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vices. By controlling the peak power, the negative influence of signals with high
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describes the tools necessary for analyzing and controlling the peak-to-average

power ratio in MC systems, and how these techniques are applied in practical

designs. The author starts with an overview of MC signals and basic tools and
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tinuous maxima; statistical distribution of peak power, and codes with constant

peak-to-average power ratio are all covered, concluding with methods to decrease
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Introduction

In the mountains the shortest way is from peak to peak, but for that route
thou must have long legs.

F. Nietzsche, Thus Spake Zarathustra

Multicarrier (MC) modulations such as orthogonal frequency division multiplexing

(OFDM) and discrete multitone (DMT) are efficient technologies for the implemen-

tation of wireless and wireline communication systems. Advantages of MC systems

over single-carrier ones explain their broad acceptance for various telecommunica-

tion standards (e.g., ADSL, VDSL, DAB, DVB, WLAN, WMAN). Yet many more

appearances are envisioned for MC technology in the standards to come. A rela-

tively simple implementation is possible for MC systems. Low complexity is due to

the use of fast discrete Fourier transform (DFT), avoiding complicated equalization

algorithms. Efficient performance of MC modulation is especially vivid in channels

with frequency selective fading and multipath. Nonetheless, still a major barrier for

implementing MC schemes in low-cost applications is its nonconstant signal enve-

lope, making the transmission sensitive to nonlinear devices in the communication

path. Amplifiers and digital-to-analog converters distort the transmit signals leading

to increased symbol error rates, spectral regrowth, and reduced power efficiency

compared with single carrier systems. Naturally, the transmit signals should be re-

stricted to those that do not cause the undesired distortions. A reasonable measure of

the relevance of the signals is the ratio between the peak power values to their aver-

age power (PAPR). Thus the goal of peak power control is to diminish the influence

of transmit signals with high PAPR on the performance of the transmission system.

Alternatives are either the complete exclusion of such signals or an essential de-

crease in the probability of their appearance. Neither of these goals can be achieved

without a decrease in the efficient transmission rate or performance penalty.

In this monograph I describe methods of analysis and control of peak power ef-

fects on the performance of MC communication systems. This includes analysis of

1



2 Introduction

statistical properties of peak distributions in MC signals, descriptions of MC signals

with low peaks, and approaches to decreasing high peaks in transmitted signals.

Consequently, the organization of the book is as follows. In Chapter 2, I provide

general definitions related to MC communication systems and MC signals, and

introduce the main definitions related to peaks of MC signals. This is followed by a

description of nonlinearities in power amplifiers and their influence on the perfor-

mance. In Chapter 3, necessary mathematical tools are described. This is necessary

since the mathematical arsenal of the peak power control research consists of many

seemingly unrelated methods. Among them are harmonic analysis, probability, al-

gebra, combinatorics, and coding theory. In Chapter 4, I explain how the continuous

problem of peak estimation can be reduced to the discrete problem of analysis of

maxima in the sampled MC signal. Chapter 5 deals with statistical distribution of

peaks in MC signals. It is shown that the peak distribution is concentrated around

a typical value and the proportion of signals that are essentially different from the

typical maximum of the absolute value is small. Chapter 6 extends the analysis of

the previous chapter to MC signals defined by coded information. In Chapter 7, I

describe methods to construct MC signals with much smaller peaks than is typical.

Finally, in Chapter 8, I analyze approaches for decreasing peaks in MC signals.

Several algorithms are introduced and compared. Notes in the end of each chapter

provide historical comments and attribute the results appearing in the chapter.

Several related topics are not treated in this monograph. For peak power control

in CDMA see, e.g., [43, 64, 118, 228, 230, 231, 285, 299, 300, 308, 309, 324,

325, 326, 363, 421, 422, 423, 445] and references therein. Peak power reduction

in MIMO systems is discussed in, e.g., [1, 66, 67, 154, 234, 235, 241, 278, 338,

389, 395, 411, 456]. For analysis of peak power control in OFDMA see, e.g., [154,

315, 427, 453]. Aspects of peak power reduction in radar systems are considered in

[55, 236, 237, 238, 279, 430]. Peak power control in optical signals is considered

in [371, 375].

In the process of writing the book I enjoyed advice, ideas and assistance from

many friends and collaborators. Their expertise was crucial in determining the best

ways of presenting the material and avoiding wrong concepts and mistakes. Here is

a definitely incomplete (alphabetical) list of colleagues without whose kind support

this book would definitely not have been written: Idan Alrod, Ella Barzani, Gregory

Freiman, Masoud Sharif, Eran Sharon, Alexander Shpunt, Dov Wulich, Gerhard

Wunder, and Alexander Yudin.

I also wish to thank the staff and associates of Cambridge University Press for

their valuable assistance with production of this book. In particular I am grate-

ful to editorial manager Dr. Philip Meyler, assistant editors Ms. Emily Yossarian

and Ms. Anna Littlewood, production editor Ms. Dawn Preston, and copy editor

Dr. Alison Lees.
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Multicarrier signals

In this chapter, I introduce the main issues we will deal with in the book. In

Section 2.1, I describe a multicarrier (MC) communication system. I introduce

the main stages that the signals undergo in MC systems and summarize advantages

and drawbacks of this technology. Section 2.2 deals with formal definitions of the

main notions related to peak power: peak-to-average power ratio, peak-to-mean

envelope power ratio, and crest factor. In Section 2.3, I quantify the efficiency of

power amplifiers and its dependence on the power of processed MC signals. Sec-

tion 2.4 introduces nonlinear characteristics of power amplifiers and describes their

influence on the performance of communication systems.

2.1 Model of multicarrier communication system

The basic concept behind multicarrier (MC) transmission is in dividing the avail-

able spectrum into subchannels, assigning a carrier to each of them, and distributing

the information stream between subcarriers. Each carrier is modulated separately,

and the superposition of the modulated signals is transmitted. Such a scheme has

several benefits: if the subcarrier spacing is small enough, each subchannel exhibits

a flat frequency response, thus making frequency-domain equalization easier. Each

substream has a low bit rate, which means that the symbol has a considerable dura-

tion; this makes it less sensitive to impulse noise. When the number of subcarriers

increases for properly chosen modulating functions, the spectrum approaches a

rectangular shape. The multicarrier scheme shows a good modularity. For instance,

the subcarriers exhibiting a disadvantageous signal-to-noise ratio (SNR) can be

discarded. Moreover, it is possible to choose the constellation size (bit loading) and

energy for each subcarrier, thus approaching the theoretical capacity of the channel.

Figure 2.1 presents the structure of a MC transmitter. Let n be the number of

subcarriers in this system. The following processing stages are employed to derive

the transmit signal. Redundancy defined by an error-correcting code is appended to

3



4 Multicarrier signals

S/P Mapping  IDFT
Cyclic
prefix

P/S

serial/parallel parallel/serial

D/A Channel

LPF

low-pass
filter

    HPA UC

Coding

digital/analog high-power
amplifier

up conversion

Figure 2.1 MC transmitter

the input information. The encoded data is converted to parallel form, and is mapped

to n complex numbers defining points in the constellation used for modulation (e.g.,

QAM or PSK). These n complex numbers are inserted into an inverse discrete

Fourier transform (IDFT) block, which outputs the time equidistributed samples of

the baseband signal. The next block introduces a guard interval (GI) intended for

diminishing the effect of the delay of the multipath propagation. The guard interval

is usually implemented as a cyclic prefix (CP). Because of the CP, the transmit signal

becomes periodic, and the effect of the time-dispersive multipath channel becomes

equivalent to a cyclic convolution, discarding the GI at the receiver. Thus the effect

of the multipath channel is limited to a pointwise multiplication of the transmitted

data constellations by the channel transfer function, that is, the subcarriers remain

orthogonal. Being converted back to the serial form, the samples are transformed

by a low-pass filter (LPF) to give a continuous signal. This continuous signal is

amplified by a high-power amplifier (HPA). Finally, if necessary, the baseband

signal becomes passband by translation to a higher frequency. The reverse steps are

performed by the receiver.

Implementation advantages of the MC communication system come from the

simple structure of the DFT, which can be realized with a complexity proportional

to n ln n. Also, the equalization required for detecting the data constellations is

an elementwise multiplication of the DFT output by the inverse of the estimated

channel transfer function.
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Figure 2.2 Envelope of a BPSK modulated MC signal for n = 16

However, several disadvantages arise with this concept, the most severe of which

is the highly nonconstant envelope of the transmit signal (see Fig. 2.2), making MC

modulation very sensitive to nonlinear components in the transmission path. A key

component is the high-power amplifier (HPA). Owing to cost, design, and, most

importantly, power efficiency considerations, the HPA cannot resolve the dynamics

of the transmit signal and inevitably cuts off the signal at some point, causing ad-

ditional in-band distortion and adjacent channel interference. The power efficiency

penalty is certainly the major obstacle to implementing MC systems in low-cost

applications. Moreover, in power-limited regimes determined by regulatory bod-

ies, the average power is reduced in comparison to single-carrier systems, in turn

reducing the range of transmission.

The main goal of peak power control is to diminish the influence of high peaks

in transmit signals on the performance of the transmission system.

2.2 Peak power definitions

Let me give a more detailed description of the signals in the MC communi-

cation system. Denote by n the number of subcarriers (tones). The system re-

ceives at each time instant 0, ϒ, 2ϒ, . . . a collection of n constellation symbols ak ,

k = 0, . . . , n − 1, where ak ∈ C, carrying the information to be transmitted. The

subset Q of possible values of ak depends on the type of the carrier modulation.

The most popular complex constellations are BPSK, M-QAM, and M-PSK. We

assume

BPSK = {−1, 1},
M-QAM =

{
A ((2m1 − 1) + ı (2m2 − 1)) , m1, m2 ∈

{
−m

2
+ 1, . . . ,

m

2

}}
,
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16–QAMQPSK

Figure 2.3 Examples of standard constellations

for natural numbers m > 1, M such that M = m2 and A2 = 3
2

(M − 1), and

M-PSK = {
1, e

2π ı
M , . . . , e

2π ı(M−1)
M

}
for M > 2 and ı = √−1. With such normalization, the average energy of a constel-

lation point is 1. Notice that the (envelope) power of all M-PSK signals is the same

and equals n. Another example of signals with equal power is provided by spher-
ical constellations for which the only imposed restriction is that

∑n−1
k=0 |ak |2 = n.

However, e.g., for MC signals using M-QAM, with M > 4, there are signals having

different power. In the case of constellation points of varying energy, we scale the

signal in such a way that the average energy is normalized to 1,

Eav = Eav(Q) = 1

|Q|
∑
a∈Q

|a|2 = 1. (2.1)

We denote the maximum energy of a constellation point by Emax = Emax (Q),

where

Emax = max
a∈Q

|a|2. (2.2)

Let f0 be the carrier frequency and fs be the bandwidth of each tone. Ignoring

the possibility of assigning a guard time (which is a common assumption) we set

fs = 1
ϒ

. The transmitted signal on the interval t = [
0, 1

fs

)
is then represented by

the real part of

Sa(t) =
n−1∑
k=0

ake2π ı( f0+k fs )t . (2.3)

The instantaneous power of the transmit signal is (�(Sa(t)))2, while |Sa(t)|2 is

called the envelope power. Denoting ζ = f0

fs
and considering the signal on the

interval [0, 1), we have the following definition for the peak-to-average power
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ratio of Sa(t):

PAPR(a) = 1∑n−1
k=0 |ak |2

· max
t∈[0,1)

∣∣∣∣∣�
(

n−1∑
k=0

ake2π ı(ζ+k)t

)∣∣∣∣∣
2

. (2.4)

It is straightforward that

PAPR(a) ≤ PMEPR(a) = 1∑n−1
k=0 |ak |2

· max
t∈[0,1)

|Fa(t)|2 , (2.5)

where

Fa(t) =
n−1∑
k=0

ake2π ıkt , (2.6)

and PMEPR stands for the peak-to-mean-envelope-power ratio. Another often con-

sidered parameter is the crest factor (CF) which is just the square root of PMEPR,

CF(a) =
√
PMEPR(a) . (2.7)

Although PMEPR provides an upper bound on PAPR, it is quite accurate for big

values of ζ . Indeed, in the definition of PAPR we use (�(Sa(t)))2, while |e2π ıζ t Sa(t)|2
is used for PMEPR. If ζ is large, a tiny change in t drastically modifies the phase

of e2π ıζ t Sa(t) while the value and phase of band-limited Sa(t) does not change

significantly. Thus just in the very close vicinity of t0 in which the maximum of

|Sa(t)| is attained, it is possible to find t1 such that e2π ıζ t1 Sa(t1) is real and |Sa(t1)|
is very close to |Sa(t0)|. This analysis will be quantified later in Section 4.6.

In what follows, we will often consider a situation when the vector a belongs to

a discrete set C ⊂ C
n , of size |C|, called code. In this context, assuming that all the

code words are equiprobable, we define the average power of an MC signal from

code C as

Pav(C) = 1

|C|
∑
a∈C

n−1∑
k=0

|ak |2. (2.8)

Consequently,

PAPR(C) = 1

Pav(C)
· min

a∈C
max

t∈[0,1)
|� (Sa(t))|2 , (2.9)

where Sa(t) is defined in (2.3), and

PMEPR(C) = 1

Pav(C)
· min

a∈C
max

t∈[0,1)
|Fa(t)|2 , (2.10)
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where Fa(t) is defined in (2.6). Finally,

CF(C) = 1√
Pav(C)

· min
a∈C

max
t∈[0,1)

|Fa(t)| . (2.11)

The expressions become especially simple if all the signals have the same energy

n or when the coefficients are drawn independently from a constellation Q scaled

such that the average energy of a constellation point is 1. Then

PAPR(C) = 1

n
· min

a∈C
PAPR(a),

PMEPR(C) = 1

n
· min

a∈C
PMEPR(a),

CF(C) = 1√
n

· min
a∈C

CF(a).

We measure PAPR and PMEPR in decibels (dB), using 10 lgPAPR(a) or

10 lgPMEPR(a) as an indication of the quality of a signal a. Correspondingly,

for CF we will replace the factor of 10 by 20. Notice that the maximum of an MC

signal in an n-carrier system is n, thus the maximum of PAPR and PMEPR is n
while the maximum CF is

√
n, which corresponds to 10 lg n.

Example 2.1 Let n = 4, and a = (1, −1, −1, 1). Then

Fa(t) = 1 − e2π ı t − e4π ı t + e6π ı t .

The maximum of |Fa(t)|2 can be determined as follows. Indeed,

|Fa(t)|2 = (1 − cos 2π t − cos 4π t + cos 6π t)2

+ (− sin 2π t − sin 4π t + sin 6π t)2.

Differentiating and equating the result to zero, after simple trigonometric manipu-

lations, we reduce the problem to finding a solution to

1 + 2 cos 2π t − 3 cos2 2π t = 0.

Thus the maximum of |Fa(t)|2 occurs when

t = 1

2π
arccos

(
−1

3

)
= 0.304086,

and equals 9.48148. This corresponds to

10 lg
9.48148

4
= 3.74816 dB.
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6 7 8 9 10 11 12 13

λ (dB)

−6

−5

−4

−3

−2

−1

−0

lg
 P

r 
(P

M
E

P
R

 >
 λ

)

256 QPSK

1024 QPSK

Figure 2.4 CCDFs of PMEPR of MC signal with 256 and 1024 QPSK modulated
subcarriers

Another widely used characterization of MC signals deals with the probabilistic

distribution of peak power values. Namely, we will be using the complementary

cumulative distribution function (CCDF) of PAPR, PMEPR or CF. For instance,

in the case of PMEPR, CCDF is just the probability that PMEPR of a randomly

chosen MC signal exceeds a predefined threshold λ, Pr(PMEPR > λ). An example

of such CCDF for a QPSK modulated MC system with 256 and 1024 subcarriers

is presented in Fig. 2.4.

Example 2.2 For n = 4 and BPSK modulation, Table 2.1 contains the list of

PMEPR values for all possible sequences. In this situation (in contrast with large

values of n) we are able to find the explicit distribution of probabilities of PMEPR,

PMEPR dB 2.48 3.75 6.02

Probability 1/2 1/4 1/4

There are several possible goals of the peak power control:

� Restriction of the set of used MC signals to those with peaks not exceeding a prescribed

level;
� Restriction of the set of used MC signals in such a way that the probability of having a

peak exceeding a prescribed level is much smaller than in the unrestricted set;
� Modification of the used MC signals in such a way that the probability of errors in the

reconstructed coefficient vector is small, while at the same time the peaks are bounded

with high probability.

Which of the goals is to be addressed depends on the system requirements and

regulations.
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Table 2.1 PMEPRs for n = 4 and BPSK modulation

Vector a PMEPR(a) (dB)

−1 −1 −1 −1 6.02
1 −1 −1 −1 2.48

−1 1 −1 −1 2.48
1 1 −1 −1 3.75

−1 −1 1 −1 2.48
1 −1 1 −1 6.02

−1 1 1 −1 3.75
1 1 1 −1 2.48

−1 −1 −1 1 2.48
1 −1 −1 1 3.75

−1 1 −1 1 6.02
1 1 −1 1 2.48

−1 −1 1 1 3.75
1 −1 1 1 2.48

−1 1 1 1 2.48
1 1 1 1 6.02

Pin

Pout

IBO

OBO

Pin,max

Pout,max

Figure 2.5 Input–output power characteristic of a HPA

2.3 Efficiency of power amplifiers

The perfectly linear ideal memoryless amplifier produces an output that is a multiple

of the input. In reality, there is no amplifier able to provide unlimited output.

The amplifier output is always limited to some value, called saturation. A typical

characteristic of a HPA is presented in Fig. 2.5.
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Instantaneous input back-off (IBO) and output back-off (OBO) are measured in

decibels,

IBO = 10 lg
Pin,max

Pin

,

and

OBO = 10 lg
Pout,max

Pout

,

where Pin and Pout are the instantaneous powers of the signal before and after the

HPA. The back-off definitions could easily be generalized to nonconstant envelope

signals by averaging Pin and Pout over the signal’s period.

Power amplifier efficiency is a significant factor for the efficiency of most wire-

less systems. Poor efficiency of the last power amplifier stage leads to large energy

loss, not only deteriorating system efficiency, but also exacerbating thermal issues

with the devices. Two measurements of the efficiency of HPAs are generally used.

The first one is the power supply (or DC) efficiency ηDC defined as the ratio between

output power Pout and the HPA power consumption PDC ,

ηDC = Pout

PDC
. (2.12)

As the expression for ηDC does not depend on the HPA input power, it can give,

in the case of a HPA with low gain, too optimistic a view of the HPA’s efficiency.

This is why the power-added efficiency is defined,

ηPAE = Pout − Pin

PDC
, (2.13)

with Pin being the power at HPA input.

Equations (2.12) and (2.13) characterize the efficiency in the case of constant-

envelope signals at the HPA input. For nonconstant-envelope signals defined on

[0, 1) the time-average efficiency is introduced,

η =
∫ 1

0

η(t) dt. (2.14)

Power amplifiers are commonly classified into two main groups: linear and

nonlinear HPAs. The term “linear amplifier” does not mean generally that such an

amplifier is perfectly linear, but rather that an effort is made at linear amplification of

the input signal. Within each of these groups, the amplifiers can be further classified

to a number of classes. The main types of linear amplifiers, see, e.g., [200], are A,

AB, and B. Nonlinear amplifiers belong to C, D, E, F, G, H, and S classes. I will

deal throughout with linear amplifiers.
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Figure 2.6 Efficiency as a function of output power back-off

The A, AB, and B classes are defined by the so-called conduction angle, where

the conduction angle of 2π corresponds to A class, π defines B class, and AB

is characterized by intermediate values of the angle. The efficiency grows with

reducing of the conduction angle. However, when the conduction angle decreases,

the achievable output power falls down. Figure 2.6 depicts HPA efficiency as a

function of the output power back-off for different HPA classes. As seen from the

picture, the maximum efficiency is achieved at the operation point at saturation.

In [270] the following relation between η and PMEPR of a MC signal a is given:

η = G · e−g·PMEPR(a), (2.15)

where the PMEPR is in dB, and G = 0.587, g = 0.1247 for class A, and G = 0.907,

g = 0.1202 for class B.

2.4 Models of HPA nonlinearities

Commonly used models for the nonlinearity of high power amplifiers (HPA) are

given by their amplitude dependent amplitude distortion and amplitude dependent

phase distortion conversion characteristics, e.g., [347, 351]. If the characteristics

are memoryless, the result of the conversion depends only on the current value of

the signal. Let the input signal be presented in polar coordinates,

x = ρeıψ,

and the complex envelope of the output signal be

g(x) = F(ρ)eı(ψ+	(ρ)).

Here, F(ρ) and 	(ρ) are, respectively, the AM/AM and AM/PM characteristics.
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The simplest way to characterize the nonlinear behavior of a HPA is the 1dB

compression point. It is the point where the gain of the amplifier is reduced by 1dB

with respect to the gain in its linear region.

� Soft limiter (SL)
The SL’s AM/AM and AM/PM are

F(ρ) =
{

ρ, ρ ≤ A,

A, ρ > A,

	(ρ) = 0.

It is argued in [5, 6, 181, 314] that SL is an adequate model for the nonlinearity if the

HPA is linearized by a suitable predistorter.

For MC signals we introduce the clipping ratio γ , defined as

γ = A√
Pin

, (2.16)

where Pin is the average input power of the MC signal before clipping. When γ = ∞
the signal is not distorted, while when γ tends to 0, as will be shown, the output signal

converges to the one with constant envelope.
� Rapp model

The model [337] describes accurately the conversion transform of solid-state power

amplifiers (SSPA). The AM/AM and AM/PM characteristics are:

F(ρ) = ρ(
1 + (

ρ

A

)2p
) 1

2p

,

	(ρ) = 0.

The parameter p reflects the smoothness of the transition from the linear region to the

limiting saturation region. When p grows the SSPA model converges to SL.
� Saleh model

This simple model involving two-parameter functions was suggested in [349] for describ-

ing traveling-wave tube amplifiers (TWTA). Appropriate selections for the amplitude and

phase coefficients also provide an accurate model for SSPA.

The AM/AM and AM/PM characteristics of the model are:

F(ρ) = α1ρ

1 + α2ρ2
,

	(ρ) = β1ρ
2

1 + β2ρ2
.

As an example, the set of parameters that closely matches the TWTA data given in

[349] is

α1 = 2.1587, α2 = 1.1517, β1 = 4.0330, β2 = 9.1040.

The coefficients in the model can be made frequency dependent.
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� Ghorbani model
This model is similar to Saleh’s one. It uses four-parameter functions and is claimed to fit

better the AM/AM characteristics of SSPA. The AM/AM and AM/PM characteristics

of the model are:

F(ρ) = α1ρ
α2

1 + α3ρα2
+ α4ρ,

	(ρ) = β1ρ
β2

1 + β3ρβ2
+ β4ρ.

As an example, the set of parameters that closely matches GaAs FET SSPA data [129] is

α1 = 8.1081, α2 = 1.5413, α3 = 6.5202, α4 = −0.0718

α1 = 4.6645, α2 = 2.0965, α3 = 10.8800, α4 = −0.0030.

� Polynomial model
This model uses the Taylor series with complex coefficients. The HPA output is expressed

as

g(x) = x
m∑

j=0

b j |x | j ,

for some prescribed order m.

As a result of the nonlinearity in a HPA the transmit signal alters. The main

effects on the constellation diagram are rotation, attenuation, offset, warping, and

cloud-like shape of constellation points. Moreover, nonlinear processing of the

signal in a HPA results in out-of-band radiation.

To characterize the effect of nonlinearity in a HPA on the performance of the

communication system several parameters are used. The basic ones are the error

vector magnitude (EVM), adjacent channel power ratio (ACPR), and symbol error

rate (SER) or bit error rate (BER).

The EVM evaluates the effects of nonlinearities on the constellation diagram.

For a single-carrier signal using constellation Q with Eav = 1 it is defined as:

EVM(Q) =
√

1

|Q|
∑
a∈Q

|g(a) − a|2,

where g(x) is the function describing the HPA. Let an MC signal be defined by the

coefficient vector a belonging to C ⊆ Qn , and â ∈ C
n be the vector reconstructed

from the signal after the HPA. Then the EVM can be defined as:

EVM(C) =
√

1
|C|

∑
a∈C

∑n−1
k=0 |ak − âk |2√

1
|C|

∑
a∈C

∑n−1
k=0 |ak |2

.
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The ACPR characterizes nondesirable spectral regrowth due to nonlinearities in a

HPA. The ACPR is defined as the ratio between power transmitted to an adjacent

channel and power transmitted to the main channel.

The SER characterizes the probability of an MC coefficient vector to be wrong

due to the nonlinearity in a HPA. For an â ∈ C, let ã be the closest to its constellation

point,

ã = arg min
a∈Q

|â − a|.

Let a be a coefficient vector picked from a code C ⊆ Qn , and â ∈ C
n be the coeffi-

cient vector reconstructed from the signal after HPA. Define ã ∈ Qn as the vector

consisting of the constellation points closest to the components of â. Then

SER = 1

|C|
∑
a∈C

χ (a, ã) ,

where χ (a, ã) is 1 if a 	= ã, and 0 otherwise.

Analogously we define BER. Let bin(a) be the binary vector of length m corre-

sponding to the coefficient vector a. Then

SER = 1

m|C|
∑
a∈C

d (bin(a), bin(ã)) ,

where d(·) is the number of bits in which two vectors differ.

2.5 Notes

Section 2.1 The following sources provide much more detailed treatment of mul-

ticarrier communication systems: Hanzo et al. [155], Bingham [26] and Ebert and

Weinstein [99] on general MC communications, Bahai et al. [17], Prasad [334],

van Nee and Prasad [286], Wang and Giannakis [428] on OFDM, Bingham [27],

Starr et al. [391] on DSL. These are just samples of many relevant texts.

There is an extra reason for avoiding high peaks in MC signals related to the

digital processing of the signals on the intermediate stages in the transmitter and

receiver. For instance, the number of bits necessary for representation of a signal at

the output of IDFT is a derivative of the signal’s dynamic range, and thus increases

if there are signals with high peaks. This in turn yields a complexity increase of

the Fourier and digital-to-analog transform blocks. The same occurs at the receiver

side where the signals should be processed with increased complexity due to their

excessive dynamic range.

Section 2.3 To learn more about models of amplifiers one may read, e.g., Ken-

nington [200] and Cripps [81, 82].
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Section 2.4 The memoryless models exhibit good accuracy for low powers. How-
ever, when the band of the input signal increases, more memory effects are encoun-
tered. There are two main categories of HPA models including memory – physically-
based transistor models (heating effects) and behavioral models describing the HPA
as a nonlinear function without explicit correspondence to physical phenomena. The
following are samples of models used to describe HPAs with memory:

� Saleh model with memory, where the coefficients of the Saleh memoryless model are

dependent on the frequency;
� Volterra model, where the relationship between the input and output is expressed in the

form of complex Volterra series, see [61];
� Wiener–Hammerstein model, based on the concatenation of linear dynamic system and

static nonlinearity, see [80];
� Quadrature polynomial model [92];
� Neural network model [171];
� Augmented behavioral model [13].



3

Basic tools and algorithms

In this chapter I collect the basic mathematical tools which are used throughout the

book. Most of them are given with rigorous proofs. I mainly concentrate here on

results and methods that do not appear in the standard engineering textbooks and

omit those that happen to be common technical knowledge. On the other hand, I

have included some material that is not directly used in further arguments, but I

feel that it might prove useful in further research on peak power control problems.

It should be advised that the chapter is mainly for reference purposes and may be

omitted in the first reading.

The chapter is organized as follows. Section 3.1 deals with harmonic analy-

sis. In Section 3.1.1 I describe the Parseval equality and its generalizations. Sec-

tion 3.1.2 introduces some useful trigonometric relations. Chebyshev polynomials

and interpolation are described in Section 3.1.3. Finally, in Section 3.1.4, I prove

Bernstein’s inequality relating the maximum of the absolute value of a trigonomet-

ric polynomial and its derivative. In Section 3.2 I deal with some notions related to

probability. I prove the Chernoff bound on the probability of deviations of values

of random variables. In Section 3.3, I introduce tools from algebra. In Section 3.3.1

groups, rings, and fields are defined. Section 3.3.2 describes exponential sums in

finite fields and rings. A short account of results from coding theory is presented

in Section 3.4. Section 3.4.1 deals with properties of the Hamming space. In Sec-

tion 3.4.2, definitions related to error-correction codes are introduced. Section 3.4.3

deals with the distance distributions of codes. In Section 3.4.4, I analyze proper-

ties of Krawtchouk polynomials playing an important role in the MacWilliams

transform of the distance distributions. Section 3.4.5 lists main families of error-

correcting codes. Finally, in Section 3.5, I describe a fast algorithm for estimating

the maximum element of DFT with linear complexity.

17
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3.1 Elements of harmonic analysis

We start with some very basic relations which will be used for analysis of MC

signals. Throughout we use notation ı for
√−1, a∗ for the complex conjugates of

complex a, and assume that j, k, �, m, and n are integers.

Theorem 3.1 (orthogonality)

n−1∑
k=0

e2π ık j
n =

{
0 if j ≡ 0 mod n,

n otherwise.

Proof If j ≡ 0 mod n,

n−1∑
k=0

e2π ık j
n =

n−1∑
k=0

1 = n.

Assume j �≡ 0 mod n. Using the sum of geometric progression we obtain

n−1∑
k=0

e2π ık j
n = e2π ı j − 1

e2π ı j
n − 1

= 0.

�

Theorem 3.2 (discrete Fourier transform (DFT) ) Let

F

(
j

n

)
=

n−1∑
k=0

ake2π ık j
n . (3.1)

Then

ak = 1

n

n−1∑
�=0

F

(
�

n

)
e−2π ı� k

n . (3.2)

Proof Indeed,

1

n

n−1∑
�=0

F

(
�

n

)
e−2π ı� k

n = 1

n

n−1∑
�=0

n−1∑
j=0

a j e
2π ı j �

n e−2π ı� k
n

= 1

n

n−1∑
j=0

a j

n−1∑
�=0

e2π ı� j−k
n = ak .

In the last equation we used Theorem 3.2. �

The vector (
√

na0,
√

na1, . . . ,
√

nan−1) in what follows will be addressed

as the result of DFT of
(
F

(
0
n

)
, F

(
1
n

)
, . . . , F

(
n−1

n

))
. Analogously, the vec-

tor
(

1√
n

F
(

0
n

)
, 1√

n
F

(
1
n

)
, . . . , 1√

n
F

(
n−1

n

))
is the result of inverse DFT (IDFT) of

(a0, a1, . . . , an−1).
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3.1.1 Parseval identity and its generalizations

Theorem 3.3 (Parseval identity) Let

F

(
j

n

)
=

n−1∑
k=0

ake2π ık j
n .

Then
n−1∑
j=0

∣∣∣∣F
(

j

n

)∣∣∣∣
2

= n
n−1∑
k=0

|ak |2.

Proof Indeed,

n−1∑
j=0

∣∣∣∣F
(

j

n

)∣∣∣∣
2

=
n−1∑
j=0

F

(
j

n

)
F∗

(
j

n

)

=
n−1∑
j=0

(
n−1∑
k=0

ake2π ık j
n

) (
n−1∑
�=0

a∗
� e−2π ı� j

n

)

=
n−1∑
k=0

n−1∑
�=0

aka∗
�

n−1∑
j=0

e2π ı j k−�
n

= n
n−1∑
k=0

aka∗
k = n

n−1∑
k=0

|ak |2.

�

For two complex-valued vectors a = (a0, a1, . . . , an−1) and b =
(b0, b1, . . . , bn−1) we denote by (a, b) their dot product

∑n−1
j=0 a j b∗

j , and use

‖a‖ for the norm of a,

‖a‖ =
√

(a, a) =
√√√√n−1∑

j=0

a j a∗
j =

√√√√n−1∑
j=0

|a j |2 .

Then denoting

e( j) =
(

1, e−2π ı j
n , e−2π ı 2 j

n , . . . , e−2π ı (n−1) j
n

)
,

we derive an equivalent form of the Parseval identity:

n−1∑
j=0

|(a, e( j))|2 = n‖a‖2. (3.3)

There exist many generalizations of the Parseval identity. Let me present sev-

eral useful relations when instead of mutually orthogonal vectors e( j) one uses an
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arbitrary set of M not necessarily orthogonal n-dimensional complex-valued vec-

tors. We start with proving a basic Cauchy–Schwartz inequality.

Theorem 3.4 (Cauchy–Schwartz inequality) Let a and b be arbitrary n-
dimensional complex-valued vectors. Then

|(a, b)| ≤ ‖a‖ · ‖b‖. (3.4)

Proof If (a, b) = 0, the inequality trivially holds since the right-hand side of (3.4)

is nonnegative. Assume (a, b) �= 0. Then define an auxiliary nonnegative function

of a real λ,

ϕ(λ) = ‖a + λ(a, b)b‖2 = (a + λ(a, b)b, a + λ(a, b)b).

Furthermore,

ϕ(λ) = (a, a) + λ(a, b)∗(a, b) + λ(a, b)(b, a) + λ2|(a, b)|2(b, b)

= λ2|(a, b)|2(b, b) + 2λ|(a, b)|2 + (a, a) ≥ 0.

For the last inequality to be true for all real λ it is necessary that the discriminant

of the quadratic equation be nonpositive. This is equivalent to

|(a, b)|4 − |(a, b)|2(a, a)(b, b),

which reduces to

|(a, b)|2 ≤ (a, a)(b, b),

and we are done. �

The following result is from Bombieri [34].

Theorem 3.5 Let a, c and f( j), j = 0, 1, . . . , M − 1, be arbitrary n-dimensional
complex-valued vectors. Then∣∣∣∣∣

M−1∑
j=0

c j (a, f( j))

∣∣∣∣∣ ≤ ‖c‖ · ‖a‖ ·
(

max
0≤ j≤M−1

M−1∑
�=0

|(f( j), f(�))|
) 1

2

. (3.5)

Proof We have

M−1∑
j=0

c j (a, f( j)) =
(

a,

R−1∑
j=0

c∗
j f( j)

)
.

By the Cauchy–Schwartz inequality, it implies∣∣∣∣∣
M−1∑
j=0

c j (a, f( j))

∣∣∣∣∣ ≤ ‖a‖ ·
∥∥∥∥∥

M−1∑
j=0

c∗
j f( j)

∥∥∥∥∥ . (3.6)
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Using the inequality

|c∗
k c�| ≤ 1

2

(|ck |2 + ∣∣c2
�

∣∣2)
we proceed with the second product term in the right-hand side of (3.6) as follows:∥∥∥∥∥

M−1∑
j=0

c∗
j f( j)

∥∥∥∥∥
2

=
M−1∑
k=0

M−1∑
�=0

c∗
k c�(f(k), f(�))

≤
M−1∑
k=0

|ck |2
M−1∑
�=0

|(f(k), f(�))|

≤
(

M−1∑
k=0

|ck |2
)

· max
0≤ j≤M−1

M−1∑
�=0

|(f(k), f(�))|. (3.7)

Substituting this result into (3.6) we obtain the claim. �

Corollary 3.6 Let a and f( j), j = 0, 1, . . . , M − 1, be arbitrary n-dimensional
complex-valued vectors. Then

M−1∑
j=0

|(a, f( j))|2 ≤ ‖a‖2 max
0≤ j≤M−1

M−1∑
�=0

|(f( j), f(�))|. (3.8)

Proof Set c j = (a, f( j))∗ in the previous theorem, and the claimed result follows

after division by
( ∑M−1

j=0 |(a, f( j))|2) 1
2 and squaring both sides of the inequality.

�

A similar inequality was obtained independently by Boas [30] and Bellman [24].

Corollary 3.7 Let a and f( j), j = 0, 1, . . . , M − 1, be arbitrary n-dimensional
complex-valued vectors. Then

M−1∑
j=0

|(a, f( j))|2 ≤ ‖a‖2

⎛
⎝ max

0≤ j≤M−1
‖f( j)‖ +

(
M−1∑

j,�=0; j �=�

|(f( j), f(�))|2
) 1

2

⎞
⎠. (3.9)

�
Another estimate is given by Halász [147].

Corollary 3.8 Let a and f( j), j = 0, 1, . . . , M − 1, be arbitrary n-dimensional
complex-valued vectors. Then

M−1∑
j=0

|(a, f( j))| ≤ ‖a‖
(

M−1∑
j=0

M−1∑
�=1

|(f( j), f(�))|
) 1

2

. (3.10)

Proof Choose in Theorem 3.5

c j = e−ı arg(a,f( j)), j = 0, 1, . . . , M − 1.
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In this case for the right-hand side of (3.6) we derive a bound

M−1∑
j=0

M−1∑
�=0

c∗
j c�(f( j), f(�)) ≤

M−1∑
j=0

M−1∑
�=1

|(f( j), f(�))|,

and we obtain the result by substituting this into (3.6). �

Yet another estimate is attributed to Selberg, see [275].

Theorem 3.9 Let a and f( j), j = 0, 1, . . . , M − 1, be arbitrary n-dimensional
complex-valued vectors. Then

M−1∑
j=0

|(a, f( j))|2 1∑M−1
�=0 |(f( j), f(�))| ≤ ‖a‖2. (3.11)

Proof For any complex numbers c j we have∥∥∥∥∥a −
M−1∑
j=0

c j f( j)

∥∥∥∥∥
2

≥ 0.

Therefore,

‖a‖2 − 2	
(

M−1∑
j=0

c∗
j (a, f( j))

)
+

M−1∑
j=0

M−1∑
�=0

c∗
j c�(f( j), f(�)) ≥ 0.

From (3.7) we obtain

2	
(

M−1∑
j=0

c∗
j (a, f( j))

)
≤ ‖a‖2 +

M−1∑
j=0

|c j |2
M−1∑
�=0

|(f( j), f(�))|,

and choosing

c j = (a, f( j))
1∑M−1

�=0 |(f( j), f(�))| ,

we obtain the sought result. �

Properties of DFT dealing with changing the order of summation will be useful

in some further considerations.

Theorem 3.10 If g.c.d.(�, n) = 1 and f is an arbitrary real-valued function, then

n−1∑
k=0

e2π ı f (k) =
n−1∑
k=0

e2π ı f (k�+m).

Proof Under the conditions of the theorem when k goes from 0 to n − 1,

(k� + m) mod n takes on each value from the residue system modulo n exactly

once. �
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Another useful property is related to cyclic rotation of the transformed vector.

Theorem 3.11 For an a = (a0, a1, . . . , an−1), and any j = 0, 1, . . . , n − 1, s =
0, 1, . . . , n − 1, ∣∣∣∣∣

n−1∑
k=0

ake2π ık j
n

∣∣∣∣∣ =
∣∣∣∣∣

n−1∑
k=0

a(k+s) mod n e2π ık j
n

∣∣∣∣∣ . (3.12)

Proof Indeed,

n−1∑
k=0

a(k+s) mod n e2π ık j
n = e−2π ı j s

n ·
n−1∑
k=0

ake2π ık j
n .

�

3.1.2 Useful relations

In this section I collect several relations used throughout.

Let us start with inequalities related to the absolute value. We will use, on many

occasions, the following straightforward inequality valid for any complex a, b,

|a + b| ≤ |a| + |b|. (3.13)

For estimation of the maximum of a sum the following result is useful.

Theorem 3.12 Let (a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) be two complex-
valued vectors. Then∣∣∣∣∣

n−1∑
k=0

akbk

∣∣∣∣∣ ≤
(

max
k=0,1,...,n−1

|bk |
)

·
n−1∑
k=0

|ak |.

Proof Indeed, by (3.13),∣∣∣∣∣
n−1∑
k=0

akbk

∣∣∣∣∣ ≤
n−1∑
k=0

|akbk | =
n−1∑
k=0

|ak ||bk |.

�

Theorem 3.13 Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) be two real-
valued vectors with nonnegative components. Moreover, let the components of the
vectors be sorted in the nonincreasing order, i.e.,

a0 ≥ a1 ≥ . . . ≥ an−1, b0 ≥ b1 ≥ . . . ≥ bn−1.

Then

max
π

n−1∑
k=0

akbπ (k) =
n−1∑
k=0

akbk,
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where the maximum is taken over all possible permutations π of the components
of b.

Proof Indirectly assume that in a permutation π delivering a maximum to

S = ∑n−1
k=0 akbπ (k) for some index j , 0 ≤ j ≤ n − 2, we have bπ ( j) < bπ ( j+1).

Then by exchanging the places of bπ ( j+1) and bπ ( j) we will not decrease S.

Indeed,

0 ≤ (a j − a j+1)
(
bπ ( j+1) − bπ ( j)

)
= (

a j bπ ( j+1) + a j+1bπ ( j)

) − (
a j bπ ( j) + a j+1bπ ( j+1)

)
.

�
Now I list several useful trigonometric relations.

Theorem 3.14 For any a, b ∈ R,

n−1∑
k=0

sin(ka + b) = sin (n−1)a+2b
2

· sin na
2

sin a
2

, (3.14)

n−1∑
k=0

cos(ka + b) = cos (n−1)a+2b
2

· sin na
2

sin a
2

. (3.15)

Proof We will make use of the following product-to-sum and sum-to-product

trigonometric identities:

sin x · sin y = 1

2
(cos(x − y) − cos(x + y)), (3.16)

cos x − cos y = −2 sin
1

2
(x + y) · sin

1

2
(x − y). (3.17)

Let S = sin b + sin(a + b) + sin(2a + b) + . . . + sin((n − 1)a + b). Then by

(3.16) and (3.17),

S · sin
a

2
= 1

2

(
cos

−a + 2b

2
− cos

a + 2b

2
+ cos

a + 2b

2
− cos

3a + 2b

2

+ cos
3a + 2b

2
− cos

5a + 2b

2
+ . . .

+ cos
(2n − 3)a + 2b

2
− cos

(2n − 1)a + 2b

2

)

= 1

2

(
cos

−a + 2b

2
− cos

(2n − 1)a + 2b

2

)

= sin
(n − 1)a + 2b

2
· sin

na

2
.
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For cosines we act analogously but using

sin x · cos y = 1

2
(sin(x + y) + sin(x − y)),

sin x − sin y = 2 cos
1

2
(x + y) · sin

1

2
(x − y).

�

Theorem 3.15 For any a, b ∈ R,

n−1∑
k=0

sin2(ka + b) = n

2
− cos((n − 1)a + 2b) · sin(na)

2 sin a
, (3.18)

n−1∑
k=0

cos2(ka + b) = n

2
+ cos((n − 1)a + 2b) · sin(na)

2 sin a
. (3.19)

Proof We will prove the second inequality. Indeed,

n−1∑
k=0

cos2(ka + b) = 1

2

n−1∑
k=0

(1 + cos 2(ka + b))

= n

2
+ 1

2

n−1∑
k=0

cos(k · 2a + 2b).

Now the result follows from (3.15). The second inequality follows from sin2(ka +
b) = 1 − cos2(ka + b). �

An analogous integral form is presented in the next theorem.

Theorem 3.16 ∫
sin2 x dx = x

2
− 1

4
sin 2x, (3.20)∫

cos2 x dx = x

2
+ 1

4
sin 2x . (3.21)

Proof Use sin2 x = 1
2

− 1
2

cos 2x, cos2 x = 1
2

+ 1
2

cos 2x . �

Theorem 3.17 For |t | ≤ 1
2
,

|sin π t − π t | ≤ π3t3

6
(3.22)

and

| sin π t | ≥ 2|t |. (3.23)
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Proof The first inequality follows from the sign-alternating Taylor series for sine.

The second one is due to the observation that sin π t is convex in the interval
[
0, 1

2

]
,

and thus the line connecting its extreme points lies beyond its graph. �

Theorem 3.18 For any t and positive integer n,

sin πnt

sin π t
≤ n.

Proof We will use induction. Clearly, the inequality is correct for n = 1. Assume

it holds for (n − 1). Then,

sin πnt = sin π t · cos π (n − 1)t + cos π t · sin π (n − 1)t

≤ | sin π t | + | sin π (n − 1)t |
≤ n| sin π t |.

�

We will make extensive use of Euler’s formula, which states that, for any real t ,

eı t = cos t + ı sin t. (3.24)

It follows that

cos t = 1

2
(eı t + e−ı t ), (3.25)

and

ı sin t = 1

2
(eı t − e−ı t ). (3.26)

Theorem 3.19 For any t,

|eı t − 1| ≤ t, (3.27)

|eı t − 1 − ı t | ≤ t2

2
. (3.28)

Proof Since

ı
∫ t

0

eı x dx = eı x

∣∣∣∣
t

0

= eı t − 1,

and |ıeı x | = 1, we conclude that

|eı t − 1| ≤
∣∣∣∣
∫ t

0

1dx

∣∣∣∣ = t.

Furthermore,

ı
∫ t

0

(eı x − 1) = eı t − 1 − ı t,
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and ∣∣∣∣
∫ t

0

(eı x − 1)

∣∣∣∣ ≤
∣∣∣∣
∫ t

0

xdx

∣∣∣∣ = t2

2
,

and we are done. �

3.1.3 Chebyshev polynomials and interpolation

Let θ be defined by x = cos θ , then the Chebyshev polynomials of the first and

second kind are defined for positive integer n and x ∈ [−1, 1] as

Tn(x) = cos nθ, Un(x) = 1

n + 1
T ′

n+1(x) = sin(n + 1)θ

sin θ
.

It is straightforward to show that Tn(x) and Un(x) are indeed polynomials in x of

degree n.

Lemma 3.20 For −1 ≤ x ≤ 1, and any positive integer n,

|Tn(x)| ≤ 1, |Un(x)| ≤ n + 1 . (3.29)

Proof The first inequality trivially follows from cos nθ ≤ 1. The second one fol-

lows from

sin(n + 1)θ

sin θ
= cos nθ + cos θ

sin nθ

sin θ

= cos nθ + cos θ cos(n − 1)θ + cos2 θ
sin(n − 1)θ

sin θ

=
n∑

j=0

cosi θ cos(n − i)θ.

The last sum contains n + 1 summands, each of them not exceeding 1. �

By direct substitution we check that x j = cos (2 j−1)π
2n , j = 1, 2, . . . , n, are zeros

of Tn(x), and these are all zeros since Tn(x) has degree n. Let us find the values

of the derivative of Tn(x), T ′
n(x), in the zeros of Tn(x). Indeed, differentiating

Tn(x) = cos n arccos x, we derive

T ′
n(x j ) = (−1) j−1 n + 1√

1 − x2
j

, j = 1, 2, . . . , n. (3.30)

We aim at interpolating functions from the values in zeros of Chebyshev poly-

nomials. Let a polynomial of degree at most n − 1 be defined by its values

P(x1), P(x2), . . . , P(xn). Then it can be presented in the form

P(x) = P(x1) f1(x) + P(x2) f2(x) + . . . + P(xn) fn(x), (3.31)
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where f j (x) are the fundamental interpolation polynomials,

f j (x) = 1

T ′
n(x j )

Tn(x)

x − x j
, j = 1, 2, . . . , n. (3.32)

Formula (3.31) follows from the easily checked fact that

f j (xk) =
{

0 if j �= k
1 otherwise.

Theorem 3.21 (Lagrange interpolation) Every polynomial P(x) of degree (n − 1)

can be presented as

P(x) = 1

n

n∑
j=1

(−1) j−1
√

1 − x2
j P(x j )

Tn(x)

x − x j
. (3.33)

where x j = cos(2 j − 1) π
2n , j = 1, 2, . . . , n.

Proof This follows from (3.30), (3.32), and (3.31). �

The following lemma provides a useful restriction on the maximum of

polynomials.

Lemma 3.22 Let P(x) be a polynomial of degree n − 1, satisfying for x ∈ [−1, 1],√
1 − x2 |P(x)| ≤ 1.

Then for any x ∈ [−1, 1],

|P(x)| ≤ n.

Proof For x ∈ [x1, 1], using Theorem 3.21, (3.29), and the nonnegativity of Tn(x)

in the considered interval, we deduce that

|P(x)| ≤ 1

n

n∑
j=1

Tn(x)

x − x j
= T ′

n(x)

n
= Un−1(x) ≤ n.

Analogous arguments are valid for x ∈ [−1, xn]. In the case x ∈[
xn = − cos π

2n , x1 = cos π
2n

]
we have√

1 − x2 ≥ sin
π

2n
>

2

π
· π

2n
= 1

n
.

In the last inequality we used (3.23).

3.1.4 Trigonometric polynomials and Bernstein’s inequality

A trigonometric polynomial of order m is

g(θ ) = λ0 + λ1 cos θ + μ1 sin θ + λ2 cos 2θ

+ μ2 sin 2θ + . . . + λm cos mθ + μm sin mθ,
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with the complex coefficients λ0 and λ j , μ j , j = 1, 2, . . . , m. The polynomials

with all real coefficients are called real trigonometric polynomials.

Lemma 3.23 For ak ∈ C, k = 0, 1, . . . , n − 1, an−1 �= 0,

F(θ ) =
n−1∑
k=0

akeıkθ

is a trigonometric polynomial of order (n − 1), and

FR(θ ) = 	
(

n−1∑
k=0

akeıkθ

)

is a real trigonometric polynomial of order (n − 1).

Proof Using

eıkθ = cos kθ + ı sin kθ,

we have

F(θ ) = a0 +
n−1∑
k=1

(ak cos kθ + ıak sin kθ ),

FR(θ ) = 	(a0) +
n−1∑
k=1

(	(ak) cos kθ + 	(ıak) sin kθ ).

�

Lemma 3.24 Let ak ∈ C, k = 0, 1, . . . , n − 1, an−1 �= 0, and

F(θ ) =
n−1∑
k=0

akeıkθ .

Then |F(θ )|2 is a real trigonometric polynomial of order (n − 1).

Proof Indeed,

|F(θ )|2 = F(θ )F∗(θ ) =
n−1∑
k=0

n−1∑
j=0

a j a
∗
k eı( j−k)θ .

Singling out the terms with j = k and taking into account that for every complex

a and b,

ab∗ + a∗b = 2	{ab∗},
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we have

|F(θ )|2 =
n−1∑
k=0

|ak |2 + 2	
{

n−1∑
k=0

n−1∑
j=k+1

a j a
∗
k eı( j−k)θ

}

= 	
{(

n−1∑
k=0

|ak |2
)

+
n−1∑
j=1

(
2

n− j−1∑
k=0

ak+ j a
∗
k

)
eı jθ

}
,

and the result follows from the second claim of the previous lemma. �

The following theorem from Bernstein [25] relates values of a real trigonometric

polynomial and its derivative. The proof is attributed to Fejér (see [331]).

Theorem 3.25 (Bernstein) Let g(θ ) be a real trigonometric polynomial of order
(n − 1). Then for every θ ,

|g′(θ )| ≤ (n − 1) max
θ∈[0,2π )

|g(θ )|.

Proof Let g(θ ) = λ0 + ∑n−1
k=0(λk cos kθ + μk sin kθ ), λ0, λk, μk ∈ R for k =

1, 2, . . . , n − 1. Assume that for every θ , |g(θ )| ≤ 1. Consider the function

s(�) = g(θ + �) − g(θ − �)

2
. (3.34)

Using the trigonometric identities

cos(α + β) − cos(α − β) = −2 sin α sin β,

sin(α + β) − sin(α − β) = 2 cos α sin β,

we have

s(�) =
n−1∑
k=1

ξk sin k�, (3.35)

where

ξk = −λk sin kθ + μk cos kθ.

We will now prove by induction that for k ≥ 1,

sin k� = sin � · Pk−1(cos �), deg Pk−1 = k − 1, (3.36)

cos k� = Gk(cos �), deg Gk = k, (3.37)

where P and G are polynomials, P0 = 1, P1 = 2 cos �, G1 = cos �. It is clearly

correct for k = 1, 2. For k > 2,

cos k� = cos � · cos(k − 1)� − sin � · sin(k − 1)�

= cos � · Gk−1(cos �) − sin2 � · Pk−2(cos �)

= Gk(cos �).
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Furthermore,

sin k� = sin � · cos(k − 1)� + cos � · sin(k − 1)�

= sin � · Gk−1(cos �) + cos � · sin � · Pk−2(cos �)

= sin � · Pk−1(cos �),

and (3.36) and (3.37) are proven.

Returning to (3.35) we conclude that

s(�) = sin � ·
n−1∑
k=1

ξk Pk−1(cos �) = sin � · P(cos �), (3.38)

where deg P = n − 2. Note that, by (3.34),

g′(θ ) = lim
�→0

s(�)

�
= lim

�→0

s(�)

sin �
= lim

�→0
P(cos �). (3.39)

Substituting x = cos �, x ∈ [−1, 1], into (3.38) we obtain

s(�) =
√

1 − x2 P(x).

On the other hand, by (3.34), |s(�)| ≤ 1, and application of Lemma 3.22 accom-

plishes the proof. �

Now we are ready to state the main result of the section.

Theorem 3.26 (Bernstein’s inequality for complex trigonometric polynomials)
Let ak ∈ C, k = 0, 1, . . . , n − 1, an−1 �= 0, and

F(t) =
n−1∑
k=0

ake2π ıkt .

Then

max
t∈[0,1)

|F ′(t)| ≤ 2π (n − 1) max
t∈[0,1)

|F(t)|. (3.40)

Proof Let θ = 2π t , then F(θ ) = F
(

t
2π

)
. Notice that F(θ ) is periodic with period

2π . Let |F ′(θ )| attain its maximum at θ = τ . Pick real α such that eıα F ′(τ ) is real.

Set FR(θ ) = 	(eıα F(θ )). By Lemma 3.23, FR(θ ) is a real trigonometric polynomial.

Then

1

2π
max

t
|F ′(t)| = max

θ
|F ′(θ )| = eıα · F ′(τ ) = F ′

R(τ )

≤ (n − 1) max
t

|FR(t)| ≤ (n − 1) max
θ

|F(θ )|
= (n − 1) max

t
|F(t)|.

The inequality before the last is given by Theorem 3.25. �
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3.2 Elements of probability

We start with estimates on deviations of random variables. Let X be a random vari-

able with expectation E(X ) and second central moment var(X ) = E((X − E(X ))2).

Let X take only nonnegative values.

Theorem 3.27 (Markov’s inequality) For any nonnegative random variable,
X,

Pr(X ≥ λ) ≤ E(X )

λ
.

Proof This is a proof for discrete random variables; generalization to the contin-

uous case is straightforward. Since X takes only nonnegative values,

E(X ) ≥
∑
x≥λ

x · Pr(X = x) ≥
∑
x≥λ

λ · Pr(X = x)

= λ
∑
x≥λ

Pr(X = x) = λ Pr(X ≥ λ).

�

Note that we can substitute any positive function f for X ,

Pr( f (X ) ≥ f (λ)) ≤ E( f (X ))

f (λ)
.

If, moreover, f is a nondecreasing function, we get

Pr(X ≥ λ) = Pr( f (X ) ≥ f (λ)) ≤ E( f (X ))

f (λ)
.

Theorem 3.28 (Chebyshev’s inequality) For any random variable X,

Pr(|X − E(X )| ≥ λ) ≤ var(X )

λ2
.

Proof We choose f (X ) = X2, and have

Pr(|X − E(X )| ≥ λ) ≤ Pr((X − E(X ))2 ≥ λ2)

≤ E((X − E(X ))2)

λ2
= var(X )

λ2
.

�

Let X now be a sum of n independent random variables X j , j = 0, 1, . . . , n − 1.

We denote by μ the expectation of X , and have

μ = E(X ) = E

(
n−1∑
j=0

E(X j )

)
.
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Theorem 3.29 (Chernoff bound)

Pr(X ≥ (1 + δ)μ) ≤ min
ε>0

e−ε(1+δ)μ ·
n−1∏
j=0

E(eεX j ).

Proof We pick f (X ) = eεX , and compute

Pr(X ≥ (1 + δ)μ) = Pr
(
eεX ≥ eε(1+δ)μ

) ≤ E(eεX )

eε(1+δ)μ
.

Now

E(eεX ) = E
(

eε
∑n−1

j=0 X j

)
= E

(
n−1∏
j=0

eεX j

)
=

n−1∏
j=0

E(eεX j ),

and we are done. �

In the above we essentially used the multiplicative property of the function eεx ,

namely that

eε(x+y) = eεx · eεy.

The exponential function of the purely imaginary argument,

eıεx = cos εx + ı sin εx,

also possesses this property.

Let X be a random variable having probability density function (p.d.f.), f (x).

The characteristic function ϕ of X is defined as

ϕ(ζ ) =
∫ ∞

−∞
eıζ x f (x) dx = u(ζ ) + ıv(ζ ), (3.41)

where

u(ζ ) =
∫ ∞

−∞
cos ζ x · f (x) dx, v(ζ ) =

∫ ∞

−∞
sin ζ x · f (x) dx .

In harmonic analysis, ϕ is conventionally addressed as the Fourier–Stiltjes trans-
form. The characteristic function is continuous, ϕ(0) = 1 and |ϕ(ζ )| ≤ 1 for

all ζ .

Let ϕ(ζ ) be such that there exists
∫ ∞
−∞ |ϕ(ζ )| dx . Then the p.d.f. can be computed

(inverse Fourier–Stiltjes transform) as

f (x) = 1

2π

∫ ∞

−∞
e−ıζ xϕ(ζ ) dζ. (3.42)
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3.3 Elements of algebra

In this section I only briefly go through some basic definitions and results about

finite fields and rings that are required later.

3.3.1 Main algebraic structures

Let G be a nonempty set and ◦ be a binary operation defined on G. The pair (G, ◦)

is a group if the following three properties hold:

(i) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G.

(ii) There is an identity element e such that e ◦ a = a ◦ e = a for all a ∈ G.

(iii) For every a ∈ G there exists an inverse a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.

If, furthermore,

(iv) a ◦ b = b ◦ a for all a, b ∈ G,

the group is called abelian or commutative.

We often use the notation of ordinary multiplication or addition for the group

operation. Using the multiplicative notation, we write an = a · a · . . . · a (n factors

a), and in the additive notation na = a + a + . . . + a (n summands a). If n is

negative, we define an = (a−1)−n and na = (−n)(−a) respectively.

A group (G, ·) is called cyclic if there is an element a ∈ G such that every b ∈ G
is of the form a j for some j ∈ Z. Such an element is called a generator of the

group.

Let R be a nonempty set and + and · be two binary operations defined on R.

The triple (R, +, ·) is a ring if

(i) (R, +) is an abelian group,

(ii) (a · b) · c = a · (b · c) for all a, b, c ∈ R,

(iii) there is an element 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R,

(iv) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ R.

The ring (R, +, ·) is called commutative if

(v) a · b = b · a for all a, b ∈ R.

The identity element of (R, +) is denoted by 0.

A ring (F, +, ·) is called a field if the pair (F \ {0}, ·) is an abelian group. We

denote F∗ = F \ {0}. As with the usual multiplication, we often omit the symbol

· and simply write ab instead of a · b. The ring of integers modulo n is denoted by

Zn . When n is a prime, Zn is a field.

The smallest integer p such that p1 = 1 + 1 + . . . + 1 = 0 is called the char-
acteristic of the field. The characteristic of a finite field is always a prime. In a field
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F with characteristic p

(a + b)p = a p + bp

for all a, b ∈ F , because all the binomial coefficients
(p

i

)
, 0 < i < p, are divisible

by p.

If (F, +, ·) is a field, the set of polynomials over F defined by

F[x] = {a0 + a1x + . . . + am xm : m = 0, 1, . . . ; ai ∈ F, 0 ≤ i ≤ m},
together with the addition(∑

ai x
i
)

+
(∑

bi x
i
)

=
∑

(ai + bi )x
i

and multiplication

(∑
ai x

i
) (∑

b j x
j
)

=
∑ ( ∑

i+ j=k

ai b j

)
xk

forms a ring (F[x], +, ·) called the polynomial ring over F .

A polynomial a0 + a1x + . . . + am xm ∈ F[x] with m ≥ 1 and am �= 0 is called

irreducible if it cannot be written as a product of two polynomials in F[x] both of

degree less than m.

Theorem 3.30 If p is a prime, then for every m ≥ 1 there exists an irreducible
polynomial g(x) ∈ Zp[x] of degree m. �

Theorem 3.31 If p is a prime and g(x) is an irreducible polynomial of degree m
in Zp[x], then the residue classes

a(x) + <g(x)> = {a(x) + s(x)g(x) : s(x) ∈ Zp[x]},
where a(x) ∈ Zp[x], together with the usual addition

(a(x) + <g(x)>) + (b(x) + <g(x)>) = (
a(x) + b(x)

) + <g(x)>

and multiplication

(a(x) + <g(x)>)(b(x) + <g(x)>) = a(x)b(x) + <g(x)>

form a finite field with pm elements. �

The characteristic of this field is p. Consequently, for every prime, p, and every

integer, m ≥ 1, there exists a finite field with q = pm elements, which is denoted by

Fq . It can be shown that for each such q there is a unique field with q elements (up

to isomorphism). The field Fq is a vector space over Fp. If we choose a basis for Fq

over Fp, every element of Fq can be written uniquely as an Fp-linear combination

of the basis elements.
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Table 3.1 The field of 16 elements

0 = 0 = 0000
1 = α15 = 1 = 0001
α = α = 0010
α2 = α2 = 0100
α3 = α3 = 1000
α4 = α + 1 = 0011
α5 = α2 + α = 0110
α6 = α3 + α2 = 1100
α7 = α3 + α + 1 = 1011
α8 = α2 + 1 = 0101
α9 = α3 + α = 1010
α10 = α2 + α + 1 = 0111
α11 = α3 + α2 + α = 1110
α12 = α3 + α2 + α + 1 = 1111
α13 = α3 + α2 + 1 = 1101
α14 = α3 + 1 = 1001

Example 3.1 The polynomial g(x) = x4 + x + 1 ∈ Z2[x] is irreducible, and can

be used to construct a finite field of 16 elements. The residue classes a(x) + <g(x)>

are represented by polynomials in Z2[x] of degree less than four. If we denote

the residue class x + <g(x)> by α, then all the elements of the field are 0, 1,

α, α + 1, α2, α2 + 1, α2 + α, α2 + α + 1, α3, α3 + 1, α3 + α, α3 + α + 1, α3 +
α2, α3 + α2 + 1, α3 + α2 + α, α3 + α2 + α + 1. Addition in the field is easy. For

example,

(α3 + α2 + 1) + (α2 + α + 1) = α3 + α,

because the characteristic is two. Multiplication of any two elements is almost as

easy. For instance,

(α3 + α2 + 1)(α2 + α + 1) = α5 + α + 1.

To see which of the sixteen elements listed above this is, we use the fact that α4 =
α + 1 and hence α5 = α(α + 1) = α2 + α. Consequently α5 + α + 1 = α2 + 1. In

this way it is easy to verify that all the nonzero elements of the field are powers of

α, as shown in Table 3.1.

Using this table the multiplication is even easier: to multiply α3 + α2 + 1 and

α2 + α + 1, we check from the table that α3 + α2 + 1 = α13 and α2 + α + 1 =
α10, and hence their product is α23 = α8 = α2 + 1. �

Theorem 3.32 The multiplicative group (F∗
q, ·) of Fq is cyclic. �
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A generator of the multiplicative group of Fq is called a primitive element of the

field. If α is a primitive element of the field Fq , then αq−1 = 1. Consequently, the

elements of the finite field Fq are the q roots of the equation xq = x . If k > 0 is not

divisible by q − 1, then

∑
a∈Fq

ak =
q−2∑
i=0

αik = αk(q−1) − 1

αk − 1
= 0. (3.43)

We will be using the following result about prime fields.

Theorem 3.33 (Euler’s criterion) Let p be an odd prime and β ∈ F
∗
p. Then

x2 = β mod p (3.44)

has a solution if and only if

β
p−1

2 = 1 mod p. (3.45)

Proof Let α be a primitive element in Fp. Assuming that x = αr satisfies (3.44)

for some r , we have β = α2r mod p. Then

β
p−1

2 = α2r p−1
2 = αr (p−1) = 1 mod p.

Conversely, suppose that (3.45) holds. We have β = αr mod p, for some integer r .

Thus αr p−1
2 = 1 mod p, and so (p − 1) divides r p−1

2
, which implies that r is even.

Thus β = (
α

r
2

)2
mod p, so β is congruent to a square modulo p. �

Corollary 3.34 If for some c and odd prime p

c2 = −1 mod p,

then p = 1 mod 4.

Proof By the previous theorem the condition is equivalent to

(−1)
p−1

2 = 1 mod p.

If p = 4m + 3 then (−1)2m+1 = −1 mod p, a contradiction. �

3.3.2 Exponential sums over fields and rings

Let (G, ·) be a finite abelian group and 1 the identity element of G. A character
of G is a mapping ϕ from G to the set of complex numbers with norm 1 such

that

ϕ(ab) = ϕ(a)ϕ(b) for all a ∈ G, b ∈ G.
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The mapping ϕ such that ϕ(a) = 1 for all a ∈ G is called the trivial character. For

the trivial character, the sum
∑

a∈G ϕ(a) equals the cardinality of the group.

Theorem 3.35 If ϕ is a nontrivial character of an abelian group G, then∑
a∈G

ϕ(a) = 0.

Proof There is an element b of G such that ϕ(b) �= 1. When a runs through G, so

does ba. Hence

(1 − ϕ(b))
∑
a∈G

ϕ(a) =
∑
a∈G

ϕ(a) −
∑
a∈G

ϕ(ba) = 0.

�

The characters of the additive and multiplicative groups of a finite field are called

additive and multiplicative characters, respectively.

In the field Fq , where q = pm , the trace function Tr is defined by

Tr(x) = x + x p + x p2 + . . . + x pm−1

for all x ∈ Fq .

The trace function satisfies the property

Tr(a + b) = Tr(a) + Tr(b) for all a, b ∈ Fq

and it is a surjective mapping from Fq to Fp. Let

e(x) = e2π ıTr(x)/p for all x ∈ Fq .

For every a ∈ Fq , the function

ψa(x) = e(ax) for all x ∈ Fq

is an additive character of Fq . When a runs through all the nonzero elements of Fq ,

the functions ψa run through all the q − 1 different nontrivial additive characters

of the field Fq .

Let q = 2m . The additive characters of Fq and multiplicative characters of F
∗
q

are correspondingly

ψa(x) = (−1)Tr(ax), a, x ∈ Fq,

χ j (x) = e2π ı j
2m −1 , j = 0, 1, . . . , 2m − 2; x ∈ F

∗
q .

In particular, ψ0 and χ0 are the trivial characters. The order of a multiplicative

character χ is the least positive integer d such that χd = χ0.

Let f (x) ∈ Fq[x] and suppose f is not expressible in the form g2(x) + g(x) + b
where g(x) ∈ Fq[x] and b ∈ Fq . Then f is nondegenerate. A sufficient condition for

f to be nondegenerate is that f has odd degree. I now state bounds on exponential

sums.
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Theorem 3.36 (Weil–Carlitz–Uchiyama bound) Let ψ be a nontrivial additive
character of Fq and let f (x) ∈ Fq[x] be a nondegenerate polynomial of degree r .
Then ∣∣∣∣∣∣

∑
x∈Fq

ψ( f (x))

∣∣∣∣∣∣ ≤ (r − 1)2
m
2 .

�

Theorem 3.37 Let ψ be a nontrivial additive character of Fq . Let χ be a non-
trivial multiplicative character of F

∗
q of order d with d|(q − 1). Let f (x) ∈ Fq[x]

have degree r , where r is odd. Suppose g(x) ∈ Fq[x] has s distinct roots and that
g.c.d.(d, deg g) = 1. Then∣∣∣∣∣∣

∑
x∈F∗

q

ψ( f (x))χ (g(x))

∣∣∣∣∣∣ ≤ (r + s − 1)2
m
2 .

�

Now we pass to Galois rings. In what follows, Re,m denotes the ring of charac-

teristic 2e and degree m. This ring contains 2em elements, has characteristic 2e, and

can be shown to be isomorphic to the factor ring Z2e [x]/( f (x)) where f is a monic

basic irreducible of degree m.

The units R∗
e,m in Re,m contain a cyclic subgroup T ∗

e,m of order 2m − 1. We denote

by β a generator of this set. We write

Te,m = T ∗
e,m ∪ {0} = {βk, k = 0, 1, . . . , 2m − 2} ∪ {0},

and call Te,m the Teichmuller set in Re,m . Every element x ∈ Re,m has a 2-adic

expansion,

x = x0 + 2x1 + . . . + 2e−1xe−1, xk ∈ Te,m, k = 0, 1, . . . , e − 1.

We define the Frobenius automorphism, σ , on Re,m by

σ (x) = x2
0 + 2x2

1 + . . . + 2e−1x2
e−1,

and by analogy with the finite-field case, the absolute trace function Tr on Re,m by

Tr(x) =
m−1∑
k=0

σ k(x).

We also define characters for the ring Re,m . For odd a, a = 1, 3, . . . , 2e − 1, let

ψa : Re,m → C denote the additive character of Re,m defined by

ψa(x) = e2π ıa Tr(x)
2e , x ∈ Re,m .
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For each integer j , j = 0, 1, . . . , 2m − 2, let χ j : R∗
e,m → C denote the multiplica-

tive character defined by

χ j (x) = e2π ı jk
2m −1 , x ∈ R∗

e,m, x = βk mod 2, 0 ≤ k < 2m − 1.

The characters ψ0 and χ0 are the trivial characters for the Galois ring.

Let f (x) ∈ Re,m[x] and suppose f is not expressible in the form

σ (g(x)) − g(x) + b,

for any g(x) ∈ Re,m[x], and any b ∈ Re,m . Here,

σ

(∑
k

gk xk

)
=

∑
k

σ (gk)x2k .

Then we say that f is nondegenerate. An easily verified condition for f of degree

at least 1 to be nondegenerate is that f contains no terms of even degree.

Now let f be a polynomial with 2-adic expansion

f (x) = F0[x] + 2F1[x] + . . . + 2e−1 Fe−1[x],

Fk[x] ∈ Te,m[x], k = 0, 1, . . . , e − 1.

We define the weighted degree of f to be

D f = max{2e−1d0, 2e−2d1, . . . , de},
where dk is the degree of Fk . The following results (see [156, 224]) allow bounding

exponential sums over Galois rings.

Theorem 3.38 Let ψ be a nontrivial additive character of Re,m. Let f (x) ∈
Re,m[x] be nondegenerate and of weighted degree D f . Then∣∣∣∣∣

∑
x∈Te,m

ψ( f (x))

∣∣∣∣∣ ≤ (D f − 1)2
m
2 .

�

Theorem 3.39 Let ψ be a nontrivial additive character of Re,m. Let f (x) ∈
Re,m[x] be nondegenerate and of weighted degree D f . Let χ be a nontrivial mul-
tiplicative character of Re,m. Then∣∣∣∣∣∣

∑
x∈T ∗

e,m

ψ( f (x))χ (x)

∣∣∣∣∣∣ ≤ D f 2
m
2 .

�
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3.4 Elements of coding theory

In this section I survey the theory of error-correcting codes.

3.4.1 Hamming space

A binary code of length n is simply a nonempty set of binary vectors of length

n. More generally, we have the following definition. Let Q be a finite set with q
elements. A nonempty subset C of Qn = Q × Q × . . . × Q is called a q-ary code

of length n.

The vectors belonging to a code are called code words. A code with only one

code word is called trivial. Whenever convenient, codes are assumed to have at

least two code words. The set Q is called the alphabet. We use the term vector for

an n-tuple over an arbitrary alphabet, not only in the case when Q is a field. The

elements of Qn are also called points or words. The set Qn is called the (q-ary)

Hamming space.

The Hamming distance between two vectors x = (x0, x1, . . . , xn−1), y =
(y0, y1, . . . , yn−1) in Qn is the number of coordinates in which they differ, i.e.,

d(x, y) = |{ j : x j �= y j }|.
The Hamming distance satisfies the triangle inequality,

d(x, y) + d(y, z) ≥ d(x, z),

for all x, y, z ∈ Qn , and is a metric. If V ⊆ Qn , then we denote

d(x, V ) = min
v∈V

d(x, v).

Assume that 0 ∈ Q. The Hamming weight w(x) of a vector x = (x0, x1, . . . ,

xn−1) ∈ Qn is defined by

w(x) = d(x, 0), (3.46)

where 0 = 0n = (0, 0, . . . , 0). A vector with even (odd) weight is called even (odd).
The set of even (odd) code words of a code C is called the even weight (odd weight)
subcode of C and is denoted by Ce (Co). The support of a vector x ∈ Qn is the set

{ j : x j �= 0} and is denoted by supp(x). In the case of a binary alphabet, vectors can

be identified with their supports, and for two binary vectors, x and y, of the same

length, x ⊂ y, x ∪ y, x ∩ y and x \ y refer to the supports of x and y.

The Hamming sphere (or ball) Br (x) of radius r centred at the vector x ∈ Qn is

defined by

Br (x) = {y ∈ Qn : d(y, x) ≤ r},
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and its cardinality is

Vq(n, r ) =
r∑

j=0

(
n

j

)
(q − 1) j .

The subscript q is usually omitted if q = 2. More generally, if V ⊆ Qn , we denote

Br (V ) =
⋃
x∈V

Br (x).

It is also convenient to have a notation for the layers (or shells) of the Hamming

sphere, and we therefore denote

Sr (x) = {y ∈ Qn : d(y, x) = r},
and

Sr = {y ∈ Qn : w(y) = r}.
The (binary) entropy function H (x) is defined by

H (x) = −x log2 x − (1 − x) log2(1 − x)

where 0 ≤ x ≤ 1. The following two lemmas can be obtained using Stirling’s

formula
√

2π nn+ 1
2 e−n+ 1

12n − 1

360n3 < n! <
√

2π nn+ 1
2 e−n+ 1

12n . (3.47)

Lemma 3.40 Suppose that 0 < λ < 1 and λn is an integer. Then

2nH (λ)

√
8nλ(1 − λ)

≤
(

n

λn

)
≤ 2nH (λ)

√
2πnλ(1 − λ)

. (3.48)

�

Lemma 3.41 Suppose that 0 < λ < 1
2

and λn is an integer. Then

2nH (λ)

√
8nλ(1 − λ)

≤ V (n, λn) ≤ 2nH (λ). (3.49)

�

The behavior of the binomial coefficient
(n

k

)
in the vicinity of k = n

2
is also of

interest. The following results can be obtained using Taylor series of the logarithmic

function.

Lemma 3.42 Let

k = n + c
√

n

2
,
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where c = c(n) = o
(
n

1
6

)
. Then(
n

k

)
=

(
n

n/2

)
· e− c2

2 · (1 + o(1)).

�

Another range includes small k.

Lemma 3.43 If k = o
(
n

2
3

)
then(

n

k

)
= e− k2

2n · nk

k!
(1 + o(1)).

If k = o
(
n

3
4

)
then (

n

k

)
= e− k2

2n − k3

6n2 · nk

k!
(1 + o(1)).

�

Along with the Hamming distance, sometimes it is of interest to consider the Lee
distance. Let the alphabet Q be identified with the set of integers {0, 1, . . . , q − 1}.
Then the Lee distance between two vectors x and y is

dL (x, y) =
n−1∑
j=0

min(|x j − y j |, q − |x j − y j |). (3.50)

Although there exist some essential differences, the geometries of the Hamming

and Euclidean spaces are, in many respects, similar. One of the most crucial prop-

erties is that the sphere is the set of maximal size among the sets of given diameter

(Theorem 3.46). The diameter of a set S ⊆ F
n is defined by

diam(S) = max
x,y∈S

d(x, y).

A set S ⊆ F
n is said to be hereditary if

x ∈ S and supp(y) ⊆ supp(x) ⇒ y ∈ S.

A simple property on the diameter of a hereditary set is the following:

Lemma 3.44 For any two elements, s1 and s2, of a hereditary set S,

|supp(s1) ∪ supp(s2)| ≤ diam(S).

Proof The vector s1\s2, with support supp(s1)\supp(s2), belongs to S by heredity,

and has disjoint support with s2; thus |supp(s1) ∪ supp(s2)| = d(s1\s2, s2) is upper

bounded by the diameter of S. �
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Let us split the elements of a set S into two sets S( j)
0 and S( j)

1 , according to

whether their j th component is 0 or 1. Define a set of transformations τ j by

τ j (s) =
{

s + e j , if s ∈ S( j)
1 and s + e j /∈ S( j)

0

s, otherwise,

where e j is the vector having 1 in the j th coordinate and zeros elsewhere. Notice

that performing τ j can only decrease the weight.

Lemma 3.45 A set S is one-to-one mapped by τ j onto a set with smaller or equal
diameter. If S is stable under all values of τ j , then S is hereditary.

Proof We first check injectivity: let s1 and s2 be two distinct elements of S; s′
1 and

s′
2 their respective images under τ j . There is something to prove only if exactly one

element, say s2, moves; thus s′
1 = s1 and s′

2 = s2 + e j . If s′
2 = s′

1, then s2 + e j = s1,

and s2 should not have moved. Thus s′
2 �= s′

1.

Now d(s′
1, s′

2) = d(s1, s2 + e j ) = d(s1, s2) − 1, if s1 ∈ S( j)
0 . If s1 ∈ S( j)

1 , then

s∗
1 = s1 + e j ∈ S( j)

0 (otherwise, s1 would have moved). But then, d(s′
1, s′

2) =
d(s∗

1, s2) ≤ diam(S). Thus the diameter cannot increase. Heredity can be rephrased

as

s ∈ S( j)
1 ⇒ s + e j ∈ S( j)

0 , for all j.

This property is clearly satisfied if S is stable under every τ j . �

The following theorem is from Kleitman [205].

Theorem 3.46 (Kleitman) Let B ⊆ F
n; n ≥ 2r + 1 be a set of diameter 2r . Then

|B| ≤ V (n, r ).

Proof Let B be a set of diameter 2r in F
n . Apply the transformations τi coordi-

natewise until B stabilizes to some B∗. Combining Lemmas 3.45 and 3.44, B∗ is a

hereditary set of size |B|, with diameter at most 2r and

|supp(a) ∪ supp(b)| ≤ 2r, (3.51)

for all a, b ∈ B∗. In particular, 0 ∈ B∗ and any element in B∗ has weight at most

2r .

This is already sufficient for an asymptotic version of Theorem 3.46.

Theorem 3.47 For n large enough with respect to r , the largest subset of F
n with

diameter 2r is realized by a sphere of radius r .

Proof Let S be such a set, and S∗ its stabilized version under τ j . Take an element

s1 ∈ S∗ of maximal weight r + k. Assume k > 0 (otherwise there is nothing to

prove). For any s2 ∈ S∗, supp(s2) is the disjoint union of supp(s2) ∩ supp(s1) and
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supp(s2)\supp(s1), the latter of size at most r − k by (3.51) applied to s1, s2\s1 ∈
S∗. Thus the number of such s2s is upperbounded by

2r+k
r−k∑
i=0

(
n − r − k

i

)
= o(V (n, r )).

�

We have now accomplished the proof of Theorem 3.46. We apply another set of

transformations σ j to B∗, with the goal of “pushing 1s to the left”. Again split the

elements of B∗ in two: the set B( j)
01 of vectors with a 0 in position j − 1 and 1 in

position j , and its complement in B∗. Define σi by

σ j (a) =
{

a + e j−1 + e j , if a ∈ B( j)
01 and a + e j−1 + e j /∈ B∗

a, otherwise.

Apply these transformations coordinatewise until B∗ stabilizes to some B ′′. Analo-

gously to the previous case one easily checks that B ′′ is a hereditary set (it remains

so after each σ j ) of size |B| and diameter at most 2r . Moreover, along with any

vector a the set B ′′ contains all the vectors obtained from a by interchanging any

number of 1s with 0s, each 0 lying to the left of the corresponding 1 in a.

For a ∈ B ′′, assume that w(a) = r + k where k > 0. Then the following property

(P) holds: at most r − k of these 1s can be associated to distinct 0s in a, each 0

lying to the left of the corresponding 1. Indeed, if there were r − k + 1 such 1s, the

vector b obtained by interchanging the 1s with the 0s would also belong to B ′′, and

d(a, b) = 2(r − k + 1). Then

|supp(a) ∪ supp(b)| = d(a, b) + |supp(a ∗ b)|
= 2(r − k + 1) + w(a) − (r − k + 1) > 2r

would hold, contradicting (3.51).

We now define a last set of transformations: split B ′′ into B ′′
l = {a ∈ B ′′ : w(a) ≤

r} and B ′′
h = {a ∈ B ′′ : w(a) = r + k, 0 < k ≤ r} (for “light” and “heavy”). At the

end of the following procedure, B ′′
l is unchanged, and B ′′

h is transformed into A′,
with

|A′| = |B ′′
h |, A′ ∩ B ′′

l = ∅, A′ ⊆ Br (0).

To every a in B ′′
h , associate the corresponding vectors a′ and a′′ as follows. The

vector a′ has 0s in all positions where a has 1s. To fill the 1s in a′ we start from

the rightmost 1 in a and set 1 in a′ in the first position to the left of this 1 where

a has 0. If there is no such 0 we assume that the positions with indices n and less

are to the left of the first coordinate. We proceed in the same manner with the next

r − k (to the left) nonzero positions of a, adding in each step a new 1 to a′. Clearly
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w(a′) = r − k + 1. Since a and a′ have disjoint supports, d(a, a′) = 2r + 1, and

thus a′ �∈ B ′′.
Let i be the number of steps for constructing a′ when the inserted 1 has index

less than the index of the corresponding 1 in a, and let a′′ be the vector we get

after the i th step. By the property (P), a′′ is always defined; evidently, w(a′′) = i .
Notice that i may actually be deduced from a′ since i is the maximal number of

1s in a′ which can be paired with distinct 0s of a′, each 0 lying to the right of the

corresponding 1; and, given a′, we may determine a′′. From a′′, moreover, we may

recover a, by inserting i 1s in the places as close as possible to the right of the 1s in

a′′; the remaining 1s in a are inserted in the first r + k − i left-hand places which

are not 1s of a′′ or already 1s in a.

So, we have constructed a one-to-one mapping from a to a′ and, therefore, a

one-to-one mapping from B into a subset of Br (0). �

Example 3.2 Let n = 11, r = 4, k = 1, and consider how the vector a ∈ B ′′
h given

below is transformed:

a 10110000011

0∗00∗∗∗∗∗00 Step 0

0∗00∗∗∗∗100 Step 1

0∗00∗∗∗1100 Step 2

0100∗∗∗1100 Step 3

0100∗∗11100 Step 4

a′ 01000011100.

Here i = 3 and a′′ = 01000001100 can be deduced from a′. Now a can be re-

covered from a′′ by putting three 1s immediately to the right of the 1s in a′′:
a = ∗01∗∗∗∗0011, then 1s in the two leftmost positions where a and a′′ have no

1s: a = 10110000011. �

Note that for q large enough, Theorem 3.46 does not hold: choose B = F
2r
q ⊕

0n−2r . Then, B clearly has diameter 2r , and as a function of q:

|B| = q2r > Vq(n, r ) = O(qr ).

3.4.2 Parameters of codes

The minimum distance d of a code C ⊆ Qn is the smallest of the distances between

different code words of C , i.e.,

d = d(C) = min
a,b∈C,a �=b

d(a, b).

Two codes C1 ⊆ Qn and C2 ⊆ Qn are called equivalent if C2 is obtained from C1

by applying to all the code words of C1 a fixed permutation of the coordinates and
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to each coordinate a permutation of the symbols in the alphabet (which may vary

with the coordinates). A vector x is said to be r-covered (or simply covered if r is

clear from the context) by a vector y if d(x, y) ≤ r , i.e., x ∈ Br (y) or equivalently

y ∈ Br (x). A vector x is r -covered by a set V if it is r -covered by at least one

element of V .

The covering radius of a code C ⊆ Qn is the smallest integer R such that every

vector x ∈ Qn is R-covered by at least one code word of C , i.e.,

R = R(C) = max
x∈Qn

d(x, C) = max
x∈Qn

min
c∈C

d(x, c). (3.52)

In other words, the covering radius measures the distance between the code and the

farthest-off vectors in the space. The covering radius is also the smallest integer R
such that the union of the Hamming spheres of radius R centred at the code words

is the whole space.

For a code C with minimum distance d, the integer

e = �(d − 1)/2�
is called the packing radius or the error-correcting capability of the code C . Notice

that e is the largest integer such that the Hamming spheres of radius e centered at

the code words are disjoint. Therefore,

|C | ≤ qn

Vq(n, e)
,

which is called the sphere-packing bound or Hamming bound.

Usually it is convenient to choose the alphabet Q to possess a certain algebraic

structure. If our alphabet is Zq or Fq , we can define the sum and difference of two

vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) as

x + y = (x0 + y0, x1 + y1, . . . , xn−1 + yn−1)

and

x − y = (x0 − y0, x1 − y1, . . . , xn−1 − yn−1),

and their componentwise product as

x ∗ y = (x0 y0, x1 y1, . . . , xn−1 yn−1).

We then have the obvious formula

d(x, y) = w(x − y). (3.53)

In the binary case, x + y = x − y, and

d(x, y) = w(x + y). (3.54)
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For two sets A, B ⊆ Z
n
q or A, B ⊆ F

n
q we denote

A + B = {a + b : a ∈ A, b ∈ B}.
For x ∈ Z

n
q or x ∈ F

n
q the set

x + A = {x + a : a ∈ A}
is called a translate of A.

In F
n
q we can also define a scalar multiplication: if x = (x0, x1, . . . , xn−1) ∈ F

n
q

and α ∈ Fq , then

αx = (αx0, αx1, . . . , αxn−1).

A code C ⊆ F
n
q is called linear if all the pairwise sums and scalar multiples

of code words belong to the code. This means that C is a linear subspace of F
n
q .

Thus, we can find a basis consisting of, say, k linearly independent code words

g0, g1, . . . , gk−1. The k × n matrix

G = G(C) =

⎛
⎜⎜⎜⎝

g0

g1

...

gk−1

⎞
⎟⎟⎟⎠

is called a generator matrix of C . The code words of C are exactly the qk linear

combinations of the rows of G, and the code is said to have dimension k. A linear

code C ⊆ F
n
q with dimension k, minimum distance d, and covering radius R is

called an [n, k, d]q R code.

Clearly, permuting the coordinates of all the code words does not change the

parameters of the code. Apart from the order of the coordinates, we can always put

the generator matrix in the form (Ik, P) using the Gaussian elimination method.

Here Ik stands for the k × k identity matrix.

If x, y ∈ F
n
q , their scalar product 〈x, y〉 is defined by

〈x, y〉 = x0 y0 + x1 y1 + . . . + xn−1 yn−1.

The vectors x and y are called orthogonal if 〈x, y〉 = 0.

When q = 2, we have

w(x + y) = w(x) + w(y) − 2w(x ∗ y). (3.55)

Therefore in a binary linear code either all or exactly half of the code words are

even. Indeed, if the code C has at least one odd code word c, then Co = c + Ce by

the previous formula and Ce is an [n, k − 1] code.

The dual C⊥ of a linear code C ⊆ F
n
q consists of all the vectors x ∈ F

n
q such

that 〈x, c〉 = 0 for all c ∈ C . Assume that G = G(C) = (Ik, P). Clearly, for each
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x2 ∈ F
n−k
q there is a unique x1 ∈ F

k
q , such that the vector (x1, x2) is orthogonal to

all the rows of G. Hence the dimension of the dual code is n − k. The minimum

distance of C⊥ is called the dual distance d⊥ of the code C . Let H = (−PT , In−k). A

routine check shows that GHT is the all-zero matrix and therefore C⊥ has generator

matrix H. Any matrix H = H(C) which is a generator matrix of C⊥ is called a parity
check matrix of C . Clearly (C⊥)⊥ = C . Therefore if H is any parity check matrix

of C , the code C can also be defined as

C = {x ∈ F
n : HxT = 0}.

For every x ∈ F
n , we call the vector HxT ∈ F

n−k the syndrome of x. Hence the code

consists of the vectors with syndrome equal to 0.

From (3.53), the minimum distance of a linear code is the smallest nonzero

weight of a code word, i.e., the minimum weight of a nonzero vector x ∈ F
n
q such

that HxT = 0. In particular, in the binary case we have the following theorem.

Theorem 3.48 Let C be a binary [n, k] code with parity check matrix H. The
minimum distance of C is the smallest positive integer d such that the sum of some
d columns of H is 0. �

3.4.3 The MacWilliams identities

In this section I introduce the MacWilliams transform. It is an important tool in the

analysis of possible distance distributions of codes. Here the proofs are given only

for the binary case, which makes the presentation simpler.

We start with characters. Let x and y be two vectors in F
n . We define the additive

character ψ on F
n as

ψx(y) = (−1)〈x,y〉.

The projection px(y) of y on x is the vector of length w(x) obtained from y by

deleting all the positions of y not belonging to supp(x). The projection of a set

G ⊆ F
n on x ∈ F

n is

Px(G) = {px(g) : g ∈ G},
i.e., the set of projections of the vectors in G. Note that the character equals 1 if

px(y) is even, and is −1 otherwise. Evidently, for all x, y, z ∈ F
n we have

ψx(y + z) = ψx(y) ψx(z). (3.56)

For arbitrary G ⊆ F
n and x ∈ F

n define

ψx(G) =
∑
g∈G

ψx(g). (3.57)
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To make this definition more intuitive, notice that this expression just calculates the

difference between the number of even and odd vectors in the projection of G on x.

Let C ⊆ F
n be a binary linear code. Its weight distribution W(C) = W =

(W0, W1, . . . , Wn) is a vector of dimension n + 1, where

W j = |{c ∈ C : w(c) = j}|,
i.e., the j th component of W(C) is the number of code words of weight j in C .

The distance distribution B(C) = B = (B0, B1, . . . , Bn) is defined by

B j = 1

|C | |{c1, c2 ∈ C : d(c1, c2) = j}|,

i.e., the j th component of B(C) is the average number of code words being at

distance i from a code word of C . In the case of linear codes the vectors W and B

coincide, a fact that does not hold in general for nonlinear codes.

If C is a linear code, the distance distribution B(C⊥) of the dual code C⊥ is

denoted by B⊥ and is called the dual spectrum of C . The following theorem shows

that B⊥ is uniquely determined by B.

Theorem 3.49 (MacWilliams identities) For a linear code C of length n

B⊥
j = 1

|C |
n∑

k=0

Bk K n
j (k), (3.58)

where

K n
j (k) = K j (k) =

j∑
�=0

(−1)�
(

k

�

)(
n − k

j − �

)

is the Krawtchouk polynomial of degree j .

Proof By linearity, the projection of C on any vector x ∈ F
m, m ≤ n, contains

only even vectors, or the same number of even and odd vectors. Moreover, Px(C)

consists of only even vectors if and only if x ∈ C⊥. Thus,

ψx(C) =
{ |C | if x ∈ C⊥,

0 if x /∈ C⊥.

Furthermore, if Sj stands for the set of n-tuples of weight j , we have∑
x∈Sj

ψx(C) = |C | B⊥
j . (3.59)

On the other hand, the same sum can be estimated in a different way, namely,∑
x∈Sj

ψx(C) =
∑
x∈Sj

∑
c∈C

ψx(c) =
∑
c∈C

∑
x∈Sj

ψx(c). (3.60)
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The inner sum in the last expression does not depend on the particular choice of

c, but only on the weight w(c). If w(c) = k, then each of the
(k
�

)(n−k
j−�

)
vectors of

weight j with exactly � 1s in common with c contributes (−1)� to the inner sum.

Continuing (3.60) we get

∑
x∈Sj

ψx(C) =
n∑

i=0

∑
c∈C,w(c)=k

∑
x∈Sj

ψx(c)

=
n∑

k=0

Bk

j∑
�=0

(−1)�
(

k

�

)(
n − k

j − �

)
=

n∑
k=0

Bk K j (k).

Comparing the result with (3.59) we get the claim. �

If C is a nonlinear (n, K ) code, we may formally define the MacWilliams trans-

form of the n + 1-tuple B(C), using expression (3.58). In general, the result of the

transform, B⊥, does not correspond to the distance distribution of any code. Nev-

ertheless, an interpretation can be given to some values appearing in the transform.

Notice that K0(k) = 1, and

B⊥
0 = 1

|C |
n∑

k=0

Bk K0(k) = 1.

However, several first components of B⊥ with positive index could be zero. Define

the dual distance d⊥(C) = d⊥ of the code C as the minimum nonzero index of a

nonzero component of B⊥. For linear codes, this is just the minimum distance of

the dual code, d(C⊥). Let C be the K × n array having as its rows all the code

words of C .

Theorem 3.50 (i) B⊥
j ≥ 0 for j ∈ [0, n]; (ii) any set of r ≤ d⊥ − 1 columns of

C contains each r-tuple exactly K
2r times, and d⊥ is the largest integer with this

property.

Proof As in the previous proof, we see that

B⊥
j = 1

|C |
n∑

k=0

Bi K j (k) = 1

|C |2
n∑

i=0

∑
a,b∈C,w(a+b)=k

K j (k)

= 1

|C |2
n∑

i=0

∑
a,b∈C,w(a+b)=i

∑
y∈Sj

ψy(a + b)

= 1

|C |2
∑
y∈Sj

∑
a∈C

∑
b∈C

ψy(a + b)

= 1

|C |2
∑
y∈Sj

|ψy(C)|2 ≥ 0,
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and (i) is proved. Moreover, B⊥
j = 0 means that ψy(C) = 0 for every y ∈ Sj . For

j = 1 this gives that every column in C has K
2

zeros and K
2

ones.

If B⊥
2 = B⊥

1 = 0, in any two columns all four 2-tuples appear exactly K
4

times

each. Indeed, consider two arbitrary columns of C. Let a00, a01, a10, a11 stand for

the number of occurrences of 00, 01, 10 and 11, respectively, and let y ∈ S2 be a

vector with its ones in the corresponding coordinates. Then, solving the system

a00 − a01 − a10 + a11 = 0,

a00 + a01 = a10 + a11 = a00 + a10 = a01 + a11 = K

2
,

where the first equality follows from ψy(C) = 0, concludes the case j = 2.

Clearly, the same can be done up to d⊥ − 1. On the other hand, when j = d⊥

there exists a vector y ∈ Sd⊥ such that ψy(C) �= 0. �

Arrays with the property that all r ≤ s columns contain all possible r -tuples an

equal number of times are called orthogonal arrays of strength s or just codes of
strength s. Thus, a code with dual distance d⊥ is an orthogonal array of strength

d⊥ − 1.

3.4.4 Krawtchouk polynomials

Krawtchouk polynomials play a special role in the MacWilliams transform. Actu-

ally, Krawtchouk polynomials can be defined for nonbinary alphabets as well. In

what follows, we will use an extended definition of the binomial coefficient: for

real x and m an integer,

(
x

m

)
=

⎧⎨
⎩

x(x−1)...(x−m+1)
m !

if m > 0,

1 if m = 0,

0 otherwise,

where m ! = m(m − 1)(m − 2) . . . 1 and 0! = 1.

The q-ary Krawtchouk polynomials K n
k (x) (of degree k) are defined by the

following generating function:

∞∑
k=0

K n
k (x)zk = (1 − z)x (1 + (q − 1)z)n−x . (3.61)

Usually n is fixed, and is omitted if no confusion arises. An explicit expression

for Krawtchouk polynomials is given by

K n
k (x) =

k∑
j=0

(−1) j (q − 1)k− j

(
x

j

)(
n − x

k − j

)
. (3.62)
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From now on, we consider only binary Krawtchouk polynomials (q = 2). Fea-

tures of nonbinary Krawtchouk polynomials are very similar to those of their binary

counterparts.

The properties listed below can be derived by straightforward calculations using

(3.61). There are several explicit expressions for Krawtchouk polynomials:

K n
k (x) =

k∑
j=0

(−1) j

(
x

j

)(
n − x

k − j

)
=

k∑
j=0

(−2) j

(
x

j

)(
n − j

k − j

)

=
k∑

j=0

(−1) j 2k− j

(
n − x

k − j

)(
n − k + j

j

)
. (3.63)

From Cauchy’s integral formula we get from (3.61) for nonnegative integer x :

Kk(x) = 1

2πx

∮
(1 + z)n−x (1 − z)x

zk+1
dz

= (−ı)x

2π

∫ 2π

0

eı( n
2
−k)θ

(
cos

θ

2

)n−x (
sin

θ

2

)x

dθ.

A remarkable property of Krawtchouk polynomials is that they satisfy a linear

inductive relation in every variable:

(k + 1)K n
k+1(x) = (n − 2x)K n

k (x) − (n − k + 1)K n
k−1(x), (3.64)

(n − x)K n
k (x + 1) = (n − 2k)K n

k (x) − x K n
k (x − 1), (3.65)

(n − k + 1)K n+1
k (x) = (3n − 2k − 2x + 1)K n

k (x) − 2(n − x)K n−1
k (x). (3.66)

The first Krawtchouk polynomials are

K0(x) = 1, K1(x) = n − 2x, K2(x) = (n − 2x)2 − n

2
, (3.67)

K3(x) = (n − 2x)
(
(n − 2x)2 − 3n + 2

)
6

.

Here are several values of Krawtchouk polynomials:

Kk(0) =
(

n

k

)
, Kk(1) =

(
1 − 2k

n

) (
n

k

)
(3.68)

Kk(n/2) = 0, for k odd; Kk(n/2) = (−1)k/2

(
n/2

k/2

)
, for k even. (3.69)

If Kk(x) = ∑k
j=0 c j x j , then

ck = (−2)k

k!
, ck−1 = (−2)k−1n

(k − 1)!
. (3.70)
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The following relations, derived from the definition of Krawtchouk polynomials

by rearranging binomial coefficients, reflect some symmetry with respect to their

parameters:(
n

x

)
Kk(x) =

(
n

k

)
Kx (k), (for a nonnegative integer x), (3.71)

Kk(x) = (−1)k Kk(n − x), (3.72)

Kk(x) = (−1)x Kn−k(x), (for an integer x, 0 ≤ x ≤ n). (3.73)

Theorem 3.51 The following orthogonality relations hold:

n∑
j=0

(
n

j

)
Kk( j)K�( j) = δk�

(
n

k

)
2n, (3.74)

n∑
j=0

Kk( j)K j (�) = δk�2n. (3.75)

Proof By (3.61) the left-hand side of (3.74) is the coefficient of zk y� in

n∑
j=0

(
n

j

)
(1 − z) j (1 + z)n− j (1 − y) j (1 + y)n− j

=
n∑

j=0

(
n

j

)(
(1 − z)(1 − y)

) j(
(1 + z)(1 + y)

)n− j

= (
(1 − z)(1 − y) + (1 + z)(1 + y)

)n

= 2n(1 + zy)n,

and (3.75) then follows from (3.71). �

Theorem 3.52 Every polynomial α(x) of degree s possesses a unique Krawtchouk
expansion:

α(x) =
s∑

k=0

αk Kk(x), (3.76)

where the coefficients are

αk = 2−n
n∑

j=0

α( j)K j (k). (3.77)
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Proof The uniqueness follows from the fact that each Krawtchouk polynomial

Kk(x) is of degree k. By (3.75),

2−n
n∑

�=0

α(�)Ki (k) = 2−n
n∑

�=0

s∑
j=0

α j K j (i)Ki (k)

=
s∑

j=0

α j

(
2−n

n∑
�=0

K j (�)K�(k)

)
= αk,

proving (3.77). �

In particular, (3.68) yields

α0 = 2−n
n∑

i=0

α(i)

(
n

i

)
. (3.78)

3.4.5 Families of error-correcting codes

The essential parameters of codes are alphabet, length, cardinality (or dimension

for linear codes) and minimum distance. There are several methods to construct

new codes from given ones. I present a few of them, in their binary version. Assume

that C is an (n, K , d) or [n, k, d] code.

Shortening: For a linear code, choose one coordinate and take the subcode of

C consisting of the code words having 0 in this position. Deleting the chosen

coordinate in every code word of the subcode gives a linear code C◦ with parameters

[n − 1, ≥ k − 1, ≥ d]. For a nonlinear code, pick the largest of the two subcodes

of C with either 0 or 1 in this coordinate. The resulting code C◦ is an (n − 1, ≥
�K/2�, ≥ d) code.

Puncturing: If d ≥ 2, deleting one coordinate gives an (n − 1, K , ≥ d − 1) or

[n − 1, k, ≥ d − 1] code C∗.

Extending: For d odd, adding the overall parity check (sum modulo 2 of all the

symbols) to every code word results in the code Ĉ having parameters (n + 1, K , d +
1) or [n + 1, k, d + 1].

Now we consider several essential classes of error-correcting codes. In

what follows, q = 2m , except for the Reed–Solomon codes where q = pm , p
prime.

Cyclic codes: A binary linear code C of length n is cyclic if for every c =
(c0, c1, . . . , cn−1) ∈ C , the vector (cn−1, c0, . . . , cn−2) is also a code word. In what

follows, we identify the vector a = (a0, a1, . . . , an−1) and the polynomial in F[x]

a(x) = a0 + a1x + . . . + an−1xn−1.
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The primitive case: Assume that n = q − 1 and α is a primitive element of the

field Fq . Remember that two elements α and β in Fq are conjugates if for some

integer �, α = β2�

. Pick a subset ℵ = {αi1, αi2, . . . , αis } of Fq not containing two

conjugate elements.

Then all the binary polynomials of degree at most q − 2 whose set of roots

contains ℵ (and the conjugates of elements in ℵ) constitute a primitive cyclic code.

To see that the code is cyclic, notice that the polynomial xn − 1 has all nonzero

elements of Fq as its roots, and so xc(x) modxn − 1 has the same set of nonzero

roots as c(x). But xc(x) modxn − 1 is the cyclic shift of c(x).

By definition, the cyclic code C consists of all binary words c of length n = q − 1

satisfying HcT = 0, where

H =

⎛
⎜⎜⎝

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

. . . . . . . . . . . . . . .

1 αis α2is . . . α(n−1)is

⎞
⎟⎟⎠ . (3.79)

The matrix H is called a parity-check matrix over Fq . To obtain the binary parity

check matrix, replace every element of Fq with the corresponding binary column

vector of size m. The length of the code is thus n = 2m − 1, and its dimension is at

least n − ms (the rows of H may be dependent!). Encoding of cyclic codes can be

easily implemented using shift registers with feedback.

The problem of estimating the minimum distance is difficult in general, but, as

we shall see later, easy for some particular choices of ℵ.

The nonprimitive case: Let β ′ be a nonprimitive element of Fq . Then β ′ is conju-

gate to β = αh for some factor h of q − 1, h > 1, where α is a suitable primitive

element and

β (q−1)/h = 1.

Let all the degrees of α in ℵ be multiples of h,

ℵ = {αhi1, αhi2, . . . , αhis }
= {β i1, β i2, . . . , β is }.

Then the matrix

H(C) =

⎛
⎜⎜⎝

1 β i1 β2i1 . . . β (n−1)i1

1 β i2 β2i2 . . . β (n−1)i2

. . . . . . . . . . . . . . .

1 β is β2is . . . β (n−1)is

⎞
⎟⎟⎠ (3.80)
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where n = (2m − 1)/h, defines a nonprimitive cyclic code. It has length n and

dimension k ≥ n − ms.

Hamming codes: The parity check matrix of the Hamming code, Hm , consists of

all nonzero columns of size m in some order. The parameters of Hm are

[n = 2m − 1, k = 2m − m − 1, d = 3].

The codes Hm are perfect. If we define ℵ = {α}, for some primitive α ∈ Fq , then

we get the Hamming codes in a cyclic form.

The extended Hamming codes have parameters

[n = 2m, k = 2m − m − 1, d = 4],

the shortened Hamming codes have parameters

[n, k = n − �log2 n� − 1, d = 3],

and the extended shortened Hamming codes are

[n + 1, k = n − �log2 n� − 1, d = 4]

codes. All these codes have the largest minimum distance among linear codes with

the same length and dimension.

Reed–Muller codes: The Reed–Muller code RM(r, m) of order r , r =
0, 1, . . . , m, has parameters[

n = 2m, k =
r∑

i=0

(
m

i

)
, d = 2m−r

]
.

The binary Boolean function in m variables x1, . . . , xm, of degree r is the sum

of products of variables such that in any product there are at most r variables,

and there is a product with exactly r variables. For example, x1x3x4 + x2x5 +
x1x6 is a Boolean function in six variables of degree 3. Evaluation of a Boolean

function f (x1, . . . , xm) is a vector of length 2m having at the j th position, j =
0, 1, . . . , 2m − 1, the value of f ( j0, . . . , jm−1) where j0, . . . , jm−1 are the bits of

the binary expansion of j . The codeRM(r, m) is defined as the set of vectors being

evaluations of Boolean functions in m variables of degree at most r .

The dual code of RM(r, m) is RM(m − r − 1, m). The Reed–Muller codes

constitute a family of nested codes, namely,

RM(0, m) ⊂ RM(1, m) ⊂ . . . ⊂ RM(m, m).

Particular cases of Reed–Muller codes coincide with some of the aforementioned

codes:
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RM(0, m) is the repetition [2m, 1, 2m] code;

RM(m − 2, m) is the extended Hamming code;

RM(m − 1, m) is the even-weight [2m, 2m − 1, 2] code;

RM(m, m) is the [2m, 2m, 1] code consisting of all possible words of length 2m .

First-order Reed–Muller codes: The codes RM(1, m) form a class of codes

having parameters

[n = 2m, k = m + 1, d = 2m−1].

These codes contain 0, 1 and 2m+1 − 2 code words of weight 2m−1. The first-

order Reed–Muller codes can be efficiently decoded using a fast Walsh–Hadamard

transform.

Punctured Reed–Muller codes: The codeRM∗(r, m) can be presented in a cyclic

form. The set of zeros ℵ consists of all αi , 1 ≤ i ≤ 2m − 2, such that w2(i), the

number of ones in the binary expansion of i , satisfies the inequality

1 ≤ w2(i) ≤ m − r − 1.

The parameters of RM∗(r, m) are[
n = 2m − 1, k =

r∑
i=0

(
m

i

)
, d = 2m−r − 1

]
.

Simplex codes = M-sequences: The simplex codes SIMm can be obtained by

shortening the code RM(1, m), and have parameters

[n = 2m − 1, k = m, d = 2m−1].

All nonzero code words in SIMm have the same weight, 2m−1. These are cyclic

codes with

ℵ = F
∗
q \ {α1, α2, α4, . . .}.

The codes SIMm are the duals of the Hamming codes Hm and have generator

matrices consisting of all the nonzero columns of size m. The simplex codes are

also called M-sequences.

Primitive BCH codes: The (narrow-sense) primitive BCH codes BCH(e, m) are

cyclic codes with

ℵ = {α1, α3, . . . , α2e−1}.
Their parameters are

[n = 2m − 1, k ≥ n − me, d ≥ 2e + 1].



3.4 Elements of coding theory 59

The BCH codes constitute a nested family of codes:

BCH(e + 1, m) ⊆ BCH(e, m).

The BCH codes contain punctured Reed–Muller codes as subcodes, namely, for

every e ≤ 2i − 1

RM∗(m − i − 1, m) ⊆ BCH(e, m).

If 2e − 2 < 2�m/2�, then the dimension of BCH(e, m) is exactly n − me.

Nonprimitive BCH codes: If n = (2m − 1)/h and β is an nth root of unity in

Fq , then a (narrow-sense) nonprimitive BCH code BCHh(e, m) is defined as a

nonprimitive cyclic code with ℵ = {β1, β3, . . . , β2e−1}. Its parameters are

[n = (2m − 1)/h, k ≥ n − me, d ≥ 2e + 1].

Duals of BCH codes: Let α ∈ Fq be a primitive element. Then BCH⊥(e, m) con-

sists of all vectors(
T r ( f (0)), T r ( f (1)), T r ( f (α)), . . . , T r ( f (αq−2))

)
,

where f (x) ∈ Fq[x] is of the form

f (x) = a1x + a2x3 + . . . + aex2e−1.

The minimum distance of BCH⊥(e, m) can be estimated by using the Carlitz–

Uchiyama bound, namely,

d
(
BCH⊥(e, m)

) ≥ 2m−1 − (e − 1)2m/2.

Encoding of dual BCH codes can be easily implemented using linear shift registers

with feedback.

Reed–Solomon codes: These are q-ary codes, with q = pm , p prime. One way of

defining the Reed–Solomon code RS(k, q) is by its polynomial representation: for

every q, RS(k, q) consists of vectors(
f (1), f (α), f (α2), . . . , f (αq−2)

)
,

where f (x) ∈ Fq[x] runs through all polynomials of, at most, degree k − 1. This

code has parameters

[n = q − 1, k, d = n − k + 1]q .

If we add an extra coordinate containing f (0), we get the extended Reed–Solomon
code with parameters

[n = q, k, d = n − k + 1]q .
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It is possible to extend the Reed–Solomon code further, thus getting the doubly
extended Reed–Solomon code with parameters

[n = q + 1, k, d = n − k + 1]q .

If q = 2m , there exist triply extended Reed–Solomon codes with parameters

[n = q + 2, k = 3, d = q]q,

and

[n = q + 2, k = q − 1, d = 4]q .

For every n < q − 1, there exist shortened Reed–Solomon codes with parameters

[n, k, d = n − k + 1]q .

All these codes achieve the maximum possible minimum distance for a given length

and size by the Singleton bound:

Theorem 3.53 (Singleton bound) For every (n, K , d)q code,

d ≤ n − logq K + 1.

Proof Puncturing an (n, K , d)q code d − 1 times yields a code of length n − d +
1, minimum distance at least one, and cardinality, K . �

Codes achieving the Singleton bound are called maximum distance separable
(MDS), so the Reed–Solomon codes are MDS.

The Reed–Solomon and extended Reed–Solomon codes constitute a nested fam-

ily of codes, namely,

RS(k, q) ⊂ RS(k + 1, q).

Hadamard codes: A ±1-matrix H±
n is a Hadamard n × n matrix if

H±
n (H±

n )T = n In.

Hadamard matrices conjecturally exist for every n being a multiple of 4.

A Hadamard code HADn consists of the rows of H±
n and their complements

after substitutions 1 → 0 and −1 → 1. The parameters of HADn are

(n, K = 2n, d = n/2).

The code RM(1, m) is a Hadamard code for n = 2m . I define here A ⊗ B, the

Kronecker product of two square matrices A = (ai, j ) and B of dimension n A and

nB , respectively: A ⊗ B is the square matrix of dimension n AnB obtained from A

by replacing every entry ai, j by ai, j B. The matrix Hn1
⊗ Hn2

is also a Hadamard
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matrix of dimension n1n2. Hadamard matrices of size 2m can be obtained as an

m-times Kronecker product H2 ⊗ H2 ⊗ . . . ⊗ H2 of the matrices

H2 =
(

1 1

1 −1

)
.

Convolutional codes: In contrast to block codes, where the information is parti-

tioned to information vectors of length k and its n − k parity bits depend only on

these k bits, in the convolutional codes the redundant bits depend on some prehis-

tory. Namely, let G j , j = 0, 1, . . . , m, be k0 × n0 matrices. Then the corresponding

convolutional code is defined by a semi-infinite matrix

G =

⎛
⎜⎜⎜⎜⎝

G0 G1 G2 . . . Gm 0 0 0 . . .

0 G0 G1 G2 . . . Gm 0 0 . . .

0 0 G0 G1 G2 . . . Gm 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ .

Convolutional codes can easily be encoded using shift registers. Efficient decoding

can be done by application of the Viterbi algorithm.

Product codes: The information vector is placed in a rectangular table, and the

redundancy is added by encoding the rows and columns of the table. Iterative

decoding in rows and columns can be applied.

Low-density parity-check (LDPC) codes: Regular LDPC codes are defined by

parity-check matrices with fixed small numbers of ones in each row and column.

The concept can be generalized to the irregular case when the spectrum of the

values of row and column sums for the parity-check matrix is prescribed. These

codes have efficient iterative decoding algorithms.

Turbo codes: In these codes two redundancy sequences are generated, one directly

from the information vector, and one from an interleaved information vector. In

decoding, the two redundant parts are used in turn to update the likelihoods of the

components of the information vector.

Now we consider algebraic codes over Galois rings. Let the size of the alphabet

be 2e, e ≥ 1.

Reed–Muller codes over Z2e : A generalized Boolean function in m binary variables

is a function having values in Z2e . Any such function can be uniquely expressed as

a linear combination over Z2e of the monomials

1, x1, . . . , xm, x1x2, x1x3, . . . , xm−1xm−2, . . . , x1x2 . . . xm,
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where the coefficient of each monomial belongs to Z2e . The degree of a function

is the maximum number of variables present in a monomial in the linear com-

bination. Then the r th order Reed–Muller code RM2e is the set of vectors that

are evaluations of the generalized Boolean functions of degree at most r . Analo-

gously, for e > 1, the code ZRM2e (r, m) is the set of evaluations of generalized

Boolean functions composed of monomials of degree at most r − 1 and two-times

monomials of degree r . The code RM(r, m) contains 2e
∑r

j=0 (m
j ) code words, while

ZRM2e (r, m) contains 2e
∑r−1

j=0 (m
j ) · 2(e−1)(m

r ) vectors. The minimum Hamming dis-

tance of both codes is 2m−r , while the Lee distance is 2m−r for RM(r, m) and

2m−r+1 for ZRM2e (r, m).

Let f ∈ Re,m[x] be a polynomial. Let β be a generator for the cyclic subgroup

of T ∗
e,m . With f we associate a length n = 2m − 1 vector c f whose components

are

(c f )k = e2π ı Tr( f (βk ))
2e .

Setting e = 2, we consider the following codes.

Kerdock codes over Z4:

K = {c f : f (x) = b0x, b0 ∈ R2,m},

Delsarte–Goethals codes over Z4:

DG t =
{

c f : f (x) = b0x + 2
t∑

j=1

b j x
1+2 j

, b0 ∈ R2,m, b j ∈ T2,m

}
.

Clearly, the quaternary Kerdock codes correspond to the case t = 0 in the Delsarte–

Goethals codes. The length and the number of words in the Delsarte–Goethals codes

are 2m − 1 and 2(2+t)m , respectively.

The minimum Lee distance of the quaternary codes K and DG t is 2m − 2
m
2

and 2m − 2t+ m
2 , respectively. To prove this, we use Theorem 3.38 and the fact that

nonzero code words of the codes are obtained from nondegenerate polynomials

having weighted degrees 2 and 2t + 1. These bounds on minimum distances can

be improved for odd m [156] to obtain the quaternary codes’ true minimum Lee

distances of 2m − 2
m−1

2 and 2m − 2t+ m−1
2 respectively. The quaternary codes can be

lengthened by adding a coordinate corresponding to f (0) (an overall parity check)

and then adding modulo 4 to every code word multiple of the all-one code word.

When m is off, the images under the Gray map of the lengthened quaternary codes

are the binary Kerdock and Delsarte–Goethals codes [149].
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Weighted degree trace codes: For t ≥ 1 satisfying 2t − 1 < 2� m
2
� + 1, the code

is defined by

WDt =
{

c f : f ∈ Re,m[x], f =
t−1∑
j=0

f2 j+1x2 j+1, D f ≤ 2t − 1

}
.

The code WDt has length n = 2m − 1, and for e = 1 coincides with BCH⊥
t . It can

be shown, using 2-adic expansions and simple counting, that when e = 2,

|WDt | = 2(2t−1−� 2t−1
4

�)m .

Theorem 3.39 can be applied to show that the minimum Lee distance of the qua-

ternary code (e = 2) is at least 2m − (2t − 2)2
m
2 .

3.5 Fast computation of the maximum of DFT

One of the most important computational tasks in the peak power control is fast

estimation of the maximum of the absolute value of the signal. As it will be shown

in the next chapter, this can be done by calculating the maximum of a relevant DFT.

The formal statement of the problem is as follows: given an n-vector of complex

numbers, a = (a0, a1, . . . , an−1), find

M(a) = max
j=0,1,...,n

∣∣∣∣∣
n−1∑
k=0

ake2π ı j
n

∣∣∣∣∣ .
The standard approach is first to compute the result of the transform (Fourier

spectrum), and then to find the maximum among the absolute values of the spectral

components. However, notice that to compute the maximum we do not need to

know all the spectral components. This can be used for further simplification of the

algorithm.

We start with a description of the standard algorithm. It is based on the Cooley–

Tukey FFT procedure, see, e.g., [29]. Let n = n1 · n2.

FFT algorithm Input: a = (a0, a1, . . . , an−1); Output: M(a).

1. Arrange the entries of a in matrix G = [gk, j ], k = 0, 1, . . . , n1 − 1;

j = 0, 1, . . . , n2 − 1; as follows:

G =

⎛
⎜⎜⎝

a0 an1
. . . an2n1−n1

a1 an1+1 . . . an2n1−n1+1

. . . . . . . . . . . .

an1−1 a2n1−1 . . . an2n1−1

⎞
⎟⎟⎠ .
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2. Implement DFT of size n1 on the columns of G. The resulting matrix T = [tk, j ], k =
0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1, is computed as follows:

tk, j =
n1−1∑
�=0

g�, j e
2π ı� k

n1 .

3. Compute matrix R = [rk, j ], k = 0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1, as follows:

rk, j = tk, j e
2π ı k j

n .

4. Implement DFT of size n2 on the rows of R. The resulting matrix F = [ f�, j ], � =
0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1, is computed as follows:

f�, j =
n2−1∑
j=0

r�, j e
2π ı j j

n2 .

5. Output

M = max
�=0,1,...,n1; j=0,1,...,n2

| f�, j |.

6. Stop. �

The algorithm requires n(n1 + n2 + 1) complex additions, n(n1 + n2 − 1) com-

plex multiplications, and n − 1 comparisons. Recurrent use of the factors of n1 and

n2 leads to further simplification. Especially simple is the case of n being a power

of 2. Then, choosing n1 = 2 at each recursive step, we arrive at an algorithm of

complexity of order n log n.

Further simplification can be achieved by truncating the results of intermediate

steps of the FFT. Indeed, each of the spectrum elements depends on all the entries

of the vector a. However, if one looks at the results of an intermediate step of the

FFT, each of the spectrum elements depends only on a part of them. Taking the sum

of the squares of absolute values of the intermediate results influencing a particular

spectrum element as an (upper) estimate of the square of its absolute value, we may

discard intermediate results having a small impact.

A variant of such an algorithm [15] is presented in what follows. Let n =
n1n2 . . . nm , and, for k = 0, 1, . . . , m − 1, denote qk = nk+1 . . . nm . We have n =
q0, and assume qm = 1.

Truncated FFT algorithm Input: a = (a0, a1, . . . , an−1); Output: M .

1. For � = 1 up to m, perform steps 2–6.
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2. Arrange the entries of a in matrix G = [gk, j ], k = 0, 1, . . . , n� − 1,

j = 0, 1, . . . , q� − 1,

G =

⎛
⎜⎜⎝

a0 a1 . . . aq�−1

aq�
aq�+1 . . . a2q�−1

. . . . . . . . . . . .

a(n�−1)q�
a(n�−1)q�+1 . . . an�q�−1

⎞
⎟⎟⎠ .

3. Implement the DFT of dimension n� on the columns of G. The resulting matrix T = [tk, j ],

k = 0, 1, . . . , n�, j = 0, 1, . . . , q� − 1, is computed as follows:

tk, j =
n�−1∑
r=0

gr, j e
2π ır k

n� .

4. Compute the p = (p0, p1, . . . , pn�−1),

pk =
q�−1∑
j=0

tk, j t
∗
k, j .

5. Find b� ∈ {0, 1, . . . , q� − 1}, the index of the maximal entry in p. If � = m go to step 7.

6. Compute the new vector a = (a0, a1, . . . , aq�−1),

a j = tb�, j e
2π ıb�

j
n .

7. Output M = pbm .

8. Stop. �

The algorithm requires

m∑
j=1

(2n j + 1)qi

complex multiplications,

m∑
j=1

((n j − 1)q j + (q j − 1)n j )

complex additions, and

m∑
j=1

(n j − 1)

comparisons. In particular, for n = 2m there are 5n − 5 complex multiplications,

3n − 2m − 3 complex additions, and m comparisons, i.e., the complexity is linear

in n. Recall that the FFT’s complexity is of order n log n. In contrast with the FFT

algorithm the complexity of the truncated algorithm depends on the ordering of
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the factors of n. Direct verification shows that to minimize the complexity it is

necessary to have increasing orders of factors.

Actually this algorithm does not always give the right value of the maximum.

However, there is experimental evidence that it is correct for most of the sequences.

Further modifications of the algorithm are possible. For example, one could dis-

card only those intermediate results that have the value of p j (see step 4 of the

truncated algorithm) below some threshold and continuing with the rest of the in-

termediate results. Since pi is an upper bound on the square of the absolute value

of the corresponding spectrum elements, such an algorithm guarantees detection

of the maximum exceeding the threshold. Another option is to use some other

function in step 4 of the algorithm, e.g. instead of tk, j t∗
k, j one could use (tk, j t∗

k, j )
s

for some positive, not necessarily integer, s. The analysis of performance of the

mentioned algorithms (complexity as a function of the error probability) is an open

problem.

3.6 Notes

Section 3.1 Introductory textbooks on harmonic analysis are Katznelson [198]

and Deitmar [89]. For signal processing aspects of harmonic analysis see Oppen-

heim et al. [307]. Generalizations of the Parseval identity are discussed in Mont-

gomery [275]. For inequalities see Beckenbach and Bellman [22]. The Bernstein

inequality and other polynomial inequalities are treated in Pólya and Szegö [331],

Borwein and Erdélyi [38], and references therein. The theory of Chebyshev poly-

nomials can be found in Szegö [392] and Mason [258].

Section 3.2 Standard texts on probability are Feller [110] and Papoulis and Pillai

[313]. Although the theory of stochastic processes will be used in what follows,

I have omitted introduction to it since it can be found in standard engineering

textbooks, e.g. Proakis [335], Proakis and Salehi [336], and Wong and Hajek [432].

A mathematical theory of stochastic processes is presented, e.g., in Papoulis and

Pillai [313] and Ross [345].

Section 3.3 A general introduction to algebraic structures can be found in Dummit

and Foote [98] and Anderson [4]. For the theory of finite fields, see McEliece [263]

and Lidl and Niederreiter [242]. Exponential sums over finite fields are considered

in Schmidt [358]. Galois rings are treated in Wan [424]. Exponential sums over

rings were considered by Kumar et al. [224], Helleseth et al. [156], and Ling and

Ozbudak [245].

Section 3.4 For the theory of error correcting codes see MacWilliams and

Sloane [257], van Lint [247], and Huffman and Pless [169]. A more practically



3.6 Notes 67

oriented source is Lin and Costello [244]. The theory of convolutional codes can

be found in Johannesson and Zigangirov [185]. Codes over rings are considered by

Hammons et al. [149] and Wan and Wan [425]. A survey of properties of

Krawtchouk polynomials can be found in Krasikov and Litsyn [217].

Section 3.5 On the general theory of fast orthogonal transforms see, e.g., Blahut

[29] and Bracewell [42]. The truncated FFT algorithm was proposed by Ashikhmin

and Litsyn [15].
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Discrete and continuous maxima in MC signals

In many situations it is beneficial to deal with a discrete-time “sampled” version of

multicarrier signals. This reduction allows passing from the continuous setting to an

easier-to-handle discrete one. However, we have to estimate the inaccuracies stem-

ming from the approach. In this chapter, I analyze the ratio between the maximum

of the absolute value of a continuous MC signal and the maximum over a set of the

signal’s samples. We start with considering the ratio when the signal is sampled

at the Nyquist frequency, i.e. the number of sampling points equals the number

of tones. In this case I show that the maximum of the ratio over all MC signals

grows with the number of subcarriers (Theorem 4.2). However, if one computes a

weighted sum of the maximum of the signal’s samples and the maximum of the

signal derivative’s samples the ratio already is, at most, a constant (Theorem 4.5).

I further show that actually the ratio depends on the maximum of the signal; the

larger the maximum is the smaller is the ratio (Theorem 4.6). An even better strat-

egy is to use oversampling. Then the ratio becomes constant tending to 1 when the

oversampling rate grows (Theorems 4.8, 4.9, 4.10, and 4.11). Furthermore, I tackle

the case when we have to use the maximum estimation, projections on specially

chosen measuring axes instead of the absolute values of the signal (Theorem 4.14).

Finally, I address the problem of relation between the PAPR and the PMEPR and

show that the PMEPR estimates the PAPR quite accurately for large values of the

carrier frequency (Theorem 4.19).

4.1 Nyquist sampling

For an MC signal,

Fa(t) =
n−1∑
k=0

ake2π ıkt , (4.1)

68
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where ak ∈ C, for k = 0, . . . , n − 1, let

Md(Fa) = max
j=0,...,n−1

∣∣∣∣Fa

(
j

n

)∣∣∣∣ , (4.2)

Mc(Fa) = max
t∈[0,1)

|Fa(t)|, (4.3)

be the discrete and continuous maxima of Fa(t), respectively. Clearly,

Mc(Fa) ≥ Md(Fa),

i.e. the continuous maximum is not less than the discrete one. We address the

problem of estimating the maximum ratio between the two maxima.

For the sake of simplicity, we consider signals of constant energy, i.e. satisfying

n−1∑
k=0

|ak |2 = n. (4.4)

We will need the following simple lower bound on Md(Fa).

Lemma 4.1

Md(Fa) ≥ √
n. (4.5)

Proof By the Parseval identity (3.3),

n =
n−1∑
k=0

|ak |2 = 1

n

n−1∑
j=0

∣∣∣∣Fa

(
j

n

)∣∣∣∣
2

≤ 1

n
· n(Md(Fa))2

and the claim follows. �

We will extensively apply an interpolation of Fa(t) using its discrete samples.

Let us first transform the expression for Fa(t),

Fa(t) =
n−1∑
k=0

ake2π ıkt =
n−1∑
k1=0

n−1∑
k2=0

ak1
e2π ık2t · 1

n

n−1∑
j=0

e2π ı j (k1−k2)

n .

Here we used the orthogonality relation (see Theorem 3.1). This yields

Fa(t) = 1

n

n−1∑
j=0

(
n−1∑
k1=0

ak1
e2π ık1

j
n

)
·
(

n−1∑
k2=0

e2π ık2

(
t− j

n

))

= 1

n

n−1∑
j=0

Fa

(
j

n

)
Dn

(
t − j

n

)
, (4.6)

and here

Dn(t) =
n−1∑
k=0

e2π ıkt (4.7)

is called the Dirichlet kernel. Figure 4.1 shows a typical behavior of |Dn(t)|.
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Figure 4.1 Typical behavior of the absolute value of the Dirichlet kernel

Clearly,

|Dn(t)| =
∣∣∣∣∣

n−1∑
k=0

e2π ıkt

∣∣∣∣∣ =
∣∣∣∣e2π ınt − 1

e2π ı t − 1

∣∣∣∣ =
∣∣∣∣2ıeπ ınt (eπ ınt − e−π ınt )

2ıeπ ı t (eπ ı t − e−π ı t )

∣∣∣∣
=

∣∣∣∣ (eπ ınt − e−π ınt )

2ı
· 2ı

(eπ ı t − e−π ı t )

∣∣∣∣ =
∣∣∣∣sin πnt

sin π t

∣∣∣∣ . (4.8)

The following result shows that there are MC signals having the ratio between

the continuous and discrete maxima growing with n.

Theorem 4.2 For n > 3,

2

π
ln n + 0.603 − 1

6n
< max

Fa

{Mc(Fa)

Md(Fa)

}
<

2

π
ln n + 1.132 + 4

n
. (4.9)

�

The proof consists of two parts in which we obtain the upper and the lower

bounds from (4.9).

4.1.1 Upper bound

We start with the upper bound. In the next section it will be shown that this upper

bound cannot be essentially improved.



4.1 Nyquist sampling 71

Lemma 4.3 For every MC signal Fa(t), n > 3,

Mc(Fa) <

(
2

π
ln n + 1.132 + 4

n

)
Md(Fa). (4.10)

Proof By (4.6),

|Fa(t)| ≤ max
j=0,...,n−1

∣∣∣∣Fa

(
j

n

)∣∣∣∣ · 1

n

n−1∑
j=0

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ , (4.11)

and thus

Mc(Fa) ≤ Md(Fa) max
t=[0,1]

1

n

n−1∑
j=0

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ . (4.12)

So our problem reduces to estimating

φ(n) = max
t

1

n

n−1∑
j=0

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ . (4.13)

In what follows we will derive an asymptotically exact bound on φ(n). Though an

upper bound on φ(n) is our goal, we start with a derivation of a lower bound. This

will allow us to demonstrate the accuracy of our approach, as well as an argument

used in its derivation that will be employed later.

Lower bound on φ(n). From the definition (4.7) of Dn , evaluating φ(n) at t = 1
2n

we obtain using (4.8),

φ(n) ≥ 1

n
·

n−1∑
j=0

∣∣∣∣Dn

(
1

2n
− j

n

)∣∣∣∣ = 1

n
·

n−1∑
j=0

∣∣∣∣∣∣
sin πn

(
1

2n − j
n

)
sin π

(
1

2n − j
n

)
∣∣∣∣∣∣

= 1

n
·

n−1∑
j=0

1∣∣∣sin π
(

1
2n − j

n

)∣∣∣ = 1

n
·

n−1∑
j=0

1

sin π
(

1
2n + j

n

)

=

⎧⎪⎨
⎪⎩

2
n · ∑(n−2)/2

j=0
1

sin π
(

1
2n + j

n

) , if n even,

1
n ·

(
1 + 2 · ∑(n−3)/2

j=0
1

sin π
(

1
2n + j

n

)
)

, if n odd.
(4.14)

Let us find the error if we replace the sines in (4.14) with their arguments. We

will use the following two inequalities (see Theorem 3.17), which are valid for

|x | ≤ 1
2
,

|sin πx − πx | ≤ π3x3

6
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and

| sin πx | ≥ 2|x |.
Thus we obtain (for a = 2 if n is even, or 3 if n is odd)∣∣∣∣∣∣

(n−a)/2∑
j=0

⎛
⎝ 1

sin π
(

1
2n + j

n

) − 1

π
(

1
2n + j

n

)
⎞
⎠

∣∣∣∣∣∣
≤

(n−a)/2∑
j=0

∣∣∣∣∣∣
π

(
1

2n + j
n

)
− sin π

(
1

2n + j
n

)
π

(
1

2n + j
n

)
· sin π

(
1

2n + j
n

)
∣∣∣∣∣∣

≤
(n−a)/2∑

j=0

π3
(

1
2n + j

n

)3

6 · 2 ·
(

1
2n + j

n

)
· π

(
1

2n + j
n

)

= π2

24n
·

(n−a)/2∑
j=0

(1 + 2 j) =
{

nπ2

96
, if n even,

(n−1)2π2

96n , if n odd .
(4.15)

Thus,

(n−a)/2∑
j=0

1

sin π
(

1
2n + j

n

) ≥ −nπ2

96
+ 2n

π

(n−a)/2∑
j=0

1

1 + 2 j
. (4.16)

We use the following known inequality,

m∑
j=0

1

2 j + 1
≥ ln(2m + 1) − 1

2
ln m + γ

2
− 1

16m
,

where γ = 0.577216 . . . is the Euler constant. From (4.14) and (4.16), we obtain,

for even n,

φ(n) ≥ 2

π

(
2 ln(n − 1) − ln(n − 2) + ln 2 + γ − 1

4(n − 2)

)
− π2

48
,

and, for odd n,

φ(n) ≥ 2

π

(
2 ln(n − 2) − ln(n − 3) + ln 2 + γ − 1

4(n − 3)

)
+ 1

n
− π2

48
.

Now we apply the following easy-to-check inequalities

2 ln(n − 1) − ln(n − 2) > ln n,

2 ln(n − 2) − ln(n − 3) > ln n − 1

n − 1
,

1

2π (n − 2)
<

1

6n
,



4.1 Nyquist sampling 73

and arrive at the bound valid for even and odd n,

φ(n) ≥ 2

π
ln n + 0.6031 − 1

6n
. (4.17)

Upper bound on φ(n). Indeed, since |Dn(t)| is even in t ,

φ(n) = max
t

1

n
·

n−1∑
j=0

∣∣∣∣∣∣
sin πn

(
t + j

n

)
sin π

(
t + j

n

)
∣∣∣∣∣∣

= max
0≤t≤ 1

2n

1

n
·

n−1∑
j=0

∣∣∣∣∣∣
sin πn

(
t + j

n

)
sin π

(
t + j

n

)
∣∣∣∣∣∣

≤ max
0≤t≤ 1

2n

1

n
·
⎛
⎝sin πnt

sin π t
+

n−1∑
j=1

1

sin π
(

t + j
n

)
⎞
⎠

≤ 1 + max
0≤t≤ 1

2n

2

n
·
⎛
⎝ 1

cos π t
+

�(n−1)/2�∑
j=1

1

sin π
(

t + j
n

)
⎞
⎠

≤ 1 + 3

n
+ max

0≤t≤ 1
2n

2

n
·
⎛
⎝�(n−1)/2�∑

j=1

1

sin π
(

t + j
n

)
⎞
⎠ .

In the inequality before the last we used (see Theorem 3.18)

sin πnt

sin π t
≤ n,

and (holding trivially for n ≥ 2)

1

cos π
2n

≤ 3

2
.

In the range of summation t + j
n ≤ 1

2
. However, sin x is monotonically increasing

on [0, π/2] and thus

φ(n) ≤ 1 + 3

n
+ 2

n

�(n−1)/2�∑
j=1

1

sin π
j
n

.

Replacing

2

n

�(n−1)/2�∑
j=1

(
sin π

j

n

)−1

with
2

n

�(n−1)/2�∑
j=1

(
π

j

n

)−1

,
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with an error of absolute magnitude (using arguments analogous to (4.15)) at most

π2/48, we get

φ(n) ≤ 1 + 3

n
+ 2

n

�(n−1)/2�∑
j=1

n

π j
+ π2

48

= 1 + 3

n
+ 2

π

�(n−1)/2�∑
j=1

1

j
+ π2

48

≤ 1 + 2

n
+ 2

π

(
ln

n − 1

2
+ γ + 1

n − 1

)
+ π2

48

<
2

π
ln n + 1.132 + 4

n
.

In the last inequality we used

ln(n − 1) ≤ ln n − 1

n
.

�

4.1.2 Lower bound

Lemma 4.4 For every n > 2 there exists a signal Fa(t) such that

Mc(Fa) ≥
(

2

π
ln n + 0.603 − 1

6n

)
· Md(Fa). (4.18)

Proof We again use (4.6) and get

Fa(t) = 1

n

n−1∑
j=0

Fa

(
j

n

)
Dn

(
t − j

n

)
,

where Dn(t) is the Dirichlet kernel (4.7).

We construct Fa(t) in such a way that, for j = 0, . . . , n − 1,

Fa

(
j

n

)
= √

n · e−2π ıϕ j , (4.19)

where

e2π ıϕ j = eı arg Dn(t− j/n).

By (4.19) for such a polynomial,

Md(Fa) = √
n. (4.20)
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Provided we managed to construct such a polynomial, we obtain from (4.6)

Fa(t) = 1√
n

n−1∑
j=0

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ . (4.21)

Now we will show that the system of equations

Fa

(
j

n

)
= √

ne−2π ıϕ j , j = 0, . . . , n − 1, (4.22)

is soluble. Indeed,

Fa(t) =
n−1∑
k=0

ake2π ıkt ,

and thus the system has the following form

a0 + a1 + · · · + an−1 = √
ne−2π ıϕ0

a0 + a1e2π ı 1
n + · · · + an−1e2π ı n−1

n = √
ne−2π ıϕ1

· · · · · ·
a0 + a1e2π ı j

n + · · · + an−1e2π ı j(n−1)
n = √

ne−2π ıϕ j (4.23)

· · · · · ·
a0 + a1e2π ı n−1

n + · · · + an−1e2π ı (n−1)(n−1)
n = √

ne−2π ıϕn−1 .

Or, in the matrix form, it is

EaT = ϕT ,

where a and ϕ are row vectors of size n with components a j and
√

ne−2π ıϕ j for

j = 0, . . . , n − 1, and E is an n × n matrix with entries

e j,k = e2π ı jk
n , j = 0, . . . , n − 1; k = 0, . . . , n − 1.

Denote the columns of matrix E by e0, . . . , en−1. Since matrix E is the matrix of

the DFT, the system (4.23) has the unique solution described by

a j = 1

n
(ϕ, e j ). (4.24)

Moreover, by Parseval’s equality,

n−1∑
j=0

|a j |2 = 1

n2

n−1∑
j=0

|(ϕ, e j )|2 = n, (4.25)
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and we proved that the energy of Fa(t) is n. Thus we have constructed a polynomial

possessing Md(Fa) = √
n, and

Mc(Fa) = 1

n

n−1∑
j=0

max
t

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ . (4.26)

A lower bound on the right-hand side is given in (4.17), which accomplishes the

proof. �

4.2 Estimating the continuous maximum from the

discrete one and its derivative

In this section, I consider the problem of estimating the continuous maximum when

the sampled values of a signal are given. As we know, to compute the sample values

of the signal we have to apply DFT to the vector a of the coefficients. However,

it is almost as simple to obtain the sample values of the derivative of the signal as

the DFT of (0 · a0, 1 · a1, . . . , (n − 1) · an−1). Though we have seen in the previous

section that the maximum over the samples at the Nyquist frequency provides a

poor estimate of the continuous maximum, a weighted combination of the maxima

of the sampled signal and its derivative yields a much tighter bound, guaranteeing

a constant ratio between the lower and upper bounds. In this section we consider

only signals satisfying |ak | = 1, k = 0, 1, . . . , n − 1.

Theorem 4.5 Let Fa(t) = ∑n−1
k=0 ake2π ık j

n , and |ak | = 1, k = 0, 1, . . . , n − 1.
Define

Md(Fa) = max
j=0,...,n−1

∣∣∣∣∣
n−1∑
k=0

ake2π ık j
n

∣∣∣∣∣ ,
M′

d(Fa) = max
j=0,...,n−1

1

2π

(
d

dx

n−1∑
k=0

ake2π ıkx

)∣∣∣∣∣
x= j/n

= max
j=0,...,n−1

∣∣∣∣∣
n−1∑
k=0

kake2π ık j
n

∣∣∣∣∣ .
Then

|Fa(t)| ≤ max
θ∈(0,1/2]

{
cn(θ )Md(Fa) +

∣∣e2π iθ − 1
∣∣

n
M′

d(Fa)

}

+ 1

π
(ln n + 0.5773) + 1.181 (4.27)

≤ cnMd(Fa) + 2

n
M′

d(Fa) + 1

π
(ln n + 0.5773) + 1.181, (4.28)
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where

cn(θ ) ≤
∣∣e2nπ iθ − 1

∣∣
2

(
ln

π

2
+ 8

n

)
(4.29)

+
∣∣e2π iθ/n − 1

∣∣ · ∣∣e2π iθ − 1
∣∣

8
· sin πθ − πθ cos πθ

2θ2 sin πθ

+ e2π iθ − 1

2
+

∣∣∣∣1

n
· e2π iθ − 1

e2π iθ/n − 1
− e2π iθ − 1

2

∣∣∣∣ + 0.5773

n
,

and

cn = max
θ∈(0,1/2]

cn(θ ), (4.30)

where cn is decreasing when n grows, and

c10 < 3.659, c100 < 2.749, c1000 < 2.658, cn < 2.648,

for n big enough.

Proof Note that from (4.5), Md(Fa) ≥ √
n, thus the ln n term does not affect

behavior of the estimate of |Fa(t)| for big lengths. Another remark is that (4.27)

gives a more accurate estimate when we optimize the sum for given Md(F) and

M′
d(F). In the second estimate (4.28) we maximize the coefficients in the sum

independently, but derive a result that is valid for any values ofMd(F) andM′
d(F).

We invoke (4.6) again,

Fa(t) = 1

n

n−1∑
j=0

(
n−1∑
k1=0

ak1
e2π ı k1 j

n

)
·
(

n−1∑
k2=0

e2π ık2

(
t− j

n

))
.

In the first bracket we have the values of Fa(t) on a discrete set of points uniformly

distributed over the circle. Let us analyze the influence of the expression in the

second bracket.

Set

t = j0
n

+ θ

n

where j0 is an integer in the interval [0, n − 1], and |θ | ≤ 1
2
. Then, by (4.6), we

have, using notation s = j − j0,

Fa(t) = 1

n

n−1∑
j=0

Fa

(
j

n

)
·
(

n−1∑
k=0

e2π ık
(
− j0

n + θ
n − j

n

))

= 1

n

∑
−n/2≤s≤n/2

Fa

(
j0 + s

n

)
·
(

n−1∑
k=0

e2π ık
(
− s

n + θ
n

))
. (4.31)
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Evidently, we can assume that θ 	= 0, otherwise we obtain a value of the function

at a sample point. Now,

n−1∑
k=0

e2π ık( θ
n − s

n ) = e2π ı( θ
n − s

n )n − 1

e2π ı( θ
n − s

n ) − 1
= e2π ıθ − 1

e2π ı( θ
n − s

n ) − 1
.

Inserting this into (4.31), we have

Fa(t) = e2π ıθ − 1

n
·

∑
−n/2<s≤n/2

Fa

(
j0 + s

n

)
· 1

e2π i( θ
n − s

n ) − 1
. (4.32)

We now partition the sum into two sums where the summation will be undertaken

over two nonintersecting intervals:

Fa(t) = e2π ıθ − 1

n

∑
|s|≤H

Fa

(
j0 + s

n

)
· 1

e2π ı( θ
n − s

n ) − 1

+ e2π iθ − 1

n

∑
|s|>H

Fa

(
j0 + s

n

)
· 1

e2π ı( θ
n − s

n ) − 1

= �1 + �2, (4.33)

where H = εn, and ε is a positive constant, which will be chosen later.

An estimate for �2. Indeed,

|�2| ≤
∣∣e2π ıθ − 1

∣∣
n

· Md(Fa) ·
∑

H<|s|≤n/2

1∣∣e2π ı( θ
n − s

n ) − 1
∣∣ .

Furthermore,

e2π ıβ − 1 = eπ ıβ 2ı(eπ ıβ − e−π ıβ)

2ı
= 2ıeπ ıβ sin πβ,

and, for every β, | sin πβ| ≥ 2‖β‖, where ‖β‖ is the distance from β to the closest

integer. Thus,

|�2| ≤
∣∣e2π ıθ − 1

∣∣
n

Md(Fa) ·
∑

H<|s|≤n/2

1

4
∥∥ θ−s

n

∥∥
≤ Md(Fa) ·

∣∣e2π ıθ − 1
∣∣

2
·

n/2+1∑
s=H−1

1

s
.

Since
∑L

s=1
1
n = ln L + γ + ξ

2L , where γ is the Euler constant and 0 < ξ ≤ 1, we

have

|�2| ≤ Md(Fa) ·
∣∣e2π iθ − 1

∣∣
2

·
(

ln
(n + 2)

2(H − 1)
+ 1

n + 2

)

= Md(Fa) ·
∣∣e2π ıθ − 1

∣∣
2

·
(

ln
1

2ε
+ ln

(
1 + 2 + 1/ε

n − 1/ε

)
+ 1

n + 2

)
. (4.34)
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An estimate for �1. We have

�1 = 1

n
· e2π ıθ − 1

e2π ı θ
n − 1

Fa

(
j0
n

)

+ e2π ıθ − 1

n

∑
1≤|s|≤H

Fa

(
j0 + s

n

)
· 1

e2π ı( θ
n − s

n ) − 1
(4.35)

= 1

n
· e2π ıθ − 1

e2π ı θ
n − 1

Fa

(
j0
n

)
+ �1

1 .

To estimate �1
1 , let us compute the error E if we replace 1

e
2π ı( θ

n − s
n )−1

in (4.35) with

1

e2π ı s
n −1

. Indeed,

E ≤
∣∣e2π ıθ − 1

∣∣
n

∑
1≤|s|≤H

∣∣∣∣Fa

(
j0 + s

n

)∣∣∣∣ ·
∣∣∣∣ 1

e2π ı( θ
n − s

n ) − 1
− 1

e−2π ı s
n − 1

∣∣∣∣
≤ ∣∣e2π ıθ − 1

∣∣Md(Fa) · 1

n
·

∑
1≤|s|≤H

∣∣1 − e2π ı θ
n

∣∣∣∣e2π ı( θ
n − s

n ) − 1
∣∣ · ∣∣e−2π ı s

n − 1
∣∣ .

Since

∣∣e2π ı( θ
n − s

n ) − 1
∣∣ ≥ 4

∥∥∥∥θ − s

n

∥∥∥∥ , and
∣∣e−2π ı s

n − 1
∣∣ ≥ 4

∥∥∥ s

n

∥∥∥ ,

E ≤ ∣∣e2π ıθ − 1
∣∣Md(Fa) · 1

n
·

∑
1≤|s|≤H

∣∣1 − e2π ı θ
n

∣∣
4

∥∥ θ−s
n

∥∥ · 4
∥∥ s

n

∥∥
≤

∣∣1 − e2π ı θ
n

∣∣ · ∣∣e2π iθ − 1
∣∣

16
· Md(Fa) · 1

n
·

∑
1≤|s|≤H

1∥∥ θ−s
n

∥∥ · ∥∥ s
n

∥∥
=

∣∣1 − e2π ı θ
n

∣∣ · ∣∣e2π ıθ − 1
∣∣

16
· Md(Fa) · 1

n2

(
H∑

s=1

1
s−θ

n · s
n

+
−H∑

s=−1

1
−s+θ

n · −s
n

)

=
∣∣1 − e2π ı θ

n

∣∣ ∣∣e2π iθ − 1
∣∣

16
· Md(Fa) ·

H∑
s=1

1

s

(
1

s + θ
+ 1

s − θ

)

=
∣∣1 − e2π ı θ

n

∣∣ ∣∣e2π iθ − 1
∣∣

8
· Md(Fa) ·

H∑
s=1

1

s2 − θ2

≤
∣∣1 − e2π ı θ

n

∣∣ · ∣∣e2π ıθ − 1
∣∣

8
· Md(Fa) ·

∞∑
s=1

1

s2 − θ2

=
∣∣1 − e2π ı θ

n

∣∣ · ∣∣e2π ıθ − 1
∣∣

8
· sin πθ − πθ cos πθ

2θ2 sin πθ
· Md(Fa). (4.36)
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Thus from (4.35) we have obtained

�1 = 1

n
· e2π ıθ − 1

e2π i θ
n − 1

· Fa

(
j0
n

)

+ e2π iθ − 1

n
·

∑
1≤|s|≤H

Fa

(
j0 + s

n

)
· 1

e−2π i s
n − 1

+ E

= A0 + A1 + E, (4.37)

and |E | is estimated in (4.36).

Let us estimate the error E∗ if in A1 we replace 1

e−2π ı s
n −1

with 1
−2π ı s

n
. From the

inequality (see Theorem 3.19)

∣∣eı t − 1 − ı t
∣∣ ≤ t2

2
,

we have

|E∗| ≤
∣∣∣∣e2π ıθ − 1

n

∣∣∣∣ ·
∑

1≤|s|≤H

∣∣∣∣Fa

(
j + s

n

)∣∣∣∣ ·
∣∣∣∣ 1

e−2π ı s
n − 1

− 1

−2π ı s
n

∣∣∣∣
≤

∣∣e2π ıθ − 1
∣∣

n
Md(Fa) ·

∑
1≤|s|≤H

∣∣−2π ı s
n + 1 − e−2π ı s

n

∣∣∣∣e−2π ı s
n − 1

∣∣ · 2π
|s|
n

≤ ∣∣e2π ıθ − 1
∣∣ · Md(Fa) · 1

2πn
·

∑
1≤|s|≤H

4π2s2

2n2

4
∥∥ s

n

∥∥ · |s|
n

≤ π
∣∣e2π ıθ − 1

∣∣
2

· Md(Fa) · H

n
. (4.38)

Thus we may substitute A1 by the expression

A∗
1 = e2π ıθ − 1

−2π i

∑
1≤|s|≤H

1

s
· Fa

(
j0 + s

n

)
(4.39)

with error E∗ of absolute value estimated in (4.38). The sum in the last expression

can be estimated as follows:

∑
1≤|s|≤H

1

s
Fa

(
j0 + s

n

)
=

∑
1≤|s|≤H

1

s

(
n−1∑
k=0

ake2π ı k( j0+s)

n

)

=
n−1∑
k=0

ake2π ı k j0
n ·

∑
1≤|s|≤H

1

s
e2π ı ks

n
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=
n−1∑
k=0

ake2π ı k j0
n ·

(
H∑

s=1

1

s
e2π ı ks

n +
H∑

s=1

−1

s
e−2π ı ks

n

)

= 2ı
n−1∑
k=0

ake2π ı k j0
n ·

H∑
s=1

1

s
· sin 2π

ks

n
.

Let us denote x = k/n, and we can then estimate
∑H

s=1
1
s sin 2πsx . Then

H∑
s=1

sin 2πsx

s
= 2π

∫ x

0

H∑
s=1

cos 2πst dt = 2π

∫ x

0

(
sin(2H + 1)π t

2 sin π t
− 1

2

)
dt

= −πx + 2π

∫ x

0

(
1

2 sin π t
− 1

2π t

)
· sin(2H + 1)π t dt

+ 2π

∫ x

0

sin(2H + 1)π t

2π t
dt

= −πx + I1 + I2.

Furthermore,

I2 =
∫ x

0

sin π (2H + 1)t

t
dt =

∫ (2H+1)πx

0

sin u

u
du = π

2
+ ξ1

π (2H + 1)x
,

and |ξ1| ≤ 1. Moreover, for x = 0, I2 = 0.

Now,

I1 = 2π

∫ x

0

(
1

2 sin π t
− 1

2π t

)
sin(2H + 1)π t dt

= π

∫ x

0

(
1

sin π t
− 1

π t

)
sin π (2H + 1)t dt.

Integrating by parts we get

I1 = π

(
− 1

π (2H + 1)
cos π (2H + 1)t ·

(
1

sin π t
− 1

π t

)∣∣∣∣
x

0

+ 1

π (2H + 1)

∫ x

0

cos π (2H + 1)t ·
(

1

sin π t
− 1

π t

)′
dt

)
.

We assume x ∈ (0, 1
2
), and thus

I1 = ξ2

2H + 1

(
max

0<x≤1/2

∣∣∣∣ 1

sin πx
− 1

πx

∣∣∣∣
)

+ ξ2

2π (2H + 1)
· max

0<x≤1/2

∣∣∣∣
(

1

sin πx
− 1

πx

)′∣∣∣∣
= ξ2

2H + 1

(
1 − 2

π
+ 2

π2

)
,
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where |ξ2| ≤ 1. Thus, for x 	= 0,

H∑
s=1

sin 2πsx

s
= −πx + π

2
+ ξ1

π (2H + 1)x
+ ξ2

2H + 1

(
1 − 2

π
+ 2

π2

)
.

For x = 0, this sum is 0.

Returning to (4.39) we have

A∗
1 = e2π ıθ − 1

−π
·

n−1∑
k=1

ake2π ı k j0
n

·
(

−πk

n
+ π

2
+ ξ1n

π(2H + 1)k
+ ξ2

2H + 1

(
1 − 2

π
+ 2

π2

))
. (4.40)

Collecting the intermediate results, we arrive at the following:

A0 + A∗
1 =

(
1

n

e2π ıθ − 1

e2π ı θ
n − 1

− e2π ıθ − 1

2

)
·
(

n−1∑
k=0

ake2π ık j0
n

)
+ e2π ıθ − 1

2
· a0

+ e2π ıθ − 1

n

n−1∑
k=1

kake2π ık j0
n − ξ1(e2π ıθ − 1)

2π2ε
·
(

n−1∑
k=1

1

k
ake2π ık j0

n

)

− ξ2

(
1 − 2

π
+ 2

π2

)
2εn + 1

· e2π ıθ − 1

π
·
(

−a0 +
n−1∑
k=0

ake2π ık j0
n

)
.

Next, since for all k, |ak | = 1,∣∣∣∣∣
n−1∑
k=1

1

k
ake2π ık j0

n

∣∣∣∣∣ ≤
n−1∑
k=1

1

k
≤ ln n + γ.

Thus,

|A0 + A∗
1| ≤

(∣∣∣∣1

n

e2π ıθ − 1

e2π ı θ
n − 1

− e2π ıθ − 1

2

∣∣∣∣ + 0.181

εn

)
· Md(Fa)

+
∣∣e2π ıθ − 1

∣∣
n

M′
d(Fa) +

∣∣e2π ıθ − 1
∣∣

2π2ε
(ln n + 0.5773) + 1.181.

Finally, maximizing in θ , we have

|Fa(t)| ≤ max
θ∈(0,1/2]

{|�2| + |E | + |E∗| + |A0 + A∗
1|

}

≤ max
θ∈(0,1/2]

{
cn(θ )Md(Fa) +

∣∣e2π ıθ − 1
∣∣

n
M′

d(Fa)

}

+ max
θ∈(0,1/2]

{∣∣e2π ıθ − 1
∣∣

2π2ε

}
(ln n + 0.5773) + 1.181,
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where cn(θ ) satisfies

cn(θ ) ≤
∣∣e2π ıθ − 1

∣∣
2

·
(

ln
1

2ε
+ ln

(
1 + 2 + 1/ε

n − 1/ε

)
+ 1

n + 2

)

+
∣∣e2π ı θ

n − 1
∣∣ · ∣∣e2π ıθ − 1

∣∣
8

· | sin πθ − πθ cos πθ |
2θ2 sin πθ

+ πε
∣∣e2π ıθ − 1

∣∣
2

+
∣∣∣∣1

n

e2π ıθ − 1

e2π ı θ
n − 1

− e2π ıθ − 1

2

∣∣∣∣ + 0.181

εn
.

Choosing ε = 1
π

, we arrive at (4.27) and (4.28) as claimed. Direct checking shows

that for every θ and n increasing, cn(θ ) monotonically decreases, thus maxθ cn(θ )

also decreases with n. �

4.3 Dependence of the ratio on the maximum

The upper bound of Theorem 4.2 becomes trivial whenMd(Fa) is greater than π
2

n
ln n .

This hints at a possibility of having bounds on the ratio between the continuous and

discrete maxima depending on Md(Fa).

Theorem 4.6 For Fa(t) = ∑n−1
k=0 ake2π ı t with ak ∈ C,

∑n−1
k=0 |ak |2 = n, let

Mc(Fa) = max
t

|Fa(t)|, Md(Fa) = max
j=0,...,n−1

∣∣∣∣Fa

(
j

n

)∣∣∣∣ .
Then

Mc(Fa) ≤ Md(Fa)

(
4

π
ln

n

Md(Fa)
+ 4.92

)
. (4.41)

Remark 4.1 Noticing that the derivative in Md of the right-hand side of (4.41) is

positive, we conclude that Md(Fa) in the bound can be substituted by any upper

estimate.

Proof We start with noticing that every vector satisfying the Parseval identity

corresponds to a legal vector of coefficients. Another ingredient of the proof is the

following inequality. Let (a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) be two nonneg-

ative vectors such that a0 ≥ a1 ≥ . . . ≥ an−1. Then
∑n−1

k=0 akbσ (k), where σ is a per-

mutation on {0, 1, . . . , n − 1}, attains a maximum if bσ (0) ≥ bσ (1) ≥ . . . ≥ bσ (n−1).

In other words, to maximize the scalar product of two nonnegative vectors defined

up to permutation, one should line up their entries in decreasing order. This fact is

proved in Theorem 3.13.
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Let ψ j = arg Dn
(
t − j

n

)
. Then any MC signal F̂n(t) can be converted to another

legal MC signal by setting

Fa

(
j

n

)
= e−ıψ j

∣∣∣∣F̂n

(
j

n

)∣∣∣∣ ,
which, by the interpolation formula (4.6), satisfies

|Fa(t)| = 1

n

n−1∑
j=0

∣∣∣∣Fa

(
j

n

)∣∣∣∣ ·
∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ ≤ 1

n

n−1∑
j=0

|Fj | · |D j |. (4.42)

Here |F0| ≥ |F1| ≥ . . . ≥ |Fn−1| and |D0| ≥ |D1| ≥ . . . ≥ |Dn−1| are the corre-

spondingly ordered values of Fa

( j
n

)
and Dn

(
t − j

n

)
.

For every t , we have

1

n

n−1∑
j=0

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣
2

= n. (4.43)

Indeed,

Dn

(
t − j

n

)
=

n−1∑
k=0

e2π ıkt · e−2π ık j
n ,

and thus Dn
(
t − j

n

)
are the components of DFT of the vector(

1, e2π ı t , e2π ı2t , . . . , e2π ı(n−1)t
)
.

Now (4.43) follows from the Parseval identity (Theorem 3.3).

Therefore, by the Cauchy–Schwartz inequality (3.4), we have

Fa(t) ≤ 1

n
·
√√√√(

n−1∑
j=0

|Fj |2
)

·
(

n−1∑
j=0

|D j |2
)

= n.

Though this inequality is trivial we can derive from it a condition on the attainability

of the upper bound. Indeed, the Cauchy–Schwartz inequality is tight if, and only

if, for all j and some nonzero λ, |Fj | = λ|D j |. Since
∑n−1

j=0 |Fj |2 = ∑n−1
j=0 |D j |2,

λ = 1, and we conclude that in this case |Fj | = |D j | for all j . Therefore, for some

t0,

max
j=0,1,...,n−1

∣∣∣∣Dn

(
t0 − j

n

)∣∣∣∣ = Md(Fa).

Recall that the closest to 0 zeros of the function |Dn(t)| are − 1
n and 1

n . Let ψ1

and ψ2 be the two solutions in t of Md(Fa) = |Dn(t)| belonging to I = (− 1
n , 1

n

)
.

Since |Dn(t)| is an even function in t , ψ1 = −ψ2. Moreover, since the size of I is
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2
n , it contains exactly two points of the form, say, α1 = t0 − j

n and α2 = t0 − j−1
n .

Therefore, the values of |Dn(α1)| and |Dn(α2)| have to be at mostMd(Fa). However,

if ψ2 − ψ1 > 1
n , there is such j∗ that

∣∣Dn
(
t0 − j∗

n

)∣∣ > Md(Fa), a contradiction.

Therefore, to achieve the maximum of n one should have ψ2 − ψ1 ≤ 1
n which is

equivalent to ψ2 ≤ 1
2n . This is equivalent to

Md(Fa) ≥
∣∣∣∣Dn

(
1

2n

)∣∣∣∣ = 1

sin π
2n

.

Notice that the right-hand side converges to 2n
π

when n increases. The maxima of

|Dn(t)| are decreasing when |t | increases, and the second maximum is less than
1

sin π
2n

. Thus, we have proved that if, and only if, Md(Fa) ≥ 1
sin π

2n
, there exists a

polynomial with Mc(Fa) = n.

Now assume that max j=0,1,...,n−1

∣∣|Fa|
( j

n

)∣∣ < 1
sin π

2n
. Let us continue our study of

the right-hand side of (4.42). We have concluded that there is no λ such that for

all j = 0, 1, . . . , n − 1, λ|Fj | = |D j |. Consider the second and third terms of the

right-hand side of (4.42),

I = |F1| · |D1| + |F2| · |D2|,
under the constraint |F1|2 + |F2|2 = R2. Then the maximum of I is achieved when

|F1|
|D1| = |F2|

|D2| . (4.44)

Then

|F1|2 + |F2|2 = |F1|2
(

1 +
( |D2|

|D1|
)2

)
.

If

R2

1 +
(

|D2|
|D1|

)2
< Md(Fa),

the maximum is achieved for |F1| and |F2| satisfying (4.44), otherwise, |F1| = Md .

The same argument works for any pair of indices k and j , k > j , from {1, 2, . . . ,

n − 1}, and

|Fk | · |Dk | + |Fj | · |D j |. (4.45)

Therefore, there exists J such that

for j = 0, . . . , J − 1, |Fj | = Md(Fa);

for j = J, . . . , n − 1,
|Fj |
|D j | = |Fj+1|

|D j+1|
= . . . = |Fn−1|

|Dn−1| .
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Then

|Fa(t)| ≤ Md(Fa) · 1

n

J−1∑
j=0

|D j | + |FJ | · 1

n|DJ |
n−1∑
j=J

|D j |2. (4.46)

Now we would like to determine the possibilities for ordering the values of

∣∣∣∣Dn

(
t − j

n

)∣∣∣∣ =
∣∣∣∣∣∣
sin πn

(
t − j

n

)
sin π

(
t − j

n

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
sin πnt

sin π
(

t − j
n

)
∣∣∣∣∣∣ .

Since | sin π t | is periodic with period 1 and even, the ordering of

| sin πnt |
| sin π t | ,

| sin πnt |∣∣sin π
(
t − 1

n

)∣∣ , . . . ,
| sin πnt |∣∣sin π

(
t − n−1

n

)∣∣
can be considered for the interval t ∈ [

0, 1
2

]
. Indeed, for t = 0 we have ordering

n, 0, . . . , 0, and the trivial estimate |Fa(t)| ≤ Md(Fa). Assume t 	= 0. Evidently

the ordering then is

| sin πnt |
| sin π t | ,

| sin πnt |∣∣sin π
(
t − 1

n

)∣∣ , | sin πnt |∣∣sin π
(
t + 1

n

)∣∣ , | sin πnt |∣∣sin π
(
t − 2

n

)∣∣ , | sin πnt |∣∣sin π
(
t + 2

n

)∣∣ , . . .
Therefore, from (4.46),

|Fa(t)| ≤ Md(Fa) · 1

n

∑
| j |≤ J−1

2

| sin πnt |∣∣∣sin π
(

t + j
n

)∣∣∣
+ |FJ | · 1

n
·
∣∣sin π

(
t + J+1

2n

)∣∣
| sin πnt | ·

∑
J+1

2
≤| j |≤ n−1

2

| sin πnt |2∣∣∣sin π
(

t + j
n

)∣∣∣2

≤ Md(Fa) · 1

n

⎛
⎝n + 2

 J−1
2

�∑
j=1

1∣∣∣sin π
(

t + j
n

)∣∣∣
⎞
⎠

+ |FJ | · 1

n
·
∣∣∣∣sin π

(
t + J + 1

2n

)∣∣∣∣ ·
∑

� J+1
2

�≤| j |≤ n−1
2

1∣∣∣sin π
(

t + j
n

)∣∣∣2
.

(4.47)

We estimate the first summand exactly as in the derivation of the upper bound on

φ(n), see p. 74, and obtain

1

n

⎛
⎜⎝n + 2

⌈
J−1

2

⌉∑
j=1

1∣∣∣sin π
(

t + j
n

)∣∣∣
⎞
⎟⎠ ≤ 2

π
ln J + 1.132 + 2

π (J − 1)
.
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As for the second summand, we have

max
0≤t≤ 1

2n

∣∣∣∣sin π

(
t + J + 1

2n

)∣∣∣∣ ≤ π (J + 2)

2n
,

and

max
0≤t≤ 1

2n

∑
� J+1

2
�≤| j |≤ n−1

2

1∣∣∣sin π
(

t + j
n

)∣∣∣2
≤ 2 ·

n−1
2∑

j=� J+1
2

�

1∣∣∣sin π
j
n

∣∣∣2

≤ 2 ·
n−1

2∑
j=� J+1

2
�

n2

4 j2

≤ n2

2
·

∞∑
j= J

2

1

j2
≤ n2

J
.

Plugging these estimates into (4.47), and substituting |FJ | by Md , we obtain

|Fa(t)| ≤ Md(Fa)

(
2

π
ln J + 4.92

)
,

which is valid for J ≥ 2. Let us estimate J from above. Indeed, by the Parseval

identity, M2
d(Fa)J ≤ n2, and

J ≤
(

n

Md(Fa)

)2

,

which gives

|Fa(t)| ≤ Md(Fa)

(
4

π
ln

n

Md
+ 4.92

)
.

�

Actually, we see that the main term of (4.41) coincides with the main term of

(4.9), 2
π

ln n, only for Md(Fa) = √
n (and it cannot be less than

√
n, see (4.5)). For

larger Md(Fa), the derived bound improves on (4.41). However, we may guarantee

a constant ratio between the discrete and continuous maxima only if Md(Fa) is

proportional to n.

4.4 Oversampling

In this section, I consider the problem of approximating the maximum of a function

when the number of sampling points is essentially greater than the degree of the
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polynomial corresponding to the signal. Denote, for an MC signal Fa(t),

Md(Fa, M) = max
j=0,...,M−1

∣∣∣∣Fa

(
j

M

)∣∣∣∣ . (4.48)

Clearly, Md(Fa, n) = Md(Fa). Note that computation of Md(Fa, M) can be im-

plemented using DFT of size M over the vector a = (a0, a1, . . . , an−1, 0, . . . , 0) of

length M . Indeed, for j = 0, 1, . . . , M − 1,

M∑
k=0

ake2π ık j
M =

n−1∑
k=0

ake2π ık j
M = Fa

(
j

M

)
.

We start with a simple bound derived using Bernstein’s inequality; see Theo-

rem 3.26. Though this bound will be improved upon later, essential conclusions

can already be derived from this one.

Theorem 4.7 For Fa(t) = ∑n−1
k=0 ake2π ıkt , and M > n,

Mc(Fa) ≤ Md(Fa, M) ·
√

M

M − π (n − 1)
. (4.49)

Proof By Lagrange’s theorem for any real continuous differentiable function

f (x), and x2 > x1,

| f (x1) − f (x2)| ≤ (x2 − x1) max
x1≤x≤x2

| f ′(x)|. (4.50)

Let f (θ ) = ∣∣Fa

(
θ

2π

)∣∣2
. By Lemma 3.24, f (θ ) is then a real trigonometric polyno-

mial of order (n − 1). Thus, by Bernstein’s inequality, (3.40), (4.50) can be rewritten

as

| f (θ1) − f (θ2)| ≤ (n − 1)(θ2 − θ1) max
θ∈[0,2π )

f (θ ),

which is valid for any 0 ≤ θ1 < θ2 ≤ 2π . Let maxθ∈[0,2π ] f (θ ) = M2
c(Fa) be

achieved at θ∗. The distance from the closest point of the form 2π j
M to θ∗, say

θ̂ , where j = 0, 1, . . . , M , is at most π
M . Therefore,

M2
c(Fa) − M2

d(Fa, M) ≤ f (θ∗) − f (θ̂ ) ≤ π (n − 1)

M
M2

c(Fa),

and we obtain (4.49). �

An easy consequence of the theorem is that if one samples the signal in the

number of points essentially greater than n, a constant ratio between the dis-

crete and continuous maxima is guaranteed. Let us pass to a derivation of tighter

bounds.
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4.4.1 Large oversampling rates

Theorem 4.8 Let Fa(t) = ∑n−1
k=0 e2π ıkt be a MC signal, and r = M

n be the over-
sampling factor. Then

Mc(Fa) ≤ 1

cos π
2r

Md(Fa, M). (4.51)

The equality in (4.51) is attained if, and only if, n is even and r ≥ 2 is integer.

Proof We start with considering real trigonometric polynomials of order m, for

simplicity scaled to

λ0 + λ1 cos
π

m
t + μ1 sin

π

m
t + λ2 cos

2π

m
t

+ μ2 sin
2π

m
t + . . . + λm cos π t + μm sin π t.

The critical sampling of such a polynomial requires 2m + 1 equidistant samples.

Indeed, it cannot be less than that since otherwise there exists a nonzero real

trigonometric polynomial of order m vanishing in all points. We denote by M ,

M ≥ 2m + 1, the number of equidistant sample points, and by Cr = Mc
Md

the sought

maximum ratio between the discrete and continuous maxima of such polynomi-

als. The considered polynomials have period 2m. Thus the intervals between the

sampling points are of length 2 m
M .

Let f (t) be a polynomial on which the maximum ratio is achieved, and f (t∗) =
Mc( f ), i.e., the continuous maximum attained at t∗. Clearly, if f (t) is a real

trigonometric polynomial then f (t − t0), for any t0, is such as well. Choose t0 =
2 j · m

M for some integer j , so that f (t∗ − t0) belongs to the interval
(− m

M , m
M

]
.

Clearly for f (t − t0) the ratio between the discrete and continuous maximum is

the same as for f (t). Therefore, we may assume in what follows that t∗ belongs to(− m
M , m

M

] ∈ (−1, 1).

Define

�(t) = f (t + t∗) − Mc( f ) cos π t.

Notice that �(0) = 0 by the definition, and �′(0) = 0 since f has a local extremum

at t∗. The samples of � in integer points are

�(k) = f (k + t∗) − Mc( f )(−1)k,

and since for all t , | f (t)| ≤ Mc( f ), we have

�(k) ≤ 0 for odd k,

�(k) ≥ 0 for even k.
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Thus, we may rewrite

�(k) = ξk(−1)k+1, |k| = 1, 2, . . . ,

where ξk ≥ 0. For band-limited signals g(t) with the Fourier spectrum supported

on [−ω, ω], to provide convergence on the supremum norm the following sampling

series given by Schönhage [360] should be used,

g(t) = g′(0)
sin ωt

ω
+ g(0)

sin ωt

ωt
+ t ·

∞∑
k=−∞,k 	=0

g
(

π
ω

)
k

· sin ω
(
t − kπ

ω

)
ω

(
t − kπ

ω

) .

Applying it to �(t), and setting ω = π , we get

�(t) = �′(0)
sin π t

π
+ �(0)

sin π t

π t
+ t ·

∞∑
k=−∞,k 	=0

�(k)

k
· sin π(t − k)

π (t − k)

= t ·
∞∑

k=−∞,k 	=0

�(k)

k
· sin π (t − k)

π (t − k)

= t
sin π t

π

∞∑
k=−∞,k 	=0

�(k)

k

(−1)k

(t − k)

= t
sin π t

π

∞∑
k=1

�(k)

k

(−1)k

(t − k)
+ t

sin π t

π

−1∑
k=−∞

�(k)

k

(−1)k

(t − k)
. (4.52)

We consider �(t) for t ∈ (−1, 1). In this interval, t · sin π t
π

≥ 0. Furthermore, the

first sum in (4.52) is

∞∑
k=1

�(k)

k

(−1)k

(t − k)
=

∞∑
k=1

ξk(−1)k+1

k

(−1)k

(t − k)
=

∞∑
k=1

ξk

k(k − t)
≥ 0.

As for the second sum in (4.52), we have

−1∑
k=−∞

�(k)

k

(−1)k

(t − k)
= −

−1∑
k=−∞

ξk

k(t − k)
=

∞∑
k=1

ξk

k(k + t)
≥ 0.

Thus, we have proved that �(t) ≥ 0 for t ∈ (−1, 1). Equality �(t) = 0 is achieved

for some t ∈ (−1, 1)/{0} if, and only if, ξk = 0 for all nonzero k, i.e., f (t + t∗) =
Mc( f ) cos π t . This means that Mc( f ) cos π(t − t∗) always has a discrete max-

imum not exceeding that of any other real trigonometric polynomial of order

m. Indeed, the normalized value of any other real trigonometric at m/M < 1 is

greater than the corresponding value of cos π (t − t∗), for which it is the discrete

maximum.

We choose t∗ so as to minimize Md( f, M). This happens if the maximum of

cos π (t − t∗) is in the middle of an interval between two sampling points, e.g.,
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2 4 6 8 10
t

−1

−0.5

0.5

1

f (t)

Figure 4.2 Extremal function

t∗ = m
M (see Fig. 4.2). Finally, we have

Md( f, M) ≥ Mc( f ) cos
πm

M
. (4.53)

This inequality is exact if M is even, and M
2m is integer. Only then do all the discrete

samples of the properly shifted cos π t have the same value.

Now we pass to MC signals, Fa(t) = ∑n−1
k=0 ake2π ıkt . Let n be even. Introduce

the function �n(t),

�n(t) = e−2π ı n−2
2

t Fa(t).

Clearly, |Fa(t)| = |�n(t)|. Furthermore,

�n(t) =
n
2∑

k=− n−2
2

ak+ n−2
2

e2π ıkt

=
n
2∑

k=− n−2
2

ak+ n−2
2

(cos 2πkt + ı sin 2πkt)

=
n
2∑

k=0

ak+ n−2
2

(cos 2πkt + ı sin 2πkt)

+
n−2

2∑
k=1

a−k+ n−2
2

(cos 2πkt − ı sin 2πkt)

= a n−2
2

+
n−2

2∑
k=1

((
a−k+ n−2

2
+ ak+ n−2

2

)
cos 2πkt

+ ı
( − a−k+ n−2

2
+ ak+ n−2

2

)
sin 2πkt

)
+ an−1 cos 2π

n

2
t + ıan−1 sin 2π

n

2
t.
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Denoting

b0 = a n−2
2

, b n
2

= an−1, bk = a−k+ n−2
2

+ ak+ n−2
2

, k = 1, 2, . . . ,
n − 2

2
,

and θ = 2π t , we obtain

�n(θ ) = b0 +
n−2

2∑
k=1

(bk cos kθ + ıbk sin kt) + b n
2

cos
n

2
t + ıb n

2
sin

n

2
t.

Clearly �n(θ ) is a complex trigonometric polynomial. Let maxθ∈[0,2π ) |�n(θ )| be

attained at θ = θ∗. Then the polynomial

�∗(θ ) = e− arg �n(θ∗)�(θ )

has real value at t∗. Moreover,

max
t∈[0,1)

|Fa(t)| = max
θ∈[0,2π )

|�n(θ )| = max
θ∈[0,2π )

|�∗
n(θ )| = �∗

n(θ∗).

Now, similarly to Lemma 3.23, �(�∗
n(θ )) is a real trigonometric polynomial of

order n
2

with Mc(�(�∗
n(θ ))) = Mc(Fa). Since, for all θ ,

�(�∗
n(θ )) ≤ |�∗

n(θ )| = |�n(θ )| =
∣∣∣∣Fa

(
θ

2π

)∣∣∣∣ ,
we conclude that

Cr = Mc(Fa)

Md(Fa, M)
≤ Mc(�(�∗

n(θ )))

Md(�(�∗
n(θ )), M)

≤ 1

cos πn
2M

,

where the last inequality follows from (4.53). The treatment for odd n is analogous.

The derived inequality is exact if n is even and r ≥ 2 is an integer. Indeed, it is

attained for the signal Fa(t) = e2π ı(n−1)(t− 1
2M ). �

4.4.2 Bounds from de la Vallée–Poussin kernels

As an improvement on the previous section, bounds can be obtained for the range

of oversampling rates between 1 and 2.

Theorem 4.9 For every MC signal, Fa(t) = ∑n−1
k=0 ake2π ıkt , and r = M

n ,

Mc(Fa) ≤
√

r − 1

r
· Md(Fa, M).

Proof Let

TM,n(t) = 1

(M − n)
· DM (t) · DM−n(−t),



4.4 Oversampling 93

where D j (t) is the Dirichlet kernel, defined in (4.7),

D j (t) =
j−1∑
k=0

e2π ıkt .

Then

TM,n(t) = 1

(M − n)
·
(

M−1∑
k=0

e2π ıkt

) (
M−n−1∑

j=0

e−2π ı j t

)

= 1

(M − n)
·

M−1∑
k=0

M−n−1∑
j=0

e2π ı(k− j)t =
M−1∑

k=−M+n+1

cke2π ıkt ,

where

ck =
⎧⎨
⎩

k
M−n + 1, if k = n − M + 1, n − M + 2, . . . , −1;

1, if k = 0, 1, . . . , n − 1;

− k
M−n+1

+ M
M−n+1

, if k = n, n + 1, . . . , M − 1.

(4.54)

The kernel TM,n belongs to the class of de la Vallée–Poussin kernels.

Now

1

M

M−1∑
j=0

Fa

(
j

M

)
· TM,n

(
t − j

M

)

= 1

M

n−1∑
k1=0

M−1∑
k2=n−M+1

ak1
ck2

M−1∑
j=0

e2π ık1
j

M · e2π ık2

(
t− j

M

)

=
n−1∑
k1=0

M−1∑
k2=n−M+1

ak1
ck2

· e2π ık2t · 1

M
·

M−1∑
j=0

e2π ı(k1−k2) j
M .

The last inner sum equals M if, and only if, k1 − k2 ≡ 0 mod m, and is 0 otherwise.

However, in the interval under consideration this congruence is satisfied only if

k1 = k2. Therefore,

1

M

M−1∑
j=0

Fa

(
j

M

)
· TM,n

(
t − j

M

)
=

n−1∑
k=0

akbke2π ıkt = Fa(t).

Here, in the last step, we used the fact that bk = 1 in the range of summation, see

(4.54). Thus, we have proved that

Fa(t) = 1

M

M−1∑
j=0

Fa

(
j

M

)
· 1

(M − n)
· DM

(
t − j

M

)
· DM−n

(
t − j

M

)
.
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This yields

max
t∈[0,1)

|Fa(t)| ≤ 1

M(M − n)
· max

j=0,...,M−1

∣∣∣∣Fa

(
j

M

)∣∣∣∣
· max

t∈[0,1)

M−1∑
j=0

∣∣∣∣DM

(
t − j

M

)∣∣∣∣ ·
∣∣∣∣DM−n

(
t − j

M

)∣∣∣∣
≤ 1

M − n
· max

j=0,...,M−1

∣∣∣∣Fa

(
j

M

)∣∣∣∣ · max
t∈[0,1)

(
1

M

M−1∑
j=0

∣∣∣∣DM

(
t − j

M

)∣∣∣∣
2
) 1

2

·
(

1

M

M−1∑
j=0

∣∣∣∣DM−n

(
t − j

M

)∣∣∣∣
2
) 1

2

.

On the last expression, the Cauchy–Schwartz inequality is used.

For every t and s ≤ M , we have

1

M

M−1∑
j=0

∣∣∣∣Ds

(
t − j

M

)∣∣∣∣
2

= s. (4.55)

Indeed,

Ds

(
t − j

M

)
=

s−1∑
k=0

e2π ıkt · e−2π ık j
M +

M−1∑
k=s

0 · e−2π ık j
M ,

and thus Ds
(
t − j

M

)
are the components of DFT of the size M vector(
1, e2π ı t , e2π ı2t , . . . , e2π ı(s−1)t , 0, . . . , 0

)
.

Now, (4.55) follows from the Parseval identity (Theorem 3.3).

Finally, we have

Mc(Fa) ≤ Md(Fa, M) · 1

M − n
·
√

M · √
M − n

= Md(Fa, M) ·
√

M

M − n
,

and we are done. �

A better estimate can be obtained for specific values r ∈ (1, 2). We start with

r = 3/2.

Theorem 4.10 For every MC signal, Fa(t) = ∑n−1
k=0 ake2π ıkt ,

Mc(Fa) ≤ 5

3
· Md

(
Fa, 3

⌈
n − 1

2

⌉)
. (4.56)

Moreover, when n is even, the estimate is tight.
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Proof Let n be even, n = 2m. Denote M = 3m. Define a new function

�n(t) = Fa(t)e−π ınt . (4.57)

Notice that

Md(F2m, 3m) = max
0≤ j≤3m−1

∣∣∣∣Fa

(
j

3m

)∣∣∣∣
= max

0≤ j≤3m−1

∣∣∣∣Fa

(
j

3m

)
· e−π ı2m j

3m

∣∣∣∣
= max

0≤ j≤3m−1

∣∣∣∣�n

(
j

3m

)∣∣∣∣ = Md(�2m, 3m). (4.58)

Thus, we may consider the function �2m(t) instead of F2m(t).
Let

Tn(t) =
∑
|k|≤n

cke2π ıkt , (4.59)

where

ck =
{

1, if |k| ≤ m,

2 − |k|
m , if m < |k| ≤ 2m.

(4.60)

Now,

1

M

M−1∑
j=0

�n

(
j

M

)
· Tn

(
t − j

M

)

= 1

M

M−1∑
j=0

(
n−1∑
k1=0

ak1
e2π ı(k1−m)· j

M

)
·

∑
|k2|≤n

cke2π ık2

(
t− j

M

)

=
n−1∑
k1=0

∑
|k2|≤n

ak1
· ck2

· e2π ık2t · 1

M

M−1∑
j=0

e2π ı(k1−m−k2) j
M .

The inner sum gives 0 in all cases except when

k1 − m − k2 ≡ 0 (mod M),

and thus we have proved

�n(t) = 1

3m

3m−1∑
j=0

�n

(
j

3m

)
· T2m

(
t − j

3m

)
. (4.61)
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Therefore, using (4.58), we get

|�n(t)| ≤
(

max
0≤ j≤3m−1

∣∣∣∣�n

(
j

3m

)∣∣∣∣
)

· 1

3m

3m−1∑
j=0

∣∣∣∣T2m

(
t − j

3m

)∣∣∣∣
= Md(F2m, 3m) · 1

3m

3m−1∑
j=0

∣∣∣∣T2m

(
t − j

3m

)∣∣∣∣ . (4.62)

Now notice that

T2m

(
t − j

3m

)
=

∑
|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

)
· e−2π ım

(
t− j

3m

)

+
∑
|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

)

+
∑
|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

)
· e2π ım

(
t− j

3m

)

=
( ∑

|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

))

·
(

e2π ım
(

t− j
3m

)
+ 1 + e−2π ım

(
t− j

3m

))
.

In the last product, we denote the first term

Km

(
t − j

3m

)
=

∑
|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

)
, (4.63)

which is called the Fejér kernel. For all t , the Fejér kernel is real and

Km

(
t − j

3m

)
≥ 0. (4.64)

This is true, since

Km

(
t − j

3m

)
=

m−1
2∑

k1=− m−1
2

m−1
2∑

k2=− m−1
2

e2π ı(k1−k2)
(

t− j
3m

)

=
⎛
⎝ m−1

2∑
k1=− m−1

2

e2π ık1

(
t− j

3m

)⎞⎠
⎛
⎝ m−1

2∑
k2=− m−1

2

e−2π ık2

(
t− j

3m

)⎞⎠

=
∣∣∣∣∣∣

m−1
2∑

k1=− m−1
2

e
2π ık1

(
t− j

3m

)∣∣∣∣∣∣
2

.
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Thus, by (4.62) and (4.64), we have

|�n(t)| ≤ Md(F2m, 3m) · 1

3m
·

3m−1∑
j=0

Km

(
t − j

3m

)
·
∣∣∣∣1 + 2 cos 2πm

(
t − j

3m

)∣∣∣∣ .
(4.65)

Let

I = 1

3m

3m−1∑
j=0

Km

(
t − j

3m

) ∣∣∣∣1 + 2 cos 2π

(
mt − j

3

)∣∣∣∣ .
Then ∣∣∣∣1 + 2 cos 2π

(
mt − j

3

)∣∣∣∣
=

⎧⎨
⎩

|1 + 2 cos 2πmt |, for j ≡ 0 mod 3,

|1 − cos 2πmt + √
3 sin 2πmt |, for j ≡ 0 mod 3,

|1 − cos 2πmt − √
3 sin 2πmt |, for j ≡ 0 mod 3.

Therefore,

I = 1

3m
|1 + 2 cos 2πmt | ·

∑
j≡0 mod 3

Km

(
t − j

3m

)

+ 1

3m
|1 − cos 2πmt +

√
3 sin 2πmt | ·

∑
j≡1 mod 3

Km

(
t − j

3m

)

+ 1

3m
|1 − cos 2πmt −

√
3 sin 2πmt | ·

∑
j≡2 mod 3

Km

(
t − j

3m

)
.

Now,

1

3m

∑
j≡h mod 3

Km

(
t − j

3m

)

= 1

3m

∑
j≡h mod 3

∑
|k|≤m

(
1 − |k|

m

)
· e

2π ık
(

t− j
3m

)

=
∑
|k|≤m

(
1 − |k|

m

)
· e2π ık

(
t− j

3m

)
· 1

3m

∑
j≡h mod 3

e2π ı k j
3m

= 1

3
,

since

1

3m

∑
j≡h mod 3

e2π ı k j
3m =

{
1
3

if k = 0,

0 otherwise.
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Thus,

I = 1

3

(|1 + 2 cos 2πmt |
+ |1 − cos 2πmt +

√
3 sin 2πmt | + |1 − cos 2πmt −

√
3 sin 2πmt |)

≤ 1

3
max

t

{|1 +2 cos 2πmt | +|1 − cos 2πmt+
√

3 sin 2πmt |
+ |1 − cos 2πmt −

√
3 sin 2πmt |}

= 5

3
.

Combining this result with (4.65), and noticing that |�n(t)| = |Fa(t)|, we obtain

the claimed result. For odd n, the same arguments work.

For the lower bound when n is even it is enough to consider the polynomials

1− 1
2
eπ ı(n−1)t +e2π ı(n−1)t , and check that they attain the claimed upper bound. �

This approach can be further developed for r having the form s
s+1

.

Theorem 4.11 For every MC signal, Fa(t) = ∑n−1
k=0 ake2π ıkt , and integer s, s ≥ 1,

Mc(Fa) ≤ γs

s + 1
· Md

(
Fa, (s + 1)

⌈
n − 1

s

⌉)
, (4.66)

where

γs = max
t∈[0,1)

s∑
j=0

∣∣∣∣∣
s∑

k=0

e2π ık
(

t− j
s+1

)∣∣∣∣∣ .
Proof This is similar to the proof of the previous theorem. Again we construct

the kernel analogous to (4.59) and being the sum of s + 1 Fejér kernels (4.63) with

shifted arguments. We omit the details. �

For example, if s = 1, we have

γ1 = ∣∣1 + e2π ı t
∣∣ + ∣∣1 − e2π ı t

∣∣ = 2
√

2.

4.5 Projections on measuring axes

In the previous sections I assumed that we can measure the absolute value of an MC

signal in the sampling points. This is not always possible, and we have to use in our

estimates only values of the real or imaginary part of the signal, or, more generally,

projections of the signal on specially chosen axes. Let F R
n (t) and F I

n (t) be the real

and imaginary parts of Fa(t) = ∑n−1
k=0 ake2π ıkt , respectively. Then, using notation r

for the oversampling rate and Cr for the maximum ratio between the discrete and

continuous maxima of MC signals, we have
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Lemma 4.12 Let rn ∈ N. Then

max
t∈[0,1)

|Fa(t)| ≤ Cr

√
2 max

j=0,1,...,rn−1

{
F R

a

(
j

rn

)
, F I

a

(
j

rn

)}
.

Proof This is trivial. �

In fact, this approach can be improved. Indeed, instead of projecting on two axes

(real and imaginary) we may pick a greater number, say h, of evenly distributed

lines passing through the origin, r�(ϕ) = re( 2π�
h +ϕ)ı , r, ϕ ∈ R, � = 0, 1, . . . , h − 1.

For a complex number c, let c(�)(ϕ) be its orthogonal projection on r�(ϕ), |c(�)(ϕ)| =
|〈c, r�(ϕ)〉|. We can also write c(�)(ϕ) = �(

c · e−( 2π�
h +ϕ)ı

)
.

Straightforward analysis similar to the proof of the previous lemma then gives

the following statement.

Lemma 4.13 For any complex number c,

|c| ≤ max
�=0,1,...,h−1

∣∣c(�)(ϕ)
∣∣

cos
(

π
2h

) . (4.67)

If c belongs to the set R = {rhe
2π ı

s h}, rh ∈ R, h ∈ Z, and h divides s, choosing
ϕ = π

2h − π
s , we get

|c| ≤ max
�=0,1,...,h−1

∣∣c(�)(ϕ)
∣∣

cos
(

π
2

(
1
h − 2

s

)) . (4.68)

�
This yields the following useful result.

Theorem 4.14 Let rn ∈ N and ϕ ∈ R. Then

max
t∈[0,1)

|Fa(t)| ≤ Cr max
j=0,1,...,rn−1

max
�=0,1,...,h−1

∣∣∣∣(Fa

(
j

rn

))(�)

(ϕ)

∣∣∣∣
cos

(
π
2h

) .

�

Notice that Lemma 4.12 is a special case of Theorem 4.14 when h = 2 and

ϕ = 0.

So far, I have discussed measuring the maximum of the absolute value. However,

there are situations when we have to take into account the sign of the projection

value. Analogously to the previous theorem we deduce the following result.

Theorem 4.15 Let rn ∈ N and ϕ ∈ R. Then

max
t∈[0,1)

|Fa(t)| ≤ Cr Ĉh max
j=0,1,...,rn−1

max
�=0,1,...,h−1

(
Fa

(
j

rn

))(�)

(ϕ),
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where

Ĉh =
⎧⎨
⎩

1
cos( π

h )
h > 3, h even,

3−cos( π
h )

1+cos( π
h )

h ≥ 3, h odd.

�

4.6 Relation between PAPR and PMEPR

Recalling the definitions of PAPR and PMEPR, for an n-dimensional complex-

valued vector a, we deal with two functions,

Fa(t) =
n−1∑
k=0

ake2π ıkt ,

and

Sa(t) =
n−1∑
k=0

ake2π ı(ζ+k)t = e2π ıζ t · Fa(t).

Then

PAPR(a) = 1

n
· max

t∈[0,1)
|�(Sa(t))|,

and

PMEPR(a) = 1

n
· max

t∈[0,1)
|Fa(t)|.

We know that PAPR always does not exceed PMEPR, see (2.5). We will show that

for large values of ζ in comparison with n, PAPR cannot be essentially smaller than

PMEPR. We will need the following result, elaborating on arguments used in the

proof of (4.49).

We start by proving that the phase of Fa(t) cannot change too fast.

Lemma 4.16 Let

Fa(t) =
n−1∑
k=0

ake2π ıkt = |Fa| · eı arg Fa(t)

be an MC signal, and max |Fa(t)| be attained at t = t0. Then for any t ∈
[t0 − �, t0 + �],

| arg Fa(t0) − arg Fa(t∗)| ≤ π2n
3
2

2
�.
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|Fa(t)|

pn(n − 1)Δ

j

Figure 4.3 The triangle

Proof

Fa(t + �) =
n−1∑
k=0

e2π ık(t+�) =
n−1∑
k=0

e2π ıkt · e2π ık�

=
n−1∑
k=0

e2π ıkt · (1 + γk) = Fa(t) +
n−1∑
k=0

γke2π ıkt .

Using (see (3.27))

|γk | = |e2π ık� − 1| ≤ 2πk�,

we obtain

|Fa(t) − Fa(t + �)| ≤ 2π�

n−1∑
k=0

k = πn(n − 1)�.

Consider a triangle in the complex plane with vertices in 0, Fa(t + �) and Fa(t).
The three sides of the triangle have lengths |Fa(t + �)|, |Fa(t)| and ≤ πn(n − 1)�.

An easy trigonometric exercise, see Fig. 4.3, is that the triangle’s angle, ϕ, opposite

to the side connecting Fa(t + �) and Fa(t) satisfies

2

π
ϕ ≤ sin ϕ ≤ πn(n − 1)�

|Fa(t)| ,

were we used (3.23) in the first inequality. Taking into account (see (4.5)) the fact

that |Fa(t0)| ≥ √
n, we accomplish the proof. �

Corollary 4.17 There exists t∗ ∈ [
t0 − 1

4ζ−πn
3
2

, t0 + 1

4ζ−πn
3
2

]
such that

arg Sa(t∗) = 0.

Proof Let arg Sa(t0) ∈ [−π
2
, 0

)
. For t1 > t0, t1 − t0 = �, we have

arg Sa(t1) − arg Sa(t0) ≥ 2πζ� − π2n
3
2

2
�.
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If this difference is greater than π/2, there is a point t∗ ∈ [t0, t1] for which

arg Sa(t∗) = 0. This is satisfied if

� ≥ 1

4ζ − πn
3
2

.

The other cases of arg Sa(t0) are treated analogously. �

Lemma 4.18 Let Fa(t) = ∑n−1
k=0 ake2π ıkt be an MC signal, and t0 be such that

|Fa(t0)| = Mc(Fa). Then for any t ∈ [t0 − �, t0 + �] , we have

|Fa(t)| ≥ Mc(Fa) ·
√

1 − 2π2(n − 1)2�2.

Proof Define s(θ ) = ∣∣Fa

(
θ

2π

)∣∣2
. By Lemma 3.24, s(θ ) is a real trigonometric

polynomial of order (n − 1). Let θ0 = 2π t0. Since s ′(θ0) = 0, we have the following

second-order Taylor expansion at θ0,

s(θ ) = s(θ0) + 1

2
(θ − θ0)2|s ′′(θ∗)|,

where θ∗ is a point between θ and θ0. Applying twice Bernstein’s inequality for

real trigonometric polynomials we obtain

s(θ ) ≥ s(θ0)

(
1 − (n − 1)2

2
(θ − θ0)2

)
,

or

|Fa (t)|2 ≥ M2
c(Fa)

(
1 − 2π2(n − 1)2(t − t0)2

)
,

and we have proved the claim. �

Theorem 4.19 For any MC signal defined by a,

PAPR(a) ≥ PMEPR(a) ·

√√√√1 −
( √

2 πn(
4ζ − πn

3
2

)
)2

. (4.69)

Proof Combine Corollary 4.17 with Lemma 4.18. �

For ζ � n
3
2 , (4.69) simplifies to

PAPR(a) ≥ PMEPR(a) ·
(

1 −
(

πn

4ζ

)2
)

.

4.7 Notes

Section 4.1 Theorem 4.2 in the form presented is from Litsyn and Yudin [248].

For the critical sampling of real trigonometric polynomials, the corresponding ratio
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(the Lebesgue constant) is estimated in Schönhage [359] and Ehlich and Zeller

[103]. An additive constant slightly worse than in the upper bound of (4.9) was

derived by Paterson and Tarokh [328]. Other works on the ratio between discrete

and continuous maxima are those of Wulich [435], Jedwab [177], Minn et al. [271],

Tellambura [405, 409], Sharif and Khalaj [377], and Sharif et al. [366].

Section 4.2 Theorem 4.5 is by Litsyn and Yudin [248].

Section 4.3 Theorem 4.6 is by Litsyn and Yudin [253].

Section 4.4 Theorem 4.7 is by Jetter et al. [182]. In the proof of Theorem 4.8 the

ratio for real trigonometric polynomials was first considered by M. Riesz in 1914

[342]. Ehlich and Zeller [102] elaborated on this result. The bound for complex

trigonometric polynomials was given by Wunder and Boche [442], see also [31,

32, 33, 438, 440, 441]. Theorem 4.9 was proven by Jetter et al. [182]. Theorem

4.10 is by Litsyn and Yudin [248]. Theorem 4.11 is by Litsyn and Yudin [253].

Section 4.5 Theorem 4.14 appears in Litsyn and Shpunt [251]. Wunder and

Boche [442] used a similar estimate. However, they allow projections only in the

positive direction, and thus have twice as many axes than in Theorem 4.14, for the

even number of axes.

Section 4.6 Lemma 4.18 is from Sharif et al. [366].



5

Statistical distribution of peak power in MC signals

In this chapter, I consider estimates for the probability distribution of peaks in MC

signals. This is done under the assumption that in each subcarrier the choice of

the constellation point is made independently of the choices in other subcarriers,

and all the points in the constellation are equiprobable. In Section 5.1, I apply the

Chernoff bound to construct an upper bound on the probability of a peak exceed-

ing some prescribed value. In Section 5.2, I demonstrate that the distribution of

PMEPR in n-subcarrier MC signals is concentrated around ln n. Section 5.3 deals

with approximations stemming from modeling MC signals as stochastic processes.

In Section 5.4, I show that there are many MC signals with constant PMEPR. Fi-

nally, in Section 5.5, I give a simple criterion for a signal to have an essentially

high peak, of size linear in n, and estimate the number of MC signals with such

peaks.

Throughout, I mean by f (x) = O (g (x)) that
∣∣ f (x)

g(x)

∣∣ ≤ c for all x , where c > 0

is a real constant.

5.1 Upper bounds for PMEPR distribution

We consider a multicarrier signal Fa(t) = ∑n−1
k=0 ake2π ıkt , defined by the coefficient

vector a = (a0, a1, ..., an−1). For convenience, we define t j,r = j
rn where r > 1 is

the oversampling factor and rn is an integer. Note that the case r = 1 corresponds

to Nyquist-rate sampling. We need the following results from Chapter 4.

Let the samples of Fa(t) be

{Fa(0), Fa(t1,r ), . . . , Fa(trn−1,r )}.

Then (see Theorem 4.8) the inequality

max
0≤t<1

|Fa (t)| < Cr · max
j=0,1,...,rn−1

|Fa(t j,r )|,

104
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where

Cr = 1

cos π
2r

, (5.1)

holds.

Let αs,h = 2πs
h for a natural h > 2 and s = 0, 1, . . . , h − 1. Then (see Theo-

rem 4.15)

max
α∈[0,2π )

�(Fa(t)eıα) ≤ Ĉh · max
s=0,1,...,h−1

�(Fa(t)eıαs,h ),

where

Ĉh =
⎧⎨
⎩

1
cos( π

h )
h > 3, h even,

3−cos( π
h )

1+cos( π
h )

h ≥ 3, h odd.
(5.2)

Let

G = {(t j1,r , α j2,h), j1 = 0, 1, . . . , rn − 1; j2 = 0, 1, . . . , h − 1} (5.3)

be a lattice in the square [0, 1) × [0, 2π ), and suppose that the probabilities

Pr(�(Fa(t)eıα) > λ
√

n),

(t, α) running through G, are given. Using the equality

|Fa (t)| = max
α∈[0,2π )

�(Fa(t)eıα)

we have

F (λ) = Pr

(
max

t∈[0,1)
|Fa (t)| > λ

√
n

)

= Pr

(
max

t∈[0,1),α∈[0,2π )
�(Fa(t)eıα) > λ

√
n

)

≤ min
r>1,h>2

Pr

(
max

(t,α)∈G
�(Fa(t j1,r )eıα j2,h ) >

λ
√

n

Cr Ĉh

)

and by the union bound

F (λ) ≤ min
r>1,h>2

rn−1∑
j1=0

h−1∑
j2=0

Pr

(
�(Fa(t j1,r )eıα j2,h ) >

λ
√

n

Cr Ĉh

)
. (5.4)

The probability terms can be replaced with the Chernoff bound, i.e.,

Pr (�(Fa(t)eıα) > μ) ≤ E
(
eε(�(Fa(θ )eıα)−μ)

)
, (5.5)
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valid for any ε > 0, and the expectation is taken over all possible choices of a.

Furthermore,

E
(
eε(�(Fa(θ )eıα)−μ)

) = e−εμE
(

eε

(
�
(∑n−1

k=0 ak eı(2πkt+α)
)))

= e−εμ
n−1∏
k=0

E
(
eε

(
�
(

ak eı(2πkt+α)
)))

,

where the expectation is already over all equally probable choices of ak from the

constellation. Summarizing we obtain the following result.

Theorem 5.1 Let Fa(t) belong to the ensemble of MC signals defined by the vec-
tors a = (a0, a1, . . . , an−1) with the coefficients ak, k = 0, 1, . . . , n − 1, equiprob-
ably chosen from a constellation Q. Then

Pr

(
max

t∈[0,1)
|Fa (t)| > λ

√
n

)

≤ min
ε>0

min
r>1,rn∈N

min
h>2,h∈N

e−εμ
∑

t,α∈G

n−1∏
k=0

E
(
eε(�(ak eı(2πkt+α)))),

where the expectation is over Q, μ = λ
√

n
Cr Ĉh

, Cr and Ĉh are defined in (5.1) and
(5.2), and G is defined in (5.3). �

Let us now estimate the derived upper bounds for standard constellations. We

start with QAM. We assume

M-QAM = {A ((2m1 − 1) + ı (2m2 − 1)) , m1, m2 ∈ {−m/2 + 1, . . . , m/2}}
for a natural m > 1, and M = m2.

Theorem 5.2 Let Q = M-QAM. Then the following upper bound holds:

Pr

(
max

t∈[0,1)
|Fa (t)| > λ

√
n

)

≤ min
ε>0

min
r>1,rn∈N

min
h>2,h∈N

rhn · e−εμ+ ε2n
4 · ε2n

1

(
ε

√
3

2 (M − 1)

)
,

where μ = λ
√

n
Cr Ĉh

, Cr and Ĉh are defined in (5.1) and (5.2), and

ε1 (x) = 1 −
sinh (x)

(
e

Mx2

24 − e( M
12

− 1
3 ) x2

2

)
− x3

6

sinh (x) e( M
12

− 1
3 ) x2

2

,

satisfying ε1(x) → (1 + O(x4)) as x → 0 .
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Proof We will show that if ak ∈ M-QAM then the following upper bound holds:

E
(
ex�(ak eı(2πkt+α))

) ≤ e
x2

4 ε2
1

(
x

√
3

2 (M − 1)

)
.

Notice that the right-hand side of the inequality does not depend on either k, t, or

α.

For the proof, we set A = 1 and scale x appropriately. Since

� (
akeı(2πkt+α)

) = �(ak) cos (2πkt + α) − �(ak) sin (2πkt + α),

we have

E
(
ex�(ak eı(2πkt+α))

) = E
(
ex�(ak ) cos(2πkt+α)

) · E
(
e−x�(ak ) sin(2πkt+α)

)
. (5.6)

Now,

E
(
ex�(ak ) cos(2πkt+α)

)
= 1

m

⎛
⎝e−x cos(2πkt+α)

m
2∑

s=1

e2xs cos(2πkt+α) + ex cos(2πkt+α)

m
2∑

s=1

e−2xs cos(2πkt+α)

⎞
⎠.

Using the formula for the sum of geometric progression, we have

m
2∑

s=1

e2xs cos(2πkt+α) = ex(1+ m
2 ) cos(2πkt+α) · sinh

(
xm
2

cos (2πkt + α)
)

sinh (x cos (2πkt + α))

and
m
2∑

s=1

e−2xs cos(2πkt+α) = e−x(1+ m
2 ) cos(2πkt+α) · sinh

(
xm
2

cos (2πkt + α)
)

sinh (x cos (2πkt + α))
.

Analogously processing the second term in (5.6) after straightforward manipula-

tions we may conclude that for ak ∈ M-QAM,

E
(
ex�(ak eı(2πkt+α))

) ≤
2∏

s=1

2 sinh
(

xm fs (2πkt+α)
2

)
cosh

(
xm fs (2πkt+α)

2

)
m sinh (x fs (2πkt + α))

where f1 (x) = cos (x) and f2 (x) = sin (x). Since

cosh
(mx

2

)
≤ e

Mx2

8

and f 2
1 (x) + f 2

2 (x) = 1 for all x , I will show that

sinh
(

mx
2

)
sinh (x)

≤ m

2
· e( M

12
− 1

3 ) x2

2 · ε1 (x)
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and thus

E
(
ex�(ak eı(2πkt+α))

) ≤ e
(M−1)

3
x2

2 ε1 (x) .

Then, after rescaling, the result will follow.

First, we want to find γ > 0 such that

sinh
(

mx
2

)
sinh (x)

≤ m

2
e

γ x2

2 . (5.7)

Since
sinh( mx

2 )
sinh(x)

is symmetric around x = 0 it suffices to prove inequality (5.7) for

x ≥ 0. Using sinh (x) ≥ x we have

sinh
(

mx
2

)
sinh (x)

≤ sinh
(

mx
2

)
x

and sinh (x) ≤ xe
x2

6 yields the upper bound

sinh
(

mx
2

)
sinh (x)

≤
mx
2

e
Mx2

24

x
= m

2
e

Mx2

24 .

Thus γ < M
12

. Since x will be small, the inequality will be evaluated at small values

and can be improved. Expanding

sinh
(mx

2

)
= mx

2
+ (m)3 x3

48
+ . . .

and

e
γ x2

2 = 1 + γ x2

2
+ . . .

yields

m

2
e

γ x2

2 sinh (x) = mx

2
+

(
γ

2
+ 1

6

)
mx3

2
+ . . .

Considering the linear and cubic term only yields

(m)3

48
≤

(
γ

2
+ 1

6

)
m

2

and hence

γ ≥ M

12
− 1

3
.

Using the lower bound on γ we have the following inequality chain

sinh
(mx

2

)
≤ m

2
sinh (x) e

γ1x2

2 + ε′ (x) ≤ m

2
sinh (x) e

γ2x2

2
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where M
12

− 1
3

= γ1 ≤ γ2 = M
12

and ε′ (x) is an error term. Since the coefficients of

the power series are all positive, the inequality will hold for each coefficient. Hence,

the error will be upper bounded by

ε′ (x) = m

2
sinh (x) e

γ2
2

x2 − mx

2
−

(
γ2

2
+ 1

6

)
mx3

2

−
(

m

2
sinh (x) e

γ1
2

x2 − mx

2
−

(
γ1

2
+ 1

6

)
mx3

2

)
.

Dividing by m
2

sinh (x) and e( M
12

− 1
3 ) x2

2 yields

ε1 (x) = 1 + ε′ (x)

m
2

sinh (x) e( M
12

− 1
3 ) x2

2

.

The term ε′ (x) satisfies ε′ (x) = O(x5) as x → 0 and thus ε1(x) = 1 + O(x5/x)

as x → 0. In order to get the final result we scale

x → x

√
3

2
(M − 1).

�

Theorem 5.3 Let Q = M-PSK. Then the following upper bound holds:

Pr

(
max

t∈[0,1)
|Fa (t)| > λ

√
n

)
≤ min

ε>0
min

r>1,rn∈N

min
h>2,h∈N

rhn · e−εμ+ ε2n
4 · εn

2 (ε),

where μ = λ
√

n
Cr Ĉh

, Cr and Ĉh are defined in (5.1) and (5.2), and

ε2 (x) = 1 +
ex − 1 − x − x2

2
−

(
e

x4

4 − 1 − x4

4

)
e

x4

2

,

satisfying ε2 (x) → (1 + O(x3)) as x → 0.

Proof We will prove that for ak ∈ M-PSK the following upper bound holds:

E
(
ex�(ak eı(2πkt+α))

) ≤ e
x2

4 ε2(x).

Expanding the exponential function yields

1

M

M−1∑
s=0

ex cos 2πs
M = 1 +

∑M−1
s=0 cos

(
α + 2πs

M

)
x

M
+

∑M−1
s=0 cos2

(
α + 2πs

M

)
x2

2M
+ . . .

= 1 + x2

4
+ . . .
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where we used (see Theorems 3.14 and 3.15)

M−1∑
s=0

cos

(
α + 2πs

M

)
= 0

and

M−1∑
s=0

cos2

(
α + 2πs

M

)
= M

2
,

valid for any α. The coefficients are trivially upper bounded by the coefficients of

ex and we can write

1

M

M−1∑
s=0

ex cos(α+ 2πs
M ) ≤ e

x2

4 + ε′(x),

where the error is upper bounded by

ε′ (x) = ex − 1 − x − x2

2
−

(
e

x4

4 − 1 − x4

4

)
.

The term ε′ (x) satisfies ε′ (x) = O
(
x3

)
as x → 0 and thus ε2 (x) = 1 + O

(
x3

1+x2

) =
1 + O(x3) as x → 0. �

Corollary 5.4 For M-QAM,

Pr (PMEPR(a) > λ) ≤ min
r>1,h>2

rhn e
− λ

C2
r Ĉ2

h · ε2n
1

(
2
√

λ

Cr Ĉh
√

n

√
3

2 (M − 1)

)
(5.8)

and for M-PSK,

Pr (PMEPR(a) > λ) ≤ min
r>1,h>2

rhn e
− λ

C2
r Ĉ2

h · εn
2

(
2
√

λ

Cr Ĉh
√

n

)
. (5.9)

Proof Set ε = 2
√

λ

Cr Ĉh
√

n
in Theorems 5.2 and 5.3 and use the definition of PMEPR.

�
Simulations show that the derived bounds compare favorably to other approxi-

mations in the low probability region. Let us consider the behavior of the bounds

when n → ∞.

Theorem 5.5 For growing n and a randomly chosen from either M-QAM or
M-PSK,

Pr(PMEPR > ln n + ln ln n + c) ≤ e−c(1 + o(1)).

Proof In this case we may choose growing r and h, pushing the error terms ε1 and

ε2 to tend to 1. Therefore we face only minimization of p = rhn e
− λ

C2
r Ĉ2

h . Restricting
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ourselves to even h, we obtain, using cos2 x > 1 − x2,

λ

C2
r Ĉ2

h

≥ λ · cos2 π

2r
· cos2 π

h
> λ

(
1 − π2

4r2
− π2

h2

)
.

Setting h = 2r , and a = π2

2r2 , we conclude that

p <
π2

a
n e−λ(1−a).

Furthermore, setting a = ε(n)
ln n for a slowly growing function ε(n), and

λ = ln n − ln ε(n) − 2 ln π + ln ln n + c,

we obtain

p < e−c+ε(n)+o(n),

giving the claim. �

5.2 Lower bounds for PMEPR distribution

We start with the QAM case.

Theorem 5.6 Let Fa(t) = ∑n−1
k=0 ake2π ıkt be an MC signal, where ak are chosen

equiprobably from M-QAM with Eav = 1. Then

Pr (PMEPR(a) ≤ ln n − 6.5 ln ln n) ≤ O

(
1

ln4 n

)
.

Proof We will construct a lower bound on Pr(PMEPR(a) > λ). Instead of analyz-

ing the continuous maximum of |Fa(t)|, it is enough to consider the maximum of

�(Fa(t)) over its n equidistributed samples at t j = j
n , j = 0, 1, . . . , n − 1. Define

a function u(x), 0 ≤ u(x) ≤ 1, satisfying

u(x) =
{

0, |x | ≤ L ,

1, |x | ≥ L + 	,

where 	 = √ n
ln n and L = √

n ln n − 6.5n ln ln n − 	. We also assume that u(x)

is a function that is ten-times differentiable such that u(r )(x) = O(	−r ) for 1 ≤
r ≤ 10.

We will need the following technical lemma.

Lemma 5.7 Let

u(x) =
∫ ∞

−∞
eısxv(s) ds, (5.10)
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then

v(s) = 1

2π

∫ ∞

−∞
(u(x) − 1)e−ısx dx, (5.11)

and the following properties hold:

|srv(s)| = O

(
1

	r−1

)
, 1 ≤ r ≤ 10, (5.12)∫ ∞

−∞
|v(s)| ds = O

(
L

	

)
, (5.13)∫ ∞

−∞

∣∣s pv(s)
∣∣ ds = O

(
1

	p

)
, 1 ≤ p ≤ 8, (5.14)∫

|s|>
0

|v(s)| ds = O

(
1

	9

)
, for any constant 
0 > 0, (5.15)

∣∣∣∣
∫ ∞

−∞
e− ns2

4 s pv(s) ds

∣∣∣∣ = O

(√
n e− L2

n

L	p

)
, 1 ≤ p ≤ 8, (5.16)

∫ 1

0

∫ 1

0

∫ ∞

−∞
e
− s2

4

(∑n−1
k=0 cos2(2πkt+γ )+sin2(2πkt+γ )

)
s pv(s) ds dγ dt = O

(√
n e

−L2

n

L	p

)
.

(5.17)

Proof Since u(x) is 1 everywhere except in the interval [−L − 	, L + 	], v(s) ds
has a jump of unity at s = 0. Apart from this point it is evenly continuous with the

derivative v(s), given by (5.11).

(5.12): Since u(x) − 1 is nonzero only in [−L − 	, L + 	], we have

|v(s)| =
∣∣∣∣ 1

2π

∫ L+	

−L−	

(u(x) − 1)e−ısx dx

∣∣∣∣ ≤ 2(L + 	)

2π
= O(L). (5.18)

By partial integration we obtain

|srv(s)| ≤ 2	 max
∣∣u(r )(x)

∣∣ = O

(
1

	r−1

)
for r = 1, . . . , 10. (5.19)

(5.13): Use (5.18) for |s| ≤ 1
	

and (5.19) with r = 2 otherwise.

(5.14): Use (5.19) with r = p for |s| ≤ 1
	

and with r = p + 2 otherwise.

(5.15): Use (5.12) with r = 10 to show that |v(s)| = O
(

1
s10	9

)
.

(5.16): We use Parseval’s theorem and the properties of Fourier transform to

obtain ∣∣∣∣
∫ ∞

−∞
e− ns2

4 s pv(s) ds

∣∣∣∣ =
∣∣∣∣ 1√

πn

∫ ∞

−∞
e− x2

n u(p)(x) ds

∣∣∣∣ . (5.20)
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Now we can use the fact that u(p)(x) is zero for |x | < L and equals O
(

1
	r

)
for

|x | > L to rewrite the integral as

O

(∣∣∣∣
∫ ∞

−∞
e− ns2

4 s pv(s) ds

∣∣∣∣
)

= O

(
1√

n 	p

∫
|x |>L

e− x2

n dx

)

= O

⎛
⎝ Q

(
L√
n/2

)
	p

⎞
⎠, (5.21)

where Q(x) = 1√
2π

∫ ∞
x e− x2

2 dx . Using the asymptotic expansion

Q(x) = e− x2

2

x
√

2π

(
1 − O

(
1

x2

))
,

we get

O

⎛
⎝ Q

(
L√
n/2

)
	p

⎞
⎠ = O

(√
n e− L2

n

L	p

)
. (5.22)

Now (5.16) follows from (5.21) and (5.22).

(5.17): We use (5.16) to write the inner integral in (5.17) as∫ ∞

−∞
e
− s2

4

(∑n−1
k=0 cos2(2πkt+γ )+∑n−1

k=0 sin2(2πkt+γ )
)
s pv(s) ds = O

( √
n

L	p
· e− L2

n

)
.

(5.23)

�
Continuation of the proof of Theorem 5.6 Define the random variable η as

η =
n−1∑
m=0

u (�(Fa (tm))) =
n−1∑
m=0

∫ ∞

−∞
eıs�(Fa(t))v(s) ds, (5.24)

where we have replaced u(x) by its Fourier transform (5.10). To find a lower bound,

we proceed as follows;

Pr

(
max

t∈[0,1)
|Fa(t)| ≥ L

)
≥ Pr

(
max

m=0,1,...,n−1
|� (Fa(tm))|

)
= 1 − Pr(η = 0) ≥ 1 − Pr(η = 0 ∨ η ≥ E(η))

= 1 − Pr(|η − E(η)| ≥ E(η)) ≥ 1 − ση

E2(η)
, (5.25)

where the last inequality is Chebyshev’s inequality (Theorem 3.28). Let us analyze

the first and second moments of η.
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Lemma 5.8

E(η) ≥ O(ln6 n), σ 2
η ≤ O(E(η) ln2 n + ln5 n).

Proof The complex coefficients ak can be presented as

ak = aR
k + ıbR

k ,

where aR
k = �(ak), aI

k = �(ak), and aR
k and aI

k are independent identically dis-

tributed symmetric random variables. By (5.24),

η =
n−1∑
m=0

∫ ∞

−∞
eıs

∑n−1
k=0(aR

k cos ktm−aI
k sin ktm)v(s) ds. (5.26)

Using the independence of aR
k and aI

k , we obtain,

(s, tm) = E
(

eıs
∑n−1

k=0(aR
k cos ktm−aI

k sin ktm)
)

=
n−1∏
k=0

E
(
eısaR

k cos ktm
)
E

(
eısa I

k cos ktm
)
. (5.27)

Notice that (s, tm) is an even, infinitely differentiable for |s| < 1, function in s,

and (0, tm) = 1. Thus, computing the Taylor series for log (s, tm) we conclude

that, for |s| < 1,

E
(
eısaR

k cos ktm
) = e− t2

4
−α1t4+O(t6), E

(
eısa I

k cos ktm
) = e− t2

4
−α2t4+O(t6). (5.28)

Now using e−a = e−b + O(|b − a|) for a, b ≥ 0, we can write (5.27) for |s| < 1 as

(s, tm) = e− ns4

4 + O(ns4). (5.29)

Therefore (5.26) can be rewritten as

E(η) = n
∫ 1

−1

e− ns2

4 v(s) ds + O

(
n2

∫ 1

−1

s4|v(s)| ds

)
+ O

(
n

∫
|s|>1

|v(s)| ds

)
.

(5.30)

The first integral may be extended to infinity and the resulting error may be included

in the third term. Also, by extending the second integral to infinity the third term

can be included in the second integral. Thus (5.30) simplifies to

E(η) = n
∫ ∞

−∞
e− ns2

4 v(s) ds + O

(
n2

∫ ∞

−∞
s4|v(s)| ds

)
. (5.31)

Using (5.14), we may replace the second term with O
(

n2

	4

)
, which, by 	 = √ n

ln n ,

yields

E(η) = n
∫ ∞

−∞
e− ns2

4 v(s) ds + O(ln2 n). (5.32)
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In order to find the second moment of η, we may write η2 as

η2
n−1∑
m=0

n−1∑

=0

u (� (Fa(tm))) u (� (Fa(t
))). (5.33)

Therefore, after substituting the Fourier transform of u(x) in (5.33), to evaluate

each term of the double summation, we should compute

u (� (Fa(tm))) u (� (Fa(t
)))

=
∫ ∞

−∞

∫ ∞

∞
E

(
eı

∑n−1
k=0(aR

k (s cos ktm+h cos kt
)−aI
k (s sin ktm+h sin kt
)))v(s)v(h) ds dh. (5.34)

The inner expectation in (5.34) can be split using the independence of aR
k and bR

k

to calculate

�(s, h; tm, t
) = E
(
eı

∑n−1
k=0(aR

k (s cos ktm+h cos kt
)−aI
k (s sin ktm+h sin kt
))

)
=

n−1∏
k=0

E
(

eıaR
k (s cos ktm+h cos kt
)

)
·

n−1∏
k=0

E
(

e−ıa I
k (s sin ktm+h sin kt
)

)
. (5.35)

Using (5.28) we may rewrite, for |s|, |h| < 1
2
, each expectation as

E
(
eıaR

k (s cos ktm+h cos kt
)
) = e− 1

4

∑n−1
k=0((s cos ktm+h cos kt
)2+2α1(s cos ktm+h cos kt
)4)

+ O(n(|s| + |h|)6). (5.36)

Here, for the last term of the exponent we used

O((s cos ktm + h cos kt
)6) = O((|s| + |h|)6).

We can also write a similar equation for aI
k . After substituting (5.36) into (5.35),

we can use the second order approximation

e−a = e−b + (b − a)e−b + O((b − a)2),

valid for a, b > 0, to write (5.35) as

�(s, h; tm, t
) = e− 1
4

∑n−1
k=0((s cos ktm+h cos kt
)2+(s sin ktm+h sin kt
)2)

+ ∑n−1
k=0

(
α1(s cos ktm + h cos kt
)4 + α2(s sin ktm + h sin kt
)4 + O(n(|s| + |h|)6)

)
· e− 1

4

∑n−1
k=0((s cos ktm+h cos kt
)2+(s sin ktm+h sin kt
)2) + O

(
n2(|s| + |h|)8

)
, (5.37)

valid for |s|, |h| < 1
2
. We can further simplify (5.37) by using the identities

n−1∑
k=0

(s cos ktm + h cos kt
)2 =
n−1∑
k=0

(s sin ktm + h sin kt
)2 = n
s2 + h2

2
,
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for m �= 
 and m + 
 �= n − 1, to get

�(s, h; tm, t
) = e− n(s2+h2)
2 + O(n(|s| + |h|)4)e− n(s2+h2)

2

+ O
(
n(|s| + |h|)6

) + O
(
n2(|s| + |h|)8

)
, (5.38)

for |s|, |h| < 1
2
, m �= 
 and m + 
 �= n − 1. For the other 2n terms (i.e., m = 
 or

m + 
 = n − 1) in (5.26), we can use the following inequality:

2
n−1∑
m=0

u (� (Fa(tm))) u (� (Fa(t
))) ≤ 2
n−1∑
m=0

u (� (Fa(tm))) = 2η, (5.39)

since 0 ≤ u(x) ≤ 1. Now (5.33) simplifies to

E(η2) ≤ (n2 − n)

∫ 1
2

− 1
2

∫ 1
2

− 1
2

e− n(s2+h2)
4 v(s)v(h) ds dh

+ O

(
n3

n−1∑
k=0

∫ 1
2

− 1
2

∫ 1
2

− 1
2

(|s| + |h|)4 e− n(s2+h2)
4 v(s)v(h) ds dh

)

+ O

(
n3

∫ 1
2

− 1
2

∫ 1
2

− 1
2

(|s| + |h|)6 |v(s)| |v(h)| ds dh

)

+ O

(
n4

∫ 1
2

− 1
2

∫ 1
2

− 1
2

(|s| + |h|)8 |v(s)| |v(h)| ds dh

)

+ O

(
n2

∫
|s|≥ 1

2

∫
|h|≥ 1

2

|v(s)| |v(h)| ds dh

)
+ 2E(η). (5.40)

To evaluate (5.40), we may extend the integrals in the first four terms from −∞ to

∞ to find an upper bound for E(η2). So we may rewrite (5.40) as

E(η2) ≤ (n2 − n)

(∫ ∞

−∞
e− n(s2+h2)

4 v(s)v(h) ds dh

)2

+ O

(
n3

∫ ∞

−∞

∫ ∞

−∞
(|s| + |h|)4 e− n(s2+h2)

4 |v(s)||v(h)| ds dh

)

+ O

(
n3

∫ ∞

−∞

∫ 1
2

− 1
2

(|s| + |h|)6 |v(s)| |v(h)| ds dh

)

+ O

(
n4

∫ ∞

−∞

∫ 1
2

− 1
2

(|s| + |h|)8 |v(s)| |v(h)| ds dh

)

+ O

(
n

∫
|s|≥ 1

2

|v(s)| ds

)2

+ 2E(η). (5.41)
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Now we can use (5.15) to write the fourth term in (5.41) as O( n2

	18 ). The second

term in (5.41) can also be simplified to

O

(
n3

4∑
p=0

∫ ∞

−∞
s pe− ns2

4 ds
∫ ∞

−∞
h4−pe− nh2

4 dh

)
= O

(
n4e− 2L2

n

	4L2

)
. (5.42)

In the last equality we used identities (5.16) with p = k and p = k − 4. The third

term can similarly be evaluated as

O

(
n3

(
5∑

k=1

∫ ∞

−∞
|skv(s)| ds

∫ ∞

∞
|s6−kv(s)| ds + 2

∫ ∞

−∞
|v(h)| dh

∫ ∞

−∞
|s6v(s)| ds

))

= O

(
n3

	6

)
+ O

(
n3 1

	6

L

	

)
= O

(
n3

	6

)
+ O

(
n3L

	7

)
, (5.43)

where we again used (5.13) and (5.14) to evaluate both terms in (5.43). Similarly to

the third term, the fourth term can be also shown to be O
(

n4 L
	9

)
. Therefore, setting

the value of L and 	, we have

E(η) ≤ 2E(η) + n2

(∫ ∞

−∞
e− ns2

4 v(s) ds

)2

+ O

(
n4e− 2L2

n

	4L2

)
+ O

(
n3L

	7

)
+ O

(
n4L

	9

)

= 2E(η) + n2

(∫ ∞

−∞
e− ns2

4 v(s) ds

)2

+O(ln5 n)+O(ln n) + O(ln2 n). (5.44)

On the other hand, it is easy to show that E(η) ≥ O(ln6 n). By (5.33) it is enough

to show that ∫ ∞

−∞
e− ns2

4 v(s) ds ≥ ln6 n

n
.

By Parseval’s formula, the Fourier transform of e− ns2

4 is
√

4π
n e− x2

n , and the integral

can be rewritten as

1√
πn

∫ ∞

−∞
e− x2

n u(x) dx ≥ 1√
πn

∫
L+	≤|x |≤L+2	

e− x2

n dx ≥ 2	√
πn

e− (L+	)2

n ,

and the sought inequality holds for the chosen values of L and 	. This implies the

result. �
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Continuation of the proof of Theorem 5.6 Substituting the estimates from the

lemma into (5.25) we obtain

Pr

(
max

t∈[0,1)
|Fa(t)| ≥ √

n ln n − 6.5n ln ln n − √
nln n

)
≥ 1 − O

(
1

ln4 n

)
,

thus accomplishing the proof. �
Now we pass to the M-PSK case, for even M . In contrast to the QAM situation,

the real and imaginary parts of ak are not independent. However, we can still use a

similar argument to prove a lower bound on the PMEPR distribution.

Theorem 5.9 Let ak = e2π ı jk
M , k = 0, 1, . . . , n − 1, and jk be independently and

equiprobably chosen from {0, 1, . . . , M − 1} for an even M. Then

Pr (PMEPR(a) ≤ ln n − 6.5 ln ln n) ≤ O

(
1

ln4 n

)
. (5.45)

Proof The characteristic function of � (Fa(t)) can be written as

(s) = E
(
eıs�(Fa(t))

) =
n−1∏
k=0

E
(
eıs�(ak e2π ı tk )

)

=
n−1∏
k=0

E (cos(s cos(2π ıkt + tk))) =
n−1∏
k=0

E(cos sτk), (5.46)

where tk = 2π jk
M and τk = cos(2πkt + tk). Notice that due to the symmetry of con-

stellation, τk has an even distribution. Furthermore, for |s| < 1, the characteristic

function is positive. Therefore, for |s| < 1,

E(cos sτk) = e−E((τk )2) s2

2
+αs4+O(s6).

Next,

E((τk)2) = E(cos2(2πkt + tk)) = 1

2
+ 1

2
E (cos(4πkt + 2tk)) = 1

2
. (5.47)

In the last transformation we used the symmetry of the constellation, guaranteeing

that the expectation in the second term is zero. Therefore, from (5.46) we have

(s) = e− ns2

4
+nαs4+O(ns6),

for |s| ≤ 1. Now we can use the same argument as that of Theorem 5.6 to find the

mean and variance of η as in (5.32) and (5.44) respectively. �

5.3 Gaussian process models

Modeling the behavior of the MC signals as stochastic processes sometimes yields

quite accurate approximations to the PMEPR distributions.
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We start with a Gaussian approximation. Let the multicarrier signal,

Fa(t) = Xa(t) + ıYa(t) =
n−1∑
k=0

e2π ıkt ,

be sampled at the Nyquist rate. Denote

R j =

∣∣∣Fa

(
j
n

)∣∣∣
√

n
.

Assuming that Xa

( j
n

)
, j = 0, 1, . . . , n − 1, and Ya

( j
n

)
, j = 0, 1, . . . , n − 1, are

pairwise independent identically distributed (i.i.d.) Gaussian random variables, we

conclude that R j are i.i.d. Rayleigh random variables of which the probability

density function is

fR(r ) = 2re−r2

.

Therefore

Pr

(
max

j=0,1,...,n−1
R j < r

)
= Pr(R < r )n = (

1 − e−r2)n
,

and

Pr (PMEPR(a) > λ) ≈ 1 − (1 − e−λ)n. (5.48)

We will refer to this bound as the Gaussian approximation to the PMEPR distri-

bution. The distribution (5.48), however, does not fit simulations, especially when

we consider the low-probability region. There are several possible reasons for this.

First, as we have seen in Chapter 4, the maximum over the Nyquist samples of the

signal can differ significantly from the continuous maximum. Second, the assump-

tion about the Gaussian distribution of the samples when n is finite is correct only

for a restricted interval around the expectation, and gives wrong results when we

consider probabilities of high power levels. Third, the assumption about pairwise

independence of the Nyquist-rate samples is correct only in the case when �(ak)

and �(ak) are i.i.d. Gaussian random variables, which is not the case when we pick

ak from specific constellations, such as PSK and QAM.

To improve on the analysis, we assume that Xa(t) and Ya(t) are independent

stationary band-limited Gaussian processes with zero mean and variance σ 2
X = n

2
,

and consequently

Ra(t) = |Fa(t)|√
n

=
√

X2
a(t) + Y 2

a (t)

n

is a stationary band-limited Rayleigh process. Since the derivative operation is

linear, the derivatives Xa(t) and Ya(t) are also Gaussian random processes with
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zero mean and variance σ 2
Ẋ

= E(Ẋa(t)2). We will need several technical results.

Let us define the level-crossing rate νa(λ) of the process Ra(t) per unit time as the

mean number of positive crossings of the process of the level λ.

Lemma 5.10

ν(λ) ≈
√

π

3
· nλe−λ2

.

Proof Let X , Ẋ , Y , Ẏ denote the samples of the corresponding Gaussian processes

at the same time instant. The joint p.d.f. of X , Ẋ , Y , Ẏ is

fX,Ẋ ,Y,Ẏ (X) = 1√
(2π )m |R| e− 1

2
XR−1Xt

(5.49)

where (X) = (x, ẋ, y, ẏ), m = 4, R is the covariance matrix, and |R| is the deter-

minant of R. Since Xa(t) and Ya(t) are uncorrelated and

E
(
X Ẋ

) = 1

2
· d

dt
E

(
X2

) = 0,

the covariance matrix is given by

R =

⎛
⎜⎜⎝

σ 2
X 0 0 0

0 σ 2
X 0 0

0 0 σ 2
X 0

0 0 0 σ 2
X

⎞
⎟⎟⎠ .

By changing the variables to polar coordinates as

X =
√

2σ 2
X R cos �,

Y =
√

2σ 2
X R sin �,

(5.50)

the joint p.d.f. of R, Ṙ, �, �̇ is given by

fR,Ṙ,�,�̇(r, ṙ , θ, θ̇ ) = r2

π2κ
e−r2− 1

κ
(ṙ2+r2θ̇2) (5.51)

where

κ = σẊ

σ 2
X

. (5.52)

Integrating (5.51) by θ from 0 to 2π and by θ̇ from −∞ to ∞, we obtain the joint

p.d.f. of R and Ṙ,

fR,Ṙ(r, ṙ ) = 2re−r2 1√
πκ

e− ṙ2

κ . (5.53)
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Let ρX (τ ) and SX ( f ) be the autocorrelation function and the power spectral

density (p.s.d.) of Xa(t), respectively. Then

σ 2
X = ρX (0) =

∫ ∞

−∞
SX ( f ) d f,

and

σ 2
Ẋ = ρẊ (0) =

∫ ∞

−∞
(2π f )2SX ( f ) d f.

Since the p.s.d. of the band-limited signals is nearly rectangular, SX ( f ) can be

assumed to be constant over the entire bandwidth, i.e.

SX ( f ) ≈
{

1
W σ 2

X , for f ∈ [0, W ],

0, otherwise.

Thus

σ 2
Ẋ = π2

3
W 2σ 2

X ,

and by (5.52) we have

κ = π2

3
W 2. (5.54)

The level-crossing level can be computed using

ν(λ) =
∫ ∞

0

ṙ fR(λ, ṙ ) dṙ .

Substituting (5.53) and carrying out the integration, we have

ν(λ) =
√

κ

π
· λe−λ2

.

Substitution of κ from (5.54), and noticing that W ≈ n, yields the result. �
Let N (λ) denote the mean number of the peaks above the level λ in one MC

symbol.

Lemma 5.11

N (λ) = 4n√
15π

∫ ∞

λ

u2

∫ ∞

0

e−(φ2+1)u2

·
(

e− 5
4

(φ2−1)u2 −
√

5π

2
(φ2 − 1)u erfc

(√
5π

2
(φ2 − 1)u

))
dφ du, (5.55)

where

erfc(s) = 2√
π

∫ ∞

s
e−z2

dz. (5.56)
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Proof Since the derivatives of Ẋa(t) and Ẏa(t) are also Gaussian with zero mean,

variance

σ 2
Ẍ = E(Ẍa(t)2),

E(Ẋa(t)Ẍa(t)) = 1

2

d

dt
E(Ẋa(t)2) = 0,

and

E(Xa(t)Ẍa(t)) = d

dt
E(Xa(t)Ẋa(t)) − E(Ẋa(t)2),

the joint p.d.f. of Gaussian random variables X, Ẋ , Ẍ , Y, Ẏ , Ÿ , which are the sam-

ples of the Gaussian processes Xa(t), Ẋa(t), Ẍa(t), Ya(t), Ẏa(t), Ÿa(t), at the same

time instant, is given by (5.50) with X = (x, ẋ, ẍ, y, ẏ, ÿ), m = 6, and

R =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
X 0 −σ 2

Ẋ
0 0 0

0 σ 2
Ẋ

0 0 0 0

−σ 2
Ẋ

0 −σ 2
Ẍ

0 0 0

0 0 0 σ 2
X 0 −σ 2

Ẋ
0 0 0 −σ 2

Ẋ
0 σ 2

Ẍ

⎞
⎟⎟⎟⎟⎟⎠.

Changing the variables as in (5.50) and integrating out the variables θ, θ̇ , θ̈ , we

obtain the joint p.d.f. of the envelope

fR(r, ṙ , r̈ ) =
∫ ∞

−∞

2
√

η

(κπ )
3
2

r2 · exp

(
− (1 + η + (1 − 2η)φ2 + ηφ4)r2

− 2η

κ
(1 − φ2)r̈r − 1

κ

(
ṙ2 + η

κ
r̈2

) )
dφ,

where

η = σ 4
Ẋ

σ 2
Xσ 2

Ẍ
− σ 4

Ẋ

.

Notice that we have modified the variable φ = √
κθ̇ . The rate density of peaks,

which is the mean number of peaks of the process Ra(t) in the region r ∈ [u, u +
du], per unit time, is given by

ν(u) du = du
∫ 0

−∞
−r̈ fR,Ṙ,R̈(u, 0, r̈ ) dr̈ .

Therefore,

ν(u) du = du
2

π
3
2

√
κ

η
u2

∫ ∞

0

e−(φ2+1)u2

·(e−η(φ2−1)2u2 − √
πη(φ2 − 1)u erfc(

√
η(φ2 − 1)u)

)
dφ.
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Taking into account

σ 2
Ẍ = ρẌ (0) =

∫ ∞

−∞
(2π f )4SX ( f ) d f = π4

5
W 4σ 2

X ,

from which we obtain η = 5
4
. Consequently,

N (λ) =
∫ ∞

0

ν(u) du,

yielding the result. �
Now we are in a position to estimate the PMEPR distribution. We first compute

the probability p(λ) that an arbitrary peak is above level λ
√

n as the ratio between

the mean number of peaks above μ to the mean number of peaks,

p(λ) = N (λ)

N (0)
. (5.57)

The values involved in this expression can be calculated using (5.55). Further we

make a heuristic assumption that the peaks are statistically mutually uncorrelated.

There is numerical evidence that N (0) ≈ 0.64n, and thus

Pr (PMEPR(a) > λ) ≈ 1 − (1 − p(
√

λ))0.64n. (5.58)

This expression is not convenient for computation since it involves double inte-

gration in (5.55). Let us pick a level μ
√

n that satisfies the following assumption:

each positive crossing of the level μ
√

n has a single positive peak above μ
√

n. Then

the probability p(λ, μ) of a peak being above the level λ
√

n under the condition

that the peak is above μ
√

n can be approximated as

p(λ, μ) ≈ ν(λ)

ν(μ)
. (5.59)

Notice that ν is much simpler to compute, and it is estimated in Lemma 5.10.

Therefore,

p(λ, μ) ≈ λe−λ2

μe−μ2
. (5.60)

Now we make a heuristic assumption that the peaks above level μ
√

n are inde-

pendent, and approximate the probability that the signal exceeds the level λ
√

n as

p(λ, μ)N (μ). For large values of μ we have

N (μ) ≈
√

π

3
nμe−μ2

.
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Figure 5.1 Approximations to PMEPR distribution of MC signal with 256 QPSK
modulated subcarriers. Approximation 1 – Expression (5.62), Approximation 2 –
Expression (5.64)

Finally we arrive at the following approximation:

Pr (PMEPR (a) > λ) ≈
⎧⎨
⎩1 −

(
1 −

√
λe−λ√
μe−μ

)√
π
3

n
√

μe−μ

for λ > μ,

1 for λ ≤ μ.

(5.61)

It remains to choose the parameter μ. This can be done numerically to fit better

simulation results in the high-probability region.

For growing n, assuming that
√

λe−λ√
μe−μ → 0, and using ln(1 − x) ≈ −x, for small

x , we obtain

Pr (PMEPR (a) > λ) ≈ 1 − exp

(
−

√
πλ

3
n · e−λ

)
. (5.62)

This expression already does not depend on μ, and can be used as an approximation.

Taking the first term of the Taylor expansion of (5.62) we obtain

Pr (PMEPR (a) > λ) ≈
√

πλ

3
n · e−λ. (5.63)

Another good approximation is justified by extreme value theory,

Pr (PMEPR (a) > λ) ≈ 1 − exp

(
−

√
π ln n

3
n · e−λ

)
. (5.64)

I have omitted details of its derivation.

In Fig. 5.1, I compare the bounds with the simulation results when n = 256

and QPSK modulation is used. The results demonstrate very good accuracy of the

derived expressions in the high-probability range.
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Here it is worth mentioning again that the Gaussian approach is clearly flawed

if one seeks a mathematically rigorous justification. Indeed an approximate joint

Gaussian distribution only holds for samples in any fixed finite subset of the symbol

interval as n becomes large. Unfortunately, it does not hold for samples in the

complete interval (which also increases with n when the occupied bandwidth is

kept constant), which would be required for a proof of the claim.

5.4 Lower bound on the number of signals with constant PMEPR

Although I have shown in the previous section that most of the signals have maxi-

mum peaks close to
√

n ln n, it will turn out that signals with maxima of const · √
n

are not so rare. For the sake of simplicity here, we will consider only BPSK mod-

ulated signals.

A linear form L in n variables (x1, . . . , xn) is

L(x1, . . . , xn) =
n−1∑
j=0

η j x j ,

where all η j are real. If |η j | ≤ A for j = 0, . . . , n − 1, and a finite A > 0, the form

is said to be bounded by A.

Let us replace the problem of minimizing the continuous maximum of a MC

signal with that of minimizing its discrete version. Given r , r > 1, the oversampling

factor such that rn is an integer, h, and h > 1, the number of projection axes, we

are facing joint minimization of r · h · n bounded linear forms,

L j (a) = L j (a0, . . . , an−1) =
n−1∑
k=0

η j,k · ak, j = 0, 1, . . . , rhn − 1,

where t j = j
rn and

η j,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� (
e2π ı(t j k)

)
, j = 0, 1, . . . , rn − 1,

�(
e2π ı(t j k− 1

h )
)
, j = rn+, rn + 1, . . . , 2rn − 1,

. . .

�(
e2π ı(t j k− h−1

h )
)
, j = (h − 1)rn, . . . , rhn − 1.

(5.65)

Notice that all the linear forms are bounded, |η j,k | ≤ 1, and the number of forms

exceeds the number of variables.

Clearly, for an Fa(t) = ∑n−1
k=0 ake2π ıkt ,

Mc(Fa) = max
t∈[0,1)

|Fa(t)| ≤ Cr Ch · max
j

|L j (a)|, (5.66)

where Cm ≤ 1
cos π

2m
.
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Thus we have to prove that there are many vectors a with

max
j

|L j (a)| = const · √
n.

Lemma 5.12 Let 
 ≤ m and

Lk(x0, x1, . . . , x
−1) = ζk,0x0+ζk,2x1+ . . . + ζk,
−1x
−1, k = 0, 1, . . . , m − 1,

be m linear forms in 
 variables with all |ζk, j | ≤ 1. Then, if 
 is sufficiently large,
there exist ε0, . . . , ε
−1 ∈ {−1, 0, 1} with

|{ j : ε j = 0}| < 6 · 10−7 · 
,

max
k=0,1,...,m−1

|Lk(ε0, ε1, . . . , ε
)| < 10

√

 · ln

2m



. (5.67)

Proof Define

T (ε0, ε1, . . . , ε
−1) = (b0, b1, . . . , bm−1),

where ε j ∈ {−1, 1}, bk ∈ Z,

bk = int

⎛
⎝ Lk(ε0, ε1, . . . , ε
)

20
√


 · ln 2m



⎞
⎠

and int(υ) is the nearest integer to υ. Let B be the set of integer-valued vectors for

all s = 1, 2, . . . satisfying

|{k : |bk | ≥ s}| ≤ m ·
(

2m




)−50(2s−1)2

· 2s+1.

I will show that more than half of 2
 possible vectors (ε0, . . . , ε
−1) are mapped by

T to B. Moreover, it will be proved that

|B| < 2250·2−50·
. (5.68)

Let ε0, ε1, . . . , ε
−1, be independent and uniform, and let L0, . . . , Lm−1,

b0, . . . , bm−1, be the corresponding values they generate. By the Chernoff bound

(Theorem 3.29)

Pr (|bk | ≥ s) = Pr

(
|Lk | ≥ 10s

√

 · ln

2m




)
<

(
2m




)−50(2s−1)2

.

Therefore,

E (|{k : |bk | ≥ s}|) < m ·
(

2m




)−50(2s−1)2

.
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Using Markov’s inequality (Theorem 3.27) we obtain

Pr

(
|{k : |bk | ≥ s}| > 2s+1 · m ·

(
2m




)−50(2s−1)2
)

<
1

2s+1
.

Thus,

Pr ((b0, . . . , bm−1) �∈ B) <

∞∑
s=1

1

2s+1
= 1

2
,

yielding the claim about the number of vectors (ε0, . . . , ε
−1) mapping to B.

To estimate the size of B, we use the following argument. Let

αs = 2s+1 ·
(

2m




)−50(2s−1)2

. (5.69)

Notice that

1

2
> α1 > α2 > . . .

and

B = {
(b0, . . . , bm−1) ∈ Z

m : |{k : |bk | > s}| ≤ αsm, s = 1, 2, . . .
}
.

Then

|B| ≤
∞∏

s=1

((
αs m∑
k=0

(
m

k

))
2αs m

)
.

Indeed, {k : |bk | = s} can be chosen in, at most,
∑αs m

k=0

(m
k

)
ways, and, having been

selected, can be split into {k : bk = s} and {k : bk = −s} in, at most, 2αs m ways. We

bound
αm∑
k=0

(
m

k

)
≤ 2m H (α),

where H (α) is the entropy function,

H (α) = −α log2 α − (1 − α) log2(1 − α).

Therefore, |B| ≤ 2βm , where

β =
∞∑

s=0

(H (αs) + αs),

and αs are defined in (5.69). Since 2m



≥ 2, we have αs+1 ≤ 2−49αs for all s, and

all αs ≤ α1 ≤ 2−48. Therefore,

H (αs+1) + αs+1 ≤ 2−47 (H (αs) + αs) .
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Thus β is dominated by the first term,

|B| < (1 + 2−46)(H (α1) + α1) < 1.1α1(− log2 α1)

< 5

(
2m




)−50 (
48 + 50 log2

m




)
.

The second inequality follows from α1 < 2−48.

Then |B| ≤ 2βm ≤ 2γ 
, where

γ = m



· 5 ·

(
2m




)−50 (
48 + 50 log2

m




)

= 5 · 2−50 ·
(m




)−49 (
48 + 50 log2

m




)
< 250 · 2−50,

since letting y = m



, the inequality y−49(48 + 50 log2 y) ≤ 50 is valid for all y ≥ 1.

This proves (5.68).

Let Ab be the set of (ε1, . . . , ε
−1) that are mapped by T to b = (b0, . . . , bm−1).

Therefore, there exists a value of b ∈ B such that

|Ab| ≥ 2
(1−γ )−1. (5.70)

Let p0 be such that H
(

1
2

− p0

) = 1 − γ and let p be such that p > p0. In our case

p0 ≈
(

ln 2

2
γ

) 1
2

< 3 · 10−7,

so we take p = 3 · 10−7. Let 
 be sufficiently large so that


(1 − γ ) − 1 ≥ 
H

(
1

2
− p

)
.

Then

Ab ≥ 2
H( 1
2
−p).

Let diam(Ab) stand for the maximum Hamming distance between any two vectors

of Ab. By the Kleitman theorem (see Theorem 3.46),

diam(Ab) ≥ (1 − 2p)
.

Let x, y ∈ Ab such that the Hamming distance between the vectors

dH (x, y) = diam(Ab).

Then

z = (ε0, . . . , ε
−1) = 1

2
(x − y)
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will have zeros on the positions where x and y coincide, and −1 or 1 in the rest

of the coordinates. It is straightforward to check that z satisfies the claims of the

lemma. �

Lemma 5.13 Let 
 ≤ m and

Lk(x0, x1, . . . , x
−1) = ζk,0x0+ζk,2x1+ . . . + ζk,
−1x
−1, k = 0, 1, . . . , m − 1,

be m linear forms in 
 variables with all |ζk, j | ≤ 1. Then, if 
 is sufficiently large,
there exist ε0, . . . , ε
−1 ∈ {−1, 1} with

max
k=0,1,...,m−1

|Lk(ε0, ε1, . . . , ε
)| < 11

√

 · ln

2m



. (5.71)

Proof Let c = 6 · 10−7. Set 
0 = 
 and apply Lemma 5.12 to find values ε j ∈
{−1, 1} to all but 
1 variables with 
1 ≤ c
0. Iterate this process, at each stage

applying it to the still equal zero variables, having 
2 undetermined variables after

the second step, etc. Let w be an absolute constant so that Lemma 5.12 applies

for all 
 ≥ w. Then the process will terminate when 
u+1 < w. At this stage the

undetermined variables could be arbitrarily set to +1 or −1. Therefore,

max
k=0,1,...,m−1

|Lk(ε0, ε1, . . . , ε
)| ≤ 
u+1 +
u∑

t=0

10

√

t · ln

2m


t

≤ p +
∞∑

t=0

10

√

ct · ln

2m


ct
.

Set ς = ln 2m



, so that ς ≥ ln 2. We use the inequality

√
x + y ≤ √

x + √
y,

valid for all x, y ≥ 0. Then

∞∑
t=0

√
ct ln(ςc−t ) ≤

∞∑
t=0

√
ct

(√
ln ς +

√
t ln c−1

)
,

∞∑
t=0

√
ct = 1

1 − √
c

< 1 + 10−3,

∞∑
t=0

√
ct · t ln c−1 < 3 · 10−3,

∞∑
t=0

√
ct · ln (ςc−t ) <

√
ln ς (1 + 10−3) + 3 · 10−3 < 1.005

√
ln ς,
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and

max
k=0,1,...,m−1

|Lk(ε0, ε1, . . . , ε
)| ≤ w + 10
√




∞∑
t=0

√
ct ln (ςc−t )

≤ w + 10 · 1.005 ·
√


 ln ς.

This result holds for all 
. When 
 is sufficiently large the constant w may be

absorbed into the main term, giving the claim. �

Corollary 5.14 For n large enough, there exists a = (a0, . . . , an−1) ∈ {−1, 1}n

such that

PMEPR(a) ≤ 4026.

Proof Applying Lemma 5.13 to the linear forms (5.65), and employing (5.66),

we obtain

Mc(Fa) ≤ min
r,h

1

cos π
2k

1

cos π
2h

11
√

rhn · ln(2rh),

where the minimum is over r > 1 such that rn is an integer, and h > 2 is an integer.

Choosing r = h = 2 we obtain the result. �
Notice that the constant here is quite large. We will see in the next chapter that

it can be made as small as 2. However, the techniques used allow us to prove that

there are exponentially many sequences with constant PMEPR.

Theorem 5.15 There are at least (2 − δK )n coefficient vectors a ∈ {−1, 1}n, such
that

PMEPR(a) ≤ K ,

where δK ∈ (0, 1), and

lim
K→∞

δK = 0.

Proof We will show that actually many vectors satisfy Lemma 5.12. In (5.70) we

determined the size of Ab when the maximum is restricted to h
√

n ln 2m
n , h = 10.

For h ≥ 10 we have

|Ab| ≥ 2n(1−c(h))(1+o(1)),

where c(h) → 0 as h → ∞. Let p(h) > 0 satisfy H
(

1
2

− p(h)
) = 1 − c(h), so

that p(h) → 0 as L → ∞. Set A(0)
b = Ab. For t = 1, 2, . . . ,

|Ab

4
, having defined

A(t−1)
b , let x(t), y(t) ∈ A(t−1)

b be a pair of vectors at maximal distance and set

A(t)
b = A(t−1)

b − {
x(t), y(t)

}
.
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Since |A(t)
b | ≥ Ab

2
, we have

dH
(
x(t), y(t)

) ≥ n(1 − 2p(h) − o(1)).

Set z(t) = 1
2
(x(t) − y(t)), so that z(t) ∈ {−1, 0, 1}n , then at most n(2p(h) + o(1)) of

its coefficients are zero,

max
k=0,1,...,n−1

|Lk(z| ≤ h

√
n ln

2m

n
.

By Lemma 5.13 we transform z(t) to w(t) ∈ {−1, 1}n with

max
k=0,1,...,n−1

|Lk(w| ≤ h′
√

n ln
2m

n
,

where h′ may be chosen to equal h + 1 for h ≥ 10. On those coefficients where x(t)

and y(t) differ, the vectors x(t), y(t), hence x(t) and w(t) are the same. Thus

dH
(
x(t), w(t)

) ≤ n(4p(h) + o(1)).

Let q(h) = H (4p(h)) so that q(h) → 0 as h → ∞. For each s there are at most

2n(q(h)+o(1)) indices t with w(s) = w(t). There are |Ab|
4

≥ 2n(1−c(h)+o(1)) indices t . Let

δh be defined by the equation

2 − δh = 21−c(h)−q(h),

so that limh→∞ δh = 0. The number of distinct w(t) ∈ {−1, 1}n with

max
k=0,1,...,n−1

|Lk(z| ≤ h′
√

n ln
2m

n

is at least

2n(1−c(h)+o(1))

2n(q(h)+o(1))
= (2 − δh + o(1))n.

Now assuming m = const · n and choosing K = h2, we obtain the claim. �

5.5 BPSK signals with essentially high peaks

The characterization of signals with high peaks is based on the following result.

Theorem 5.16 Let Fa(t) = ∑n−1
k=0 ake2π ıkt , ak ∈ {±1}, and∣∣∣∣∣

n−1∑
k=0

ak

∣∣∣∣∣ ≤ n

2
,

∣∣∣∣∣
n−1∑
k=0

(−1)kak

∣∣∣∣∣ ≤ n

2
.
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Then, whenever n > 251,

max
t∈[0,1)

|Fa(t)| ≤ 3

4
n.

Proof We start with demonstrating that the functions Fa(t) with maximum of the

absolute value greater than 3
/

4 may assume this maximum only in the vicinity of

t = 0 and t = 1
/

2, and, moreover, the values of Fa(t) in these points have a very

restricted argument.

Let us introduce three vectors:

a = (a0, . . . , an−1),

e+ = (
1, e2π ı t , e2π ı2t , . . . , e2π ı(n−1)t

)
,

e− = (
1, e−2π ı t , e−2π ı2t , . . . , e−2π ı(n−1)t

)
.

Consider the Gram matrix for the three vectors:

G =
⎛
⎝ (a, a) (e+, a) (e−, a)

(a, e+) (e+, e+) (e−, e+)

(a, e−) (e+, e−) (e−, e−)

⎞
⎠ ,

where, as usual,

(w, v) =
n−1∑
k=0

wkv
∗
k ,

and v∗
k is the complex conjugate of vk . Clearly,

G =
⎛
⎝n Fa(t) Fa(−t)

Fa(−t) n D(−2t)
Fa(t) D(2t) n

⎞
⎠,

where

D(x) =
n−1∑
k=0

e2π ıkx

is the Dirichlet kernel, see (4.7). We calculate

det G = n3 + F2
a (t)D(−2t) + F2

a (−t)D(2t) − n|Fa(t)|2 − n|Fa(t)|2 − n|D(2t)|2.
Since F2

a (t)D(−2t) = (
F2

a (−t)D(2t)
)∗

we conclude that det G ∈ R.

It is known that det G ≥ 0 always, and if det G = 0 then the vectors a, e+, e−
are linearly dependent. Thus we have inequality

n3 + F2
a (t)D(−2t) + F2

a (−t)D(2t) ≥ n
(
2|Fa(t)|2 + |D(2t)|2) . (5.72)
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Denoting by ϕ the argument of F2
a (t)D(−2t) (i.e., eıϕ = F2

a (t)D(−2t)), we have

F2
a (t)D(−2t) + F2

a (−t)D(2t) = |Fa(t)|2|D(2t)|eiϕ + |Fa(t)|2|D(2t)|e−iϕ

= 2|Fa(t)|2|D(2t)| · cos ϕ.

Then (5.72) may be rewritten as

n3 + 2|D(2t)| · |Fa(t)|2 · cos ϕ ≥ n
(
2|Fa(t)|2 + |D(2t)|2). (5.73)

From now on let us assume that t is such that |Fa(t)| ≥ 3
4
n. Since

2|D(2t)| · cos ϕ ≤ 2n,

the inequality will stay true if we replace |Fa(t)| with 3
4
n. We obtain

n3 + 2|D(2t)| · 9

16
n2 · cos ϕ ≥ n

(
2

9

16
n2 + |D(2t)|2

)
or

9n · |D(2t)| · cos ϕ ≥ n2 + 8|D(2t)|2. (5.74)

Let us now study the behavior of |D(2t)| = sin 2πnt
sin 2π t . A direct check shows that

this is an oscillating function with zeros at points t = k
n , k = 1, . . . , n − 1, and

decreasing maxima between the zeros. A weaker version of (5.74) gives

9n|D(2t)| ≥ n2 + 8|D(2t)|2

or

|D(2t)| ≥ 1

8
n.

Comparing the consecutive maxima of |D(2t)|, we verify that the fourth maximum

(between 3
n and 4

n ) is less than n
8
, and conclude that

dist(2t) <
3

n
. (5.75)

Here, dist(x) stands for the distance from x to the closest integer.

Let us choose γ in such a way that Fa(t)e−2π ıγ is positive and real. Then

0 ≤ |Fa(t)| = Fa(t)e−2π ıγ

=
n−1∑
k=0

ake2π ı(kt−γ ) =
n−1∑
k=0

ak cos 2π (kt − γ ).

For the sequence

{cos 2π (kt − γ )} (5.76)

we consider two possibilities:
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1. The sequence (5.76) has only nonnegative entries;

2. The sequence (5.76) has at least one change of sign.

In the first case,

|Fa(t)| =
n−1∑
k=0

ak cos 2π (kt − γ ) ≤
∑

k:ak=1

ak cos 2π (kt − γ )

≤
∑

k:ak=1

1 ≤ max

{ ∑
k:ak=1

1,
∑

k:ak=−1

1

}
= n + Fa(0)

2
.

Let us consider now the second case. Since dist(2t) < 3
n , then

t ∈
[
−3

2

1

n
,

3

2

1

n

] ⋃ [
1

2
− 3

2

1

n
,

1

2
+ 3

2

1

n

]
= I1

⋃
I2.

Notice also that

Fa

(
t + 1

2

)
=

n−1∑
k=0

ake2π ık( 1
2
+t)

=
n−1∑
k=0

ak(−1)ke2π ıkt =
n−1∑
k=0

ηke2π ıkt ,

where for all k we have ηk = ak(−1)k . Therefore, any conditions on {ak}n−1
k=0 guar-

anteeing |Fa(t)| ≤ 3n/4, for any t ∈ I1, will be sufficient for |Fa(t)| ≤ 3n/4, for

any t ∈ I2, where Fa(t) is defined by the sequence {ηk}n−1
k=0.

Let t1 ∈ I1, i.e. |t1| ≤ 3
2

1
n . Evidently,

|Fa(t)| =
n−1∑
k=0

ak cos 2π (kt − γ )

≤
n−1∑
k=0

| cos 2π (kt − γ )| ≤ max
x

n−1∑
k=0

| sin 2π (kt + x)|,

where the maximum is taken over such x that the sequence {cos 2π (kt + x)}n−1
k=0

has at least one change of sign. Using integral approximation for the sum we get:

Jn = 1

n

n−1∑
k=0

| sin 2π (kt + x)| = 1

(n − 1)t

∫ (n−1)t+x

x
| sin 2πu| du + E .

Since

|E | ≤ 1

n
max

u
|(sin 2πu)′| = 1

n
max

u
| cos 2π cos 2πu| ≤ 2π

n
,
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we have, for any t ∈ I1,

|Fa(t)| ≤ n Jn ≤ n

(n − 1)t

∫ (n−1)t+x

x
| sin 2πu| du + 2π,

and x is such that in the interval of integration the function sin 2πu has at least one

change of sign. Moreover, the size of the interval is, at most, 3/2. Computations

show that

κ = max
β,α

∫ β

α

| sin 2πu| du,

for α ∈ [0, 1/2], β ∈ [1/2, 1], β − α ≤ 3
2
, satisfies κ < 0.725. Therefore,

|Fa(t)| ≤ κn + 2π ≤ 0.75n

whenever n > 251. Thus we have arrived at the claimed result. �
To find how many sequences do not satisfy this pair of inequalities, re-

call that by Lemma 3.41,
∑

0≤s≤λn

(n
s

) ≤ 2nH (λ), where H (λ) = −λ log2 λ − (1 −
λ) log2(1 − λ), and thus the number of bad sequences is at most (here we use union

bound):

4 · 2nH (0.25) < 20.812n,

which is much less than 2n−1. Thus we expect to lose at most one bit in encoding

good sequences.

Let us now describe the encoding algorithm. For simplicity, let n be a multiple

of 8. We will substitute the condition of Theorem 5.16 by the following stronger

ones: ∣∣∣∣∣
∑

k even

ak

∣∣∣∣∣ ≤ n

4
,

∣∣∣∣∣
∑
k odd

ak

∣∣∣∣∣ ≤ n

4
,

and our purpose is to generate sequences satisfying these conditions. Let us consider

the first n
2

− 1 components of the sequence {a2 j }n/2−2
j=0 , and assume that they are

chosen arbitrarily. Let {b2 j }n/2−2
j=0 be an arbitrary sequence having n

4
− 1 ones. If

the sequence {a2 j }n/2−2
j=0 contains the number of ones in the interval

[
n
8
, 3n

8

]
, we put

an−2 = −1, otherwise, we produce the new sequence {a2 j } = {a2 j b2 j }n/2−2
j=0 and

define an−2 = 1. It is easy to check that the resulting sequence satisfies the defined

condition. We do the same for the odd coordinates. Decoding is simple, since the

last symbol indicates whether the sequence has been modified, and the inverse

modification is straightforward.
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5.6 Notes

Section 5.1 Initial study of the distribution of peaks in MC signals is by van

Eetvelt et al. [100] and Shepherd et al. [379]. The idea of using Chernoff bounds

was first exploited by Wunder and Boche [443]; see also [439]. The presented

versions of Theorems 5.2 and 5.3 are by Litsyn and Wunder [252]. The theorems

actually hold for more general constellations. In particular the following result was

proved by Litsyn and Wunder [252].

Theorem 5.17 Let ak, k = 0, . . . , n − 1, be random variables with E(|ak |2) = 1

(they need not be necessarily independent). Suppose that

1

rhn

rn−1∑
l1=0

h−1∑
l2=0

E

(
exp

(
ıω�

(
n−1∑
k=0

akeı(2πktl1,r +αl2,h)

)))
= e− nω2

4
+n

∑5
m=3 amωm+O(nω6),

holds for any natural numbers r > 1, h > 2 and for any real number ω in the
nonempty interval [−d, d], and, furthermore,

1

n2

n−1∑
l1=0

n−1∑
l2=0,l2 �=l1

E

(
exp

(
ı�

(
n−1∑
k=0

ak
(
ω1eı2πktl1 + ω2eı2πktl2

))))

= e− nω2
1

4
− nω2

2
4

+n
∑5

m=3 Am (|ω1|+|ω2|)m+O(n(|ω1|+|ω2|)6),

holds for all real numbers ω1, ω2 in the nonempty interval [−d, d], where tl, l =
0, . . . , O (n) − 1, is any sampling set of cardinality O (n) and A3, A4, A5 are
complex numbers independent of ω, ω1, ω2 (finite sixth moment of the random
variables!).

Then there is a constant γ ≥ 5 independent of n so that for growing n,

Pr (ln n − γ ln ln n < PMEPR(a) < ln n + γ ln ln n) = 1 − O

(
1

ln4 n

)
.

�

The theorem holds for any modulation scheme where the real and imaginary

parts are independent and identically distributed, and the corresponding probability

functions have vanishing first moments and finite support.

Section 5.2 Halász [148] proved the concentration of the peak distribution for

real trigonometric polynomials with coefficients chosen from {−1, 1}. Gersho et al.
[128] generalized the result of Halász to complex trigonometric polynomials with

the real coefficients satisfying some restrictions on the characteristic function. Sharif

and Hassibi [369, 370, 374] generalized the earlier results on concentration to the

coefficients chosen from PSK and QPSK constellations. I have followed [374] in

this section.
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Section 5.3 Gaussian approximation is a folklore. It appears, e.g., in Dinur and

Wulich [95]. However this approximation gives reasonable accuracy only for small

numbers of carriers. Van Nee and de Wild [287] suggested using an empirical

approximation,

Pr (PMEPR(a) > λ) ≈ 1 − (1 − e−λ)2.8n,

to improve on its accuracy.

The basic analysis of peaks in Gaussian and Rayleigh processes is from Rice

[339, 340]. Cartwright and Longuet-Higgins [58] extended the analysis to extreme

peaks in a Gaussian process. In this section, I have followed Ochiai and Imai [303].

The estimate (5.62) is by Ochiai and Imai. The expression (5.63) was obtained

by Dinur and Wulich [95], who used analysis of the number of level crossings of

stochastic processes, while (5.64) was derived by Wei et al. [429] using modern

extremal value theory.

Section 5.4 The results of this section are from Spencer [387].

Section 5.5 The results of the section are by Freiman et al. [119].
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Coded MC signals

The peak power distributions considered in the previous chapter are derived under

the assumption that the coefficients are chosen independently from a constellation.

In this chapter, I will consider a more complicated situation when there exists a

dependence between subcarriers. In Section 6.1 the PMEPR distribution in spher-

ical codes is considered. The only restriction on these signals is that they have

constant energy. I prove results about concentration of the PMEPR distribution. In

Section 6.2, I study the existence of spherical codes with a given minimum (Eu-

clidean or Hamming) distance and PMEPR. In Section 6.3, I relate the PMEPR

distribution of coded signals to the distance distribution of codes. In Section 6.4, I

specify the previous analysis to the case of BCH codes. I show that when the length

grows, the distance distribution of BCH codes approaches the normalized binomial

distribution. This allows analysis of the PMEPR distribution for a subclass of BCH

codes. In Section 6.5, I show how the PMEPR of a code can be computed in an

efficient way if the code possesses a fast maximum likelihood decoding.

6.1 Spherical codes

An n-dimensional constellation has a spherical distribution if the points of the

constellation are uniformly distributed over the n-dimensional complex sphere with

radius
√

n denoted S
N−1.

Theorem 6.1 Let c be spherically distributed. Then

Pr(PMEPR(c) > λ) ≥
� n

λ�∑
�=1

(
n

�

)
(−1)�+1

(
1 − �λ

n

)n−1

, (6.1)

Pr(PMEPR(c) > λ) ≤ r

⌊
nC2

r
λ

⌋∑
�=1

(
n

�

)
(−1)�+1

(
1 − �λ

nC2
r

)n−1

, (6.2)

where r > 1 is an integer.

138
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Proof We will study first the situation when the coefficients are circularly

Gaussian distributed with unit power. Let c be a random vector from such

an ensemble. The magnitude of the corresponding signal is Rayleigh dis-

tributed, i.e., Pr (|Fc (t)| ≤ λn) = 1 − e−λ2

, and the Nyquist-rate samples Fc

( j
n

)
,

j = 0, 1, . . . , n − 1, are independent. Denoting

Md = Md(Fc) = max
j=0,1,...,n−1

∣∣∣∣Fc

(
j

n

)∣∣∣∣ ,
we conclude that

Pr(Md > λ
√

n) = 1 − (
1 − e−λ2)n

.

Now,

Pr(Md > λ
√

n) =
∫ ∞

0

fP (x) · Pr

(
Md > λ

√
n

∣∣∣∣∣
n−1∑
j=0

|c j |2 = x

)
dx,

and fP is the probability density function of P = ∑n−1
j=0 |c j |2. This function, see,

e.g., [335, Section 1.1.4], is the central χ2 distribution with 2n degrees of freedom,

fP (x) = xn−1

(n − 1)!
· e−x .

Denoting

F(λ, x) = Pr

(
Md > λ

√
n

∣∣∣∣∣
n−1∑
j=0

|c j |2 = x

)
,

we thus arrive at (a Fredholm integral equation of the first kind)

1 − (
1 − e−λ2)n =

∫ ∞

0

xn−1

(n − 1)!
· e−x · F(λ, x) dx .

Notice that F(λ, x) depends only on the ratio τ = x
λ2n , and thus

(n − 1)!

(λ2n)n

(
1 − (

1 − e−λ2)n) =
∫ ∞

0

τ n−1 · e−τλ2n · F(λ, τλ2n) dτ.

Denoting

y(τ ) = τ n−1 · F(λ, τλ2n),

we obtain

(n − 1)!(
λ2n

)n

(
1 − (

1 − e−λ2)n) =
∫ ∞

0

y(τ ) · e−τλ2n dτ.
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The right-hand side can be seen as the Laplace transform of y(τ ), if τλ2n is con-

sidered as a complex frequency variable. Consequently the sought function, y(τ ),

can be obtained by inverse Laplace transform. Using

1 − (
1 − e−λ2)n =

n∑
�=1

(
n

�

)
· (−1)�+1 · e−�λ2

,

and dividing by τ n−1, we obtain

F(λ, τλ2n) =
n∑

�=1

(
n

�

)
· (−1)�+1 · u

(
τ − �

n

)
·
(

1 − �

τn

)n−1

,

where u(·) is the unit step function. Noticing that

Pr

(
Md > λ

√
n

∣∣∣∣∣
n−1∑
j=0

|c j |2 = n

)
= F(λ, n),

and thus choosing τ = 1
λ2 , and the fact that

PMEPR(c) ≥ M2
d(Fc)

n
,

we conclude that

Pr(PMEPR > λ) ≥
∑

1≤�<� n
λ�

(
n

�

)
(−1)�+1

(
1 − lλ

n

)n−1

.

Clearly the derivation of the bound holds for any shifted (in t) Nyquist-rate

sampling set. Hence, using the union bound for r > 1 shifted versions of (6.1) and

scaling λ by Cr , the upper bound (6.2) is obtained. �

Having the upper and lower bound, we now ask for the asymptotic behavior of

these expressions. We need the following technical lemma.

Lemma 6.2 Let the distribution of ck, k = 0, . . . , n − 1, be circularly complex
Gaussian with unit power. Then, for any real γ > 0.5 and increasing n, we have

Pr (ln n − 1.1γ ln ln n < PMEPR(c) < ln n + 1.1γ ln ln n) = 1 − 1.1

(ln n)γ−0.5
.

Proof Since the magnitude of the absolute values of the signal sampled at the

Nyquist frequency is Rayleigh distributed, we have, for any t ∈ [0, 1),

Pr
(|Fc (t)| ≤ λ

√
n
) = 1 − e−λ2

.

Therefore,

Pr (PMEPR (c) ≤ λ) ≤ (1 − e−λ)n.
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Setting λ = (1 − ε) ln n for some ε > 0 we have

Pr (PMEPR (c) ≤ (1 − ε) ln n) ≤
(

1 − nε

n

)n

≤ e−nε

,

which is the desired lower bound if we set ε = ln ln n
ln n .

The upper bound is obtained by observing that for any r ≥ 1 we have

Pr

(
max

j=0,1,...,rn−1

∣∣∣∣Fc

(
j

rn

)∣∣∣∣ >
λ

Cr
· √

n

)
≤ r

(
1 −

(
1 − e

− λ2

C2
r

)n)
.

Setting this time λ = √
(1 + ε) ln n for some ε > 0 yields

Pr

(
1

n
· max

j=0,1,...,rn−1

∣∣∣∣Fc

(
j

rn

)∣∣∣∣
2

>
(1 + ε)

C2
r

ln n

)
≤ r

(
1 −

(
1 − n

− (1+ε)

C2
r

)n)
.

Since 1
C2

r
≥ 1 − 2π2

8r2 , we can choose r so that (1+ε)
C2

r
= 1 + ε′ > 1, and hence

Pr

(
1

n
· max

j=0,1,...,rn−1

∣∣∣∣Fc

(
j

rn

)∣∣∣∣
2

> (1 + ε′) ln n

)
≤ r

(
1 −

(
1 − n−ε′

n

)n)
.

Using (this time) ln (1 − x) ≥ −1.1x for x small enough, we have

Pr (PMEPR(c) > (1 + ε) ln n) ≤ r
(
1 − e−1.1n−ε′ )

,

for n large enough. Setting r = √
ln n and ε = 1.1γ ln ln n

ln n we obtain ε′ ≥ γ ln ln n
ln n .

Thus for n large enough

Pr (PMEPR (c) > ln n + 1.1γ ln ln n) ≤ O

(
1

(ln n)γ−0.5

)
,

which is the desired upper bound for γ > 0. Combining this with the lower bound

yields the result. �

The following theorem proves that the asymptotic behavior of the Gaussian and

spherical distributions is identical.

Theorem 6.3 Let the cumulative distribution of the ck, k = 0, . . . , n − 1, be such
that the code words are uniformly distributed on S

n−1. Then for any real γ > 0.5,

Pr (ln n − 1.1γ ln ln n < PMEPR(c) < ln n + 1.1γ ln ln n) = 1 − 1.1

(ln n)γ−0.5
.

Proof Since c is uniformly distributed on S
n−1 it can be represented as

c =
√

nc′

‖c′‖ ,
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where c′ has an n-variate spherical distribution, i.e., it is invariant under multiplica-

tion by a unitary matrix. The distribution of c′ is not unique and we can assume that

c′
k are circularly Gaussian distributed with unit power. In the following let ε > 0

be arbitrary and ε1 > 0 be such that (1 + ε1)
√

(1 − ε) < 1. By Lemma 6.2,

lim
n→∞ Pr

(
(1 − ε) ln n < PMEPR(c′) < (1 + ε) ln n

) = 0.

I will now show that this yields the main result. The proof is sketched as follows:

define an ε-neighborhood around the sphere of radius
√

n and partition the event

space into a set with ‖c‖ ≈ √
n (within the ε-neighborhood) and its complemen-

tary set. The latter event is indeed very unlikely for large n, while the first event

can be tackled using standard Gaussian distribution analysis obeying the claimed

asymptotic behavior.

Let us consider now the first inequality of the theorem. By the law of total

probability

Pr (PMEPR (c) < (1 − ε) ln n)

= Pr
({PMEPR (c) < (1 − ε) ln n} ∩ {‖c‖ < (1 − ε1)

√
n
})

+ Pr
({PMEPR (c)< (1−ε) ln n}∩{

(1−ε1)
√

n < ‖c< (1+ε1)
√

n
})

+ Pr
({PMEPR (c) < (1 − ε) ln n} ∩ {‖c‖ > (1 + ε1)

√
n
})

.

I will show that

lim
n→∞ Pr

({PMEPR (c) < (1 − ε) ln n} ∩ {
(1 − ε1)

√
n < ‖c‖ < (1 + ε1)

√
n
}) = 0

with the same rate of convergence as in Lemma 6.2. We have

Pr ({PMEPR (c) < (1 − ε) ln n} ∩ {
(1 − ε1)

√
n < ‖c‖ < (1 + ε1)

√
n
})

= Pr

( {
max

t∈[0,1)

1

‖c‖ |Fc(t)| <
√

(1 − ε) ln n

}

∩ {
(1 − ε1)

√
n < ‖c‖ < (1 + ε1)

√
n
} )

≤ Pr

(
1

(1 + ε1)
√

n
· max

t∈[0,1)
|Fc(t)| <

√
(1 − ε) ln n

)

= Pr

(
1√
n

· max
t∈[0,1)

|Fc(t)| < (1 + ε1)
√

(1 − ε) ln n

)
.

Further,

Pr
(‖c‖ < (1 − ε1)

√
n
) ≤ 1

ε1n
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and

Pr
(‖c‖ ≥ (1 + ε1)

√
n
) ≤ 1

ε1n
.

Setting ε1 = 1√
ln n

and ε = ln ln n we obtain ε > ε1 for n large enough, and both

expressions tend to zero faster than the remainder term of Lemma 6.2. The upper

bound follows the same derivations. �

6.2 Bounds on PAPR of codes

Let us consider signals defined by

Fa(t, ζ ) =
n−1∑
k=0

ake2π ı(ζ+k)t ,

where the coefficients ak are from a code word a ∈ C, and ζ is the ratio between the

carrier frequency and the bandwidth of the tones (see Section 2.2 for the definitions).

For the sake of simplicity, we consider the signals of constant energy, equal n.

Then

PAPR(C) = 1

n
· max

t∈[0,1)
� (Fa(t, ζ )) .

The error-correcting capability of C is characterized by the minimum of the Eu-

clidean distance between any two distinct code vectors,

dE (C) = min
a,b∈C,a�=b

dE (a, b).

We will establish here bounds on the PAPR as a function of the code’s rate R =
1
n log2 |C|, and minimum Euclidean distance dE .

Let C denote such a code. Then the code words a of C are points on the n-

dimensional complex sphere of radius
√

n. We define the curve 
 by


 = {w(t, ζ ), t ∈ [0, 1)},
where

w(t, ζ ) = (
e2π ıζ t , e2π ı(ζ+1)t , . . . , e2π ı(ζ+n−1)t

)
.

This curve lies on the same sphere as the code words of C. We define the curve −


to consist of all the points {−w(t, ζ ), t ∈ [0, 1)}. The following result shows that

the closer a code word is to the curve 
 ∪ (−
), the larger is the PAPR.

Theorem 6.4 LetC be a code of length n, rate R, and minimum Euclidean distance
dE . Let d̂ denote the minimum Euclidean distance between the code words of C and
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the points of 
 ∪ (−
). Then d̂ ≤ √
2n and

PAPR(C) ≥ n

(
1 − d̂2

2n

)2

.

Proof We first prove that d̂ ≤ √
2n. For any t ∈ [0, 1), w(t, ζ ) and −w(t, ζ ) are

antipodal points on the n-dimensional complex sphere of radius
√

n. It follows that

for an arbitrary a ∈ C,

‖w(t, ζ ) − a‖2 + ‖ − w(t, ζ ) − a‖2 = 4n. (6.3)

This means that either

‖w(t, ζ ) − a‖ ≤
√

2n,

or

‖ − w(t, ζ ) − a‖ ≤
√

2n.

It follows that d̂ ≤ √
2n. One of the following two cases can occur.

Case 1: In this case, there exist a ∈ C and t ′ ∈ [0, 1), such that ‖a − w(t ′, ζ )‖ ≤ d̂.

Then

2�
(

n−1∑
k=0

ake2π ı(ζ+k)t ′
)

= ‖a‖2 + ‖w(t ′, ζ )‖2 − ‖a − w(t ′, ζ )‖2

= 2n − ‖a − w(t ′, ζ )‖2 ≥ 2n − d̂2.

Thus

PAPR(a) ≥ 1

n

∣∣∣∣∣�
(

n−1∑
k=0

ake2π ı(ζ+k)t ′
)∣∣∣∣∣

2

≥ 1

n

(
n − d̂2

2

)2

.

Case 2: In this case, there exist a ∈ C and t ′ ∈ [0, 1), such that ‖a − (−w(t ′, ζ ))‖ ≤
d̂ . Thus

2�
(

n−1∑
k=0

ake2π ı(ζ+k)t ′
)

= 2n − ‖a + w(t ′, ζ )‖2 ≥ 2n − d̂2.

Thus

PAPR(a) ≥ 1

n

∣∣∣∣∣−�
(

n−1∑
k=0

ake2π ı(ζ+k)t ′
)∣∣∣∣∣

2

≥ 1

n

(
n − d̂2

2

)2

.

�

For any subset, S, of the n-dimensional complex sphere of radius
√

n and any

r ≥ 0, we define H (S, r ) to be the surface consisting of all those points of the



6.2 Bounds on PAPR of codes 145

sphere that are within distance r of S. Let A(S, r ) denote the area of H (S, r ). So

for any point, x, on the sphere, H (x, r ) is a spherical cap having surface (see, e.g.,

[364])

A(r ) = A(x, r ) = 2(πn)n− 1
2(

n − 3
2

)
!

∫ 2 arcsin r
2
√

n

0

sin2n−2 θ dθ, (6.4)

where we define (
2s + 1

2

)
! = (2s + 2)!

22s+2(s + 1)!
· √

π. (6.5)

Theorem 6.5 LetC be a code of length n, rate R, and minimum Euclidean distance
dE . Suppose that for some d̂ with d

2
≤ d̂ ≤ √

2n,

A

(

 ∪ −
, d̂ − dE

2

)
+ 2n R A

(
dE

2

)
≥ 2πnnn− 1

2

(n − 1)!
. (6.6)

Then

PAPR(C) ≥ n

(
1 − d̂2

2n

)2

.

Proof The spherical caps H
(
a, dE

2

)
, a ∈ C, and the surface H

(

 ∪ −
, d̂ − dE

2

)
must meet or overlap since the sum of their areas is at least that of the area of the

n-dimensional complex sphere appearing in the right-hand side of (6.6). Therefore,

the minimum distance of C from the points of the curve 
 ∪ −
 is at most d̂. Now

the result follows from Theorem 6.4. �

To make the inequality into a usable one, we need to obtain a lower bound on

A
(

 ∪ −
, d̂ − dE

2

)
. Clearly, the curve 
 twists around the sphere many times

since ζ is assumed to be large. To obtain a lower bound we will restrict our attention

to almost one complete rotation of the curve 
 around the complex sphere. Let


̃ =
{

w(t, ζ ) : t ∈
[

0,
1

ζ

)}
.

Clearly,

H (
̃ ∪ −
̃, r ) ⊆ H (
 ∪ −
, r ),

and

A(
̃ ∪ −
̃, r ) ≤ A(
 ∪ −
, r ),

for any r ≥ 0.

We need the following technical result.
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Lemma 6.6 Let D be the curve on the n-dimensional complex sphere of radius√
n given by the set of points

D =
{

(e2π ıζ t , e2π ıζ t , . . . , e2π ıζ t ), t ∈
[

0,
1

ζ

)}
.

Let

r̂ = r − 2πn
3
2√

3ζ
,

then, provided that r̂ ≥ 0, we have

H (D, r̂ ) ⊆ H
(

̃ ∪ −
̃, r

)
. (6.7)

Proof Let x ∈ H (D, r̂ ). We aim to show that

x ∈ H
(

̃ ∪ −
̃, r

)
.

Now there exists t̂ ∈ [
0, 1

ζ

)
such that ‖x − y‖ ≤ r̂ , where

y = (e2π ıζ t̂ , e2π ıζ t̂ , . . . , e2π ıζ t̂ ).

Consider the point w(t̂, ζ ) on H (
̃). We have (see Theorem 3.14)

‖w(t̂, ζ ) − y‖2 = ‖w(t̂, ζ )‖2 + ‖y‖2 − 2�(w(t̂, ζ ), y∗)

= 2n − 2
n−1∑
k=0

cos(2πkt̂) =
{

(2n − 1) − sin((2n−1)π t̂)
sin π t̂ , if t̂ �= 0,

0, if t̂ = 0.

Using the inequalities (see the proof of Theorem 3.17)

x − x3

6
≤ sin x ≤ x, x ≥ 0,

we have, for t̂ �= 0,

‖w(t̂, ζ ) − y‖2 = (2n − 1) − sin((2n − 1)π t̂)

sin π t̂

≤ (2n − 1) − sin((2n − 1)π t̂) − 1
6
((2n − 1)π t̂)3

π t̂

= (2n − 1)3(π t̂)2

6
≤ 4π2n3

3ζ 2
.

It follows that

‖w(t̂, ζ ) − y‖ ≤ 2πn
3
2√

3ζ
.



6.2 Bounds on PAPR of codes 147

Thus

‖x − w(t̂, ζ )‖ ≤ ‖x − y‖ + ‖w(t̂, ζ ) − y‖

≤ r̂ + 2πn
3
2√

3ζ
= r.

Hence x ∈ H (
̃ ∪ −
̃). �

Lemma 6.7 For any r̂ ≥ 0, we have

A(D, r̂ ) ≥ max

{
1,

⌊
π

arcsin r̂√
n

⌋}
· 2(πn)n− 1

2(
n − 3

2

)
!

∫ 2 arcsin r̂
2
√

n

0

sin2n−2 θ dθ,

where we define ⌊
π

arcsin r̂√
n

⌋
= 0, for r̂ ≥ √

n.

Proof Let

� = max

{
1,

⌊
π

arcsin r̂√
n

⌋}
,

when r̂ ∈ [0,
√

n], and � = 1 otherwise. Consider any �points xk , k = 0, 1, . . . , � −
1, on the curve D having circular angular distance 2 arcsin r̂√

n
from one another.

Then the spherical caps H (xk, r̂ ) do not overlap. Each of these caps is also contained

in H (D, r̂ ). Application of (6.4) accomplishes the proof. �

We are now in a position to state Theorem 6.5 in an effective way.

Theorem 6.8 Let C denote a code of length n, rate R, and minimum Euclidean
distance dE . Let d̂ denote any value of x that is greater than

dE

2
+ 2πn

3
2√

3ζ
,

for which the inequality

max

{
1,

⌊
π

θ2(x)

⌋}
·
∫ 2θ1(x)

0

sin2n−2 θ dθ

+ 2n R
∫ 2 arcsin

dE
4
√

n

0

sin2n−2 θ dθ ≥
√

π
(
n − 3

2

)
!

(n − 1)!
(6.8)
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is satisfied. Here

θ1(x) = arcsin

⎛
⎜⎝ x − dE

2
− 2πn

3
2√

3ζ

2
√

n

⎞
⎟⎠,

θ2(x) = arcsin

⎛
⎜⎝ x − dE

2
− 2πn

3
2√

3ζ√
n

⎞
⎟⎠.

Suppose further that d̂ ≤ √
2n. Then

PAPR(C) ≥ n

(
1 − d̂2

2n

)2

.

Proof We first establish that inequality (6.8) always has solutions. Notice that on

rescaling the inequality throughout by a factor of

2(πn)n− 1
2(

n − 3
2

)
!
,

the right-hand side becomes equal to the area of the n-dimensional complex sphere

of radius
√

n, while the first term on the left-hand side is lower-bounded by the area

of a single spherical cap of radius

x − dE

2
− 2πn

3
2√

3ζ
.

Putting

x = dE

2
+ 2πn

3
2√

3ζ

makes this area equal to zero, while putting

x = 2
√

n + dE

2
+ 2πn

3
2√

3ζ

ensures that the cap encompasses the whole sphere. The second term on the left-

hand side becomes equal to 2n R A
( dE

2

)
after rescaling, and is nonnegative. It follows

that the inequality is satisfied for at least some values of x that are greater than or

equal to

dE

2
+ 2πn

3
2√

3ζ
.
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From Lemma 6.6, we know that

A

(

 ∪ −
, d̂ − dE

2

)
≥ A

(

̃ ∪ −
̃, d̂ − dE

2

)
≥ A

(
D, d̂ − dE

2
− 2πn

3
2√

3ζ

)
,

while from Lemma 6.7, we know that

A

(
D, d̂ − dE

2
− 2πn

3
2√

3ζ

)
≥ max

{
1,

⌊
π

θ2(d̂)

⌋}
· 2(πn)n− 1

2(
n − 3

2

)
!

∫ 2θ1(d̂)

0

sin2n−2 θ dθ,

where we again define
⌊

π

θ2(d̂)

⌋
to equal zero when the arcsin function in θ2 is

undefined. So from (7.31), which holds for x = d̂, we obtain the inequality

A

(

 ∪ −
, d̂ − dE

2

)
+ 2n R A

(
dE

2

)
≥ 2πnnn− 1

2

(n − 1)!
.

The theorem now follows from Theorem 6.5. �

The above bound proves that there is a trade-off between the rate, minimum

distance, and PAPR of a code. It shows in a strict sense that redundancy introduced

by considering only those code words with low PAPR cannot all be exploited to

provide error correction. Informally, this is because the words of low PAPR are

restricted to lie in a certain region of the sphere, and this region shrinks as the

PAPR decreases.

Now we pass to existence bounds of codes with a given minimum Euclidean

distance and PAPR.

Theorem 6.9 Let nonnegative d, d̂ ∈ R, and n ∈ N be given. For r ∈ R, such
that rn ∈ N, and � ∈ N, let 2n R be the largest integer for which

2�rn A(d̂) + 2Rn A(d) ≤ 2nn− 1
2 πn

(n − 1)!
(6.9)

holds. Then there exists a constant energy code C of rate R with minimum Euclidean
distance at least d and

PAPR(C) ≤ 1

cos π
2r

· 1

cos π
2�

·
(

n − d̂2

2

)
.

Proof For k = 0, 1, . . . , rn − 1, and j = 0, 1, . . . , � − 1, define

b(k, j) =
(

e−2π ı j
� , e−2π ı

(
k

rn + j
�

)
, e−2π ı2

(
k

rn + j
�

)
, . . . , e−2π ı2

(
k

rn + j
�

))
.

Notice that if, for a vector a ∈ R
n ,∥∥a − b(k, j)

∥∥ ≥ d̂ (6.10)
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and ∥∥a + b(k, j)
∥∥ ≥ d̂, (6.11)

then

2

∣∣∣∣∣�
(

n−1∑
m=0

ame2π ım
(

k
rn + j

�

))∣∣∣∣∣ = 2

∣∣∣∣Fa

(
k

rn

)
· e2π ı j

�

∣∣∣∣ ≤ 2n − d̂2.

Applying Theorems 4.8 and 4.14 we obtain that if a satisfies (6.10) and (6.11),

PMEPR(a) ≤ 1

cos π
2k

· 1

cos π
2�

·
(

n − d̂2

2

)
.

Now we will construct the code recursively, point by point. Assume that we have

chosen s code words a(0), a(1), . . . , a(s−1). Then if the union of

H
(
(±b(k, j), d̂

)
, k = 0, 1, . . . , rn − 1, j = 0, 1, . . . , � − 1,

and

H
(
a(m), d

)
, m = 0, 1, . . . , s − 1,

does not cover the whole complex sphere, an extra code word, c(s), can be added to

the code. Since the area of the union is less than or equal to the sum of the areas,

this can be done as long as (6.9) holds, and we are done. �

Let us analyze the asymptotics of the established bound. For this, we will use

the following inequality: for any n ≥ 2 and θ1 ∈ [
0, π

2

)
,

0 ≤
∫ θ1

0

sin2n−2 θ dθ ≤ sin2n−1 θ1

(2n − 1) cos θ1

. (6.12)

The left inequality is straightforward, the right one follows from

sin2n−1 θ1 =
∫ θ1

0

d sin2n−1 θ

dθ
dθ

= (2n − 1)

∫ θ1

0

sin2n−2 θ cos θ dθ

≥ (2n − 1) cos θ1

∫ θ1

0

sin2n−2 θ dθ,

where we have used the fact that

min
θ∈[0, π

2 ]
cos θ = cos θ1.
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Theorem 6.10 Let R ≥ 0, and � ≥ 0, be such that

2R

√
2�

(
1 − �

2

)
< 1. (6.13)

Then, for all sufficiently large n, there exists a constant energy code C of length n,
rate R, and minimum Euclidean distance dE ≥ √

2�n with

PAPR(C) ≤ ln n(1 + o(1)).

Proof Choose in the previous theorem � = √
ln ln n, r = √

ln ln n, and

δ = d̂2

n
= 1 −

√
ln n

n
.

Using the following easy-to-check inequality

1

cos x
≤ 1 + x2

2
+ x4

2
,

valid for |x | ≤ 1, we conclude that

PMEPR(C) ≤
(

1 + π2

8 ln ln n
+ π4

32(ln ln n)2

)
ln n = ln n(1 + o(1)).

To confirm that such a code exists we have to prove (6.9), which, by (6.4), reduces to

2n ln ln n
∫ 2 arcsin

√
2δ
2

0

sin2n−2 θ dθ + 2Rn
∫ 2 arcsin

√
2�
2

0

sin2n−2 θ dθ ≤ 2
√

π
(
n − 3

2

)
!

(n − 1)!
.

By (6.5), (
n − 3

2

)
!

(n − 1)!
=

√
π

22n−2

(
2n − 2

n − 1

)
≤

√
1

n − 1
<

2√
n
,

where the inequality before the last follows from the upper bound in Lemma 3.40.

Thus, using (6.12), we arrive at the equivalent inequality

2n
3
2 ln ln n

(2n − 1)
· sin2n−1(θ1)

cos θ1

+ 2Rn

√
n

(2n − 1)
· sin2n−1(θ2)

cos θ2

≤ 4
√

π, (6.14)

where

θ1 = 2 arcsin

√
2δ

2
, θ2 = 2 arcsin

√
2�

2
.

I will prove that the inequality holds for large enough n. With the choice of δ, we

have

sin θ1 =
√

1 − ln n

n
, sin2 θ1 = 1 − ln n

n
, cos θ1 =

√
ln n

n
.
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Thus,

2n
3
2 ln ln n

(2n − 1)
· sin2n−1(θ1)

cos θ1

= 2n ln ln n

(2n − 1)
(
1 − ln n

n

) √
ln n

· n

(
1 − ln n

n

)n

.

Since

lim
n→∞ n

(
1 − ln n

n

)n

= 1,

we conclude that

lim
n→∞

2n ln ln n

(2n − 1)
(
1 − ln n

n

) √
ln n

· n

(
1 − ln n

n

)n

= 0.

Therefore, the first summand in the left-hand side of (6.14) tends to 0 when n
increases. The same is true for the second summand under the condition (6.13).

Thus, the left-hand side of (6.14) tends to 0 while the right-hand side is a constant.

This yields that starting from some n the inequality is valid, and we are done. �

For the BPSK modulation and Hamming distance a similar analysis can be

applied. Asymptotically this will have the following form.

Theorem 6.11 Let R ≥ 0, and � ≥ 0, be such that

R ≤ 1 − H (�), (6.15)

where

H (�) = −� log2 � − (1 − �) log2(1 − �),

is the binary entropy function. Then for all sufficiently large n, there exists a code
C of length n, rate R, and minimum Hamming distance dH ≥ �n, with

PAPR(C) ≤ ln n(1 + o(1)).

�

6.3 Codes with known distance distribution

In this section, I will relate the peak power distribution to distance distributions

of codes. We assume here underlying binary codes with the mapping 0 → 1 and

1 → −1, i.e., the code C consists of n-tuples of BPSK symbols. Let the cardinality

of C equal |C| = M1. We shall give a bound in terms of the distance distribution

Bk = 1

M1

∣∣{(c(1), c(2)
)

: d
(
c(1), c(2)

) = k, c(1) ∈ C, c(2) ∈ C
}∣∣ , (6.16)
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where k = 0, 1, . . . , n, and d(x, y) is the Hamming distance between x and y,

i.e., the number of positions where the code words differ. Note that the distance

distribution coincides with the weight distribution for linear codes, i.e.,

Wk = |{c : w (c) = k, c ∈ C}| . (6.17)

where w (c) is the weight of the code word, corresponding to the number of −1

components in c. Furthermore, if the code contains the code word consisting of only

−1s we have Wk = Wn−k , i.e., the weight distribution is symmetric with respect

to n
2
.

Given an integer j , let i = (i0, i1, . . . , in−1) be a nonnegative, integer-valued

vector of length n satisfying i0 + i1 + . . . + in−1 = j , and let I j denote the set of

all such vectors. Define the moments

m i = E
(
ci0

0 , ci1

1 , . . . , cin−1

n−1

)
, (6.18)

where the expectation is over the vectors c = (c0, c1, . . . , cn−1) of code C. Let us

introduce the following notations:

b( j)
i = j

i0!i1! · · · in−1!
, (6.19)

and

ki (t, α)

= (
cosi0 (α) cosi1 (2π t + α) cosi2 (2 · 2π t + α) , . . . , cosin−1 ((n − 1) 2π t + α)

)
.

We need the following technical lemma on the moments of linear, binary codes.

Lemma 6.12 The moments of linear, binary codes are either 0 or n.

Proof The sum
∑

c∈C
∏n−1

k=0 cik
k is just the sum over all code words of (−1)p where

p is the parity of the subvectors on the corresponding positions of the code words

where ik is odd. Whatever subset of positions one picks, the parity of the subvectors

is either all even, or half of the subvectors are of even and half the subvectors are of

odd parity. This is because the sum of two subvectors with different (equal) parities

yields odd (even) parity, and the code is linear. �

We will use the notations and bound from Theorem 5.1. Expanding the expo-

nential function in the Chernoff bound yields

E
(
eε�(Fc(tl1,r )e

ıαl2,h )
) =

N∑
j=0

ε j

j!

∑
i∈I j

b( j)
i m iki

(
tl1,r , αl2,h

) + εN+1nN+1eεn

(N + 1)!
,

where the error term of the right-hand side depends on the natural number N > 0

and is given by Taylor’s theorem (and can be made arbitrarily small by choosing

N large enough).
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Then, exchanging integration and summation, for any ε > 0 we obtain

Pr

(
max

t∈[0,1)
|Fc(t)| > λ

√
n

)

≤
rn−1∑
l1=0

h−1∑
l2=0

e
− ε

√
nλ

Cr Ĉh

N∑
j=0

ε j

j!

∑
i∈I j

b( j)
i m iki(tl1,r , αl2,h) + εN+1nN+1eεn

(N + 1)!

for any r and h. However, from the practical point of view, the moments are rather

unwieldy to evaluate. On the other hand, we can obtain simpler expressions for

linear, binary codes. The following theorem relies on the fact that moments of

linear codes are nonnegative.

Theorem 6.13 Let C be a linear binary code with symmetric weight distribution.
Then

Pr (PMEPR(c) > λ) ≤ min
ε>0

n∑
k=0

fn (ε, λ) Wk cosh (ε (n − 2k))

M1

(6.20)

with

fn (ε, λ) = min
r>1,h>3

rhn · e
− ε

√
nλ

Cr Ĉh . (6.21)

Proof Fixing ε > 0 we know that

Pr

(
max

t∈[0,1)
|Fc| > λ

)
≤ min

r>1,h>3

rn−1∑
l1=0

h−1∑
l2=0

e
− ε

√
nλ

Cr Ĉh

N∑
j=0

ε j

j!

∑
i∈I j

b( j)
i m iki(tl1,r , αl2,h)

+ εN+1nN+1eεn

(N + 1)!
.

By the Cauchy–Schwartz inequality

Pr

(
max

t∈[0,1)
|Fc| > λ

)
≤ min

r>1,h>3

rn−1∑
l1=0

h−1∑
l2=0

e
− ε

√
nλ

Cr Ĉh

N∑
j=0

ε j

j!
max
i∈I j

∣∣ki

(
tl1,r , αl2,h

)∣∣∑
i∈I j

b( j)
i m i

+ εN+1nN+1eεn

(N + 1)!

=
N∑

j=0

fn (ε, λ) ε j

j!

∑
i∈I j

b( j)
i m i + εN+1nN+1eεn

(N + 1)!

provided that m i ≥ 0, i ∈ I j , which is indeed the case for linear codes by

Lemma 6.12.

Next, we need to represent the term

m i = E
(
ci0

0 ci1

1 . . . cin−1

n−1

) = 1

M1

∑
c∈C

n−1∏
k=0

cik
k
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in terms of the weight distribution of the linear code. Note that for c ∈ {±1}n , we

have

n−1∑
k=0

ck = n − 2w (c),

where w(c) is the weight of the code word c. Consider the following sum

s j =
∑
c∈C

(
N−1∑
k=0

ck

) j

.

On the one hand, it is

s j =
∑
c∈C

(n − 2w (c)) j =
n∑

k=0

(n − 2k) j Wk .

On the other hand, we have

s j =
∑
c∈C

(
n−1∑
k=0

ck

) j

=
∑
c∈C

∑
i∈I j

b( j)
i

n−1∏
k=0

cik
k =

∑
i∈I j

b( j)
i

∑
c∈C

n−1∏
k=0

cik
k .

Thus

∑
i∈I j

b( j)
i

∑
c∈C

n−1∏
k=0

cik
k =

n∑
k=0

(n − 2k) j Wk

and

Pr

(
max

t∈[0,1)
|Fc| > λ

)
≤

N∑
j=0

fn (ε, λ) ε j

j!

∑
i∈I j

b( j)
i m i + εN+1nN+1eεn

(N + 1)!

=
N∑

j=0

fn (ε, λ) ε j

M1 j!

n∑
k=0

(n − 2k) j Wk + εN+1nN+1eεn

(N + 1)!
.

Observing that the sum is zero for odd j and exchanging the order of summation

Pr

(
max

t∈[0,1)
|Fc| > λ

)
≤

n∑
k=0

fn (ε, λ) Wk

M1

N∑
j=0

ε2 j (n − 2k)2 j

(2 j)!
+ εN+1nN+1eεn

(N + 1)!

≤ lim supn→∞
n∑

k=0

fn (ε, λ) Wk

M1

N∑
j=0

ε2 j (n − 2k)2 j

(2 j)!

+ εN+1nN+1eεn

(N + 1)!
.
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Since N is arbitrary,

N∑
j=0

ε2 j (n − 2k)2 j

(2 j)!
→ cosh (ε (n − 2k))

and

εN+1nN+1eεn

(N + 1)!
→ 0

as N → ∞, the latter yields the desired result. �

In Theorem 6.13, it is assumed that the code possesses a symmetric weight

distribution. This assumption can be dropped if the dual code is considered as

follows. Let

Kk(x) =
k∑

j=0

(−1) j

(
x

j

)(
n − x

k − j

)

be binary Krawtchouk polynomials. For properties of Krawtchouk polynomials see

Section 3.4.4. The MacWilliams identity is

W ⊥
j = 1

M1

n∑
k=0

Wk K j (k)

where W ⊥
j stands for the distance distribution of the dual code. Let d⊥, the dual

distance, be the minimum nonzero index of a strictly positive component in the

dual distance distribution.

Theorem 6.14 Let C be a linear binary code. Then

Pr (PMEPR(c) > λ)≤min
ε>0

[
N∑

j=0, j even

fn(ε, λ)ε j

j!

n∑
k=0

(n − 2k) j

(
n

k

)
+ (εn)N+1eεn

(N + 1)!

]

(6.22)

where N ≤ d⊥ and fn is defined in (6.21).

Proof We will need the following simple argument. Let j < d⊥, and

(n − 2k) j =
n∑

�=0

a�K�(k)

(such an expansion exists by orthogonality and completeness of the system of

Krawtchouk polynomials). To estimate a0 notice that

a0 = 2−n
n∑

k=0

(n − 2k) j K0(k) =
n∑

k=0

(n − 2k) j

(
n

k

)
,
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and

a0 = 0 when j is odd,

a0 = ∑n
k=0(n − 2k) j

(n
k

)
when j is even.

Moreover, by orthogonality of Krawtchouk polynomials, for � > j ,

a� = 2−n
n∑

k=0

(n − 2k) j K�(k) = 0.

Thus, if j < d⊥,

n∑
k=0

(n − 2k) j Wk =
n∑

�=0

a�

n∑
k=0

Wk K�(k) = M1

j∑
�=0

a�W ′
� = M1a0.

We assume that we could choose N < d⊥ (which is always possible when d⊥ is

large enough) yielding the result. �

The optimization problem in (6.21) can be easily solved using simple line search

procedures. The optimization parameter in (6.20) must also be numerically com-

puted. Here, we choose a good starting point from the BPSK case where the optimal

ε can be analytically obtained. Note that the remainder term in (6.22) is small as

long as the dual distance scales with n.

I will now discuss the asymptotic behavior of the derived bounds.

Theorem 6.15 Let C be a linear [n, a] code. Suppose that, for all W j , there is a
constant Es independent of j so that

W j = 2a−n

(
n

j

)
(1 + Es).

Then

Pr (PMEPR(c) ≤ λ) ≤ (1 + Es) rhn · e
− λ2

2C2
r Ĉ2

h .

Proof Using the identity

n∑
k=0

(
n

k

)
cosh (ε (n − 2k))

2n
= coshn (ε) ,

which can be obtained from the BPSK case and the inequality cosh (ε) ≤ e
ε2

2 , yields

Pr

(
max

t∈[0,1)
|Fc(t)| > λ

√
n

)
≤ (1 + Es) rhn · e

− ελ
√

n
Cr Ĉh e

ε2n
2 .

Setting ε = λ

(Cr Ĉh

√
N )

gives the final result. �
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From the latter theorem we can conclude that if the weight distribution can be

approximated by the binomial distribution up to a constant (1 + Es) where Es

satisfies

lim supn→∞ |Es | < ∞.

Then the PMEPR distribution is of the same order as that of BPSK.

Since the proof of the bound relies on the fact that the moments are nonnegative,

the bound does not apply to general nonlinear codes. However, a simple observation

shows that the bound can also be extended to the general case.

Theorem 6.16 For any binary code C of size M1 and with distance distribution
Bk, k = 0, 1, . . . , n, we have

Pr (PMEPR(c) > λ)

≤ min
ε>0

⎛
⎝ N∑

j=0

fn (ε, λ) ε j n
j
2

M1 j!

(
n∑

k=0

(n − 2k) j Bk

) 1
2

+ εN+1nN+1eεn

(N + 1)!

⎞
⎠. (6.23)

Proof Indeed

s j =
∑
c1∈C

∑
c2∈C

(n − 2d (c1, c2)) j =
n∑

k=0

(n − 2k) j Bk

=
∑
i∈I j

b( j)
i

(∑
c∈C

n−1∏
k=0

cik
k

)2

.

Applying the Cauchy–Schwartz inequality as in Theorem 6.13 and observing that∑
i∈I j

k2
i

(
tl1,r , αl2,h

) ≤ n j

yields the result. �

Observe that the error term in (6.23) can be made arbitrarily small by simply

considering more terms in the sum. If Bk = Bn−k then the second sum in (6.23) is

zero for odd k.

6.4 BCH codes

Here, I will prove that the weight distribution of a large class of BCH codes is

approximately binomial. The idea of the proof is to show that when computing the

values of the weight distribution using the MacWilliams transform, they will be

mainly determined by the zeroth component of the dual code, and the impact of the

other dual codes’ weight distribution components is negligible.
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We start with an analysis of the behavior of Krawtchouk polynomials. Let us

recall some facts from Section 3.4.4. The binary Krawtchouk polynomial Kk(x) =
K n

k (x) (of degree k in x) is defined by the following generating function:

∞∑
k=0

Kk(x)zk = (1 − z)x (1 + z)n−x . (6.24)

We need some particular values of Kk(x), namely,

Kk(0) =
(

n

k

)
, Kk(n) = (−1)k

(
n

k

)
.

From Cauchy’s integral formula we get, for nonnegative integer x :

Kk(x) = 1

2πx

∮
(1 + z)n−x (1 − z)x

zk+1
dz

= (−ı)x

2π

∫ 2π

0

eı( n
2
−k)θ

(
cos

θ

2

)n−x (
sin

θ

2

)x

dθ.

Thus, for even n and x , we have

|Kk(x)| = 1

2π

∣∣∣∣∣
∫ 2π

0

eı( n
2
−k)θ

(
cos

θ

2

)n−x (
sin

θ

2

)x

dθ

∣∣∣∣∣
≤ 1

2π

∫ 2π

0

(
cos

θ

2

)n−x (
sin

θ

2

)x

dθ = ∣∣K n
2
(x)

∣∣.
Hence, the following result holds.

Lemma 6.17 For even n and j ,

|Kk( j)| ≤ ∣∣K n
2
( j)

∣∣.
�

Let us find the values K n
2
( j) for even n and j . The following symmetry relation

holds for integer k and j : (
n

j

)
Kk( j) =

(
n

k

)
K j (k). (6.25)

From (6.24), we get

∞∑
k=0

Kk

(n

2

)
zk = (1 − z)

n
2 (1 + z)

n
2 = (1 − z2)

n
2 ,

thus,

K2k

(n

2

)
= (−1)k

(
n/2

k

)
,
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and

K n
2
( j) = (−1)

j
2

( n
n/2

)(n/2
j/2

)
(n

j

) . (6.26)

So, from (6.25) and Lemma 6.17 we get for even n and j

|K j (k)| =
(n

j

)
(n

k

) |Kk( j)| ≤
(n

j

)
(n

k

) ∣∣K n
2
( j)

∣∣ .
Employing (6.26) we obtain the following lemma.

Lemma 6.18 For k integer, and n and j even,

|K j (k)| ≤
( n

n/2

)(n/2
i/2

)
(n

k

) .

�

Now we are in a position to analyze the weight distribution of BCH codes.

Consider the extended BCH code C of length n = 2m , cardinality 2n−mt−1 and

minimum distance d = 2t + 2 ≤ 2[(m+1)/2] + 2. Let the distance distribution of the

code be B = (B0, . . . , Bn), B0 = Bn = 1, B2i+1 = 0 for i = 0, . . . , n/2 − 1, and

Bi = Bn−i = 0 for i = 1, 2, . . . , 2t + 1. For the conventional (nonextended) BCH

code of length n − 1 and minimum distance 2t + 1 we denote its spectrum by

b = (b0, . . . , bn−1). Since the extended BCH code is doubly transitive, we have the

following result relating the values of odd and even components of the spectra of

BCH codes (see, e.g., Theorems 14 and 16, Section 8.5, in [257]).

Lemma 6.19

b2 j−1 = 2 j B2 j

n
, b2 j = (n − 2 j)B2 j

n
.

�

We start with estimating the spectrum of the extended BCH code. Let B⊥ =
(B⊥

0 , . . . , B⊥
n ) stand for the spectrum of the dual C⊥ of the extended BCH code,

where B⊥ is determined by the MacWilliams transform of B

B⊥
k = |C⊥|

2n

n∑
j=0

B j Kk( j), (6.27)

and B⊥
j = B⊥

n− j for j = 0, . . . , n, B⊥
0 = B⊥

n = 1, B⊥
2 j+1 = 0 for j = 0, . . . ,

n/2 − 1, and for 2t + 1 ≤ 2[(m+1)/2] + 1,

B⊥
j = B⊥

n− j = 0 for j = 1, . . . , d⊥ = [n/2 − (t − 1)
√

n]. (6.28)
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Denote by D⊥ the segment [d⊥, . . . , n − d⊥]. Note that for the considered range

of t ,
n∑

j=0

B⊥
j = |C⊥| = 2nt .

Inverting relation (6.27) we have

B j = 1

2nt

n∑
k=0

B⊥
k K j (k) = 1

2nt

(
B⊥

0 K j (0) + B⊥
n K j (n) +

∑
k∈D⊥

B⊥
k K j (k)

)
.

We consider only the even j , since, otherwise, B j = 0. Hence,

B j = 1

2nt

(
2

(
n

j

)
+

∑
k∈D⊥

B⊥
k K j (k)

)
,

i.e., for even j we have

B j =
(n

j

)
nt

(1 + E j ),

where

|E j | = 1

2
(n

j

)
∣∣∣∣∣
∑

k∈D⊥
B⊥

k K j (k)

∣∣∣∣∣ ≤ nt(n
j

) max
k∈D⊥

|K j (k)|.

Now since n and j are even we may use Lemma 6.18, thus getting

Theorem 6.20 In the extended BCH code of length n = 2m and minimum distance
2t + 2 ≤ 2[m+1]/2 + 2,

B j = 0 for j odd,

B j = (n
j)

nt (1 + E j ) for j even,

where

|E j | ≤
nt

( n
n/2

)(n/2
j/2

)
(n

j

)( n
d⊥

) . (6.29)

�

Using Lemma 6.19, we obtain the following result for conventional BCH codes.

Theorem 6.21 In the BCH code of length n̂ = n − 1 = 2m − 1 and minimum
distance 2t + 1 ≤ 2[(m+1)/2] + 1,

b j =
(n̂

j

)
nt

(1 + E j∗),

where j∗ = j + 1 for j odd, and j∗ = j for j even, and |E j | is estimated in (6.29).
�
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Using the theorems we can analyze some particular cases.

From standard estimates of binomial coefficients (see Lemma 3.42) we have

ln

( n
n/2

)
( n

d⊥
) = 2(t − 1)2 + O

(
(t − 1)4

n

)
.

Therefore, for t = o(n
1
4 ),

ln

( n
n/2

)
( n

d⊥
) = 2(t − 1)2 + o(1),

and for t = o(
√

n),

ln

( n
n/2

)
( n

d⊥
) = o(n).

This leads to straightforward corollaries.

Corollary 6.22 If t = o(
√

n), and j grows linearly with n, j
n = σ + o(1), then

1

n
log2 |Eσn| ≤ −1

2
H (σ ) + o(1).

�

Assuming t = o(n
1
4 ), we give somehow sharper estimates, particularly good for

small j . We use the fact that for j = o(
√

n), from Stirling approximation we have(n/2
i/2

)
(n

j

) =
√

2 e− j
2

(
j

n

) j
2

(1 + o(1)).

Corollary 6.23 If t = o(n
1
4 ), and i = o(

√
n), then

|E j | ≤
√

2 j
j
2 e2(t−1)2− j

2 nt− j
2 (1 + o(1)).

�

If t and j are constants then we have |E j | = O(nt− j
2 ). Since the maximum error

occurs in |E2t+2|, we always have |E j | = O(n−1).

Finally, for conventional BCH codes we get

Theorem 6.24 Let t = o(n
1
4 ) and l = [( j + 1)/2], then in the BCH code of length

n = 2m − 1 and with minimum distance 2t + 1

b j =
(n

j

)
(n + 1)t

(1 + E2l),
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where the error term is upper bounded as follows:

|E2l | ≤
√

2 (2l)l e2(t−1)2− l(n−2l)
n nt−l(1 + o(1)).

�

Similar, but more technical arguments, yield the following result.

Theorem 6.25 For all j > 2t + 1,

|E j | ≤ |E2t+1|,
and

|E2t+1| ≤ 4(t − 1)2t!

�

This guarantees that the whole distance distribution is asymptotically binomial,

given

4(t − 1)2t! = O(n).

Using the Stirling approximation we check that it suffices for growing n that

t ≤ ln n − 2.5 ln ln n

ln ln n
. (6.30)

Thus, we obtain the following theorem.

Theorem 6.26 Let c be picked at random from the BCH code of length n = 2m − 1

and minimum distance 2t + 1 ≤ 2[(m+1)/2] + 1 where t fulfills (6.30). Then for large
n,

Pr (PMEPR(c) > λ) → 0,

where

λ = 4 ln n + 4 ln ln n + o(1).

Proof By Theorem 6.15 an upper bound is given by

Pr (PMEPR (c) > λ) ≤ (1 + Es) rhn · e
− λ

2C2
r Ĉ2

h .

Choosing r = h = √
ln n we have C−2

r Ĉ−2
h ≥ 1 − 2π2

ln n for large n. Setting Es =
O (n) by (6.30) and λ as in the statement of the theorem, we have

Pr (PMEPR(c) > λ) ≤ O

(
1

ln3 n

)
,

and the results follows. �
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6.5 Fast computation of PMEPR and PAPR of codes

It is a simple problem to determine the maximum possible PAPR or PMEPR of

uncoded signals. However, when we exclude some of the possible combinations of

the coefficients, i.e., in the case of coded signals, we have the problem of determining

the maximum in a computationally efficient way.

We start with the problem of computing PMEPR.

Theorem 6.27 Let C be a code consisting of vectors a, |ak | = 1, k = 0, 1, . . . ,

n − 1, and C such that it contains along with every code word a its negative, −a.
Also let for a b ∈ R

n,

dE (b, C) = min
a∈C

dE (b, a),

and

e(t, ϕ) = (
e−2ϕ, e−2π ı t−ϕ, e−2π ı2t−ϕ, . . . , e−2π ı(n−1)t−ϕ

)
.

Then, for any r, rn ∈ N, r ≥ 1, and �, � ∈ N, � ≥ 2,

PMEPR(C)

≤ max
s=0,1,...,rn−1

max
j=0,1,...,�−1

1

n · cos π
2r · cos π

2�

⎛
⎝n − 2dE

(
e
(

s
rn ,

2π j
�

)
, C

)
2

⎞
⎠

2

.

Moreover,

PMEPR(C) ≥ max
s=0,1,...,rn−1

max
j=0,1,...,�−1

1

n

⎛
⎝n − 2dE

(
e
(

s
rn ,

2π j
�

)
, C

)
2

⎞
⎠

2

.

Proof Let a = (a0, a1, . . . , an−1) belong to C. Then the problem is to find

PMEPR(C) = 1

n
max
a∈C

max
t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

ake2π ıkt

∣∣∣∣∣
2

= 1

n
max

t∈[0,1)
max
a∈C

∣∣∣∣∣
n−1∑
k=0

ake2π ıkt

∣∣∣∣∣
2

.

We denote e(t, ϕ) = (
e−ϕ, e−2π ı t−ϕ, e−2π ı2t−ϕ, . . . , e−2π ı(n−1)t−ϕ

)
. Then the Eu-

clidean distance between a and e(t, ϕ) is

dE (a, e(t, ϕ)) = 2n − 2�((a, e(t, ϕ))) = 2n − 2�
(

n−1∑
k=0

ake2π ıkt+ϕ

)
.
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Clearly, ∣∣∣∣∣
n−1∑
k=0

ake2π ıkt

∣∣∣∣∣ = max
ϕ∈[0,2π)

∣∣∣∣∣�
(

n−1∑
k=0

ake2π ıkt+ϕ

)∣∣∣∣∣
≤ 1

cos
(

π
2�

) · max
j=0,1,...,�−1

∣∣∣∣∣�
(

n−1∑
k=0

ake2π ıkt+2π
j
�

)∣∣∣∣∣
= 1

cos
(

π
2�

) · max
j=0,1,...,�−1

2n − dE

(
a, e

(
t, 2π j

�

))
2

.

The last inequality is given by Theorem 4.14 and any integer � ≥ 2 can be used.

Furthermore,

max
t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

ake2π ıkt

∣∣∣∣∣ ≤ Cr max
s=0,1,...,rn−1

∣∣∣∣∣
n−1∑
k=0

ake2π ık s
rn

∣∣∣∣∣ ,
where r ≥ 1, rn ∈ N, and Cr is estimated in Theorems 4.8, 4.9, 4.10, and 4.11. For

example, we have Cr ≤ 1
cos π

2r
. Summarizing, we have

max
t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

ake2π ıkt

∣∣∣∣∣ ≤ Cr

cos π
2�

max
s=0,1,...,rn−1

max
j=0,1,...,�−1

2n − dE

(
a, e

(
s

rn ,
2π j
�

))
2

.

Simple algebraic manipulations accomplish the proof of the upper bound. The lower

bound is straightforward. �

Therefore, to estimate PMEPR with a maximum relative error of, at most,(
cos π

2�
cos π

2r

)−1
, one should pick some appropriate r and �, and find �rn val-

ues of the Euclidean distances between the code and the vectors defined in the

theorem. Thus the complexity of this procedure is �rn times the complexity of the

soft minimum distance decoding of C. Clearly if the code has an efficient decoding

procedure, estimating its PMEPR is only a constant times n more complicated.

To deal with the PAPR, one may apply Theorem 4.19, showing that when the

carrier frequency is essentially larger than the bandwidth of each tone, bounds for

PMEPR allow accurate estimation of PAPR. If the carrier frequency is zero, to

estimate PAPR we have to find

1

n
· max

t∈[0,1)
max
a∈C

(
�

(
n−1∑
k=0

ake2π ıkt

))2

,

and the same techniques as used for PMEPR (though without projections on axes)

apply.
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6.6 Notes

Section 6.1 Theorem 6.1 is by Friese [124]. The rest of the section follows Litsyn

and Wunder [252]. On the PMEPR distribution for the spherical case, see also Sharif

and Hassibi [374].

Section 6.2 The results of this section are by Paterson and Tarokh [328]. Theorems

6.9 and 6.10 are given here with better estimates for the PMEPR than those in [328].

Section 6.3 This section follows Litsyn and Wunder [252]; see also [444]. Quite

a lot is known about the distance distributions of codes. Distance distributions of

some classes of algebraic codes are discussed in MacWilliams and Sloane [257];

see also references there. The convergence of distance distributions to normalized

binomial distributions was analyzed by Ashikhmin et al. [14] and Krasikov and

Litsyn [213, 214]. The distance distributions of LDPC codes were considered by

Burshtein and Miller [56], Di et al. [90, 91], Gallager [125], and Litsyn and Shevelev

[249, 250]. Yue and Yang [452] discussed the distance distributions of turbo codes.

Section 6.4 The first bound on the weight spectrum of BCH codes showing that it

converges to normalized binomial distribution is by Sidel’nikov [380]. This section

follows Krasikov and Litsyn [211]. Other papers treating the subject are by Kasami

et al. [196, 197], Krasikov and Litsyn [211, 212, 215, 216], Keren and Litsyn

[201, 202], Solé [386], and Vláduts and Skorobogatov [418, 419]. The result on

PMEPR of BCH codes is by Litsyn and Wunder [252].

Section 6.5 The ideas of this section are from Tarokh and Jafarkhani [398, 399],

though here I consider PMEPR rather than PAPR estimation. In [399] an estimate

for PAPR for high carrier frequencies via lower carrier frequencies is also given.
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MC signals with constant PMEPR

Although we have seen that most of the MC signals have peaks of value about√
n ln n , there are plenty of signals with maxima of order

√
n . This chapter is

devoted to methods of constructing such signals. I begin with relating the maxima

in signals to the distribution of their aperiodic correlations (Theorem 7.2). Then I

describe in Section 7.2 the Rudin–Shapiro sequences over {−1, 1}, guaranteeing

a PMEPR of at most 2 for n being powers of 2. They appear in pairs, where

each one of the sequences possesses the claimed property. The Rudin–Shapiro

sequences are representatives of a much broader class of complementary sequences

discussed in Section 7.3. The signals defined by these sequences also have a PMEPR

not exceeding 2, while existing for a wider spectrum of lengths. In Section 7.4,

I introduce complementary sets of sequences. The number of sequences in the

sets can be more than two, and the corresponding sequences have a PMEPR not

exceeding the number of sequences in the set. In Section 7.5, I generalize the

earlier derived results to the polyphase case, and describe a general construction of

complementary pairs and sets stemming from cosets of the first-order Reed–Muller

codes within the second-order Reed–Muller codes. Another idea in constructing

sequences with low PMEPR is to use vectors defined by evaluating the trace of

a function over finite fields or rings. This topic is explored in Section 7.6 using

estimates for exponential sums. Finally, in Sections 7.7 and 7.8, I study two classes

of sequences, M-sequences and Legendre sequences, guaranteeing PMEPR of order

at most (ln n)2.

7.1 Peak power and aperiodic correlation

There is an intimate connection between the peak power of MC signals and the

values of its aperiodic out-of-phase correlation function. Let a signal in an n-carrier

167
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MC system be defined by

F(t) = Fa(t) =
n−1∑
k=0

ake2π ıkt ,

where a = (a0, . . . , an−1) is the vector of complex-valued coefficients. The aperi-

odic autocorrelation function is

ρ( j) = ρa( j) =
n− j−1∑

k=0

aka∗
k+ j , (7.1)

where the out-of-phase coefficients correspond to j ∈ {1, 2, . . . , n − 1}. Note that

ρ(0) = ∑n−1
k=0 |ak |2.

Lemma 7.1

|F(t)|2 =
n−1∑
k=0

|ak |2 + 2�
{

n−1∑
j=1

e2π ı j tρ( j)

}
.

Proof Indeed,

|F(t)|2 = F(t)F∗(t) =
n−1∑
k=0

n−1∑
j=0

aka∗
j e

2π ı(k− j)t .

Singling out the terms with j = k and since for all a, b ∈ C,

ab∗ + a∗b = 2�{ab∗},

we have

|F(t)|2 =
n−1∑
k=0

|ak |2 + 2�
{

n−1∑
k=0

n−1∑
j=k+1

aka∗
j e

2π ı(k− j)t

}

=
n−1∑
k=0

|ak |2 + 2�
{

n−1∑
j=1

e2π ı j t
n− j−1∑

k=0

aka∗
k+ j

}
.

�

Theorem 7.2

PMEPR(a) ≤
∑n−1

k=0 |ak |2
n

+ 2

n

n−1∑
j=1

|ρ( j)|. (7.2)



7.1 Peak power and aperiodic correlation 169

Proof For every a ∈ C, we have �{a} ≤ |a|, and thus

|F(t)|2 ≤
n−1∑
k=0

|ak |2 + 2

∣∣∣∣∣
n−1∑
j=1

e2π ı j tρ( j)

∣∣∣∣∣
≤

n−1∑
k=0

|ak |2 + 2
n−1∑
j=1

|ρ( j)|,

and the claim follows. �

Corollary 7.3 If
∑n−1

k=0 |ak |2 = n, then

PMEPR(a) ≤ 1 + 2

n

n−1∑
j=1

|ρ( j)| ≤ 1 + 2(n − 1)

n
max

j=1,...,n−1
|ρ( j)|.

�

Example 7.1 Consider a = (1, 1, 1, −1, 1). The autocorrelation coefficients are

ρ = (5, 0, 1, 0, 1). Hence, the upper bound (7.2) is

PMEPR(a) ≤ 1 + 4

5
.

It coincides with the value |F(0)| or |F(1/2)| and is thus tight. �

Along with the maximum of the out-of-phase aperiodic correlation, another

parameter, called the merit factor, is often considered. The merit factor of a vector

a is

μ(a) = n2

2
∑n−1

j=1 |ρa( j)|2 . (7.3)

The merit factor measures the mean-square deviation of |Fa(t)|2 from n = (
√

n)2,

1

μ(a)
= 1

n2

∫ 1

0

(|Fa(t)|2 − n
)2

dt.

The following relates the merit factor with the PMEPR.

Theorem 7.4

PMEPR(a) ≤
∑n−1

k=0 |ak |2
n

+
√

2(n − 1)

μ(a)
. (7.4)
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Proof By the Cauchy–Schwartz inequality (see Theorem 3.4),

n−1∑
j=1

|ρ( j)| =
n−1∑
j=1

1 · |ρ( j)| ≤
√√√√(n − 1)

n−1∑
j=1

|ρ( j)|2.

�

The results above hint that it might be beneficial to expect a low PMEPR from

sequences with low maximum out-of-phase autocorrelation. A short account of

the current knowledge about the maximum of aperiodic autocorrelation and merit

factor appears in the notes (Section 7.9).

7.2 Rudin–Shapiro sequences

In this section, I consider BPSK-modulated MC signals for n = 2m . Let us construct,

recursively, a sequence of signals with PMEPR equal to 2. We start with m = 0,

and set

P0 = 1, Q0 = 1.

The Rudin–Shapiro signals are defined recursively as follows:

Pm+1(t) = Pm(t) +e2π ı ·2mt Qm(t), (7.5)

Qm+1(t) = Pm(t) −e2π ı ·2mt Qm(t). (7.6)

Here are the coefficients for the first four lengths:

P0 : (1) Q0 : (1)

P1 : (1, 1) Q1 : (1, −1)

P2 : (1, 1, 1, −1) Q2 : (1, 1, −1, 1)

P3 : (1, 1, 1, −1, 1, 1, −1, 1) Q3 : (1, 1, 1, −1, −1, −1, 1, −1).

We address the sequence of coefficients of the defined signals as Rudin–Shapiro

Pm and Qm sequences.

Theorem 7.5 For any nonnegative integer m,

PMEPR(Pm) ≤ 2, PMEPR(Qm) ≤ 2.

Proof For all a, b ∈ C, the parallelogram law is valid:

|a + b|2 + |a − b|2 = (a + b)(a∗ + b∗) + (a − b)(a∗ − b∗) = 2|a|2 + 2|b|2.
Thus

|Pm+1(t)|2 + |Qm+1(t)|2 = |Pm(t) + e2π ı ·2mt Qm(t)|2 + |Pm(t) − e2π ı ·2mt Qm(t)|2
= 2(|Pm(t)|2 + |Qm(t)|2)

= 2m+1(|P0(t)|2 + |Q0(t)|2) = 2m+2.
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Therefore,

max
t∈[0,1)

|Pm+1(t)|2 ≤ 2m+2, max
t∈[0,1)

|Qm+1(t)|2 ≤ 2m+2.

�

Theorem 7.6

P2m(0) = 2m, P2m

(
1

2

)
= 2m, P2m+1(0) = 2m+1, P2m+1

(
1
2

) = 0,

Q2m(0) = 2m, Q2m

(
1

2

)
= −2m, Q2m+1(0) = 0, Q2m+1

(
1
2

) = 2m+1.

Proof We have

Pm+2(t) = Pm+1(t) + e2π ı2m+1t Qm+1(t)

= Pm(t) + e2π ı2mt Qm(t) + e2π ı2m+1t
(
Pm(t) − e2π ı2mt Qm(t)

)
= (

1 + e2π ı2m+1t
)
Pm(t) + e2π ı2mt

(
1 − eı2m+1t

)
Qm+1(t).

Then

P2m(0) = (1 + 1)P2m−2(0) + 0 = . . . = 2m P0(0) = 2m,

P2m

(
1

2

)
= 2P2m−2

(
1

2

)
= . . . = P0

(
1

2

)
= 2m,

P2m+1(0) = 2P2m−1(0) = . . . = 2m P1(0) = 2m+1,

P2m+1

(
1

2

)
= 2P2m−1

(
1

2

)
= . . . = 2m P1

(
1

2

)
= 0.

Analogous recursions yield the result for Q-sequences. �

Corollary 7.7 For any nonnegative m,

PMEPR(P2m+1) = 2, PMEPR(Q2m+1) = 2. �

The Rudin–Shapiro sequences possess some symmetry.

Theorem 7.8 Let Pm and Qm be two Rudin–Shapiro sequences. Then

|Pm(t)|2 = 2m+1 −
∣∣∣∣Pm

(
1

2
− t

)∣∣∣∣
2

,

|Qm(t)|2 = 2m+1 −
∣∣∣∣Qm

(
1

2
− t

)∣∣∣∣
2

.
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Proof The proof is by induction. The claim is clearly true for m = 0. Furthermore,

|Pm+1(t)|2 = |Pm(t)|2 + |Qm(t)|2 + e2π ı2mt P∗
m(t)Qm(t) + e−2π ı2mt Pm(t)Q∗

m(t)

= 2m+1 −
∣∣∣∣Pm

(
1

2
− t

)∣∣∣∣
2

+ 2m+1 −
∣∣∣∣Qm

(
1

2
− t

)∣∣∣∣
2

+ 2� {
e2π ı2mt P∗

m(t)Qm(t)
}

= 2m+2 −
∣∣∣∣Pm

(
1

2
− t

)∣∣∣∣
2

−
∣∣∣∣Qm

(
1

2
− t

)∣∣∣∣
2

− 2�
{

e2π ı2m( 1
2
−t) P∗

m

(
1

2
− t

)
Qm

(
1

2
− t

)}

= 2m+2 −
∣∣∣∣Pm+1

(
1

2
− t

)∣∣∣∣
2

.

In the third equality we used cos t = − cos(π − t). �

Although the Rudin–Shapiro sequences are defined only for lengths being a

power of 2, one may consider their partial sums. Let S(Pm )
n and S(Qm )

n stand for the

polynomials defined by the first n terms in the corresponding sequences.

Theorem 7.9 For any nonnegative m and n ≤ 2m,

PMEPR
(
S(Pm )

n

) ≤ (2 +
√

2)2, PMEPR
(
S(Pm )

n

) ≤ (2 +
√

2)2.

Proof We will prove that

max
t

∣∣S(Pm )
n (t)

∣∣ ≤ (2 +
√

2)2
m
2 , (7.7)

max
t

∣∣S(Qm )
n (t)

∣∣ ≤ (2 +
√

2)2
m
2 . (7.8)

Indeed, this is true for m = 0. Suppose (7.7) and (7.8) hold for some m, and consider

S(Pm+1)
n and S(Qm+1)

n with n ≤ 2m+1. If n ≤ 2m , by (7.5) and (7.6), the coefficients of

S(Pm+1)
n and S(Qm+1)

n are just the first n coefficients of Pm , and thus∣∣S(Pm+1)
n

∣∣ = ∣∣S(Qm+1)
n

∣∣ = ∣∣S(Pm )
n

∣∣ ≤ (2 +
√

2) 2
m
2 < (2 +

√
2) 2

m+1
2 .

Now let 2m < n ≤ 2m+1. Then, using (7.5) and Theorem 7.5 we conclude that∣∣S(Pm+1)
n

∣∣ ≤ |Pm | +
∣∣∣S(Qm )

n−2m

∣∣∣ ≤ 2
m+1

2 + (2 +
√

2) 2
m
2 = (2 +

√
2) 2

m+1
2 .

The same estimate holds for
∣∣∣S(Qm+1)

n

∣∣∣, and we are done. �

7.3 Complementary sequences

The Rudin–Shapiro sequences are representatives of a wider class of sequences

called Golay complementary sequences, or just complementary sequences.
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Let a and b be two vectors of length n satisfying

n−1∑
k=0

|ak |2 =
n−1∑
k=0

|bk |2 = n.

Then the aperiodic correlation functions for these vectors are defined by (7.1). The

vectors constitute a complementary pair if, for all j ∈ {1, 2, . . . , n − 1},
ρa( j) + ρb( j) = 0. (7.9)

Every sequence being a member of at least one complementary pair is called a

Golay sequence.

The relevance of the complementary pairs to the PMEPR problem becomes

apparent in the following theorem.

Theorem 7.10 Let a be one of the vectors from a complementary pair. Then

PMEPR(a) ≤ 2.

Proof Let a and b constitute a complementary pair. By Lemma 7.1,

|Fa(t)|2 + |Fb(t)|2 =
n−1∑
k=0

|ak |2+
n−1∑
k=0

|bk |2+2�
{

n−1∑
j=1

e2π ı j t (ρa( j) + ρb( j))

}
=2n.

Therefore,

max
t∈[0,1)

|Fa(t)|2 ≤ 2n.

�

Example 7.2 Let

a = (−1, 1, 1, −1, 1, −1, 1, 1, 1, −1), b = (−1, 1, 1, 1, 1, 1, 1, −1, −1, 1).

Then

ρa( j) = (10, −3, 0, −1, 0, 1, 2, −1, −2, 1)

ρa( j) = (10, 3, 0, 1, 0, −1, −2, 1, 2, −1)

and thus a and b are a complementary pair. The behavior of |Fa(t)| and |Fb(t)| is

presented in Fig. 7.1. �

The lengths of vectors in a complementary pair cannot be arbitrary. Let us con-

sider here the binary case, i.e., ai ∈ {−1, 1}.
Theorem 7.11 The length, n, of a complementary pair is a sum of two integral
squares.
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0.2 0.4 0.6 0.8 1
t

1

2

3

4

|F (t)|

a

b

Figure 7.1 |Fa(t)| and |Fb(t)|

Proof We have

ρa(0) =
n−1∑
k=0

a2
k = n.

Thus

n−1∑
j=0

ρa( j)=
n−1∑
j=0

n− j−1∑
k=0

akak+ j = 2

(
n−1∑
k1=0

ak1

)(
n−1∑
k2=0

ak2

)
−

n−1∑
k=0

a2
k = 2

(
n−1∑
k=0

ak

)2

− n.

For a complementary pair, a and b, we have

n−1∑
j=0

(ρa( j) + ρb( j)) = ρa(0) + ρb(0) = 2n.

On the other hand,

n−1∑
j=0

(ρa( j) + ρb( j)) = 2

(
n−1∑
k=0

ak

)2

+ 2

(
n−1∑
k=0

bk

)2

− 2n.

Therefore, (
n−1∑
k=0

ak

)2

+
(

n−1∑
k=0

bk

)2

= 2n, (7.10)

and
( ∑n−1

k=0 ak
)2

and
( ∑n−1

k=0 bk
)2

have the same parity. Furthermore,

n =
(( ∑n−1

k=0 ak
) + ( ∑n−1

k=0 bk
)

2

)2

+
(( ∑n−1

k=0 ak
) − ( ∑n−1

k=0 bk
)

2

)2

,

and this proves the claim. �



7.3 Complementary sequences 175

Theorem 7.12 The length n of a complementary pair is even.

Proof Let a and b be a complementary pair. Then (7.9) can be rewritten as the

system of quadratic equations:

a0an−1 + b0bn−1 = 0

a0an−2 + a1an−1 + b0bn−2 + b1bn−1 = 0

a0an−3 + a1an−2 + a2an−1 + b0bn−3 + b1bn−2 + b2bn−1 = 0

. . . . . .

a0a1 + a1a2 + . . . + an−2an−1 + b0b1 + b1b2 + . . . + bn−2bn−1 = 0.

(7.11)

Noticing that for a, b ∈ {−1, 1},
ab = a + b − 1 mod 4,

we can reduce the first equation to

a0 + an−1 + b0 + bn−1 = 2 mod 4. (7.12)

The second equation is

a0 + an−2 + a1 + an−1 + b0 + bn−2 + b1 + bn−1 = 0 mod 4.

From this, and (7.12), we can conclude that

a1 + an−2 + b1 + bn−2 = 2 mod 4.

Continuing in the same way, we obtain

a j + an−1− j + b j + bn−1− j = 2 mod 4, (7.13)

valid for 0 ≤ j < � n
2
�. If n were odd, the next equation would be

2a n−1
2

+ 2b n−1
2

= 2 mod 4,

which is impossible for a n−1
2

, b n−1
2

∈ {−1, 1}. �

Corollary 7.13 For any complementary pair {a, b}, and any j , 0 ≤ j < n
2
,

a j an−1− j + b j bn−1− j = 0.

Proof This follows from (7.13). �

Thus, for every j , 0 ≤ j < n
2
, in a complementary pair a, b, exactly three out of

a j , an−1− j , b j and bn−1− j have the same sign.

Still another restriction on the length of complementary pairs deals with its

divisibility.

Theorem 7.14 The length n of a complementary pair has no prime factor con-
gruent to 3 mod 4.
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Proof Let a and b constitute a complementary pair of length n and assume that

p is an odd prime factor of n. Denoting z = e2π ı t , we consider two polynomials of

degree n − 1,

Fa(z) =
n−1∑
k=0

akzk, Fb(z) =
n−1∑
j=0

b j z
j ,

with the coefficients ak, b j ∈ {−1, 1}. The complementarity is equivalent to

Fa(z)Fa(z−1) + Fb(z)Fb(z−1) = 2n,

for any complex z, |z| = 1. This equation, considered modulo p, provides a neces-

sary condition

Fa(z)Fa(z−1) + Fb(z)Fb(z−1) = 0 mod p.

In what follows we consider the polynomials over Fp, i.e., the summations and

multiplications are done modulo p. Let h(z) = g.c.d. (Fa(z), Fb(z)), and

Fa(z) = h(z) fa(z), Fb(z) = h(z) fb(z),

where g.c.d. ( fa(z), fb(z)) = 1. Clearly deg fa(z) = deg fb(z). Let s denote this

common degree. This implies

fa(z) · zs fa(z−1) + fb(z) · zs fa(z−1) = 0 mod p;

here zs fa(z−1) = f←−a (z), where ←−a is the reversed sequence a, and thus is a polyno-

mial containing only nonnegative degrees of z. Furthermore, since fa(z) and fb(z)

are relatively prime, the polynomial zs fb(z−1) must be a constant multiple of fa(z).

Hence for some c ∈ F
∗
p, we have

zs fb(z−1) = c fa(z), zs fa(z−1) = −c fb(z).

This yields

c2 fa(z) = czs fb(z−1) = − fa(z),

and, therefore, c2 = −1 mod p. However, by Euler’s criterion, Corollary 3.34, it is

possible only if p = 1 mod 4. �

Now let us pass on to constructions of complementary pairs. Analysis of (7.11)
allows us to conclude that performing the following operations on a complementary
pair, {a, b}, generates other complementary pairs:

� Interchanging the sequences yields the complementary pair {b, a};
� Let ←−a = (an−1, an−2, . . . , a0) stand for the reversed sequence a = (a0, a1, . . . , an−1).

Reversing either or both sequences generates the complementary pairs {←−a , b}, {a,
←−
b },

and {←−a ,
←−
b };

� Let −a = (−a0, −a1, . . . ,−an−1) stand for the negation of a. Negation of either or both

sequences yields the complementary pairs {−a, b}, {a, −b}, and {−a, −b};
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� Let ã = (a0, −a1, a2, −a3, . . . , (−1) j a j , . . . , (−1)n−1an−1) stand for the sequence with

negated even entries. Negation of even entries in a and b yields the complementary pair

{̃a, b̃}.
Only the last property requires justification. Indeed, as a result of negation, the

values of ρa( j) and ρb( j) will stay intact for even j , while the signs will alter for

odd j . However, this will not violate the complementarity of the sequences.

Now let us pass on to more involved methods of generating complementary pairs.

We will need some notation to describe the approaches. Let

cat(a, b) = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1)

stand for concatenation of two vectors, a and b, and let

int(a, b) = (a0, b0, a1, b1, . . . , an−1, bn−1)

denote interleaved vectors a and b.

The first construction is a direct generalization of the method used for the re-

cursive construction of Rudin–Shapiro sequences, see (7.5) and (7.6). It allows the

construction of a complementary pair of length 2n from a complementary pair of

length n.

Theorem 7.15 Let {a, b} be a complementary pair. Then

{c, d} = {cat(a, b), cat(a, −b)}
is a complementary pair.

Proof Indeed, for 1 ≤ j ≤ n − 1,

ρc( j) = ρa( j) + ρb( j) +
j−1∑
k=0

an− j+kbk =
j−1∑
k=0

an− j+kbk,

while

ρd( j) = ρa( j) + ρ−b( j) −
j−1∑
k=0

an− j+kbk = −
j−1∑
k=0

an− j+kbk = −ρc( j).

For n ≤ j ≤ 2n − 1,

ρc( j) =
2n− j−1∑

k=0

akbk+ j−n,

while

ρd( j) = −
2n− j−1∑

k=0

akbk+ j−n = −ρc( j),

and we are done. �
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Theorem 7.16 Let {a, b} be a complementary pair. Then

{c, d} = {int(a, b), int(a, −b)}
is a complementary pair.

Proof Indeed, for j , 0 ≤ j ≤ n − 1,

ρc(2 j) = ρd(2 j) = ρa( j) + ρb( j) = 0,

and

ρc(2 j + 1) =
n− j−1∑

k=0

akbk+ j +
n− j−2∑

k=0

bkak+ j+1,

ρd(2 j + 1) = −
n− j−1∑

k=0

akbk+ j −
n− j−2∑

k=0

bkak+ j+1,

and

ρc(2 j + 1) = −ρd(2 j + 1).

�

Similar ideas yield the following recursive constructions. We will need the

definition of the Kronecker product of vectors. Let a = (a0, a1, . . . , an−1) and

b = (b0, b1, . . . , bm−1) be two vectors of length n and m, respectively. Then their

Kronecker product, a ∗ b, is a vector of length nm,

a ∗ b = (b0a, b1a, . . . , bn−1a)

= (b0a0, b0a1, . . . , b0an−1, b1a0, b1a1, . . . , b1an−1, . . . , bn−1a0,

bn−1a1, . . . , bn−1an−1).

The MC signal corresponding to a ∗ b is

Fa∗b(t) = Fa(t)Fb(nt). (7.14)

Theorem 7.17 Let {a, b} and {c, d} be two complementary pairs of lengths n and
m, respectively. Then

cat(a ∗ c, b ∗ d) and cat(a ∗ ←−
d , b ∗ ←−−

(−c)),

and

int(a ∗ c, b ∗ d) and int(a ∗ ←−
d , b ∗ ←−−

(−c)),
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where the interleaving is block-wise, i.e.,

int(a ∗ c, b ∗ d) = (c0a, d0b, c1a, d1b, . . . , cm−1a, dm−1b),

int(a ∗ c, b ∗ d) = (dm−1a, −cm−1b, dm−2a, −cm−2b, . . . , d0a, −c0b),

constitute complementary pairs of length 2mn. �

Let a + b stand for the component-wise sum of a and b,

a + b = (a0 + b0, a1 + b1, . . . , an−1 + bn−1).

Theorem 7.18 Let {a, b} and {c, d} be two complementary pairs of lengths n and
m, respectively. Then {g, h}, where

g =
(

a + b

2

)
∗ c +

(
a − b

2

)
∗ d,

and

h =
(←−a − ←−

b

2

)
∗ c −

(←−a + ←−
b

2

)
∗ d,

are a complementary pair of length nm. �

Proof Instead of proving complementarity, I will address directly an equivalent

statement about PMEPR of g and h, see Theorem 7.10. Indeed, it is straightforward

to check that the obtained vectors, g and h, have coefficients ±1. Moreover,

Fg(t) = 1

2
(Fa(t) + Fb(t)) Fc(nt) + 1

2
(Fa(t) − Fb(t)) Fd(nt),

Fh(t) = e2π ı(n−1)t

2

(
F∗

a (t) − F∗
b (t)

)
Fc(nt) − e2π ı(n−1)t

2

(
F∗

a (t) + F∗
b (t)

)
Fd(nt),

where the second equality follows from (7.14) and, since a ∈ R
n ,

F←−a (t) = e2π ı(n−1)t Fa(−t) = e2π ı(n−1)t F∗
a (t).

Therefore,∣∣Fg(t)
∣∣2 + |Fh(t)|2 = Fg(t)F∗

g (t) + Fh(t)F∗
h (t)

= 1

2
(|Fa(t)|2 + |Fb(t)|2)(|Fc(t)|2 + |Fd(t)|2),

and the result follows from Theorem 7.10. �

A primitive complementary pair is defined as one that cannot be constructed by

means of the described recursive constructions from shorter complementary pairs.

The known cases of primitive pairs are of lengths 2, 10 (two pairs), and 26. It is

conjectured that there are no more primitive pairs.
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Table 7.1 Numbers of pairs for selected lengths

n 1 2 4 8 10 16 20 26 32 40 52 64 80

number of pairs 4 8 32 192 128 1536 1088 64 15360 9728 512 184320 102912

n = 2 a=(1,1), b=(1,−1)

n = 10 a=(1,1,−1,1,−1,1,−1,−1,1,1), b=(1,1,−1,1,1,1,1,1,−1,−1)

a=(1,1,1,1,1,−1,1,−1,−1,1), b=(1,1,−1,−1,1,1,1,−1,1,−1)

n = 26 a=(1,1,1,1,−1,1,1,−1,−1,1,−1,1,−1,1,−1,−1,1,−1,1,1,1,−1,−1,1,1,1),

b=(1,1,1,1,−1,1,1,−1,−1,1,−1,1,1,1,1,1,−1,1,−1,−1,−1,1,1,−1,−1,−1)

Theorem 7.19 Complementary pairs exist for all lengths

n = 2α10β26γ , α, β, γ ≥ 0.

Proof This follows from Theorem 7.18. �

The complete enumeration of complementary pairs is known for all possible

lengths up to 100 [39]. The number of pairs is given in Table 7.1. Notice, however,

that a particular Golay sequence may appear in more than one complementary pair.

7.4 Complementary sets

Complementary pairs can be generalized to sets containing more than two se-

quences. We say that a set of T sequences over ±1, {a(0), a(1), . . . , a(T −1)}, forms a

complementary set of size T if

T −1∑
k=0

ρa(k) ( j) = 0 for j �= 0.

Theorem 7.20 For any sequence a belonging to a complementary set of size T ,

PMEPR(a) ≤ T .

Proof Analogously to Theorem 7.10 the result follows from the identity

T −1∑
k=0

|Fa(k) (t)|2 = T n,

where {a(0), a(1), . . . , a(T −1)} is a complementary set. �

Theorem 7.21 The number of sequences in a complementary set is even.
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Table 7.2 Examples of complementary sets of odd length and size 4

n = 3 (1, 1, 1) (−1, 1, 1) (1, −1, 1) (1, 1, −1)

n = 5 (1, −1, −1, −1, −1) (−1, 1, 1, −1, 1) (1, −1, −1, −1, 1) (−1, −1, −1, 1, −1)

n = 7 (1, 1, 1, −1, 1, 1, 1) (1, −1, 1, 1, 1, −1, −1) (1, −1, −1, 1, −1, 1, 1) (1, 1, −1, 1, −1, −1, −1)

Proof Let {a(0), a(1), . . . , a(T −1)} be a complementary set of length n. For every

j , j = 0, 1, . . . , T − 1, ρa( j) (n − 1) ∈ {−1, 1}. Since the sum of an odd number of

summands of the form ±1 is odd, it cannot be 0. �

Theorem 7.22 The number of sequences in a complementary set of odd length is
divisible by 4.

Proof By the previous theorem, T should be even. Composing the system as for

(7.11) and reasoning similarly to establishing (7.13), we conclude that

2
T∑

k=1

a(k)
n−1

2

= T mod 4.

However, the last is impossible for a(k)
n−1

2

∈ {−1, 1} and T = 2 mod 4. �

Example 7.3 Table 7.2 presents several examples of complementary sets of odd

length and of size 4. Clearly, complementary pairs of such length do not exist. �

To finish with nonexistence results, I give without proof the following result,

similar to Theorem 7.11.

Theorem 7.23 The length n of complementary sets of size 4 is a sum of three
squares. �

Analogous to the case of complementary pairs, the following operations on
complementary sets preserve complementarity:

� Reversing any number of the sequences in the set;
� Negating any number of the sequences in the set;
� Negating alternate elements in all sequences in the set.

The following constructive results rely on arguments similar to the case of com-

plementary pairs, and are given without proofs.

Let aeven = (a0, a2, . . .), and aodd = (a1, a3, . . .), stand for the subvectors con-

sisting of the elements with even and odd indices of a.
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Theorem 7.24 Let n be even and {a(0), a(1), . . . , a(T −1)} be a complementary set
of size T . Then {

a(0)
even, a(1)

even, . . . , a(T −1)
even , a

(0)
odd, a

(1)
odd, . . . , a

(T −1)
odd

}
is a complementary set of length n

2
and size 2T . �

Let A = {a(0), a(1), . . . , a(T −1)} and B = {b(0), b(1), . . . , b(T −1)} be two comple-

mentary sets of length n and size T . Then A and B are called mates if(
a(k), b(k)

) = 0 for k = 0, 1, . . . , T ,

i.e., the inner product of corresponding pairs of vectors is 0.

Theorem 7.25 Let A and B be mates of length n and size T . Then{
int

(
a(0), b(0)

)
, int

(
a(1), b(1)

)
, . . . , int

(
a(T −1), b(T −1)

)}
is a complementary set of length 2n and size T . �

A ±1 matrix H is column-orthogonal if the inner product of any two distinct

columns of H is 0. The number of columns in such a matrix does not exceed the

number of rows.

Theorem 7.26 Let H be a T × n column-orthogonal matrix, n ≤ T . Then the
rows of H form a complementary set of length n and size T . �

In particular the theorem holds for n = T when the corresponding square matrix

H satisfies H tr H = nIn , In is the n × n identity matrix, and thus is a transposed

Hadamard matrix.

Theorem 7.27 Let H be a T × m column-orthogonal matrix with elements
hk,�, k = 0, 1, . . . , T − 1; � = 0, 1, . . . , m − 1; and A = {a(0), a(1), . . . , a(m−1)}
be a complementary set of length n and size m. Then{

cat
(
h j,0a(0), h j,1a(1), . . . , h j,m−1a(m−1)

)
, j = 0, 1, . . . , T − 1

}
,

is a complementary set of length nm and size T . �

For example, if

H =
(

1 1

1 −1

)
,

we obtain the Rudin–Shapiro recursion, see Section 7.2. Choosing now

H =

⎛
⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

⎞
⎟⎟⎠,

we obtain the following result.
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Corollary 7.28 Let
{
a(0), a(1), a(2), a(3)

}
be a complementary set of length n and

size 4. Then {
cat

(
a(0), a(1), a(2), a(3)

)
, cat

(
a(0), −a(1), a(2), −a(3)

)
,

cat
(
a(0), −a(1), −a(2), a(3)

)
, cat

(
a(0), a(1), −a(2), −a(3)

)}
is a complementary set of length 4n and size 4. �

One can also construct complementary sets by combining complementary sets

of smaller sizes. One such result is given in the next theorem.

Theorem 7.29 Let {a(0), a(1)}and {b(0), b(1)}be two complementary pairs of length
n. Then {

cat
(
a(0), b(0)

)
, cat

(
a(0), −b(0)

)
, cat

(
a(1), b(1)

)
, cat

(
a(1), −b(1)

)}
is a complementary set of length 2n and size 4. �

The following result deals with combining complementary sets of different

lengths.

Theorem 7.30 Let there exist m complementary sets of lengths n0, n1, . . . , nm−1,
and sizes T0, T1, . . . , Tm−1 with T = l.c.m.(T0, T1, . . . , Tm−1). Let there also exist
a column-orthogonal matrix of size S × T . Then there exists a complementary set
of length n0 + n1 + . . . + nm−1 and size ST . �

Finally, here is another recursive construction.

Theorem 7.31 Let there exist a complementary pair of length n and a comple-
mentary set of length m and size 2r . Then there exists a complementary set of length
2r nm and size 2r . �

7.5 Polyphase complementary sequences

As we have seen, the vectors belonging to complementary pairs provide a PMEPR

of 2. However, if the vectors are restricted to have entries ±1, their possible lengths

are restricted to specific values. By allowing the entries to take values from a larger

set e2π ı k
M , k = 0, 1, . . . , M − 1, and M > 2, we may extend the range of available

lengths for complementary pairs and the number of vectors with a low PMEPR.

Notice that since the coefficients may now have complex values, the definition (7.1)

with conjugacy should be used.

I’ll start with an example. By Theorem 7.12, the length of a binary complemen-

tary pair is even. Let us check the case n = 3. Let a and b constitute a complementary



184 MC signals with constant PMEPR

pair. We may assume

a = (
e2π ıϕ0, e2π ı(ϕ0+ϕ1), e2π ı(ϕ0+ϕ1+ϕ2)

)
,

and

b = (
e2π ıθ0, e2π ı(θ0+θ1), e2π ı(θ0+θ1+θ2)

)
.

For complementarity we need

e2π ıϕ1 + e2π ıϕ2 + e2π ıθ1 + e2π ıθ2 = 0,

e2π ı(ϕ1+ϕ2) + e2π ı(θ1+θ2) = 0.

Solving this system we obtain

ϕ2 = ϕ1 + 2k + 1

2
, θ1 = ϕ1 + 2k − 2m + 2 j − 1

4
,

θ2 = ϕ1 + 2k + 2m + 2 j + 1

4
.

For a to be binary it is necessary that 2ϕ0, 2(ϕ0 + ϕ1), 2(ϕ0 + ϕ1 + ϕ2) ∈ Z. How-

ever, it is easy to check that b will then have entries different from −1 or 1.

Example 7.4 Let ϕ0 = θ0 = ϕ1 = k = m = j = 0, and consequently ϕ2 =
1
2
, θ1 = − 1

4
, θ2 = 1

4
. We obtain

a = (1, 1, −1), b = (1, −ı, 1),

which is evidently a complementary pair. �

Analogous techniques for n = 4 give, e.g., the following nonbinary examples:

M = 4, n = 4, a = (1, −ı, 1, ı), b = (1, ı, 1, −ı),

M = 6, n = 4, a =
(

1, e−2π ı 1
3 , e−2π ı 1

6 , 1
)

, b =
(

1, e2π ı 1
6 , e2π ı 5

6 , −1
)
.

There exist quadriphase complementary pairs of lengths 5 and 13:

M = 4, n = 5, (1, ı, −ı, −1, ı), (1, 1, 1, ı, −ı),

and M = 4, n = 13,

(1, 1, 1, ı, −1, 1, 1, −ı, 1, −1, 1, −ı, ı),

(1, ı, −1, −1, −1, ı, −1, 1, 1, −ı, −1, 1, −ı).

Now let us pass to recursive constructions of complementary pairs. Many of

the constructions for the two-phase case, like negation, reversion and interleaving

of sequences, can be generalized directly to the multiphase case. Moreover, the
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Rudin–Shapiro recursion, Theorem 7.15, shows the existence of a complementary

pair of length 2n constructed from a pair of length n.

Example 7.5 Starting from a = (1, 1, −1), b = (1, ı, 1) we obtain the comple-

mentary pair

(1, 1, −1, 1, ı, 1), (1, 1, −1, −1, −ı, −1). �

Theorem 7.17 can also be extended to the polyphase case, and the existence

of two pairs of lengths n and m correspondingly implies the existence of a pair

of length 2mn. However, the Turyn construction, Theorem 7.18, does not hold

for the polyphase case; this follows, e.g., from the nonexistence of quaternary

complementary pairs of length 9.

Let

cwp(a, b) = (a0b0, a1b1, . . . , an−1bn−1)

be the component-wise product of two n-dimensional vectors a and b.

Theorem 7.32 Let {a, b} be a complementary pair, and

c =
(

e2π ı c
M , e2π ı c

M , . . . , e2π ı c
M

)
for some c ∈ {0, 1, . . . , M − 1}. Then

{cwp(a, c), cwp(b, c)}
is also a complementary pair.

Proof The aperiodic correlation function does not change under constant phase

shift of all entries in the sequences. �

Theorem 7.33 Let {a, b} be a complementary pair of length n, and

c =
(

e2π ı 0·c
M , e2π ı 1·c

M , . . . , e2π ı (M−1)·c
M

)
for some c ∈ {0, 1, . . . , M − 1}. Then

{cwp(a, c), cwp(b, c)}
is also a complementary pair of length n.

Proof Let d = cwp(a, c). Then

ρd( j) =
n− j−1∑

k=0

ake2π ı kc
M · a∗

k+ j e
−2π ı (k+ j)c

M = e−2π ı jc
M ρa( j).

�
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Notice that when M = 2 and c = 1, we have c = (1, −1, 1, −1, . . .), and we

obtain the biphase construction with negation of every other entry.

The next construction is based on Boolean functions, and provides a

general framework for construction of complementary pairs. Recall that a

Boolean function f = f (x0, . . . , xm−1) is a function from Z
m
2 , consisting of

the binary m-tuples, (a0, . . . , am−1), a j ∈ {0, 1}, to Z2. Any Boolean function

can be uniquely expressed as a linear combination over Z2 of monomi-

als 1, x0, x1, . . . , xm−1, x0x1, x0x2, . . . , x0xm−1, x1x2, . . . , xm−1xm, x0, x1x2,

. . . , x0x1 . . . xm−1. The function, f , can be as well specified by the list, f, of its

values when (x0, x1, . . . , xm−1) ranges over all its 2m values in lexicographic

order.

Example 7.6 For m = 3 we have

f=(f(0,0,0),f(0,0,1),f(0,1,0),f(0,1,1),f(1,0,0), f(1,0,1), f(1,1,0), f(1,1,1)).

If f = x0x1 + x1x3, then

f = (0, 0, 0, 1, 0, 0, 1, 0).

�

A generalized Boolean function is defined as a function from Z
m
2 to Z2h , where

h ≥ 1. It is straightforward to show that any such function can be uniquely ex-

pressed as a linear combination over Z2h of the monomials, where the coefficient

of each monomial belongs to Z2h . As above, we specify a sequence f of length 2m

corresponding to the generalized Boolean function f .

Example 7.7 Let h = 2 and m = 3. Then for f = x0x1 + 3x1x2 + 2 · 1 we have

f = (22212232). �

With a slight abuse of notation we will write f ( j0, j1, . . . , jm−1) = f ( j), where

j =
m−1∑
k=0

jk = j,

i.e., ( j0, j1, . . . , jm−1)2 is the binary expansion of j .

Let M = 2h, and we consider vectors of length n = 2m, with components of the

shape e2π ı j
M , j = 0, 1, . . . , M − 1.

Theorem 7.34 Let

f = h
m−2∑
k=0

xπ (k)xπ (k+1) +
m−1∑
k=0

ck xk + c, (7.15)

g = f + hxπ (1), (7.16)



7.5 Polyphase complementary sequences 187

where ck, c are arbitrary elements of Z2h and π is any permutation of {0, 1, . . . ,

m − 1}. Then a and b are defined by

a j = e2π ı f ( j)
M , b j = e2π ı g( j)

M , j = 0, 1, . . . , 2m − 1,

and constitute a complementary pair.

Proof The case m = 1 is easily checked. So assume m ≥ 2 and fix u �= 0. By

definition ρa(u) + ρb(u) is the sum over r of terms

e2π ı(ar −ar+u ) + e2π ı(br −br+u ).

For a given integer, r , set j = r + u, and let (r0, r1, . . . , rm−1)2 and

( j0, j1, . . . , jm−1)2 be the binary representation of r and j respectively.

Case 1: jπ (1) �= rπ (1). From (7.16), over Z2h we have

f (r ) − f ( j) − g(r ) + g( j) = h( jπ (1) − rπ(1)) = h,

so

e2π ı( f (r )− f ( j))

e2π ı(g(r )−g( j))
= e2π ıh = −1.

Therefore,

e2π ı( f (r )− f ( j)) + e2π ı(g(r )−g( j)) = 0.

Case 2: jπ (1) = rπ (1). Since j �= r , we can define v to be the smallest inte-

ger for which rπ (v) �= jπ (v). Let r ′ be the integer whose binary representation

(r0, r1, . . . , 1 − rπ (v−1), . . . , rm−1)2 differs from that of r only in position π (v − 1).

Similarly let j ′ have binary representation ( j0, j1, . . . , 1 − jπ (v−1), . . . , jm−1)2. By

assumption, rπ (v−1) = jπ (v−1) and so j ′ = r ′ + u. We have therefore defined an

invertible map from the ordered pair (r, j) to (r ′, j ′), and both pairs contribute to

ρa(u) + ρb(u). Now substitution for r ′ in (7.15) gives

f (r ′) = f (r ) + hrπ (v−2) + hrπ (v) + cπ (v−1) − 2cπ (v−1)rπ (v−1),

unless v = 1, in which case we just delete terms involving π (v − 2) here and in

what follows. Therefore,

f (r ) − f ( j) − f (r ′) + f ( j ′)

= h
(

jπ (v−2) − rπ (v−2)

) + h
(

jπ (v) − rπ (v)

) − 2cπ (v−1)

(
jπ (v−1) − rπ (v−1)

)
= h,

by the definition of v. Then (7.16) implies that

g(r ) − g( j) − g(r ′) + g( j ′) = f (r ) − f ( j) − f (r ′) + f ( j ′) = h.
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Arguing as in Case 1, we obtain

e2π ı( f (r )− f ( j)) + e2π ı( f (r ′)− f ( j ′)) = 0,

and

e2π ı(g(r )−g( j)) + e2π ı(g(r ′)−g( j ′)) = 0.

Therefore,(
e2π ı( f (r )− f ( j)) + e2π ı(g(r )−g( j))

) +
(

e2π ı( f (r ′)− f ( j ′)) + e2π ı(g(r ′)−g( j ′))
)

= 0.

Combining these cases we see that ρa(u) + ρb(u) comprises zero contributions

(as in Case 1), and contributions which sum to zero in pairs (as in Case 2). �

Corollary 7.35 There are (2h)m+1 · m!
2

Golay sequences with entries belonging

to the set
{
e2π ı j

2h , j = 0, 1, . . . , 2h − 1
}
, of length n = 2m defined by

f (x0, . . . , xm−1) = h
m−2∑
k=0

xπ (k)xπ (k+1) +
m−1∑
k=0

ck xk + c,

for any c, ck ∈ Z2h and any permutation π of {0, 1, . . . , m − 1}.
Proof Notice that

∑m−2
k=0 xπ (k)xπ (k+1) is invariant under the mapping π → π ′,

where π ′(k) = π (m − k − 1). Thus, there are m!
2

inequivalent permutations. More-

over, there are (2h)m+1 choices of c, c0, . . . , cm−1. �

Actually, the above construction of complementary pairs is a particular case of a

construction of complementary sets based on Boolean functions. We will need the

following definitions.

Let Q be the generalized Boolean function acting from Z
m
2 to Z2h , defined by

Q(x0, x1, . . . , xm−1) =
∑

0≤r< j<m

qr j xr x j ,

where qr j ∈ Z2h . We associate a labeled graph G(Q) on m vertices with the
quadratic form Q as follows. We label the vertices of G(Q) by 0, 1, . . . , m − 1,
and join vertices r and j by an edge labeled qr j if qr j �= 0. In the case q = 2, every
edge is labeled 1, and thus by convention we will omit edge labels in this case. Of
course, from any graph, G, of this type we can recover a quadratic form Q. If f is
a generalized Boolean function of degree 2 we define G( f ) to be the graph G(Q)
where Q is the quadratic part of f . We say that a graph G of the type defined above
is a path if either

� m = 1 (in which case the graph contains a single vertex and no edges), or
� m ≥ 2 and G has exactly m − 1 edges, all labeled h, which form a Hamiltonian path (a

path passing through all the vertices exactly once) in G.
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31 2

0

Figure 7.2 Graph G(Q) for Q = x0x1 + x0x2 + x0x3 + x1x2 + x2x3

For m ≥ 2, a path on m vertices corresponds to a quadratic form of the type

h
m−1∑
k=0

xπ (k)xπ (k+1), (7.17)

where π is a permutation of {0, 1, . . . , m − 1}. I present the following result without

proof.

Theorem 7.36 Let Q : Z
m
2 → Z2h be a quadratic form in variables x0, x1,

. . . , xm−1. Let G(Q) contain a set of � distinct vertices labeled j0, j1, . . . , j�−1,
with the property that deleting those � vertices and all incident edges results in a
path. Let s be the label of either end vertex in this path (or the single vertex of the
graph when � = m − 1). Then for any choice of c′, ck ∈ Z2h, the set of sequence
corresponding to

f = Q +
m−1∑
k=0

ck xk + c′ + h

(
�−1∑
r=0

dr x jr + dxs

)
,

for all choices of d ′, dr ∈ {0, 1}, constitutes a complementary set of length 2m and
size 2�+1. �

When � = 0, we obtain the previous construction of complementary pairs.

Example 7.8 Let 2h = 2, m = 4, and

Q = Q(x0, x1, x2, x3) = x0x1 + x0x2 + x0x3 + x1x2 + x2x3.

The graph G(Q) is shown in Fig. 7.2. Deleting the vertex labeled 0 results in a

path graph on vertices 1, 2, and 3. Applying Theorem 7.36 with � = 1, we get for
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each choice of c′, c0, c1, c2, c3 ∈ Z2, the complementary set of size 4, defined by

the following four Boolean functions:

Q + ∑3
k=0 ck xk + c′,

Q + ∑3
k=0 ck xk + c′ + x0,

Q + ∑3
k=0 ck xk + c′ + x1,

Q + ∑3
k=0 ck xk + c′ + x0 + x1.

Recall that each of the functions defines a sequence of length 16 with PMEPR at

most 4. �

So far, the considered methods for polyphase sequences allowed construction of

sequences with a guaranteed PMEPR of at most 2, and the passage from biphase

to multiphase setting just resulted in the increased number of such sequences.

However, the lower bound of (4.5) in Lemma 4.1 restricts the PMEPR to be at least

1. The question is whether by increasing the number of allowed phases we can

decrease PMEPR below 2. In the limiting case of unrestricted phase modulation,

the answer is given in the following theorem.

Theorem 7.37 There exist MC signals

Pa(t) =
n−1∑
k=0

ake2π ıkt ,

with |ak | = 1 for k = 0, 1, . . . , n − 1, such that

(1 − εn)
√

n ≤ |Pa(t)| ≤ (1 + εn)
√

n,

and limn→∞ εn = 0. �

This result guarantees an existence of signals with PMEPR approaching 1 when

n grows.

7.6 Trace codes

In the previous section, a construction of sequences with low PMEPR was derived

from evaluations of Boolean functions. The next step is to use functions in one vari-

able over finite fields or Galois rings. In this case we obtain, e.g., a polynomial in n
number of signals with PMEPR of order (log n)2. Just to compare, the construction

from Boolean functions gives only n(log2 n)! BPSK signals, however, this is with a

constant PMEPR. Moreover, the constructed codes consisting of code words with a

low PMEPR have a high minimum Hamming or Lee distance, and thus can be em-

ployed for error correcting. For definitions related to these codes see Section 3.4.5.
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We start by considering code words of duals of primitive BCH codes. These codes

are defined as follows. Let Fq be the finite field of size q = 2m , with a primitive

element α, and Tr be the trace function from Fq to F2. For a t ≥ 1, consider all

polynomials in one variable,

f (x) = f1x + f3x3 + . . . + f2t−1x2t−1, fk ∈ Fq, k = 1, 3, . . . 2t − 1.

The trace evaluation of f is the vector c f of length n = 2m − 1 defined by

(c f )k = (−1)Tr( f (αk )), k = 0, 1, . . . , 2m − 2.

Under the condition 2(t − 1) < 2� m
2
�, the collection of qt possible functions de-

fine qt distinct vectors – code words of the dual of t-error correcting BCH code,

BCH⊥(t, m).

Theorem 7.38 Any nonconstant code word c of BCH⊥(t, m), m ≥ 3, satisfies

PMEPR(c) ≤ (2t − 1)2

(
2 ln 2

π
· m + 2

)2

.

Proof A nonconstant word c f of BCH⊥(t, m) is obtained from a nonzero, nonde-

generate polynomial f (x) = ∑t
k=1 f2k−1x2k−1, and we are interested in bounding

max
t∈[0,1)

∣∣Fc f (t)
∣∣ = max

t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

(
c f

)
k

e2π ıkt

∣∣∣∣∣ .
Consider the Nyquist samples of the considered function for t = j

n , j =
0, 1, . . . , n − 1,∣∣∣∣Fc f

(
j

n

)∣∣∣∣ =
∣∣∣∣∣

n−1∑
k=0

(−1)Tr( f (αk ))e2π ık j
n

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
β∈F∗

q

ψ( f (β))χ j (β)

∣∣∣∣∣∣ ,
where ψ and χ are correspondingly additive and multiplicative characters of Fq .

For j = 0, ξ is the trivial character, and the above expression reduces to∣∣∣∣∣∣
∑
β∈F∗

q

ψ( f (β))

∣∣∣∣∣∣ .
By the Weil–Carlitz–Uchiyama bound (Theorem 3.36) this can be bounded above

by (2t − 2)2
m
2 + 1.

For j �= 0, χ j is a nontrivial multiplicative character, and by Theorem 3.37 with

r = 2t − 1 and s = 1, this yields∣∣∣∣Fc f

(
j

n

)∣∣∣∣ ≤ (2t − 1)2
m
2 .
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In the notations of Chapter 4, this yields

Md
(
Fc f

) ≤ (2t − 1)2
m
2 .

Using Theorem 4.2 with a slightly relaxed additive constant, we obtain the claim.

�

Now we consider signals corresponding to M-PSK modulation, with M ≥ 2. To

construct such signals, we employ algebraic codes over Galois rings. Let M = 2e,

and f ∈ Re,m[x] be a polynomial. Let β be a generator for the cyclic subgroup of

T ∗
e,m . With f we associate a length n = 2m − 1 vector c f whose components are

(c f )k = e2π ı Tr( f (βk ))
2e .

Setting e = 2 (and thus QPSK modulation) we consider the following codes.

Kerdock codes over Z4:

K = {c f : f (x) = b0x, b0 ∈ R2,m},
Delsarte–Goethals codes over Z4:

DG t =
{

c f : f (x) = b0x + 2
t∑

j=1

b j x
1+2 j

, b0 ∈ R2,m, b j ∈ T2,m

}
.

Clearly, the quaternary Kerdock codes correspond to the case t = 0 of the Delsarte–

Goethals codes. The length and the number of words in the Delsarte–Goethals codes

are 2m − 1 and 2(2+t)m , respectively.

Theorem 7.39 Any nonconstant code word c of DG t satisfies

PMEPR(c) ≤ (2t + 1)2

(
2 ln 2

π
m + 2

)2

.

Proof Let, for t ≥ 0,

f (x) = b0x + 2
t∑

j=1

b j x
1+2 j

, b0 ∈ R2,m, b j ∈ T2,m .

Suppose further that there is at least one nonzero b j . Then f is a nondegenerate

polynomial of weighted degree 2t + 1 which yields a nonconstant code word of

DGt .

For � = 0, 1, . . . , n − 1, we have

∣∣∣∣Fc f

(
�

n

)∣∣∣∣ =
∣∣∣∣∣

n−1∑
k=0

e2π ı Tr( f (βk ))
2e e2π ı� k

n

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

x∈T ∗
2,m

ψ( f (x))χ�(x)

∣∣∣∣∣∣ ,
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where ψ and χ are, respectively, additive and multiplicative characters for R2,m .

For � = 0, the expression above reduces to∣∣∣∣∣∣
∑

x∈T ∗
2,m

ψ( f (x))

∣∣∣∣∣∣ ,
which can be bounded above by 2t · 2

m
2 + 1, using Theorem 3.38. For � �= 0, χ� is

a nontrivial multiplicative character and Theorem 3.39 yields∣∣∣∣Fc f

(
�

n

)∣∣∣∣ ≤ (
2t + 1

) · 2
m
2 , � = 1, 2, . . . , n − 1.

Arguing further as in the case of the dual BCH codes yields the claim. �

The final considered family of codes is that of weighted degree trace codes. For

t ≥ 1 satisfying 2t − 1 < 2� m
2
� + 1, the code is defined by

WDt =
{

c f : f ∈ Re,m[x], f =
t−1∑
j=0

f2 j+1x2 j+1, D f ≤ 2t − 1

}
.

The code WDt has length n = 2m − 1, and for e = 1 coincides with BCH⊥
t . It can

be shown, using 2-adic expansions and simple counting, that when e = 2,

|WDt | = 2(2t−1−� 2t−1
4

�)m .

Theorem 7.40 Any nonconstant code word c of WDt satisfies

PMEPR(c) ≤ (2t − 1)2

(
2 ln 2

π
m + 2

)2

.

Proof This proof is identical to the proof of the previous theorem. �

The presented codes have length 2m − 1. It could be beneficial to consider codes

whose length is a power of 2. This can be achieved by lengthening the described

codes. It is done by adding an extra coordinate corresponding to f (0) (an overall

parity check) followed by adding modulo M to every code word multiple of the

all-1 code word. The described operation increases the length of the code by 1,

and the number of code words becomes M times the one of the initial code. Since

the operation converts a trigonometric polynomial Ff (t) into a polynomial F̂(t) =
c + e2π ı t F f (t) where c is −1 or 1,

max
t∈[0,1)

|F̂ f (t)| ≤ 1 + max
t∈[0,1)

|Ff (t)|.

Therefore, for the extended codes of those described in this section we have to

substitute the additive term 2 by 3 in all the upper bounds for PMEPR.
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7.7 M-sequences

Let Fq , q = 2m , be the finite field with a primitive element α. For a β ∈ F
∗
q , an

M-sequence a(β) = (a0(β), . . . , an−1(β)), of length n = q − 1, is defined by

ak(β) = (−1)Tr(βαk ), k = 0, . . . , n − 1.

All M-sequences of length n can be obtained from the initial one, a(1), by cyclic

shifts. The set of M-sequences constitutes a particular case of the duals of BCH

codes, BCH⊥
1 .

The MC signal corresponding to the M-sequence a(β) is

Fβ(t) =
n−1∑
k=0

ak(β)e2π ıkt ,

and the PMEPR of an M-sequence, Pq(β) is

Pq(β) = max
t∈[0,1)

∣∣∣∑n−1
k=0 ak(β)e2π ıkt

∣∣∣2

∑n−1
k=0 a2

k (β)
= 1

n
max

t∈[0,1)

∣∣Fβ(t)
∣∣2

. (7.18)

Let

Pq = min max
β∈F∗

q

Pq(β), (7.19)

where the minimum is taken over all possible choices of the primitive element.

The following result about sums of additive characters is a particular case of

Theorem 3.35. For completeness, I provide it with a proof.

Lemma 7.41 ∑
γ∈Fq

(−1)Tr(γ ) = 0.

Proof Clearly, there exists an element of Fq , say η, such that Tr(η) = 1. Then

(−1)Tr(η)
∑
γ∈Fq

(−1)Tr(γ ) =
∑
γ∈Fq

(−1)Tr(γ+η) =
∑
γ∈Fq

(−1)Tr(γ ).

In the last equality we took into account that when γ goes over Fq the sum γ + η

also passes through all the field elements of Fq . Therefore,

(1 − (−1)Tr(η)) ·
∑
γ∈Fq

(−1)Tr(γ ) = 2 ·
∑
γ∈Fq

(−1)Tr(γ ) = 0,

and the claim follows. �

Theorem 7.42 For j = 0, . . . , n − 1,∣∣∣∣Fβ

(
j

n

)∣∣∣∣ = √
q.
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Proof

∣∣∣∣Fβ

(
j

n

)∣∣∣∣
2

=
∣∣∣∣∣

n−1∑
k=0

(−1)Tr(βαk )e2π ık j
n

∣∣∣∣∣
2

=
n−1∑
k1=0

n−1∑
k2=0

(−1)Tr(β(αk1 +αk2 ))e2π ı(k2−k1)

=
n−1∑
k=0

n−1∑
d=0

(−1)Tr(β(αk (1+αd )))e2π ıd

=
n−1∑
d=0

e2π ıd
n−1∑
k=0

(−1)Tr(βαk (1+αd ))

=
n−1∑
d=0

e2π ıd

(∑
γ∈Fq

(−1)Tr(γ (1+αd )) + 1

)

=
n−1∑
d=0

e2π ıd
∑
γ∈Fq

(−1)Tr(γ (1+αd )) +
n−1∑
d=0

e2π ıd

=
n−1∑
d=0

e2π ıd
∑
γ∈Fq

(−1)Tr(γ (1+αd )),

where in the last equality we used (3.1). By Lemma 7.41 the inner sum is zero if

1 + αd �= 0, and is q otherwise. Since αq−1 = 1, we obtain∣∣∣∣Fβ

(
j

n

)∣∣∣∣
2

= e2π ı(q−1)q = q,

and the claim follows. �

Theorem 7.43 For q = 2m,

Pq ≤
(

2 ln 2

π
· m + 2

)2

.

Proof This is analogous to Theorem 7.38. �

The theorem shows that PMEPR of an M-sequence is at most of order (ln q)2.

However, it does not exclude that it could be constant. In what follows, I will show

that indeed Pq is growing with q, namely, that there exists q0 such that for all

q > q0,

Pq ≥ 1

2π2
(ln ln q)2 . (7.20)
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Theorem 7.44 For at least one β ∈ F
∗
q ,

max
t∈[0,1)

∣∣Fβ(t)
∣∣ ≥ c

√
q ln ln q

where c is a constant independent of q.

Proof We have, see (4.6),

Fβ(t) = 1

n

n−1∑
j=0

Fβ

(
j

n

)
Dn

(
t − j

n

)
, (7.21)

where

Dn(t) =
n−1∑
k=0

e2π ıkt (7.22)

is the Dirichlet kernel. By (4.8),

|Dn(t)| =
∣∣∣∣sin πnt

sin π t

∣∣∣∣ .
Let β = αs . Since

n−1∑
k=0

(−1)Tr(αk+s )e2π ı k j
n =

n−1∑
h=0

(−1)Tr(αh )e2π ı (h−s) j
n

=
n−1∑
h=0

(−1)Tr(αh )e−2π ı js
n e2π ı h j

n ,

we have

Fαs

(
j

n

)
= e−2π i s j

n F1

(
j

n

)
. (7.23)

In what follows, I omit the lower index in F1, i.e., F(x) = F1(x).

Let δ(s) be a function to be defined later. From (7.21) and (7.23) we have

n−1∑
s=0

δ(s)Fαs (t) = 1

n

n−1∑
j=0

n−1∑
s=0

δ(s)Fαs

(
j

n

)
· Dn

(
t − j

n

)

= 1

n

n−1∑
j=0

F

(
j

n

)
· Dn

(
t − j

n

)
·

n−1∑
s=0

δ(s)e−2π ı js
n . (7.24)

Denoting

f ( j) =
n−1∑
s=0

δ(s)e−2π ı js
n , (7.25)
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we have

n−1∑
s=0

δ(s)Fαs (t) = 1

n

n−1∑
j=0

F

(
j

n

)
· Dn

(
t − j

n

)
· f ( j). (7.26)

For some integers x0 and H , to be chosen later, we define δ(s) in (7.25) in such

a way that

f (h) =

⎧⎪⎨
⎪⎩

1 − h−x0

H h = x0, x0 + 1, . . . , x0 + H ;

1 − x0−h
H h = x0, x0 − 1, . . . , x0 − H ;

0 otherwise.

Then (7.26) can be rewritten as

n−1∑
s=0

δ(s)Fαs (t) = 1

n

x0+H∑
h=x0−H

F

(
h

n

)
· Dn

(
t − h

n

)
· f (h). (7.27)

For the described choice of f (h) we can calculate δ(s), namely,

δ(s) = 1

n

x0+H∑
h=x0−H

f (h)e2π ı sh
n

= 1

n

(
x0+H∑
h=x0

(
1 − h − x0

H

)
e2π ı sh

n +
x0−1∑

h=x0−h

(
1 − x0 − h

H

)
e2π ı sh

n

)

= e2π ı sx0
n · 1

n

∑
|h|≤H

(
1 − |h|

H

)
e2π ı sh

n

= e2π ı sx0
n · 1

n
K H

(
sh

n

)
, (7.28)

where K H (t) is the Fejér kernel. By (4.64), K H (t) ≥ 0 for all t .
From (7.27) and (7.28) we have∣∣∣∣∣

n−1∑
s=0

δ(s)Fαs (t)

∣∣∣∣∣ ≤ max
s

|Fαs (t)|
n−1∑
s=0

|δ(s)|

≤ max
s

|Fαs (t)| · 1

n

n−1∑
s=0

K H

(
sh

n

)

= max
s

∣∣Fαs (t)
∣∣ . (7.29)

To see that the last equality is valid, notice that

n−1∑
s=0

K H

(
sh

n

)
=

∑
|h|≤H

(
1 − |h|

H

)
·

n−1∑
s=0

e2π ı sh
n = n,

since the last sum is nonzero only if h = 0.
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Then, by (7.27) and (7.29), we obtain

1

n

∣∣∣∣∣
x0+H∑

h=x0−H

F

(
h

n

)
· Dn

(
t − h

n

)
f (h)

∣∣∣∣∣ ≤ max
s

|Fαs (t)| . (7.30)

Let us address now the left-hand side of (7.30). We know that for h =
0, 1, . . . , n − 1, ∣∣∣∣F

(
h

n

)∣∣∣∣ = √
q.

Thus

x0+H∑
h=x0−H

F

(
h

n

)
Dn

(
t − h

n

)
f (h)

= √
q

x0+H∑
h=x0−H

e2π ıϕ(h)

∣∣∣∣Dn

(
t − h

n

)∣∣∣∣ e2π ıψ(h) f (h),

where

2πϕ(h) = arg Fn

(
h

n

)
, 2πψ(h) = arg Dn

(
t − h

n

)
.

Then, by (7.30), we have

max
s

|Fαs (t)| ≥
√

q

n

∣∣∣∣∣
∑

|h|≤H

(
1 − |h|

H

)
·
∣∣∣∣Dn

(
t − |x0 + h|

n

)∣∣∣∣ · e2π ı(ϕ(x0+h)+ψ(x0+h))

∣∣∣∣∣
≥

√
q

n
·
∑

|h|≤H

(
1 − |h|

H

)
�(

e2π ı(ϕ(x0+h)+ψ(x0+h))
)·∣∣∣∣Dn

(
t − |x0 + h|

n

)∣∣∣∣.
(7.31)

Now assume that for given x0 and all |h| ≤ H we have

|ϕ(x0 + h) + ψ(x0 + h)| ≤ 1

8
. (7.32)

The existence of such x0 and estimates on H will be provided in what follows.

Then, for all such h, we obtain

� (
e2π ı(ϕ(x0+h)+ψ(x0+h))

) ≥ 1√
2
,

and by (7.31) we have

max
s

|Fαs (t)| ≥ 1√
2n

∑
|h|≤H

(
1 − |h|

H

) ∣∣∣∣Dn

(
t − x0 + h

n

)∣∣∣∣ .



7.7 M-sequences 199

Choosing, in the last inequality,

t = x0 + 1
2

n
,

we have

max
s

|Fαs (t)| ≥ 1√
2n

∑
|h|≤H

(
1 − |h|

H

)
· 1∣∣∣sin π

h+ 1
2

n

∣∣∣
≥

√
n

2π2

∑
|h|≤H

(
1 − |h|

H

)
1∣∣h + 1

2

∣∣
≥

√
2n

π
ln H. (7.33)

Next, it will be shown that H can be chosen in such a way that it satisfies (7.32)

and the right-hand side of (7.33) is at least c
√

n ln ln n for an appropriate positive

constant c. Let

e(x0) = (ϕ(x0), ϕ((x0 + 1) mod n), . . . , ϕ((x0 + H − 1) mod n)).

For all x0 = 0, 1, . . . , n − 1, we have e(x0) ∈ T H where T = [0, 1). Our goal is to

prove an equidistribution of e(x0) on the torus T H . For this, we need the following

result, which is based on Theorem 9.3 from [195] along with a quantitative estimate

for the uniformity of the distribution.

Theorem 7.45 If H ≤ 0.739
√

ln q then, for every y = (y0, . . . , yH−1) ∈ T H ,
there exists x0 ∈ {0, . . . , n − 1} such that

max
0≤h≤H−1

|yh + ϕ((x0 + h) mod n)| ≤ 1

8
.

Proof Let, in what follows, θ = 1
8
. For a z = (z0, . . . , zH−1) ∈ T H define

γ (z0, . . . , zH−1) =
{

1 if |z j | ≤ θ
2

for all j = 0, 1, . . . , H − 1,

0 otherwise.

Let g(z) = γ ∗ γ (z) be the convolution of γ with itself,

g(z) =
∫

T H

γ (x)γ (x + z) dx.

Clearly, if g(z) �= 0, there exists an x ∈ T H such that both x and z + x belong to

the cube with side θ and centered in the origin. This yields that z is in the cube of

side 2θ centered in the origin.
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It is known, see, e.g., [457], that g(z) has the following Fourier expansion

g(z) =
∑

m∈ZH

|c(m)|2 · e2π ı(m,z),

where (m, z) = m0z0 + m1z1 + . . . + m H−1zH−1,

c(m) =
H−1∏
j=0

sin πm jθ

πm j

and for m = 0,

sin πmθ

πm
= θ.

The series is absolutely converging, thus

n−1∑
x0=0

g(e(x0) + y)

=
∑

m∈ZH

|c(m)|2 · e2π ı(m,+y) ·
n−1∑
x0=0

e2π ı(m0ϕ(x0)+m1ϕ(x0+1)+...+m H−1ϕ(x0+H−1))

=
∑

m∈ZH

|c(m)|2 · e2π ı(m,y) ·
n−1∑
x0=0

H−1∏
h=0

e2π ımhϕ(x0+h)

=
∑

m∈ZH

|c(m)|2 · e2π ı(m,y) · S(m).

Recalling that

e2π ıϕ(x0+h) = F
( x0+h

n

)
√

q

we have

S(m) =
n−1∑
x0=0

H−1∏
h=0

(
F

( x0+h
n

)
√

q

)mh

.

It is proved in [195, Theorem 9.6] that for m �= 0,

|S(m)| ≤
∑H−1

j=0 |m j |√
q

+ 2H

n
. (7.34)

Extracting the term corresponding to m = 0 and using the last estimate, we

obtain ∣∣∣∣∣
n−1∑
x0=0

g(e(x0) + y) − n|c(0)|2
∣∣∣∣∣ ≤

∑
m�=0

|c(m)|2 · |S(m)|.
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We partition the right-hand side sum into two sums, corresponding to the cases

when m satisfies max j |m j | ≤ μ and max j |m j | > μ, μ to be chosen later. Further,

we will obtain an upper estimate on the first sum |S(m)| using (7.34), while in the

second sum we will use for |S(m)| the trivial upper bound equal to the number of

summands. We have∣∣∣∣∣
n−1∑
x0=0

g(e(x0) + y) − n|c(0)|2
∣∣∣∣∣

≤
∑

m�=0,max j |m j |≤μ

|c(m)|2 · |S(m)| +
∑

max j |m j |>μ

|c(m)|2 · |S(m)|

≤
∑

m�=0,max j |m j |≤μ

|c(m)|2 ·
(∑H−1

j=0 |m j |√
q

+ 2H

n

)
+ n

∑
max j |m j |>μ

|c(m)|2

= �1 + �2.

Since ∣∣∣∣sin πθm j

πm j

∣∣∣∣ ≤ θ,

then

|c(m|2 ≤ θ2H

and

�1 ≤ θ2H

√
q

·
∑

max j |m j |≤μ

H−1∑
j=0

|m j | + θ2H

n
· 2H · (2μ + 1)H

≤ θ2H

√
q

· (2μ + 1)H−1(μ + 1)

4
+ θ2H

n
· 2H · (2μ + 1)H

≤ θ2H

√
q

· (2μ + 1)H .

The last inequality is valid for large enough μ and we took into account that H will

later be chosen to be much smaller than
√

q.

Furthermore, in �2 we may use

|c(m)|2 ≤
(

H−1∏
j=0

min

(
θ,

1

π |m j |
))2

,
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and we obtain

�2 ≤ n
∑

max j |m j |>μ

H−1∏
j=0

min

(
θ2,

1

π2|m j |2
)

≤ n · 2H ·
∑

m0>μ

H−1∏
j=0

min

(
θ2,

1

π2|m j |2
)

≤ n · 2H ·
∑

m0>μ

1

π2m2
0

H−1∏
j=1

min

(
θ2,

1

π2|m j |2
)

≤ n · 2H · 1

π2(μ − 1)
·

H−1∏
j=1

∑
m j ∈Z

min

(
θ2,

1

π2|m j |2
)

≤ 2Hn

π2
· 1

μ − 1

(
5θ2 + 1

π2

)H−1

.

Finally,∣∣∣∣∣
n−1∑
x0=0

g(e(x0) + y) − nc2(0)

∣∣∣∣∣ ≤ θ2H

√
q

· (2μ + 1)H + 2Hq

π2(μ − 1)

(
5θ2 + 1

π2

)H−1

.

Choosing μ such that the two terms are (almost) equal we set

μ =
(

5

2
+ 1

2θ2π2

)
· q

3
2H+2

and then, for large enough q, we have∣∣∣∣∣
n−1∑
x0=0

g(e(x0) + y) − nc2(0)

∣∣∣∣∣ ≤
(

5θ2 + 1

π2

)H 4H

π2
· q1− 3

2H+2

Clearly, c2(0) = θ2H . Thus if

nθ2H >

(
5θ2 + 1

π2

)H 4H

π2
· q1− 3

2H+2 (7.35)

then ∣∣∣∣∣
n−1∑
x0=0

g(e(x0) + y)

∣∣∣∣∣ �= 0

and there exists x0 such that

g(e(x0) + y) > 0.

For (7.35) to be valid it is enough that

H ≤
√

3

2 ln
(
5 + 1

π2θ2

) ·
√

ln q < 0.783 ·
√

ln q,

which accomplishes the proof. �
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Finally, choosing in the last theorem y = (ψ(0), . . . , ψ(H − 1)) and recalling

that by varying β we produce cyclic shifts of the M-sequence, we validate (7.32),

and may substitute the estimate on H into (7.33). Thus we obtain the following

result:

Theorem 7.46 For q large enough

max
t

max
s

∣∣∣∣∣
q−2∑
k=0

(−1)T r(αk+s) · e2π ıkt

∣∣∣∣∣ ≥ 1

π
√

2
· √

q ln ln q

�

7.8 Legendre sequences

Another example of signals arising from characters is provided by Legendre

sequences.

We will need the following facts about Gaussian sums. Let � ∈ N, and

g.c.d.(�, n) = 1. Then

S(n) =
n−1∑
k=0

e2π ı �k2

n

is called the Gaussian sum. The absolute value of |S(n)| can be calculated easily.

Theorem 7.47

|S(n)| =
⎧⎨
⎩

√
n if n = 1 mod 2√
2n if n = 0 mod 4

0 if n = 2 mod 4.

Proof Indeed,

|S(n)|2 = S∗(n)S(n) =
n−1∑
m=0

e−2π ı �m2

n

n−1∑
k=0

e2π ı �k2

n .

We use Theorem 3.10 and replace k in the internal sum with k + m. Then, changing

the order of summation, we get

|S(n)|2 =
n−1∑
k=0

n−1∑
m=0

e2π ı �(k+m)2−�m2

n =
n−1∑
k=0

e2π ı �k2

n

n−1∑
m=0

e2π ı 2�km
n . (7.36)

If n is odd, then by Theorem 3.1 the internal sum is nonzero only if k = 0, and

therefore we obtain

|S(n)|2 = n.
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For even n there are two nonzero summands in the right-hand side of (7.36), emerg-

ing when k = 0 or k = n
2
. Since g.c.d.(�, n) = 1 we conclude that � is odd, and using

Theorem 3.10 we have

|S(n)|2 = n
(

1 + e2π ı �n
4

)
= n

(
1 + e2π ı n

4

)
=

{
2n if n ≡ 0mod 4

0 if n ≡ 2mod 4. �

Now let n = p, where p > 2 is an odd prime number. We construct BPSK

modulated sequences using the notion of the Legendre symbol
(

k
p

)
. It is defined as

follows: (
k

p

)
=

⎧⎨
⎩

0 if k = 0

1 if there is x ∈ Z, such that k = x2mod p
−1 if there is no x ∈ Z, such that k = x2mod p.

According to the value of the Legendre symbol nonzero k are called quadratic

residues when
(

k
p

) = 1, and quadratic nonresidues otherwise. It is easy to check

that there are exactly p−1
2

residues and p−1
2

nonresidues.

We analyze the following sequence constructed from the Legendre symbols,

a = (a0, a1, . . . , ap−1),

with

a0 = 1, ak =
(

k

p

)
for k �= 0.

Theorem 7.48 For � �≡ 0 mod p,

p−1∑
k=1

(
k

p

)
e2π ı �k

p =
p−1∑
k=0

e2π ı �k2

p .

Proof Indeed, if k runs from 1 to p − 1 then k2 takes only the values of the

quadratic residues (twice on each one). Since

1 +
(

k

p

)
=

{
2 if k is a quadratic residue;

0 if k is a quadratic nonresidue,

we have

p−1∑
k=0

e2π ı �k2

p = 1 +
p−1∑
k=1

e2π ı �k2

p = 1 +
p−1∑
k=1

[
1 +

(
k

p

)]
e2π ı �k

p .

By Theorem 3.1, we have

1 +
p−1∑
k=1

e2π ı �k
p = 0,

and the result follows. �
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Corollary 7.49 Let a be the Legendre sequence of length p. Then for j =
0, 1, . . . , p − 1,

Fa

(
j

p

)
= √

p.

Proof This follows from Theorem 7.47. �

Theorem 7.50 For the Legendre sequence a of length p,

PMEPR(a) ≤
(

2 ln 2

π
· ln p + 2

)2

.

Proof This is analogous to Theorem 7.43. �

7.9 Notes

Section 7.1 Theorem 7.2 is from Tellambura [404]; see also Ermolova and

Vainikainen [106]. In what follows, I summarize our knowledge about the maxi-

mum of the aperiodic correlation and merit factor.

Maximum of the aperiodic correlation: Let

ρa = max
j=1,...,n−1

|ρa( j)|

and

ρn = min
a∈{−1,1}n

ρa.

The value of ρn has been computed up to n = 70, and it has been found that:

ρn ≤ 2 for n ≤ 21, see Turyn [415]; ρn ≤ 3 for n ≤ 48, see Lindner [246] for

n ≤ 40, Cohen et al. [73] for the rest; ρn ≤ 4 for n ≤ 70, see Coxson et al. [77]

for n ≤ 69, Coxson and Russo [78] for n = 70. Moon and Moser [277] proved that

most of the sequences have ρn > o(
√

n) and ρn ≤ (2 + ε)
√

n ln n with ε tending to

0 when n increases. Mercer [264] proved that ρn ≤ (
√

2 + ε)
√

n ln n for sufficiently

large n and any ε > 0.

A sequence, a, is called a Barker sequence if ρa = 1. The longest known

Barker sequence has length 13, and it is conjectured that there are no longer

Barker sequences. Currently no sequences a of growing length are known with

ρa = o(
√

n ln n). For some constructions of sequences with low autocorrelation

see Golay [137], Koukouvinos [209] and Schroeder [361]. Høholdt et al. [166]

proved that ρa = O(n0.9) for a being Rudin–Shapiro sequences of length n. For M-

sequences, Sarwate [352] proved the upper bound of 1 + 2
π

√
n + 1 ln 4n

π
; see also

McEliece [262]. Jedwab and Yoshida [179] provided numerical evidence that the

maximum of aperiodic correlation of rotated Legendre sequences and M-sequences

is likely to be of order
√

n ln n rather than
√

n.
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Merit factor: Let μn stand for the maximum merit factor among all bi-phase

sequences of length n. A survey by Jedwab [178] provides a summary of the known

results. It was proved by Newman and Byrnes [289] that

∑
a∈{−1,1}n

1

μ(a)
= n − 1

n
.

It is known that

6 ≤ lim sup
n→∞

μn ≤ ∞.

The value of μn has been calculated for n ≤ 60 using exhaustive computation

by Lunelli for n ≤ 6, see Turyn [415]; by Swinnerton-Dyer for 7 ≤ n ≤ 19, see

Littlewood [254]; by Turyn for n ≤ 32, see Golay [138]; by Mertens [265] for

n ≤ 48; and by Mertens and Bauke for n ≤ 60 [266].

Høholdt and Jensen [165] determined the asymptotic factor of cyclically rotated

Legendre sequences, see also Golay [139]. If the sequence is rotated by a quarter of

the length, it asymptotically achieves 6, the best known asymptotic result. Jensen

and Høholdt [180] showed that the asymptotic merit factor of any rotation of an

M-sequence is 3. Littlewood [255] proved that the merit factor of any of the Rudin–

Shapiro sequences of length 2m is 3
(
1 − (− 1

2

)m )
, and therefore is asymptotically

3. Notice that the merit factor of the Barker sequence of length 13 is 14.08. Borwein

et al. [37] and Kristiansen and Parker [218] constructed very long sequences with

merit factors of more than 6.3.

Section 7.2 Rudin–Shapiro sequences were introduced by Shapiro [365] in his

M.Sc. thesis. They were rediscovered independently by Rudin [344]. Theorems 7.6

and 7.8 are from Brillhart [47]; see also Brillhart and Morton [48]. Theorem 7.9

is by Rudin [344]. Properties of Rudin–Shapiro polynomials were considered by

Borwein and Mossinghoff [40], Kervaire et al. [203], and Newman [288].

Section 7.3 Golay sequences were introduced by Golay [133, 134]. Parker et al.
[318] provide a comprehensive survey of complementary sequences. The use of

complementary sequences for peak power reduction was proposed by Popoviĉ

[332], who generalized the work of Boyd [41].

Theorems 7.11 and 7.12 are by Golay [135]. Theorem 7.14 is by Eliahou et al.
[104]; see also [105]. Earlier, Griffin [144] excluded lengths of type n = 2 · 9t , and

Kounias et al. [210] proved that there are no complementary pairs of length n =
2 · 72m . For small lengths, the value n = 18 was excluded by Golay [135], Kruskal

[223], and Yang [449]. A complete classification of complementary pairs of modest

lengths was started by Andres and Stanton [7], and accomplished for all lengths up

to 100 by Borwein and Ferguson [39]. Open cases for lengths n < 200 are as fol-

lows: n = 106, 116, 122, 130, 136, 146, 148, 164, 170, 178, 194. In [39] a system
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of recursions is introduced, for which there is an extra primitive complementary pair,

namely,
a = (1,1,1,1,−1,1,−1,−1,−1,1,1,−1,−1,1,1,−1,1,−1,−1,1),

n = 20
b = (1,1,1,1,−1,1,1,1,1,1,−1,−1,−1,1,−1,1,−1,1,1,−1)

Golay [135] points out that the two primitive complementary pairs of length 10 are

equivalent under decimation. Specifically, the second pair of length 10 is obtained

from the first one by taking successive third sequence elements, cyclically.

The recursive constructions from Theorems 7.15, 7.16 and 7.17 are by Golay

[135], the construction of Theorem 7.18 and the result of Theorem 7.19 are by

Turyn [416]. For other constructions, see Guangguo [145].

Budiŝin [53] proposed an efficient implementation of a correlator with an incom-

ing data stream having a Golay sequence of length, n, which achieves complexity

of 2 log2 n operations per sample, see also Popoviĉ [333].

Periodic complementary sequences were considered by Arasu and Xiang [8],

Dokovic [96], Lüke [256], and Yang [448, 450]. Other papers dealing with com-

plementary sequences and their applications are by Budiŝin [50, 54], Golay [136],

Jauregui [172], Jiang and Zhu [184], Seberry et al. [362], Tsen [412], Turyn [414],

and Weng and Guangguo [431].

Section 7.4 Golay [133] introduced complementary sets and found complemen-

tary sets of size 4. Tseng and Liu [413] were the first to treat the subject of com-

plementary sets. They proved Theorems 7.20, 7.21, and 7.22. Theorem 7.23 is by

Turyn [416]. Tseng and Liu [413] proved that the size of complementary sets of

odd length n must be a multiple of 4. Dokovic [97] showed that complementary

sets of size 4 exist for all even n < 66. Turyn [416] presented constructions for

complementary sets of size 4 for all odd lengths n < 33, and n = 59. Theorems

7.24, 7.25, 7.26, 7.27, and 7.29 are by Tseng and Liu [413]. A recursive construc-

tion of mates for use in Theorem 7.25 similar to the one used for complementary

sequences is presented in [413]. Theorems 7.30 and 7.31 are by Feng et al. [111].

Section 7.5 The first reference to multilevel complementary pairs is by Gutleber

[146]. Darnell and Kemp [85] were the first to describe constructions of multilevel

sequences; see also Kemp and Darnell [199] and Budiŝin [51, 52]. Ternary comple-

mentary sequences were studied by Gavish and Lempel [127]. Other generalizations

and specific classes of complementary sequences were considered by: Sivaswamy

[382]–subcomplementary sequences, Budiŝin [49]–supercomplementary se-

quences, Bömer and Antweiler [35], Dokovic [97]–periodic complementary se-

quences. Sequences over QAM constellations were considered by Rößling and

Tarokh [346] and Tarokh and Sadjadpour [396, 397]. For a survey of early results

on polyphase complementary sequences, see Fan and Darnell [107, Chapter 13].

Extensive research of multiphase sequences has been undertaken by Sivaswamy

[381] and Frank [117]; see also Craigen [79]. Theorems 7.32 and 7.33 are from
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Fiedler and Jedwab [115]. The construction of complementary sets from Reed–

Muller codes is by Davis and Jedwab [86, 87], who derived Theorem 7.34 and

Corollary 7.35. Theorem 7.36 is by Paterson [323] see also [322]. A summary of the

coding methods can be found in Davis et al. [88]. Further relevant generalization of

Reed–Muller codes yielding new multiphase sequences was proposed by Schmidt

[355] and Schmidt and Finger [356]. Holzmann and Kharaghani [167] found for

quadriphase complementary sequences that the symmetry operations generate an

equivalence class of up to 1024 sequences.

Decoding of nonbinary Reed–Muller codes was considered by Ashikhmin and

Litsyn [16]. Maximum likelihood decoding of Reed–Muller codes in OFDM sys-

tems was considered by Jones and Wilkinson [188]. For the generalized Reed–

Muller codes studied in this section the algorithms developed by Grant and van

Nee [140, 141], Paterson and Jones [327], and Greferath and Vellbinger [143] can

be applied.

A trigonometric polynomial F(t) is called flat if, for t ∈ [0, 1),

c1

√
n ≤ |F(t)| ≤ c2

√
n,

for some positive constants c1 and c2, and is called ultra-flat if, for t ∈ [0, 1),

(1 − o(1))
√

n ≤ |F(t)| ≤ (1 + o(1))
√

n.

The study of flat polynomials was initiated by Hardy and Littlewood [150].

The existence of ultra-flat trigonometric polynomials with coefficients of abso-

lute value 1 (Theorem 7.37) is proved by Kahane [192]; see Beller and Newman

[23], Byrnes [57], Körner [206], Littlewood [254, 255] for earlier results. The error

term in the theorem is estimated in [192] as

εn = O
(

n− 1
17

√
log n

)
.

Beck [21] proved the existence of flat polynomials with the coefficients being 400th

roots of unity.

Complementarity with respect to other transformations was considered by Parker

[317] and Parker and Tellambura [320, 321].

Section 7.6 This section is based on the results of Paterson and Tarokh [328].

Section 7.7 I follow here Alrod et al. [3]. The use of M-sequences for power

reduction was considered by Li and Ritcey [240], Jedwab [177], and Tellambura

[405].

Section 7.8 Montgomery [276] considered lower bounds for Legendre sequences.

He derived a bound similar to the one from the previous section (with constant 2
π

).
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Methods to decrease peak power in MC systems

In this chapter, I consider methods of decreasing peak power in MC signals. The sim-

plest method is to clip the MC signal deliberately before amplification. This method

is very simple to implement and provides essential PMEPR reduction. However,

it suffers some performance degradation, as estimated in Section 8.1. In selective

mapping (SLM), discussed in Section 8.2, one favorable signal is selected from a set

of different signals that all represent the same information. One possibility for SLM

is to choose the best signal from those obtained by inverting any of the coordinates

of the coefficient vector. The method of deciding which of the coordinates should be

inverted is described in Section 8.3. Further, in Section 8.4 a modification of SLM

is analyzed. There the favorable vector is chosen from a coset of a code of given

strength. Trellis shaping, where the relevant modification is chosen based on a search

on a trellis, is described in Section 8.5. In Section 8.6, the method of tone injection is

discussed. Here, instead of using a constellation point its appropriately shifted ver-

sion can be used. In active constellation extension (ACE), described in Section 8.7,

some of the outer constellation points can be extended, yielding PMEPR reduc-

tion. In Section 8.8, a method of finding a constellation in the frequency domain

is described, such that the resulting region in the time domain has a low PMEPR.

In partial transmit sequences (PTS), the transmitted signal is made to have a low

PMEPR by partitioning the information-bearing vector to sub-blocks followed by

multiplying by a rotating factor the coefficients belonging to the same sub-block.

This method is discussed in Section 8.9. In Section 8.10, I discuss the possibility of

allocating some redundant carriers used only for peak reduction rather than for infor-

mation transmission. Finally, in Section 8.11, the described methods are compared.

8.1 Deliberate clipping and filtering

The simplest approach to decreasing the PMEPR of any MC signal to a prescribed

level is deliberately to clip it before amplification. However, clipping is a nonlinear

209
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process and may cause significant in-band distortion, which degrades the SER or

BER performance, and out-of-band noise, which reduces the spectral efficiency.

The clipping could be applied to signals at different stages of processing. The

possibilities are either to clip the continuous signal at the output of the LPF or to clip

discrete samples at the output of IDFT. In what follows, I will analyze both cases.

8.1.1 Clipping continuous signal

Consider a continuous time-unconstrained, baseband MC signal F(t) = x(t)eıθ (t),

input to a soft limiter HPA with output y(t)eıθ (t) described by

y(t) = y = h(x) =
⎧⎨
⎩

−A if x(t) ≤ −A,

x(t) if |x(t)| < A,

A if x(t) ≥ A.

(8.1)

Let us introduce the clipping ratio γ defined as

γ = A√
Pin

, (8.2)

where Pin is the input power of the MC signal before clipping. Let r (t) = |x(t)| and

s(t) = |y(t)| and, assuming validity of the central limit theorem, we approximate

r (t) by a Rayleigh random variable with p.d.f.

f (r ) = 2r

Pin

· e
− r2

Pin . (8.3)

Then the output power after clipping is

Pout = E(h2(r )) =
∫ ∞

0

h2(r ) f (r ) dr = (
1 − e−γ 2)

Pin. (8.4)

Normalizing the clipped signal, we have

s(t) = h(r )√
Pout

= h(r )√(
1 − e−γ 2

)
Pin

. (8.5)

Notice that for γ = 0, we have to use

lim
γ→0

s(t) ≈ lim
γ→0

A√
Pout

= lim
γ→0

γ√
1 − e−γ 2

= 1,

i.e., s(t) is constant (hard limiter).

For a memoryless nonlinearity such as (8.1), the output y(t) may be decomposed

into two uncorrelated signal components

y(t) = αx(t) + c(t). (8.6)
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This can be rewritten as

y R(t) = αx R(t) + cR(t),

y I (t) = αx I (t) + cI (t),

for, respectively, the real and imaginary parts of the signals. We assume that x R(t)
and y R(t) are independent Gaussian random variables. To estimate α we apply

α = E(x R(t)y R(t))

E(x R(t)x R(t))
= E(x I (t)y I (t))

E(x I (t)x I (t))
.

By changing the variables as

x R(t) = r (t) cos ϕ(t), x I (t) = r (t) sin ϕ(t),

where r (t) is Rayleigh distributed and ϕ(t) is uniformly distributed, we have

α = 2E(r cos ϕ h(r ) sin ϕ)

Pin

= 1 − e−γ 2 + γ
√

π Q(
√

2γ ), (8.7)

where

Q(z) = 1

2π

∫ ∞

z
e− u2

2 du.

We start with estimating the error probability using the assumption that the dis-

tortion caused by clipping is described by additive Gaussian noise, with a variance

equal to the energy of the clipped portion of the signal. Let the signal power be

normalized to unity. Then the power of the clipped portion c(t) in (8.6) is

σ 2
c = 2

∫ ∞

A
(z − A)2e− z2

2 dz = −
√

2

π
Ae− A2

2 + 2(1 + A2)Q(A). (8.8)

To compute the error probability, we will assume that each subcarrier carries a

square constellation of L2 points. Each (real/imaginary) component has L levels,

equally spaced and separated by 2d, with a total power equal to 1
2n (since we have

normalized the total power to unity). Therefore,

d =
√

3

2n(L2 − 1)
. (8.9)

Thus we get the probability of error in any subcarrier as

Pr(error) = 4(L − 1)

L
Q

( √
3

σc

√
(L2 − 1)

)
. (8.10)
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However, in most cases, particularly when the desired error probability is low,

the clipping level is set high enough such that clipping is a rare event, occurring

more infrequently than once every symbol interval. Clipping under these conditions

then forms a kind of impulsive noise. Since γ is quite large here we conclude from

(8.7) that, in this case, α ≈ 1.

For a description of such noise, I will use a model of a stationary Gaussian

process, possessing finite second-order moment, and continuous with probability

one. The following three asymptotic properties of the large excursions of such

processes will form the basis of this analysis.

� The sequence of upward level crossings of a stationary and ergodic process asymptotically

approaches a Poisson process for large levels A. For a Gaussian signal x(t), the rate of

this Poisson process is given by

λA = 1

2π

√
m2

m0

· e
− A2

2m0 , (8.11)

where

m j =
∫

ω j dF(ω), j = 0, 2, . . . (8.12)

and dF(ω) is the power spectral density of x(t). Without loss of generality, we may

normalize the power m0 in the signal x(t) to unity. The relevant quantity, m2, then

represents the power in the first derivative of x(t).
� The length of intervals τ during which the signal stays above the high level |A| is

(asymptotically) Rayleigh distributed, with density function

ρτ (τ ) = π

2

τ

τ 2
m

· e− π
4

(
τ

τm

)2

, τ ≥ 0. (8.13)

Here τm denotes the expectation of τ . Since λAτm = Pr(x(t) ≥ A), the expected value of

the duration of a clip may be approximated as

τm = Q(A)

λA
≈

√
2π

A
√

m2

. (8.14)

The approximation in (8.14) is valid for large values of A.
� The shape of pulse excursions above level |A| are parabolic arcs of the form

pτ (t) =
(

−1

2
m2t2 + 1

8
m2τ

2

)
A · rect

(
t

τ

)
, (8.15)

where rect(·) denotes a rectangular window function, and τ , the random duration of the

clip, forms the support of the parabolic arc (see Fig. 8.1).

We will also require the instantaneous spectrum of the clipped signal component. This

can be obtained by taking the Fourier transform of the parabolic arc (8.15), to get

gτ (ω) = m2

Aτ

ω2

(
sinc

ωτ

2
− cos

ωτ

2

)
, (8.16)
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tk tk + tk

p (t-tk − tk/2)

Figure 8.1 Excursion of a Gaussian process above |A|

where

sinc ϕ = sin ϕ

ϕ
.

Under the assumption of many subcarriers, the power spectrum of x(t) will tend

to be rectangular over the total frequency. Hence, the rate of the Poisson process

corresponding to the clipping of x(t) can be defined from (8.11) as

λA = 1

2π

√
m2 · e− A2

2 = n√
3

· e− A2

2 . (8.17)

As well, by (8.14) the expected value for the duration of a clip is

τ−1
m ≈

√
2π

3
· n A. (8.18)

The effect of a clip of duration τ , occurring at time t0, on the kth subcarrier is

given by the Fourier transform of the clipped portion of the pulse,

Fk = 1√
n

n−1∑
j=0

f j e
−2π ı j k

n , (8.19)

where f j are samples of the clipped pulse p(t) in (8.15),

f j = p
(

t − t0 − τ

2

) ∣∣∣
t= j

n

, (8.20)

and the factor 1√
n

preserves total power. For increasing n we can replace the discrete

Fourier transform with the conventional one by substituting

f j = n
∫ j

n − 1
2n

j
n + 1

2n

p(t) dt. (8.21)
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Then

Fk = √
n

∫ t0+τ

t0

p
(

t − t0 − τ

2

)
· e−2π ı kt

2 dt. (8.22)

Substituting u = t − t0 into (8.19) yields

Fk = √
ne−2π ıkt0

∫ τ

0

p
(

u − τ

2

)
· e−2π ıku du

= √
ne−2π ıkt0 g (2πk), (8.23)

where g(·) is the pulse spectrum given by (8.16). Thus,

Fk =
√

nm2 Aτ

4π2k2
· e−2π ıkt0 (sinc (πkτ ) − cos πkτ ). (8.24)

Since τ � 1, we can use the expansion

sinc α − cos α ≈ α2

3
(8.25)

in (8.24) to approximate the response of the kth subcarrier to a clip of duration τ as

Fk = 1

12

√
nm2 Aτ 3eıθ , (8.26)

where θ is uniformly distributed over [0, 2π ], and the Rayleigh probability distri-

bution of τ is given by ρτ (τ ) in (8.13). Note that the expansion (8.25) will not be

valid in general for the higher frequency subcarriers in the MC signal. In fact, (8.23)

indicates that the probability of error from a clip will vary across subcarriers, the

overall probability being dominated by that of the error probability due to clipping.

Rewriting (8.26) as

Fk = ηeıθ , (8.27)

we are interested in obtaining the probability distribution of η:

Pr(η > R) = Pr

(
τ >

(
12R√
nm2 A

) 1
3

)
. (8.28)

Using the distribution of τ in (8.13), and substituting for m2 from (8.12), we get,

after some simplification

Pr(η > R) = e−
(

3π2 R2 A4n
8

) 1
3

. (8.29)

If we warp the complex plane by the mapping aeıθ → a
1
3 eıθ , then (8.29) would

represent a Rayleigh distribution in the warped complex plane. The real or imaginary
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part of Fk therefore has a normal distribution with

Pr(η cos θ > x) = Q

(
x

1
3

σ

)
, (8.30)

where

σ =
(

2√
3n · π A2

) 1
3

.

To compute the error probability, we again assume that each subcarrier carries a

square constellation of L2 points. Each (real or imaginary) component has L levels,

equally spaced and separated by 2d, with a total power equal to 1
2n (since we have

normalized the total power to unity). Therefore, d is defined by (8.9). Combining

(8.29) and (8.9), we get the probability of error in any subcarrier, given a clip occurs,

as

Pr(error|clip) = 4(L − 1)

L
Q

⎛
⎝(

3π A2√
8(L2 − 1)

) 1
3

⎞
⎠ . (8.31)

To compute the overall probability of error, we will need to multiply the condi-

tional probability in (8.31) by the probability of occurrence of a clip in one symbol

duration. This can be obtained using (8.11), the Poisson rate of two-side clipping

events, as

Pr(clip) ≈ 2λA. (8.32)

Thus the overall probability of symbol error is upper bounded by

Pr (error) = 8n(L − 1)√
3L

· e− A2

2 · Q

⎛
⎝(

3π A2√
8(L2 − 1)

) 1
3

⎞
⎠ . (8.33)

In particular, for L = 2 (QPSK) the error probability is given by

Pr (error) = 4n√
3

· e− A2

2 Q

⎛
⎝(√

3

8
π A2

) 1
3

⎞
⎠ . (8.34)

On the other hand, for large constellation sizes, the error probabilility may be

approximated as

Pr (error) = 8n√
3

· e− A2

2 Q

((
3π A2

√
8L

) 1
3

)
. (8.35)
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Notice that the results here are overly pessimistic, since they do not account for

the fact that some of the noise power will fall out-of-band, and therefore not cause

any in-band distortion.

8.1.2 Clipping on discrete samples

In this section, I will consider clipping on discrete samples of the signal. Clipping

of a continuous signal can thus be viewed as clipping of an oversampled signal with

an infinitely large oversampling factor.

Let us consider the MC signals sampled at the Nyquist rate followed by clipping

of the samples. Let the coefficient vector be a = (a0, . . . , an−1), ak ∈ Q. For conve-

nience, we consider here the signals with the power normalized to unity. Therefore,

the MC signal is

Fa(t) = 1√
n

n−1∑
k=0

ake2π ıkt .

Picking the samples of the MC signal,

x j e
ıθ j = F

(
j

n

)
,

we clip them as in (8.1) and obtain

h(x j )e
ıθ j = y j e

ıθ j .

Now, the coefficient vector corresponding to this set of values is â = (â0, . . . , ân−1),

where

âk = 1√
n

n−1∑
j=0

y j e
ıθ j e−2π ık j

n .

The error in the MC signal happens if, for at least one k, the closest to âk point from

the constellation Q differs from ak . Let us elaborate on several approaches to the

estimation of this error probability.

Using the techniques of the previous section we can significantly tighten the error

bound in (8.33) by replacing the clip probability with its corresponding discrete

time value. Specifically, approximating the probability of a single sample to exceed

the level ±A as 2Q(A), and assuming that there is, at most, one clipping at a

sample in the Nyquist sampled signal, we conclude that the probability of the clip

is approximately 2nQ(A) and, therefore, (8.33) becomes

Pr (error) = 8n(L − 1)

L
· Q(A) · Q

⎛
⎝(

3π A2√
8(L2 − 1)

) 1
3

⎞
⎠ . (8.36)
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Another approach is based on Gaussian approximations. As with (8.6) we present

the output of the soft limiter as

y j = αx j + c j , (8.37)

where c j are independent from x j . This can be rewritten as

y R
j = αx R

j + cR
j ,

y I
j = αx I

j + cI
j ,

for the real and imaginary parts of the samples, respectively. Here α is determined

in (8.7). By (8.4) the total output signal power S can be given by

S = α2 Pin = α2

1 − e−γ 2
Pout. (8.38)

Let

Ck = 1√
n

n−1∑
j=0

c j e
−2π ık j

n .

We approximate Ck by complex Gaussian random variables with zero mean. Since

all the distortion components fall within the signal bandwidth, the total variance of

the distortion D, is given by

D = Pout − S =
(

1 − α2

1 − e−γ 2

)
Pout. (8.39)

Finally, the error probability is

Pr(error) = Q

(√
S

D

)
= Q

(
α√

1 − e−γ 2 − α2

)
. (8.40)

Simulations show, however, that the reduction of PMEPR is mostly insignifi-

cant for the Nyquist sampling. To improve on this method, it is suggested that the

oversampled MC signals be clipped followed by filtering of the out-of-band com-

ponents of DFT. However, the filtering could yield peak regrowth, and therefore the

process might be reiterated. The analysis of this method could be based on similar

previous ideas. However, it is much more involved and thus I have omitted it.

8.2 Selective mapping

The idea of selective mapping is simple: partition all possible signals to subsets and

pick from each subset a representative with the minimum PMEPR.

More formally, letQn be the collection of all vectors of length n with coordinates

belonging to a constellation Q, |Q| = q. Assume there exists a partition of Qn
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Figure 8.2 PMEPR distribution for n = 512 and QPSK modulation for selective
mapping method

into M nonintersecting subsets Q j , j = 0, 1, . . . , M − 1, of equal size qn

M . The

information is conveyed by the index of the chosen subset, and is transmitted by

picking one of the vectors belonging to the corresponding subset. The channel code,

C, consists of the vectors, one per subset, possessing the minimum PMEPR among

the vectors in the subset. Thus

PMEPR(C) ≤ max
j=0,...,M−1

min
a∈Q j

PMEPR(a).

The rate of the defined code is 1 − 1
n logq M .

There are several simple methods of defining the partitioning. For example, let

M = qr , and g0, g1, . . . , gM−1, be invertible mappings from Qn−r to itself. Given

an information vector v ∈ Qn−r we determine the minimum PMEPR of the vectors

g0(v), . . . , gM−1(v), and transmit the vector with minimum PMEPR along with

the index of the best transform (side information). This will clearly be a vector in

Qn . For instance, one can choose g0 to be identity, and g1 to be a pseudo-random

(scrambling) transform. In Fig. 8.2, simulation results for a QPSK modulated MC

system with 512 subcarriers are presented, where the modifying vectors are chosen

at random.

Under the nonrigorous assumption that the M resulting vectors are independent,

the CCDF of PMEPR becomes as follows:

Pr

(
min

j=0,1,...,M−1
PMEPR(g j (v)) > λ

)
= (Pr(PMEPR(v) > λ))M . (8.41)

A rigorous analysis for a specially defined transform will be given in Section 8.4.

For the following, we need several definitions. Let |C| be the number of possible

code words in a channel code, C. The rate of the code, C, chosen from a qary
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constellation, is

R = 1

n
logq |C|.

The rate hit of the code is 1 − R.

8.3 Balancing method

LetQbe a constellation scaled such that Eav = 1, and let Emax be the maximal power

of a point in the constellation. In this section, for any code word c = (c0, . . . , cn−1),

ci ∈ Q, we study the design of optimum signs εk ∈ {−1, 1}, k = 0, 1, . . . , n − 1,

for each subcarrier, in order to reduce the PMEPR of the resulting code word cε =
(ε0c0, ε1c1, . . . , εn−1cn−1). Thus, we consider the following minimization problem:

given a complex vector c where |ck | ≤ √
Emax , find

min
ε

max
t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

εkcke2π ıkt

∣∣∣∣∣ . (8.42)

It is difficult to address this problem in its continuous form. Therefore we deal

with its discrete approximation (see Section 5.4). Given r , r > 1, the oversampling

factor such that rn is integer, h, h > 1, the number of projection axes, we are facing

joint minimization of r · h · n bounded linear forms, cf. (5.65),

L j (cε) = L j (ε0c0, . . . , εn−1cn−1) =
n−1∑
k=0

η j,k · εk, j = 0, 1, . . . , rhn − 1,

(8.43)

where t j = j
rn and

η j,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


 (
cke2π ı(t j k)

)
, j = 0, 1, . . . , rn − 1,



(

cke2π ı
(

t j k− 1
h

))
, j = rn+, rn + 1, . . . , 2rn − 1,

. . .



(

cke2π ı
(

t j k− h−1
h

))
, j = (h − 1)rn, . . . , rhn − 1.

(8.44)

Notice that all the linear forms are bounded, |η j,k | ≤ √
Emax and the number of

forms exceeds the number of variables. For the signal Fcε
(t) = ∑n−1

k=0 εkcke2π ıkt ,

Mc(Fcε
) = max

t∈[0,1)
|Fcε

(t)| ≤ Cr Ch · max
j

|L j (cε)|, (8.45)

where Cm ≤ 1
cos π

2m
. Denote

α = 1

r · h
.
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We will need the following version of Lemma 5.13, which is easily derivable from

its proof.

Lemma 8.1 Let L j (ε0, . . . , εn−1) be as defined in (8.43). Then

max
j=0,1,..., n

α
−1

|L j (ε0, . . . , εn−1)| ≤ K (α)√
α

√
n Emax, (8.46)

where K (α) is a constant independent of n and is bounded by

K (α) ≤ 11

√
α ln

2

α
. (8.47)

�

Substituting (8.46) and (8.47) into (8.45), and using the definition of PMEPR,

we arrive at the following result.

Theorem 8.2 For any code word, c ∈ Qn, there exists a vector ε ∈ {−1, 1}n, such
that for cε = (ε0c0, . . . , εn−1cn−1),

PMEPR(cε) ≤ Emax · min
r,h

(
1(

cos π
2r

)2
· 1(

cos π
2h

)2
· rh ·

(
K

(
1

rh

))2
)

, (8.48)

where the minimum is taken over r > 1 such that rn is integer, h ≥ 2 an integer,
and K (·) is upper bounded in (8.47). �

Notice that the right-hand side of (8.48) does not depend on n, and we achieve

a significantly smaller PMEPR than in a randomly picked word, where it is about

ln n.

Corollary 8.3 For any q-ary symmetric constellation Q containing antipodal
points there exists a code of size

( q
2

)n
and constant PMEPR. �

Now let us pass to an efficient method of deterministically designing the balanc-

ing vector, ε. Let us consider the set of equiprobable vectors ε = (ε0, . . . , εn−1) ∈
{−1, 1}n . Then, for any code word c, we define Aλ

p as the event that the absolute

value of the pth linear form defined in (8.43) is greater than λ. Furthermore, assume

that λ is chosen such that
∑rhn−1

j=0 Pr(Aλ
j ) is less than 1, and, therefore, there exists

a vector ε with the above property. We would like, efficiently, to find the vector ε,

such that none of the bad events, Aλ
p occur.

We determine the coefficients of ε sequentially. Assume that we can compute the

conditional probability Pr(Aλ
p|ε0, . . . , ε�−1), the probability of Aλ

p, given we have

chosen ε0, . . . , ε�−1. At the �th step, given the optimally chosen signs ε∗
0 , . . . , ε∗

�−2,
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we choose ε∗
�−1 ∈ {−1, 1} such that

rhn−1∑
j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2, ε

∗
�−1

) ≤
rhn−1∑

j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2, −ε∗

�−1

)
.

Therefore,

rhn−1∑
j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2

) = 1

2

(
rhn−1∑

j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2, ε

∗
�−1 = 1

)

+
rhn−1∑

j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2, ε

∗
�−1 = −1

))

≥
rhn−1∑

j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
�−2, ε

∗
�−1

)
.

Finally,

rhn−1∑
j=0

Pr
(

Aλ
j |ε∗

0 , . . . , ε∗
n−1

) ≤
rhn−1∑

j=0

Pr
(

Aλ
j

)
< 1.

Since there is no randomness in the left-hand side expression, it can be either 0 or

1, and by the inequality we conclude that it is zero, and none of the events Aλ
j occur.

The difficulty here is in the efficient computation of the conditional probabilities.

Instead of using the exact expressions, we can use upper bounds defined as

Pr
(

Aλ
j |ε0, . . . , ε�−1

) ≤ τλ
j (ε0, . . . , ε�−1) ,

satisfying the following extra conditions:

i)
rhn−1∑

j=0

τλ
j < 1,

(8.49)
i i) τλ

j (ε0, . . . , ε�−1) ≥ min
ε�−1∈{−1,1}

τ (ε0, . . . , ε�−1).

As will be shown in Theorem 8.4, Chernoff’s bound can be used, giving

Pr

(∣∣∣∣∣
n−1∑
k=0

εkηp,k

∣∣∣∣∣ > λ | ε0, . . . , ε�−1

)
≤ τλ

p (ε0, . . . , ε�−1), (8.50)

where

τλ
p (ε0, . . . , ε�−1) = 2e−γ λ cosh

(
γ

�−1∑
s=0

εsηp,s

)
·

n−1∏
s=�

cosh γ ηp,s,
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for any γ > 0 and p = 0, . . . , rhn − 1. The approach is summarized in the fol-

lowing algorithm.

Algorithm For any c ∈ Qn , let ηp,k be as in (8.44), and r and h as in Theorem 8.2.

Then set ε0 = 1, and determine ε� recursively for � = 1, . . . , n − 1, as

ε� = −
(

rhn−1∑
p=0

sinh

(
γ ∗

�−1∑
s=0

εsηp,s

)
sinh(γ ∗ηp,�) ·

n−1∏
s=�+1

cosh(γ ∗ηp,s)

)
, (8.51)

where

γ ∗ =
√

2 ln(2rhn)

nEmax

.

�
The following result gives the worst case guarantee on the PMEPR of cε .

Theorem 8.4 Let c ∈ Qn be given and cε be determined according to the algo-
rithm. Then

PMEPR (cε) < 2Emax · min
r,h

1

cos2 π
2r

· 1

cos2 π
2h

· (ln n + ln 2rh).

Proof We estimate first the conditional probabilities,

Pr

(∣∣∣∣∣
n−1∑
k=0

εkηp,k

∣∣∣∣∣ > λ | ε0, . . . , ε�−1

)

= Pr

(
n−1∑
k=0

εkηp,k > λ | ε0, . . . , ε�−1

)

+ Pr

(
n−1∑
k=0

εkηp,k < −λ | ε0, . . . , ε�−1

)

= Pr

(
n−1∑
k=�

εkηp,k > λ −
�−1∑
k=0

εkηp,k | ε0, . . . , ε�−1

)

+ Pr

(
−

n−1∑
k=�

εkηp,k > λ +
�−1∑
k=0

εkηp,k | ε0, . . . , ε�−1

)

≤ eγ
∑�−1

k=0 εkηp,k · e−γ λ · E
(

eγ
∑n−1

k=� εkηp,k

)
+ e−γ

∑�−1
k=0 εkηp,k · e−γ λ · E

(
e−γ

∑n−1
k=� εkηp,k

)

= 2e−γ λ cosh

(
γ

�−1∑
s=0

εsηp,s

)
·

n−1∏
s=�

cosh γ ηp,s = τλ
p (ε0, . . . , ε�−1).
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Here we used the Chernoff bound and the fact that εk ∈ {−1, 1} are equiprobable.

The coefficient γ should be positive and is subject to optimization. We then show

that the upper bound satisfies the conditions in (8.49). Using

cosh(a + b) + cosh(a − b) = 2 cosh a · cosh b,

we obtain

τλ
p (ε0, . . . , ε�−2) = e−γ λ

n−1∏
s=�

cosh γ ηp,s ·
(

cosh

(
γ

�−2∑
s=0

εsηp,s + γ ηp,�−1

)

+ cosh

(
γ

�−2∑
s=0

εsηp,s − γ ηp,�−1

))

= τλ
p (ε0, . . . , ε�−2, ε�−1 = 1) + τλ

p (ε0, . . . , ε�−2, ε�−1 = −1)

2

≥ min
ε�−1∈{−1,1}

τλ
p (ε0, . . . , ε�−2, ε�−1).

Thus, the second condition of (8.49) is satisfied. To verify the first condition, we

have

rhn−1∑
j=0

τλ
p =

rhn−1∑
j=0

2e−γ λ
n−1∏
s=0

cosh γ ηp,s <

rhn−1∑
j=0

2e−γ λ
n−1∏
s=0

e
γ 2η2

p,s
2

≤
rhn−1∑

j=0

2e−γ λ · e
γ 2

2
nEmax ≤ 2rhn · e−γ λ+ γ 2

2
nEmax,

where we used cosh x < e
x2

2 for x �= 0. Setting γ ∗ = λ
nEmax

and choosing λ =√
2nEmax ln 2rhn, we obtain

rhn∑
j=0

τλ
p < 2rhn · e− λ2

2nEmax = 1,

thus satisfying the first condition. Use of (8.45) and of the definition of PMEPR

accomplishes the proof. �

Although the previous result does not guarantee a restriction on the maximum of

PMEPR, it significantly improves its statistics. This is illustrated in Fig. 8.3, which

shows the PMEPR distribution of randomly chosen MC QPSK signals against

that of the signals balanced by optimized sign vectors. Another advantage of the

balancing method is that it does not require transmission of the side information.

The receiver just identifies the antipodal points of the constellations and does not

need to use any additional processing.
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Figure 8.3 PMEPR distribution for n = 128 and QPSK using the balancing method
(after [373])

8.4 Use of codes of given strength

Although the balancing method provides a very efficient reduction of PMEPR, the

rate hit is considerable. In this section, I will analyze a method employing a much

smaller collection of balancing vectors taken from a code of given strength. Let D
be a binary code of length n and D be its image under mapping 0 → 1, 1 → (−1).

Recall that the strength, t , of D is the maximal number such that for any fixed set

of t positions, as we let the code words vary over D, every possible t-tuple (out of

2t possibilities) occurs in these positions the same number of times, namely |D|
2t .

It is known that a code which is dual to a code with the minimum distance t + 1

has strength t . An example of codes whose strength is fixed or slowly increasing

with length is given by the codes dual to BCH codes. These codes have length

n = 2m − 1, the number of information bits ms (i.e., the number of code words is

2ms), and strength 2s. They are dual to BCH codes having the minimum distance

2s + 1. For the length n = 2m , we will exploit duals of the extended BCH codes

(with extra overall parity check bit), thus obtaining codes of length n = 2m , size

2ms+1, and strength 2s + 1. These codes can evidently also be considered as being

of strength 2s. Moreover, these codes may easily be encoded using a linear register

of size ms with feedback.

I hereby establish a connection between the strength of codes over {−1, 1}, and

their ability to balance linear forms when code vectors are used as the sign vectors.

Theorem 8.5 Let D be a code over {−1, 1} of length n and strength 2s, and let
M bounded linear forms be

L j (x) = L j (x0, . . . , xn−1) =
n−1∑
k=0

a jk x j , j = 0, . . . , M − 1.
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Then

min
d∈D

max
j=0,...,M−1

|L j (d)| ≤
(

(2s)!

2ss!
·

M−1∑
j=0

(
n−1∑
k=0

a2
jk

)s) 1
2s

. (8.52)

Moreover, for any real α > 1, a randomly chosen code word d ∈ D, and j =
0, 1, . . . , M − 1,

Pr d∈D

⎛
⎝|L j (d)| ≥

(
α · M · (2s)!

2ss!
·
(

n−1∑
k=0

a2
jk

)s) 1
2s

⎞
⎠ ≤ 1

α · M
. (8.53)

Proof Define

� j =
∑
d∈D

(L j (d))2s =
∑
d∈D

(
n−1∑
k=0

a jkdk

)2s

.

Rewrite the expression for � j ,

� j =
∑
d∈D

∑
k0, . . . , k2s−1

k0, . . . , k2s−1 ∈ {1, . . . , n}

2s−1∏
�=0

a jk�
dk�

=
∑

k

2s−1∏
�=0

a jk�
·
∑
d∈D

2s−1∏
�=0

dkm

=
∑

k

n−1∏
k=0

aτk (k)
jk ·

∑
d∈D

n−1∏
k=0

dτk (k)
k ,

where the summation is over all vectors k = (k0, . . . , k2s−1), and τk(k) is the number

of �, � = 0, . . . , 2s − 1, such that k� = k.

For a given k, if there exists a k, such that τk(k) is odd, then since D is a strength

2s code, we have
∑

d∈D
∏n−1

k=0 dτk (k)
k = 0. Otherwise,

∑
d∈D

n−1∏
k=0

dτk (k)
k =

∑
d∈D

1 = |D|.

Let K = {k : τk(k) is even for all k}. We thus have

� j =
(∑

k∈K

n−1∏
k=0

aτk (k)
jk

)
· |D|. (8.54)

It is easily shown that

∑
k∈K

n−1∏
k=0

aτk (k)
jk ≤ (2s)!

2ss!
·
(

n−1∑
k=0

a2
jk

)s

. (8.55)
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To see this, note that
∑

k∈K
∏n−1

k=0 aτk (k)
jk and

( ∑n−1
k=0 a2

jk

)s
contain the same terms,

but with different coefficients. Indeed,

∑
k∈K

n−1∏
k=0

aτk (k)
jk =

∑
{s0, . . . , sn−1} ∈ {0, 1, 2, . . . , s}

s0 + . . . + sn−1 = s

(2s)!

(2s0)!(2s1)! · · · (2sn−1)!
· a2s0

j,0a2s1

j,1 · · · a2sn−1

j,n−1

=
∑

{s0, . . . , sn−1} ∈ {0, 1, 2, . . . , s}
s0 + . . . + sn−1 = s

K (1)
s0s1...sn−1

· a2s0

j,0a2s1

j,1 · · · a2sn−1

j,n−1,

and(
n−1∑
k=0

a2
jk

)s

=
∑

{s0, . . . , sn−1} ∈ {0, 1, 2, . . . , s}
s0 + . . . + sn−1 = s

(s)!

(s0)!(s1)! · · · (sn−1)!
· a2s0

j,0a2s1

j,1 · · · a2sn−1

j,n−1

=
∑

{s0, . . . , sn−1} ∈ {0, 1, 2, . . . , s}
s0 + . . . + sn−1 = s

K (2)
s0s1...sn−1

· a2s0

j,0a2s1

j,1 · · · a2sn−1

j,n−1.

To obtain (8.55), note that

K (1)
s0s1...sn−1

K (2)
s0s1...sn−1

= (2s)!

s!

s0!

(2s0)!

s1!

(2s1)!
· · · sn−1!

(2sn−1)!
≤ (2s)!

s!
· 1

2s
.

Consequently,

� j ≤ |D| (2s)!

2ss!

(
n−1∑
k=0

a2
jk

)s

.

Furthermore,

M−1∑
j=0

� j =
M−1∑
j=0

∑
d∈D

(L j (d))2s

=
∑
d∈D

M−1∑
j=0

(
L j (d)

)2s ≤ |D| (2s)!

2ss!

M−1∑
j=0

(
n−1∑
k=0

a2
jk

)s

.

Since all (L j (d))2s ≥ 0, from the last inequality it follows that, for some d′ ∈ D,

M−1∑
j=0

(L j (d
′))2s ≤ (2s)!

2ss!

M−1∑
j=0

(
n−1∑
k=0

a2
jk

)s

.

Therefore, for j = 0, 1, . . . , M − 1,

|L j (d
′)| ≤

(
(2s)!

2ss!
·

M−1∑
j=0

(
n−1∑
k=0

a2
jk

)s) 1
2s

,

proving (8.52).
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Using the Chebyshev inequality, we obtain

Pr d∈D

⎛
⎝|L j (d)| ≥

(
α · M · (2s)!

2ss!
·
(

n−1∑
k=0

a2
jk

)s) 1
2s

⎞
⎠ ≤ Ed∈D

(
L2s

j (d)
)

α · M · (2s)!
2s s!

· ( ∑n−1
k=0 a2

jk

)s ,

and thus establish the correctness of (8.53). �

With no further assumptions about the nature of the coefficients a jk , we have the

following result.

Corollary 8.6 Under the conditions of Theorem 8.5,

min
d∈D

max
j=0,...,M−1

|L j (d)| ≤
(

M · (2s)!

2ss!

) 1
2s

· √
n · max

j = 0, 1, . . . , M − 1
k = 0, 1, . . . , n − 1

|a jk |, (8.56)

Pr d∈D

(
max

j=0,...,M−1
|L j (d)| ≥

(
α · M · (2s)!

2ss!

) 1
2s

· √
n · max

j = 0, 1, . . . , M − 1
k = 0, 1, . . . , n − 1

|a jk |
⎞
⎠

≤ 1

α
. (8.57)

Moreover, if

|a jk | ≤ 1, j = 0, 1, . . . , M − 1; k = 0, 1, . . . , n − 1,

M = r · h · n, s = ln n, n ≥ 2, then

min
d∈D

max
j=0,...,M−1

|L j (d)| ≤
√

2n ln n · (rh)
1

2 ln n ·
(

1 + 1

4 ln n

)
, (8.58)

Pr d∈D

(
max

j=0,...,M−1
|L j (d)| ≥

√
2αn ln n · (rh)

1
2 ln n ·

(
1 + 1

4 ln n

))
≤ 1

nln α
.

(8.59)

Proof To get (8.56) and (8.57), plug

|a jk | ≤ max
j = 0, 1, . . . , M − 1
k = 0, 1, . . . , n − 1

|a jk |

into (8.52) and (8.53). For (8.58) and (8.59), use
√

2πn · nn · e−n ≤ n! ≤
√

2πn · nn · e−n+ 1
12n , (8.60)

and

e
ln 2

4 ln n + 1

48(ln n)2 < 1 + 4

ln n
, n ≥ 2.

�
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Now I am ready to describe the method of PMEPR reduction. Let D be a code

from {−1, 1}n of strength 2s. The vectors d ∈ D are candidates for being chosen

as the sign vectors. Let ξ = (ξ0, . . . , ξn−1) ∈ Qn . Given r , the oversampling factor,

and h, the number of projection axes, we are facing joint minimization of r · h · n
bounded linear forms,

L j (d) = L j (d0, . . . , dn−1) =
n−1∑
k=0

a jk · dk,

where t j = j
rn and

a jk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


 (
ξke2π ı t j k

)
, j = 0, 1, . . . , rn − 1,



(
ξke2π ı

(
t j k− 1

h

))
, j = rn, rn + 1, . . . , 2rn − 1,

. . .



(
ξke2π ı

(
t j k− h−1

h

))
, j = (h − 1)rn, . . . , hrn.

(8.61)

For the case when the linear forms are given by (8.61), a more thorough analysis

of the structure of (8.52) allows me to state the following bound, given here without

proof.

Theorem 8.7 Under the conditions of Theorem 8.5, with M = r · h · n linear
forms, given by (8.61), we have

min
d∈D

max
j=0,...,M−1

|L j (d)| ≤ M, (8.62)

and, for α > 1,

Pr d∈D
(

max
j

|L j (d)| ≥ √
αM

) ≤ 1

αs
, (8.63)

where, for M-PSK,

M =
(

(2s)!

2ss!

) 1
2s

·
(

r · h · n

((n

2

)s
·
(

1 + n− 1−ln 2
2√
2

)s

+ n− ln 2 · ns

)) 1
2s

.

�
Similar bounds can be derived for other reflection-symmetric constellations, e.g.,

QAM. I omit the cumbersome details.

Corollary 8.8 Under the conditions of Theorem 8.7, for s = ln n, n ≥ 2,

min
d∈D

max
j=0,1,...,M−1

|L j (d)| ≤
√

n ln n ·
(

1 + 1

ln n

)
,

Pr d∈D

(
max

j=0,1,...,M−1

∣∣L j (d)
∣∣ ≥

√
αn ln n ·

(
1 + 1

ln n

))
≤ 1

nln α
.
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Proof Use ⎛
⎝(

1 + n− 1−ln 2
2√
2

)ln n

+ 1

⎞
⎠

1
2 ln n

< 1 + 1

2 ln n
,

along with (8.60). �

Theorem 8.9 Let D be a code of strength 2s from {−1, 1}n. For every ξ ∈ Qn

there exists d ∈ D, such that

PMEPR(ξ ∗ d) ≤ ϒ

= Emax · min
r>1, rn∈N

min
h>1,h∈Z

(
r

1
s

cos2 π
2r

· h
1
s

cos2 π
2h

·
(

(2s)!n

22ss!

) 1
s

·
(

1 + 1

s

))
, (8.64)

ξ ∗ d = (ξ0d0, . . . , ξn−1dn−1).

Since Q is reflection-symmetric, ξ ∗ d ∈ Qn.

Proof Use Theorem 8.5 combined with Lemma 4.13 and the definition of PMEPR.

Also use the inequality((
1 + 1√

2n1−ln 2

)s

+ 1

) 1
s

< 1 + 1

s
, n ≥ 2.

�

Corollary 8.10 Under the conditions of Theorem 8.9, for s = ln n, and for every
n ≥ n0, we have

ϒ ≤ Emax · n ln n ·
(

1 + σn0
ln ln n

ln n

)
,

where σ64 = 19, σ128 = 15, σ2048 = 8, and σn0
= 1 + ε, ε > 0, and ε becomes

arbitrarily small for large n0.

Proof Choose r = h = √
ln n, and use standard inequalities. �

Now let me describe the implementation of the PMEPR reduction scheme. Let

D be a code of strength 2s from {−1, 1}n of size 2p. The following particular case

of selective mapping is used. Let ξ = (ξ1, . . . , ξn) ∈ Qn be the vector we wish to

transmit. Compare the PMEPR of 2p vectors, ξ ∗ d, where d runs over D, and send

the signal corresponding to ξ ′ = ξ ∗ d′ with the minimum PMEPR, along with the

side information of p bits, indicating which balancing vector has been chosen.

This allows the receiver to recover d′ by encoding the p information bits into the

corresponding word from D, and therefore reconstruct the vector ξ = ξ ′ ∗ d′. We

arrive at the following result.
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Theorem 8.11 Let D be a binary linear systematic code of strength 2s and size
2p. Then there exists a scheme for PMEPR reduction guaranteeing that PMEPR
does not exceed ϒ from (8.64) providing the rate hit

p logq 2

n and implementation
complexity proportional to n2p. �

Using duals of BCH codes we obtain the following corollary.

Corollary 8.12 The described scheme guarantees the maximum PMEPR of ϒ

defined in (8.64) with the rate hit
s logq (n+1)

n . �

Notice that to compute PMEPR in the algorithm it is necessary to calculate the

values of r · n complex linear forms; the projection on axes is used only in the

proof.

Transmission of the side information is an important issue in implementing the

described algorithm. In what follows, I discuss several options. We assume that

the signal ξ is obtained as a result of coding that can be distorted by the following

multiplication by a balancing vector. A choice at the receiver is that we may either

first multiply by the balancing vector followed by decoding, or start from decoding

and then multiply by the balancing vector. The simplest situation is when there exist

very reliable uncoded bits which can be used to convey the index of the balancing

vector (e.g., when only one or two bits from a constellation of size 8 or more

are protected by an error-correcting code). If these bits are mapped to antipodal

constellation points this does not affect the resulting PMEPR. Another possibility

is that we have p reliable subcarriers (this can be achieved, e.g., by decreasing the

size of the constellation in these subcarriers). Without loss of generality, assume

that these p subcarriers are the first ones, otherwise a permutation of the coordinates

in the balancing vectors should be used. Let D be a systematic code, i.e., having

the information bits at its first p positions. Let Q∗ be a half of the constellation Q,

in which we pick one out of every pair of antipodal points. Let ξ = (ξ0, . . . , ξn−1),

with ξ0, . . . , ξp−1 ∈ Q∗, and ξp, . . . , ξn−1 ∈ Q. Compare the PMEPR of 2p vectors,

ξ ∗ d, where d runs over D, and send the signal corresponding to ξ ′ = ξ ∗ d′ with

the minimum PMEPR. At the receiving end, one deduces the binary information

vector of d′ by checking whether, in the received vector ξ ′, each of the first p
components belongs or does not belong to Q∗.

In this setting it is also possible to compress the information about the chosen

code vector to �s logq(n + 1)� tones (perhaps reserved). This allows further min-

imization of the number of the subcarriers affected by the algorithm. In this case

the PMEPR is minimized for the signal vector containing the transmitted informa-

tion. This, however, yields a slight increase by �s logq(n + 1)� in the estimate for

PMEPR.
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Now consider the situation when we prefer to decode first and only then to

subtract the balancing vector. Let the transmitted information be protected by some

error-correcting code D′, i.e., only vectors ξ ∈ D′ ⊂ Qn are sent. To start from

decoding in D′ we have to guarantee that the modified vector always belongs to

D′. For instance, if q = 2, i.e., when we use BPSK, and D′ is a linear code, it

is sufficient that the code D we use for balancing is a subcode of D′. Then the

modified vector ξ ′ also belongs to D′ and can be decoded without knowledge of the

balancing vector. For higher than BPSK constellations and the use of a linear code,

the embedding D ⊂ D′ provides a sufficient condition for this scheme to work.

This embedding is not very restrictive. For example, if D is a dual BCH code of

fixed strength, it is possible to show that it is nested in BCH codes with a constant

minimum distance.

Let us pass to a randomized version of the scheme. Indeed, implementation

of the full deterministic scheme for meaningful s is computationally challenging.

However, by picking at random at most a fixed number of balancing vectors from

the code, we could guarantee that an arbitrary close-to-1 probability of PMEPR,

restricted to the derived deterministic bound, is achieved. Possible implementa-

tions of the scheme vary according to the chosen method of the balancing vector

transmission.

To analyze such a scheme, assume that s = ln n, and the number of balancing

vectors used is H . Using Chernoff’s bound, for real α > 1, and large n, and its

tightness for a single linear form, for a random channel code C, we have

0.5n−α ≤ Pr (PMEPR(C) ≥ α ln n) ≤ 2n−α+1, (8.65)

i.e., a polynomial in n decrease. Considering another range of PMEPR, we have

for β > 0,

Pr(PMEPR(C) ≥ ln n + β ln ln n) ≤ 2(ln n)−β. (8.66)

Theorem 8.13 For any ξ ∈ Qn, let d0, d1, . . . , dH−1 be randomly picked from a
code D of strength 2 ln n. Then, for all n ≥ n0,

Pr

(
min

�=0,1,...,H−1
PMEPR(ξ ∗ d�) ≥ α ln n + σn0

ln ln n

)
≤ n−H ln α, (8.67)

Pr

(
min

�=0,1,...,H−1
PMEPR(ξ ∗ d�) ≥ ln n + (β + σn0

) ln ln n

)

≤ n−H ·
(

ln
(

1+β ln ln n
ln n

))
, (8.68)

where the constant σn0
is given by Corollary 8.10.

Proof This is immediate from Corollary 8.10. �
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Indeed we see that the scheme allows to considerably improve the PMEPR

statistics, using only (ln 2) · (log2 n)2 + 1 bits of redundancy (i.e.,
⌈ (ln 2)·(log2 n)2+1

log2 q

⌉
redundant subcarriers), and a modest increase in complexity. Moreover, the result

is mathematically rigorous, applicable to any reflection-symmetric constellation,

and provides the reduction for any information vector. In other words, for any
information vector, choosing H large enough, we can provably make the probability

of the large PMEPR arbitrarily small, up to the deterministic bounds, attained at H
being equal the code size.

As an example, setting H = ρn
ln n·ln α

, we have for all n ≥ n0,

Pr

(
min

�=0,1,...,H−1
PMEPR(ξ ∗ d�) ≥ α ln n + σn0

ln ln n

)
≤ e−ρn.

As another example, setting H = n
ln ln n , for all n ≥ n0,

Pr

(
min

�=0,1,...,H−1
PMEPR(ξ ∗ d�) ≥ ln n + (β + σn0

) ln ln n

)
≤ e−βn(1−β ln ln n

ln n ),

i.e., comparing with (8.65), we transform the probability from one that decreases

polynomially in n into one that decreases exponentially.

In the above, I have provided a probabilistic framework for PMEPR reduction

towards certain values, depending on the scheme parameters (e.g., balancing code

strength, oversampling factor r , number of axes h). Assume for simplicity that the

constellation used has Emax = 1 (for instance M-PSK).

For any information vector length, n, the balancing code strength, 2s, prescribes

the optimal values of r and h. Denote the PMEPR bound, guaranteed for the channel

code C, using the balancing code,D2s , of strength 2s (either deterministically, using

the whole code, or probabilistically, using a chosen number of candidates, for the

wanted peak probability reduction), by PMEPRD2s (C). For the balancing code of

the least meaningful strength, 2s = 4, say the dual of the extended BCH code of

strength 4 (it is dual to the extended 2-error correcting BCH code), length 2m ,

having 22m+1 words, we need 2m + 1 bits to indicate which specific code word

is used. Choosing, e.g., r = 3, h = 3, we obtain PMEPRD4
(C) ≤ 8

√
n
3
. Using the

optimal strength balancing code, e.g., the dual BCH code of length n = 2m and

strength 2 ln n, having 2m ln n+1 words, we need m ln n + 1 bits to indicate which

specific code word was used.

Figure 8.4 shows a simulation for n = 128, with oversampling r = 5, using bal-

ancing vectors (BV) randomly chosen from a strength 2s = 10 dual-BCH code

(with only 18 redundant carriers). For example, the peaks higher than 10.8 dB

occur with probability 10−2. Using 4 balancing vectors, the probability of such

peaks is lowered to 10−5. Looking at it differently, to build a system, for any
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Figure 8.4 PMEPR distribution for n = 128 and QPSK using the strength 10 dual
BCH code (after [251])

peak probability less than 10−2.5, we need the dynamic range reduced by 2 dB,

at a modest cost of trying 4 balancing vectors. The complexity can thus be

traded for PMEPR reduction, up to the theoretical limits provided in the previous

sections.

8.5 Trellis shaping

In the two previous sections, I allowed modification of only one (e.g., MSB) bit

to determine the point of the used constellation. One of the two choices for the

bit corresponded to the selection of one of the two antipodal points, allowing the

PMEPR of the corresponding MC signal to be decreased. More generally, one

may modify several MSBs to achieve the goal. This method got its name of trellis

shaping because of its similarity to the one used in average power reduction.

Let us start with a description of the block code version, which will be followed by

the convolutional code one. Let an M-QAM constellation be used, M = 2m , where

m is an even integer and m = m1 + m2. The m1 bits are MSBs. Let, moreover, C
be an [N = nm1, K ] linear code defined by a generating matrix G of size K × N ,

and let Ḡ of size (N − K ) × N be such that

(
G

Ḡ

)
is a full-rank N × N matrix.

Denote by C̄ the code defined by Ḡ. Furthermore, let H̄ of size K × N be the parity

check matrix of the code defined by Ḡ, i.e., H̄Ḡt = 0. Notice that for any c̄ ∈ C̄ ,

and arbitrary c ∈ C,

H̄(c + c̄)t = H̄ct + H̄c̄t = H̄ct .
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In other words, we have partitioned the (Hamming) space to cosets of C̄ such that

the vectors from the same coset have the identical result of multiplication by the

matrix H̄. The idea is to transmit information using the index of the coset, and by

picking one of the vectors in the coset to minimize the PMEPR of the resulting

signal. Notice that the balancing methods correspond to the use of a mapping with

only one MSB indicating one of the two antipodal constellation points and C̄ of

full rank or of a given strength.

The information vector for encoding the MC symbol consists of K + nm2 bits.

The first K bits are encoded into a binary vector of length N = nm1 using the

generating matrix G, the PMEPR minimizing vector from C̄ is added (modulo 2)

to the result of the encoding, giving nm1 bits, and along with nm2 uncoded LSBs

we obtain n(m1 + m2) = nm bits determining n constellation points for each of

the subcarriers. At the receiver end, the vector undergoes the inverse processing.

Namely, the nm2 are obtained directly from the LSBs of the received constellation

points, and the K bits are uniquely determined by the result of multiplication of H̄

on the vector consisting of the nm2 MSBs.

The suggested scheme is especially simple when we use a convolutional code Cs

of rate 1
ns

. Let G be the corresponding 1 × ns generator matrix. Let Ht and (H−1)t

denote the ns × (ns − 1) parity check matrix and its left inverse, i.e., (ns − 1) × ns ,

matrix for this code respectively. Let d be a binary information data sequence to

be transmitted by each n-subcarrier MC symbol. The information data bits are first

divided into the two subsequences, s and b, where the former is used to choose MSB

of the mapping constellation labeling, and the latter chooses its LSB. In choosing

the MSB, an (ns − 1)-bit sequence s is first encoded by the inverse syndrome former

to generate an ns-bit sequence z, i.e.

z = s(H−1)t .

Any valid code word y in Cs can be modulo-2 added to the sequence z without

changing the original data sequence s. Indeed,

(z ⊕ y)Ht = s(H−1)t Ht ⊕ yHt = s ⊕ 0 = s,

since yHt = 0 for any y ∈ Cs .

As an example, consider the mapping of 16-QAM depicted in Fig. 8.5. Notice

that the points labeled by the same couple of LSB have the same energy, and since

a choice of y affects only MSB, the average power does not depend on y.

What remains is to define a procedure for choosing the best y for PMEPR min-

imization. Clearly, going over all possibilities is intractable. Therefore, some sub-

optimal strategy might be employed. One possible option is to choose the code

sequence minimizing the aperiodic autocorrelation. It was shown in Section 7.1 that
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Figure 8.5 Constellation mapping for 16-QAM
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Figure 8.6 Trellis shaping for 256-QAM and n = 256 (after [293])

there is a connection between the sum of absolute values of the out-of-phase auto-

correlations. To conform with the Viterbi algorithm it is advantageous to calculate

the sum of the squares of the absolute values of the out-of-phase correlations. More-

over, it is possible to compute it recursively, choosing, from several possibilities

arriving at the same state, the one that minimizes the considered sum for the already

chosen subsequence. Figure 8.6 demonstrates simulation results for the trellis shap-

ing in a 256-QAM modulated 256 subcarriers MC system using a convolutional

code of rate 1
2
, with the labeling analogous to Fig. 8.5 and the described metrics.
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8.6 Tone injection

When using trellis shaping, we have an equally likely choice of each of the subcon-

stellations defined by the MSBs. Notice that the subconstellations are merely shifted

versions of one of them. In contrast to this approach, one could concentrate on one

centrally placed constellation while exploring the possibility of moving to its shifted

version only when the signal exhibits a high value of PMEPR. Since the points of

a shifted constellation are spaced from the points of the initial constellation, the

error rate will not essentially deteriorate. On the other hand, the substitution could

yield the average power growth, and it remains to show that this is compensated

by the decrease in PMEPR. This method is called tone injection, as substituting

the points in the basic constellation for the new points in the larger constellations

is equivalent to injecting a tone of the appropriate frequency and phase in the MC

symbol.

An example of a 16-QAM constellation with its four shifts is given in Fig. 8.7.

The labeling of the points in each of the shifts is identical.

Formally, let the distance between the closest points in the basic constellation Q
be d , and let the basic MC signal be Fa(t) = ∑n−1

k=0 ake2π ıkt , ak ∈ Q. By shifting the

coefficients to the neighboring constellations we may choose between the signals

n−1∑
k=0

(ak + dpk + ıdqk)e2π ıkt ,

where pk, qk ∈ Z. The simplest choice of pk = qk = 0 gives the original constel-

lation point. The choice of one from the following options pk = qk = 0; pk =
±1, qk = 0; pk = 0, qk = ±1; gives points from the constellations in Fig. 8.7. At

the receiver, choosing nonzero coefficients pk and qk does not cause an ambiguity

since the coordinates of the detected constellation point can be reduced, modulo d.

We will search for the coefficients pk and qk, k = 0, 1, . . . , n − 1, minimizing

the PMEPR of the resulting MC signal. However, even restricting the coefficients

to −1, 0, 1 will cause an intractable computational problem. Thus a suboptimal

algorithm is sought.

One of the options is to update the coefficients in an iterative manner. The

algorithm starts by assigning pk = qk = 0. On each iteration, it is checked whether

substituting one of the coefficients pk by pk ± 1 or qk by qk ± 1 decreases either

the maximum of the absolute value of the signal or the PMEPR of the signal. The

algorithm is halted, either when no progress in decreasing the optimized function

is achieved, or after a fixed number of iterations.

Figure 8.8 presents a simulation of the PMEPR distribution after four iterations of

the described algorithm for a 16-QAM modulated MC system with 64 subcarriers.

We see that about 5 dB reduction is achieved at a clipping rate of 10−5.
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Figure 8.7 Constellations for 16-QAM
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Figure 8.8 PMEPR distribution of the signal modified after four iterations for
16-QAM and n = 64 (after [400])

8.7 Active constellation extension

In active constellation extension (ACE), some of the outer constellation points are

dynamically extended toward the outside of the original constellation such that the

PMEPR of the MC signal is reduced. The main idea of the scheme is easily explained

in the case of the MC signal with QPSK modulation. In each subcarrier, there are

four possible constellation points that lie in each quadrant in the complex plane
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Figure 8.9 Possible extensions for QPSK

(see Fig. 8.9). Assuming AWGN noise, the maximum-likelihood decision regions

are the four quadrants bounded by the axes. Thus, any point that is further from the

decision boundaries than the nominal constellation point (in the proper quadrant)

will offer an increased margin, which guarantees a lower BER. We can, therefore,

allow modification of constellation points within the quarter plane outside the nom-

inal constellation points with no degradation in performance. This corresponds to

the shaded areas on Fig. 8.9. The idea can be applied to other constellations as well,

see, e.g., Fig. 8.10 for the 16-QAM case.

Formally, let for a constellation point a ∈ Q, E(a) be the extension region of a.

For an MC signal Fa(t), we seek a vector x = (x0, . . . , xn−1), xk ∈ C, such that it

delivers

min
x∈Cn

max
t∈[0,1)

∣∣∣∣∣
n−1∑
k=0

(ak + xk)e2π ıkt

∣∣∣∣∣ ,
under the conditions

ak + xk ∈ E(ak), k = 0, 1, . . . , n − 1.

If one passes to a discrete version of the problem addressing an oversampled sig-

nal, we still arrive at a quadratically constrained quadratic program, and obtaining

the optimal solution is computationally challenging. Therefore, the following sim-

plified method can be employed. The algorithm starts with a coefficient vector

a = (a0, a1, . . . , an−1) and assumes the clip level, A, that we wish to attain.
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Figure 8.10 Possible extensions for 16-QAM

1. Compute, for j = 0, 1, . . . , n − 1,

Fa

(
j

n

)
=

n−1∑
k=0

ake2π ık j
n .

2. Clip the values of Fa with absolute value exceeding A (soft limiter),

F̂a

(
j

n

)
=

⎧⎨
⎩

Fa

(
j
n

)
if

∣∣∣Fa

(
j
n

)∣∣∣ ≤ A,

Aeı arg Fa

(
j
n

)
if

∣∣∣Fa

(
j
n

)∣∣∣ > A.

3. Compute for k = 0, 1, . . . , n − 1,

āk = 1

n

n−1∑
j=0

F̂a

(
j

n

)
e−2π ı j k

n .

4. Enforce all constraints on āk , i.e., find the closest point to āk in E(ak),

âk = arg min
a∈E(ak )

dE (a, āk).

5. Return to Step 1, and iterate till no points are clipped or the PMEPR is essentially reduced.

Figure 8.11 shows the distribution of the PMEPR of MC signals in an n = 256

QPSK-modulated system after application of the algorithm. The parameter A is

chosen to be 4.86 dB. Improved convergence of the algorithm can be achieved by

employing gradient-like methods.
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Figure 8.11 PMEPR for QPSK-modulated n = 256 MC system with ACE algo-
rithm (after [220])

8.8 Constellation shaping

In constellation shaping, we try to find a constellation in the n-dimensional fre-

quency domain, such that the resulting shaping region in the time domain has low

PMEPR. At the same time we would like to have a simple encoding method for the

chosen constellation.

Formally, let β be a parameter, and consider all signals Fa(t) = ∑n−1
k=0 ake2π ıkt

such that

max
t∈[0,1)

|Fa(t)| ≤ β.

This restriction translates to the requirement that a belongs to a parallelotope in

C
n . The integer points inside this parallelotope are used as constellation points in

transmitting the MC signals. The main challenge in constellation shaping is to find

a unique way of mapping the input data to the constellation points such that the

mapping (encoding) and its inverse (decoding) can be implemented with reasonable

complexity.

Let y = (y0, . . . , yn−1) be defined by y j = Fa

( j
n

)
. Then


(y j ) =
n−1∑
k=0


(ak) · 

(

e2π ık j
n

)
−

n−1∑
k=0

�(ak) · �
(

e2π ık j
n

)
,

�(y j ) =
n−1∑
k=0

�(ak) · 

(

e2π ık j
n

)
+

n−1∑
k=0


(ak) · �
(

e2π ık j
n

)
.

Denoting

Y = (
(y0), . . . , 
(yn−1, �(y0), . . . , �(yn−1))t ,

A = (
(a0), . . . , 
(an−1, �(a0), . . . , �(an−1))t ,
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we may write the corresponding transform as

Y = FA,

with F being a real 2n × 2n matrix. Let F−1 be its inverse matrix. Define the

parallelotope, P , with the bases being the columns of K = [αF−1], where [·] is

rounding and α is chosen in such a way that the number of integer points within P
is the same as in the signals defined by an unshaped constellation. The following

result provides a tool for the encoding procedure of these points.

Theorem 8.14 The matrix K can be decomposed into

K = UDV,

where D is diagonal with the integer entries σ j , j = 0, . . . , n − 1, such that
σ0|σ1| . . . |σn, and U and V are unimodular matrices. �

This decomposition of an integer matrix is known as the Smith normal form

(SNF) decomposition, and the matrix D is called the SNF of K. Given such de-

composition the encoding can be done as follows.

Let n = 2m . For an integer, J , define its canonical representation j =
( j0, . . . , jn−1) as the result of the following recursive procedure:

j0 = J mod σ0, J0 = J − j0
σ0

,

jk = Jk−1 mod σk, Jk = J − jk
σk

.

Then the constellation point a corresponding to the number J is

a = Uj − K�K−1Uj�. (8.69)

The reverse operation for finding J from a is as follows:

j = U−1a = ( j0, . . . , jn−1)t , j̃ k = jk mod σk,

J = j̃0 + σ0( j̃1 + σ2(. . . ( j̃ n−2 + σn−2 j̃ n−1) . . .)). (8.70)

The resulting coefficient vector a defines the corresponding MC signal. The com-

plexity of the encoding procedure is proportional to n2, which is quite high. Sub-

stitute the matrix K by the Hadamard matrix of the corresponding size.

The Hadamard matrix of size 2m × 2m is defined recursively:

H2m =
(
H2m−1 H2m−1

H2m−1 H2m−1

)
, H1 = (1).
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The SNF decomposition of H2m can easily be computed as H2m = U2mD2mV2m ,

where

U2m =
(
U2m−1 0

U2m−1 U2m−1

)
, D2m =

(
D2m−1 0

0 2D2m−1

)

V2m =
(
V2m−1 V2m−1

0 −V2m−1

)
, U−1

2m =
(

U2m−1 0

−U2m−1 U2m−1

)
,

whereU1 = U−1
1 = D1 = V1 = (1). Therefore, the encoding algorithm for this con-

stellation can be implemented as follows:

a = Unj − Hn

⌊Ht
nUnj

n

⌋
. (8.71)

The reverse operation is just as in (8.70) with Un replacing U . Notice that the

encoding and decoding can be implemented by a butterfly structure using only bit

shifting and logical AND, and is much simpler than in the case of K. Although

the constellation defined by Hadamard matrices guarantees a slightly less favorable

PMEPR than the one based on a real Fourier matrix, the advantageous simplicity of

encoding and decoding justifies its application. It remains to determine the number

of points in the constellation. It equals the determinant det (H2m ).

Theorem 8.15 The constellation size for n = 2m is

det (H2m ) = 2m2m−1 = n
n
2 .

Proof By the SNF decomposition, det (H2m ) = det (D2m ) , because the matrices

U2m and V2m are unimodular. We use induction. Indeed, det (H2) = 2. Let the claim

hold for H2k . Then

det (D2k+1 ) = det (D2k ) · 22k · det (D2k ) = 2(k+1)2k
.

�

Simulation results for n = 128 and a shaped constellation with the same number

of points as an MC system with 16-QAM modulation are presented in Fig. 8.12.

8.9 Partial transmit sequences

In this method, which is similar to selective mapping, modification of phases of sub-

carriers is allowed. Let J = {0, 1, . . . , n − 1}be the index set, and J0, J1, . . . , JV −1,

be a partition of J to V pairwise disjoint subsets of the same size, i.e.,

J0 ∪ . . . ∪ JV −1 = J, Jk ∩ Jm = ∅ for k, m = 0, 1, . . . , V − 1; k �= m.
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Figure 8.12 PMEPR distribution for n = 128 and the number of constellation
points equal to the one in 16-QAM (after [274])

For each of the subsets, we introduce a rotation factor bv = eıθv , θv ∈ [0, 2π ). Let

the information bearing vector be a = (a0, . . . , an−1). The vectors

a(v) = (
a(v)

0 , . . . , a(v)
n−1

)
, v = 0, . . . , V − 1,

where

a(v)
k =

{
ak if k ∈ Jv

0 otherwise

are called partial transmit sequences (PTS). Then, the corresponding MC signal is

Fa(t) =
V −1∑
v=0

∑
k∈Jv

akbve2π ıkt

=
V −1∑
v=0

bv

(
n−1∑
k=0

a(v)
k e2π ıkt

)
=

n−1∑
k=0

a(v)
k F (v)

a (t). (8.72)

The values of bv are chosen from a restricted set of possibilities and minimize the

PMEPR of Fa(t). These values are delivered to the receiver as side information.

Having been given b = (b0, . . . , bV −1), the receiver easily reconstructs a by ap-

plying DFT to the received signal followed by multiplication of the results by the

corresponding factors b∗
v .

It is possible to refrain from explicitly transmitting side information if differ-

entially encoded modulation across the subcarriers in each block is used. In this

case, only the block partitioning must be known to the receiver and one subcarrier

in each subblock must be left unmodulated as reference carrier.

Figure 8.13 presents results of simulations for n = 512 QPSK modulated MC

signals and factors chosen from {±1, ±ı}.
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Figure 8.13 PMEPR distribution for n = 512 and QPSK modulation for partial
transmit sequences with factors chosen from {±1, ±ı}

Let the rotating factors be chosen from the set {e2π ı j
q , j = 0, 1, . . . , q − 1}. As

can be seen from (8.72) the decision about the optimal values of factors requires

analysis of qV −1 possibilities (the first factor may be always set to 1). Since in-

creasing V results in improved PMEPR reduction capability, the complexity of the

method might become prohibitively high. Therefore, several suboptimal strategies

have been proposed.

Iterative flipping. In this method the rotating factors are determined one by one.

In the beginning, all the factors are set to 1. On the j th step of the algorithm,

j = 1, . . . , V − 1, the factor b j is chosen in such a way that the PMEPR of the

signal defined by b = (b0 = 1, b1, . . . , b j , 1, . . . , 1) is minimal over the q possible

choices. This procedure requires computation of PMEPR of the signal defined by

the all-one vector b followed by checking q − 1 possibilities (b j �= 1) on each step,

and thus has complexity proportional to 1 + (q − 1)(V − 1).

Neighborhood search. The algorithm starts with a predetermined vector b of phase

factors. Next, it finds an updated vector b′ in its neighborhood that results in the

largest reduction in PMEPR. The neighborhood of radius r is defined as the set

of vectors with Hamming distance equal to or less than r from the initial vector.

The procedure continues with b′ as the new initial vector. The search procedure

is stopped after a predetermined number of steps, say M . The complexity of the

procedure is proportional to M
∑r

k=0

(V
k

)
(q − 1)k . When r = V and M = 1 we

arrive at the standard search over all possible phase factors.

Dual-layered phase sequencing. In this method the vector b is partitioned into d
subsets. The values of the phase factors in each subset are set as in the iterative flip-

ping, while, within each of the subsets, all possible combinations of the factors are
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checked. If d = V , we have the iterative flipping, while, for d = 1, we implement

the exhaustive search. The complexity of the method is proportional to q
V
d (d − 1).

Orthogonal projections. From (8.72) the discrete version of the problem for an

oversampled signal with factor r is to find b that delivers

min
b

max
j=0,1,...,rn

∣∣∣∣∣
V −1∑
v=0

bv F (v)
a

(
j

rn

)∣∣∣∣∣ = min
b

max
j=0,1,...,rn

∣∣∣∣∣
V −1∑
v=0

bv f (v)
j

∣∣∣∣∣ . (8.73)

The idea is to search for the best b among rn vectors, where each of them is close to

being orthogonal to f j = ( f (0)
j , f (0)

j , . . . , f (0)
j ), j = 0, 1, . . . , n − 1. This is done

as follows. Some predetermined vector (e.g., the all-one vector, 1) is projected onto

the orthogonal space to f j , i.e., y j is calculated,

y j = (
I − f j (f

t
j f j )

−1f t
j

)
1.

This is followed by modification of the elements of y j to the closest allowed phase.

Finally, the best PMEPR reducing vector is chosen among the rn candidates. The

complexity of the algorithm is proportional to rn.

Sphere decoding. The idea of this method is to reduce the number of considered

combinations of b by restriction to a sphere-like area in the total space of possibil-

ities. Assume that b is a column vector. Let

x j =
V −1∑
v=0

bv f (v)
j .

Using ∗ for the conjugate transpose, we have

|x j |2 = b∗f ∗
j f j b = b∗ (

f ∗
j f j + α2 I

)
b − α2b∗b = b∗ A j b − α2V .

Here, α is an arbitrary nonzero number. The resulting V × V matrix, A j , is positive

definite due to the addition of α2 I , and therefore can be Cholesky factorized as

A j = Q∗
j Q j ,

where Q j is an upper-triangular matrix. Therefore,

|x j |2 = b∗Q∗
j Q j b − α2V = ‖Q j b‖2 − α2V .

Choosing a goal value, μ, we aim to satisfy

‖Q j b‖2 < μ + α2V .

This is equivalent to the following set of V inequalities, which has to be satisfied

for each j = 0, 1, . . . , rn − 1:

V −1∑
v=V −m

∣∣∣∣∣
V −1∑
u=v

(Q j )v,ubu

∣∣∣∣∣ < μ + α2V, m = 0, 1, . . . , V − 1. (8.74)
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Notice that, for m = 0, the inequality contains only bV −1, for m = 1 it comprises

bV −1 and bV −2, etc. This allows the following iterative choice of the candidate

phase rotating vectors. First, find all bV −1 satisfying (8.74) for m = 0. Then, for

each of the chosen bV −1, determine possible bV −2 satisfying (8.74) for m = 1, etc.

For accurately chosen parameters μ and α, the procedure essentially reduces the

search space with modest penalty on achievable PMEPR reduction.

8.10 Peak reduction carriers

It is assumed here that a set of subcarriers is not used to transmit information, but

rather to reduce peaks. These subcarriers are called peak reduction carriers (PRC).

The modulation of the allocated subcarriers is chosen such that the PMEPR of

the resulting signal is minimized. The receiver ignores the contents of the PRC.

Formally, let m < n be the number of PRC, and K = (k0, k1, . . . , kn−m−1) be the

index set of the information bearing subcarriers, while J = ( j0, j1, . . . , jm−1) is

the index set of PRC. Then the coefficient vector a = (a0, . . . , an−m−1) ∈ Qn−m

corresponds to the MC signal

Fa,x(t) =
(

n−m−1∑
�=0

a� e2π ık�t

)
+

(
m−1∑
�=0

x� e2π ı j�t

)
,

where x = (x0, . . . , xm−1) is to be determined. We may restrict x either to belong to

Qm or not. Our goal is to find x such thatPMEPR(a, x) is minimized. By considering

only samples of the r -times oversampled MC signal, we may reduce the problem

to minimization of A such that

max
j=0,1,...,rn−1

∣∣∣∣Fa,x

(
j

rn

)∣∣∣∣ ≤ A.

This is a quadratically constrained quadratic programming problem and its solution

is computationally challenging. Thus suboptimal methods are called for.

The following is a simple gradient-type algorithm. At each step the algorithm

updates the vector x by adding to it the result of DFT on the positions of PRC of

the vector consisting of the differences between the samples of the MC signal and

its clipped version.

More formally, we set a goal level A, the PRC set J , oversampling factor r ,

r > 1, an initial vector x(1), and parameter μ. Let for j = 0, 1, . . . , rn − 1,

F̂a,x

(
j

n

)
=

⎧⎨
⎩

Fa,x

(
j
n

)
if

∣∣∣Fa,x

(
j
n

)∣∣∣ ≤ A,

Aeı arg Fa,x

(
j
n

)
if

∣∣∣Fa,x

(
j
n

)∣∣∣ > A,
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Figure 8.14 PMEPR distribution for n = 512 and QPSK modulation with PRC
algorithm (5% of PRC) applied with four iterations (after [400])

and

�(�)( j) = Fa,x(�)

(
j

n

)
− F̂a,x(�)

(
j

n

)
.

Then, for an index p ∈ J , the update on step � + 1 of the algorithm is

x (�+1)
p = x (�)

p + μ

rn−1∑
j=0

�(�)( j)e2π ı p j
rn .

Another possible algorithm is based on approximation of the vector δ j =
(0, 0, . . . , 1, . . . , 0) ∈ C

rn with the 1 in the j th position by a vector having nonzero

frequency components only at J . For example, if r = 1, one may take

Pj (t) = 1

m

∑
k∈J

e2π ık
(
− j

n +t
)
.

Clearly,

Pj

(
j

n

)
= 1,

and is less than 1 otherwise.

Then, in the iterative procedure at each step we find the maximum absolute value,

say
∣∣Fa,x

( j
rn

)∣∣, and modify Fa,x(t) by subtracting μeıθ Pj (t) where θ is chosen so

that arg Fa,x(t) = arg μeıθ Pj (t).
Experiments with the described algorithms showed that contiguous PRC pro-

vide worse results in comparison with randomly distributed PRC. In Fig. 8.14,

results of simulations of the gradient-type algorithm are compared with the optimal

(computationally intractable in real-time applications) solution.
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Table 8.1 Comparison of methods

Method PMEPR Distortion Rate hit Side Complexity
reduction information

Coding H N H N H
Clipping H Y L N L
SLM M N L–H Y L–H
Balancing M N H N L
Codes of strength (CS) M N L Y H
Trellis shaping (TS) M N L–H N H
Tone injection (TI) M N H N L–H
ACE L N L N H
Constellation shaping H N H N H
PTS M N L–H Y L–H
Reduction carriers (PRC) L N L–H N H

L, low; M, moderate; H, high; Y, yes; N, no.

8.11 Comparison

Several methods for PMEPR reduction have been described in this book. Since, for

most of the approaches, there is currently no theoretical method predicting their

PMEPR reduction capability, one should gain intuition from particular simulation

results. The main characteristics of reduction methods are the capability of PMEPR

reduction, distortion in the signal the method yields, the rate hit, whether the method

requires transmission of side information, and the complexity of implementation

of the method. In Table 8.1, the mentioned characteristics are summarized for the

described methods.

Clearly the table provides only a general picture of features of the described

algorithms. In what follows, I will elaborate on it.

PMEPR reduction. Notice that we know (see Chapter 5) that the typical PMEPR

is close to ln n. Not only the number of the signals with PMEPR essentially greater

than this, but also the number of the signals with a PMEPR essentially less than

this, is small. The coding methods described in the previous chapter are directly

intended for constructing signals having PMEPRs less than the typical ratio. Most

of the methods described in this chapter, like SLM and PTS, for a small number of

modifications or iterations exclude only the signals with high peaks, while achieving

a higher probability of generating a typical vector. This is the reason that these

methods usually achieve the typical PMEPR using relatively little effort, and then

require much higher complexity to decrease it further. Another distinction between

the methods is that most of them improve the statistics of the PMEPR, while in

many situations it is required to restrict the PMEPR (and therefore the out-of-band
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radiation) to some prescribed value. These can be done using coding methods,

balancing and cosets of codes of given strength.

Distortion. Clipping introduces in-band and out-of-band distortion, thus increasing

the error probability. Filtering removes the out-of-band radiation, but at the same

time yields peak regrowth. Other described methods are distortionless.

Rate hit. The price to be paid for PMEPR reduction is a loss in the number of

possible transmit sequences. This loss is essential when coding is used and none

when clipping or ACE is employed. The rate hit is low when either SLM, PTS, CS,

or TS is used for PMEPR reduction to the typical values, while it is high if we want

to further decrease it. In TI and constellation shaping, the rate hit is high, since

the total number of sequences chosen from the extended constellation is large. The

rate loss in using reduction carriers depends on the choice of the number of such

carriers. However, according to simulations, the method becomes efficient if the

percentage of the reserved tones is high.

Side information. Transmission of side information may be problematic, and re-

quires special attention. Such methods as SLM, PTS, and CS require transmission

of side information, although for each of them there exist modifications allowing

this to be avoided.

Complexity. Such methods as SLM, PTS, and CS require a comparison of the

PMEPR of several sequences, which in turn yields a necessity of several DFTs. This

may essentially increase the complexity of the transmitter. On the other hand, TI,

ACE, and RC use iterative algorithm implementation, which could be challenging.

As well as this, some of the methods, for instance TI and ACE, may lead to power

increase in the transmit signal.

8.12 Notes

Section 8.1 O’Neill and Lopes [305], Li and Cimini [239], and Dinis et al. [93, 94]

studied the effects of clipping and filtering by extensive simulation. Armstrong

[9, 10, 11], Armstrong and Feramez [12] and Chen and Haimovich [60] considered

iterative methods of clipping and filtering. Chow, Bingham, and Flowers [65],

Wulich [433], and Wulich and Goldfeld [437] considered the effect of amplitude

limiting and scaling on performance. Panta and Armstrong [311, 312] considered

the effect of clipping on performance in fading channels. Ochiai et al. [294] and

Ochiai and Imai [295, 296, 297, 298] considered the effects of combining block

error-correcting coding with clipping.

Section 8.1.1 I follow here Bahai et al. [18]. Properties of large excursions of

Gaussian properties were studied by Rice [341]; see also van Vleck and Middleton
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[420], Kac and Slepian [191], Mazo [261], Leadbetter et al. [233], and Blachman

[28]. The relation (8.11) appears in [233], (8.13) is from [191], and (8.15) is from

[341, 261]. The parabolic shape of the signal’s crossings above high levels follows

from a Taylor’s series approximation, see [28].

Section 8.1.2 I follow here Ochiai and Imai [300, 302, 304]. Other papers dealing

with analysis of nonlinearly transformed MC signals are Banelli and Cacopardi [19],

Costa et al. [75], Costa and Pupolin [76], Dardari et al. [83, 84], Feig and Nadas

[109], Friese [123], Kim and Stuber [204], Mestdagh et al. [267, 268], Mestdagh

and Spryut [269], Ochiai [290, 291], Ochiai and Imai [301], O’Neill and Lopes

[306], Pauli and Kuchenbecker [329], Rinne and Renfors [343], Saltsberg [350],

Tellado et al. [403] and Wulich et al. [436].

Section 8.2 Selective mapping was proposed by van Eetvelt et al. [101] and

Bäuml et al. [20], see also Müller et al. [280, 283]. Avoiding transmission of side

information in SLM was considered in Breiling et al. [44, 45, 46], Cho et al. [62]

and Han and Lee [153]. Other results on SLM are by Laroia et al. [229], Lim et
al. [243] and Wang and Ouyang [426]. The use of interleaving transforms in SLM

is considered by Hill et al. [161, 162], van Eetvelt et al. [101], and Jayalath and

Tellambura [173, 175].

Section 8.3 This section follows Sharif and Hassibi [372, 373], see also [376].

The suboptimal balancing algorithm for balancing linear forms was suggested by

Spencer [388]. The factor 2 in Theorem 8.4 may be removed using a more accurate

analysis. The use of simultaneous amplitude and sign adjustment in balancing

algorithms is considered by Sharif et al. [367, 368].

Section 8.4 I follow here Litsyn and Shpunt [251]. Theorem 8.5 is reminiscent

to a result by Honkala and Klapper [168].

Section 8.5 This section is based on Ochiai [292, 293] and Henkel and Wagner

[158, 159].

Section 8.6 This method was proposed by Tellado and Cioffi [401, 402, 400], see

also Börjesson et al. [36], Kou et al. [207, 208] and Sumasu et al. [390].

Section 8.7 The active constellation extension was proposed by Krongold and

Jones [220, 221], see also [190, 219]. Smart gradient-like algorithms for ACE

are discussed in [220]. For accurately chosen parameters, they provide a faster

convergence than the described method.

Section 8.8 The constellation shaping was proposed by Kwok and Jones

[226, 227]. For details on SNF decomposition see [72]. SNF decomposition was

introduced by Smith [384]. Kwok [225] proposed a computational method for SNF
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decomposition ofK. The encoding (8.69) and decoding (8.70) are from Kwok [225].

The algorithm for Hadamard matrix decomposition was also proposed by Kwok.

The use of Hadamard shaping for PMEPR reduction was proposed by Mobasher

and Khandani [272, 273, 274]. Another use of Hadamard transforms for PAPR

reduction was suggested by Park et al. [316]. For other lattice-based techniques see

Collings and Clarkson [74].

Section 8.9 The PTS method was proposed Müller and Huber [282]. Tellambura

[410] presented an efficient method for phase factor computation. The iterative flip-

ping algorithm was proposed by Cimini and Sollenberger [68, 69, 70]. The use of

cyclically shifted PTS was considered by Hill et al. [161, 162]. The neighborhood

search was proposed by Han and Lee [152]. Ho et al. [164] introduced dual-layered

phase sequencing to reduce complexity, at the price of performance degradation.

Chen and Pottie [59] proposed an orthogonal-projection based approach for com-

puting the phase factors. Alavi et al. [2] suggested using sphere decoding for phase

factor optimization. Other papers on efficient implementation of PTS method are

Greenstein and Fitzgerald [142], Han and Lee [151], Jyalath and Tellambura [174],

Jyalath et al. [176], Kang, Kim and Joo [194], Müller and Huber [281], Narahashi

and Nojima [284], Sathananthan and Tellambura [353], Tan and Bar-Ness [394],

Tellambura [406], and Verma and Arvind [417].

Section 8.10 This approach was proposed by Tellado and Cioffi [401, 400] and

Lawrey and Kikkert [232]. The method is also known as tone reservation.

A version of the gradient-like algorithm was proposed by Gatherer and Polley

[126]. Krongold and Jones [222] suggested a method for allowing convergence that

is much faster than the described gradient-type methods; this is called an active-set
method. Here the strategy is first to decrease the biggest peak to the level of the

second one. Then continue decreasing both biggest peaks simultaneously to the

level of the third one, etc. Thus, at each step, we increase by one the active set of

equal-size peaks. At some stages, several of the equal peaks can be excluded from

the active set, and the procedure can be continued with a smaller number of peaks.

For alternative strategies see Schmidt and Kammeyer [357] and Tan and Bar-Ness

[394].

Section 8.11 Coding methods yielding signals with a constant or almost constant

PMEPR were considered in the previous chapter. Along with these methods, several

simple strategies of adding redundancy for PMEPR reduction have been considered.

The first such scheme was proposed by Jones et al. [189]. Wulich [434] suggested

the use of a simple cyclic code of rate 3
/

4 for PMEPR reduction. Other schemes

are by Chong and Tarokh [63], Clarkson and Collings [71], Fragicomo et al. [116],

Friese [120, 121, 122], Goeckel [130, 131], Goeckel and Ananthaswamy [132], Hyo
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et al. [170], Jiang and Zhu [184], Jones and Wilkinson [186, 187], Kamerman and

Krishnakumar [193], Pingyi and Xiang [330], Sathananthan and Tellambura [354],

Shepherd et al. [378], Smith, Cruz and Pinckley [385], Tellambura [407, 408], and

Yunjun et al. [454, 455].

Here, I did not describe several methods that did not become popular, but proba-

bly deserve more attention. For example, I omitted pulse superposition techniques

proposed by Farnese et al. [108], analog coding suggested by Henkel [157], an ad-

ditive algorithm designed by Hentali and Schrader [160], companding techniques

proposed by Mattson et al. [259], Jiang and Zhu [183] and Xianbin et al. [446, 447],

the use of optimized pilot sequences suggested by Fernández-Getino Garcia et al.
[112, 113, 114] and Yunjun et al. [453], frequency domain swapping, considered

by Ouderaa et al. [310], pulse shaping, discussed by Slimane [383], and the use of

artificial signals suggested by Yang et al. [451].
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estimation and peak-to-average power reduction in coherent OFDM: a novel
approach, in Proc. VTC’01, 2, (2001), 815–819.

113. M. J. Fernández-Getino Garcia, O. Edfors, and J. M. Páez-Borrallo, Peak power
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