
Web Service Composition - Current Solutions and Open Problems

Biplav Srivastava

IBM India Research Laboratory

Block 1, IIT, New Delhi 110016, India

sbiplav@in.ibm.com

Jana Koehler

IBM Zurich Research Laboratory

CH-8803 Rüschlikon, Switzerland

koe@zurich.ibm.com

Abstract

Composition of Web services has received much
interest to support business-to-business or en-
terprise application integration. On the one
side, the business world has developed a num-
ber of XML-based standards to formalize the
specification of Web services, their flow compo-
sition and execution. This approach is primar-
ily syntactical: Web service interfaces are like
remote procedure call and the interaction pro-
tocols are manually written. On the other side,
the Semantic Web community focuses on rea-
soning about web resources by explicitly declar-
ing their preconditions and effects with terms
precisely defined in ontologies. For the com-
position of Web services, they draw on the
goal-oriented inferencing from planning. So far,
both approaches have been developed rather in-
dependently from each other.

We compare these approaches and discuss their
solutions to the problems of modeling, compos-
ing, executing, and verifying Web services. We
discuss what makes the Web service composi-
tion so special and derive challenges for the AI
planning community.

1 Introduction

The growing trend in software architecture is to build
platform-independent software components, called Web
services, that are available in the distributed environ-
ment of the Internet. Applications are to be assembled
from a set of appropriate Web services and no longer
be written manually. Seamless composition of Web ser-
vices has enormous potential in streamlining business-
to-business or enterprise application integration.

The functionality of a Web service needs to be de-
scribed with additional pieces of information, either by
a semantic annotation of what it does and/or by a func-
tional annotation of how it behaves. The industry views
Web services as abstract, standardized interfaces to busi-
ness processes. The specification of a Web service is ex-
pressed in WSDL [Christensen & others, 2001], which
specifies only the syntax of messages that enter or leave

a computer program. In which order messages have to be
exchanged between services must be described separately
in a flow specification. There are many Web services flow
specification languages like BPEL4WS [Curbera & oth-
ers, 2002] and WSCI [Arkin & others, 2002]. The com-
position of the flow (i.e., plan) is still manually obtained.
Semantic annotations have been widely discussed in the
Semantic Web community [Berners-Lee, Hendler, & Las-
sila, 2001] where preconditions and effects of services are
explicitly declared in the Resource Description Format
(RDF) [RDF, 1999] using terms from pre-agreed ontolo-
gies.1 Consequently, understanding the meaning of the
messages poses no problem at all in this approach. For
composing Web services, the semantic-web community
draws on AI planning, which for over three decades, has
investigated the problem of how to synthesize complex
behaviors given an initial state, an explicit goal represen-
tation, and a set of possible state transitions. It is often
assumed that a business process or application is asso-
ciated with some explicit business goal definition that
can guide a planning-based composition tool to select
the right service [McIlraith & Son, 2002].

Unfortunately, we found that explicit goals are usually
not available from an industrial perspective. A business
process model describes the processing of persistent data
objects in discrete process steps. The real “goal” of a
business often remains implicit in these models and is
rather expressed at a higher level using often using bal-
anced score cards, while the implicit goal of a business
process is the correct handling or the creation of data ob-
jects manifested in persistent documents. For example,
the explicit goal of a travel reservation process is to per-
fectly organize the travel, while its (more or less) implicit
goal is the creation of the required travel documents in
some data base.

We believe that understanding this and other related
issues will pave the way for research directions in plan-
ning to effectively address the Web services composi-
tion problem. To that end, we take a realistic appli-
cation domain for Web services (specifically, trip plan-
ning) and highlight to what extent business needs are

1We will qualify Web services with the prefix semantic for
Web services expressed in RDF and reserve the term Web

services for business process interfaces expressed in WSDL.



addressed by the WSDL Web services and the Semantic
Web approaches. We investigate how these approaches
differ with respect to the modeling, verification, and de-
ployment of services and the respective inference meth-
ods and runtime support that they assume. We con-
clude with a discussion of related work and describe an
industry-relevant, yet unsolved, practical planning prob-
lem.

2 An Example Scenario

We describe in detail the Web service application sce-
nario of booking travel packages in a travel agency2

and consider how a simple, closed-world travel example
evolves into a dynamic, integrated solution.

In the closed-world case, a customer talks to the travel
agent who notes the customer’s requests and generates a
trip request document that may contain several needed
flight and hotel reservations. The travel agent performs
all bookings and when he is done, he puts the trip re-
quest either into the cancelled requests or the completed
requests data base, see Figure 1. A completed document
is sent to the customer as an answer to his request. If
the booking fails, the customer is contacted again and
the whole process re-iterates.

Figure 1: The closed-world travel agency.

Let us assume that our travel agency wants to co-
operate with external specialized service providers that
offer hotel and flight reservations. The process is now no
longer a closed-world solution, but requires to reorganize
the entire processing of customer requests. New services
have to be integrated and all services must correctly in-
teract with each other.

In this new situation, upon receiving the customer or-
der, the travel agent will still create a trip request and
derive the required hotel and flight reservations for it.
These are now sent to specialized services, which work
independently of each other and try to book the de-
sired reservations. The coordination is achieved through
the travel agent process to whom the services report
their success or failure in making the requested book-
ings. When both services have been successfully com-
pleted, the confirmation process step puts all documents
together and informs the customer about the completed

2See http://www.w3.org/2002/04/17-ws-usecase.

trip plan. If one of the services fails, the cancellation pro-
cess step tells the other service to put all reservations on
hold and contacts the customer to revise his trip.

In the open-world variant of this example scenario,
we see properties that are quite typical for real-world
planning scenarios:

• a number of processes or agents concurrently and
cooperatively try to achieve some goal,

• processes can spawn off other processes at runtime
e.g., , for each hotel request a hotel service could be
invoked. This number is not known at design time,
but only becomes known at runtime.

• the processes partially interleave with each other,
synchronize or run fully independent of each other,

• each process exhibits a complex behavior,

• certain planned operations may fail and require to
recover from a failed execution.

In the following, we are going to discuss how Web
services are used to implement open-world business so-
lutions.

3 Web Services

Web services are defined as self-contained, modular units
of application logic which provide business functional-
ity to other applications via an Internet connection.
Web services support the interaction of business part-
ners and their processes by providing a stateless model
of “atomic” synchronous or asynchronous message ex-
changes. These “atomic” message exchanges can be com-
posed into longer business interactions by providing mes-
sage exchange protocols that show the mutually visible
message exchange behavior of each of the partners in-
volved. The issue of how web services are to be described
can be resolved in various ways.

3.1 Web Services in WSDL

The Web Services Definition language (WSDL) [Chris-
tensen & others, 2001] is an XML-based language, which
specifies a Web service by defining messages that provide
an abstract definition of the data being transmitted and
operations that a Web service provides to transmit the
messages. Four types of communication are defined in-
volving a service’s operation (endpoint): the endpoint
receives a message (one-way), sends a message (notifica-
tion), the endpoint receives a message and sends a cor-
related message (request-response), and it sends a mes-
sage and receives a correlated message (solicit-response).
Operations are grouped into port types, which describe
abstract end points of a Web service such as a logical
address under which an operation can be invoked. A
WSDL message element defines the data elements of
an operation. XML Schema syntax is used to define
platform-independent data types which messages can
use. Each message can consist of one or more parts. The
parts can be compared to the parameters of a function
call in a traditional programming language. Concrete



protocol bindings and physical address port specifica-
tions complete a Web service specification.

We show a sample WSDL fragment for a possible
travel agency service. Port type names are simple de-
fault strings and operation names illustrate the interact-
ing process steps. For example, “Customer to Create
Itinerary” is abbreviated with CToCI, “Create Itinerary
to Flight Service” is abbreviated with CIToFS, RIToFS
stands for “Replan Itinerary to Flight Service”.

<definitions targetNamespace="http://..."
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name = "OrderEvent"></message>
<message name = "TripRquest"></message>
<message name = "FlightRequest"></message>
<message name = "HotelRequest"></message>
<message name = "BookingFailure"></message>

<portType name ="pt1">
<operation name ="CToCI">

<input message ="TripRequest"/>
</operation>

</portType>
<portType name ="pt2">

<operation name ="CIToHS">
<output message ="HotelRequest"/>

</operation>
</portType>
<portType name ="pt3">

<operation name ="CIToFS">
<output message ="FlightRequest"/>

</operation>
</portType>
...
<portType name ="pt9">

<operation name ="RIToFS">
<output message ="BookingFailure/>

</operation>
</portType>
</definitions>

From the definition, once can see that a Web service
is viewed like a remote procedure call (RPC). The exact
control and data flow that determines when an operation
can execute, is provided in a flow composition language
like BPEL4WS—we show the flow for the travel example
in Section 4.1. A service is invoked and it either gets a
synchronous or an asynchronous response. In this frag-
ment, all operations are asynchronous, i.e., none of them
specifies an input and an output message. The messages
are simple syntactic descriptions (usually given as an as-
sociated XML schema that we do not show) without any
semantics.

3.2 Web Services in the Semantic Web

The Semantic Web [Berners-Lee, Hendler, & Lassila,
2001] views the World Wide Web as a globally linked
database where web pages are marked with semantic an-
notations. At the core, semantic annotations are asser-
tions about web resources and their properties (example,
“A is subclass of B”) expressed in the Resource Descrip-
tion Format (RDF) [RDF, 1999]. An RDF description is
a set of triples where each triple is akin to the subject,

verb and object of a sentence. Each element of the triple
is represented by a Universal Resource Identifier (URI).
RDF can be written in multiple notations - XML, Nota-
tion3, etc. Along with RDF, one can use RDF Schema
(RDFS) to express classes, properties, ranges and doc-
umentation for resources and the DAML-S [Ankolenkar
& others, 2002] ontology to represent further relation-
ships and/or properties like equivalences, lists, and data
types. DAML-S has defined Service class to model Web
services with the properties presents, describedBy and
supports. The properties in turn have classes Service-
Profile, ServiceModel and ServiceGrounding as their re-
spective ranges.

For the travel reservation example, we will model
the different participating Web services in terms of the
DAML-S ontology. Let us assume that our travel agency
will use the Web service interface similar to the fictious
airline, Bravo Air, whose DAML-S description is publicly
available.3

The ServiceProfile gives a high-level description of the
service that can be used to advertise its features and
used by clients to select and locate the service from reg-
istries. The most important information it contains are
the inputs, outputs, preconditions and postconditions of
the service. For example, the flight itinerary output from
the airline is shown below. It is a specialization of the
general flight itinerary concept defined elsewhere4 and
also refers to the round trip resource.

<profile:output>
<profile:ParameterDescription

rdf:ID="FlightItinerary">
<profile:parameterName>

FlightItinerary
</profile:parameterName>
<profile:restrictedTo

rdf:resource=".../concepts.daml
#FlightItinerary"/>

<profile:refersTo
rdf:resource="#roundTrip_In"/>

</profile:ParameterDescription>
</profile:output>

The ServiceModel is a detailed description of the ser-
vice in which it is modeled as a process. This descrip-
tion is further sub-divided into a process model, which
describes the sub-components of the service and a pro-
cess control model, which provides a runtime frame-
work to monitor the execution of the service. In the
process model description of a composite process, the
sub-processes dependencies and interactions can be ex-
pressed by Sequence, Split, Unordered, etc. We will show
the representation of a static (sub-)flow for the flight Ser-
vice at Bravo Air in Section 4.2.

Finally, the ServiceGrounding provides the binding
level information of how a client can access the service,
e.g., by using SOAP or Java RMI. In the fragment shown

3See http://www.daml.org/services/daml-s/0.7/.
4See http://www.daml.ri.cmu.edu/ont/DAML-S/ con-

cepts.daml.



below, DAML-S parameters are mapped to WSDL de-
scriptions which in turn have protocol-level binding in-
formation.

<grounding:wsdlOutputMessageParts
rdf:parseType="daml:collection">

<grounding:WsdlMessageMap>
<grounding:damlsParameter

rdf:resource=".../FlightItinerary"/>
<grounding:wsdlMessagePart>
<xsd:uriReference

rdf:value=".../availFlightItinerary"/>
</grounding:wsdlMessagePart>

</grounding:WsdlMessageMap>
</grounding:wsdlOutputMessageParts>

With the Semantic Web infrastructure in place, prac-
tical and powerful applications can be written that use
annotations and suitable inference engines to automati-
cally discover, execute, compose, and interoperate Web
services. While type and consistency checking are cur-
rently possible and inferencing with Horn-clauses will
soon be available, larger subsets of first-order predicate
logic are not yet supported by the Semantic Web, i.e., the
degree of logical expressivity as it has been achieved in
today’s planning languages has not yet been reached.

3.3 Discussion

WSDL provides a function-centric description of Web
services covering inputs, outputs, and exception han-
dling. The Semantic Web provides a process level de-
scription of the service which, in addition to functional
information, models the preconditions and postcondi-
tions of the process so that the evolution of the domain
can be logically inferred. It relies on ontologies to formal-
ize domain concepts which are shared among services.

4 Modeling Flow Composition

We now discuss how the two approaches address the Web
service composition problem. Given the different infor-
mation that is available to specify a Web service in either
approach, it is not very surprising that the solutions to
the flow composition problem come out in apparently
different (albeit not so divergent) ways, too.

4.1 Industry Solution: WSDL +
BPEL4WS

We saw the interface description of the travel agent
Web service in WSDL. The interactions and message ex-
changes between the travel agent and its partners—the
customer, the flight and hotel services are described in a
business protocol specification language (we will concen-
trate on the standard BPEL4WS proposed by IBM and
Microsoft), which specifies the roles of each of the part-
ners and the logical flow of the message exchanges from
the perspective of the travel agent process. To make
the example more interesting, we assume that the inter-
action with the customer will also proceed via a Web
service interface.

<process name ="TripHandling">
<partners>

<partner name ="Customer"
myRole ="TripHandlingAgent"

serviceLinkType ="ExternalServiceLink"
partnerRole ="CustomerAgent"/>

<partner name ="FlightService"
myRole ="TripHandlingAgent"

serviceLinkType ="InternalServiceLink"
partnerRole ="FlightServiceAgent"/>

<partner name ="HotelService"
myRole ="tripHandlingAgent"

serviceLinkType ="InternalServiceLink"
partnerRole ="HotelServiceAgent"/>

</partners>

<containers> ... <containers>
...

</process>

For each WSDL message, a corresponding container
to hold that message must be specified.

<containers>
<container name ="OrderEvent"

messageType ="OrderEventType"/>
<container name ="TripRequest"

messageType ="TripRequestType"/>
<container name ="FlightRequest"

messageType ="FlightRequestType"/>
<container name ="HotelRequest"

messageType ="HotelRequestType"/>
<container name ="BookingFailure"

messageType ="BookingFailureType"/>
</containers>

The most difficult task for an IT specialist is to
specify the logic of the message flow.5 For this pur-
pose, BPEL4WS provides programming-language like
constructs (sequence, switch, while, pick) as well as
graph-based links that represent additional ordering con-
straints on the constructs. The language is fairly com-
plex as the example below illustrates.

The process starts when it receives a trip request from
the customer. After the request has been received, hotel
and flight request messages can be sent in any order to
the two partner services.

<sequence>
<receive partner="Customer"

portType ="pt1"
operation ="CToCI"
container ="OrderEvent">

</receive>

<flow>
<invoke partner ="HotelService"

portType ="pt2"
operation ="CIToHS"

inputContainer ="HotelRequest">

5Development effort to support or partially automate this
task is under way in the industry, but this goes beyond the
scope of our paper.



</invoke>
<invoke partner ="FlightService"

portType ="pt3"
operation ="CIToFS"

inputContainer ="FlightRequest">
</invoke>

</flow>

After the partner services have been invoked, the pro-
cess waits for the services to send the results of their
booking operations, which again can arrive in any order.

<flow>
<receive partner ="HotelService"
portType ="pt4"
operation ="HSToEVAL1"
container ="HotelRequest">

</receive>

<receive partner ="FlightService"
portType ="pt5"
operation ="FSToEVAL1"
container ="FlightRequest">

</receive>
</flow>

After the answers have been received, the process
needs to branch depending on whether the trip could
be booked or not by the services. This introduces a first
<switch> construct in the process. We only show a very
abstract representation of the condition, which in reality
will be a complex XPATH expression on the contents of
the arriving message. In the first branch (ConIToC), the
process needs to inform the customer about the success-
ful completion of his reservation and sends the completed
trip request documents. In the second branch (RIToC),
it needs to inform the customer about the booking fail-
ure and decide, which of the services has to be informed
about the failure of the other partner. The partners
can be informed in any order, which again introduces a
<flow> construct into the process. Within the flow, an-
other <switch> construct is nested that decides which
partner is informed.

<switch>
<case condition ="condition1">

<invoke partner ="Customer"
portType ="pt6"

operation ="ConIToC"
inputContainer ="TripRequest">
</invoke>

</case>

<otherwise>
<flow>
<invoke partner ="Customer"

portType ="pt7"
operation ="RIToC"

inputContainer ="BookingFailure">
</invoke>
<switch>

<case condition="condition2">
<invoke partner ="HotelService"

portType ="pt8"
operation ="EVAL2ToHS"

inputContainer ="BookingFailure">
</invoke>

</case>
<otherwise>
<invoke partner ="FlightService"

portType ="pt9"
operation ="EVAL2ToFS"

inputContainer ="BookingFailure">
</invoke>

</otherwise>
...

</switch>

Each of the partner processes needs to be specified
in a similar way and it must be made sure that these
specifications fit to each other. We will get back to this
problem in Section 5.

4.2 Semantic Web Solution:
RDF/DAML-S + Golog/Planning

Let us now try to solve the service composition prob-
lem of the travel domain from a Semantic Web perspec-
tive. We again focus on one of the partners and con-
sider the static (sub-)flow for the flight reservation at
Bravo Air, which is specified in the process model of the
ServiceModel. The service model states that the flight
reservation at Bravo Air is a composite process (service)
realized by invoking the sequence of sub-processes: Get-
DesiredFlightDetails, SelectAvailableFlight, and Book-
Flight. Basically, the ServiceModel construct of each
service will be used to describe its (static) process level
description, and the complete specification is compara-
ble to a BPEL4WS process specification.

<daml:Class rdf:ID="BravoAir_Process">
<daml:subClassOf rdf:resource=

".../Process.daml#CompositeProcess"/>
<daml:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource=

".../Process.daml#composedOf"/>
<daml:toClass>
<daml:Class>
<daml:intersectionOf rdf:parseType=

"daml:collection">
<daml:Class rdf:about=
"process:Sequence"/>
<daml:Restriction>
<daml:onProperty rdf:resource=

".../Process.daml#components"/>
<daml:toClass>
<daml:Class>

<process:listOfInstancesOf rdf:parseType=
"daml:collection">

<daml:Class rdf:about="#GetDesiredFlightDetails"/>
<daml:Class rdf:about="#SelectAvailableFlight"/>
<daml:Class rdf:about="#BookFlight"/>

</process:listOfInstancesOf>

</daml:Class>
...

</daml:Class>



In [McIlraith & Son, 2002], a method is presented to
compose Web services by applying logical inferencing
techniques on pre-defined plan templates. The service
capabilities are annotated in DAML-S/RDF and then
manually translated into Prolog. Now, given a goal
description, the logic programming language of Golog
[Levesque et al., 1997] (which is implemented over Pro-
log) is used to instantiate the appropriate plan for com-
posing the Web services. Golog is based on the situation
calculus and it supports specification and execution of
complex actions in dynamical systems. The authors ex-
tend it to support sensing actions that can find values of
variables at runtime.

proc(̄travel(D1, D2, 0, D)
�

�
bookRAirticket(O, D, D1, D2),
bookCar(D, D, D1, D2)

�
|

bookCar(O, O, D1, D2),
bookHotel(D, D1, D2),
sendEmail,
updateExpenseClaim

�
).

Table 1: Travel reservation procedure using Golog. O,
D, D1 and D2 stand for Origin, Destination, Departure
time and Return time.

Table 1 shows the generalized plan taken from [McIl-
raith & Son, 2002] that is input to their Golog reasoner.
The plan specifies that in order to make a travel booking,
i.e., to achieve the goal travel(D1, D2, 0, D), either
a return air and subsequent car reservation have to be
made between the origin and destination, or a direct car
reservation has to be made. This will be followed by
making hotel reservations, sending an email about the
overall reservation to the user and finally updating the
expense claim forms. Similar plan/action templates for
individual processes like bookRAirTicket have to be de-
fined as well.

The Golog reasoner, given the plan and action tem-
plates, evaluates non-deterministic choices and executes
the plan. Since execution is in the Prolog environment,
the non-deterministic choice is actually made according
to the default evaluation order (i.e., the order of appear-
ance of literals). Essentially, Golog programs are user-
provided plan templates which are customized (bound at
runtime) to goal instances. The system uses hand-built
wrappers to transform semantic annotations into Golog
representations, and vice-versa.

In the following section, we compare the specific char-
acteristics of the two approaches with each other and
derive challenges for AI planning research.

5 Discussion

The specification of the composite service, whether spec-
ified in BPEL4WS or DAMLS-S, encodes process infor-

mation that can be bound to different protocols. One
thing to note is that there is significantly more emphasis
in BPEL4WS on error handling and message correlation.
In BPEL4WS, it is possible to express choice among
multiple process activities using the pick and switch
constructs, but the set of choices is pre-determined and
each activity is conditioned on the occurrence of an event
or a specific message contents. A similar construct in
DAML-S is the Choice construct for selecting a sub-
set of sub-processes from a composite process. The Se-
mantic Web composition solution with RDF/DAML-S
and Golog seems to be comparable to the BPEL4WS
specification—both allow the customization of the plan
execution at runtime, i.e., to select a particular branch
of execution or to loop until an exit condition is satisfied,
and support the binding of variables to concrete values
discovered at runtime.

The industry approach looks at composite services
mainly from the runtime perspective of functions, data
and control flow. Under this angle, the essential infor-
mation for reasoning about a service are inputs, outputs
and exception handlers. Schemas define and restrict the
format of data and define their relationships. Flexibility
in dynamically adapting the plan is limited to the spec-
ification of binding details at runtime and to executing
specific branches in it.

The planning approaches in the Semantic Web are fo-
cused on the process-centric description of services as ac-
tions that are applicable in states. State transitions are
defined based on preconditions of actions and a transi-
tions leads to new states where the effects of the action
are valid. They need a representation of state, actions,
goals, events and optionally, an ontology of standard
terms. The plan can be adapted both offline and on-
line. There is more flexibility in terms of considering
different choices of services (plans) based on goals, but
the goals are explicitly given.

It is our impression that none of the approaches has
developed a true planning solution to the service com-
position problem so far. Both, BPEL4WS specifications
and Golog programs, are written manually and no assem-
bling of complex flows from atomic message exchanges
based on a search process takes place. We also see the
following characteristics that make current AI planning
technology not directly applicable to the service compo-
sition problem:

• The action representations can be kept rather sim-
ple and only need to model the receiving or send-
ing of a particular message type. However, plans
need to contain complex control structures involv-
ing loops, nondeterminism, and choice. So far, only
the planning as model checking approach has been
able to provide initial solutions to the generation of
such complex plans [Giunchiglia & Traverso, 1999].

• The planning problem cannot really be expected to
take place at the level of primitive actions and con-
trol structures, but seems to require to take com-
plex plans as building blocks and synthesize multi-



partner interactions from them. We discuss this fur-
ther below.

• The “objects” manipulated by the actions are typed
messages, which have a very rich structure. A typed
message may contain identifiable parts that can be
arbitrarily complex descriptions. This resembles
much more the object representations from descrip-
tion logics than the sparse objects that are used by
the planning community. The rich structure of the
message objects is essential to specify the flow logic
and to provide mechanisms for message correlation.

• Finally, we remark that in contrast to classical plan-
ning, where all objects are available in the initial
state and the actions change the state of objects,
web services create new objects at runtime, i.e., they
produce message objects during their execution that
then can be further processed by other services. It
is an open problem whether this behavior can be ad-
equately modeled with the currently available plan-
ning techniques.

If one models Web services as action specifications
similar to those used by AI planning, one can provide
a more generic and powerful solution to the flow com-
position problem, i.e., build new flow plans from scratch
[McDermott, 2002; Srivastava, ], but scalable algorithms
to synthesize the required control structures are not easy
to provide. Considering the BPEL4WS example, this
would require to wrap the receive and invoke activi-
ties as the actions in the plan and specify their pre- and
postconditions in an explicit way by referring to struc-
tural properties of incoming and outgoing messages and
perhaps to the internal state of the BPEL4WS process.
Note that no assumptions about the internal state of a
partner process can be made as this information is not
available. It is a fundamental assumption that partners
can hide and constantly modify their processes behind
the standardized message exchange interfaces as exposed
by Web services.

A currently very relevant problem is the following:
Given the message exchange behavior of one partner,
i.e., the business protocol that he runs, construct a valid
counterpart for another partner such that both can suc-
cessfully communicate with each other. BPEL4WS is
a very complex language for specifying business proto-
cols and it is unknown how difficult the construction of
a “dual” protocol is. From a planning perspective, it
is challenging how to map this problem to the classical
representation involving initial states and goals. A sim-
pler approach to business protocol specification is the
Web Services Conversation Language (WSCL) [Banerji
& others, 2002], which uses simple UML activity dia-
grams to specify a protocol. The 2-partner problem can
be easily solved in WSCL, but the problem becomes dif-
ficult again for a multi-partner scenario. The problem is
also discussed in [Piccinelli & others, 2002] and a very
preliminary solution is provided.

The decision-problem variant is also of highly prac-
tical relevance: Given two or more partner protocols,

can these partners successfully communicate with each
other? No results are available so far.

From this discussion, it becomes apparent that the
web service composition problem is very similar to the
design and specification of computer protocols, with the
essential difference that the semantics of the new busi-
ness protocol languages is not precisely defined. This
major deficiency attracts more and more critics [Staab
& others, 2003]. We see several possible candidates on
which a formal semantics could be built: process alge-
bras [Milner, 1989], automata models [Brand & Zafirop-
ulo, 1983; Holzmann, 1991], and the situation calculus
[Reiter, 1997] (recall the work in Golog that we discussed
above). A related issue is how to give semantics to
the input and output specification of a composite ser-
vice where different outputs can be produced only when
certain complex conditions are satisfied along some com-
position paths [Ankolenkar & others, 2002].

The industry has high performance and availability
requirements on Web services when they are deployed
in a production environment. They want the Web ser-
vices to be robust, meterable (so that service usage can
be charged), secure (if needed), and verifiable. Some of
these requirements are reflected in their specifications
like BPEL4WS and there are initial attempts to verify
them using formal methods [Fu, Bultan, & Su, 2002].
The Semantic Web has also started to look at the ver-
ification problem of flows. In [Narayanan & McIlraith,
2002], the semantics of a subset of DAML-S is expressed
in a first order language and Petri nets are used to sim-
ulate, compose, and verify Web services.

6 Related Work

The literature on Web services and the Semantic Web
is abundant [Staab & others, 2003] and the need for
a more rigorous formal foundation is widely discussed.
Currently, most of the work is in the description of
Web services, the syntax of their flows, and how they
could be executed. In the future, it is necessary to view
Web services in the context of specifying, validating, and
automatically synthesizing complex, reactive processes.
Many areas of planning could become relevant in the
future: the area of distributed planning [DesJardins et
al., 1999], planning as model checking [Giunchiglia &
Traverso, 1999], or approaches that are between plan-
ning and the problem of synthesizing controllers [Bar-
beau & others, 1998], just to name a few. Automata-like
representations have already been explored in a planning
context [Dal-Lago, Pistore, & Traverso, ], but so far they
were focused on the representation of goals, not actions.
In HTN planning [Erol, Hendler, & Nau, 1994] opera-
tors can express aggregate behavior that can be further
refined, but how to express nondeterminism and iter-
ations in compound tasks is still an unexplored issue.
Using planning for the travel domain has been demon-
strated in [Ambite & others, 2002], where an interactive
framework of CSP solving is used to build travel plans
in conjunction with inputs from the user. However, this



approach does not involve the usage of nondeterminis-
tic or iterative operators. Planning has recently been
explored for generating workflows in the Grid, but an
explicit goal specification must be given [Blythe & oth-
ers, 2003]. An application of regression planning to Web
services is described in [McDermott, 2002].

7 Conclusion and Future Work

Starting from the current interest in Web services, we
explored the web service composition problem and com-
pared the two major approaches to this problem—the
industrial approach and the Semantic Web approach—
with each other. We identified several, highly relevant
subproblems and related them to the AI planning per-
spective. Although these problems resemble planning
problems, it does not seem possible to directly apply
current AI planning technology to them. We discussed
the characteristics of these problems, which make them
different from the commonly studied planning scenarios
and we identified future research directions.

References

[Ambite & others, 2002] Ambite, J. L., et al. 2002. Get-
ting from here to there: Interactive planning and
agent execution for optimizing travel. In Proc. IAAI.

[Ankolenkar & others, 2002] Ankolenkar,
A., et al. 2002. DAML services.
http://www.daml.org/services/.

[Arkin & others, 2002] Arkin, A., et al. 2002.
Web services choreography interface WSCI.
http://www.w3.org/TR/wsci/.

[Banerji & others, 2002] Banerji, A., et al. 2002.
WSCL: The web services conversation language.
http://www.w3.org/TR/wscl10/.

[Barbeau & others, 1998] Barbeau, M., et al. 1998.
A method for the synthesis of controllers to handle
safety, liveness, and real-time constraints. IEEE Trans
on Automatic Control 43(22):1543–1559.

[Berners-Lee, Hendler, & Lassila, 2001] Berners-Lee,
T.; Hendler, J.; and Lassila, O. 2001. The semantic
web. Scientific American, May issue.

[Blythe & others, 2003] Blythe, J., et al. 2003. The role
of planning in grid computing. Proc. ICAPS.

[Brand & Zafiropulo, 1983] Brand, D., and Zafiropulo,
P. 1983. On communicating finite-state machines.
Journal of the ACM 30(2):323–342.

[Christensen & others, 2001] Christensen, E.,
et al. 2001. The web services de-
scription language WSDL. http://www-
4.ibm.com/software/solutions/webservices/resources.html.

[Curbera & others, 2002] Curbera, F., et al.
2002. Business process execution lan-
guage for web services. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.

[Dal-Lago, Pistore, & Traverso, ] Dal-Lago, U.; Pistore,
M.; and Traverso, P. Planning with a language for
extended goals. In Proc. AAAI, 447–454.

[DesJardins et al., 1999] DesJardins, M.; Durfee, E.;
Ortiz, C.; and Wolverton, M. 1999. A survey of re-
search in distributed, continual planning. AI Magazine
20(4):13–22.

[Erol, Hendler, & Nau, 1994] Erol, K.; Hendler, J.; and
Nau, D. 1994. UMCP: A sound and complete proce-
dure for hierarchical task-network planning. In Proc.
AIPS, 249–254.

[Fu, Bultan, & Su, 2002] Fu, X.; Bultan, T.; and Su, J.
2002. Formal verification of e-services and workflows.
Proc. ESSW.

[Giunchiglia & Traverso, 1999] Giunchiglia, F., and
Traverso, P. 1999. Planning as model checking. In
Proc. ECP.

[Holzmann, 1991] Holzmann, G. 1991. Design and Val-
idation of Computer Protocols. Prentice Hall, New
Jersey.

[Levesque et al., 1997] Levesque, H. J.; Reiter, R.; Les-
perance, Y.; Lin, F.; and Scherl, R. B. 1997. GOLOG:
A logic programming language for dynamic domains.
Journal of Logic Programming 31(1-3):59–83.

[McDermott, 2002] McDermott, D. 2002. Estimated-
regression planning for interactions with web services.
In Proc. AIPS.

[McIlraith & Son, 2002] McIlraith, S., and Son, T. C.
2002. Adapting golog for composition of semantic web
services. In Proc. KRR, 482–493.

[Milner, 1989] Milner, R. 1989. Communication and
Concurrency. Prentice Hall.

[Narayanan & McIlraith, 2002] Narayanan, S., and
McIlraith, S. 2002. Simulation, verification and auto-
mated composition of web services. In Proceedings of
the World Wide Web Conference.

[Piccinelli & others, 2002] Piccinelli, G., et al. 2002.
Web service interfaces for inter-organisational busi-
ness processes - an infrastructure for automated rec-
onciliation. In Proc. EDOC, 285–292.

[RDF, 1999] RDF. 1999. RDF: Resource description
framework. http://www.w3.org/RDF/.

[Reiter, 1997] Reiter, R. 1997. Knowledge in Action:
Logical Foundations for Describing and Implementing
Dynamical Systems. Preprint Version.

[Srivastava, ] Srivastava, B. Automatic web services
composition using planning. In Proc. KBCS, 467–477.

[Staab & others, 2003] Staab, S., et al. 2003. Web ser-
vices: Been there, done that? IEEE Intelligent Sys-
tems, Jan-Feb issue. 72–85.


