixels with values <= T .
Compute the average intensity values m1 and m2 for the pixels in regions G1 and G2.
Compute Tdiff = T − [(m1 +m2)/2]
Compute new threshold value T = (m1 +m2)/2
if Tdiff < T0 then

go to Loop
end if
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the objects and background. As shown in Figure 1.21(b), global thresholding
failed to segment the river and mountain on the backgorund of the image.
Hence, to achieve better segmentaion performance, a local thresholding tech-
nique is used.

1.4.4.3 Local Thresholding

This approach is based on the assumption that smaller image regions are
more likely to have approximately uniform illumination. For each pixel, a
threshold is calculated. If the pixel value is below the threshold, it is set to
the background value, otherwise it assumes the foreground value. To calcualte
local threshold, the local neighbourhood of each pixel is examined statistically.
The statistical properties include the mean of the local intensity distribution,
the median value, or the mean of the minimum and maximum values. The
size of the neighborhood is also important. It has to be large enough to cover
sufficient foreground and background pixels. On the other hand, choosing re-
gions that are too large can violate the assumption of approximately uniform
illumination. The algorithm that uses adaptive thresholding to achieve bet-
ter segmentaion is called the adaptive thresholding algorithm. Figure 1.21(c)
shows the result of such adaptive thresholding. The threshold will be called
optimum if it gives best separation between classes in terms of their intensity
values.

1.4.5 Region Growing

In noisy images, edge detection is sometimes difficult. In such cases, the
region-based approach is preferred. A region is a group of pixels with similar
properties. Region growing is the simplest image segmentation approach, that
groups pixels or sub-regions into larger regions based on some pre-defined
criteria. Initially, one set of seed points are selected. Based on some criteria,
all neighbors of seed points are tested. If neighbors are similar to the seed
point based on the criteria, neighbors will be merged into the region. This
procedure is repeated until the growth of the region is stopped. The similarity
measure can be selected as gray level, texture, color, or shape. The selection
of seed points, and the similarity criteria, are based on the problem under
consideration.

1.4.6 Region Splitting and Merging

This approach is based on the homogeneity of the image. First the given
image is divided into four parts, and the homogenity of all parts is checked.
The parts that are not homogeneous are subdivided into four parts again
and homogeneity will be checked. The division will be continued until we
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FIGURE 1.22: (a) Partitioned image, (b) Quadtree

get all parts homogeneous. Hence, this approach is called region splitting.
Also, if the homogeneous parts are similar, then they are merged. Hence,
this algorithm is called region splitting and merging. The same thing can be
explained considering quadtrees. A quadtree means that each node of trees
has four descendants and the root of the tree corresponds to the entire image.
Also each node represents the subdivision of a node into four descendant
nodes. The subdivision is carried out if the node of the tree does not represent
homogeneity. As shown in Figure 1.22, nodes representing region 1 and region
3 are subdivided further. The basics of splitting and merging are discussed in
the algorithm.
Advantages:
The image could be split progressively as per the required resolution, since
the number of splitting levels is decided by the user.
The homogeneity criteria and merging criteria will be decided by the user.
Disadvantages:
Because of the division into four parts, blocky segments may be produced.
This problem can be reduced by increasing the number of splitting levels. But
this will increase computation. Hence, trade-offs are decided by the user.

1.4.7 Watershed-Based Segmentation

Watershed-based segmentation often produces more stable segmentation.
Watershed segmentation is a way of automatically separating particles that
touch. The gradient magnitude of an image is considered as a topographic
surface, and watershed lines are extracted using gradient magnitude. If the
pixel has highest gradient magnitude intensity, it is considered to be a pixel of
the watershed line. Watershed lines represents region boundaries and catch-
ment basins represents the objects. Hence, the key behind watershed is to
convert the image into another image whose catchment basins are the objects
to be segmented. We can find the catchment basins and watershed lines for
any grayscale image using Algorithm 5.
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Algorithm 5 Watershed Algorithm
Input: Input image
Output: Segmented image

1: Start with all pixels with lowest possible value
2: for Each intensity level k do
3: for Each group of pixels of intensity k do
4: if adjacent to exactly one existing region then
5: add these pixels to that region
6: end if
7: if adjacent to more than one existing regions then
8: mark as boundary
9: end if

10: if not adjacent to any existing regions then
11: start a new region
12: end if
13: end for
14: end for

1.4.7.1 Use of Markers

Because of noise, the watershed segmentation algorithm often leads to over-
segmentation of an image. Hence, a concept of markers is used as a solution.
Markers limit the number of allowable regions and bring additional knowledge
into the segmentation procedure. A marker is a connected component belong-
ing to an image. Markers will be selected based on certain criteria. Markers
are classified as external markers and internal markers. External markers are
associated with the background and internal markers are associated with the
objects of interest. For example, internal markers can be regions surrounded by
the higher altitude points, every region should be a connected component, and
every point in the region should have same gray-level value. External markers
can be some regions of particular background color. Figure 1.23 shows the
segmentation of the pears image using the watershed algorithm with markers.

1.5 Applications

Digital image processing has wide applications. Some of its applications
areas are discussed in this section.

1.5.1 Television Signal Processing

The image processing techniques are used in Television signal processing
to improve image brightness, contrast, and color hue adjustment. Figure 1.24
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FIGURE 1.23: (a) Image of pears, (b) Image gradient, (c) Watershed lines,

(d) Image showing markers, (e) Result of segmentation

FIGURE 1.24: Adaptive brightness and contrast enhancement

shows the examples of adaptive brightness and contrast enhancement of a
television image.

1.5.2 Satellite Image Processing

Satellite image processing is used to extract information about natural
resources, such as vegetation, forest land, hyderological, mineral, and geolog-
ical resources. Figure 1.25 shows satellite images giving information about
the floods in Bangladesh and geographical information about Bangladesh and
northeast India.
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FIGURE 1.25: (a) Floods in Bangladesh, (b) Bangladesh and Northeast

India

1.5.3 Medical Image Processing

Nowadays, for disease dignosis purposes, imaging devices such as X-rays,
computer aided tomographic (CT) images, and ultrasound are used exten-
sively [33]. Examples of medical images acquired by different image modalities
such as ultrsound, CT, magnetic resonance imaging (MRI), positron emission
tomography (PET), and X-rays are shown in Figure 1.26. The field of medical
image processing has played an important role in the development of intelligent
healthcare systems, and devices such as image reconstruction and modelling
techniques allow instant processing of 2-D signals to create 3-D images in the
case of CT-scans. Clinicians and physiologists are always overloaded with the
database, which makes it very difficult to communicate proper information. In
such cases, machine learning helps to communicate extracted knowledge from
the database via user interface. In addition, using advanced image process-
ing techniques, experts can access quantitative anatomical structural changes
caused by injuries or other disorders in the brain. Image processing tech-
niques assist in predicting the outcomes and optimal strategies for treatment
[11]. From the above examples, we can observe that advancement in technol-
ogy facilitates health care. The researchers and clinicians must obtain updated
advances in image processing techniques for better treatment and diagnosis. It
is true that medical image processing has contributed immensely to improving
the health and quality of human life [29].

1.5.4 Robot Control

Image processing is used for automatic inspection and automatic vehicle
driving for robots. First, camera components take the images, and then hard-
ware components generate the appropriate motion and position control signals
for robot control.
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FIGURE 1.26: (a) Ultrasound, (b) CT, (c) MRI, (d) PET, (e) x-ray

FIGURE 1.27: Videoconferencing showing focus groups or meetings

1.5.5 Visual Communications

A videophone is capable of both audio and video duplex transmission. Its
purpose is to serve individuals, not groups. However, multipoint videoconfer-
encing allows participants to sit in a virtual conference room and communicate
as if they were sitting right next to each other, as shown in Figure 1.27. Until
the mid 90s, the cost of hardware required for videoconferencing was expen-
sive to buy. But the situation has changed now. Recent developments in codec
technology are increasing the use of relatively low-bandwidth ISDN for var-
ious display formats. Since the cost of video conferencing has been reduced,
videoconferencing will be one of the fastest growing technologies in the coming
years.

1.5.6 Law Enforcement

Biometric-based image processing systems will identify criminal suspects
accurately, saving time and resources. As shown in Figure 1.28, the biomet-
rics used are ear, face, facial thermogram, hand thermogram, hand vein, hand
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FIGURE 1.28: Biometrics: (a) Ear, (b) Face, (c) Facial thermogram,

(d) Hand thermogram, (e) Hand vein, (f) Hand geometry, (g) Fingerprint,

(h) Iris, (i) Retina, (j) Voice, (k) Signature

geometry, fingerprint, iris, retina, voice, and signature. Law enforcement gets
help from these biometric security features.

1.6 Summary

In this chapter, various image processing techniques are discussed. The
elements of general digital image processing systems are explained in brief.
Image segmentation methods are discussed in more detail because of their ex-
tensive use in similarity searches of video surveillance systems. Gradient-based
edge-detection algorithms such as the Prewitt filter and Sobel filter are very
sensitive to noise. The size of such kernel filters and coefficients is fixed and
cannot be adapted to a given image. In order to distinguish between valid im-
age contents and noise, a robust algorithm that will adapt the varying noise
level is needed. The Canny edge detection algorithm deals with this prob-
lem. Though this algorithm is computationally more expensive as compared
to Sobel, Prewitt, and Roberts operator, its performance is better under al-
most all scenarios. The watershed algorithm is another powerful algorithm
used to segment an image. Digital image processing has many applications.
Its applications areas include medical image analysis, television, security, im-
age compression, and satellite image processing. In this chapter, elementary
notions in image processing are presented, but there is still a lot more to ex-
plore. If you are new to the image processing field, I hope this chapter will have
given you basic information and motivation to study image processing further.



Chapter 2

Basics of Video Compression and
Motion Analysis

2.1 Video Compression

2.1.1 What Is Video Compression?

Compression reduces the amount of data for transmission and storage pur-
poses. In video compression techniques, redundant video data is removed in
order to reduce the size of a digital video file. As a result of that, the space
required for storage is reduced and such files can be easily sent over the net-
work. The compression techniques can be classified as data compression and
image compression.

Data compression reduces the number of bits required to store or trans-
mit data, by exploiting statistical properties of the data. The data may be
in the form of numeric, text, binary, image, or sound. Image compression is
based on the fact that there is a strong correlation among pixels or some wider
parts of the image. This correlation is exploited to compress the image file.
The transform techniques are used for the compression of continuous tone
(grayscale) image data. The discrete cosine transform (DCT) has been used
for continuous-tone compression.

2.1.2 Why Video Compression?

Video compression is required since the size of an uncompressed video file
is very large. To help you understand this, the following example shows that
an uncompressed video produces a large amount of data. The bandwidth re-
quired for transmitting a video with a frame resolution of 720 × 576 pixels
(PAL), a refresh rate of 25 fps, and 8-bit color depth is calculated as follows:

bandwidth = luminance component× frame rate× color depth +

2 × (chrominance component× frame rate× color depth)

= 720× 576× 25× 8 + 2× (360× 576× 25× 8) = 1.66 Mb/s (2.1)

37
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For high-definition television (HDTV), taking frame rate as 60:

1920× 1080× 60× 8 + 2× (960× 1080× 60× 8) = 1.99 Gb/s (2.2)

Even with powerful computer systems, such large size data requires extremely
powerful computational systems for handling the data. Hence, to reduce the
size of a digital video file, compression techniques are employed by exploiting
the redundancy available in the uncompressed video file. This helps to store
the file in less space and transmit with limited bandwidth.

2.1.3 Types of Video Compression

2.1.3.1 Lossless

Lossless compression reduces the size of data without the loss of any in-
formation, and when reconstructed, restores it to its original form. GIF is an
example of lossless images compression, which is generally used for text or
spreadsheet files, where losing words or financial data could create a prob-
lem. For example, if the picture contains 100 pixels of blue color, it can be
compressed by saying 100 blue pixels instead of saying 100 times blue pixel.
Huffman-coding and run-length encoding exploit redundencies and allow high
compression ratios without loss of any data.

FIGURE 2.1: (a) Lossless, (b) Lossy
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2.1.3.2 Lossy

Lossy compression removes data based on visual sensory characteristics
and limits. When played, the video looks like the original video, but the com-
pressed file is different from the original source. In this approach, the exact
original information cannot be obtained by decompression. The example of
lossy and lossless results is shown in Figure 2.1. The amount of data reduc-
tion possible by using lossy compression is often much higher than what may
be done through lossless techniques. The lossy compression technique is based
on limitation of viewers. A video file can be compressed until it is not noticable
by viewers. Even when noticeable by the user, further data reduction may be
desirable based on the application and availablity of the memory space and
transmission speed. Higher compression is achieved at the cost of loss of some
data.

2.1.4 Latency

Compression is achieved by implementing algorithms that remove some
image data. When the video is to be viewed, these compression algorithms
are applied to interpret the data and view it on the display. Execution of
these algorithms will take some time. The delay that occurrs because of the
compression algorithm is called compression latency. In video compression,
several adjacent frames are being compared, which introduces more latency, as
shown in Figure 2.2. Since applications of video compression for TV broadcast
and DVD playback do not require real-time interaction, the latency between
the source and the decoded video is not important and can easily extend to
several seconds. However, in the applications where there is a need for real-
time interaction, such as video conferencing and videophone, latency is the
most crucial specification of the system as it determines whether the system
will be stable or not. Video coding standards such as H.264 and MPEG-4
have achieved very low latency of 8 ms to 4 ms. For some applications such as
movies, compression latency is not important, since the video is not watched

FIGURE 2.2: Video broadcasting is delayed by 50 miliseconds due to latency
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live. However, for surveillance applications, very low latency is expected for
live monitoring of activities especially using PTZ and dome cameras.

2.1.5 MPEG Compression

Figure 2.3 shows the steps of the MPEG compression algorithm. A re-
duction of the resolution is done by using subsampling of chrominance chan-
nels. Then motion compensation is performed in order to reduce temporal
redundancy. Then discrete cosine transform is computed and its values are
quantized. Next, entropy coding using run-length encoding and the Huffman
coding algorithm is performed to generate compressed MPEG video.

2.1.5.1 Reduction of the Resolution

The human eye has a lower sensitivity to color information than to dark
bright contrasts. An RGB color file is converted into a YUV color file to achieve
compression by subsampling chrominance channels U and V. The chrominance
channels are grouped together based on the type of subsampling (2 or 4 pixel
values). The subsampling reduces the data volume by 50% and 33% for the
4:2:0 and 4:2:2 subsampling, respectively, as shown in Figure 2.4. The terms

FIGURE 2.3: MPEG compression block diagram

FIGURE 2.4: (a) RGB color space (no grouping or subsampling), (b) 4 pixel

values of the chrominance channel are grouped together, (c) 2 pixel values of

the chrominance channel are grouped together
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Y UV and Y ‘CbCr refers to an analog encoding scheme and digital encoding
scheme, respectively. The only difference between these schemes is that the
scale factors on the chroma components are different. However, the term Y UV
is often erroneously refered as Y ‘CbCr.

2.1.5.2 Motion Estimation

Often, two successive frames of a video sequence have small differences,
except in moving objects. As shown in Figure 2.5, MPEG-standard offers
three types of frames in order to reduce this temporal redundancy: 1) Intra-
coded frames (I-frames): These are intra predicted and self-contained frames.
2) Predicted frames (P-frames): These frames are predicted from the last I
or P reference frame. 3) Bidirectional frames (B-frames): These are predicted
from two references, one in the past and one in the future frame. Hence, out-
of-order decoding is required for MPEG video decoding purposes.

The I-frames are called intracoded frames, in which frame compression is
performed by exploiting spatial redundancies. Their compression is not that
high as compared to P and B frames. P and B frames are referred to as inter-
coded frames. The P-frames are predicted from an earlier I or P frame. Since
only differences are stored, p-frames require less space than I frames. Since
B-frames are predicted from the previous and next frame, they are called bidi-
rectional frames (B-frames).

The video decoder reconstructs the video by decoding the bit stream frame
by frame. Decoding always starts with an I frame, since it can be decoded in-
dependently. P and B frames require reference frames for decoding purposes.
The references between the different types of frames are realized by a process

FIGURE 2.5: Sequence of frames in an MPEG video separated into I, P,

and B frames
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called motion estimation or compensation. The correlation between two frames
in terms of motion is represented by a motion vector. The motion vectors are
usually computed by a motion estimation algorithm based on the pixel value
difference in sucessive frames. Higher compression ratios and better quality
of the coded video sequence is achieved by good motion estimation. However,
motion estimation is not suited for real time applications since it requires large
computations. Figure 2.6 shows the flowchart of motion estimation. The steps
involved in motion estimation are as follows:

1) Frame Segmentation
The frame is usually divided into non-overlapping macro blocks of size 8× 8
or 16 × 16 pixels. The selection of block size is a critical factor in terms of
time performance and quality for the following reasons: If block size is small,
more vectors need to be calculated. If the blocks are too large, the motion
matching is usually less correlated. The block size of 16× 16 pixels is used in

FIGURE 2.6: Schematic process of motion estimation
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MPEG standards.

2) Search Threshold
If the difference between two blocks at the same position is higher than search
threshold, the full block is transmitted. In such cases, there is no need to es-
timate motion.

3) Block Matching
Block matching predicts blocks in an actual predicted frame by comparing
blocks from previous frames. The block matching is a very time-consuming
process. This is because each block of the current frame is compared with the
blocks within a search window in the previous frame. Though only luminance
information is used to compare the blocks, the color information can be in-
cluded in the encoding. The selection of search window is a critical factor for
the quality of the block matching. If we select the larger search window, it is
more likely that we will get a matching block. But large search windows slow
down the encoding process drastically. Often rectangular search windows are
used since horizontal movement is more likely than vertical movement in any
video.

4) Prediction Error Coding
Video motions are usually more complex. Predicted motion by shifting of ob-
jects in 2-D is not always the same as in the actual scene and this error is
called prediction error. For compensating prediction error, the MPEG stream
contains a matrix. After prediction, only the difference between the predicted

FIGURE 2.7: Prediction error coding: Row-1: (a) I-frame, (b) Motion vec-

tor, (c) Forward predicted frame, Row-2: (d) Forward predicted frame, (e)

Prediction error, (f) Resulting frame
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frames and original frames are coded, because less data is required to store
only the differences. These differences are shown by red and black regions in
Figure 2.7.

5) Vector Coding
After computing the motion vectors and evaluating the correction, the video
is compressed. Large parts of MPEG videos consist of B and P frames. Usu-
ally B and P frames have mainly stored motion vectors. Therefore, an efficient
compression of motion vector data that has high correlation is expected.

6) Block Coding
DCT is used for coding each block, which is explained in the next section.

2.1.5.3 Discrete Cosine Transform

DCT is used to represent image data in the frequency domain. The image
is divided into blocks of size 8×8 or 16×16 pixels. The disadvantages of DCT
are computationally very expensive.

2.1.5.4 Quantization

During quantization, the DCT terms are divided by the terms in the quan-
tization matrix. This quatization matrix is designed based on human visual
perception. Human eyes are more sensitive to low frequencies than high fre-
quencies. Hence, in the quantization matrix, the values of quantization coeffi-
cient Q(u, v) are selected such that after quantization, higher frequencies end
up with a zero value and we can discard such values. The quantization values
are calculated as FQuantised(u, v) = F (u, v)/Q(u, v), where Q is the quantiza-
tion matrix of size N×N . The Q defines the compression level and the quality
of the image. After quantization, the DC and AC terms are stored separately.
Since the correlation between the adjacent blocks is high, only the differences
between the DC-terms are stored. The AC-terms are stored in a zig-zag path
with increasing frequency values. Higher frequency values of AC-terms will be
discarded.

2.1.5.5 Entropy Coding

The entropy coding is performed in two steps: run length encoding (RLE)
coding and Huffman coding. RLE and Huffman coding are lossless compression
methods that can further compress data by an additional factor of 3 to 4
depending on the redundancy. The difference between two adjacent frames is
generated and DCT is applied to the macroblock of the difference image. Later
on it is quantized, and RLE and Huffman coding algorithms are applied to
generate a final compressed image. We will see in the next section the different
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compression formats.

2.1.6 Video Compression Standards

The two major groups working on video coding standards are: MPEG
(Moving Picture Experts Group) and ITU-VCEG (International Telecommu-
nication Union- Video Coding Experts Group). The MPEG working group was
established in 1988 and was formed by the ISO (International Organization for
Standardization) and IEC (International Electrotechnical Commission) to set
standards for audio and video compression and transmission. The ISO/IEC
developed international standards for video compression, and some of their
standardized MPEG compression formats are: MPEG-1, MPEG-2, MPEG-3,
MPEG-4, MPEG-7, and MPEG-21.

ITU-VCEG is the name of the visual coding part of working party 3 (me-
dia coding) of study group 16, which is responsible for multimedia coding,
systems and applications of the ITU-T. It is responsible for standardization
of the H.26X line of video coding standards. The organization VCEG has
standardized the following video compression formats: H.120, H.261, H.263,
and H.263V2. These standards are used for video conferencing purposes [3].

Three other video codings have been developed with the collaboration of
ISO/IEC (also known as MPEG) with ITU-T and they are: H.262, H.264,
and H.265. As shown in Figure 2.8, these groups came up with many differ-

FIGURE 2.8: Timeline of release of various video coding standards
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ent types of formats for video coding, and all these formats served different
applications in their respective time.

TABLE 2.1: Comparison Table of Video Compression Standards

Video First Publisher Bit Applications
Coding release Rate
Standard year
H.261 1988 ITU 64 Kb/s Video conference over

ISDN
MPEG-1 1993 ISO/IEC 1.5 Mb/s Video on digital storage

media (CD-ROM)
MPEG-2/ 1995 ITU, > 2 Mb/s Digital television,
H.262 ISO/IEC video broadcasting
H.263 1995 ITU <33.6 Video conference, Video

Kb/s telephony, Web video
content, video on
mobile phone (3GP)

MPEG-4 2003 ITU 10 to HDTV, BlueRay,
AVC/ ISO/IEC 100 Kb/s improved video
H.264 compression
HEVC/ 2013 ITU, 10 to 8K UHD TV, improved
H.265 ISO/IEC 100 Kb/s video compression

2.2 Motion Segmentation

2.2.1 Introduction

Motion segmentation decomposes a video into moving objects and back-
ground, as shown in Figure 2.9. This is the first fundamental step of many
video surveillance systems. A large number of researchers have focused on
the segmentation problem because of its importance in surveillance systems.
However, despite these efforts, the performance of most of the algorithms still
falls far behind human perception.

2.2.1.1 Issues in Motion Segmentations

In an automatic motion segmentation algorithm, the important issues are
as follows:
1) Noise:
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The motion segmentation performance degrades because of noise. In the case
of underwater motion segmentation, there are some specific subsea phenom-
ena such as water turbidity, marine snow, rapid light attenuation, strong re-
flections, back-scattering, non-uniform lighting, and dynamic lighting. These
subsea phenomena degrade the underwater image quality drastically [43].
2) Blurring of data:
When motion is involved, blurring may occur, and because of blurred object
boundaries, the performance of motion segmentation degrades.
3) Occlusion:
Sometimes moving object get occluded fully or partially. Sometimes the full
object may disappear for some duration and reappear again in the scene. Un-
der such situations, the motion segmentation performance also degrades.

2.2.1.2 Main Attributes of a Motion Segmentation Algorithm

Object segmentation based on motion is a very important step of any video
surveillance system. It is not always possible to get prior knowledge about the
shape of the object and number of objects in the scene [59]. Under such situa-
tions, accuracy of the extraction of the object based on motion segmentation
is very important. The main attributes of a motion segmentation algorithm
are as follows:
1) Feature-based or dense-based:
In feature-based methods, the objects are extracted based on features such as
corner points or salient points, whereas dense methods compute a pixel-wise
motion [64].
2) Occlusions:
A motion segmentation algorithm should be capable of handling partial or full
occlusion cases.
3) Multiple objects:
A motion segmentation algorithm should be capable of dealing with multiple
objects in the scene.

FIGURE 2.9: Flowchart of motion segmentation algorithm
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4) Spatial continuity:
This is the ability to exploit spatial continuity.
5) Temporary stopping:
Motion segmentation should handle temporary stoppage of the objects in the
scene.
6) Robustness:
A motion segmentation algorithm should extract objects even with noisy im-
ages in the video sequences. For underwater videos, robustness of the algo-
rithm is very important since underwater images are usually noisy.
7) Missing data:
Motion segmentation algorithms should handle the cases of missing data.
8) Non-rigid object:
Motion segmentation algorithms should deal with with non-rigid objects.

2.2.2 Motion Segmentation Algorithms

Motion segmentation algorithms can be divided into the following cate-
gories:
1) Image Difference
2) Statistical Theory Based
3) Optical Flow
4) Layers
5) Factorization

2.2.2.1 Image Difference

Image difference is one of the easiest and most widely used techniques for
detecting moving objects. Despite its simplicity, this technique cannot be used
as it is because it is very sensitive to noise.

In this approach, the image difference of successive frames is taken and
the thresholding technique is applied to get moving objects in the scene. This
gives a coarse map of the temporal changes. This technique provides good re-
sults when the camera is fixed. If the camera is moving, the complete image is
changing and extracting moving objects is difficult. In order to deal with such
situations, the rough map of the intensity-changing areas is computed, and
for each blob, spatial or temporal information is extracted. This approach can
be modified to handle noise and illumination changes. This will be discussed
in detail in the next chapter, which is on background modelling.

2.2.2.2 Statistical Theory

Since in motion segmentation each pixel has to be classified as background
or foreground, it can also be seen as a classification problem. Statistical ap-
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proaches such as maximum a posteriori probability (MAP), particle filter (PF)
and expectation maximization (EM) provide a general tool to extract the mov-
ing objects. MAP is based on the Bayes rule, which is mentioned in Equation
2.3.

P (ωj |x) =
p(x|ωj)p(ωj)∑C
i=1 p(x|ωi)p(ωi)

, (2.3)

where x is the pixel, ω1...ωC are the C classes (usually background or fore-
ground), P (ωj |x) is the a posteriori probability, p(x|ωj) is the conditional
density, P (ωj) is the apriori probability and

∑
p(x|ωi)p(ωi) is the density

function. MAP classifies x as belonging to the class ω which maximizes the
a posteriori probability. MAP is often used in combination with other tech-
niques. In [52] MAP is combined with a probabilistic data association filter,
and in [7], MAP is combined with level sets to extract foreground objects.

2.2.2.3 Optical Flow

Optical flow (OF) is a vector that describes the distribution of the apparent
velocities of brightness patterns in the video sequence. It was first proposed
in 1980 by Horn and Schunck for image sequence [19]. But the idea of using
discontinuities in the OF for motion segmentation is even older. Lucas and
Kanade [48] also proposed a method to compute OF. The main limitations
of OF-based motion segmentation is that OF is very sensitivite to noise, and
also, the number of computations required are very large. Nowadays, because
of high-speed computers and improvements in the algorithms, OF is widely
used.

2.2.2.4 Layers

This technique is based on depth information. Its main purpose is to un-
derstand different depth layers, and which objects lie in which layer. This
approach is often used in stereo vision problems. The depth information of
the objects also helps in handling occlusion problems. In [43] a method is
proposed for representing the scene into layers without computing the depth.
In this approach, first the coarse-moving components between every pair of
frames are computed. Then the image is divided into patches, and the rigid
transformation that moved the patch from one frame to the next is located.
The initial estimate is then refined using α-β swap and α-expansion [19] min-
imization algorithms.
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2.2.2.5 Factorization Technique

Tomasi and Kanade [58] proposed a factorization technique to extract the
moving objects using features tracked through a sequence of images. Factor-
ization methods are widely used because of their simplicity. In this approach,
first the trajectory matrix T containing the position of F features tracked
throughout N frames is computed. Then matrix T is factorized into motion
M and structure S matrices. If the origin of the world coordinate system is
moved at the centroid of all the feature points, and in the absence of noise, the
matrix T is at most rank 3. Exploiting this constraint, T can be decomposed
and truncated using a singular value decomposition technique. Because the
rows of the motion matrix are orthonormal, the matrix M can be evaluated
using orthogonality constraints, and finally decomposed, up to a scale factor.
Though this method gives the 3-D structure of the object and the motion
of the camera, it is very sensitive to noise and unable to deal with missing
data and outliers. However, from this initial structure-from-motion approach,
many approaches have been proposed for motion segmentation.

2.3 Optical Flow Methods

Motion detection is the process of detecting a change in the position of an
object relative to its background or a change in the background relative to an
object. Optical flow is the distribution of apparent velocities of movement of
brightness patterns in an image. It can arise from relative motion of objects
and the camera. Optical flow gives a description of motion and thus is used in
motion detection. Optical flow is very useful to study motion while the object
is stationary and the camera is moving, while the object is moving and the
camera is stationary, or when both are moving. Optical flow is based on two
assumptions: 1) The brightness of the object point is constant over time. 2)
Points that are nearby in the frame move in a similar manner. Since video is
simply a sequence of frames, the optical flow methods calculate the motion of
an object between two frames that are taken at times t1 and t2, as shown in
Figure 2.10.

2.3.1 Estimation of Optical Flow

Optical flow methods are based on local Taylor series approximations of
the image signals, i.e., they use partial derivatives with respect to the special
and temporal coordinates. Suppose a voxel at location (x, y, t) with intensity
f(x, y, t) moves by dx, dy, and dt between two frames, then by brightness
constancy assumption, we can write
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f(x, y, t) = f(x+ dx, y + dy, t+ dt) (2.4)

Assuming the movement to be small and applying Taylor series in the above
equation, we get

f(x+ dx, y + dy, t+ dt) = f(x, y, t) +
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt (2.5)

From Equations 2.4 and 2.5, we can write

fxdx+ fydy + ftdt = 0 (2.6)

where fx, fy, and ft are the derivatives of the image at (x, y, t) in the corre-
sponding directions.

fxu+ fyv + ft = 0 (2.7)

where u = dx
dt and v = dy

dt are the x and y components of the velocity or
optical flow of f(x, y, t). Equation 2.7 above represents one equation with two
unknown variables u and v (the aperture problem). To estimate these unkown
variables u and v, several methods are proposed. The two most widely used
methods are: 1) Horn-Schunck optical flow estimation, and 2) Lucas-Kanade
optical flow estimation.

2.3.1.1 Horn-Schunck Optical Flow Estimation

Optical flow equation 2.7 can be written as straight line form as follows:

v = −fx
fy
− ft
fy

(2.8)

Figure 2.11 shows the line represented by Equation 2.8. The flow perpendic-
ular to this line from the origin is called normal flow and denoted by d. The
value of d is calculated as

FIGURE 2.10: (a) at time t1, (b) at time t2, (c) Optical flow
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d =
ft√

f2x + f2y

(2.9)

The normal flow d is fixed. However, parallel flow p changes, which is why we
have to estimate it. Horn and Schunck considered this problem as an optimiza-
tion problem with two constraints: 1) Brightness constancy, 2) Smoothness
constraint. The optimization function used is as follows:∫∫

{(fxu+ fyv + ft)
2 + λ(u2x + u2y + v2x + v2y)}dxdy (2.10)

where λ expresses relative effect of the smoothness constraint. We can use
variational calculus to solve this.
Differentiating Equation 2.10 w. r. t. u, we will get

(fxu+ fyv + ft)fx + λ(∆2u) = 0 (2.11)

Differentiating Equation 2.10 w. r. t. v, we will get

(fxu+ fyv + ft)fy + λ(∆2v) = 0 (2.12)

where

∆2u =
∂2u

∂x2
+
∂2u

∂y2
(2.13)

and

∆2v =
∂2v

∂x2
+
∂2v

∂y2
(2.14)

∆2u = uxx + uyy (2.15)

∆2v = vxx + vyy (2.16)

In the discrete version, we will use a Laplacian mask of size 4 × 4, shown in
Figure 2.12, to compute ∆2u and ∆2v.

∆2u = u− uavg (2.17)

∆2v = v − vavg (2.18)

The discrete version of Equations 2.11 and 2.12 are

(fxu+ fyv + ft)fx + λ(u− uavg) = 0 (2.19)

Differentiating Equation 2.10 w. r. t. v, we will get

(fxu+ fyv + ft)fy + λ(v − vavg) = 0 (2.20)
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Solving the above Equations 2.19 and 2.20

u = uavg − fx
P

D
(2.21)

v = vavg − fy
P

D
(2.22)

where

P = fxuavg + fyvavg + ft (2.23)

D = λ+ f2x + f2y (2.24)

Algorithm 6 presents Horn-Schunck optical flow estimation technique. Horn-
Schunck’s method is more accurate but requires a large number of iterations.

2.3.1.2 Lucas Kanade Optical Flow Estimation

Lucas and Kanade considered optical flow in a neighborhood close to the
pixels. He considered a window size of 3× 3 pixels and computed optical flow
for all 9 pixels.

FIGURE 2.11: Optical flow estimation

FIGURE 2.12: Laplacian mask
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Algorithm 6 Horn-Schunck Optical Flow Estimation Method
Input: Recorded video frames
Output: Estimated motion vector

1: Initialize k = 0
2: Initialize uk, vk

3: Compute u and v values using the following equations

uk = uavg − fx
P

D

vk = vavg − fy
P

D

where P = fxuavg + fyvavg + ft and D = λ+ f2x + f2y
4: k = k + 1
5: Repeat until some error measure is satisfied

fx1u+ fy1v = −ft1
fx2u+ fy2v = −ft2
fx3u+ fy3v = −ft3
fx4u+ fy4v = −ft4 (2.25)

fx5u+ fy5v = −ft5
fx6u+ fy6v = −ft6
fx7u+ fy7v = −ft7
fx8u+ fy8v = −ft8
fx9u+ fy9v = −ft9

fx1 fy1
fx2 fy2
fx3 fy3
fx4 fy4
fx5 fy5
fx6 fy6
fx7 fy7
fx8 fy8
fx9 fy9


[
u
v

]
=



−ft1
−ft2
−ft3
−ft4
−ft5
−ft6
−ft7
−ft8
−ft9


The above equation can also be written as

Aµ = ft (2.26)

Since A is not a square matrix, we cannot invert it, so we will multiply both
sides of the above equation by AT

ATAµ = AT ft (2.27)
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Hence, motion vector µ is calculated as

µ = (ATA)−1AT ft (2.28)

Least Squares Fit Approach:
Another way to get the estimation of motion vectors is to minimize squares

of optical flow, i.e.,

min
∑
i

(fxiu+ fyiv + fti)
2 (2.29)

Differentiating w. r. t. u, we get∑
i

(fxiu+ fyiv + fti)fxi = 0 (2.30)

Differentiating w. r. t. v, we get∑
i

(fxiu+ fyiv + fti)fyi = 0 (2.31)

Equation 2.30 can be simplified as∑
i

f2xiu+
∑
i

fxifyiv = −
∑
i

fxifti (2.32)

Equation 2.31 can be simplified as∑
i

fxifyiu+
∑
i

f2yiv = −
∑
i

fyifti (2.33)

Equation 2.32 and 2.33 can be written in matix form as[ ∑
i f

2
xi

∑
i fxifyi∑

i fxifyi
∑
i f

2
yi

] [
u
v

]
=

[
−
∑
i fxifti

−
∑
i fyifti

]
[
u
v

]
=

[ ∑
i f

2
xi

∑
i fxifyi∑

i fxifyi
∑
i f

2
yi

]−1 [−∑i fxifti
−
∑
i fyifti

]
[
u
v

]
=

1∑
i f

2
xi

∑
i f

2
yi − (

∑
i fxifyi)

2

[ ∑
i f

2
yi −

∑
i fxifyi

−
∑
i fxifyi

∑
i f

2
xi

] [
−
∑
i fxifti

−
∑
i fyifti

]
The Lucas Kanade method works better for small motion. If an object moves
faster, a 3× 3 mask fails to estimate spatiotemporal derivatives. Hence, pyra-
mids can be used to compute optical flow vector.
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2.4 Applications

Digital video processing has many applications. In this section some im-
portant video processing applications are discussed in brief.

2.4.1 Surveillance and Security

Research in the surveillance system area is growing continuously and sub-
stantially, because of the security-related incidents such as terrorist acts in
many countries around the world. This results in the need for intelligent
surveillance, and monitoring systems, consisting of real-time image capture,
transmission, processing, and surveillance information understanding. This in-
formation will be vital to people’s safety, and indeed to national security. In
this book, we will discuss many intelligent video surveillance systems in detail.

2.4.2 Content-Based Video Indexing and Retrieval

Nowadays, because of developments in technology, capturing video is very
easy. As a result of that, very large video databses and libraries are generated.
Automatic video indexing and retrieval tools are required to browse the videos
from large databses. The key challenge in the area of media management is
automation of content annotation, indexing [28], retrieval, summarization,
search, and browsing applications. One of the major challenges is reducing
the semantic gap between the simplicity of features that can be computed
automatically and the richness of semantics in user queries posed for video
search and retrieval. Content-based video indexing for sports [36], news [37],
and movies have been developed.

Player-B

Goal B(1)

Field-view Players Gathering-B Players Gathering-B SpectatorSpectator ReplayPlayer-B

Red-card

Player-AField-view RefereeRefereeReplay ReplayPlayers Gathering-A Player-B Player-B

(2)

FIGURE 2.13: Video event sequence for exciting clips of GoalB and

RedcardA
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2.4.3 Automatic Highlight Generation of Sports Videos

Since sports videos are globally widespread, automatic sports video analy-
sis has drawn increasing attention. As video capturing, processing, and trans-
mitting technology has developed rapidly, it is much easier to record and
archive digital video data. This has increased the need necessities for auto-
matic video analysis of sports video sequences. Since sports videos are well
structured in nature, researchers have proposed many techniques for auto-
matic sports video analysis. However, the broadcasting styles of different
sports vary drastically. So, researchers have targeted the individual games,
such as soccer [34], tennis, cricket [38] [39], basketball, baseball, volleyball,
and golf.

In [40], an automatic highlight-generation technique for a soccer sports
TV broadcast is discussed. The proposed system first detects exciting clips
based on audio features [34] and then classifies the individual scenes within
the clip into events such as replay, player, referee, spectator, and players gath-
ering. The higher-level semantic concept-labels are assigned to the exciting
clips using a Bayesian belief network-based approach [28]. The higher level
concept-labels are goals, saves, yellow-cards, red-cards, and kicks in soccer
videos. Figure 2.13 shows the results of higher-level concepts label assign-
ment to soccer video clips based on lower-level event-labels [40]. The labeled
clips are selected based on their degree of importance for generating soccer
highlights.

2.4.4 Traffic Monitoring

Video surveillance for monitoring traffic is becoming an increasingly pop-
ular field of application. Traffic cameras are placed above traffic signals on

FIGURE 2.14: Traffic monitoring using a surveillance system
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road crossings and intersections along busy roads. They are becoming more
popular day by day, as they help traffic police to levy fines on the lawbreakers.
As shown in Figure 2.14, this type of surveillance system will automatically
identify persons breaking the traffic rules and inform the traffic police. The
camera footage is extremely helpful for the transportation department, for
future development of roads based on the camera footage of traffic patterns
and accident-prone zones.

2.5 Summary

In this world where technology is improving exponentially day by day, it
is getting difficult to store or broadcast large amounts of huge video files. To
solve this issue, groups such as ITU-T and MPEG are standardizing video
compression formats that are capable of compressing video files by tenfolds.
This enables users to store video files on personal computers or mobile phones
with limited storage, and it also enables streaming video files in less time. In
this chapter, various video compression techniques and major video compres-
sion formats are discussed in detail. The optical flow-based motion estimation
approach is disussed in detail, since it is used for a variety of low-level tasks
like motion parameter, depth, or segmentation. These tasks are often used as
input for many higher-level tasks, like autonomous navigation, object tracking,
image stabilization, video compression, and human activity recognition. Ap-
plications of digital video processing for surveillance, indexing and retrieval,
automatic sports highlight generation, and traffic monitoring are discussed in
brief to get an idea of the implementation of video processing techniques.



Chapter 3

Background Modeling

3.1 What Is Background Modeling?

Background modeling is a technique used in computer vision for the de-
tection of foreground objects in a frame sequence. The accuracy of foreground
object detection depends on the accuracy in the modeling of the background.
In order to detect moving objects, first a background model of the scene is
constructed. Then each video frame is compared against a background model.
The pixels that deviate significantly from the background are considered to
be pixels of moving objects. After background subtraction, we get a raw fore-
ground image containing only moving object. Preprocessing techniques such
as erosion and dilation operations are applied to remove the noise. As shown
in Figure 3.1, if the difference between the current frame and the background
frame is greater than the threshold value, then the foreground object is de-
tected; otherwise no foreground object is detected. After getting the fore-
ground object, the centroid of the object is computed and the object can be
tracked with reference to its centroid in the scene. The background model
should be robust against environmental changes such as changes in illumina-
tion, and able to identify all moving objects in the scene. The general steps of
background subtraction-based object detection and tracking architecture are
shown in Figure 3.2.

3.2 Background Modeling Techniques

Moving objects can be easily detected if we remove the background from
the scene. A simple approach for detecting moving objects in video sequences
is background subtraction from the current frame. Hence, initially the back-
ground model must be constructed without the moving objects. Then the cur-
rent frame is subtracted from the background model to extract moving objects.
This technique is used in the surveillance applications for object tracking, traf-
fic monitoring, and video compression. Background modeling tecniques can be

59
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broadly classified based on non-statistical and statistical approaches.
In the non-statistical approaches, the first frame is considered to be the

background and the subsequent frames are subtracted from the background.
Then the pixels with a value higher than a threshold are considered to be the
objects. Each pixel in a frame is considered either a part of the moving object
or the background. The background is updated along the frame sequences.
Since non-statistical approaches are fast, they are suitable for real-time appli-

FIGURE 3.1: Background extraction
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FIGURE 3.2: Flow-chart for background extraction
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cations.
In the statistical approaches, the probability distribution functions of the

background pixels are estimated. Then in each video frame, the likelihood
that a pixel belongs to the background is computed. The statistical-based
approaches have better performance compared to the non-statistical-based
approaches in modeling background of the outdoor scenes. However, they re-
quire more memory and processing time. These methods are slower than the
non-statistical methods. The Gaussian mixture model (GMM)-based back-
ground modeling is one of the popular techniques of statistical background
modeling. In this approach, mixture of models is used to represent the statis-
tics of the pixels in the scene. The multimodal background modeling is very
useful in removing repetitive motion such as shining water, leaves on a branch,
a fluttering flag.

3.2.1 Non-Statistical Background Modeling Methods

In this approach, the initial frame is considered to be the background. The
background is updated along the frame sequence. In this approach, moving
objects are detected by using the difference between the current frame and
the background model. Since fewer number of computations are required for
background extraction, it is suitable for real-time applications. In order to
detect moving objects, subsequent frames are subtracted from the background
and then pixels with the intensity value higher than a threshold are considered
to be the pixels of moving objects.

3.2.1.1 Background Modeling Independent of Time

Since this method is the simplest approach for computing background that
is independent of time, it is called background modeling independent of time
(BMIT). In this approach, the first frame in video sequences is considered to
be the background and remains unchanged along the video sequences. The
mathematical description of the background model can be represented as

Bkx,y = I0x,y (3.1)

where Ikx,y is the pixel (x,y) of the kth captured frame, and Bkx,y is the pixel

(x,y) of the kth background model. In cases of complex background or dy-
namic background, where illumination levels and background objects change
abruptly, this method fails as it considers only the first frame to be the back-
ground.

3.2.1.2 Improved Basic Background Modeling

Background modeling independent time suffers from noise and varying lu-
minance in image sequence. The improved basic background modeling (IBBM)
method was developed to remove the deficiencies of the BMIT approach. Once
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the pixel value of the absolute difference frame is more than the threshold
value, the pixel is regarded as part of the moving objects; otherwise it is as-
signed to the background. Whenever a pixel belongs to the moving object, it
should be updated; otherwise, it is not essential to update. According to this
idea, the mathematical description of IBBM can be expressed as follows:

Bkx,y =

{
Ikx,y, ADk

x,y < T

Bk−1x,y , ADk
x,y > T

(3.2)

where ADk
x,y is the pixel (x, y) of the absolute difference frame between the

kth captured frame and the (k − 1)th background model as shown below:

ADk
x,y = |Ikx,y −Bk−1x,y | (3.3)

Although the IBBM method reduces the noise effect and the varying lumi-
nance effect, it has a deckle effect. Hence, it suffers from updating the deckle
of the foreground in the background model.

3.2.1.3 Long-Term Average Background Modeling

The Long Term Average Background Model (LTABM) was developed to
overcome the deckle-effect problem of IBBM. LTABM is defined by the fol-
lowing equation:

Bkx,y =
1

k

k∑
r=1

Ikx,y (3.4)

It is recursive in nature and is given by

Bkx,y = (1− 1

k
)Bk−1x,y +

1

k
Ikx,y (3.5)

FIGURE 3.3: (a) Current frame, (b) Background frame, (c) Extracted fore-

ground image with threshold k=10, and (d) Extracted foreground image with

threshold k=50. (See ebook for color.)
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From the above equations, it is clear that LTABM is actually related to the
frame averaging technique. So, when the number of frames is quite large, the
weights of each frame are too small. But when the number of frames is less, the
weights of each frame are large. Figure 3.3 presents the estimated background
and extracted foreground by changing the value of k. Figure 3.3 (c) and (d)
present the extracted foreground using estimated background with k = 10
and k = 50, respectively.

3.2.2 Statistical Background Modeling Methods

Statistical background modeling techniques take the first few frames as
the training sample, and by calculating the probability distribution function,
they estimate the pixels that correspond to background. Hence, these pixel
locations are used as background location to model a uniform background of
a video stream. These approaches are widely used in dynamic backgrounds,
outdoor situations, and real-time scenarios. The statistical background mod-
eling method based on GMM [56] is widely used, and hence it is explained
in the next subsections. It is useful for modeling data that comes from one
of several groups. The groups might be different from each other, but data
points within the same group can be well-modeled by a Gaussian distribution.

3.2.2.1 Example of GMM

Suppose the price of a randomly chosen blue ball is normally distributed
with mean $8.00 and standard deviation $1.50. Similarly, the price of a ran-
domly chosen orange ball is normally distributed with mean $12 and variance
$2.00. Here, the price of a randomly chosen ball is not normally distributed.
This is made very clear by looking at the fundamental property of the normal
distribution. It is highest near the center, and quickly drops off as you get
farther away. But, the distribution of a randomly chosen ball is bimodal. As
shown in Figure 3.4, the center of the distribution is near $10, but the proba-
bility of finding a ball near that price is lower than the probability of finding
a ball for a few dollars more or a few dollars less. Still, it is not normally
distributed. It is too wide and flat in the center. GMM is used to model the
distributions where we have several groups and the data within each group is
normally distributed.

3.2.2.2 GMM Model

There are two types of clustering methods:
1) Hard clustering:
In this approach, clusters do not overlap and the elements either belong to a
cluster or not. For example: K-means clustering.
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2) Soft clustering:
In soft clustering, clusters may overlap. For example: Mixture models.
Mixture models are a probabilistic way of doing soft clustering in which each
cluster is assumed to be a generative model whose parameters are unknown.
One such mixture model is the GMM, which is used for background modelling.
This background modeling is very useful in removing repetitive motion, such
as a fluttering flag and leaves on a branch. In GMM, we assume that in a given
frame, each pixel is generated by combining multiple multivariate Gaussians
instead of a single Gaussian. For d dimensions, the Gaussian distribution of a
vector x = (x1, x2, , xd) is given by

N(x|µ,Σ) =
1

(2π|Σ|) 1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)} (3.6)

where µ is the mean and Σ is the covariance of the Gaussian. Now each pixel
in the scene can be modelled as a linear super-position of K Gaussians given
by the probability

p(x) =

K∑
k=1

πkN(x|µ,Σ) (3.7)

where πk is the prior probability or mixing coefficient of the kth Gaussian
and K is the total number of Gaussians such that

∑K
k=1 πk = 1 and 0 ≤

πk ≤ 1. Expectation maximization is one of the most popular approaches for
assignment of parameters, i.e., mean, covariances, and mixing coefficients to
the given mixture model θ = {π1, µ1,Σ1, ...πk, µk,Σk}.

FIGURE 3.4: Probability density function for blue ball (blue color). Prob-

ability density function for orange ball (orange color). Probability density

function for both balls (green color). (See ebook for color.)
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3.2.2.3 Expectation Maximization GMM Algorithm

Problem statement:
Given a set of data X = {x1, x2, ......., xN} drawn from a distribution of GMM,
estimate the parameters θ = {π1, µ1,Σ1, ...πk, µk,Σk} of the GMM model that
fits the data where N is total number of data points.
Solution:
Maximize the likelihood p(X|θ) of the data with regard to the model param-
eter θ comprising the means, covariances, and the mixing coefficients.

θ∗ = argmaxp(X|θ) = argmax
N∏
i=1

p(xi|θ) (3.8)

Steps of EM algorithm:
Step 1:
Initialize πk, µk,Σk and evaluate the initial value of log likelihood.
Step 2 (expectation (E) step):
Evaluate the responsibilities or posterior probabilities using the current pa-
rameter values with the help of the Bayes rule:

γk = p(k|x) =
p(k)p(x|θ)

p(x)
(3.9)

γk =
πkN(x|µ,Σ)∑K
k=1 πkN(x|µ,Σ)

(3.10)

where γk is the responsibility or the latent or hidden variable.
Step 3 (maximization (M) step): Re-estimate or update the parameters using
the current responsibilities γk, i.e., πk, µk,Σk are the parameters to be esti-
mated.

µk =

∑N
n=1 γk(xn)xn∑N
n=1 γk(xn)

(3.11)

Σk =

∑N
n=1 γk(xn)(xn − µk)TΣ−1(xn − µk)∑N

n=1 γk(xn)
(3.12)

πk =
1

N

N∑
n=1

γk(xn) (3.13)

Step 4 (evaluate log likelihood):

ln p(x|µ,Σ, π) =
N∑
n=1

{
K∑
k=1

πkN(x|µk,Σk)} (3.14)

Here p(x|µ,Σ, π) is the log likelihood function. Find the maximum likelihood
calculated that truly represent the data samples. If there is no convergence,
return to Step 2.



66 Intelligent Video Surveillance Systems: An Algorithmic Approach

Algorithm 7 EM-GMM Algorithm
Input: Given a set of data X = {x1, x2, ....., xN}
Output: Maximum likelihood model θ

1: Initialize mean µk, covariance matrix Σk, and mixing coefficient πk
2: for iteration t do
3: for each value k do
4: Estimate γk using Equation 3.10 (E-step)
5: Find µk, Σk and πk (M-step)
6: end for// K
7: end for// T iterations
8: for data n do
9: for each value k do

10: Find log likelihood function value
11: end for// K
12: end for// N Data points
13: Find argmax (ln p(x|µ,Σ, π))
14: if θ = θt−1 then
15: Return θt
16: else
17: go to step 2
18: end if

3.2.2.4 GMM-Based Background Detection

Background detection can be performed using GMM-based Algorithm 7. A
particular pixel in the given dataset is regarded as background if probability
distribution, i.e., p(x) for that pixel, is greater than a particular threshold,
i.e., p(x) > T where T is the threshold. Generally, a high-value probability
density is assigned to pixels belonging to the background. GMM-based back-
ground detection works well but we have to guess the number of Gaussians.
Kernel density estimation can be used for that type of guessing. The final
result depends on the initial choice of starting points. The convergence can be
ensured when change in p(x1, x2, ..xN ) is sufficiently small. Figure 3.5 shows

FIGURE 3.5: (a) Traffic scene, (b) Extracted background using GMM
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the result of GMM-based background detection.

Advantages:
1) A different threshold is selected for each pixel.
2) These pixel-wise thresholds are adapting by time.
3) Objects are allowed to become part of the background without destroying
the existing background model.
4) It provides fast recovery.

Limitations:
1) Cannot deal with sudden, drastic lighting changes
2) Initializing the Gaussians is important.
3) There are relatively many parameters, and they should be selected intelli-
gently.

3.3 Shadow Detection and Removal

The performance of many video surveillance algorithms, such as object
segmentation, object detection, object classification, and object tracking de-

FIGURE 3.6: (a) Short shadow during afternoon, (b) Long shadow during

evening
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grade because of shadows of various objects in the scene. Since shadows of
objects also move along with the objects, adjacent objects may get connected
through shadows, and object recognition systems will get confused. Hence,
shadow detection and removal is one of the important preprocessing steps.
Decomposing a moving object and its shadow is a difficult problem because of
illumination changes. Many techniques have been proposed over the years, but
shadow detection still remains an extremely challenging problem when dealing
with outdoor scenes. Shadows occur when objects occlude light from a light
source. As shown in Figure 3.6, shadows provide rich information about object
shapes as well as light orientations. In outdoor environments, we can guess the
time of video recording based on length of shadows. The short shadow as seen
in Figure 3.6 (a) indicates that video was recording during the afternoon, and
the long shadow shown in Figure 3.6 (b) indicates that video was recording
in the evening. But shadows still need to be removed because they may cause
errors in visual applications such as video object classification and tracking.
Moreover, if objects have intensities similar to those of shadows, shadow re-
moval could become extremely difficult.

Foreground detection is one of the most important and critical fields in
video surveillance. Improvements in background modeling have led to numer-
ous applications, such as event detection, object behavior analysis, suspicious
object detection, and traffic monitoring. Dynamic backgrounds pose a prob-
lem because they treat swaying trees and moving shadows as part of the
foreground. So an algorithm for detection of these moving shadows and their
removal is necessary to prevent misclassification in foreground detection. Stud-
ies on influences of moving shadows classify them into four models, i.e., color
model, statistical mode, textural model, and geometric model [65].
1) Color Model: This uses the differences between shaded and non-shaded
pixels.
2) Statistical Model: It uses the probablistic functions to determine whether
the pixel belongs to the shadow or not.
3) Texture Model: It uses the property that the texture of the foreground ob-
ject is completely different from that of the background, and all the textures
are uniformly distributed inside a shaded region.
4) Geometric Model: It uses the geometric properties of the object to detect
the foreground and shadow.

The color model attempts to describe the color change of the shaded pixel
and find the color feature that is illumination invariant. Black and white
cameras rather than color cameras would be much more popular for outdoor
applications. The shadow removal method based on the color model might not
work in such situations. The principle behind the texture model is that the
texture of the foreground is different from that of the background, while the
texture of the shaded area remains the same as the background. Similarly, the
texture model could have better results under the unstably illuminating condi-
tions without the color information. If the objects in the scene are texture-less,
texture models may give poor performance [26]. The geometric model could be
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more adaptive to the specific scenes due to its dependency upon the geometric
relations between objects and scenes, and so far it has been mainly applied in
simulated environments. Because of large computations, geometric models are
not suitable for real-time cases. A method used for shadow removal in traffic
videos is discussed in detail in the next section.

3.3.1 Shadow Removal for Traffic Flow Detection

In this section, the method proposed by C. T. Lin et al. [44] is discussed:
a fast-moving shadow removal scheme that combines texture and statistical
models. This method proved to be stable and used the texture model instead
of the color model to simplify the system. Furthermore, statistical methods
are used to improve the performance of the system, to successfully deal with
textureless objects. This method was initially proposed for removing shadows
of moving vehicles caused by nonuniform distributions of light reflections in
the daytime in real traffic situations. In this approach, GMM is used for back-
ground modeling and removal of moving shadows for a practical application
of traffic flow detection and vehicle counting in intelligent transportation sys-
tems. The shadow removal is based on edge and gray level combined features
as shown in Figure 3.7. Algorithm 8 and Figure 3.8 provide more implemen-
tation details. The above technique successfully detected the real objects and
neutralized the negative influences of shadows. Compared with other previous
approaches, the method proposed in [44] can accurately detect the foreground
objects without shadows.

FIGURE 3.7: Flow chart of shadow removal technique



70 Intelligent Video Surveillance Systems: An Algorithmic Approach

Algorithm 8 Moving Shadow Removal Algorithm
Input: Video Sequence
Output: Foreground images without shadow

1: Background Modeling
2: Apply GMM-based approach to obtain background and foreground object.
3: Edge-Based Shadow Removal
4: Extract edges using Sobel operator on background image to get BIEdge(x, y)
5: Extract edges using Sobel operator on foreground image to get FOEdgeMBR (x, y)
6: Pixel by Pixel Maximization
7: MIedgeMBR (x, y) = max(FOedgeMBR (x, y), BIedge(x, y))
8: StedgeMBR (x, y) = MIedgeMBR (x, y)−BIedge(x, y)
9: Adaptive Binarization

10: Calculate tfinal(x, y) at location (x,y)

11: tfinal(x, y) = m(x, y)[1 + k(
s(x,y)
R

)− 1] + Thsupress
12: Where m(x,y) and s(x,y) are the mean and standard deviation of mask centered at pixel

(x, y), respectively. Thsupress is supression term whose value is set to 50 empirically.

13: BinIMBR(x, y) =

{
0, if StedgeMBR (x, y) ≤ tfinal(x, y)

255 otherwise

14: Boundary Elimination
15: A 7 × 7 mask is applied to achieve boundary elimination. If region covered by mask

completely belongs to the foreground objects, reserve the point, otherwise eliminate
the point.

16: Gray-Based Shadow Removal
17: Gaussian Darkening Factor Model Updating
18: Shadow potential pixels are selected and darkening factor is calculated for each gray

level; the model is updated and thus we get the final Gaussian darkening factor model.
19: Determination of Non-Shadowed Pixel
20: Difference between mean of Gaussian model and darkening factor is calculated and if

the difference is smaller than 3 times the standard deviation, it is classified as shadowed
pixel, otherwise non-shadowed pixel.

21: Feature Combination
22: Combine the two feature images by applying OR operation on FtEdgebasedMBR and

FtDarkeningFactorMBR . Then apply filtering and dilation operations on feature inte-
grated image, and thus foreground without shadow is obtained.
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FIGURE 3.8: Output image of different steps of moving shadow removal

algorithm 3.7: (a) Background image, (b) Foreground object, (c) BIedge, (d)

FOedgeMBR , (e) MIedgeMBR , (f) BinIMBR, (g) FtedgebasedMBR , (h) Red points

selected for Gaussian model, (i) FtEdgebasedMBR , (j) FtDarkeningFactorMBR , (k)

Feature integrated image, (l) Foreground image after dilation

3.4 Summary

In the past, real-time video applications were not possible because of com-
putational limitations of the system. But nowadays, very high-speed DSP
processors are available to carry out video processing application, and this
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overcomes the computational barrier faced by the conventional systems. Sys-
tems should be robust to handle illumination changes, cluttered areas, and
overlapping regions in the scene. Background modeling is used to extract the
region of interest such as moving objects in the video, by subtracting back-
ground frame from the picture frame. The background modeling methods can
be classified into nonstatistical and statistical approaches.

The nonstatistical background modeling considers each pixel in a frame to
be either as part of the moving object or the background. In this approach,
the first frame is considered to be background and the subsequent frames are
subtracted from it. The pixels having value higher than the threshold value
are considered the objects. In this approach, the background gets refreshed
along the frame sequences. These methods are very easy to implement. Also,
these methods require small memory and less time as compared to statisti-
cal methods. Hence, these methods are suitable for indoor environments and
real-time applications.

In the statistical-based approach, the probability distribution functions
of the background pixels are estimated, and accordingly, the likelihood of
whether the pixels belong to the background or not is checked. However,
memory and time required for these methods are very high. Hence, statistical
approaches are not suitable for real-time applications. However, these methods
are suitable for outdoor environments where there is noise and sudden changes
in conditions. Statistical background modeling methods based on GMM are
widely used and hence are explained in the detail in this chapter.

In the moving object detection process, one of the main challenges is to dif-
ferentiate moving objects from the shadows. Shadows are usually misclassified
as parts of moving objects, making analysis stages such as object classification
and object tracking inaccurate. Hence, shadow detection and removal tech-
niques are discussed in detail in this chapter.
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Chapter 4

Object Classification

Object classification detects moving objects in a video sequence and classi-
fies them into categories such as humans, vehicles, birds, clouds, or animals.
Although the problem of classifying moving objects is very trivial for human
beings, it is very challenging for a computer algorithm to do the same with
human-level accuracy. Also, the algorithm should be invariant to the num-
ber of variations in order to successfully identify and classify moving objects.
For example different illumination conditions, different scale and viewpoint
variations, deformations and occlusions may degrade the performance of the
algorithm.

First foreground objects are detected, and then they are classfiied into the
different classes and subclasses. Figure 4.1 shows objects in the video frames
classified as person, dog, horse, car, and motorbike. Classification of moving
foreground objects is mainly done with shape-based classification or motion-
based classification. Shape-based classification uses the amount of dispersion
of the foreground object, area, and apparent aspect ratio as key features to
classify elements into a single human, group of humans, vehicle, or any other
moving object. Some of the human actions use the periodicity property, which
can be used to classify humans from other moving objects in the scene.

FIGURE 4.1: Objects classified as person, dog, horse, car, and motorbike.

(See ebook for color.)

75
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4.1 Shape-Based Object Classification

Shape-based features for classifying the object is one of the major chal-
lenges, because of the changes in illumination, scale, pose, and camera position
in the scene. In automated surveillance, the moving objects in the foreground
region such as points, boxes, silhouettes, and blobs are used for classification.
Lipton et al. [47] have classified moving objects into human, vehicles, and noise
using the blob dispersedness feature. Dispersedness of an object is calculated
as follows:

Dispersedness =
Perimeter2

Area
(4.1)

Since human body shape is complex in nature, humans will have more dis-
persedness than vehicles. Hence, humans can be classified from vehicles using
dispersedness. The selection of proper features is very important in obtaining
accurate classification.

4.2 Motion-Based Object Classification

Motion-based object classification is a very important step in visual surveil-
lance systems [20]. First, silhouette of foreground objects is extracted. Then
the features based on the Euclidean distance between the centroid and the
boundary pixel of the silhouette are extracted. These shape-based features
are compared with the templates corresponding to various actions stored in
the database to classify the object. The human body is non-rigid and articu-
lated. Human body motion during any activity is usually periodic in nature.
For example, activities such as walking, clapping, and running are periodic in
nature. Hence, this property of human motion can be used for classification of
humans from other objects in the video frame. Cutler et al. [8] tracked objects
of interest and its self-similarity is computed over time. For a periodic motion,
computed self-similarity is also periodic.

4.2.1 Approaches

First, the object is detected and segmented from video using the back-
ground subtraction technique. In silhouette template-based classification, the
foreground object distance signal is computed and its similarity with the
stored templates is found using the minimum distance. Based on minimum
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distance, the object is classified into categories such as human, group of hu-
mans, vehicle, and animals. The object classification can can be performed
online as well as offline.

In the offline case, various objects such as humans, vehicles and animals,
their distance signal have computed and stored in the database. In the online
case, the silhouette of an object is extracted in each frame and its distance
signal is computed. Then computed distance signal is compared with the dis-
tance signal of the templates of various classes stored in the database. The
object is classified into the the class whose template has the minimum dis-
tance from the foreground object.

4.2.2 Applications

Motion-based object classification finds huge applications in visual surveil-
lance systems. Usually, in a visual surveillance system, the segmented moving
foreground object is humans, vehicles, animals, or birds. Once the class of
foreground object is detected, the later tasks such as personal identification,
object tracking, and activity recognition can be done much more efficiently
and accurately. There are numerous applications for object classification in the
fields of robotics, photography, and security. Robots commonly take advantage
of object classification and localization in order to recognize certain objects
within a scene. Facial recognition techniques are subsets of object recognition
that are very useful in applications such as photography and security.

4.3 Viola Jones Object Detection Framework

In 2001, Paul Viola and Michael Jones proposed an algorithm for real-time
object detection. Actually, this algorithm is primarily used for face-detection
due to its robust and almost real-time performance. Although it was developed
for object detection, it was motivated mainly by the face-detection problem.
Also, note that it can only detect faces, and it cannot solve the problem of
face-matching. Also, this method requires full-view frontal upright faces, i.e.,
the entire face must point towards the camera and should not be tilted to
either side. This is a very robust method for face detection application, and
it successfully distinguishes faces from non-faces.

The Viola Jones algorithm [60] scans a sub-window capable of detecting
faces across a given input image. The standard image processing approach
would be to rescale the input image to different sizes and then run the fixed
size detector through these images. Conversely, Viola Jones rescales the de-
tector instead of the input image and runs the detector through the image
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many times, and each time with a different size. A Viola Jones detector is a
scale-invariant detector that requires the same number of calculations what-
ever the size. This detector is constructed using an integral image and some
simple rectangular features reminiscent of Haar wavelets.

Figure 4.2 presents the steps of the algorithm for visual object detection.
This algorithm is capable of processing images extremely rapidly and achiev-
ing high detection rates. First, Haar-like features are selected. Then, a new
image representation called Integral Image is created. This helps to com-
pute the features used by the detector quickly. The learning algorithm based
on AdaBoost selects a small number of critical visual features from a larger
set and yields extremely efficient classifiers. The last step is to combine more
complex classifiers in a cascade. This cascade classifier allows background re-
gions of the image to be quickly discarded while spending more computation
on promising object-like regions. The implementation of the face detector is
quite straightforward, but the training of cascading takes time. Training is
slow but the detection is fast.

4.3.1 Haar Features

The Viola-Jones algorithm uses Haar like features, which are scalar prod-
ucts of images and Haar-like templates. In practice, the five rectangular pat-
terns shown in Figure 4.3 are used in face detection techniques. The derived
features are assumed to hold all the information necessary to detect faces.
Since faces are usually regular by nature, the use of Haar features (rectangu-
lar features) is justified. Figure 4.4 shows how to apply rectangular features
on a given image. Figure 4.4 (c) indicates features associated with the pattern
shown in (b) of the original image shown in (a) using the following equation.
We will get more of a response when the pattern is matched with the eyebrow
region, as shown in Figure 4.4 (c).

V alue =
∑

(pixels in white area)−
∑

(pixels in black area) (4.2)

FIGURE 4.2: Algorithm for visual object detection
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4.3.2 Integral Image

The rectangular features are computed easily by converting the given im-
age into an integral image. To calculate the integral image, the sum of all the
pixels above and to the left of the pixel concerned is calculated and substi-
tuted as the new pixel value. The pixel value of the integral image shown in
Figure 4.5 is calculated using the following equation:

ii(x, y) =
∑

x′<=x,y′<=y

i(x
′
, y
′
) (4.3)

FIGURE 4.3: Five Haar templates

FIGURE 4.4: Application of Haar feature on given image

FIGURE 4.5: Integral image
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where ii(x, y) represents the pixel value of the point (x, y) of the integral im-
age, and i(x, y) represents the pixel value of the point (x, y) in the original
image. Figure 4.6 shows the technique of calculating rectangular features. The
formula for calculating the sum of pixels in the rectangle D is as follows:

sumD = ii(4) + ii(1)− ii(2)− ii(3) (4.4)

where, ii(1) = A, ii(2) = A+B, ii(3) = A+ C, and ii(4) = A+B + C +D.

sumD = (A+B + C +D) +A− (A+B)− (A+ C) = D (4.5)

Thus, the integral image allows us to calculate the of sum of all the pixels in
any rectangle using only four values at the corner of the rectangle.

4.3.3 AdaBoost Training

Adaboost is a machine learning algorithm proposed by Freund and
Schapire [13]. It is capable of constructing a strong classifier through a
weighted combination of weak classifiers.

FIGURE 4.6: Extraction of rectangular features using integral image

FIGURE 4.7: The first stage eliminates 50% of the non-faces, and subsequent

classifiers use more scaled directional filters and omit more non-faces
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4.3.4 Cascading of Classifiers

The basic principle of the Viola-Jones face-detection algorithm is to scan
the image using window size 24× 24 many times through the same image in
different sizes. If we apply this algorithm to an image containing only a few
faces, a large amount of the evaluated sub-windows will be non-faces. Hence,
instead of finding faces, the algorithm should discard non-faces. With the cas-
caded classifier, at each stage, non-face blocks are discarded and face blocks
are considered for the next stages.

As a given sub-window passes through more stages of the cascade, Ad-
aBoost is used to train the classifiers. Starting with a two-feature strong clas-
sifier, the face filter is obtained by adjusting the strong classifier threshold
from Adaboost to minimize the false negatives. By lowering the threshold,
detection rates and false positive rates increase, which explains the situations
where false positives exist. Each stage of the cascade is essentially another
strong classifier obtained from AdaBoost with a different threshold at each
step to maximize the accuracy of the algorithm. Figure 4.7 shows the cascad-
ing filter in action.

4.3.5 Results and Discussion

Figure 4.8 shows the result of face detection using the Viola-Jones algo-
rithm. This detector is most effective only on frontal images of faces. It can
hardly cope with 45-degree face rotation around both the vertical and hori-
zontal axes. It is also possible to get multiple detections of the same face, due
to overlapping sub-windows.

4.4 Object Classification Using Convolutional Neural
Networks

In recent times, deep neural networks have been applied to a multitude of
problems to achieve very good performance. In particular, convolutional neu-
ral networks (CNN) have shown very good results in image classification [42],
image segmentation [16], and computer vision problems [15], [57]. In these
works, image classification, multi-object localization, and detection are per-
formed using variants of CNNs.

Recent developments in artificial intelligence and deep learning have
paved the way to accomplishing tasks involving multimodal learning. Visual
questioning-answering is one such challenge that requires high-level scene in-
terpretation from images combined with language modeling of the relevant
question and answer. Image-caption generation is the problem of generating a
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descriptive sentence for an image. A quick glance at an image is sufficient for
a human to point out and describe an immense amount of details about the
visual scene. The fact that humans can do this with remarkable ease makes
this a very interesting and challenging problem for AI, combining aspects of
computer vision, in particular, scene understanding. However, this remarkable
ability has proven to be an elusive task for our visual recognition models.

4.4.1 What Are Convolutional Neural Networks?

CNNs are a special kind of neural networks for processing data having a
grid-like topological structure. Examples include 1-D audio waveform data, 2-
D image data, and 3-D video data. A typical layer of a convolutional network
consists of three stages described in the following sections.

FIGURE 4.8: Results of face detection after applying the Viola-Jones algo-

rithm
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4.4.1.1 Convolution Stage

In the first stage we will use a number of kernels of normally very small
dimension, generally 3 × 3, 4 × 4, or 5 × 5, and slide them over the input
image to create a feature map. As we slide the kernel over the image, we add
up the element-wise dot product of the kernel values and the section of the
image it is sliding over. As the same kernel is operated over the image, it is a
very memory-efficient operation. The kernels used in a layer are independent
of each other, and thus results can be computed extremely quickly in a graph-
ical processing unit (GPU). The convolution operation between a 2-D image
I and a 2-D 3× 3 kernel K is given by Equation 4.6.

S(i, j) = (K × I) =
3∑

m=1

3∑
n=1

I(i−m, j − n)K(m,n) (4.6)

An example convolution operation between a 4× 4 dimensional image and a
2× 2 dimensional kernel is shown in Figure 4.9.

4.4.1.2 Non-Linear Activation Stage

In the next stage, we apply an element-wise non-linear activation function
over the resultant dot product. Mostly tanh or relu activation is used. The
tanh operation is given in Equation 4.7.

A(i, j) = tanh(S(i, j)) =
sinh(S(i, j))

cosh(S(i, j))
=

1− e2×S(i,j)

1 + e2×S(i,j)
(4.7)

The relu operation is given in Equation 4.8.

A(i, j) = max(A(i, j), 0) (4.8)

FIGURE 4.9: Example of convolution operation
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4.4.1.3 Pooling Stage

Pooling is a sample-based discretization process where the objective is
to down-sample representation to provide an abstracted form of the input.
It allows for assumptions to be made about features contained in the sub-
regions. Pooling allows later convolutional layers to work on larger sections
of the data, because a small patch after the pooling layer corresponds to
a much larger patch before it. They also are invariant to some very small
transformations of the data. A pooling function is applied to the tanh or relu
activated output at every sliding location, resulting in a summary statistic.
Generally, max-pooling or average-pooling is used, which down-samples the
image into a smaller dimension. A demonstration is shown Figure 4.10.

If the network is several layers deep, the next convolution operation will
be done on the max or average pooled output. After performing the series
of convolution, activation, and pooling operations, the output is fed into a
fully connected network to classify the image. At an abstract level, CNN can
be thought of as a neural network that uses many identical copies of the
same neuron which allows the network to have lots of neurons, and express
computationally large models while keeping the number of actual parameters,
the values describing how neurons behave fairly small. This trick of having
multiple copies of the same neuron is roughly analogous to the abstraction of
functions in mathematics.

FIGURE 4.10: Different types of pooling operations
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4.4.2 Convolutional Neural Network Models

4.4.2.1 Two-Layer Convolutional Neural Network

In this model, two convolutional and max pooling layers are stacked after
one another as shown in Figure 4.11 (a). Each convolutional layer has 32 ker-
nels of size 3× 3, and max pooling was performed on every 2× 2 pixels. The
output of this was flattened and fed into a multi-layer perceptron network for
classification.

FIGURE 4.11: (a) Two-layer-deep convolutional neural network for clas-

sification. (b)Two-layer-deep convolutional neural network for classification.

Notations used: conv: convolution layer, relu: activation function, pool: max

pooling layer, fc: fully connected layer. (See ebook for color.)
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4.4.2.2 Three-Layer Convolutional Neural Network

In this model, three convolutional and max pooling layers are stacked af-
ter one another as shown in Figure 4.11 (b). Each convolutional layer has 32
kernels of size 3×3, and max pooling was performed on every 2×2 pixels. The
output of this was flattened and fed into a multi-layer perceptron network for
classification.

4.4.2.3 Intuition for Using Deep Neural Networks

The objective in neural-network-based models is to find an appropriate
representation of data in order to perform a machine learning task. In deep
neural networks, each hidden layer maps the input representation to a repre-
sentation that usually captures a higher level of abstraction. As we go deeper
in the network, the representations become more abstract and increasingly
more informative. In a supervised machine learning setup, the final output
layer is typically a softmax classifier, and the rest of the network learns a rep-
resentation that is then provided to this classifier, making the classification
task easier. This process of discovering or learning effective and useful features
is key for any machine learning task. Generally, deeper networks have more
representational power and are better for complex problems.

4.4.3 Results and Discussion

4.4.3.1 Experimental Datasets

1) CIFAR10 Dataset: This consists of 60,000 32 × 32 color images in 10
classes with 6,000 images per class. There are 50,000 training images and
10,000 test images. The classes are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck. These classes are completely mutually exclusive.
This dataset was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton from the University of Toronto. A few examples from the CIFAR 10
dataset are shown in Figure 4.12.
2) CIFAR100 Dataset: This is a more detailed description of the CIFAR10
dataset. It consists of 100 classes with 600 images in each class. The 100
classes are grouped into 20 super-classes such as fish, flowers, man-made ob-
jects, and natural outdoor scenes. Each of the super-classes contains 5 classes.
Overall, there are 50,000 training examples and 10,000 test examples in the
CIFAR100 dataset.
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TABLE 4.1: Test Accuracies for Different Models
Models CIFAR10 CIFAR100
SVM 64.51 32.50
Logistic Regression 63.20 27.96
K Nearest Neighbor 52.49 25.23
Two-layer-deep CNN 73.05 51.27
Three-layer-deep CNN 73.69 54.60

4.4.3.2 Results and Discussion

In order to show the implementation aspects of the object classification
problem, we have developed a machine-learning algorithm using deep CNN,
and presented results in the CIFAR10 and CIFAR100 datasets. We observed
that two-layer and three-layer simple deep CNN performs better than clas-
sifiers such as the support vector machine, logistic regression and nearest
neighbor algorithms as shown in Table 4.1. More results on the fashion article
classification problem are available in our paper [2].

FIGURE 4.12: CIFAR10 dataset. (See ebook for color.)
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4.5 Object Classification Using Regional Convolutional
Neural Networks

A regional convolutional neural network (RCNN) is a state-of-the-art vi-
sual object detection system [16] that combines bottom-up region proposals
with rich features computed by a convolutional neural network. The goal of
the RCNN is to take in an image and correctly identify where the main ob-
jects are in the image. This is done using a bounding box method. The input
is the image and the outputs are bounding boxes and labels for the object
contained in each of the bounding boxes. This is done by first proposing ran-
dom regions in the image, then extracting features of that region, and then
classifying those regions based on their features. In essence, we have turned
object detection into an image classification problem. Although RCNN gives
very promising results in several multi-object detection datasets, it is a bit
slower, as the selective search method is initialized using proposed random
regions in the image.

4.5.1 Steps of RCNN Algorithm

A region-based convolutional neural network consists of the following three
simple steps:
1) Scan the input image for possible objects using an algorithm called Selective
Search, generating around 2,000 region proposals. At a high level, selective
search looks at the image through windows of different sizes, and for each
size, it tries to group together adjacent pixels by texture, color, or intensity
to identify objects.
2) Run CNNs on top of each of these region proposals to extract features from
that region.
3) Take the output of each CNN and feed it into a) a classifier to classify the
region, and b) a linear regressor to tighten the bounding box of the object, if
such an object exists. So, to tighten up the boxes, the inputs are sub-regions
of the image corresponding to objects and the outputs are new bounding box
coordinates for the object in the sub-region.

4.5.2 Results and Discussion

Results for the RCNN algorithm are shown in Figure 4.13. The images are
from the Microsoft COCO [45] and ImageNet [10] dataset. It is to be observed
that the algorithm works very well for all the images. It outputs the bounding
box for all the main objects present in the image and classifies the object
present in that bounding box with very good accuracy. Overall the results of
the RCNN algorithm are very promising.
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FIGURE 4.13: Object classification results using RCNN. (See ebook for

color.)

4.6 Summary

In this chapter, object classification techniques are discussed. Shape-based
and motion-based objection classifications are two main approaches. Some
special approaches such as the Viola-Jones object detection framework for
face detection, deep CNN-based object classification, and RCNN-based object
classification are discussed in detail. Also, detection of a face and recognizing
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its emotion are very useful to understanding the behavior of the person in
surveillance systems. In order to create interest of the reader in implementa-
tion, algorithms are discussed with some results in this chapter.



Chapter 5

Human Activity Recognition

Human activity recognition is a popular area of research in the field of com-
puter vision. It is the basis of applications in many areas such as security,
surveillance, human computer interaction, and video conferencing. The ability
to recognize humans and describe their activities from information acquired by
video cameras is a really challenging problem in intelligent video surveillance
systems. Difficulties in human activity recognition can arise because of abrupt
human motion, changing appearance of a human, changing background of a
scene, occlusions, and camera motion. The shape of persons performing the
activity can be different. Also, the speed and style of performing any activity
varies from person to person.

To date, many approaches have been proposed to recognize simple human
activities. However, complex human activity recognition is still a challenging
task. The nature of human activities poses a lot of challenges in recognizing
concurrent activities, interleaved activities, ambiguity of interpretation, and
multiple residents in the scene. Robustness of features and classifiers is re-
quired for detecting activity in real time automatically. Features extracted
should be scale and rotation invariant as the distance and angle of the person
with respect to the camera is usually varying. Motion history image (MHI)-
based human activity recgnition using Hu moments is discussed in this chapter
in detail. The hidden Markov model (HMM)-based classifier is discussed in
detail. Dynamic time warping (DTW)-based activity recognition using the
support vector machine (SVM) approach is also discussed in detail.

5.1 Motion History Image-Based Human Activity
Recognition

5.1.1 Motion History Image

Since a video is a sequence of frames, and action cannot be predicted from
a single frame, we need a technique to integrate several frames into one to
represent motion. For this we use the MHI technique, in which pixel intensi-

91
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ties depend upon the history of motion at that location. The brighter values
correspond to more recent motion, as shown in Figure 5.1.

The procedure for generating an MHI image is as follows:
1. After the segmentation, the foreground image is obtained, which is a binary
image where the body parts in motion have a pixel value of 1. We call this
binary function B(x, y, t)τ .
2. Create an MHI B(x, y, t)τ for each action. We need to choose τ that shows
the complete action; best probably is the t where the action just ends.
Given the sequence Bt, MHI image M at time t is defined as:

M(x, y, t)τ =

{
τ ifB(x, y)t = 1

max(M(x, y, t− 1)τ − 1, 0) ifB(x, y)t = 0

τ needs to be chosen such that it captures the full extent of the action. If you
use a different τ for each action, you should scale your MHI image by a value
to make the maximum the same for all MHIs. Thus we obtain the MHIs for
each of the representative actions as well as the input video sequence.

An MEI is obtained by binarizing the MHI. Since it consists of only two
values for intensity, it does not represent the history of motion but shows the

FIGURE 5.1: Subjects performing bending, walking, one-hand wave and

two-hand wave activity, and their MHI and MEI
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spatial location of motion in various frames.

5.1.2 Hu Moments

A shape descriptor is a very important descriptor of an object, because
the shape of a human changes while performing any action, such as bend-
ing. Contour-based shape descriptors and region-based shape descriptors are
two important types of shape descriptor. Hu moments are the most popular
contour-based shape descriptors. They are a set of moments derived by Hu
[23]. These Hu moments recognize the objects irrespective of their position,
size, and orientation. The 2-D moments of a digitally sampled image are com-
puted as

mpq =

M−1∑
x=0

M−1∑
y=0

xp.yq.f(x, y) p, q = 0, 1, 2, 3, .... (5.1)

where f(x, y) is a digitally sampled image of size M ×M .
The moments of image f(x, y) translated by an amount (a, b) is

µpq =

M−1∑
x=0

M−1∑
y=0

(x+ a)p.(y + b)q.f(x, y) (5.2)

Now, we can calculate the central moments using Equation 5.1 or 5.2 on
substitution of a = −x̄ and b = −ȳ.

x̄ =
m10

m00
and ȳ =

m01

m00
(5.3)

µpq =
∑
x

∑
y

(x− x̄)p.(y − ȳ)q.f(x, y) (5.4)

On application of a scaling normalization, central moments become

ηpq =
µpq
µγ00

, (5.5)

where γ = [(p + q)/2] + 1. Hu defined seven values that are computed by
normalizing the central moments through order three. These moments are
invariant to object scaling, position, and orientation. We have the seven mo-
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TABLE 5.1: Hu Moments of Images in Figure 5.2

Hu Moments M1 M2 M3 M4 M5 M6 M7

Original Image 0.5465 1.9624 3.9509 4.0586 8.1117 -5.0875 8.4133
Inverted Image 0.5465 1.9624 3.9509 4.0586 8.1117 -5.0875 8.4133
Rotated Image 0.5464 1.9620 3.9506 4.0580 8.1096 -5.0860 8.4166
Half-size Image 0.5466 1.9693 3.9464 4.0548 8.1037 -5.0860 8.4053
Max Value 0.5466 1.9693 3.9509 4.0586 8.1117 -5.0860 8.4166
Min Value 0.5464 1.9620 3.9464 4.0548 8.1037 -5.0875 8.4053
Abs Difference 0.0002 0.0073 0.0045 0.0038 0.0080 0.0015 0.0113

ments as follows:

M1 = (η20 + η02),

M2 = (η20 − η02)2 + 4η211,

M3 = (η30 − 3η12)2 + (3η21 − η03)2,

M4 = (η30 + η12)2 + (η21 + η03)2,

M5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η12 + η03)2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2],

M6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+ 4η11(η30 + η12)(η21 + η03),

M7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2].

(5.6)

5.1.2.1 Hu’s Invariant Moments

Figure 5.2 shows the original image, inverted image, image rotated by 9
degrees and a half sized image. The seven Hu moments of each of the four im-
ages are computed using Equation 5.6, and listed in Table 5.1. A log transform
is taken to get meaningful values. The absolute difference between maximum
value of Hu moments of all four images and minimum value of all four images
is computed. It is oberved that the absolute difference is much less for all
seven moments. Hence, Hu moments are invariant to object scaling, position,
and orientation.

5.1.3 Human Activity Recgnition

In this subsection, we discuss how MHI and Hu moments can be used for
recognizing five basic human actions like hand waving, sitting, getting up,
boxing, and jogging. But it is view dependent; that is, the camera need to be
at a certain angle. We classify each of the MHIs using a three-level classifier
process:
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1. We first calculate the set of seven Hu moments for each MHI and use it
for classification. We will call it Cla1.
2. We calculate the horizontal and vertical projections of the MHI and then
calculate the bias of MHI along the different directions (vertical and hori-
zontal) with respect to the centroid of MEI. We use this for the second-level
classification. We will call it Cla2.
3. We calculate the horizontal and vertical displacements between the cen-
troids of the MHI and MEI. We will call it Cla3.
4. We use the following steps for the classification:
a. If both Cla1 and Cla2 agree, then the common result indicating the iden-
tified action is considered.
b. If there is a disagreement between Cla1 and Cla2, then we find the results
using Cla3. The action that is supported by at least two of the three feature
vectors is called the identified action.
c. If all three features indicate separate sets of actions, then we consider the
action indicated by Cla1 as the valid result because Hu moments are the best
indicators, and give better identification results than Cla2 and Cla3.

FIGURE 5.2: Invariance property of Hu moments: a) Original image, b)

Inverted image, c) Image rotated by 9 degrees, d) Half-size image
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5.1.3.1 Classification Using Hu Moments

Now we are able to obtain the Hu moments of the MHIs. We now move
towards the recognization and classification of the MHIs into the five cate-
gories.
1. Before calculating the seven Hu moments, we normalize each of the MHIs.
2. We calculated the Hu moments for each of the templates and obtained the
Hu moment matrix for the three sets of representative MHIs.
3. We formulated a distance measuring technique to calculate the distance
between MHI of the input video and the three representative MHIs.
4. The similarity measure used is as follows:

I(A,B) =
7∑
i=1

|mA
i −mB

i | (5.7)

where,

mA
i = sign(hAi ).log10h

A
i (5.8)

and

mB
i = sign(hBi ).log10h

B
i (5.9)

5. Before differencing, we take the absolute values of the seven moments. Also,
this scaling was required because the values of the moments, especially the
later ones, are very small. Hence, in implementing this, we have first considered
three moments instead of all seven, since maximum information is contained
in the initial moments.
6. This function I(A,B) was calculated between the representative MHIs of
the three actions and the MHI of the input video sequence.
7. The minimum of the three differences was taken and the corresponding
action was established. The video was then annotated accordingly to display
the result of the algorithm.

5.1.3.2 Projection and Displacement Features

The second-level classifier Cla2 is obtained as follows: If the R is number
of rows and C is number of columns in the MHI, then we can obtain the
horizontal and vertical profiles as follows: The vertical profile is

Pv[i] =
C∑
j=1

MHI[i, j] i = 1 to R (5.10)

Ph[i] =
R∑
j=1

MHI[i, j] i = 1 to C (5.11)
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Using the above two vectors, we calculate the projection profile-based features
as follows:

Cla2 = [

∑hct
i=1 Ph[i]∑C

i=hct+1 Ph[i]

∑vct
i=1 Pv[i]∑R

i=vct+1 Pv[i]
] (5.12)

This indicates the bias of the obtained MHI with respect to the centroid of
MEI. In a way, this feature relates to the temporal information of motion
along both the directions. The third feature that we use as our classification
is the shift between MEI and MHI centroids. It is obtained as follows:

Cla3 = [MHIxc −MEIxc MHIyc −MEIyc] (5.13)

The centroids of MHI and MEI differ because in MHI we have time infor-
mation, too. So in a way, the above feature vector indicates the direction of
motion of the centroid for any action sequence. Now, using the hierarchy of
feature vectors that we discussed earlier, we perform the action recognition
and classification.

5.1.3.3 Experimental Discussion

Figure 5.3 shows the successful recognition results obtained by using MHI
and Hu moments for recognizing five basic human actions such as hand waving,
sitting, getting up, boxing, and jogging. For these experiments, we have used
a fixed CCTV camera. From a different viewpoint, we may not get the desired
results. It gives good results for small variation in size but we need to use Hu

FIGURE 5.3: Human activity recognition results: (a) Sitting, (b) Getting

up, (c) Hand waving, (d) Boxing, (e) Jogging
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moments for better results. This method is illumination independent, which
means it gives good results even under different lighting conditions. For this
method, the background should be static, which means the camera should be
at a fixed position. This method cannot handle the occlusion problem. The
MEI template created during occlusion will be much different from the normal
template. So, we cannot recognize the action that is being performed.

5.2 Hidden Markov Models

The hidden Markov model (HMM) is a statistical tool used for modeling
time series data. It has been applied extensively for solving a large number
of problems in the area of speech recognition, natural language processing,
biomedical signal processing [9], and sport video processing [35], [27]. Re-
cently, it has been adapted to human activity recognition as well, since the
HMM tool is suitable for recognizing time sequential feature information. An-
drei Markov gave his name to the mathematical theory of Markov processes in
the early twentieth century [1]. But the main theory of HMM was developed
by Baum and his colleagues in the 1960s [12]. In this section we will discuss
basic concepts of HMMs, and three fundamental problems in HMM and use
of HMM for activity recognition.

5.2.1 Markov Models

This is a process in which the state at any time depends only on the state
at the previous time instant. A Markov model is a statistical model for de-
scribing time series of obervations. The model consists of a finite set of states.
Thus, we can model state sequences using these state transition probabilities.
The probability of a transition from state i to state j depends only on state
i, and not on the earlier history, as follows:

P (S(t)|S(t− 1), S(t− 2), S(t− 3), .....) = P (S(t)|S(t− 1)) (5.14)

where S(t) is the state of the model at time t. This is called the Markovian
property of the model. The probability of all transitions out of any given state
must sum to 1.

The states collectively model a set of observations. Each state has a prob-
ability distribution that defines which observations are produced with what
probability. For continous valued observations, this is a probability density
function. This is also called the emission or observation probability for the
state. A full probabilistic description of the system requires specification of
the current state, as well as all the previous states. A stochastic process could
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be called an observable Markov model because the output of the process is
the set of states at each instant of time, where each state corresponds to an
observable event.

5.2.2 Hidden Markov Models

An HMM is a sequence of finite states connected by state transitions. It
begins in a designated initial state. In each discrete time step, a transition is
taken into a new state, and then one output symbol is generated. The choice of
transition and output symbol are both random, governed by probability dis-
tributions. The HMM can be thought of as a black box, where the sequence of
output symbols generated over time is observable, but the sequence of states
visited over time is hidden. Hence, this model is called hidden Markov model.
Every state of HMM can be described by two types of probabilities: state
transition probability (A) and symbol observation probability (B). In Figure
5.4, S1, S2 are the states of HMM and V1 and V2 are observable symbols. The
state tranisition probability from state i to state j is given as

aij = P (Si(t− 1)→ Sj(t)) (5.15)

and ∑
j

aij = 1; ∀i (5.16)

The visible symbol probablity of state j for symbol k is given as

bjk = P (Vk|Sj) (5.17)

FIGURE 5.4: HMM state transition probabilities



100 Intelligent Video Surveillance Systems: An Algorithmic Approach

and ∑
k

bij = 1; ∀j (5.18)

5.2.2.1 Final State

HMM has a specific hidden state called a final state, the receiving state,
or accepting state. Once HMM reaches the final state S0, it cannot come out
of that state. The state transition diagram including final state is shown in
Figure 5.5.

5.2.3 The Three Fundamental Problems of HMM

There are three basic problems that must be solved in order to apply this
HMM model for any real-world application. These problems are as follows:
1. Likelihood Evaluation

Given an HMM θ specified by S, V , aij , bjk and an observation sequence
V T , we have to find P (V T /θ). This problem is called the likelihood evaluation
problem, and the algorithm used is called the forward algorithm.
2. State Sequence Decoding

Given an HMM model θ, and an observation sequence V T , we have to find
the most likely HMM state sequence for θ and V T .
3. HMM Parameter Estimation

Given an HMM rough structure (i.e., set of states and transition structure)

FIGURE 5.5: HMM state transition probabilities with final state S0
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and some labeled training data, estimate the HMM parameters that maximize
the likelihood of the training data. This is the forward-backward algorithm,
useful for training an HMM.

Algorithm 9 Forward Algorithm

Input: aij , bjk, V
T , αj(0)

Output: P (V T |θ)

1: initialize: t← 0, aij , bjk, V
T

2: Calculate Forward Probability
3: αj(t)← 0, t=0 j 6= initial state
4: αj(t)← 1, t=0 j = initial state
5: for each time t do
6: t← t+1
7: αj(t)←

∑
i[αi(t− 1) × aij ] ×bjkv(t)

8: end for// t = T
9: Return P (V T |θ)← α0(T ) for final state

5.2.3.1 Likelihood Evaluation

Given the HMM model θ and symbol sequence V T , we have to estimate
P (V T |θ).

P (V T |θ) =

rmax∑
r=1

P (V T |STr )P (STr ) (5.19)

where, r indicates one of the possible state sequences and
STr = {S(1), S(2), ....S(T )}.
Let the total number of hidden states be N , then rmax = NT .

P (V T |STr ) =

T∏
t=1

P (V (t)|S(t)) (5.20)

P (STr ) =
T∏
t=1

P (S(t)|S(t− 1)) (5.21)

Substituting values from Equations 5.20 and 5.21 into Equation 5.19, we get

P (V T |θ) =
rmax∑
r=1

T∏
t=1

P (V (t)|S(t))P (S(t)|S(t− 1)) (5.22)

The computation complexity for implemenation of Equation 5.22 is on the
order of NTT . In order to reduce computation, the forward Algorithm 9 is
used.

5.2.3.2 State Sequence Decoding

In this problem, V T is given and we have to find the most probable se-
quence of hidden states using Algorithm 10.
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Algorithm 10 State Sequence Decoding Algorithm

Input: aij , bjk, V
T , αj(0)

Output: Most probable state sequence ST

1: initialize: path← { }, t← 0, j ← 0
2: for each time t do
3: t← t+1
4: for each time j do
5: j ← j+1
6: αj(t)←

∑N
i=1[αi(t− 1) × aij ] ×bjkv(t)

7: end for// j = N
8: ĵ ← argmaxjαj(t)
9: Append Ŝj to path

10: end for// t = T
11: Return path

Algorithm 11 Baum Welch Algorithm
Input: Set of states S, Set of symbols V
Output: aij , bjk

1: initialize← aij , bjk, pi, v
2: Calculate Forward Probability
3: αj(t)← 0, t=0 j 6= initial state
4: αj(t)← 1, t=0 j = initial state
5: αj(t)←

∑
j [αi(t− 1) × aij ] ×bjkv(t) otherwise

6: Calculate Backward Probability
7: βi(t)← 0, wi(t) 6= w0, t 6= T
8: βi(t)← 1, wi(t) = w0, t = T
9: βi(t)←

∑
j [βi(t+ 1) ×aij ] × bjkv(t+1) otherwise

10: Calculate vij(t)←
[αi(t−1)×aij×bjkv(t)]×βj(t)

P (vT |θ)
11: Update state transition matrix and emission matrix

12: aij =←
∑T
t=1 vij(t)∑T

t=1

∑
k vik(t)

13: bjk ←
∑T
t=1

∑
l vjl(t)v(t)=vk∑T

t=1

∑
l vjl(t)

14: Repeat till convergence
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5.2.3.3 HMM Parameter Estimation

In order to train HMM, we must optimize a and b with respect to the
HMM’s likelihood of generating all of the output sequences in the training set,
because this will maximize the HMM’s chances of also correctly recognizing
new data. Unfortunately, this is a difficult problem and it has no closed form
solution. The best that can be done is to start with some initial values for a
and b, and then iteratively, the values of a and b are modified by reestimating
them, until some stopping criterion is reached. This general method is called
estimation-maximization (EM). A popular instance of this general method is
the forward-backword algorithm, which is also called Baum Welch algorithm.
The detailed steps are mentioned in the Algorithm 11 .

5.2.4 Limitations of Hidden Markov Models

1) There is no theoretically correct way for choosing the number of states.
In an HMM classifier, a higher number of states does not necessarily imply
better performance.
2) The next stage is only dependent on the current stage. So, this model is
poor at capturing long-range correlation between the observed variables.

5.3 HMM-Based Activity Recognition

Human activity can be defined as a set of poses varying in time. In a real-
world scenario, we can classify human activity as normal and abnormal based
on a situation when activity is performed and the type of activities. So, we
have to define a set of activities that can be called normal activity in that
particular context. In a highly crowded scenario like an airport, we have a
number of security cameras. It is not possible to monitor all the cameras at
one time. Also, the maximum amount of time a person can concentrate on a
video at a stretch is 20 minutes. It is most likely that a person will miss some
abnormal activity due to human stress error. There is a need for an automatic
activity recognition system that can reduce human error and increase security
levels in various important places such as airports, railway stations, and bus-
stops.

HMM can be used to model dynamic systems. It is used for classifying
human activity as the activity can be described as a group of poses varying
with time. Different features used for classifying human activity are shape-
based feature, optical flow-based feature and appearance-based feature. Shape-
based features are more sensitive to noise because the edges of the regions of
interest are sensitive to noise. This feature set is not rotation invariant. Optical
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flow features are the velocity-based features, which are rotation invariant. In
order to get optimal classification, both features are combined and used for
training purposes. Figure 5.6 shows the block diagram of an HMM-based
human activity system. With this proposed approach [32], we have developed
HMM models for the following five set of activities: side gallop, two-hand wave,
walk, run, bend. In this approach, the multi-frame averaging method is used
for background extraction, and combined optical and shape-based features are
used for human activity recognition.

5.3.1 Shape-Based Features

Initially, video frames were extracted and converted to gray-level images.
Multi-frame averaging was used for background extraction. Background was
subtracted from video frames, resulting in foreground extraction. Based on
the centroid point, the ROI was segmented from video frames and edges were

FIGURE 5.6: HMM-based human activity system
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extracted using the Canny edge detector. Distance was calculated from the
centroid to the edges and discrete Fourier transform (DFT) coefficients were
extracted from it. An initial 20 DFT points were preserved because the most
energy gets concentrated in the initial coefficients. Principal component anal-
ysis (PCA) was used for reducing the dimension of feature vector.

5.3.1.1 Discrete Fourier Transform

Discrete Fourier transform converts time domain information to frequency
domain information. The resultant coefficients are complex numbers called
coefficients of DFT. This function is usually implemented in software and
hardware using the fast Fourier transform (FFT) algorithm. Mathematically
DFT can be represented as:

X(K) =
N−1∑
n=0

x(n)× exp
−2 π k n

N (5.23)

The initial 20 DFT coefficients were preserved and others were deleted.

5.3.1.2 Principal Component Analysis

This is a method to identify similarities and differences in a dataset. Once
the similarity is found, data can be compressed to lower dimensional data.
Steps for PCA:
1. Collect information from various sources.
2. Subtract mean from all points to make data zero mean data.
3. Calculate the co-variance matrix.
4. Calculate eigen value and eigen vector of co-variance matrix
5. Order eigen vectors according to decreasing order of their eigen values.
6. The eigen vectors of highest eigen values are preserved and the lower com-
ponents are rejected.
Because some components can be retained and some can be neglected, this
results in lowering the dimension. In this case, PCA was applied on 20 DFT
coefficients, the initial 8 PCA components were preserved and others were
rejected. This results in a lower-dimension feature set of matrix order 8× 8.

5.3.1.3 K means Clustering

K means clustering is a popular clustering algorithm that partitions the
data into a number of sections having the nearest mean point. Here K indicates
the number of clusters to be created. The algorithm steps can be described as
follows:
1. Choose K initial cluster.
2. Compute point-to-cluster distances of all observations to each centroid.
3. Assign each observation to the cluster with the closest centroid.
4. Recompute the centroid for each cluster.
5. Repeat 2 to 4 until the centroids do not change.
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In this case, k means was used to generate symbol sequence for the given
feature set. This symbol sequence is used to train the HMM model.

5.3.2 Optical Flow-Based Features

Shape-based features are ROI dependent and are not rotation invariant.
As the orientation of a person changes, the shape will change and so will the
features. Hence, to make system rotation invariant and more efficient, optical
flow-based features are included in the feature set in addition to the shape-
based features. The Lucas Kanade optical flow method was used to calculate
velocity of an object.

5.3.2.1 Lucas Kanade Optical Flow Method

The Lucas Kanade method is the most popular method used for optical
flow estimation. Here, the optical flow is assumed constant in the local neigh-
borhood of the pixel under consideration. By combining information from
several nearby pixels, the Lucas Kanade method can often resolve the inher-
ent ambiguity of the optical flow equation. This method is less sensitive to
image noise than point-wise methods. The local optical flow velocity vector
vx, vy must satisfy the following equation:

Ix(q1)× vx + Iy(q1)× vy = −It(q1) (5.24)

The above equation can be written in the form

A× V = b (5.25)

where:

A =


Ix(q1) Iy(q1)
Ix(q2) Iy(q2)
..... .....

Ix(qn) Iy(qn)



b =

−It(q1)
−It(q2)
....

−It(qn)

V =
vx
vy

where Ix and Iy are partial derivatives of an image in the x and y directions.
The solution is obtained by:
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V = (AT ×A)−1 ×AT × b(
vx
vy

)
=

( ∑
i Ix(qi)

2
∑
i Ix(qi)× Iy(qi)∑

i Iy(qi)× Ix(qi)
∑
i Iy(qi)

2

)
∗
(
−
∑
i Ix(qi)× It(qi)

−
∑
i Iy(qi)× It(qi)

)
The matrix AT ×A is often called the structure sensor of the image.

5.3.2.2 Optical Features

The following optical flow-based features are extracted:
1. Velocity in x and y directions
2. Direction of flow
3. Vorticity
4. Divergence
5. Gradient tensor features
6. Total x and y velocity

Divergence
This is a scalar quantity. Mathematically, it can be represented as:

f(x, t) =
∂u(x, ti)

∂x
+
∂v(x, ti)

∂y
(5.26)

It is a summation of the partial derivative of velocity in the x and y directions.
The physical significance of the divergence is that it captures the amount of
expansion taking place in the fluid. Here the motion concept is global and
represents motion of an independent body part.

Vorticity
This is a measure of local spin around the axis perpendicular to the plane of
flow field. It represents rigidity in the flow and is useful in representing local
motion in a body. Mathematically it can be represented as:

f(x, t) =
∂v(x, ti)

∂x
− ∂u(x, ti)

∂y
(5.27)

Gradient Tensor Features
Small-scale structures present in the flow field are called eddies, and can be
characterized by a large velocity gradient.

∂u(x, ti) =(
∂u(x,ti)
∂x

∂u(x,ti)
∂y

∂v(x,ti)
∂x

∂v(x,ti)
∂y

)
R(x, ti) = −det(∂u(x, ti))
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TABLE 5.2: State Transition Matrix

TABLE 5.3: Bending

0.2155 0.7845 0 0
0 0.2154 0.7846 0
0 0 0.9373 0.0627
0 0 0 1

TABLE 5.4: Boxing

0.5 0.5 0 0
0 0.6586 0.3414 0
0 0 0.9782 0.0218
0 0 0 1

TABLE 5.5: Clapping

0.3484 0.6516 0 0
0 0.3484 0.6516 0
0 0 0.9787 0.0213
0 0 0 1

TABLE 5.6: Handwave
0.5753 0.4247 0 0

0 0.5753 0.4247 0
0 0 0.9792 0.0208
0 0 0 1

TABLE 5.7: Walking

0.8571 0.1429 0 0
0 0 1 0
0 0 0.9056 0.0944
0 0 0 1

FIGURE 5.7: HMM-based activity recognition: (a) Bending, (b) Boxing, (c)

Walking, (d) Clapping, (e) Hand-waving
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5.3.3 Implementation and Results

HMM is used for modeling time sequential activity. The Baum Welch al-
gorithm is used for training purposes. Once the classifier is trained, the test
videos are tested by extracting features from the video and classifying the
video based on maximum likelihood estimation. Here, we have designed an
HMM model for five different activities: bending, boxing, clapping, hand-wave,
and walking. The trained state transition matrixes for bending, boxing, clap-
ping, hand-wave, and walking activities are given in Tables 5.3, 5.4, 5.5, 5.6,
and 5.7 respectively. The overall accuracy achieved was 90%. The applied tech-
niques found to be scale and direction invariant due to fusion of both optical
and shape-based features. The optical feature is direction invariant and the
shape feature extracted is normalized to make it scale invariant. Snapshots of
the successfully recognized clips are shown in Figure 5.7.

FIGURE 5.8: Block diagram of DTW-based activity recognition



110 Intelligent Video Surveillance Systems: An Algorithmic Approach

5.4 Dynamic Time Warping-Based Activity Recognition

For human activity recognition, the dynamic time warping (DTW) ap-
proach is very useful because of its robustness against variation in speed or
style in performing action. DTW would be applied to the feature vector cre-
ated from the skeleton joints motion. Further, the rapid development of in-
expensive depth sensors, e.g., Microsoft Kinect, provides better accuracy for
real-time body tracking for activity recognition applications. Hence, for im-
proving the rate of recognition, a dataset would be created using Kinect to
recover human joints, body-part information in a 3-D real-world coordinate
system. Classification of certain human actions into walking, kicking, punch-
ing, and handshaking classes would be performed using the well-known SVM
classifier. The block diagram of the proposed approach is shown in Figure 5.8.

5.4.1 What Is Dynamic Time Warping?

In time series analysis, DTW is one of the well-known algorithms for detect-
ing patterns by measuring similarity between two temporal sequences, which
may vary in speed. For example, similarities in running could be detected us-
ing DTW, even if one person was running faster than the other. DTW has
gained its popularity by being very accurate and efficient in measuring sim-
ilarity between time-series to detect different shapes and patterns. In DTW,
two feature vectors corresponding to two sequences are aligned by warping
the time axis iteratively until an optimal match between the two sequences is
found. The best alignment between these two sequences is given by a warping
path that minimizes the overall distance between them. The overall distance
involves finding all possible routes, and for each route, computing the overall
distance. The overall distance is the minimum of the sum of the distances be-
tween the individual elements on the path divided by the sum of the weighting
function. The weighting function is used to normalize path length.

DTW uses dynamic programming as a tool and yields optimal warping
path in O(m × n) polynomial time for two time series of lengths m and n,
respectively.
A = (a1, a2, , ai, .., am)
B = (b1, b2, , bj , .., bn)
First of all, a local distance matrix is calculated using these two time series.

Distance−matrix(i, j) = |Ai −Bj | (5.28)

Then, a local cost matrix C is created by evaluating the cost matrix for all
the elements of X and Y . From this cost matrix, the minimum cost warping
path (lowest distance) is to be obtained.
A warping path is a sequence W = (w1, ..., w|w|) where for k ∈ {1, ..., |w|},
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FIGURE 5.9: Framewise skeleton for (a) Walking, (b) Kicking, (c) Punching,

and (d) Handshaking
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wk = c(ak, bk), satisfying the following conditions:
1) Boundary condition: The starting and ending symbols are aligned to each
other for both time series. w1 = c(a1, b1)
w|w| = c(am, bm)
2) Monotonicity condition: The symbols are aligned in monotonously non-
decreasing order.
3) Continuity condition: No observation symbols are to be skipped.

This leads to an overall cost function C(W ) =
∑
wk, k = 1 to k = |w|.

The function C(W ) denotes all possible warping paths between two sequences
X and Y . The DTW algorithm is used to find the warping path that gives
the lowest distance measure between two series.

5.4.2 Implementation

The following steps are used for DTW-based activity recognition [53]:
1) Each frame from the depth camera is considered as a feature vector.
2) For a given video sequence, frames are converted into a sequence of feature
vectors.
3) Joint orientation of each body part’s joints are used to construct a feature
vector. The distance between the respective joints in the consecutive frames
is computed for all the frames in a video. These distances are considered to
be a feature vector for that activity.
4) For action recognition purposes, the feature vectors of the video under
testing is compared with the list of defined actions using the DTW method.
Classification is then performed using SVM.

Figure 5.9 shows the framewise skeleton generated using the joint-
coordinates of the bodies of all frames in the videos for walking, kicking,
punching, and handshaking activities.

5.5 Abnormal Activity Recognition

Humans perform various types of activities. Thses activities are classi-
fied as normal or abnormal based on the contexts. The video data from the
various cameras contain different numbers of persons performing various ac-
tivities. The number of persons in a given scene is an important parameter for
the human activity recognition system. Next, vehicles can also perform differ-
ent activities on the road on behalf of humans. The abnormal activities are
recognized in order to control traffic. As the number of persons in the video
increases, it is very difficult to recognize the activities of individual persons.
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In that case, the activity of the whole group is recognized and examples of
such activities are dispersion and gathering.

In a human activity recognition problem, the interactions can be classified
as:
1) Single-person or no interaction
2) Few-persons interaction
3) Heavy-crowd interaction
4) Person-vehicle interaction
5) Person-facility interaction
6) Heavy crowd-facility interaction.

1) Single person or no interaction
This refers to scenarios where a single person may or may not be interacting
with his environment. Occlusion hardly occurs, as there is no interaction with
any other person, and one may go for simple trajectory analysis for behavior
prediction. This problem is the simplest one. Examples of single person activ-
ities are standing, loitering, jogging, talking on a mobile phone, trespassing
on a property, stealing, and playing.
2) Few-persons interaction
This refers to scenarios when a couple or group of people interact with each
other or with their environment. Since few persons are involved in the interac-
tion, occlusions may occur. Hence, trajectory analysis for behavior prediction
becomes difficult. The examples are shaking hands, exchanging things, play-
ing, fighting, attacking. Figure 5.9 (b), (c), and (d) show kicking, punching,
and hand-shaking activities that belongs to this category.
3) Heavy crowd interaction
This refers to scenarios where there is a heavy crowd or traffic. Trajectory
analysis for behavior prediction is almost impossible for these scenarios be-
cause of severe occlusion. In such a situation, a head count is done.
4) Person and vehicle interaction:
This type of interaction refers to scenarios such as driving a car, coming out,
getting into a car, drunken driving, vehicle vandalism.
5) Person and facility interaction
Under this type of interaction, people interacting with a location or facility
can be modeled. The examples of this type of interaction are behavior of a
person in a bank, elevator, ATM, and checkpoints. Any abnormal behavior
can be deemed as suspicious in this case.
6) Heavy crowd and facility interaction
These kinds of situations are very complex, and examples of such scenarios
are passengers coming out or getting into a train, moving along the platform,
or movement in the subway.
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5.6 Challenges of Intelligent Human Activity Recogni-
tion

To date, several techniques have been proposed for human activity recog-
nition. But many of these techniques work succcessfully on specific datasets,
and fail to produce similar results in more complex, large-scale datasets. Some
of the challenges of surveillance systems are:
1) Poor video quality due to changes in illumination, moving cameras, high
speed of action execution, complex background.
2) How to handle occlusion, and shadows.
2) Highly discriminative features are required for recognizing human activity.
3) Features should be independent of viewpoint; otherwise the performance
of surveillance systems will suffer as the viewpoint changes.
4) A criminal can fool the algorithm of surveillance systems by posing as per-
forming normal activity.
5) Many sources of noise, such as the shaking of leaves, must be extracted
from videos with unconstrained backgrounds.
6) Very large areas, such as border areas, playgrounds, and road squares,
cannot be monitored by a single camera. A network of cameras that coordi-
nate with one another and share information is required. Cameras at different
orientations with overlapped fields of view give video data that may have dif-
ferent illumination, or backgrounds. So, multi-view information needs to be
combined properly.

5.7 Summary

In this chapter, various methods of human activity recognition are dis-
cussed. The concept of MHI and activity recognition based on MHI is dis-
cussed. The importance of Hu moments is presented by showing implemen-
tation details. The HMM-based activity recognition approach is discussed in
depth, providing implementation details. There are other classifiers, such as
Bayesian Belief Networks [40], and SVM-based classifiers, which can be used
for activity recognition. After detecting human activity, this activity can be
classified as normal or abnormal activity. The DTW-based approach for ac-
tivity recognition is also discussed, because of its robustness against variation
in speed or style in performing actions. DTW would be applied to the feature
vector created from the skeleton-joint’s motion.



Chapter 6

Video Object Tracking

6.1 Introduction

6.1.1 What Is Video Object Tracking?

Video object tracking is the process of estimating the positions of a moving
objects over time using a camera. Tracking creates the trajectory of an object
in the image plane as it moves in the scene. A consistent label can be assigned
by the tracker to the moving objects in different frames of a video. A tracker
can also provide additional information about moving objects such as orienta-
tion, area, and shape. However, it is a challenging task because of the loss of
information caused by projection of the 3-D world onto a 2-D image, occlusion,
noise, changes in illumination, and complex object motion. Also, most of the
applications have real-time processing requirements which is also a challenge.
Video tracking is used in human activity recognition, human-computer in-
teraction, video surveillance, video communication, video compression, traffic
control, and medical imaging. Since there is increased demand for automated
video analysis, a lot of research is going on in the area of object tracking [22].

6.1.2 Tracking Challenges

Since video contains large amounts of data, video object tracking is a time-
consuming process. Further, for tracking objects, there is a need to recognize
the object from the video frame. Object recognition is also a challenging prob-
lem because the object may change shape, size, location, and orientation over
subsequent video frames. Video tracking can be especially difficult when the
objects are moving with high speed relative to the frame rate. For these sit-
uations, usually a motion model is developed, and this will describe how the
object will move to different positions in the successive frames. Various algo-
rithms and schemes have been introduced in the last few decades, and these
are discussed in this chapter.

The performance of the algorithm changes because of several challenges
that are mentioned in Figure 6.1. One of the main challenges is when the
background appears similar to the object of interest or other objects that
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are present in the scene. This phenomena is called clutter. Another type of
challenge is variation of appearance because of sensor noise, object pose, illu-
mination changes in the scene, or occlusion. Since the object is moving, the
appearance of the object may vary its projection on a video frame plane. Also,
in the acquisition process of video, it may be possible to introduce a certain
amount of noise during the acquistion of video signal. Sometimes moving ob-
jects may get occluded behind other objects that are present in the scene. In
such cases, that video object tracker may not observe the object of interest.

Algorithm 12 Video Object Tracking Algorithm
Input: Input video sequence
Output: Output video sequence with trajectories

1: Choose a feature in initial frame.
2: Choose a feature space.
3: Represent model in the selected feature space.
4: Select an ROI around target location in current frame.
5: Find the most similar candidate based on similarity function and mark its centroid.
6: Repeat for all frames in the video.

6.1.3 Steps of Video Object Tracking System

In the development of any algorithm, we need to have suitable object rep-
resentation, the right features, and a good tracking algorithm. The general
steps of tracking are given in Algorithm 12. Video tracking involves identify-
ing the object and labeling it properly. The main steps of the tracking systems
are as follows:
1. Background identification

FIGURE 6.1: Main challenges in video object tracking
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2. Foreground object detection
3. Object labelling
4. Handling occlusion problem

6.1.3.1 Background Identification

For identification of background, there are various methods that can be
employed. One of the methods is based on Gaussian mixture models (GMM).
A GMM is a parametric probability density function. It is represented as a
weighted sum of Gaussian component densities. GMM can be used to model
the colors of an object, which will help to perform real-time color-based ob-
ject tracking. By using the GMM-based background model, frame pixels are
deleted from the video to achieve the desired tracking. It has a disadvantage
that if there is much less motion by the foreground object, it will start treat-
ing it as a background object. As shown in Figure 6.2, it can be noticed that
when humans become stationary for quite some time, they eventually become
a part of the ever-updating background and the track is discontinued. When
they start moving again, the track continues.

6.1.3.2 Foreground Object Detection

The foreground objects can be extracted by subtracting the background
frame from the current frame. First, the background frame is converted from
color frame to gray-scale image. Then the gray-scale background image is
subtracted from the gray-scale current frame. This image is then converted to

FIGURE 6.2: GMM-based background modeling
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a binary image using a proper threshold. The morphological operators such
as erode and dilation are performed on the binary image to remove noise. In
the output image, white color represents foreground objects and black color
represents background.

6.1.3.3 Object Labeling

After identifying the foreground objects, labels should be assigned to these
objects. For this, the contours around the object are identified. Based on some
criteria such as contour of extracted objects, the labels are assigned during
the subsequent frames.

6.1.3.4 Handling the Occlusion Problem

When a foreground object goes behind another object, we cannot see it.
This problem is known as an occlusion problem. In video object tracking, oc-
clusions significantly undermine the performance of any tracking algorithms.
The Kalman filter deals with this problem by predicting the path of the oc-
cluded object using dynamic features such as displacement, velocity, and ac-
celeration. If many objects possess similar features, then the Kalman filter is
unable to differentiate between the different objects.

6.2 Kalman Filter

6.2.1 What Is a Kalman Filter?

A Kalman filter is an optimal recursive data-processing algorithm that
uses measured data to estimate the state of a system. It was primarily de-
veloped by the Hungarian engineer Rudolf Kalman. As in Bayesian theory,
when predicting future events, we not only include our current experiences,
but also our past knowledge. Sometimes, that past knowledge is so good that
we have a very clear model of how things should pan out. The Kalman filter
is an optimized quantitative expression of this kind of system. By optimally
combining an expectation model of the world with prior and current informa-
tion, a Kalman filter accurately estimates how things will change over time.
The algorithm is a two-step process:
1) The first step predicts the state of the system,
2) The second step uses noisy measurements to refine the estimate of the sys-
tem state.
Kalman filters are predominantly used for object tracking. They are more
suitable for objects whose motion model is known. Along with that, they also
assimilate addtional information to reveal the next object position more ro-
bustly. The main objectives of using a Kalman filter are as follows:



Video Object Tracking 119

(1) Predicting future location for objects.
(2) Reducing noise due to inaccurate detections.
(3) Associating multiple objects to their tracks.

6.2.2 How Does a Kalman Filter Work?

Consider an imperfect detector, such that it is prone to false positives.
This implies that the detector might not be able to detect objects every time.
The imperfection further implies that it is unable to provide us with the exact
position and scale. Moreover, the execution of this detector is costly.

Suppose we want to track a single moving object. To be able to robustly
track it, we would have to make the best use of the information about the
object once it is detected. The detector gives us the location of the object.
Object Motion Model:
To predict the next position of the object, we need an object motion model,
such as constant velocity motion and constant acceleration motion.
Measurement noise:
The imperfection of the detector implies that there will be noise in object
locations, generally referred to as measurement noise.
Process noise:
The chosen motion model will also have noise in predicting object motion.
This is referred to as process noise.
To predict the next object position, we consider three parameters: Object
motion model, measurement noise, and the process noise. So, the object will
be redetected efficiently, and we can cope with object occlusion.

6.2.3 Kalman Filter Cycle

A Kalman filter basically propagates and updates Gaussians and their co-
variances. It first predicts the next state with the help of the state transition
(e.g., motion) model. This is followed by noise measurement information in
the correction phase. The cycle is then repeated.
Step 1: Initial State
Here, we state the initial state values of position and velocity, along with the
Gaussian covariance matrix depicting the initial uncertainty in order to start
the tracking process.
Step 2: Predict
In this step, the next state is predicted along with updating the uncertainty of
object state, i.e., state prediction and covariance prediction. We use the state
transition matrix and process noise covariance for predicting next state.
Step 3: Correct
In Kalman filter update, the correction is done based on the noisy measure-
ment information. Kalman gain (K) specifies how much we pay attention to
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our prediction versus the actual measurement.

6.2.4 Basic Theory of Kalman Filter

The Kalman filter algorithm is one of the point tracking algorithms. It
uses state space equations and measurement equations for tracking. So, ob-
ject tracking with a Kalman filter uses prediction and correction equations.
First, the object location is predicted, and then in the next frame, using
measurement formulas, the predicted location will be corrected, and a better
estimation of the object location will be obtained.

6.2.4.1 Prediction Equations

xk = Fkxk−1 +Bk
−→uk + wk

Pk = FkPk−1F
T
k +Qk

(6.1)

Here, xk is the present state, xk−1 is the state at time k-1, and Pk is the
state transition matrix that applies the effect of the each of the system state
variables (e.g., velocity, position). Bk is the control input matrix that applies
the effect of each control input parameter (e.g., acceleration, force), uk is the
vector containing any control inputs (e.g., acceleration, force), Pk is the covari-
ance matrix of the state vector, and Qk is the covariance matrix of external
noise. wk is an additive white Gaussian noise.

To start Kalman filter prediction equations, we have to select the system
model (i.e., constant velocity model, constant acceleration model) of the dy-
namic system and the associated state variables. Prediction equations for the
constant velocity and constant acceleration models are described below.
a) Constant velocity model
The prediction equation for the constant velocity model is given by the fol-
lowing equation:

xk =

(
pk
vk

)
=

[
1 ∆t
0 1

]
= Fkxk−1 (6.2)

So, uk =0, as there are no external influences like acceleration or force.

Pk = cov(xk) = FkPk−1F
T
k (6.3)

These prediction equations are based on basic laws of kinematics, as given
below:

pk = pk−1 + ∆tvk−1 + 1/2a∆t2

vk = vk−1 + a∆t
(6.4)
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where pk and vk are the position and velocity after time.

b) Constant acceleration model
The prediction equations for the constant acceleration model are given by

xk = Fkxk−1 +Bk
−→uk + wk

Pk = FkPk−1F
T
k +Qk

(6.5)

where Fk =

[
1 ∆t
0 1

]
, Bk =

(
∆t2/2

∆t

)
and Qk is the covariance matrix of ex-

ternal noise, wk. These equations are based on the basic kinematics equations,
which are given below:

pk = pk−1 + ∆tvk−1 + 1/2a∆t2

vk = vk−1 + a∆t
(6.6)

c) Prediction equation for 2-D objects
The prediction equations for 2-D objects are similar to those for a 1-D object.
Here, the state equations contain both the horizontal and vertical components
of state variables.

X =


x
y

x
′

y
′

 , Fk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Bk =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 (6.7)

The calculation of the above-mentioned matrices are based on the following
kinematics equations:

xk = xk−1 + ∆tx
′

k−1 + 1/2x
′′

k−1∆t2

yk = yk−1 + ∆ty
′

k−1 + 1/2y
′′

k−1∆t2

x
′

k = x
′

k−1 + x
′

k−1∆t

y
′

k = y
′

k−1 + y
′

k−1∆t

(6.8)

6.2.4.2 Update Equations

The Kalman filter model updates the state variables of the model by the
following equations:

x
′

k = xk +K
′
(zk −Hkxk)

P
′

k = Pk −K
′
HkPk

K
′

= PkH
T
k (Rk +HkPkH

T
k )

(6.9)
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Algorithm 13 Basic Algorithm of Kalman Filter
Input: Input image
Output: Output image with trajectories

1: Define the motion model, i.e., constant velocity model, constant acceleration model.
2: Define the state variables and state matrix of the motion model.
3: Find Fk and Bk from the kinematics equation. Set the value of the Qk matrix.
4: Predict the state matrix xk and its covariance Pk.
5: Find the sensor matrix Hk and set a small value for covariance of measurement noise Rk.
6: From steps 4 and 5, find the Kalman gain (K

′
).

7: Update the state matrix xk and its covariance Pk depending on the Kalman update equations.
8: Repeat steps 2 to 7 with present updated state matrix as previous state matrix.

Here, x
′

k is the updated state matrix, K
′

is the Kalman gain, which depends
on state covariance matrix, Pk, sensor matrix, Hk, and measurement noise Rk.
Kalman gain is the metric that determines whether measurement or prediction
is more reliable, and it moves the updated values towards the less noisy part.
The basic flow chart of a Kalman filter is shown in Figure 6.3. The detailed
steps are available in Algorithm 13.

6.2.4.3 Measurement Equations

zk = Cxk + nk (6.10)

FIGURE 6.3: Block diagram of Kalman filter
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Here C is the measurement matrix. It fuses all the state variables with a
predefined relationship. The measurement matrix C is similar to the sensor
matrix, H.

(µ0,Σ0) = (Hkxk, HkPkH
T
k ) (6.11)

where µ0 and Σ0 are the expected mean and covariance of the prediction data.
H is the sensor matrix, which is similar to measurement matrix C.

6.2.5 Implementation

The Kalman filter is an optimal recursive filter that uses a series of in-
complete and noisy measurements to estimate the state of a dynamic system.
Some of the applications include a control, navigation, computer vision, and
time-series econometrics. This example illustrates how the Kalman filter is
used for tracking objects, and incorporates the following:
a. Predicting future location of object
b. Reducing noise due to inaccurate detections
c. Associating multiple objects to their tracks
During multiple object tracking, a new Kalman filter is instantiated for each
new object. The filter is used in order to predict the position of the object
in the next frame. At a point of time, the extracted list of ROIs is compared
with the predicted list of objects from the previous frame. If a merged object
is detected, the system is not able to retrieve a new observation vector and
the Kalman filter is updated only by using the previous state vector. This
approach can be followed only if the motion of the objects in the scene is uni-

FIGURE 6.4: Tracking results before applying Kalman filter
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form, i.e., the speed is constant. If the acceleration of the considered object
is not zero, the prediction error of the Kalman filter increases and it causes
a substantial tracking failure. Figures 6.4 and 6.5 show tracking of persons in
the video data recorded by us on the IIT Patna campus. As shown in Figure
6.4 (c) and (d), the person was not tracked because of an occlusion problem.
In order to solve this problem, we used Kalman filter whose results are shown
in Figure 6.5.

6.3 Region-Based Tracking

In region-based tracking, the deviations of the image sections are used
for tracking moving objects. For instance, a cross-correlation function is used
to detect vehicle blobs in a vehicle detection problem. The motion sections
can be identified using background subtraction. M. Kilger [25] proposed this
method for a real-time traffic monitoring system for moving vehicle detection.
Congested traffic further poses the problem of occluded vehicles. In many re-
search methodologies, a Gaussian distribution of pixel values is used to model
both a human body and a background scene. However, it is very difficult to
model a body part of the person such as head and hand. C. R. Wren et al.
[62] proposed a real-time system called pfinder (person finder) that solves the
problem for tracking a single person using a fixed camera. To remove shadows,

FIGURE 6.5: Tracking results after applying Kalman filter
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a combination of color and gradient information obtained from background
subtraction is used. Color clues are used to distinguish between the objects
during occlusion. Some researchers have proposed a color-based tracking sys-
tem instead of human body tracking [46]. Since the visual parts depend on the
color of a person’s clothing, the tracker will fail if two persons in the group
have similar dress.

6.4 Contour-Based Tracking

The algorithm for contour-based tracking is shown in Figure 6.6. It uses
the boundary contour of a moving and deforming object to track it. Initially,
the contour of an object is extracted. In the consequent frames, the system
automatically outlines the contours of the objects at video rate. It is useful
in many areas, such as automated surveillance, vehicle tracking, and motion-
based recognition.

FIGURE 6.6: Flowchart for contour-based tracking algorithm
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6.5 Feature-Based Tracking

This performs tracking by matching features between images, which are
obtained by extracting elements from objects and clustering them into higher-
level features. It is an unsupervised tracking algorithm. In general, feature-
based tracking methods can adapt successfully and rapidly, to allow real-time
tracking of multiple objects. Feature-based tracking algorithms are broadly
classified as follows:
1) Global feature-based methods
2) Local feature-based methods
3) Dependence-graph-based methods
Global feature-based methods use features such as color, centroid, and perime-
ters, whereas local feature-based algorithms use features such as line seg-
ments, curve segments, and corner vertices. After we have extracted the fea-
ture points, for a feature point in a given frame, the algorithm finds a cor-
responding point in the next frame. To find the corresponding point, the
sum-of-squared-difference (SSD) criterion is used where the displacement is
calculated by minimizing the SSD. The next step is the validation of whether
the corresponding point gives a large value under the Harris criterion. If it
does not satisfy the threshold, we identify a candidate set of feature points in
a small neighborhood of the target point and repeat the above process. The
algorithm may output no corresponding point due to disappearance of the
target point. It is capable of tracking feature points and detecting occlusions.

A feature-based tracking algorithm must first assume a form to model the
motion of objects. The translational motion model, which dominantly concen-
trates on regions undergoing linear movement, is used most of the time. With
increase in complexity of motion and geometric deformations, it is necessary
to use other complex models, such as the affine motion model and combined
motion model. Object segmentation is also used to isolate features of interest
for tracking.

6.5.1 Feature-Based Tracking Algorithm

6.5.1.1 Feature Selection

Good features are necessary for a feature-based algorithm to work. In this
algorithm, candidate features in one or more frames are selected. For selection
of point features, the most common algorithm is the Harris corner detector.
In this algorithm, we first choose a point x, and calculate the quality of the
point with

C(x) = det(G) + k × trace2(G) (6.12)
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computed on the window W (x), and k is the constant value that can be se-
lected by the user. In the equation, G is a 2× 2 matrix that is given by[ ∑

I2x
∑
IxIy∑

IxIy
∑
I2y

]
where Ix and Iy are the gradients obtained by convolving the image I with
the derivatives of a pair of Gaussian filters. To ensure that a feature is se-
lected only if the window contains sufficient texture [41], a point x is selected
as a feature if C(x) exceeds a certain threshold τ . In general, to achieve high
tracking efficiency, we do not expect the features to be concentrated in a small
region within the image. If a specific region is rich in terms of feature points,
multiple feature points may be selected, which may result in inefficient track-
ing. To solve this problem, we define a minimal space p between two selected
features. This minimal space will ensure whether the candidate feature point
is sufficiently distanced from other selected feature points.

6.5.1.2 Sum-of-Squared-Difference Criterion

Since we have assumed a simple translational deformation model, to track
a point feature x, we search for the new location x+ δx on the frame at time
t + τ whose window is most similar to the window W (x). To measure simi-
larity, the sum-of-squared-difference (SSD) criterion can be used. It compares
the image window W centered at the location (x, y) at time t and another
new location (x + dx, y + dy) on the frame at time t + dt, where the point
could have moved between the two frames. The displacement d is obtained by
minimizing the SSD criterion

Et(dx, dy) =
∑

[I(x+ dx, y + dy, t+ dt)− I(x, y, t)]2 (6.13)

where the subscript t indicates the translational deformation model. An alter-
native way to compute the displacement d is to evaluate the function at each
location and choose one that gives the minimum error. This formulation was
proposed by Lucas and Kanade in the context of stereo algorithms [49]. Later,
Tomasi and Kanade [58] modified this algorithm in a more general feature-
tracking problem.

6.5.1.3 Pyramidal Decomposition

In image processing, multi-scale decomposition is used to improve effi-
ciency. Generally, the recursive form of the algorithm decomposes signals into
information at different levels. Simoncelli and Freeman [55] proposed a steer-
able pyramid for efficient and accurate linear decomposition of an image into
scale and orientation. J. Bouguet [63] developed an algorithm to implement
pyramidal image scales of the Lucas-Kanade feature tracker. In the track-
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ing algorithm proposed in [18], a pyramid of images is constructed through
smoothing and down sampling of the original image. For instance, let I0 be
the original image and IL−1 represent the image at level L1. The Lth level
image is then defined as follows:

IL(x, y) =
1

4
IL−1(2x, 2y) +

1

8
(IL−1(2x− 1, 2y) + IL−1(2x+ 1, 2y)

+ IL−1(2x, 2y − 1) + IL−1(2x, 2y + 1))

+
1

16
(IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y + 1)

+ IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y + 1)) (6.14)

For a given feature central point x, its corresponding coordinates on the pyra-
midal images are computed as

xL =
x

2L
(6.15)

Then we compute each motion direction vector dL on each level of pyramidal
images. Finally, we could sum up all levels of motion vector d as

d =
∑

2LdL (6.16)

A small tracking window will be selected to preserve the details in the image
and improve accuracy, while a big window size will be selected for handling
larger motions and to improve robustness. Hence, an important issue with a
feature-based tracker is the tradeoff between accuracy and robustness. The
advantage of pyramidal implementation is that while each motion vector dL

is obtained by way of smaller integration windows, the overall displacement
vector d can account for larger pixel motions, thus achieving both accuracy
and robustness. Algorithm 14 explains the pyramidal implementation that
ensures both accuracy and robustness [18].

6.6 Model-Based Tracking

To obtain the location and pose of the observer, model-based tracking is
used if we know the model of the environment. It has applications in augu-
mented reality and robot navigation systems. Model-based tracking uses a 3-D
object in the scene for estimating the pose of a camera. It relies on natural ob-
jects in the scene. Model-based tracking can be classified into two categories,
namely recursive tracking and tracking by detection.
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Algorithm 14 Feature-Based Tracking Algorithm
Input: Input image
Output: Output image with trajectories

1: Function Selection (Image I)
2: Choose window WI(x)
3: Calculate G as follows

4: G =

[ ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]
5: Calculate threshold τ
6: Sort x in the decreasing order of C(x)
7: if C(xi) > τ then
8: if xi − xj > ρ then
9: Include xi as feature point

10: end if
11: end if
12: Function Tracking (x)
13: Build a pyramid of k levels of images
14: for each level k do
15: dk = −G−1b for image pair (Ik1 , I

k
2 )

16: Move the window W (x) by 2dk through warping the next level image I(k−1)2(x)
17: d = d+ 2dk

18: k = k − 1
19: end for
20: Calculate C(x) as follows
21: C(x) = det(G) + k × trace2(G)
22: if C(xi) > τ then
23: xi = xi+1

24: else
25: Find all candidate features in the tracking window W2(x) on image I2.
26: Apply SSD criteria.
27: if min(SSD) < τe then
28: xi = xi+1

29: else
30: return empty
31: end if
32: end if
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In recursive tracking, the previous camera pose is used as an estimate to
calcuate the current camera pose, wheras tracking by detection computes cur-
rent pose without any prior knowledge, thus being computationally expensive
and demanding high processing power.

Algorithm 15 Simple KLT Tracking Algorithm
Input: Input image
Output: Output image with trajectories

1: Detect Harris corner in the first frame.
2: For each Harris corner, compute motion between consecutive frames.
3: Link motion vectors in successive frames to get a track for each Harris point.
4: Introduce new Harris points by applying Harris detector after some frames (say 15 frames).
5: Track new and old Harris points using steps 1 to 3

6.7 KLT Tracker

The Kanade-Lucas-Tomasi tracker, popularly known as the KLT tracker,
is a feature tracker. This tracker is based on the early work of Lucas and
Kanade [48], which was fully developed by Tomasi and Kanade [58], and ex-
plained clearly in the paper by Shi and Tomasi [54]. KLT uses spatial intensity

FIGURE 6.7: Tracking results of the KLT tracker. (a) Result on small mo-

tion of object. (b) Result on walking video sequence. (See ebook for color.)
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information for searching the position in the next frame that gives the best
match. It is faster than traditional techniques for finding the potential matches
between the images. KLT is based on the Harris corner detector, which is a
mathematical operator that finds features in an image. It is simple to com-
pute, and invariant to rotation, scale and illumination changes. The simple
KLT tracker is explained in Algorithm 15. Figure 6.7 (a) shows KLT results
for small motion such as eye and head movement, and Figure 6.7 (b) shows
the result of a KLT tracker on a walking video sequence. The goal of this
algorithm is to match a template image T (x) to an input image I(x). The
I(x) could also be a small window within an image.
The set of allowable warps is W (x; p), where p is a vector of parameters. For
translations

W (x; p) =

[
x+ p1
y + p2

]
(6.17)

The best alignment minimizes image dissimilarity.∑
x

[I(W (x; p))− T (x)]2 (6.18)

is a non-linear optimization! The warp W (x; p) may be linear but the pixel
values are in general non-linear. Hence, in the modified problem, it is assumed
that some p is known and best increment ∆p is sought.∑

x

[I(W (x; p+ ∆p)− T (x)]2 (6.19)

is solved with respect to ∆p. When found, then p gets updated

p← p+ ∆p (6.20)∑
x

[I(W (x; p+ ∆p)− T (x)]2 (6.21)

is linearized by using first-order Taylor expansion.∑
x

[I(W (x; p+ ∆p) +∇I ∂W
∂p

∆p− T (x)]2 (6.22)

where

∇I = [
∂I

∂x
,
∂I

∂y
] (6.23)

is the gradient image computed at W (x; p). The term ∂W
∂p is the Jacobian of

the warp.
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Differentiate ∑
x

[I(W (x; p+ ∆p) +∇I ∂W
∂p

∆p− T (x)]2 (6.24)

with respect to ∆p

2
∑
x

[∇I ∂W
∂p

]T [I(W (x; p+ ∆p) +∇I ∂W
∂p

∆p− T (x)] (6.25)

and setting Equation 6.25 equal to zero yields

∆p = H−1
∑
x

[∇I ∂W
∂p

]T [T (x)− I(W (x; p))] (6.26)

where H is the Hessian matrix

H =
∑
x

[∇I ∂W
∂p

]T [∇I ∂W
∂p

] (6.27)

6.7.1 Limitations of the KLT Tracker

1) The KLT tracker does not guarantee that the corresponding point in
the next frame is a feature point, because KLT tracker only uses the Harris
criterion for the first frame but not for the other frames.
2) KLT may not handle occlusion well.

Algorithm 16 Tracking Algorithm with Mean Shift
Input: Target Model qu and its location y0 in initial frame
Output: Location y1 in the next frame

1: Initialize the location at the current frame with y0
2: Compute {pu(y0)} and {ρ[pu(y0), q]
3: Compute the next location y1 using mean shift
4: Compute {pu(y1)} and {ρ[pu(y0), q]}
5: While {ρ[pu(y1), q] < {ρ[pu(y0), q]}
6: Do y1 = 1

2
(y0 + y1)

7: If ‖y1 − y0‖ is small enough, stop
8: Else set y0 = y1 and repeat from step-2
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6.8 Mean-Shift-Based Tracking

6.8.1 What Is Mean Shift?

Mean shift is a non-parametric feature-space analysis technique that uses
the given discrete data sample of a density function to locate its maxima [6],
[5]. It is an iterative mode detection algorithm in the density distribution
space. It uses kernels to compute the weighted average of the observations
within the tracking window and repeats this computation until convergence is
attained at a local density mode. Thus, density modes can be located without
explicitly estimating the density.

6.8.2 Algorithm

Initially the color feature of the tracking window is divided in u colors.
The target object mode can be computed as follows:

qu = C

n∑
i=1

k(‖xi − x0
h
‖2)δ[b(xi)− u] (6.28)

where, {xi} = 1.......n are the pixel locations of the target window centered
at x0. k is the kernel profile, which is convex and monotonic decreasing. h is
the kernel bandwidth. b(xi) associates to the histogram value corresponding
to the color xi. δ is Kronechker delta function. C is a normalization constant
that satisfies

∑
qu = 1. Similarly, the target candidate at location y can be

presented by

pu(y) = Ch

n∑
i=1

k(‖y − xi
h
‖2)δ[b(xi)− u] (6.29)

where Ch is also a normalization constant that satisfies
∑
pu = 1. The simi-

larity of pu(y) and qu can be measured by Bhattacharya’s coefficient.

ρ[p(y), q] =
M∑
u=1

√
pu(y)qu (6.30)

Maximizing the Bhattacharya coefficient leads to the following mean-shift it-
erations. The new estimate of the target position y1 is calculated to be a
weighted sum of pixels contributing to the model.

y1 =

∑n
i=1 xiwig(‖y−xih ‖

2)∑n
i=1 wig(‖y−xih ‖2)

(6.31)
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where

g(x) = −k′(x) (6.32)

wi =
M∑
u=1

√
qu

Pu(y)
δ[b(xi)− u] (6.33)

Figure 6.8 shows tracking results on a video sequence of walking. The detailed
steps are available in Algorithm 16.

6.8.3 Advantages

The advantages of the mean shift algorithm are as follows:
1. Mean shift is an application-independent tool suitable for real data analysis.
2. No assumptions of any predefined shape on data clusters are made.
3. Arbitrary feature spaces are handled.
4. Mean-shift algorithm is fast and performs satisfactorily for various se-
quences.
5. It is useful for clustering, mode seeking, probability density function, and
tracking.

6.8.4 Disadvantages

The limitations of the mean shift algorithm are as follows:
1. The selection of a window size is not trivial. Inappropriate window size
can cause modes to be merged, or generate additional shallow modes. In most
cases, adaptive window size is used.
2. For fast moving objects, it does not track accurately. It may even lose the
target.
3. Sometimes it gets stuck in a local minimum.
4. If we use global color histogram features, localization drift may be observed.

FIGURE 6.8: Mean shift tracking result. (See ebook for color.)
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TABLE 6.1: Applications of Video Object Tracking

Application Role of Object Tracking
Motion-based recognition Unusual human movement recognition

such as loitering
Automated surveillance Monitoring a scene to detect abnormal ac-

tivities
Video indexing Automatic labeling of videos and retrieval

of the videos in large databases
Human-computer interaction Gesture recognition based on eye gaze

tracking for data input to the computers
Traffic control Real-time traffic monitoring to avoid

traffic-jam, and accidents
Vehicle navigation Suggest best path to vehicles for avoiding

obstacles

.

6.9 Applications of Tracking Algorithms

Trajectory analysis is very useful for applications such as human activity
recognition, video surveillance, video indexing and retrieval, human computer
interaction, traffic monitoring, and vehicle navigation, as mentioned in Ta-
ble 6.1. The detailed implementation of abnormal activity recognition using
trajectories is discussed below.

6.9.1 Trajectory-Based Unusual Human Movement
Recognition

A trajectory is the path that a person moves along as a function of time.
The trajectory in a scene is often used to analyze the human activity. We have
used a trajectory to determine whether the person’s movement is abnormal or
not [51]. We can detect activities such as loitering around severely vulnerable
places like bank vaults, ATMs, and military installations, based on the loi-
tering trajectories shown in Figure 6.9 (b). If somebody’s movement matches
with abnormal trajectories, then the algorithm declares that this person is
loitering and security should be informed. Treading track algorithms are used
to detect closed-path trajectories and spiral trajectories [66].
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6.9.1.1 Closed Path Detection

As shown in Figure 6.10 (a), we draw line-segments L1, L2, ......., LN be-
tween x0, y0 and x1, y1, x1, y1 and x2, y2, and so on. Then we find the inter-
section between any two line-segments. If the line-segments intersect, then we
mark the person’s trajectory as being closed-path. Based on Algorithm 17, a
closed-path event is detected as shown in Figure 6.10 (b).

6.9.1.2 Spiral Path Detection

As shown in Figure 6.11 (a), to detect spiral, the center of all points of
path is calculated. After that divide region of all points in 8 regions assuming
(xc,yc) as center of region. Then we find the angle α(n) between point (xn, yn)
and center point (xc, yc) using the following formula :

α(n) = tan−1(
yn − yc
xn − yc

) (6.34)

We find the angle of all points, and then count how many points are lying in
each region. If the number of points lying in each region exceeds a thresholded

FIGURE 6.9: Trajectories of human movement: (a) Normal trajectories,

(b) Loitering trajectories

FIGURE 6.10: (a) Closed path trajectory, (b) Result
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Algorithm 17 Closed Path Detection
Input: Recorded video frames of spiral path activity
Output: Output video with trajectory and labeled as closed path

1: Let the starting point of the path be (x0, y0), and end point of the path be (xN , yN )
where N + 1 is the number of video frames corresponding to closed path activity.

2: Draw line segment L1, L2, ...., LN by connecting the points
(x0, y0) and (x1, y1), (x1, y1) and (x2, y2), ....(xN−1, yN−1) and (xN , yN ),

3: for each line-segment n do
4: Check if line-segment Ln intersects with L1, L2, ....Ln−1 line-segments

If at any instance two line-segments cross each other,
declare the path as closed path.

5: end for// N line-segments

Algorithm 18 Spiral Path Detection
Input: Recorded video frames of spiral path activity
Output: Output video with trajectory and labeled as spiral

1: Compute centroid of treading track of the object:

Xc =
x0 + x1 + x2 + ......+ xN

N + 1

Yc =
y0 + y1 + y2 + ......+ yN

N + 1

where N + 1 is the number of video frames corresponding to spiral path activity.
2: Divide region of all points into eight equal regions assuming (Xc,Yc) as the center of

the region
3: for each video frame n do
4: Find the angle between points and center point using the following formula:

α(n) = tan−1(
yn − yc
xn − xc

)

5: end for// N + 1 frames
6: for each video frame n do
7: for each region i do
8: Count how many points are lying in each region.
9: end for// 8 regions

10: If number of points lying in each region exceeds a threshold, label the trajectory as
spiral.

11: end for// N + 1 frames
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average, then we label the trajectory as spiral. Based on Algorithm 18, a spiral
path event is detected as shown in Figure 6.11 (b).

6.10 Summary

Video object tracking has wide applications in video surveillance, such as
video compression, vision-based control, human computer interfaces, augu-
mented reality, robotics, and traffic control. In this chapter, the general steps
of a video tracking system, the basics of a Kalman filter, and its role in han-
dling occlusion are discussed. Although Kalman filter is a renowned tool in
object tracking and occlusion handling, its failure in complete occlusion is
still an unsolved problem. Tracking approaches such as region-based tracking,
contour-based tracking, feature-based tracking, mean shift-based tracking are
discussed in brief. The success of a particular approach depends largely on
the problem domain. Further, there exists a cost/performance trade-off. For
real-time applications, we need a fast high-performance system. Bacause of
the complexity of the tracking problem, there is room for improvement in var-
ious tracking algorithms. A typical application of trajectory-based abnormal
activity recognition is presented in order to understand the implementation
aspects of tracking algorithms.

FIGURE 6.11: (a) Spiral path trajectory, (b) Result
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Chapter 7

Camera Network for Surveillance

Closed-circuit television (CCTV) cameras are widely used for video surveil-
lance, to transmit a video signal to monitors in the control room. The dif-
ferent communication schemes used in a CCTV system are point to point
(P2P), point to multipoint, and mesh wireless links. Siemens AG in Germany
installed the first CCTV system in 1942. This CCTV system was designed
and installed by German engineer Walter Bruch for observing the launch of
V-2 rockets. Since CCTV cameras are now cheaply available due to rapid ad-
vances in technology, the use of CCTV cameras for surveillance systems has
increased significantly. Nowadays, CCTV cameras are being installed for se-
curity purposes, be it in airports or railway stations. The use of cameras for
such purposes is part of intriguing research that will bring improvements in
the existing technology.

7.1 Types of CCTV Cameras

7.1.1 Bullet Camera

Bullet CCTV cameras are mainly designed for indoor applications. They
can be mounted on a wall or ceiling. Since these cameras are placed inside
bullet-shaped housing, they are called bullet cameras. The camera is designed
to capture images from a fixed area. The pan tilt and zoom facility is not
provided with this camera. The unit is mounted pointing at a fixed field of
view, as shown in Figure 7.1 (a). They are used in residential as well as
commercial locations.

7.1.2 Dome Camera

Since these cameras have dome-shaped housing, they are called dome cam-
eras. Dome housings are designed to conceal the orientation of the camera.
These units serve a dual purpose: People will know the facility is being watched
and clients will feel that facility is being protected. Since camera orientation
is hidden inside the casing, people often assume it is pointing in all directions.

141
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For example, a fixed dome camera is covering a door at the end of a hall-
way, but people will assume that it will cover the entire hallway. In this way
property will be protected. As shown in Figure 7.1 (b), some advaced units
allow the camera to spin quickly within the housing. These types of cameras
are often called speed domes. They are used in public places such as railway
stations and bus stops.

7.1.3 Desktop Cameras

These are small-size cameras used for Skype and other low-resolution tele-
conference applications, as shown in Figure 7.1 (c). They can be eaily mounted
to a desktop monitor. These cameras are also called board cameras. If we place
cameras at discrete locations, they are called discrete cameras. The discrete
housing is also designed to hide the entire camera. These can be mounted on
a wall or ceiling to look like smoke detectors, motion sensors or nothing at all,
with pinhole or flush mount lenses.

7.1.4 Vari-Focal Camera

A camera with a vari-focal lens allows the operator to zoom in or out while
still maintaining focus on the image as shown in Figure 7.1 (d). This helps
the operator to capture close-ups of activities at longer distances.

FIGURE 7.1: a) Bullet camera, b) Dome camera, c) Desktop camera,

d) Varifocal camera, e) PTZ camera, f) IP camera
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7.1.5 IP Camera

Internet protocol (IP) cameras transmit images over a computer network
and the Internet, often compressing the bandwidth so as not to overwhelm the
web. They are available in both hardwired and wireless versions. IP cameras
are easier to install than analog cameras because they do not require a sepa-
rate cable or power boost to send images over a longer distance. Videos can
be seen of people using IP cameras anywhere and anytime regardless of the
distance from the camera. Hence, IP cameras are preferred to provide long-
distance surveillance soultions. A typical IP camera is shown in Figure 7.1
(f). The main components of an IP camera include a lens, an image sensor,
one or several processors, memory, cable, switch, router, client, and server.
The processors are used for image processing, compression, video analysis,
and networking functionalities. A client is used to display and monitor the
video. This network camera provides web server, FTP (file transfer protocol),
and e-mail functionalities, and includes many other IP network and security
protocols.
1) Front panel of a general network camera has IR LEDs, built-in microphone,
built-in speaker, lens, wireless antenna.
2) Rear panel has LAN, DC power supply of 5V/2A, power light, network
light, SD card, audio input jack, audio output jack, and RESET button. The
LED will blink when power and network cable are plugged in. Audio input
jack is used to plug an external microphone.

7.1.6 Wireless Camera

Not all wireless cameras are IP-based. Some wireless cameras can use alter-
native modes of wireless transmission. But no matter what the transmission
method, the primary benefit to these units is still the same as with IP cam-
eras. They are extremely easy to install.

7.1.7 PTZ Camera

Remotely positioned cameras are typically called PTZ cameras because of
their ability to pan, tilt, and zoom in on a subject. The operator can move
the PTZ camera left or right, up or down, and zoom the lens closer or farther
away. The horizontal movement of the camera from left to right and right to
left is called pan. The vertical movement of the camera from up to down or
vice versa is called tilt.

These cameras are used in surveillance systems where there is an actual
surveillance specialist monitoring the images. Also, pan-tilt-zoom functionality
can be automoated on a timed basis as shown in Figure 7.1 (e). A PTZ camera
may be set to automatically patrol an area, but they are oftentimes most
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effective when manually controlled. A higher zoom range for the PTZ camera
is helpful when you are covering a large area with only one PTZ camera.

7.1.8 Infrared Cameras

These are also called night vision cameras. They are devices that form
an image using infrared radiation. Infrared cameras (IR) have IR LEDs po-
sitioned around the outer edges of the camera lens, which gives the camera
its night vision. Human vision capacity is limited to a very small portion of
the electromagnetic spectrum. But thermal energy has a much longer wave-
length than visible light, which the human eye can’t even see. The portion of
the spectrum we perceive is dramatically expanded by thermal imaging. This
helps us to see thermal energy emitted from an object. In the infrared case,
everything with a temperature above absolute zero emits heat. Even very cold
objects such as ice cubes emit infrared radiation which helps us to see in highly
lit and totally dark environments. A typical IR camera is shown in Figure 7.2.

The IR radiation emitted by an object depends on the object’s tempera-
ture. If the object’s temperature is high, greater IR radiations will be emitted.
IR allows us to see what we cannot see with our eyes. IR cameras produce
images of invisible infrared and provide precise non-contact temperature mea-
surement capabilities. An IR camera detects infrared energy and converts it
into an electronic signal. Then the electronic signal is processed to produce
a thermal image on a video monitor and perform temperature calculations.
Heat sensed by an IR camera can be very precisely measured, allowing us to
monitor thermal performance. Infrared cameras are extremely cost-effective,
and are used in many diverse applications. Some of the areas are as follows:
1) Security Systems
IR security cameras are practically useful and have fewer false alarms than
other solutions. They can be used for boundary security purposes in defense
to observe activities during the night.

FIGURE 7.2: IR camera
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2) Maritime Systems
Professional mariners navigate safely around the clock with thermal night vi-
sion IR cameras. From small work boats to offshore commercial and passenger
vessels, IR cameras take situational awareness to the next level, helping cap-
tains navigate safely, avoid obstacles and deter piracy.
3) Traffic Control Systems
IR cameras are used to control systems for traffic signals, roadway and tunnel
incidents, and pedestrian crossings.

7.1.9 Day Night Cameras

Day night cameras are designed to compensate for varying light condi-
tions, to allow the camera to capture images. In many cases, these camera
units have a wide dynamic range, to function in glare, direct sunlight, reflec-
tions, and strong backlight at all hours. Hence, they are positioned in outdoor
places such as parking lots, fence areas, and roadsides to monitor vehicles and
human activities.

7.1.10 High-Definition Cameras

Ultra high-definition cameras are often used in niche markets such as casi-
nos. These cameras give the operators the ability to zoom in with extreme
clarity. These cameras have capability to transmit videos.

7.2 Smart Cameras

7.2.1 What Is a Smart Camera?

A smart camera is an intelligent camera that not only captures images but
also is capable of extracting specific information from the captured images.
It generates event descriptions or decisions that are used in intelligent video
surveillance systems. A smart camera is a self-contained, stand-alone vision
system with a built-in image sensor and all necessary communication inter-
faces.
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7.2.2 Components of Smart Cameras

A smart camera usually consists of several of the following components:
image sensor, image digitization circuitry, image memory, powerful proces-
sor such as a DSP processor, program and data memory (RAM, nonvolatile
FLASH memory), communication interface (RS232, Ethernet), I/O lines (of-
ten opto-isolated), built-in lens or lens holder (usually C, CS, or M-mount),
built-in illumination device such as LED, real-time operating system (e.g.,
VCRT), and optional video output (VGA or SVGA).

7.2.3 Why Do We Need a Smart Camera?

Smart cameras expand the vision capabilities of USB cameras. USB cam-
eras can be converted into smart camera by incorporating an on-board pro-
cessor to enhance vision capabilities while maintaining price, size, and power
consumption.

7.2.4 Features

1) Powerful Smart Camera
These cameras handle precise data faster with better resolution. They also pro-
vide options for a dynamic field of vision. They have a high frame rate, and
because of that, they have faster performance. They have a buffer on the cam-
era. An on-camera preprocessor manages more data. Because of stand-alone
mode, power consumption is low. There is no need for external computation.

2) Small Smart Camera
These cameras are also called USB smart cameras. The on-board processing
capability of these cameras is consistent, and unaffected by computer oper-
ating system and software delays. Smart cameras can also be hooked into a
single computer to create an integral system. There is no need for external
computation. These small cameras have a modular design for minute-size di-
mensions, and they are suitable for hand-held or offsite devices.

3) Adaptable Smart Camera
These cameras have a USB connectivity option. They are simple to integrate
and the cost is also low. Since USB technology is universally supported by
almost any computer, these cameras do not require additional costly interface
circuit boards. These cameras have various interface options, and they have
battery options for stand-alone functionality.
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7.3 Smart Imagers

7.3.1 What Is an Imager?

An imager is a sensor that detects and conveys the information that con-
stitutes an image. It does so by converting the variable attenuation of waves
(as they pass through or reflect off objects) into signals, the small bursts of
current that convey the information. The waves can be light or other electro-
magnetic radiation. An imager is also called an image sensor.

7.3.2 Types of Imagers

There are two types of imagers: charged coupled device (CCD) imagers
and complementary metal oxide semiconductor (CMOS) imagers.

7.3.2.1 CCD Imager

A CCD imagers consists of a dense matrix of photodiodes. These photo-
diodes convert light energy in the form of photons into an electronic charge.
Electrons generated by the interaction of photons with silicon atoms are stored
in a potential well and can subsequently be transferred across the chip through
registers and output to an amplifier. The basic operation of a CCD imager is
as follows:
1) For capturing images, there is a photoactive region and a transmission re-
gion made out of a shift register.
2) An image is projected by a lens on the capacitor array (the photoactive re-
gion). Each capacitor of the array accumulates an electric charge proportional
to the light intensity at that location.
3) A 1-D array used in cameras captures a single slice of the image, while a
2-D array used in video and still cameras captures a 2-D picture corresponding
to the scene projected onto the focal plane of the sensor.
4) Once the array has been exposed to the image, a control circuit causes each
capacitor to transfer its contents to its neighbor.
5) The last capacitor in the array dumps its charge into a charge amplifier,
which converts the charge into a voltage.
6) By repeating this process, the controlling circuit converts the entire semi-
conductor contents of the array to a sequence of voltages, which it samples,
digitizes into and stores in some form of memory.
Types of CCD Image Sensors
1. Interline transfer CCD image sensor
2. Frame transfer CCD image sensor
Nowadays, most CCD image sensors use interline transfer. The comparison of
these two types of sensors is presented in Table 7.1.
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TABLE 7.1: Comparison of Interline Transfer with Frame Transfer CCD

Imager

Interline Transfer CCD Image Sensor Frame Transfer CCD Image Sensor
It uses optimized photodiodes It uses photogates.
with better spectral response.
It has lower fill factor. It achieves higher fill factor with no

photodiode.
The image is captured at the Image is captured by mechanical
same time (snap shot operation). shutter.

7.3.2.2 Complementary Metal Oxide Semiconductor

CMOS circuits use a combination of p-type and n-type metal oxide semi-
conductor field effect transistors (MOSFETs) to implement logic gates and
other digital circuits. CMOS circuitry dissipates less power when static. It
is denser than other implementations having the same functionality. In most
CMOS devices, there are several transistors at each pixel that amplify and
move the charge using wires. With the CMOS approach, each pixel can be
read individually. In a CMOS sensor, each pixel has its own charge-to-voltage
conversion, and the sensor often includes amplifiers, noise-correction, and dig-
itization circuits so that the chip outputs digital bits. With each pixel doing
its own conversion, uniformity is lower. The percentage of a pixel devoted to
collecting light is called the fill factor of the pixel. CCDs have a 100% fill
factor but CMOS cameras have much less. The lower the fill factor, the less
sensitive the sensor is, and the longer the exposure times must be. Too low a
fill factor makes indoor photography without a flash virtually impossible. A
comparison of CCD and COMS imagers is presented in Table 7.2.

7.4 Multiple View Geometry

There are intricate geometric relations between multiple views of a 3-D
scene. These relations have to do with the camera’s motion, calibration, and
scene structure. Several relationships exist between the images with differ-
ent views. These are very important for the calibration and reconstruction
from images. Many insights in these relationships have been obtained in re-
cent years. Multiple view geometry is the subject where relations between
coordinates of feature points in different views are studied. It is an important
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TABLE 7.2: Comparison of CCD and CMOS Imagers

CCD Imager CMOS Imager
Many separate chips are required It incorporate other circuits
for other circuits. on the same chip.
The camera is bigger, heavier,

and costly.

The camera is smaller, lighter, and

cheaper.
It also requires more power. It requires less power so batteries

last longer.
It cannot switch between It can switch modes on the fly
still photography and video. between still photography and

video.
CCD has a simple pixel and chip. CMOS has more complex pixel and

chip.
CCD performs better in low light

conditions.

They suffer in low light conditions.

They suffer in high light condi-

tions.

They excel in capturing outdoor pic-

tures on sunny days.
CCDs have a 100% fill factor. They have much lower fill factor.
Suitable for indoor photography. Suitable for outdoor photography.

tool for understanding the image formation process for several cameras using
reconstruction algorithms.

7.5 Camera Network

7.5.1 What Is Camera Networking?

Camera networking is a concept that aims to study and analyze the com-
munication process among various camera devices or networks of cameras that
are linked together to exchange information and share resources. The cameras
used in such camera networks are IP or USB cameras.

7.5.2 Camera Devices

There are various camera devices that can be used for the communication
process, namely IP and USB cameras. An IP camera is a type of digital video
camera that can send and receive data via a computer network and the Inter-
net, as shown in Figure 7.3. Although most cameras that do this are webcams,
the term IP camera is usually applied only to those used for surveillance. An
IP camera is networked over a fast-ethernet connection and sends its signal
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to the main server via computer network or internet link. IP cameras are
available in wired as well as wireless mode, and its maintenance cost is less
than that of a traditional CCTV camera. The image quality acquired by IP
cameras is better than that of traditional CCTV cameras. IP cameras support
two-way communication. Hence, an alert signal can be sent to various places,
in case of any suspicious activity. Hundreds of gigabytes of video and image
data can be stored in video servers and can be retrieved at any time.

On the other hand, a USB webcam is a camera that connects to a com-
puter, usually through plugging it into a USB port on the machine. The video
is fed to the computer, and using an Internet video file can be transmitted.
Because webcams rely on a computer to connect to the Internet, they must
have a dedicated computer that is turned on at all times in order to function.
Hence, IP cameras are preferred over USB cameras.

7.6 Camera Calibration

Camera calibration is the process of estimating parameters of the camera
using images of a special calibration pattern. The parameters include cam-
era intrinsics, distortion coefficients, and camera extrinsics. We can use these
parameters to correct for lens distortion, measure the size of an object, or
determine the location of the camera in the scene. Multi-camera calibration
(MCC) maps different camera views to a single coordinate system. In many
surveillance systems, MCC is a key pre-step for other multi-camera-based
analysis. It is the process of estimating intrinsic and/or extrinsic parameters.

FIGURE 7.3: IP camera networking
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Intrinsic parameters deal with the camera’s internal characteristics, such as
its focal length, skew, distortion, and image center. Extrinsic parameters de-
scribe its position and orientation in the world. Extrinsic parameters are used
in applications such as to detect and measure objects, navigation systems for
robots, and 3-D scene reconstruction.

FIGURE 7.4: a) Polygon with hole (obstacle), b) Hole connected to polygon

through helpers, c) Triangulation of polygon with hole, d) Coloring of polygon

with hole. (See ebook for color.)
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7.7 Camera Placement

In this age of rapid technology growth, camera placement has become a
necessity for a really good security system. However, the optimum use of cam-
eras and associated hardware will reduce the cost of any surveillance system.
The optimal placement of cameras in surveillance systems originates from a
real-world problem of guarding any place where high security is necessary.
At airports, railway stations, banks, or any place with the minimum number
of guards observing the whole region together is a very important aspect of
security. In the computational geometry version of the problem, the layout
of the area is represented by a simple polygon and each guard is represented
by a point in the polygon, as shown in Figure 7.4. Many researchers have
introduced some variations into the problem, such as restricting guards to the
perimeter, or even to the vertices of the polygon.

In this section, the problem of optimum number of camera placement, for
a given region and vision task will be discussed. Even in a very complicated
case, the region itself may change with time, i.e., furniture or walls may be
added or removed. The efficiency of any algorithm also depends on the type
of camera we are choosing, and designing their layout in the region of interest.
The goal in a camera placement problem is to determine the optimal position
of cameras for a region to be covered, given a set of task-specific constraints.
In the most general case, the region may be an arbitrary volumetric shape, it
may be outdoors or indoors, and it may include obstacles. It may even involve
dynamic changes in the layout.

Definitions of some of the optical camera parameter definitions are as fol-
lows:
1) Field of View (FOV): The maximum angle visible from a camera.
2) Spatial Resolution: It is defined as the ratio between the total number of
pixels on its imaging element excited by the projection of a real world object.
Higher spatial resolution captures more details and produces sharper images.
3) Depth of Field (DOF): The amount of distance between the nearest and far-
thest objects that appear in acceptably sharp focus in an image is called DOF.

7.7.1 Camera Placement Algorithm for Region with
Obstacles

In this section, the camera placement problem with obstacles is discussed.
In real life in the given layout, many objects will be placed and may block
some part of the area of the camera’s FOV. In Figure 7.4 (a), the hole rep-
resents objects that will block the FOV of the camera. The hole may be the
pillar or any object placed in the given region. First the hole is connected to
the polygon through helpers, as shown in Figure 7.4 (b). Since the FOV of any
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camera is a triangular region, the given space will be partitioned into triangles
as shown in Figure 7.4 (c). All the vertices are colored using the 3-coloring
technique such that no vertices of the triangle share the same color, as shown
in Figure 7.4 (d) (see ebook for colors). Then the total number of cameras
required to be kept on red color vertices are calculated. Similarly, the total
number of cameras required to be kept at the yellow and green vertices are
calculated. Based on this information, the least number of cameras required
is calculated. Nowadays, there are a variety of algorithms available for camera
placement. The efficient algorithm will suggest the best placement of cameras,
and this placement will minimize your set-up cost and also the maintenance
cost of the surveillance system.

7.8 Camera Communication

Camera communication refers to the communication process among vari-
ous camera devices (IP or USB) or systems (a network of cameras) that are
linked or networked together to exchange information and share resources.
The information sharing allows object parameters to be ferried across multiple
cameras. Nowadays, surveillance cameras are increasingly used for capturing
images and for communicating information.

A network camera can be configured to send video over an IP network for
live viewing and/or recording either continuously, at scheduled times, of an
event, or on request from authorized users. Captured images can be streamed
as motion JPEG, MPEG-4, or H.264 video using various networking proto-
cols, or uploaded as individual JPEG images using FTP, e-mail, or HTTP
(hypertext transfer protocol).

In addition to capturing video, network cameras provide event manage-
ment and intelligent video functionalities such as video motion detection,
audio detection, active tampering alarms, and autotracking. Most network
cameras also offer input/output (I/O) ports that enable connections to ex-
ternal devices such as sensors and relays. Other features may include audio
capabilities and built-in support for power over ethernet (PoE). Axis network
cameras also support advanced security and network management features.
Camera communication is also facilitated by picture transfer protocol (PTP).
This is a protocol developed by the International Imaging Industry Associa-
tion to allow the transfer of images from digital cameras to computers and
other peripheral devices without the need for additional device drivers.
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7.9 Multiple Camera Coordination and Cooperation

A single camera for tracking is not useful because of the following reasons:
i) They work in compact areas.
ii) Problems like object segmentation, object occlusion, and so on.
iii) Until recently, multi-camera coordination gave overlapping fields of view.
iv) Multi-camera setup deals with occlusion more effectively.
v) Occlusion can be dealt with as the task of tracking any one person is
switched to another camera that can view him clearly.

Multi-camera coordination and control performs [50] the following tasks:
(i) Captures and analyzes videos acquired by multiple cameras.
(ii) Fuses the acquired knowledge from various cameras in the network.
(iii) Performs control actions required in the given surveillance task.

By multi-camera cooperation sensing, the sensors in use not only react
based on the sensed data, but also help each other by exchanging information
among them. Coupling can be done between two cameras. The main types of
coupling are geometric coupling and kinematic coupling. Cooperation between
static and dynamic sensors is necessary to analyze low resolution events and
even switch to higher resolution events.

In multi-camera systems, there are situations that demand alerting the
cameras in the network continuously to properly perform the given surveil-
lance task. For example, if an intruder is suspected, then the cameras should
track the intruder continuously. Each camera should be able to acquire video

FIGURE 7.5: Typical camera coordination scenario.
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of the intruder and alert the next camera about the incoming intruder. PTZ
cameras can also be instructed to acquire high-resolution views of an intruder,
as shown in Figure 7.5, since they have pan tilt and zoom facility.

Also, the cameras currently focusing on the intruder should transmit their
data to the concerned neighboring cameras. The cameras receiving the data
should be prepared and ready to track the potential intruder. All these op-
erations can only be carried out if there is proper coordination and control
among the camera nodes. Analogous to a human security team, where each
security person communicates with other security personnel during a policing
operation, surveillance cameras are also required to communicate and coordi-
nate with each other.

Along the same line, there should be coordination among all the surveil-
lance cameras. A camera currently focusing on the intruder should transmit
its data to the concerned neighboring cameras. The cameras receiving the
data should be ready to track the incoming intruder. All these operations can
only be carried out if there is proper coordination and control in the camera
network.

7.10 Summary

In this chapter, the various types of CCTV cameras and their roles for
video surveillance have been discussed. The various types of smart cameras
are also discussed. The performance of CCD and CMOS imagers is compared
and it is observed that CCD imagers performs well for indoor environments
while CMOS imagers are suitable for outdoor environments. The demand
for smart cameras is continuously increasing, and traditional industries are
replacing CCTV cameras with smart cameras, since smart cameras provide
intelligent automated surveillance. Application domains such as healthcare,
entertainment, and education are exploring the use of smart cameras. Imagers
are an emergent solution for practically every automation-focused machine vi-
sion application. Camera networking, camera calibration, camera placement,
camera communication, and multi-camera coordination are also discussed, to
give insight for designing efficient video surveillance systems.
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Chapter 8

Surveillance Systems and Applications

This chapter begins with a short introduction to surveillance systems, in Sec-
tion 8.1. A brief overview of video content analytics is presented in Section
8.2. Some application case studies, such as baggage exchange detection and
fence crossing detections are discussed in Sections 8.3 and 8.4, respectively.
Military applications are discussed in Section 8.5. More details on the use of
surveillance systems in transportation are presented in Section 8.6.

8.1 Introduction

Video surveillance is of increasing importance as most organizations seek
to safeguard physical and capital assets. There is the necessity to observe
more people and their activites, and to extract useful information from video
data automatically, which demands more scalability, capability, and capacity
in video surveillance systems. Installing video cameras is easy, but detecting
human activities automatically is still a challenging task. Although surveil-
lance cameras are already in use at banks, shopping malls, airports, railway
stations, and parking lots, video data is mostly used for investigation purposes
as a forensic tool, thus losing its important benefit as a real-time system. What
is expected is continuous monitoring of surveillance video to alert security of-
ficers about a suspicious person before he commits a crime.

Video surveillance technology has been used to control traffic, detect ac-
cidents on highways, and monitor crowd behavior in public spaces. The nu-
merous military applications include patrolling national borders, monitoring
the flow of refugees, and monitoring adherence to peace treaties. The primary
goal is maintaining situation awareness by fusing information from multiple
sensors into a coherent model of actors, actions, and events to help a remote
user understand abnormal and unusal activities.

8.1.1 Components of Video Surveillance Systems

A video surveillance system (VSS) basically comprises the following com-
ponents:

157
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1. Camera and lighting
2. Control and recording unit
3. Output interface and display
The above components are connected using cables, a junction box, or switches.
The quality of the above components and their proper connections have an
influence on the image quality. Hence, compatibility and quality of all the
components should be ensured for successful interaction of the components of
a video surveillance system.

8.2 Video Content Analytics

Video content analytics (VCA) is the capability to automatically analyze
video to detect abnormal activities. This technical capability is used in video
surveillance at public places such as airports, railway stations, and banks.
The algorithms can be implemented as software on general purpose comput-
ers, or as developed dedicated hardware. Many different functionalities can be
implemented in VCA, such as video motion detection. More advanced func-
tionalities such as video object tracking and egomotion estimation can be
included. It is also possible to build other functionalities in VCA, such as
person identification, face detection, behavior analysis, and abnormal activity
detection.

8.2.1 Functionalities

Several articles provide an overview of the modules involved in the de-
velopment of video analytic applications. Table 8.1 presents the list of VCA
functionalities and their short descriptions.

8.2.2 Commercial Applications

VCA is a new technology that has wide applications. Functionalities such
as motion detection and people counting are available on the market as com-
mercial products, but still, a lot of research work is required to make the sys-
tem robust. In many applications, VCA is implemented on CCTV systems,
either distributed on the cameras or centralized on dedicated processing sys-
tems. Video analytics and smart CCTV are commercial terms for VCA in the
security domain. In shopping malls, VCA is used to monitor and track the
shoppers from a security point of view. Police and forensic scientists analyze
CCTV video when investigating criminal activity. The police use VCA soft-
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TABLE 8.1: Functions of VCA
Function Description
Egomotion estimation It is used to determine the location of a camera

by analyzing video sequence.
Motion detection It is used to determine the presence of motion in

the observed scene.
Shape recognition It is used to recognize shapes in the input video

such as circles, triangles, rectangles. This func-

tionality is typically used for object detection.
Object detection It is used to determine the presence of a type

of object, such as person, animal, vehicle. Other

examples include fire and smoke detection.
Recognition This functionality is very useful for decision mak-

ing in surveillance video. Face recognition is used

to recognize the person in the scene. Automatic

number plate recognition is used to recognize ve-

hicles in the traffic scene.
Video object tracking It is used to determine the location of objects in

the given video sequence.

ware for searching key events and find suspects by performing video content
analysis of CCTV footage.

8.2.3 Video Object Tracking

This is the process of locating a moving objects over time using a camera.
In other words, tracking means associating target objects in consecutive video
frames. The tracking of objects can be especially difficult when the objects are
moving fast relative to the frame rate. Another situation that increases the
complexity is when the tracked object changes orientation over time. In these
cases, motion models are usually used to describe how the image of the target
might change for different possible motions of the object. It has a variety of
uses in application domains such as video object tracking, abnormal activity
recgnition, video surveillance, vehicle traffic, human behavior analysis, and
crowd behaviour analysis.
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8.3 Baggage Exchange Detection

In this section, the application of a surveillance system for detecting bag-
gage exchange is presented in detail. In places such as airports, railway sta-
tions, and bus stands, the exchange of baggages are observed. As shown in
Figure 8.1, the proposed baggage detection algorithm has the following steps:
a. Object detection using GMM
b. Tracking using Kalman filter
c. Labeling of different objects
d. Identification of baggage and person
f. Warning system in case of exchange

8.3.1 Object Detection Using GMM

In order to extract moving objects from a video sequence, the current frame
is subtracted from the background model. For modeling the background, the
GMM-based background model can be used. The background modeling in-
volves developing an algorithm that is able to detect the required object ro-

FIGURE 8.1: Flow chart for baggage exchange detection
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bustly. It should also be able to handle various changes, such as change in the
illumination.

8.3.1.1 Background Subtraction

The simplest approach to detecting moving objects is to compare back-
ground image Bt(x, y) with the current frame It(x, y) obtained at the time t.
The objects can be extracted simply by subtracting each pixel in B(x, y) from
the same location as the pixel in It(x, y), as shown by Equation 8.1.

Ft(x, y) = It(x, y)−Bt(x, y) (8.1)

This difference in the image would only show some intensity for the pixel
locations that have changed in the two frames. Although we have seem-
ingly removed the background, this approach will only work for cases where
all foreground pixels are moving and all background pixels are static. A
threshold is put on this image difference to improve the subtraction as
|Ft(x, y) − Ft−1(x, y)| > Threshold. The accuracy of this approach depends
on the speed of movement in the scene. Faster movements may require higher
thresholds.

FIGURE 8.2: This is the case of a person who left his bag, and he, himself,

picks up the bag he left. Since this is the normal case, the bounding box color

is green. (See ebook for color.)
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8.3.1.2 Gaussian Mixture Model

In this model, input pixel is compared to the mean µ of the associated
components. If the value of a pixel is close enough to a chosen component’s
mean, then that component is considered to be the matched component. In
order to be a matched component, the difference between the pixels and mean
must be less than compared to the component’s standard deviation scaled by
factor D in the algorithm. Gaussian weight, mean, and standard deviation
(variance) are updated to reflect the new obtained pixel value. In relation to
non-matched components, the weights π decrease whereas the mean and stan-
dard deviation stay the same. It is dependent upon the learning component
‘p’ in relation to how fast they change. Thus it is identified which components
are parts of the background model. To do this, a threshold value is applied
to the component weights π. Finally, the foreground pixels are determined.
Here the pixels that are identified as foreground do not match with any com-
ponents determined to be part of the background. Mathematically, GMM is
the weighted sum of a number of Gaussians where the weights are determined
by a distribution π.

p(x) = π0N(x|µ0,Σ0) + π1N(x|µ1,Σ1) + .....+ πkN(x|µk,Σk) (8.2)

FIGURE 8.3: This is the case of the unattended bag picked up by another

person. As soon as the bag is picked up by another person, the bounding box

color changes to red as a warning signal. (See ebook for color.)
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where
k∑
i=0

πi = 1 (8.3)

p(x) =
k∑
i=0

πiN(x|µi,Σi) (8.4)

where the ith vector component is characterized by normal distributions with
weights πi, means µi, and covariance matrices Σi.

8.3.2 Tracking Using a Kalman Filter

A Kalman filter is used to estimate the state of a linear system where the
state is assumed to be distributed as a Gaussian function. The Kalman filter
is a recursive predictive filter that is based on the use of state space techniques
and recursive algorithms. To improve the estimated state, the Kalman filter
uses measurements that are related to the state. Kalman filtering is composed
of two steps: prediction and correction.

In the first step, the state is predicted with the dynamic model. The pre-
diction step uses the state model to predict the new state of the variables.
Sometimes when a foreground object goes behind an object, we cannot see
it. A Kalman filter deals with this type of occlusion problem. It identifies the
objects and also determines the predicted path using the particle’s dynamic
features (like displacement, velocity, and acceleration) and their weight.

8.3.3 Labelling of Different Objects

Now we need to label each object. The purpose here is to identify objects
with their labels. For labeling, first we find the blobs of different objects. Then
we apply bounding blobs around them. For each blob, one label is assigned
and the same label is assigned to his/her bag. This helps us to identify the
person corresponding to each bag left behind.

8.3.4 Identification of Baggage and Person

For labeling purposes, it is necessary to search for bags separately be-
cause the tracking model does not differentiate between people and bags. The
baggage detection process uses the output of the tracking model and the fore-
ground segmentation for each frame as input, identifies the baggage items,
and determines when they are abandoned. The output of the tracking model
contains the number of objects, their identities and locations, and parameters
of the bounding boxes. The baggage detection process relies on following three
important assumptions:
1) Baggage items probably do not move.
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2) Baggage items probably appear smaller than people.
3) Baggage items must have an owner.
The algorithm finds the centroid of all the objects present as soon as baggage
is detected. At that time, the distance between the centroid of the bag and
centroid of the person who left the bag is calculated. If it is less than some
threshold value, the identification number (ID) of the person is assigned to
that bag.

8.3.5 Warning System in Case of Exchange

Now, if the bag is lifted by any other person, then it should show a warn-
ing sign. The label corresponding to the person and baggage will help us to
find whether the bag belongs to the same person or not. The bag left will
have a blob of itself. If a person approaches the bag and if his/her blob gets
combined for time (t > t0), then the system should match his/her IDs. If IDs
are matched, then it’s all right; otherwise the alarm should get activated.

8.3.6 Results

The successful results of two cases are shown in Figure 8.2 and Figure 8.3.
Case 1: A person left his bag and he himself picks up the bag. So we do not
get any warning here. The snapshot of the output video is shown in Figure 8.2
Case 2: The unattented bag is picked up by another person. We get a warning
in this case. The snapshots are shown in Figure 8.3.

FIGURE 8.4: Flow chart of proposed fence-crossing detection approach
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8.4 Fence-Crossing Detection

Detection of a person climbing a fence is a very important event con-
sidering the security of borders, restricted zones, airports, railway stations,
shopping malls, and even residential bulidings. Protecting the restricted area
surrounded by the fence from an intruder is a very important activity from a
surveillance point of view. In [30], Kolekar et al. have presented an approach
to automatically detecting the person crossing a fence. A fence-climbing event
involves walking, climbing up, and climbing down activities. Figure 8.4 shows
the flow chart of the proposed fence-crossing algorithm. First, the moving per-
son is detected by the background subtraction algorithm and a blob is placed
around the moving person. Then, the centroid of the blob is computed and its
variations along the frames are considered as features. A SVM-based classi-
fier is used for detection of walking, climbing up, and climbing down activities.

8.4.1 Proposed Fence-Crossing Detection System

8.4.1.1 Foreground Extraction

Foreground extraction is performed by separating out foreground objects
from the background in the video sequence. For any human activity recog-
nition, the first step is the extraction of the moving targets from a given
video stream. The segmentation of moving objects of interests from the scene
makes our life easier since it reduces computations. Outdoor environments
create many problems in activity recognition because of sudden illumination
changes, small motion in the background such as tree leaves, and occlusion.
The fundamental approach for foreground segmentation is to subtract the
given input frame from the estimated background and apply a threshold to
the absolute difference to get the foreground region. Estimation of background
can be done by frame averaging or GMM [56], [24]. The simplest approach is
to use the averaging method of background modeling as follows:

Bt(x, y) =
1

N

N∑
k=1

It−k(x, y) (8.5)

where Bt(x, y) is the background image at time t,
It(x, y) is the frame at time t,
N is the total number of frames.

After estimating the background, it extracts the foreground by subtract-
ing the current background image from the current frame. The foreground
extracted image will contain spurious pixels, holes, blurring and many other
anomalies. To remove these anomalies from the region of interests (ROI), mor-



166 Intelligent Video Surveillance Systems: An Algorithmic Approach

phological operations are performed.

8.4.1.2 Feature Extraction and Selection

In activity recognition, we select distinct features to differentiate between
different activities, such as walking, climbing up, and climbing down. Good
feature selection helps in simplifications of the model such that it can be eas-
ily interpreted by the users. In the proposed scheme, we have selected five
centroid-based features for classifying the activities that are listed in Table
8.2. The centroid of the target is computed as follows:

xc =
1

Nb

Nb∑
i=1

xi (8.6)

yc =
1

Nb

Nb∑
i=1

yi (8.7)

where xc, yc is the centroid of target, Nb is the number of boundary points.

TABLE 8.2: Features
Features Explanation
xc x-coordinate of the centroid of the detected blob
yc y-coordinate of the centroid of the detected blob
xc − yc Difference between the centroid coordinates
xc,1 − xc,i Difference between the x-coordinates of all the cen-

troids of all the target frames. Here i=1,2...T. T is

the total number of blobs
yc,1 − yc,i Difference between the y-coordinates of all the cen-

troids of all the target frames. Here i=1,2...T. T is

the total number of blobs

8.4.1.3 SVM Classifier

An SVM-based classifier is used to classify activities such as walking, climb-
ing up, and climbing down. SVM is a statistical method-based powerful clas-
sifier that categorizes the extracted activities into two different classes [31].
In general, it creates a hyperplane or hyperplanes that act as a boundary be-
tween all the input classes. The minimum distance between any training data
points of two classes is called the margin. Large distance provides a greater



Surveillance Systems and Applications 167

margin and the lower generalization error of the classifier. Kernel-based SVM
classifiers are used to separate training data, which involves complex geometry
of the hyperplane. These classifiers can be defined by

fx = sign

Nb∑
i=1

xi (8.8)

The radial basis function kernel (RBF kernel) is used in this case.

8.4.2 Experimental Results

Figure 8.5 shows the result of successful detection of a human crossing
the fence activity presented in [30]. The proposed method is shape and angle
invariant and requires low computation time. It will also be cheaper than a
sensor-based detection system. However, this model fails in a multi-person
scenario as occlusion causes difficulties in extraction of features. Hence, the
proposed algorithm can be made robust by using a Kalman filter for handling
the occlusion problem.

FIGURE 8.5: Climbing up and down a fence activity detection result
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8.5 Military Applications

The applications of video surveillance for military purposes include pa-
trolling national borders, monitoring of the flow of refugees, monitoring ad-
herence to peace treaties, and providing secure perimeters around military
bases. During war, these surveillance cameras act as a second pair of eyes on
the battlefield, which helps to save the life of many soldiers. Hence the use of
CCTV in the military is of extreme importance.

A military base is one of the most monitored places in any country. There
are many things to monitor, such as who is coming into military bases and
who is going out. Nowadays, aerial cameras are of great importance for mil-
itary purposes. A camera mounted on the bottom of a drone can be used to
acquire images and videos of the battlefield, and helps to save the lives of sol-
diers. It can also be used as a scouting tool. The drone can fly over a hostile
area and inform the troops on the ground of danger. The troops now know
what to expect, and the best points of entry and exit to save lives. Hence,
CCTV-based surveillance is very useful to the military.

8.5.1 The Need for Automation

Nowadays, acquiring a video sequence is very easy, but finding human
operators to observe the video screen continuously is expensive. There is a
need to automatically collect and extract important activities from battlefield
videos and disseminate this information to improve the situational awareness
of commanders and staff. Automated video surveillance is very useful in mili-
tary applications such as providing perimeter security for troops, monitoring
whether peace treaties are honored, monitoring refugee movements, and pro-
viding security to airports.

In 1997, the Defence Advanced Research Projects Agency (DARPA) In-
formation Systems Office began a program of three years’ duration to de-
velop a video surveillance and monitoring (VSAM) system. The main aim of
VSAM was to develop automated video understanding technology for battle-
field surveillance applications. Under this project, technology was developed
to enable a single operator to monitor activities over a broad area using a
distributed network of video sensors.

A team composed of the Carnegie Mellon University Robotics Institute
and the Sarnoff Corporation were selected to lead the technical efforts for de-
veloping a wide range of advanced surveillance techniques: real-time moving
object detection and tracking, recognition of generic object classes such as
humans, trucks, and specific object types, such as campus police car, object
pose estimation with respect to a geospatial site model, active camera control
and multi-camera coordination, multi-camera tracking, human gait analysis,
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and dynamic scene visualization.

8.5.2 Basic Design of Surveillance Systems

The basic design suggested in [4] for the use of multisensor surveillance
is shown in Figure 8.6. Realistically, it is not possible for a single sensor to
monitor a scene considering the cases for limited FOV and the possibility of
occlusion of objects that are being monitored. But as every coin has two sides,
multisensory surveillance has its own set of challenges, which include how to
fuse the information from multiple sensors, how to enable the multiple sensors
to track objects cooperatively, and monitoring when further actions should be
triggered.

Central to the prototype design is the concept of smart sensors. Smart sen-
sors are independently capable of performing real-time detection of objects
and their activities. Since the focus of [4] was to eliminate user interaction,
there is a requirement of advanced algorithms that fuse sensor data, tasking of
sensors to perform autonomous cooperative behaviors, and displaying results
in a comprehensible form to the human operator. For this, through a process
known as geolocation, every object observation from each sensor is mapped
from the camera-centric image-space of the sensor into 3-D geodetic coordi-
nates (latitude, longitude, and elevation). These geolocated objects are then
compared with the previous hypotheses, and based on that, the hypotheses
are updated.

FIGURE 8.6: Basic design of surveillance systems for military application
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Sensor tasking is done based on an arbitration function that determines
the cost of assigning a task to each sensor based on task priority, the load on
each sensor, and visibility of the objects from each sensor. The system per-
forms a greedy optimization of the cost to determine which tasking of sensors
maximizes the overall system’s performance.

8.6 Transportation

8.6.1 Road Transportation

Nowadays, for controlling traffic, an automatic traffic light controlled by
timers and electrical sensors is used. In a traffic light, for each phase is a
constant numerical value loaded into the timer. Based on that, the lights are
automatically turned on and off. Using electronic sensors is another way to
detect vehicles and produce signals. In this method, the time is being wasted
by a green light on an empty road. Traffic congestion also occurred while us-
ing the electronic sensors for controlling the traffic. To remove these problems,
video-based surveillance systems can be used. These systems not only control
the traffic, but also detect activities such as collision of vehicles, accidents,
and wrong entry by vehicles.

8.6.2 Rail Transportation

Maintaining efficient rail operation at the highest levels of customer sat-
isfaction are important benchmarks for modern railways working in a com-
petitive market. Many rail operational areas are already well covered with
dedicated telecommunication solutions, passenger information systems, and
railway multi-service bearer networks. Video surveillance solutions for rail-
ways is a further area that helps railways to achieve their operational targets.
Digital video surveillance provides direct access to information relevant to su-
pervising and adapting ongoing railway operation. Automatic processing of
this information can be used to provide decision criteria for traffic scheduling,
passenger safety, and crowd management inside stations and on platforms.
Modern video analysis tools access these video streams and can automatically
provide supportive information relevant to disaster prevention, access control
for passenger and freight services on board and to ground-based staff. The key
benefits of any intelligent video surveillance system for railways are:
i) Intelligent analysis: identification, counting crowd density, automated
alarms
ii) Video playback and post-incident analysis
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iii) Opening interface architecture to integrate existing surveillance infrastruc-
ture
iv) Emergency incident support: Making decisions quickly and handling emer-
gencies efficiently thanks to information obtained from video sources.

8.6.3 Maritime Transportation

Over the years, maritime surveillance has become increasingly important
because of the increased threat of piracy. While radar systems have been ex-
tensively used in maritime environments, these generally require large metallic
targets. Modern pirates favor small, fast, non-metallic boats that are difficult
to detect. Hence, to detect such boats of pirates, manual detection using ded-
icated crew members on board is used. Since the attention level of humans
is limited, automated video surveillance systems are employed to constantly
monitor camera feeds and detect the boats of pirates around the ship. Mar-
itime surveillance has great impact on security, the economy, and the environ-
ment. With the growing use of maritime transport, and an increase in pirate
attacks, there is a need for automated video surveillance systems to monitor
activities such as trafficking of prohibited substances, illegal immigration and
fishing, terrorist attacks at port areas, and collisions between marine vehicles.
Since about 80% of world trade is carried by sea transport, the attacks against
marine vehicles is one way to hurt the economy of a country. Hence, efforts
have been made worldwide for the development of maritime surveillance sys-
tems.

The European projects AMASS (Autonomous Maritime Surveillance Sys-
tem) [61] and MAAW (Maritime Activity Analysis Workbench) [17] are mar-
itime surveillance systems based on cameras. Many research groups are also
working on maritime surveillance systems. Hu et. al [21] present a visual
surveillance system for cage aquaculture that automatically detects and tracks
intruder ships. Also, a robust foreground detection and background updating
technique has been proposed to effectively reduce the influence of sea waves
and improve the performance of detection and tracking of ships.

8.6.3.1 Challenges in Maritime Transportation

The main challenges in maritime transportation are as follows:
1) Conventional algorithms for detection and tracking vessels on video do not
produce efficient results in a maritime environment, since the background is
quite dynamic.
2) The dynamic and unpredictable appearance of the ocean makes detection
and tracking a little difficult.
3) The quality of images captured by the cameras may not be good because
of environmental conditions such as storms and haze.
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4) The white foam on the water surface caused by the waves, the sunlight re-
flection, and the change in lighting conditions hinder the detector and tracker.
5) The performance of detector and tracker also degrades due to low contrast
of the image captured by the cameras and the presence of fog.

8.7 Summary

In this chapter, various approaches for surveillance systems are discussed.
Researchers can use the techniques discussed in this chapter to develop robust
systems for various commercial applications. The overall scope of surveillance
systems for various domains, such as military applications and transportation,
is presented in this chapter.

Video surveillance systems for road and rail transport are discussed in brief
in this chapter. Nowadays, maritime video surveillance systems are used to
increase coastal and ship security against hostile vessel attacks. They can also
be used to control maritime traffic and avoid collisions at ports. The general
tracking algorithms seem not to perform well in real situations when little
vessels that have low contrast with the background arise in the camera’s field
of view. The problem of maritime video surveillance has not yet been solved
completely, and needs to be explored further.
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