
TE
AM
FL
Y

Team-Fly®

Developing Web
Applications with

ASP.NET and C#

Hank Meyne
Scott Davis

Wiley Computer Publishing

John Wiley & Sons, Inc.

Publisher: Robert Ipsen
Editor: Theresa Hudson
Developmental Editor: Kathryn A. Malm
Managing Editor: Angela Smith
Text Design & Composition: John Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by Hank Meyne and Scott Davis. All rights reserved.

Published by John Wiley & Sons, Inc., New York

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-12090-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Scott Davis would like to dedicate this book to his wife, Sharon, and two sons, Cole
and Carter, for the many hours he spent away from them to complete this project.

Hank Meyne dedicates this book to his wife, Stacy, who endured his many
late nights and weekends at work completing this project.

Introduction xiii

Chapter 1 Making Sense of .NET 1

The Microsoft .NET Vision 1
Web Services 2

ASP in .NET 4
Compiled Code 4

The Common Language Runtime 4

Truly Object Oriented 5

Access the Entire Windows System 6

Proper Error Handling 7

Server-Side Controls 7

State in a Nonstate Environment 8

Event-Driven Programming 8

Processing the Pages 9

Introducing C# 9

Where Do We Go from Here? 11

Chapter 2 Anatomy of an ASP.NET Page 13

A Simple Page 13
Adding a Web Control 14

Introducing In-Line Script 15

Contents

Code-Behind 18

The Page Class 21
Special Page Class Events 23

An Event Example 27

Hello World with Visual Studio .NET 29

Wrapping Up the Chapter 38

Chapter 3 Server Controls 43

Postback 44

Data Binding 46

Web Server Controls 47
Label 48

Button 51

LinkButton 55

Image 56

ImageButton 62

HyperLink 63

TextBox 65

CheckBox 68

RadioButton 69

DropDownList 70

ListBox 75

CheckBoxList 77

RadioButtonList 81

Panel 81

Table, TableRow, and TableCell 84

DataGrid 94

HTML Server Controls 114

Validation Controls 118
RequiredFieldValidator 119

RegularExpressionValidator 122

ValidationSummary 124

RangeValidator 126

CompareValidator 126

CustomValidator 128

Wrapping Up the Chapter 130

vi Contents

Chapter 4 Database Access 131

Error Handling 131

Database Access Using ADO.NET 135
Connection 138

Command, DataAdapter, and DataSet 139

DataReader 158

Connection Pooling 181

Wrapping Up the Chapter 182

Chapter 5 Creating More Advanced ASP.NET Pages 183

Communicating with the Browser 184
The Response Object 184

Cookies 189

QueryString and Forms Collections 193

Web.Config 196

Session Management and Variable Scope 201
Session Events 202

Session Variables 202

ViewState Variables 206

Application Variables 207

Page Subclassing 207

User Controls 211

More Advanced Data Binding 215
DataGrid 215

Data Binding Events 225

DataList 228

Repeater 240

Wrapping Up the Chapter 246

Chapter 6 Applying What We’ve Learned So Far 247

An Online Car Parts Retailer 247

The Database Model 248

Creating a Basic Object Model 250
WileyObject 251

WileyConnection 252

Contents vii

Vehicle 254

PartCategory 255

Part 255

Shopper 255

ShoppingCartItem 257

Order and OrderItem 258

Checking Out 258

WileyPageBaseClass 262

WileyControlBaseClass 264

Creating the User Interface 264
The WileyError Page 264

The VehicleSelect Page 269

The Categories Page 272

The PartSelect Page 275

The Profile Page 279

The Cart Page 282

The Checkout Page 290

Wrapping Up the Chapter 293

Chapter 7 Web Services 295

What Are XML Web Services? 295

How Do Web Services Work? 298

Uses for Web Services 298

Web Services in Visual Studio .NET 300
WebMethod Attribute 301

WebService Attribute 302

Creating Web Services 303
Returning a String with a Web Service 303

Returning an Array of Strings with Web Services 311

Returning an Object and an Array of Objects with
Web Services 312

Using XmlInclude in a Web Service 316

Allow Upload of a File to the Web Server with Web Services 319

Expanding WileyParts with Web Services 320
Wiley Parts Services 320

viii Contents

Consuming a Web Service 324
WSDL.exe 324

An Alternative .NET Client for Wiley Parts 328

Wrapping Up the Chapter 332

Chapter 8 Security and Membership 333

IIS Security 334
Anonymous Access 334

Windows Authentication 336

ASP.NET Authentication 340
Windows 342

Forms 343

Passport 353

Wrapping Up the Chapter 354

Chapter 9 Adding E-Commerce Essentials 355

XML Tools 355
XmlTextWriter 356

XmlTextReader 359

XmlDocument 362

DataSet 366

Freight Calculations 370
General UPS Information 371

Shipping Rates 372

Address Validation 382

Email 387

Enhancing the WileyParts Project 388

Wrapping Up the Chapter 391

Chapter 10 Debugging and Optimization 393

Debugging in an ASP.NET Application 393
Tracing 394

Optimization 398
Optimizing Session State Use in Web.Config 398

Optimizing View State 400

Contents ix

x Contents

Optimizing Using Caching 403
Output Caching in an ASP.NET Page 404

Caching in a User Control 406

The Cache Class 409

Optimizing via Performance Profiling 414
perfmon and Performance Counters 414

Programming Your Own Performance Counters 415

Wrapping Up the Chapter 417

Index 419

TE
AM
FL
Y

Team-Fly®

Hank Meyne received his bachelor’s degree from the University of North Florida
College of Computing Science. Since then he has worked as a developer on projects
ranging from low-level graphics applications to enterprise Windows systems, and
particularly imaging and document management programs. He is an expert in C/C++,
C#, and Web programming, and, of course, he has served time at the helm of Visual
Basic projects as well. Hank’s own software company is in its fourth year and staying
busy developing .NET applications for clients in fast-growing Jacksonville, Florida.

Besides writing software, Hank is avidly interested in Formula 1 racing and sports
cars in general, as well as hunting, fishing, hiking, and, most of all, travel.

Hank can be reached via email at hmeyne@mediaone.net.

Scott Davis obtained his bachelor’s degree in Electrical Engineering from Michigan
State University in 1993. He has spent the majority of his career developing and sup-
porting applications for the manufacturing industry, particularly the automotive
industry. Scott’s interest and experience with computers dates back to the Commodore
64 era when getting online meant firing up your auto dialer to get into a local Bulletin
Board System. Scott is an expert developer with C#, C++, ASP.NET, and relational
databases. He obtained his Microsoft Certified Solutions Developer status in 1999.
Scott is an independent contractor specializing in .NET solutions for corporations of all
sizes, and he is currently based outside of Jacksonville, Florida.

When he is not sitting in front of his computer developing software, Scott is in front
of his computer playing online PC games or tending to his fantasy football team. He
is also an avid outdoorsman and sports fanatic who enjoys hunting, fishing, football,
basketball, and NASCAR races.

Scott can be contacted via e-mail at davistech@mediaone.net.

About the Authors

We would like to thank the following people who made this project possible for us:
Studio B, Wiley Computer Publishing and our editor Kathryn Malm, and Joe Healy,
who helped us get through the early days of undocumented, pre-alpha .NET builds.

Acknowledgments

From the beginning of the Internet’s existence, the available technologies for Web-
based application developers have been a mixed bag of various tools and languages.
For this reason Web programming has been a tedious and error-prone task. Most Web
applications have been developed with hard-to-read code that is not object oriented or
event driven. Web programmers have longed for a way to harness the mature, object-
oriented and event-driven techniques that have been available to traditional client/
server programmers. Now, for the first time, Microsoft has created an entire suite of
tools that achieve exactly this—the .NET Framework.

Microsoft’s .NET Framework is poised to revolutionize the computing industry.
ASP.NET and C# (C Sharp) are new ground-breaking technologies that are key com-
ponents of the .NET Framework. Currently, Web programmers must choose between
using less-than-elegant scripting languages and dealing with the complexities of
server-side COM components. To provide any kind of friendly user interface on the
Web, programmers must often resort to using bug-prone and nonportable client-side
scripting languages.

ASP.NET picks up where ASP leaves off and provides a vast improvement over the
former technology. ASP.NET provides the Web programmer with the tried and true
event-driven programming model to which most Windows developers are accustomed.
Furthermore, ASP.NET opens up the power of the entire Windows operating system to
the Web developer, something that is not easily achieved using current technologies.

C# is Microsoft’s new object-oriented programming language, available for the first
time as part of the .NET Framework. C# is one of the two primary languages that can
be used to create ASP.NET Web applications. C# successfully captures the power and
robustness of C++ while eliminating its shortcomings and pitfalls.

We will take the reader through the process of developing an entire suite of enter-
prise applications using the .NET Framework. Specifically, we will go in depth on all
key aspects of enterprise application development using the full power of ASP.NET
and C#.

Introduction

Each chapter will explain its topics by example, and at the end of the book, you will
have an application that touches on many of the things that can be done in a Web appli-
cation, and all in the .NET way. We believe that we can help the reader understand the
theories behind the features of ASP.NET and, at the same time, give real-world exam-
ples that would likely be a part of a large-scale system. As each chapter progresses, we
will add functionality to the overall system using the features that are relevant to the
chapter. In addition, we will include multiple ways of doing things, where applicable,
because your applications will have different requirements. We won’t hold back on the
.NET Framework either; although the book is specifically for teaching how to write
ASP.NET Web apps, we will try to include as much of the base class functionality of
.NET as we can while keeping with the overall sample. We will also try to do things in
C# that show off the power and features of the language. We won’t try to keep the
examples too simple for fear of the reader’s not knowing enough about the particular
language. This is a book about C#, too, and it will include many nontrivial examples of
the language throughout.

Many usable, real-world examples are provided to demonstrate the power of the
technology and to help the reader get off to a running start with ASP.NET.

A Car Parts Locator Service
After having spent years developing Web application using CGI, ASP, and other tech-
nologies, our first project using .NET started in mid-2000, and it was one of the only
.NET projects going on in the world at the time, outside of Microsoft, of course. The
project was to build an e-commerce site that sold auto parts to customers all over the
country. The back-end systems were done in .NET, too, including the call center, cus-
tomer service, inventory, employee workflow, accounting, and purchasing apps. This
was a large and fast-moving project; at times it was made very difficult by the fact that
it was started on the earliest bits of the .NET products and tools. The project was a
success, though, and .NET proved, even in its early stages, to be a boon for our devel-
opment team. The apps could never have been done as quickly using any other tech-
nology, we believe. In addition to being a good project to work on, it was a great project
to use as an example. It used many facets of .NET and leveraged many features that are
available only in .NET. As soon as we decided to write this book, we knew that our
examples would be based on this project. Throughout the book we will build on a
system for selling auto parts over the Web. The applications we will create will be an
e-commerce business-to-consumer (b-to-c) shopping-cart style Web site to sell parts
and a set of Web services that expose the parts-buying functionality to other compa-
nies. We feel that with these sample applications, we can touch on some of the most
powerful and interesting features that .NET has to offer.

How This Book Is Organized

The chapters of this book are organized to promote reading them in sequential order.
Each chapter will build on the previous chapter’s material. That doesn’t mean that you
can’t skip around to sections that interest you the most and refer back to previous
chapters when needed.

xiv Introduction

Chapter 1, Making Sense of .NET. This chapter defines what the .NET Frame-
work, ASP.NET, and C# are all about. We’ll also make some comparisons
between ASP.NET and its predecessor, ASP. Then we’ll finish by explaining
what we intend to accomplish in the rest of the book.

Chapter 2, Anatomy of an ASP.NET Page. This chapter describes the various
ways that an ASP.NET page can be developed. We’ll see the pros and cons of the
various methods. We’ll take a deep look at the lifetime of an ASP.NET page from
the time it is requested until the time it is delivered to the client.

Chapter 3, Server Controls. Server Controls are the fundamental building blocks
of an ASP.NET page. We’ll cover the Server Controls that are supplied with
ASP.NET in detail and see just how powerful they are.

Chapter 4, Database Access. This chapter introduces you to using ADO.NET to
access data sources and discusses how to bind server-side controls to data collec-
tions. We’ll also cover the basics of error handling under the .NET Framework.

Chapter 5, Creating More Advanced ASP.NET Pages. We’ll move into some
more advanced concepts that will be the final pieces to the ASP.NET puzzle that
we will need to construct our own real-world Web application. We’ll learn how
to use cookies to remember users, how to store objects in Session, Application
and View state, and see how to reuse our ASP.NET code on multiple pages with
user controls.

Chapter 6, Applying What We’ve Learned So Far. This chapter brings every-
thing together into a working, real-world application. We’ll see the usefulness
of designing and creating a robust, reuseable object model using C# and how it
will dramatically increase our ability to make changes and additions to a Web
site. We will then use this object model to create an online store for a car parts
business that we will build on throughout the remainder of the book.

Chapter 7, Web Services. This chapter covers the very basics of SOAP and XML,
which are used heavily by XML Web services. We’ll then define what a Web ser-
vice is, how we go about creating one, and letting other people know that we
have a service, and then we’ll see how easy it is to use a Web service from a
client application. We’ll finish up by creating some Web services for our online
car parts store.

Chapter 8, Security and Membership. This chapter will cover the different types
of user authentication available. We’ll look at the built-in authentication methods
that are provided by Internet Information Server (IIS) and then see how ASP.NET
works with IIS to provide further security options and enhancements.

Chapter 9, Adding E-Commerce Essentials. We’ll take a high-level look at the
XML support that is built into the .NET Framework. We’ll then use XML to com-
municate with UPS in real time for calculating shipping prices for merchandise
and validating addresses. We’ll also see how simple it is to send email to our
customers. We’ll round out the chapter by adding address validation, shipping
calculation, and invoice emailing to our online car parts store.

Introduction xv

Chapter 10, Debugging and Optimization. Debugging is a fact of life for a pro-
grammer, so we’ll cover how to use Tracing to help debug our ASP.NET pages.
There are also several things that we can do to make our pages more efficient.
We’ll cover the ASP.NET cache and performance profiling and discuss how to
use them effectively. We’ll also see how to increase page performance by limit-
ing what is stored in View state and cutting down on transmission time to the
client.

Who Should Read This Book

This book is for programmers looking for an in-depth look at ASP.NET. The concepts
and examples provided range from beginner to advanced level.

We will be using C# exclusively in this book. You won’t find examples printed in
both Visual Basic .NET and C#. If you don’t know C# yet and you are an experienced
C++ or Java programmer, you will have no problems picking up on the C# language. If
you are coming from a VB background, the C# examples are clear enough for you to
easily understand and translate to Visual Basic .NET code if you so desire.

You should also have a basic knowledge of HTML. Because the .NET Framework
has been built with heavy emphasis on XML, a working knowledge of XML will come
in handy; however, it is not required. You won’t find any sections of the book that will
leave you stranded on advanced XML topics.

Tools You Will Need

All examples in this book were written using Visual Studio .NET, on both Windows
2000 Professional and Windows 2000 Server. Before running any of the examples, make
sure Internet Information Services is installed and running.

The majority of the book is written with the assumption that the user has a copy
of Visual Studio .NET available. Some of the examples refer to tasks performed in
the Visual Studio .NET IDE. Of course, you could write all of the book’s examples
without Visual Studio .NET, but it would be more difficult. The .NET Framework SDK
contains the class libraries, runtimes, compilers, and linkers needed to create, compile,
and run .NET applications, but using Visual Studio .NET wraps this all up into a RAD
environment, and this is the way that most programmers will develop them. It is impor-
tant to note that ASP.NET applications can be run on any machine that has the .NET
Component Update (which is part of the Framework SDK install) or ASP.NET Premium
(which is a standalone install to allow a machine to serve ASP.NET applications)
installed, regardless of whether Visual Studio .NET is installed. If only the .NET Com-
ponent Update or ASP.NET Premium is installed, you will be able to run the example
applications, but you will have to view the code using a text editor such as Notepad.
Even if you have Visual Studio .NET installed, you may still install ASP.NET Premium
to take advantage of its extra features. In fact, many of the examples in this book were
built on a machine with both Visual Studio .NET and ASP.NET Premium installed.

xvi Introduction

What’s on the Web Site

The examples in the book are all available on the companion Web site, located at
www.wiley.com/compbooks/meyne. All examples will be presented as complete
Visual Studio .NET projects. In the cases throughout the book where the examples are
simple and show only a code snippet, the companion Web site will include the entire
example. In addition to the code are the database scripts needed to re-create the sample
databases used. To create these databases in SQL Server, simply use the Query Analyzer
tool, open the script files, and run them.

What Should You Get from This Book?

We hope you will learn what ASP.NET is and how it compares to its predecessor—
classic ASP. You should understand the fundamental ways that ASP.NET works and its
major features. You should be able to write both single ASP.NET pages and full
ASP.NET applications, which utilize all of the standard controls and server features in
ASP.NET. You will also understand how to make use of object-oriented programming
in ASP.NET, as well as database access using ADO.NET. You should also be able to
write and consume ASP.NET Web services. The knowledge learned in this book should
be a springboard to allow you to create large, complex Web applications that take
advantage of ASP.NET’s most important features.

Up Next

Now it’s time to move into what exactly ASP.NET is. The first chapter, “Making Sense
of .NET,” will provide the definition and explanation of both .NET and ASP.NET, and
from there we move straight into coding examples in Chapter 2, “Anatomy of an
ASP.NET Page.”

Introduction xvii

1

Before we can jump into writing Web applications, let’s talk about what .NET is and
what it means to a Web programmer. This chapter will give you a brief overview of
what the move to .NET is and how .NET has changed ASP.NET, and it will introduce a
powerful new programming language—C#.

The Microsoft .NET Vision

Microsoft .NET is not easily defined. It is not an API, programming environment, or
even a specific program. Microsoft defines .NET as its vision for the next generation of
distributed computing systems. But more than just a vision, .NET provides the foun-
dation on which we will run these systems, as well as the programming environment
with which they can be built. From a tangible standpoint, especially as far as the
programmer is concerned, .NET consists mostly of a framework that is installed on
Windows, which supports the runtime needs of .NET applications. In this framework
are the classes, compilers, and linkers that allow us to create our executable applica-
tions. In addition, .NET includes Visual Studio .NET, which allows us to rapidly
develop these applications.

At one end of the spectrum, .NET provides robust programming libraries and tools
we can use to leverage new standards for interoperability and programmability across
platforms in a distributed environment. .NET will allow the applications we write to
receive functionality in the form of objects, properties, and methods over the Internet
or any intranet as well. .NET allows us to leverage Web servers for much more than

Making Sense of .NET

C H A P T E R

1

just static, or even dynamically created, data that resides on the other side of the server.
This new idea is called Web services and allows us to access data and services over the
Internet via full-featured applications as opposed to just using the limited functional-
ity provided by browsers. The support for calling objects and data across the network
is provided not by proprietary binary protocols (DCOM, CORBA) but by loosely
coupled, system-independent open standards. Much of the power available within the
.NET programming environment is heavily based on the industry standard and very
robust Extensible Markup Language (XML). In fact, .NET takes on the complex tasks
of performing communications between disparate applications by taking full advan-
tage of the Simple Object Access Protocol (SOAP), which itself is heavily tied to XML.

But .NET is not only about using new technologies to build distributed systems.
Included in the .NET Framework, which is a basic building block of .NET itself, is sup-
port for writing all kinds of applications, from Windows rich-client programs, to
browser-based Web applications. ASP.NET is the new version of the ever-popular
Active Server Pages (ASP) model that has been the corner stone of Web programming
within the Microsoft world. But ASP.NET is not just an enhancement on last year’s
product; it is a major evolution that provides very powerful mechanisms for writing
Web server-based applications with performance and speed that have been near
impossible until now. In addition to all of the support for building powerful applica-
tions across the Web, .NET introduces a new programming language: C# (pronounced
C Sharp). This book focuses on building Web applications using all of the powerful fea-
tures of .NET, and it does so entirely using C#.

Web Services
While .NET provides us with a robust and powerful framework for building all kinds
of applications, one of the most significant shifts is to what is called Web services.
When we say that .NET gives us a way to use object-oriented functionality across the
Web, as opposed to just Web pages, we are talking about Web services. In simple terms,
a Web service is a specialized Web application, which runs on a Web server. Instead of
serving pages with a human-usable user interface, Web services serve methods and
objects, complete with properties. The protocol used for using these objects across the
network is SOAP and is heavily tied to XML.

SOAP uses XML as the default format of the objects, properties, and data when com-
municating via Web services. Instead of fulfilling requests for pages by a browser, or
other simple rendering client, Web services are designed to fulfill requests made by
other applications that will use the served objects in their runtime processing.

For a simple example, think of a shipping company. In the past, this company would
most likely provide its prices and services over the Web via a standard Web application,
meant to be viewed by a human using a browser, complete with a formatted user inter-
face to display the data. With .NET, this company can still provide a browser-readable
Web application as before, but it also has an additional means to allow access to its
data. By creating a Web service, the company can now provide its shipping prices and
services as objects and properties to other applications. The Web service would not for-
mat the data or add a user interface to it at all. It would provide business objects,
loaded with data, so the calling program could display or use the information as
needed. This provides a whole new level of power and flexibility both for the company

2 Chapter 1

TE
AM
FL
Y

Team-Fly®

providing the Web services and for the calling application. Even simple functionality
fits nicely into the Web services model. For example, instead of keeping a local data-
base of ever-changing area codes or zip codes and city names, a company could call a
Web service that offers this up-to-date data as objects over the Web and consume them
in their applications.

When we install .NET on a Windows server, enhancements are added to Internet
Information Server, which allow us to create and serve Web services easily. Likewise, we
can consume Web services easily from our applications written for .NET by utilizing the
fully featured SOAP client classes in the .NET Framework. Microsoft’s .NET strategy
will be key to moving away from the current client/server-based world of information
to a truly distributed network architecture, all the way down to the application level.

We all use distributed networks everyday by accessing our company’s customer
accounts while at work or checking our bank statements over the Internet at home. We
use a client application such as a browser, which is installed locally, to read and write
data on a Web server. For example, when you transfer money between your bank
accounts over the Internet, your browser reads the stream of HTML data from the
server and displays the data about your current account balances on the screen. Then,
you would make changes in the fields and press a button to invoke the changes back
on the server. At this point in the game, all the work is done on the server—the browser
only sends a stream of data back to the server, where the real work will happen to actu-
ally change your balance.

The difference between today’s technology and .NET is on what level the distribu-
tion occurs. With .NET, there is a shift from having large silos of data on servers to
having real functionality on the remote systems. With .NET, we will no longer be limited
to requesting a stream of formatted data from the Web server; instead, we can actually
call functions on the server in an object-oriented way. Think of the banking example
just described. With .NET, the bank could make not only this data, but also the func-
tionality and logic related to it, available as a Web service. Then, it could provide a user
interface in the form of a Web application as before. If the system is exposed as services,
the bank could also create a rich client application for its users that would provide
more advanced features than can easily be built in Web browser output. Or, maybe the
bank would create an application that plugs into a personal manager program, so that
you can check your bank balance from there. These are just some of the things that Web
services can provide; we will discuss how to create and consume Web services later in
the book.

While Web services are the underlying backbone to .NET’s idea of a massive distrib-
uted system, the Web as most of us know it today will remain unchanged for a long
time. We will still be accessing applications by using our Web browsers to request pages
of information. For these reasons, Web sites must become more feature rich while at the
same time support a diverse set of client devices, each with its own abilities and limita-
tions. This is where ASP.NET steps in, and this is what this book will focus on, and par-
ticularly how it is used when a Web browser is the client. In the very near future, many
people will be accessing the Web from their cell phones, cars, and pocket computers, but
those topics are outside the scope of this book. With ASP.NET, Web programming has
taken a large evolutional step in the right direction. And with the release of .NET, ASP
has been upgraded to a serious programming tool that just happens to support all of the
other great features of .NET and the distributed systems of tomorrow.

Making Sense of .NET 3

ASP in .NET

ASP.NET is the successor to Microsoft’s popular Web technology, Active Server Pages
(ASP). Its purpose is to deliver dynamic and active content in Web pages. Microsoft has
made some major advances with Active Server Pages. Let’s take a brief look at some of
the major differences between ASP and ASP.NET. You’ll need to have some under-
standing of these new features before we move on to building the application in the
rest of the book.

Compiled Code
One of the major changes with ASP.NET is how the code is interpreted. Previous ver-
sions of ASP pages were written using scripting languages. The Microsoft Scripting
Host engine interpreted these scripts entirely at runtime through the COM dispatch
interface. The drawback to this was the known overhead and limitations inherent in
interpreted code.

ASP.NET pages are compiled to native code and are not interpreted at runtime. The
default way to write ASP.NET pages with Visual Studio .NET is to use code-behind
classes. Code-behind classes are real, full-blown, object-oriented code classes that pro-
vide the functionality of each page and make up your ASP.NET application. When we
write ASP.NET applications this way, we compile them, link them, and then deploy
them to the server. When the application is compiled, it is output as an intermediate
language form called the Microsoft Intermediate Language (MSIL). This intermediate
language is then read by the .NET runtime and compiled to native Windows 32-bit
code. The result? A huge increase in performance—so much so that on complex Web
applications, there is a noticeable increase in reaction time over that of ASP.

In addition to the performance increase, compiling your code at design time is the
tried and true method of software development. Instead of failing at runtime, as with
ASP, you will be forced to correct your code before it ever reaches the runtime
environment.

Because ASP.NET applications are compiled, the developer has to ship only a mini-
mal set of files needed to run the application on the server. The source code written to
build the application is never required in the production environment. This makes
deployment easy, and it allows vendors that sell ASP.NET applications to keep their
source code private. This is in contrast to ASP, where all of the source code for the
application must be shipped and deployed onto the Web server.

The Common Language Runtime
ASP has been written in one of two languages supported by the Microsoft Scripting
Host: Visual Basic or JavaScript. Although popular, both of these languages are fairly
limited in their functionality.

.NET is based on the common language runtime. This is the heart of programming
in .Net, and it is the set of features and rules to which all .NET languages will adhere
and within which run. Currently, Visual Basic .NET, Managed Visual C++, and C# all
support the common language runtime. Although these languages each have their

4 Chapter 1

own syntax, style, and virtues, they all have the same base set of object-oriented char-
acteristics, support the same base class library, and run within the same environment.
In fact, the lines between the capabilities of different languages have blurred substan-
tially in .NET. For example, in the past, it was easy to see when it was better to use C++
versus VB. Now, because Managed C++ running in the common language runtime and
Visual Basic .NET support the same class library and object-oriented features, both
tools could most often be used to accomplish many of the same programming tasks.
The language choice will now be much more a programmer preference than a decision
made based on language features and capabilities. Any language can be made to compile
and run in the common language runtime. Many companies are developing common
language runtime compilers for their languages, including Perl, COBOL, Eiffel, Java,
and others.

ASP.NET gains the full benefit of common language runtime. ASP.NET programmers
can use Visual Basic .NET, C#, or any other language that supports common language
runtime. The key is the code-behind classes. Remember, these are the compiled object-
oriented classes that make up an ASP.NET application. Each page in an ASP.NET appli-
cation is explicitly linked to a common-language-runtime-based class (the code-behind
class), it doesn’t matter which language was used to create that class. In addition, the
standard type system defined by the common language runtime allows all of your
ASP.NET applications to use a uniform set of types, so programmers won’t have to be
concerned with remembering which type in one language matches which type in
another. The robust garbage collection engine ensures that memory is managed and
objects are allocated consistently across all .NET applications, in all languages, includ-
ing ASP.NET. This also removes the burden of deallocation from the programmer,
although no garbage collection system is a complete substitute for proper program
design.

Truly Object Oriented
Another major change from ASP is a move to true object-oriented programs. All .NET
applications, including ASP.NET, are fully object oriented. Here are just a few examples
of the object-oriented features inherent in the code running in the common language
runtime. All code lives inside some class. Everything is an object, even simple data types.
There is full support for static and instance properties, static and instance methods,
events, virtual functions, abstract classes, polymorphism, data hiding, and inheritance.
Using these features allows us to create far more robust applications than were possi-
ble with ASP. Although covering the full explanation of the object-oriented paradigm
is outside the scope of this book, you will see its use throughout the examples.

By moving to an object-oriented design in our Web applications, we also get away
from the tight binding between the user interface and the business logic that was
inevitable in ASP. ASP applications consisted of the ASP files that contained both the
user interface code in the form of HTML and special tags to mark the beginning and
end of dynamically executed code. To write object-oriented code, programmers either
had to use the very limited and sometimes nonintuitive objects that can be created
within the ASP scripting languages or write runtime-callable COM objects that would
be called by the scripting code. This allowed for black-box objects to be used in ASP
applications, but the only truly object-oriented code is confined to living inside the

Making Sense of .NET 5

COM object itself. A nice (and fundamental) feature of COM is that objects can be writ-
ten using various languages and tools, but not ASP scripting languages. Because of
this, creating object-oriented Web applications with ASP required programming in at
least two different tools and languages. Doing this also subjected the programmer to
the complexities of calling COM objects by their dispatch interface, as well as the inher-
ent dangers of calling code at runtime with no early binding type safety. Also, in these
cases, an ASP programmer who did not possess the skills to create COM objects would
have to rely on another programmer to provide this portion of the application.

In ASP.NET, and in all .NET applications, COM is no longer the foundation for dis-
covering, loading, and using binary black-box objects at runtime. .NET has retooled
the way this works and has its own native way to handle this using meta data that is
compiled into each and every object built on the common language runtime. Legacy
COM objects are still accessible from any .NET application including ASP.NET; how-
ever, to really leverage the power that .NET provides, programmers can write objects
of virtually unlimited complexity directly in the ASP.NET code.

In addition, to use objects without code, meaning to use a binary object that exists in
a DLL, you only need to reference it; .NET takes care of discovering and exposing its
capabilities for your use. One difference between this and COM is that the registry is
consulted to identify the interfaces exposed by a COM object, as well as its location on
the machine so it may be loaded. .NET objects are not referenced via the registry, but
they are referred to directly by the physical location of the DLL. This allows several
major advantages over COM. First, different versions of .NET objects can reside in dif-
ferent directories on the same machine without breaking the different versions of the
calling code. Also, .NET objects have meta data compiled into them so that the calling
code can learn about their interfaces without having to ask them through complex OLE
calls at runtime. This meta data also eliminates the need for header files, type libraries,
or wizards to create unfriendly wrapper code to which you must bind. And because
.NET natively supports this type of object binding, no special service has to be invoked
first as in nonmanaged C++, where an application must first initialize the COM envi-
ronment before even attempting to use an object.

Access the Entire Windows System
ASP applications were limited to access to functionality built into the scripting lan-
guages and interfaces exposed by COM objects provided by vendors or themselves.
For example, if an ASP application were to access the email subsystem, it would do so
by calling on interfaces exposed by COM objects that wrapped MAPI, or Microsoft’s
Collaboration Data Objects (CDO), or some other email client object by some other
vendor. Not so in ASP.NET, whose base class library provides native access to an object
that handles email services.

An ASP.NET application has access to a huge class library called the .NET Frame-
work Base Class Library (BCL). Like many large and robust class libraries such as those
in Microsoft Foundation Classes (MFC) or Java, much of the underlying functionality
of the host OS is wrapped and available for use. For the first time in the ASP world,
applications have native access (as opposed to COM object access) to almost the entire
Windows OS and everything that it provides. Even a full-featured fat client Windows
application written in .NET has no more power than an ASP.NET application in terms

6 Chapter 1

of using system services and resources. (Of course, the UI in a Windows app is more
robust than that in a browser, although .NET makes huge leaps to narrow even that
gap.)

There are sometimes cases when a programmer wants to access the Win32 or other
API directly, in cases where there is no access to a class object that wraps the desired
functionality. This could be for many reasons; an ASP.NET program may need to call
functions that are contained in a legacy non-COM Win32 DLL. Or, there may be some
rarely used functions in the Win32 set of APIs that are not included in the .NET Base
Class Library (BCL). In these instances, the Win32 Interop classes allow an ASP.NET, or
any .NET app for that matter, to call the function directly from the DLL in a simple, ele-
gant, code-light way. Those who are familiar with the VB style of calling DLL functions
via the Declare statement will see that .NET Win32 Interop works in a similar fashion.

Proper Error Handling
ASP applications traditionally have had very poor support for error handling because
of the limited features supported by the scripting languages. In VBScript, for example,
the support for On Error leaves a lot to be desired and is not at all extensible. In ASP.NET,
the application is running within the .NET runtime, which supports a very robust
exception-handling mechanism using a try-catch-finally-and-throw syntax. In fact, the
exception handling in .NET has been honed over many years of Microsoft’s providing
programming languages that support exceptions. And due to the full object support in
.NET, programmers can implement powerful, custom error-handling routines.

Server-Side Controls
To provide the user interfaces, ASP programmers have had to include standard HTML
controls in their ASP files and access them via their IDs within the DOM or create the
HTML to render the control directly using script code. The latter method is similar to
writing CGI code, which can be tedious. To use a control in an object-oriented way, you
would have to call a COM object that exposes an interface. In this case, however, the
object is wrapping up the details of writing HTML control code onto the stream
headed back to the browser.

.NET adds a host of feature-rich controls called Server Controls. These controls are
implemented and accessible as objects in the .NET Framework. To lay these controls
out in your UI, special tags are added to the HTML user interface files. These controls
are also flagged in code such that they will be run on the server. When the page is
processed, the ASP.NET engine creates the correct HTML code to render the controls
and sends it back to the browser for you. Throughout the code for your page, you can
access these controls very much as you would a Windows control in an MFC or VB6
app, by referring to them by their variable names and calling methods and accessing
properties on them.

In addition to the benefit of having real object-oriented access to your Web UI,
ASP.NET will automatically detect the browser devices’ capabilities and then render
the control appropriately. This frees programmers from the trouble of managing code
for detecting different versions of HTML and DHTML, for example. There are controls
for almost any type of UI item you could need for your Web apps, and some complex

Making Sense of .NET 7

controls as well. For example, several controls render data in grid fashion, without the
programmer’s having to create complicated and hard-to-maintain tables, divs, and
spans.

State in a Nonstate Environment
In ASP, each time a page is loaded, the code is executed in a top-down fashion, and the
response, including the dynamically generated HTML code, is sent to the browser.
There is no state held between a browser and the server because HTTP is a connec-
tionless protocol. The problem with this is that when the user reloads the page for any
reason, including action taken on some UI item like a form submit button that causes a
trip to the server, the page has to be completely reloaded. The programmer is respon-
sible for making sure the UI elements are in the same state each subsequent time the
server resends the page. For example, think of some ASP code that creates and fills a
list box with some text items, selects the first item, then sends it and a button to the
browser. The button is clicked, which submits a form, which causes a trip back to the
server. The same page is loaded again, and the same code executes. Now the list box is
created again, filled, and the first item is selected. What if the user had selected another
item in the list before hitting the submit button? The code should reflect this by select-
ing the correct list item before sending it to the browser on the second trip around; this
task is the programmer’s responsibility in ASP.

In ASP.NET, this is handled automatically and quite nicely. The ASP.NET page
framework makes the stateless HTTP protocol appear to have state. What this means
for the programmer is that you no longer have to write code to keep the UI current
with what the user has done to it between multiple server round trips on the same
page. In ASP, programmers often jump to a new page when a user performs an action
that will cause a round trip to the server. In ASP.NET, because the state of the UI is
taken care of automatically, programmers will find themselves adding more function-
ality to a single page, even if it requires multiple trips to the server. In addition to the UI
state as the user sees it, state is maintained in the UI objects that are in the code-behind
the page as well. In ASP, form variables or a query string must be consulted to see what
value was in a UI control when it was submitted. In ASP.NET, the values are in the
most natural place, the control object variable itself. This adds a whole new level of UI
programmability to Web apps. It also makes the code more like that of an MFC or VB
Windows app, where the controls themselves are accessed as objects.

Event-Driven Programming
ASP provided nothing in the way of event-driven programming. In order to handle
events, programmers had to rely on handling form submissions or handle the event on
the client using VBScript, JavaScript, or Jscript. In ASP.NET, when a user causes an
event by pressing a button or selecting an item in a list on the browser, for example, an
event is fired in the code on the server. This occurs via some .NET-generated JavaScript
and a form submittal, but that happens behind the scenes. Finally, Web programmers
can handle real events all in one place: the server. All events in .NET are handled by
what are called delegates, which are analogous to function pointers. Really, these dele-
gates are just like the event handlers in VB apps, and for most standard events, they

8 Chapter 1

can even be added via point and click in the Visual Studio .NET IDE. But unlike last-
generation VB event handlers, .NET event handlers can be added both at design time
and runtime, so you can do much more robust things with the code than ever before,
including creating your own custom events. This is fully supported in ASP.NET apps
as well.

In most traditional apps, during an event handler, UI controls are updated to show
changes in the state of the app. Because ASP.NET events are run on the server, the
server-side controls reflecting your UI can be accessed, as mentioned in an earlier sec-
tion. This again brings the robust programming styles we have enjoyed in traditional
Windows app to the Web.

Processing the Pages
ASP pages are processed on the fly by an ISAPI DLL that is loaded by the Web server
and passed the contents of ASP pages when they are requested. One problem with this
design is that if the ISAPI DLL enters some sort of exception state, the whole Web
server could hang because it is running in the same process. This can be made to run
in an external surrogate process by modifying certain options in IIS for the app in ques-
tion, but doing so can require more system resources and negatively affect perfor-
mance overall.

ASP.NET uses a different approach. A separate Windows service executable runs
and is passed the ASP.NET pages for processing. This service cannot bring down the
Web server if it fails to respond or enters a state of exception because it is running in an
entirely different process. If the ASP.NET service ever stops responding you will still be
able to access non-ASP.NET content on the server. Basically, your HTML and legacy
ASP pages will still function properly; however, you would not get any response when
trying to access an ASP.NET page until the malfunctioning service was restarted.
Because of this more robust way to process the pages, performance and reliability are
substantially increased. Your Web apps will respond better, and they will stay running.
In addition, the runtime services for ASP.NET are configurable such that they can
be made to restart periodically, a feature that leads to a somewhat self-healing Web
application.

Introducing C#

C# (pronounced C Sharp) is the newest addition to the Microsoft suite of Windows
programming languages. C# is the first new language to support the .NET Framework
and common language runtime. It was built from the ground up to mesh very well
with the loyal Windows programmers as well as programmers of other environments.
C# uses the familiar and robust C/C++-like syntax and in many ways is very similar to
Sun’s Java programming language. C# is a general-purpose language well suited to
most types of application development. It has the simplicity to allow a programmer to
create powerful, high-level apps in a short period of time, but it is also perfectly suited
to low-level and system programming. In fact, most of ASP.NET itself was developed
in C#.

Making Sense of .NET 9

Other than in its syntax, C# is different in many ways from C++, and it fixes some of
the complexities in C++. For example, C++ programmers have the burden of keeping
track of header files and initializing their variables. Header files and the circular refer-
ence headaches that they brought with them do not exist in C#. Variables are automat-
ically initialized for you, numeric data types are initialized to 0, and string types are set
to an empty string. As another example, dynamically determining object types in C++
can require advanced techniques and, in some cases, compiler switches (speaking of
RTTI options). C# takes care of these complexities for you, allowing you to concentrate
more on the logic rather than the plumbing of your application.

Unlike C++, which allows variables and code outside of any class, C# is completely
object oriented. For example, although C++ allows for true multiple inheritance, mean-
ing that a class in C++ can inherit implementation from more than one base class, this
can get very complex very quickly and can cause problems that are difficult to solve. In
fact, most of the programming community has learned that multiple implementation
inheritance is rarely needed; Microsoft’s flagship MFC doesn’t even use it at all. In con-
trast, C# supports single implementation inheritance and multiple interface inheri-
tance. C++ allows you to create an interface class, too, but by means of writing an
abstract class with all pure virtual functions. C#, on the other hand, supports this with
the much simpler and more readable interface keyword. With C++, some operators
have several meanings, and often an operator itself is not at all descriptive of what it
does. Sometimes it can be hard to see what is happening in code based solely on the
syntax. In C#, however, there are distinct keywords and operators for the different
features, and reading the code is usually much easier. Take, for example, C#’s ref key-
word, which means that a function is taking a parameter by its reference. This is much
more sensible than the pointer dereference or reference operators in C++, which are the
vague * and & characters, respectively.

In addition to simplifying the language and supporting a well-defined set of objec-
tive features, C# has some nice examples of syntactical sugar throughout. For example,
typically when iterating through a collection in C++, a programmer must deliberately
code for getting the first item, then continuously getting the next item until the end is
reached. C# introduces something entirely new to C++ programmers, the foreach
construct, which has been in Visual Basic for years. This is a way to iterate through a
collection with a very simple and readable syntax. Another example is indexers. Index-
ers are used in collections classes so that the caller can index an item in the collection
without having to call a method or property explicitly. This doesn’t enhance program
performance, but it makes the code simpler and more readable. Plus, because a lot of
these syntax enhancements lessen the amount of code that needs to be written, there is
less chance for errors.

Clearly these are just some examples of how C# handles some things differently
than C++, but we want you to have some idea of the design goals of the language.
There are already good books on C#, so try one out. For now, know that C# is likely to
become extremely popular with the huge base of C/C++ programmers, as well as with
VB and Java programmers looking to move to something new. It supports the power
and robustness of C++, with its familiar syntax, but helps alleviate some of the nastier
parts of the former language so you can get on with the important matter of producing
great apps.

10 Chapter 1

Where Do We Go from Here?

Now that you’ve had a tour of .NET and seen how it has changed ASP, it’s time to get
our hands dirty and do some coding. In the next chapter, we will get right into the
basics of writing ASP.NET pages, and then we will move quickly into the heavy tech-
nical content that will constitute the remainder of the book.

Making Sense of .NET 11

TE
AM
FL
Y

Team-Fly®

13

Now that we know what ASP.NET is, let’s take a look at the traditional Hello World
application. This chapter will give you the very basics that we will build on in the
remainder of the book. ASP.NET pages can be developed with a simple text editor or
by using Visual Studio .NET. We’ll cover these methods in depth.

The first few examples that we cover demonstrate how you can go about writing
ASP.NET pages with a simple text editor. We then finish up the chapter by creating our
first page with Visual Studio .NET. Although Visual Studio .NET is not required to
develop ASP.NET pages, it does make things a lot easier. In addition, we’ll take a look at
what ASP.NET and the .NET Framework are doing for us behind the scenes. Some of the
information we cover is fairly advanced, but it is necessary to fully understand all that
ASP.NET does for you. It also might come in handy when something goes astray on your
Web server at 2:00 in the morning. If you’re like us, you’ll want to know exactly how
everything is working and where things are located. If you’re not, then you can just pre-
tend that the things you don’t know or care about are simply a bit of Microsoft magic.

A Simple Page

In its absolutely simplest form, an ASP.NET page is nothing but pure HTML. Any file
with the extension .aspx will be parsed by aspnet_wp.exe. If there isn’t any script in the
.aspx file and there are no references to a code-behind file, then the page simply passes
through and is sent directly to the client in its raw form.

To test this theory, we’ll create an ASP.NET page called HelloWorld.aspx and save it
in the root directory of our default Web site. We’ll then request the page from a browser
and view the source of the page to verify that it has not been changed.

Anatomy of an ASP.NET Page

C H A P T E R

2

Start by firing up your trusty copy of Windows Notepad. Enter the following HTML:

<html>

<head>

</head>

<body>

Hello World

</body>

</html>

Save the document as HelloWorld.aspx in the root directory of your default Web
site (usually c:\inetpub\wwwroot). Now open your browser and navigate to http://
localhost/HelloWorld.aspx. You should see a pretty boring page that says Hello World
across the top. Now view the source for the page within your browser. If you are using
Internet Explorer this can be done by selecting View, Source from the drop-down
menu. If everything went correctly, you should see the exact same code that you typed
into your HelloWorld.aspx file, completely unchanged.

Adding a Web Control
Now let’s make a slight change to our HelloWorld.aspx file. We’ll use an ASP.NET Web
Control to display the “Hello World” text. We’ll see how ASP.NET processes the page on
the server and renders the appropriate HTML in place of the Web Server Control. Web
Server controls provide us with a wide range of UI functionality from displaying a simple
line of text to a very sophisticated data grid. In addition, Web Server Controls can be
accessed programmatically in server-side code, which enables us to make our pages fully
dynamic. We’ll be covering Web Server Controls in detail in Chapter 3, “Server Controls.”

<html>

<head>

</head>

<body>

<form runat=server>

<asp: Label text="Hellow World" runat=server />

</form>

/body>

</html>

Save this file as HelloWorld2.aspx in the same directory as before. Now navigate to
http://localhost/HelloWorld2.aspx with your Web browser. The page should look sim-
ilar to your original page. The difference is “Hello World” is wrapped up inside of a
 tag. There is also a hidden input element called VIEWSTATE, which we will cover
in the next section. View the source of this page and you should see the following:

<html>

<head>

</head>

<body>

<form name="_ct10" method="post" action="HelloWorld2.aspx" id="_ct10">

<input type="hidden" name="_VIEWSTATE" value=dDw5MjMzODA0MjI7Oz4="/>

14 Chapter 2

Hello World

</form>

/body>

</html>

Now let’s examine what happened here at a high level. <asp:Label> is an ASP.NET
Web Control. This is one of many Web Controls designed by Microsoft and included
with the .NET Framework. When the HelloWorld2.aspx page is processed, the Web
server creates a Label control. The Label control has a property called text, which con-
tains the text that will be displayed by the control when the page is rendered. It also
contains a property called runat, whose only valid value is server. This tells ASP.NET to
process the control on the Web server. With Web and HTML controls, you must always
set the runat property to server. As you can see from viewing the source of the ren-
dered page, the <asp:Label> control renders its text inside of an HTML block.

It is also important to note that Web Controls must be placed inside of a <form> tag
that also has its runat attribute set to server.

We should also point out that anything on the page that does not require server-side
processing is compiled into an instance of the LiteralControl object on the server. The
purpose of this object is to act as a holder for text when the page is being processed on
the server. Any HTML element that does not contain a runat=“server” attribute/value
pair in its opening tag, as well as any text on the page, will be compiled into a Literal-
Control object.

Introducing In-Line Script

“Let’s modify the page again. We’ll add a button to our page using another Web Con-
trol <asp:Button>. When this button is clicked we’ll change the text of our <asp:Label>
control from “Hello World” to “.NET Rules!”. We’re going to do this with a little bit of
C# code inside of a method that will be called when the button is clicked. For now, we
are going to write this method within the .aspx file along with the HTML and ASP.NET
content. This is called in-line script. In the next section, we’ll see how to use code-
behind to separate our code from the rest of the page.

Modify the HelloWorld2.aspx file as follows and save it as HelloWorld3.aspx.

<html>

<head>

</head>

<body>

<form method="post" runat="server">

<asp:Label id=lblHelloWorld text="Hello World" runat=Server />

<asp:Button onclick=ClickedIt text="Submit" runat=Server />

</form>

</body>

<script Language=C# runat=server>

void ClickedIt(object sender, System.EventArgs e)

{

lblHelloWorld.Text = ".NET Rules!";

Anatomy of an ASP.NET Page 15

}

</script>

</html>

Once again, navigate to this page and view it with your Web browser. When the
page is first rendered, the text at the top should be “Hello World”. Click the Submit
button, and the text should change to “.NET Rules!”, as shown in Figure 2.1. Let’s
examine what we had to do to get this to work.

We included an HTML <form> block, which is the standard way to collect data from
the user and send it back to the Web server. All of the controls for this page are con-
tained within this <form> block. We set the method property of the form to post and set
the runat property to server. Note that the action property of the <form> tag is omitted.
In standard HTML, the action property sets the URL of the page that will process the
form data on postback. Without it, the page doesn’t know where to post to and the but-
ton won’t work. Because the runat property of the <form> tag was set to server,
ASP.NET will process it as an HTML Control. HTML Controls are very similar to Web
Controls in that they can be programmatically accessed on the server; however, they
retain the familiar look and feel of an HTML element. An HtmlForm control will be cre-
ated on the server when this page is requested. The HtmlForm control has an action
property, whose default value is the current page. We’ll see this when we examine the
rendered source of the page. The full set of Web Controls is covered in Chapter 3.

The second thing we did is to assign an ID to the <asp:Label> control. This will
allow us to programmatically access the control by name in the C# code. We also added
an <asp:Button> control to the page and set the onclick attribute to ClickedIt. The
onclick attribute allows us to specify a method that will be called when the click event
of the button is fired. ClickedIt is a method that belongs to our page. For this example,
we have written it inside of a <script> block within the .aspx file. Finally, set the runat
property to server.

The <script> tag has a Language property, which is used to designate the program-
ming language that will be used inside the script block. For the initial release of
ASP.NET, the valid languages are C#, Visual Basic .NET, and Jscript. In addition, you
can’t mix and match languages within the same page, so you can’t have one script
block written in C# and another written in Visual Basic .NET. Here we set the Language
property to C# as that is the language that we will be using consistently throughout
this book. Inside the <script> block we have one simple line of C# code.

lblHelloWorld.Text = .NET Rules!";

Figure 2.1 Our Hello World Application.

16 Chapter 2

This line sets the text property of the Label control to the string “.NET Rules!”. Note
that we are still setting the text property of the Label control with this line of code:

<asp:Label id=lblHelloWorld text= Hello World runat=Server />

This is why we see “Hello World” when we first request the page. After clicking the
Submit button, the ClickedIt method is called and changes the text property of the
Label control to “.NET Rules!”.

Before we examine the rendered source of this page, let’s try one more thing. Navigate
to the page again with your browser and click the submit button once. Now refresh the
page with your browser. (If you are using Internet Explorer, pressing F5 will do this.
You may get a pop-up dialog with a Retry and a Cancel button. If you do, just click
Retry.) Notice that the text at the top of the page is still “.NET Rules!”. ASP.NET has
maintained the state of the page for us and repopulated the Label control with the text
that it contained before the postback. This is something that had to be handled entirely
manually with ASP. Let’s examine the rendered source and see how this all works.
Here is the source of the rendered page on our machine.

<html>

<head>

</head>

<body>

<form name= ctrl1 method= post action= HelloWorld3.aspx

id= ctrl1 >

<input type= hidden name= __VIEWSTATE

value= dDwtMTc5Njg3MTUyMjt0PDtsPDE8MT47PjtsPHQ8O2w8MTwxPjs+O2w8dDxwPHA8b

DxUZXh0Oz47bDwuTkVUIFJ1bGVzITs+Pjs+Ozs+Oz4+Oz4+Oz62BKTiR3UtZabhkEbCIE3jS

lq7hA== />

.NET Rules!

<input type= submit name= ctrl6 value= Submit />

</form>

</body>

</html>

Notice that every HTML element on the page has been assigned either a name or an
ID, or both. In the case of the Label control, a tag was rendered with the same ID
that we assigned to the Label control, lblHelloWorld. ASP.NET has auto-generated IDs
for the rest of the elements because we did not assign any ourselves.

We can also see that the <form> element’s action property has been given the value
HelloWorld3.aspx, which is the name of the current page. Remember that we didn’t set
this ourselves; the HtmlForm control did this for us on the server.

The <asp:Button> control was rendered as an HTML <input> element. Its type prop-
erty is set to submit, which causes the form to postback to the Web server when the
button is clicked. Its value property is also set to “Submit,” which is the caption that
appears on the button and is the value that we assigned to the text property of the
<asp:Button> control.

Anatomy of an ASP.NET Page 17

The last thing to look at is probably the most important thing. A hidden <input> ele-
ment has been added to the form with the name __VIEWSTATE. This is how ASP.NET
maintains the state of a page from postback to postback. The first time we request the
page, ASP.NET encoded the values of all of the controls and stored them in the value
property of this hidden <input> element. On every subsequent submit of the page, this
is used to reinitialize the Web Controls and HTML Controls that are created on the
server when the page is being processed. ASP.NET will allow us to store other things
here as well, such as server side variable values that we want to maintain. We’ll cover
how to go about doing that in later chapters.

Code-Behind

In-line script is useful for putting together very small pages and maintaining the entire
source in one single file. It has some shortcomings, though. Only one person can edit a
single .aspx file at a time. That means that a page designer and a programmer can’t be
working on the same page at the same time. This could be a problem if the page
designer and the programmer are two different people and are working collabora-
tively on a project. If the designer and the programmer are the same person, then it
isn’t a problem at all.

Another problem with in-line script is that compile errors are not detected until the
page is requested for the first time with a Web browser. You can’t precompile your in-
line C# code to make sure that it is syntactically and semantically correct. The very first
time that an ASP.NET page is requested, all of the code is compiled. It is not until this
time that errors in your in-line code will be detected.

Also, in-line script does not provide you with the ability to protect your source code.
If you are developing an application that will be distributed, you may very well be
giving away intellectual property if you use in-line script.

ASP.NET provides us with the ability to separate the user interface from the code to
a large degree. And, in fact, if you keep all of your code in the code-behind classes, you
can achieve complete logic and user interface separation. This allows a page designer
to work on the UI, while a programmer develops the functionality of the page. In addi-
tion, it allows us to precompile our code and protect our intellectual property. This
feature was referred to in Chapter 1, “Making Sense of .NET,” as code-behind classes. To
use it, we must add a tag to the top of the .aspx file that tells ASP.NET where to find the
code that supports the page. We then have a separate C# (.cs) file that contains all of the
code for the page. This C# file must be precompiled into a class library (.dll file) and
placed in the bin directory of the Web application. Precompiling this code means that
we can work out any blatant C# coding mistakes ahead of time. Code-behind also
helps promote code reuse and makes our pages much easier to understand and debug
because the code is in a completely separate file.

Let’s go ahead and work up a code-behind example building on the Hello World page.
We’ll rewrite the HelloWorld3 example, but this time we’ll use code-behind instead of in-
line script. First, let’s modify the code from the HelloWorld3.aspx file. We’ll remove the
<script> block and add a Page Directive to the top of the file. Page directives allow us to

18 Chapter 2

specify various settings that should be used by the compilers when the page is
processed. Modify the file as follows, and save it as HelloWorldCB.aspx.

<%@ Page Inherits="Wiley.ASPNET.HelloWorldCB" %>

<html>

<head>

</head>

<body>

<form method= post runat= server >

<asp:Label id=lblHelloWorld text= Hello World runat=Server />

<asp:Button onclick=ClickedIt text= Submit runat=Server />

</form>

</body>

</html>

All ASP.NET page directives must start with an opening tag <%@ and end with a
closing tag %>. They can be located anywhere within the .aspx file, though the stan-
dard practice is to place them at the top of the file. Note that this is similar to ASP,
where code is delimited by <% and %>. In ASP.NET, this too is the case although we
will often have all of our code in the code-behind classes, rather than inside <% %>
markers in the aspx file. We are using the @Page directive here, which is used by the
ASP.NET page parser and compiler to set various page-specific options. The Inherits
attribute has been set to Wiley.ASPNET.HelloWorldCB. This tells ASP.NET that the
class or object that contains the code for this page is HelloWorldCB, which is located in
the Wiley.ASPNET namespace. ASP.NET will look for a dll in the bin directory that
implements this class when it processes the page.

Now we need to create a C# file to implement the HelloWorldCB class. Create a
new file with the following code, and save it in the same directory with the Hello-
WorldCB.aspx file. Name this file HelloWorldCB.cs.

namespace Wiley.ASPNET

{

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public class HelloWorldCB: System.Web.UI.Page

{

protected Label lblHelloWorld;

protected void ClickedIt(object sender, System.EventArgs e)

{

lblHelloWorld.Text = .NET Rules! ;

}

}

}

Anatomy of an ASP.NET Page 19

The first line of code defines a namespace called Wiley.ASPNET. Namespaces provide
us with a way to organize related code into logical groups. In addition, a namespace
allows us to create globally unique types because all types declared within a name-
space are specific to that namespace. For instance, in the preceding code a class called
HelloWorldCB is declared. The fully qualified name for this class is Wiley.ASPNET.
HelloWorldCB. This class would be completely distinguishable from another class
with the name HelloWorldCB that is declared in a different namespace.

The next thing we see is several using directives (not to be confused with the using
statement). The using directive can save us a lot of typing, and that is the only thing it
does for us. It allows us to use names in a namespace without having to fully qualify
them. For instance, in this example we declare a Label with this line of code.

protected Label lblHelloWorld;

The Label class is defined in the System.Web.UI.WebControls namespace. If we had
not included this namespace with a using directive, we would need to fully qualify the
Label class like this:

protected System.Web.UI.WebControls.Label lblHelloWorld;

Next, the HelloWorldCB class is defined. In this class, a Label control is defined and
a ClickedIt method is implemented as in previous examples. This class is the one from
which our .aspx page is inheriting, as we defined in the Page directive in .aspx file.

Now we need to compile this into a .NET library type assembly. An assembly is the
primary building block of a .NET application. Not only does it contain compiled code,
but it also contains meta data that makes it completely self-describing, such as how to
resolve references to other code. We’ll compile our code from the command line using
the C# compiler. Open up a command prompt, navigate to the directory containing
your HelloWorldCB.cs file, and execute the following command at the prompt:

csc /t:library /r:System.Web.dll HelloWorldCB.cs

This line asks the C# compiler (csc) to compile the HelloWorldCB.cs file into a
library type assembly. This is designated using the /t or /target switch. The valid val-
ues for this switch are exe, winexe, library, or module. The exe option is for compiling
console applications. The winexe option is for windows applications, and the module
option is an advanced option that we won’t be covering in this book. In addition, we
need to reference the .NET Framework System.Web.dll assembly using the /r or /ref-
erence switch. This assembly contains a large portion of the code that we will need for
developing ASP.NET pages and implements everything under the System.Web name-
space. Referencing an assembly when compiling is not the same thing as including a
namespace with the using directive. When we reference an assembly we are telling the
compiler which other assemblies that it can examine for types used but not defined in
our code. The using directive allows us to use types in a namespace without fully qual-
ifying their names. Keep in mind that if you want to use classes that are in a namespace
that is not in the DLL (or exe) you are building, you will have to reference them using
the compiler options listed previously. Merely qualifying the name of a class or includ-
ing the using alone will not allow your code to compile if the DLLs are not referenced.

20 Chapter 2

Once you have executed the compiler command and it has compiled without error,
a file named HelloWorldCB.dll will be created in the same directory. This is a .NET
assembly file containing the class HelloWorldCB. This assembly file needs to be placed
in the bin directory of the Web application. If you are still using the IIS default Web site,
you may need to create a bin directory manually under inetpub\wwwroot. After
doing so, move the HelloWorldCB.dll file into the bin directory.

Now we should be able to request the page from the Web browser. It should work
exactly as the HelloWorld3 example. In addition, if you view the source of the rendered
page, it should look very similar to the HelloWorld3 example.

That sure seemed like a lot of extra work to use code-behind, but as we’ll soon see,
Visual Studio .NET makes this whole process a piece of cake. But before we move on to
that, let’s examine the contents of the HelloWorldCB.cs file and introduce you to the
Page class.

The Page Class

Every ASP.NET page is compiled into a class that inherits either directly or indirectly
from the class System.Web.UI.Page. This class provides us with all of the base func-
tionality that is required for ASP.NET to process a page on the server. It provides us
with several events (discussed later in this section) that we can handle, as well as access
to things like the Request and Response streams. The Page class is provided with the
.NET Framework and is implemented in the assembly System.Web.dll. You can find
this assembly and all of the other .NET Framework assemblies in the folder Winnt\
Microsoft.NET\Framework\v{version number}, where {version number} is the version
of the framework that you have installed on your machine. These framework dlls are
.NET assemblies, meaning that they contain Microsoft Intermediate Language (MSIL)
code, not native x86 code. You can use a tool called ILDASM.exe to view .NET assem-
blies. Let’s do this now and take a look at the System.Web.dll assembly.

Open up a command prompt, and execute the following command:

ildasm \Winnt\Microsoft.NET\Framework\v{version number}\System.Web.dll

On our machine, {version number} is 1.0.2609. Yours will be different, so you’ll need
to substitute your appropriate version number. This should start up the ILDASM util-
ity, and you should see a screen similar to Figure 2.2.

Figure 2.2 ILDASM view of System.Web.dll.

Anatomy of an ASP.NET Page 21

On the screen you can see that this assembly contains a namespace called System.
Web and is represented in ILDASM as a node in the tree view with a shield-shaped
icon. If you expand this node, you’ll see that there are several other namespaces
defined beneath System.Web. System.Web.UI is one of these namespaces. You’ll also
see many classes, enums, and interfaces that are defined in the System.Web name-
space. Expand the System.Web.UI node of the tree view, and scroll down to the Page
node. Expand this node, and you should see something similar to Figure 2.3.

There is quite a bit of information available to us here. We can see all of the methods,
properties, events, and anything else that is defined and implemented in the Page
class. For example, we can see that the Page class extends (inherits from) System.Web.
UI.TemplateControl. We aren’t going to go into the gory details of everything that is
inside an assembly because it is beyond the scope of this book. We wanted to introduce
you to the tool and give you a look at the internals of the System.Web.UI.Page class.
You can experiment further with ILDASM if you wish. You don’t have to worry about
damaging anything, as ILDASM does not modify files in any way. It is a read-only tool.
ILDASM might come in handy as a debugging tool if you are having problems using
an assembly created by a third party. If you learn how to read MSIL, you could even
see exactly what the code is doing.

Now let’s revisit the code in the HellowWorldCB.cs file. We defined our Page class
under the namespace Wiley.ASPNET because it is contained within the “namespace
Wiley.ASPNET” code block. We’ve also used a few using directives to save us some
typing.

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

Finally, we declare the class HelloWorldCB and declare its base class to be that of
System.Web.UI.Page.

public class HelloWorldCB: System.Web.UI.Page

Inside the class definition, we defined a member of type System.Web.UI.WebControls.
Label. Once again, we omitted the namespace prefix and defined the member variable
as type Label because we imported the System.Web.UI.WebControls namespace with a
using directive.

protected Label lblHelloWorld;

Notice that the member is named lblHelloWorld, which is the same ID that was
assigned to the <asp:Label> control in the HelloWorldCB.aspx file. This allows
ASP.NET to associate the two, and it allows you to programmatically access the lbl-
HelloWorld control in the code-behind file. Another important thing to note is that
nowhere in the HelloWorldCB.cs file do you have to create a new Label control and
assign it to the lblHelloWorld member variable. Because this control was defined in the
.aspx file, ASP.NET will create an instance of this control for us.

22 Chapter 2

TE
AM
FL
Y

Team-Fly®

Figure 2.3 ILDASM view of the Page class.

The last thing that we define in the HelloWorldCB class is the method ClickedIt,
which gets fired when the Submit button is clicked. The name of this method matches
the value to which we set the onclick attribute of the button.

protected void ClickedIt(object sender, System.EventArgs e)

{

lblHelloWorld.Text = .NET Rules! ;

}

Inside the method, we set the Text property of the lblHelloWorld member variable
to the string “.NET Rules!”. When the lblHelloWorld control is rendered, this text will
be displayed.

Special Page Class Events
An ASP.NET page has a specific set of stages that it progresses through in its life cycle.
Understanding these stages will go a long way to helping you understand how a page
works and will help you greatly during debugging. Here is a high-level description of
the stages in the page life cycle.

1. The page is initialized. This includes creating control instances and setting up
event handlers.

Anatomy of an ASP.NET Page 23

2. The view state is processed, which populates the controls with data.

3. The Load event is fired. This is where we will begin to implement the logic of
our page.

4. Event handlers for client-side actions are called, such as button click event
handlers.

5. The view state is saved.

6. The page is rendered.

The Page class provides us with events that allow us to hook into the different stages
of the page life cycle. Before we discuss these events, let’s clarify exactly what an event
is and how we can subscribe to it. In the previous section, we handled or subscribed to
the click event of a button. We did this by setting the onclick attribute of the button in
the .aspx file to the name of a method in our code. When the page was processed on the
server, ASP.NET added the ClickedIt method to the list of subscribers for the click
event of the button. When the button was clicked, our ClickedIt method was called.
Let’s take a look at the ClickedIt method signature again.

protected void ClickedIt(object sender, System.EventArgs e)

Notice the parameters in the method signature. These parameters are required by
any method that wishes to subscribe to a click event. Every event defines a method sig-
nature that its subscribers must adhere to through the use of a delegate. A delegate is a
special class that has a signature and can hold a reference to a method. It can hold a
reference only to a method that matches its signature. To subscribe to the click event of
a button we must use a System.EventHandler type delegate. This is the definition of
System.EventHandler.

public delegate void EventHandler(

object sender,

EventArgs e

);

Our ClickedIt method matches the signature of EventHandler. We could subscribe
our ClickedIt method to the click event of a button with the following C# code.

MyButton.Click += new System.EventHandler(ClickedIt);

With that line of code, we have created a new instance of System.EventHandler and
given it a reference to our ClickedIt method. When used in this context, the += syntax
takes on a special meaning that says add this EventHandler to the list of subscribers for
the Click event. Likewise, we can remove an EventHandler from the list of subscribers
by using the -= syntax as follows:

MyButton.Click -= new System.EventHandler(ClickedIt);

Now that we know how to subscribe to events and what delegates are, a couple of
events of the Page class deserve special attention. If you are using in-line script and not

24 Chapter 2

code-behind, these events are prewired to special methods that you can define and
take advantage of in your in-line script. If you are using code-behind, you’re left to
wire these events up yourself. Don’t worry about the extra work of wiring up the
events because Visual Studio .NET will do most of this for you.

NOTE The @Page directive has an attribute called AutoEventWireup that can
be set to true or false. This attribute is used to tell ASP.NET whether to
automatically wire up the events of the Page class for us. When using code-
behind, this attribute is usually set to false and the event wire-up is done
manually or with the help of Visual Studio .NET. The default value is true, and
if the AutoEventWireup attribute is omitted, as it normally will be when using
in-line script, the Page class events will be auto-wired.

Let’s take a look at the two most important events of the Page class and what each
one should be used for.

Init

private void Page_Init(object sender, EventArgs e)

The Init event is the first event fired in a Page life cycle. It is during this event that
ASP.NET creates all of the controls for the page. You will mainly use this event to wire
up event handlers. If you are developing your pages with Visual Studio .NET, it will
place event wire-ups for your controls inside the Page_Init method. It will also wire up
a handler for the Load event here. To use this event, define a method called Page_Init
with the EventHandler delegate signature, as follows:

{

this.Load += new System.EventHandler(this.Page_Load);

}

Notice that we have wired up the Load event of the Page class to a method called
Page_Load inside of the Page_Init method. This ensures that our handler for the Load
event will be called. If you’re using code-behind, you’ll have to wire your Page_Init
method to the Init event in the constructor of your code-behind class as follows:

public WebForm1()

{

Page.Init += new System.EventHandler(Page_Init);

}

If you’re using in-line script, this will be done for you.
One important thing to note about the Init event is that your page view state infor-

mation cannot be accessed inside this method because it has not been loaded yet. This
means that we can’t do things such as validate values that a user may have entered on
the page.

Anatomy of an ASP.NET Page 25

Load

The Load event is fired after the Init event. The main difference between the Load
event and the Init event is the availability of the page view state. Unlike the Init event,
the view state is available when the Load event is fired, so we can examine the values
of controls and process the page as needed.

If you are using in-line script, the Page_Load method will be prewired to the Load
event. The Page class defines a property called IsPostBack, which returns a Boolean
true if the page is being requested on a postback or a Boolean false if the page is being
requested by the client for the first time. Use this property to make sure certain code is
executed only the first time the client requests the page—for example, retrieving data
from a database and populating drop-down lists or tables. Because ASP.NET saves the
state of the page, you don’t have to obtain static data again from the database and
repopulate the page on subsequent postbacks, as was the case with ASP. This makes
the page execute a lot faster and doesn’t use up valuable database and server resources
when unnecessary.

A typical Page_Load method will be defined as follows:

private void Page_Load(object sender, System.EventArgs e)

{

//Place any code that needs to be executed on every request here. This

//could be things such as setting up a database connection that will

//be used throughout the processing of the page.

if(!IsPostBack)

{

//Place any code that needs to be executed only on first request

//here. This would include things such as retrieving static data

//from the database and populating drop-down lists or tables with

//this data.

}

else

{

//Place any code that needs to execute only on a postback here.

//This might include code that checks for some kind of user input

//that wouldn t be available when the page Is first requested.

}

}

Unload

The Unload event is fired when the page is unloaded from memory. It is a good place
to take care of any clean-up for the page, such as closing any open database connec-
tions or releasing any other valuable resources. The Unload event is not prewired to
any method, regardless of whether you use in-line script or code-behind. To use it,
prewire it manually, just as we did with the Page_Load method previously.

26 Chapter 2

this.Unload += new System.EventHandler(this.Page_Unload);

Once again, Visual Studio .NET makes wiring up events like this a lot easier for you.
You can double-click on an event name in the Visual Studio .NET property page, and it
will create an event handler for you as well as wire it up to the event.

An Event Example
Let’s rewrite the HelloWorld3 example to demonstrate the use of the Init and Load
events. We’ll use the Init event to wire up the click event handler for our button and the
Load event to set the initial text of our Label control. Modify the HelloWorld3.aspx file
as follows, and save it as HelloWorldEvents.aspx. The lines that need to be changed or
added appear in bold:

<html>

<head>

</head>

<body>

<form method="post" runat="server">

<asp:Label id=lblHelloWorld runat=Server />

<asp:Button id=btnSubmit text="Submit" runat=Server />

</form>

</body>

<script Language=C# runat=server>

Anatomy of an ASP.NET Page 27

OTHER PREWIRED EVENTS

There are four additional events that are prewired for you if you are using in-line script:

DataBinding. Prewired to Page_DataBind. Notifies the control to perform any
DataBinding logic.

PreRender. Prewired to Page_PreRender. Used to perform any updates to controls
just before the page is rendered.

Dispose. Prewired to Page_Dispose. Used to perform any page clean-up that is
necessary.

Error. Prewired to Page_Error. This event is fired when an unhandled exception
occurs in the processing of the page.

Although we won’t be using these events right now you should be aware of the
prewirings if you intend to use in-line script.

void Page_Init(object sender, System.EventArgs e)

{

//Wire up our Click event

btnSubmit.Click += new System.EventHandler(ClickedIt);

}

void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

//Set the initial text of the label to Hello World

lblHelloWorld.Text = "Hello World";

}

}

void ClickedIt(object sender, System.EventArgs e)

{

lblHelloWorld.Text = ".NET Rules!";

}

</script>

</html>

If you go to the new HelloWorldEvents.aspx page with your browser, it should
work exactly as HelloWorld3.aspx. Let’s look at what we changed and why it still
works.

First, we eliminated the setting of the initial text of the label from the definition of
the control by removing the Text attribute of <asp:Label> control lblHelloWorld.
Notice that the text at the top still reads “Hello World” when the page is first requested.
This text is set in the Page_Load method; we used the following code to set the Text
property of the Label:

if (!IsPostBack)

{

//Set the initial text of the label to Hello World

lblHelloWorld.Text = "Hello World"

}

This code was placed inside the if statement so that it would execute only the first
time the page is requested.

Next, we removed the onclick attribute of the <asp:Button> control and assigned the
button an ID, btnSubmit. So, instead of prewiring the Click event of the button to the
ClickedIt method inside the definition of the button, this is done in the Page_Init
method with the following code:

void Page_Init(object sender, System.EventArgs e)

{

//Wire up our Click event

btnSubmit.Click += new System.EventHandler(ClickedIt);

}

28 Chapter 2

This adds the ClickedIt method to the list of methods that will be called when the
Click event of the btnSubmit button is fired.

This section should have given you a nice overview of the Page class. We’ll cover it in
further depth throughout the rest of the book. Chapter 5, “Creating More Advanced
ASP.NET Pages,” will show you how to write your own reusable Page class and give you
several tips and tricks that will help simplify your pages and make them more efficient.

Now that we’ve seen how to develop ASP.NET pages with the use of a text editor,
let’s create the same application using Visual Studio .NET. You can see how the process
is simplified for you.

Hello World with Visual Studio .NET

We’re going to create our first project with Visual Studio .NET (from here on referred
to as VS.NET) and take a look at all the functionality it offers. From this point on, we’ll
be using VS.NET for all of the ASP.NET development.

When you’re ready, start up VS.NET. To get started, create a new project by bringing
up the New Project dialog in one of several ways. You can click on the “New Project”
button on the Start Page; select File, New, Project from the File Menu; or click on the
New Project toolbar button. Once you have the New Project dialog open, select Visual
C# Projects from the Project Types list on the left. Then select Web Application from the
Templates list on the right, as shown in Figure 2.4.

Visual Studio .NET gives you a default project name of WebApplication1 and a
default location of http://localhost, as seen in Figure 2.4. Change the project name to
Chapter2, and click OK. After a few seconds of setup, the new project will be created
and ready for work. Before we examine everything that’s been included with the new
project, notice that VS.NET also has created a new Virtual Directory in IIS with the
same name as the project name and in the location that we specified in the New Project
Dialog. In this case, the virtual directory is called Chapter2 and is located at in the vir-
tual root directory of your Web server.

Figure 2.4 The new project dialog in Visual Studio .NET.

Anatomy of an ASP.NET Page 29

Now let’s check out the project. Open up the Solution Explorer window, which is
usually docked to the right side of VS.NET. Click on the Show All Files toolbar button
at the top of the Solution Explorer window, and then expand all of the nodes of the tree
view contained in the Solution Explorer. You should see something very similar to
Figure 2.5.

Under the References node there are several assemblies that have been referenced
for us by default. This makes all of the classes defined in these assemblies available for
use within the application. VS.NET’s intellisense feature should work with all of the
classes defined in these assemblies. A bin directory also has been created for us. The bin
directory is where VS.NET will place the project’s assembly file, debug file, and any
other non-.NET framework assemblies that we reference. Recall that ASP.NET will
search the assemblies contained in the bin directory for any classes used in the code,
including the code-behind Page classes.

You should also see a Global.asax file and its associated code-behind file,
Global.asax.cs. The Global.asax file is used for handling special ASP.NET application
events such as Application_Start and Session_Start. These are covered in detail in
Chapter 5, and we’ll see their uses there.

The Web.Config file is an XML file used for making overall application settings such
as security and session state. We’ll be covering what you can do with this file in Chap-
ter 9, “Adding E-Commerce Essentials.”

There is also a Chapter2.disco file. This is a Web services discovery file that is used
to advertise any Web services that our Web site offers. We’ll look at this in Chapter 7,
“Web Services.”

Figure 2.5 The Chapter2 project.

30 Chapter 2

Finally, VS.NET has created one Web Form (another name for an ASP.NET page),
called WebForm1.aspx, and its associated code-behind file, WebForm1.aspx.cs.
VS.NET implements code-behind by default and takes care of a lot of the legwork that
is required to use code-behind. Let’s examine these two files. If you double-click the
WebForm1.aspx file, VS.NET will open the Web Form in the Web Forms designer. In
this view, you can drag and drop controls from the Toolbox onto the page. In addition
to adding the control to the .aspx file, VS.NET will take make all of the necessary addi-
tions and changes to the associated code-behind file. Let’s take a look at the actual code
that is contained in the WebForm1.aspx file by clicking on the HTML button located at
the bottom of the editor window.

The following @Page directive has been added to the top of the file:

<%@ Page language= c# Codebehind= WebForm1.aspx.cs

AutoEventWireup= false Inherits= Chapter2.WebForm1 %>

The directive contains the following new attributes:

Language attribute. Set to c# in this example. The language attribute defines the
programming language used in all server code blocks on the ASP.NET page.

Codebehind attribute. Set to the filename of the code-behind source file that was
automatically created by VS.NET, in this case, WebForm1.aspx.cs. The Code-
behind attribute is completely ignored by the ASP.NET runtime. It is used
exclusively by VS.NET to keep track of which code-behind files go with which
.aspx files. The WebForm1.aspx.cs code-behind file is located underneath the
WebForm1.aspx node in the Solution Explorer tree view.

Inherits attribute. Set to Chapter2.WebForm1 in this example. We saw the use of
this attribute in our earlier code-behind example. The class that is referenced in
this attribute must be derived directly or indirectly from the System.Web.UI.Page
class. Let’s take a look at our code-behind file, WebForm1.aspx.cs, and make
sure that this is the case. Double-click the WebForm1.aspx.cs file in the Solution
Explorer window to open it in the Source Editor. It should look similar to the
following:

namespace Chapter2

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

Anatomy of an ASP.NET Page 31

/// <summary>

/// Summary description for WebForm1.

/// </summary>

public class WebForm1 : System.Web.UI.Page

{

public WebForm1()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

}

protected void Page_Init(object sender, EventArgs e)

{

//

// CODEGEN: This call is required by the ASP+ Windows Form

// Designer.

//

InitializeComponent();

}

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

}

}

VS.NET has declared a default namespace that matches the name of the Web appli-
cation. It also included several directives for the common namespaces that we’ll use.
Notice the declaration of the Page class, WebForm1. It is derived from the System.Web.
UI.Page class.

The default constructor of the WebForm1 class wires up the Page_Init method to the
Init event with this line of code.

Page.Init += new System.EventHandler(Page_Init);

Look familiar? This is precisely what we did manually in our earlier example.
The Page_Init method is implemented for us and makes a call to a method called

InitializeComponent. InitializeComponent is a special method that is used by the
VS.NET designer. It is contained within a #region block, which makes that entire area
of code collapsible in the VS.NET source editor, as shown in Figure 2.6. Although there

32 Chapter 2

TE
AM
FL
Y

Team-Fly®

may be some circumstances in which you’ll be forced to make changes in there, avoid
messing with the code in the InitalizeComponent method unless it is absolutely neces-
sary. It is possible that changes you might make in this method could be overwritten by
the Web Form Designer or could confuse it in some way. Initially, the following code is
the only code placed in InitializeComponent by the Web Form designer:

this.Load += new System.EventHandler(this.Page_Load);

This line wires up the Page_Load method to the Load event. VS.NET will add,
delete, and edit code in the IntializeComponent method when you are using the Web
Form designer. We’ll see that in action shortly.

The Page_Load method has been implemented for us and is completely empty at
this point.

Let’s rewrite the Hello World application from scratch using VS.NET. The first thing
that we need to do is drag and drop a Label control from the toolbox onto the form. To
do this, switch back to the Design view of the Webform1.aspx file.

NOTE All of the helper windows (Toolbox, Solution Explorer, Properties
window, and so on) can be docked at the left, right, or bottom edges of VS.NET.
Once they are docked, they can be used in an auto-hide mode. When you need
to use the window, you simply point to its tab located on the edge of the
screen, and it will slide out for you to use. When you move the mouse cursor
away from the window, it will retract itself back to the edge of the screen for
you. You can also pin the window open by using the thumbtack icon located at
the top of the helper window. When the window is pinned, it will stay open
until you unpin it by pressing the thumbtack icon again.

Figure 2.6 Our initial code-behind class.

Anatomy of an ASP.NET Page 33

Open the Toolbox window, docked at the left-hand side of VS.NET. Find the Label
control, and drag it onto the design window. A Label control will be added to your
form. You can drag the Label control to any area of the screen that you wish.

Next, change some properties of this Label control. Nearly everything that we’ll
need to change can be done with the Properties window. Right-click on the Label
control, and select Properties from the context menu. The Properties window should
appear. If the Properties window is docked and hidden, it will automatically slide out
into view for you. Change the Text property to “Hello World” and the ID property to
lblHelloWorld. When you’re finished, click on the HTML button at the bottom of the
Web Form designer window to see how VS.NET implemented the new Label control.
You should see some code similar to the following:

<asp:Label runat= server >

Hello World

</asp:Label>

The control has been assigned the ID of lblHelloWorld, and the runat attribute has
been set to server. Instead of setting the Text attribute of the Label control, the Hello
World text has been inserted between opening and closing <asp:Label> tags, which is
exactly the same as setting the Text attribute. When the page is processed, the Label
control will set the Text property to the value of the tag contents.

Now let’s add a button to the page. Switch back to the Design view, and drag a but-
ton from the Toolbox onto the page. Once again, nearly everything that we’ll need to
change about the button can be done from the Properties window. Open the Properties
window, and change Text property to “Submit” and the ID property to btnSubmit.
Next we need to provide a handler for the Click event of the button. We can also do this
from the Properties window. At the top of the Properties window, there is a lightning
bolt icon. Click this icon to see a list of all of the available events for the Button control.
Initially, we don’t have any handlers for them because we haven’t added any yet. To
add a handler to the Click event, double-click it in the Properties window. VS.NET will
open the WebForm1.aspx.cs file in the editor. The following btnSubmit_Click method
has been added:

protected void btnSubmit_Click(object sender, System.EventArgs e)

{

}

Not only did VS.NET add the method for us, but it has also taken care of wiring the
btnSumbit_Click method up to the Click event. To see this, you’ll need to look at the
InitializeComponent method. Remember, this method is hidden inside the #region
marked as “Web Form Designer Generated Code”. The InitializeComponent method
should look like this now:

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

34 Chapter 2

/// </summary>

private void InitializeComponent()

{

this.btnSubmit.Click += new System.EventHandler(this.btnSubmit_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

Finally, we need to add the line of code to change the text of the lblHelloWorld
control when the Submit button is clicked. Add the following line of code to the
btnSubmit_Click method:

lblHelloWorld.Text = .NET Rules! ;

That is all of the code that we need to write. Because we’re using code-behind, we
now have to compile the project. To do this, select Build from the Build menu on the
main menu bar. This is a whole lot easier than using the command-line compiler as we
did in the earlier code-behind example. If your Build was successful, you’ll see “Build
succeeded” in the status bar at the bottom of the VS.NET window. You can also check
out the Output or Task List windows to see if any errors were encountered and what
they were.

If your build was successful, VS.NET will have placed the resulting Chapter2.dll
and Chapter2.pdb files in the bin directory of your application. You can see this by
looking in the bin folder in the Solution Explorer window. The Chapter2.dll file is a
.NET assembly that contains the definition of the WebForm1 class and any other
classes that we defined within the project. The .pdb file contains the debug symbols
needed for debugging the project. By default, VS.NET will create a Debug version of
the project. When you have completed your application, you should compile a Release
version, which will be smaller and provide better performance. This can be done by
selecting Build, Configuration from the menu bar, which displays the Configuration
Manager dialog box, as seen in Figure 2.7. You can change the active configuration
from Debug to Release with the drop-down box at the top of the dialog.

Figure 2.7 The Configuration Manager dialog.

Anatomy of an ASP.NET Page 35

Figure 2.8 The completed project.

You should be able to navigate to your new WebForm1.aspx page with your
browser, and it should work the same as the previous examples. If you’ve chosen
to name everything as I have, then the URL of this new page should be http://
localhost/Chapter2/Webform1.aspx.

A screenshot of what the project should look like when finished can be seen in
Figure 2.8, and the complete source code for the WebForm1.aspx page can be seen
in Listings 2.1 and 2.2.

<%@ Page language= c# Codebehind= WebForm1.aspx.cs

AutoEventWireup= false

Inherits= Chapter2.WebForm1 %>

<HTML>

<HEAD>

<meta name=vs_targetSchema content= Internet Explorer 5.0 >

<meta name= GENERATOR Content= Microsoft Visual Studio 7.0 >

<meta name= CODE_LANGUAGE Content= C# >

</HEAD>

<body MS_POSITIONING= GridLayout >

<form method= post runat= server >

<asp:Label id=lblHelloWorld style= Z-INDEX: 101; LEFT: 8px;

POSITION:absolute; TOP: 9px runat= server >

Hello World

</asp:Label>

Listing 2.1 WebForm1.aspx

36 Chapter 2

<asp:Button id=btnSubmit style= Z-INDEX: 102; LEFT: 11px;

POSITION: absolute; TOP: 38px runat= server Text= Submit >

</asp:Button>

</form>

</body>

</HTML>

Listing 2.1 WebForm1.aspx (continued)

namespace Chapter2

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

/// <summary>

/// Summary description for WebForm1.

/// </summary>

public class WebForm1 : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Label lblHelloWorld;

protected System.Web.UI.WebControls.Button btnSubmit;

private System.ComponentModel.IContainer components;

public WebForm1()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

//

// CODEGEN: This call is required by the ASP+ Windows Form

// Designer.

//

InitializeComponent();

}

Listing 2.2 WebForm1.aspx.cs

Anatomy of an ASP.NET Page 37

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.components = new System.ComponentModel.Container();

this.btnSubmit.Click += new

System.EventHandler(this.btnSubmit_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void Page_Load(object sender, System.EventArgs e)

{

}

protected void btnSubmit_Click(object sender, System.EventArgs e)

{

lblHelloWorld.Text = .NET Rules! ;

}

}

}

Listing 2.2 WebForm1.aspx.cs (continued)

Wrapping Up the Chapter

In this chapter, we got a good taste of what an ASP.NET page is and how to develop
one with and without VS.NET. We covered event handling and delegates and also dis-
cussed the System.Web.UI.Page class and its important events. We’ll build on this
foundation information in the next chapter as we discuss Server Controls in depth.

WHAT’S GOING ON IN THERE

We are going to cover some fairly advanced things in this section. Most of what we will
cover here won’t have any bearing on your ability to develop ASP.NET pages. If you are a
beginner-level programmer you might just want to skip this section and go straight to
Chapter 3. If you are really interested in what is going on behind the scenes to make
ASP.NET work and where things are stored and cached on your machine, then read on.

We have already mentioned that a .NET assembly consists of Microsoft Intermediate
Language (MSIL) and various meta data that makes the assembly self-describing. When

38 Chapter 2

we use code-behind, we must precompile our code into an assembly; however, the code
in this assembly cannot be directly interpreted by the processor in the machine. It must
first be just-in-time (JIT) compiled to x86 code by the .NET Framework before it can be
used by the processor.

Earlier in this chapter we covered using in-line script on an .aspx page. Our preferred
method is to use code-behind, but code-behind does not provide any performance
advantages at runtime. Every ASP.NET page must be compiled the very first time it is
requested, regardless of whether you use in-line script or code-behind. After this initial
compilation is completed, the resulting x86 code is cached and subsequent requests for
the page are executed using the compiled code. It is important to realize that any in-line
script that you use on an ASP.NET page is not interpreted every time the page is requested,
as was the case with ASP. It is compiled to x86 code, just as is the code-behind class. In
fact, .NET code is not interpreted code, period, whether it be C#, VB.NET, or any other
.NET-compliant language. Once a piece of code has been executed for the first time and
therefore compiled to x86 code, the original MSIL code is not used again, unless something
occurs that would require recompilation.

We already know that every ASP.NET page inherits from the Page class, but if you are
using in-line script, how does this occur? The answer is that ASP.NET writes a C# class for
you the first time the page is requested or whenever the page changes. It then compiles
this C# class using the command-line compiler csc.exe. The resulting assembly .dll file is
stored on the hard drive and then JITed to x86 code. The x86 code is cached in memory
for reuse. You can actually take a look at the C# source file that ASP.NET creates. Let’s
look at an example.

We’ll reuse our HelloWorld3.aspx page from earlier in the chapter. To make things a
little easier, let’s add the HelloWorld3.aspx page to our Chapter2 project. You can do this
within VS.NET by opening the Chapter2 project and then choosing File, Add Existing Item
from the menu bar. Once you’ve added the page to the project, request it with your Web
browser. You’ll probably notice that the page is somewhat slow on the first request, but
subsequent requests are much faster. That’s because the page had to be compiled on the
first request.

Now let’s examine the C# file that ASP.NET wrote for us for the HelloWorld3.aspx page.
By default, these types of temporary files are stored in the following directory:

/Winnt/Microsoft.NET/Framework/v{version number}/Temporary ASP.NET

Files

This directory is configurable per Web application. If you’d prefer to have them placed
in a different directory location, you can do so by setting the tempDirectory attribute of
the <compilation> tag in the Web.config file for your application. We haven’t talked
about the Web.config file yet, but we wanted you to be aware that the temporary
directory location is under your control.

Under the Temporary ASP.NET Files folder a new folder will be created for every ASP.NET
application that runs on your Web server. Furthermore, there will be a strangely named
folder under each application folder. It is in this folder that you will find all of the temporary
files that ASP.NET creates for that particular application. The strange folder name is
actually one of several hash codes used in a somewhat complex dependency-tracking

Continues

Anatomy of an ASP.NET Page 39

WHAT’S GOING ON IN THERE (CONTINUED)

scheme. The .cs file that was created for the HelloWorld3.aspx page will be located in this
folder. The .cs file will also be named with a hash code. If you followed through the
earlier examples, you should have three .cs files; open the one with the latest date.

We’re not going to go through every detail of this file, as it is fairly complex, but we do
want to point out that the class that is defined in this file inherits directly from
System.Web.UI.Page.

public class HelloWorld3_aspx : System.Web.UI.Page,

System.Web.SessionState.IRequiresSessionState

The class has been named HelloWorld3_aspx, which is the same as the .aspx filename
with an _aspx appended to it. In addition to inheriting from the Page class, it also inherits
the IRequiresSessionState interface.

Near the top of the class declaration, you should be able to find the following line of
code:

protected System.Web.UI.WebControls.Label lblHelloWorld;

This comes from the Label control that we added to the .aspx file. The Label control
was assigned an ID of lblHelloWorld, which has been preserved. You should also see a
declaration for the Button control that is on the page. We didn’t give the Button control a
specific ID, so ASP.NET has generated one for us. Our declaration looks like this:

protected System.Web.UI.WebControls.Button __control3;

We declared a method called ClickedIt within a <script> block on the page. If you
search for ClickedIt in this .cs file, you will find that it has been added to the
HelloWorld3_aspx class also.

There are several other files in this temporary directory. The .cmdline files contain the
actual command-line arguments passed to csc.exe when a page is compiled. The .out files
contain the results of the compilation, which would include any errors that occurred
when the page was compiled. The .dll files are the MSIL assemblies created by the csc
compilation. You can view these files with the ILDASM.exe tool, as was demonstrated
earlier in the chapter in the Page Class section. Keep in mind that all of the files in these
temporary directories are just that, temporary. Any changes you make to these files will
eventually be overwritten.

How does all of this change if we are using code-behind? In fact, very little changes at
all. Even if we are using code-behind, we can still have in-line script in the .aspx file, and
if so, it will be handled exactly the same. The only real difference is that the generated
class for a code-behind page does not inherit directly from the Page class. Instead, it
inherits from the code-behind class, which inherits either directly or indirectly from the
Page class. You can check this out for yourself by looking for the generated class for the
WebForm1.aspx page that was created for Chapter2, which uses code-behind. The code-
behind class name for this page was Chapter2.WebForm1. You can find the generated .cs
file for this page in the same directory as the .cs file for the HelloWorld3 page. You
should see the following class declaration in this file.

public class WebForm1_aspx : Chapter2.WebForm1,

System.Web.SessionState.IRequiresSessionState

40 Chapter 2

Just as expected, the WebForm1_aspx class inherits directly from the code-behind
class. It will include everything in the code-behind class, plus any in-line script that might
be included in the .aspx file. You should also note that there are no declarations in the
generated class for page control variables that were declared in the code-behind class.
Any control variables that are declared in the code-behind class are instanced via the
new keyword in the generated class. This is why we don’t have to instance these
variables ourselves in the code-behind class.

Anatomy of an ASP.NET Page 41

TE
AM
FL
Y

Team-Fly®

43

Now that we’ve covered the basics of building an ASP.NET page, it’s time to examine
all of the power that is provided with ASP.NET right off the shelf. ASP.NET provides
many Server Controls that make page development much easier. Server Controls pro-
vide programmatic access to elements on the pages.

There are two types of Server Controls. Web Server Controls provide a level of
abstraction from traditional HTML elements and make Web page development seem a
lot like traditional windows application development. They do not necessarily render
directly to a single HTML element and, in fact, some of them can render to a large
number of HTML elements. This group of controls also includes Validation Controls,
which make validating user input on the client or server side a whole lot easier than
the methods that were needed with traditional ASP. HTML Server Controls map one-to-
one to their HTML counterparts and provide an easy programming path for the expe-
rienced HTML developer.

We’ll be covering most of the Server Controls that are included with ASP.NET off the
shelf in this chapter. We’ll analyze each control’s important properties and methods
and implement examples using them. In addition, we’ll also learn the type of HTML
that will be rendered by the controls and how it may differ depending on the type of
browser the client is using. Before we start covering the controls, we’ll discuss the top-
ics of postback and Data Binding.

Server Controls

C H A P T E R

3

Postback

Before we begin this chapter, let’s explain at a high level how ASP.NET gives the Web
application programmer an event-driven programming model. We’ve already seen
how easy it is to implement an event handler in Chapter 2, “Anatomy of an ASP.NET
Page.” This type of functionality was not nearly as easy to accomplish with traditional
ASP. In our opinion, this is one of the best features of ASP.NET.

Postback is a term used to describe the action of a user submitting a page back to the
Web server for processing. The client usually posts the page back to the server by click-
ing some type of button on the page. The HTML <form> element is what makes postback
possible. We discussed the role of the <form> element in Chapter 2 in the Introducing
In-Line Script section. In review, the method attribute of the <form> will typically be set
to post. The action attribute will be set to the URL of a page or script to which the page
should be posted. With ASP.NET, the action attribute will almost always be set to the
URL of the page on which the <form> element resides. In other words, an ASP.NET
page will post back to itself.

There are two most commonly used ways to post back or submit a form to the
server. One method is through the use of the HTML <input type=“submit”> or <input
type=“image”> elements, and the other is through the use of client-side script. The
<input type=“submit”> and <input type=“image”> elements will always cause a
postback of the <form> element that it resides in when it is clicked by the user. In the
example code that follows, if the user clicks the Button1 button, the Form1 form will be
submitted to the MyASPNETPage.aspx page.

<form method="post" runat="server" ID="Form1">

<asp:Button id="Button1" runat="server" Text="Button 1"></asp:Button>

</form>

The rendered HTML:

<form name="Form1" method="post" action="MyASPNETPage.aspx" id="Form1">

<input type="submit" name="Button1" value="Button 1" id="Button1" />

</form>

Recall from Chapter 2 that if the action attribute of the <form> element is not speci-
fied in the .aspx file, the default value is the name of the current page. This is why the
action attribute of the <form> element in the rendered HTML is set to MyASPNET-
Page.aspx. With ASP.NET, we can have a handler for the Click event of the Button1
button. So when the postback occurs, our Click event handler will be called. But what
happens if we have two <input type=“submit”> elements in the same form? How can
we know which button was clicked when the page is submitted? The simplified
answer is that when an <input type=“submit”> button is clicked on a page, if the name
attribute has been specified a name/value pair will be added to the form before it is
submitted. ASP.NET can then determine which button has been clicked by examining
the form object on the server for the existence of the name/value pair.

It is perfectly legal and commonplace to specify more than one <form> element on a
standard ASP page. This is typically done to allow the page to be posted back to different

44 Chapter 3

pages or scripts depending on which form is submitted. In other words, you would typi-
cally set the action attribute of the separate <form> elements to different values. With
ASP.NET, it is not necessary to have multiple <form> elements on a page, and, in fact, you
will get a compile error if you have two <form> elements with the runat=“server”
attribute specified on the same page. Because ASP.NET gives us event handling, we can
easily take different actions in our server code depending on how the user submitted the
page without the use of multiple <form> elements in the .aspx file.

The other method of submitting a form is to call the submit() method of the form in
client-side script. A script block to do this might look like the following (assuming the
ID attribute of a <form> element on the page is set to form1):

<script language="javascript">

function SubmitTheForm()

{

document.form1.submit();

}

</script>

When a page has the need to submit itself when a user action is taken

other than clicking on an <input type="submit"> or <input type="image">

element, ASP.NET will render the following on the page (Again assuming

the ID attribute of the <form runat="server"> element on the page is

set to form1):<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<script language="javascript">

<!--

function __doPostBack(eventTarget, eventArgument)

{

var theform = document.form1

theform.__EVENTTARGET.value = eventTarget

theform.__EVENTARGUMENT.value = eventArgument

theform.submit()

}

// -->

</script>

ASP.NET will call the __doPostBack method when client-side events occur that the
programmer has specified should cause a postback. For example, suppose we want
our page to automatically be submitted when the user changes the selection in a list
box. (We’ll see a full example of how to do this in the DropDownList section later in this
chapter.) The DropDownList control is the Web Server Control that we use for display-
ing list boxes. The DropDownList control will render to an HTML <select> element,
which appears as a list box to the client. When the user changes the selection in the list
box, the client-side onchange event of the <select> element is fired. The onchange event
would be the appropriate place to call the __doPostBack function. The DropDownList
control has a Boolean property called AutoPostBack. When set to true, any change in
selection in the list box will cause the page to be posted back to the server. ASP.NET
will render the <select> element to look similar to this:

<select name="DropDownList1" id="DropDownList1"

onchange="__doPostBack(‘DropDownList1’,’’)" language="javascript">

Server Controls 45

The __doPostBack method is, in fact, called when the onchange event occurs if the
AutoPostBack property of the DropDownList control is set to true. It passes the name
of the <select> element as the first parameter to __doPostBack and nothing as the sec-
ond parameter. Now look back at the __doPostBack method. The script in this method
declares a variable called theform and sets it to document.form1.

var theform = document.form1

The values of the two <input type=“hidden”> elements, __EVENTTARGET and
__EVENTARGUMENT, are then set to the passed-in parameters eventTarget and event-
Argument. __EVENTTARGET will always be set to the ID of the element that caused
the form to be submitted. __EVENTARGUMENT is reserved for any extra information
about the postback that needs to be submitted.

theform.__EVENTTARGET.value = eventTarget

theform.__EVENTARGUMENT.value = eventArgument

Last, the form is submitted by calling the submit() method.

theform.submit()

On the server side, ASP.NET will examine the __EVENTTARGET element on the
form. If the form was submitted via the __doPostBack method, __EVENTTARGET will
have a value. ASP.NET will use this value to determine which event handler needs to
be called during post back.

This might seem fairly complicated to you, but the good news is you don’t have to
do any of it. ASP.NET does it all for us behind the scenes.

Data Binding

In its simplest form, Data Binding allows us to bind a property of a control to a data
source, such as a field in a database. Each control will have its own unique way of dis-
playing the bound data to the client. In the case of a Label control, it will display the
data as a textual field on the page.

We can Data Bind a control on our page by writing a Data Binding expression within
the declaration of a control in the .aspx file, or we can implement it in our code-behind
class.

To Data Bind a control directly in the .aspx file we must use the <%# %> tags. Any
code or expression that we place inside the <%# %> tags is referred to as a Data Binding
Expression. You will typically use this method for nonlist type controls (controls that
do not have multiple items), such as a Label, TextBox, or CheckBox. An example of
Data Binding a control directly in the .aspx file can be seen in the Label section.

When Data Binding a list-type control, such as a DropDownList or CheckBoxList,
you will normally do so by setting the DataSource property of the control to some type
of data source. This can be done in the code-behind class or in a script block in the
.aspx file. We’ll see our first example of this type of Data Binding in the ListBox Control
section.

46 Chapter 3

All controls that have Data Binding capabilities implement a method called Data-
Bind(). This method takes care of evaluating any Data Binding expressions in the .aspx
file and/or processing any data source specified with the DataSource property. It is
important to note that Data Binding Expressions and DataSource properties are not eval-
uated until the DataBind() method of the control with which they are associated is called.
If the DataBind() method of the control is never called, no Data Binding will occur.
Because the Page class is itself a control, it has an implementation of the DataBind()
method. When the DataBind() method of any parent control is called, it in turn calls the
DataBind() method of any children controls. Thus, if we call the DataBind() method of
the Page class, all of the controls on our page will have their DataBind() methods called.

Web Server Controls

You’ve already been introduced to several of the Web Server Controls, such as
<asp:Label> and <asp:Button>, in Chapter 2. Web Server Controls provide a type-safe
object model to program against on the server. They do not map directly to HTML ele-
ments; instead they render HTML elements when a page is processed. This provides a
level of abstraction from HTML elements, which makes them more powerful than the
HTML Server Controls that we’ll cover in a later section of this chapter. Because of the
level of abstraction, a developer doesn’t have to be an expert in HTML to develop
ASP.NET pages. In addition, many of the Web Server Controls will render a combina-
tion of several different HTML elements to accomplish their task, but the developer
needs to work with only one single Web Server Control.

One of the nicest things about Web Server Controls is their ability to detect browser
capabilities and render HTML that will work and look best for each individual client.
Initially, ASP.NET will detect either an UpLevel or DownLevel browser. UpLevel
browsers are those that support HTML 4.0 and above, ECMAScript Version 1.2, the
Microsoft Document Object Model (MSDOM), and Cascading Style Sheets (CSS). For
the most part, the latest versions of Internet Explorer are the only browsers that qualify
as UpLevel. DownLevel browsers are those that support only HTML 3.2 and backward.
The Page class has a ClientTarget property that can be set to Auto, UpLevel, or Down-
Level. If this property is set to Auto, ASP.NET will determine the browser’s capabilities
for you and render the most appropriate HTML. You can override this behavior by set-
ting the ClientTarget property to either UpLevel or DownLevel, which forces ASP.NET
to render either UpLevel or DownLevel HTML, respectively. The UpLevel setting can
be used for intranet Web applications where the client browser is guaranteed to be a
newer version of Internet Explorer.

TI P If you are developing a public Internet Web site, we recommend setting
the ClientTarget property of all of your pages to DownLevel during the
development process. Once your pages look good under this constraint, you
can safely change the property to Auto and know that your pages will still look
good for a DownLevel client.

All of the Web Server Controls are derived from System.Web.UI.WebControls.
WebControl, which is in turn derived from System.Web.UI.Control. The Control class

Server Controls 47

provides the bulk of the behind-the-scenes functionality for all of the Web Server Con-
trols, such as Data Binding, View state, control containment, and basic events such as
Init, Load, and Unload. The WebControl class expands on this mainly by adding style
controlling properties such as BackColor, BorderStyle, Height, and Width. Each indi-
vidual Web Server Control then expands on this further by adding properties and
methods that make it a unique control. As we cover the controls, we’ll point out the
unique functionality that each one adds to the WebControl class. We’ll also tell you a
bit about the functionality provided by the base classes, Control and WebControl.

The sections that follow cover all of the Web Server Controls in detail and provide a
few examples of how they can be used. Where appropriate, we’ll show you which
HTML elements are used to render the different controls and how it may differ from an
UpLevel browser to a DownLevel browser.

Label
Probably the most basic of all of the Web Server Controls is the Label control. You’ve
already seen how to use this control in Chapter 2, where we used the control to change
some text on the page dynamically when a button was pressed. The text in a Label con-
trol cannot be edited by the user; it is read only. For this reason, you should use it for
displaying dynamic read-only information on the page. The information could be
dynamic in the fact that it is read in from a database or changed in response to a user
action, among other things. Not only can the text of the Label control be changed
dynamically, but the appearance of the text can also be changed. This includes charac-
teristics ranging from the color and font of the text to whether the text is displayed at
all, which is controlled by the Visible property.

If you just need to display some static text on the page that never needs to be
changed, there is no need to use the Label control. You can just use HTML and save
yourself a little processing overhead on the server when the page is rendered.

You might think that a Label control renders to an HTML <label> element, but this
is not the case. (We’ll see how the HTML <label> element is used when we cover the
CheckBoxList and RadioButtonList controls later in this chapter.) In fact, the Label con-
trol renders to an HTML element. This is true for UpLevel and DownLevel
browsers, although the element was not introduced until HTML 4.0. Browsers
that do not support HTML 4.0 won’t recognize the element, but most browsers
will let the tag pass through and will simply render any text contained within the
 tags. You’ll run into problems with DownLevel browsers when you
start getting fancy with the properties of the Label control. For instance, if you set a
Label control to a particular height and width, it won’t render as expected on a Down-
Level browser. Let’s look at this particular example and see why that is the case.

If we define an <asp:Label> on a page like this:

<asp:Label id=Label1 runat="server" Width="70px" Height="50px">

This is a label

</asp:Label>

it will render this HTML on an UpLevel browser:

48 Chapter 3

Figure 3.1 Label control in an UpLevel browser.

This is a label

and it will look like the IE 6 screenshot shown in Figure 3.1.
The following HTML will be rendered for a DownLevel browser:

This is a label

and it will look like the Opera 3.62 screenshot shown in Figure 3.2.
The difference is pretty obvious. The text of the Label control is too long to fit into

the 70-pixel width constraint. In the UpLevel browser, the element and its style
attribute are supported, so the text is wrapped to stay within the width constraint. In
the DownLevel browser, the style attribute is not even rendered because it wouldn’t
work anyway. The result is that a DownLevel browser doesn’t wrap the text. This
could be disastrous, depending on what you are trying to accomplish. A DownLevel
browser will not honor any property that you assign to the Label control that will be
rendered in the in-line style sheet of the element. We’ll see more examples like
this in the sections to come; to avoid this, develop your pages with the ClientTarget
property set to DownLevel, and change the ClientTarget propery to Auto when you
release your application for testing.

Figure 3.2 Label control in a DownLevel browser.

Server Controls 49

The Label control adds only one public property, Text, to the functionality of the
WebControl base class. It does not add any public methods or events. We’ve already
seen how to use this property in Chapter 2 to set the text that is displayed by the Label
control. Now let’s look at an example of Data Binding the Text property of a Label control.

Create a new ASP.NET Web application project called Chapter3. Add a new Web
Form to the Chapter3 project using Visual Studio .NET. Call this new Web Form
Label.aspx. If you want to save some typing you can download the entire Chapter3
project from the companion Web site. Drag a new Label control onto the form in design
view, then switch to HTML view, and add the Text attribute to the <asp:Label> decla-
ration as follows:

<asp:Label id=Label1 style="Z-INDEX: 101; LEFT: 10px; POSITION:

absolute;

TOP: 10px" runat="server" text="<%# DateTime.Now.ToString() %>">

</asp:Label>

The Data Binding Expression used here is DateTime.Now.ToString(), which will
return the current date and time of the Web server as a string. Navigate to the page
with your Web browser. You should see an empty page because the DataBind() method
of the Label1 control was never called. Let’s call the Label’s DataBind() method in the
Page_Load method of the code-behind class, like this:

protected void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

Label1.DataBind();

}

Recompile the project, and view the page in your Web browser again. Now you
should see the current date and time displayed on the page. Now add one more Data
Binding Expression to the page, just below the <asp:Label> declaration, like this:

<asp:Label id=Label1 style="Z-INDEX: 101; LEFT: 10px; POSITION:

absolute;

TOP: 10px" runat="server" text="<%# DateTime.Now.ToString() %>">

</asp:Label>

<%# DateTime.Now.ToString() %>

Refresh the page in your browser. You might have thought that you would see the
current date and time displayed twice on the page, but instead the output hasn’t
changed at all because the DataBind() method of the Page class was never called; we
made an explicit call to the Label1 control’s DataBind() method. Let’s change our
implementation of the Page_Load method to call just the DataBind() method of the
page class. This should, in turn, call the DataBind() method of the Label1 control, and
everything should work as expected. Change Page_Load to look like this.

protected void Page_Load(object sender, System.EventArgs e)

{

50 Chapter 3

// Put user code to initialize the page here

this.DataBind();

}

Be sure to rebuild the project because you’ve made changes to the code-behind class,
and then refresh the page again. If all went well, you should see the current date and
time displayed twice as in Figure 3.3.

The text of a label control isn’t the only property that can be Data Bound. In fact, any
property with write access in any Web Server Control can be Data Bound. Just be care-
ful to bind the property to the appropriate type. In the previous example, we were Data
Binding the Text property, which expects a string. If we were Data Binding a property
such as Visible, which expects a bool, then we would have to make sure our Data Bind-
ing Expression evaluated to a bool.

We encourage you to experiment more with the different properties of the Label
control. Although it isn’t a very exciting control, you’ll find that you will use it very
often.

Button
The Button control allows us to display a clickable button that will submit the page to
the server and normally fire a click event handler. The Button control renders to an
HTML <input type=“submit”> element, so it will always submit the form back to the
Web server when it is clicked. The Button control can be used in several different ways.
We’ve already used a Button control to fire an event handler in several examples in
Chapter 2. In those examples, we set this up either by setting the onclick attribute when
we declared the button in the .aspx file or by adding an event handler in the code-
behind C# class. Even if we don’t create an event handler for the click event, the form
will still be submitted when the button is pressed.

Because we’ve already covered the basics of the Button control in Chapter 2, let’s
take a look at some more advanced features. You may need to create some Button con-
trols dynamically, perhaps in a list of some sort. In that case, you won’t have the oppor-
tunity to create an onclick event handler for each individual button. You still need a
way to determine which button was pressed so that you can take the appropriate
action. The Button control provides the ability to do this via the CommandName and
CommandArgument properties. Both of these properties are of type string. Let’s look at
a quick example that illustrates how to use them.

Figure 3.3 Data Binding a Label control.

Server Controls 51

Add a new Web Form to the Chapter3 project using VS.NET, and call it Button.aspx.
Add a Label control and two Button controls to the form from the toolbox. Set the Com-
mandName and CommandArgument properties of the two buttons to “Button1”,
“Button1Argument” and “Button2”, “Button2Argument”, respectively. Next, we need
to provide a handler for the Command event. Just like the Click event, the Command
event is fired when a button is clicked. The difference between the two is that the Com-
mand event delegate is passed a parameter of type CommandEventArgs, rather than
EventArgs, which is passed to the Click event. You can see the difference in the code
that follows.

private void Button_Command(object sender,

System.Web.UI.WebControls.CommandEventArgs e)

{

//This Is a Command event handler

}

private void Button_Click(object sender, System.EventArgs e)

{

//This Is a Click event handler

}

The CommandEventArgs parameter allows you to get at the CommandName and
CommandArgument properties easily. Let’s add a handler for the Command event of
both of the buttons. We’ll use the same method to handle both events. Inside that
method we’ll determine which button was pressed using the CommandName and
CommandArgument parameters. The full source for this example can be seen in
Listings 3.1 and 3.2, and a screen shot of the page after clicking Button 1 can be seen in
Figure 3.4. You can also download both of these listings from the companion Web site.

<%@ Page language="c#" Codebehind="Button.aspx.cs"

AutoEventWireup="false"

Inherits="Chapter3.Button" %>

<HTML>

<HEAD>

<meta name=vs_targetSchema content="Internet Explorer 5.0">

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body MS_POSITIONING="GridLayout">

<form method="post" runat="server">

<asp:Label id="Label1" runat="server">Nothing Clicked</asp:Label>

<asp:Button id=Button1 runat="server" Text="Button 1"

commandname="Button1" commandargument="Button1Argument">

</asp:Button>

<p>

</p>

Listing 3.1 Button.aspx

52 Chapter 3

TE
AM
FL
Y

Team-Fly®

<asp:Button id=Button2 runat="server" Text="Button 2"

commandname="Button2" commandargument="Button2Argument">

</asp:Button>

</form>

</body>

</HTML>

Listing 3.1 Button.aspx (continued)

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace Chapter3

{

/// <summary>

/// Summary description for Button.

/// </summary>

public class Button : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Button Button2;

protected System.Web.UI.WebControls.Button Button1;

public Button()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)

{

}

protected void Page_Init(object sender, EventArgs e)

{

//

// CODEGEN:This call is required by the ASP.NET Windows Form

// Designer.

//

Listing 3.2 Button.aspx.cs

Server Controls 53

InitializeComponent();

}

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.Button1.Command += new

System.Web.UI.WebControls.CommandEventHandler(this.Button_Command);

this.Button2.Command += new

System.Web.UI.WebControls.CommandEventHandler(this.Button_Command);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void Button_Command(object sender,

System.Web.UI.WebControls.CommandEventArgs e)

{

Label1.Text = "You clicked " + e.CommandName +

" with an argument of " + e.CommandArgument + "";

}

}

}

Listing 3.2 Button.aspx.cs (continued)

Figure 3.4 Handling the Command Event of a button.

54 Chapter 3

As you can see in the Button_Command method in Listing 3.2, we access the Com-
mandName and CommandArgument properties through the passed-in parameter e,
which is of type CommandEventArgs.

When you are using a Button control on its own, you typically won’t use the Com-
mandName and CommandArgument properties. There is no need to because you can
just handle the Click event of the Button; you already know which button is being
clicked ahead of time because there is only one.

The Text property of the Button sets the text that is displayed on the face of the
button. You can see that this property has been set for the two buttons in Listing 3.1.
We could Data Bind this property just as we did in the Label example in the previous
section.

That’s about all there is to the Button control. In summary, the Button class extends
the WebControl class by adding Text, CommandName, and CommandArgument
properties. It also adds two events, Click and Command.

LinkButton
The LinkButton control provides the identical functionality as the Button control. The
difference is that the LinkButton control renders to an <a> HTML element rather than
an <input> element. When clicked, a LinkButton will submit the form just as a Button.
It does so by setting the HREF attribute of the <a> element to call the __doPostBack
function (covered in the Postback section earlier in the chapter), passing the ID of the
control in as the eventTarget.

Create a new Web Form in your Chapter3 project, and call it LinkButton.aspx. Drop
a LinkButton and a Label control on it from the toolbox. Set up a handler for the Click
event of the LinkButton. In the handler, set the Text property of the Label control, just
so you know the event has been handled. You should now have two controls on your
.aspx page that look similar to this:

<asp:Label id="Label1" runat="server"></asp:Label>

<asp:LinkButton id=LinkButton1

runat="server">LinkButton</asp:LinkButton>

and an event handler like this:

private void LinkButton1_Click(object sender, System.EventArgs e)

{

Label1.Text = "The LinkButton was clicked.
";

}

Request the page with your browser, and then view the source of the rendered page.
You should see that the LinkButton was indeed rendered as an <a> element that looks
like this:

<a id="LinkButton1"

href="javascript:__doPostBack(‘LinkButton1’,’’)">LinkButton

When the link is clicked, the javascript function __doPostBack will be

called, which submits the form. ASP.NET will then call the

LinkButton1_Click handler for us on the server.

Server Controls 55

Other than these client-side implementation details, the LinkButton behaves the
same as a Button control.

Image
Fundamental to most Web pages is the ability to display images. The Image control dis-
plays images and changes them dynamically if we desire. It does not provide any
events, so it will not respond to mouse clicks. The ImageButton class, covered in the
next section, provides this ability.

The Image control renders to an HTML element. The Image class inherits
directly from WebControl and adds three fundamental properties. AlternateText sets
the alt attribute of the element and is the text that is displayed when the image
is unavailable and as a tool tip when the mouse is hovered over the image. ImageUrl
sets the src attribute of the element and should contain the URL of the image to
be displayed. ImageAlign sets the align attribute of the element and is used to set
how the image aligns on the page in relation to other elements.

Let’s try an example with a little more substance to it to illustrate the use of the
Image control. We’ll create a rudimentary image viewer that allows the user to view
image files located in a particular directory on the Web server. To do this, the contents
of the specified directory are read using the System.IO.Directory class, and then
ImageUrl property of an Image control is set on the page dynamically. The user will be
allowed to navigate forward and backward through the images in the directory, using
a couple of LinkButton controls. We’ll handle the Click event of the two LinkButton
controls to do this.

Getting a list of the files in a particular local directory is made easy with the System.
IO.Directory class. The Directory class has a static method called GetFiles(string). It
takes a directory path as a parameter and returns an array of strings that are the full
pathnames of the files contained in the given directory.

string[] files = Directory.GetFiles(@"C:\images");

The preceding line of code would give us an array of filenames located in the
C:\images directory.

To demonstrate some of the functionality available in the Request property of the
Page class, we’ll dynamically create the URL for the images rather than hard-coding
the domain name and virtual directory. To do this we use the Page.Request.Url.
GetLeftPart(UriPartial) method. This method returns a string representing different
parts of the URL that was used to request the current page. UriPartial is an enumera-
tion with three members, Scheme, Authority, and Path. Scheme will give the protocol
segment of the URI such as “http://”. Authority will give us the Scheme plus the
Authority segment of the URI such as “http://localhost”. Path will give us the full Path
minus any trailers such as query parameters. So For the URL “http://localhost/
test.aspx?query=1”, it would return http://localhost/test.aspx. We’ll be calling Get-
LeftPart with the UriPartial.Authority parameter to give us the scheme and authority.

We’ll also use the Page.Request.ApplicationPath property to get a string represent-
ing the virtual directory from which the page was requested. If the page was requested
using the URL “http://localhost/Chapter3/Image.aspx”, ApplicationPath will return
“/Chapter3”.

56 Chapter 3

The example assumes that the folder containing the images we want to display will
be located in the directory C:/inetpub/wwwroot/Chapter3/Images. You can change
this if you wish.

If you are following along with the examples, add a new Web Form to your Chapter3
project called Image.aspx. The full source for the example can be seen in Listings 3.3
and 3.4. The working page can be seen in Figure 3.5.

<%@ Page language="c#" Codebehind="Image.aspx.cs"

AutoEventWireup="false"

Inherits="Chapter3.Image" %>

<HTML>

<HEAD>

<meta content="Internet Explorer 5.0" name=vs_targetSchema>

<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>

<meta content=C# name=CODE_LANGUAGE>

</HEAD>

<body MS_POSITIONING="GridLayout">

<form method=post runat="server">

<asp:linkbutton id=lnkPrevious Runat="server" NAME="lnkPrevious">

Previous

</asp:linkbutton>

<asp:linkbutton id=lnkNext Runat="server" NAME="lnkNext">

Next

</asp:linkbutton>

<p>

</p>

<asp:image id=Image1 runat="server" imagealign="Left">

</asp:image>

</form>

</body>

</HTML>

Listing 3.3 Image.aspx

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

Listing 3.4 Image.aspx.cs

Server Controls 57

using System.IO;

namespace Chapter3

{

/// <summary>

/// Summary description for Image.

/// </summary>

public class Image : System.Web.UI.Page

{

protected System.Web.UI.WebControls.LinkButton lnkPrevious;

protected System.Web.UI.WebControls.LinkButton lnkNext;

protected System.Web.UI.WebControls.Image Image1;

private string[] m_arrImageNames;

private string m_strImageDirectory =

@"C:\inetpub\wwwroot\Chapter3\Images";

public Image()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

if (GetImages())

{

//Set the ImageUrl of Image1 to the first image that was found

Image1.ImageUrl = GetImageURL(m_arrImageNames[0]);

}

}

}

protected void Page_Init(object sender, EventArgs e)

{

//

//CODEGEN: This call is required by the ASP.NET Windows Form

//Designer.

//

InitializeComponent();

}

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

Listing 3.4 Image.aspx.cs (continued)

58 Chapter 3

private void InitializeComponent()

{

this.lnkPrevious.Click +=

new System.EventHandler(this.lnkPrevious_Click);

this.lnkNext.Click += new System.EventHandler(this.lnkNext_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void lnkPrevious_Click(object sender, System.EventArgs e)

{

ChangeImage(-1);

}

private void lnkNext_Click(object sender, System.EventArgs e)

{

ChangeImage(1);

}

private void ChangeImage(int intChange)

{

//Get the list of Images

if (GetImages())

{

//Find the image that we are currently displaying

int x = 0;

for (; x < m_arrImageNames.Length ; ++x)

{

//Is this the image that we are currently displaying?

if (GetImageURL(m_arrImageNames[x]) == Image1.ImageUrl)

break;

}

//Make sure we found the current image. If x is equal to the

//length of the m_arrImageNames array then we did not.

if (x == m_arrImageNames.Length)

{

//The image wasn t found, so just set Image1 to point to the

//first image

Image1.ImageUrl = GetImageURL(m_arrImageNames[0]);

}

else

{

//The image was found, so change the image

x += intChange;

//wrap to the end of the list if necessary

if (x < 0)

x = m_arrImageNames.Length - 1;

//wrap to the beginning of the list if necessary

Listing 3.4 Image.aspx.cs (continued)

Server Controls 59

if (x >= m_arrImageNames.Length)

x = 0;

//Set the ImageUrl and AlternateText to the URL for the new

//image

Image1.ImageUrl = GetImageURL(m_arrImageNames[x]);

Image1.AlternateText = GetImageURL(m_arrImageNames[x]);

}

}

}

private bool GetImages()

{

//Get the image filenames

m_arrImageNames = Directory.GetFiles(m_strImageDirectory);

//Make sure there are images to display

if (m_arrImageNames.Length == 0)

return false;

return true;

}

private string GetImageURL(string strImageFilePath)

{

//Request.Url.GetLeftPart(UriPartial.Authority) yields

//"http://{domain name}"

//Request.ApplicationPath yields "/{virtual directory}"

return Request.Url.GetLeftPart(UriPartial.Authority) +

Request.ApplicationPath + @"/Images/" +

strImageFilePath.Substring(m_strImageDirectory.Length + 1);

}

}

}

Listing 3.4 Image.aspx.cs (continued)

In Listing 3.3, we’ve declared a couple of LinkButton controls and an Image control
with an ID of Image1 all shown in bold.

All of the work is done in the code-behind class shown in Listing 3.4. Let’s work
through this code from top to bottom. We’ve added a using directive for the System.IO
namespace, which is where the Directory class resides. You can also see that the Web
Form designer added three members for the two LinkButton controls and the Image
control. We then added a couple of our own private member variables. The first,
m_arrImageNames, is a string array that we’ll use to hold the array of filenames
located in the image directory. We’ve hard-coded the image directory with the
m_strImageDirectory member variable.

60 Chapter 3

Figure 3.5 Image.aspx in action.

In the Page_Load method, we set the ImageUrl member of the Image1 control to the
first image found in the directory. We’ve made sure to do this within an if (!IsPostBack)
block so that this happens only the first time the page is requested by a particular client.

You can see that the designer has linked up the Click events of the two LinkButton
controls to the methods lnkPrevious_Click and lnkNext_Click. Both of these methods
simply make a call to the ChangeImage method, either passing a 1 for Next or a -1 for
Previous.

The ChangeImage method gets the list of image filenames from the image directory.
It then traverses through the array of filenames looking for the filename that matches
the currently displayed image. Once we know the location in the array of the currently
displayed image, we can move forward or backward in the list. A little code is also
there to make sure that we wrap to the beginning or end of the list of images, if the user
advances through all of the images in one direction or the other. Last, the ImageUrl and
AlternateText properties of the Image1 control are set to the dynamically created URL
of the appropriate image.

The GetImages method uses the Directory.GetFiles(string) method to fill the mem-
ber m_arrImageNames with the filenames in the image directory.

The GetImageURL method creates a URL for a passed-in local image pathname. If we
were going to run this example only on the local Web server, this wouldn’t be necessary.
We could just set the ImageUrl of the Image1 control to the local pathname, such as
“C:\inetpub\wwwroot\Chapter3\Images\Image1.jpg”. If the page is requested from
another machine, obviously the images wouldn’t be available on their C drive. We
wanted the page to work, regardless of where it was requested from or on which Web
server it was installed. To accomplish this, we used the URL that was used to request the
Image.aspx page in the first place. From that URL we want to concatenate the scheme

Server Controls 61

(which will be http://) plus the authority (which will be the domain name or IP
address) plus the virtual directory (in this case, Chapter3). Then we can tack on the
hard-coded “/Images” directory. The image filename is extracted from the passed-in
full pathname using the Substring() method of the string class and is tacked on to the
end of the URL.

ImageButton
The ImageButton control places an image that responds to mouse clicks on the page.
The ImageButton class inherits from the Image class, which in turn inherits from the
WebControl class. We get all of the functionality of the Image class, plus the Image-
Button class implements all of the same functionality as a regular Button control.

The ImageButton control renders to an HTML <input type=“image”> element. The
only new functionality is with the Click event. ImageButton Click event handlers will
receive an argument of type ImageClickEventArgs. ImageClickEventArgs has two public
properties, X and Y, that provide the coordinates of the location where the image was
clicked, which is then used to perform different actions, depending on where the
image was clicked. A typical use is to designate certain areas of an image as hot spots
and, when the user clicks within those areas, redirect them to an appropriate page.

For example, let’s create a new Web Form called ImageButton.aspx in the Chapter3
project. Add the following controls inside the form tags of the .aspx file. Alternatively,
you can add the controls to the form using the designer.

<asp:Label id=lblMessage runat="server" />

<p></p>

<asp:ImageButton id=btnImage runat="server"

ImageUrl="Chapter3/Images/win2000.gif" />

The win2000.gif image was installed on our machine in the C:\inetpub\wwwroot
directory by default. We copied it into the Images folder that we created for the example
in the preceeding section. If you don’t have that image, it is included in the Chapter3
project that can be downloaded from the companion Web site.

Add a handler for the Click event of the ImageButton and place the following line of
code in the handler. Again, you can use the designer to create the Click handler for you.

lblMessage.Text =

string.Format("You clicked the image at ({0}, {1})", e.X, e.Y);

Request the page with your browser and click on the image in multiple places. You
should see a message containing the coordinates of where you clicked the image
displayed at the top of the page. The coordinates given are relative only to the image
itself, meaning that 0,0 is the upper-left corner of the image. You should see something
similar to Figure 3.6.

62 Chapter 3

TE
AM
FL
Y

Team-Fly®

Figure 3.6 An Image button example.

HyperLink
Although the HyperLink control and the LinkButton control both take the appearance of
hyperlinks and are both rendered as HTML anchor (<a>) elements, they are quite dif-
ferent in functionality. The HyperLink control does not provide any events other than
the ones inherited from WebControl. It will not cause the page to be submitted back to
the Web server, and there are no Click or Command events that you can handle on the
server as you can with the LinkButton control. The HyperLink control simply provides
the ability to link to another resource via the HTML <a> element. This control will pro-
vide a slight performance advantage over the LinkButton control when you need a
simple link to another page. To use a LinkButton control for this purpose, a postback of
the page is required and the click event handler must be processed. Inside the click
event handler, code would be needed to redirect the client’s browser to another page.
This means that two requests to the Web server are needed. When using a HyperLink
control, the client’s browser is immediately redirected to the specified page, and only
one request to the Web server is necessary.

The HyperLink control adds four additional properties to the base class WebCon-
trol: Text, ImageUrl, NaviagteUrl, and Target. Text is used to set the text that is displayed
on the page for the hyperlink. ImageUrl is used to set an image that will be displayed
as a hyperlink. If this property is set, the value in the Text property will be used as the
alternate text for the image and also for the tool tip text when the mouse is hovered
over the image. An exception to this is if the ToolTip property (inherited from the Web-
Control class) is set; it will override the Text property, and its value will be displayed
as the tool tip instead.

Server Controls 63

The NavigateUrl property is used to set the URL of the resource to link to when the
hyperlink is clicked. Its value will be rendered to the HREF attribute of the <a>
element.

The Target property will be rendered to the Target attribute of the <a> element.
Target is used to specify the window or frame in which the linked resource should dis-
play. Its valid values are the same as the valid values for the Target attribute of the <a>
element, which are _blank, _parent, _self, and _top.

When the ImageUrl property is used to display a hyperlink image, the HyperLink
control will render an element embedded in an <a> element. So for the follow-
ing HyperLink control declaration:

<asp:HyperLink id=HyperLink1 runat="server"

navigateurl="http://www.microsoft.com" target="_blank" Text="A

Picture"

imageurl="Images/picture.jpg" tooltip="A tooltip for the picture">

this HTML will be rendered:

<a id="HyperLink1" title="A tooltip for the picture"

href="http://www.microsoft.com" target="_blank">

<img title="A tooltip for the picture"

src="/Chapter3/Images/picture.jpg" alt="A Picture" border="0" />

Take a look at the screen shot shown in Figure 3.7. The image that was specified in
the NavigateUrl property does not exist, so instead the alternate text is displayed. You
can see that the alternate text for the image is “A Picture”, which is the value of the Text
property that we set. The tool tip of the image is “A tooltip for the picture”, which is the
value we assigned to the ToolTip property. Because we have set the Target property to
_blank, when the image is clicked it will open a new browser window and navigate to
www.microsoft.com.

Figure 3.7 The HyperLink control.

64 Chapter 3

TextBox
The TextBox control provides the text entry ability on the Web page. It can be used in
three different modes: SingleLine, MultiLine, or Password. The different modes are used
by setting the TextMode property to the appropriate value. If it is used in SingleLine
mode, it will render to an <input type=“text”> element, which gives us a text box that
will allow only a single line of text to be entered. In MultiLine mode it will render to a
<textarea> element, which will allow multiple lines of text entry. In Password mode, it
will render to an <input type=“password”> element, which allows a single line of text
to be entered, but the text is not displayed as the user enters it.

In addition to the TextMode property, the TextBox control also adds the Columns,
Rows, Wrap, MaxLength, ReadOnly, Text, and AutoPostBack properties to the inherited
WebControl class. It provides no additional methods and only one event, TextChanged.

The size of the text box is controlled through the Columns and Rows properties.
Columns sets the width of the text box. If the TextBox control is used in SingleLine or
Password modes, then the value of Columns is rendered to the size attribute of the
<input> element. When in Multiline mode, it will be rendered to the cols attribute of
the <textarea> element. The Rows property is applicable only when the TextBox con-
trol is used in MultiLine mode and sets the height of the text box or the number of rows
of text that can be displayed in the text box at one time. The value of the Rows property
renders directly to the rows attribute of the <textarea> element. The Wrap property is
applicable only when in MultiLine mode as well. Its valid values are True and False.
When Wrap is set to False, the wrap attribute of the <textarea> element will be set to off.
When Wrap is set to True, which is the default, the wrap attribute of the <textarea> ele-
ment will not be rendered at all because wrapping is enabled by default for the
<textarea> element.

The MaxLength property is applicable only for the SingleLine and Password modes
of the TextBox control. Quite simply, its value is rendered to the maxlength attribute of
the <input> element and limits the number of characters that can be entered in the text
box by the user.

The ReadOnly property renders to the readonly attribute of either the <input> or
<textarea> elements. As you would expect, it leaves the text box in a noneditable state.
If the ReadOnly property of the TextBox control is set to True, then the readonly
attribute will be rendered with a value of readonly. If the ReadOnly property is set to
False, then the readonly attribute will not be rendered at all.

The Text property provides programmatic access to the contents of the text box. It
can be used to set the text that is displayed in the text box initially, such as a prompt of
some sort, and to retrieve the text entered by the client.

The TextChanged event is fired on the server when the form is submitted if and only
if the client has made changes to the text. This event could be handled to do some sort
of complex validation of the text entered by the client or anything else that is necessary.

When set to True, the AutoPostBack property automatically causes the page to be
posted to the server whenever focus leaves the text box and the client has made
changes to the text. You would typically use the AutoPostBack property in conjunction

Server Controls 65

with handling the TextChanged event. Just as the Click event of the LinkButton control
was implemented, the AutoPostBack mechanism is implemented on the client with a
JavaScript function called __doPostBack(). The onchange event of the <input> or
<textarea> element is set to call this function. Just as with the LinkButton control,
__doPostBack will post the page back to the server. If you have handled the
TextChanged event, your event handler will be called when the page is posted.

Let’s look at an example that uses three different TextBox controls to demonstrate
some capabilities. Create a new Web Form in the Chapter3 project called TextBox.aspx.
Add the following controls inside the <form> tags in the TextBox.aspx file:

<asp:Label id="Label1" runat="server"></asp:Label>

SingleLine

<asp:textbox id=txtSingleLine runat="server" maxlength="20"

columns="25">

</asp:textbox>

<p></p>

Password

<asp:textbox id="txtPassword" runat="server" maxlength="20" columns="25"

textmode="Password">

</asp:textbox>

<p></p>

MultiLine

<asp:textbox id="txtMultiLine" runat="server" columns="50"

textmode="MultiLine" rows="3" wrap="False" autopostback="True">

</asp:textbox>

<p></p>

<asp:Button id=btnSubmit runat="server" Text="Submit">

</asp:Button>

Add the following code to the TextBox.aspx.cs file:

protected void Page_Load(object sender, System.EventArgs e)

{

if (IsPostBack)

{

Label1.Text = "Page_Load was called via a post back.
"; }

}

Wire up the TextChanged event handlers for all three TextBox controls either via the
Properties window in design view or by adding the code manually in the Initialize-
Component() method. Code the handlers like this:

private void txtSingleLine_TextChanged(object sender, System.EventArgs e)

{

Label1.Text += "The Single Line text was changed.
";}

private void txtPassword_TextChanged(object sender, System.EventArgs e)

{

Label1.Text += "The Password text was changed.
";}

66 Chapter 3

private void txtMultiLine_TextChanged(object sender, System.EventArgs e)

{

Label1.Text += "The MultiLine text was changed.
";}

Compile the project, and request it in your browser. Enter some text in all three text
boxes. Don’t click the Submit button, but when you’ve finished entering text in the
MultiLine text box, click back on the SingleLine text box. Notice that the form is sub-
mitted, even though we never clicked the Submit button. This is because we set that
AutoPostBack property to True for the MultiLine TextBox control. The page should
now look like the screen shot in Figure 3.8.

Examining the text that is displayed at the top of the page, you can see that the
Page_Load method did get called when the page was posted back to the server. After
the Page_Load method is called, the TextChanged event handlers for all three TextBox
controls were called.

The state of the SingleLine and MultiLine text boxes were maintained, as we can still
see the text that we entered in them. There is no text in the Password text box. For secu-
rity reasons, state is not maintained between page calls when the TextBox is used in
Password mode. Because of this, the text of the Password text box has changed or been
cleared out for us. You should keep this in mind when you are handling the
TextChanged event of a TextBox in Password mode. The TextChanged event for the
Password TextBox was fired when the page was submitted for the first time because
we changed the text ourselves. Because ASP.NET has changed the text contained in this
text box when the page was submitted, the TextChanged event will be fired again
when the page is submitted a second time. To illustrate this, click the Submit button,
without making any changes to any of the text boxes. You should see that the
TextChanged event for the Password box is fired again. If you click the Submit button
one more time without changing anything, none of the TextChanged events is fired.

Figure 3.8 The TextBox control.

Server Controls 67

Note that you cannot enter more than 20 characters in the SingleLine text box
because we set the MaxLength property to 20. The MultiLine text box is three rows in
height because we set the Rows property to 3, and because we set the Wrap property
of this control to False, the text will not wrap and we have been given a horizontal
scroll bar.

CheckBox
The CheckBox control, as you would expect, provides check box entry ability. The
CheckBox control renders to an HTML <input type=“checkbox”> element along with
an HTML <label> element wrapped up inside a element. This is the first con-
trol that we’ve seen that actually renders to more than one HTML element.The typical
rendered HTML for a CheckBox control looks like this:

<input id="CheckBox1" type="checkbox" name="CheckBox1" />

<label for="CheckBox1">Selection 1</label>

The <label> element renders the text that is displayed along with the <input> ele-
ment. In addition, the <label> element’s for attribute is set to the ID of the <input>
element. This allows the user to click on the text of the <label> element as well as click
on the check box itself to check or uncheck it. Keep in mind that the <label> element
was not introduced until HTML 4.0. It will be rendered to, but ignored by DownLevel
browsers, so that means you won’t be able to click on the text for checking and
unchecking in a browser that doesn’t fully support HTML 4.0. The text that is con-
tained inside the <label> tags will still be displayed, however.

The CheckBox control adds the Checked, Text, TextAlign, and AutoPostBack properties
to the inherited WebControl class. In addition, it adds one event, CheckedChanged. The
Checked property is of type bool and can be used to determine the state of the check
box, checked or unchecked. It can also be used to set the state of the check box pro-
grammatically. The Text property simply sets the text that is displayed alongside the
check box. The TextAlign property has two valid values, Left and Right. It determines
whether the text set with the Text property is displayed on the left- or right-hand side
of the check box. The AutoPostBack property provides the same functionality that it
did with the TextBox control. Whenever the state of the check box is changed, the form
will automatically be posted back to the server, and the CheckedChanged event will be
fired. If you have provided a handler for this event, that handler will be called for you.

Let’s run through a quick example. Create a new Web Form in your Chapter3 proj-
ect called CheckBox.aspx. Add the following to the .aspx file inside the <form> tags:

<asp:Label id=Label1 runat="server" />

<p></p>

<asp:CheckBox id=CheckBox1 runat="server" text="Selection 1"

textalign="Left" AutoPostBack=true />

68 Chapter 3

Provide a handler for the CheckedChanged event, and add the following code to
your handler:

Label1.Text = string.Format("Selection 1 is {0}",

CheckBox1.Checked ? "checked" : "not checked");

If you or the Web Form designer haven’t done so already, be sure to add member
variables for the Label and CheckBox controls in your code-behind class. Compile the
project and browse to the new page with your browser. It should look similar to the
screenshot shown in Figure 3.9. Because we have set the AutoPostBack property to
true, the form is submitted every time we change the state of the check box and the
CheckedChanged event is fired for us. The code we added to the handler simply
changes the text of the Label control to inform us of the state of the CheckBox control.

RadioButton
The RadioButton control inherits directly from CheckBox. As you would expect, its
behavior and programmability are very similar to the CheckBox. The RadioButton
control renders to an HTML <input type=“radio”> element. Just as with the CheckBox
control, a <label> element is also rendered with each <input> element inside of a
.

RadioButton adds only one property to the inherited CheckBox class, GroupName.
GroupName renders directly to the name attribute of the <input> element. Any <input
type=“radio”> elements on an HTML page that have the same name attribute value
are considered to be in a group and have mutually exclusive selection capabilities.
Therefore, if you have several RadioButton controls on a page and set all of their
GroupName properties to the same value, only one of the radio buttons in the group
will be selected at any one time.

Because this is the only functional difference between a CheckBox and RadioButton
control, let’s look at a very simple example to see this in action. Create a new Web Form
in your Chapter3 project called RadioButton.aspx, and add the following inside the
<form> tags.

Figure 3.9 The CheckBox control.

Server Controls 69

<asp:RadioButton id=RadioButton1 runat="server"

groupname="RadioButtonGroup" text="Selection 1" />

<asp:RadioButton id=Radiobutton2 runat="server"

groupname="RadioButtonGroup" text="Selection 2" />

<asp:RadioButton id=Radiobutton3 runat="server"

groupname="RadioButtonGroup" text="Selection 3" />

The resulting page should look like Figure 3.10. If you click on the radio buttons,
you’ll find that only one can be selected at a time.

DropDownList
The DropDownList control provides us with a list box UI element. It inherits directly
from the ListControl class. The ListControl class serves as a base class from which other
specific list control classes are developed. You probably won’t use the ListControl
object directly, unless you are writing your own list control that inherits from the List-
Control class. Instead, you’ll be using one of DropDownList, ListBox, CheckBoxList, or
RadioButtonList. We’ll cover the majority of the common functionality that the List-
Control class provides each of these controls in this section.The ListControl is used to
store and display name/value pairs. It will be used only for displaying single field
items. Each item has a text name for displaying in the list and may have an underlying
text value that is usually used programmatically. All of the items of the ListControl are
stored in a ListItemCollection accessible via the Items property. The ListItemCollection
is a collection of ListItem objects. Each ListItem object has a Text, Value, and a Boolean
Selected property that can be used to determine if an item is selected or to select it pro-
gramatically. We can create ListItem objects and insert them into the Items collection of
the ListControl manually, or we can Data Bind to various data sources and let the List-
Control populate the Items collection for us.

The DropDownList control renders to an HTML <select> element, which appears as
a drop-down list as long as the size attribute either is not specified or is not given a
value greater than 1. The DropDownList control chooses not to specify the size
attribute at all. In addition, because the DropDownList does not support multiple
selections, it will never set the multiple attribute of the <select> element. This also pre-
vents the <select> element from displaying as anything other than a drop-down list.
The items in the DropDownList will render as HTML <option> elements inside the
<select> element. This is true for all controls that inherit from ListControl. In addition,
if an item is selected, the associated <option> element will have its selected attribute set.

The ListControl provides one special event, SelectedIndexChanged. This event is fired
whenever the form is posted back to the server and the selected item of a ListControl
based object has changed.

The SelectedIndex property retrieves the index of the currently selected item in the
DropDownList. It also sets the currently selected item, whereas the SelectedItem prop-
erty returns the actual ListItem object associated with the selected item. In controls that
allow multiple selections such as the RadioButtonList and ListBox, the SelectedIndex
property will return the index of the item that has the lowest ordinal value. Similarly,
the SelectedItem property will return the selected item that has the lowest ordinal value.

70 Chapter 3

Figure 3.10 The RadioButton control.

The ListControl also provides the AutoPostBack property. As with the TextBox
control, when this property is set to true, the form will automatically post back to the
server when the selected item is changed. Once again, the automatic postback is imple-
mented using the __doPostBack JavaScript function.

Now let’s take a look at a simple example with the DropDownList. In this example,
we will add items manually at design time within the .aspx page. In addition, we’ll
handle the SelectedIndexChanged event in our code-behind class.

Create a new Web Form in your Chapter 3 project called DropDownList.aspx. Add
a single DropDownList control to the form, along with a single Label control similar to
this.

<asp:Label id=Label1 runat="server" />

<p></p>

<asp:DropDownList id=DropDownList1 runat="server" autopostback="True"

SelectedIndexChanged="DropDownList1_SelectedIndexChanged">

<asp:ListItem>Selection 1</asp:ListItem>

<asp:ListItem>Selection 2</asp:ListItem>

<asp:ListItem>Selection 3</asp:ListItem>

<asp:ListItem>Selection 4</asp:ListItem>

<asp:ListItem>Selection 5</asp:ListItem>

</asp:DropDownList>

As you can see, adding items at design time is simply a matter of declaring a series
of <asp:ListItem> controls inside the <asp:DropDownList> tags. This is the case for
any control that inherits from ListControl, such as ListBox, CheckBoxList, and
RadioButtonList.

You’ll also need to add the DropDownList1_SelectedIndexChanged method handler
to the code-behind file as follows.

protected void DropDownList1_SelectedIndexChanged(object sender,

System.EventArgs e)

{

Label1.Text = string.Format("The text of the item you selected is

{0}",

DropDownList1.SelectedItem.Text);

}

Server Controls 71

If you navigate to this page with your browser and change the selection in the list
box, you should see something similar to Figure 3.11. The HTML that is rendered for
the <select> element will look something like this.

<select name="DropDownList1" id="DropDownList1"

onchange="javascript:__doPostBack(‘DropDownList1’,’’)">

<option value="Selection 1">Selection 1</option>

<option value="Selection 2">Selection 2</option>

<option selected="selected" value="Selection 3">Selection 3</option>

<option value="Selection 4">Selection 4</option>

<option value="Selection 5">Selection 5</option>

</select>

The form is automatically submitted whenever the selection changes because we set
the AutoPostBack property to true. In the SelectedIndexChanged handler, we were
able to access the item that is currently selected using the SelectedItem property of the
DropDownList.

When using DataBinding, it is necessary to specify the data source to bind to using
the DataSource property. The ListControl then creates a ListItem for every item in the
data source and inserts it into the Items collection. When creating the ListItem objects,
by default the Text and Value properties are assigned whatever is returned by the
ToString() method of the items in the data source. Usually this isn’t what you want.
Unless the ToString() method of the objects in the data source has been overridden and
provided a meaningful value, the ToString() method of the base class will be called. If
the base class is of type object, the ToString() method returns the fully qualified name of
the class. To avoid these problems, we recommend that you always provide a specific
value for the DataTextField and DataValueField properties of the ListControl. These two
properties determine which fields of the items in your specified data source are
assigned to the Text and Value properties of the ListItem objects. If we had a collection
of the following object type:

public class CTestObject

{

public string m_strName

public int m_intValue;

public string Name

{

get { return m_strName; }

set { m_strName = value; }

}

public int Value

{

get { return m_intValue; }

set { m_intValue = value; }

}

}

72 Chapter 3

TE
AM
FL
Y

Team-Fly®

Figure 3.11 DropDownList with design time added items.

we could bind to it like this:

//Create an array of CTestObjects

CTestObject[] TestObjectArray = new CTestObject[5];

//Fill the array with CTestObject objects

for (int x = 0 ; x < 5 ; ++x)

{

TestObjectArray[x] = new CTestObject();

TestObjectArray[x].Value = x;

TestObjectArray[x].Name = "Object " + x.ToString();

}

//Assume we are using a DropDownList that inherits from ListControl

DropDownList1.DataSource = TestObjectArray;

DropDownList1.DataValueField = "Value";

DropDownList1.DataTextField = "Name";

//Bind the list

DropDownList1.DataBind();

This would look like Figure 3.12. If we had neglected to set the DataValueField and
DataTextField properties, it would look similar to Figure 3.13.

Figure 3.12 DropDownList with DataValueField and DataTextField set.

Server Controls 73

Figure 3.13 A DropDownList without specifying DataValueField and DataTextField.

The DataTextFormatString property of the ListControl allows you to format the
DataTextField. In most cases, you won’t be creating your data sources manually, as we
did in the previous example. You’ll be retrieving collections from a database or some
other data store. Perhaps the field that you want to display for the ListControl is of type
decimal and contains currency values. It would be nice to be able to display those val-
ues with a “$” tacked on to the beginning and to make sure that they are rounded to
two decimal places. The DataTextFormatString provides this ability. You can set Data-
TextFormatString to any valid .NET Format String. (A throrough discussion of format
strings can be found in a document titled “Formatting Strings” in the MSDN library.)
In the previous example, if we set DataTextField = “Value”, we could ensure that those
values were displayed in a currency format by setting the DataTextFormatString as
follows:

DropDownList1.DataTextFormatString = "{0:c}";

The DropDownList now looks like Figure 3.14.

Figure 3.14 A DropDownList using DataTextFormatString.

74 Chapter 3

ListBox
The ListBox control provides us with a list box UI element, which can be set to a specific
height and width and contain multiple items in a list. The ListBox control also inherits
directly from ListControl. The ListBox adds two properties to those supplied by the
ListControl class: Rows and SelectionMode. Rows simply allows you to set the height in
characters of the list box that is displayed and must be 1 or greater. SelectionMode can
be set to either Single or Multiple. When set to Single, only one item in the list box can
be selected at one time. When set to Multiple, several items can be selected by the user
at once.

The ListBox control also renders to an HTML <select> element; however, a ListBox
control will always specify the size attribute of the <select> element because the Rows
property renders directly to the size attribute of the <select> element and, as men-
tioned previously, its value can be no less than 1. If the SelectionMode property is set
to Multiple, the multiple attribute of the <select> element will be set; otherwise, the
multiple attribute will not be rendered at all. In effect, this means that if we declare a
ListBox control with a SelectionMode of Single and a Rows value of 1, it will indeed
render as a drop-down list on the Web page. The resulting HTML in this case would
look similar to the following:

<select name="ListBox1" id="ListBox1" size="1">

<option value="Selection 1">Selection 1</option>

</select>

The ListBox control, as well as the CheckBoxList (covered in the next section), sup-
ports multiple item selection; however, the ListControl class does not provide a simple
mechanism for determining which items are selected. The SelectedItem property will
return only the lowest-ordinal selected item, not all items that are selected. Because of
this, if you want to determine which items are selected, you will need to check every
item in the list to see if its Selected property is set to true. Let’s take a look at an exam-
ple of how to do this.

Create a new Web Form in your Chapter3 project, and call it ListBox.aspx. Add a
single Label control and a single ListBox control to the form, such as this.

<asp:label id=Label1 runat="server"></asp:label>

<p></p>

<asp:ListBox id=ListBox1 runat="server" AutoPostBack=true

SelectionMode="Multiple">

</asp:ListBox>

Let’s go back to using Data Binding again and declare the CTestObject class in the
code-behind file. Refer back to the ListControl section for the implementation of the
CTestObject class. Once you’ve added the CTestObject class to the ListBox.aspx.cs
code-behind file, add the following code to the Page_Load method.

if (!IsPostBack)

{

CTestObject[] TestObjectArray = new CTestObject[5];

Server Controls 75

for (int x = 0 ; x < 5 ; ++x)

{

TestObjectArray[x] = new CTestObject();

TestObjectArray[x].Name = "Object " + x.ToString();

TestObjectArray[x].Value = x;

}

ListBox1.DataSource = TestObjectArray;

ListBox1.DataTextField = "Name";

ListBox1.DataValueField = "Value";

ListBox1.DataBind();

}

NOTE We’ll be using the CTestObject class and the preceding Page_Load code
in the examples in the CheckBoxList and RadioButtonList sections also. The
only thing that will change is the name of the control whose DataSource,
DataTextField, DataValueField, and DataBind properties and methods are set
or called.

We’ll also need to handle the SelectedIndexChanged event for the ListBox1 control.
Place the following source code in the handler that you create.

//Clear any text that exists in Label1

Label1.Text = string.Empty;

//Iterate through all of the items in the ListBox checking to see if

//each item is selected

foreach (ListItem item in ListBox1.Items)

{

if (item.Selected)

{

Label1.Text += string.Format("{0} is selected
", item.Text);

}

}

If you compile this and browse to the page with your browser, it should look simi-
lar to Figure 3.15. You can select multiple items in the list by holding down either the
SHIFT or CTRL keys. The form should automatically submit itself each time the selec-
tion is changed and call your SelectedIndexChanged event handler.

76 Chapter 3

Figure 3.15 ListBox control that supports multiple selections.

CheckBoxList
The CheckBoxList control adds the power and convenience of Data Binding to the
CheckBox control to a multiple-item data source. If you have a dynamically changing
list of items that need to be displayed as check box input elements, then the Check-
BoxList is your answer. The CheckBoxList renders its check boxes exactly as did the
CheckBox control. Each , <input type=“checkbox”>, <label> set that make up
an individual check box are rendered inside of an HTML <table> or are entirely encap-
sulated in an HTML element. Whether the check boxes are contained inside of
a <table> or is directly controlled by the RepeatLayout property. The valid values
for this property are Table and Flow. When set to Table, the check boxes will be rendered
in a table format. When set to Flow, the check boxes will be rendered inside a
element. Because the element is typically not supported in a DownLevel
browser, it’s probably best to stick with Table.

The RepeatDirection property allows you to specify whether the check boxes will
render in a horizontal list across the page or in a vertical list down the page. The valid
values for this property are Horizontal and Vertical, with Vertical being the default
value. Keep in mind that the CheckBoxList control will render all of the items in its
Items collection. If you have set RepeatDirection to Horizontal and have five items to
display but only three will fit in the horizontal width available, the items will wrap to
the next line. The width available might be limited by setting the Width property to
some value, or it might simply be limited by screen real estate. In either case, once the
available width has been utilized, further items will wrap to the next line.

Server Controls 77

The RepeatColumns property is used to specify the number of horizontal columns
that the control should attempt to render. If RepeatDirection is set to Horizontal, the
value of RepeatColumns would be used to specify when the list should wrap to the
next line. This is accomplished with a simple HTML
 element when RepeatLayout
is set to Flow and established with a new row or <tr> element when RepeatLayout is
set to Table. For a CheckBox control with four items, RepeatLayout of Flow, Repeat-
Direction of Horizontal, and RepeatColumns of 2, the rendered HTML would look
similar to the following:

<input id="CheckBoxList1_0" type="checkbox" name="CheckBoxList1:0"/>

<label for="CheckBoxList1_0">Object 0</label>

<input id="CheckBoxList1_1" type="checkbox" name="CheckBoxList1:1"/>

<label for="CheckBoxList1_1">Object 1</label>

<input id="CheckBoxList1_2" type="checkbox" name="CheckBoxList1:2"/>

<label for="CheckBoxList1_2">Object 2</label>

<input id="CheckBoxList1_3" type="checkbox" name="CheckBoxList1:3"/>

<label for="CheckBoxList1_3">Object 3</label>

As you can see, a
 element is used to wrap the check box list to the next hori-
zontal line of the page after the second check box is rendered. If we take the same
example again but this time set RepeatLayout to Table, HTML similar to the following
would be rendered:

<table id="CheckBoxList1" border="0">

<tr>

<td>

<input id="CheckBoxList1_0" type="checkbox"

name="CheckBoxList1:0"/>

<label for="CheckBoxList1_0">Object 0</label>

</td>

<td>

<input id="CheckBoxList1_1" type="checkbox"

78 Chapter 3

name="CheckBoxList1:1"/>

<label for="CheckBoxList1_1">Object 1</label>

</td>

</tr>

<tr>

<td>

<input id="CheckBoxList1_2" type="checkbox"

name="CheckBoxList1:2"/>

<label for="CheckBoxList1_2">Object 2</label>

</td>

<td>

<input id="CheckBoxList1_3" type="checkbox"

name="CheckBoxList1:3"/>

<label for="CheckBoxList1_3">Object 3</label>

</td>

</tr>

</table>

Here, the RepeatColumns value of 2 is implemented by allowing only two check
boxes to be rendered inside of each table row <tr> element. In both cases, the resulting
page would look similar to Figure 3.16.

The RepeatColumns property causes some fairly obvious results when the Repeat-
Direction is Horizontal; however, when RepeatDirection is Vertical, the results might
not be what you would expect. Let’s look at a couple of examples. If we have a Check-
BoxList with four items, RepeatDirection of Vertical, RepeatColumns of 4, and Repeat-
Layout of either Table or Flow, the page will look similar to Figure 3.17; however, if
RepeatColumns is set to 3, we end up with something similar to Figure 3.18.

Figure 3.16 Horizontal CheckBoxList with two columns.

Server Controls 79

Figure 3.17 Vertical CheckBoxList with four columns.

When RepeatColumns is 4, the results are what you would expect; all four items are
rendered in separate columns. When RepeatColumns is 3, the items are rendered only
to two separate columns. Because we have four items in the list, we have enough items
to render to three columns. That would mean, though, that one column would have
two items, whereas the other two would have only one item. That wouldn’t look
nearly as nice as what you see in Figure 3.18. The CheckBoxList will intelligently come
up with a number of columns that renders as symmetrically as possible for the number
of items that you have in the list. This may or may not be what you want. If you need
a greater degree of freedom and control in the layout of your check boxes, you might
want to consider using the CheckBox control itself, rather than the CheckBoxList.

The CheckBoxList also implements the CellPadding and CellSpacing properties.
These are applicable only when RepeatLayout is set to Table and they render directly
to the cellpadding and cellspacing attributes of the HTML <table> element that will
contain all of the check boxes. CellPadding sets the distance between the border of each
cell and its contents, while CellSpacing sets the distance between each cell in the table.

The TextAlign property is also implemented and has the same affect that it does with
the CheckBox control. It simply determines which side the text of a check box will be
rendered on, left or right.

The CheckBoxList supports multiple selections just as the ListBox. To determine
which items are selected programmatically, you will have to iterate through the Items
collection and check each ListItem control individually, just as we did in the ListBox
control example.

Figure 3.18 Vertical CheckBoxList with three columns.

80 Chapter 3

RadioButtonList
The RadioButtonList is completely identical to the CheckBoxList with the exceptions
that radio buttons are rendered on the page rather than check boxes and multiple selec-
tions are not allowed. All of the <input type=“radio> elements that are rendered will
have their name attribute set to the name that you assign to the RadioButtonList
control. Therefore, all of the radio buttons will be in the same group, and this will force
single selection availability. Other than that, there isn’t anything new to cover with the
RadioButtonList; the rest of the behavior is the same as the CheckBoxList control.

Panel
The Panel control has several different uses. First and foremost, you will use it as a
container for other controls. This allows you to easily hide or show groups of related
controls programmatically. If you set the Visible property of a Panel control to False, all
of the controls contained within it will also be invisible. Likewise, if you set the Enabled
property of the Panel control to False, all of the contained controls will also be disabled.

The Panel control adds three properties to the inherited WebControl class.
BackImageUrl can be set to the URL of an image file that you wish to display as the
background of the Panel. If the image is smaller than the size of the Panel, the image
will be tiled to fill up the leftover space. HorizontalAlign provides the ability to specify
how controls contained within the Panel control should be aligned. Valid values for
this property are NotSet (the default), Left, Right, Center, and Justify. The Wrap prop-
erty can be either True or False and designates whether we want to allow the Panel
control to wrap its contents to the next line if the width of the Panel has been exceeded.

The Panel will render to an HTML <div> element on an UpLevel browser, and any
contained controls will be rendered within the <div> element. In a DownLevel
browser it will render to an HTML <table> element, and all of the contained controls
will be rendered into the first row and cell of the table. The difference between the
DownLevel and UpLevel browser in this case is quite significant. If you’re not careful,
you can get yourself into big trouble with the Panel control with consistency in the look
of your page between a DownLevel and UpLevel browser. We’ll see an example of this
later in this section. Let’s create a quick example page that demonstrates the
show/hide type functionality of the Panel control as well as some caveats between
UpLevel and DownLevel browser representation of the Panel control. Add a new Web
Form to the Chapter3 project, and call it Panel.aspx. Add the following inside the form
tags in the .aspx file:

<asp:CheckBox id=CheckBox1 runat="server" Text="Hide Panel"

AutoPostBack=true />

<p></p>

<asp:Panel id=Panel1 runat="server" width="150px" height="90px"

wrap="False" horizontalalign="Right">

<asp:Label id=Label1 runat="server"

Text="A Label that is just way too long" />

<asp:TextBox id=TextBox1 runat="server" />

<p></p>

<asp:Button id=Button1 runat="server" Text="A Button" />

</asp:Panel>

Server Controls 81

Figure 3.19 A visible panel.

As you can see, adding controls to a Panel at design time is as simple as declaring
them inside of the <asp:Panel> opening and closing tags. We need to handle the
CheckedChanged event of the CheckBox1 control, so add a handler for this event, and
include the following code in the handler.

if (CheckBox1.Checked)

Panel1.Visible = false;

else

Panel1.Visible = true;

When the check box is selected and deselected, the form will automatically be
posted to the server. The code in the handler will simply change the Visible property to
True or False, depending on the checked state of the CheckBox control. Figure 3.19
shows the page with the Panel visible, and Figure 3.20 shows the page with the Panel
invisible in Internet Explorer 6.0.

IE 6.0 is an UpLevel browser, so the Panel control was rendered to an HTML <div>
element. We set the Width of the Panel control to 150px, which is not wide enough to
accommodate the Label control and the TextBox control on the same horizontal line.
We set the Wrap property to False. In an UpLevel browser this prevents the contents
from being wrapped to the next line even if they exceed the Width that we have speci-
fied for the Panel control. As you can see in Figure 3.19, the Label and TextBox controls
are rendered on the same line. We also set the HorizontalAlign property to Right. The
Button control has been justified to the right edge of our original 150px width specifi-
cation. This may or may not be what you want; in this case, it doesn’t look good
because we don’t allow the Panel to automatically wrap for us.

Now take a look at what this page looks like in a DownLevel browser such as Opera
3.62, as shown in Figure 3.21. That’s quite a difference. The Panel is all the way over on
the right edge of the screen, and although we set Wrap to False, the contents have been
wrapped anyway. Let’s look at the rendered HTML and see why this is happening.

<table id="Panel1" align="Right" nowrap="nowrap" cellpadding="0"
cellspacing="0"
border="0" height="90" width="150">
<tr>

82 Chapter 3

TE
AM
FL
Y

Team-Fly®

Figure 3.20 An invisible panel.

<td align="Right">
A Label that is just way too long
<input name="TextBox1" type="text" id="TextBox1" />
<P></P>
<input type="submit" name="Button1" value="A Button" id="Button1" />

</td>
</tr>

</table>

The problem is that the align and nowrap properties have been set on the <table> ele-
ment itself. The nowrap attribute has not been set on the <td> element within the table,
and that is why the contents of the cell are not wrapping as we specified. If the align
and nowrap settings were removed from the <table> element and both placed on the
<td> element within the table, the DownLevel version of the Panel would look nearly
identical to the UpLevel version. Perhaps this will be changed in the future, but for
now this is the way it works. Consequently you need to be careful using the Panel con-
trol when you are targeting a broad range of browser clients.

Figure 3.21 A panel in a DownLevel browser.

Server Controls 83

Controls can also be added to the Panel dynamically at runtime. The Panel control
has a Controls property, which is a collection of all of its child controls. To add controls
at runtime, the Add() method of the Controls property can be called and passed the
control that needs to be added. So, for example, we could add five Label controls to a
Panel with code like this.

for (int x = 0 ; x < 5 ; ++x)

{

//Create the Label

Label lblDynamicLabel = new Label():

lblDynamicLabel.Text = "Label " + x.ToString();

//Add the Label to the Panel

Panel1.Controls.Add(lblDynamicLabel);

}

We’ll see several more examples of uses for the Panel control throughout the remain-
der of the book.

Table, TableRow, and TableCell
Most ASP applications use a table at one point or another, due to the fact that it is such
a good way to show formatted data in a customized layout. In ASP.NET, you can
create your tables on the server using the TableRow and TableCell objects.

The simplest way to create a table and fill it dynamically is to use the asp:Table
control in your aspx file. There are also the asp:TableRow and asp:TableCell server con-
trols. Using these in your aspx files at design time creates a fixed number of rows and
tables, to be generated on the server, and allows you to add content to them dynami-
cally. In most cases, however, a program needs to output an unknown amount of data
into a table for display purposes. Using just the asp:Table tag in the aspx file and creat-
ing TableRows and TableCells in the server code allows us to position and size the table
at design time, but fill it in at runtime. Note that when using this technique, nowhere
do you include any <tr> or <td> tags yourself. Now that you have a shell table being
generated on the server by ASP.NET, you can create rows and cells for it dynamically
by using the TableRow and TableCell objects, respectively. We won’t explain anything
about table programming in HTML because you probably are quite familiar with it
already. Let’s just dive right into a table using these objects.

Take, for example, a table, and we want to load a list of names and numbers into it.
Let’s first create the table in the aspx file using asp:Table:

<%@ Page language="c#" Codebehind="TableCellTableRow.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.TableCellTableRow" %>

<html>

<head>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</head>

<body>

84 Chapter 3

<form method="post" runat="server">

<asp:table id=table1

runat=server

border=1

cellspacing=0

cellpadding=0>

</asp:table>

</form>

</body>

</html>

Notice that we just included the asp:Table control, but we left it empty of any rows
or cells. In this table declaration, we can modify its styles, borders, color, placement,
and more. Now we fill in the table in server code with something like this:

TableCell cell = new TableCell();

cell.Text = "Hello";

TableRow row = new TableRow();

row.Cells.Add(cell);

tablevariable.Rows.Add(row);

It is very simple and works like many of the grids or tables you may have used
in the rich client world. To try this sample, create a new WebForm called TableCell-
TableRow.aspx, and use the code in Listing 3.5 for the code-behind class. The most
relevant lines of code are in bold. You can see this page in action in Figure 3.22.

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

/// <summary>

/// Summary description for TableCellTableRow.

/// </summary>

public class TableCellTableRow : System.Web.UI.Page

{

//Create a server variable for the table.

protected System.Web.UI.WebControls.Table table1;

public TableCellTableRow()

Listing 3.5 Dynamically creating an HTML table

Server Controls 85

{
Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)
{

//Create a new row.
TableRow row = new TableRow();

//Create the first cell, add it to the row.
TableCell cell = new TableCell();
cell.Text = Joe";
row.Cells.Add(cell);

//Create the second cell, add it to the row.
cell = new TableCell();
cell.Text = "555-4875";
row.Cells.Add(cell);

//Add the completed row to the table.
table1.Rows.Add(row);

}

protected void Page_Init(object sender, EventArgs e)
{

InitializeComponent();
}

private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}

}
}

Listing 3.5 Dynamically creating an HTML table (continued)

See how easy it is to create the table row? This creates the correct HTML to be sent
to the browser for a table, with correct <tr> and <td> tags. This is so much nicer than
doing it the ASP way, with server script code peppered throughout the HTML to pro-
duce the desired table. Notice that just as when programming any server control, there
has to be a valid variable representing the object in the class, or else you would have
nothing to program to. If you use the WebForm editor in Visual Studio .NET to drag
and drop a table onto your page, the table variable will be put into your code for you.
It is possible, though, to just type the asp:table code into the asp file yourself and then
add the variable to the code-behind class manually. Remember that the system uses the
directive at the top of all Visual Studio .NET-created WebForms to link the actual vari-
able with the UI control and instantiate it for you. That is why there is no code that
creates a new table explicitly, at least none that we can see. If you do insert the table and
its variable manually, do make the variable have a class scope as well as a protected
access level, or the system won’t correctly perform this link for you.

86 Chapter 3

Figure 3.22 A simple table with a row and a cell.

As for using the controls themselves, let’s look at some of the important properties.
The actual Table object itself contains many properties, mostly used for look and feel.
You can set the cellspacing, border, a cascading style sheet style, or width on the server
in code. We won’t go into detail here about these things because we all have used tables
in HTML many times before. Note that you can still set some of these properties in the
aspx file as well; this would allow you to make simple changes without recompiling;
however, there is not a lot to do with Table functionally. Most of the good stuff lies in
the TableRow and TableCell. The TableRow has many properties, like the Table object,
for defining the look and feel of the resulting row. Because you would likely not have
one of these defined in your aspx given that their power is in using them dynamically,
you will usually set these types of properties in server code. Possibly the most impor-
tant property is the Cells collection. This represents the cells in the row, or the <td>
tags. We have used the TableRow many times, and it is a great and powerful tool, but
we rarely do anything with it other than fill its Cells collection with TableCells. The
TableCell has the same type of UI-related properties, but it also has the vital text ele-
ment as well. This is where the actual visible text in the table gets set. The text you set
here is the same as if you were to do something like this in HTML: <td>Hello
World</td>. In many cases, you get long mileage out of a table simply by creating
TableCells, setting their text, adding them to the Cells collections of TableRows, and
adding the rows to a table.

Now let’s take things a little further. Remember when we said that setting the Text
property of the TableCell was the main way of creating the visible text in a table? It is,
but there is another way as well. Because we all know the TableCell is essentially the
object representing the <td> tag in your table, we can add anything we want to it. In
HTML, don’t we commonly (probably more often than not) add more than just text to

Server Controls 87

a <td>? Well, the TableCell is a container control, and thus it has the Controls collec-
tion, which is made up of just the controls inside it. We can add other things like hyper-
links, pictures, even other tables to TableCells. Let’s add a hyperlink to a table cell on
the number field we created in the last example. While we’re at it, let’s go ahead and
add some nice formatting. To do this, we will create a new WebForm called TableCell-
Hyperlink.aspx, and in its place the aspx code we used in Listing 3.5. Listing 3.6 shows
the code-behind class in which we’ll add a HyperLink server control to the cell, instead
of just setting its text. We won’t redo the aspx file because it will remain the same as in
the last sample. Also, we are providing only the Page_Load code because the rest of the
code has not changed either. Figure 3.23 shows this example in action.

protected void Page_Load(object sender, System.EventArgs e)

{

//Modify the tables look

table1.CellPadding = 2;

table1.HorizontalAlign = HorizontalAlign.Center;

table1.BorderWidth = 2;

table1.BorderStyle = BorderStyle.Outset;

//Like before, create the row and cells.

TableRow row = new TableRow();

row.BackColor = Color.Azure;

//Create the first cell, add it to the row.

TableCell cell = new TableCell();

cell.Text = "Joe";

cell.Width = Unit.Pixel(100);

row.Cells.Add(cell);

//Create the second cell, add it to the row.

cell = new TableCell();

cell.Width = Unit.Pixel(100);

//Create a link, add it to the cell

string n = "555-4875";

HyperLink link = new HyperLink();

link.Text = n;

link.NavigateUrl = string.Format("number.aspx?number={0}",

Server.UrlEncode(n));

cell.Controls.Add(link);

row.Cells.Add(cell);

//Add the completed row to the table.

table1.Rows.Add(row);

}

Listing 3.6 Creating an HTML table with more complex contents

88 Chapter 3

Figure 3.23 A table with a hyperlink.

For the formatting, we simply set some properties on the correct controls. The table
is where you define cellpadding, alignment, and the outer border; the row is fine for
defining a color, and the cells get their own explicit widths. We also could have set the
cellpadding, cellspacing, and background color properties directly on the asp:Table
object in the aspx file instead, which would have worked as well. For the hyperlink, we
created a new HyperLink object, set its properties, and added it to the collection of
controls in the cell. Instead of using the HyperLink, we could have written the <a>
code into the cell, as follows:

cell.Text = string.Format("{1}",

Server,UrlEncode(n), n);

That would accomplish the same result, but without the object-oriented code. Now
let’s go another step and add a button to a table cell, which will have a handler
attached to it when we create the object. Again, the aspx and other C# code remains the
same as the preceding code; however, this time we are sans the nice formatting. This
time, create a TableCellButton.aspx, and use the Page_Load from Listing 3.7 in the
code-behind class. This can be seen in Figure 3.24.

protected void Page_Load(object sender, System.EventArgs e)

{

//Like before, create the row and cells.

TableRow row = new TableRow();

Listing 3.7 An HTML table containing server controls

Server Controls 89

//Create the first cell, add it to the row.

TableCell cell = new TableCell();

cell.Text = "Joe";

cell.Width = Unit.Pixel(100);

row.Cells.Add(cell);

//Create the second cell, add it to the row.

cell = new TableCell();

cell.Width = Unit.Pixel(100);

//Create a button, add it to the cell

string n = "555-4875";

Button btn = new Button();

btn.Text = n;

btn.Click += new System.EventHandler(this.btn_Click);

cell.Controls.Add(btn);

row.Cells.Add(cell);

//Add the completed row to the table.

table1.Rows.Add(row);

}

protected void btn_Click(object sender, EventArgs e)

{

Response.Write("Clicked the button
");

}

Listing 3.7 An HTML table containing server controls (continued)

That’s great, but if we have more than one dynamically created button on the page,
how do we know which button was clicked? For this let’s resort to a custom button
class that extends a regular button to have a variable to hold a number. In this exam-
ple, we will use a public member variable, for simplicity. In a real-world application,
you may want to use a public property instead. When the user clicks this button, we
can perform a cast in the handler to see what the number is for the clicked button.
Create a WebForm called TableCellMyButton.aspx, and again use the same aspx file as
before. This time include the entire source in Listing 3.8 in the code-behind class, as
opposed to just the Page_Load. This contains the definition of the new button class.
Also, we added two rows to the table, so you can better see the new button class in
action.

90 Chapter 3

Figure 3.24 A table with a button.

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class TableCellMyButton : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Table table1;

public TableCellMyButton()

{

Page.Init += new System.EventHandler(Page_Init);

Listing 3.8 An HTML table containing custom server controls

Server Controls 91

}

protected void Page_Load(object sender, System.EventArgs e)

{

//Like before, create the row and cells.

TableRow row = new TableRow();

//Create the first cell, add it to the row.

TableCell cell = new TableCell();

cell.Text = "Joe";

cell.Width = Unit.Pixel(100);

row.Cells.Add(cell);

//Create the second cell, add it to the row.

cell = new TableCell();

cell.Width = Unit.Pixel(100);

//Create a button, add it to the cell

string n = "555-4875";

MyButton btn = new MyButton();

btn.Text = "Click Me";

btn.number = n;

btn.Click += new System.EventHandler(this.btn_Click);

cell.Controls.Add(btn);

row.Cells.Add(cell);

//Add the completed row to the table.

table1.Rows.Add(row);

//Create another row and cells.

row = new TableRow();

cell = new TableCell();

cell.Text = "Mary";

cell.Width = Unit.Pixel(100);

row.Cells.Add(cell);

cell = new TableCell();

cell.Width = Unit.Pixel(100);

n = "725-1443";

btn = new MyButton();

btn.Text = "Click Me";

btn.number = n;

btn.Click += new System.EventHandler(this.btn_Click);

cell.Controls.Add(btn);

row.Cells.Add(cell);

//Add the second row to the table.

Listing 3.8 An HTML table containing custom server controls (continued)

92 Chapter 3

TE
AM
FL
Y

Team-Fly®

table1.Rows.Add(row);

}

protected void btn_Click(object sender, EventArgs e)

{

//Cast out the sender to a MyButton, and get number.

Response.Write(string.Format("Clicked number {0}
",

((MyButton)sender).number));

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

}

//My custom button

public class MyButton : Button

{

public MyButton() : base() {}

public string number;

}

}

Listing 3.8 An HTML table containing custom server controls (continued)

Figure 3.25 A table with a subclassed button.

Server Controls 93

You can see how great it is to have object-oriented access to table programming.
There is one important caveat about adding controls dynamically to a table, or any
other control or page, as we have just done. If the code to load the table in Listing 3.8
were inside the !IsPostBack, meaning run only the first time a user hits the page, you
will encounter a tricky problem. If View state is enabled, which it is by default, the
page will be reloaded by View state instead of code processing, if the table code is done
only on a nonpostback request. This is fine in other cases where the controls are
defined in the aspx page, but here we have created the controls in code only; they don’t
exist in the aspx file at all. In this case the page will be blank on all subsequent page hits
by a user. The <table> will still be in the HTML code on the browser because it was
defined in the aspx file and created every time the page is sent. But the page is blank
because there are no cells in the table. If you had a complex page with other UI items
showing up, and only some small portion of the page not being created on a PostBack,
it may slip into production that way. To remedy this, just don’t create controls dynam-
ically in a !IsPostBack section, but create them on every request. That will ensure that
they are always there.

DataGrid
The DataGrid object is a super powerful tool for creating formatted output of data in a
grid- or table-like view. It differs from the asp:Table control in that it is geared for
uniform row/column data, which has the same layout on every row. This is not a lim-
itation, however, because it is a common task to display rows of the same type in a
table layout. There are also some related advanced controls called the Repeater and
DataList. Those controls, however, are fairly advanced, so we will introduce them in
Chapter 5, “Creating More Advanced ASP.NET Pages,” when we can bind them to real
data. The DataGrid control will also be covered in more detail there, but for now let’s
go through the basics of this control.

The DataGrid is specifically designed for laying out, displaying, and allowing inter-
action with bound data. The DataGrid renders to a table in the browser and supports
the same UI that you are used to using with HTML tables. This means that you can for-
mat a DataGrid to look any way you like, within the robust formatting capabilities of a
table. DataGrids are bound controls, meaning they require a data source to which to
bind and get their contents at runtime. You don’t add rows to a table at design time,
although you can add static columns. All rows in the grid are created on the fly and are
based on the data in the data source. The data that is actually displayed textually in the
grid comes from the public properties of each object in the data source. Note that if you
have a data source with objects that expose their contents only through public member
variables (and not through public properties), the grid will not bind to them properly.
Use properties on objects that you know will be loaded into a DataGrid at some time.
A DataGrid in its most simple form looks like this in the aspx file:

<asp:DataGrid Id=DataGrid1 runat="Server"></asp:DataGrid>

which is no different from using any other type of control in ASP.NET. In your code-
behind code, you will use something similar to the following to load it:

DataGrid1.DataSource = ds;

DataGrid1.DataBind();

94 Chapter 3

This is also very simple in its basic form. For our first example of a very basic Data-
Grid, we will need something to bind to. We will use a framework-provided data struc-
ture and load it with a bit of simple data just before the bind occurs. Keep in mind that
the DataGrid’s home turf is in the database arena, where there is very often a need to
show data that is row/column based. We’ll use the DataGrid heavily throughout the
book, especially when we start to access relational data in Chapter 4, “Database
Access,” and Chapter 5. Don’t worry that you don’t learn the whole control in this sec-
tion; it is a large control, and its discussion spans many parts of the book. For this
example, create a new WebForm called DataGrid.aspx, and either drag a DataGrid
from the Toolbox onto your form or enter the bold code from Listing 3.9. Remember
that if you create a control in your aspx code manually, you will also have to create its
variable declaration in the code-behind class manually. Calling DataBind in this case is
just like calling it in the server controls at the beginning of the chapter. In this case, we
are binding the DataGrid to an ArrayList. You can see this page in Figure 3.26.

<%@ Page language="c#" Codebehind="DataGrid.aspx.cs"

AutoEventWireup="false"

Inherits="Ch03.DataGrid" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server">

</asp:DataGrid>

</form>

</body>

</HTML>

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class DataGrid : System.Web.UI.Page

Listing 3.9 A simple DataGrid

Server Controls 95

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGrid()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

//Create something to use as a data_source

ArrayList arr = new ArrayList();

arr.Add("Joe Smealy");

arr.Add("Tom Blankensmith");

arr.Add("Mary James");

//Setup and perform the bind

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

}

}

Listing 3.9 A simple DataGrid (continued)

We mentioned before that objects in the data source must have public properties in
order for the DataGrid to bind to them properly. If there are no public properties in the
objects that the DataGrid is attempting to load via a Databind call, the DataGrid will
attempt to call ToString on each one. The ToString method in this case returns the string
itself because the data source array contains objects of type string. Next, we will create a
small custom object, with some public properties, and bind to a data source full of them.
Create a WebForm called DataGridCustomObjectBind, and use the same aspx code as in
the previous example. In the code-behind class, use the Page_Load code shown in List-
ing 3.10. The rest of the code-behind code is not shown because it is the same as in the
previous example. Included in the same listing is the custom class we created to bind
with. We declared the class in the same file as the code-behind, but it could also be in its
own .cs class file if that suits your needs better. You can see this example in Figure 3.27.

96 Chapter 3

...

protected void Page_Load(object sender, System.EventArgs e)

{

//Create datasource

ArrayList arr = new ArrayList();

arr.Add(new MyPerson("Smealy", "Joe", "584-47-8747"));

arr.Add(new MyPerson("Tom", "Blankensmith", "563-45-5514"));

arr.Add(new MyPerson("Mary", "James", "554-54-5587"));

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

...

public class MyPerson

{

private string m_LastName;

private string m_FirstName;

private string m_SSN;

public MyPerson(string FirstName, string LastName, string SSN)

{

m_LastName = LastName;

m_FirstName = FirstName;

m_SSN = SSN;

}

public string LastName

{

set { m_LastName = value; }

get { return m_LastName; }

}

public string FirstName

{

set { m_FirstName = value; }

get { return m_FirstName; }

}

public string SSN

{

set { m_SSN = value; }

get { return m_SSN; }

}

}

Listing 3.10 A simple custom class to use as data source items

Server Controls 97

Figure 3.26 A simple DataGrid.

Figure 3.27 A DataGrid bound to custom objects.

98 Chapter 3

Now let’s move onto customizing the DataGrid somewhat. In the Listing 3.10 exam-
ple, the DataGrid used property indexers to look at each public property of the objects
in the data source. For each one it found, it created a column header from the name of
the property and the cells from the value of each property. Each row in the DataGrid
represents one object in the data source. In this case, this was automatic because the
DataGrid has a property called AutoGenerateColumns, which is set to true by default.
For the next example, let’s turn off this property and create the aspx code needed to
load specific data from the data source. Create a WebForm called DataGridBound-
Column, and use the same code-behind class as in Listing 3.10, without the MyPerson
class. That the code in the code-behind class merely creates or opens the data source
and calls bind means that we can change layout and column characteristics of your
DataGrid solely in the aspx file without having to recompile. The code that creates the
specific column bindings is shown in bold in Listing 3.11. We use the asp:Bound-
Column control, which must be used within the context of the DataGrid. These lines
are telling the DataGrid to look for the property named in the DataField element, give
it a column header and a width, and load its value into the cell. The DataGrid faithfully
does this, and the results appear in Figure 3.28.

<%@ Page language="c#" Codebehind="DataGridBoundColumns.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.DataGridBoundColumns" %>

<html>

<head>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</head>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server"

AutoGenerateColumns=False>

<Columns>

<asp:BoundColumn DataField=LastName

HeaderText="Last Name" ItemStyle-Width=200px>

</asp:BoundColumn>

<asp:BoundColumn DataField=FirstName

HeaderText="First Name" ItemStyle-Width=200px>

</asp:BoundColumn>

<asp:BoundColumn DataField=SSN

HeaderText="Social" ItemStyle-Width=100px>

</asp:BoundColumn>

</Columns>

</asp:DataGrid>

</form>

</body>

</html>

Listing 3.11 A DataGrid with user-specified column bindings

Server Controls 99

Figure 3.28 A DataGrid with user-specified column bindings.

Now let’s add a button to each row, so the user can actually interact with the Data-
Grid. The code is similar to Listing 3.11, except that we must change the Last Name col-
umn binding from a BoundColumn to a ButtonColumn. Create a new WebForm called
DataGridButtonColumns, and enter the code-behind class code from Listing 3.11.
Next, add the button handler by adding an ItemCommand handler for the DataGrid in
the code-behind class. Again, this is just like other controls, in that you can double-click
the event you want in Visual Studio .NET and it will create the handler for you. Note
that although the column is called a ButtonColumn, it looks like a hyperlink. You can
set the ButtonType property to render either a link or a button. Either way, the click on
this item in the browser causes the JavaScript form submittal code to run and go back
to the server. The important thing to remember is that like all server controls in
ASP.NET, the handler code runs on the server. So, what function gets called? In this
case, we are going to handle the ItemCommand handler on the DataGrid and not the
ButtonColumn itself. ButtonColumns don’t even have events. The reason for this is
that events for controls inside of a DataGrid are bubbled up to the DataGrid itself. The
DataGrid then fires these events. Now that we have added the ButtonColumn, we
have something to cause the firing of the event. Listing 3.12 shows us the code, and
Figure 3.29 shows us the WebForm in action.

<%@ Page language="c#" Codebehind="DataGridButtonColumns.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.DataGridButtonColumns" %>

<HTML>

<HEAD>

Listing 3.12 A DataGrid with a button column

100 Chapter 3

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server"

AutoGenerateColumns=False>

<Columns>

<asp:ButtonColumn ButtonType=LinkButton

DataTextField=LastName HeaderText="Last Name"

ItemStyle-Width=200px>

</asp:ButtonColumn>

<asp:BoundColumn DataField=FirstName

HeaderText="First Name" ItemStyle-Width=200px>

</asp:BoundColumn>

<asp:BoundColumn DataField=SSN HeaderText="Social"

ItemStyle-Width=100px>

</asp:BoundColumn>

</Columns>

</asp:DataGrid>

</form>

</body>

</HTML>

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class DataGridButtonColumns : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridButtonColumns()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

Listing 3.12 A DataGrid with a button column (continued)

Server Controls 101

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataGrid1.ItemCommand += new

System.Web.UI.WebControls.DataGridCommandEventHandler(

this.DataGrid1_ItemCommand);

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

//Create datasource

ArrayList arr = new ArrayList();

arr.Add(new MyPerson("Smealy", "Joe", "584-47-8747"));

arr.Add(new MyPerson("Tom", "Blankensmith", "563-45-5514"));

arr.Add(new MyPerson("Mary", "James", "554-54-5587"));

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

protected void DataGrid1_ItemCommand(object source,

System.Web.UI.WebControls.DataGridCommandEventArgs e)

{

//Show which item we clicked.

Response.Write("Item Command on " + e.Item.Cells[1].Text);

}

}

}

Listing 3.12 A DataGrid with a button column (continued)

In the arguments to the ItemCommand handler, we have access to the actual row
item that was clicked. We can interrogate this argument for contents from the cells on
that row, but there is actually a better way of handling the ItemCommand event. We
can set the CommandName property in the aspx page on the ButtonColumn to what-
ever we would like. Then in the handler, this property is available in the EventArgs
argument. We can then check to see which ButtonColumn the user clicked, as well as
information from the cells on that particular row. This makes it very easy to have a
DataGrid with two hyperlink columns, each to perform a different action.

102 Chapter 3

TE
AM
FL
Y

Team-Fly®

Figure 3.29 A DataGrid with a button columns in action.

<%@ Page language="c#"

Codebehind="DataGridButtonColumnsCommandName.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.DataGridButtonColumnsCommandName"

%>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server"

AutoGenerateColumns=False>

<Columns>

<asp:ButtonColumn ButtonType=LinkButton

CommandName=HitLastName DataTextField=LastName

HeaderText="Last Name" ItemStyle-Width=200px>

</asp:ButtonColumn>

Listing 3.13 Using CommandName in a DataGrid column

Server Controls 103

<asp:BoundColumn DataField=FirstName

HeaderText="First

Name" ItemStyle-Width=200px>

</asp:BoundColumn>

<asp:ButtonColumn ButtonType=LinkButton

CommandName=HtiSSN DataTextField=SSN

HeaderText="Social" ItemStyle-Width=200px>

</asp:ButtonColumn>

</Columns>

</asp:DataGrid>

</form>

</body>

</HTML>

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class DataGridButtonColumnsCommandName : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridButtonColumnsCommandName()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataGrid1.ItemCommand += new

System.Web.UI.WebControls.DataGridCommandEventHandler(

this.DataGrid1_ItemCommand);

this.Load += new System.EventHandler(this.Page_Load);

Listing 3.13 Using CommandName in a DataGrid column (continued)

104 Chapter 3

}

private void Page_Load(object sender, System.EventArgs e)

{

//Create data source

ArrayList arr = new ArrayList();

arr.Add(new MyPerson("Smealy", "Joe", "584-47-8747"));

arr.Add(new MyPerson("Tom", "Blankensmith", "563-45-5514"));

arr.Add(new MyPerson("Mary", "James", "554-54-5587"));

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

protected void DataGrid1_ItemCommand(object source,

System.Web.UI.WebControls.DataGridCommandEventArgs e)

{

Response.Write(string.Format("{0} on {1}", e.CommandName,

e.Item.Cells[1].Text));

}

}

}

Listing 3.13 Using CommandName in a DataGrid column (continued)

Figure 3.30 Using a CommandName in a DataGrid in action.

Server Controls 105

In Listing 3.13 we found out which ButtonColumn was clicked by its Command-
Name, which is part of the DataGridCommandEventArgs parameter of the Item-
Command handler. Refer to Figure 3.30 to see it in action.

All of these features are great, but it is still somewhat cumbersome to get particular
data from the rows when you select one by clicking a ButtonColumn link. Sure, we
have been able to pull some data by looking directly in the cells of the selected item,
but that is a less-than-perfect method. What if you rearrange the columns in the aspx
file or have new columns in the data source because your database changed? Your code
would not be correct if the indices were out of sync when indexing a cell in a row. A bet-
ter way to do it is with the DataKeyField property. This is a place in each row into
which you can store any bound data property from the data source. It is not related
with a column, or even visible. This is a perfect place to put a record ID for a database,
or any kind of key information that would allow you to look up more information. For
the next example, create a WebForm called DataGridKeyField and include the Data-
Grid from Listing 3.14 in it. We will bind to a collection of MyPerson objects again, but
this time we use the ID field of the MyPerson class to insert into the DataKeyField of
each row in the DataGrid. Then, when we are back on the server handling an event that
occurs because of clicking a ButtonColumn link, we can get this value and look up the
real MyPerson.

<%@ Page language="c#" Codebehind="DataGridKeyField.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.DataGridKeyField" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server"

AutoGenerateColumns=False DataKeyField="PersonID">

<Columns>

<asp:ButtonColumn ButtonType=LinkButton

CommandName=Select DataTextField=LastName

HeaderText="Last Name" ItemStyle-Width=200px>

</asp:ButtonColumn>

<asp:BoundColumn DataField=FirstName

HeaderText="First Name" ItemStyle-Width=200px>

</asp:BoundColumn>

<asp:BoundColumn DataField=SSN HeaderText="Social"

ItemStyle-Width=200px>

</asp:BoundColumn>

</Columns>

<SelectedItemStyle BackColor="Navy" ForeColor="White">

Listing 3.14 Using the DataKeyField in a DataGrid

106 Chapter 3

</SelectedItemStyle>

</asp:DataGrid>

</form>

</body>

</HTML>

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class DataGridKeyField : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridKeyField()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataGrid1.SelectedIndexChanged += new

System.EventHandler(

this.DataGrid1_SelectedIndexChanged);

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

//Create datasource

ArrayList arr = new ArrayList();

arr.Add(new MyPerson("Smealy", "Joe", "584-47-8747",

"1477485"));

arr.Add(new MyPerson("Tom", "Blankensmith", "563-45-5514",

"5447869"));

Listing 3.14 Using the DataKeyField in a DataGrid (continued)

Server Controls 107

arr.Add(new MyPerson("Mary", "James", "554-54-5587",

"3254785"));

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

protected void DataGrid1_SelectedIndexChanged(object source,

System.EventArgs e)

{

int i = DataGrid1.SelectedIndex;

Response.Write(string.Format("Key selected {0}",

DataGrid1.DataKeys[i].ToString()));

}

}

}

Listing 3.14 Using the DataKeyField in a DataGrid (continued)

In this example, we accomplished our goal of getting information related to a single
row in the DataGrid, and we saw a few new things. First, the ButtonColumn Com-
mandName changed from one we made up to “Select,” which is unique to ASP.NET.
When the server sees this CommandName, it will select the correct row by both chang-
ing its look and reflecting these changes in the SelectedIndex and SelectedItem proper-
ties of the DataGrid. These properties can be used just like the respective ones in a rich
client application where you would be looking at the selected index of a ListView, for
example. The change in the UI is made because the SelectedItemStyle attributes were set
up on the table in the aspx file. Whatever this is set to, with all of its UI properties, is
how the selected grid item will look as soon as the page returns from the click handler.
Also, in this example we varied from the ItemCommand to the SelectedIndexChanged
event. But the important part is that we modified the DataGrid in the aspx file to have a
DataKeyField property set to PersonID. This makes the DataGrid load the PersonID
property value from each of the MyPerson objects in the data source into each row,
along with the other columns we selected to show. This is similar to the item data
pointer in an MFC CListView control or the key property on items in a VB6 list control.
It allows you to store some data along with the row, yet not have to see it. In a real-world
application, you would take this key data and look up the detail record for the corre-
sponding record in the grid, for example. You can see the code in action in Figure 3.31.

To wrap up this section, we will create one final DataGrid that makes use of a few
formatting techniques, that shows off how nice a fully formatted DataGrid can look.
There are many more aspects to the DataGrid, however, and they will be covered
throughout the book. Later on, we will look at editing rows in a DataGrid, as well as
handling events that occur as the DataGrid is being created by the system and being
able to influence its creation on the fly. Create a WebForm called DataGridFormatted,
and include the DataGrid shown in Listing 3.15. Again, we use the MyPerson class for
the data items, so include the MyPerson declaration from Listing 3.10 in your code.
Figure 3.32 shows the formatted DataGrid in action.

108 Chapter 3

Figure 3.31 A DataGrid with a DataKeyField in action.

<%@ Page language="c#" Codebehind="DataGridFormatted.aspx.cs"

AutoEventWireup="false" Inherits="Ch03.DataGridFormatted" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server"

AutoGenerateColumns=False

borderstyle="None"

cellpadding="2"

backcolor="White"

borderwidth="1px"

Font-Name="Verdana"

Font-Size="9pt"

bordercolor="#CC9966">

<FooterStyle ForeColor="#330099" BackColor="#FFFFCC">

</FooterStyle>

<ItemStyle ForeColor="Black" BackColor="White">

</ItemStyle>

<AlternatingItemStyle ForeColor="Black"

Listing 3.15 A nicely formatted DataGrid

Server Controls 109

BackColor="WhiteSmoke">

</AlternatingItemStyle>

<SelectedItemStyle Font-Bold="True" ForeColor="#663399"

BackColor="#FFCC66">

</SelectedItemStyle>

<HeaderStyle Font-Bold="True" ForeColor="#FFFFCC"

BackColor="#990000">

</HeaderStyle>

<Columns>

<asp:ButtonColumn Text="Select" HeaderText="Select"

CommandName="Select">

<ItemStyle Width="40px">

</ItemStyle>

</asp:ButtonColumn>

<asp:TemplateColumn HeaderText="Name" ItemStyle-

Width=300px>

<ItemTemplate>

<asp:Label Runat=server Text=’<%#

string.Format("{0}, {1}",

((MyPerson)Container.DataItem).LastName,

((MyPerson)Container.DataItem).FirstName)

%>’

ID="Hyperlink1" NAME="Hyperlink1">

</asp:Label>

</ItemTemplate>

</asp:TemplateColumn>

<asp:BoundColumn DataField="SSN"

HeaderText="Social">

<ItemStyle Width="200px">

</ItemStyle>

</asp:BoundColumn>

<asp:TemplateColumn HeaderText="Lookup" ItemStyle-

Width=40px>

<ItemTemplate>

<asp:HyperLink Runat=server Text="Lookup"

NavigateUrl=’<%#

string.Format("lookup.aspx?id={0}",

Server.UrlEncode(

((MyPerson)Container.DataItem).PersonID)

) %>’>

Listing 3.15 A nicely formatted DataGrid (continued)

110 Chapter 3

</asp:HyperLink>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

</form>

</body>

</HTML>

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

public class DataGridFormatted : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridFormatted()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

LoadDataGrid();

}

Listing 3.15 A nicely formatted DataGrid (continued)

Server Controls 111

private void LoadDataGrid()
{

System.Collections.ArrayList arr = new
System.Collections.ArrayList();

arr.Add(new Ch03.MyPerson("Smealy", "Joe", "584-47-8747",
"605148"));

arr.Add(new Ch03.MyPerson("Tom", "Blankensmith",
"563-45-5514", "114700"));

arr.Add(new Ch03.MyPerson("Mary", "James", "554-54-5587",
"159986"));

arr.Add(new Ch03.MyPerson("Sally", "Weller", "593-16-3714",
"325448"));

arr.Add(new Ch03.MyPerson("Gerald", "Johns", "587-55-9025",
"222598"));

arr.Add(new Ch03.MyPerson("Gary", "Miller", "594-57-6249",
"121548"));

arr.Add(new Ch03.MyPerson("Nancy", "Becker", "595-3665",
"958746"));

arr.Add(new Ch03.MyPerson("Timothy", "Stevens", "523-4458",
"148756"));

arr.Add(new Ch03.MyPerson("Sarah", "Lawrence", "596-4144",
"418756"));

this.DataGrid1.DataSource = arr;
this.DataGrid1.DataBind();

}
}

}

Listing 3.15 A nicely formatted DataGrid (continued)

In this example, we see many of the formatting enhancements you can do with the
DataGrid. First, we have the ItemStyle, AlternatingItemStyle, HeaderStyle, Footer-
Style, and SelectedItemStyle. These are subelements of the grid to allow you to change
the look of different types of rows. With these you can control the font, color, bold, or
background, or you can set a row to a CSS style. We won’t go into the syntax of setting
these up because the VS.NET IDE will do a nice job for you using the DataGrid Auto-
Format and DataGrid Property Builder features. We personally use a combination of
these tools mixed with hand editing the aspx. Try some experiments using these fea-
tures to set the look of your DataGrid, and then go into the aspx code manually to see
exactly how the code was generated.

112 Chapter 3

TE
AM
FL
Y

Team-Fly®

Figure 3.32 A nicely formatted DataGrid in action.

Another new aspect was added in Listing 3.15: the TemplateColumn, which again
can be added using the Property Builder applet of Visual Studio .NET. This allows you
to add most any controls you want to the cells in the DataGrid. Recall that the cells in
a DataGrid are merely <td> table elements once they reach the browser, and they can
contain whatever other HTML you want. In this example, we added some server con-
trols with in-line script. In the first TemplateColumn, we will use an asp:Label to render
the MyPerson name formatted as LastName, FirstName. When performing complex
customizing like this, we resort to in-line scripting, which was explained in Chapter 2.
Here is a quick rehash as it applies to this example.

The ((MyPerson)Container.DataItem).PersonID) line represents the DataItem from
the DataGrid. Think of this as the actual object within the data source to which we are
binding, although it does need to be cast out accordingly. In this case, the DataItem is
actually the MyPerson for the current DataGrid row item. We can see that by casting,
we are able to get at the properties of the data source objects in their native form. Then,
we use the frameworks string class to format the contents, which will return a string to
the DataGrid to render in the label. In actuality, we are binding a Label control to one
of the bound pieces of data in its container. This technique is also used to set up the
asp:HyperLink, which is in the last column, and links to another (nonexistent) page
with the MyPerson PersonID as a parameter. It is true that the business logic probably
could be done just the same by setting up a ButtonColumn, looking at the ID on the
server from the DataKeyField, building the new URL in code, and redirecting to it. We
wanted to show you a different option. Besides, it does save at least one trip to the
server by having just a hyperlink on the client. As you can see, the TemplateColumns,
ButtonColumns, and BoundColumns can live happily together in one DataGrid. Just
remember that when using other server controls inside a TemplateColumn, they still

Server Controls 113

must have the runat=server attribute set, just as if they were being used anywhere else.
Also, if the objects in your data source are not in the same namespace as your page, you
will have to include their namespace in the aspx file as well. This has to be done so that
the cast applied to the DataItems can be resolved. You cannot rely on having the using
<namespace> clause in your code-behind file; you must include something like the
following at the top of the aspx file as well:

<%@ Import Namespace="MyPersonNameSpace" %>

This section was just a primer on the DataGrid, and, as stated before, we will revisit
this control again in Chapters 4 and 5. We feel that the DataGrid is one of the best
server controls in the standard suite, due to the fact that it is so common to need to dis-
play rows of data in this manner and the ease of use of the control itself.

HTML Server Controls

Any HTML element on an ASP.NET page can be converted into an HTML Server
Control. The only action that is required to turn an HTML element into an HTML
Server Control is to add the runat attribute of the HTML element and set it to “server”.
We have been using an HtmlForm control in nearly every example that we’ve covered
in the book thus far. Either we added it manually, or the Web Form designer did it for
us. It looks like this:

<form method="post" runat="server">

When the page is processed on the server, ASP.NET creates an instance of the Html-
Form class to represent the form and provide us with programmatic access to it. By
adding the runat=“server” attribute, we can turn any HTML element into an HTML
Server Control on the server. For instance, to make a HTML element an
HTML Server Control, we can just declare it like this:

This ability gives a programmer who wants to stick with traditional HTML syntax
the same server-side programmatic access to controls as is provided by the Web Server
Controls. There are specific .NET Framework-provided classes that are used to repre-
sent many of the HTML Server Controls, such as HtmlForm to represent a <form> ele-
ment and HtmlAnchor to represent an <a> element. A class does not exist, however, for
every HTML element that exists. This problem is alleviated by the use of the Html-
GenericControl, covered later in this chapter. By using HTML Server Controls, you cir-
cumvent ASP.NET’s ability to determine the client browser capabilities and render
HTML that will work best for that particular client. Because you are explicitly stating
which HTML elements you want to use, your page may not work on an older Down-
Level browser if you use elements that it doesn’t support. Other than the HtmlForm,
we won’t be using HTML Server Controls too often in this book; however, we will
cover a few of the more important points about HTML Server Controls in the sections
that follow.

114 Chapter 3

All HTML Server Controls derive indirectly from the HtmlControl class. The Html-
Control class derives directly from the Control class, just as did the WebControl class
from which all Web Server Controls inherit. That means that we get a lot of the same
base functionality that Web Controls provide, such as Data Binding, View state, control
containment, and basic events such as Init, Load, and Unload. The .NET Framework
provides three classes that derive directly from HtmlControl. They are HtmlContainer-
Control, HtmlImage, and HtmlInputControl. All of the HTML Server Controls that are
provided derive from either HtmlContainerControl or HtmlInputControl. HtmlImage
is a control that you will use directly.

HTML Server Controls that must have a closing tag will be derived from Html-
ContainerControl. The HtmlContainerControl class adds two properties to the inherited
HtmlControl class, InnerHtml and InnerText. These two properties are used to set the con-
tents that are rendered between the opening and closing tags of the HTML element.
InnerText provides automatic HTML encoding and decoding, while InnerHtml does not.

The HtmlInputControl class provides the base functionality for all HTML <input>
elements. Its Type property specifies which type of <input> element it is, such as text,
radio, or check box.

For the most part, you will find that any properties of the HTML Server Controls
beyond those provided by their base class will have the same name as the attributes of
the HTML element to which they render. For example, the HtmlAnchor class has prop-
erties such as HRef, Name, and Title, which are the same as the corresponding attrib-
utes for the HTML <a> element. In addition, most of the HTML Server Controls that
allow user interaction add a server-side event. The name of the event will be either
ServerClick or ServerChange, depending on whether it is a clickable element, such as a
button or hyperlink, or a data entry element, such as a text box or drop-down list.

Table 3.1 lists all of the HTML Server Controls and the classes from which they
derive.

Table 3.1 HTML Server Controls

CONTROLS DERIVED CONTROLS DERIVED CONTROLS DERIVED
FROM HTMLCONTAINER HTMLINPUTCONTROL FROM HTMLIMAGE

HtmlAnchor HtmlInputButton (no derived controls)

HtmlButton HtmlInputCheckBox

HtmlForm HtmlInputFile

HtmlGenericControl HtmlInputHidden

HtmlSelect HtmlInputImage

HtmlTable HtmlInputRadioButton

HtmlTableCell HtmlInputText

HtmlTableRow

HtmlTextArea

Server Controls 115

Obviously, many HTML elements are missing. For example, there is no specific
control for the element. As shown earlier, we can still turn a element
into an HTML Server Control by adding the runat=“server” attribute, but what object
is used to represent that element on the server side and provide access to it? This is
where the HtmlGenericControl comes in. It is the object used for programmatic access
to any element that does not have a specific class implementation provided by the
.NET Framework. Let’s look at an example of how we can use this to access a
element and change its contents and attributes dynamically.

Create a new Web Form in your Chapter3 project, and call it span.aspx. Add the fol-
lowing inside the <form> tags:

<p></p>

<input type=submit Value="Change To Red" id=Submit1 name=Submit1

runat="server">

This code just declared two HTML Server Controls, simply by including the
runat=“server” attribute. To access these elements in the code-behind class, we need to
declare HtmlGenericControl for the element and HtmlInputButton for the
<input type=submit> element.

protected System.Web.UI.HtmlControls.HtmlGenericControl Span1;

protected System.Web.UI.HtmlControls.HtmlInputButton Submit1;

Now we can access these two elements on the server side through these member
variables. Add the following code to the Page_Load method:

if (!IsPostBack)

{

Span1.InnerHtml = "This is a span element
with a line break";

}

This will set the text that is rendered inside of the tags. We have set the text
using the InnerHtml property to demonstrate that it does not provide HTML encoding.
This means that an actual
 element will be rendered inside the tags and
therefore a line break will occur, as shown in Figure 3.33. If we had set the InnerText
property instead, the page would look like Figure 3.34 and the actual text that is ren-
dered inside the tags would be HTML encoded as follows.

This is a span element
with a line break

116 Chapter 3

Figure 3.33 Setting the text of a span element with InnerHtml.

Next, we need to wire up a handler for the ServerClick event of the <input type=
submit> element. This can be done in either the Page_Init or InitializeComponent
methods like this:

this.Submit1.ServerClick += new

System.EventHandler(this.Submit1_ServerClick);

Then, of course, we need to provide the handler as follows:

private void Submit1_ServerClick(object sender, System.EventArgs e)

{

//Change the color of the span element and the text of the submit

button

if (Span1.Style["color"] == "red")

{

//Clear the style-color attribute

Span1.Style["color"] = "";

//Change the text of the button

Submit1.Value = "Change to red";

}

else

{

//Clear the style-color attribute

Span1.Style["color"] = "red";

//Change the text of the button

Submit1.Value = "Change to normal";

}

}

Server Controls 117

Figure 3.34 Setting the text of a span element with InnerText.

This code checks to see if the color of the text in the element is red. If it’s not,
the color is set to red. We can access all of the attributes of the style associated with the
 element using the Style property of the HtmlGenericControl. As you can see,
this is how we check and set the color of the text. In addition, we also change
the text displayed on the button. This is done easily through the Value property of the
HtmlInputButton control.

As we mentioned earlier, we won’t be using the HTML Server Controls too often in
this book, but this should give you a general idea of their capabilities. In most cases,
you are better off to use the supplied Web Server Controls.

Validation Controls

A task that every good programmer must do is validating user input. In a typical Win-
dows application, validation is not very difficult. All of the controls on a form can be
validated when the user presses some sort of OK button, or validation can take place
on each specific control as the user is entering the data. In ASP, user input validation
was not a straightforward or clean task. Unless you wrote some sort of client-side
script or DHTML, validation had to take place when the form was submitted to the
server. Usually this validation was handled manually with a script that was called at
the beginning of page processing. A simple validation, such as a required field, had to
be checked for manually and an error message generated manually as well. ASP.NET
has addressed this mundane task with validation controls.

Validation controls can be defined in the .aspx file just as Web Server or HTML Server
Controls. There are several Validation Controls for performing the more common
types of validation, such as a required field. In addition, a custom validator gives you
complete control over the validation that occurs. In a nutshell, you choose the type of
Validation Control that you need and wire it to a specific input control on your page.
When the page is submitted the Validation Control will validate the input control to
which it is assigned. If the Validation Control detects an invalid entry, an error message
is usually displayed in one of several ways. The validation always occurs on the server
side when the page is submitted; however, validation can also occur on the client side
if the client browser supports DHTML. This eliminates the need for the round trip to

118 Chapter 3

the server and speeds up the data-entry process. Validation will still occur on the
server side, even if validation has already taken place on the client side.

You can assign as many Validation Controls to one input control as necessary. This
allows you not only to mark a field as required, but also to make sure that whatever the
user enters is the type of information that you expect. It is important to know that the
RequiredFieldValidator control, covered in the following section, is the only control
that enforces required entry. The other Validation Controls will always validate to true
if the user does not enter anything into the field being validated. In other words, they
don’t do anything unless there is some input to validate.

All of the Validation Controls derive directly from the BaseValidator class, which in
turn is derived from the Label class. The BaseValidator class defines a property called
ControlToValidate, which is set to the ID of the input control that is to be validated. The
IsValid property is a Boolean property that can be checked programmatically to deter-
mine if the input was valid or invalid. In addition, this property can be set program-
matically to force the Validation Control to whatever state we choose. In addition, we
can force validation to occur on the server side at any time by calling the Validate
method. This causes validation to occur and will update the IsValid property appropri-
ately. The Page class itself defines an IsValid property. This property provides a quick
and easy way to see if all of the controls on the page are valid or if there are errors. If
any of the Validation Controls on the page are not valid, the Page class IsValid property
will be set to False.

There are a few more properties of the BaseValidator class. The Display property
determines whether the validator control reserves space on the page to display its error
message, even when the error message is not visible. It can be set to either Static or
Dynamic. When set to Static (the default), the Validation Control will occupy enough
space to accommodate its error message, even when the error message is not visible.
This prevents other controls from shifting on the page when the validator control dis-
plays its error message. In contrast, the Dynamic setting does not reserve space for the
error message when it is not visible. Therefore, it’s possible that other controls on the
page might be shifted when the error message is displayed.

The EnableClientScript property is of type bool and allows us to turn off client-side
validation for a specific Validation Control. This property is set to True by default. If it
is set to False, no client-side script will be generated for client-side validation, regard-
less of whether the client supports DHTML.

RequiredFieldValidator
Before we go any further, let’s look at a simple case of checking for a required field and
get our feet wet with the Validation Controls. Create a new Web Form in your Chapter3
project, and call it ValidationControls.aspx. You can download the code for this page
from the companion Web site. Add the following inside the <form> tags.

Vehicle Year:

<asp:TextBox id=txtVehicleYear runat="server"></asp:TextBox>

<asp:RequiredFieldValidator id=vldVehicleYearReqd runat="server"

ErrorMessage="Vehicle Year is a required field"

controltovalidate="txtVehicleYear">

Server Controls 119

</asp:RequiredFieldValidator>

<P></P>

<asp:Button id=Button1 runat="server" Text="Submit">

</asp:Button>

This example is fairly straightforward. We have defined a RequiredFieldValidator con-
trol and set the ControlToValidate property to the ID of txtVehicleYear. As you might
have guessed, the RequiredFieldValidator control is used to force required entry of a
field on the page. If you navigate to this page and click the Submit button without
typing anything in the text box, you should see something like Figure 3.35. An error
message should be displayed next to the control with the text that we specified in the
ErrorMessage property of the RequiredFieldValidator control. If you are using a
browser that supports DHTML, you will notice that the error message is displayed
without a round trip to the server. If your browser doesn’t support DHTML, the error
message will still be displayed, but only after a round trip to the server, where the val-
idation will occur.

Let’s take a look at the difference between the HTML source rendered for a DHTML
and non-DHTML browser and see how client-side validation is implemented. First,
let’s look at the DHTML case. The rendered HTML for the required field example
should look similar to Listing 3.5. The first thing to notice is the declaration of the
<form> tag. The onsubmit attribute of the <form> element has been set to Validator-
OnSubmit(), so just before the form is posted to the server, this JavaScript function will
be called. After the <form> declaration we see that a JavaScript source file has been
included called WebUIValidation.js. This file is installed with the framework and
placed under the inetpub\wwwroot_aspx directory of your Web server. It contains
the JavaScript code for implementing client-side evaluation for all of the Validation
Controls. Immediately after the declaration of the <input> element, a element
has been rendered for the RequiredFieldValidator control. The controltovalidate and
errormessage attributes are exactly as we defined for the same named attributes of the
RequiredFieldValidator. In addition, an attribute named evaluationfunction is set to
RequiredFieldValidatorEvaluateIsValid. This is a JavaScript function that is defined in
the file WebUIValidation.js. The style of the element has been set, and the visi-
bility has been set to hidden. This is why we don’t see the error message when the page
is loaded initially.

Figure 3.35 RequiredFieldValidator.

120 Chapter 3

In the <script> blocks defined at the bottom of the source an array called Page_Val-
idators is defined. All of the Validation Controls that you have defined in your page
will be added to this array. In this case, we have only one, txtVehicleYearReqd. This
array is used by several of the JavaScript functions in the WebUIValidation.js file.
Further down we see some script that verifies the existence of the correct version of the
WebUIValidation.js file.

Finally, the ValidatorOnSubmit function is defined, which calls the Validator-
CommonOnSubmit function. ValidatorCommonOnSubmit is defined in the WebUI-
Validation.js file and basically loops through all of the Validation Controls in the
Page_Validators array, executes the appropriate evaluation function for each of them,
and, if necessary, displays error messages for controls that do not have valid entries.
We’re not going to go any further into the implementation details of the WebUIValida-
tion.js file. You can open it up and take a look at it yourself if you’re interested in the
specifics of how it works.

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name=vs_defaultClientScript content="JScript">

<meta name=vs_targetSchema content="Internet Explorer 5.0">

</HEAD>

<body ms_positioning="GridLayout">

<form name="RequiredFieldValidator" method="post"

action="RequiredFieldValidator.aspx" language="javascript"

onsubmit="ValidatorOnSubmit();" id="RequiredFieldValidator">

<input type="hidden" name="__VIEWSTATE"

value="dDwtMjA3MzEyODU5NTs7Pg==" />

<script language="javascript"

src="/_aspx/1.0.2728/script/WebUIValidation.js">

</script>

Vehicle Year:

<input name="txtVehicleYear" type="text" value="fdas"

id="txtVehicleYear" />

<span id="vldVehicleYearReqd" controltovalidate="txtVehicleYear"

errormessage="Vehicle Year is a required field"

evaluationfunction="RequiredFieldValidatorEvaluateIsValid"

initialvalue="" style="color:Red;visibility:hidden;">

Vehicle Year is a required field

<P></P>

<input type="submit" name="Button1" value="Submit" id="Button1"

/>

Listing 3.16 RequiredFieldValidator in action

Server Controls 121

<script language="javascript">

<!--

var Page_Validators = new Array(document.all["vldVehicleYearReqd"]);

// -->

</script>

<script language="javascript">

<!--

var Page_ValidationActive = false;

if (typeof(Page_ValidationVer) == "undefined")

alert("Unable to find script library WebUIValidation.js.");

else if (Page_ValidationVer != "119")

alert("This page uses an incorrect version of WebUIValidation.js. The

page expects version 119. The script library is " + Page_ValidationVer

+ ".");

else

ValidatorOnLoad();

function ValidatorOnSubmit() {

if (Page_ValidationActive) {

ValidatorCommonOnSubmit();

}

}

// -->

</script>

</form>

</body>

</HTML>

Listing 3.16 RequiredFieldValidator in action (continued)

For the non-DHTML browser, no client-side evaluation can occur, so no JavaScript is
rendered. In fact, nothing at all is rendered for the RequiredFieldValidator control.
When the page is submitted back to the server all of the Validation Controls will fire and
appropriate error messages will be rendered if necessary and sent back to the client.

RegularExpressionValidator
The RegularExpressionValidator checks for a specific pattern of entry in an input con-
trol. Regular expressions are a type of pattern-matching notation that allows us to
specify a particular pattern or patterns of text to search for within a string. We can spec-
ify the regular expression that should be used by the RegularExpressionValidator
through the ValidationExpression property. If the input doesn’t match the pattern
specified, the validator control will be invalid. ValidationExpression is the only mem-
ber that the RegularExpressionValidator class adds to the BaseValidator class.

122 Chapter 3

TE
AM
FL
Y

Team-Fly®

NOTE We’re not going to cover the regular expression syntax in this book, but
you can find all the information that you need about it in the MSDN library. An
important thing to note is that when the RegularExpressionValidator runs on
the client side for a DHTML-compliant browser, the regular expression syntax
used is that of JavaScript. On the server side, the Regex regular expression
syntax is used. For this reason, it is possible to have different validation on the
client and server sides. Microsoft recommends that you use the JavaScript
syntax, which is a subset of the Regex syntax, to prevent differences in
validation on the client and server sides. The following documents can get you
on the right path for writing regular expressions.

Javascript

http://msdn.microsoft.com/library/periodic/period99/valid.htm

Regex

http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/cpguidnf/html/cpconcomregularexpressions.asp

Let’s add a RegularExpressionValidator to the previous example. We want the user
to enter a four-digit year into our Vehicle Year field. We’ve already added a Required-
FieldValidator, which will enforce an entry of some sort. Add the following right below
the RequiredFieldValidator declaration in the ValidatorControls.aspx file.

<asp:RegularExpressionValidator id=vldVehicleYearReg runat="server"

ErrorMessage="Please enter a four-digit year"

validationexpression="\d\d\d\d" controltovalidate="txtVehicleYear">

</asp:RegularExpressionValidator>

Now if you browse to the page, you will get an error message if you enter anything
other than four digits. You will still get the original RequiredFieldValidator error mes-
sage if you submit the form without entering anything in the Vehicle Year field. You
probably noticed a problem with the way the error message for the RegularExpres-
sionValidator is displayed. The error message is shifted over to the far right side of the
page away from the Vehicle Year field that it applies to, as shown in Figure 3.36. This is
because the Display property of the RequiredFieldValidator is set to Static. Even
though its error message is not being displayed, the space is still reserved. We could
eliminate this problem by changing the Display property to Dynamic, but this could
cause other controls on the page to shift undesirably when the message is displayed.
The more common thing to do is to display all error messages for the page in one com-
mon place. In addition, the fields in error are usually marked in some way to signify
that they require attention. Displaying the error messages in one common place is eas-
ily implemented with the ValidationSummary control.

Server Controls 123

Figure 3.36 A Shifted Error Message.

ValidationSummary
The ValidationSummary control’s sole purpose is to display the error messages of all
Validation Controls on a page in one common place. You can customize the way that
the error messages are displayed. Normally, you should need only one Validation-
Summary control on a particular page. Simply define it in the .aspx file, and set prop-
erties to control the way that it is displayed.

The ValidationSummary class inherits directly from WebControl, not BaseValidator.
Because it isn’t doing any validation itself, that wouldn’t be necessary. The Display-
Mode property is used to control the format in which the error messages are displayed.
Its valid values are List, BulletList, and SingleParagraph. List places each error message
on a separate line. BulletList, as the name implies, displays the messages in a bulleted
list. SingleParagraph causes all of the messages to flow together in one section. There
is also a HeaderText property, which sets some text that will be displayed just prior to
the error messages when one or more errors occur.

The error messages that are displayed by the ValidationSummary control can be dis-
played in one of two different ways or both. They can be displayed on the page itself in
either UpLevel or DownLevel browsers. In addition to this, an UpLevel browser will be
able to display the error messages in a pop-up window. You can specify which methods
you want with the ShowSummary and ShowMessageBox properties. Both of these proper-
ties are of type bool. If the ShowSummary property is set to True, error messages will be
displayed as part of the page in the location of the ValidationSummary control. If the
ShowMessageBox property is set to True, error messages will be displayed in a pop-up
window. You can set both of these properties to True if you like. In an UpLevel browser,
the user will see the pop-up window and the error message summary on the page. In a
DownLevel browser, the user would not see the pop-up window.

Let’s rework the ValidationControl.aspx page to use a ValidationSummary control.
Add the following immediately after the <form> tag:

<asp:validationsummary id=ValidationSummary1 runat="server"

displaymode="BulletList"

headertext="The following errors were encountered:">

</asp:validationsummary>

124 Chapter 3

Figure 3.37 Required field error.

Rather than display the error message next to the control and in the ValidationSum-
mary control, let’s make a simple asterisk appear next to the control when it is invalid.
If we set the Text property of the Validation Controls to “*”, this is the text that will
appear at the location of the Validation Control when it is invalid. If the Text property
is set to anything other than an empty string, its value will be displayed in the location
of the Validation Control rather than the value of the ErrorMessage property. The text
of the ErrorMessage property will still be used for display in the ValidationSummary
control. Having said that, add the Text attribute to both the RequiredFieldValidator
and the RegularExpressionValidator and set it to “*”. In addition, set the Display
attribute of each control to Dynamic. This will prevent the asterisk from shifting
around on us. Now when the page is submitted, it should look like Figures 3.37 and
3.38 when errors occur.

We recommend utilizing the ValidationSummary whenever possible. If you are
designing pages that require a lot of user input and therefore a lot of validation and
possible error messages, it provides a lot of functionality with very little effort.

Figure 3.38 Four digits required error.

Server Controls 125

RangeValidator
The RangeValidator verifies that an entered value is between a specified maximum
and minimum value. The type of data that you are comparing is specified using the
Type property. The valid values are String, Integer, Double, Date, and Currency. The
text of the control to be validated is converted to the specified type before validation
occurs. If the conversion fails then the control will be invalid. This could happen, for
example, if you set the Type property to Integer, but the user typed in some nonnu-
meric characters. The minimum and maximum values are specified with the Minimum-
Value and MaximumValue properties.

Let’s add a RangeValidator to the ValidationControls.aspx page to verify that the
user has entered a year between 1950 and 2001. Add the following immediately after
the RegularExpressionValidator:

<asp:RangeValidator id=vldVehicleYearRng runat="server"

ErrorMessage="Please enter a year between 1950 and 2001" Text="*"

Display=Dynamic controltovalidate="txtVehicleYear" maximumvalue="2001"

minimumvalue="1950" type="Integer">

</asp:RangeValidator>

Now if we enter a year that is not greater than or equal to 1950 and less than or equal
to 2001, the RangeValidator will be invalid, and its error message will be displayed. It
will also be invalid if anything other than numerical text is entered.

CompareValidator
The CompareValidator can be used to compare the contents of one input control to the
contents of another or to some static value. Comparing to the contents of another input
control can be useful in many situations. For example, if we are asking the user to cre-
ate a password, we will probably ask the user to enter it twice in two separate text
boxes. We could use the CompareValidator on the second text box and specify that the
contents of the second text box must be equal to the contents of the first.

If you wish to compare to another input control, specify that control’s name in the
ControlToCompare property. Just as with the RangeValidator, you can specify the type of
data that you expect to be comparing with the Type property; again, the valid values
are String, Integer, Double, Date, and Currency. The Operator property is where we
specify what type of comparison to perform. The valid values are Equal (the default),
NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck.
The CompareValidator can also be used to compare to a set value using the ValueTo-
Compare property. You can’t use both the ControlToCompare and ValueToCompare
properties simultaneously. If you do, the ControlToCompare will be the only one used.
The value that you set in the ValueToCompare property doesn’t have to be determined
at design time. It could be something that is determined at runtime, possibly read in
from a database, which provides a great amount of flexibility and functionality.

Let’s create a new example to demonstrate the use of this control. We’ll create a page
that asks the user to enter a desired User ID and password. If everything checks out
well, a success message will be displayed along with a link to restart the sample. Cre-
ate a new Web Form in your Chapter3 project called ValidationControls2.aspx. Enter
the following inside the <form> tags.

126 Chapter 3

<asp:validationsummary id=ValidationSummary1 runat="server"

displaymode="BulletList"

headertext="The following errors were encountered:">

</asp:validationsummary>

Enter your desired User ID and Password below:

<p></p>

<asp:Label runat="server" width=100 Text="User ID:"></asp:Label>

<asp:textbox id="txtUserID" runat="server"></asp:textbox>

<asp:Label runat="server" width=100 Text="Password:"></asp:Label>

<asp:textbox id="txtPassword" runat="server"

TextMode=Password>

</asp:textbox>

<asp:Label runat="server" width=100 Text="Verify:"></asp:Label>

<asp:textbox id="txtVerifyPassword" runat="server"

TextMode=Password>

</asp:textbox>

<asp:CompareValidator id="vldVerifyPasswordCmp" Runat="server"

ErrorMessage="The password you entered does not verify with itself.

Please re-enter your password." Text="*" Display=Dynamic

controltovalidate="txtVerifyPassword" type="String"

controltocompare="txtPassword">

</asp:CompareValidator>

<p></p>

<asp:button id=Button1 runat="server" Text="Submit"></asp:button>

We’ve left out any other Validation Controls that would more than likely be neces-
sary if this were a real application, just to keep things simple. For example, all three
fields would probably need RequiredFieldValidators, and we would probably want
User Ids and passwords to be a certain number of characters. We did, however, make
use of the ValidationSummary control. Create a handler for the Button1 Click event
and place the following code in the handler.

Response.Write(string.Format("Successfully created User ID {0} "

+

"with password {1}<p></p>", txtUserID.Text, txtPassword.Text));

Response.Write(“Click here to try "

+

"again.");

Response.End();

Compile the project, and view the page in your browser. As long as you enter the
same text in the Password and Verify fields, the form will validate and submit to the
server where the Button1 Click event handler will be called. The handler simply writes
out a success message and creates a hyperlink back to the same page again. We added
this only to make it easier for you to play around with the sample. Obviously, if the
user has successfully created a User ID, there’s no need for him or her to go back to the
page again.

Server Controls 127

CustomValidator
The CustomValidator provides the ability to take the entire validation process into
your own hands. You can write your own validation function to run on the server and
the client. When a page is submitted the ServerValidate event of any CustomValidator
controls is fired at the same time that all other Validation Controls are verified. To pro-
vide server-side validation for a CustomValidator, you simply provide a handler for
the ServerValidate event. The handler delegate must take the following form:

void HandlerName (object source, ServerValidateEventArgs args)

The ServerValidateEventArgs parameter has two properties. Value is the value of the
input control to which the CustomValidator is assigned. This would be the value on
which you would perform your validation. The IsValid property of ServerValidate-
EventArgs should be set to True or False to signify success or failure.

In most cases, the CustomValidator will be used for server-side validation only. One
particular use would be when validation of a particular input requires checking some-
thing in the database. For instance, in the example in the preceding section, we might
want to verify that the User ID entered by the user isn’t already taken by another user.
Because we don’t have a list of all users in our database on the client side, client-side
validation isn’t possible or at least not practical. In the case that we do need to perform
custom client-side validation, a function must be written in a language that will run on
a client-side browser. This will probably be JavaScript or VBScript. The function will
need to accept two parameters just as did the ServerValidate event handler. Last, we
will need to supply the CustomValidator the name of the function via the ClientValida-
tionFunction property. As long as the client is an UpLevel browser, the validation will
take place on the client side. Remember that your server-side validation function will
also be called when the page is submitted back to the server, so it’s important that these
two functions perform the same validation.

Let’s expand on the ValidationControls2.aspx page and use a CustomValidator to
verify the User ID that has been entered. Because we haven’t covered database access
yet, we’ll just hard-code a few User IDs into the validation functions and make sure
that the user hasn’t entered one of those. Add the following immediately after the
TextBox txtUserID declaration in the ValidationControls2.aspx file:

<asp:CustomValidator id=vldUserIDCstm Runat="server"

ErrorMessage="The User ID you have entered is already in use" Text="*"

Display=Dynamic controltovalidate="txtUserID">

</asp:CustomValidator>

We’ll need to provide a handler for the ServerValidate event in the code-behind class
like this:

private void vldUserIDCstm_ServerValidate(object source,

System.Web.UI.WebControls.ServerValidateEventArgs args)

{

if (args.Value == "JoeHealy" || args.Value == "SpikePierson" ||

args.Value == "AndyJohnston")

128 Chapter 3

{

args.IsValid = false;

}

else

{

args.IsValid = true;

}

}

This simply checks the Value property of the ServerValidateEventArgs parameter. If
it is equal to one of the hard-coded names, the IsValid property is set to False; other-
wise, the IsValid property is set to True.

The last thing we need to do is modify the Button1 Click event handler to check the
Page class IsValid property. If the page is not valid, then we should just return and
allow the Validation Controls to display their error messages. We can accomplish this
by wrapping all of the existing code in the Button1 Click event handler inside of an if
statement like this.

if (Page.IsValid)

{

...

}

Now if you view the page and enter one of the hard-coded User IDs, you should see
an error message stating that the User ID is already in use. If you enter anything else
for the User ID, the page should work just as it did before. Also notice that because we
didn’t supply a client-side validation function, the error asterisk is not displayed next
to the User ID text box until the page is posted back to the server. Let’s supply a client-
side VBScript function and see if this changes. Add the following script to the bottom
of the ValidationControls2.aspx file:

<script language=vbscript>

function vldUserIDCstm_ClientValidate(source, args)

If (args.Value = "JoeHealy" Or args.Value = "SpikePierson" Or

args.Value = "AndyJohnston") Then

args.IsValid=false

Else

args.IsValid=true

End If

end function

</script>

Set the ClientValidationFunction property of the CustomValidator to the name of
this function. The entire declaration of the CustomValidator should now be like this:

<asp:CustomValidator id=vldUserIDCstm Runat="server"

ErrorMessage="The User ID you have entered is already in use" Text="*"

Display=Dynamic controltovalidate="txtUserID"

clientvalidationfunction="vldUserIDCstm_ClientValidate">

</asp:CustomValidator>

Server Controls 129

Figure 3.39 ValidationControls2.

After making these changes, if you type in one of the hard-coded User IDs, you will
notice that the * that we supplied in the Text property shows up next to the input
control as soon as the control loses focus and without posting back to the Web server.
That is your client-side validation function in action. A screen shot of the Validation-
Controls2 example can be seen in Figure 3.39.

Wrapping Up the Chapter

We have covered a lot of ground in this chapter and learned all about the Server Con-
trols that come with ASP.NET. Server Controls are one of the most powerful features of
ASP.NET. You will be using them constantly, and the more you use them, the more
powerful you will realize they are. With ASP.NET, making complex Web pages doesn’t
have to be a complex programming task anymore.

In the next chapter, we will learn how easy database access is with the .NET Frame-
work. As we learn how to access data, we will bind some of the controls that we cov-
ered in this chapter to dynamic data from a database.

130 Chapter 3

131

In this chapter we’ll introduce database access via ADO.NET. We’ll cover error han-
dling under the .NET framework first because we have to be prepared for unpre-
dictable errors when accessing a database. Then we’ll dig into ADO.NET and find out
how easy it is to access data with Microsoft’s newest data access object model. Many of
the database access examples in this chapter will utilize the DataGrid Server Control,
which was covered in Chapter 3, “Server Controls.” All of the examples will utilize
error handling to help get you into the habit of including it in your code. The examples
and concepts provided in this chapter will serve as a foundation building block in the
automobile parts application that we’ll begin building in Chapter 6, “Applying What
We’ve Learned So Far.”

Error Handling

Error handling is probably the most overlooked and set-aside task by application pro-
grammers. This is a problem that is common in classic ASP applications due to the poor
error-handling capabilities of the scripting languages. Often, programmers sit down to
write a particular piece of code with the idea that they are just testing things or figuring
out how to solve a particular problem. No error handling is added to this code to shave
time off the “testing” process. The problem is, often this test code makes it into produc-
tion applications. This problem is compounded when you are programming for the

Database Access

C H A P T E R

4

Web because you may not know who your users are or have any way of getting feed-
back from them if there are errors in your application that have squeaked past the test-
ing process. You could still log errors in some fashion, but user feedback is very
important in determining how to reproduce errors. Fortunately, the .NET Framework
provides us with a very robust error-handling mechanism. It can provide a great deal of
information that can be logged when errors occur and assist in tracking problems down
and resolving them. For the most part, exception handling is quick and easy, so do your-
self and others a favor and include it the first time around.

Exceptions are defined as anything that occurs during program execution that is
unexpected under normal circumstances. Exceptions can occur on any line of code, as
the .NET runtime itself will throw exceptions if it detects abnormal or unrecoverable
conditions. For example, let’s assume that we have a section of code in which we will
try to make a connection to a SQL Server database, which is expected to always be
available. If the database is unavailable or the network is down, no connection can be
made and ADO.NET will throw an exception. Because we know this exception can
occur, as programmers we are responsible for providing a way to catch the exception
and handle it gracefully. Finally, we need to clean up and free any resources as neces-
sary. I have italicized the words try, throw, catch, and finally, as they are C# keywords
for structured exception handling, which we cover later in this chapter.

The .NET Base Class Library (BCL) defines a class called Exception. This is the base
class used by the runtime to create and throw exceptions when they occur. The Excep-
tion class defines several properties, but the two most important ones are Message and
StackTrace. Message contains a description of the actual exception that occurred and the
probable causes. StackTrace provides a list of all method calls that were on the stack
when the error occurred, effectively giving us the path of execution that resulted in the
error. If debug information is available, it can even provide us with the source code file
and line number where the error occurred. Many specific exceptions are defined in the
BCL, all of which derive from the Exception class. For instance, there is a SQLException
class that will be used to throw any exceptions that occur within a SQL Server data-
base. These specific exception classes are important, as they provide a way to selec-
tively catch specific exceptions and take appropriate actions when they occur, rather
than catching all exceptions and taking the same action regardless of the cause of the
exception.

Whenever a section of code is written that has the potential to cause an exception, it
should be wrapped up inside of a try block, like this:

try

{

//...code that might cause an exception

}

One or more catch blocks must immediately follow the try block. You should pro-
vide catch blocks for specific types of exceptions if possible, as well as a general excep-
tion catch block for anything that might slip through the cracks. Be sure to include the
specific exception catch blocks first because they are evaluated in inner to outer order.
In the case of database access, you might do something like this:

132 Chapter 4

TE
AM
FL
Y

Team-Fly®

try

{

//...code that might cause a database exception

}

catch(SQLException e)

{

//...handle the database exception

}

catch(Exception e)

{

//...handle any other exceptions

}

The catch blocks are defined similarly to a class method. They usually take one argu-
ment derived from Exception. A catch block can also be defined without any parame-
ters at all, in which case it will catch any type of exception, just as the last catch handler
in the preceding code. Whether to use one over the other depends on where you intend
to actually handle and address the exception. If you don’t intend to use the information
that is available in the Exception object in your catch block, then use the parameter-less
catch block.

What happens if an exception occurs within a method call and it is not wrapped up
in a try/catch block? The framework will begin unwinding the call stack until it finds
a catch block that can handle the exception. If none are found, this is called an unhan-
dled exception, and the runtime will catch the exception and display an error message.
This is definitely not what you want to happen because the error message is definitely
not an end-user-friendly one. You are much better off ensuring that you catch all of
your own exceptions so that you can either recover from them or display a friendly
error message to your users.

You might also want to rethrow the exception and let a catch block that is defined
somewhere further up the call stack handle it. Even with the parameter-less catch han-
dler you can still rethrow the current exception, like this:

try

{

//...code that might cause an exception

}

catch

{

throw;

}

The throw keyword can be used entirely by itself as in the preceding example, in
which case the current exception object is rethrown and will be handled, we hope, by
some outer catch block. The throw keyword can also be used to throw a new exception.
As an example, let’s assume that we have defined a method in an object, which takes
one parameter. If the caller of the method passes in a null parameter, we might want to
throw an ArgumentNullException, as shown here:

Database Access 133

public void MyMethod(MyObject param1)

{

if (param1 == null)

{

throw(new ArgumentNullException("param1");

}

//...process normally

}

Notice that we had to use the new keyword to create the ArgumentNullException
object and that we passed in the name of the parameter that was null to the construc-
tor. The object that called this method has a catch block that will catch it and handle it
gracefully, we hope.

The last thing that we want to cover about exception handling is the finally block.
When unexpected errors occur and exceptions are thrown, valuable resources may still
be in use and need to be released back to the system. Perhaps you have included code
to clean up these resources somewhere inside your method, but if an exception is
thrown and execution is passed to a catch block, that cleanup code may never get a
chance to execute. Code that you include in a finally block will always be called,
regardless of whether an exception occurs. Therefore, this is the perfect place to free
resources and perform any necessary clean-up. The finally block should be defined
immediately following your last catch block. Here is an example of how you might use
the finally block:

public void MyDatabaseMethod()

{

try

{

//...Create and Open a database connection

//...Use the database connection

}

catch(SQLException e)

{

//...handle the database exception

}

catch(Exception e)

{

//...handle any other exceptions

}

finally

{

//...Close the database connection

}

}

Because we’ve created and opened a database connection inside of this method, we
need to make sure we close the connection before the method returns. Because the
finally block will execute regardless of whether an exception is thrown, our method
will always close the connection.

134 Chapter 4

We’ve covered the basics of exception handling with C#. There are a few more tips
and tricks that you’ll see throughout the rest of the book concerning exception han-
dling as we use the concepts discussed in this section when we build the example
applications later in the book. This should be enough to get your feet wet and avoid
any confusion as we move on to database access in the next section.

Database Access Using ADO.NET

There is enough information to cover about ADO.NET to constitute a separate book on
the subject. As a matter of fact, there are books dedicated to the subject already on the
shelves. Having said that, we’re going to cover the basics of ADO.NET as they apply to
Web application programming tasks and database access. If you’re interested in learn-
ing more about ADO.NET, you should pick up a copy of Programming ADO.NET by
Richard Hundhausen and Steven Borg (John Wiley & Sons, 2002).

ADO.NET was built with the Internet and distributing computing at the forefront,
and it uses XML to transmit data; so any application that can read XML can work with
the data provided through ADO.NET. With ADO, data was accessed through the use
of the Recordset object. The Recordset allowed the view of only one table at a time. If
you needed to access data from several tables in the database a JOIN query was neces-
sary so that all of the required data was part of the same Recordset. Navigation
through the records in the Recordset was done by calling the MoveNext() and
MovePrevious() methods. ADO.NET provides two objects for accessing data, the
DataReader and the DataSet.

The DataReader provides forward-only, always connected access to the database,
which means a connection to the database is maintained as long as the DataReader is
open. Like the Recordset, the DataReader allows only one table to be accessed at a time,
and navigation through records is done by calling the Read() method. As opposed to the
ADO Recordset, the DataSet can store multiple tables, their schema, relationships, and
constraints. In other words, it can be viewed as an in-memory representation of the
database. The DataSet object has a collection of DataTable objects, which in turn have a
collection of DataRow objects. This makes navigation through records extremely flexible
and easy because you can access the data in these collections just as you would any
other collection in C#. You might use the foreach statement to traverse through all of the
DataRows in a DataTable, or you can access particular rows via ordinal or primary key.
ADO.NET DataSets also provide a completely disconnected view of the data, which
means that no connection is maintained to the database. As a matter of fact, the DataSet
object doesn’t know anything about the data source from which it gets its data. DataSets
communicate with a data source through the use of a DataAdapter object, which will
open and close connections to the database as needed. The fact that the DataSet object is
unaware of its data source makes it very generic and robust enough to use with many
types of data sources. You can load a DataSet with data from any type of source, or even
create a database schema and populate a DataSet with data manually.

In addition, ADO.NET DataSets provide a performance advantage over ADO
Recordsets for disconnected applications. Disconnected data access was provided in
ADO through the use of disconnected Recordsets. Transmitting these disconnected
Recordsets across the network required the overhead of COM marshalling, which also

Database Access 135

placed a restriction on the data types that could be used. In addition, most firewalls are
not configured to allow requests such as COM marshalling to pass through, which can
make the disconnected Recordset unusable in many applications. Transmitting an
ADO.NET DataSet across the network is done by transmitting an XML stream. Not
only does this remove the restriction on data types and the overhead of COM
marhsalling, but XML streams will easily pass through the typical firewall. The
DataSet has also been designed to read and write XML with ease.

While the DataSet is clearly a very powerful tool for database access, its inherent dis-
connected nature and many of its capabilities apply more to long-running
client/server type applications. In these types of applications, it makes sense to hold a
cached, disconnected DataSet in memory, manipulate that data, and then reconcile the
changes with the database when appropriate. Because the DataSet is disconnected,
valuable database resources are not held, which provides for greater scalability. Web
applications themselves are connectionless, though. In general, a page is requested,
data is retrieved from the database, the data is formatted into HTML and returned to
the client browser, and the connection to the database is closed and possibly made
available for reuse by a new client. For this scenario, what we need is an extremely fast
and efficient way to retrieve data from the database in a read-only, forward-only man-
ner. This is where the SqlDataReader and OleDbDataReader objects are handy. These
objects are designed to provide the fastest access to your data. They are not as robust
as the DataSet object, as they do not handle multiple tables, relations, or schema. In a
Web scenario where data is requested and input only for the duration of a page request
and does not maintain the DataSet between client requests, the robust features of the
DataSet become a moot point. What you want with a Web application is speed, and the
use of the SqlDataReader object along with SQL Server stored procedures will provide
maximum data access speed.

Let’s take a look at the architectural design of ADO.NET. Whenever you are access-
ing data, you will need to reference the System.Data namespace. This namespace con-
tains all of the classes and interfaces that provide the foundation of ADO.NET. It is in
this namespace that the DataSet and all of its associated classes can be found. The ini-
tial release of the .NET framework provides two managed providers for accessing
data. The first is a SQL Server manager provider whose associated classes can be found
in the System.Data.SqlClient namespace. The second is an OLE DB provider for access-
ing any OLE DB-compliant data source; its associated classes can be found in the Sys-
tem.Data.OleDb namespace. The classes within these two managed provider
namespaces provide the ability to work with their specific data sources. The SQL
Server managed provider provides the fastest, most efficient access to a SQL Server
database. The OLE DB provider is there to provide access to all other data sources that
support OLE DB, which is a lot. In the future, we hope to see new managed providers
that will give us more efficient access to specific data sources. Database vendors will
have the ability to write managed providers for their database products, and we hope
that companies like Oracle and IBM will do just that.

NOTE At the time this book was written, Microsoft had provided a Beta
version of an ODBC Managed Provider, so check the Microsoft Web site for
further information on that.

136 Chapter 4

The managed providers are the means of connecting to and communicating with the
data sources. Several of the classes found within the managed providers are created by
implementing interfaces that are defined in the System.Data namespace. For example,
the System.Data.SqlClient.SqlConnection and System.Data.OleDb.OleDbConnection
classes both implement the System.Data.IDbConnection interface. It is through imple-
menting these common interfaces that the managed providers will maintain a consis-
tent implementation. This is nice for the programmer because it minimizes the amount
of work that will need to be done to switch from one managed provider to another. Let’s
say that you develop an application that communicates with an Oracle database. You
would have to use the OLE DB managed provider currently, but later when someone
creates an Oracle managed provider, you should be able to easily modify your code to
switch to the new provider. Because both providers will support the same base methods
and properties, for the most part you will need to change only the class names from the
OleDb namespace classes to the classes in the new managed provider namespace.

Take a look at Figure 4.1 to see a conceptual view of how ADO.NET is designed.
Notice again that the DataSet is not part of a managed provider because it is not tied to
any particular data source. The DataReader, though, is implemented by the managed
providers. In the case of the SqlDataReader, it has been designed to work specifically
with SQL Server, and the OleDbDataReader has been designed to work with any OLE
DB-compliant database. The classes within the SqlClient managed provider have all
been written to work specifically with Microsoft SQL Server. Although you can access
a SQL Server database by using the classes provided in the OleDb managed provider,
the SqlClient managed provider will always provide you with greater performance
and flexibility when dealing with a SQL Server database. Every managed provider will
implement a Connection class for establishing connections to the data source and a
Command class for executing commands on the data source. In addition, a DataReader
class will be provided, and a DataAdapter class will be implemented to allow the use
of the DataSet class with the data source. An Exception class will exist to provide
detailed information whenever an error occurs within the data source. Last, if the data
source supports transactions a Transaction class will be provided.

Without further ado, let’s get to the basics of how to access some data. First, we’re
going to need some sort of data source. For the majority of examples in this book, we
will be using MSDE (Microsoft Data Engine). A version of MSDE is provided with the
.NET Framework SDK, or you can download a free version from the Microsoft Web
site. A link to the download location for MSDE is provided on the companion Web site.
MSDE is a fully compatible SQL Server database engine. It is an excellent database to
use for developing an application that will run on SQL Server when released. It can
also be used in production for small-scale systems, and it provides an easy upgrade
path to the power of a full SQL Server 2000 database engine. For the examples in this
section of the book, we use the ever-popular Northwind database, which is installed by
default. In later chapters of the book, we’ll build our own database for use with our car
parts business. Because we will primarily be using MSDE in this book, most of the data
access examples and code will use the SQL Server managed provider. We will show
some examples of how to use the OLE DB provider to connect a Microsoft Access data-
base; however, you will find that the classes and methods are nearly identical. Because
of this, we mainly focus on the SQL Server managed provider to avoid any confusion.
So, get MSDE installed, and let’s start accessing some data.

Database Access 137

Figure 4.1 ADO.NET architecture.

Connection
As with ADO, the Connection object is your means for establishing communication
with a data source. The SQL Server managed provider implementation is named Sql-
Connection, and the OLE DB version is OleDbConnection. As mentioned earlier, both of
these classes implement the System.Data.IDbConnection interface.

The ConnectionString property is used to tell the Connection object which database
to connect to and with what options. The ConnectionString for the OLE DB provider is
in the same format as the current OLE DB connection strings used with ADO. The Con-
nectionString for the SQL Server provider is similar to the OLE DB format, but it has
some extra SQL Server specific options, some that we will be covering shortly. When
the ConnectionString property is set, it is immediately parsed and checked for errors.
Any properties of the Connection object that have corresponding connection string
values will be updated to reflect the value passed in via the connection string. For
example, the Connection objects have a ConnectionTimeout property that can be
updated by setting the Connection Timeout name/value pair in the ConnectionString.
Incidentally, the ConnectionTimeout property is used to set the amount of time in

138 Chapter 4

seconds to wait for a connection to be established to the database before giving up and
generating an error. In its simplest form, your connection strings will look something
like this.

@"Data Source=(local)\NetSDK;Initial Catalog=Northwind;

User ID=sa;pwd=;"

The Data Source is the name or the network address of the SQL Server instance to
which you wish to connect. When we installed the version of MSDE that ships with the
SDK samples, it created an MSDE instance with the name local\NetSDK, so that’s the
instance name that we used. Also, notice the backslash in the name. To avoid any com-
piler errors, we included the @ symbol before the opening quote of the string, which
tells the C# compiler to treat it as a verbatim string and ignore any escape sequences.
Alternatively, we could have specified the Data Source as local \\NetSDK to achieve
the same result. Specify which database within the data source to which you wish to
connect in the Initial Catalog value. Finally, the User ID and pwd or password values
are used to log in to the database. Note that if we were using the OLE DB provider to
connect to an OLE DB data source we would also need to specify the Provider value in
the connection string.

The Database and State properties are both read-only. Database will give us the name
of the database to which the connection will connect if it is currently closed, or the
name of the database with which the connection is associated if it is already open. The
State property is used to retrieve the current state of the connection. Its valid values are
the System.Data.ConnectionState enumeration values: Broken, Closed, Connecting,
Executing, Fetching, and Open.

To open a connection, simply call the Open() method, which will attempt to connect
with the settings specified in the ConnectionString property for the specified Connec-
tionTimeout interval. If a connection is successfully established, no exceptions will be
thrown and the connection is ready for use. If a connection cannot be established
within the timeout period, a SqlException will be thrown. In addition, an Exception
will also be thrown if the connection is already opened and the Open() method is
called. It is extremely important to wrap up all of your database access code inside of a
try block with appropriate catch handlers. The ADO.NET class methods will not return
error codes, but if an error occurs Exceptions will always be thrown. For this reason,
you should always be prepared to catch and handle database exceptions.

When you are finished with the connection, remember to call the Close() method to
close the connection and free up valuable server resources. Calling the Close() method
when the connection is already closed is not a problem, and no exceptions will be
thrown.

Command, DataAdapter, and DataSet
As mentioned earlier in the chapter, the DataSet is unaware of its data source. The
DataSet retrieves, inserts, and updates data through the use of a DataAdapter. The
managed provider that you are using will supply a DataAdapter class. The Sql-
DataAdapter is supplied by the SqlClient managed provider, and the OleDbDataAdapter
is supplied by the OleDb managed provider. The DataAdapter classes have four

Database Access 139

properties called SelectCommand, UpdateCommand, InsertCommand, and DeleteCom-
mand. If you are using a SqlDataAdapter these properties are of type SqlCommand; for
an OleDbDataAdapter they are of type OleDbCommand.

Let’s look at the Command objects. The CommandText property is used to set the text
of the command to execute on the data source. The CommandType property tells the
Command object how to treat the text in the CommandText property. Its valid values
come from the System.Data.CommandType enumeration and are StoredProcedure,
TableDirect, and Text (the default). (Note that the TableDirect type is not supported by
the SQL Server managed provider.) The Command object also has a Connection prop-
erty, which should be set with the appropriate connection type of either SqlConnection
or OleDbConnection. If you are using a stored procedure or parameterized query, you
can set the parameters using the Parameters collection, which is a collection of either
SqlParameter or OleDbParameter objects.

Let’s walk through a general example of how data is accessed through the DataSet.
The first thing we need to do is create four command objects and assign them to each
of the four properties of the DataAdapter: SelectCommand, UpdateCommand, Insert-
Command, and DeleteCommand. We need to supply only Command objects for the
types of data access that we intend to perform. If you will never be deleting data, there
is no need to specify a Command object for the DeleteCommand property. Each of
these Command objects should have a Connection object associated with it; it can, and
in most cases will be, the same Connection object. To fill the DataSet with data, we call
the Fill() method of the DataAdapter and pass the DataSet as a parameter. Now we can
work with the data in the DataSet. We can read the data and insert, update, or delete
rows. The DataSet will mark the modified rows as new, updated, or deleted. When we
are ready to send our changes back to the data source, we call the Update() method of
the DataAdapter, again passing the DataSet as a parameter. The DataAdapter will
examine the DataSet, calling the UpdateCommand for any modified rows, the Insert-
Command for any new rows, and the DeleteCommand for any deleted rows.

Let’s work through a simple example of retrieving data using the DataSet. Create a
new Web Form in the Chapter4 project and call it EmployeesWithSql.aspx. The code
for this page can be downloaded from the companion Web site. We’ll use the SQL
Server managed provider to retrieve the employees in the Employees table of the
Northwind database in our MSDE installation. Add a single Label control on the page
called Label1, and then add the following code to the Page_Load method of the code-
behind class:

private void Page_Load(object sender, System.EventArgs e)
{
//Create the Connection
SqlConnection conn =
new SqlConnection(@"Data Source=(local)\NetSDK;Initial

Catalog=Northwind;User ID=sa;pwd=;");

//Create the Command, passing in the SQL statement and the Connection
SqlCommand cmd = new SqlCommand("Select * FROM Employees", conn);

//Create a SqlAdapter object
SqlDataAdapter adp = new SqlDataAdapter();

140 Chapter 4

//Set the SelectCommand to our newly created SqlCommand object

adp.SelectCommand = cmd;

//Create a DataSet object

DataSet ds = new DataSet();

//Create an Employees table in the DataSet and fill it with the data

//collected from SelectCommand of the SqlDataAdapter

adp.Fill(ds, "Employees");

//Iterate through the Rows collection of the Employees table

foreach (DataRow dr in ds.Tables["Employees"].Rows)

{

Label1.Text += string.Format("{0} {1}
", dr["FirstName"],

dr["LastName"]);

}

}

There should already be a reference to the System.Data namespace added for you if
you created your Web Form with Visual Studio .NET. You will need to add a using
statement to the top of your code-behind file to the System.Data.SqlClient namespace,
like this:

using System.Data.SqlClient;

This example is shown in Figure 4.2. Let’s walk through the code and see what
we’ve done. First we created a SqlConnection object, just as we did in the preceding
section. Then we created a SqlCommand object passing in the command text and the
SqlConnection object as parameters to the constructor.

//Create the Command, passing in the SQL statement and the Connection

SqlCommand cmd = new SqlCommand("Select * FROM Employees", conn);

Figure 4.2 EmployeesWithSql.aspx.

Database Access 141

We could have created the SqlCommand with the default parameter less constructor
and used the CommandText and Connection properties to set these things, but passing
them into the constructor is cleaner and requires less code. Also, notice that we did not
execute the Open() method of the SqlConnection object. If the SqlCommand object is
given a closed SqlConnection, it will open it when it is needed and close it when it has
finished with it. If the SqlCommand object is given an open SqlConnection, it will not
close it when it is finished. This is a nice feature; later on we will be making multiple
calls to the database and will open a SqlConnection one time and use it for the duration
of the page processing without having to close and reopen it multiple times. Next, we
created a SqlAdapater object and then set the SelectCommand property to the newly
created SqlCommand object.

//Create a SqlAdapter object

SqlDataAdapter adp = new SqlDataAdapter();

//Set the SelectCommand to our newly created SqlCommand object

adp.SelectCommand = cmd;

We then created a DataSet and filled it using the SqlAdapter.Fill() method. The Fill()
method of the SqlAdapter uses the SqlCommand object assigned to the SelectCom-
mand property to retrieve the data from the database. The Fill() method has several
overloads, but the one we’ve chosen to use takes two parameters. The first is the
DataSet object, which should be filled with the data, and the second parameter is a
string that will be the name of the table created in the DataSet object to hold the data.

//Create a DataSet object

DataSet ds = new DataSet();

//Create an Employees table in the DataSet and fill it with the data

//collected from SelectCommand of the SqlDataAdapter

adp.Fill(ds, "Employees");

The DataTable class represents tables in a DataSet object. When the Employees table
was created, an instance of the DataTable class was created and added to the Tables col-
lection of the DataSet object. The DataTable class is fairly complex and allows you to do
things such as add constraints and manipulate column properties. We won’t be cover-
ing any advanced features of the DataTable in this book. The DataTable contains a col-
lection of DataRow objects, which is accessible via the Rows property. We can iterate
through the Rows collection and access the values in the columns of each row through
the DataRow object’s indexer [] by supplying either a column integer ordinal value or
a string value representing the name of the column. This is exactly what has been done
in the example and for each DataRow the FirstName and LastName of each Employee
is printed out.

We can easily change this example to work with the Access database, North-
wind.mdb, using the OLE DB managed provider. To do so, first change the using state-
ment from System.Data.SqlClient to System.Data.OleDb. Then make the following
highlighted changes to the previous example code. This code is also available from the
companion Web site and is called EmployeesWithOleDb.aspx.

142 Chapter 4

TE
AM
FL
Y

Team-Fly®

private void Page_Load(object sender, System.EventArgs e)

{

//Create the Connection

OleDbConnection conn =

new OleDbConnection(@"Provider=Microsoft.JET.OLEDB.4.0;Data

Source=C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb");

//Create the Command, passing in the SQL statement and the Connection

OleDbCommand cmd = new OleDbCommand("Select * FROM Employees", conn);

//Create an OleDbAdapter object

OleDbDataAdapter adp = new OleDbDataAdapter();

//Set the SelectCommand to our newly created OleDbCommand object

adp.SelectCommand = cmd;

//Create a DataSet object

DataSet ds = new DataSet();

//Create an Employees table in the DataSet and fill it with the data

//collected from SelectCommand of the OleDbDataAdapter

adp.Fill(ds, "Employees");

//Iterate through the Rows collection of the Employees table

foreach (DataRow dr in ds.Tables["Employees"].Rows)

{

Label1.Text += string.Format("{0} {1}
", dr["FirstName"],

dr["LastName"]);

}

}

All we had to do was modify the class names from the classes in the System.Data.
SqlClient namespace to the corresponding classes in the System.Data.OleDb name-
space as well as modify the connection string. The rest of the code remains the same,
particularly any code that uses the DataSet object because it works the same regardless
of the data source being used.

Now let’s modify this example once again and bind a DataGrid to the Employees
table of the DataSet, rather than print out the results using a Label control. We’ll go
back to using the SQL managed provider for this example. Create a new Web form
called EmployeesWithDataGrid.aspx and add a DataGrid to the .aspx file as follows:

<asp:DataGrid id=EmployeeGrid runat="server" AutoGenerateColumns=False>

<Columns>

<asp:TemplateColumn HeaderText="Employee Name">

<ItemTemplate><%# string.Format("{0} {1}",

((DataRowView)(Container.DataItem))["FirstName"],

((DataRowView)(Container.DataItem))["LastName"]) %>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

Database Access 143

Here we use a Template Column to combine the FirstName and LastName fields of
the Employees table into one displayed column on the DataGrid. The Container.
DataItem had to be cast to a DataRowView class, which is defined in the System.Data
namespace, to allow the use of the column indexer. You will need to import the
System.Data namespace using the @Import directive in the .aspx file like this:

<%@ Import namespace="System.Data" %>

Add the following code to the Page_Load method of the code-behind class :

private void Page_Load(object sender, System.EventArgs e)

{

//Create a SqlAdapter object

SqlDataAdapter adp = new SqlDataAdapter("Select * FROM Employees",

@"Data Source=(local)\NetSDK;Initial Catalog=Northwind;User

ID=sa;pwd=;");

//Create a DataSet object

DataSet ds = new DataSet();

//Create an Employees table in the DataSet and fill it with the data

//collected from SelectCommand of the SqlDataAdapter

adp.Fill(ds, "Employees");

EmployeeGrid.DataSource = ds.Tables["Employees"].DefaultView;

EmployeeGrid.DataBind();

}

Notice that we have opted not to create the SqlCommand and SqlConnection objects
specifically in this code, but rather have passed in the command text and the connec-
tion string as parameters to one of the overloaded SqlAdapter constructors, which will
create them for us. It makes the code a little simpler, but it doesn’t provide the ability
to reuse the SqlConnection for other things. A SqlConnection will be created for us,
opened, used, and then closed.

We set the DataSource of the DataGrid to the DefaultView of the Employees table in
the DataSet. The DefaultView property gives us a DataView object. The DataView is
used to provide a view or a subset of the data in a DataTable; by default all of the rows
of the DataTable are returned. You can filter which rows are returned with a DataView
by setting the RowFilter property of the DataView with a filter string such as

FirstName = "Nancy"

For this example, we just bind to the default implementation of DefaultView, which
gives us all of the rows in the Employees table. The last thing we have to do is call the
DataBind() method of the DataGrid. Note that we could also call the DataBind()
method of the Page class, which will call DataBind() for all of its child controls. The
DataGrid can be seen in Figure 4.3.

144 Chapter 4

Figure 4.3 Employees with a DataGrid.

Now let’s go through an example that allows us to update, add, and delete data using
the DataSet and the SqlDataAdapter. We’ll have to supply SqlCommand objects for the
SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand properties
of the SqlDataAdapter to achieve this. Once again, we’ll use a DataGrid to display the
data, but we’ll add a couple of button columns to allow us to select and delete rows. We
won’t be using the in-place editing features of the DataGrid for this example, but there
will be examples of this provided later in the book. We’ll use some text boxes to allow
us to edit existing employees and add new ones. We’ve included the entire source for
the page called EmployeesUpdateable.aspx, in Listings 4.1 and 4.2. Note that this is not
the most elegant, preferable, or efficient way to implement this functionality, but it will
demonstrate some more details of the DataSet. You’ll also see a few very good reasons
why the DataSet isn’t usually the best choice for use in a Web application.

<%@ Page language="c#" Codebehind="EmployeesUpdateable.aspx.cs"

AutoEventWireup="false" Inherits="Chapter4.EmployeesUpdateable" %>

<%@ Import namespace="System.Data" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name=vs_defaultClientScript content="JScript">

<meta name=vs_targetSchema content="Internet Explorer 5.0">

</HEAD>

<body>

Listing 4.1 EmployeesUpdateable.aspx

Database Access 145

<form id="EmployeesUpdatable" method="post" runat="server">

<table>

<tr>

<td>

First Name

<asp:TextBox id=txtFirstNameAdd runat="server">

</asp:TextBox>

</td>

<td>

Last Name

<asp:TextBox id=txtLastNameAdd runat="server">

</asp:TextBox>

</td>

<td>

<asp:Button id=btnEmployeeAdd text="Add" width=100

runat="server">

</asp:Button>

</td>

</tr>

<tr>

<td>

First Name

<asp:TextBox id=txtFirstNameEdit enabled=False

runat="server">

</asp:TextBox>

</td>

<td>

Last Name

<asp:TextBox id=txtLastNameEdit enabled=False

runat="server">

</asp:TextBox>

</td>

<td>

<asp:Button id=btnEmployeeUpdate text="Update" width=100

enabled=False runat="server">

</asp:Button>

</td>

</tr>

</table>

<P></P>

<asp:datagrid id=EmployeeGrid runat="server"

AutoGenerateColumns="False" >

Listing 4.1 EmployeesUpdateable.aspx (continued)

146 Chapter 4

<Columns>

<asp:ButtonColumn Text="Select" HeaderText="Select"

CommandName="Select">

</asp:ButtonColumn>

<asp:ButtonColumn Text="Delete" HeaderText="Delete"

CommandName="Delete">

</asp:ButtonColumn>

<asp:TemplateColumn HeaderText="Employee Name">

<ItemTemplate><%# string.Format("{0} {1}",

((DataRowView)(Container.DataItem))["FirstName"],

((DataRowView)(Container.DataItem))["LastName"]) %>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:datagrid>

</form>

</body>

</HTML>

Listing 4.1 EmployeesUpdateable.aspx (continued)

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace Chapter4

{

/// <summary>

/// Summary description for EmployeesUpdatable.

/// </summary>

public class EmployeesUpdateable : System.Web.UI.Page

{

private DataSet ds;

private SqlDataAdapter adp;

protected System.Web.UI.WebControls.TextBox txtFirstNameAdd;

protected System.Web.UI.WebControls.TextBox txtLastNameAdd;

protected System.Web.UI.WebControls.Button btnEmployeeAdd;

Listing 4.2 EmployeesUpdateable.aspx.cs

Database Access 147

protected System.Web.UI.WebControls.TextBox txtFirstNameEdit;

protected System.Web.UI.WebControls.TextBox txtLastNameEdit;

protected System.Web.UI.WebControls.Button btnEmployeeUpdate;

protected System.Web.UI.WebControls.DataGrid EmployeeGrid;

public EmployeesUpdateable()

{

Page.Init += new System.EventHandler(Page_Init);

}

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

//Executed on first request only

try

{

//Create the Connection

SqlConnection conn =

new SqlConnection(@"Data Source=(local)\NetSDK;Initial

Catalog=Northwind;User ID=sa;pwd=;");

//Create a SqlAdapter object

adp = new SqlDataAdapter();

//Create a select command for the adapter

SqlCommand selectCmd = new SqlCommand("Select * FROM

Employees",

conn);

//Assign this command to the SelectCommand of the adapter

adp.SelectCommand = selectCmd;

//Create an update command for the adapter

SqlCommand updateCmd =

new SqlCommand("UPDATE Employees SET FirstName=@FirstName, "

+

"LastName=@LastName WHERE EmployeeID=@EmployeeID", conn);

//Add the FirstName, LastName, and EmployeeID

//parameters to the command

updateCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar,

10);

updateCmd.Parameters["@FirstName"].SourceColumn = "FirstName";

updateCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

updateCmd.Parameters["@LastName"].SourceColumn = "LastName";

updateCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

updateCmd.Parameters["@EmployeeID"].SourceColumn =

"EmployeeID";

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

148 Chapter 4

//Assign this command to the UpdateCommand of the adapter

adp.UpdateCommand = updateCmd;

//Create a delete command for the adapter

SqlCommand deleteCmd =

new SqlCommand("DELETE FROM Employees WHERE " +

"EmployeeID=@EmployeeID", conn);

//Add the EmployeeID parameter to the command

deleteCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

deleteCmd.Parameters["@EmployeeID"].SourceColumn =

"EmployeeID";

//Assign this command to the DeleteCommand of the adapter

adp.DeleteCommand = deleteCmd;

//Create an insert command for the adapter

SqlCommand insertCmd =

new SqlCommand("INSERT INTO Employees (FirstName, LastName)

" +

"VALUES (@FirstName, @LastName)", conn);

//Add the first name and last name parameters to the command

insertCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar,

10);

insertCmd.Parameters["@FirstName"].SourceColumn = "FirstName";

insertCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

insertCmd.Parameters["@LastName"].SourceColumn = "LastName";

//Assign this command to the DeleteCommand of the adapter

adp.InsertCommand = insertCmd;

//Create a DataSet object

ds = new DataSet();

//Create an Employees table in the DataSet and fill it with

//the data collected from SelectCommand of the SqlDataAdapter

adp.Fill(ds, "Employees");

//Bind the DataGrid

EmployeeGrid.DataSource = ds.Tables["Employees"].DefaultView;

EmployeeGrid.DataBind();

//Add these objects to this client s session state

Session.Add("adp", adp);

Session.Add("ds", ds);

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

Database Access 149

Response.Write("Exception: " + Ex.ToString());

}

}

else

{

//Executed on Post Back only

//Retrieve the objects from the client s session state

ds = (DataSet)Session["ds"];

adp = (SqlDataAdapter)Session["adp"];

}

}

private void Page_Init(object sender, EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Windows Form

// Designer.

//

InitializeComponent();

}

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.btnEmployeeAdd.Click += new

System.EventHandler(this.btnEmployeeAdd_Click);

this.btnEmployeeUpdate.Click += new

System.EventHandler(this.btnEmployeeUpdate_Click);

this.EmployeeGrid.ItemCommand += new

System.Web.UI.WebControls.DataGridCommandEventHandler(

this.OnItemClicked);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

protected void OnItemClicked(object source, DataGridCommandEventArgs e)

{

//Get the index of the item that was selected

int itemindex = (int)e.Item.ItemIndex;

if (e.CommandName == "Select")

{

//Save the index of the selected item in the view state

ViewState["SelectedItemIndex"] = itemindex;

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

150 Chapter 4

//Fill the edit boxes with the selected employees name

DataRow selectedRow = ds.Tables["Employees"].Rows[itemindex];

txtFirstNameEdit.Text = selectedRow["FirstName"].ToString();

txtLastNameEdit.Text = selectedRow["LastName"].ToString();

//Enable the edit controls

txtFirstNameEdit.Enabled = true;

txtLastNameEdit.Enabled = true;

btnEmployeeUpdate.Enabled = true;

}

else

{

try

{

//Delete the selected employee

ds.Tables["Employees"].Rows[itemindex].Delete();

//Update the database

adp.Update(ds, "Employees");

//Update the session DataSet

Session["ds"] = ds;

//Rebind the DatGrid

EmployeeGrid.DataSource = ds.Tables["Employees"].DefaultView;

EmployeeGrid.DataBind();

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

}

}

private void btnEmployeeAdd_Click(object sender, System.EventArgs e)

{

try

{

//Get a new row

DataRow newRow = ds.Tables["Employees"].NewRow();

//Set the FirstName and LastName fields

newRow["FirstName"] = txtFirstNameAdd.Text;

newRow["LastName"] = txtLastNameAdd.Text;

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

Database Access 151

//Add the new row to the DataSet

ds.Tables["Employees"].Rows.Add(newRow);

//Update the database

adp.Update(ds, "Employees");

//Refill the DataSet, so that we can get the EmployeeID

//of the newly added employee

ds.Clear();

adp.Fill(ds, "Employees");

//Update the session DataSet

Session["ds"] = ds;

//Rebind the DatGrid

EmployeeGrid.DataSource = ds.Tables["Employees"].DefaultView;

EmployeeGrid.DataBind();

//Clear the edit boxes

txtFirstNameAdd.Text = "";

txtLastNameAdd.Text = "";

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

}

private void btnEmployeeUpdate_Click(object sender, System.EventArgs e)

{

try

{

//Change the FirstName and LastName field of the selected row

//in the DataSet

DataRow selectedRow = ds.Tables["Employees"].

Rows[(int)(ViewState["SelectedItemIndex"])];

selectedRow["FirstName"] = txtFirstNameEdit.Text;

selectedRow["LastName"] = txtLastNameEdit.Text;

//Update the database

adp.Update(ds, "Employees");

//Update the session DataSet

Session["ds"] = ds;

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

152 Chapter 4

TE
AM
FL
Y

Team-Fly®

//Rebind the DataGrid

EmployeeGrid.DataSource = ds.Tables["Employees"].DefaultView;

EmployeeGrid.DataBind();

//Clear the edit controls and disable them

txtFirstNameEdit.Text = "";

txtFirstNameEdit.Enabled = false;

txtLastNameEdit.Text = "";

txtLastNameEdit.Enabled = false;

btnEmployeeUpdate.Enabled = false;

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

}

}

}

Listing 4.2 EmployeesUpdateable.aspx.cs (continued)

Let’s walk through the code-behind file starting with the Page_Load method. Notice
that we’ve used the IsPostBack property of the Page to create a section of code that is
executed only the first time the client requests the page. Similarly, there is a section that
is executed only on a postback. We’ve created a SqlConnection, SqlAdapter, and Select-
Command for the SqlAdapter just as in earlier examples. Then we create an Update-
Command with this code.

SqlCommand updateCmd = new SqlCommand("UPDATE Employees SET " +

FirstName=@FirstName, LastName=@LastName WHERE

EmployeeID=@EmployeeID",

conn);

Because we’re using the SQL Server managed provider, this is how we specify a
parameterized SQL statement. Notice that we have used named parameters such as
@FirstName. With the SQL Server managed provider, you cannot specify parameters
using the “?”, as you can do with the OLE DB managed provider. When using an OleDb-
Command and specifying parameters using the “?”, the order in which you add para-
meters to the Parameters collection of the OleDbCommand must be the same order as
one in which the parameters appear in the SQL staterment. With the SqlCommand
object, the order in which parameters are added does not matter as they are matched
up by name. After we’ve created the updateCmd object, we need to add the three para-
meters: @FirstName, @LastName, and @EmployeeID. This is done with the following
code:

Database Access 153

updateCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar, 10);

updateCmd.Parameters["@FirstName"].SourceColumn = "FirstName";

updateCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

updateCmd.Parameters["@LastName"].SourceColumn = "LastName";

updateCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

updateCmd.Parameters["@EmployeeID"].SourceColumn = "EmployeeID";

The Add() method of the Parameters collection has several overloads. The one that
we’ve used for the @FirstName and @LastName parameters takes the name of the
parameter, the type of the parameter, and the size in bytes of the parameter. The over-
load that we’ve used for the @EmployeeID parameter just takes the name and type.
This works well for types that are a fixed size like the Int because we shouldn’t have to
remember the size if it is fixed anyway. Also notice that for each parameter, we have set
the SourceColumn property. This is used to specify which column in a DataSet table
should correspond to a particular parameter. Whenever the UpdateCommand is called
for a particular row in the Employees table, the values in the FirstName, LastName,
and EmployeeID columns will be used for the values of the @FirstName, @LastName,
and @EmployeeID parameters, respectively. There will be more on this a little later.
The next thing we need to do is assign this SqlCommand to the UpdateCommand
property of the SqlDataAdapater with this code.

adp.UpdateCommand = updateCmd;

The DeleteCommand and InsertCommand properties of the SqlDataAdapater have
been set up similarly to the UpdateCommand. Then a DataSet is created, and the
Employees table is filled just as before. The last thing that is done on the first request of
the page is to store the newly created SqlDataAdapter and the DataSet in the client’s
session state. This is done so that we don’t have to re-create them and refill the DataSet
on each post back of the page, which would always require a call to the database. Ses-
sion state is covered in more detail in Chapter 5. For now, just know that when an
object is added to the client’s session state, it is stored on the server side in memory on
the Web server, on a remote server, or in a SQL Server database. On subsequent
requests, any objects in the client’s session state are restored and available for use.
We’ve added the DataSet and SqlAdapter to the session state with this code:

Session.Add("adp", adp);

Session.Add("ds", ds);

In the section of the Page_Load handler that is executed only on postbacks, you can
see that we’ve fetched the DataSet and SqlDataAdapter objects from the session state
and placed them back in the appropriate member variables of the Page class.

ds = (DataSet)Session["ds"];

adp = (SqlDataAdapter)Session["adp"];

We’ll cover the many factors that need to be taken into account when storing objects
in a client’s session state later in this chapter. Take caution when using session state. We
could have avoided using session state altogether by executing the code in the
if(!IsPostBack) section on every request of the page, regardless of whether it was a

154 Chapter 4

postback. Then we would be making unnecessary calls to the database, which isn’t
desirable either.

Let’s move on to the OnItemClicked method, which is wired to the ItemCommand
event of the EmployeeGrid DataGrid. The first thing that is done is getting the index of
the item that was selected with this code.

int itemindex = (int)e.Item.ItemIndex;

The passed-in DataGridCommandEventArgs argument is used to retrieve the Item-
Index of the item that was selected. Because this handler gets called when the user
clicks on the Select or the Delete LinkButton, we need to determine which one was
clicked by using the CommandName property of the DataGridCommandEventArgs
argument as follows:

if (e.CommandName == "Select")

We set the name of the command that would correspond to each link button when
we created the LinkButtons in the .aspx file by setting the CommandName attribute as
follows:

<asp:ButtonColumn Text="Select" HeaderText="Select"

CommandName="Select">

</asp:ButtonColumn>

<asp:ButtonColumn Text="Delete" HeaderText="Delete"

CommandName="Delete">

</asp:ButtonColumn>

When the Select button is clicked, first the index of the selected item is saved in the
Page View state. Recall from Chapter 2, “Anatomy of an ASP.NET Page,” that ASP.NET
stores Web Control and HTML Server Control property value information in the Page
View state so that the state of controls is preserved between page requests. Similarly,
we can store our own information in the View state of the page and retrieve that infor-
mation on subsequent requests. The index of the selected item is saved in the View
state with the following code.

ViewState["SelectedItemIndex"] = itemindex;

Next, get the DataRow object representing the selected row, and use it to fill the edit
boxes used for editing an employee:

DataRow selectedRow = ds.Tables["Employees"].Rows[itemindex];

txtFirstNameEdit.Text = selectedRow["FirstName"].ToString();

txtLastNameEdit.Text = selectedRow["LastName"].ToString();

The edit boxes and the Update button are then enabled so that the client can modify
the selected row if desired. When the Delete button is clicked, we call the Delete()
method of the selected row in the Employees table of the DataSet. At this point, that
row is now marked for deletion in the DataSet; however, it has not been deleted from
the database. The SqlAdapter has an Update() method, which is used to reconcile

Database Access 155

changes made in the DataSet back to the database. The Update method has several
overloads, but the one we’re using here takes two parameters: a DataSet object and the
table name within the DataSet that we wish to update. Here is the code:

//Delete the selected employee

ds.Tables["Employees"].Rows[itemindex].Delete();

//Update the database

adp.Update(ds, "Employees");

When the Update() method is called, the SqlDataAdapter will basically traverse
through all of the changed rows in the Employees table and call the appropriate com-
mand for each one. If the row is marked for deletion, the DeleteCommand will be
called for that row and the parameters of the DeleteCommand will be filled in from the
columns of the row. If the row has been edited, the UpdateCommand will be called,
and if it is a newly added row the InsertCommand will be called. Once again, any para-
meters of these commands will be filled in from the columns of the appropriate row.

After the Update() method has been called, we need to save the changed DataSet
object back to the view state, otherwise, we will still have the original DataSet in the
View state, which will not reflect the changes that we have made:

Session["ds"] = ds;

Last, the DataGrid is rebound to the DataSet so that the changes are reflected back to
the client. If we skip this step, the deleted row will still appear on the page because the
DataGrid will be repopulated from the previously stored View state.

When the Add button is clicked, the btnEmployeeAdd_Click handler is called. We
need to add a new row to the Employees table and then set its FirstName and Last-
Name column values to the text entered in the edit boxes. The DataTable object has a
NewRow() method, which returns a new DataRow object with the appropriate schema
for the table. We call the NewRow() method for the Employees table and save the
returned DataRow object with this code.

DataRow newRow = ds.Tables["Employees"].NewRow();

We then set the FirstName and LastName column values and then add the new row
to the Employees table. Note that the NewRow() method does not actually add a row
to the table. It only creates a DataRow object for you with the appropriate schema for
the table. To actually add the row to the table, we must call the add method of the Rows
collection for the table.

//Set the FirstName and LastName fields

newRow["FirstName"] = txtFirstNameAdd.Text;

newRow["LastName"] = txtLastNameAdd.Text;

//Add the new row to the DataSet

ds.Tables["Employees"].Rows.Add(newRow);

156 Chapter 4

Once again, we call the Update() method of the SqlDataAdapter to actually add the
row to the database. Because the EmployeeID column of the Employees table is an
Identity column, the EmployeeID for this new row won’t be created until the row is
actually added to the database. The value that is created for it will not be updated
automatically in the DataSet object. There are several ways to get this value back from
the database, but for this example we simply clear the DataSet out and refill it using the
SqlDataAdapater. This will return all of the rows of the Employees table, including
the row that was just added.

ds.Clear();

adp.Fill(ds, "Employees");

The Clear() method removes all tables and rows from the DataSet. If we had failed
to call this method before calling Fill() we would have ended up with duplicate records
in the DataSet. Alternatively, we could have called the Clear() method on the Rows col-
lection of the Employees table.

Once again, we restore the new DataSet in the session state and rebind the DataGrid.
Then the edit boxes are cleared out so that we have a clean slate for next time.

When the Update button is clicked, the btnEmployeeUpdate_Click handler is called.
First, get a DataRow object that represents the selected row in the DataSet, by using the
Rows collection of the Employees table and the index of the selected item that we
saved in the View state like this:

DataRow selectedRow = ds.Tables["Employees"].

Rows[(int)(ViewState["SelectedItemIndex"])];

Values are returned from the ViewState property as object types, so it is necessary to
convert or cast them to their appropriate type, which explains the cast to an int type
here. Next, use the selectedRow object to update the FirstName and LastName
columns with the text entered in the edit boxes. As in the previous example, we call the
Update() method of the SqlDataAdapter to send the changes to the database, restore
the DataSet in the session state, rebind the DataGrid, and reset all of the edit controls
for next time. This page can be seen in Figure 4.4.

As we’ve already mentioned, this wasn’t the most appropriate way to implement this
functionality. The DataSet wasn’t very easy to use in this sort of scenario and if we had-
n’t saved it in the session state each time, we would have had to make an extra call to
the database to repopulate it on each page request. That would be entirely inefficient
and unnecessary. Storing the DataSet in the session state has its own caveats and pitfalls
that need to be evaluated, so that isn’t the best choice either. In addition, up to this point
we haven’t used stored procedures, which we highly recommend for performance as
well as maintenance reasons. In the next section, we’ll rework this example a few times
using the SqlDataReader object and stored procedures, and finally we’ll encapsulate all
of the Employee table manipulation inside of a working Employees class.

Database Access 157

Figure 4.4 EmployeesUpdateable.aspx.

DataReader
The SqlDataReader and OleDbDataReader classes provide fast, forward-only access to
the data source. The DataReader classes provide greater performance over using a
DataSet and a DataAdapter to retrieve data. In our experience with .NET Web applica-
tions, we have found that using the SqlDataReader in combination with the SqlCom-
mand class provides the best performance and ease of use. In most cases, using the
DataSet class for a connectionless Web-based application is more trouble than it’s
worth and offers less performance. The DataReader classes do not provide the ability
to house multiple tables, relationships, or schema, but these types of features are best
used in long-running applications where a DataSet class can be created and main-
tained for an extended period of time.

The DataReader classes must be used in conjunction with the Command classes.
You will use the ExecuteReader() method of a SqlCommand or OleDbCommand object,
whose return value is either a SqlDataReader or OleDbDataReader object. Then you
can simply call the Read() method of the DataReader object to traverse through the
returned record set. The Command classes also have an ExecuteNonQuery() method,
which should be used whenever your Command will be executing a SQL statement in
which no record set will be returned. The return value of this method is the number of
rows that were affected by the SQL statement. Although no record set is returned, you
can still return output parameters. This can be useful in situations such as inserting
new records into a table that has an identity field. You can return the newly created
identity value via an output parameter.

158 Chapter 4

Once you have used the ExecuteReader() method of the Command object to retrieve
a DataReader, the Connection object associated with the Command remains in use. The
Connection object will be unavailable for any other use until the Close() method of the
DataReader has been called. It is important to always call the Close() method when
you have finished with the DataReader.

There are a few public properties of the DataReader classes that will prove useful.
There is a Boolean IsClosed property, which returns true if the DataReader is closed and
false otherwise. The FieldCount property can be used to determine how many columns
are in the current record of the DataReader. The RecordsAffected property can be used to
determine how many records the last SQL statement affected. It will not tell you how
many records were returned if the SQL statement was a SELECT statement, but instead
it will tell you how many records were modified if it was an INSERT, UPDATE, or
DELETE statement.

When reading through the records in a DataReader, the values in particular columns
can be accessed using the DataReader’s indexer. You can supply either a column ordi-
nal or a column name like this:

string strFirstName = (string)myReader[2];

-or-

string strFirstName = (string)myReader["FirstName"];

The indexer returns a value of type object, so you will need to either cast or convert it
to whatever data type the column contains, as we did above with the FirstName column
string type. For string type columns, you could also call the ToString() method as follows:

string strFirstName = myReader["FirstName"].ToString();

Because the ToString() method returns a string representation of the object, this
works fine for string type columns. The ToString() method can also be used on non-
string type columns, and a string representation of the data type will be returned.
There is another way to retrieve the specific data types that you want from particular
columns. There are numerous Get...() methods, such as GetString(), GetBoolean(), Get-
Byte, and GetInt32(). These methods do not provide any type conversion, so if you call
GetInt32(), the value in that column needs to already be of type Int32.

NOTE You can determine the data type of a column at runtime by calling the
GetType() method, which returns a System.Type object representing the data
type of the column.

The only problem with using these methods is that you have to pass them the col-
umn ordinal as a parameter. We do not suggest hard-coding column ordinal numbers
because if your table structure changes, you’ve just broken all of your code. There is
also a GetOrdinal() method, which takes the column name as a parameter and returns
the column ordinal. So you could do something like this:

string strFirstName =

myReader.GetString(myReader.GetOrdinal("FirstName"));

Database Access 159

Hard-coding the column ordinals in your code will provide a slight performance
increase because no lookup will have to be performed to find the correct column from
the column name. We don’t feel that the performance increase outweighs the risk that
you take of breaking your code by doing something as simple as inserting a new col-
umn into your table.

Another useful method of the DataReader is the IsDBNull() method. This method
will tell you whether the value in a particular column is NULL. If you have columns in
your tables that allow NULL values, it is a good idea to make sure that a particular
field is not NULL before you try to retrieve a data type from it. An exception will be
thrown if you try to convert a NULL value to a particular data type or if you try to use
one of the Get...() methods on it. For instance, the following code will throw an excep-
tion if the value of the ReportsTo column is NULL.

int intReportsTo = myReader.GetInt32(myReader.GetOrdinal("ReportsTo"));

It is better to check for the NULL condition ahead of time and set intReportsTo to
some value that signifies a NULL in your code, such as a -1, for example. You could
check for the NULL condition like this:

if (myReader.IsDBNull(myReader.GetOrdinal("ReportsTo")))

{

intReportsTo = -1;

}

else

{

int intReportsTo =

myReader.GetInt32(myReader.GetOrdinal("ReportsTo"));

}

Let’s rework the example from the preceding section using the SqlDataReader class
and the SqlCommand class. We’ll remove all of the DataSet and SqlDataAdapter code
and rewrite the entire example. For this example, we’ll still hard-code the SQL state-
ments, just so you can see what is happening a little more clearly. The code for this
example can be downloaded as part of the Chapter4 project from the companion Web
site and is called EmployeesWithReader.aspx. In the next example, we’ll start using
some stored procedures to speed things up a notch. Once again, we’re going to provide
the full source for the code-behind class. The .aspx file will not change too much. You
can remove this line from the top of the .aspx file.

<%@ Import namespace="System.Data" %>

Instead of having one column for the employee name, let’s break the name out into
First Name and Last Name columns. In addition, we’ll be using the EmployeeID of the
Employees table as the DataKeyField of the DataGrid. The declaration of the grid will
change to the following code:

<asp:datagrid id=EmployeeGrid runat="server" AutoGenerateColumns="False"

DataKeyField=EmployeeID>

<Columns>

160 Chapter 4

<asp:ButtonColumn Text="Select" HeaderText="Select"

CommandName="Select">

</asp:ButtonColumn>

<asp:ButtonColumn Text="Delete" HeaderText="Delete"

CommandName="Delete">

</asp:ButtonColumn>

<asp:BoundColumn HeaderText="First Name" DataField="FirstName">

</asp:BoundColumn>

<asp:BoundColumn HeaderText="Last Name" DataField="LastName">

</asp:BoundColumn>

</Columns>

</asp:datagrid>

The source for the code-behind file can be found in Listing 4.3.

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace Chapter4

{

/// <summary>

/// Summary description for EmployeesWithReader.

/// </summary>

public class EmployeesWithReader : System.Web.UI.Page

{

private string m_strConnectionString = @"Data

Source=(local)\NetSDK;Initial Catalog=Northwind;User ID=sa;pwd=;";

private SqlDataReader reader;

private SqlConnection conn;

protected System.Web.UI.WebControls.TextBox txtFirstNameAdd;

protected System.Web.UI.WebControls.TextBox txtLastNameAdd;

protected System.Web.UI.WebControls.Button btnEmployeeAdd;

protected System.Web.UI.WebControls.TextBox txtFirstNameEdit;

protected System.Web.UI.WebControls.TextBox txtLastNameEdit;

protected System.Web.UI.WebControls.Button btnEmployeeUpdate;

protected System.Web.UI.WebControls.DataGrid EmployeeGrid;

Listing 4.3 EmployeesWithReader.aspx.cs

Database Access 161

public EmployeesWithReader()

{

Page.Init += new System.EventHandler(Page_Init);

}

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

//Executed on first request only

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create a command to retrieve the data

SqlCommand selectCmd = new SqlCommand(

"Select * FROM Employees;SELECT * FROM Customers", conn);

//Get a SqlDataReader

reader = selectCmd.ExecuteReader();

//Bind the DataGrid

EmployeeGrid.DataSource = reader;

EmployeeGrid.DataBind();

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

if (reader != null)

//Close the reader

reader.Close();

if (conn != null)

//Close the connection

conn.Close();

}

}

}

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

162 Chapter 4

TE
AM
FL
Y

Team-Fly®

private void Page_Init(object sender, EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Windows Form

// Designer.

//

InitializeComponent();

}

#region Web Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.btnEmployeeAdd.Click +=

new System.EventHandler(this.btnEmployeeAdd_Click);

this.btnEmployeeUpdate.Click +=

new System.EventHandler(this.btnEmployeeUpdate_Click);

this.EmployeeGrid.ItemCommand += new System.Web.UI.WebControls.

DataGridCommandEventHandler(this.OnItemClicked);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

protected void OnItemClicked(object source, DataGridCommandEventArgs e)

{

//Get the EmployeeID of the employee that was selected

int intEmployeeID =

(int)EmployeeGrid.DataKeys[(int)e.Item.ItemIndex];

if (e.CommandName == "Select")

{

//Save the selected EmployeeID to the view state

ViewState["SelectedEmployeeID"] = intEmployeeID;

//Fill the edit boxes with the selected employees name

txtFirstNameEdit.Text = e.Item.Cells[2].Text;

txtLastNameEdit.Text = e.Item.Cells[3].Text;

//Enable the edit controls

txtFirstNameEdit.Enabled = true;

txtLastNameEdit.Enabled = true;

btnEmployeeUpdate.Enabled = true;

}

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

Database Access 163

else

{

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create a delete command

SqlCommand deleteCmd = new SqlCommand(

"DELETE FROM Employees WHERE EmployeeID=@EmployeeID;" +

"SELECT * FROM Employees", conn);

//Add the EmployeeID parameter to the command

deleteCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

//Set the @EmployeeID parameter

deleteCmd.Parameters["@EmployeeID"].Value = intEmployeeID;

//Execute the command

reader = deleteCmd.ExecuteReader();

//Rebind the DatGrid

EmployeeGrid.DataSource = reader;

EmployeeGrid.DataBind();

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

if (reader != null)

//Close the reader

reader.Close();

if (conn != null)

//Close the connection

conn.Close();

}

}

}

private void btnEmployeeAdd_Click(object sender, System.EventArgs e)

{

try

{

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

164 Chapter 4

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create an insert command

SqlCommand insertCmd = new SqlCommand(

"INSERT INTO Employees (FirstName, LastName) VALUES " +

"(@FirstName, @LastName);SELECT * FROM Employees", conn);

//Add the first name and last name parameters to the command

insertCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar, 10);

insertCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

//Set the parameters

insertCmd.Parameters["@FirstName"].Value = txtFirstNameAdd.Text;

insertCmd.Parameters["@LastName"].Value = txtLastNameAdd.Text;

//Execute the command

reader = insertCmd.ExecuteReader();

//Rebind the DatGrid

EmployeeGrid.DataSource = reader;

EmployeeGrid.DataBind();

//Clear the edit boxes

txtFirstNameAdd.Text = "";

txtLastNameAdd.Text = "";

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

if (reader != null)

//Close the reader

reader.Close();

if (conn != null)

//Close the connection

conn.Close();

}

}

private void btnEmployeeUpdate_Click(object sender, System.EventArgs e)

{

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

Database Access 165

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create an update command for the adapter

SqlCommand updateCmd = new SqlCommand(

"UPDATE Employees SET FirstName=@FirstName, LastName=@LastName

" +

"WHERE EmployeeID=@EmployeeID;SELECT * FROM Employees",

conn);

//Add the FirstName, LastName, and EmployeeID

//parameters to the command

updateCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar, 10);

updateCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

updateCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

//Set the parameters

updateCmd.Parameters["@FirstName"].Value =

txtFirstNameEdit.Text;

updateCmd.Parameters["@LastName"].Value = txtLastNameEdit.Text;

updateCmd.Parameters["@EmployeeID"].Value =

(int)ViewState["SelectedEmployeeID"];

//Execute the command

reader = updateCmd.ExecuteReader();

//Rebind the DatGrid

EmployeeGrid.DataSource = reader;

EmployeeGrid.DataBind();

//Clear the edit controls and disable them

txtFirstNameEdit.Text = "";

txtFirstNameEdit.Enabled = false;

txtLastNameEdit.Text = "";

txtLastNameEdit.Enabled = false;

btnEmployeeUpdate.Enabled = false;

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

166 Chapter 4

if (reader != null)

//Close the reader

reader.Close();

if (conn != null)

//Close the connection

conn.Close();

}

}

}

}

Listing 4.3 EmployeesWithReader.aspx.cs (continued)

Let’s review the listing and see how it works. First of all, there are three private class
member variables. The m_strConnectionString variable holds the connection string so
that we don’t have to keep defining this throughout the code. In a real application, we
would store this connection string in the registry, an XML file, or the Web.Config file;
we would not hard-code it into the application as done here. We’ve also declared Sql-
DataReader and SqlConnection member variables. In the Page_Load method, there is
some code that should be executed only on the first request of the page by a particular
client. We’ve created a new SqlConnection and then called the Open() method. The
connection has to be opened before the ExecuteReader() method is called, or an excep-
tion will be thrown. The ExecuteReader() method is called and returns a Sql-
DataReader object, which is saved in the SqlDataReader member variable.

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create a command to retrieve the data

SqlCommand selectCmd = new SqlCommand(
"Select * FROM Employees;SELECT * FROM Customers", conn);

//Get a SqlDataReader

reader = selectCmd.ExecuteReader();

Once we have the SqlDataReader, the DataGrid can bind directly to it by setting the
DataSource of the grid equal to the SqlDataReader and then calling the Bind() method.

EmployeeGrid.DataSource = reader;

EmployeeGrid.DataBind();

All of this is wrapped up in a try block with two catch handlers for the SqlException
and Exception type exceptions. Last, there is a finally block, where the SqlDataReader
and SqlConnection objects are closed. This is a good place to put this because this code
will be executed whether an exception occurs or not.

Database Access 167

finally

{

if (reader != null)

//Close the reader

reader.Close();

if (conn != null)

//Close the connection

conn.Close();

}

In the OnItemClicked handler, we save the EmployeeID of the employee that was
selected. We set the DataKeyField attribute of the DataGrid to the EmployeeID column
of the employees table when we declared the grid in the .aspx file. Now we can access
the key of the row that was selected by indexing into the DataKeys property of the
EmployeeGrid.

int intEmployeeID = (int)EmployeeGrid.DataKeys[(int)e.Item.ItemIndex];

If the user clicked the Select button, the selected EmployeeID is saved into the view
state, just as we saved the SelectedItemIndex in the previous example. The edit boxes
are then filled with the selected employee’s name by accessing the cell values of the
selected item.

txtFirstNameEdit.Text = e.Item.Cells[2].Text;

txtLastNameEdit.Text = e.Item.Cells[3].Text;

As before, the edit controls are all enabled. If the user has clicked the Delete button,
a connection to the database is opened. Then a SqlCommand object is created to exe-
cute the delete.

//Create a delete command

SqlCommand deleteCmd = new SqlCommand(

"DELETE FROM Employees WHERE EmployeeID=@EmployeeID;" +

"SELECT * FROM Employees", conn);

//Add the EmployeeID parameter to the command

deleteCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

//Set the @EmployeeID parameter

deleteCmd.Parameters["@EmployeeID"].Value = intEmployeeID;

At this point, we’re still using parameterized queries, although we could have just
as easily formatted a command string and put the EmployeeID directly in the string.
We’ve stuck with the parameterized query because we are going to start using stored
procedures in the next example. Stored procedures allow us to simply come back and
change the SQL command text in the code to the name of the stored procedure, and all
of my parameters for passing values to the stored procedure will already be set up.
Because we aren’t using the DataSet anymore, there is no need to set the SourceCol-
umn of the parameters. Instead, the Value now needs to be set directly, done in the last
line in the previous code. Notice that there are actually two SQL statements that are
going to be executed when this command is executed. First, the selected record is

168 Chapter 4

deleted by the EmployeeID, and second, all of the records of the Employees table are
selected again. We need to reselect the records of the Employees table so that we can
rebind the DataGrid to reflect the changes that were just made. We’re knocking out
both statements with one call to the database. The SqlCommand is executed, and the
DataGrid is bound to the reader just as in the Page_Load method.

The btnEmployeeAdd_Click and btnEmployeeUpdate_Click handlers are imple-
mented much the same as the delete code. SqlConnection and SqlCommand objects are
created. The parameters of the SqlCommand object are set, the command is executed,
and the DataGrid is rebound to the returned SqlDataReader. There aren’t any new con-
cepts introduced in these handlers. This page should look and function exactly the
same as the preceding example, with the exception that the employee name is divided
into two columns now.

Wrapping It Up in a Class

Now that we know how to access data let’s go ahead and redo the Employees example
properly. In this section, we’re going to create an Employee class. This class will have
properties for several but not all of the columns in the Employees table. It will be able
to populate itself, update, delete, and create new Employees. It will also have a static
method that will return an ArrayList of Employee objects that can be used to bind to
things such as a DataGrid. In addition, we’ll use stored procedures rather than hard-
coded SQL statements. We recommend using stored procedures for just about all of
your SQL Server database access. If modifications need to be made to a SQL statement,
the stored procedure can be updated on the fly. No source code modifications need to
made and deployed. On top of that, stored procedures are already precompiled and
will therefore provide a performance increase over hard-coded SQL statements. Much
of the code in the Employee class is not new. You should recognize a lot of the code
from the preceding Employees examples. We’ve included most of the source for the
Employee class in Listing 4.4, but we have left out the sections that don’t pertain to this
discussion. The full source is available for download at the companion Web site.

using System;

using System.Data;

using System.Data.SqlClient;

using System.Collections;

namespace Chapter4

{

/// <summary>

/// Summary description for Employees.

/// </summary>

public class Employee

{

//private member variables

private int m_intEmployeeID;

private string m_strLastName = string.Empty;

Listing 4.4 Employee.cs

Database Access 169

private string m_strFirstName = string.Empty;

...

//Other member variables go here

...

//public properties

public int EmployeeID

{

get { return m_intEmployeeID; }

}

public string LastName

{

get { return m_strLastName; }

set { m_strLastName = value; }

}

public string FirstName

{

get { return m_strFirstName; }

set { m_strFirstName = value; }

}

...

//Other properties go here

...

//Default constructor

public Employee()

{

}

public Employee(SqlDataReader reader)

{

LoadFromReader(reader);

}

public void LoadFromReader(SqlDataReader reader)

{

try

{

//These columns don t allow nulls

m_intEmployeeID =

reader.GetInt32(reader.GetOrdinal("EmployeeID"));

m_strLastName = reader["LastName"].ToString();

m_strFirstName = reader["FirstName"].ToString();

//These columns do allows nulls so check for the NULL condition

//for any value types other than string.

m_strTitle = reader["Title"].ToString();

m_strTitleOfCourtesy = reader["TitleOfCourtesy"].ToString();

Listing 4.4 Employee.cs (continued)

170 Chapter 4

if (reader.IsDBNull(reader.GetOrdinal("HireDate")))

{

m_dteHireDate = DateTime.MinValue;

}

else

{

m_dteHireDate =

reader.GetDateTime(reader.GetOrdinal("HireDate"));
}

m_strAddress = reader["Address"].ToString();

m_strCity = reader["City"].ToString();

m_strPostalCode = reader["PostalCode"].ToString();

m_strCountry = reader["Country"].ToString();

m_strHomePhone = reader["HomePhone"].ToString();

m_strExtension = reader["Extension"].ToString();

}

catch (SqlException sqlEx)

{

//Throw this exception

throw new Exception

("Database exception occured in Employee.GetByID()", sqlEx);

}

catch (Exception Ex)

{

//Throw this exception

throw new

Exception("Exception occured in Employee.LoadFromReader()", Ex);

}
}

//Use this method to get an ArrayList of all Employees

public static ArrayList GetAll(SqlConnection conn)

{

SqlDataReader reader = null;

//Create the Employee ArrayList
ArrayList arrEmployees = new ArrayList();

try

{

//Create a command to retrieve the data

SqlCommand selectCmd = new

SqlCommand("Northwind.dbo.sp_GetAllEmployees", conn);
selectCmd.CommandType = CommandType.StoredProcedure;

//Get a SqlDataReader

reader = selectCmd.ExecuteReader();

Listing 4.4 Employee.cs (continued)

Database Access 171

//Create the Employee objects

while (reader.Read())

{

arrEmployees.Add(new Employee(reader));

}

}

catch (SqlException sqlEx)

{

//Throw this exception

throw new Exception

("Database exception occured in Employee.GetByID()", sqlEx);

}

catch (Exception Ex)

{

//Throw this exception

throw new Exception("Exception occured in Employee.GetAll()", Ex);

}

finally

{

if (reader != null)

{

//Close the reader

reader.Close();

}

}

//Return the ArrayList

return arrEmployees;

}

//Use this method to get an employee from the database

//given his EmployeeID

public static Employee GetByID(SqlConnection conn, int

intEmployeeID)

{

SqlDataReader reader = null;

Employee employee = null;

try

{

//Create a select command

SqlCommand selectCmd = new

SqlCommand("Northwind.dbo.sp_GetEmployee", conn);

selectCmd.CommandType = CommandType.StoredProcedure;

//Add the parameters

selectCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

Listing 4.4 Employee.cs (continued)

172 Chapter 4

TE
AM
FL
Y

Team-Fly®

//Set the parameter values

selectCmd.Parameters["@EmployeeID"].Value = intEmployeeID;

//Execute the command

reader = selectCmd.ExecuteReader();

if (reader.Read())

{

employee = new Employee(reader);

}

return employee;

}

catch (SqlException sqlEx)

{

//Throw this exception

throw new Exception

("Database exception occured in Employee.GetByID()", sqlEx);

}

catch (Exception Ex)

{

//Throw this exception

throw new Exception(

"Exception occured in Employee.DeleteByID()", Ex);

}

finally

{

if (reader != null)

{

//Close the reader

reader.Close();

}

}

}

//Use this method to Add an employee to the database

public void Add(SqlConnection conn)

{

try

{

//Create an insert command

SqlCommand insertCmd = new

SqlCommand("Northwind.dbo.sp_AddEmployee", conn);

insertCmd.CommandType = CommandType.StoredProcedure;

//Add the parameters

insertCmd.Parameters.Add("@LastName", SqlDbType.NVarChar, 20);

insertCmd.Parameters.Add("@FirstName", SqlDbType.NVarChar, 10);

Listing 4.4 Employee.cs (continued)

Database Access 173

insertCmd.Parameters.Add("@Title", SqlDbType.NVarChar, 30);

insertCmd.Parameters.Add("@TitleOfCourtesy", SqlDbType.NVarChar,

25);

insertCmd.Parameters.Add("@HireDate", SqlDbType.DateTime);

insertCmd.Parameters.Add("@Address", SqlDbType.NVarChar, 60);

insertCmd.Parameters.Add("@City", SqlDbType.NVarChar, 15);

insertCmd.Parameters.Add("@PostalCode", SqlDbType.NVarChar, 10);

insertCmd.Parameters.Add("@Country", SqlDbType.NVarChar, 15);

insertCmd.Parameters.Add("@HomePhone", SqlDbType.NVarChar, 24);

insertCmd.Parameters.Add("@Extension", SqlDbType.NVarChar, 4);

//Set the parameter values

insertCmd.Parameters["@LastName"].Value = m_strLastName;

insertCmd.Parameters["@FirstName"].Value = m_strFirstName;

insertCmd.Parameters["@Title"].Value = m_strTitle;

insertCmd.Parameters["@TitleOfCourtesy"].Value =

m_strTitleOfCourtesy;

insertCmd.Parameters["@HireDate"].Value = m_dteHireDate;

insertCmd.Parameters["@Address"].Value = m_strAddress;

insertCmd.Parameters["@City"].Value = m_strCity;

insertCmd.Parameters["@PostalCode"].Value = m_strPostalCode;

insertCmd.Parameters["@Country"].Value = m_strCountry;

insertCmd.Parameters["@HomePhone"].Value = m_strHomePhone;

insertCmd.Parameters["@Extension"].Value = m_strExtension;

//Execute the command

insertCmd.ExecuteNonQuery();

}

catch (SqlException sqlEx)

{

//Throw this exception

throw new Exception

("Database exception occured in Employee.GetByID()", sqlEx);

}

catch (Exception Ex)

{

//Throw this exception

throw new Exception("Exception occured in Employee.Add()", Ex);

}

}

//Use this method to Update this employee to the database

public void Update(SqlConnection conn)

{

...

//This method is exactly like the Add command except it calls

//a different stored procedure.

}

Listing 4.4 Employee.cs (continued)

174 Chapter 4

//Use this method to delete this employee from the database

public void Delete(SqlConnection conn)

{

DeleteByID(conn, m_intEmployeeID);

}

//Use this method to delete an employee from the database

//given his EmployeeID

public static void DeleteByID(SqlConnection conn, int intEmployeeID)

{

try

{

//Create a delete command

SqlCommand deleteCmd = new

SqlCommand("Northwind.dbo.sp_DeleteEmployee", conn);

deleteCmd.CommandType = CommandType.StoredProcedure;

//Add the parameters

deleteCmd.Parameters.Add("@EmployeeID", SqlDbType.Int);

//Set the parameter values

deleteCmd.Parameters["@EmployeeID"].Value = intEmployeeID;

//Execute the command

deleteCmd.ExecuteNonQuery();

}

catch (SqlException sqlEx)

{

//Throw this exception

throw new Exception

("Database exception occured in Employee.GetByID()", sqlEx);

}

catch (Exception Ex)

{

//Throw this exception

throw new Exception(

"Exception occured in Employee.DeleteByID()", Ex);

}

}

}

}

Listing 4.4 Employee.cs (continued)

Keep in mind that this class is designed not only for use with ASP.NET applications,
but also for use with any other type of application. In a lot of real-world scenarios,
some of your applications may be Web based and some may be fat client applications.
For example, in our car parts business, the public Web site is an ASP.NET application;

Database Access 175

however, the applications that are used to maintain the parts database, handle pricing,
invoices, and purchase orders are probably more suited to fat client applications. For
this reason, we choose to implement our database access classes in a way that can be
used effectively by both types of applications. Some of the methods used here could be
changed to better suit a Web-only approach. All of the methods in the Employee class
take at least one parameter, a SqlConnection, which is expected to be opened. We will
still be opening a SqlConnection from within our code-behind classes. This allows the
class user to reuse one connection for multiple things. If we had created, opened, and
closed a connection within the Employee class, we would have taken this freedom
away from any potential users of the class. Many of the member variables and prop-
erty declarations were left out of the listing to save space. The full source code can be
found in the Chapter4 project available for download from the Web site.

We provided a constructor that takes a SqlDataReader as a parameter. This makes it
easy to traverse through the records of a SqlDataReader and create new Employee
objects for each record. This constructor calls the LoadFromReader() method, passing
the SqlDataReader along. The LoadFromReader() method simply fills in the member
variables of the object by pulling column values out of the SqlDataReader, as we have
already seen. There is one thing to note here. Notice that although many of the
columns, such as Title and TitleofCourtesy, allow NULL values, we have not bothered
to check for the NULL condition using IsDBNull(). Because these columns are string
values, we can use the ToString() method to get their values. In effect, we’re calling
ToString() on the object type that is returned by the SqlDataReader indexer. The point
is, if the value in the Title column is null, calling the ToString() method will not throw
an exception. If the value of the HireDate column is NULL and we attempt to call the
SqlDataReader.GetDateTime() function on that column it will throw an exception, so
we need to check for the NULL condition there. By not checking for NULL on the
strings, we save a little processing time.

The static GetAll() method returns an ArrayList of Employee objects, which we use
to bind the DataGrid to the page. The method calls a stored procedure that returns all
rows in the Employees table. The returned SqlDataReader object is then used to tra-
verse through the records and fill the ArrayList with new Employee objects.

while (reader.Read())

{

arrEmployees.Add(new Employee(reader));

}

This is done inside of a while loop. The Read() method will return true until the end
of the record set is reached. Inside the while loop, passing the reader to the overloaded
constructor creates a new Employee object, which is then added to the ArrayList. Once
again, we make sure to close the SqlDataReader in the finally block. We do not close the
SqlConnection; that is the client’s responsibility.

The rest of the methods of this class do not contain anything that we haven’t already
seen other than the use of the ExecuteNonQuery() method of the SqlCommand class.
This method is used to call any stored procedures that will not return a record set.

Now let’s take a look at how to use this class from within an ASP.NET page. We’ll
rewrite the Employees example to use this class. Although we provided access to
columns of the Employees table other than EmployeeID, FirstName, and LastName,

176 Chapter 4

we’ll just stick to using those for the example. The source for the modified methods of
the new code-behind class is provided in Listing 4.5. No changes were necessary to the
.aspx file from the previous example.

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

//Executed on first request only

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Bind the DataGrid

EmployeeGrid.DataSource = Employee.GetAll(conn);

EmployeeGrid.DataBind();

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

//Close the connection

conn.Close();
}

}
}

protected void OnItemClicked(object source, DataGridCommandEventArgs e)

{

//Get the EmployeeID of the employee that was selected

int intEmployeeID = (int)EmployeeGrid.DataKeys[(int)e.Item.ItemIndex];

if (e.CommandName == "Select")

{

//Save the selected EmployeeID to the view state

ViewState["SelectedEmployeeID"] = intEmployeeID;

//Fill the edit boxes with the selected employees name

txtFirstNameEdit.Text = e.Item.Cells[2].Text;

txtLastNameEdit.Text = e.Item.Cells[3].Text;

Listing 4.5 EmployeesFinal.aspx.cs

Database Access 177

//Enable the edit controls

txtFirstNameEdit.Enabled = true;

txtLastNameEdit.Enabled = true;

btnEmployeeUpdate.Enabled = true;

}

else

{

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Delete the employee from the database

Employee.DeleteByID(conn, intEmployeeID);

//Rebind the DataGrid

EmployeeGrid.DataSource = Employee.GetAll(conn);

EmployeeGrid.DataBind();

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

//Close the connection

conn.Close();

}

}

}

private void btnEmployeeAdd_Click(object sender, System.EventArgs e)

{

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Create a new employee

Employee emp = new Employee();

//Set the employees First Name and Last Name

Listing 4.5 EmployeesFinal.aspx.cs (continued)

178 Chapter 4

emp.LastName = txtLastNameAdd.Text;

emp.FirstName = txtFirstNameAdd.Text;

//Add the employee to the database

emp.Add(conn);

//Rebind the DataGrid

EmployeeGrid.DataSource = Employee.GetAll(conn);

EmployeeGrid.DataBind();

//Clear the edit boxes

txtFirstNameAdd.Text = "";

txtLastNameAdd.Text = "";

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

//Close the connection

conn.Close();

}

}

private void btnEmployeeUpdate_Click(object sender, System.EventArgs e)

{

try

{

//Create the Connection

conn = new SqlConnection(m_strConnectionString);

//Open the connection

conn.Open();

//Get the selected employee by EmployeeID

Employee emp = Employee.GetByID(conn,

(int)ViewState["SelectedEmployeeID"]);

//Update the employees First Name and Last Name

emp.LastName = txtLastNameEdit.Text;

emp.FirstName = txtFirstNameEdit.Text;

//Update the employee to the database

emp.Update(conn);

//Rebind the DataGrid

EmployeeGrid.DataSource = Employee.GetAll(conn);

EmployeeGrid.DataBind();

Listing 4.5 EmployeesFinal.aspx.cs (continued)

Database Access 179

//Clear the edit controls and disable them

txtFirstNameEdit.Text = "";

txtFirstNameEdit.Enabled = false;

txtLastNameEdit.Text = "";

txtLastNameEdit.Enabled = false;

btnEmployeeUpdate.Enabled = false;

}

catch (SqlException sqlEx)

{

Response.Write("SqlException: " + sqlEx.ToString());

}

catch (Exception Ex)

{

Response.Write("Exception: " + Ex.ToString());

}

finally

{

//Close the connection

conn.Close();

}

}

Listing 4.5 EmployeesFinal.aspx.cs (continued)

In the Page_Load method, we open a SqlConnection and pass it to the static
Employee.GetAll() method. The returned ArrayList is used to bind to the DataGrid.

EmployeeGrid.DataSource = Employee.GetAll(conn);

EmployeeGrid.DataBind();

One thing to keep in mind when binding to custom-created classes is that all fields
that you wish to access from the class must be exposed as properties. You cannot bind
to public member variables, so make your member variables private and expose them
with a public property that provides the read/write access that you desire.

In the OnItemClicked handler, we modify the section of code that provides the
delete functionality to use the Employee class. The static DeleteByID() method was
called passing the SqlConnection and the selected EmployeeID.

Employee.DeleteByID(conn, intEmployeeID);

Next, rebind the DataGrid by calling the GetAll() method again. This results in two
calls to the database, a situation that isn’t optimal. To get around this, we could write a
new method on the Employee object that not only deletes an employee record, but also
returns an ArrayList of the remaining employees. This method wouldn’t be too useful
in any type of application except a Web application, which is why we have chosen not
to implement it that way. Not to mention that it doesn’t make good logical sense from
an object-oriented standpoint. It would, though, eliminate a database call.

180 Chapter 4

The btnEmployeeAdd_Click handler also creates a new Employee object. It then
sets the FirstName and LastName properties and calls the Add() method, which adds
it to the database.

//Create a new employee

Employee emp = new Employee();

//Set the employees First Name and Last Name

emp.LastName = txtLastNameAdd.Text;

emp.FirstName = txtFirstNameAdd.Text;

//Add the employee to the database

emp.Add(conn);

The btnEmployeeUpdate_Click handler is implemented in a manner similar to the
add handler, with the exception that first we retrieve the selected employee from the
database by using the EmployeeID. This obtains all of the other fields that are used in
the Employee class but are not being used in this example. If we just filled in the First-
Name and LastName fields and called the Update() method of the Employee class, the
values of all of the other fields would be wiped out in the database.

//Get the selected employee by EmployeeID

Employee emp = Employee.GetByID(conn,

(int)ViewState["SelectedEmployeeID"]);

//Update the employees First Name and Last Name

emp.LastName = txtLastNameEdit.Text;

emp.FirstName = txtFirstNameEdit.Text;

//Update the employee to the database

emp.Update(conn);

Componentizing your code in this way cleans up your GUI client code and makes it
really easy to make business logic changes in one place. If it becomes necessary, you
can provide Web application-specific methods to your components that might make
things a little more efficient or cut down on the number of calls that need to be made to
the database.

Connection Pooling
The last topic of data access that we’d like to cover is connection pooling. Creating and
establishing a connection to a database is a somewhat costly operation. Connection
pooling is a mechanism of sharing connection objects between multiple users of an
application so that connection creation is not always necessary. The idea is that when a
connection is closed in a section of code, it is not really closed. Instead, it is returned to
a pool of open connections ready to be reused. When a new section of code needs an
open connection, an existing connection is pulled from the pool and reused, avoiding
the costly connection process.

If you are using the OleDbConnection class, the provider handles connection pool-
ing automatically. You get it for free and do not have to do anything to manage it your-
self. If you are using a SQL Server database and therefore the SqlConnection class,
connection pooling is handled for you through the use of Windows 2000 component
services, but you are provided with the ability to manage certain options of the

Database Access 181

pooling process yourself. The rest of this section will explain the connection pooling
mechanism for the SqlConnection class.

Connection pools are unique by connection string. If a SqlConnection object is cre-
ated using a connection string for which there is currently no pool, a new pool will be
created. At this time, the pool will create and add to the pool as many connection
objects as specified by the minimum pool size. If a pool for that connection string
already exists, then a connection object will be returned from the pool if one is avail-
able. If there are no available, unused connections in the pool, and the pool has not
reached its maximum size (which is configurable), a new connection will be created,
added to the pool, and returned to the requester. If the pool has already reached its
maximum size, then the connection request will be queued. As soon as a connection is
available it will be assigned to the first requester in the queue. A requester will wait for
a connection from the pool only as long as specified in the ConnectionTimeout prop-
erty of the SqlConnection class. When assigned a connection from the pool, the con-
nection will be returned to the pool when the user calls the Close() method.

There are several pooling options that you can set via key/value pairs in the Con-
nectionString property of the SqlConnection class. The three most important keys are
Pooling, Max Pool Size, and Min Pool Size. Pooling can be set to true, which is the default,
or false, and it simply determines whether connection pooling is used. Max Pool Size
sets the maximum number of connections that the pool can grow to accommodate; its
default value is 100. Min Pool Size sets the number of connections that should be cre-
ated and added to the pool when the pool is initially created. The default value is 0,
which means that no additional connections will be created at pool creation time.

Using connection pooling is quite simple; if you are happy with the defaults men-
tioned previously, you don’t have to do anything at all. If you want to adjust the pool,
you simply add or change the appropriate keys in the connection string. Here is what
our connection string would look like for creating a pool with a Max Pool Size of 150
and a Min Pool Size of 25.

@"Data Source=(local)\NetSDK;Initial Catalog=Northwind;

User ID=sa;pwd=;Max Pool Size=150;Min Pool Size=25"

Wrapping Up the Chapter

In this chapter, we scratched the surface of the power that ADO.NET provides. We’ll be
building further on the techniques introduced in this chapter when we start building a
real-world application in Chapter 6. We hope that you have enough information on
ADO.NET to do nearly everything that you need for a Web-based application at this
point.

In the next chapter, we will cover the rest of the ASP.NET essentials that we need to
start developing a real-world application. In addition, we’ll cover some more
advanced data binding techniques that will enable you to add some real power to your
pages.

182 Chapter 4

TE
AM
FL
Y

Team-Fly®

183

In the previous chapters we have covered the basics of ASP.NET. We have seen how to
use Web Server Controls and the event-driven programming model that is now avail-
able in ASP.NET. We’ve covered database access and how we can bind our server-side
controls to various data sources. We’ve also covered the very useful code-behind pro-
gramming methodology that allows us to separate the code that makes our page work
and the code that makes up our user interface.

In this chapter, we’ll introduce some more advanced concepts to build on what we
already know. We’ll cover the HttpRequest, HttpResponse objects, and Cookies and
see how we can provide greater customization of client sessions and remember users
between visits to our site. We’ll also see how we can store our own information in the
client’s ViewState and store objects in memory on the server-side with Session and
Application variables. After covering this information we will have seen the majority
of ASP.NET fundamentals, We’ll finish off the chapter by showing how you can write
your own custom page class on which to base all of your pages. This ability allows you
to easily reuse common code throughout your pages. We’ll then introduce user con-
trols, another concept that allows you to reuse common user interface objects across
your pages. The last section of the chapter will cover some more advanced Data Bind-
ing techniques with the DataGrid and introduce the DataList and Repeater controls for
the first time.

After covering the topics in this chapter, you will have all of the information you
need to build very robust Web applications.

Creating More Advanced
ASP.NET Pages

C H A P T E R

5

Communicating with the Browser

As Web programmers our primary responsibility is to communicate with our clients
through an Internet browser. We can send information to the client through Http-
Response object. All of the Web Server Controls that we covered in Chapter 3, “Server
Controls,” use this object behind the scenes to render their output to the stream of data
that will be sent to the client. The client’s data is sent back to the server and is accessi-
ble through the use of the HttpRequest object. Through the HttpRequest object, data
such as query string parameters and form values can be retrieved. ASP.NET uses the
HttpRequest object to populate our server-side controls with any data that the client
may have provided. In this section, we’ll see how we can use the HttpResponse and
HttpRequest objects directly to perform some advanced operations.

HTTP cookies are not new. Cookies allow us to store information in memory or on
disk on the client’s machine. This is one way of enabling us to remember who a client
is between page requests. We’ll cover how ASP.NET exposes cookies to us in this section
as well.

The Response Object
As we mentioned earlier, the HttpResponse object is used to send data to the client. All
of the Web Server Controls use this object behind the scenes. It is still possible to use the
HttpResponse object directly in our code to render output to the client. Although
ASP.NET provides such a powerful framework for writing Web applications through
the use of the built-in objects and controls, sometimes it is desirable for very simple
pages and for debugging purposes to use the HttpResponse object directly.

The Response object is also used for buffering output on the server. By default, an
ASP.NET page will not be transmitted to the client’s browser until it has been com-
pletely processed on the server. In the case of a long-running page that delivers a lot of
content to the client or performs lengthy operations, it might be a good idea to send the
output of the page periodically before the entire page has been processed. This could
provide a better user experience, as the user won’t have to wait for a long period of
time before viewing the content of the page.

One fundamental operation that we need to perform quite commonly is redirecting
the client to another resource on the Web. This action is also handled by the Http-
Response object and will be covered in this section.

The HttpResponse object is also responsible for caching content on the Web server
to improve performance. We won’t cover this concept in this section, but it will be cov-
ered in Chapter 10, “Debugging and Optimization.”

Generating Content Programmatically

To understand the response object, you must know how the Web server communicates
with the browser. When the browser requests a page from the server, it is actually
making a temporary connection via a TCP/IP socket. Sockets provide for two-way
conversations, so when the server is ready to send the page back to the browser, it does
so over the socket channel. When programs use sockets, they write data to the socket

184 Chapter 5

using the functions provided in the socket library. The TCP/IP protocol then moves the
bytes of data from one machine to the other; it may even break the data apart into pack-
ets and add special headers to route the data back and forth between the two machines.
The connection stream can be written via the HttpResponse object, which is exposed as
the Response property of the Page object, from which all ASP.NET pages are derived.

Normally in a classic ASP page, the content that is sent to the browser comes from
HTML with code strategically placed throughout it within special tags. In the case of
ASP.NET, this same technique can be used, but typically the aspx file for the page will
consist of server-side controls. The code in the script or code-behind class will interact
with these controls and the HTML around them, to create the content that is sent to the
browser.

There are times when you will want to write content directly to the browser. For
example, if a page is merely required for testing some action on the server, then it may
be easier just to send the output directly without fancy formatting or the need for con-
trols. Or, you can use this method when type or layout of the data is not known until
runtime. For example, if there is a need to traverse through a collection of objects and
each object’s properties as well, it may be useful to have freedom from a defined lay-
out and to write data directly as it is discovered. Again, this is a technique probably put
to best use in debugging and development only. This could be useful when looking for
an elusive cookie value during development. The usefulness of writing directly to the
browser is limited to large, production-quality ASP.NET apps. In these cases, the pro-
grammer will most often know exactly what the format of the data will be and can get
more benefit from using a predetermined layout.

The following is an example of how to send output to the browser using Http-
Response. Remember that the output you send with HttpResponse will ultimately be
displayed by the browser, so formatting can be done simply by sending HTML. To run
the following example, create a new WebForm and replace its Page_Load function
with the following:

protected void Page_Load(object sender, System.EventArgs e)

{

Response.Write(string.Format("The date is: {0}
",

DateTime.Now.ToShortDateString()));

Response.Write(string.Format("<i>The time is: {0}</i>
",

DateTime.Now.ToShortTimeString()));

}

The results of this in the browser are shown in Figure 5.1, which displays the current
date and time on the Web server.

In addition to sending purely code-generated text, HttpResponse allows you to send
the contents of an entire file to the browser. For example, you may want to dynamically
load and display a file in the browser but don’t want to write code to open and read the
file and then write it out manually. One example might be to dynamically load HTML
from a file to display in part of your page based on some business logic. It could also
be useful for displaying other HTML files within an ASP.NET page, for example, to dis-
play a copyright header across the top of all pages in a Web app without using user
controls.

Creating More Advanced ASP.NET Pages 185

Figure 5.1 Response output.

The following example sends files to the browser in three different ways. First, we
send a header line using one line of code that will be included in all pages in an appli-
cation. Notice that the HTML file we send here has no HTML, HEAD, or BODY tags in
it because these are included in the aspx page already. Later in this chapter, when we
learn about User Controls, we will see that they act similarly, and shouldn’t have these
tags either. Then, we send a file that is formatted as standard text and one formatted as
HTML.

//Send a file containing a header line

Response.WriteFile("top_border.htm");

//Send plain text

Response.Write("Begin unformatted file contents
\r");

Response.WriteFile("wiley.txt");

Response.Write("End unformatted file contents

\r");

//Send text formatted for browser

Response.Write("Begin formatted file contents
\r");

Response.WriteFile("wiley_formatted.txt");

Response.Write("End formatted file contents

\r");

This example opens and reads a file manually, adds HTML line breaks to it, and
sends the data via HttpResponse. This third example is more work, but it can be used
to show any text file in the browser with its intended line breaks intact. Notice also that
the WriteFile method looks for the file in the Web directory, and the OpenRead method
requires a full path to find the file. The File object is for working with files in any type

186 Chapter 5

of application, while HttpResponse.WriteFile is for Web apps, where the files needed
often reside in the same folder or virtual directory as the ASP.NET pages.

//Read plain text, format it for browser, send it

Response.Write("Begin programmatically formatted file

contents
\r");

//Open and read the file

string path = "f:\\meyneh\\fileshare\\wiley\\ch03\\wiley.txt";

System.IO.StreamReader sr =

new System.IO.StreamReader(System.IO.File.OpenRead(path));

System.Text.StringBuilder sb =

new System.Text.StringBuilder(sr.ReadToEnd());

//Replace linefeeds with browser linefeed

sb.Replace("\r", "
\r");

sr.Close();

//Send to browser

Response.Write(sb.ToString());

Response.Write("End programmatically formatted file

contents
\r");

To run these samples, create a new WebForm, and place any of the preceding code
lines into its Page_Load function. If you run this example, you’ll see the contents of the
file as well as the header bar across the top of the page, as shown in Figure 5.2.

NOTE When creating a header this way, it will not benefit from some of the
advanced caching features available to the built-in Server Controls discussed
later in the book.

Redirection

Another common use of HttpResponse is for redirection. When a page is requested,
your logic may dictate that the browser should request a different page instead. For
example, if you want the user to be rerouted to a login page because they are not yet
logged in, you would use redirection. When you call HttpResponse.Redirect, the
server sends an HTTP header to the browser that tells it to request another page
instead and includes which page to request. Redirection cannot occur after nonheader
content has been sent to the browser; doing so will cause an exception.

protected void Page_Load(object sender, System.EventArgs e)

{

Response.Redirect("http://www.wiley.com");

}

Creating More Advanced ASP.NET Pages 187

Figure 5.2 More response output.

When you request this page that calls the redirect method, you are immediately sent
to another page. You can redirect at any time in your code, but it is important to remem-
ber that an HttpException will be thrown if output has already been sent to the browser.
The following code throws this exception. You will see the ASP.NET red and yellow
unhandled exception page when the exception occurs, and all processing of the page
will stop. Any unhandled exception in an ASP.NET page automatically generates a page
that displays detailed exception information, including the source code location and
stack trace. Exception handling was covered in detail in Chapter 4, “Database Access.”

NOTE In Windows 2000 you are less likely to encounter output sent before
calling HttpResponse.Redirect because output is buffered by default, and it is
unlikely that any content will have been sent to the browser when you call
Redirect.

protected void Page_Load(object sender, System.EventArgs e)

{

Response.Write("You will never see this text");

Response.Flush();

Response.Redirect("http://www.wiley.com");

}

If you were able to view the source of the HTML generated by a redirect, it would
look something like this:

188 Chapter 5

<meta http-equiv="Refresh" content="0; url=http://www.wiley.com">.

If you were to create an HTML page that just redirects the browser to another page,
the code shown here is all that would be needed.

There is one more thing to be aware of when using Response.Redirect(). When
ASP.NET performs a Redirect it automatically throws a ThreadAbortException. This
exception can be caught just as any other exception. However, this is a special excep-
tion that will be automatically re-thrown after any catch blocks have been executed.
This means that we have to be careful when using a Response.Redirect() inside of a try
block. It might be necessary to provide an empty catch block specifically for the
ThreadAbortException in some cases, just to prevent any general catch blocks from
being executed due to a Response.Redirect().

Cookies
Cookies have been one of the most important aspects of programming interactive Web
applications since the beginning. ASP.NET does not disappoint in this area and pro-
vides an object-oriented way to set and retrieve cookies on the browser. Although you
probably already understand the use of cookies, let’s briefly review them here because
they are used as one of the fundamental building blocks of the WileyParts online shop-
ping application that we’ll create in Chapter 6, “Applying What We’ve Learned So Far.”

Because HTTP is a connectionless protocol, it is difficult to treat a browser as an
always-connected client application. Most Web-based applications rely on resources
residing on the server that are particular to one user on one browser. In a traditional, rich-
client application, the state of the session is stored on the client in its programming logic.

One way to simulate a rich-client application on the Web is to employ cookies that
store data on the client. Even though cookies are not robust enough to store complex
session-related objects like database connections or business objects, they can be used
effectively by storing just enough data to allow the code on the server to re-create the
real data objects whenever the user visits the site. Let’s learn how to use the Response
object read and write cookies in the browser.

ASP.NET provides four related classes for working with cookies:

�� HttpCookie

�� HttpCookieCollection

�� HttpResponse

�� HttpRequest

The Response object has a property called Cookies, which is an HttpCookieCollec-
tion of HttpCookie objects. When a browser makes a request to the server, it sends all
of the cookies for the server (by its address or domain name) in the HTTP header of the
request. ASP.NET loads these cookies into the collection for you. To access the cookies,
simply index them in the collection. When information is sent to the browser in a
cookie, you can determine whether you want it to exist on the client only while the
browser is open or whether you want it to remain on the client machine after the
browser is closed. The difference in how long the cookie will live in the browser deter-
mines whether you have a Persistent Cookie or a Session Cookie. Session Cookies are

Creating More Advanced ASP.NET Pages 189

those that live only as long as the browser is open, whereas a Persistent Cookie is one
that exists until its expire date, or indefinitely.

Both types of cookies are useful. For example, if a user logs into a Web application,
you may want to store his or her userid in the browser as the user navigates among the
pages in the application. You may want to require the user to reenter his or her login
credentials if the browser is closed and opened again. This is crucial in environments
where more than one person may be using a machine to access Web applications. For
example, imagine if you were using a browser in a public library or college to access
your bank account online. If the banking application keeps your login credentials in a
cookie while you are using the application, that information definitely should be gone
before the next user sits down at that same machine. If not, the next user could browse
to your banking application and be authenticated as you—not the desired functional-
ity. This is a case where you would want to implement Session Cookies that will cease
to exist as soon as the browser is closed.

There may be situations in which you want information to be stored on the client for
a much longer period of time. A persistent cookie is perfect for storing information
such as user preferences, user visit counts, and other simple information that is distinct
to each user. An example of this is an online shopping Web site or a member-based
forum Web site. In these cases, a Persistent Cookie will keep the user’s information
over long periods of time, so that the items in the user’s cart or his or her forum login
information will be intact the next time the user visits. In general, it is safe to use
Persistent Cookies in applications that will be accessed from personal machines in
people’s homes or offices, rather than from public or shared computers.

As far as your code is concerned, the main difference between setting a Session
Cookie and a Persistent Cookie is the expiration time. Session Cookies have no expira-
tion time set; thus, they are stored only in memory while the browser is open. Persis-
tent cookies, on the other hand, do have expiration dates associated with them, but the
dates can be set as far into the future as you want. There is no limit on the amount of
days, week, or years a Persistent Cookie can be set to last.

Let’s create and send a session a cookie to the browser that we will read back from
the browser in the next section. Create a new WebForm, and replace its Page_Load
function with the following:

protected void Page_Load(object sender, System.EventArgs e)

{

//set a temporary cookie

HttpCookie tempcookie = new HttpCookie("WileyTempCookie");

tempcookie.Values.Add("userid", "1250");

Response.Cookies.Add(tempcookie);

}

Run the example, and look in the cookies location on your client machine. In Windows
2000, this should be C:\Documents and Settings\<your user name>\Cookies\. You will
not find this cookie anywhere on the hard drive because it is in memory only—it is not
stored anywhere. Now try the following code, which will set a Persistent Cookie:

protected void Page_Load(object sender, System.EventArgs e)

{

//set a persistent cookie

190 Chapter 5

HttpCookie perscookie = new HttpCookie("WileyPersistentCookie");

perscookie.Expires = Convert.ToDateTime("12/01/03 16:00");

perscookie.Values.Add("userid", "1250");

Response.Cookies.Add(perscookie);

}

This cookie, as opposed to the one in the previous example, can be found on the
hard drive, in the cookie storage location. The Persistent Cookie was, in fact, stored
and will exist there after the browser closes.

Now let’s read the cookie from the browser request and display its value. For the fol-
lowing example, run the previous Session Cookie example to set the cookie. Then run
this example. Don’t close the browser first, or else the cookie will be gone! After you
have run it once while the Session Cookie still exists, close the browser. Then run the
example in a new browser.

protected void Page_Load(object sender, System.EventArgs e)

{

//read cookie from browser via the cookie collection

HttpCookie cookie = Request.Cookies["WileySessionCookie"];

if (cookie == null)

{

//cookie not found

Response.Write("Session cookie not found
");

}

else

{

//cookie found

string s = cookie.Values["userid"].ToString();

//cookie empty or not

if (s.Trim().Length == 0)

{

Response.Write("Cookie was found, but is empty
");

}

else

{

Response.Write(string.Format("Cookie value: {0}
", s));

}

}

}

You will see that the cookie cannot be found. Session Cookies are maintained as long
as at least one browser is open, and not necessarily the one in which you accessed the
page that set the cookie. This is important for situations in which a Web application
opens additional browser windows that would still need to access the cookie.

To read the Persistent Cookie, use the code from the previous example but change
the cookie name to reflect that of the Persistent Cookie. This code should open the
cookie and read its value even if all browser windows have been closed and reopened.

Creating More Advanced ASP.NET Pages 191

Modify the first line of the Page_Load function in the previous example code as fol-
lows, to see this in action:

HttpCookie cookie = Request.Cookies["WileyPersistentCookie"];

Now, let’s try an example that will read all of the set cookies. To do this, we will have
to loop through the Request.HttpCookies collection and get each HttpCookie from it.
In order to read the actual data stored in each cookie, we have to perform another loop
because a single cookie can have multiple values. Fortunately, we can do this easily in
C# with the foreach construct. This is very similar to that which has been a part of VB
for a long time.

How do we know that these objects can take part in foreach loops? In .NET, if an
object implements the IEnumerable interface, it supports the foreach construct being
applied to it. There are other ways to ensure that an object supports the foreach con-
struct, but they are outside the scope of this book and have to do with meeting certain
requirements imposed by the .NET common language runtime. Objects that are
derived from IEnumerable most likely have an internal structure that consists of a
collection of some other type of object. In the documentation, we see that the Http-
CookieCollection implements this interface; it does so because it contains one or many
instances of the HttpCookie object, hence the term Collection.

When the example is run, note the ASP.NET_SessionId cookie that may show up.
This is the cookie that ASP.NET uses to keep track of a client across connections. When
using the session management that is provided by ASP.NET, the key stored in this
cookie is used to look up session data stored in memory on the server. This is turned
on in the configuration of the entire Web application and will be discussed later in the
book. It is interesting to note, though, that ASP.NET employs the same techniques we
are using here. If you decide to use the ASP.NET session state management functional-
ity, you will be using cookies behind the scenes. Again, we’ll go into heavy detail on
this in later chapters. Here is the sample to read all currently set cookies:

protected void Page_Load(object sender, System.EventArgs e)

{

//Get the names of all cookies

foreach(string cookiename in Request.Cookies)

{

//Get the cookie with this name

HttpCookie cookie = Request.Cookies[cookiename];

//Get all of this cookie s values names

foreach(string valuename in cookie.Values)

{

Response.Write(string.Format(

"cookiename: {0} valuename: {1} value: {2}
",

cookiename,

valuename,

cookie[valuename]));

}

}

}

192 Chapter 5

TE
AM
FL
Y

Team-Fly®

Figure 5.3 Read all cookies.

The output is shown in Figure 5.3. You can see that for each cookie, all of its names
and values are displayed. This is one simple example of when using Reponse.Write
might be an easy solution to displaying output.

QueryString and Forms Collections
In most Web applications, the user navigates through multiple pages. This is similar to
a standard thick-client application whose interface consists of multiple windows and
dialogs. But because HTTP is a connectionless protocol, there must be a mechanism by
which parameters can be passed between the pages. One way would be by storing val-
ues in cookies and then reading those values when the next page is loaded. This, how-
ever, would be a poor solution to this problem. Although doing so would work,
cookies are meant to store data for longer periods of time, and parameters need to exist
only long enough to allow the browser to request the next page. For this reason, it is
often simpler to use a QueryString to pass values along.

There are two ways to send parameters from one Web page to another: in a query
string or in a form. Let’s first talk about the query string. In the query string, parame-
ters are concatenated onto the URL in a name-value type scheme. When the server
receives a request for a page, it then parses the URL and makes these parameters and
their values available to the code for the page, in this case the code-behind class. (If
you’re not using code-behind, the in-line script can use the parameters, too. In this

Creating More Advanced ASP.NET Pages 193

book we use code-behind classes.) In the case of ASP and ASP.NET, these are available
in a collection called QueryString, which is a member of the HttpRequest class, which
in turn is a member of the HttpPage class. The HttpPage class is the class from which
your code-behind class is derived. The code for your page can get these values and use
them however needed to perform your program logic.

Using query string parameters is a very common and simple way to pass data from one
page to another, but it is also somewhat limited and comes with some important caveats.

There are several ways to put the parameters into the query string. First, because
parameters are just text added to the end of the URL of the page to which you are pass-
ing them, you can write the code to do this yourself. This is common and easy, but
there are rules you should follow. If the parameters’ values can have spaces or other
special characters, they need to be converted into characters that are allowed in an
URL. If you ever look at an URL with parameters at the end, you will notice things like
%20. For example, we ran a search on Microsoft’s Web site and found that the following
parameters were passed when the search page was called: http://searchmicrosoft.
com/us/SearchMS25.asp?qu=Hello%20World&so=RECCNT.

It was actually much longer, but we copied only a small portion. Because URLs
require special treatment, such as replacing spaces with “%20,” the ASCII char for a
space, you’ll need to do this when building a query string URL in your code. In ASP, or
even many other Web programming tools, the framework does this for us. In ASP.NET,
you simply encode your parameters by calling HttpServerUtility’s UrlEncode method,
which is exposed to all ASP.NET pages as a variable named Server.

Let’s create a very simple query string and pass it. To try this, create a WebForm,
drag a Button onto it, and handle the click event for it. Just double-click the button
in the WebForm designer to cause the IDE to link up the handler for you. (Refer to
Chapter 2, “Anatomy of an ASP.NET Page,” if you’ve forgotten how to do this.) Then
paste in the relevant code:

protected void Button1_Click(object sender, System.EventArgs e)

{

string parms =

Server.UrlEncode("searchstring=ford f-150&category=fullsized

trucks");

Response.Redirect("anotherpage.aspx?" + parms);

}

In the code we call a page that does not exist, so you should get the 404 error in the
browser. However, the important thing is that you see the parameters we passed in the
URL, properly encoded into valid HTTP resource request. It looks like this: http://
localhost/Wiley/Ch05/anotherpage.aspx?searchstring%3dford+f50%26category%3
full+sized+trucks.

The second most common way to pass parameters from one page to another is to
use an HTML Form. We won’t go into detail about forms processing in HTML, so pick
up an HTML or CGI resource for more information. A definitive resource on the sub-
ject is www.w3c.org. ASP.NET pages have only one form, as opposed to classic ASP
where often there are multiple forms on a page. Trying to have more than one form in
a WebForm can cause undesired behavior.

194 Chapter 5

When a form is used in an HTML or ASP page, the names and values of all of the
input controls within the form are sent to the called page when the form is posted.
They are not sent on the end of the URL, but rather placed in the body of the HTTP
request made by the browser. As a result, they are retrieved by the Forms collection,
rather than by accessing the QueryString collection. There are much more important
differences than just this, though.

First, there are no limits to the amount of data that can be passed when using a form.
There can be any number of controls in a form, and thus any number of name-value
pairs sent. Query strings are limited in length to around 2000 bytes because there are
limits to the size of URLs in the HTTP protocol. This is also a benefit when you don’t
want your users to see what’s being passed because the parameters will not be seen in
the browser’s address bar. It prevents a dubious user from molesting the parameters
by hand in an attempt to foul up the works or access pages he or she may not otherwise
be able to access.

Second, it is less programming on your part if you don’t have to create a query
string in your code. When using forms, all of the variables are sent in the request auto-
matically for you.

You also won’t find the need to access the forms collection nearly as much as you
might have in classic ASP, if ever at all. The forms collection was the main way to view
what users entered into input controls in classic ASP. In ASP.NET, however, you don’t
need to read a collection of names and values because the controls are available to your
server-side code as control objects and present in your code-behind class as member
variables. These objects expose their values in their properties. Using the controls
directly is much easier than looking up a value in the forms collection. In fact, in the
large enterprise-level applications on which we have used ASP.NET, we have yet to
need the forms collection at all. One example in which this difference is helpful is if you
had many dynamically created input controls on your page and you wanted to loop
through them to look for certain text or make a property the same on all of them. Loop-
ing through all of the controls on the page is not quite as easy, and it requires you to
treat each one of them based on its type of control. The forms collection, on the other
hand, exposed all of the values as simple name-value pairs.

Note that an ASP.NET form’s action property is set so that the form is submitted to
the same page. Yes, the form is submitted back to “itself.” This is uncommon in classic
ASP, although it is equally common for classic ASP forms to submit to another page
that is set up to read the parameters and act on them. In ASP.NET, the same code that
generated the page originally is called when the form is submitted. Translation: The
events that occur from button clicks, item selections, and so on are all handled in the
same code class that is the page itself. For example, if you had an edit and save button
in an classic ASP Form, you typically would have the Save button submit its contain-
ing form to a page that is specifically set up to receive the form and implement the save
logic. Then, another page would be called on the edit button’s submission to perform
the edit logic. This requires three pages: the one with the buttons, each in its own form,
and one to handle each of the form submissions. Because pages submit back to them-
selves in ASP.NET, you now only need one page and one form. The server-side code
knows which handler to call at the appropriate time from the JavaScript that is gener-
ated by ASP.NET.

Creating More Advanced ASP.NET Pages 195

Because forms are such a tightly integrated part of WebForms in ASP.NET and we
will rarely if ever need to programmatically retrieve them, we are not going to do any
examples on the subject here. Just keep what we have discussed in mind when writing
your applications, as it gives some insight to how WebForms are intended to be used.

Web.Config

The Web.Config file is an XML configuration file that should be located in the root
virtual directory of your ASP.NET applications. There are many things that can be con-
figured through the use of this file, including debug settings, session state, and tracing.
ASP.NET application configuration settings are inherited hierarchically. At the top of
the hierarchy is the machine.config file, which is installed with the .NET framework
and located in the %windir%\Microsoft.NET\Framework\Version\CONFIG direc-
tory. All ASP.NET applications inherit from the configuration settings made in this file.
These settings can be overridden by any changes that you make in Web.Config files
throughout the virtual directories of your application.

This hierarchical inheritance allows us to adjust application settings throughout
various virtual directories in our application, but still maintain a base configuration file
in the root directory of our application. All of the configuration information in the
Web.Config file resides between the <configuration> and </configuration> tags.
Inside these tags settings are defined with configuration sections. There are many pre-
configured sections provided with ASP.NET, such as <appsettings>, <authentication>,
and <compilation>. We won’t reproduce a full list of all of the available sections here,
but you can easily find the list in the MSDN library.

The <appsettings> section is used for adding application-specific settings such as a
database connection string. We can add name-value pairs to this section of the config-
uration file and access these within our code at runtime. Let’s look at an example of
adding a database connection string to the <appsettings> section:

<appSettings>

<add key="dsn" value="Data Source=(local)\NetSDK;

Initial Catalog=Northwind;User ID=sa;pwd=;" />

</appSettings>

To access this setting from within our code, we use the System.Configuration.Con-
figurationSettings class. This class has a property called AppSettings, which is a collec-
tion of the name-value pairs that we specified in our Web.Config file. We could retrieve
the dsn value that we specified previously with this code:

String dsn =

System.Configuration.ConfigurationSettings.AppSettings["dsn"]

As an example of the hierarchical nature of the Web.Config files let’s assume that we
have included the dsn value in the <appsettings> section of the Web.Config file located
in the root virtual directory of our application. The default security setting specified in
the machine.config file allows all users to have access to an application. Let’s assume

196 Chapter 5

that in our virtual root directory Web.Config file, we have not specified any other secu-
rity settings, which means that we will inherit the value from the machine.config file
and allow all users access to our application.

We now add a virtual directory called Secure under our root virtual directory, so our
directory structure looks like this:

Application Root

-> Secure

We then install a Web.Config file in the Secure directory and specify security settings
that disallow all users other than administrators. The result is that any resources
located in the root directory are accessible by all users and as programmers we can
access the dsn setting that we specified in the root Web.Config file. Any resources in the
Secure virtual directory are accessible only by administrators; however, we can still
access the dsn setting specified in the root Web.Config file. This is a good thing. We
have to specify only our dsn in the root Web.Config file, and we can still access it from
any virtual directory located under the root directory. We still have the freedom to
specify different application settings in our subordinate virtual directories, such as dif-
ferent security rights.

We didn’t cover exactly how to specify security settings here, but we will cover that
in detail in Chapter 8, “Security and Membership.” We will also be covering several
other sections of the Web.Config file throughout the remainder of the book.

The Global.asax file

The global.asax file is an important part of all ASP.NET applications. Similar to and
compatible with the Global.asa file in classic ASP, the Global.asax is an optional file
that allows you to write code pertaining to the HttpApplication object, which repre-
sents the entire ASP.NET application with which you are working.

To use the Global.asax file, it must be resident in the root directory of the IIS appli-
cation of your project. Visual Studio .NET creates a stub file for you with all of the
major application event handlers. It is compiled and turned into an object derived from
the HttpApplication class that represents an ASP.NET application.

One important fact about this file is that if it changes, .NET recompiles it automati-
cally, and it will rerun the next time a client hits the server. This ensures that your appli-
cation is in sync with any changes made to the file, which is important especially if this
file has application configuration code in it. This works only if you are not using a
code-behind file. If you do use code-behind classes in the Visual Studio .NET projects,
changes to the Global.asax.cs file are not tracked by the server and must be recompiled
manually.

Here is the class declaration inside Global.asax:

public class Global : System.Web.HttpApplication

{

protected void Application_Start(Object sender, EventArgs e)

{

}

Creating More Advanced ASP.NET Pages 197

protected void Session_Start(Object sender, EventArgs e)

{

}

protected void Application_BeginRequest(Object sender, EventArgs e)

{

}

protected void Application_EndRequest(Object sender, EventArgs e)

{

}

protected void Session_End(Object sender, EventArgs e)

{

}

protected void Application_End(Object sender, EventArgs e)

{

}

}

Let’s go through each of these functions in more detail. We’ll start with the applica-
tion events.

Application_Start

The Application_Start event is fired the first time any client requests a page from the
server application. This is, of course, only the application you are working on, which
consists of all pages existing in the virtual directory on the server. Remember that this
has nothing to do with any other applications or pages served from different locations
on the Web server.

You could use this event to load global variable (application variables) so that all
code throughout the application has fast access to certain data. For example, if you
need some values read from the registry and used in your Web code somewhere, it
might be a good idea to read them at the start of the application and cache them in
memory instead of reading the registry every time the code needs the information.
This would be even more applicable if you have a requirement to read from hard stor-
age, which can be much slower than reading from the registry and would not scale
well if the code had to do it often or for many users. This event works only with data
that is static throughout the typical life of the application. If the data needs to be
refreshed daily, you could put IIS on a periodical reset schedule, which would force
this event to occur at the first user request after the restart. (There are better methods
of refreshing data on a daily basis, and they are discussed in Chapter 10.) When using
this technique, remember to force a restart of the application after you make a change
to data that is cached in this event, as in a registry change, by running a net stop fol-
lowed by a net start at a command prompt, or simply running iisreset. Also notice that
each time you compile your project in Visual Studio .NET, the application is restarted,
so the first request for a page after a compile will fire this event.

NOTE It is important to remember that running iisreset will stop and start the
Web service. This will stop and start all running Web applications as well. If
your Web server is running applications that make use of inproc session state,
restarting the server will terminate all of the current sessions.

198 Chapter 5

Let’s create an example in which we use some of the .NET file access objects to write
the output to disk so we can see some of these events in action. Why don’t we write to
a browser? Because a browser is more related to the session rather than to the applica-
tion. For this example, we want to look at an application event. In fact, there isn’t even
a request or response object available in this context to write to, so we’ll just write the
output to a file as HTML so the output file can be opened in a browser. We can then
refresh the page to see the changes, instead of having to keep reopening a text file. We
didn’t write to the event log that we used in our previous code because the Windows
Event Viewer applet doesn’t support showing all of the event messages in one window;
you must open another dialog and view each event one at a time. Listing 5.1 shows us
the example code.

namespace Ch03

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Web;

using System.Web.SessionState;

using System.IO;

/// <summary>

/// Summary description for Global.

/// </summary>

public class Global : System.Web.HttpApplication

{

public void WriteEventToFile(string message)

{

//Simply open and write a file as a stream writer object.

string filename = "c:\\appevents.htm";

StreamWriter sw = new StreamWriter(filename, true);

sw.WriteLine(string.Format("{0} at {1:hh:mm:ss:ms}
",

message,

DateTime.Now));

sw.Close();

}

protected void Application_Start(Object sender, EventArgs e)

{

WriteEventToFile("Application_Start event fired");

}

protected void Session_Start(Object sender, EventArgs e)

{

}

protected void Application_BeginRequest(Object sender, EventArgs

e)

Listing 5.1 Application events in Global.asax

Creating More Advanced ASP.NET Pages 199

{

}

protected void Application_EndRequest(Object sender, EventArgs e)

{

}

protected void Session_End(Object sender, EventArgs e)

{

}

protected void Application_End(Object sender, EventArgs e)

{

}

}

}

Listing 5.1 Application events in Global.asax (continued)

The stub event handlers are automatically inserted by Visual Studio .NET. Now
when you compile the application, you will get the start event when you first request
a page. You can request any page; we requested one from a previous example in the
Ch03 application. Figure 5.4 shows the file we wrote displayed in the browser as soon
as the page was received.

Figure 5.4 Application_Start event.

200 Chapter 5

There are some things you cannot do in the Application_Start event, like access
some Web-related objects. For example, there is no session object at this point, so if you
try to access it, you will fire an exception that tells you that the object is not available in
this context. There are other events that should happen soon after, in which you can
use the session object. Most other objects in the framework outside of those in the
System.Web namespace are available, however.

Application_BeginRequest

The Application_BeginRequest event fires every time a client requests a page. This is a
great feature to expose in ASP.NET because it allows you to write code based on each
and every page request. There was no way to do this in classic ASP; similar functional-
ity might have been implemented in an ISAPI extension, for example.

One use for this event would be a page request counter. For example, you could set
up a database stored procedure that atomically increments a counter for the number of
times pages are requested. In the Application_BeginRequest event, you could call this
procedure for every request. Another example would be to store the hit count for each
page in the application, then display the most requested pages by querying each page’s
request count. Another example would be to reroute each request to a certain page by
calling RequestRewritePath, which would force the request to go to a programmati-
cally defined path.

Application_EndRequest

The Application_EndRequest event fires at the end of each request. This event is
always listed immediately after Application_BeginRequest. In fact, on our Pentium PII
500 MHz machine, if there is no processing in these events, it is usually less than a milli-
second between them.

Application_End

Whenever an application is shut down completely, the Application_End event is fired.
This could occur when all the sessions have timed out, the Web project is recompiled
in Visual Studio .NET, or the Global.asax file is modified when it is script based (not
code-behind based). Remember, stopping the Web site doesn’t stop the application and
call this event. Doing so merely stops the Web server from responding to requests. Even
removing the application from the Internet Service Manager snap-in will not kill the
application. To truly cause this event to fire, reset the server via running an iisreset at a
command prompt.

We will go more into depth on some of the advanced aspects of the HttpApplication
object later in this chapter, such as session management and user information.

Session Management and Variable Scope

In Web applications, the server sees each request as a single, connectionless client
request. Unlike a client/server-based application, the server does not distinguish mul-
tiple pages requested by a single client as related to one another in any way. Of course,
we already know this because we have been dealing with the connectionless HTTP

Creating More Advanced ASP.NET Pages 201

protocol for years and finding ways to make believe that the server knows each client
distinctly and knows that multiple requests from the same client are actually one user
session. There are several techniques for doing this in ASP. NET applications, includ-
ing Session events, Session variables, and State variables. You could implement a way
to relate multiple requests as one session yourself, by using cookies, for example. But
ASP.NET uses cookies to support Sessions already, so why not use this built-in feature?

Session Events
There are two Session-related events that occur during the lifetime of a session:
Session_Start and Session_End. These are both part of the HttpApplication class, and
thus they are implemented in the Global.asax file of your Web application.

The Session_Start event can be used for any initialization pertaining to each user.
For example, if your code depends on a unique number for each user other than the
session ID, you could create it here and store it in a session variable for future use. Or,
you could use this time to take a time stamp of the time the user first logged on. One of
the most common things to do here is to set up a hit counter to keep track of every user
session ever created.

The other event related to sessions is the Session_End event, which fires when the
session times out. This event doesn’t fire when a user leaves the site or closes the
browser, but after the timeout period set in the Web.Config file has elapsed. Don’t rely
on it too much; it has long been rumored that this event is unreliable. Until this is
acknowledged to be either true or false by Microsoft, we recommend using this event
sparingly and not for important tasks.

Because sessions are stored in memory on the server by default, if you are running
a Web app behind a load-balanced or clustered server farm, a user must always hit the
same server for every request, to make sure the session is available in the pages. To do
this, most load-balancing redirectors on the market support sticky sessions, where all
requests from a specific user are always routed to the same server, thus solving this
potential dilemma.

Session Variables
Session variables are a means to store data across multiple page requests. This is similar
to using a global variable across all of the windows in a traditional client/server-based
application. For example, let’s say that a user makes the first page request in an appli-
cation and is required to enter his or her name into a Web Form. The next page the user
visits may need to know his or her name also, but the server doesn’t relate the two
requests in any way. So, the user’s name could be stored in the Session variable to be
accessed on any page in the application. When ASP. NET creates a session for a user, on
the first page request, a unique number called the Session ID is generated via a com-
plex algorithm and stored in a special cookie on the user’s browser. The next time the
user requests a page in the same application, ASP.NET looks for that cookie, gets the
Session ID, and uses it to look up the session object for that user. In this session object
can be stored variables, declarable and settable entirely at runtime. The server has an
in-memory data structure that holds all of the session variables your code sets for an
individual user, and this gives the notion of a connected session to the otherwise con-
nectionless HTTP protocol.

202 Chapter 5

TE
AM
FL
Y

Team-Fly®

How do you set the variable in the session? First, sessions have to be enabled by
having the sessionState section set up properly in the applications Web.Config file.
Here is a snippet of the file, showing the sessionState section:

<sessionState

mode="InProc"

stateConnectionString="tcpip=127.0.0.1:42424"

sqlConnectionString="data source=127.0.0.1;user id=sa;password="

cookieless="false"

timeout="20"

/>

The code shown is the default code for ASP.NET applications created in Visual
Studio .NET. The mode=InProc line make the session storage live inside the memory of
the Web server. If you have the standard versions of ASP.NET, this is the option you
will likely use. The premium versions of ASP.NET support storing session variables
in a separate application or in SQL Server. Those options are more of a configuration
issue rather than a programming issue, and they are outside the scope of the book. The
cookieless=false option means that the session management uses HTTP cookies to
store a key with which to locate a user’s session variables. This is the default, and when
used, requires that all of your visitors have browsers that allow cookies. The timeout
variable states that sessions will cease to exist after the user has not requested a page in
the allotted time. By default, this is set to 20 minutes.

All that is needed to store a variable in the session state, once the previous configu-
ration entries are in place, is code along these lines:

Session["username"] = "jsmiley";

or

Session.Add("username", "jsmiley");

It’s that simple; the variable is stored on the server and related to the Session ID
stored on the user’s browser. The difference between the two lines of code is purely
programmer preference, as they both do the same thing. Now throughout every page
in the application, the username can be retrieved with code like this:

String uname = (string)S.ession["username"];

It is important to note that session variables are stored in memory on the server, and
not on disk. This means, of course, that if the server dies for any reason, this state infor-
mation is lost completely. Likewise, if the user lets the session expire by waiting past
the timeout time before requesting a page, the session will be deleted. This behavior is
by design because if a user is using a public Internet PC, say in a library, for example,
and he or she forgets to log off, we don’t want the next user to be able to access his or
her banking data because the session is still “connected.” It is also interesting to note
that as long as the server remains running, even if a session is ended because a user
timed out or left the application, the same Session ID will be used if the user starts a

Creating More Advanced ASP.NET Pages 203

new session by requesting a page again. This saves the server the extra work of creating
a new Session ID and setting a cookie when one already exists for a user.

In the next example, we have two pages, one that asks the user for his or her name
and another that displays it back. The name entered is stored in a Session variable
across the two page requests.

<%@ Page language="c#" Codebehind="SessionVariableSet.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.SessionVariables" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<P>

Enter your name in the field, then click Go.

</P>

<P>

<asp:TextBox id=TextBox1 runat="server">

</asp:TextBox>

<asp:Button id=Button1 runat="server" Text="Go">

</asp:Button>

</P>

</form>

</body>

</HTML>

protected void Button1_Click(object sender, System.EventArgs e)

{

//Set the session var and go to next page.

Session["name"] = TextBox1.Text;

//Create an object and store in session state.

MyPerson person = new MyPerson(TextBox1.Text, "", "", "");

Session["person"] = person;

Response.Redirect("SessionVariableRead.aspx");

}

For the code-behind class, we showed only the Button1 click handler. In the code,
we set two Session variables, one to store merely the name as a string and one to hold
a MyPerson object reference created with the name entered. The reason for this is to
show you that Session variables can be of any type. For the page that retrieves the Ses-
sion variables, we show you only the Page_Load method from the code-behind file. No
UI elements are used because the content is generated by Response.Write calls.

204 Chapter 5

protected void Page_Load(object sender, System.EventArgs e)

{

//Read the session var and display it.

string name = (string)Session["name"];

Response.Write("You entered: " + name + "
");

//Read the object from session and display the name.

MyPerson person = (MyPerson)Session["person"];

Response.Write("From person object: " + person.FirstName);

}

Using Session state can go a long way toward making robust Web applications, but
be aware of its limitations. Take care not to store things in Session state that are overly
large or use valuable resources like database connections. If you have a large object
that needs to be accessed across multiple pages, consider storing just enough informa-
tion in Session state to allow you create an instance of this type of object at will. This
will allow you to let the object go out of scope on one page and then be re-created on
the next page from information stored in Session state. Although your application
incurs the cost of cleaning up and re-creating an object multiple times, in some cases
this may be better than holding many large objects in memory on the server. This is a
design technique that’s well documented and can be put to good use in Web applica-
tions, if deemed best for overall performance and stability. See Figures 5.5 and 5.6 to
see these samples in action.

Figure 5.5 Setting a Session variable.

Creating More Advanced ASP.NET Pages 205

Figure 5.6 Reading a Session variable.

Although we didn’t show it in our code for simplicity’s sake, the retrieval of a vari-
able from Session state should be wrapped in a try...catch block to make sure the variable
exists. To remove a variable from Session state, simply call Session.Remove, Session.
RemoveAt, or Session.RemoveAll. These methods are self-explanatory and will remove
a single variable by its name or index or will remove all variables. Session.Clear
removes all variables as well. In addition, you can completely abandon your session by
calling Session.Abandon, which will cause the server to clear any Session state variable
and end the session. This may take some time because the server doesn’t attempt to do
this until it is idle.

ViewState Variables
There is another type of variable that you can store across page requests called View
State variables. These are stored in the browser, but not as cookies. The data you store
in these variables is not kept on the server and has nothing to do with sessions. Instead,
it uses the built-in ViewState mechanism of ASP.NET to store string type data in the
hidden View state variable on the browser. The server sends this special variable to the
browser with each and every page (unless is turned off). It stores information and vari-
ables about the current state of objects on the browser, so they can be preserved across
the page requests and properly re-created on the next visit to the server, with no user
code needed. You can set your own variables to be stored in this composite variable, to
be accessed in another page’s code. This is very much like the technique popular in
classic ASP where a variable was stored in programmer-defined hidden input controls
when sent to the server. To set a variable in this fashion in the ViewState object, use
something along these lines:

206 Chapter 5

ViewState["uname"] = "Rebecca";

And to retrieve it, use something like this:

String suname = (string)ViewState["uname"];

This is very similar in syntax to using session variables. There is one major differ-
ence, however. Unlike Session variables that can hold virtually any type of data includ-
ing object references, the ViewState can hold only string data. This means that, of
course, you can store things like strings and numbers, but to store an object, it must
inherit from the ISerializable interface and thus must support its own serialization. In
fact, when you try to store an object in the ViewState, if it cannot be serialized (which
ASP.NET attempts automatically) an exception is thrown. When you have a case of
needing a nonserializable object across multiple pages, you can employ the tactics
described in the Session variables section and store only enough simple data to allow re-
creation of the desired object. Note that it is very common to store strings and numbers
in ViewState, both of which are serializable. Again, because this functionality is quite
simple, it needs no example code and is best left up to your own experimentation.

Application Variables
Application variables are those that are stored on the server and available to all code in
an entire ASP.NET application. This is analogous to a global variable, but used across
multiple clients, instead of multiple code modules or windows. For example, an appli-
cation may need a piece of data stored in the registry. It may make sense to read the
registry only at the start of the application and have it available to all code without
having to access the registry each time. This variable can hold any type of data, just like
a Session variable, and it is subject to the same caveats. Don’t store too many large
objects or resource-intensive ones in these variables because they exist on the server for
the life of the application. Notice, though, that these rules are not always as important
for Application variables as Session variables because there are many more sessions
than applications usually. To set an application variable use code like this:

Application["dsn"] = ReadDsnFromReg();

And to retrieve, use code like this:

sting dsn = (string)Application["dsn"];

Page Subclassing

All ASP.NET, applications are object oriented due to the fact that they are .NET Frame-
work applications that run within the CLR.

In this section, we will not attempt to describe all of the virtues of deriving one
object from another; that is left up to the readers and their object-oriented design
books. I will, however, describe the hugely useful design method of deriving an

Creating More Advanced ASP.NET Pages 207

ASP.NET page from a base class page that supports a set of functionality that could be
used by most or all of the pages in an application.

The example page class we will use in this section is only the beginning of the page
class that will be extended and used throughout the Wiley Web Parts application that
we build in this book. Although it includes some real-world features, it is only a sam-
ple of how to implement page subclassing in ASP.NET.

Normally, when you create an ASP.NET page with Visual Studio .NET, the page
class will be created for you based on the filename you give the page. This page class is
derived from the System.Web.UI.Page class by default. This is much like using VC++
to create windows in MFC applications; the MFC AppWizard will create a stub class
based on the class name chosen and derived from a base window class that is part of
the Microsoft Foundation Class. In this stub class, you would implement the custom
behavior, which gives your window its functionality. The same applies in ASP.NET.
While this is a common and effective way to start your page, most Web applications
consist of multiple pages, and it is good design practice to share commonly used code
by means of a common base class.

You can derive your own page class using Visual Studio .NET in two steps. First, make
the base class, which needs to be derived at some level from the System.Web.
UI.Page class. Then, simply change the class declaration of your page to be derived from
your new base class, instead of the default System.Web.UI.Page that Visual Studio .NET
supplied. One thing to note is that with other object frameworks, many base classes
require you to pass in parameters or are derived from multiple classes. In .NET, using
custom base classes is easier because the framework designers have minimized the use
of constructors on classes that are likely to be subclassed a lot. This makes it easier to
write our own subclasses because we won’t have to implement any extra constructors.

As you create ASP.NET applications, you may find that many of them have common
functionality. This could be because of your company’s unique business model or because
there is a consistency requirement for all applications across the entire organization. For
example, an application we recently completed needed to track everything the user typed
into the search fields on an e-commerce site in order to determine which topics were
searched for most frequently and the most common spellings. We used a base page class
to add functionality to every page that allowed user inputs to be logged to the database.

Let’s take a look at an example. First, we will add functionality that will read and write
cookie values on the client browser, which is commonly used in Web apps. In addition, we
will add some base class functionality that will write entries to the Event Log. Note that at
this point in the samples, we are not using robust error handling for simplicity’s sake.

Using the same cookie functionality we described earlier in this chapter, we made
one change: We overloaded the WriteCookie function to handle Session and Persistent
Cookies. Other than that, it is the same code.

As for the event logging, we create an event source for the current page and write
the log message. We used this.ToString() for the source name. This has the added ben-
efit of allowing us to see which page the event came from in the Windows event
viewer application. You could also use this in an object model so that you could see at
a glance what object was causing the events. Using ToString() shows the full type
name of the class with its namespace, which is ASP.PageSubclass_aspx, instead of the
actual page name of PageSubclass.aspx, but it still tells us where in the application the
event came from. When an Event Source is created, access to the Windows registry is
required. By default, an ASP.NET application does not have access to the registry.

208 Chapter 5

ASP.NET applications are set to run under a Windows user account called ASPNET,
which is only a member of the Users security group. To allow an ASP.NET application
to have access to the registry, make the ASPNET user a member of the Administrators
group. The code for the base class is shown in Listing 5.2.

using System;

using System.Web;

using System.Diagnostics;

/// <summary>

/// Summary description for PageBase.

/// </summary>

public class PageBase: System.Web.UI.Page

{

public PageBase ()

{

}

protected void WriteEventLogEntry(string sMessage,

EventLogEntryType type)

{

// Create the source if it does not already exist.

if (!EventLog.SourceExists(this.ToString()))

{

EventLog.CreateEventSource(this.ToString(), "Wiley");

}

//Create an EventLog and set the source.

EventLog log = new EventLog();

log.Source = this.ToString();

//Write the message to the event log.

log.WriteEntry(sMessage);

}

protected void WriteCookie(string cookiename,

string key, string val)

{

//Create or open the cookie and set its value.

HttpCookie cookie = new HttpCookie(cookiename);

cookie.Values.Add(key, val);

Response.Cookies.Add(cookie);

}

protected void WriteCookie(string cookiename,

string key, string val, DateTime expires)

{

//Create or open the cookie and set its value.

HttpCookie cookie = new HttpCookie(cookiename);

cookie.Expires = expires;

Listing 5.2 A base class for ASP.NET pages

Creating More Advanced ASP.NET Pages 209

cookie.Values.Add(key, val);

Response.Cookies.Add(cookie);

}

protected string ReadCookie(string cookiename, string key)

{

//Try to open the cookie we want.

HttpCookie cookie = Request.Cookies[cookiename];

if (cookie == null)

{

//The cookie was not found, so return blank.

return "";

}

else

{

//The cookie was found, so read the key desired.

return cookie.Values[key].ToString();

}

}

}

Listing 5.2 A base class for ASP.NET pages (continued)

Notice the line using System.Diagnostics at the top of the code. This is the name-
space in which the EventLog object lives. Because the Windows event viewer applet
doesn’t provide a way to delete the event log, the log will remain on the computer after
the application is gone. Calling EventLog.Delete will delete the log. Remember to call
EventLog.DeleteEventSource first, so subsequent calls to check for existence of this
source will fail and force the source and log to be created again (at least in the code we
are using here).

The code for a sample class that derives from this base class is shown in Listing 5.3.

namespace Ch05

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

/// <summary>

Listing 5.3 A page deriving from a custom base class

210 Chapter 5

/// Summary description for example10.

/// </summary>

public class PageSubclass : PageBase

{

public PageSubclass()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)

{

//Use event logging functionality from the base class.

WriteEventLogEntry("Page_Load in example10.aspx",

System.Diagnostics.EventLogEntryType.Information);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

}

}

Listing 5.3 A page deriving from a custom base class (continued)

Notice that the main page class is derived from the base class and that we are able to
call the protected function from it with no special code other than a simple call. This is
standard object-oriented fare, and it is an intrinsic part of C#. We will build on this
example throughout the book to add more features to the base class.

User Controls

User controls provide the ability to reuse user interface code across multiple pages.
They provide a simple way to combine multiple Web or HTML server controls into a
reusable Web Form element that can be placed on multiple pages. Navigational or
menu bars that are used consistently throughout a Web application are prime candi-
dates to be converted to a user control. Prior to ASP.NET this sort of code reuse would
have been done through the use of server-side includes, which simply allowed you to
include the code from another file at the point that you declare the include directive.
User controls provide more functionality than this, however. Once a user control has

Creating More Advanced ASP.NET Pages 211

been added to a Web Form, its properties and methods can be accessed and pro-
grammed against just like HTML or Web Server Controls.

User controls are created very similarly to Web Forms. They can be created with or
without the code-behind method. Of course, code-behind is still the recommended
way to go; however, the code-behind class for a user control inherits from
System.Web.UI.UserContol rather than System.Web.UI.Page as for Web Forms. User-
Control indirectly inherits from System.Web.UI.Control just as the Page class and
therefore has the same base properties and events as the Page class. A user control can
support all of the same UI elements as a Web Form, including the HTML and Web
Server Controls. The major difference between a Web Form and a user control is that
user controls cannot be requested directly. They can be used only inside the context of
a Web Form. In addition, user controls should not contain <html>, <body>, or <form>
elements as these will already exist on the page in which the user control is added.
Most importantly, your user control should not declare <form> elements. One other
important difference between a user control and Web Form is that of naming conven-
tion. As opposed to having a .aspx file extension like a Web Form, user controls should
have a .ascx file extension.

Let’s work up a fairly simply example of a user control. In Visual Studio .NET, cre-
ate a new Web user control item called NavBar.ascx. By default, Visual Studio .NET
will create an .ascx file and an accompanying code-behind C# file for you. If you exam-
ine the .ascx file that was created, you will see a Control directive like this:

<%@ Control Language="c#" AutoEventWireup="false"

Codebehind="NavBar.ascx.cs" Inherits="Chapter5.NavBar"%>

This is in place of a Page directive, which you use for a Web Form. The valid attributes
for the Control directive are a subset of the attributes available for the Page directive.
Now let’s add the following to the page:

<asp:Label id=lblMessage runat="server" />

<p></p>

<asp:Button id=btnPageOne runat="server" Text="Page One" />

<asp:Button id=btnPageTwo runat="server" Text="Page Two" />

We’ve added one Label control, which will display a message that states which page
the user is currently viewing. The two Button controls will link between two pages
called PageOne.aspx and PageTwo.aspx, which we’ll be creating shortly. In the code-
behind file, be sure to declare member variables for all three controls like this:

protected System.Web.UI.WebControls.Label lblMessage;

public System.Web.UI.WebControls.Button btnPageOne;

public System.Web.UI.WebControls.Button btnPageTwo;

Note the use of the public access modifier on the two Button controls. We will be
accessing these two controls from the pages on which we include the navbar user

212 Chapter 5

TE
AM
FL
Y

Team-Fly®

control, so the public access is necessary. Add the following line of code to the
Page_Load method.

lblMessage.Text = "Current Page is " + Request.Path + "";

This will simply set the text of the lblMessage Label control to tell us which page we are
currently viewing. This isn’t all that useful, but at this point we just want to demonstrate
that the events inherited from the Control class are still available to us in a user control.

Last, we need to handle the Click event for each of the two Button controls like the
following:

private void btnPageOne_Click(object sender, System.EventArgs e)

{

Response.Redirect("PageOne.aspx");

}

private void btnPageTwo_Click(object sender, System.EventArgs e)

{

Response.Redirect("PageTwo.aspx");

}

That’s all the functionality we’re going to add to the NavBar at this point. Now we
need to create a couple of pages on which we can use the NavBar control. Create two
new Web Forms called PageOne.aspx and PageTwo.aspx. To enable us to declare our
NavBar in an .aspx file we first add an @Register directive to the .aspx file. Add the fol-
lowing directive to the top of PageOne.aspx and PageTwo.aspx.

<%@ Register TagPrefix="Chapter5" TagName="NavBar" Src="./NavBar.ascx"

%>

The TagPrefix attribute is used to declare an alias for the namespace in which the
control is located. Here it is set to Chapter5, which happens to be the namespace name.
This would become much more useful if we had a really long namespace name. The
TagName property is set to NavBar and is the value that will be used to refer to this con-
trol when we declare it for use in the page. The Src attribute must be set to either the
absolute or relative location of the user control .ascx file. Now we can declare an
instance of the NavBar control inside the <form> tags of both PageOne.aspx and
PageTwo.aspx like this:

<Chapter5:NavBar id=NavBar1 runat="server" />

Notice that Chapter5:NavBar reflects the choices that we made for the TagPrefix and
TagName attributes of the Register directive. We’ve assigned an ID to the control of
NavBar1 and set the runat attribute, just as we would for an HTML or Web Server Con-
trol. Now to demonstrate how easy it is for us to access properties or elements of the
user control from a Web Form, we’ll add a bit of code that will disable the button that
provides the link to the current page. In the code-behind files for PageOne and
PageTwo, add the following member declaration.

Creating More Advanced ASP.NET Pages 213

protected NavBar NavBar1;

Now we can access our NavBar control, NavBar1, and manipulate or call any acces-
sible properties or methods. In the Page_Load method of the PageOne Web Form, add
the following code.

NavBar1.btnPageOne.Enabled = false;

And in the Page_Load method of the PageTwo Web Form, add this code.

NavBar1.btnPageTwo.Enabled = false;

Compile the project and navigate to the page. Experiment by clicking on the but-
tons. You should see that the message at the top of the screen should always state
which page we are currently viewing, which is done by the NavBar control itself in the
Page_Load method. In addition, if you are viewing PageOne.aspx the Page One button
is disabled, and when you are viewing PageTwo.aspx the Page Two button is disabled.
The buttons are part of the NavBar control, but we were able to successfully manipu-
late the state of the buttons from the Web Form page in which the control was added.
A screen shot of what this should look like can be seen in Figure 5.7.

User control properties can be set declaratively at design time as well as at runtime.
This is done by setting the desired user control properties within the declarative tag via
the use of name-value attribute pairs. For an example of this, let’s add a property to our
NavBar user control that will set the text of the message. In the code-behind file for the
NavBar, add the following code.

Figure 5.7 The NavBar control.

214 Chapter 5

public string Message

{

get { return lblMessage.Text; }

set { lblMessage.Text = value; }

}

In addition, remove any code that is in the Page_Load method for the NavBar. Now
that we have a public property on the NavBar control, we can set it at design time from
PageOne.aspx and PageTwo.aspx. Change the declaration of the NavBar control in the
PageOne.aspx file as follows:

<Chapter5:NavBar id=NavBar1 runat="server" Message="This is Page One"/>

Likewise, change the declaration in the PageTwo.aspx file to this:

<Chapter5:NavBar id=NavBar1 runat="server" Message="This is Page Two"/>

If you view the page in your browser now, you’ll see that the text of the message was
set successfully.

More Advanced Data Binding

In Chapters 3 and 4, we discussed Data Binding, which is ASP.NETs built-in way to
display data in the controls on our pages. There are a few controls that need more
explanation when on the subject of Data Binding because they are much more robust
than some of the simpler controls we learned about. These controls are the DataGrid,
the DataList, and the Repeater.

DataGrid
We looked at the DataGrid in Chapter 3 to some extent. We didn’t go into all of its fea-
tures, though, because to do so properly requires more robust data than we created in
that section of the book. Now that we’ve learned how to pull data from a real database,
let’s revisit the DataGrid and look into some of its more powerful features.

Paging

Because the DataGrid is rendered as an HTML table, there is no client-side support for
scrolling through rows or otherwise seeing only a portion of the rows at one time.
While it is true that you could put a DataGrid inside a span whose overflow style is set
to scroll, this is good only for fixing the vertical size of a grid holding a small number
of rows. Besides, we want to do things on the server whenever possible, to maintain
better support for a wide variety of browsers. So what do we do when we want to see
only a portion of the rows in a set of data? We can either custom code our pages to load
only the data currently needed, or we can use the DataGrid’s robust paging features.

Creating More Advanced ASP.NET Pages 215

Paging in the DataGrid means just what you would expect, that no matter how many
rows of data are in the data source, we are going to show only a fixed number of rows
per page, with navigation facilities to move through the data when needed. To do this,
the DataGrid supports both automatic paging and custom paging.

Automatic Paging

To set up your DataGrid to automatically page through the data source, we simply set
the AllowPaging property to true and the PageSize to the number of rows we want to
see on each page. When the table is rendered, it will have a new row added to the bot-
tom (or top) called the pager. The pager row is created just like any other row, and it
has the type defined in the ListItemType enum as Pager. This will be useful later when
we handle events each time a new row is created when the DataGrid is being gener-
ated. But for now, what we really care about is that the pager is a row that displays
LinkButton links that allow the user to traverse forward and backward, as well as to
each page in the data. These are created for you automatically by ASP.NET, but they
can be customized, which we will look at later.

When an auto-paging DataGrid is bound, it determines which rows to display based
on which link the user clicked or the first page when the page is first loaded. All you
have to do to make this work is handle the PageIndexChanged event of the DataGrid,
set the CurrentPageIndex property, and rebind to the data. The CurrentPageIndex
property can be set from the event arguments, which exposed the NewpageIndex
property. As you have probably figured out by now, the full data is bound to the grid,
but only some rows are shown when it is rendered. Although only the visible data is
actually sent to the browser, it’s clearly not the most desirable behavior to have the grid
read all of the data in the first place. When the binding first occurs, the DataGrid cal-
culates how many pages there are by the total amount of items in the data source
divided by the PageSize properties value. When the current page needs to be shown,
the DataGrid indexes into the data source for the correct items. For this reason, the
object used as the data source must inherit from the ICollection interface, which sup-
ports indexing its items. Note that attempting to use automatic paging when binding
to a non-ICollection-derived object results in an error. For those times, as well as when
we don’t want to read a whole data set when showing just one page, we must resort to
custom paging. Here is an example snippet of paging from an ArrayList data source.
The DataGrid is simple, as is the code. In many cases, the code would be bound to a set
of data from a database.

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

LoadData();

DataGrid1.DataBind();

}

}

protected void LoadData()

{

ArrayList arr = new ArrayList();

216 Chapter 5

arr.Add(new MyPerson("Hank", "Meyne", "594-66-8745", "124598"));

arr.Add(new MyPerson("James", "Jones", "595-36-4887", "136598"));

arr.Add(new MyPerson("Tim", "Smith", "569-87-1584", "915184"));

arr.Add(new MyPerson("St. John", "Smythe", "595-84-8745", "435689"));

arr.Add(new MyPerson("Robin", "Fisher", "594-48-7485", "030518"));

arr.Add(new MyPerson("Linda", "Blake", "595-63-5412", "865375"));

arr.Add(new MyPerson("Robert", "Thomas", "569-81-2259", "738642"));

arr.Add(new MyPerson("Alex", "Smythe", "595-14-5441", "916284"));

arr.Add(new MyPerson("Ray", "Stewart", "593-68-7714", "976431"));

DataGrid1.DataSource = arr;

}

protected void DataGrid1_PageIndexChanged(object source,

System.Web.UI.WebControls.DataGridPageChangedEventArgs e)

{

DataGrid1.CurrentPageIndex = e.NewPageIndex;

LoadData();

DataGrid1.DataBind();

}

And the aspx code for the DataGrid is:

<asp:DataGrid

id="DataGrid1"

runat="server"

PageSize="3"

AllowPaging="True">

</asp:DataGrid>

Figure 5.8 shows this code running, and in Figure 5.9 we see the same DataGrid
except with numbered pages.

Figure 5.8 Automatic paging.

Creating More Advanced ASP.NET Pages 217

Figure 5.9 Automatic paging with page numbers.

Notice that we rebind the grid each time we handle a PageIndexChanged event. In
this case, we could have simply bound to the data on every page load, regardless of the
IsPostBack state. But, we want to keep postbacks in mind in case we are loading the
page for a reason other than a PageIndexChanged on the grid. For example, if there
were a button on the page that has a server-side click handler, we may not need to
waste time rebinding the grid if its page index isn’t changing.

Custom Paging

Deploying a data-paging page, as in the previous example, is great for simple displays
of data where the total amount of rows is relatively small. This would not, however, be
a good solution in cases where the superset of the data is large because with automatic
paging, all of the data is retrieved each time the grid is bound; the grid just displays the
data for the current page. What if there were a half million rows of data? Obviously, the
automatic paging mechanism would perform dismally in this case. To solve this kind
of problem, we can use custom paging to get only the data we need for the current
page.

When using custom paging, what we are really doing is using the DataGrid to dis-
play data from a data source, but also to provide feedback events to tell us which page
the user wants to see. The DataGrid itself is not performing any logic to filter the data
in any way; we must handle this with our code. The event that is important to us in this
case is again the PageIndexChanged event. In this event, we are informed of which
page in the data the user wishes to see by the NewPageIndex property of the events
argument. If, for example, the property is 4, which tells us that we need to get the
fourth page of data from the real data source and bind the grid to this subset. This
would usually mean calling a stored procedure or SQL statement specially written to

218 Chapter 5

return just those rows. To enable custom paging, we set the DataGrid’s AllowCustom-
Paging and AllowPaging properties to true. Also, we must set the VirtualItemCount
property to the maximum number of rows in the entire data set. This is needed by the
DataGrid so that it will know how many pages there are, and thus how many times the
user can click next or previous. Setting this property should be done at the beginning
of the user’s experience on this Web page so the grid will always show the correct
amount of page links, or next and previous links. As well, this might be a good place to
show the user how many rows are available in total.

For the following example, we use a class-scoped array of strings to represent the
total set. This would be analogous to an entire table in a database in a real application.
When the user asks for a certain page of the data, we are notified by an event, and we
can build our data set to which to bind. In this case, we are just loading a small portion
of the total data by adding two strings at a time into an ArrayList from the string array.

//Sample data

private string[] m_data = new string[10]

{"Hank", "Stacy", "Millie", "Sam", "Molly",

"Toby", "Martin", "Alex", "Jill", "Larry"};

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

DataGrid1.VirtualItemCount = m_data.Length;

LoadData(0);

}

}

protected void LoadData(int intStart)

{

//Create the data source just for one page

ArrayList arr = new ArrayList(DataGrid1.PageSize);

for (int i = intStart; i < intStart + DataGrid1.PageSize; i++)

{

arr.Add(m_data[i]);

}

DataGrid1.DataSource = arr;

DataGrid1.DataBind();

}

private void DataGrid1_PageIndexChanged(object source,

System.Web.UI.WebControls.DataGridPageChangedEventArgs e)

{

//Go to the next page in the data

DataGrid1.CurrentPageIndex = e.NewPageIndex;

LoadData(e.NewPageIndex * DataGrid1.PageSize);

}

Creating More Advanced ASP.NET Pages 219

And the aspx code is a simple DataGrid with the appropriate properties set:

<asp:DataGrid

id="DataGrid1"

runat="server"

PageSize="1"

AllowPaging="True"

AllowCustomPaging="True"

ShowHeader="False">

</asp:DataGrid>

Figure 5.10 shows this page in action.

Sorting

Sorting a DataGrid can happen on several levels. You can populate it by binding to a
sorted list of items. You can program buttons or links on your page to define the sort
criteria or order, and you can program accordingly. Or, you can use the built-in sorting
features. The DataGrid supports sorting by rendering the header text of the columns as
LinkButtons, which can be clicked to invoke sorting on that particular column. To set
this up in your DataGrid, you must set the AllowSorting property to true as in Listing
5.4 and optionally set the sorting options on each column. If the AutoGenerate-
Columns property is set to true and you don’t define your own BoundColumns, then
every column will be sortable. If you do define BoundColumns, then you must set sort-
ing options on each of them. Once the options are set up, you simply handle the sort
event of the grid and reload the data accordingly. As we would expect, it is possible to
find out which column was clicked, so that the sorting can be done on a per-column
basis.

Figure 5.10 Custom paging.

220 Chapter 5

For the first example, we’ll look at a simple sorting method, which allows sorting on
every column of the DataGrid. Of course, all columns from the data source are shown
because AutoGenerateColumns is not explicitly set to false.

<%@ Page language="c#" Codebehind="DataGridSort.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.DataGridSort" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server" AllowSorting="True">

</asp:DataGrid>

</form>

</body>

</HTML>

Listing 5.4 DataGridSort.aspx

namespace Chapter5

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public class DataGridSort : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridSort()

{

Page.Init += new System.EventHandler(Page_Init);

}

Listing 5.5 DataGridSort.aspx.cs

Creating More Advanced ASP.NET Pages 221

protected void Page_Load(object sender, System.EventArgs e)

{

//Read data In the default order.

if (!IsPostBack) ReadData("employeeid");

}

protected void ReadData(string sortcolumn)

{

//Create the sql statement with the sort syntax.

string sql = "select employeeid, lastname, firstname, title from

employees order by " + sortcolumn;

//Open database, and read data.

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=

Northwind;UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

SqlDataReader reader = cmd.ExecuteReader();

//Bind grid.

DataGrid1.DataSource = reader;

DataGrid1.DataBind();

//Clean up.

reader.Close();

cn.Close();

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataGrid1.SortCommand += new

System.Web.UI.WebControls.DataGridSortCommandEventHandler(

this.DataGrid1_SortCommand);

this.Load += new System.EventHandler(this.Page_Load);

}

protected void DataGrid1_SortCommand(object source,

System.Web.UI.WebControls.DataGridSortCommandEventArgs e)

{

//Reload the data from the database

ReadData(e.SortExpression);

}

}

}

Listing 5.5 DataGridSort.aspx.cs (continued)

222 Chapter 5

TE
AM
FL
Y

Team-Fly®

Figure 5.11 DataGrid default sorting.

You can see the sorting grid in Figure 5.11; now let’s examine the code. The Page_Load
in Listing 5.5 reads the data for the first time in the default order, but only on the first
request of the page. This is because a click on one of the column headers will cause a
trip to the server, at which time we will alter the data reading sequence; we don’t want
to read the data twice per trip just because the Page_Load always runs. So, we simply
handle the SortCommand, which happens whenever a header LinkButton is clicked
and includes the header text in the event argument. Because the header text is the col-
umn name, we can simply pass that into the Sql statements order by clause and reload
the data in the new order. Now let’s look at supporting sorting on only certain
columns. In this sample, we need to modify only the aspx file. The code-behind class is
unchanged.

<%@ Page language="c#" Codebehind="DataGridSortColumns.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.DataGridSortColumns" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

<asp:DataGrid id=DataGrid1 runat="server" AllowSorting="True"

autogeneratecolumns="False">

Listing 5.6 DataGridSortColumns.aspx

Creating More Advanced ASP.NET Pages 223

<Columns>

<asp:BoundColumn DataField="EmployeeID"

SortExpression="EmployeeID" HeaderText="Employee ID">

</asp:BoundColumn>

<asp:BoundColumn DataField="FirstName"

SortExpression="FirstName" HeaderText="First Name">

</asp:BoundColumn>

<asp:BoundColumn DataField="LastName"

SortExpression="LastName" HeaderText="Last Name">

</asp:BoundColumn>

<asp:BoundColumn DataField="Title" HeaderText="Title">

</asp:BoundColumn>

</Columns>

</asp:DataGrid>

</form>

</body>

</HTML>

Listing 5.6 DataGridSortColumns.aspx (continued)

Refer to Figure 5.12 to see the grid in action. In the aspx DataGrid code in Listing 5.6,
we turned off AutoGenerateColumns and set up a few bound columns to show only
the data we want to see instead of every column in the data source. Because we set the
SortExpressions explicitly to the name of the columns in the database, we are able to
use the same code to alter the Sql statement, as in the previous example. We also left the
last column nonsortable, simply by not setting up a SortExpression in its bound col-
umn code. Notice, however, that the AllowSorting property must still be set to true for
the entire DataGrid.

Figure 5.12 DataGrid column sorting.

224 Chapter 5

Data Binding Events
When binding to data in a DataGrid, there are several techniques for customizing the
data that is displayed on each row. One way is to use the DataFormatString attribute of
the columns, which allows you to set the format using the same format specifiers used
in the static String.Format method. Or you could add a template column and set up
your own custom view of the data being bound. This could be mixed with a function
defined in the aspx file (so it will be in the same class that gets created for the page at
runtime), and you could call it to format your data. This would include using the
Container object and accessing the DataItem property to have access to the native data
object being bound. But, in some cases, it may be suitable to handle the ItemData-
Bound event, which is fired every time a row is created in a DataGrid. Handling this
event is a great way to perform any processing you need to do on each row. In the
following example, we will load the same data as we did last time, but this time let’s
highlight any employee title that contains the word “President” in its title. Also, similar
to the example in the MSDN Library, we’ll add a line number to the items in the grid.

<%@ Page language="c#" Codebehind="DataGridItemDataBound.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.DataGridItemDataBound" %>

<HTML>

<HEAD>

<meta content="Microsoft Visual Studio 7.0" name=GENERATOR>

<meta content=C# name=CODE_LANGUAGE>

</HEAD>

<body>

<form method=post runat="server">

<asp:datagrid id=DataGrid1 runat="server">

<Columns>

<asp:BoundColumn HeaderText="Line number">

</asp:BoundColumn>

</Columns>

</asp:datagrid>

</form>

</body>

</HTML>

Listing 5.7 DataGridItemDataBound.aspx

namespace Chapter5

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

Listing 5.8 DataGridItemDataBound.aspx.cs

Creating More Advanced ASP.NET Pages 225

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public class DataGridItemDataBound : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public DataGridItemDataBound ()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack) ReadData();

}

protected void ReadData()

{

string sql = "select employeeid, lastname, firstname, title from

employees";

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=

Northwind;UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

SqlDataReader reader = cmd.ExecuteReader();

DataGrid1.DataSource = reader;

DataGrid1.DataBind();

reader.Close();

cn.Close();

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataGrid1.ItemDataBound += new

System.Web.UI.WebControls.DataGridItemEventHandler(

this.DataGrid1_ItemDataBound);

Listing 5.8 DataGridItemDataBound.aspx.cs (continued)

226 Chapter 5

this.Load += new System.EventHandler(this.Page_Load);

}

protected void DataGrid1_ItemDataBound(object sender,

System.Web.UI.WebControls.DataGridItemEventArgs e)

{

//Check to make sure it is a normal row.

if ((e.Item.ItemType == ListItemType.Item) ||

(e.Item.ItemType == ListItemType.AlternatingItem))

{

//Add the line number.

e.Item.Cells[0].Text = e.Item.ItemIndex.ToString();

//Cast the DataItem to a database row object.

string title =

((System.Data.Common.DbDataRecord)e.Item.DataItem)["Title"].ToString();

//Color cell on specified title.

if (title.IndexOf("President") > 0)

{

e.Item.Cells[4].BackColor = Color.Yellow;

}

}

}

}

}

Listing 5.8 DataGridItemDataBound.aspx.cs (continued)

In this example, we used both AutoGenerateColumns and a BoundColumn. Refer to
Figure 5.13 to see the grid in action. Notice that in Listing 5.8 we did not use a
DataField attribute on the BoundColumn. If left alone, this column would just have
remained blank because we didn’t tell the grid which data to put there. Instead, we
used this column in code to add the line numbers for each row. When we discovered
that a row had “President” in the title, we colored that cell yellow. Remember, as we
have mentioned before, we must cast the DataItem out to whatever type of object is
contained in the data source. In this case, because we used an SqlDataReader to bind
to, we had to cast to the DbDataRecord object, which is what makes up each record in
a DataReader.

Now you have learned some of the more powerful features of the DataGrid. We
didn’t look into everything the DataGrid supports, like in-place editing of rows, but we
will cover something along those lines soon enough. Next, let’s move on to two more
controls that allow you to create an advanced customized view of your data: the
DataList and the Repeater.

Creating More Advanced ASP.NET Pages 227

Figure 5.13 DataGrid ItemDataBound event.

DataList
The DataList is similar to a DataGrid, but it has automatic layout functionality. The
DataList requires you to define each of the items or “rows” yourself, using standard
HTML or ASP.NET Server Controls. In effect, this makes a DataList much like a Data-
Grid with only TemplateColumns defined. This allows you to create virtually any look
you want on the items in the data source. In this example, we will use HTML tables and
ASP.NET HyperLink controls to create employee information blocks with a distinct
separation between them. As for the HyperLinks that we included, they link to pages
that don’t exist, but they are provided to add a more complete look to the example.

<%@ Page language="c#" Codebehind="DataListSimple.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.DataListSimple" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

<body>

<form method="post" runat="server">

Listing 5.9 DataListSimple.aspx

228 Chapter 5

<asp:DataList id=DataList1 runat="server" RepeatColumns=3>

<ItemTemplate>

<table BackColor=LemonChiffon Border=0 Width=180px

CellPadding=0

CellSpacing=0>

<tr>

<td bgcolor=Gold>

Employee

Information

</td>

<tr>

<td bgcolor=LemonChiffon>

<table cellpadding=0 cellspacing=0>

<tr>

<td width=100px>

Last Name

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["LastName"] %>

</td>

</tr>

<tr>

<td>

First Name

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["FirstName"] %>

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td bgcolor=LemonChiffon>

<asp:HyperLink CssClass=LinkClass ID=link1

ImageUrl="images/viewicon.gif" Runat=server

NavigateUrl=’<%# string.Format("view.aspx?id={0}",

((System.Data.Common.DbDataRecord)Container.DataItem)["EmployeeID"]) %>’ />

<asp:HyperLink CssClass=LinkClass ID="Hyperlink1"

ImageUrl="images/matchicon.gif" Runat=server

NavigateUrl=’<%# string.Format("match.aspx?id={0}",

((System.Data.Common.DbDataRecord)Container.DataItem)["EmployeeID"]) %>’ />

</td>

</tr>

</table>

Listing 5.9 DataListSimple.aspx (continued)

Creating More Advanced ASP.NET Pages 229

</ItemTemplate>

</asp:DataList>

</form>

</body>

</HTML>

Listing 5.9 DataListSimple.aspx (continued)

namespace Chapter5

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public class DataListSimple : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataList DataList1;

public DataListSimple()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void ReadData()

{

string sql = "select employeeid, lastname, firstname, title from

employees";

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=Northwind;

UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

SqlDataReader reader = cmd.ExecuteReader();

DataList1.DataSource = reader;

DataList1.DataBind();

reader.Close();

cn.Close();

Listing 5.10 DataListSimple.aspx.cs

230 Chapter 5

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

ReadData();

}

}

}

Listing 5.10 DataListSimple.aspx.cs (continued)

Notice that on the declaration of the DataList in Listing 5.9, we set the Repeat-
Columns to 3. This makes the list render with three columns of whatever your tem-
plate looks like, by however many rows needed. Another interesting setting we could
have applied is RepeatLayout. Setting this to table causes the DataList to render as a
table; setting it to flow causes it to render in-line, like normal HTML text. It is up to you
to determine how you want to do it; in many cases, the end result will look similar for
either setting. By default, the DataList renders items vertically in rows. If you have
RepeatColumns set to more than 1, there would be fewer rows vertically. But it is also
possible to set the RepeatDirection to horizontal. This causes all of your items to be dis-
played in a horizontal line. Unfortunately, this can quickly cause your items to run off
the right side of the screen, causing a large amount of horizontal scrolling. For the pre-
ceding code, the results are shown in Figure 5.14.

Now let’s look at editing data in a DataList. The DataList supports this much the
way the DataGrid does, in that it allows you to define buttons (or LinkButtons or
ImageButtons) with the special CommandNames: edit, cancel, and selected. In this
example, we use the edit and cancel commands. If there is any type of button control
(or any control that has the CommandName property) in an item template that has the
CommandName set to edit, then the DataLists EditCommand event will be fired auto-
matically on its click. Likewise for cancel and select, which cause the CancelCommand
and SelectCommand events to be fired, respectively. If you need to have your own
user-defined command you want to handle in the item, set the CommandName to
whatever you want, then test for it in the ItemCommand event, which is fired for every
button-type control in the DataList. Note that in addition to their respective events, the
ItemCommand is fired even when you click an edit, select, or cancel control. You’ll see
in Listing 5.11 where we take care of exactly this behavior. Note that you don’t handle
controls’ events directly when they are in a DataList template because their events are
bubbled up to the container, which is the DataList itself. This is why we handle these
events thrown by the DataList itself.

Creating More Advanced ASP.NET Pages 231

Figure 5.14 A simple DataList.

What does all of this mean to us in practice? Take the EditCommand event, for
example. When the EditCommand event is fired because the user clicked a button-type
control whose CommandName is edit, we set the EditItemIndex of the DataList to the
currently clicked item. This causes the DataList to be re-created using the EditItem-
Template UI in place of the current item clicked. We set up the EditItemTemplate to
have textboxes and other editable controls in it so that we can modify the data and later
save it. If we follow the same logic for a SelectCommand, the SelectedItemTemplate UI
will be drawn for the currently selected item. When we want to handle something
other than these natively supported commands, we set the CommandName to our
own text. For example, if we set it to save, then the ItemCommand event will be fired,
where we can test for the CommandName of “save” in the event arguments and do as
we please. Let’s look at an example that does just this. We will read from and update
the data source with simple select statements to make the example easy to understand.
Incorporating these techniques with the more advanced data objects discussed earlier
in the chapter will be left as an exercise for the reader.

<%@ Page language="c#" Codebehind=" DataListEdit.aspx.cs"

AutoEventWireup="false" Inherits="Chapter5.DataListEdit" %>

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>

Listing 5.11 DataListEdit.aspx

232 Chapter 5

TE
AM
FL
Y

Team-Fly®

<body>

<form method="post" runat="server">

<asp:DataList id=DataList1 runat="server" DataKeyField="EmployeeID">

<ItemTemplate>

<table BackColor=LemonChiffon Border=0 Width=200px CellPadding=0

CellSpacing=0>

<tr>

<td bgcolor=Gold>

Employee Information

</td>

</tr>

<tr>

<td bgcolor=LemonChiffon>

<table cellpadding=0 cellspacing=0>

<tr>

<td width=100px>

Employee ID

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["EmployeeID"] %>

</td>

</tr>

<tr>

<td width=100px>

Last Name

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["LastName"] %>

</td>

</tr>

<tr>

<td>

First Name

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["FirstName"] %>

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td bgcolor=LemonChiffon>

<asp:ImageButton ID="ImageButton1"

ImageUrl="images/editicon.gif"

Runat=server CommandName="edit" />

</td>

Listing 5.11 DataListEdit.aspx (continued)

Creating More Advanced ASP.NET Pages 233

</tr>

</table>

</ItemTemplate>

<EditItemTemplate>

<table BackColor=LemonChiffon Border=0 Width=200px CellPadding=0

CellSpacing=0>

<tr>

<td bgcolor=Gold>

Employee Information

</td>

</tr>

<tr>

<td bgcolor=LemonChiffon>

<table cellpadding=0 cellspacing=0>

<tr>

<td width=100px>

Employee ID

</td>

<td>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["EmployeeID"]%>

</td>

</tr>

<tr>

<td width=100px>

Last Name

</td>

<td>

<asp:textbox

id=TextBox1 Width=100px runat=server text=’

<%#((System.Data.Common.DbDataRecord)Container.DataItem)["LastName"]%>’ />

</td>

</tr>

<tr>

<td>

First Name

</td>

<td>

<asp:textbox id=TextBox2 Width=100px runat=server

text=’

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["FirstName"]

%>’/>

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td bgcolor=LemonChiffon>

Listing 5.11 DataListEdit.aspx (continued)

234 Chapter 5

<asp:ImageButton ID="ImageButton2"

ImageUrl="images/saveicon.gif" Runat=server

CommandName="save" />

<asp:ImageButton ID="ImageButton3"

ImageUrl="images/cancelicon.gif" Runat=server

CommandName="cancel" />

</td>

</tr>

</table>

</EditItemTemplate>

</asp:DataList>

</form>

</body>

</HTML>

Listing 5.11 DataListEdit.aspx (continued)

namespace Chapter5

{

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public class DataListEdit : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DataList DataList1;

protected System.Web.UI.WebControls.TextBox TextBox1;

protected System.Web.UI.WebControls.TextBox TextBox2;

public DataListEdit()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void ReadData()

{

string sql = "select employeeid, lastname, firstname, title from

Listing 5.12 DataListEdit.aspx.cs

Creating More Advanced ASP.NET Pages 235

employees";

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=Northwind;

UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

SqlDataReader reader = cmd.ExecuteReader();

DataList1.DataSource = reader;

DataList1.DataBind();

reader.Close();

cn.Close();

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.DataList1.ItemCommand += new

System.Web.UI.WebControls.DataListCommandEventHandler(

this.DataList1_ItemCommand);

this.DataList1.CancelCommand += new

System.Web.UI.WebControls.DataListCommandEventHandler(

this.DataList1_CancelCommand);

this.DataList1.EditCommand += new

System.Web.UI.WebControls.DataListCommandEventHandler(

this.DataList1_EditCommand);

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack) ReadData();

}

protected void DataList1_EditCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

DataList1.EditItemIndex = e.Item.ItemIndex;

ReadData();

}

protected void DataList1_CancelCommand(object source,

Listing 5.12 DataListEdit.aspx.cs (continued)

236 Chapter 5

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

DataList1.EditItemIndex = -1;

ReadData();

}

protected void DataList1_ItemCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

//Handle the save command.

if (e.CommandName == "save")

{

//Get the data key for item, which is EmployeeID.

int empid =

Convert.ToInt32(DataList1.DataKeys[e.Item.ItemIndex].ToString());

//Find the updated controls in the template item.

TextBox txtLastName = (TextBox)e.Item.FindControl("TextBox1");

TextBox txtFirstName = (TextBox)e.Item.FindControl("TextBox2");

//If found, update datasource.

if ((txtLastName != null) && (txtFirstName != null))

{

SaveData(empid, txtFirstName.Text, txtLastName.Text);

}

//Take out edit mode and reload data to show changes.

DataList1.EditItemIndex = -1;

ReadData();

}

}

private void SaveData(int empid, string fname, string lname)

{

//Create an update query.

string sql = string.Format("update employees set lastname = ’{0}’,

firstname = ’{1}’ where EmployeeID = {2}", lname, fname, empid);

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=Northwind;

UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

//Run the update query to save the data.

cmd.ExecuteNonQuery();

cn.Close();

}

}

}

Listing 5.12 DataListEdit.aspx.cs (continued)

Creating More Advanced ASP.NET Pages 237

Let’s look at what we did. Listing 5.11 seems like a lot of code, but most of it is UI
layout and Visual Studio .NET-generated code. As we discussed earlier, we have
ImageButtons in both the ItemTemplate and the EditItemTemplate. The one in the
ItemTemplate with the edit icon has the CommandName “edit” so that when it is
clicked we handle the EditCommand handler. In this handler we set the item to be
edited and reload the data. This time, the browser gets different contents for this item,
specifically that which is defined in the EditItemTemplate, which uses TextBoxes,
bound to the first and last name of the employee. Because the data is loaded into
textboxes, it can be edited. When the user clicks the save ImageButton, the ItemCom-
mand event handler is invoked, which tests for the CommandName of “save,” which
was set in the save ImageButton. In this handler things get a little tricky. First, we must
test for the correct CommandName of “save.” Even though we have only one user-
defined CommandName in the page, don’t just handle it without first testing. If you
do, you will run this code when the “edit” and “cancel” command events are fired as
well. Clearly this would fail because we are looking for UI controls that may not exist
during those events. Then we call the FindControl method of the item to get the
TextBox values the user modified. We can’t access these controls directly via a class-
level variable like normal because they are created only when the EditItemTemplate is
used and must be accessed dynamically through FindControl. When we find the con-
trols, we can get their text and save the record to the database. Notice also that we used
the DataKeyField to store the unique record with each row, which we discussed earlier
in the book. In Figure 5.15, you can see the layout before the edit action; Figure 5.16
shows the layout during the edit; and Figure 5.17 shows the edited and saved contents.

Figure 5.15 Just before editing.

238 Chapter 5

Figure 5.16 During the edit phase.

Figure 5.17 After the data has been saved.

Creating More Advanced ASP.NET Pages 239

We will skip some other features of the DataList, such as selecting an item, using
styles to simplify the look and feel of different items, and handling the item creation
events just as we did in the DataGrid. We don’t want to go into too much depth with
these controls because doing so would just be regurgitating much of what is available
in the MSDN Library. We just wanted to touch on the main things you are likely to do
with these controls and show you some more interesting Data Binding techniques. As
we use these and other controls throughout the book’s main sample application, we
will go more into detail whenever needed. For now, you can apply what you have
learned here to your own DataList experiments.

Repeater
The Repeater is similar to the other list controls, but it could be considered somewhat
lightweight. It has no support for paging, sorting, selecting, or editing. It also has no
default layout format. Where the DataGrid has a default layout of a grid, the Repeater
relies entirely on your templates for its display.

In this example, we use some of the same techniques as before, for Data Binding and
setting up the ItemTemplate. But, in this case, we need to set up the SeparatorTemplate
as well, so that the items will be on “rows.” To do this we simply supply a
 as the
HTML content to be inserted between each item. If we left this out, the elements would
just be flowed onto the page, and they would be much less readable. Remember, the
DataGrid and DataList don’t require this because they already support a row-like lay-
out by default. We tried to add a few different techniques for this sample. Instead of
using a table to format each item, we used ASP.NET Label Server Controls. This illus-
trates that Server Controls can be used just like plain HTML content in your templates.
We bind in the same fashion as before, but this time we included more data. There is
one field called “notes” in the database, which was too large to display for every item.
So, in Listing 5.13 we added two LinkButtons to control its visibility. To handle their
clicks, we set them up according to the discussion in the DataList section and gave
them CommandNames of ShowNotes and HideNotes, respectively. When handling
the ItemCommand event, we check for which one was clicked, find the appropriate
controls, and either show or hide them accordingly.

<%@ Page language="c#" Codebehind="RepeaterSimple.aspx.cs"
AutoEventWireup="false" Inherits="Chapter5.RepeaterSimple" %>

<HTML>
<HEAD>
<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
<meta name="CODE_LANGUAGE" Content="C#">

</HEAD>
<body>
<form method="post" runat="server">
<asp:Repeater id=Repeater1 runat="server">
<ItemTemplate>
<table BorderStyle=Solid BorderWidth=2 BorderColor=navy

CellPadding=0

Listing 5.13 RepeaterSimple.aspx

240 Chapter 5

CellSpacing=0>
<tr>
<td>
<asp:label BackColor=LightBlue Font-Name=arial Font-Size=9pt
Font-Bold=true ID=Label1 Runat=server Width=100px
Height=100%>
Name
</asp:label>

<asp:label BackColor=Lightsalmon Font-Name=arial Font-
Size=9pt
Font-Bold=false ID=Label2 Runat=server Width=200px>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["FirstName"] %>
<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["LastName"] %>

</asp:label>

<asp:label BackColor=LightBlue Font-Name=arial Font-Size=9pt
Font-Bold=true ID="Label3" Runat=server Width=100px>
Title
</asp:label>

<asp:label BackColor=Lightsalmon Font-Name=arial Font-
Size=9pt
Font-Bold=false ID="Label4" Runat=server Width=200px>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["Title"] %>
</asp:label>

<asp:label BackColor=LightBlue Font-Name=arial Font-Size=9pt
Font-Bold=true ID="Label5" Runat=server Width=100px>
Address
</asp:label>

<asp:label BackColor=Lightsalmon Font-Name=arial Font-
Size=9pt
Font-Bold=false ID="Label6" Runat=server Width=200px>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["FirstName"] %>
<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["City"] %>,
<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["Region"] %>
<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["PostalCode"] %>

</asp:label>

<asp:label BackColor=LightBlue Font-Name=arial Font-Size=9pt
Font-Bold=true ID="Label7" Runat=server Width=100px>
Birthday
</asp:label>

<asp:label BackColor=Lightsalmon Font-Name=arial Font-
Size=9pt

Listing 5.13 RepeaterSimple.aspx (continued)

Creating More Advanced ASP.NET Pages 241

Font-Bold=false ID="Label8" Runat=server Width=200px>

<%# string.Format("{0:MM/dd/yyyy}",

((System.Data.Common.DbDataRecord)Container.DataItem)["BirthDate"]) %>

</asp:label>

<asp:label BackColor=LightBlue Font-Name=arial Font-Size=9pt

Font-Bold=true ID="Label9" Runat=server Width=100px>

Notes

</asp:label>

<asp:LinkButton CommandName="ShowNotes"

BackColor=Lightsalmon

Font-Name=arial Font-Size=9pt Font-Bold=false

ID="LinkButton1"

Runat=server Width=200px>

 Show notes...

</asp:LinkButton>

</td>

</tr>

<tr>

<td>

<asp:label visible=false BackColor=Lightsalmon Font-

Name=arial

Font-Size=9pt Font-Bold=false ID="lblNotes" Runat=server

Width=300px>

<%# ((System.Data.Common.DbDataRecord)Container.DataItem)["Notes"] %>

<asp:LinkButton visible=false CommandName="HideNotes"

BackColor=Lightsalmon Font-Name=arial Font-Size=9pt

Font-Bold=false ID="lnkHideNotes" Runat=server>

Hide notes

</asp:LinkButton>

</asp:label>

</td>

</tr>

</table>

</ItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

</asp:Repeater>

</form>

</body>

</HTML>

namespace Chapter5

{

Listing 5.13 RepeaterSimple.aspx (continued)

242 Chapter 5

TE
AM
FL
Y

Team-Fly®

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public class RepeaterSimple : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Repeater Repeater1;

public RepeaterSimple()

{

Page.Init += new System.EventHandler(Page_Init);

}

protected void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.Repeater1.ItemCommand += new

System.Web.UI.WebControls.RepeaterCommandEventHandler(

this.Repeater1_ItemCommand);

this.Load += new System.EventHandler(this.Page_Load);

}

private void Page_Load(object sender, System.EventArgs e)

{

ReadData();

}

protected void ReadData()

{

string sql = "select * from employees";

SqlConnection cn = new

SqlConnection(@"DataSource=(local)\NetSDK;InitialCatalog=Northwind;

UserID=sa;pwd=;");

cn.Open();

SqlCommand cmd = new SqlCommand(sql, cn);

SqlDataReader reader = cmd.ExecuteReader();

Repeater1.DataSource = reader;

Listing 5.14 RepeaterSimple.aspx.cs

Creating More Advanced ASP.NET Pages 243

Repeater1.DataBind();

reader.Close();
cn.Close();

}

protected void Repeater1_ItemCommand(object source,
System.Web.UI.WebControls.RepeaterCommandEventArgs e)

{
if (e.CommandName == "ShowNotes")
{
Label lblNotesDisplay = (Label) e.Item.FindControl("lblNotes");
lblNotesDisplay.Visible = true;
LinkButton lnkHideNotesDisplay = (LinkButton)
e.Item.FindControl("lnkHideNotes");

lnkHideNotesDisplay.Visible = true;
}

if (e.CommandName == "HideNotes")
{
Label lblNotesDisplay = (Label) e.Item.FindControl("lblNotes");
lblNotesDisplay.Visible = false;
LinkButton lnkHideNotesDisplay = (LinkButton)
e.Item.FindControl("lnkHideNotes");

lnkHideNotesDisplay.Visible = false;
}

}
}

}

Listing 5.14 RepeaterSimple.aspx.cs (continued)

Figure 5.18 Repeater with hidden notes.

244 Chapter 5

Figure 5.19 Repeater with visible notes.

Figure 5.18 shows the list before clicking the notes button, and Figure 5.19 shows it
once the notes appear. Here’s a trick to make a Repeater insert a separator after every
other item. Handle the ItemCreated event for the repeater and use a toggling variable.
The
 literal control is added at the correct time, when the item being created is, in
fact, a SeparatorTemplate item, and two rows have been created. This is helpful
because the Repeater doesn’t allow you to code for this directly in the templates. Note
that if you want to break on more than every other line, or if you are using headers and
footers, this code could be modified slightly to handle that as well.

private bool m_bNewRow;

...

protected void Repeater1_ItemCreated(object source,

System.Web.UI.WebControls.RepeaterItemEventArgs e)

{

if (e.Item.ItemType == ListItemType.Separator)

{

if (m_bNewRow)

{

e.Item.Controls.Add(new LiteralControl("
"));

}

m_bNewRow = !m_bNewRow;

}

}

As you can see, the Repeater can work well in read-only situations, especially where
complex data items need to be displayed. For simpler items that can easily fit into a sin-
gle row in a strictly grid-like layout, the DataGrid may be easier to code. But for super

Creating More Advanced ASP.NET Pages 245

customization, the DataList and Repeater make for a power pair of controls at your
disposal.

Wrapping Up the Chapter

In this chapter we covered the remainder of the ASP.NET fundamentals that we will
need to develop real-world applications. We covered the Request and Response
objects, as well as cookies, query strings, and forms. We introduced the concept of Ses-
sion state and global variables and showed you a few application-level events that you
can handle. We then introduced the concept of Page Subclassing and demonstrated
how useful it can be for reusing common functionality throughout a Web application.
Finally, we looked at some advanced Data Binding techniques and some nice features
of the advanced binding controls. We didn’t cover all of the things that can be done
with these objects and controls. This book is not intended to be a reference for all of the
things in the ASP.NET portions of the framework, but rather a resource on how to put
a lot of features to use in a full-sized application. Having said that, now we can move
into the next phase of the book, which jumps right into some real-world code exam-
ples, and we can start putting together a set of real-world Web applications using
ASP.NET and C#.

246 Chapter 5

247

So far we have looked at the ASP.NET technology and seen how you can accomplish a
lot of typical Web programming tasks with it. We’ve taken a look at most of the new
server-side controls, and we have done some comparing and contrasting between this
technology and the previous-generation technology. Keep in mind that by no means
did we perform an exhaustive account of the objects and controls in the framework. To
cover every single detail about them would simply be rewriting what is already cov-
ered so well in the MDSN Library. In this book, we want to give you some good foun-
dational, real-world instruction by example on using the framework.

This chapter introduces the sample Web application that you’ll be using throughout
the rest of this book.

An Online Car Parts Retailer

There are so many different types of example programs to choose from, such as contact
management, call center workflow, portal sites, or customer relationship management
(CRM). Because many programmers intend to use ASP.NET to build consumer-based
online services, we chose to take the somewhat standard route of developing an online
store. While a more interesting type of application would be fun, an online store sam-
ple will best reflect the use of ASP.NET in the real world.

Applying What We’ve
Learned So Far

C H A P T E R

6

Our online car parts retailer sells parts and accessories for selected Chevrolet mod-
els. It is designed to scale well to include all makes and models of all cars, should any
of our readers ever need to put together a real online car parts house! But the real
lesson here is to use ASP.NET for the entire program, rather than browser script on the
very front end, ASP on the “server” front end, COM in the middle, and who knows
what kind of data access pulling up the rear. As you’ve seen throughout this book, we
no longer need a hodge-podge of tools and technologies to complete a full-blown Web
app—it can all be done in one place, with one tool, at one time.

We’ll create the online store in phases, adding more functionality and new topics
throughout the rest of the book. To begin with, we’ll build a simple system where shop-
pers visit, select products, and check out. Then, we will add a business-to-business
(B2B) feature to the application, namely exposing the store’s inventory to other busi-
nesses via SOAP Web Services. After that, we will study some of the external services
we can tap, such as a shipping pricing service.

This application demonstrates building an application in modular components from
beginning to end. First, we’ll create a simple database model in which all of our data
will reside. Then, we’ll develop an object model, which we will call the middle tier.
This is the same way we have been doing multitiered architectures for years (using the
Windows DNA paradigm), but this time it will all be in a common language and pro-
gramming model. This middle tier will prevent the presentation layer from having to
interact directly with the data; thus, you can substitute any data source as long as the
interface to the middle tier remains the same (or similar, at least). Then, to make up the
presentation layer, we will use as many of the great new features of ASP.NET as we
can. We will refrain from resorting to any of the previous-generation methods of Web
programming as much as possible, so we won’t use any browser script, such as
JavaScript, Jscript, or ECMAScript (except the script generated by ASP.NET). As for
COM objects, we certainly won’t be programming those ourselves; it will all be done
as .NET objects.

NOTE Because the code is very extensive, we’ve included only code snippets
throughout, with thorough explanation. All of the code for the sample project
can be downloaded from the companion Web site, located at www.wiley.com/
compbooks/meyne. In fact, the sample project could be a good starting point
for your online retail store, if you are so inclined!

The Database Model

The first step for this project is to develop a database on which this Web site will run.
We’ve chosen to use MSDE for the data provider, and we will use the SQL Server man-
aged provider of ADO.NET for data access. A diagram of the database model can be
seen in Figure 6.1. This database model has been simplified somewhat, but it will pro-
vide us with everything we need for a basic, yet operational e-commerce site.

248 Chapter 6

Figure 6.1 WileyParts database model.

Here is a quick run-down of the data flow through this database. At some point dur-
ing a shopper’s visit to our Web site, we will create an entry for the shopper in the
Shopper table. The Shopper_ID field of this table is an identity column, so when we
create an entry we will be given a unique ID for the shopper that will be the key to
tracking what the shopper has in his or her cart and any orders that he or she has
placed. When a shopper searches for a part, he or she will choose one of the vehicles in
the Vehicle table. The shopper will then choose one of the part categories in the
Part_Categories table. Once we have the Vehicle_ID and the Part_Category_ID we can
search the Parts table in conjunction with the Vehicle_Parts table for any parts that
match the shopper’s search criteria. If the shopper chooses to add a part to his or her

Applying What We’ve Learned So Far 249

cart, a record will be created in the Shopping_Cart table that contains the Shopper_ID
and all of the pertinent information about the part. Once the shopper decides to pur-
chase the part, an entry will be created in the Orders table, and one or more entries will
be created in the Order_Items table representing each item in the cart. The Orders table
will contain the user’s credit card information and the total amount of the purchase.

That is as far as we are going to go with the database at this point. There are several
other things that we would likely need to implement, such as the ability to track order
status and shipping. We’ll get to some of these things in later chapters, but some of it is
beyond the scope of this book. Complete scripts for creating and populating this data-
base are available for download from the companion Web site.

Creating a Basic Object Model

Let’s begin by building several C# classes or objects that will be used to implement our
car parts retailer Web store. These objects will be designed with a methodology that we
have found to be useful and workable in the field. As with all programming, there are
a million and one ways to solve a problem with code. You may find that the method-
ology used here doesn’t suit your needs or that it can be tweaked to be more efficient
for your specific project. Realize that this methodology does not take advantage of
some of the more powerful object-oriented features, nor does it handle every code sit-
uation that can arise in a Web application. We use it in this book because it is relatively
clean-cut and simple to read. This is the same methodology that was introduced in the
Wrapping It Up in a Class section in Chapter 4, “Database Access.”

NOTE Make sure you review and have a good understanding of the Wrapping
It Up in a Class section in Chapter 4 before moving on with this example.

This section won’t teach you object model design, but it will focus on the specifics of
implementing an object model with C# and then using it in a Web application.
Although these objects are geared to be more efficient for Web application use, they
could still easily be used by a Win Forms application. If you do decide to implement a
model like this one in a non-Web application, it would probably need to be expanded
on to provide maximum efficiency for that usage scenario. For instance, we won’t be
using the DataSet object in any of these classes, and it might make more sense to do so
with a Win Form application.

We created an object for each one of the tables that will provide the required func-
tionality to work with the data in that table. The exception is the Vehicle_Parts table.
Because this is just a utility table used to provide a many-to-many relationship
between the Vehicle table and the Parts table, there is no object for access to this table.
In addition, we implement only methods that will be used by the Web site. We won’t
implement any methods that might be used by a back-end administration application
for maintaining the site. So, let’s start examining the implementation of this object
model.

250 Chapter 6

WileyObject
The WileyObject class is a base class from which the rest of the objects will inherit. For
the most part, it provides error tracking and logging functionality. The class has a pro-
tected method called LogError, which is used for logging any errors that occur in the
code of an inherited class. When an error occurs in an inherited class, we will catch the
exception, log it, and then throw it up to the next caller. Also in this class is another log-
ging method called WriteToLog, which is static in case there are any static methods in
the application that need this functionality. The code for the logging methods is as fol-
lows:

protected void LogError(string s)

{

try

{

//Open the log, create it if it does not exist

if (!EventLog.Exists("Wiley"))

{

//Create the log

EventLog.CreateEventSource(ToString(), "Wiley");

}

else

{

//Make sure that this source exists. If it doesn’t, create it.

if (!EventLog.SourceExists(ToString()))

{

//Create the source

EventLog.CreateEventSource(ToString(), "Wiley");

}

}

EventLog evtLog = new EventLog(String.Empty, ".", ToString());

//Write the message to the log

evtLog.WriteEntry(s, EventLogEntryType.Error);

}

catch (Exception e)

{

//Throw this exception

throw e;

}

}

The method will add the error message to the WileyParts Windows Event Log and
will use the fully qualified name of the inherited class as the event source. Note that
this code is very similar to that provided in the base page class introduced in Chapter 5,
“Creating More Advanced ASP.NET Pages.”

Applying What We’ve Learned So Far 251

This class isn’t too complex. The nicest thing about it is the ability to log errors to the
Event Log easily. With a Web application, sometimes you can end up with errors in
your code that may not be entirely detrimental to the application. They may go com-
pletely unnoticed to your users, but they could cause data or performance problems. If
you carefully catch exceptions and log them to the Event Log, you can examine the
error messages on a daily basis until you’ve cleaned up all of the problems. This is par-
ticularly useful during the testing, debugging, and installation phases of an applica-
tion. In addition to logging errors to the Windows Event Log, you could include your
own custom logging, such as to an HTML file, for example.

WileyConnection
The WileyConnection object is nothing but a wrapper object for a SqlConnection. The
SqlConnection class is sealed, so you can’t inherit from it; however, you can write a
class that has a SqlConnection as a private member variable that is exposed via a pub-
lic property. What are the advantages of doing this? For this particular application
there aren’t really any advantages. The advantage lies in the ability to use the Wiley-
Connection object in all of your code and not care which managed provider connection
object is being encapsulated inside the WileyConnection class. You also wouldn’t care
if the WileyConnection object changed to encapsulate a connection object from a dif-
ferent managed provider; the managed provider connection objects implement the
same interfaces, so your code will still work.

Let’s look at a scenario where this is useful. Assume that you are writing a Web
application that needs to access an Oracle database initially. You know that down the
road, management wants to migrate to SQL Server 2000. Because there isn’t an Oracle
managed provider yet, you will have to use the OLE DB managed provider. If you
encapsulate the OleDbConnection object inside of a custom class such as the Wiley-
Connection object, then later on when you need to migrate to SQL Server, you can sim-
ply change the WileyConnection class, and the rest of your code should still work. If
you have spread references to the OleDbConnection class throughout your code, then
you could have quite a bit of rewriting to do. The following code wraps up the Sql-
Connection object inside of the WileyConnection object as a demonstration. If you
really wanted to go ahead with this concept, you would also need to write classes to
encapsulate other classes in the SqlClient namespace such as the SqlDataReader and
SqlCommand. Here is the code for the WileyConnection object:

public class WileyConnection : WileyObject

{

//Member variables

private SqlConnection m_conn;

//Properties

public SqlConnection Connection

{

get {return m_conn;}

}

252 Chapter 6

TE
AM
FL
Y

Team-Fly®

//The constructor takes a connection string and automatically opens

//the connection

public WileyConnection(string strConnectionString)

{

Open(strConnectionString);

}

public bool Open(string strConnectionString)

{

try

{

//Make sure this connection isn’t already open

if (m_conn != null)

{

if (IsOpen())

return true;

}

m_conn = new SqlConnection(strConnectionString);

m_conn.Open();

}

catch(Exception ex)

{

WileyObject.WriteToLog(ex.ToString(), "WileyDatabase");

throw new Exception("Failed to open database", ex);

}

return true;

}

//Is this connection already open?

public bool IsOpen()

{

try

{

//If the connection is already open, just return true

if (m_conn.State == ConnectionState.Open)

return true;

else

return false;

}

catch(Exception ex)

{

WileyObject.WriteToLog(ex.ToString(), "WileyDatabase");

throw new Exception("Failed to determine if database is open",

ex);

}

}

//Close the connection

Applying What We’ve Learned So Far 253

public bool Close()

{

try

{

if (m_conn == null)

return true;

m_conn.Close();

}

catch(Exception ex)

{

WileyObject.WriteToLog(ex.ToString(), "WileyDatabase");

throw new Exception("Failed to close database", ex);

}

return true;

}

}

An alternate approach would be to code to the interface IDbConnection in all of our
client code because the managed provider connection classes, SqlConnection and
OleDbConnection, implement this interface. We could create a custom connection fac-
tory class that creates and returns SqlConnection objects. In our client code, we could
call this connection factory class to retrieve a connection object and then call the meth-
ods of the connection object via the IDbConnection interface. If we need to change to
use the OleDbConnection object in the future, we just change our custom connection
factory class, and everything will still work fine in our client code. As mentioned pre-
viously, to reap full benefit from this approach you would need to do the same sort of
thing for the Command (IDbCommand interface) and DataReader (IdataReader inter-
ace) objects. The downside to this is that these common interfaces do not provide
access to all of the functionality of the managed provider classes. If you need to access
some method or property that is not a part of the common interface, you would still
have to cast the interface to the provider-specific class in your client code, which would
negate all of the benefit of coding to the common interface. Having said all of that, in
our experience it is rare that companies will change database vendors very often. It
isn’t cost effective for a company to implement SQL Server today and replace it with
Oracle or some other database within a few years. The approach that you take in your
applications should be on a case-by-case basis.

Vehicle
The Vehicle object encapsulates the Vehicle table. It is implemented in the same manner
as the Employee class from Chapter 4. The first thing that shoppers at our Web site are
going to need to do is identify for which vehicle they need to find parts. They will do so
by selecting a vehicle year from a drop-down box, which will then provide them with a
list of Chevrolet models that were available during that year. There are two static meth-
ods that we use directly from our Web application to get this information. The first is
GetVehicleYears(). This method returns an ArrayList of integers that are the distinct

254 Chapter 6

vehicle years that exist in the Vehicle table. It creates the ArrayList by using a Sql-
Command object to call a stored procedure and then iterating through the rows returned
in the SqlDataReader and adding each vehicle year to the ArrayList. The second method
is GetVehiclesByYear(), which will again return an ArrayList, but this time the ArrayList is
filled with Vehicle objects representing all of the vehicles that exist for the year.

PartCategory
The PartCategory is an extremely small object used for encapsulating an extremely
small table. After the shopper has selected his or her vehicle, he or she will then need
to select a part category such as Engine, Electrical, or Transmission. This will allow us
to narrow the part search down to a small subset of parts for the chosen vehicle. All we
really need to do is get a list of all of the categories in the Part_Categories table so that
we can give the shopper a list from which to choose. The static GetAllCategories()
method will return an ArrayList of PartCategory objects, to which we can bind an
ASP.NET control.

Part
After the shopper has selected his or her vehicle and part category, we will call the Get-
PartsByVehicleAndCategory() static method of the Part object. Following suit with the
other objects, this method calls a stored procedure that gets the matching parts from
the Parts table. It then uses the returned SqlDataReader to create an ArrayList of Part
objects that will be returned and bound to an ASP.NET control.

Shopper
The Shopper object encapsulates the Shopper table and provides access to the shop-
per’s cart and any orders that have been placed. When the shopper wants to add some-
thing to his or her cart, we will create an entry in the Shopper table if one does not
already exist. To do this, we’ll use the Add() method, which calls a stored procedure
that takes parameters for all of the fields of the Shopper table and inserts a new record.
The stored procedure is called with a SqlCommand object, and the values that are used
for the parameters passed to the stored procedure will be the values in the corre-
sponding member variables of the Shopper object. The add method calls a stored pro-
cedure named sp_AddShopper, shown here:

INSERT INTO WileyParts.dbo.Shopper

(First_Name, Last_Name, Address, City, State_Code, Postal_Code, Phone,

Email)

VALUES

(@FirstName, @LastName, @Address, @City, @StateCode, @PostalCode,

@Phone,

@Email)

-- Get the shopper’s ID

Applying What We’ve Learned So Far 255

SET @ShopperID = @@IDENTITY

RETURN 0

Here is the code for the Add() method:

public void Add(WileyConnection conn)

{

try

{

//Call a stored procedure to add this shopper to the database

SqlCommand cmd = new SqlCommand("WileyParts.dbo.sp_AddShopper",

conn.Connection);

cmd.CommandType = CommandType.StoredProcedure;

//Create the output parameter for the ShopperID

cmd.Parameters.Add("@ShopperID", SqlDbType.Int);

cmd.Parameters["@ShopperID"].Direction = ParameterDirection.Output;

cmd.Parameters.Add("@FirstName", SqlDbType.VarChar, 20);

cmd.Parameters["@FirstName"].Value = m_strFirstName;

cmd.Parameters.Add("@LastName", SqlDbType.VarChar, 50);

cmd.Parameters["@LastName"].Value = m_strLastName;

cmd.Parameters.Add("@Address", SqlDbType.VarChar, 60);

cmd.Parameters["@Address"].Value = m_strAddress;

cmd.Parameters.Add("@City", SqlDbType.VarChar, 15);

cmd.Parameters["@City"].Value = m_strCity;

cmd.Parameters.Add("@StateCode", SqlDbType.VarChar, 2);

cmd.Parameters["@StateCode"].Value = m_strStateCode;

cmd.Parameters.Add("@PostalCode", SqlDbType.VarChar, 10);

cmd.Parameters["@PostalCode"].Value = m_strPostalCode;

cmd.Parameters.Add("@Phone", SqlDbType.VarChar, 24);

cmd.Parameters["@Phone"].Value = m_strPhone;

cmd.Parameters.Add("@Email", SqlDbType.VarChar, 40);

cmd.Parameters["@Email"].Value = m_strEmail;

//Execute the command

cmd.ExecuteNonQuery();

//Get the shopper’s ID

m_intShopperID = (int)cmd.Parameters["@ShopperID"].Value;

}

catch(Exception ex)

{

WileyObject.WriteToLog(ex.ToString(), "Shopper");

throw new Exception("Failed to load shopper from reader", ex);

}

}

The Add() method sets up a SqlCommand object with the appropriate parameters,
including an output parameter to return the Shopper_ID of the newly inserted row. The

256 Chapter 6

stored procedure inserts a row into the Shopper table using the passed-in parameters. If
this insert statement fails in any way, a SQLException will be thrown. This is why it is
important to wrap up your database code inside of try/catch blocks, as is done with the
Add() method. If an exception occurs, the error message of the exception is added to the
errors collection of the Shopper object and the Add() method will return false. This will
allow the client code to detect if an error has occurred and then display an appropriate
error message. If the insert statement is successful, the stored procedure sets the @Shop-
perID output parameter equal to @@IDENTITY, which will be the Shopper_ID of the
last inserted record. The add method then sets the m_intShopperID member variable to
the value passed back in the @ShopperID parameter with this code.

m_intShopperID = (int)cmd.Parameters["@ShopperID"].Value;

Very similar to the Add() method, there is an Update() method that can be called to
change or add any information about the shopper, such as name, address, and phone
number. Remember, once an entry has been made for the shopper in the Shopper table,
he or she will be assigned a Shopper_ID. This ID can then be used to retrieve the shop-
per’s information using the static GetShopperByID() method, which will return a Shop-
per object populated with the shopper’s data.

In addition to the properties for all of the fields of the Shopper table, a ShoppingCart
property is provided for accessing an ArrayList of ShoppingCartItem objects. There is
also an Orders property for accessing an ArrayList of Order objects. To populate the
ArrayList of ShoppingCartItems, the GetShoppingCart() method will need to be called.
This is not done automatically; so if you don’t need to retrieve the items in the shop-
per’s cart for a particular page, the extra database call won’t be performed. After we’ve
retrieved the items in the shopper’s cart, several helper methods will give us the Sub
Total, Shipping Cost, Sales Tax, and the Total Cost of all of the items in the cart. These
methods are ingeniously named GetCartSubTotal(), GetCartShippingCost(), GetCart-
SalesTax(), and GetCartTotalCost(). We can also empty the shopper’s cart by calling the
EmptyCart() method and get the number of items in the shopper’s cart (without actu-
ally getting the items in the cart) with the GetShoppingCartItemCount() method.

Last, there is a CheckOut() method. Before we go through the code for this method,
let’s first look at the remaining objects, which will all be used inside of the CheckOut()
method.

ShoppingCartItem
The ShoppingCartItem object is used to maintain the shopper’s shopping cart. It is
responsible for adding, deleting, and updating records in the Shopping_Cart table.
There is an Add() method for adding new records, much like that of the Shopper object.
There is also a Delete() method, which will delete a record from the table, thereby
removing an item from a shopper’s cart. A static Delete() method is also provided,
which is more commonly used by a Web application because it doesn’t require an
instance of the ShoppingCartItem object. Once a shopper has added an item to his or
her cart, he or she will be allowed to update the quantity of a particular item. To do
this, we’ll use the static UpdateQuantityByID() method.

Applying What We’ve Learned So Far 257

Order and OrderItem
The OrderItem object simply provides access to the Order_Items table and at present
allows us only to add items to the table using its Add() method. When a shopper
checks out, one order item will need to be created for each item in the shopper’s cart.
In addition, one and only one record will need to be created in the Orders table. This is
done with the Order object. The Order object also has an Add() method that adds an
entry to the Orders table and retrieves the Order_ID of the newly added record, just as
the Shopper.Add() method retrieved the Shopper_ID. The client code should never
have a need to call the OrderItem.Add() method directly. Instead, it should call the
Order.AddOrderItem() method, shown here:

public void AddOrderItem(WileyConnection conn, SqlTransaction trans,

int intVehicleID, int intPartID, int intCategoryID,

string strDescription, decimal decPricePerUnit, int intQuantity,

float fltWeight)

{

//Create a new OrderItem

OrderItem item = new OrderItem();

//Fill in the members

item.OrderID = m_intOrderID;

item.VehicleID = intVehicleID;

item.PartID = intPartID;

item.CategoryID = intCategoryID;

item.Description = strDescription;

item.PricePerUnit = decPricePerUnit;

item.Weight = fltWeight;

item.Quantity = intQuantity;

//Add the item to the database

item.Add(conn, trans)

//Add the item to the OrderItem collection

m_arrOrderItems.Add(item);

}

This method takes parameters for all of the fields necessary to create an OrderItem
object in addition to the WileyConnection and a SqlTransaction object. (We’ll discuss
the SqlTransaction in the “Checking Out” section that follows.) It creates the OrderItem
object, sets the appropriate properties, and then calls it’s Add() method. If all goes well,
the new OrderItem object is added to the collection of the Order object.

Checking Out
Now we can go back and look at the CheckOut() method of the Shopper object.

public void CheckOut(WileyConnection conn, string strCCNumber,

string strCCExpirationDate,

258 Chapter 6

string strCCType, string strCCHolderName, out int NewOrderId)

{

NewOrderId = 0;

//Get the shopping cart

GetShoppingCart(conn);

//Create a new Order object

Order ord = new Order();

ord.ShopperID = m_intShopperID;

ord.TotalCost = GetCartTotalCost();

ord.ShippingCost = GetCartShippingCost();

ord.SalesTax = GetCartSalesTax();

ord.CCNumber = strCCNumber;

ord.CCExpirationDate = strCCExpirationDate;

ord.CCType = strCCType;

ord.CCHolderName = strCCHolderName;

//Start a transaction

SqlTransaction trans = conn.Connection.BeginTransaction();

//Add the order to the database

try

{

ord.Add(conn, trans);

}

catch(Exception ex)

{

//Roll back the transaction

trans.Rollback();

WileyObject.WriteToLog(ex.ToString(), "Shopper");

throw new Exception("Failed to add order - rolled back trans", ex);

}

//Iterate through the shopping cart items and create order items

foreach (ShoppingCartItem item in m_arrShoppingCart)

{

//Add an item to the order

try

{

ord.AddOrderItem(conn, trans, item.VehicleID, item.PartID,

item.CategoryID, item.Description,

item.PricePerUnit, item.Quantity, item.Weight);

}

catch(Exception ex)

{

//Roll back the transaction

trans.Rollback();

Applying What We’ve Learned So Far 259

WileyObject.WriteToLog(ex.ToString(), "Shopper");

throw new Exception("Failed to checkout - rolled back trans", ex);

}

}

//Commit the transaction

trans.Commit();

//Add the order to the collection

m_arrOrders.Add(ord);

//Empty the shopper’s cart

EmptyCart(conn);

//Make OrderId available to caller

NewOrderId = ord.OrderID;

}

This method will be called when the shopper has entered his or her credit card infor-
mation and confirmed his or her desire to check out. We won’t be providing code for
calling a credit card validation service in this book. Normally, you would need to vali-
date the given credit card information with one of the numerous credit card validation
services on the Internet before calling the CheckOut method. The GetShoppingCart()
method is called to retrieve all of the items in the shopper’s cart. Then a new Order
object is created, and its properties are filled in with the information that is retrieved
from the shopping cart, along with the passed-in credit card information.

What we need to do here is first create an entry in the Orders table and then create
one or more entries in the Order_Items table. If there is any failure during this process,
we will want to clean up any changes that we have made to the database. We won’t
want an entry in the Orders table that doesn’t have corresponding entries in the
Order_Items table and vice versa. One solution to this is to use a SqlTransaction. This
object is provided by the SQL Server managed provider and is used to represent a
Transact-SQL transaction. Here is how it works: To start a transaction and acquire a
SqlTransaction object, call the SqlConnection.BeginTransaction() method. This method
executes the BEGIN TRANSACTION statement on the connection.

SqlTransaction trans = conn.Connection.BeginTransaction();

We use the Connection property of the WileyConnection object to access the encap-
sulated SqlConnection object directly and call the BeginTransaction method. We could
easily add a BeginTransaction() method to the WileyConnection class to do this for us.
The BeginTransaction() method has several overloads that allow you to specify trans-
action names and isolation levels, but we don’t need that functionality here. The Sql-
Transaction object that is returned is saved in a variable for future use. Once we have a
SqlTransaction object, it is the key to controlling the transaction. The Rollback() and

260 Chapter 6

Commit() methods are available to roll back or commit the transaction. Any SqlCom-
mand that should participate in the transaction needs to be given a reference to the Sql-
Transaction object. Notice that the connection as well as the SqlTransaction are passed
into the Order.Add() method as follows:

//Add the order to the database

try

{

ord.Add(conn, trans);

}

catch(Exception ex)

{

//Rollback the transaction

trans.Rollback();

WileyObject.WriteToLog(ex.ToString(), "Shopper");

throw new Exception("Failed to add order - rolled back trans", ex);

}

Inside the Order.Add() method, the SqlTransaction is assigned to the SqlCommand
object by setting the Transaction property.

//Set the transaction that the command will execute under

cmd.Transaction = trans;

If the Order.Add() method fails, an Exception will be thrown. In the CheckOut()
method this is caught, and if Order.Add() fails, the exception is logged and thrown up
to the calling code, and the Rollback() method of the SqlTransaction object is called and
the method returns false. If Order.Add() is successful, an Order_ID will be available for
us to assign to the order items that we need to create. This will be the ID that will be
given to the shopper so that he or she can track the order. We haven’t provided any
order tracking facilities yet, so the shopper would just have to call Wiley Parts on the
phone. After we have an Order_ID, we need to iterate through the items in the shop-
ping cart and use the information available in each ShoppingCartItem to call the
Order.AddOrderItem() method. Once again, pass in the SqlTransaction object, which
gets passed down further to the OrderItem.Add() method and is assigned to the Sql-
Command object used there. Again, if there is any failure the SqlTransaction.Rollback()
method is called.

If the order and order items were created successfully the transaction is committed
by calling SqlTransaction.Commit(). The Order object is then added to the Orders col-
lection of the Shopper object. The EmptyCart() method is then called to clear the shop-
per’s cart because those items have already been checked out. Last, the method output
parameter, NewOrderId, is set to the OrderID of the newly added order. This ID can be
used by the client application to provide the OrderID to the shopper for his or her
reference.

Applying What We’ve Learned So Far 261

WileyPageBaseClass
All of the ASP.NET pages that we write for this application will inherit from the Wiley-
PageBaseClass object. This is the same class that was created in Chapter 3, “Server
Controls,” with a few additions that we will cover here. Recall that this class inherits
from System.Web.UI.Page. The methods that were added to the base class in Chapter 3
will remain. Those methods provided an easy way to write to the event log and read
and write cookies. The functionality that we added to this class provides an easy way
to handle connections to the database.

The first functionality added is a protected WileyConnection member variable. This
variable has been declared (m_conn), along with a protected property for accessing it.
The property declaration looks like this:

protected WileyConnection DBConnection

{

get

{

if (m_conn != null)

{

//Make sure the connection is open

if (m_conn.IsOpen())

{

//return the connection

return m_conn;

}

}

//The connection isn’t opened yet, so let’s open it

OpenDBConnection();

return m_conn;

}

}

Whenever we need to call a method on one of the objects that requires a WileyCon-
nection parameter, we use the DBConnection property. The get accessor of the property
always makes sure that the returned WileyConnection object is valid and opened for
use. If the connection is not already open, the OpenDBConnection() method is called,
which looks like this:

protected bool OpenDBConnection()

{

//Check to see if this connection is already open

if (m_conn != null)

{

if (!m_conn.Open(ConfigurationSettings.AppSettings["dsn"]))

{

262 Chapter 6

TE
AM
FL
Y

Team-Fly®

//Navigate to the error page

Response.Redirect(this.ErrorPage);

return false;

}

return true;

}

m_conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

return true;

}

First, this method checks to see if there is already a valid WileyConnection object. If
so, it calls the Open() method and, if there are no errors, it returns true. Notice that the
connection string that is passed to the open method is retrieved from an AppSetting
key named dsn. We will need to add the dsn key to the <appsettings> section of our
Web.Config file, as we discussed in the Web.Config section of Chapter 5. If there is no
valid WileyConnection object, then a new one is created. The connection is opened in
the constructor of the WileyConnection object, so this is all taken care of in one clean
step.

Next there is a CloseDBConnection() method.

protected void CloseDBConnection()

{

if (m_conn != null)

m_conn.Close();

}

This method ensures that the connection to the database is closed and once again
redirects the user to the error page if an error occurs. The last thing of note in this class
is that we have wired up a handler for the Page.Unload event in the constructor with
this line of code.

Page.Unload += new System.EventHandler(Page_Unload);

The Unload event occurs when the page is unloaded from memory. This is a great
place to clean up resources such as database connections. Here is the simple imple-
mentation.

private void Page_Unload(object sender, EventArgs e)

{

//Close the database connection

CloseDBConnection();

}

Applying What We’ve Learned So Far 263

All that we need to do is call the CloseDBConnection() method, and the database
connection will be closed. One thing: The CloseDBConnection() method can be called
at any time, and although it will be called when the page is unloaded from memory,
there may be times when you would want to call it manually. For example, if you’ve
opened a database connection and are done with it, but your page has a lengthy oper-
ation that must be performed afterward, you could call CloseDBConnection manually
rather than wait for it to be called automatically when the page unloads.

That’s all that has been added to this class. We think that you will find the database
connection features very handy and easy to use in your client code.

WileyControlBaseClass
This class is identical to WileyPageBaseClass with the exception that it inherits from
System.Web.UI.UserControl rather than System.Web.UI.Page. We will use this class as
the base class for any user controls that we create.

Creating the User Interface

Now that we have a usable data model and set of objects to support the functionality
of the business, we will create the user interface to the actual Web application. One of
the design goals of this application is to achieve as much abstraction as possible
between the user interface and the business logic and database system. To meet this
requirement, we won’t have any data access in the application whatsoever. Nowhere
will we access any of the data without doing so through the object model. We will
employ many of the framework controls and objects that we have studied so far in the
book, and we will use ASP.NET Sessions and ViewState for keeping application infor-
mation across trips to the server. We’ve limited our code in the book to the lines under
discussion; complete code for all of the pages in the application is available on the com-
panion Web site. Let’s jump right into the app starting with the application startup
code in Global.asax.

The WileyError Page
The WileyError page is used to show that an error has occurred. If an exception is
thrown on any of the pages in the application, we go directly to this page. In the

264 Chapter 6

QueryString used to request this page, we pass the error message so that it can be dis-
played to the user. We could have set up a default error message in IIS to be displayed
whenever there is a scripting error, but handling this manually lends more power to
us; we could not have passed the error message if we had let IIS handle the error auto-
matically. Figure 6.2 is an example of the error page in action.

Here is a code snippet for displaying the error page:

try
{
//Application code here

}
catch(Exception ex)
{
ShowErrorPage(ex);

}

Of course, the ShowErrorPage method is in the base class, and it can easily be called
from anywhere in the application to provide a consistent feedback to problems
encountered. Plus, making this call in every exception is a simple way to ensure the
user never sees the standard unhandled exception screen generated by the system.

Figure 6.2 The error page.

Applying What We’ve Learned So Far 265

The HeaderBar User Control

The HeaderBar is a user control, which we discussed in Chapter 5. This control dis-
plays the logo and a simple navigation menu on top of all the pages of the application.
This is not just a couple of links, as many menus are. The HeaderBar user control is a
smart menu; it will display a link to go to the cart page only if it determines that there
are, in fact, items in the cart. It also dynamically displays a greeting to the user, which
helps the user see that the application knows who he or she is. Although it is not a
problem to go to the cart page when there are no cart items, it would be a problem to
go there if the shopper had not been assigned a valid shopper ID yet. Alternately, we
could handle checking for items in the cart page or even in the user control, but this
example demonstrates that you can perform useful operations in a user control.

N OTE Remember not to include a <form> tag in a user control, which can
cause problems in ASP.NET. Also, there is no need to include <html>, <title>,
or <head> tags in a user control because the control will be a part of the
page in which it is used, which will have already provided the tag. If you are
relying on styles or a link to a style sheet in your user control, the styles that
are included in the main page will not be applied to the user control when
viewing it inside the Visual Studio .NET IDE; the styles will take effect in the
browser at runtime, however.

Although there is nothing special required in the ascx file of the user control, there
are at least two extra lines of code needed in the page that hosts the user control that
will appear in every page in this application. The first is a directive that declares that
the page may use the control and describes how to refer to it:

<%@ Register TagPrefix="wiley_control" TagName="HeaderBar"

src="Headerbar.ascx" %>

The second is code that actually declares an instance of the control wherever you
want it to appear on the page:

<wiley_control:headerBar ShowProfileLink="true" ShowCartLink="true"

ShowShopLink="false" runat="server" ID="HeaderBar1" />

In this application, this line is placed just inside the <body> tag, so that the control
will be displayed first at the top of each page. Notice that we have given the user con-
trol an ID of HeaderBar1. In our code-behind class, we can create a protected member
variable of type headerBar, and then access it in code, like this:

protected headerBar HeaderBar1;

...

HeaderBar1.Visbile = true;

HeaderBar1.ShowProfileLink = true;

266 Chapter 6

In the next code snippet we will see what our code-behind in the user control does.
First, it checks in Session state to see if there is a valid shopper object. There will be a
shopper object only during the visit of the shopper, so if the shopper is making his or
her first request to the application, this object will not yet exist. If the shopper object
exists, we show or hide user interface objects, links in this case, accordingly. If the
shopper object does not exist, we must look in the cookies collection to determine if he
or she has been here before. If so, we read the shopper ID from the cookie, load the
shopper object into Session state, and continue. If the shopper has no cookie for our
site, then we must create the shopper object for the first time. Once it is created by the
call to Shopper.Add(), again we store the new shopper object in Session state and con-
tinue. The only difference for a new shopper is that we don’t yet know his or her name,
so we simply refer to him or her as “New Shopper.”

Also here is the code that limits access to the cart page if there are no cart items. It
renders the cart link invisible when appropriate. The aspc page is very simple and has
only an image for the logo and a few HyperLink controls for navigation. Also in the
code-behind file are the public properties for each of the programmable features of the
user control. In this code snippet, we show you a public property called ShowPro-
fileLink, which is set in the declaration of the control in an aspx file, as seen in the pre-
vious snippet. Because we included the user control in the aspx code pages at design
time, we can set these properties there. When the control is loaded, it can create its user
interface based on the properties. If we didn’t expose these properties, then the con-
taining page would have no way to customize the user control. There are a few other
properties, but for this example, we are looking at just this one.

private bool m_blnShowProfileLink = false;

public bool ShowProfileLink

{

get { return m_blnShowProfileLink; }

set { m_blnShowProfileLink = value; }

}

...

private void Page_Load(object sender, System.EventArgs e)

{

try

{

Shopper shopper = (Shopper)Session["ShopperObject"];

if (shopper == null)

{

//There is no shopper in the session state, so look for it in the

//cookies.

string strShopperID = ReadCookie("WileyParts", "ShopperId");

if (strShopperID.Length > 0)

{

Applying What We’ve Learned So Far 267

/* If the lenth of the string returned by ReadCookie is greater

* than 0, then the client has a ShopperId in his cookie

* collection. Create a shopper object, and store it in session

* state. */

shopper = Shopper.GetShopperByID(DBConnection,

Convert.ToInt32(strShopperID));

Session["ShopperObject"] = shopper;

}

else

{

//The client does not have a ShopperID yet, so create one for him.

shopper = new Shopper();

shopper.Add(DBConnection);

//Save the new shopper in session state.

Session["ShopperObject"] = shopper;

//Write the ShopperId to an indefinite persistant cookie cookie.

WriteCookie("WileyParts", "ShopperId",

shopper.ShopperID.ToString(), DateTime.MaxValue);

}

//No shopper object yet, so show links accordingly.

lnkProfile.Visible = false;

lnkViewCart.Visible = false;

lblShopper.Text = "";

}

//Show links accordingly.

int count;

shopper.GetShoppingCartItemCount(DBConnection, out count);

if (count > 0)

lnkViewCart.Visible = m_blnShowCartLink;

lnkShop.Visible = m_blnShowShopLink;

lnkProfile.Visible = m_blnShowProfileLink;

//Now show shopper name if they have entered one yet.

if (shopper.FirstName.Trim().Length > 0)

lblShopper.Text = string.Format("Welcome: {0}",

shopper.FirstName);

else

lblShopper.Text = "Welcome: New Shopper";

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

268 Chapter 6

The VehicleSelect Page

The VehicleSelect page is the first page of the application; this is the entry point for pub-
lic users. The user will be presented with a drop-down list of years for vehicles. When
the user selects a year, he or she will be presented with all of the vehicles in our database
for that year. When the user selects a vehicle, he or she will move to the next page. This
page, like all of the pages in this application, has been kept simple, so you can see just
what is important, without a lot of complexity. Now let’s look at the aspx code that lays
out the grid. Notice how we chose to set the AutoGenerateColumns property to false
because we want to see only a specific portion of the Vehicle objects in our display. Our
DataGrid is quite simple and consists of the Make, Model, a custom HeaderStyle, and a
ButtonColumn so that the user can actually choose a vehicle from the list.

<asp:DataGrid font-size=9pt AutoGenerateColumns=false Width=100%

id=grdVehicles datakeyfield="VehicleID" runat="server">

<Columns>

<asp:ButtonColumn Text="Buy Parts" ItemStyle-Width=80px

CommandName="Select">

</asp:ButtonColumn>

<asp:BoundColumn HeaderText="Make" DataField="Make">

</asp:BoundColumn>

<asp:BoundColumn HeaderText="Model" DataField="FullModel">

</asp:BoundColumn>

</Columns>

<HeaderStyle Font-Bold="True" ForeColor="White" BackColor="Maroon">

</HeaderStyle>

</asp:DataGrid>

As in the section on the DataGrid, the HeaderStyle template item describes the look
of the header row. In this simple grid, we don’t have to include a FooterStyle because
the grid has no footer. The built-in ButtonColumn is used with the CommandName of
“Select” and some simple bound columns. Remember that we needed to set the Auto-
GenerateColumns property to false; otherwise, the columns would be accompanied by
all of the columns (properties) of each data source item. Because the ButtonColumn is
a Select button, the SelectedIndexChanged event is fired when clicked. We chose to use
the default hyperlink style ButtonColumn because it looks best with the thin rows in
the grid. Now, let’s look at the page-loading code in the code-behind file:

protected void Page_Load()

{

if (!IsPostBack)

{

try

{

Applying What We’ve Learned So Far 269

//Bind for available model years

cboYear.DataSource = Vehicle.GetVehicleYears(DBConnection);

cboYear.DataBind();

cboYear.Items.Insert(0, "Select");

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

else

{

//Don’t need this item after first selection is made.

cboYear.Items.Remove("Select");

}

}

Let’s examine this code in more detail. First, everything is wrapped in a try...catch,
and the error page is called if any exception is thrown. This is done throughout the
entire application. Next, the drop-down list control is filled with the available years. To
do this, we bind to the ArrayList of year strings that is returned by the Vehicle object.
Because this page is derived from WileyPageBaseClass, the DBConnection variable is
passed to the method. We didn’t need to use the DataTextField or DataValueField
because the data source contains only strings. If each year were enveloped in an object,
then we would have had to provide the name of the property that we will want to use
as the value and text of the list items. Because these properties are not set, the list calls
ToString() on each object, in hopes that it will return a useful piece of data to be dis-
played in the list. Because the years are strings, they do support ToString(), which
returns the actual year. When not in a PostBack situation, the string “Select” is inserted
into the list. This serves two purposes: It shows the user a clue as to what to do first,
and second, it forces the user to select a year. This causes the SelectedIndexChanged
event to be fired for the control, which is where the code to get the vehicles resides. On
the PostBack, we remove the “Select” from the list, so it won’t cause problems in the
handler code. Let’s look at the code for when a user selects a year from the list.

protected void cboYear_SelectedIndexChanged(object sender,
System.EventArgs e)

{
try
{
//Make sure a year is selected
if (cboYear.SelectedItem.Text == "Select") return;

//Load vehicles for the selected year
ArrayList data = Vehicle.GetVehiclesByYear(DBConnection,
Convert.ToInt32(cboYear.SelectedItem.Text));

lblFound.Text = string.Format("{0} vehicle(s) found", data.Count);

if (data.Count > 0)

270 Chapter 6

{

//Bind for available model years

grdVehicles.DataSource = data;

grdVehicles.DataBind();

lblFound.Visible = true;

}

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

First, while inside the try...catch the GetVehiclesByYear method is called on the
Vehicle object and the returned ArrayList used for binding in the DataGrid. Next, we
get the count of the items found to display in a label and finally bind the DataGrid to
the ArrayList of vehicles.

NOTE When binding a control such as a DataGrid to a collection such as an
ArrayList, it is sometimes nice to show the count of the rows before or after the
grid. In an ArrayList, this can be found by simply accessing the Count property.
In an array, we can use the Length property. A SqlDataReader is different in that
it is forward-only and does not know its contents until it has read them all. For
this reason, there is no count or length property on it. In that case, we can
simply have our control bind to the SqlDataReader, then get the count of items
in the control. Most controls support this; the DataGrid exposes it through the
Items.Count property.

When the user selects a vehicle from the list, theDataGrids SelectedIndex event will
be fired, because there is a ButtonColumn with a CommandName of ‘Select’ in the
grid. An item in this ButtonColumn is what the user will click. Now for the code that
handles a selection of a vehicle:

protected void grdVehicles_SelectedIndexChanged(object sender,
System.EventArgs e)

{
try
{
//Store the user’s vehicle choice for later use.
Session["CurrentVehId"] =
grdVehicles.DataKeys[grdVehicles.SelectedIndex].ToString();

}
catch(Exception ex)
{
ShowErrorPage(ex);

}
Response.Redirect("categories.aspx");

}

Applying What We’ve Learned So Far 271

The currently selected vehicle ID is stored in a Session state variable for later use.
This works well in this particular application; passing the vehicle ID via a QueryString
would be less than ideal because the next page called doesn’t use it, but the one after it
does. Using the QueryString would have required us to pass it along twice. Next, we
call Redirect to move to the next page. Redirect is the standard method used to move
between pages in server-side code. Figure 6.3 shows the resulting page in action after
the user has selected a year.

That’s all there is to the vehicle selection page. Try to imagine what the code would
look like in classic ASP for this page. This code, in ASP.NET, is far more elegant, clean,
and maintainable. Now let’s move on to the second page, the categories page.

The Categories Page
The Categories page allows the user to select a category in which to search for parts.
This time, we used a DataList. We could easily have used a DataGrid as on the Vehi-
cleSelect page, but we wanted to get some practice with the more advanced DataList.
Using the DataList allows us to customize fully what is in each cell of the grid, as
opposed to forcing us to use just the ButtonColumns and BoundColumns of the Data-
Grid. By using the DataList, we are able to help keep more of the categories on the
same screen, without scrolling as much, due to the fact that the DataList supports mul-
tiple columns with the RepeatColumns property. When the user selects a category, he

Figure 6.3 VehicleSelection in action.

272 Chapter 6

TE
AM
FL
Y

Team-Fly®

Figure 6.4 The Categories page in action.

or she will be sent to the next page, which will show parts for only the selected cate-
gory. When the page loads, the DataList binds to the collection of categories returned
from the call to the GetAllCategories method. Figure 6.4 shows the page in action.

First, we’ll look at the aspx code, in which we create a DataList to display the cate-
gories. Each category is displayed as a HyperLink control, inside a small table to add a
box shape around each item. You can see the table in the item template, along with its
contents, which is a LinkButton bound to the Description property of the bound cate-
gory object. For each record (or object in this case) that is in the data source, an HTML
table will be created from the ItemTemplate. Notice how we also bound to the Catago-
ryID for the CommandArgument on each HyperLink so that we can easily check
which category the user wants in the server-side code.

NOTE We used the CommandName to store the key of the category so that we
can determine which category was selected in the code-behind class. We could
have used the DataKeyField just as we did on the DataGrid in the VehicleSelect
page, but we wanted to use this technique here as an alternative. Also
remember that in order to bind in the aspx code, we had to include the Import
statement to bring the correct namespace into scope.

Applying What We’ve Learned So Far 273

<%@ Import Namespace="WileyParts.Objects" %>

.

.

.

<asp:DataList id=lstCategories repeatcolumns=2 runat="server">

<ItemTemplate>

<table width=200px bgcolor=tan cellpadding=5>

<tr>

<td align=center>

<asp:linkbutton width=100% text=’

<%# ((PartCategory)Container.DataItem).Description %>’

Runat=server

CommandName=’select’

CommandArgument=’

<%#((PartCategory)Container.DataItem).CategoryID.ToString()

%>’>

</asp:linkbutton>

</td>

</tr>

</table>

</ItemTemplate>

</asp:DataList>

Now, let’s look at the page load code, which simply binds the DataList to the cate-
gories data source.

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

try

{

//Bind for available model years

lstCategories.DataSource =

PartCategory.GetAllCategories(DBConnection);

lstCategories.DataBind();

}

catch(Exception ex)

274 Chapter 6

{

ShowErrorPage(ex);

}

}

}

When the user selects a category from the DataList, we will get the ItemCommand
event in the code-behind because each DataList item has a LinkButton with its Com-
mandName enabled. Remember that even though the user is clicking on a LinkButton
control, the DataList raises the event because a DataList is able to bubble events up
from its contained controls. In this handler, we redirect to the next page, passing the
selected category ID along in the QueryString. This is where the CommandArgument
comes in handy. We have access to the CommandName property through the Data-
ListCommandEventArgs argument of the event handler. This is given to us by the
framework, and with it we can determine the category ID because it was stored in this
property to begin with.

protected void lstCategories_ItemCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

Response.Redirect(string.Format("partselect.aspx?catid={0}",

e.CommandArgument));

}

The PartSelect Page
On the PartSelect page, the parts that are available for the specific year and vehicle that the
user selected are loaded into a DataList. This is basically the products page of the shop-
ping cart site. The user selects the items he or she wants to buy, and they are inserted into
the cart. In the code for the page, we get the category ID from the QueryString and store it
in the ViewState object. This means that it will be stored invisibly on the client’s browser
in a hidden field, so that it can be known on this page’s next trip to the server. We could
have stored this in another Session state variable, but we wanted to use a different tech-
nique this time. Next, retrieve the current vehicle ID from the Session variable, and set the
DataSource for the DataList to the parts returned by calling GetPartsByVehicleAnd-
Category on the Part object. The vehicle is displayed in the caption on the screen so the
user can check that he or she is looking at parts for the correct automobile. In this case, the
vehicle information is displayed in a Label control. Figure 6.5 shows the page in action.

Applying What We’ve Learned So Far 275

Figure 6.5 The parts selection page in action.

The following is the aspx code for the page. Remember, although we don’t include
it in the code that follows, we must use the Import directive to access the objects in the
namespace, as we did in the previous example. We use a standard DataList again. As
you can see, the DataList can quickly become a valued member of your programmer’s
toolbox when writing Web applications with ASP.NET.

<div style="height:300px;overflow:scroll;">

<asp:DataList id=lstParts runat="server">

<ItemTemplate>

<table width=600px cellpadding=5>

<tr bgcolor=lemonchiffon>

<td>

<asp:label width=150px style="text-align:right"

backcolor=tan font-bold=true runat=server>

Description

</asp:label>

<asp:label id=lblDesc runat=server Text=’<%#

((Part)Container.DataItem).Description %>’>

</asp:label>

<asp:label width=150px style="text-align:right"

276 Chapter 6

backcolor=tan font-bold=true runat=server>

Price

</asp:label>

<asp:label id=lblWeight runat=server Text=’<%#

((Part)Container.DataItem).Weight + " lbs" %>’>

</asp:label>

<asp:label width=150px style="text-align:right"

backcolor=tan font-bold=true runat=server>

Shipping Weight

</asp:label>

<asp:label id=lblPrice runat=server Text=’

<%# string.Format("{0:c}",

((Part)Container.DataItem).Price)

%>’>

</asp:label>

<asp:LinkButton Text="Add to cart..."

Runat=server

CommandName=’add’

CommandArgument=’

<%# ((Part)Container.DataItem).PartID.ToString() %>’>

</asp:LinkButton>

</td>

</tr>

</table>

</ItemTemplate>

</asp:DataList>

</div>

Each part item is created from Label controls and a LinkButton. The LinkButton has
a CommandName of “add” even though we don’t use it in the server-side code. This
gives us the option to add more buttons to each part item at a later date, such as a View
Detail button that would display the specifications for the selected part. If we were to
add another button, we would need to check the CommandName in the event handler
to see which button was clicked. Here, because there is only one button, the Com-
mandName of “add” is really optional. We have used more controls in the ItemTem-
plate this time, so you can see that the items in a DataList can be as complex as you
need them to be. The controls are bound to the part objects from the data source in the
usual fashion, except for the Price property, which makes use of the string.Format
method to display it in a currency format. Also, notice how a standard HTML <div>
tag adds scroll bars to the parts list. Next, we move on to the page-loading section of
the code-behind.

protected void Page_Load(object sender, System.EventArgs e)

{

try

Applying What We’ve Learned So Far 277

{

int catid =

Convert.ToInt32(Request.QueryString["catid"].ToString());

ViewState["CatId"] = catid.ToString();

int vehid = Convert.ToInt32(Session["CurrentVehId"].ToString());

lstParts.DataSource =

Part.GetPartsByVehicleAndCategory(DBConnection,

vehid, catid);

lstParts.DataBind();

//Load vehicle desc

Vehicle vehicle = Vehicle.GetVehicleByID(DBConnection,

Convert.ToInt32(Session["CurrentVehId"]));

lblVehicleDesc.Text = string.Format("{0} {1}", vehicle.VehicleYear,

vehicle.FullModel);

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

When the user selects a part to buy, the ItemCommand event is fired for the DataList.
In this function, the part selected is added to the cart. When the user selects a part, a new
ShoppingCartItem object is created, and its data is populated. This object is filled by inter-
rogating the DataList for the respective controls in each item, via calling FindControl.

NOTE We could have saved the part IDs in the DataKeyField of the DataList
and then loaded the real Part object when an item was selected. Then, we
could have built the ShoppingCartItem from the Part item instead of having to
interrogate the DataList controls for their values. That would have required
another query from the database to get the part, when most of the properties
of the part already exist in the list item. Plus, this shows you an alternative to
always going to the database for the needed data.

In this handler, we also need to determine whether the shopper has given us his or
her personal information yet. We do this by checking the Boolean IsComplete property
of the Shopper object. This property checks all of the required fields of the Shopper
object. If data exists for all of the required fields the property will return true; other-
wise, it will return false. Here is what the handler looks like:

protected void lstParts_ItemCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

bool blnFirstItem = false;

try

{

278 Chapter 6

//Get the shopper object out of the session state

Shopper shopper = (Shopper)Session["ShopperObject"];

if (shopper.IsComplete)

{

//Set the FirstItem flag to true so that we know to redirect the

//user to the profile page to acquire or confirm his personal

//information.

blnFirstItem = true;

}

//Add part to cart

ShoppingCartItem item = new ShoppingCartItem();

item.CategoryID = Convert.ToInt32(ViewState["CatId"].ToString());

item.Description = ((Label)e.Item.FindControl("lblDesc")).Text;

item.PartID = Convert.ToInt32(e.CommandArgument);

item.PricePerUnit =

Convert.ToDecimal(((Label)e.Item.FindControl(

"lblPrice")).Text.Replace("$", ""));

item.Quantity = 1;

item.ShopperID = shopper.ShopperID;

item.VehicleID = Convert.ToInt32(Session["CurrentVehId"]);

item.Weight = Convert.ToInt32(((Label)e.Item.FindControl(

"lblWeight")).Text.Replace(" lbs", ""));

item.Add(DBConnection)

catch(Exception ex)

{

ShowErrorPage(ex);

}

if (blnFirstItem)

//Go to profile page

Response.Redirect("profile.aspx");

else

//Go to cart page

Response.Redirect("cart.aspx"); }

}

The Profile Page
The profile page is the place where the user enters his or her demographic information.
This is stored across visits and is reloaded via a cookie the next time the shopper visits
the site. The page is a simple data-entry page, consisting of TextBoxes, a DropDown-
List, and an ImageButton with which to save the input. You can see what the page
looks like in Figure 6.6; then we move straight into the aspx code, of which we will look
at only a small snippet.

Applying What We’ve Learned So Far 279

Figure 6.6 The profile page in action.

<asp:label width="150px" font-bold="true" runat="server" id="Label7">

Home Phone</asp:label>

<asp:textbox itemstyle-width="200px" runat="server"

id="txtHomePhone"></asp:textbox>

<asp:RequiredFieldValidator id="RequiredFieldValidator6" runat="server"

ErrorMessage="Required Field" ControlToValidate="txtHomePhone">

</asp:RequiredFieldValidator>

<asp:label width="150px" font-bold="true" runat="server" id="Label8">

Email</asp:label>

<asp:textbox itemstyle-width="200px" runat="server"

id="txtEmail"></asp:textbox>

<asp:RequiredFieldValidator id="RequiredFieldValidator7" runat="server"

ErrorMessage="Required Field" ControlToValidate="txtEmail">

</asp:RequiredFieldValidator>

280 Chapter 6

<asp:label width="150px" font-bold="true" runat="server"

id="Label9"></asp:label>

<asp:Imagebutton alttext="Continue" ImageUrl="images/continue.gif"

runat="server" id="btnContinue"></asp:Imagebutton>

The aspx code is made up of simple entry fields with validation controls attached.
The only thing worth mentioning is the blank Label control before the ImageButton.
This ensures that the button lines up directly underneath the controls above it. The
code-behind code is straightforward as well. When the page is loaded, the shopper’s
information in displayed in the fields, and when the user clicks the Save button, the
shopper’s information is updated via a call to Shopper.Save. We included only a few
states in the list for the example, but the list might be better suited to Data Binding to
states stored in a database.

protected void Page_Load(object sender, System.EventArgs e)

{

try

{

if (!IsPostBack)

{

//Load states into list

cboState.Items.Add(new ListItem("", ""));

cboState.Items.Add(new ListItem("Alabama", "AL"));

cboState.Items.Add(new ListItem("Florida", "FL"));

cboState.Items.Add(new ListItem("Georgia", "GA"));

cboState.Items.Add(new ListItem("North Carolina", "NC"));

cboState.Items.Add(new ListItem("South Carolina", "SC"));

//Load any existing shopper contact info

Shopper shopper = (Shopper)Session["ShopperObject"];

txtCity.Text = shopper.City.Trim();

txtEmail.Text = shopper.Email.Trim();

txtFirstName.Text = shopper.FirstName.Trim();

txtHomePhone.Text = shopper.Phone.Trim();

txtLastName.Text = shopper.LastName.Trim();

txtStreet.Text = shopper.Address.Trim();

txtZip.Text = shopper.PostalCode.Trim();

//Load correct state

for(int i = 0; i < cboState.Items.Count; i++)

{

if (cboState.Items[i].Value == shopper.StateCode)

{

cboState.SelectedIndex = i;

break;

}

}

Applying What We’ve Learned So Far 281

}

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

protected void btnContinue_Click(object sender,

System.Web.UI.ImageClickEventArgs e)

{

try

{

//Save shopper’s info

Shopper shopper = (Shopper)Session["ShopperObject"];

shopper.City = txtCity.Text.Trim();

shopper.Email = txtEmail.Text.Trim();

shopper.FirstName = txtFirstName.Text.Trim();

shopper.Phone = txtHomePhone.Text.Trim();

shopper.LastName = txtLastName.Text.Trim();

shopper.Address = txtStreet.Text.Trim();

shopper.PostalCode = txtZip.Text.Trim();

shopper.StateCode = cboState.SelectedItem.Value;

shopper.Update(DBConnection);

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

//Redirect to cart page

Response.Redirect("cart.aspx");

}

The Cart Page
The cart page is one of the most complex pages in the whole application. On this page,
the user will be able to see what he or she has placed in the cart so far, as well as delete
items and edit their quantities. First, we load the cart by loading the shopper and call-
ing the GetShoppingCart method to which the cart’s DataList is bound. When we load
the DataList, we handle things a little differently than in other pages so far. For the
footer of the cart, we want to show the cart totals, so we will need to know when dur-
ing the Data Binding stage the DataList is ready to create the last row of the cart—the
footer. For the footer, we have controls that are embedded in the Footer Template of the
DataList, as we do for the different controls used while editing the cart item. First, let’s
look at the page in action in Figure 6.7; then we will look into the aspx code.

282 Chapter 6

TE
AM
FL
Y

Team-Fly®

Figure 6.7 The shopping cart page in action.

<asp:DataList id=lstCart datakeyfield="ShoppingCartItemID"

runat="server">

<HeaderTemplate>

<div style="background-color:tan">

<asp:label width=100px font-bold=true runat=server>

</asp:label>

<asp:label width=220px font-bold=true runat=server>

Description

</asp:label>

<asp:label width=80px font-bold=true runat=server>

Weight

</asp:label>

<asp:label width=120px font-bold=true runat=server>

Qty

</asp:label>

Applying What We’ve Learned So Far 283

<asp:label width=80px font-bold=true runat=server
style="text-align:right">
Unit Price

</asp:label>

</div>
</HeaderTemplate>

<ItemTemplate>
<div>

<asp:LinkButton width=100px Text="(Delete)" CommandName="delete"
runat=server>

</asp:LinkButton>

<asp:label width=220px runat=server><%#
((ShoppingCartItem)Container.DataItem).Description %>

</asp:label>

<asp:label width=80px runat=server><%#
((ShoppingCartItem)Container.DataItem).Weight + " lbs" %>

</asp:label>

<asp:label width=20px runat=server><%#
((ShoppingCartItem)Container.DataItem).Quantity %>

</asp:label>

<asp:LinkButton Text="(Change)" width=100px CommandName="edit"
runat=server>

</asp:LinkButton>

<asp:label width=80px runat=server style="text-align:right"><%#
string.Format("{0:c}",
((ShoppingCartItem)Container.DataItem).PricePerUnit)%>

</asp:label>

</div>
</ItemTemplate>

<EditItemTemplate>
<div>

<asp:LinkButton width=100px Text="(Delete)" CommandName="delete"
runat=server>

</asp:LinkButton>

<asp:label width=220px runat=server><%#
((ShoppingCartItem)Container.DataItem).Description %>

</asp:label>

<asp:label width=80px runat=server><%#
((ShoppingCartItem)Container.DataItem).Weight + " lbs" %>

</asp:label>

284 Chapter 6

<asp:TextBox width=20px runat=server id=txtQty text=’<%#

((ShoppingCartItem)Container.DataItem).Quantity %>’>

</asp:TextBox>

<asp:LinkButton Text="(Ok)" CommandName="update"

runat=server>

</asp:LinkButton>

<asp:LinkButton Text="(Cancel)" CommandName="cancel"

runat=server>

</asp:LinkButton>

<asp:label width=80px runat=server

style="text-align:right"><%#

string.Format("{0:c}",((ShoppingCartItem)Container.DataItem).

PricePerUnit)%>

</asp:label>

</div>

</EditItemTemplate>

<FooterTemplate>

<div style="background-color:tan">

<asp:label width=450px font-bold=true runat=server>

</asp:label>

<asp:label width=80px font-bold=true runat=server>

Sub Total

</asp:label>

<asp:label width=80px runat=server id=lblSubTotal

style="text-align:right">

</asp:label>

<asp:label width=450px font-bold=true runat=server>

</asp:label>

<asp:label width=80px font-bold=true runat=server>

Shipping

</asp:label>

<asp:label width=80px runat=server id=lblShipping

style="text-align:right">

</asp:label>

<asp:label width=450px font-bold=true

runat=server></asp:label>

Applying What We’ve Learned So Far 285

<asp:label width=80px font-bold=true

runat=server>Tax</asp:label>

<asp:label width=80px runat=server id=lblTax style="text-

align:right">

</asp:label>

<asp:label width=450px font-bold=true

runat=server></asp:label>

<asp:label width=80px font-bold=true runat=server>

Total

</asp:label>

<asp:label width=80px runat=server id=lblTotal

style="text-align:right">

</asp:label>

</div>

</FooterTemplate>

</asp:DataList>

</P>

<asp:Hyperlink id=lnkCheckOut ImageUrl="images/checkout.gif"

NavigateURL="checkout.aspx" runat=server

altText="Checkout">

</asp:HyperLink>

<asp:ImageButton id=btnEmptyCart ImageUrl="images/emptycart.gif"

runat=server altText="Empty Cart">

</asp:ImageButton>

In the aspx page, we have created a DataList, just as we have on other pages thus far.
But, this time, we are using a dedicated template for the different parts of the grid. For
the cart items, we are displaying the item information nicely formatted in Label con-
trols in the ItemTemplate, which are bound to the ShoppingCartItem objects in the data
source. For the HeaderTemplate, we are defining static Label controls simply to display
the text that makes up the column headers. For the FooterTemplate, as mentioned
before, we are using Label controls again, but this time to display the cart summary
information. What is probably the most complex part of the DataList is the Edit-
ItemTemplate. In this template, we use Labels to show some of the cart item data, but
we also use a TextBox and a few link buttons, with which the user can change the quan-
tity of any item in the cart. We will study this more in detail, but first let’s look at how
the page is loaded and how the items are created during the data binding stage. We
will need to reuse the code that loads the page in several places, so we have placed it
in a method called LoadPage(), which will be called by the Page_Load method.

protected Shopper m_shopper = null;

protected void Page_Load(object sender, System.EventArgs e)

{

286 Chapter 6

if (!IsPostBack)

{

LoadPage();

}

}

private void LoadPage()

{

try

{

m_shopper = (Shopper)Session["ShopperObject"];

m_shopper.GetShoppingCart(DBConnection);

if (m_shopper.ShoppingCart.Count == 0)

{

btnEmptyCart.Visible = false;

lnkCheckOut.Visible = false;

lblCartEmpty.Visible = true;

lstCart.Visible = false;

}

else

{

btnEmptyCart.Visible = true;

lnkCheckOut.Visible = true;

lblCartEmpty.Visible = false;

lstCart.DataSource = m_shopper.ShoppingCart;

lstCart.DataBind();

}

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

protected void lstCart_ItemDataBound(object source,

System.Web.UI.WebControls.DataListItemEventArgs e)

{

try

{

//Create totals row

if (e.Item.ItemType == ListItemType.Footer)

{

((Label)e.Item.FindControl("lblSubTotal")).Text =

string.Format("{0:c}", m_shopper.GetCartSubTotal());

((Label)e.Item.FindControl("lblShipping")).Text =

string.Format("{0:c}", m_shopper.GetCartShippingCost());

((Label)e.Item.FindControl("lblTax")).Text =

string.Format("{0:c}",

m_shopper.GetCartSalesTax());

Applying What We’ve Learned So Far 287

((Label)e.Item.FindControl("lblTotal")).Text =

string.Format("{0:c}",

m_shopper.GetCartTotalCost());

}

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

In the LoadPage() function, we get the shopper from the Session variable and store
it at the class level. Then, we get the cart item from the object model, and if there are
items, we bind the DataList to them. If there are no items in the cart, we inform the
shopper of this fact and refrain from displaying an empty DataList. The calls to per-
form the data binding are typical; however, we handle the ItemDataBound event for
the DataList so that we can perform special action when the DataList is in the process
of creating its footer section. The controls in the FooterTemplate are available at this
point because the DataList has created them while creating the DataLists contents. This
is where we insert our own values for the cart summary information, which is exposed
as properties of the shopper object. This technique is not unique to the FooterTemplate
creation, but it is available on every item created by the DataList. We could have
checked for the ListItemType.Item, or ListItemType.Header if we wanted to, and we
would then have access directly to the controls in those respective templates. Notice
that we have to use FindControl to get the control at runtime, then cast it out to the type
we know is in the template. We don’t have design-time access to these controls because
they are not really created until the DataList is generated at runtime.

Now let’s look at what happens when the user clicks on one of the links in a cart
item. To allow editing of the quantity of an item in the cart, we set the CommandName
of the Change Qty LinkButton to “edit”; when the user clicks the button, the EditCom-
mand event is fired. The EditItemIndex of the DataList in this handler is set to the
clicked items index, and the page is reloaded with the EditItemTemplate drawn in
place of the current item. The DataList handles this redrawing of the grid with the cor-
rect template on the correct item automatically. The TextBox that appears allows the
user to update the quantity of the item in the cart. Also, the Ok and Cancel buttons are
displayed, with the CommandNames of “update” and “cancel,” respectively. In our
code-behind, just as when the DataList fires the EditCommand event when the Change
Qty link is clicked, the UpdateCommand, DeleteCommand, and CancelCommand
events are fired when their respective controls are clicked. We can see in the code snip-
pet that in the UpdateCommand handler, we get the value of the TextBox in the tem-
plate and change the cart item’s quantity via the object model. We then reload the page
to show the current changes. Last, we have the Empty Cart button, which simply calls
on the object model to empty the items in the cart, then reloads the page so the cart will
be shown as empty.

288 Chapter 6

protected void lstCart_EditCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

lstCart.EditItemIndex = e.Item.ItemIndex;

LoadPage();

}

protected void lstCart_UpdateCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

try

{

//Save changes to cart item.

int itemid = Convert.ToInt32(lstCart.DataKeys[e.Item.ItemIndex]);

int qty =

Convert.ToInt32(((TextBox)e.Item.FindControl("txtQty")).Text.Trim());

ShoppingCartItem.UpdateQuantityByID(DBConnection, itemid, qty);

//Clear edit row

lstCart.EditItemIndex = -1;

//Reload page

LoadPage();

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

protected void lstCart_CancelCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

lstCart.EditItemIndex = -1;

//Reload page

LoadPage();

}

protected void btnEmptyCart_Click(object source,

System.Web.UI.ImageClickEventArgs e)

{

try

{

m_shopper = new Shopper();

m_shopper.GetShopperByID(DBConnection, (int) Session["ShopperId"]);

m_shopper.EmptyCart(DBConnection);

Applying What We’ve Learned So Far 289

//Reload page

LoadPage();

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

protected void lstCart_DeleteCommand(object source,

System.Web.UI.WebControls.DataListCommandEventArgs e)

{

try

{

//Delete item

int itemid = Convert.ToInt32(lstCart.DataKeys[e.Item.ItemIndex]);

ShoppingCartItem.DeleteByID(DBConnection, itemid);

//Reload page

LoadPage();

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

}

The DataKeyField is used to hold the ShoppingCartItemID. This allows the various
command handlers of the DataList to know which row in the database is being
affected. The DataList in this case really shows how powerful it can be when an appli-
cation needs to edit data that exists in a tabular format. In the case of the shopping cart,
it works perfectly.

The Checkout Page
The checkout page is fairly simple. It allows the user to enter his or her payment infor-
mation. Our sample online store takes credit cards, so we will create a generic credit
card entry area and finalize the order for the shopper. Of course, we don’t include any
code to perform a real credit card transaction; we will leave that up to you. We simply
approve the transaction and complete the purchase. The profile page is shown in the
next section.

The first thing the page does is check to see if the shopper is valid. It does this by
looking at the Shopper.IsComplete property to see if the shopper’s data is complete
enough to check out. If not, the user is redirected to the profile page, where the needed
information can be input. We’ll look at the Page_Load code here, but because the aspx
code is nothing more than a few TextBoxes, an ImageButton, and a DropDownList, we
won’t show it here. A screenshot of the page can be seen in Figure 6.8.

290 Chapter 6

Figure 6.8 The checkout page.

protected void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

Shoppershopper=null;

try

{

shopper = (Shopper)Session["ShopperObject"];

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

//Make sure the shopper profile is complete

if (!shopper.IsComplete)

Response.Redirect("profile.aspx");

}

}

When the user clicks the Continue ImageButton, the following code runs. When we
call the Shopper.CheckOut method, we need to pass in an out variable to get the new
order ID. The reason for passing in a variable to get the new order ID instead of col-
lecting a return value is merely in case the programmer ever decides that it should

Applying What We’ve Learned So Far 291

return various success codes about the transaction against the credit card. Although
this application doesn’t do that, it is a good example of using the common language
runtime’s out parameter modifier. Once we have completed the CheckOut, we pass the
new order to the final page of the app. Other than that, this handler is self-explanatory.

protected void btnContinue_Click(object sender,

System.Web.UI.ImageClickEventArgs e)

{

try

{

Shopper shopper = (Shopper)Session["ShopperObject"];

int id;

shopper.CheckOut(DBConnection, txtCardNumber.Text,

txtExpiration.Text,

cboCardType.SelectedItem.Value, txtHolderName.Text, out id);

//Store the order id on the server so it won’t be in the url.

Session.Add("OrderID", id);

}

catch(Exception ex)

{

ShowErrorPage(ex);

}

//Go to ordercomplete page

Response.Redirect("ordercomplete.aspx");

}

The OrderConfirmation Page

This is perhaps the simplest page in that all it does is thank the user for shopping, dis-
plays the new order ID, and presents an invoice of the items that were purchased. To
create the invoice, we use a simple DataGrid to display the items in the order. In addi-
tion, we display the cart totals, as the shopper’s information.

We won’t study this page in detail because it doesn’t introduce anything new; it just
uses the same controls we have seen in the other pages. Do note, however, that the
page is not called with the order ID in the QueryString because that would be a secu-
rity breech. If the order ID were in the URL, the user could modify it in the browser’s
address bar and view other people’s orders and credit card information. In your appli-
cations, you may want to perform some text translation on the credit card numbers
whenever they are displayed to the user. Many companies use X in place of all but the
last four digits. This prevents anyone from stealing the credit card number, but it helps
the shopper determine which card was used for the purchase. You can see the page in
Figure 6.9.

292 Chapter 6

TE
AM
FL
Y

Team-Fly®

Figure 6.9 The OrderConfirmation page in action.

Wrapping Up the Chapter

Now we have seen all of our objects and controls in action. We have created a simple,
yet usable and modifiable Web shopping cart application. We have put many different
techniques to use in this chapter, and we hope that you can expand on them in your
own applications. In fact, we intended for this sample shopping cart to be usable as a
starting foundation for any reader who wishes to implement a real online store. Now,
we will move on to add extra functionality and peripheral applications to this one.

Applying What We’ve Learned So Far 293

295

Business applications often need to share information and programming tasks among
themselves. With the onset of the Internet, there is an unlimited number of resources
that might be helpful to your application, by providing specialized data or functionality.
In the past, businesses have been able to communicate together, often by means of ded-
icated point-to-point channels and sometimes by proprietary protocols or objects. This
has met the needs of applications so far, but a new technology is emerging that will
facilitate this kind of collaboration between businesses and programs in a much better
way. This way is called XML Web services.

What Are XML Web Services?

XML Web services are a way for applications to share data and business logic, over the
Web, using nonproprietary standard protocols, such as XML and HTTP, which are sup-
ported in a wide variety of environments. The formal name for them is XML Web ser-
vices, though some might refer to them as ASP.NET Web services. Actually, ASP.NET
just provides a means for you to produce or consume XML Web services. Microsoft
does not have a lock on this technology; most other vendors, including IBM, HP, and
Sun, have their own implementations as well. Because XML Web services are based on
XML on HTTP, which is public technology, applications running in any type of envi-
ronment could theoretically share data and business logic through Web services, no
matter on what platform they were built. Web services are a new twist on a not-so-new
idea. The idea has been around for a while, but not in such a robust and universal,
environment-independent way.

Web Services

C H A P T E R

7

In the past, XML Web services were much less robust, portable, and easy to use. For
example, if you were writing a retail commerce application, you might need to calcu-
late the shipping price for a particular product based on the customer’s shipping loca-
tion, the weight of the package, the shipping service level or priority, and the seller’s
location. To provide the shipping service and calculations, you may have relied on, say,
Turbo Shipping Company, Inc. Turbo, knowing that so many people need to calculate
the price of shipping, must provide a way for its clients to do so. Before Web services,
Turbo had several options, but each had its own set of caveats.

One option for Turbo was to distribute its shipping price data so that clients could
import the data into their local data stores and access it through whatever code means
they want to use. The problem with this is that when Turbo changes its shipping data,
all clients are going to have to get the updated data and import it into their systems
again, clearly not the best solution. This is particularly bad when clients’ data is out of
sync with Turbo’s, and they charge their customers the wrong amount.

The next option Turbo had was to open its data up across a proprietary network and
allow clients to access it through a set of APIs or objects. Of course, this is not the best
solution because clients have to maintain their connection and configuration to this
network and support whatever means of programming is required to use the objects or
APIs required for accessing the data, another less-than-perfect solution. What if Turbo
had implemented its objects to pull shipping prices in Microsoft’s DCOM? That
wouldn’t be much use to a client who used Unix. Turbo would have to provide and
maintain libraries of this functionality for many different operating systems.

For another option, Turbo could create a Web page that takes parameters and
responds with a string that contains the shipping price information embedded in it.
This is good in that most operating systems support requesting Web pages over HTTP,
and the data would always be real-time and up to date. The problems with this solu-
tion are that the calling program might have to make complex programming calls to
request content from a Web server and that there is no good way to get the results back
from the call in an object-oriented manner. The results are embedded in a string, which
is not object based and must be parsed by the client application.

Enter XML Web services. A Web service is very much like Turbo’s third option—the
Web page that returns the shipping prices for programs to parse. But instead of return-
ing string data, a Web service can return the results as an object when combined with
the SOAP protocol and be called in an object-oriented way. The calling program doesn’t
have to make low-level socket connections and send HTTP GET requests and then read
off the returned stream. Nor do we have to parse anything in the response to make
sense of the data. With a Web service, we call the shipping pricing functionality, over
the Web, with object-oriented syntax, and we have the answer given back to us as an
object, with little in the way to limit how robust the object can be.

NOTE SOAP is the Simple Object Access Protocol, which allows us to invoke
methods over the network using HTTP. It also handles the details that allow us
to manipulate objects returned from Web services in an object-oriented way.
Web services actually return their results in XML; SOAP converts the XML into
objects for our applications to use.

296 Chapter 7

For example, take a look at the psuedocode for a client or calling-application that
follows. In the past, if we wanted to request data from a Web server to use in our appli-
cation, we might use something along these lines:

SendRequestToServer()

{

SocketConnetion conn = new

SocketConnection("http://www.turboshipping.com/", 80)

conn.SendString("POST /ShippingService.asp HTTP/1.1")

conn.SendString("Host: ")

conn.SendString("Content-Type: application/x-www-form-urlencoded")

conn.SendString("Content-Length: length")

conn.SendString("weight=5.5")

conn.SendString("zipfrom=32082")

conn.SendString("zipto=10101")

}

HandleResponseFromServer()

{

String shipinfo = ServerResponse.Readbuffer(20);

//Parse the results, example results: 5.75, 6.80, 7.95, 10.50, 26.00

String StandardPrice = shipinfo.Tokenize(",")

String 3DayPrice = shipinfo.Tokenize(null)

String 2DayPrice = shipinfo.Tokenize(null)

String OverNightPrice = shipinfo.Tokenize(null)

String OverNightSaturdayPrice = shipinfo.Tokenize(null)

}

This abstract code snippet opens up a call to the server and requests the resource by
the standard HTTP protocol means. Then, when the results are returned, they are
parsed for the data parts, to be used in the business logic. Now, with .NET Web ser-
vices, the code to accomplish the same task is simple:

GetShippingPrice()

{

TurboShippingService turbo = new TurboShippingService()

TurboShippingInfo info = turbo.GetShippingInfo(5.5, "32082", "10101");

}

In the second psuedocode snippet, you can see how easy and object oriented it is to
get the shipping information. You create an object that represents the Web service, call
the function you need, and get the results back as an object. The results don’t have to
be objects; they can be simple data types as well. You can send objects to the function,
and you can even do so by reference, meaning that you can send a reference to an
object and have it modified by the code on the server. Arrays are supported as well.
And in the case that there is an application somewhere that needs to access Turbo’s
shipping prices, but there is no SOAP support on that system, all is not lost. Non-SOAP

Web Services 297

environments (which there will be very few of in the future, we hope) can always make
the Web service call and simply access the results in their XML format. This doesn’t
leverage all of the ease-of-use benefits of SOAP, but it still allows the caller to get at the
data in a robust and industry-standard way.

Quite a bit easier, wouldn’t you say? With the old way, we are essentially making a
manual call to the URI on the Web and then dealing with the data to make it usable.
Sure, there are better ways to call a Web page from code than by directly writing to a
socket, like using the MFC classes like the CInernetSession or the API calls to open a
file over the Internet, but even these methods require a fair amount of programming.
And there still is the problem of what to do with the results.

How Do Web Services Work?

How does all of this work? SOAP, as mentioned previously, is the protocol that makes
it all possible. SOAP is a nonproprietary way for invoking programming logic across
standard Web protocols. It also provides a mechanism for converting XML that is sent
over the Web, either to or from a Web service, into objects. SOAP provides a definition
for messages to be sent to make calls over the Web. ASP.NET Web services also use
SOAP for enveloping the XML into objects for us.

When you make a call to a Web service that will return an object like the Turbo-
ShippingInfo class, the actual contents of the object, and not a binary object, are sent
over the wire. Because we are calling the Web service over the HTTP protocol, it returns
its results as a stream of text, formatted in XML. Then, once the stream of XML has been
received by the calling program, it is deserialized into objects by the framework. At
that point, the objects are ready for use.

Of course, there is much more to calling a Web service than what we saw in the
preceding simple psuedocode. Most of the gory details are handled for you both by
the .NET common language runtime and by special tools that generate some of the
low-level code for you. When you need to use a Web service in a Visual Studio.NET
application, you can simply use the Web Reference tool, or Wsdl.exe, which is part of
the .NET SDK. These tools will create the code you need to treat the Web services as
objects and the shell classes that the Web service uses so that your application will have
an understanding of their layout. Because of this, calling a Web service is easy and can
be integrated into virtually any kind of application with little effort. And because XML
and HTTP are heavily supported by most modern operating systems, SOAP support
can easily be added at the application level via APIs and tool kits. Web services can be
created and consumed by applications regardless of where they are, what they run on,
and how they were written.

Uses for Web Services

Let’s talk about some more examples of where Web services could be used in the enter-
prise. Imagine a large bank’s corporate headquarters, where there are several thousand
employees using 20 different enterprise applications to do their various jobs. Now
imagine that 10 of those 20 applications are running as rich client applications on

298 Chapter 7

various Windows platforms written in MFC, ATL, VB, and Access; 5 are running on
Unix and Solaris machines written in Java and C++; and the other 5 are Web based,
served from various Webs servers from IIS with ASP to Unix with Perl/CGI programs.
This scenario is not completely out of the question for some companies that have their
IT fragmented across the organization and the country. Now comes the tough part.
Every single application needs to be able, for one reason or another, to pull up the con-
tact information for the 100,000 customers in the company’s master database. How
does the typical company solve this programming problem? Unfortunately, the typical
company often has many redundant, disparate chunks of code that all access the same
data, each in its own way. Some systems make calls through COM or DCOM objects to
get the contact info, some via Java RMI or CORBA methods; still others might call the
database directly from SQL libraries on Unix. Obviously, this leads to many problems,
not the least of which is the amount of code and support needed to accomplish all of
this. On top of that is the administration of all of these database connections and cre-
dentials, not to mention what happens when the table layout changes slightly. Half of
the apps in the organization might be in need of repair and recompile at that point.

A Web service that has a simple object-based interface that allows listing, searching,
adding, deleting, and updating of the customer contact database could be this fictional
company’s savior. If these programs all accessed the contact information using this
Web service, several problems would be solved. First, a consistent programming
model could be used by all applications that need the information, no matter what type
of language or OS they were developed on. SOAP is destined to be available to all
development environments in the future, and most already have the means to make
HTTP calls over the Internet. Second, the interface to the data can be abstracted to the
underlying data structure. What if the customer tables change or even get ported to a
completely different brand of database server? Using the Web service as the single
point of access to this data, it is the only code that needs to be modified. As long as the
objects and Web service interface remain the same, all consuming programs will con-
tinue to work without interruption. Imagine how much money could be saved in just
one instance of having to modify the customer database slightly if only one app—the
Web services app—has to be changed. Another major benefit is that because Web
services are called over the Internet, the only thing the consuming app really needs in
production is a valid Internet connection allowing it to be used outside of the corporate
network.

While the preceding scenario might be a typical problem inside of the private com-
puting environment of a company, Web services can also help in the public domain,
where a company may wish to share its data with anonymous users over the Web. The
Food and Drug Administration’s master list of approved drugs for both prescription
and over-the-counter use comes to mind. Currently the lists are available for download
from the FDA Web site as fixed row length data files. Once downloaded, they must be
put into the user’s database for use in a program or read directly from the files. It might
be a great benefit to all programs that rely on up-to-date drug information if they could
access Web services for the data.

As one more example, imagine a Web-based communication system where one
company maintains a Web chat server with chatting functionality exposed as Web ser-
vices. With that system in place, it would be very easy to embed chat capabilities into
any consumer- or business-based rich client application. Taking it even a step further,

Web Services 299

a PC-based consumer application could implement its user interface in the client
machine but get all of its business logic and functionality via Web service calls. This
would keep every user on the same version and eliminate piracy. It could also usher in
the new notion of application rental over the Web.

For all of these reasons, SOAP and ASP.NET Web services will be major new players
in the future of both consumer- and business-based applications. Now let’s jump right
in and start creating Web services.

Web Services in Visual Studio .NET

We saw in Chapter 2, “Anatomy of an ASP.NET Page,” that Visual Studio .NET makes
developing Web Forms a lot easier than using Notepad. This holds true with Web ser-
vices as well, so all of the Web services that we develop in this chapter will be done
with Visual Studio .NET. Let’s dive right in and create a new Web service project.

Start by choosing File, New, Project from the menu bar. In the Project Types list,
select Visual C# Projects, and then select ASP.NET Web Service in the Templates list on
the right. Name the project WileyPartsServices, and if you are using a default setup,
leave the location as http://localhost. A screenshot of what this dialog looks like can
be seen in Figure 7.1.

A Web service project is no different from a Web application project. The only differ-
ence in the default project templates that are created is that the Web application project
adds one extra reference to the System.Drawing class. In addition, when the projects
are initially created, a Web application project creates a single Web Form called Web-
Form1.aspx, while a Web Service project creates a single Web service called Service1.
asmx. The rest of the files in the projects are identical. In fact, you can easily add a Web
Form to a Web Service project and, just as easily, add a Web service to a Web applica-
tion project. As we saw in Chapter 2 when we created our first Web application project,
Visual Studio .NET will create a new virtual directory in IIS with the same name as the
project.

Figure 7.1 Creating a new Web service project.

300 Chapter 7

The only files that might be new to you in this project are Service1.asmx and
Service1.asmx.cs. These are the files added by the template that make up the default
Web service. By default, this Web service is set up to use code-behind. Because Web ser-
vices don’t have user interfaces, there is only one line in the Service1.asmx file:

<%@ WebService Language="c#" Codebehind="Service1.asmx.cs"

Class=" WileyPartsServices.Service1" %>

This line is a WebService directive, which is similar to a Page directive used for Web
Forms. The only values of this directive used by the runtime are the Language and Class
values. The Codebehind value is used by Visual Studio .NET to keep track of the code-
behind class that belongs to this Web service. The class that is specified in the Class
value can be implemented in the .asmx file, or it can be implemented in a .NET assem-
bly that must be made available in the bin directory of the Web application where the
service will reside.

Let’s take a look at the code behind file, Service1.asmx.cs. The first thing to note is
the declaration of the Service 1 class:

public class Service1 : System.Web.Services.WebService

It is derived from System.Web.Services.WebService. Although inheriting this class is
done by default when using Visual Studio.NET, it is not necessary. Inheriting from the
WebService class will provide you with access to ASP.NET objects, just as the Page
class does. The WebService class exposes the Application, Session, User, and Server
objects as properties. In addition, there is a Context property, which is of type Http-
Context and exposes the Request and Response objects. If you don’t need to access any
of these things, then you don’t need to derive your class from WebService.

WebMethod Attribute
We can make any public method of our code-behind class callable from the Web by
applying the WebMethod attribute to it. The template class provides a HelloWorld Web
service example, which is commented out:

[WebMethod]

public string HelloWorld()

{

return "Hello World";

}

You can have as many methods as you wish within your code-behind class, but only
those that have the WebMethod attribute applied to them will be callable from the
Web.

The WebMethod attribute has a few optional properties that we can specify to con-
trol and describe the behavior of the Web service. To specify properties of a C#
attribute, you specify the properties inside of parentheses immediately following the
attribute name as follows:

[WebMethod(property=value)]

Web Services 301

The BufferResponse property can be set to true or false. This property controls
whether the response from a Web service is buffered entirely before it is sent back to the
caller. True is the default setting and requires the entire response to be buffered before
it is sent back to the caller. When BufferResponse is set to false, the response will be
buffered and returned to the client in 16-kilobyte sections. In most cases, you will stick
with the default setting of true, unless your Web method returns a rather large amount
of data.

The CacheDuration property controls the time in seconds that ASP.NET should cache
the results of the Web method call for a unique parameter set. This is set to 0 by default,
so no caching occurs.

The Description property is the one that you will use most often. It simply allows you
to specify a text string that will be displayed to potential consumers of your Web ser-
vice when description documents are generated. We’ll see where this description text
shows up for us in Visual Studio .NET when we write a few applications that consume
our Web services later in the chapter.

If you need to provide session support with your Web method, use the EnableSession
property. If EnableSession is set to true, you can store values in the session state and
when the same client makes another Web method call, you can retrieve the value from
the session state, just as with an ASP.NET page.

All of the methods exposed by a particular Web service (.asmx file) must have
unique names. If you are exposing a method of a class that has several overloads and
you want to expose all of the overloads, which all have the same name, you have a
problem. You can use the MessageName property to solve this problem. The Message-
Name property allows you to specify an alias name for a particular method without
having to change the name of the method in the class definition. For example, if we had
a method called Echo that had two overloads, we could use the MessageName property
as follows:

[WebMethod(MessageName="EchoString"]

public string Echo(string s)

{

return s;

}

[WebMethod(MessageName="EchoInteger")]

public string Echo(int i)

{

return i.ToString();

}

WebService Attribute
The WebService attribute can be applied to a class that contains exposed Web methods.
Its primary purpose is to declare the XML namespace to which the Web method should
belong. The Visual Studio .NET Web service template does not implement this
attribute, and if a namespace is not specified the namespace will default to http://
tempuri.org. Your Web methods need to belong to a somewhat unique namespace to
allow Web method consumers to distinguish them from other services on the Web.

302 Chapter 7

TE
AM
FL
Y

Team-Fly®

Typically, the namespace is set to the URL of the company Web site. The namespace,
though, does not have to point to a real live Web site. You declare the namespace by set-
ting the Namespace property of the WebService attribute.

You can also provide some descriptive text for the Web methods that are provided
by setting the Description property of the WebService attribute. When we create our
Wiley Parts Web services in the next section we will apply a WebService attribute to
our class like this.

[WebService(Namespace="http://www.wileyparts.com/",

Description="Methods to aid in retrieving automobile parts from

WileyParts")]

Now that we have seen how Visual Studio.NET handles Web Service projects, let’s
take a look at some examples of Web services and what they can do.

Creating Web Services

Unlike other examples in the book, each of these examples is created in its own
ASP.NET Web Services project. We will create simple WinForms applications to call the
services. The companion Web site has two solutions for each example: a project for the
Web service and a project for the WinForms calling application.

NOTE We can certainly call services from our ASP.NET Web applications, but
we wanted to show a real separation between the service and its client. A rich-
client caller emphasizes this perfectly. As for the source code of the examples,
we will show only the relevant code from any WinForms we use because this
book doesn’t really intend to explain WinForms.

The nice thing about .NET is that all applications use the same syntax, object-oriented
features, and framework, so the examples in WinForms can port easily into ASP.NET
Web projects. In fact, disregarding any of the UI programming in these samples, the
code to call the Web services could be cut and pasted directly into an ASP.NET Web
page. The full source code for the WinForms examples is available for download from
the companion Web site, if you are interested. The first Web service will create a nicely
formatted proper name from name parts commonly found in business data. This type
of functionality would normally be in written client-side code, and we wouldn’t expect
it of a Web service. Neither would we get much use out of the HelloWorld method that
VSN generates for us by default. It is a good example, however, of passing some sim-
ple types and getting some results.

Returning a String with a Web Service
This is one of the simplest forms of a Web service—one with simple parameters that
returns a simple string. For this first code example we list the entire contents of the file
for the Web service. In future examples, we’ll list only the code that is relevant to the

Web Services 303

example itself. To build this example, create a new ASP.NET Web service project called
Example1Svc, and add a new Web service to it called Example1Service. Then, add the
bold code in Listing 7.1 into the class, and build.

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace Example1Svc

{

public class Example1Service : System.Web.Services.WebService

{

public Example1Service()

{

InitializeComponent();

}

private void InitializeComponent()

{

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

}

[WebMethod(Description= Formats parts of a name into a proper

name.)]

public string FormatProperName(string strSalutation, string

strLastName, string strFirstName, string strSuffix)

{

if (!strSalutation.EndsWith(.)) strSalutation += . ;

return string.Format({0} {1} {2} {3} , strSalutation,

strFirstName,

strLastName, strSuffix);

}

}

}

Listing 7.1 A Web service with simple data types

304 Chapter 7

The file looks very similar to that of a regular aspx WebForm page. This makes sense
because a Web service is just another form of a Web page. Because Web services are
derived by default from System.Web.Services.WebService, they have access to many of
the same features used in WebForms, such as Session state and the response object via
the Context object. Because this derivation is optional, you may chose not to subclass
System.Web.Services.WebService. In that case, you would have to use other measures to
access some commonly used features. It’s fine in most cases to leave the base class dec-
laration there, however, especially because Visual Studio.NET includes it automatically.

The WebMethod attribute above the FormatProperName method tells the compiler
that this is a Web service method. As with any other class you write, if you need to have
private methods inside this class, feel free to do so and leave off the WebMethod
attribute. Set the Description inside the attribute so that it would be displayed when
the user views the service in a Web browser.

Because we can actually think of Web services as Web pages that output their results
in XML, we know that we could call them directly with a browser. When we browse to
the Web service location with our browser, however, we see a nicely formatted screen
created for us by the ASP.NET Framework. A line in the machine.config file on the
server maps .asmx requests to a specific class in the framework that displays this page
to us. This page displays the names and descriptions of the available methods. If we
drill into these methods by clicking on their links, an interface allows us to provide
parameters and call the method from within our browser. This is a boon when pro-
gramming Web services because it is a great tool for debugging your Web method out-
puts. To test the code in Listing 7.1 using the framework-generated test mechanism,
simply point your Web browser to the Example1Service.asmx file. Figures 7.2, 7.3, and
7.4 are what we see when we do this in Internet Explorer.

Figure 7.2 Browsing the Example1Svc Web service asmx file.

Web Services 305

Figure 7.3 Browsing the Example1Svc—FormatProperName method.

Figure 7.4 .NET provided examples of calling the method.

306 Chapter 7

When looking at the browser as shown in Figure 7.4, scroll down to see the examples
that are displayed to understand how you could call this Web service method. In par-
ticular, look at the HTTP Get method used for calling it; we could use the following in
the browser to manually call the method:

http://localhost/wiley/Ch07/Example1/Example1Svc/Example1Service.asmx/

FormatProperName?strSalutation=string&strLastName=String&strFirstName=

String&strSuffix=string

Later, we will rely on Visual Studio .NET and the .NET Framework to help us call
these Web methods from code without having to worry about these details. But when
we point the browser to this address, we see the same thing we saw when we clicked
the Invoke button on the ASP.NET-generated test page. In the Figure 7.5 example, we
replaced the variable values in the query string to some real name parts.

We can also see in the test harness the SOAP call example, as in Figure 7.4. The
SOAP call looks different than the HTTP Get call above.

POST /Wiley/Ch07/Example1/Example1Svc/Example1Service.asmx HTTP/1.1

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://tempuri.org/FormatProperName"

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<FormatProperName xmlns="http://tempuri.org/">

<strSalutation>string</strSalutation>

<strLastName>string</strLastName>

<strFirstName>string</strFirstName>

<strSuffix>string</strSuffix>

</FormatProperName>

</soap:Body>

</soap:Envelope>

This SOAP call uses an HTTP Post to make the call to the Web method. In the header
there is a SOAPAction parameter, which tells the Web service the full name of the
method being called. In the body of the request, you can see the XML that makes up the
SOAP method call and the parameters sent. In the example generated by .NET, there
are placeholders shown for the parameters, but if you had the proper tools, mainly an
application with which you could submit HTTP requests manually, you could send
this SOAP header with real data in the parameters to invoke the Web method. We
won’t go that far in this book; making manual SOAP calls is never necessary with .NET
clients.

Web Services 307

Figure 7.5 Calling the FormatProperName method manually via a HTTP Get command.

Now that we’ve seen some of how a Web service is created and viewed with some
of the tools provided by ASP.NET, how do we actually use it from within our applica-
tions? When we want to use a Web service in any type of .NET application in Visual
Studio .NET, we use the Add Web Reference tool. This is similar to adding a .NET or
even a COM reference in Visual Studio .NET, as well as adding a reference in VB6. In
this case, however, we are instructing Visual Studio .NET to browse out to the actual
Web service, discover the Web service’s interface, and write a wrapper class for us to
use when calling it. Visual Studio .NET’s Add Web Reference feature is actually calling
a command-line application in the Framework SDK called Wsdl.exe. Wsdl.exe is the
actual program that creates the wrapper classes for us. Like many features of Visual
Studio past and present, the IDE calls out to the external programs to do their jobs.
Remember, the compiler and linker themselves are separate programs called by Visual
Studio every time you click Build. That sounds like a lot, but it is only a few clicks on
your end when you are working inside of Visual Studio .NET.

When we go through these steps, we are actually browsing the server on which the
Web service lives. In this case, we browse all the way down to the folder where the Web
service is. Clicking on the link to the vsdisco file returns XML. This XML is called the dis-
covery information, and it tells the calling application, in this case the Visual Studio .NET
IDE, which methods are in this service and the URL to call to learn more about the meth-
ods. This URL is a link to what is known as the Web Service Definition Language (WSDL).
It is the contract for using the Web service; it defines the types and interface that the Web
service supports so that your client will know how to make calls to it. Viewing the WSDL
for any Web service is easy: Just browse to the link shown. For our example, the link is
http://localhost/Wiley/Ch07/Example1/Example1Svc/Example1Service.asmx?wsdl.

This link calls the asmx page, the Web service, with a query string parameter of
wsdl. This is handled by all Web services, and it returns the actual WSDL XML, shown
in Figure 7.6.

308 Chapter 7

Figure 7.6 WSDL for Example1Svc.

The contract shows the interface of the FormatProperName method, the only
method in the service at this point, so that the caller can adhere to it and generate code
and classes to represent it on the client side. The URIs in the xmlns tags above the inter-
face information are used as distinct namespaces for the XML document. For a better
understanding of XML and its namespaces, please refer to an XML reference; a good
online resource is www.w3c.org.

When you make a Web reference, Visual Studio .NET writes a wrapper class for you
that makes the calls to the Web service from within your code. The wrapper class can
be viewed by looking in the Project Explorer of Visual Studio .NET and drilling down
into the Web Reference node. If your explorer is set to view all files, you will see the C#
file that wraps the Web reference calls up into objects for our use. The Add Web Refer-
ence tool creates our Web reference code in a namespace named after the server. In this
case, the namespace is localhost, which we can see in the Project Explorer in Figure 7.7.

NOTE You probably want to know what UDDI is because it appears as an
option for searching for Web services in the Add Web Reference tool or Visual
Studio .NET. UDDI is the Universal Description, Discovery, and Integration
standard. This is a directory of Web services on the Internet. Just as you would
search for any other type of Web resource using a search engine on the Web,
the UDDI is a searchable repository for services available from business
everywhere. As Web services become more popular, programmers will be able
to search for functionality in UDDI repositories. The standards define a way that
services can expose their features both programmatically, and through
discovery documents and service descriptions.

Web Services 309

Figure 7.7 Project Explorer showing the Web reference.

The classes that are created for us by using the Add Web Reference are important
only to our code; as programmers using the Web services, we really won’t care too
much about their contents. Just so that we’ll be clear on what’s happening in there, feel
free to look at the generated code. In it you will notice that the methods that are avail-
able in the Web service are mimicked in this class. This class’s sole purpose is to wrap
and represent the Web service and its methods to our calling code. The wrapper class
methods take the same parameters and have the same return types as the Web meth-
ods; basically the wrapper class has the same interface as the real Web service. By
doing this, we can write code that will access the Web service using its published inter-
face. Although the calls we will make in our code look like we are calling the Web
methods directly, we are actually calling this wrapper class, which is in turn calling the
Web method over the Web using the SOAP framework. The wrapper includes both
synchronous and asynchronous calls for each method, which gives us some flexibility
in how we design our client applications. The synchronous calls are the most com-
monly used, and they will behave just like any other synchronous call, whether over
the Web or not. The asynchronous calls could be useful for longer-running calls to Web
methods, but they would also require that the programmer implement code that sup-
ports asynchronous calling of functions. The most common way to do this is by using
timers, or multiple threads, which requires advanced programming techniques, such
as locking and thread safety. To call Web services asynchronously would not be within
the scope of this book because it wouldn’t really explain anything new to us regarding
how SOAP, XML Web services, or their objects work for typical programmers.

Now let’s create a sample application that makes use of this Web service. For this
example, we will use a WinForms application. Although the book is about ASP.NET,
we feel that many readers will likely implement Web services to be used by client
applications other than those written as ASP.NET applications. As you will see, the
code to actually make Web service calls is application-type agnostic and can be used
as-is in any other application, including an ASP.NET application. The steps involved
are creating a WinForms project and creating a Web reference to the Example1Svc Web

310 Chapter 7

Figure 7.8 A simple WinForms form calling a simple Web service.

service. Then, employ a simple button handler on a WinForms form. We access the
service by instantiating an object whose type name is the name of the Web service. In
this example, because we are calling Example1Service, we instantiate an object of type
Example1Service. The constructor to the service takes no parameters, and as soon as it
is instantiated, we can call any Web method we want on it. The same goes for proper-
ties; in addition to the Web methods in the service, if there are properties, we can use
them now as well. Keep in mind that the first call to a newly compiled Web service will
respond slowly, just as does any other ASP.NET application first being loaded. When
we make the call to the FormatProperName method, we receive the string return value
and use it at will. The calling code looks like this:

private void button1_Click(object sender, System.EventArgs e)

{

Cursor = Cursors.WaitCursor;

Example1Service svc = new Example1Service();

label6.Text = svc.FormatProperName(textBox1.Text.Trim(),

textBox3.Text.Trim(),

textBox2.Text.Trim(),

textBox4.Text.Trim());

Cursor = Cursors.Default;

}

Returning an Array of Strings
with Web Services
For the next example, let’s create a simple method that will create and return a string
array and return it as a return value to the caller. This would be a good way to return a
simple list from a database, such as cities or states to be displayed in a selection control.
The following snippet creates and returns an array of strings, loaded with names. The
names, of course, would have come from somewhere important, like a database, for
example. To create this example, create a new ASP.NET Web Service project called
Example2Svc, and add a new Web service called Example2Service. Then, add the fol-
lowing Web method to the Web service class.

Web Services 311

Figure 7.9 Calling a Web service that returns an array.

[WebMethod]

public string[] GetNames()

{

string[] s = new string[4];

s[0] = "Tim";

s[1] = "Sarah";

s[2] = "Alex";

s[3] = "Rhonda";

return s;

}

Figure 7.9 shows the calling code, which is implemented as a WinForms application.
Just as in the Example1Service client, this code is completely portable to any other type
of application.

private void button1_Click(object sender, System.EventArgs e)

{

Cursor = Cursors.WaitCursor;

Example2Service svc = new Example2Service();

string[] names = svc.GetNames();

foreach(string name in names)

{

listBox1.Items.Add(name);

}

Cursor = Cursors.Default;

}

Returning an Object and an Array
of Objects with Web Services
In the preceding example, the server allocated the string array and returned it to the
client, but we aren’t accessing memory from the client that has been allocated on the
server. What has actually happened is that ASP.NET has serialized the array into a
SOAP-compliant format and the Web Reference Proxy object unserializes it into an
array on the client. This is how we can be returned a loaded array from across the Web.
This also allows us to send a “pointer,” or an empty object reference, to the server to be
filled in.

312 Chapter 7

TE
AM
FL
Y

Team-Fly®

In this next example, we will call a Web method to return to us a real business object.
This is the type of Web service functionality that will be the most common for most
programmers. This example, like the last, shows us the power of SOAP to return an
object that was allocated on the server to our application. To create this example, create
a new Web service project called Example3Svc, and add a new Web service called
Example3Service. Into this service add the following method and class:

[WebMethod]

public ComputerProduct GetComputerProduct()

{

return new ComputerProduct("1542", "Turbo Laser Printer XL2",

Convert.ToDecimal(439.95));

}

//In a separate class...

public class ComputerProduct

{

private string m_strSku;

private string m_strDescription;

private decimal m_decPrice;

public ComputerProduct() {}

public ComputerProduct(string strSku, string strDesc, decimal

decPrice)

{

m_strSku = strSku;

m_strDescription = strDesc;

m_decPrice = decPrice;

}

public string Sku

{

set { m_strSku = value; }

get { return m_strSku; }

}

public string Description

{

set { m_strDescription = value; }

get { return m_strDescription; }

}

public decimal Price

{

set { m_decPrice = value; }

get { return m_decPrice; }

}

}

Web Services 313

The calling code for this simply retrieves a ComputerProduct object and displays
some of its properties to the user:

private void button1_Click(object sender, System.EventArgs e)

{

Cursor = Cursors.WaitCursor;

Example3Service svc = new Example3Service();

ComputerProduct pr = svc.GetComputerProduct();

textBox1.Text = pr.Sku;

textBox2.Text = pr.Description;

textBox3.Text = pr.Price.ToString();

Cursor = Cursors.Default;

}

We defined a class on the server called ComputerProduct. This class is public in the
Web service and therefore can be used by callers of the service. Callers can use the class
just as if it were defined in their local code, as well as receive it as a return value, or pass
it as a parameter to methods on the Web service. Notice how we are able to use the
ComputerProduct class in the client code even though it is defined in the Web service
code. The WSDL allowed Visual Studio .NET to learn the layout of the Computer-
Products class so that it could create code to represent it in the Web Reference wrapper
code. In fact, if you browse to the C# file of the wrapper code, you will see this class
definition at the bottom of the file. It is important to realize that only public properties
are defined in the client’s version of the ComputerProducts class. Any code, such as a
method, could not be sent to the client because these SOAP objects are not based on
binary objects, but on XML text. Because XML is not a binary protocol, it is able to han-
dle only the data types in the objects defined on the server. This will have a little impact
on how you write objects that are destined to live inside Web services. For example, if
the ComputerProducts class had a method on it called SaveComputerProduct, defined
in the version in the Web service, it would not appear in the client-side Computer-
Products class at all. In order to save the client-side version of a ComputerProduct
object, you would have to implement another Web service method that provides that
functionality. For example, you may have a Web method that has this form:

SaveClientComputerProduct(ComputerProduct pr) {...}.

Don’t think of this as a limiting factor; you can still do all of the things you need to
do, just lay them out differently. Here is another example that allocates memory on the
server, fills it with new ComputerProducts objects, and returns the new, full array of
objects in a ref parameter to the caller: Using the same Web service project
Example3Svc, add the following Web method. The ComputerProduct class remains
unchanged.

314 Chapter 7

[WebMethod]

public int GetComputerProducts(ref ComputerProduct[] ComputerProducts)

{

ArrayList arr = new ArrayList();

arr.Add(new ComputerProduct("1542", "Turbo Laser Printer XL2",

Convert.ToDecimal(439.95)));

arr.Add(new ComputerProduct("1984", "Turbo Dot Printer DT5S",

Convert.ToDecimal(269.95)));

arr.Add(new ComputerProduct("0687", "Turbo Jet Printer PC300",

Convert.ToDecimal(189.90)));

ComputerProducts =

(ComputerProduct[])arr.ToArray(typeof(ComputerProduct));

return 3;

}

And here is the caller code, which retrieved the array of objects from the server,
iterates them with a foreach loop, and displays their properties:

private void button2_Click(object sender, System.EventArgs e)

{

Cursor = Cursors.WaitCursor;

ComputerProduct[] ComputerProducts = null;

Example3Service svc = new Example3Service();

svc.GetComputerProducts(ref ComputerProducts);

foreach(ComputerProduct ComputerProduct in ComputerProducts)

{

string[] subs = new string[3];

subs[0] = ComputerProduct.Sku;

subs[1] = ComputerProduct.Description;

subs[2] = ComputerProduct.Price.ToString();

listView1.Items.Add(new ListViewItem(subs));

}

Cursor = Cursors.Default;

}

Both of these examples are displayed in one client window, shown in Figure 7.10.
This last example gives us another great example of allocating resources on the server
and having SOAP take care of matching those allocations on the client. In this case, we
sent a reference to an empty array to the Web method, and when the method returned,
the array was populated.

Web Services 315

Figure 7.10 Calling more advanced Web services.

Using XmlInclude in a Web Service
In this next example, we return an object whose type is not known statically.

To do this, we set up the ComputerProduct class as in the previous example, but this
time we derive it from the Products class, which has one property of its own. In the
Web method that returns one of these objects, it returns a Product rather than a Com-
puterProduct. Now, because a ComputerProduct is a Product, we can safely run this
code, but unfortunately, SOAP will not know by looking at the method interface what
types of objects it uses, and thus what types of objects will be generated on the client.
All of this is due to the simple fact that the classes that are generated for us to use in our
client code are learned about not at runtime, but statically by the WSDL in the discov-
ery phase when we add the Web reference. Returning a ComputerProduct object cast
as a Product object is a runtime behavior; therefore, the client won’t know about this
until runtime.

But when using a method where type other than the return type is actually passed
back when the call is made the client needs to be able to determine the type at runtime.
To handle these cases, we must delve into the System.Xml.Serilization namespace and
use the XmlInclude attribute on the Web method that returns derived types. Because
SOAP serializes the parameters and return values into XML when you call a Web
method, we use this attribute of the serialization library to help us out. By using some-
thing like this:

[XmlInclude(typeof(ComputerProduct))]

at the declaration of the Web method, we instruct the call to WSDL to return the inter-
face for the ComputerProduct class in addition to those of the classes that are directly
in the method parameters or return type. In fact, when we do this, you will see that this
class is also defined in the wrapper code for the Web service. After all, if our client is
going to be dealing with ComputerProducts, it needs to know the layout of both Prod-
uct and ComputerProduct.

316 Chapter 7

Keep in mind that you don’t have to use XmlInclude on any class type that is
exposed directly in the parameters or return values of a Web method. Nor must you
use it for class types that are not included in the method interface, but are members of
the objects that are included. For example, if you have a Web method that returns a Per-
son, and the Person class has a property of type Phone (another class defined in the
Web service code), you don’t need to use XmlInclude on the Phone class. It will be
learned about automatically because it can be determined statically. Even at design
time, the Person class will expose the Phone class to the Wsdl program, which creates
the callable wrapper. The same thing is true for a base class. If we were returning a
ComputerProduct, which is derived from a Product, the system would know about the
Product class outside of runtime. When returning a Product, and not its derived
ComptuterProduct, it is impossible to tell which classes are derived from Product
without the XmlInclude. Think about the code for the Product, it has no reference
whatsoever to the ComputerProduct class. In fact, it is quite normal that the program-
mer of the Product class designed his or her class never even to know or care what gets
derived from it, if anything. The next example uses this technique. Create a new Web
service project called Example4Svc, and add a new Web service called Example4-
Service. To it, add the following code:

[WebMethod]

[XmlInclude(typeof(ComputerProduct))]

public Product GetComputerProduct()

{

return new ComputerProduct("1542", "Turbo Laser Printer XL2",

Convert.ToDecimal(439.95));

}

public class Product

{

private string m_strTypeName;

public Product() {}

public string TypeName

{

set { m_strTypeName = value; }

get { return m_strTypeName; }

}

}

public class ComputerProduct : Product

{

private string m_strSku;

private string m_strDescription;

private decimal m_decPrice;

public ComputerProduct() {}

public ComputerProduct(string strSku, string strDesc, decimal

decPrice)

{

Web Services 317

m_strSku = strSku;

m_strDescription = strDesc;

m_decPrice = decPrice;

base.TypeName = "Computer Hardware and Software";

}

public string Sku

{

set { m_strSku = value; }

get { return m_strSku; }

}

public string Description

{

set { m_strDescription = value; }

get { return m_strDescription; }

}

public decimal Price

{

set { m_decPrice = value; }

get { return m_decPrice; }

}

}

And the client code looks like this, which displays the resulting object cast out to the
desired type, as can be seen in action in Figure 7.11:

private void button1_Click(object sender, System.EventArgs e)

{

Cursor = Cursors.WaitCursor;

Example4Service svc = new Example4Service();

Product pr = svc.GetComputerProduct();

textBox1.Text = ((ComputerProduct)pr).Sku;

textBox2.Text = ((ComputerProduct)pr).Description;

textBox3.Text = ((ComputerProduct)pr).Price.ToString();

textBox4.Text = pr.TypeName;

Cursor = Cursors.Default;

}

Figure 7.11 Calling a Web service that uses XmlInclude.

318 Chapter 7

Allow Upload of a File to the Web
Server with Web Services
This example creates a Web Service that allows us to easily send files to the Web server.
This could be useful for something as simple as uploading an image or document to be
saved on a server with an employee record, for example. On the other hand, it could be
used to upload code in a Web service-based source control system, which supports
Internet upload and download of all kinds of files.

To send a file to the server, we will create a Web service application called Example-
5Svc and add a Web service called Example5Service. Include the following Web method:

[WebMethod()]

public void SendFile(Byte[] bytes, string filename)

{

FileStream fs = new FileStream(filename, FileMode.OpenOrCreate);

fs.Write(bytes, 0, bytes.Length);

fs.Close();

}

The Web method is quite simple. It merely takes a byte array of data, the filename to
create on the server as a string. Of course, the filename would probably be given to the
client by the server before or during this call so we could check if it exists. We probably
don’t want to allow someone to arbitrarily create (or overwrite) files on our server! In
fact, we could employ some simple method whereby the server assigns a filename for
us, maybe using a GUID or hash scheme, and returns the name to our calling code. Or,
the calling code could request the filename in another call altogether, then pass that
into the call that sends the file. Once the array of bytes is on the server, it is saved to a
file using standard methods.

The code that calls this service would look something like this:

private void SendFileToServer()

{

FileStream fs = new FileStream("C:\\filetosend.txt", FileMode.Open);

Byte[] bytes = new Byte[fs.Length];

fs.Read(bytes, 0, (int) fs.Length);

fs.Close();

FileWebService svc = new FileWebService();

svc.SendFile(bytes,"C:\\filestosend.txt");

}

This code is simple as well. It reads the file from the local machine into a byte array
and sends this to the Web service as a parameter. This could be a nice alternative to
using an FTP-based file transfer mechanism in your applications. This code could be
used to transfer an image as well, but to transfer content other than plain text, you
would need to encode it into Base64 XML first, so that no special characters in the
stream would be misinterpreted as a control value. When you plan to send massive
amounts of data from a very large file using this service, consider compressing the file,
sending, and then decompressing it on the server.

Web Services 319

Expanding WileyParts with Web Services

Now that you have a basic understanding of Web services, let’s expand our Wiley Parts
business by adding some. The Web services we’ll add will use the same object model
that we created in Chapter 6, “Applying What We’ve Learned So Far.” The Web services
that we’ll make available will allow someone to search the Wiley Parts inventory and
see the parts that we have to offer.

Wiley Parts Services
Let’s put together the Web methods that will be provided by Wiley Parts. First, add a
new Web service to the WileyPartsServices project called PartSearch. We need to be
able to access the classes in the WileyParts.Database and WileyParts.Objects name-
spaces, so we have to add a reference to the WileyPartsObjects.dll. Be sure to include
the following using statements at the top of the PartSearch.asmx.cs file:

using WileyParts.Database;

using WileyParts.Objects;

Apply the WebService attribute to the PartSearch class, as you learned in the previ-
ous section. All we have left to do is define the Web methods that we need. For now, we
are going to expose the ability to get a list of the vehicle years for which we sell parts,
our part categories, a list of vehicles given a specific year, and a list of parts given a
VehicleID and CategoryID. Here are the Web methods that need to be added to Part-
Search.asmx.cs.

[WebMethod(Description="Returns a list of available vehicle years as an

array of integers.")]

public int[] GetVehicleYears()

{

//Open a connection

WileyConnection conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

//Get the vehicle years

ArrayList arrYears = Vehicle.GetVehicleYears(conn);

//Close the connection

conn.Close();

//return an int[] from the ArrayList

return (int[])arrYears.ToArray(typeof(int));

}

[WebMethod(Description="Returns a list of available vehicles for the

specified year.")]

public Vehicle[] GetVehiclesByYear(int intYear)

320 Chapter 7

{

//Open a connection

WileyConnection conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

//Get the vehicles

ArrayList arrVehicles = Vehicle.GetVehiclesByYear(conn, intYear);

//Close the connection

conn.Close();

//return a Vehicle[] from the ArrayList

return (Vehicle[])arrVehicles.ToArray(typeof(Vehicle));

}

[WebMethod(Description="Returns a list of the available part

categories.")]

public PartCategory[] GetAllCategories()

{

//Open a connection

WileyConnection conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

//Get the categories

ArrayList arrCategories = PartCategory.GetAllCategories(conn);

//Close the connection

conn.Close();

//return a PartCategory[] from the ArrayList

return (PartCategory[])arrCategories.ToArray(typeof(PartCategory));

}

[WebMethod(Description="Returns a list of the parts when given a

VehicleID and CategoryID.")]

public Part[] GetParts(int intVehicleID, int intCategoryID)

{

//Open a connection

WileyConnection conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

//Get the parts

ArrayList arrParts = Part.GetPartsByVehicleAndCategory(conn,

intVehicleID, intCategoryID);

//Close the connection

conn.Close();

//return a Part[] from the ArrayList

return (Part[])arrParts.ToArray(typeof(Part));

}

Web Services 321

As you can see, we’ve included the WebMethod attribute for each one of these meth-
ods and also defined the Description property. All four of these methods work pretty
much the same way. A connection to the database is opened with the following lines of
code:

WileyConnection conn = new

WileyConnection(ConfigurationSettings.AppSettings["dsn"]);

Notice that we are retrieving the connection string from the AppSettings, just as we
did in the Web application that was developed in Chapter 6. Next, the appropriate
method is called to retrieve an ArrayList of a particular type. The database connection
is then closed:

//Close the connection

conn.Close();

Last, an array of a particular type is returned from the method. Notice that the
return type of all of the methods is an array of some type rather than an ArrayList. Any
object that we wish to transmit via SOAP must be serializable. The ArrayList is not a
serializable class, so we can’t transmit it directly. The ArrayList does have a ToArray()
method that can be used to retrieve an array of all of the items in the ArrayList. We can
also specify the type of array to create by passing in a System.Type object. In the GetVe-
hiclesByYear method, this is done with this line of code.

return (Vehicle[])arrVehicles.ToArray(typeof(Vehicle));

That’s all there is to developing these Web services. Most of the work has already
been done in the object model that we developed in Chapter 6. Now, let’s test out a
couple of them before we move on to writing applications that can access these Web
services.

If you navigate to the PartSearch.asmx file in your browser, you should see a page
similar to that shown in Figure 7.12. All four of the methods are listed there, along with
the text to which we set the Description property of the WebMethod attribute. You can
also see the text that we provided for the Description property of the WebService
attribute at the very top. You can click on any of the Web method names, and a page
will be displayed that will allow you to invoke the Web method through your browser.
Figure 7.13 shows the page that is displayed when we clicked on GetVehiclesByYear.
Further down the page (not shown) are samples of what the SOAP, HTTP-GET, and
HTTP-POST request and response message should look like for accessing the Web
method. To invoke this method, simply enter in a year, such as 2001, and click the
Invoke button. A new browser window will be opened and will display the response
of the HTTP-GET call of the Web method, as shown in Figure 7.14. The reponse con-
tains a list of <Vehicle> tags, which shows that our Web service is working properly.

322 Chapter 7

TE
AM
FL
Y

Team-Fly®

Figure 7.12 WileyPartsServices.

Figure 7.13 GetVehiclesByYear test page.

Web Services 323

Figure 7.14 GetVehiclesByYear HTTP-GET response.

Now that we’ve seen how to create Web services, we need to learn how to use them
in other applications. We’ll walk through the steps that need to be performed to con-
sume a Web service in the next section.

Consuming a Web Service

Consuming a Web service means calling some of the Web service’s exposed methods
from an application across the Web. In this section we will provide an example of
consuming the Wiley Parts Web services. The example will be a .NET Win Form appli-
cation written in C#. It will allow the user to select a vehicle and search for available
parts for that vehicle. We’ll see that the tools that are provided make consuming Web
services a fairly easy task. The WSDL.exe tool is vital in consuming Web services, so
we’ll take a look at it right away in the next section.

WSDL.exe
The first thing that we need to do is generate a proxy class that can be included in a
.NET application. This proxy class will allow us to call the Wiley Parts Web services.
The WSDL.exe command-line utility provided as part of the .NET framework is used
specifically for this purpose. Before we explain this utility further, there’s one thing to
note: If you are using Visual Studio .NET to create a .NET application, it will create

324 Chapter 7

proxy classes for you when you add a Web Reference to your application. We’ll see
how to do that in the next section. In spite of this built-in ability in Visual Studio .NET,
the WSDL utility still has its uses, particularly if you are not using Visual Studio .NET
for your development. The utility is installed by default in the Program Files\
Microsoft.NET\FrameworkSDK\bin directory. If you haven’t included this directory
in your environment path, do so now before proceeding with this section.

To execute the utility in its simplest form, you need to provide a URL or path to a
WSDL contract. If you want to accept the default values for all of the switches of the
utility, then specifying the WSDL contract is all you need to do. Figure 7.15 shows an
example of creating a C# proxy class for the PartSearch Web service. We retrieved the
WSDL contract for the Web service by appending the URL with ?wsdl. The last line in
the screen shot shows that a file called PartSearch.cs was created. This tells us two
things. First, by default the name of the file that is created takes the same name as the
service, which is PartSearch in this case. Second, the fact that the extension is .cs tells us
that the utility creates C# proxy classes by default. The WSDL.exe utility has many
switches that we can use to control it. A few of the more common ones are the following:

/language:<language> Used to specify the language in which the proxy class
should be generated. The valid values are CS, VB, or JS for C#, Visual Basic.NET,
and JavaScript respectively. The default is CS.

/out:<filename> Used to specify a path and/or filename for the output. The
default is the current path and the name of the service along with the appropri-
ate extension, depending on the value of the /language switch.

/namespace:<namespace> Used to specify a namespace in which the proxy class
should be wrapped. By default, the class will not be wrapped in a namespace
at all.

/protocol:<protocol> Valid values are SOAP, HttpGet, and HttpPost. The default is
SOAP.

We won’t go through all of the details of the proxy class that was generated for our
PartSearch service, but we would like to point out a few important details. The class
that was generated inherits from System.Web.Services.Protocols.SoapHttpClientPro-
tocol. Inside the class, three public methods were generated for every Web method that
was exposed by the Web service. One of these methods will take the exact same name
as the Web method and is used for calling the Web method synchonously. The other
two methods take the same name as the Web method preceded by Begin and End.
These two methods are used for calling the Web method asynchronously. Here are the
three methods that were generated for the GetVehicleYears Web method.

Figure 7.15 Running the WSDL.exe Utility.

Web Services 325

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://www.

wileyparts.com/GetVehicleYears",

RequestNamespace="http://www.wileyparts.com/",

ResponseNamespace="http://www.wileyparts.com/",

Use=System.Web.Services.Description.SoapBindingUse.Literal,

ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)

]

[return: System.Xml.Serialization.XmlArrayItemAttribute("int",

IsNullable=false)]

public int[] GetVehicleYears()

{

object[] results = this.Invoke("GetVehicleYears", new object[0]);

return ((int[])(results[0]));

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public System.IAsyncResult BeginGetVehicleYears(

System.AsyncCallback callback, object asyncState)

{

return this.BeginInvoke("GetVehicleYears", new object[0], callback,

asyncState);

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public int[] EndGetVehicleYears(System.IAsyncResult asyncResult)

{

object[] results = this.EndInvoke(asyncResult);

return ((int[])(results[0]));

}

At the bottom of the generated class you will see something like this.

public class Vehicle : WileyObject {

}

[System.Xml.Serialization.XmlIncludeAttribute(typeof(Part))]

[System.Xml.Serialization.XmlIncludeAttribute(typeof(PartCategory))]

[System.Xml.Serialization.XmlIncludeAttribute(typeof(Vehicle))]

public class WileyObject {

}

public class Part : WileyObject {

}

public class PartCategory : WileyObject {

}

We don’t know about you, but something doesn’t look right with this to us. All of
the custom classes that we used in our Web methods are defined here, which is great,

326 Chapter 7

but they are all empty. Class members are created only for public member variables
and properties that provide both a get and set accessor. None of the classes that we
used has public member variables, and all of the properties that we provided had only
get accessors. We can fix this problem by going back to our WileyPartsObjects project
and defining set accessors for all of the properties. After you’ve done that, you can
rereference the WileyPartsObjects.dll, recompile the WileyPartsServices project, and
then run the WSDL.exe utility again. This is what the classes defined in the generated
proxy class will look like after doing so.

public class Vehicle : WileyObject {

public int VehicleID;

public int VehicleYear;

public string Make;

public string Model;

public string SubModel;

}

[System.Xml.Serialization.XmlIncludeAttribute(typeof(Part))]

[System.Xml.Serialization.XmlIncludeAttribute(typeof(PartCategory))]

[System.Xml.Serialization.XmlIncludeAttribute(typeof(Vehicle))]

public class WileyObject {

}

public class Part : WileyObject {

public int PartID;

public int CategoryID;

public string Description;

public System.Decimal Price;

public System.Single Weight;

}

public class PartCategory : WileyObject {

public int CategoryID;

public string Description;

}

This looks better, but something is still a little funny. Member variables have been
created for all of the properties that we provided in the classes rather than properties.
The member variables have taken on the same name as the properties that we pro-
vided. This is rather inconvenient. If we need to bind some kind of control to these
classes, we will have to define properties manually, as binding will not work with pub-
lic member variables. If we create new Web methods and need to run the utility again,
the modifications that have been made to the generated classes will be lost. In a real-
world project it is probably a good idea to extract these generated classes and place
them in a separate source file, which will allow you to make custom modifications and
not worry about losing them if the proxy class needs to be regenerated. If you do have
to regenerate the proxy class, you can just delete any classes from the proxy class that
you have modified to eliminate duplicate class definitions.

As you’ll see in the next section, the WSDL.exe tool provides you with a little more
control than adding a Web Reference to a project.

Web Services 327

An Alternative .NET Client
for Wiley Parts
Let’s create a C# Win Form application that will utilize the Wiley Parts services. We won’t
explain how to write a WinForms application because this is a Web application book, but
we will show you how to add a Web Reference to a project and use the proxy classes that
are generated. If you are not familiar with developing WinForm applications, the full
source code for this example can be downloaded from the companion Web site.

We created a C# Win Form project called WinFormWebServiceClient. To add a Web
Reference to a project, you can right-click on the project in Solution Explorer and
choose Add Web Reference. You should be presented with a dialog that looks similar
to Figure 7.16. In the left-hand pane there is a link to the live Microsoft UDDI directory,
where you can find any Web services that have been registered by various companies.
There is also a link to the Test Microsoft UDDI directory and, last, a link to any Web ref-
erences on the local Web server. If you click on the link for local Web services, the
dynamic discovery file that should be located in the root directory of your default Web
server will be found, which will enable the discovery of any Web services in that direc-
tory or any directory below it. A list of links to other discovery files that are found will
be shown in the right-hand pane, as you can see in Figure 7.17. There are several to
choose from on our machine. The WileyPartsServices discovery file is listed last. If we
click on that link, the left-hand pane will display the same Web page that we saw in
Figure 7.2, and the Add Reference button at the bottom of the dialog will become
enabled. To add the Web reference to the project, click the button.

Figure 7.16 Web Reference dialog.

328 Chapter 7

Figure 7.17 Local Web services.

After the Web reference is added, the Solution Explorer window should look like
Figure 7.18. A Web References folder has been added, and a localhost folder is located
inside of it. If we had referenced a Web service on some other Web site, the name of that
Web site would have been used instead. In the localhost directory, four files have been
created. The PartSearch.wsdl file is just the WSDL contract file that was retrieved from
the Web service and used to create the PartSearch.cs file, which is the C# proxy class for
calling the Wiley Parts Web methods. This is the exact same proxy file that we gener-
ated earlier with the WSDL.exe tool. By default, the proxy class is included inside of a
namespace that takes the form of <Project Name>.<Web Site Name>. Our proxy class
has been created inside of the WinFormWebServiceClient.localhost namespace. The
Reference.map file keeps a list of the discovery documents and WSDL contract files
that were found when the Web reference was made. The WileyPartsServices.disco file
is a static discovery file for the Web service that we have referenced.

We added a few controls to a Win Form and wrote some simple code to populate
those controls with the results of the Web method calls. When the form is first opened,
the following code will be executed.

PartSearch search = new PartSearch();

cmbVehicleYears.DataSource = search.GetVehicleYears();

cmbCategories.DataSource = search.GetAllCategories();

Web Services 329

Figure 7.18 Solution Explorer with a Web Reference.

To call the Web methods, an instance of the PartSearch proxy class must be created.
Our form has two combo boxes for displaying the available vehicle years and the part
categories. As you can see, we have set the DataSource property of the cmbVehicle-
Years control to the result of a call to the GetVehicleYears() Web method. Similarly, we
have set the DataSource property of the cmbCategories control to the result of a call to
the GetAllCategories() method. The last two lines of code need a little explaining.
When combo boxes are bound to an array of objects, the text that is displayed for each
object is the text returned by a call to the ToString() method on that object, unless the
DisplayMember property of the combo box has been set to the name of a specific prop-
erty on the object. The GetVehicleYears() Web method returns an integer array, and the
int.ToString() method returns a string representation of the integer, which is what we
want. The GetAllCategories() method returns an array of PartCategory objects. If you
remember from the earlier discussion in this chapter, the PartCategory class is created
for us in the PartSearch.cs proxy file and looks like this.

public class PartCategory : WileyObject

{

public int CategoryID;

public string Description;

}

The class that has been generated does not have a ToString() method. Even if our
original PartCategory class had defined a ToString() method, that method implemen-
tation would not be reproduced in the proxy class. If we do not set the DisplayMember

330 Chapter 7

property of the cmbCategories combo box the ToString() method of the class will be
called to get the display text. Because the PartCategory and WileyObject classes do not
provide an override of the ToString() method, the Object.ToString() method, which
returns the name of the class, will be called. We need to display the description of the
category in the combo box, so we have set the DisplayMember to “Description”. Addi-
tionally, we have set the ValueMember of the combo box to CategoryID because we
will need that to make a call to the GetParts() Web method later on. There is still a prob-
lem, though. The DisplayMember and ValueMember properties must be set to the
names of public properties that will be available on the object. The PartCategory class
that was generated does not have any properties, but rather has two public member
variables by the names of CategoryID and Description. When the cmbCategories
combo box tries to bind at runtime, an exception will be generated and the program
will fail. We need to expose these two member variables as properties like this.

public class PartCategory : WileyObject

{

private int m_intCategoryID;

private string m_strDescription;

public int CategoryID

{

get { return m_intCategoryID; }

set { m_intCategoryID = value; }

}

public string Description

{

get { return m_strDescription; }

set { m_strDescription = value; }

}

}

An important thing to note here is that, whatever is done to this class, there must be
either public member variables or properties named CategoryID and Description.
These exact names have been defined in the WSDL contract, and they need to be there
for proper serialization and deserialization of the class. The PartCategory type is
defined in the WSDL contract like this.

<s:complexType name="PartCategory">

<s:complexContent mixed="false">

<s:extension base="s0:WileyObject">

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="CategoryID"

type="s:int" />

<s:element minOccurs="1" maxOccurs="1" name="Description"

nillable="true" type="s:string" />

</s:sequence>

</s:extension>

</s:complexContent>

</s:complexType>

Web Services 331

Figure 7.19 WinFormWebServiceClient.

Note the specific element names of CategoryID and Description. The point here is
that often you will need to modify custom classes that are generated by a Web refer-
ence or the WSDL.exe tool. You need to be very cautious to maintain the original pub-
licly accessible member variables and properties, or your Web method calls will cease
to function properly. If you do manage to break something in a generated class, you
can always refer to the WSDL contract and make sure that you have not removed or
changed any required property names.

Calls to the GetVehiclesByYear() and PartSearch() Web methods are made very sim-
ilarly to what we have already seen, so we will not show them here. You can check out
the full source for this Win Form application by downloading the source code from the
companion Web site. A screen shot of what it looks like is shown in Figure 7.19.

Wrapping Up the Chapter

In this chapter, we learned how to use XML Web services as a means to pass objects
across the Web, as well as to call on business logic that exists on a Web server. Web ser-
vices are a meaningful way to solve a host of business challenges, and with ASP.NET
they are easy to implement and consume. While Web services can be used from any
type of application, we have tried to show you how to use them from something other
than a Web application. We do feel that many of you will consume Web services heav-
ily in your ASP.NET Web applications, and the techniques you have learned in this
chapter apply there equally well. Now we will move on to security and authentication
in ASP.NET and discuss the means by which we can control access to our Web pages.

332 Chapter 7

TE
AM
FL
Y

Team-Fly®

333

Web application security and authentication should be considered from the very
beginning of your Web project, starting with the design phase. You must ensure that
the design of the application allows the proper security measures to be implemented.
For example, if you are designing an e-commerce application, any pages that collect
personal information, such as credit card numbers, should be placed in separate direc-
tories where SSL can be implemented. If you are designing an intranet Web application
that will contain information that should be accessible only by managers, those pages
should also be separate. The larger the Web application, the more important security
and authentication become, particularly if you have hyperlinks sprinkled throughout
your pages.

In this chapter we cover how ASP.NET security works with the security features that
are provided by IIS to further enhance security and authentication. We take a look at
several different methods for implementing authentication. Finally, we will add an
Orders Report to our Wiley Parts application and implement a security mechanism for
accessing the report.

Security and Membership

C H A P T E R

8

IIS Security

Internet Information Services has built-in security features that work independently
of ASP.NET. These security features can be used along with Windows user account
information to secure a Web application without requiring any code changes. You can
configure IIS security for any Web site or virtual directory from Internet Services Man-
ager. From the property page for a particular directory, select the Directory Security tab
and click the Edit button under the Anonymous Access and Authentication Control
section. You should see a dialog similar to the one in Figure 8.1. We’ll cover these
options in detail in the sections that follow.

Anonymous Access
When IIS receives a request from a client, it needs to process the request under a valid
Windows account. This allows the operating system to grant or deny access to
resources based on the user’s security credentials. When the Anonymous Access
checkbox is selected, IIS will not authenticate the client; instead, it will impersonate a
specified user account on behalf of the client. When IIS is installed, a user account
called IUSR_ComputerName is created and assigned to the Guests user group. This
account is used by default whenever a directory is set to allow anonymous access. This
user account can be changed manually by clicking the Edit button in the Anonymous
Access section, which will display a dialog similar to Figure 8.2. From this dialog you
can specify any user account that you wish. If the Allow IIS to Control Password check-
box is checked, IIS will automatically keep in synch with the password for the specified
account, even if the password is changed.

Figure 8.1 IIS Authentication dialog.

334 Chapter 8

Figure 8.2 Anonymous access user account.

It is important to note that ASP.NET applications are set to run under the Windows
ASPNET user account by default. This means that whenever access is requested for a
resource that will be served by the ASP.NET ISAPI DLL (.aspx, .ascx, etc.), the ASPNET
user account must have access to the resource as well, or access will be denied.

Anonymous access should be used for any areas of a Web application that do not
need to be secured. This will be typical for Web sites that are open to the public, such
as the sample Wiley Parts Web site, or general information areas of an intranet Web
site. Keep in mind that IIS will be impersonating the IUSR_ComputerName account or
an account that you have specified when anonymous access is enabled. If NTFS secu-
rity changes are made that deny this account access to particular resources, anony-
mous users will be unable to access those resources. If anonymous access is the only
authentication option chosen, attempting to request a resource that the anonymous
account does not have access to will result in a page similar to Figure 8.3 being served
up by IIS.

Figure 8.3 Access Denied Form.

Security and Membership 335

Windows Authentication
Windows authentication allows us to use Windows security accounts to grant or deny
access to areas of our Web site. There are three types of Windows authentication: Basic,
Digest, and Integrated Windows authentication. Each has its own set of pros and cons.

Basic

Basic authentication is the most widely supported form of Windows authentication
because it is part of the HTTP 1.0 specification and is supported by most browsers. In
addition, it will work through proxy servers and firewalls. It is the least secure option,
however, because user names and passwords are not encrypted before they are sent
across the network.

When a client makes a request for a resource and has not yet been authenticated and
authorized to access that resource, he or she will be prompted for username and pass-
word. The prompt displayed for acquiring the username and password depends on
the browser used. Figure 8.4 shows the prompt displayed by an IE browser, and Figure
8.5 shows the prompt displayed by a version of the Opera browser. If the user supplies
credentials that are denied access, the resulting action will vary from browser to
browser. For example, with an IE browser, the user will be prompted for the username
and password three times. After the third failed attempt, the page shown in Figure 8.3
will be displayed. With Version 3.62 of the Opera browser, the user will continually and
endlessly be prompted for username and password.

Figure 8.4 Internet Explorer Basic authentication dialog.

336 Chapter 8

Figure 8.5 Opera Basic authentication dialog.

Remember that the username and password that the user is being asked to supply
are a Windows username and password. It could be for an account on the Web server
machine or for an account in a Windows domain. Neither of these prompts allows the
user to specify a domain name. Domain credentials can be specified be entering the
username in the form DOMAIN\username. With Basic authentication, we can specify
the default domain to be used if none is specified on the server. When the Basic authen-
tication check box on the dialog in Figure 8.1 is checked, the Edit button that is grayed
out on the right side of the dialog becomes active. Clicking on this Edit button will dis-
play the dialog shown in Figure 8.6. As you can see from the text in the dialog, the
default domain that is used is the one in which the Web server is active. You can change
this to some other domain if you wish.

Figure 8.6 Basic authentication domain dialog.

Security and Membership 337

Basic authentication is highly accessible and will be the most widely supported
form of Windows authentication, but due to its vulnerability to the dreaded hacker it
should be used sparingly and mainly in secure network situations.

Digest

Digest authentication works much the same as Basic authentication, but it is more
secure. Passwords are sent as a hash value that is created from the original password,
as opposed to sending the username and password across the wire without any type
of encryption, as with Basic authentication. Just as with Basic authentication, Digest
authentication will work properly through proxy servers and firewalls. Not all browsers
support Digest authentication, though, because it was introduced in the HTTP 1.1
specification. In addition, it is supported only in domains with a Windows 2000
domain controller.

Integrated

Integrated Windows authentication is the most secure option. Usernames and pass-
words are not sent across the network at all. The client’s browser will authenticate the
user through a cryptographic exchange with the Web server. It is supported only by
Internet Explorer 2.0 or later and does not work through HTTP proxy connections. If
you are developing an intranet Web application, this will be the option that you will
use most often.

When a client requests a resource under a Web site using Integrated Windows
authentication, the credentials with which that the user logged on to the machine will
be used to attempt to authenticate the user on the Web server first. If those credentials
fail or are denied access to the requested resource, the user will be prompted for his or
her credentials by a dialog similar to that shown in Figure 8.7.

If a client requests a resource under a Web site that is using Integrated Windows
authentication with a browser other than Internet Explorer 2.0, he or she will likely see
an error message that indicates that the authentication method is not supported. The
error message displayed by Opera 3.62 can be seen in Figure 8.8.

Figure 8.7 Integrated Windows authentication prompt.

338 Chapter 8

Figure 8.8 Opera authentication error.

Integrated Windows authentication is very easy to use and extremely flexible. Its
pitfalls are that it is supported only by Internet Explorer 2.0 or greater and that all users
must have valid Windows accounts. If you are developing a large intranet Web site to
be used on a predominantly Windows client network, you will definitely want to use
this authentication option. It is not usually suitable, though, to public Internet Web site
applications because all users must have a valid Windows account.

Mixing and Matching

It is important to know that these different authentication methods, including anony-
mous access, can all be used together. If anonymous access is selected, IIS will always
attempt to authorize client requests using the anonymous user account first. If the
anonymous account is denied access and Integrated Windows authentication is
enabled, IIS will attempt to log the user on with his or her current credentials. If access
is once again denied, the user will be prompted for a username and password. In the
case that the user is not using a browser that supports Integrated Windows authentica-
tion and the Web site has Digest or Basic authentication enabled, those authentication
methods will be attempted in their respective order.

For an example, let’s assume that we have a directory structure such as the following:

Application (Accessible by anonymous)

-> Secure (Not accessible by anonymous)

We have configured a Web site in IIS whose root directory is the Application direc-
tory, and we have enabled Anonymous Access, Basic, and Integrated Windows authen-
tication through Internet Services Manager. The NTFS security settings for the
Application directory allow everyone access, but the Secure directory allows access
only to a user named Dave West. Let’s assume then that Dave West is at work and is
logged on to the network as himself. He then navigates to a page called default.htm in
the Application directory with the latest version of Internet Explorer. IIS will first try to
access the default.htm resource by using the anonymous user account. In this case,
access is granted and the page is displayed. He then navigates to a page called TopSe-
cret.htm, which is located in the Secure directory. Once again, IIS will attempt to access
the resource using the anonymous user account, but this time access is denied. IIS will
now attempt to access the resource using the other available forms of authentication.
Integrated Windows authentication takes precedence over Basic authentication, so IIS
will attempt to authenticate using this method next and will first try the user credentials

Security and Membership 339

with which Dave is logged on to his machine. In this case, he is logged on as Dave
West, which does have access to the TopSecret.htm resource, and the page will be dis-
played without prompting Dave for his credentials.

Now Dave starts up his laptop, which is attached to the network, and logs on to the
network once again. His laptop does not have any version of Internet Explorer, but
instead has an Opera browser. Dave attempts to navigate to the TopSecret.htm resource
using the Opera browser, but this time he is prompted for his username and password.
Because Opera does not support Integrated Windows authentication, IIS attempts to
authenticate Dave using Basic authentication. Basic authentication will not try to log
Dave on using the credentials with which he logged on to his machine, so he is forced
to enter his credentials once again. If he does, the TopSecret.htm page will be displayed.
As long as he doesn’t close his browser, he can continue to request other resources that
he has access to without reentering his username and password.

As you can see, we can implement robust security through IIS without having to
write any code whatsoever. In the sections that follow we will see how ASP.NET can be
configured to work with IIS and implement security of its own.

ASP.NET Authentication

ASP.NET has the ability to authenticate users and enforce security restraints on its own
as well as in concert with IIS. When IIS has granted access to a request for an ASP.NET
page, or any other resource registered to be handled by aspnet_isapi.dll, the authenti-
cation information is passed on to the ASP.NET application for further authentication.
Keep in mind that if IIS has authenticated a user, it will always be under a Windows
account, whether it is the anonymous IUSR_ComputerName account or some other Win-
dows account. It is this information that will be passed on to the ASP.NET application.

ASP.NET security is configured through the use of the Web.Config file, which
should be located in the root virtual directory of the application. In this section, we
concentrate specifically on the sections that pertain to security.

The sections of the Web.Config file that pertain to security are <authentication>,
<identity>, and <authorization>. The <authentication> section is used to specify the
type of authentication to be used for the virtual directory.

<authentication mode="Windows|Forms|Passport|None" />

As you can see in this line of code, as of now there are four choices for authentica-
tion: Windows, Forms, Passport, and None.

The <identity> section allows you to specify whether to use client impersonation. In
a nutshell, this would allow you to make operating system calls on behalf of the origi-
nal client. We could also specify a particular user account with which to impersonate.
The <identity> section takes on the following form.

<identity impersonate="true|false"

userName="username" password="password" />

340 Chapter 8

To impersonate using the credentials supplied by IIS, simply set the impersonate
option to true and leave out the username and password attributes. If you specify a
username and password, that account will be impersonated instead. Impersonation
must be used in conjunction with Windows authentication. To set up a scenario where
ASP.NET impersonates each client request, the following would need to be present in
the Web.Config file.

<authentication mode="Windows" />

<identity impersonate="true" />

NOTE We’re not going to go into any more detail on impersonation in this
book, but you should be aware that the capability exists and know how to
enable it.

The <authorization> section is used to allow or deny access to specific users, roles,
or verbs (HTTP transmission methods, GET, HEAD, POST, and DEBUG). It takes the
following form in the Web.Config file.

<authorization>

<allow users="comma-separated list of users"

roles="comma-separated list of roles"

verbs="comma-separated list of verbs" />

<deny users="comma-separated list of users"

roles="comma-separated list of roles"

verbs="comma-separated list of verbs" />

</authorization>

Securing directories in this manner is referred to as URL authorization. For example,
if we wanted to allow access to the Administrator account on our Web server and deny
all other users access to a particular directory, we could use the following in the
Web.Config file in that directory.

<authorization>

<allow users="Scott-w2kpro\Administrator" />

<deny users="*" />

</authorization>

Assuming that the authentication mode is set to Windows, if we attempt to access
this page with Internet Explorer and are not logged on as the Administrator, Integrated
Windows authentication will kick in and we will be prompted for a username, pass-
word, and domain. Just as before, if we fail to enter appropriate credentials three times,
we will see an Access Denied page, shown in Figure 8.9. This time the error page
is served up from ASP.NET and not IIS. You can see the difference if you compare
Figure 8.9 and Figure 8.3.

Security and Membership 341

Figure 8.9 ASP.NET Access Denied page.

Two special identities can be used. The * can be used to specify all users, as we did
in the previous example. The ? can be used to specify the anonymous user. The default
setting in the machine.config file is to allow all users as follows.

<authorization>

<allow users="*" />

</authorization>

ASP.NET will look through the list of <allow> and <deny> tags in the <authoriza-
tion> section of the Web.config file until it finds the first match for the current user. If
it is an <allow>, the request will be processed. If it is a <deny>, access to the resource
will be denied. So, if we change the <authorization> section in the previous example
and place the <deny> tag before the <allow> tag, no users will be granted access to
resources, not even the Administrator account.

If you intend to use the <authorization> section to allow or deny access to Windows
users, then the authentication mode must be set to Windows. If the authentication
mode is set to something other than Windows, no Windows user accounts will be
allowed access. In the previous example where only the Administrator account was
allowed access, if the authentication mode was set to “None” the Administrator
account would have been denied access.

For our Orders Report in the sample application, we’ll need to implement different
security strategies. The following sections demonstrate how to use Windows, Forms,
and Passport authentication in the ASP.NET Web application.

Windows
Windows authentication is the simplest to implement via ASP.NET. To enable ASP.NET
Windows authentication, you simply need to modify the <authentication> section of
the Web.Config file as follows:

<authentication mode="Windows">

342 Chapter 8

TE
AM
FL
Y

Team-Fly®

Figure 8.10 A User object with Windows authentication.

You should use ASP.NET Windows authentication in conjunction with any of the
three forms of IIS Windows authentication. This type of authentication requires no
code changes. Look at the User object when a user has been authenticated by Windows
authentication. Here is some code that gives us access to the user object of the logged-
on user. For this sample, create a new ASP.NET Web application called Chapter8Win-
dowsAuth, and in it create a new WebForm called UserInfo. Inside the UserInfo
Page_Load handler, insert the following code. We created a completely separate appli-
cation for this example because we don’t want to have to change the config file for the
other samples in the chapter.

Response.Write(string.Format("User name is: {0}
",

User.Identity.Name));

Response.Write(string.Format("Authentication type is: {0}
",

User.Identity.AuthenticationType));

Response.Write(string.Format("Is authenticated? : {0}
",

User.Identity.IsAuthenticated));

When this code is run from a Page_Load event, we would see something similar to
the page shown in Figure 8.10.

Forms
Forms authentication is a robust way to allow flexibility in how you authenticate
your users. It is robust because the Forms mode allows you to perform whatever kind
of action you desire when an unauthenticated user requests a page. Implementing
Forms authentication requires programming in addition to configuration. Forms

Security and Membership 343

authentication also allows you to store your users’ credentials in any format you like,
including files and databases. In this example, we are going to make a copy of the
WileyParts application from Chapter 6. This time, however, we are going to modify it
to have a secure orders page, which will be in its own subproject called Chapter8Forms-
Auth. Make a copy of the entire Ch6WileyPartsWeb project folder called Ch8Wiley-
PartsWeb. In this new folder, create a folder called Secure, and in it, create a new
ASP.NET Web application called Chapter8FormsAuth. In this application we will
create a page that will display all of the orders made to the shopping site, but that will
be protected by Forms authentication.

Like the other modes, the first step in implementing Forms-based authentication is
done in the Web.Config file. In the Web.Config file of the new Chapter8FormsAuth
project, modify the authentication section as follows.

<authentication mode="Forms">

Next, you must tell the server which page will be implementing the user validation
and which users should be forced to log in by inserting the following code in the Config.
Web file.

<forms loginUrl="login.aspx" name="WileyFormsSecurity" />

</authentication>

<authorization>

<deny users="?" />

</authorization>

In the second line, we tell the server which file to redirect the users to when they are
not authenticated; in this case, it’s login.aspx. The name attribute tells the server what
to name the cookie that is stored and passed back in the authentication form of each
subsequent page. In the second line of the authorization section, we tell the server to
deny access to any unauthorized user. The ? in the user’s attribute stands for anony-
mous user; thus, any user logging on who is anonymous (not authenticated) will be
redirected to the login.aspx page. The fact that these entries were made in the
Web.Config file of the subfolder means that they apply only to the application at that
level, in this case the Chapter8FormsAuth application in the Secure folder. This
emphasizes the hierarchical nature of config files in .NET. The settings in any folder
override the settings in the parent folder. This works nicely when we want to secure
only a portion of the pages and leave some totally public.

Notice that even if we tried to allow a Windows user to access the resource by
putting a <allow users=”blueline1\tomj” /> entry in the authorization section, Tom
would still be rerouted to the login page. The authentication mode is set to Forms, so
the server doesn’t care if a Windows user tried to access the page. This is not Windows
authentication, so no luck for the user with a valid Windows account on the server—
he must still log in using the Forms authentication page. Also note that if we include a
<allow users=”*” /> entry before the deny entry, we would be allowing any user to
bypass the Forms authentication and directly access the protected resource. This is
probably not the desired behavior in most cases. Now let’s take a look at the login page
code, which has the important line dealing with the actual authentication, in bold.

344 Chapter 8

What does all of this mean to the application? When a page is requested in an appli-
cation using Forms authentication, the first thing that ASP.NET does is to look for a
cookie in the request header containing an authentication key that can tell the browser
who the user is. If this cookie is not present, ASP.NET assumes that the user has not
been authenticated for the current session. ASP.NET will automatically send the user
to the page specified in the Web.Config file in the <loginUrl=”login.aspx”> line. The ?
in the line <deny users=”?”>, tells ASP.NET to reject any user who is not authenticated.

For the actual login page, create a new WebForm called login.aspx, in the Chap-
ter8FormsAuth project. On the login.aspx page, you (the programmer) are responsible
for authenticating the user however you wish. In most cases, you would want to display
typical username and password entry fields and a button to invoke the authentication.
For this example, we are building a simple page to go along with the Wiley Parts exam-
ples used so far. Here, we will create an orders page that an order-filler at Wiley Parts
can access to view current orders that are waiting to be shipped. While our sample is
simple and doesn’t actually ship the orders, it is a perfect example of when you may
want to disallow all but properly authenticated users to access the pages.

On this login page, we use a simple pair of ASP.NET TextBoxes, one for a username
and one for a password. When the user enters credentials into these two fields and
presses a server-side button, the code looks in the database for the user and password.
If they are found, then the user is authenticated. If they are not found, a login failure
message is displayed. The code to look in the database to authenticate the user will be
added to the WileyPartsObjects DLL, also copied over from Chapter 6. The code for
this modification is shown in Listing 8.1.

To tell the system that the user has been authenticated successfully, we rely on some
helper functionality in the .NET framework System.Web.Security namespace. We call
FormsAuthentication.RedirectFromLogin, which will send the user back to the origi-
nal, secured page he or she requested. This time, however, a cookie is inserted into the
request by the ASP.NET FormsAuthentication Provider. This is used by the system to
verify that the user has been authenticated in each subsequent request the user makes
in the session. This is how ASP.NET knows not to send the user back to the login page
after he or she has already successfully authenticated.

The Name property of the User.Identity object on the Page class will be set to the
now-authenticated user. This allows us to get the user’s name and some other infor-
mation, such as whether the authentication took place, the type (Forms in this case,)
and the actual authentication ticket. when using Forms authentication. To see what the
client is sending to the server when the user is authenticated, we wrote a small HTTP
Server in C# to call with the login.aspx page. The server displays the requests that are
sent to it. Here is the output from an authenticated call:

POST /tcp.aspx HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-

powerpoint, application/vnd.ms-excel, application/msword, */*

Referer: http://localhost/Wiley/Ch08-FormsAuth/login.aspx

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

Security and Membership 345

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0b; Windows NT 5.0; .NET CLR

1.0.291 4)

Host: localhost:8080

Content-Length: 48

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: ASP.NET_SessionId=pvxxpxrnmzh32pb4ryz5q2b3;

WileyPartsSecurity=C145D82B0EDA61558060CE873CF4BA50208344ACD0E6A30B8980C

2F361FCE42C2740A06E3E777B214AC24BC1BC7140CEB696E5BC65AF66E6065F591FBCF8D

F8C

txtPwd=123&txtUid=hankm&btnLogin=Login

Notice the WileyPartsSecurity form item that was inserted by the system. The form
is named by the name entry in the Web.Config file.

NOTE To do this trick, we simply had to change the form in the login.aspx
page and make its action=http://localhost:8080/tcp.aspx, which is the simple
HTTP server, with a bogus URI, just for good measure. Also, we had to remove
the runat=server attribute from the form to keep ASP.NET from linking to it and
setting it to post back to the page. Of course, doing this is a hack and renders
the page useless, so be sure to change it back if you attempt these kinds of
experiments.

Note that the User-Agent (which is how the browser identifies its type to the server)
denotes that it supports the .NET common language runtime and the version thereof.
Internet Explorer is a host for .NET common language runtime applications, just as is
ASP.NET, and is a .NET exe file created by a .NET compiler.

Now back to the login page example. When the user enters his or her credentials
into the form, if we don’t find the credentials record when searching in the database for
the user, we can assume the user is not allowed to be served the secured page. In that
case, we simply display a message telling the user that the username and password
combination was incorrect. In some cases, you may want to use this opportunity to
send the user to a page where he or she can enter a new username and password, thus
entering new “membership” information into the system on the fly. This would work
well in public Web applications that need to support a large number of authenticated
users. It may be best in a public site to allow the users to enter their own user account
information to gain access to the system rather than having to administer users manu-
ally on the Web server side. In effect, we would be letting the user base do the user
administration for us.

Because the authentication of the users is actually the burden of your code, you can
perform this any way you like. How you decide to store the users’ credentials infor-
mation is entirely up to you. You could store the user credentials in an XML file on the
server, or you could call in to some preexisting user database or a mainframe or offsite
computer. Or, you may need an extra measure of security and require your users to

346 Chapter 8

enter two different passwords to log in. It’s up to you; you may not even require pass-
words at all. Some form of a username is required, however, whether it takes the shape
of an ID string, social security number, or email address. The user’s name is used in the
call to set the authorization, whether you call FormsAuthentication.SetAuthCookie or
FormsAuthentication.RedirectFromLoginPage.

The .NET Framework supplies a robust set of objects that allow you maximum
flexibility when using Forms authentication. The one most commonly used is the
FormsAuthentication object mentioned previously. This object of the System.Web.
Security namespace supports a set of static members for helping you with the chores of
programming with the Forms.

If you decide to compile and run this example from the companion Web site,
remember to include this alternate version of the WileyPartsObjects, not the one we
created previously in Chapter 6, “Applying What We’ve Learned So Far.” Note that we
also added two other classes, the OrderList and OrderListItem classes. These are just to
display the orders using database access techniques we learned in Chapter 4, “Data-
base Access “; therefore, we won’t study them here. Create a new class in the Wiley-
PartsObjects project called UserAuth, as shown in Listing 8.1.

using System;

using System.Data;

using System.Data.SqlClient;

using System.Collections;

using WileyParts.Database;

namespace WileyParts.Objects

{

/// <summary>

/// Summary description for UserAuth.

/// </summary>

public class UserAuth : WileyObject

{

public UserAuth()

{

//

// TODO: Add constructor logic here

//

}

public static bool IsUserValid(string strUid, string strPwd,

ref bool IsValid, WileyConnection conn)

{

try

{

//Call a stored procedure to get the parts for the given vehicle

//and category

Listing 8.1 The UserAuth class in WileyPartsObjects

Security and Membership 347

SqlCommand cmd = new

SqlCommand("WileyParts.dbo.sp_IsUserAuthorized",

conn.Connection);

cmd.CommandType = CommandType.StoredProcedure;

//Add the parameters

cmd.Parameters.Add("@Uid", SqlDbType.VarChar, 20).Value =

strUid;

cmd.Parameters.Add("@Pwd", SqlDbType.VarChar, 20).Value =

strPwd;

cmd.Parameters.Add("@IsValid", SqlDbType.Bit).Direction =

ParameterDirection.Output;

//Execute the command

cmd.ExecuteNonQuery();

IsValid = Convert.ToBoolean(cmd.Parameters["@IsValid"].Value);

return true;

}

catch(Exception ex)

{

WileyObject.WriteToLog(ex.ToString(), "UserAuth");

throw new Exception("Failure while trying to authorize user",

ex);

}

}

}

}

Listing 8.1 The UserAuth class in WileyPartsObjects (continued)

And here is the code that occurs on the login page, when the user enters his or her
credentials:

private void btnLogin_Click(object sender, System.EventArgs e)

{

//See if user is authorized.

bool b = false;

UserAuth ua = new UserAuth();

if (!ua.IsUserValid(txtUid.Text.Trim(), txtPwd.Text.Trim(), ref b,

DBConnection))

{

lblLogin.Text = ua.GetErrorsFormatted();

lblLogin.Visible = true;

return;

348 Chapter 8

}

if (b)

{

//Valid, so continue on to application.

FormsAuthentication.RedirectFromLoginPage(txtUid.Text.Trim(),

false);

}

else

{

//Invalid, so inform user.

lblLogin.Text = "Invalid user name or password";

lblLogin.Visible = true;

}

}

Note that this is only the code-behind. We are not showing the user interface aspx
code because it is a simple form with TextBoxes and a Button, which have been dis-
cussed at length already. The user will have entered his or her credentials into the
appropriate fields and clicked the Login button. In the click event handler for the but-
ton, we check the database to see if he or she is a valid user. We use a simple technique
of looking for the username and password in a user’s table, and if one is found that
exactly matches the entered text, the user is considered authorized. If not, we simply
display a message to the user stating the obvious. In your applications, you might want
to develop a more sophisticated way to store user credentials than we have here. Also
note that we could have called the methods directly to let the system know the user is
valid by replacing the FormsAuthentication.RedirectFromLoginPage with the following:

string redurl =

FormsAuthentication.GetRedirectUrl(txtUid.Text.Trim(), false);

FormsAuthentication.SetAuthCookie(txtUid.Text.Trim(), false);

Response.Redirect(redurl);

In Figure 8.11, you can see what might be a typical form for authentication. If the
user is authorized, we simply call FormsAuthentication.RedirectFromLoginPage-
(txtUid.Text.Trim(), false); in which we pass the user’s authenticated login name and a
value indicating whether we want the authentication to last beyond this user’s session.
In most cases, you will want to pass the value false and require the user to reauthenti-
cate should he or she close all of the browsers and attempt to revisit the protected page.
This would make sense in environments in which people may access the site from pub-
lic computers such as in libraries or colleges, where we don’t want a user to be able to
log in to the site with the previous user’s authenticated credentials. In this type of envi-
ronment, you might want to display a message on your pages that reminds the user to
shut down all browser windows when he or she is done accessing the site. Calling this
static method will tell ASP.NET to redirect the user back to the original, protected page
he or she first requested, this time as a fully authorized user. We don’t have to tell the
system where to redirect back to because the Forms authentication system takes care of
this for us by providing the return URL in the QueryString to the login page.

Security and Membership 349

Figure 8.11 A Forms authentication login.aspx page.

Here is the code-behind class of the protected page that the user first tried to access.
The call to FormsAuthentication.SignOut() will cancel the authorization and require
the user to log back in the next time he or she requests a previously requested page in
this application, regardless of whether the user has closed the browser. In fact, as soon
as you call SignOut, which runs on the server, the user will be sent directly to the login
page again because the form in the orders.aspx page is set to post back to itself (its
action is orders.aspx). As soon as the user is no longer authenticated, the browser is
told by the response to go to the login page all over again. Note that the only code in
this snippet that is related to authentication is in bold; the rest of the code is just a
review of earlier chapters.

private string m_strLast = "";

private void Page_Load(object sender, System.EventArgs e)

{

try

{

if (!IsPostBack)

{

//Load table with orders.

ArrayList arrOrderItems = OrderList.GetOrderList(DBConnection);

DataGrid1.DataSource = arrOrderItems;

DataGrid1.DataBind();

}

}

catch(Exception ex)

350 Chapter 8

{

Response.Write(ex);

}

}

private void DataGrid1_ItemDataBound(object sender,

System.Web.UI.WebControls.DataGridItemEventArgs e)

{

//Don t display the same shopper text on more than one row.

if (e.Item.Cells[0].Text == m_strLast)

{

e.Item.Cells[0].Text = "";

}

else

{

m_strLast = e.Item.Cells[0].Text;

}

}

private void btnShip_Click(object sender, System.EventArgs e)

{

//Look at the checkboxes and perform shipping code here.

foreach(DataGridItem item in DataGrid1.Items)

{

if (((CheckBox)item.FindControl("chkShipped")).Checked)

{

Response.Write(string.Format("Shipped item {0}
",

item.ItemIndex));

}

}

}

private void btnLogout_Click(object sender, System.EventArgs e)

{

//Sign the user out - unautheticate him

FormsAuthentication.SignOut();

}

This page just displays a grid of parts (OrderItems) sold by Wiley Parts that are
ready to be shipped. Although the code to access the orders works the same way as
does much of the code in the previous chapter, we included a few tricks you can use in
your apps, just because this page is a good place for them. Remember, only the btn-
Logout_Click handler in bold is part of the authentication functionality.

As for the other parts of the code, first, we handled the ItemDataBound event of the
DataGrid and held on to the text in the first column after every read of the data. With
a simple comparison, we can prevent the same shopper name from showing up on
every order item line in his or her order. This change merely cleans up the data from a
viewing standpoint. We also allow the user to click a CheckBox on each row of the grid,
providing the user with an interface to select order items to ship at this time. Of course,
our code stops there, but you can see how we can read through the DataGrid back on

Security and Membership 351

the server and see which rows were marked as “shipped.” In a real application, you
may want to use code similar to this to read checked items, and their database IDs from
the DataKeys collection, and call other code to do something with them. Here is the
DataGrid code we set up to support the CheckBoxes on each row. It is the Template-
Column that makes this possible. Review the code snippet, and then refer to Figure 8.12
to see it in action.

<asp:DataGrid id="DataGrid1" AutoGenerateColumns="false" runat="server">

<Columns>

<asp:BoundColumn HeaderText="Shopper"

DataField="ShopperName"></asp:BoundColumn>

<asp:BoundColumn HeaderText="Vehicle"

DataField="VehicleDesc"></asp:BoundColumn>

<asp:BoundColumn HeaderText="Description"

DataField="Description"></asp:BoundColumn>

<asp:BoundColumn HeaderText="Weight"

DataField="Weight"></asp:BoundColumn>

<asp:BoundColumn HeaderText="Qty"

DataField="Quantity"></asp:BoundColumn>

<asp:BoundColumn HeaderText="Unit $"

DataField="PricePerUnit"></asp:BoundColumn>

<asp:TemplateColumn>

<ItemTemplate>

<asp:CheckBox Runat="server" id="chkShipped" value="" />

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

Here are some notes about designing Form-based authenticated apps. You can have
your whole application protected via the Web.Config file, and you can cause redirec-
tion to any other page, including those not part of the protected app. You can even
redirect to pages that are not of the aspx type. Of course, in that case you would have
to program the return to the original page yourself because you probably would not
have native access to the .NET FormsAuthentication object in a non ASP.NET page.

Remember that when crossing application boundaries, you won’t be able to access
Session variables in the login page. If you are authenticating a user who has already
gone through some unprotected pages that set variables in the Session management
objects in the application that sent them to a Forms authentication login page in a dif-
ferent application, you will not have access to the Session variables in the first applica-
tion. You can set up authentication and authorization in a Web.Config file in a folder
that is not an IIS application. Just leave out the tags that are related only to the appli-
cation level, or ASP.NET will give you an error.

352 Chapter 8

TE
AM
FL
Y

Team-Fly®

Figure 8.12 The secured orders.aspx page in action.

Note that if a user browses directly to the login page without being redirected there
automatically by ASP.NET, unexpected behavior can result. In particular, the login
page will not have a return URL sent to it and will attempt to redirect the user to the
default.aspx page. If this page is not there, of course, the user will be given a 404 error.
Keep this in mind if you have an application without a default page setup.

Passport
Microsoft’s Passport Authentication Service is a type of Forms authentication, but the
user login authentication process and credentials checking are performed not by you,
but by the Passport service. A Passport login account is not just meant for your appli-
cation, but can be used on other Passport-enabled sites as well. Under Passport
Authentication, when a user requests a secured resource on your site for the first time
in a session, he or she is redirected to the Passport site provided by Microsoft. Special
parameters are encrypted and passed along in the QueryString to Passport including a
unique ID representing the relationship your site has with Passport, as well as the URL
of the original page the user requested. Passport will authenticate the user or allow
him or her to set up a Passport account (credentials) at that time. When the user is
authenticated by Passport, the user is redirected back to the requested page on your
site and is granted access. When passport sends the redirection back to your site, it also
sends an encrypted version of the key that the user will use in subsequent requests on
your site. From this key, the Passport provider objects in ASP.NET will generate the
Form to be used for your user’s credentials.

Security and Membership 353

Passport is an important authentication type, and it will assist the Web in general by
allowing users to gain access to many Passport-enabled sites with one login. Microsoft
does charge a fee to use Passport, but not to the user, only to the site wishing to use
Passport for authentication. Because Passport is so new, and because more and more
documents are emerging daily about its use, we will skip it in this book. Just know that
the service exists and that it is an option for authenticating the users of your public
Web site.

Wrapping Up the Chapter

In this chapter, we have seen the many different authentication and security methods
that can be used for ASP.NET Web applications. We implemented Forms authentica-
tion on an Orders Report page, which requires users to log in to view that page. We did
not implement any security schemes for our Wiley Parts Web site because it is a public
Internet Web site that allows anonymous access and requires no user authentication.

In the next chapter, we will cover a few e-commerce essentials. Nearly every e-com-
merce Web site needs to ship packages to its customers. We’ll see how to use the UPS
online services to calculate shipping costs and verify addresses. In addition, we’ll see
how easy it is to send email with the .NET Framework.

354 Chapter 8

355

Most e-commerce Web sites sell a physical product of some sort and ship the products
to customers. Shipping the product to the customer is usually left to the experienced
hands of one of the many shipping companies available. Those shipping companies
usually offer varying levels of service and price. As a typical e-commerce site, the
Wiley Parts site needs to be able to determine shipping service options and prices
dynamically and allow the customer to choose the service that best suits him or her. In
most cases, after the order is processed, we will want to email a copy of the invoice to
the customer. In this chapter, we will develop some objects that can be used to retrieve
shipping options and prices from the UPS Online services and then see how to send
email under .NET.

Before we get into developing these handy objects, there are a few things that we
need to cover. As is becoming the industry standard, we need to communicate with the
UPS servers using XML. We’re not going to cover XML itself in detail, as there are
many very good resources on the subject already. We are going to cover a few of the
tools provided in the framework for working with XML.

XML Tools

As commerce on the Internet continues to move forward, XML becomes increasingly
important. Companies that wish to make Internet callable services available to others
will more than likely do so through the use of XML in one form or another. We’ve
already seen the power of XML Web services in Chapter 7, “Web Services,” and how

Adding E-Commerce Essentials

C H A P T E R

9

they simplify the whole process for us. XML Web services use SOAP, an XML standard
for representing data and commands. When you are working with XML Web services,
you won’t need to come in direct contact with the underlying XML very often. There
are many services available now on the Internet that use XML for communications, but
they have not adopted the SOAP standard and are not Web services compatible. That
means that to use those services, you won’t be able to simply add a Web Reference to
your project and start using them. To use these services, you will probably have to
write some code that knows how to generate and read XML directly. Fortunately, the
classes provided in the System.Xml namespace of the .NET Framework make working
with XML data fairly easy. We’re not going to cover the entire System.Xml namespace
here, as it is quite broad. In fact, we are going to cover only the basics of three classes:
XmlTextWriter, XmlTextReader, and XmlDocument.

XmlTextWriter
The System.Xml.XmlTextWriter should be used when you need to write some XML as
fast as possible in a forward-only manner to some type of stream. It generates XML that
conforms to the W3C 1.0 specifications. In general, you will create an XmlTextWriter,
write the needed XML using the many Write... methods, and then close the XmlText-
Writer. Perhaps the best way to demonstrate the XmlTextWriter is through a simple
example.

Suppose that Wiley Parts needs to supply its parts inventory to a distributor in XML
format. Let’s work up an example of how we could go about creating an XML file of
Wiley parts. We’ve created a Chapter9 project and a Web Form called XmlTools.aspx,
which you can download from the companion Web site. For now, the page consists of
one list box and one button. The list box will be filled with Wiley part categories. When
the button is clicked, an XML file will be created for all of the parts in the selected cat-
egory. It will be created in the root of the C drive and titled WileyParts.xml. Let’s look
at the code contained in the handler for the button click. Then we’ll go through and
explain it.

//Write the XML for list of parts

XmlTextWriter writer = new XmlTextWriter("C:\\WileyParts.xml",

System.Text.Encoding.UTF8);

writer.WriteStartDocument();

//<WileyParts>

writer.WriteStartElement("WileyParts");

foreach (Part p in arrParts)

{

//<Part>

writer.WriteStartElement("Part");

//<PartID>xxx</PartID>

writer.WriteElementString("PartID", XmlConvert.ToString(p.PartID));

//<Description>xxxxx</Description>

writer.WriteElementString("Description", p.Description);

//<Price>xxxxx</Price>

356 Chapter 9

writer.WriteElementString("Price", XmlConvert.ToString(p.Price));

//<Weight>xxx</Weight>

writer.WriteElementString("Weight", XmlConvert.ToString(p.Weight));

//<Category>

writer.WriteStartElement("Category");

//<CategoryID>xxx</CategoryID>

writer.WriteElementString("CategoryID", strCategoryID);

//<Description>xxx</Description>

writer.WriteElementString("Description", strCategoryDesc);

//</Category>

writer.WriteEndElement();

//</Part>

writer.WriteEndElement();

}

//</WileyParts>

writer.WriteEndDocument();

//Close the writer

writer.Close();

For the sake of saving space, we left out the code at the very beginning of this
handler that actually retrieves an ArrayList of Part objects (arrParts) for the selected
category. The complete code, however, is on the companion Web site. The first thing
that is done in relation to generating the XML file is the creation of an XmlTextWriter.

XmlTextWriter writer = new XmlTextWriter("C:\\WileyParts.xml",

System.Text.Encoding.UTF8);

We used the constructor to pass in the name of the file that we want to write to, and
we have specified the encoding format. You can use any of the encoding types in the Sys-
tem.Text.Encoding enumeration. The XmlTextWriter constructor has three overloads.

public XmlTextWriter(TextWriter);

public XmlTextWriter(Stream, Encoding);

public XmlTextWriter(string, Encoding);

As you can see, the XmlTextWriter can write to a TextWriter, which would have its
own encoding specified. It can also write to a stream and to a file. We’ll be writing to a
stream later when we write some classes to call the UPS Online services. To start the
XML document out, call WriteStartDocument().

writer.WriteStartDocument();

This will write the opening XML declaration. Right now, the version will always be
1.0, and the encoding attribute will be set appropriately depending on the encoding
that we specified in the constructor. For our document, it will look like this:

<?xml version="1.0" encoding="utf-8" ?>

Adding E-Commerce Essentials 357

Next, we call WriteStartElement() to create an opening element tag with the name
WileyParts.

//<WileyParts>

writer.WriteStartElement("WileyParts");

WriteStartElement() has a few overloads that allow you to specify things such as a
name prefix and a namespace. For our purposes, we just need the simple tag <Wiley-
Parts>. We then go into a foreach loop and process every part in arrParts. Each Part ele-
ment is started by calling WriteStartElement(“Part”). Most of the properties of a part
are written by calling WriteElementString() such as this:

//<PartID>xxx</PartID>

writer.WriteElementString("PartID", XmlConvert.ToString(p.PartID));

As you can see from the preceding comment, WriteElementString() will write an
opening and closing tag for the name specified as the first parameter, in this case “Part-
ID”. It will insert the value that you specify as the second parameter, inside the tags.
Notice also the use of the XmlConvert class. PartID is an integer and needs to be con-
verted to a string. XmlConvert provides methods for converting between Common
Language Runtime types and XSD types. It also encodes and decodes XML names and
takes care of any characters that are invalid in XML names. For our purposes here, we
probably could have gotten away with calling the ToString() method on PartID, but
when you’re dealing with XML it is good practice to use the methods provided by Xml-
Convert.

Every Part belongs to a Category. To represent this in XML, we create a Category ele-
ment with the following code that has two properties, CategoryID and Description:

//<Category>

writer.WriteStartElement("Category");

//<CategoryID>xxx</CategoryID>

writer.WriteElementString("CategoryID", strCategoryID);

//<Description>xxx</Description>

writer.WriteElementString("Description", strCategoryDesc);

//</Category>

writer.WriteEndElement();

Once again, we call WriteStartElement() and use WriteElementString() to write out
the two properties. Last, we need to close the Category element by calling WriteEnd-
Element(). The XmlTextWriter is smart enough to remember how many times you have
called WriteStartElement() and what element names you used. When you call WriteEn-
dElement() you don’t have to pass in any parameters. A closing tag will be created for
the element for which you most recently called WriteStartElement(). In this case, the
tag will be </Category>. In the very next line of code, we call Write- EndElement()
again, but this time the tag that is written will be </Part>, which finishes the entry for
the current Part.

After all of the parts have been processed, we make a call to WriteEndDocument().
But wait a minute, we never called WriteEndElement() for our opening <WileyParts>

358 Chapter 9

tag. While it may be good practice to do so, it is not necessary if you call WriteEnd-
Document() because it will close any open elements or attributes for you. The last thing
that we need to do is call the Close() method on the XmlTextWriter. If we don’t, the
buffer won’t be flushed and our file will end up empty.

We provided a hyperlink on the XmlTools.aspx page that will open up the generated
XML file in the browser. A screen shot of what the XML looks like in Internet Explorer,
or a snippet of it at least, can be seen in Figure 9.1.

XmlTextReader
The System.Xml.XmlTextReader should be used when you need to read some XML as
fast as possible in a forward-only manner. The overloaded constructor allows you to
attach the XmlTextReader to several different types of data input including any stream
or file. The XML can be read one node at a time by calling the Read() method, which
will read the next node and return true, or it will return false if there are no more nodes
to read.

The XmlTextReader has many properties and methods for retrieving information
about the current node and advancing through the XML. Some of the more useful
properties are Name, which returns the qualified name of the current node. Value
returns the text value of the current node. The text that is returned depends on the type
of the node, which incidentally can be determined with the NodeType property. Node-
Type will return a value equal to one of the members of the System.Xml.XmlNodeType
enumeration. We won’t reproduce the fairly long list of node types here; these are read-
ily available in the Microsoft documentation.

In general, you will read through XML by calling the Read() method. Every call to
the Read() method will return a new node until there are no new nodes to read. For
every node, you can determine what to do based on the type, attributes, and content of
the node, which is readily available through the XmlTextReader properties and methods.

Figure 9.1 Wiley Parts XML sample.

Adding E-Commerce Essentials 359

To illustrate a simple example of using the XmlTextReader, we modified the Xml-
Tools.aspx page from the XmlTextWriter section. The page now has a single button that
will read the newly created file using the XmlTextReader. The handler for the button
click event will read the XML and display each part in the file on the page by setting
the Text property of a Label control. Here is the code for the handler:

try

{

//Open the WileyParts.xml file with an XmlTextReader

XmlTextReader reader = new XmlTextReader("C:\\WileyParts.xml");

//Clear the previous content

lblParts.Text = string.Empty;

while (reader.Read())

{

switch (reader.NodeType)

{

case XmlNodeType.Element:

switch (reader.Name)

{

case "WileyParts":

break;

case "Part":

lblParts.Text += "
";

break;

case "Category":

break;

default:

lblParts.Text += reader.Name + ": ";

break;

}

break;

case XmlNodeType.Text:

lblParts.Text += reader.Value + "
";

break;

}

}

reader.Close();

}

catch (XmlException ex)

{

Response.Write("An XmlException occurred: " + ex.ToString());

}

catch (Exception ex)

{

Response.Write("An Exception occurred: " + ex.ToString());

}

360 Chapter 9

An XmlTextReader is created and passed in the name of a file that it should attempt
to open. If the file can’t be opened or does not exist, an XmlException will be thrown.
The Text of the Label control is then cleared so that we can begin to write out the con-
tent as we read through the XML. The rest of the method is contained inside of a while
loop that calls the Read() method. Remember, as long as there are nodes to read, the
Read() method will return true and the body of the while statement will be executed.
When Read() returns false, there is nothing left to do, so the method will exit after mak-
ing a call to the Close() method of the XmlTextReader, which will close the file.

Now, let’s take a look at the body of the while loop. All of the functionality is con-
tained inside of a switch statement on the NodeType property.

switch (reader.NodeType)

In this case, we are interested only in nodes of type XmlNodeType.Element and
XmlNodeType.Text. Here is a look at the format of the XML that we will be reading in.

<?xml version="1.0" encoding="utf-8" ?>

<WileyParts>

<Part>

<PartID>1</PartID>

<Description>Engine Long Block</Description>

<Price>2000</Price>

<Weight>600</Weight>

<Category>

<CategoryID>1</CategoryID>

<Description>Engine</Description>

</Category>

</Part>

</WileyParts>

The XML declaration in the first line is of type XmlNodeType.XmlDeclaration.
Because we didn’t provide a case statement for this type of node, it will be read with
the first call to the Read() method, but no processing will be performed for it. The next
node is <WileyParts>, which is of type XmlNodeType.Element. Therefore, it will be
processed by this case statement.

case XmlNodeType.Element:

switch (reader.Name)

{

case "WileyParts":

break;

case "Part":

lblParts.Text += "
";

break;

case "Category":

break;

default:

lblParts.Text += reader.Name + ": ";

break;

}

Adding E-Commerce Essentials 361

This case statement has another nested switch statement, but this time we’re switch-
ing on the Name property, which gives us the name of the element. We don’t really
want to do anything for the <WileyParts> element because it is just a container element
for all of the parts. A case statement has been provided for it that doesn’t do anything.
The same thing goes for the <Category> element; it is just a container element inside
each part, and nothing needs to be done for it. If the element is <Part>, we know that
we have reached the beginning of a new Part element. In this case, we just want to
make sure that we have an empty line between each part for the sake of readability, so
a
 is added to the text of the label.

The default case handles every other element of type XmlNodeType.Element and
simply adds the Name of the element to the text stream. It is important to know that for
all of the elements such as PartID, Description, and Price, the Value property will be an
empty string and not the contained value of the element. For instance, if the reader
were positioned on the <PartID> node from the earlier XML snippet, the Value prop-
erty would be an empty string. With one more call to the Read() method, the reader
would be positioned on a node of type XmlNodeType.Text whose Name property
would be an empty string, but whose Value property would be 1. This is why two case
statements have been provided, one for the Element and one for the Text. The Element
case statement is used to print the name of the node, and the Text case statement is
used to print the contents.

If we wanted to get the contained value of an Element while the reader is positioned
on that element, we could use the ReadElementString() method. In the case of the earlier
XML snippet, if the reader were positioned on the node <PartID>, a call to Read-
ElementString() would return 1. It would also reposition the reader to the <Descrip-
tion> node. The next iteration through the while loop would once again call the Read()
method, and now the reader would be positioned on the content of the <Description>
node, eliminating the opportunity to retrieve the name of the node, “Description.” In
addition, we can’t just use ReadElementString() exclusively, such as replacing the call
to Read() in the while statement with a call to ReadElementString(). ReadEle-
mentString() will throw an XmlException if the next node is not a start element or does
not contain a textual value. A call to ReadElementString() would throw an exception
for the XML declaration, <WileyParts>, </WileyParts>, <Part>, </Part>, <Category>,
and </Category> nodes.

The type XmlNodeType.Element does not include closing tags such as </PartID>.
These nodes are handled by the type XmlNodeType.EndElement. In this example, we
don’t need to do anything with the closing tags so a case statement was not provided
for that type of node. A screen shot of the XmlTools.aspx page after clicking the Read
Parts XML Using XmlTextReader button is shown in Figure 9.2.

XmlDocument
The XmlDocument class provides a complete package for reading and writing XML doc-
uments. It has the ability to read an XML document in its entirety with one method call
and then provides properties and methods for navigating the XML document in any
desired direction. Methods and properties are provided for constructing an XML docu-
ment from scratch or editing an existing document. At any time, the entire document or
pieces of the document contained by an XmlDocument can be extracted with ease.

362 Chapter 9

TE
AM
FL
Y

Team-Fly®

Figure 9.2 Reading parts with an XmlTextReader.

The XmlDocument class inherits from XmlNode, which is a class used to represent a
single node in an XML document. XmlNode provides properties and methods for
reading and writing everything imaginable in an XML node. The Name property gets
or sets the qualified name of the node. The Value property gets or sets the textual con-
tents of the node. The attributes of a node are made available through the Attributes
property. You can also retrieve a collection of child nodes through the ChildNodes prop-
erty, which will retrieve a collection of XmlNode objects representing any nodes that
are contained by the current node. Perhaps two of the most important properties are
InnerXml and OuterXml. InnerXml can be used to get or set the children of a particular
node, including the markup. Consider the following XML.

<Part>

<PartID>1</PartID>

</Part>

If we have an XmlNode object representing the <Part> node, the InnerXml property
would return

<PartID>1</PartID>

The OuterXml property is read-only and will return the markup for the children of
the current node as well as its own markup. For the previous example, the OuterXml
property would return

<Part>

<PartID>1</PartID>

</Part>

Adding E-Commerce Essentials 363

To load an XML document into an XmlDocument object, you can call the Load() or
LoadXml() methods. The Load() method takes one parameter that can be a string repre-
senting the path or URL to an XML file, a stream, a TextReader, or an XmlReader. The
LoadXml() method, on the other hand, will load the XmlDocument from a string that
is preloaded with XML data.

There is a lot of functionality available in the XmlDocument class, much more so
than we are going to cover here. As a small example, we will add another button to the
XmlTools.aspx page that will read the WileyParts.xml file using an XmlDocument. The
output will look just like the output from clicking on the Read Parts XML Using Xml-
TextReader button, but the work will be done with an XmlDocument rather than an
XmlTextReader. Let’s look at the code in the handler for the new button.

try

{

XmlDocument doc = new XmlDocument();

//Open the WileyParts.xml file with an XmlDocument

doc.Load("C:\\WileyParts.xml");

//Clear the previous content

lblParts.Text = string.Empty;

//Get all of the parts

foreach (XmlNode part in doc.GetElementsByTagName("Part"))

{

foreach (XmlNode childNode in part.ChildNodes)

{

if (childNode.Name == "Category")

{

foreach (XmlNode catNode in childNode.ChildNodes)

{

lblParts.Text += catNode.Name + ": " + catNode.InnerXml +

"
";

}

}

else

{

lblParts.Text += childNode.Name + ": " + childNode.InnerXml +

"
";

}

}

lblParts.Text += "
";

}

}

catch (XmlException ex)

{

Response.Write("An XmlException occurred: " + ex.ToString());

}

catch (Exception ex)

{

Response.Write("An Exception occurred: " + ex.ToString());

}

364 Chapter 9

This code is perhaps a little easier to understand than the code that was necessary
for the XmlTextReader implementation. First, we create an XmlDocument, and then
we call the Load() method, giving it the path to the WileyParts.xml file. After we’ve
cleared out any text that might already exist in the Label control, we have a foreach
loop.

foreach (XmlNode part in doc.GetElementsByTagName("Part"))

We’re using the GetElementsByTagName() method, which will return an XmlNode-
List that is populated with XmlNodes whose name matches the passed-in string. In
this case, we are looking for all nodes whose name is “Part.” Now all we need to do is
process each part node, which is done easily by using the ChildNodes property. For
each <Part> node we execute another foreach loop on each of its child nodes.

foreach (XmlNode childNode in part.ChildNodes)

The only child node of the <Part> node that also has child nodes of its own is the
<Category> node. For that node, we want to process its child nodes. This is done with
the following code:

if (childNode.Name == "Category")

{

foreach (XmlNode catNode in childNode.ChildNodes)

{

lblParts.Text += catNode.Name + ": " + catNode.InnerXml +

"
";

}

}

If the Name property of the child node is equal to “Category” then we enter another
foreach loop on its child nodes. Inside the foreach loop we are retrieving the name of
the node using the Name property and its contents using the InnerXml property.

For all the rest of the child nodes of the <Part> node, there are no child nodes to
process so we retrieve the name and contents of the node just as we did for the child
nodes of the <Category> node. At the end of the outer foreach loop (the one for all of
the <Part> nodes) we make sure that a blank line exists between each part by printing
out a
. There isn’t much use in providing you a screenshot of this in action as it
looks exactly like Figure 9.2, aside from there being an extra button for processing the
XML using the XmlDocument class.

NOTE The XmlDocument is a bit easier and more intuitive to use than the
XmlTextReader. It probably gives up a little in the way of speed, though. If you
are doing some simple processing and you need it to be as fast as possible,
then use the XmlTextReader; otherwise, we suggest that you go with the
XmlDocument. We’ll see a practical example of using the XmlDocument class a
little later in this chapter.

Adding E-Commerce Essentials 365

DataSet
In Chapter 4, “Database Access,” we mentioned that the DataSet could be used to read
and write XML. The neat thing about this is if you learn how to use the DataSet fairly
well for accessing data from a relation data store such as SQL Server, you can apply
what you already know to use it for working with XML. As we mentioned in Chapter
4, the DataSet is unaware of its data source. It doesn’t know if its data came from SQL
Server, Access, or an XML document. Once the data is loaded into the DataSet, we can
work with it using the same common interface. We can also load the data from SQL
Server and then write the data out to an XML file or any other data source for that mat-
ter. For instance, in the XmlTools example, suppose we had retrieved the Parts from the
database and loaded them into a DataSet. We could have easily created the Wiley-
Parts.xml file by calling the WriteXml() method of the DataSet, passing in the path of
the file to be created. That’s quite a bit of functionality for free, if you ask us.

Because working with XML in a DataSet is nearly identical to working with data
from a SQL Server database, we’re not going to rehash old ground on the DataSet here.
What we would like to do is show you how to load the DataSet with some XML and
how the DataSet handles that XML for us. To do this, we’ll add another button to the
XmlTools.aspx page that will once again read the WileyParts.xml file, but this time we’ll
use a DataSet to do the work for us. Before we actually process the data in the Wiley-
Parts.xml file, let’s take a look at the tables and their associated columns that the DataSet
creates when the XML is loaded. To do this, we’ve written some code in the new but-
ton’s click handler that will load the WileyParts.xml file into a DataSet, and then it will
enumerate the Tables collection of the DataSet and the Columns collection of each Table.
Here is the code.

DataSet ds = new DataSet();

//Open the WileyParts.xml file with the DataSet

ds.ReadXml("C:\\WileyParts.xml");

//Clear the previous content

lblParts.Text = string.Empty;

//Get the created table names and their columns

foreach (DataTable tbl in ds.Tables)

{

lblParts.Text += "Table Name: " + tbl.TableName + "
";

foreach (DataColumn clm in tbl.Columns)

{

lblParts.Text += " " + clm.ColumnName + " - " +

clm.DataType.ToString() + "
";

}

}

Loading the XML into the DataSet couldn’t be much easier. We make one call to the
ReadXml() method, passing in the path to the WileyParts.xml file as a parameter. We
then have a foreach loop that iterates through the Tables collection of the DataSet, and
for each table it will iterate through the Columns collection. A screen shot of the output
can be seen in Figure 9.3.

366 Chapter 9

Figure 9.3 DataSet tables and columns.

Because the DataSet is a class for working with relational data, any XML that is
loaded into the DataSet must be regularly structured so that the DataSet can determine
what to do with it. Loading an XML document into a DataSet provides us with a nice
way to access the data in a relational manner.

The DataSet created two tables for us: Part and Category. A parent/child relation-
ship was established between the two tables using a key field that the DataSet created
called Part_Id. The Part table is the parent, and the Category table is the child, so there
is a foreign key constraint on the Part_Id column of the Category table to the Part_Id
column of the Part table. You don’t actually see this constraint on the screen shot, but
take our word for it, it’s there. This makes perfect sense if you take a look at a snippet
of the XML again.

<?xml version="1.0" encoding="utf-8" ?>

<WileyParts>

<Part>

<PartID>1</PartID>

<Description>Engine Long Block</Description>

<Price>2000</Price>

<Weight>600</Weight>

<Category>

<CategoryID>1</CategoryID>

<Description>Engine</Description>

</Category>

</Part>

</WileyParts>

Adding E-Commerce Essentials 367

The DataSet created columns for each of the child nodes of the <Part> node that
were not merely container nodes. The Category node is a container node for Category-
ID and Description, so a new Category table was created to house the Category child
nodes. Obviously, we have to have some way of knowing to which category a particu-
lar part in the Part table belongs, which is why the Part_Id key was created for us to
relate the two tables.

Now let’s take a look at the code that we can use to retrieve the part information
from the DataSet after the XML has been loaded.

try

{

DataSet ds = new DataSet();

//Open the WileyParts.xml file with the DataSet

ds.ReadXml("C:\\WileyParts.xml");

//Clear the previous content

lblParts.Text = string.Empty;

//Get all of the parts

//Get the Part table

DataTable tblPart = ds.Tables["Part"];

foreach (DataRow partRow in tblPart.Rows)

{

foreach (DataColumn clm in tblPart.Columns)

{

//If this is the Part_Id column, don t do anything

if (clm.ColumnName == "Part_Id")

continue;

else

lblParts.Text += clm.ColumnName + ": " + partRow[clm.ColumnName] +

"
";

}

foreach (DataRelation relation in tblPart.ChildRelations)

{

//Get the child rows for this relation

DataRow[] childRows = partRow.GetChildRows(relation);

foreach (DataRow row in childRows)

{

foreach (DataColumn catColumn in row.Table.Columns)

{

//If this is the Part_Id column, don t do anything

if (catColumn.ColumnName == "Part_Id")

continue;

else

lblParts.Text += catColumn.ColumnName + ": " +

childRows[0][catColumn.ColumnName] + "
";

368 Chapter 9

}

}

}

lblParts.Text += "
";

}

}

catch (XmlException ex)

{

Response.Write("An XmlException occurred: " + ex.ToString());

}

catch (Exception ex)

{

Response.Write("An Exception occurred: " + ex.ToString());

}

We load the DataSet with data just as we did before by calling ReadXml(). Then we
get a reference to the Part table of the DataSet and enter a foreach loop on the Rows col-
lection of the Part table. We can go ahead and get the data out of the columns of the
Part table and print them out, which is done in the foreach loop on the Columns col-
lection of the Part table. We check for the column name for Part_Id and make sure that
we don’t print anything out for this column because it would be meaningless data as
far as part information is concerned. Last, for every row in the Part table, we need to
get the corresponding child row in the Category table. When we loaded the XML into
the DataSet, it created a DataRelation for the relationship between the Part table and
the Category table. A DataRelation is a class used to represent a parent/child relation-
ship between two tables. It can also be used to retrieve the child rows by passing it in
as a parameter to the GetChildRows() method of the DataRow class. So, we’ve created a
foreach loop on the ChildRelations collection of the Part table; in this case there will be
only one DataRelation, but we’re using a foreach loop nonetheless. We then make a call
to the GetChildRows() method of the partRow object, which will retrieve the rows
from the Category table that are associated with this row in the Part table.

DataRow[] childRows = partRow.GetChildRows(relation);

Now we can iterate through the returned rows (in this case there will always be one)
and then iterate through the columns of each child row, printing out their values.

foreach (DataRow row in childRows)

{

foreach (DataColumn catColumn in row.Table.Columns)

{

//If this is the Part_Id column, don t do anything

if (catColumn.ColumnName == "Part_Id")

continue;

else

lblParts.Text += catColumn.ColumnName + ": " +

childRows[0][catColumn.ColumnName] + "
";

}

}

Adding E-Commerce Essentials 369

Notice that we had to retrieve the columns of the Category table by using the Table
property of each row and then using the Columns collection on that.

foreach (DataColumn catColumn in row.Table.Columns)

We could have just as easily gotten the columns by using

ds.Tables["Category"].Columns

We wanted to show you the former method because you might not always know
from which table your child rows are coming ahead of time, as we do with this example.
Once again, this code performs exactly the same as the previous examples of reading the
WileyParts.xml file. The DataSet is probably one of the better options for reading and
writing XML, especially if the XML structure is not overly complicated. We’ll see a
practical example of using the DataSet for reading XML in the next section.

Freight Calculations

Now that we know how to read and write XML, it’s time to put it to practical use and
create a real-world component that you can use in your own applications. One of the
most common tasks that a business selling physical products needs to do is calculate
the proper shipping costs to charge a customer for shipping merchandise. UPS has pro-
vided an Internet-accessible service that we can use to calculate dynamic shipping
prices. In its simplest form, all we have to do is tell the service from which postal code
we want to ship, to which postal code we want to ship, and the weight of the package.
The service will then provide information on the shipping methods available for that
package between those two locations, including the price and the delivery time. UPS
also supplies several other shipping-related services, including services that allow you
to track packages. In this section we will create components for using two of the UPS
services, Shipping Rates and Address Validation.

All of the UPS tools can be called across the net by posting a request in XML format
to the UPS servers. The servers will then send a reply, also in XML format, that we can
then parse and from it extract the needed information. How are we going to go about
doing this? First, we need to use the XmlTextWriter to create the request to send to the
UPS server. We’ll have the XmlTextWriter write its content into a MemoryStream (as
opposed to a file stream). Then we need a way to send this request to the UPS servers.
Requests must be sent to the server via HTTP Secure Socket Layer (SSL). The .NET
common language runtime supplies two classes, HttpWebRequest and HttpWeb-
Response, that we will use for the communication. We’ll use the HttpWebRequest class
to send our request message to the UPS servers, and then we’ll use the HttpWeb-
Response class to receive the response from the UPS servers. After we have the XML
response, we need to be able to parse it and access the needed data. We’ll be using the
XmlDocument class to do this for the Shipping Rates service and the DataSet for the
Address Validation service.

370 Chapter 9

NOTE We’re using both the XmlDocument and DataSet only so that we can
see both in action. If you have a preference for one over the other, you can
certainly reimplement one or both of the components to use what you like.

General UPS Information
To use the UPS tools, you must first visit the UPS Web site (www.ec.ups.com) and sign
up for a Developer’s Key. Once you have the Developer’s Key you can download the
fairly extensive documentation on how to access the various tools. To actually use the
tools you will need to agree to UPS access terms and receive an Access Key. The Access
Key that you receive, as well as your user ID and password, will be sent as part of your
XML request each time you send a message to the UPS servers. There is no software
that you need to download and install to use the UPS Online services. You have to
write your own software to use the services. UPS merely supplies the information that
you need to be able to do that.

All of the XML tools that UPS provides have their own specific XML request and
response formats. The request messages all have some similarities, however. The
requests that we need to send are actually two XML documents concatenated together.
In well-formed XML, this isn’t really proper, but when the UPS servers receive the mes-
sage they actually break the message back into two separate documents. The first XML
document in the message is the AccessRequest document, and it consists of your
AccessKey, user ID, and password. Its format is as follows.

<?xml version="1.0"?>

<AccessRequest>

<AccessLicenseNumber>xxxxxxxxxxxxxxxx</AccessLicenseNumber>

<UserId>Your User ID</UserId>

<Password>Your Password</Password>

</AccessRequest>

The second document is specific to the service that you are calling and is well docu-
mented in the UPS documentation.

WARN I NG We should take this opportunity to state our disclaimer. The
components that we are going to create are not totally complete. We have not
implemented the ability to handle any error codes returned by the UPS server.
The examples will check whether the request was successful, but if it wasn’t,
they won’t tell you exactly why. When an error occurs, possibly due to an
incorrectly formatted request message, the UPS services will respond with an
error code and detailed information about the error. We won’t be adding the
ability to retrieve that detailed information. In addition, the Shipping Rates
service is capable of far more than the functionality that we will implement
here. That leaves you with quite a bit of room to experiment with the code on
your own. Have fun!

Adding E-Commerce Essentials 371

Shipping Rates
The first UPS service that we’ll be using is the Rates and Service Selection service. The
class that we will create will be called UPSRates and will have five properties that we
can set: ShipFromPostalCode, ShipToPostalCode, PackageWeight, Residential, and
CustomerContext. The first three are self-explanatory. Residential is a Boolean prop-
erty that will designate whether the package is being shipped to a residence (true) or a
business (false). CustomerContext allows us to send some data along with the request
that will be echoed back in the response, such as an Order ID or Transaction ID. All five
of these properties can be passed in through an overloaded UPSRates constructor, or
they can be set individually after the object has been created.

The class will also have three private member variables, m_strUserName, m_str-
Password, and m_strAccessKey. For this example, we’re going to be hard-coding the
username, password, and access key that we acquired from UPS. If you want to try
these examples out for yourself, you’ll need to get your own credentials from UPS.

There will also be three read-only properties in the class, ResponseStatusCode,
ResponseStatusDescription, and RatedShipments. ResponseStatusCode is an integer
and will always be 1 if the UPS servers processed the request successfully. This is what
we’ll be using to determine success or failure. If ResponseStatusCode is 0, you can be
sure that the XML response from UPS will contain information about the error, but
remember that we won’t be providing access to those here. ResponseStatusDescription
will either be “Success” or “Failure” and is just a textual redundancy to the Response-
StatusCode. RatedShipments is an ArrayList of RateShipment objects. This is a class
that we will define and that will be used as a container for each of the available ship-
ping methods with which UPS responds.

public class RatedShipment

{

private string m_strServiceCode = string.Empty;

private string m_strServiceDescription = string.Empty;

private decimal m_decTotalCharge;

private int m_intGuaranteedDaysToDelivery;

public string ServiceCode

{

get { return m_strServiceCode; }

set { m_strServiceCode = value; }

}

public string ServiceDescription

{

get { return m_strServiceDescription; }

set { m_strServiceDescription = value; }

}

public decimal TotalCharge

{

get { return m_decTotalCharge; }

set { m_decTotalCharge = value; }

372 Chapter 9

TE
AM
FL
Y

Team-Fly®

}

public int GuaranteedDaysToDelivery

{

get { return m_intGuaranteedDaysToDelivery; }

set { m_intGuaranteedDaysToDelivery = value; }

}

}

Listing 9.1 shows an example of a properly formatted request message. As you can
see, the first XML document is the AccessRequest. The second document is the actual
request for the rates service. The entire document is contained inside of a Rating-
ServiceSelectionRequest node. In the Request node, we see a TransactionReference
node, which contains a CustomerContext element. The value in this example is
“tester”. We’ll be substituting the value that is passed into the CustomerContext prop-
erty here. Also there is a RequestAction element, which must be set to “Rate” for this
service. This service also uses a RequestOption element, which can be set to “Shop”, as
it is in this example, or “Rate”. The class that we are writing will support only the
“Shop” option. This option will return a list of all available shipping methods. The
“Rate” option will return the rating for only one method, which must be specified in
the request.

The PickupType node is used to specify one of the valid UPS Pickup Types. You can
find these in the documentation. We’ll be using code 01, which is Daily Pickup. The
Shipment node is where we describe the shipment for which we are requesting service.
The Shipper node is used to specify the address (PostalCode) of the shipper. The
ShipTo node is used to specify the address (PostalCode) of the destination. Also, notice
the ResidentialAddress element. If this element is present, it is a signal that the speci-
fied destination address is a residential address. If it’s not present then the destination
address is assumed to be a commercial address. The Package node is used to describe
the package itself. We’ll always be specifying the PackagingType as code 02, which is a
standard Package. Once again, the UPS documentation will give you all of the valid
PackagingType codes. Last, we see the PackageWeight, which is where we specify the
weight in pounds of the package. As we mentioned previously, there is quite a bit of
functionality with this service. We are using only a small portion of it here. For
instance, if you wanted to specify the weight of the package in kilograms, there is a
way to do that. The default is pounds, which is what we have elected to go with for this
example.

<?xml version="1.0"?>

<AccessRequest>

<AccessLicenseNumber>xxxxxxxxxxxxxxxx</AccessLicenseNumber>

<UserId>Your User Name</UserId>

<Password>Your Password</Password>

</AccessRequest>

<?xml version="1.0"?>

<RatingServiceSelectionRequest xml:lang="en-US">

<Request>

Listing 9.1 A ratings service request

Adding E-Commerce Essentials 373

<TransactionReference>

<CustomerContext>tester</CustomerContext>

</TransactionReference>

<RequestAction>Rate</RequestAction>

<RequestOption>Shop</RequestOption>

</Request>

<PickupType>

<Code>01</Code>

</PickupType>

<Shipment>

<Shipper>

<Address>

<PostalCode>32257</PostalCode>

</Address>

</Shipper>

<ShipTo>

<Address>

<PostalCode>32259</PostalCode>

<ResidentialAddress />

</Address>

</ShipTo>

<Package>

<PackagingType>

<Code>02</Code>

<Description>Package</Description>

</PackagingType>

<Description>Rate Shopping</Description>

<PackageWeight>

<Weight>10</Weight>

</PackageWeight>

</Package>

</Shipment>

</RatingServiceSelectionRequest>

Listing 9.1 A ratings service request (continued)

The XML response for the request in Listing 9.1 is quite lengthy, so we won’t repro-
duce the whole thing here, but a snippet of it can be seen in Listing 9.2. The root node
of the document is the RatingServiceSelectionResponse node. It will contain one
Response node, which is where the CustomerContext will be echoed back. It will also
contain the ResponseStatusCode and the ResponseStatusDescription. The rest of the
document will consist of <RatedShipment> nodes. There will be one for each available
shipping method for the given request. The only elements of this node that we are con-
cerned with for this example are the ones seen in Listing 9.2. The Service node gives us
the UPS service code of the shipping method. In Listing 9.2, this is 01, which stands for
Next Day Air. Once again, a list of all of these service codes can be found in the docu-
mentation. The TotalCharges node gives us the total cost of shipping the package via

374 Chapter 9

this method, and the GuaranteedDaysToDelivery will specify an integer representing
the number of days within which the package is guaranteed to be shipped. If the value
is 0, then there is no precise guarantee, such as with the UPS Ground shipping method.

<RatingServiceSelectionResponse>

<Response>

<TransactionReference>

<CustomerContext>tester</CustomerContext>

</TransactionReference>

<ResponseStatusCode>1</ResponseStatusCode>

<ResponseStatusDescription>Success</ResponseStatusDescription>

</Response>

<RatedShipment>

<Service>

<Code>01</Code>

</Service>

...

<TotalCharges>

<CurrencyCode>USD</CurrencyCode>

<MonetaryValue>22.78</MonetaryValue>

</TotalCharges>

<GuaranteedDaysToDelivery>1</GuaranteedDaysToDelivery>

...

</RatedShipment>

<RatedShipment>

...

</RatingServiceSelectionResponse>

Listing 9.2 A ratings service response

The UPSRates class will have one public method called GetRates(), which will cre-
ate a request to send to the rates service, based on its property values. It will receive the
response, verify that the request was successful, and then populate the RatedShip-
ments ArrayList with RatedShipment objects, which will be filled in from the Rated-
Shipment nodes of the response document. An incomplete listing of the GetRates()
method is shown later. The method is quite lengthy, so we’ve left out most of the code
that involves actually writing the request. The entire source can be downloaded from
the companion Web site.

public bool GetRates()

{

//Create a MemoryStream and use an XmlTextWriter to fill

//that stream with our request

MemoryStream memStream = new MemoryStream();

XmlTextWriter writer = new XmlTextWriter(memStream, null);

writer.Formatting = Formatting.Indented;

//Write a StartDocument element, which will be <?xml version="1.0"?>

Adding E-Commerce Essentials 375

writer.WriteStartDocument();

//<AccessRequest>

writer.WriteStartElement("AccessRequest");

//<AccessLicenseNumber>xxxxxxxxxxxxxxxx</AccessLicenseNumber>

writer.WriteElementString("AccessLicenseNumber", m_strAccessKey);

//<UserId>xxxxxxx</UserId>

writer.WriteElementString("UserId", m_strUserName);

//<Password>xxxxxxx</Password>

writer.WriteElementString("Password", m_strPassword);

//</AccessRequest>

writer.WriteEndElement();

writer.WriteEndDocument();

//Write a StartDocument element, which will be <?xml version="1.0"?>

writer.WriteStartDocument();

//Code for creating the rating service request goes here

writer.WriteEndDocument();

//Flush the writer into the MemoryStream

writer.Flush();

//***

//Remove this when in production

//Write the request to a file, just so we can examine it

FileStream reqFile = new FileStream("C:\\request.xml",

FileMode.Create);

memStream.WriteTo(reqFile);

reqFile.Close();

//***

//Create an HttpWebRequest to communicate with the UPS Server

HttpWebRequest request = (HttpWebRequest)

HttpWebRequest.Create("https://www.ups.com/ups.app/xml/Rate");

//Set the method to POST, which is required by UPS

request.Method = "POST";

request.ContentType = "application/x-www-form-urlencoded";

//Set the ContentLength in the request header

request.ContentLength = memStream.Length;

//Get the request stream from the HttpWebRequest

Stream reqStream = request.GetRequestStream();

//Write the contents of the memory stream to it

memStream.WriteTo(reqStream);

//Close the request stream

reqStream.Close();

//Close the XmlTextWriter

writer.Close();

//Make the call to UPS and get the response

376 Chapter 9

HttpWebResponse response = (HttpWebResponse)request.GetResponse();

//Get the response message

Stream responseStream = response.GetResponseStream();

//Create an XmlDocument for reading the response easily

XmlDocument doc = new XmlDocument();

doc.Load(responseStream);

//Close the response stream

responseStream.Close();

//Extract the results

if (!ExtractResults(doc))

return false;

return true;

}

Let’s walk through the important parts of this code. First, we create a MemoryStream
and hook it up to an XMLTextWriter.

MemoryStream memStream = new MemoryStream();

XmlTextWriter writer = new XmlTextWriter(memStream, null);

We set the formatting method of the XmlTextWriter to Formatting.Indented. This
isn’t necessary at all for the code to work. For example purposes only, we will be writ-
ing the completed request and the response from UPS to a file so that you can examine
them if you like. Setting the Formatting property to Indented will allow you to look at
the request file in Notepad easily. Because the request actually has two concatenated
XML documents, it is not valid XML, and Internet Explorer will not display it properly
for you.

We then write the actual request content with a series of calls to the Write methods
of the XmlTextWriter. When we are done, we call the Flush() method to make sure that
all of the content has been written to the MemoryStream. We then create a FileStream
object for the file request.xml in the root of the C drive, write the contents of the Mem-
oryStream to the FileStream, and close the file. We have added extra comments here to
remind you that creating this file is for testing and experimentation purposes only. If
you were to use this code in a production situation, you definitely would not want to
be writing each request to a file.

writer.Flush();

//***

//Remove this when in production

//Write the request to a file, just so we can examine it

FileStream reqFile = new FileStream("C:\\request.xml", FileMode.Create);

memStream.WriteTo(reqFile);

reqFile.Close();

//***

Adding E-Commerce Essentials 377

Now that we have the entire contents of the request in the MemorySteam object we
are ready to send the request to UPS. This is done through the use of the HttpWeb-
Request class, which is provided in the System.Net namespace. The HttpWebRequest
class is derived from the WebRequest class, which is the .NET Framework base class
for requesting data from the Internet. HttpWebRequest allows us to make requests
using the HTTP protocol.

We create an HttpWebRequest object by calling the static Create() method of the
HttpWebRequest class and passing in the URL for the UPS Rate service as a parameter.
The Create() method is inherited from the WebRequest class, and as such it returns a
WebRequest object, rather than an HttpWebRequest object. This requires us to cast the
WebRequest object to an HttpWebRequest object. Once we have the object, we need to
specify the request Method, which is POST in this case. We also need to specify the
ContentType and ContentLength. We can get the ContentLength from the Length
property of the MemoryStream object.

HttpWebRequest request = (HttpWebRequest)

HttpWebRequest.Create("https://www.ups.com/ups.app/xml/Rate");

request.Method = "POST";

request.ContentType = "application/x-www-form-urlencoded";

request.ContentLength = memStream.Length;

Now we’re ready to actually write the XML request to the request stream of the
HttpWebRequest. We do this by calling the GetRequestStream() method of the HttpWeb-
Request object, which returns a Stream object to us. We can then easily write the con-
tents of the MemoryStream object to the request stream and close the request stream
and the XmlTextWriter by calling their respective Close() methods. When we close the
XmlTextWriter, it will also close the MemoryStream.

Stream reqStream = request.GetRequestStream();

memStream.WriteTo(reqStream);

reqStream.Close();

writer.Close();

We now need to actually send the request and retrieve the response from the UPS
servers. This is done by calling the GetResponse() method of the HttpWebRequest
object. The GetResponse() method will return a WebResponse object. HttpWebRe-
sponse is derived from WebReponse so we can cast the WebResponse to an HttpWeb-
Response. We then get the response stream, which will contain the XML response from
the UPS servers, by calling the GetResponseStream() method of the HttpWebResponse
object.

HttpWebResponse response = (HttpWebResponse)request.GetResponse();

Stream responseStream = response.GetResponseStream();

For this example, we are going to be using the XmlDocument class to read the
response, so we create an XmlDocument object and call the Load() method, passing in
the response stream. We can then close the response stream. We have separated out the
code for parsing through the response document in a separate private method called

378 Chapter 9

ExtractResults(). If ExtractResults() returns false, it means that the ResponseStatus-
Code was not a 1 and some error has occurred. If this happens, we return false from the
GetRates() method; otherwise, we return true.

XmlDocument doc = new XmlDocument();

doc.Load(responseStream);

responseStream.Close();

if (!ExtractResults(doc))

return false;

return true;

Let’s take a look at the ExtractResults() method.

private bool ExtractResults(XmlDocument doc)

{

//***

//Remove this when in production

//Write the returned XML to a file, just so we can examine it

FileStream rspFile = new FileStream("C:\\response.xml",

FileMode.Create);

StreamWriter stmWriter = new StreamWriter(rspFile);

XmlElement root = doc.DocumentElement;

stmWriter.Write(root.OuterXml);

stmWriter.Close();

//***

//Read the response

m_intResponseStatusCode = XmlConvert.ToInt32(

doc.GetElementsByTagName("ResponseStatusCode")[0].InnerXml);

m_strResponseStatusDescription = doc.GetElementsByTagName(

"ResponseStatusDescription")[0].InnerXml;

//If ResponseStatusCode is not 1 then an error occurred

if (m_intResponseStatusCode != 1)

return false;

//Get all of the results

foreach (XmlNode ratedShipmentNode in

doc.GetElementsByTagName("RatedShipment"))

{

//Create a new result

RatedShipment shipment = new RatedShipment();

//Traverse through all of the child nodes, pulling out the data

foreach (XmlNode childNode in ratedShipmentNode.ChildNodes)

{

switch (childNode.Name)

{

case "Service":

foreach (XmlNode serviceNode in childNode.ChildNodes)

Adding E-Commerce Essentials 379

{

if (serviceNode.Name == "Code")

shipment.ServiceCode = serviceNode.InnerXml;

//Set the appropriate Service Description

switch (shipment.ServiceCode)

{

case "01":

shipment.ServiceDescription = "Next Day Air";

break;

//Rest of the case statements for the available service

//codes go here

}

}

break;

case "TotalCharges":

foreach (XmlNode chargeNode in childNode.ChildNodes)

{

if (chargeNode.Name == "MonetaryValue")

shipment.TotalCharge =

XmlConvert.ToDecimal(chargeNode.InnerXml);

}

break;

case "GuaranteedDaysToDelivery":

if (childNode.InnerXml.Length > 0)

shipment.GuaranteedDaysToDelivery =

XmlConvert.ToInt32(childNode.InnerXml);

break;

}

}

//Add this result to the collection

m_arrRatedShipments.Add(shipment);

}

return true;

}

The very first thing we do here is write the response to a file just so we can examine it.

WARN I NG Just as with the request file, this step isn’t necessary and
shouldn’t be done in a production environment.

We create the file by creating a FileStream and a StreamWriter. We then get the root
element of the XmlDocument via the DocumentElement property and write the Out-
erXml property of the returned XmlElement to the StreamWriter.

We need to make sure that the request was processed successfully by UPS, so we
extract the ResponseStatusCode and ResponseStatusDescription from the XmlDocument.

380 Chapter 9

m_intResponseStatusCode = XmlConvert.ToInt32(

doc.GetElementsByTagName("ResponseStatusCode")[0].InnerXml);

m_strResponseStatusDescription = doc.GetElementsByTagName(

"ResponseStatusDescription")[0].InnerXml;

There is only one node named ResponseStatusCode and one node named Response-
StatusDescription, so we can retrieve those nodes using the GetElementsByTagName()
method and then retrieve their contents through the InnerXml property of the first
XmlNode in the returned XmlNodeList. We then make sure that the ResponseStatus-
Code was a 1, and if not, we return false.

We then retrieve all of the nodes named RatedShipment by using the GetElements-
ByTagName() method again and enter a foreach loop on this nodes. A new RatedShip-
ment object is created at the top of the loop, and we begin to process all of the child
nodes of the RatedShipment node with a foreach loop again.

foreach (XmlNode ratedShipmentNode in

doc.GetElementsByTagName("RatedShipment"))

{

RatedShipment shipment = new RatedShipment();

foreach (XmlNode childNode in ratedShipmentNode.ChildNodes)

We are interested only in the Service, TotalCharges, and GuaranteedDaysToDelivery
child nodes, so we use a switch statement on the node name and implement a case
statement for each one of these nodes. For the Service node, we will be returned only
the service code. The RateShipment class needs us to specify the description of the ser-
vice (e.g., Next Day Air). Because the UPS service didn’t return that to us, we created
another switch statement that will fill in the proper service description based on the
service code. All but one of the case statements are included in the code snippet. The
complete code can be downloaded from the companion Web site. The case handlers for
the TotalCharges and GuaranteedDaysToDelivery are pretty straight orward. Notice
the use of the XmlConvert class for converting the XML to the needed decimal and
Int32 types.

shipment.TotalCharge = XmlConvert.ToDecimal(chargeNode.InnerXml);

shipment.GuaranteedDaysToDelivery =

XmlConvert.ToInt32(childNode.InnerXml);

After we have processed a particular RatedShipment node and populated its associ-
ated RatedShipment class object, we add the RatedShipment object to the RatedShip-
ments ArrayList.

m_arrRatedShipments.Add(shipment);

From a client code perspective, all the client has to do is create a UPSRates object,
passing in the five properties to the constructor, call the GetRates() method, and then
do whatever is necessary with ArrayList of RatedShipment objects. We have created a
rudimentary test page called UPSShipRates.aspx that does just that, which you can
download from the companion Web site. It looks like Figure 9.4.

Adding E-Commerce Essentials 381

Figure 9.4 UPSShipRates.aspx.

Address Validation
The Address Validation service is quite a bit simpler than the Rates service. We will cre-
ate a class called UPSAddressValidator that is implemented very similarly to the
UPSRates class. Obviously, the Address Validation service requires a different request
document and returns a different response document, but the means we use to create
the request, send it, and receive the response will be the same with one exception.
Instead of parsing the response using the XmlDocument class, we will use the DataSet
class. We’ll concentrate mainly on this section of the class to prevent covering ground
that we just walked on in the previous section.

The Address Validation service requires us to send a combination of city, state/
province code, and postal code in our request. As you might imagine, these are write-
accessible properties of the UPSAddressValidator class, along with CustomerContext
once again. Listing 9.3 shows an example request document.

<?xml version="1.0"?>

<AccessRequest>

<AccessLicenseNumber>xxxxxxxxxxxxxxxx</AccessLicenseNumber>

<UserId>Your User Name</UserId>

<Password>Your Password</Password>

</AccessRequest>

<?xml version="1.0"?>

Listing 9.3 An address validation request

382 Chapter 9

TE
AM
FL
Y

Team-Fly®

<AddressValidationRequest xml:lang="en-US">

<Request>

<TransactionReference>

<CustomerContext>Tester</CustomerContext>

</TransactionReference>

<RequestAction>AV</RequestAction>

</Request>

<Address>

<City>Jacksonville</City>

<StateProvinceCode>FL</StateProvinceCode>

<PostalCode>32257</PostalCode>

</Address>

</AddressValidationRequest>

Listing 9.3 An address validation request (continued)

The service will then respond with a list of matching results. A result consists of sev-
eral properties. Rank is an integer that rates the returned result matches in order, with
1 being the result of the highest Quality. Quality is used to rate how closely the address
matches the one specified in the request. It is a decimal number of 1 or less. If the Qual-
ity is 1, then the address is an exact match. Each result will also have an Address ele-
ment that will specify the city and state/province code for the address. Because many
cities have several postal codes, there are PostalCodeLowEnd and PostalCodeHigh-
End elements that specify the minimum and maximum values for the range of valid
postal codes in that city. Listing 9.4 shows a sample response.

<?xml version="1.0" standalone="yes" ?>

<AddressValidationResponse>

<Response>

<ResponseStatusCode>1</ResponseStatusCode>

<ResponseStatusDescription>Success</ResponseStatusDescription>

<TransactionReference>

<CustomerContext>Tester</CustomerContext>

</TransactionReference>

</Response>

<AddressValidationResult>

<Rank>1</Rank>

<Quality>1.0</Quality>

<PostalCodeLowEnd>32254</PostalCodeLowEnd>

<PostalCodeHighEnd>32260</PostalCodeHighEnd>

<Address>

<City>JACKSONVILLE</City>

<StateProvinceCode>FL</StateProvinceCode>

</Address>

</AddressValidationResult>

</AddressValidationResponse>

Listing 9.4 An address validation response

Adding E-Commerce Essentials 383

We’ve created a class called AddressValidationResult that we will fill in from each
AddressValidationResult node in the response document. The UPSAddressValidator
class will have a read-only ArrayList property called AddressValidationResults, which
we will fill in with AddressValidationResult objects when we make an Address Vali-
dation request to the UPS servers.

The UPSAddressValidator class will have one public method called Validate(),
which will create the request, send it, and receive the response. As we’ve mentioned
previously, the methodology used to create the request, send it, and receive the
response is the same as the UPSRates class, so we won’t go over that again here. The
only difference is how the response is handled. The following is a snippet of the Vali-
date() method, excluding all of the code for sending the request and receiving the
response.

public bool Validate()

{

//Create Request

...

//Send Request

...

//Reciever Response

...

//Create a DataSet for reading the response easily

DataSet ds = new DataSet();

ds.ReadXml(responseStream);

//Close the response stream

responseStream.Close();

//Extract the results

if (!ExtractResults(ds))

return false;

//Check to see if we have an exact match

foreach(AddressValidationResult result in

m_arrAddressValidationResults)

{

if (result.Quality == 1)

return true;

}

return false;

}

A DataSet is created to read the response. The response XML document is loaded
into the DataSet by calling the ReadXml() method, passing the response stream as a
parameter. Once again, we implemented a private ExtractResults() method, but this
time it will be working with a DataSet as opposed to an XmlDocument. Just as before,
ExtractResults() will check the ReponseStatusCode first, and if it is not 1, it will return
false. If ExtractResults executes successfully, the ArrayList of AddressValidationResult
objects should be populated with at least one result. We use a foreach loop to iterate

384 Chapter 9

through those results and check for an exact match. If an exact match is found, we
return true from the Validate() method; otherwise, we return false.

Now let’s take a look at the ExtractResults() method.

private bool ExtractResults(DataSet ds)

{

//***

//Remove this when in production

//Write the returned XML to a file, just so we can examine it

ds.WriteXml("C:\\response.xml");

//***

//Read the response

//Get the Response table

DataTable tblResponse = ds.Tables["Response"];

m_intResponseStatusCode = XmlConvert.ToInt32(

tblResponse.Rows[0]["ResponseStatusCode"].ToString());

m_strResponseStatusDescription =

tblResponse.Rows[0]["ResponseStatusDescription"].ToString();

//If ResponseStatusCode is not 1 then an error occurred

if (m_intResponseStatusCode != 1)

return false;

//Get AddressValidationResult table

DataTable tblResult = ds.Tables["AddressValidationResult"];

//Get the results

foreach (DataRow rowResult in tblResult.Rows)

{

//Create a new result

AddressValidationResult result = new AddressValidationResult();

result.Rank = XmlConvert.ToInt32(rowResult["Rank"].ToString());

result.Quality =

XmlConvert.ToSingle(rowResult["Quality"].ToString());

result.PostalCodeLowEnd = rowResult["PostalCodeLowEnd"].ToString();

result.PostalCodeHighEnd =

rowResult["PostalCodeHighEnd"].ToString();

//Get the address for this result

foreach (DataRelation relation in tblResult.ChildRelations)

{

//Get the child rows for this relation

DataRow[] childRows = rowResult.GetChildRows(relation);

result.City = childRows[0]["City"].ToString();

result.StateProvinceCode =

childRows[0]["StateProvinceCode"].ToString();

}

Adding E-Commerce Essentials 385

//Add the new result to the collection

m_arrAddressValidationResults.Add(result);

}

return true;

}

We write the response to a file, for testing purposes only, by calling the WriteXml()
method of the DataSet. It doesn’t get much easier than that. The DataSet will create
four tables for the response: Response, TransactionReference, AddressValidation-
Result, and Address. The Response table will have one row containing the Response-
StatusCode and ResponseStatusDescription. The TransactionReference table will also
have one row that contains the CustomerContext. In this case, a parent/child relation-
ship is established between the Response and TransactionReference table, but having
two tables for this is a waste because there will always be only one row. It would be
nice if the CustomerContext field were in the Response table, but it’s a small inconve-
nience, particularly because we’re not doing anything with the CustomerContext field
in this example.

The AddressValidationResult table will have fields for Rank, Quality, PostalCode-
LowEnd, and PostalCodeHighEnd. A parent/child relationship will be established
between the AddressValidationResult table and the Address table. The Address table
will contain the City and StateProvinceCode fields. We can go about extracting all of this
information and populating an AddressValidationResult object just as we did in the Xml-
Tools.aspx example. Working with a DataSet should be old hat to you by now, so we
won’t bore you with walking through the rest of the code in the ExtractResults() method.

Our rudimentary test page called UPSAddressValidation.aspx allows the user to
enter a city, state/province code, and postal code and call the Validate() method of the
UPSAddressValidator class. Again, this code is available on the companion Web site.
The page is as shown in Figure 9.5.

Figure 9.5 UPSAddressValidation.aspx.

386 Chapter 9

Email

One of the more common things that we need to be able to do with applications these
days is generate and send email. We might need to send an auto-generated invoice to
a customer who has just purchased a product from our Web site or send a reminder to
an employee to complete some task. In any case, sending email needs to be a trivial
task, and with the System.Web.Mail namespace, it is.

There are three classes in the System.Web.Mail namespace, MailMessage, Mail-
Attachment, and SmtpMail. The MailMessage class has properties such as From, To, Cc,
Bcc, Subject, and Body that make up the contents of a particular mail message. In addi-
tion, we can set the encoding type of the message through the BodyEncoding property.
This property can be set to any of the members of the System.Text.Encoding enumera-
tion, which are ASCII, UTF7, UTF8, Unicode, BigEndianUnicode, and Default. The for-
mat of the body of the message can be specified through the BodyFormat property and
can be set to one of the members of the System.Web.Mail.MailFormat enumeration,
which are Html and Text. The priority of the message can be specified through the Pri-
ority property and can be set to one of the members of the System.Web.Mail.MailPrior-
ity enumeration, which are High, Low, and Normal.

If we have a need to add an attachment to the mail message, we create an instance
of the MailAttachment class and specify the path to the file that we want to attach.
Once we’ve created this object we can add it to the mail message by calling the Add()
method of the Attachments property on the MailMessage object.

The SmtpMail class comes in when we have a complete MailMessage object that we
are ready to send. The SmtpMail class has one static property and one static method in
which we are interested. The SmtpServer property is used to specify the name of the
SMTP mail server to use when sending messages. If it is not specified, the name of the
local SMTP server for the machine will be used. The Send() method is overloaded. One
overload allows us to pass a complete MailMessage object in.

public static void Send(MailMessage);

The other allows us to send a simple email without having to create a MailMessage
object. We simply pass in four strings: the From address, To address, Subject, and Body
of the message.

public static void Send(string from, string to,

string subject, string messageText);

The example is a Web Form called SendMail.aspx. There are text boxes for supply-
ing the From address, To address, subject, and body of the message. There is also a
Send button that has the following click event handler.

private void btnSend_Click(object sender, System.EventArgs e)

{

MailMessage msg = new MailMessage();

//Set the mail message fields

msg.To = txtToAddress.Text;

msg.From = txtFromAddress.Text;

Adding E-Commerce Essentials 387

msg.Subject = txtSubject.Text;

msg.Body = txtBody.Text;

//Create an attachment

MailAttachment attachment = new MailAttachment(@"C:\WileyParts.xml");

//Add the attachment to the mail

msg.Attachments.Add(attachment);

//Send the mail

SmtpMail.Send(msg);

}

This is all that is needed to send a complete email message with an attachment. We
have added an attachment to the message, which always attaches the WileyParts.xml
file from earlier examples in this chapter. If only everything was this simple. We sup-
pose that if it were, there wouldn’t be much need for programmers like us.

Enhancing the WileyParts Project

Now that we have objects to verify addresses and retrieve live shipping costs from
UPS, let’s add these features to our WileyParts project. To do this, we will need to add
the UPSRates and UPSAddressValidator objects that we developed in this chapter to
the WileyPartsObjects project. After including these two objects in the project, make
sure that they are part of the WileyParts.Objects namespace.

We need to add the address validation to the profile.aspx page of the WileyParts
project. This page has a Continue button on it, which saves the information that the
shopper has entered and then redirects the shopper to the cart.aspx page. We need to
add the following code to the beginning of the click handler for the Continue button:

//Verify the address that the shopper entered

UPSAddressValidator validator = new UPSAddressValidator(

txtCity.Text.Trim(), cboState.SelectedItem.Value, txtZip.Text.Trim(),

"WileyParts");

if (!validator.Validate())

{

//Display an error message

lblValidAddress.Text =

"The address entered is not a valid address.

";

return;

}

This code is very simple. All we had to do was create a UPSAddressValidator object
passing in the City, State, and Zip to the constructor. We then call the Validate()
method, and if it returns false, we display an error message to the user and return out
of the click handler, preventing the information from being saved. We added a Label
control to the page called lblValidAddress that is used to display the error message if
necessary.

To incorporate the UPS shipping calculation into the application, we need to update
the GetCartShippingCost() method of the Shopper object in the WileyPartsObjects

388 Chapter 9

project. The original version of this method used a static shipping cost of $.50 per
pound. We’ll change this method to get the shipping rates from UPS for the total
weight of all of the items in the cart. We’ll use only the UPS Ground shipping rate, just
to keep it simple. Here is the new code for the GetCartShippingCost() method:

public decimal GetCartShippingCost()

{

float fltTotalWeight = 0;

decimal decShipingCost = 0;

//Calculate the shipping cost on the cart items

foreach (ShoppingCartItem item in m_arrShoppingCart)

{

fltTotalWeight += item.Weight * item.Quantity;

}

//Get the UPS Shipping Cost

UPSRates rates = new UPSRates("10158", m_strPostalCode, true,

fltTotalWeight, "WileyParts");

if (rates.GetRates())

{

//If we were able to successfully get the rates, then use the Ground

//Shipping Price

foreach(RatedShipment ship in rates.RatedShipments)

{

if (ship.ServiceDescription == "Ground")

decShipingCost = ship.TotalCharge;

}

}

else

{

//If we couldn t contact UPS, just use our default rate

decShipingCost = (decimal)fltTotalWeight * .50m;

}

return decShipingCost;

}

This code is fairly straightforward. We calculate the total weight of all of the items in
the cart first. Then we create a UPSRates object passing in the FromZip (which is the
zip code of Wiley’s corporate headquarters), ToZip (which is the shopper’s zip code),
and true for the third parameter (which specifies a residential address). We then call
the GetRates() method, and if it returns true, we look through the collection of Rated-
Shipment objects until we find the Ground rate. If for some reason the GetRates()
method returns false and we weren’t able to get the shipping costs from UPS, we fall
back on our static cost of $.50 per pound. This might happen if the total weight of all of
our items exceeds 150 pounds.

The last thing we would like to add to the WileyParts application is the ability to
email the shopper’s invoice after the purchase is made. We will do this at the end of the

Adding E-Commerce Essentials 389

Page_Load method in the ordercomplete page. We could send an HTML message to
the shopper, but not every email client supports that, and some people just don’t like
it. To keep everybody happy, we’ll send just a plain text message. Add the following
code to the end of the Page_Load method of the ordercomplete page:

//Email this invoice to the shopper

MailMessage msg = new MailMessage();

//Set the mail message fields

msg.To = m_shopper.Email;

msg.From = "sales@WileyParts.com";

msg.Subject = "Order Confirmation - " + order.OrderID.ToString();

msg.Body = "Thank You for ordering from WileyParts. Your order

information is listed below.\n\n";

msg.Body += "Order ID: " + order.OrderID.ToString() + "\n";

msg.Body += "Sold To:\n";

msg.Body += m_shopper.FirstName + " " + m_shopper.LastName + "\n";

msg.Body += m_shopper.Address + "\n";

msg.Body += m_shopper.City + ", " + m_shopper.StateCode + " " +

m_shopper.PostalCode + "\n\n";

//Add all of the order items

for (int x = 0 ; x < order.OrderItems.Count ; ++x)

{

OrderItem item = (OrderItem)order.OrderItems[x];

msg.Body += "Item " + (x+1).ToString() + ":\n";

msg.Body += "Description: " + item.Description + "\n";

msg.Body += "Weight: " + item.Weight.ToString() + "\n";

msg.Body += "Quantity: " + item.Quantity.ToString() + "\n";

msg.Body += "Price Per Unit: " + string.Format("{0:c}",

item.PricePerUnit) + "\n\n";

}

//Add the subtotals

msg.Body += "\nShipping Cost: " + string.Format("{0:c}",

order.ShippingCost) + "\n";

msg.Body += "Tax: " + string.Format("{0:c}", order.SalesTax) + "\n";

msg.Body += "Total: " + string.Format("{0:c}", order.TotalCost) +

"\n\n";

//Add the credit card information

msg.Body += "Payment Information:\n";

msg.Body += strCCInfo;

//Send the mail message

SmtpMail.Send(msg);

In a nutshell, what we’ve done here is create a MailMessage object and dynamically
create the Body of the mail message based on the customer’s order information.

390 Chapter 9

Adding email to this application was the last thing we needed to do to make the
WileyParts Web site feature complete (at least for the purposes of this book). We hope
that building this application has been useful for you and that you can build on the
techniques we’ve used throughout the application and apply them to your projects.

Wrapping Up the Chapter

In this chapter, we covered how to add two very important elements to any Web site,
freight pricing and email. In doing so, we learned about the XML support classes that
are provided by the .NET Framework and how easy it is to work with XML data using
those classes.

Adding E-Commerce Essentials 391

TE
AM
FL
Y

Team-Fly®

393

Debugging is an integral part of any development cycle. With ASP.NET applications,
we can apply some of the same types of debugging techniques that work in all software
development projects, as well as apply some more sophisticated methods provided by
Windows and the .NET Framework. Optimization is important to any development
effort as well, and there are many ways to optimize your Web application to ensure
that it runs in the most efficient manner possible. In this chapter, we’ll cover some
aspects of debugging, optimizing, tracing, and profiling as they are done in an
ASP.NET application.

Debugging in an ASP.NET Application

For debugging any Web application, we can resort to writing code to send messages to
the browser with useful information such as values, counters, calls, and more. But as
with most other programming environments some features provided by the .NET
Framework assist us. Tracing is one feature available as part of the framework, and we
will experiment with it in this section. When we want to truly debug an ASP.NET
application, meaning have the operating system run the executable code into debug
mode and allow us to control its execution, we can use the Visual Studio .NET IDE.

Let’s use these features to debug the Wiley Parts application.

Debugging and Optimization

C H A P T E R

10

Tracing
Tracing is a way to write your own output from any part of the application at runtime.
But, instead of merely displaying the output in the user interface of the application,
when we using tracing, the output is displayed to us in a special user interface gener-
ated by the .NET Framework to be used as a programming tool. Even if you don’t
make the special calls to send your own output to the tracing tool, you can still trace
the application and see the default tracing that is already in the Framework code. In
ASP.NET, tracing can be enabled on the page level or the application level. When trac-
ing is enabled, ASP.NET sends a slew of information to the browser with each request,
appended to the end of the normal page content. This information has sections for the
following information:

Request Details. This section displays information about the HTTP request made
to the server for the page. This will allow you what was actually sent from the
browser to the server.

Trace Information. This section displays the trace message that you included in
your code to track variables, state, and more. In addition to your trace messages,
those that are in the Framework codeare intended to help you see the flow of the
application as it runs, as well as execution times.

Control Tree. This section lists all of the controls in the application, in a tree format
according to their containers. With this information, you might be able to spot
extra controls, controls of the wrong type, or missing controls that you expected
to exist in the page at the time.

Cookies Collection. This section lists the cookies on the browser for this domain.
This is helpful when trying to track down values you are expecting to find in a
cookie.

Headers Collection. This section lists the HTTP headers that were sent in the
request. With this, you can see exactly what is being submitted in a form post
from the browser.

Server Variables. This section shows us the server environment variables. This
information helps us determine the context and state of the environment on the
server on which the page or application is trying to execute.

To cause ASP.NET to serve the trace information with the page, tracing must be
enabled via a page directive in the aspx file in question. Code like the following placed
at the top of an aspx file will enable tracing for the page:

<%@ Page language="c#" Trace="true" Codebehind="trace.aspx.cs"

AutoEventWireup="false" Inherits="Chapter10.trace" %>

394 Chapter 10

To try this example, create a new ASP.NET Web Application called Chapter10. Then,
create a WebForm called trace, and add a TextBox to it. Make the page directive line at
the top of the aspx file look like the preceding line of code. The important part of this
line is: Trace=”true”, which tells ASP.NET to write the trace log. In addition to the trac-
ing output written automatically by the framework, you can add your own output by
using the TraceContext object of the Page class, which is exposed as the Trace property.
The methods of most interest to us are Write and Warn. Write allows you to send out-
put strings directly to the browser, to appear in the Trace Information section. There are
overloads on the method that allow us to optionally send a category name and an
exception object in addition to the debug test itself. Warn has the same action, but it
renders the text in red in the browser, for notification. Remember that if you have not
enabled tracing on the Page, your calls to Write and Warn have no effect. Here is some
sample code that shows activity before and after setting text in a server-side TextBox,
followed by the output scraped from the browser. You can place this Page_Load into
the code-behind file of the your form. You can see the page in action in Figure 10.1.

private void Page_Load(object sender, System.EventArgs e)

{

Trace.Write("Page_Load", "Before set text");

TextBox1.Text = "Hello World";

Trace.Write("Page_Load", "After set text");

}

When we use Warn instead of Write, we get the output of our calls in red. In this next
example, we send an exception to a call to Warn, which will show up in red. ASP.NET
will extract the correct values from the exception for display. It knows which proper-
ties to call because the exception sent must at least be derived from System.Exception.
To cause the exception, we try to divide by zero. This time, create a new WebForm
called TraceException, and use the following Page_Load handler. Don’t forget to turn
on tracing in the page directive of the aspx file. Figure 10.2 shows this code in action.

private void Page_Load(object sender, System.EventArgs e)

{

try

{

int i = 0;

TextBox1.Text = ((int)(10 / i)).ToString();

}

catch(Exception ex)

{

Trace.Warn("Page_Load", "Caught Exception", ex);

}

}

Debugging and Optimization 395

Figure 10.1 ASP.NET tracing with Write.

396 Chapter 10

Figure 10.2 ASP.NET tracing with Warn and an exception.

Other than calling Write and Warn, and setting the sort order of the trace output
with the TraceMode property, there is not much more to adding rich tracing to your
Web applications. Remember that if your app is full of trace object calls, they can
remain in the production builds because as long as tracing is disabled, which is the
default, they will do nothing. Even if tracing is turned on, your application will still
run properly; it will just be slower and display a large, user-unfriendly chunk of data
at the bottom of the page.

Tracing is also configurable on the application level, meaning that all pages served
will be traced. To turn on application-level tracing, add the following lines to the
Web.Config file:

<trace

enabled="true"

requestLimit="10"

pageOutput="false"

traceMode="SortByTime"

localOnly="true"

/>

These lines tell ASP.NET to collect trace information from the entire application, up
to the amount to which the requestLimit is set. The pageOutput attribute determines
whether the trace log will be displayed on the served pages, as in Figures 10.1 and 10.2.
If this is set to false, the output will not be displayed. You can override this by using the
TraceMode attribute in the Page directive on a particular page.

If you have enabled application-level tracing but disabled page output, the contents
of the collected trace log will be viewable by browsing to a file called trace.axd in the
application root directory. In this case, we browse to http://localhost/Wiley/
Chapter10/trace.axd, which opens the application trace page. Note that you are not
really browsing to this file, and you will not see it in the virtual directory anywhere.
The output from Trace.axd is created by ASP.NET when you request it via your
browser. If you look in the Application->Configuration->App Mapping section in Web
Services Administrator, you will see that .axd files are mapped to aspnet_isapi.dll.
Once the aspnet engine is handling the request, it calls on the System.Web.Handlers.

Debugging and Optimization 397

TraceHandler class, which will serve the trace page to you. This is set up by the entry
in the machine config file for trace.axd, and it is configured this way by default.
Logging the trace information to the trace.axd application is automatically done when
you enable tracing in the Web.Config file. Figure 10.3 shows this in action.

Optimization

Session and View state are two powerful parts of Web programming with ASP.NET.
They do add overhead and can detract from the overall performance of your applica-
tion if used inappropriately. We have already learned when and why we would need
to use these features, so now let’s talk about optimizing their use.

Optimizing Session State Use
in Web.Config
When optimizing an ASP.NET application’s Session state usage, the first place to start
is in the Web.Config file. If you are developing an application that has no need for Ses-
sion state, you can disable it in the Web.Config file. Turning off Session state helps the
overall performance of your application by reducing the memory required and speed-
ing processing of the page. Less memory is used because no session variables are being
stored, and pages are processed more quickly because when Sessions are enabled, the
session ID cookie must be read and written by the server each time a page is processed,
even if no session variables are stored or used. To turn off Session state, set the mode
attribute to “Off” in the sessionState section or Web.Config. Here is an example:

<sessionState mode="Off" . . .

Even when you do need to use Session state, make sure you do so in the most appro-
priate mode. There are three modes supported by ASP.NET: the in process mode,
which is the default, the out of process mode, which relies on a Windows Service to
manage the Session state, and SQL Server mode, which uses SQL Server to do the
work. Obviously, using the in process mode is the best way in regard to speed perfor-
mance. This is due to the fact that the objects stored in Session state variables exist in
the memory of your Web server, and no cross-process access has to occur when read-
ing or writing them. Storing variables in this kind of state manager means that they are
volatile, and they will not be persisted across instances of the application. If the
machine or even the Web server is rebooted, session state will be lost. This also goes for
compiles of the Web application. When you compile you application, the running
application ends, and the first request to your new version starts off a new application.
When this happens, all memory is lost from the first application, including the session
variables. If you need to keep sessions alive and well during a reboot or restart of the
Web server, or even run a compile of your Web application, you may want to use one
of the other methods listed. Refer to the MSDN Library for .NET to learn more about
these other means, as they are not in the scope of this book Notice that when we sim-
ply try to set a Session variable in a page when we have set enableSessionState to “Off,”
we get the exception in Figure 10.4.

398 Chapter 10

Figure 10.3 Viewing application-level tracing in Trace.axd.

Figure 10.4 Session state turned off in Web.Config.

Debugging and Optimization 399

If we leave Session state enabled in the Web.Config file, we can still disable it on the
page level by setting the enableSessionState to false in the Page directive in the aspx
file. Doing so will allow you to use sessions only in the pages that need it. This would
be done with this line of code:

<%@ Page language="c#" enableSessionState="false"

Codebehind="trace.aspx.cs" AutoEventWireup="false"

Inherits="DebugAndOptimize.trace" %>

Optimizing View State
There are many ways to write code to ensure that it is performing in the most efficient
way and not using more memory than necessary. As with writing any Web application,
there are specific ways to make your ASP.NET pages more responsive and engaging.
One such way to speed your application’s response is to limit the amount of data being
sent back and forth between the browser and server. This can be optimized by enabling
ViewState only where needed. We discussed ViewState in Chapter 2, “Anatomy of an
ASP.NET Page,” and how the server sends a hidden field to the browser each time a
page is requested. Remember that the hidden field holds information about the con-
trols that are rendered into HTML, particularly the complex controls. This is how the
server re-creates the state of your user interface automatically on a postback when a
user performs an action in the page that requires a trip back to the server, like clicking
a Button control. As an example, if a DataGrid is sent the browser on the first request,
it will be rendered as a table. But, if the user then clicks a button that causes code to be
run on the server again, that code might need to program against the values in the Data-
Grid. Because a DataGrid was turned into a table when it was sent to the browser, and
because table elements and their contents are not form controls and would not be sent
back to the server as variables, ASP.NET uses the hidden ViewState variable to pass
these DataGrid objects’ contents back and forth. This also allows the server to rerender
the contents into a table on subsequent calls, without having to perform the same code
that loaded the initial DataGrid. But, if our code doesn’t interact with some user inter-
face elements, then ViewState may not need to be maintained for those controls.

ViewState can be managed for an entire page or any server-side control such as a
TextBox, Label, or DropDownList. For any controls on your page that you will never
have to access programmatically in server-side code, you can explicitly disable its
ViewState where it is declared by setting its EnableViewState property to false. An
example for a TextBox may look like the following:

<asp:TextBox id="TextBox1" runat="server" EnableViewState="False">

</asp:TextBox>

Alternately, you could use the property in code-behind code like this:

TextBox1.EnableViewState = false;

which would achieve the same results. Any control that has its values set at runtime in
the declaration of the control in the aspx file, or by writing to it in the code-behind
class, doesn’t necessarily need to have ViewState enabled. If, for example, we always

400 Chapter 10

set the text of the TextBox above in the Page_Load event, and outside of the IsPostBack,
but never read it, we could disable ViewState. One important thing to note is that dis-
abling ViewState in certain types of controls does not render the control unusable by
code. In the TextBox example, the text can still be set and retrieved in code for the con-
trol, even when ViewState is turned off. A control such as a TextBox is a real HTML
Input control once rendered, and it will always have its value passed back to the code-
behind class at postback time because the names and values of HTML Input controls
are always sent to the server in HTTP Post requests, which is how ASP.NET pages are
sent by default. But, more complex controls, which are not represented by Input HTML
items, need to have ViewState so that their state is available when the page is loaded in
a postback situation. In the case of a ListBox, for example, state is maintained in the
ViewState variable, unless you disable it. If, you were displaying items in a ListBox
that was for viewing only, and no server-side code would interrogate it for any of its
state such as the selected item, you could disable ViewState. Doing so would make the
ViewState hidden Input field that gets sent to the browser smaller. For example, a
view-only ListBox with these items in it, Hank, Moe, Larry, and Joe, would send the
following ViewState variable to the browser and back on each request:

<input type="hidden" name="__VIEWSTATE" value="dDwxODU5MTk0OTQ1Ozs+" />

If, on the other hand, your code needed to access some state of the ListBox, such as
the selected item’s text or value, ViewState would need to be enabled just as in the pre-
ceding TextBox example and would send this to the browser:

<input type="hidden" name="__VIEWSTATE"

value="dDwxODU5MTk0OTQ1O3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDE+Oz47bDx0PHQ8O3A8b

DxpPDA+O2k8MT47aTwyPjtpPDM+Oz47bDxwPEhhbms7SGFuaz47cDxNb2U7TW9lPjtwPExhc

nJ5O0xhcnJ5PjtwPEpvZTtKb2U+Oz4+Oz47Oz47Pj47Pj47Pg==" />

Obviously, when ViewState is used, the content transferred over the wire is larger.
Keep in mind that in a control such as a DataGrid, or another complex control that uses
ViewState to hold information about its current state, it will not behave the same when
ViewState is disabled. Nor will it repopulate automatically on a postback to the server
because it is not a standard HTML control that would normally appear in the request
header. When using complex controls such as a DataGrid, the ViewState can become
very large. Here is another example, using a DataGrid to display a simple table from
the Microsoft NorthWind database. We have seen code like this earlier in the book, so
please refer to the sample source code if you need to see it in detail. We won’t show you
the code or the output here; it is just a plain grid representing the rows and columns in
the Products table. Figures 10.5 and 10.6 show you what the browser source looks like
when viewed with Internet Explorer 6, both with and without ViewState enabled. And,
here is the code snippet required to load the grid:

SplConnection conn = new SqlConnection(@"DataSource=(local)\NetSDK;

InitialCatalog=Northwind;

userID=sa;pwd=;");

conn.Open();

SqlCommand cmd = new SqlCommand("select * from products", conn);

SqlDataReader reader = cmd.ExecuteReader();

DataGrid1.DataSource = reader;

DataGrid1.DataBind();

Debugging and Optimization 401

Figure 10.5 Browser source from a DataGrid with ViewState enabled.

Figure 10.6 Browser source from a DataGrid with ViewState disabled.

402 Chapter 10

TE
AM
FL
Y

Team-Fly®

As you can see, the ViewState is huge for this simple table of just 77 rows, and the
screenshot shows only a small portion of the source. In fact, by viewing the Properties
of the page in the browser, the version in Figure 10.5 with ViewState weighs in at 60,125
bytes, whereas the version in Figure 10.6 without ViewState is only 19,845 bytes—less
than a third the size. Of course, as stated several times, you will lose the functionality
of re-creating the output automatically after a postback has occurred. In this case,
when ViewState is disabled, we would have to requery and rebind the data each time
the page loads without regard to whether the IsPostBack property returns true. For this
optimization, you have to weigh the benefits of limiting bandwidth usage versus lim-
iting server-side processing and database calls. Also remember that in cases where you
are always setting values in controls as runtime in the Page_Load server-side code, you
may as well disable the ViewState on that control. It will never be used to repopulate
the control, which is one of ViewState’s most valuable uses, because you are always
doing so yourself with code. In that case, there is just no reason to send the extra con-
tent back and forth.

Another way to speed the processing of your pages is to make sure you are using the
IsPostBack property appropriately. As explained earlier in the book, this property can
be checked when loading the page to determine if the page is being requested due to a
postback situation. In the postback situation, you can often rely on the ViewState to
load controls on your page; therefore, this optimization needs to be considered along
with the previous one regarding ViewState enabling.

Another way to enhance performance is to make use of the robust client-side con-
trols that ASP.NET provides. For example, although it is easy and powerful to handle
data validation on the server with ASP.NET, try to avoid doing so whenever possible.
By using Validator controls, which will produce client ECMAScript or JavaScript to do
much of their intended work, you minimize the number of requests your Web server
must process. In a purely World Wide Web-based application, many of your users will
have up-level browsers and can benefit from client-side activity. In most intranet appli-
cations, the browser version can easily be controlled and will usually be modern
browsers, which support client script. Also, don’t forget that you are still free to write
your own client-side script in your aspx files. Many people get caught up in the power
that is afforded with the server-side nature of ASP.NET, but you can still use your exist-
ing JavaScript, Jscript, and ECMAScript in the browser to do things where appropriate.
Just remember that when doing this kind of client-side programming, you will be
responsible for making sure your code works properly in all browsers.

There are other optimizations, like using Stored Procedures whenever possible,
refraining from using “select *” in your database queries whenever possible, and com-
piling your code for release instead of debug. Those techniques are well known, dis-
cussed at length in the MSDN Library, and are not inherent only to ASP.NET
applications, so we are considering them as outside the scope of this book.

Optimizing Using Caching

Caching is a common technique used in all types of applications, and it plays a major
role in speeding up the response time and overall performance of your program.
Caching simply means storing data or objects in memory so that a program can access
them quickly at any time. If data is left on a permanent storage device such as a disk

Debugging and Optimization 403

drive or database server, it takes longer to retrieve it for use when needed. If it can be
determined that a piece of data or an object does not need to be dynamically loaded
before every use, caching is a good optimization for any application, including those
written for ASP.NET.

Output Caching in an ASP.NET Page
Many applications can benefit from caching in some way or another. Output caching is
a means by which a page request may be filled from a cached version of the page in
memory rather than from a stream of HTML that is returned by the Web server, if the
page has been cached recently. For example, if you have a page that displays a list of all
of your products on a shopping cart type page, you could cache this and probably reap
some speed increases or load decreases in your application. Caching can be done on
several levels, but in all cases it is handled for you, without your having to write code
to store the cached content. In the example of the full product list for a shopping page,
that data may not change very often, so the server code doesn’t need to query the data
source every time the page is requested.

To show the improvements in response time that can be gained, we performed a
simple test. Returning the same data as in the last example, the Products table from the
Northwind database, we can see varying results when enabling and disabling caching.
For the experiment, we request the page 10 times and look at the IIS Log to see the
times posted for processing each request. Here are the times with caching enabled: 460,
421, 481, 531, 500, 481, 400, 451, 480, 501.

These times yield an average of about 470 ms. Next, we ran the same test with
caching enabled and a duration of 120 seconds, so we would have plenty of time to
request the page 10 times. Here are the results: 0, 10, 0, 0, 0, 0, 10, 0, 0, 10, 0. This time,
the response times were drastically reduced. This makes sense considering that the
server doesn’t have to serve the content, just negotiate with the client that the data is
retrievable from cache. Also, in the server log, we can see that when the page is served
the first time, over 60K of data is sent; the cache hits saw only about 200 bytes being
sent—an obvious boon if you have a slower network or are paying by data traffic for
your ISP service. In the browser, where the previous example seemed to pause for a
second and the IE globe icon made about a quarter turn, these requests were filled so
quickly, it was hard to see the browser reloading. In addition to the times used to
process the request, IIS logs the return code for the requests as well. When we were
returning the page in the first test, it was being created normally and returning HTTP
200, which means normal execution occurred. In the latter test, the return code logged
is HTTP 304, which means that the browser was told not to reload the page because it
has not been modified in a certain amount of time: the cache duration. One thing that
this tells us is that ASP.NET caching employs the caching mechanisms built into
HTTP/1.1, which is supported, at least, by the browser we used for the tests. The
return value of 304 sent out by the server tells the client not to expect content to fulfill
the request, but to retrieve it from cache. If there is any server downstream from the
server that caches HTTP data, like a proxy server, it may provide the caching storage
there. If the browser is the first HTTP client that the data goes to, it will cache the page in
its own temporary area to fill any unexpired subsequent requests for the same resource.

404 Chapter 10

To illustrate this clearly, we wrote a simple HttpClient as a WinForms C# applica-
tion, which requests the URI and displays the response. When requesting a page with
caching enabled, the server sent the following response headers:

Server: Microsoft-IIS/5.0

Date: Mon, 13 Aug 2001 05:32:55 GMT

Cache-Control: public

Expires: Mon, 13 Aug 2001 05:33:00 GMT

Last-Modified: Mon, 13 Aug 2001 05:32:40 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 60115

Notice that there is a Cache-Control header present and set to public, as well as the
Expires and Last-Modified headers. An important issue with caching is that if you are
relying on the browser caching client for performance, there will be much less benefit
achieved than if you use a middle caching piece, such as a proxy cache server, for
example. Even though you have served the requested page at least once to a client and
it is cached in his or her browser, the server will have to process and serve the same
page again when another browser requests it, even if it is on the same machine as a pre-
vious one. The new user or browser can’t load the page from cache if it doesn’t have it
in cache. Of course, there is still a benefit when the same user requests the same
resource multiple times; it will be retrieved from the server only the first time. The real
benefit of caching comes in when there is a server in between all of the users and the
server. This caching server can cache the page from the server the first time any user
requests it and then serve it out from fast memory to any other user or browser until it
expires.

The actual location of the caching can be set by the Location attribute of the Output-
Cache directive, if so desired. There are several different options for the location of the
cached data, and the following are the ones most commonly used. When set to Any, the
data is cached by whichever caching application gets the data. It could end up cached
in a downstream caching server or in the client’s browser if no other server is in the
stream. When set to Client, the cached data is stored in the client’s browser. This is the
most common location, and it works whether there is a dedicated caching application
between the browser and Web server. When set to Downstream, any caching applica-
tion that is between the client browser and the server will cache the data. This location
is useful when running a caching server of your own in front of your Web server.

As far as the overall application performance goes, a tremendous load is taken off
the server when caching is used properly. In addition to the Web server not having to
restream the same data over and over to the clients, the database is also spared exces-
sive connections and queries. Of course, performing this kind of caching is not appro-
priate when the user always needs to see the current version of the content. An
example of putting caching to good use would be a page that returns daily company
headline from a database. This data is unlikely to change every time a client requests
the page. If it is cached, then that is one less page for your server to have to process
while it is trying to process more important pages that must be fresh for every request.
One important thing to note is that as of the writing of this book, the caching features
of ASP.NET are available only in the ASP.NET Premium version, which is an up-rated

Debugging and Optimization 405

406 Chapter 10

version of the server available for free from Microsoft. If you attempt to use caching on
a server that has only the standard .NET Framework installed, it will have no effect.
You will receive no error or warning that caching is not working; you must know the
version of the server you are using.

Caching in a User Control
In some cases, you may need to cache only a portion of a page. For example, maybe
you have a shopping site that has daily specials to be displayed at the top of every
page. These daily specials come from the data source, so they must be refreshed at least
once a day. But because they change only once, they don’t need to be reprocessed every
time a page is requested. If this daily specials area needs to appear on a page that does
have to be refreshed on every request, such as a shopping cart, how can we keep it
from being processed as well? An ASP.NET user control may be the solution. These
controls were discussed earlier in the book, so we won’t explain them again here. Just
know that user controls, like pages, can be cached, and separately from the pages in
which they live. This makes for some nice performance capabilities in that you can
control caching not just on a page level, but in certain areas in the page as well. This
technique is often referred to as fragment caching. In this example, we will simulate a
page that needs only part of it to be dynamic all of the time. To do this, we simply add
a new Web Form to our Chapter10 project called UserControlCaching. Also, add a user
control called SampleUserControl that has caching set with the OutputCache directive
in the aspx file. Add this user control to the to the UserControlCaching page and dis-
able its caching. The code for the UserControl- Caching is in Listing 10.1.

<%@ Page language="c#" Codebehind="UserControlCaching.aspx.cs"

AutoEventWireup="false" Inherits="Chapter10.UserControlCaching" %>

<%@ Register TagPrefix="SampleControl" TagName="ProductsControl"

src="SampleUserControl.ascx" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript" content="JavaScript

(ECMAScript)">

<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">

</HEAD>

<body>

<SampleControl:ProductsControl runat="server" ID="ctl1" />

<form id="UserControlCaching" method="post" runat="server">

<P>

This is a non-cached page

Listing 10.1 UserControlCaching.aspx

Last updated time:

<asp:Label id="lblDateTime" runat="server">Label</asp:Label>

</P>

</form>

</body>

</HTML>

Listing 10.1 UserControlCaching.aspx (continued)

And here is the Page_Load handler for the page:

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

//Set datetime stamp control

lblDateTime.Text = DateTime.Now.ToString();

}

}

Next, in Listing 10.2, we see the aspx code for the user control itself. Notice that the
page directive has caching set to 60 seconds and is not varied by parameter.

<%@ OutputCache Duration="60" VaryByParam="None" %>

<%@ Control Language="c#" AutoEventWireup="false"

Codebehind="SampleUserControl.ascx.cs"

Inherits="Chapter10.SampleUserControl"%>

<P>

<asp:Panel id="Panel1" runat="server" Width="420px" Height="69px"

BorderStyle="Solid" BorderColor="#0000C0" BorderWidth="1px"

BackColor="#C0C0FF">

This is a cached user control

Last updated time:

<asp:Label id="lblDateTime" runat="server">Label</asp:Label>

</asp:Panel>

</P>

Listing 10.2 The user control code

In Figure 10.7, notice that the times match because both pages are processed on the
server. Then, notice that in Figure 10.8, the user control shows the same time, but the
page shows a time different by more than 30 seconds. The page was refreshed, but the
control was cached; therefore, it remained unchanged.

Debugging and Optimization 407

Figure 10.7 A noncached page with a cached user control on the first visit.

Figure 10.8 A noncached page with a cached user control on the second visit.

408 Chapter 10

The Cache Class
Another way to cache data so that your server application doesn’t have to perform
lengthy processing is to use the Cache class, which is part of the .NET Framework. This
class resides in the System.Web.Caching namespace, and it is exposed in all ASP.NET
pages via the Cache property. This type of caching is called ASP.NET Application
Caching.

The Cache is an object that holds other objects in memory and allows programs to
store any type of object and retrieve it again at will. This is perfect for storing an object
that doesn’t change often and that taxes the system in a lengthy or processor-intensive
manner when it is first created. An object with these characteristics could be stored in
the Cache so that the heavy processing needed to load it happens only periodically.
This kind of caching is completely different from Output Caching. Where Output
Caching uses HTTP/1.1 features to support the storage of Web pages (and portions of
Web pages when using User Controls, which are really just small Web pages them-
selves) on a piece of software that has a storage facility, using the Cache is similar to
storing data or an object globally at application startup. We say globally because the
Cache is accessible from any page in the Web application.

Let’s revisit the daily specials data example. If we were writing an application and
we somehow knew that all browser caches were disabled, and if we had no down-
stream caching application like a proxy server, then we would want to come up with
another way to keep from having to requery for the daily specials on every page
request. After all, if this were a rich client application that stayed running all day, we
could always load the specials into memory and pull them from there instead of the
real data source. In ASP.NET, we could query the specials and put them into the cache,
and on each new page request, we could simply read them from there. We would
reload them into the cache only when their cache time expires, about which we would
be notified by a callback function into our code.

For this example, we queried the same table as before, the Products table in the
Northwind database. This time, however, most requests for this data can be fulfilled
from the Cache object. To achieve this, the first thing we do is check for the existence of
the object in the cache. We can do this by its name, which in this case is ProductArray:

Object objCacheItem = Cache["ProductArray"];

If the object does not exist in the cache, we will be left with a null reference, at which
point, we will create our cached data object and store it for later use. The data is read
from the database via the ODBC providers OdbcDataReader. Notice, however, that we
can’t just store the reader object because it is forward-only, and only the first request to
read it would have success. So, instead, we create ProductDataItem objects from the
rows of data in the reader, and we add them to an ArrayList collection object. For
brevity of the example, we didn’t create a property for every column in the table. We
then store the collection in the cache. The next request that comes in will see that the
data has been cached, so it will simply bind to the cached version and display it to the
user. This example uses a simple page with a DataGrid on it, and all processing takes

Debugging and Optimization 409

place in the Page_Load event handler. Create a new Web Form in the chapter example
called ApplicationCaching. Figure 10.9 shows us the page in action. Here is the code
for the the Page_Load handler:

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

object objCacheItem = Cache["ProductsArray"];

if (objCacheItem == null)

{

SqlConnection conn = new SqlConnection(@"DataSource=(local)\NetSDK;

InitialCatalog=Northwind;userID=sa;pwd=;");

conn.Open();

SqlCommand cmd = new SqlCommand("select * from products", conn);

SqlDataReader reader = cmd.ExecuteReader();

//Create a collection or product items.

ArrayList arr = new ArrayList();

ProductsDataItem item = null;

while (reader.Read())

{

item = new ProductsDataItem();

item.ProductID = Convert.ToInt32(reader["ProductID"]);

item.ProductName = reader["ProductName"].ToString().Trim();

item.SupplierID = Convert.ToInt32(reader["SupplierID"]);

item.CategoryID = Convert.ToInt32(reader["CategoryID"]);

item.QuantityPerUnit = reader["QuantityPerUnit"].ToString().Trim();

arr.Add(item);

}

reader.Close();

//Store the collection in cache.

Cache.Add("ProductsArray",

arr,

null,

DateTime.Now.AddSeconds(20),

new TimeSpan(0),

CacheItemPriority.Normal,

null);

Response.Write(

string.Format("Loaded products into cache at {0}
",

DateTime.Now.ToString()));

}

//Data bind from cached products array.

DataGrid1.DataSource = (ArrayList)Cache["ProductsArray"];

DataGrid1.DataBind();

}

}

410 Chapter 10

The code for the aspx code is simply a DataGrid that looks like this:

<asp:DataGrid id="DataGrid1" runat="server" Font-Size="X-Small"

Font-Names="arial" CellPadding="0" BackColor="White"

BorderColor="Silver" BorderWidth="1px"

BorderStyle="None">

</asp:DataGrid>

This technique would have the most impact on performance if the query for the
products were a lengthy one; here it is a very fast query so the performance gain is neg-
ligible. Also, this technique doesn’t save any on the front-side bandwidth consumption
as the same data is still sent to the client on each request. This would consume less
internal bandwidth by requiring less traffic from the Web server to the data server.

There are a few more things that can be done with the cache object. We can set up a
sliding expiration time. This would make the expiration time extend itself each time
the object was accessed in the cache. Here is a situation in which this could be helpful.
If you have a Web application that stays very busy during the normal working hours,
such as a heavily used intranet application in a corporation, you may not want the
cache expiring while there is heavy traffic on the server. Making the expiration slide by
a small amount each time the cached object is used, it will only expire when the traffic
slows down enough so that there are no requests before the timeout slide time. So, if
the slide time is set to a time span of five minutes, as long as the requests for the cached
item at intervals less than five minutes, it won’t expire. Once the requests slow down
and are ever more than five minutes apart, the time will expire and the object cached
object can be refreshed. This somewhat achieves load management in that the lengthy
code is run only during idle times.

Figure 10.9 The cached page in action.

Debugging and Optimization 411

Another feature of the cache is its ability to alert us when an object has expired. This
allows us to refresh it even periodically as opposed to doing so when we encounter a
cache miss due to a request for the page. This may help the user experience by having
the cached object kept up-to-date without having to be refreshed when one unlucky
user requests the page.

To accomplish this, we need to set up a delegate—an event handler method—for the
caching system to call when it removes an item. Once the event handler is in place, we
can send its delegate into the Cache.Add method, as the last parameter. In this exam-
ple, we check for a cache miss when the page loads, and we load the cache item at that
time if needed. This is just like the last example, but we are now using a simple string
for the cached item, to make the example easier to read. When the cached item expires,
the event handler is called, and the expiration is logged so we can have proof that the
code works. Then, the cache is reloaded with a fresh version of the string data. Create
a new WebForm called AdvApplicationCaching. The aspx file requires no code modi-
fications, and here is the required code for the code-behind file:

//The one static cache removal callback delegate.

private static CacheItemRemovedCallback onRemove = null;

private void Page_Load(object sender, System.EventArgs e)

{

//Instance the callback delegate.

onRemove = new CacheItemRemovedCallback(RemovedCallback);

if (!IsPostBack)

{

//Check for a cache hit.

object objCacheItem = Cache["Note"];

if (objCacheItem == null)

{

//Cache miss - so load item into cache.

DateTime t = AddCacheItem("Hello from Page_Load");

Response.Write(string.Format(

"Loaded item into cache from Page_Load at {0}
",

t.ToString()));

}

//Display item.

Response.Write(Cache["Note"].ToString());

}

}

private DateTime AddCacheItem(string s)

{

//Store the data in the cache.

Cache.Add("Note",

s,

null,

DateTime.Now.AddMinutes(1),

412 Chapter 10

TE
AM
FL
Y

Team-Fly®

new TimeSpan(0),

CacheItemPriority.Normal,

onRemove);

return DateTime.Now;

}

public void RemovedCallback(string k, object v, CacheItemRemovedReason r)

{

//Only handle cache removals if config says to.

bool b = Convert.ToBoolean(

ConfigurationSettings.AppSettings["HandleCacheRemovals"]);

if (b)

{

//Cached item was removed, so log it.

StreamWriter sw = new StreamWriter("c:\\cacheremove.htm", true);

sw.WriteLine(string.Format("Removed: {0} at: {1} reason: {2}
", k,

DateTime.Now, r.ToString()));

sw.Close();

//Add fresh item to cache.

DateTime t = AddCacheItem("Hello from RemovedCallback");

}

}

The first things of note in the code are the lines:

private static CacheItemRemovedCallback onRemove = null;

. . .

onRemove = new CacheItemRemovedCallback(RemovedCallback);

These lines set up the delegate to the event handler method for the callback to use.
Notice that it needs to be static so that the system can call the method even when there
is not a request, and therefore not necessarily an instance of the page class running. If
this weren’t static, then the method that it points to, RemoveCallback, would have to
be static, but that would require other code to be able to access the cache because a sta-
tic method would not have access to the “this” pointer, which would be the page where
the cache property exists. We make the delegate static, which allows the call to occur at
any time; the system can call the function on your page class from its class name
instead of a running instance. If the delegate and the event handler were both nonsta-
tic, then the system would have to wait until a request comes in and a page object is
instantiated, to call the callback method. The Page_Load code is self-explanatory; it
just checks for a cache hit and loads the cache on a miss, then prints the cached data
value. In the call to Cache.Add, we can see the last parameter tells the cache to call
RemoveCallback whenever an item is removed from cache. At that point, we simply
load a new, fresh item in the cache. The next time a request comes in for the page, there

Debugging and Optimization 413

will probably be a cache hit, resulting in a quick serve of the page. We shouldn’t write
to the content stream from this function because it will likely be called when there is
not a valid context to which to return HTML.

Another tidbit we used is this line:

bool b = Convert.ToBoolean(

ConfigurationSettings.AppSettings["HandleCacheRemovals"]);

which looks at the application configuration settings to determine whether the code
should refresh the cache and log the event. The value is entered into the Web.Config
file, as text, and can be changed at any time. This is a simple way of controlling settings
in the application at runtime, similar to using a registry entry that the code reads. The
difference is that we don’t have to write code to read the registry, and these types of
settings can be changed on the fly. The application will keep in sync with them auto-
matically without our having to restart the Web server or the application. To use this
application configuration setting, we must create an appSettings section in the
Web.Config XML like this:

<appSettings>

<add key="HandleCacheRemovals" value="false" />

</appSettings>

Keep in mind that the event will still fire, and the handler method will still be called;
we have just prevented it from filling our hard drive full of removed cache item log
entries. In fact, if you run this kind of example, you should restart the Web service after
you are finished; don’t request the page again, or else it will keep on refreshing in the
background.

Optimizing via Performance Profiling

Performance profiling is a way to keep track of the efficiency of an application by track-
ing various parameters at runtime. This is done throughout the Windows operating
system components as well as many applications written for Windows already likely
running on your machine. The main tool for viewing these parameters in Windows is
the Performance Monitor. Like any other type of application, ASP.NET Web applica-
tions can write information into the performance logs in Windows, so that it can be
gathered and viewed with Performance Monitor.

perfmon and Performance Counters
ASP.NET creates a robust set of performance counters that can be read with perfmon,
or any other performance counter reading application. These can be useful in tracking
the performance of your Web applications, as well as other measures, such as how
many sessions are active. To view performance statistics for ASP.NET in general, open

414 Chapter 10

perfmon by typing perfmon at a command prompt. To view current activity in
ASP.NET, click the + button on the toolbar, which opens the Add Counters dialog. The
most important counters to a Web application programmer are in the ASP.NET appli-
cations performance object. Selecting this in the Performance Object list shows you all
of the available counters that are related to ASP.NET applications themselves. Select a
counter from the list, and you will notice that there is an entry for each ASP.NET appli-
cation currently running on the server. In Figure 10.10, you can see that two applica-
tions are running: gm and BugMan. Notice that their application names are preceded
by W3SVC_1 because they are running on the default Web site. If we browse to an
application on our server running on another Web site, it would be shown in the list as
well, with a different prefix to the application name.

One of the counters that may be of interest to you is the session active, which may
determine when you do a reboot or restart of the server. If you have hundreds of active
sessions, you may want to postpone a software update until later; you don’t want to
unnecessarily cause a “session not found” error for a bunch of users if it can be
avoided. Also, the cache miss counter may help you tune your application caching
design. Maybe your cached content needs to last longer before expiring. Maybe you
see that you have so many cache misses because the queries to the server vary more
that you had anticipated. In that case, maybe you would want to take out the caching
code altogether if it is using a lot of memory but not being hit often enough to justify
its use.

Programming Your Own
Performance Counters
In many cases, the standard ASP.NET counters are helpful in diagnosing performance
bottlenecks or uncovering potential optimizations.There may be times when you can
benefit from having your own custom counters in place. Fortunately, the .NET Frame-
work makes this relatively simple to do.

Figure 10.10 perfmon add window.

Debugging and Optimization 415

When creating performance counters, we first need to check to see if the category
exists, and if not, create it and then update its value. The category is actually the item
shown in the object list on the Add dialog box of the perfmon application. In this case,
the easiest way to check for its existence is to try to access it and catch the exception if
it doesn’t exist. If the object needs to be created, we can do so and then access it for
modification or reading. In this example, we will create a simple counter to keep a tally
of how many times a user accesses the page. This is done by placing the code in the
Form_Load, but it might be a good candidate for a base class method in a base page.
While it is true that we could accomplish the same thing (counting page hits) with a
database, file, or many other means, writing to a performance counter is handy in that
it can be accessed from another machine (one machine can read performance informa-
tion from another machine on the network) and it doesn’t require the user to access the
database just to see these statistics. In addition, the performance counter system in
Windows supports more advance features such as averages, different refresh intervals,
and graphing. Create a new WebForm called PerfCounters in the chapter project. Add
the code listed here for the writing of a counter when the page loads. In this case, no
code in the aspx file is needed other than the default generated form.

string strCategoryName = "WileyParts";

string strCounterName = "Vehicle Selections";

private void Page_Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

try

{

PerformanceCounter objCounter = new

PerformanceCounter(strCategoryName, strCounterName, "Inst01",

false);

objCounter.IncrementBy(1);

Response.Write("Incremented to: " +

objCounter.RawValue.ToString());

}

catch

{

CreateCounter();

}

}

}

private void CreateCounter()

{

CounterCreationDataCollection objCounterDataCollection = new

CounterCreationDataCollection();

CounterCreationData objCounterData = new CounterCreationData();

objCounterData.CounterName = strCounterName;

416 Chapter 10

objCounterData.CounterHelp = "Number of vehicle selections";

objCounterData.CounterType = PerformanceCounterType.NumberOfItems64;

objCounterDataCollection.Add(objCounterData);

PerformanceCounterCategory.Create(strCategoryName, strCounterName,

objCounterDataCollection);

}

Notice that in the code we use the CounterCreationDataCollection object to which
we add new CounterCreationData objects. We are adding only one object to the collec-
tion, but if we needed to create multiple counters quickly, we could do so by adding
more data objects to the collection before passing it to create. Also, we put the calls
inside the try block without any other code. The exception thrown when the counter
doesn’t exist is of type InvalidOperationException, which could be thrown by other
code if it were present.

Another example of good use of counters is code that looks at the recent page hits or
the request count for the last few minutes. This could be displayed to users to tell them
how busy the server may be at the time. This could be useful for intranet applications,
especially when a user has the option of postponing use of the system until a later time
when it is not so busy.

Wrapping Up the Chapter

There are a host of options available to you for debugging, tracing, optimizing and pro-
filing, and collecting performance data about your ASP.NET applications. This can go
a long way toward making our Web-based applications as robust and scalable as our
rich client applications.

Debugging and Optimization 417

419

Index

A
Access Key, UPS tools, 371
Add Event Handler +=syntax, 24
Add() method, 84, 154, 181, 255–257, 258
address validation

freight calculation element, 382–386
request, 382–383
response, 383–386

Add Web Reference tool, 308, 309–310, 328
ADO.NET

architectural design, 135
Command class, 139–158
conceptual view of design, 137
Connection class, 138–139
DataAdapter class, 139–158
DataReader class, 158–181
DataSet class, 139–158
managed providers, 135–137
Recordset, 135–136
XML (Extensible Markup Language), 135

advanced data binding, 215–237
<a> element, 63, 64, 114
AllowCustomPaging property, 219
AllowPaging property, 216, 219
AllowSorting property, 220, 224
AlternatingItemStyle subelement, 112
anonymous access

IIS security, 334–335
Windows authentication, 339–340

Application_BeginRequest event, 201
Application_End event, 201
Application_EndRequest event, 201
applications

native access to Windows OS, 6–7
variables, 206–207

Application_Start event, 30, 198–201

AppSettings property, 196
<apsettings> section, 196
ArgumentNullException exception, 133, 134
array

of objects, 312–315
of strings, 311–312

ArrayList array, 219, 255, 270, 322
.ascx file extension, 212
ASP (Active Server Pages)

code execution, 8
scripting languages, 4

ASP applications, 5
error handling, 7
limitations, 6

asp:BoundColumn control, 99
<asp:Button> control, 15, 16, 17–18, 28
<asp:DropDownList> tags, 71
ASP.example10_aspx namespace, 209
asp:HyperLink, 113
<asp:Label> control, 15, 16, 34
<asp:ListItem> controls, 71
ASP (Active Server Pages) model, 2
ASP.NET, 2, 13

COM, 6
common language runtime, 5
compiled code, 4
error handling, 7
HTTP protocol appearing to have state, 8
purpose of, 4
state of UI, 8

ASP.NET Application Caching, 409
ASP.NET applications

application variables, 206–7
code pertaining to, 197–198
configuration settings, 196–201
events in Global.asx file, 199–200

420 Index

ASP.NET applications (continued)
.NET Framework BCL (Base Class Library), 6
shut down, 201
starting, 198–201

ASP.NET pages
base class, 209–210
code-behind classes, 18–21
Output Caching, 404–6
page-specific options, 19
processing, 9
stages, 23–24
__VIEWSTATE element, 18

ASP.NET_SessionId cookie, 192
aspnet_wp.exe, 13
asp:TableCell control, 84
asp:Table control, 84
asp:TableRow control, 84
.aspx extension, 13
assemblies, 20

referenced by default, 30
viewing, 21

@EmployeeID parameters, 153–154
@FirstName parameters, 153–154
@@identity Shopper_ID, 257
@LastName parameters, 153–154
@Register directive, 213
@Shopper output parameter, 257
attachments, e-mail, 387–388
authentication

ASP.NET, 340–354
Basic, 336–338
client impersonation, 340–341
Digest, 338
forms, 343–353
Integrated, 338–339
Microsoft’s Passport Authentication Service,

353–354
mixing/matching types, 339–340
service, 353–354
URL authorization, 341–342
Web.Config file, 340–346

AutoGenerateColumns property, 220, 269
automatic paging, 216–218

B
background image, 81
Base64 XML, 319
base classes, 208, 209–210
BaseValidator class, 119
Basic authentication, 336–338
BeginTransaction() method, 260
BEGIN TRANSACTION statement, 260
bin directory, 30, 35
Bind() method, 167
BoundColumns, 113
bound controls, 94

 element, 78
browsers

communications with, 184–193
cookies, 189–193
detecting capabilities, 47

header line passage to, 186
Integrated authentication, 338–339
page request from, 187
programmatic content generation, 184–187
Windows authentication, 336–340
ViewState variables, 206–7

btnEmployeeAdd_Click handler, 156, 169, 181
btnEmployeeUpdate_Click handler, 169, 181
btnSubmit button, 29
btnSubmit_Click method, 34, 35
BufferResponse property, 302
Button1 button, 44
Button.aspx.cs file, 53–54
Button.aspx file, 52–53
ButtonColumn link, 106
ButtonColumns, 113
Button control, 34, 51–55
buttons, 34

cells, 89–90
clickable, 51–55

C
C#, 4–5, 9–10
C++, 10
Cache class, 409–414
CacheDuration property, 302
Cache property, 409
caching

described, 403–4
output in ASP.NET page, 404–6
user control, 406–8

CancelCommand event, 231, 288
Cart page, 282–290
catch, 132
catch blocks, 132
Categories page, 272–275
CategoryID property, 331, 332
cells, 87

buttons, 89–90
hyperlinks, 88

ChangeImage method, 61
Chapter2 directory, 29
Chapter2.disco file, 30
Chapter2.dll file, 35
Chapter2.pdb file, 35
CheckBox1 control, 82
CheckBox.aspx file, 68–69
CheckBox control, 68–69
check boxes

dynamically changing list, 77–80
entry, 68

CheckBoxList control, 46, 77–80
CheckedChanged event, 68–69, 82
CheckOut() method, 257
Checkout page, 290–292
classes

binding to custom-created, 180
code-behind, 4
Events Page, 23–29
exposed Web methods, 302–3
WebService attribute, 302–3

Index 421

clickable button, 51–55
ClickedIt method, 17, 20, 23, 24, 28, 29
Click event, 28, 29, 34, 44, 51, 55, 56, 127, 213

LinkButton controls, 61
Click event handler, 44, 127
client impersonation, ASP.NET authentication,

340–341
clients

Basic authentication, 336–338
Digest authentication, 338
Integrated authentication, 338–339
posting pages back to server, 44–46
sending data to, 184

client-side validation, 119, 120, 128
CloseDBConnection() method, 263
Close() method, 139, 159
cmbCategories control, 330
cmbVehicleYears control, 330
code-behind classes, 4, 18–21, 60

events, 25
ServerValidate event handler, 128
user controls, 212
WebMethod attribute, 301–2

code-behind files, 31
compiling, 35
<namespace> clause, 114

code reuse and user interface, 211–215
collections classes and indexers, 10
columns, 142

data type, 159
hard-coding ordinal numbers, 159–160
null, 160

COM, 6
CommandArgument property, 51
Command class, 137, 139–158, 254
Command event, 52, 55
CommandName property, 51, 102, 108, 155,

231, 275, 277
Command object, 140
commands and data source execution, 140
CommandText property, 140
CommandType property, 140
COM marshalling, 135–136
Commit() method, 260, 261
common language runtime, 4

classes, 5
meta data, 6
object-oriented features, 5

communications with browsers, 184–193
CompareValidator control, 126–127
compiled code, 4
ComputerProduct class, 314, 316, 317
<configuration></configuration> tags, 196
Configuration Manager dialog box, 35
Connection class, 137, 138–139
connection pooling, 181–182
Connection property, 140, 260
connections, appropriate type, 140
connection string, 167, 182

ConnectionString property, 138, 182
ConnectionTimeout property, 138
console applications, 20
consuming Web services, 324–332
container for controls, 81
content, programmatic generation of, 184–187
Context object, 305
Control class, 47–48, 115, 213
Control directive, 212
controls

binding property to data source, 46–47
container for, 81
object-oriented, 7
server-side, 7–8

cookies, 189–193, 208
Cookies property, 189
CounterCreationData object, 417
.cs file, 18
CSS (Cascading Style Sheets), 47
CTestObject class, 75, 76
custom base classes, 208
custom button, 90
custom data sources, 96–99
CustomerContext property, UPSRates class, 372
custom paging, 218–220
custom validation, 128–130
CustomValidator control, 128

D
data

addition of, 144
deletion of, 140, 144
fill with, 140
grid-like view of, 94–114
insertion, 139, 140
retrieving, 139
selection, 140
store across multiple page requests, 202–6
update of, 139, 140, 144

DataAdapter class, 137, 139–158
databases, 95

access, 135–182
amount of time to wait for connection, 138–139
changes sent to, 157
close connection, 139
connection with, 135, 138–139
disconnected data access, 135–136
disconnected view of, 135–136
filtered rows returned, 144
in-memory representation, 135
names, 139
navigation, 135
one table accessed, 135
open and close connections, 135
open connection, 139, 142

Data Binding, 46–47
advanced, 215–237
events, 225–227
Text property of Label control, 50

422 Index

DataBinding event, 27
Data Binding expression, 46, 50
DataBind() method, 46–47, 50, 144
DataField attribute, 227
DataFormatString attribute, 225
DataGrid, ViewState, 402
DataGrid.aspx file, 95–96
DataGridBoundColumn, 99
DataGridButtonColumns Web Form, 100–102
DataGrid class, 269

hyperlink columns, 102–6
paging, 215–224

DataGridCommandEventArgs argument, 155
DataGrid control, 94–114
DataGridCustomObjectBind, 96
DataGridFormatted Web Form, 108–112
DataGridItemDataBound.aspx.cs file, 225–227
DataGridItemDataBound.aspx file, 225
DataGridKeyField Web Form, 106–8
DataGridSort.aspx.cs file, 221–222
DataGridSort.aspx file, 221
DataGridSortColumns.aspx file, 223–224
DataItem, 113
DataKeyField property, 106, 108
DataKeys property, 168
DataList array, 278
DataList class, 228–237, 272, 276, 282, 286, 288
DataListCommandEventArgs argument, 275
DataList control, 94
DataListEdit.aspx.cs file, 235–237
DataListEdit.aspx file, 232–235
DataListSimple.aspx.cs file, 230–231
DataListSimple.aspx file, 228–230
DataRead class, 159
DataReader class, 135, 137, 158–181, 254
DataRow objects, 142
DataRowView class, 144
DataSet class, 135, 137, 139–158
DataSet class, XML, 366–370
DataSet object, 143
DataSource property, 330
data sources

automatic paging, 216–218
command execution, 137, 140
communication with, 135, 137, 138–139
connection to, 137
custom, 96–99
custom paging, 218–220
errors, 137
fast, forward-only access, 158–181
loading specific data from, 99
object properties, 113
unawareness of, 139

DataTextFormatString, 74
DataView object, 144
DateTime.Now.ToString() method, 50
DBConnection property, 262
DBConnection variable, 270
debugging, 393–398
default project name, 29
DefaultView property, 144

delegates, 8–9, 24
DeleteByID() method, 180
DeleteCommand event, 288
DeleteCommand property, 140, 144, 154
Delete() method, 155, 257
DELETE statement, 159
Description property, 273, 302, 303, 322, 331, 332
Developer’s Key, UPS tools, 371
Digest authentication, 338
directories, anonymous access, 334–335
Directory class, 60
Directory.GetFiles(string) method, 61
discovery information, 308
DisplayMember property, 330–331
Dispose event, 27
distributed networks, 3
<div> element, 81, 277
.dll file, 18
__doPostBack() function, 55, 66, 71
__doPostBack method, 45–46
DownLevel browsers, 47, 68

HTML Server Controls, 114
Panel control, 81–83
 element, 49

DropDownList1_SelectedIndexChanged
method, 71

DropDownList.aspx file, 71
DropDownList control, 45, 46, 70–74, 279

E
ECMAScrip version 1.2, 47
e-commerce

e-mail, 387–388
freight calculations, 370–386
XML tools, 355–370

EditCommand event, 231, 232, 288
EditItemIndex, 288
EditItemTemplate UI, 232, 286
e-mail, 387–388
Employee class, 169–181
Employee.cs file, 169–175
Employee.GetAll() method, 180
EmployeeGrid class, 168
EmployeesFinal.aspx.cs file, 177–180
Employees table, bind DataGrid to, 143–144
EmployeesUpdateable.aspx.cs file, 147–153
EmployeesUpdateable.aspx file, 144–147
EmployeesWithDataGrid.aspx file, 143–144
EmployeesWithOleDb.aspx file, 142–143
EmployeesWithReader.aspx file, 160, 161–167
EmployeesWithSql.aspx file, 140–141
EmptyCart() method, 261
EnableSession property, 302
Error event, 27
error handling, 7, 131–135
error-handling mechanism, 132
error messages, 119, 124–125
ErrorPage property, 263
errors

reproduction of, 132
tracking, 251–252

TE
AM
FL
Y

Team-Fly®

Index 423

escape sequences, 139
__EVENTARGUMENT element, 46
EventHandler delegate, 24, 25
EventLog.Delete, 210
EventLog.DeleteEventSource, 210
events

code behind class, 25
data binding, 225–227
example of, 27–29
in Global.asx file, 199–200
in-line script, 25, 27
.NET, 8
session, 202

__EVENTTARGET element, 46
Example1Service Web service, 305
Example2Service Web service, 311–312
Example2Svc project, 311
Example3Service Web service, 313–314
Example4Service Web service, 317–318
Example5Service Web service, 319
Exception class, 132, 137, 167, 261
exceptions, 264–268

catch blocks, 132, 133
cleanup code, 134
finally block, 132, 134
rethrow, 133
throw, 132
try blocks, 132
unhandled, 133

ExecuteNonQuery() method, 158–159, 176
ExecuteReader() method, 158, 167
ExtractResults() method

HttpWebRequest class, 378–380
UPSAddressValidator class, 384–386

F
fat client applications, 175–176
File object, 186
files, 186–187

allow upload to Web server, 319
Fill() method, 140, 142
finally block, 134
FindControl, 288
firewalls and COM marshalling, 136
FooterStyle subelement, 112
Footer Template, 282
FooterTemplate, 288
foreach construct, 10
foreach statement, 135
FormatProperName method, 305, 308
<form> element, 16, 114, 119, 120

action attribute, 44
ID attribute, 45

forms, 16, 194–196
action property, 195
automatically posting back to server, 71
error message, 120
postback, 44–46
submitting, 44–46
user input validation, 118–140

forms authentication
FormsAuthentication object, 347
login.aspx page, 349–351
redirection, 353
robust, 343–344
secured orders.aspx page, 351–353
UserAuth class, 347–349
user credentials, 346–347
Web.Config file, 344–346

FormsAuthentication object, 347
framework dlls, 21
framework-provided data structure, 95
freight calculations

address validation, 382–386
shipping rates, 372–382
UPS tools, 370–386

G
GetAllCategories() method, 272, 330
GetAll() method, 176, 180
GetCartSalesTax() method, 257
GetCartShippingCost() method, 257
GetCartSubTotal() method, 257
GetCartTotalCost() method, 257
GetFiles(string) method, 56
GetImages method, 61
GetImageURL method, 61
GetOrdinal() method, 159
GetPartsByVehicleAndCategory() method,

255, 275
GetParts() Web method, 331
GetRates() method, UPSRates class, 375–377
GetResponse() method, HttpWebRquest

class, 378
GetShopperByID() method, 257
GetShoppingCartItemCount() method, 257
GetShoppingCart() method, 257, 260, 282
GetType() method, 159
GetVehiclesByYear() method, 255, 271, 322, 332
GetVehicleYears() method, 255, 330
GetVehicleYears Web method, 325
Global.asax.cs file, 30
Global.asax file, 30
global.asx file, 197–198
global.asx file and events, 199–200
grid-like view of data, 94–114
grids, 94–114

with button column, 100–102
contents from cells, 102
formatting, 108–112
storing data without seeing it, 108

H
HeaderBar user control, 266–268
HeaderStyle subelement, 112
HeaderStyle template, 269
HelloWorld2.aspx file, 14, 15
HelloWorld3.aspx file, 15–18
HelloWorld.aspx file, 14–15
HelloWorldCB.aspx file, 19

424 Index

HelloWorldCB class, 19–22
HelloWorldCB.cs file, 19–20
HelloWorld CB.dll file, 21
HelloWorldEvents.aspx file, 27–29
helper windows, 33
HTML

3.2, 47
4.0 and above, 47
<form> block, 16

HtmlAnchor control, 114
HtmlContainerControl class, 115
HtmlControl class, 115
HTML Controls, 16
HTML elements

HTML Server Control conversion, 114
level of abstraction, 47
name or ID, 17
opening and closing tags, 115

HtmlForm control, 16, 114
HtmlGenericControl, 114, 116
HtmlImage class, 115
HtmlInputButton class, 116
HtmlInputControl class, 115
HTML Server Controls, 43, 114–118
HttpApplication class, 197–198, 202
HttpCookie class, 189, 192
HttpCookieCollection class, 189
HTTP-GET request, 322
HTTP-POST request, 322
HTTP protocol appearing to have state, 8
HttpRequest class, 189, 194
HttpResponse object, 184–189
HttpResponse.Redirect method, 187
HttpResponse.WriteFile method, 187
HttpWebRequest class, 370, 378
HttpWebResponse class, UPS server

response, 370
HyperLink control, 63–64, 273
hyperlinks in cells, 88

I
iblHelloWorld control, 22, 35
IdataReader interface, 254
IDbConnection interface, 254
if(IsPostBack) section, 154
iisreset, 198
IIS security

anonymous access, 334–335
Basic authentication, 336–338
client impersonation, 340–341
Digest authentication, 338
Integrated authentication, 338–339
Windows authentication types, 336–340

ILDASM.exe utility, 21–22
Image.aspx.cs file, 57–60
Image.aspx file, 57
ImageButton.aspx file, 62
ImageButton control, 62, 279, 291
Image class, 56
Image control, 56–62, 60
images, 56–62

 element, 56
indexers, 10
InitalizeComponent method, 33
Init event, 25
InitializeComponent() method, 32, 34–35, 66,

116
InkNext_Click method, 61
InkPrevious_Click method, 61
in-line script, 15–17

compile errors, 18
events, 25, 27
problems, 18
protecting source code, 18

in-line scripting, 113
input control ID, 119
input controls

comparision of, 126–127
specific-pattern check, 122–123
Validation Controls, 119

<input> element, 17, 68, 115, 120
maxlength attribute, 65
name attribute, 69
readonly attribute, 65

<input type=”image”> element, 62
<input type=”radio”> element, 69
<input type=submit> element, 116–117
InsertCommand property, 140, 144, 154
INSERT statement, 159
Integrated authentication, 338–339
intellisense feature, 30
Internet Information Server enhancements, 3
ISAPI DLL, 9
IsClosed property, 159
IsComplete property, 278
IsDBNull() method, 160, 176
IsPostBack property, 26
!IsPostBack section, 94
IsPostBack state, 218
ItemCommand event, 102, 232, 275, 278
ItemCommand handler, 100, 106
ItemDataBound event, 225, 288
ItemStyle subelement, 112
ItemTemplate, 273, 286

J
JavaScript, 4
JOIN query, 135

L
Label.aspx file, 50
Label class, 20
Label control, 17, 20, 34, 48–51, 52, 113, 119, 212,

275, 281, 286
<label> element, 48, 68
lblHelloWorld control, 28
lblMessage Label, 213
LinkButton.aspx file, 55
LinkButton control, 56, 60–61, 275, 277
ListBox.aspx file, 75
ListBox control, 75–76
list boxes, 75–76

Index 425

ListControl class, 70, 75
ListItemCollection collection, 70
ListItem objects, 72
Load event, 25, 26, 33
LoadFromReader() method, 176
LoadPage_Load() method, 25
LoadPage() method, 286, 288
logging, 251–252
logic and user interface separation, 18
login.aspx page, forms authentication, 349–351

M
machine.config file, 196, 305
MailAttachment class, 387
MailMessage class, 387
managed provider, DataAdapter class

supplying, 139
m_arrImageNames member variable, 60
m_conn member variable, 262
MessageName property, 302
meta data, 6
methods, reference to, 24
MFC CListView control, 108
Microsoft.NET, defining, 1–2
Microsoft Passport Authentication Service,

353–354
Microsoft Scripting Host engine, 4
Microsoft Web site, 137
minimum and maximum value, 126
m_intShopperID member variable, 257
mouse clicks, responding to, 62
MoveNext() method, 135
MovePrevious() method, 135
MSDE (Microsoft Data Engine), 137
MSDOM (Microsoft Document Object

Model), 47
MSIL (Microsoft Intermediate Language),

4–5, 21
m_strConnectionString variable, 167
m_strImageDirectory member variable, 60
MultiLine text box, 67
MultiLine TextBox control, 67
MyASPNETPage.aspx page, 44
MyPerson class, 106
MyPerson objects, 108

N
Namespace property, 303
namespaces, 20, 302–3
name/value pairs, 70
NavBar.ascx user control, 212–213
.NET

common language runtime, 4–5
events, 8
Managed Visual C++, 4–5
Server Controls, 7

.NET applications, 6

.NET Framework, 2

.NET Framework BCL (Base Class Library),
6, 7, 132

.NET Framework System.Web.dll assembly, 20

.NET objects, 6
networks, distributed, 3
new keyword, 134
NewPageIndex property, 218
New Project dialog, 29
NewRow() method, 156
non-COM Win32 DLL, 7
Northwind database, 137
nowrap property, 83

O
object-oriented controls, 7
objects

array of, 312–315
retrieval from another object, 207–211
returning, 312–315

Object.ToString() method, 331
ODBC Managed Provider, 135
OLE DB-compliant database, 137
OleDbConnection class, 138, 181, 252
OleDbDataAdapter class, 139, 140
OleDbDataReader class, 135, 137, 158–181
OLEDb managed provider, 135, 137, 142
OleDb managed provider, 139
onchange event, 45, 46, 66
OnItemClicked handler, 155, 168, 180
online car parts retailer, 247–248

basic object model, 250–264
Cart page, 282–290
Categories page, 272–275
checking out, 258–261
Checkout page, 290–292
cookies, 262–264
database model, 248–250
error tracking, 251–252
event log, 262–264
logging, 251–252
matching parts, 255
OrderConfirmation page, 292
Order_Items table, 258
part category, 255
PartSelect page, 275–279
Profile page, 279–282
Shopper table, 255–257
user interface, 264–292
VehicleSelect page, 269–272
Vehicle table, 254–255
WileyError page, 264–268

OpenDBConnection() method, 262–263
Open() method, 139, 142, 167, 263
OpenRead method, 186
optimization

Cache class, 409–414
caching, 403–414
performance profiling, 414–417
Session state use, 398–400
ViewState, 400–403

<option> element, 70
Order.Add() method, 260–261

426 Index

Order.AddOrderItem() method, 258, 261
OrderConfirmation page, 292
OrderItem.Add() method, 258, 261
OrderItem object, 258
Order_Items table, 260
Order object, 258
Output Caching, 404–6

P
PackageWeight property, UPSRates class, 372
Page class, 21–22

events, 23–29
IsPostBack property, 153
IsValid property, 119, 129
Request property, 56

@Page directive, 18–19
AutoEventWireup attribute, 25
Codebehind attribute, 31
Inherits attribute, 31
Language attribute, 31

PageIndexChanged event, 216, 218
Page_Init method, 25, 28, 32, 116
Page_Load code, 76
Page_Load method, 26, 28, 33, 50, 61, 67, 75, 88,

116, 140, 144, 153, 167
PageOne.aspx file, 212, 213, 215
Page.Request.Url.GetLeftPart(UriPartial)

method, 56
pages

buttons, 34
cache, 411
control creation, 25
derived from base class page, 208–211
if(IsPostBack) section, 154
processing on server, 21–29
submitting to server, 51–55
unloaded from memory, 26–27
view state, 26

PageSize property, 216
page subclassing, 207–211
PageTwo.aspx file, 212, 213, 215
Page.Unload event, 263
Page_Validators array, 121
Page View state, 155
paging, 215–224
Panel.aspx file, 81
Panel control, 81–84
panels, 81–84
parameterized queries, 168
parameterized SQL statement, 153
Parameters collection, 154
PartCategory class, 330, 331
PartCategory object, 255
PartCategory type, 331
Part object, 275
PartSearch.asmx.cs, 320–321
PartSearch class, 320
PartSearch.cs file, 329
PartSearch() method, 332
PartSearch project, 320

PartSearch proxy class, 330
PartSearch.wsdl file, 329
PartSelect page, 275–279
Passport Authentication Service, 353–354
passwords

anonymous access, 334–335
Basic authentication, 336–338
Digest authentication, 338

Password text box, 67
<%@ %> tag, 19
<%#%> tags, 46
perfmon, performance counters, 414–415
performance counters, 414–417
Persistant Cookie, 189–192
Person class, 317
Phone class, 317
pop-up window error messages, 124
postback, 44–46
PreRender event, 27
Product class, 317
Products class, 316
Profile page, 279–282
programming, event-driven, 8–9
Programming ADO.NET (Hundhausen

and Borg), 135
programs, true object-oriented, 5–6
projects

Debug version, 35
Release version, 35
Web Reference, 328–332

Properties window, 34
Property Builder applet, 113
proxy classes, 324–327, 329–332
public Web site, 47

Q
QueryString collection, 193–194, 272, 275
query strings, 193–194, 195

R
RadioButton.aspx file, 69–70
RadioButton control, 69–70
RadioButtonList control, 81
radio buttons, 81
RangeValidator control, 126
RatedShipments property, UPSRates class, 372
Read() method, 135, 158, 176
RecordsAffected property, 159
Recordset object, 135–136
redirection, 187–189
redirect method, 188
References node, 30
Regex regular expression, 123
#region block, 32
regular expression validation, 122–123
RegularExpressionValidator control, 122–123
Remove Event Handler -=syntax, 24
RepeatColumns, 231
Repeater control, 94
RepeatLayout, 231

Index 427

Request.HttpCookies collection, 192
RequiredFieldValidator control, 119
resources, linking to, 63–64
Response object, 184–189
ResponseStatusCode property, UPSRates

class, 372
ResponseStatusDescription property, UPSRates

class, 372
rethrow, 133
rich-client caller, 303–320
Rollback() method, 260, 261
RowFilter property, 144
rows, 87, 142
Rows collection, 142, 156

S
SaveComputerProduct method, 314
scope, 201–7
Scr attribute, 213
<script> block, 16
secured orders.aspx page, forms authentication,

351–353
security

anonymous access, 334–335
ASP.NET authentication, 340–354
Basic authentication, 336–338
client impersonation, 340–341
Digest authentication, 338
Integrated authentication, 338–339
Microsoft’s Passport Authentication Service,

353–354
Windows authentication types, 336–340

SelectCommand event, 231
SelectCommand property, 140, 142, 144
SelectedIndexChanged event, 70, 76,

108, 269, 270
SelectedIndex event, 271
SelectedItemStyle subelement, 112
SelectedItemTemplate UI, 232
<select> element, 45, 46, 70, 72, 75
SendMail.aspx, 287
ServerChange event, 115
ServerClick event, 115, 117
Server Controls, 7, 43
servers

buffering output, 184
calling functions, 3
posting back pages to, 44–46
processing page, 21–29
store session variables, 203
submitting page to, 51–55

server-side controls, 7–8
server-side validation, 128
ServerValidate event, 128
Service1.asmx, 300–301
Service1.asmx.cs, 301, 302
Session Cookie, 189–192
Session_End event, 202
session events, 202
session management, 201–7

sessions
initialization pertaining to user, 202
store data across multiple page requests, 202–6
times out, 202

Session_Start event, 30, 202
Session state, 154–155, 157, 203, 205, 267, 272,

398–400
session variables, 202–6, 288
ShipFromPostalCode property, UPSRates

class, 372
shipping rates

freight calculations, 372–382
HttpWebRequest class, 378
ratings service request, 372–374
ratings service response, 374–375
UPSRates class, 372–382

ShipToPostalCode property, UPS tools, 372
Shopper.Add() method, 258, 267
Shopper.Checkout method, 291
Shopper.IsComplete property, 290
Shopper object, 255–257, 278

CheckOut() method, 258–261
Shopper.Save method, 281
Shopper table, 249, 255–257
shopping cart, 255–257
ShoppingCartItem object, 257, 261, 278, 286
ShoppingCart property, 257
Shopping_Cart table, 250
ShowErrorPage method, 265
single implementation inheritance, 10
SingleLine text box, 67
SmtpMail class, 387
SOAP (Simple Object Access Protocol), 2, 296,

298, 316
SOAPAction parameter, 308
SOAP call, 307–8
sockets, 184–185
Solution Explorer, 30, 35, 328, 329
sorting, 220–224
SourceColumn property, 154
Source Editor, 31
sp_AddShopper stored procedure, 255–256
span.aspx Web Form, 116
 element, 48–49, 77, 116, 118, 120
SqlAdapter.Fill() method, 142
SqlAdapter object, 142
SqlClient managed provider, 137, 139
SqlClient namespace, 252
SqlCommand class, 160, 176
SqlCommand object, 141, 142, 255, 257
SqlConnection.BeginTransaction() method, 260
SqlConnection class, 181, 252–254
SqlConnection object, 141
SqlConnection parameter, 176
SqlDataAdapter class, 139, 140, 144
SqlDataReader class, 135, 137, 158–181,

160, 176, 227, 271
SqlDataReader.GetDateTime() method, 176
SQLException class, 132
SQLException exception, 257

428 Index

SqlException exception, 139, 167
SQL Server, 137, 139
SQL Server 2000 database engine, 137
SQL Server database, 135, 137
SQL Server database engine, 137
SQL Server managed provider, 140–141
SQL Server manager provider, 135
SQL statements, number of records affected

by, 159
SqlTransaction object, 260, 261
stored procedures, 168
StoredProcedure type, 140
string class, 62
string data, 206–7
String.Format method, 225
strings

array of, 311–312
class-scoped array, 219
returned from Web services, 303–311

stub event handlers, 200
Submit button, 35
submit() method, 45
Substring() method, 62
System.Configuration.ConfigurationSettings

class, 196
System.Data.CommandType enumeration, 140
System.Data.IdbConnection interface, 137
System.Data namespace, 135, 137, 141, 144
System.Data.OleDb namespace, 135, 142
System.Data.OleDb.OleDbConnection class, 137
System.Data.SqlClient namespace, 135, 141
System.Data.SqlClient.SqlConnection class, 137
System.Diagnostics namespace, 209–210
System.Drawing class, 300
System.EventHandler type delegate, 24
System.IO.Directory class, 56
System.IO namespace, 60
System.Type object, 322
System.Web.dll assembly, 21
System.Web namespace, 20, 22
System.Web.Services.Protocols.SoapHttpClient-

Protocol class, 325
System.Web.Services.WebService class, 301, 305
System.Web.UI.Control class, 47, 212
System.Web UI namespace, 22
System.Web.UI.Page class, 21–29, 22, 31, 32, 208,

261, 263
System.Web.UI.TemplateControl class, 22
System.Web.UI.UserControl class, 212
System.Web.UI.WebControls namespace,

20, 22, 47
System.Xml.Serialization namespace, 316

T
TableCell, 84–94
TableCellButton.aspx file, 89–90
TableCellHyperlink.aspc file, 88
TableCellMyButton.aspx file, 90–93
TableCellTableRow.aspx file, 85–86

Table control, 84–94
TableDirect type, 140
<table> element, 77, 80, 83
TableRow, 84–94
tables, 84–94, 142

cells, 87
clear rows, 157
columns, 142
controls added dynamically, 94
custom button, 90
data view, 94–114
drag and drop, 86
dynamic creation, 85–86
enhancing, 87
formatting, 89
hard-coding ordinal numbers, 159–160
null columns, 160
one-at-a-time view, 135
paging, 215–224
return of all rows, 157
row creation, 157
row deletion, 155–156
rows, 87, 142
schema, 156
sorting, 220–224
user-defined rows, 228–237
visible text, 87

Tables collection, 142
TagName attribute, 213
TagPrefix attribute, 213
<td> element, 83
TemplateColumn class, 113–114, 144
text and Label control, 48
<textarea> element, 65
TextBox.aspx file, 66
TextBox control, 65–68, 286
TextBoxes control, 279
TextChanged event, 65, 66, 67
TextChanged event handlers, 67
Text type, 140
throw, 132
throw keyword, 133
ToArray() method, 322
Toolbox window, 34
ToString() method, 72, 159, 176, 208, 270, 330, 331
Tracemode property, 397
tracing, debugging, 394–398
<tr> element, 78, 79
true object-oriented programs, 5–6
try blocks, 132

U
UDDI (Universal Description, Discovery, and

Integration) standard, 309
unhandled exception, 133
Unload event, 26–27, 263
UpdateCommand property, 140, 144, 153, 154, 288
Update() method, 140, 156, 157, 257
UpdateQuantityByID() method, 257

Index 429

UPDATE statement, 159
UpLevel browser, 47

Panel control, 81–83
 element, 49

UPSAddressValidation.aspx page, 386
UPSAddressValidator class, 382–386
UPSRates class, 372–377
UPS tools

Access Key, 371
address validation, 382–386
Developer’s Key, 371
HttpWebRequest class, 378
ratings service request, 372–374
ratings service response, 374–375
shipping rates, 372–382
UPSAddressValidator class, 382–386
UPSRates class, 372–377
UPS server requests, 370
WileyParts project enhancements, 388–391

URLauthorization, 341–342
UrlEncode method, 194
user accounts, anonymous access, 334–335
UserAuth class, 347–348
UserControlCaching.aspx, 406–7
user controls, 211–215, 406–8
user credentials, forms authentication, 346–347
user input validation, 118–140
user interface

online car parts retailer, 264–292
reuse code, 211–215

users, initialization pertaining to, 202
using directives, 22
using statement, 141

V
Validate method, 119, 384–385
validation

checking for required field, 119–120
client-side, 119, 120, 128
comparision of input controls, 126–127
custom, 128–130
minimum and maximum value, 126
regular expressions, 122–123
server-side, 128

ValidationControl.aspx page, 124–125
Validation Controls, 43, 118–119

CompareValidator control, 126–127
CustomValidator control, 128
error messages, 124–125
invalid, 125
looping through, 121
RangeValidator control, 126
RegularExpressionValidator control, 122–123
RequiredFieldValidator control, 119
ValidationSummary control, 124–125

ValidationControls2.aspx file, 126–127, 128–129
ValidationControls.aspx file, 119–120
ValidationControls.aspx page, 126
ValidationSummary control, 124–125

ValidatorCommonOnSubmit function, 121
ValidatorControls.aspx file, 123
ValidatorOnSubmit() function, 120, 121
ValueMember property, 331
values as object types, 157
variable scope, 201–7
VB6 list control, 108
Vehicle object, 254–255, 269
VehicleSelect page, 269–272
Vehicle table, 254–255
verbatim string, 139
View Detail button, 277
View state, 94, 156
ViewState, optimizing, 400–403
__VIEWSTATE element, 18
ViewState object, 275
ViewState variables, 206–7
Visual Basic, 4–5
Visual Studio .NET, 1, 4

default project name, 29
Hello World, 29–38
helper windows, 33
Property Builder applet, 113
Web services, 300–303

W
WebApplication1 project, 29
Web applications

object-oriented design, 5–6
speed, 135

WebConfig file, 196–201
Web.Config file, 30

<appsettings> section, 263
authentication security, 340–346
hierarchical nature of, 196–197
optimization, 398–400
sessionState section, 203

WebControl base class, 50, 63–64
Web Control class, 47
WebControl class, 65, 68, 81, 124
Web Form, 31

user controls within, 212
WebForm1.aspx.cs file, 31, 34, 37–38
WebForm1.aspx file, 31, 36–37
WebForm1 class, 32
Web Form designer, 31, 33
WebMethod attribute, 301–2, 305, 322
Web methods, 329–330
Web pages

end of request for, 201
images, 56–62
MultiLine text box, 67
navigation, 193–196
parameter transfer between, 193–196
Password text box, 67
request for, 201
SingleLine text box, 67
text entry, 65–68

Web Reference projects, 328–332

430 Index

Web Reference Proxy object, 312
Web Server Controls, 43, 47–48

adding, 14–15
Button control, 51–55
CheckBox control, 68–69
CheckBoxList control, 77–80
DataGrid control, 94–114
DropDownList control, 70–74
HyperLink control, 63–64
ImageButton control, 62
Image control, 56–62
Label control, 48–51
LinkButton control, 55–56
ListBox control, 75–76
Panel control, 81–84
RadioButton control, 69–70
RadioButtonList control, 81
TableCell, 84–94
Table control, 84–94
TableRow, 84–94
TextBox control, 65–68

Web servers, allow upload of file to, 319
WebService directive, 301
Web services, 2–3

advertising, 30
allow upload of file to Web server, 319
array of strings, 311–312
asynchronous calls to, 310
behavior, 301–2
consuming, 324–332
creation of, 303–320
directory of, 309
discovery file, 30
returning object and array of objects, 312–315
returning string, 303–311
stop and start, 198
usage, 308
Visual Studio .NET, 300–303
XML as default format, 2
XmlInclude attribute, 316–318

Web sites
feature rich, 3
page navigation, 193–196
public, 47
UPS, 371

WebUIValidation.js file, 120, 121
Wiley.ASPNET.HelloWorldCB class, 20

Wiley.ASPNET namespace, 19, 20, 22
WileyConnection object, 252–254, 260
WileyControlBaseClass class, 264
WileyError page, 264–268
WileyObject class, 251–252, 331
WileyPageBaseClass class, 270
WileyPageBaseClass object, 262–264
WileyParts.Database namespace, 320
WileyPartsObjects.dll file, 327
WileyParts.Objects namespace, 320
WileyParts project, UPS services, 388–391
WileyPartsServices project, 300
Wiley Parts Web services, 320–323
Win32 Interop classes, 7
win2000.gif image, 62
windows applications, 20
Windows authentication

ASP.NET implementation, 342–343
types, 336–340

Windows OS, native access to, 6–7
WinForms forms, 310–312
WinFormWebServiceClient project, 328–332
World Wide Web Consortium Web site,

194, 308
wrapper classes, 309–310
WriteCookie function, 208
WriteFile method, 186
WriteToLog method, 251
WSDL (Web Service Definition Language),

308, 316
WSDL.exe tool, 324–327
Wsdl program, 308, 317

X
XML (Extensible Markup Language), 2, 135
XmlDocument class, 362–365
XmlInclude attribute, 316–318
XmlTextReader class, 359–363
XmlTextWriter class, 356–359
XML tools

DataSet, 366–370
XmlDocument class, 362–365
XmlTextReader class, 359–363
XmlTextWriter class, 356–359

XML Web services, 295–297
operation of, 298
uses for, 298–300

	sample.pdf
	sterling.com
	Welcome to Sterling Software

