
In thIs book you’ll learn

how to take best advantage of the built-in semantics of XhtMl
and htMl

how to extend the semantics of htMl using microformats and open
up a world of new possibilities with web applications

every aspect of all the common microformats currently in use

how microformats help your websites and applications easily integrate
with web applications like Google Maps, as well as desktop applications
like iCal, outlook, and entourage

What innovative publishers and services, big and small, are doing right
now with microformats

M
IC

r
o

fo
r
M

a
ts

this print for reference only—size & color not accurate spine = 0.859" 368 page count

Allsopp

us $34.99
Mac/PC compatible

www.friendsofed.com
http://microformatique.com/

ISBN-13: 978-1-59059-814-6
ISBN-10: 1-59059-814-8

9 781590 598146

53499

SHELVING CATEGORY
1. WEb dEVELOpmENT

John allsoPP

use rich semantics in your markup
to make it machine-readable as well
as human-readable

Make your websites “mashup-ready”
for a new generation of web
applications

understand this fast-growing
technology through real-world
examples, case studies, tools,
and much more

mMicroformats burst onto the scene a couple of years ago and are fast
becoming an essential tool for all professional web designers and developers.
Imagine being able to integrate all of your web-based contact details,
tagged articles, and geographical information seamlessly in web and desktop
applications, without having to add anything extra to your websites except a
little specialized htMl markup.

Microformats provide a more formalized technology for adding commonly
used semantics (such as contact details, location, and reviews) to today’s Web.
unlike XMl or the semantic Web, microformats use ubiquitous technologies
like htMl and XhtMl, existing developer skills, and current web tools, and,
perhaps most important, they work in all of today’s web browsers.

this book is a comprehensive guide to microformats. It explores why, in
bill Gates’s words, “We need microformats”; how microformats work; and the
kinds of problems microformats help solve. the book covers every current
microformat, with complete details of the syntax, semantics, and uses of
each, along with real-world examples and a comprehensive survey of the
tools available for working with them. the book also features case studies
detailing how major web content publishers such as yahoo put microformats
to work in their web applications.

Written by one of the Web’s best-known educators, John allsopp,
Microformats: Empowering Your Markup for Web 2.0 will help you painlessly
get up to speed with this exciting technology. empowering your Markup for Web 2.0

Also Available

Microformats: Empowering
Your Markup for Web 2.0

John Allsopp

8148FM.qxp 2/28/07 6:11 PM Page i

Microformats: Empowering Your Markup
for Web 2.0

Copyright © 2007 by John Allsopp

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059814-6

ISBN-10 (pbk): 1-59059-814-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com
in the Downloads section.

Microformats logo used with kind permission of microformats.org.

Credits

Lead Editor:
Chris Mills

Technical Reviewer:
Brian Suda

Editorial Board:
Steve Anglin, Ewan Buckingham, Gary Cornell,

Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie,

Jeff Pepper, Paul Sarknas, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager:
Beth Christmas

Copy Edit Manager:
Nicole Flores

Assistant Production Director:
Kari Brooks-Copony

Production Editor:
Laura Cheu

Compositor:
Lynn L’Heureux

Artist:
April Milne

Proofreader:
Nancy Sixsmith

Indexer:
Toma Mulligan

Interior and Cover Designer:
Kurt Krames

Manufacturing Director:
Tom Debolski

8148FM.qxp 2/28/07 6:11 PM Page ii

For Sara and ZK.

8148FM.qxp 2/28/07 6:11 PM Page iii

8148FM.qxp 2/28/07 6:11 PM Page iv

CONTENTS AT A GLANCE

PART ONE: INTRODUCING MICROFORMATS . 1

Chapter 1: What Are Microformats? . 3

Chapter 2: The State of the Art in Microformats 15

PART TWO: USING MICROFORMATS . 25

Chapter 3: Structural and Semantic HTML . 27

Chapter 4: Link-Based Microformats: rel-license, rel-tag,
rel-nofollow, and VoteLinks. 51

Chapter 5: Microformat to Describe Relationships
Between People: XFN . 77

Chapter 6: Location Microformats: geo and adr 93

Chapter 7: Contact Information Microformat: hCard 125

Chapter 8: Event Microformat: hCalendar. 163

Chapter 9: Review and Resume Microformats: hReview
and hResume . 199

Chapter 10: Syndicated Content Microformat: hAtom 225

8148FM.qxp 2/28/07 6:11 PM Page v

PART THREE: CASE STUDIES . 237

Chapter 11: Case Study: Cork’d . 239

Chapter 12: Case Study: Yahoo . 253

PART FOUR: DEVELOPING MICROFORMATS 271

Chapter 13: The Process of Developing Microformats 273

PART FIVE: APPENDIXES . 283

Appendix A: Microformat Specification Reference 285

Appendix B: Microformat Design Patterns . 315

Appendix C: People, Tools, Services, and Publishers 323

Index . 330

CONTENTS AT A GLANCE

vi

8148FM.qxp 2/28/07 6:11 PM Page vi

CONTENTS

PART ONE: INTRODUCING MICROFORMATS . 1

Chapter 1: What Are Microformats? . 3

Too much (disparate) information. 4
Reviews on the Web today. 4
The not-yet-semantic Web. 5

Microformats overview . 6
Origin . 6
Definition . 7
Principles . 7
Microformats example . 8

Benefits of microformats . 10
Summary . 12

Chapter 2: The State of the Art in Microformats 15

The future of browsers . 17
Tools to help publish microformatted content . 19

Online creators . 19
Dreamweaver . 19
Blogging tools and content management systems . 19

Publishers using microformats . 20
Yahoo. 20
Cork’d . 21
Eventful . 21
Online magazines . 21
Apple . 22
edgeio . 22

8148FM.qxp 2/28/07 6:11 PM Page vii

Services using microformats . 22
Technorati . 22
Pingerati . 23
Alexa . 23

Summary . 23

PART TWO: USING MICROFORMATS . 25

Chapter 3: Structural and Semantic HTML . 27

The bad old days of HTML . 28
HTML isn’t a presentational markup language . 30

Uncovering the deprecated aspects of HTML . 30
Validating an HTML document . 31

Tables are bad—m’kay?. 34
HTML is a structural and semantic markup language 36

Document structure . 38
Headings and paragraphs. 39
Lists . 39
Beyond the <p> tag. 41

Citations, quotations, and more . 41
XHTML compounds. 42
divs, spans, classes, and ids . 44

The limits of HTML: Why we need microformats . 47
Summary . 48

Chapter 4: Link-Based Microformats: rel-license, rel-tag,
rel-nofollow, and VoteLinks. 51

The rel and rev attributes . 52
The rel-license microformat . 53

Creating a Creative Commons license. 53
Using rel-license . 55
Enabling decentralized services with rel-license . 57
Styling rel-license content with CSS . 58

The rel-tag microformat . 61
Using rel-tag . 62
rel-tag vs. the meta element . 64
Benefits of using rel-tag: Technorati tags . 64
Tools for tagging . 65
Styling rel-tag content with CSS . 66

The rel-nofollow and VoteLinks microformats . 68
rel-nofollow . 68
VoteLinks. 69

Using VoteLinks . 70
Benefits of using VoteLinks . 70
Styling VoteLinks content with CSS . 71

Summary . 74

CONTENTS

viii

8148FM.qxp 2/28/07 6:11 PM Page viii

27d0a0f23f58db367d7de33f07c424c3

Chapter 5: Microformat to Describe Relationships
Between People: XFN . 77

XFN overview . 78
XFN relationships . 80
XFN in action. 82

Tools . 82
WordPress . 82
Bloxsom . 83
Moveable Type . 83
XFN Creator . 83
Existing pages . 84

Search engines, services, and applications . 84
Making connections. 85

Styling XFN content with CSS. 87
Summary . 89

Chapter 6: Location Microformats: geo and adr 93

Location microformats overview . 94
The geo microformat . 95

Using geo . 99
Getting location data . 101

Google Maps. 101
Multimap. 102
Yahoo Maps . 103
Getting geo data with an address . 104
The abbr design pattern . 105

Benefits of using geo . 106
Styling geo content with CSS . 109

The adr microformat. 111
Using adr . 111

Hand-coding adr content . 111
Tools for coding adr. 112

Benefits of using adr. 114
Styling adr content with CSS . 115

Using the border-radius property . 116
Using background images . 118

Summary . 123

Chapter 7: Contact Information Microformat: hCard 125

hCard overview . 126
Using hCard. 128

Names of people. 129
URLs. 132
Date of birth . 133
Photos . 135

CONTENTS

ix

8148FM.qxp 2/28/07 6:11 PM Page ix

Organizations. 136
hCard for a person at an organization . 136
hCard for an organization . 137

Addresses . 138
Places . 139
Telephone numbers . 140
Email addresses . 141
Representing new interweb technologies with hCard 142

Tools for working with hCard . 143
Web-based tools/extensions for harvesting hCards 143

Tails Export extension . 143
X2V . 144

Tools for creating hCards . 146
Publishing . 146
Libraries . 147
Aggregators and indexers. 148

Services publishing with hCard . 148
Styling hCard content with CSS . 150
Summary . 160

Chapter 8: Event Microformat: hCalendar. 163

hCalendar overview . 164
Using hCalendar . 166

Simple events . 167
Adding location information . 171
Adding contacts . 173
Adding start and end times . 174
Marking up a complete event in hCalendar . 176
Other iCalendar properties . 179

hCalendar and tables . 180
Axis, scope, and headers in HTML tables . 183

Axis of good . 188
Downloading your calendar. 189

Tools for authoring hCalendars . 191
Benefits of using hCalendar . 191

Technorati Microformats search engine . 192
X2V . 192
Life Lint parser . 192

Publishers using hCalendar . 192
Upcoming . 193
Meetup and Eventful . 195
Last.fm . 196
World Cup KickOff. 196

Summary . 197

CONTENTS

x

8148FM.qxp 2/28/07 6:11 PM Page x

Chapter 9: Review and Resume Microformats: hReview
and hResume . 199

hReview . 200
The hReview schema . 201

The root element . 201
version . 201
summary . 201
type . 202
item. 203
reviewer . 205
dtreviewed . 205
ratings . 206
description . 208
tags . 208
permalink . 209
license . 209

Publishing tools . 211
Services using hReview . 211

hResume . 212
The hResume schema . 212

The root element . 212
The summary property . 212
Contact details. 213
Education . 214
Experience . 216
Skills . 218
Affiliations . 220
Publications . 221

hResume tools and services. 221
Styling hReview and hResume content with CSS . 222
Summary . 222

Chapter 10: Syndicated Content Microformat: hAtom 225

Web-based subscription services . 226
hAtom overview . 227
Using hAtom . 227

Summaries . 230
Permalinks . 230
Categories . 231

Services using hAtom . 233
Publishing. 233
Processing . 234

Summary . 235

CONTENTS

xi

8148FM.qxp 2/28/07 6:11 PM Page xi

PART THREE: CASE STUDIES . 237

Chapter 11: Case Study: Cork’d . 239

Introducing Dan Cederholm. 240
Introducing Cork’d . 241

hCard on Cork’d . 245
hReview on Cork’d. 247
The hReview CSS . 249

Summary . 250

Chapter 12: Case Study: Yahoo . 253

Introducing Nate Koechley . 254
Upcoming . 256

hCalendar on Upcoming . 256
Definition lists . 260

Reviews at Yahoo Local . 261
Review example . 261
Styling Yahoo Local reviews . 264

hReviews at Yahoo Tech . 264
Review example . 264
Styling Yahoo Tech reviews . 268

Is it worth it? . 268
Summary . 269

PART FOUR: DEVELOPING MICROFORMATS 271

Chapter 13: The Process of Developing Microformats 273

Microformat principles revisited . 274
Determining the problem . 275
Researching (or “paving the cowpaths”) . 276

Reusing others’ work . 277
Starting from scratch . 277

Documenting the process . 278
Examples page . 278
Notes page . 278
Page for documenting existing formats and schemas 279
Brainstorming page . 279

Developing a draft schema . 280
Summary . 281

CONTENTS

xii

8148FM.qxp 2/28/07 6:11 PM Page xii

PART FIVE: APPENDIXES . 283

Appendix A: Microformat Specification Reference 285

rel-license . 286
Usage . 286
Examples . 286
Tools . 287
Services . 287

rel-tag . 287
Usage . 288
Examples . 288
Tools . 288
Services . 289
Publishers . 289

rel-nofollow. 289
Usage . 290
Example. 290
Tools . 290
Services . 290

VoteLinks . 291
Usage . 291
Examples . 291
Tools and services . 291

XHTML Friends Network (XFN) . 292
Usage . 292
Examples . 293
Tools . 293
Services . 293

geo. 294
Usage . 294
Examples . 294
Tools . 294
Services . 295

adr . 295
Usage . 295
Example. 296
Tools . 296
Services . 296

hCard . 296
Usage . 296
Examples . 298
Tools . 299
Services . 299

CONTENTS

xiii

8148FM.qxp 2/28/07 6:11 PM Page xiii

hCalendar . 300
Usage . 300

Required properties of events . 300
Common optional properties of events . 300

Example. 301
Tools . 302
Services . 302

hReview . 302
Usage . 303

Required properties . 303
Optional properties . 303

Example . 304
Tools . 305
Services . 305

hResume . 306
Usage . 306

Required property. 306
Optional properties . 306

Example. 307
Tools . 309
Services . 310

hAtom . 310
Usage . 310

Schema . 310
Required properties . 311
Optional properties . 311

Example. 312
Tools . 313
Services . 313

Appendix B Microformat Design Patterns . 315

The abbr design pattern . 316
Usage . 316
Examples . 316

The class design pattern . 317
Usage . 317
Examples . 317

The datetime design pattern . 318
The include pattern . 318

Usage . 318
Examples . 318

The rel design pattern . 319
Usage . 319
Example. 319

Attribute conventions . 319

CONTENTS

xiv

8148FM.qxp 2/28/07 6:11 PM Page xiv

Appendix C: People, Tools, Services, and Publishers 323

People . 324
Tools . 325
Services . 327
Publishers . 327
Related organizations . 328

Index . 330

CONTENTS

xv

8148FM.qxp 2/28/07 6:11 PM Page xv

8148FM.qxp 2/28/07 6:11 PM Page xvi

ABOUT THE AUTHOR

John Allsopp (www.johnfallsopp.com) is a software developer and
long-standing web development speaker, writer, evangelist, and
self-proclaimed expert. Since 1993 he has been working with and
developing for the Web. He is the head developer of the leading
cross-platform CSS development tool Style Master, developer and
publisher of Westciv’s (www.westciv.com) renowned training
courses and learning resources on CSS and standards-based
development, and author of the highly regarded article, “A Dao of
Web Design” (as well as dozens of other articles). He is also one of
the founders of the Web Directions conference series (www.
webdirections.org) and a very early member of the Web
Standards Project.

When not bathed in the glow of various computer screens, John is a volunteer surf lifesaver
at Bondi Beach, one of Australia’s most famous beaches. A longtime Bondi resident, he now
lives at the southern edge of Sydney, between the ocean and the world’s second oldest
national park, with his wife and young daughter.

8148FM.qxp 2/28/07 6:11 PM Page xvii

8148FM.qxp 2/28/07 6:11 PM Page xviii

ABOUT THE TECHNICAL REVIEWER

Brian Suda is an informatician currently residing in Reykjavík, Iceland. He has spent a good
portion of each day connected to the Internet after discovering it back in 1996. He has a
bachelor’s degree in computer science from Saint Louis University and a master’s degree in
informatics from the University of Edinburgh, Scotland. One of his many projects has been to
work closely with microformats.org, writing code, gardening the wiki, and hammering out
FAQs and specifications. As an invited expert for the W3C’s GRDDL specification, he helped
to extract RDF data for the Semantic Web through the use of microformats.

Suda’s own little patch of Internet can be found at http://suda.co.uk, where many of his
past projects, publications, interviews, and crazy ideas can be found.

8148FM.qxp 2/28/07 6:11 PM Page xix

8148FM.qxp 2/28/07 6:11 PM Page xx

INTRODUCTION

Microformats, an evolutionary approach to adding richer semantics to HTML-based markup,
have rapidly been gaining adoption among web publishers and service developers, large and
small, over the last two or three years.

Unlike almost every other approach to adding more sophisticated semantics to the Web,
such as XML, RDF, and the Semantic Web, microformats don’t require developers to learn
whole new technologies, throw away their existing code bases, or wait years for browser
developers to catch up and actually implement support for the technology. Microformats
simply use features of HTML that have been around for years and are familiar to most web
developers, though sometimes in original and subtle ways. If you hand-code HTML or
XHTML, and you know about the class attribute, then that’s all you’ll need to get started. (In
fact, you don’t even need to be familiar with the HTML class attribute.) Aside from this, no
particular knowledge is assumed; ideas like “semantic HTML,” where important, are intro-
duced and covered in detail in this book.

Like the Web, this book is platform-agnostic. Whether you work on the Mac, Windows, Linux,
or any other operating system, the examples and concepts presented will be relevant and
correct. All the HTML and CSS covered here are completely standard and based on the
World Wide Web Consortium’s (W3C’s) various “recommendations.” Where relevant, some
browser-specific information is provided—for example, where particular CSS features are or
are not supported by given browsers. Specific content management systems (CMSs) and
blogging tools, such as WordPress, Textpattern, and Drupal, are discussed, but typically
briefly and in the context of their support for publishing microformatted content more eas-
ily. For coding examples you might wish to work through, any HTML, text, or (where rele-
vant) CSS editor will work fine. (Although you might like to try out Style Master for CSS, as I
develop it —this is the last reference to Style Master, I promise!)

The only thing you may need to obtain is a copy of Firefox 2. Some very interesting tools
you’ll look at throughout the book are extensions to Firefox. This extensions mechanism,
which allows anyone with JavaScript skills to add functionality to Firefox, makes it a kind of
test bed for experimenting with new browser functionality. You can get a copy of Firefox
from www.mozilla.com.

8148FM.qxp 2/28/07 6:11 PM Page xxi

The book has its own site, which is a section of my microformats-focused blog, Microfor-
matique. The book’s section, where you can find all the code examples for downloading,
additional downloads, and more, is here: http://microformatique.com/book.

Thanks for checking out the book—I hope it delivers what you want it to.

Whenever I speak or publish, I try to make myself as available to people as possible. Should
you wish to get in touch with me regarding anything in the book or related subjects, simply
email me at john@westciv.com.

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ä Submenu ä Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: å.

This is a very, very long section of code that should be written all å

on the same line without a break.

Ahem, don’t say I didn’t warn you.

CONTENTS

xxii

8148FM.qxp 2/28/07 6:11 PM Page xxii

PART ONE INTRODUCING
MICROFORMATS

In this first part of the book, we’ll examine what microformats are, their origins, the
motivation for their development, the principles underpinning their development, and
why you should be starting to use them in your web development projects. We’ll also
survey the current state of the art, and look at which publishers, services, and tools
currently use or support microformats. But first, let’s begin at the beginning with the
simple question, What exactly are microformats?

8148Ch01.qxp 2/28/07 5:49 PM Page 1

8148Ch01.qxp 2/28/07 5:49 PM Page 2

1 WHAT ARE MICROFORMATS?

8148Ch01.qxp 2/28/07 5:49 PM Page 3

If you’ve been developing for the Web for any period of time, you’ll have seen new con-
cepts and technologies come (and many of them go) thick and fast. Some, like Cascading
Style Sheets (CSS), stick and change the way the Web works. Others, like Scalable Vector
Graphics (SVG), may or may not have this same impact—only time will tell. Still others sim-
ply fade away, never living up to their initial promise.

The challenge for professional developers is to work out which new technologies are worth
the time and effort it takes to get up to speed with them, and which should be ignored.
Keeping up with trends and developments is something professionals must do, all the while
being careful not to waste valuable energy on technologies doomed to obsolescence.

One new technology in web development, microformats, represents a way of developing
for the Web that will be both novel and familiar to most experienced web developers. Yes,
microformats are a recent technology and, as such, investing a lot of time or effort in
understanding them may seem something of a risk. But it’s a risk many very experienced
web publishers, software developers, and service developers are taking. When major com-
panies like Yahoo and Microsoft, innovators like Technorati, and web pioneers and experts
embrace a technology, you can rest assured something more than hype is involved.

By the end of this chapter, you’ll understand what microformats are, what they do, and
how they do it. You’ll consider the principles they are built on and what motivated their
development in the first place. We’ll begin with the most important questions facing any
new technology: Why should you bother learning to use it? What problems does it solve?
After we explore these questions, I hope you’ll then have a good idea about why it’s worth
continuing to the end of the book and, even better, you’ll have a burning desire to do so.

Too much (disparate) information
At the time of this writing (late 2006), Google alone has indexed more than 20 billion
items on the Web, with the vast majority of these items being HTML documents. To put
this in perspective, if we were to print all these items out and stack them on top of one
another, assuming just one standard-sized page per indexed item, we’d quickly get bored.
It’s an impressive amount of information, but what exactly can we do with it? Well, we can
search to find items that match specific keywords, and then read them, just as we have
been doing for well over a decade. But surely this pile of pages nearly 12,500 miles high—
this extraordinary number of ideas, facts, opinions, and words—make up a collective body
of knowledge that we can Enquire Within Upon Everything?

Let’s put this issue in perspective by looking at the state of reviews on the Web today as an
example, and the challenges of aggregating this type of information.

Reviews on the Web today

For instance, let’s turn to the really pressing matters of our times. Does the movie
Superman Returns suck? Do bloggers, on the whole, like the new U2 album? Where is a
great pizza restaurant in downtown San Francisco near where I am staying for a couple of
nights? Do people agree with Joe Clark’s analysis of WCAG2? What do people think about

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

4

8148Ch01.qxp 2/28/07 5:49 PM Page 4

the U.S. government’s policy toward North Korea? There may be dozens, hundreds, thou-
sands, or even millions of pages that have reviews of or opinions about any of the topics
just mentioned. And yes, we can search to find these individual reviews. But how can we
access the collective opinion of all of these sites? Traditionally, the only way to gauge the
opinion of the masses (what James Surowiecki calls “the wisdom of crowds”) has been to
visit sites like Amazon (www.amazon.com), Zagat (www.zagat.com), or The Internet Movie
Database (IMDb; www.imdb.com), which enable people to offer their opinions and aggre-
gate them, or perhaps to read the comments section of a very popular blog to get an
informal sense of what some people feel about issues like WCAG2 or North Korea.

But there are definite drawbacks to this centralized approach. On top of this method
being highly inaccurate, sites like Amazon, Zagat, and IMDb typically require reviewers to
hand over the rights to their opinions, and these sites may even retain the right to edit or
delete comments for whatever reason. Users also typically need to create an account and
hand over personal details, like their e-mail addresses, in order to comment. Many people
are quite rightly reluctant to hand over such details and submit their opinions on those
terms (or indeed on any terms), preferring to publish their thoughts on their own site or
blog, a MySpace page, or elsewhere.

So, if there is so much collective wisdom (OK, at the very least, collective opinion) out
there, why doesn’t someone simply aggregate all these book reviews, restaurant reviews,
and film reviews, and build a distributed equivalent of, say, Amazon, Zagat, or IMDb
reviews? In fact, why aren’t Amazon, Zagat, and IMDb doing it themselves?

The following section attempts to explain why it’s not really happening. Yet.

The not-yet-semantic Web

The following are some examples of reviews you might find on the Web. If you looked at
the code behind the following items, you might think they were very different animals, but
underneath it all, they are all movie reviews of one kind or another:

July 20 2006: I went to see the latest Woody Allen film today. It was pretty good. I’d
give it a thumb and a half up :-)

Title: Pirates of the Caribbean 2; Director: Gore Verbinski; Rating: 8 out of 10

Man, the CGI in superman roxor, but the film suxor

Even if you don’t speak l33t or know who Ebert and Roeper are, I bet you have a pretty
good idea about what film each reviewer saw, and what he or she thought about it. But as
you might guess, software finds it very difficult to read and understand even straightfor-
ward language and concepts, let alone idiomatic expressions and incomplete information.

To put this idea in other words, people are really good at gleaning meaning, or semantics,
from written language, and software is really, really bad at it. To put it bluntly, people are
smart and software is dumb.

Take just this one simple issue: ratings. Are three stars good or bad? If I give a film a rating
of 10, does that mean the film is worth seeing or should be avoided? Now, any review con-
tains similar information—what is being reviewed, whether the reviewer liked it or not,

WHAT ARE MICROFORMATS?

5

1

8148Ch01.qxp 2/28/07 5:49 PM Page 5

perhaps why the reviewer liked or disliked it, when the review was written, and so forth—
but what is missing is some standardized way for us to mark up our web content to help
software recognize a review when it encounters one, and help move the Web beyond the
current index/search/read paradigm that we are largely currently stuck in.

In technical terms, we need a way of creating richer semantics in our web pages that does-
n’t break existing web content or current web browsers, and that builds on the set of skills
developers already have, rather than requiring them to learn a whole new skill set.

Essentially, we aren’t looking for something brand new; rather, we want a better way of
doing the things web developers and content publishers already do all the time. Publishing
reviews is just one example of this, and throughout the book you’ll see a variety of other
examples.

Enter microformats, an important, increasingly popular approach to solving the problems
just mentioned.

Microformats overview
Microformats are more than simply a technology like CSS or XHTML—they are an
approach to solving the important problem of creating rich semantic markup for today’s
Web. They include specific technologies (or specifications), which we’ll devote most of our
attention to throughout this book. But before we do that, let’s take a look at the origin,
definition, and principles of microformats. We’ll then look at an example that illustrates
the principles and ideas behind microformats.

Origin

The custodians of microformats are the people behind microformats.org, a community
consisting of microformats pioneers, but freely open to participation of anyone with an
interest in the subject. One of the founders and principal drivers of microformats is Tantek
Çelik, about whose involvement in the Web at Apple, Microsoft, and now Technorati, as
well as with the World Wide Web Consortium (W3C), a book could probably be written in
itself. Other important early contributors are Kevin Marks and Ryan King, who also work at
Technorati (an important contributor to and adopter of microformats technologies); well-
known CSS and web development expert Eric Meyer; WordPress founder Matthew
Mullenweg; and Brian Suda, who, in addition to being the coauthor of several microfor-
mats specifications, is the technical editor of this book.

Many others have made significant contributions to various microformats, or have made a
difference by adopting microformats. You’ll be introduced to a number of these people in
this book, and hear why they adopted microformats and the benefits using microformats
have brought them.

Legend has it that microformats originated at the very popular interactive technology con-
ference South by Southwest (SxSW) in 2004, with what became the XHTML Friends
Network (XFN), which we’ll look at in detail in Chapter 5. At that time, as blogging was

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

6

8148Ch01.qxp 2/28/07 5:49 PM Page 6

really beginning to take off, bloggers began annotating their blogrolls in various ways to
indicate their relationships with the bloggers whose blogs they read. XFN was developed as
a way to add these richer semantics in a more standardized way, and it spread rapidly
through the technology blogosphere. It was the success of XFN that paved the way for fur-
ther microformats innovation.

Definition

Microformats are, in the words of microformats.org,

Designed for humans first and machines second, microformats are a set of simple, open
data formats built upon existing and widely adopted standards. Instead of throwing away
what works today, microformats intend to solve simpler problems first by adapting to cur-
rent behaviors and usage patterns (e.g., XHTML, blogging).

Or, more succinctly,

. . . a set of simple open data format standards that many are actively developing and
implementing for more/better structured blogging and web microcontent publishing in
general.

You’ll delve into some microformats examples in great detail throughout the book, includ-
ing the following:

hCard: For marking up contact information for people or organizations

hCalendar: For marking up information about events such as seminars, confer-
ences, meetings, concerts, and parties

XFN: For marking up the relationships between people (e.g., who has met whom,
who is friends with whom, who is a colleague of whom)

hReview: To help solve the reviews on the Web problem previously discussed

Principles

Underpinning every microformat is a set of principles that help to guide the outcome of
developing new microformats. As you work through the practical aspects of microformats
and specific microformats, you’ll see these principles in action. Microformats

Solve a specific problem

Start as simply as possible

Are designed for humans first, machines second

Reuse building blocks from widely adopted standards

Are modular and embeddable

Enable and encourage decentralized development, content, and services

Let’s take a look at a simple practical example to help bring this discussion together.

WHAT ARE MICROFORMATS?

7

1

8148Ch01.qxp 2/28/07 5:49 PM Page 7

Microformats example

If someone’s address or contact information is presented on a web page, we can usually
work this out from just glancing at the page (or doing a quick search of it), because as we
know, people are smart. But because computers aren’t smart (sorry, laptop, you are many
things, but sadly smart is not one of them), it’s much harder for them to do this. One of the
microformats principles from the previous section is solve a specific problem. The specific
problem just identified is that we lack a common format for marking up addresses/contact
information in web pages, something that must appear on millions of web pages, at least.

To solve this problem the microformats way, we want to start as simply as possible, and we
want to reuse building blocks from widely adopted standards. Unfortunately, there doesn’t
happen to be a widely adopted standard for marking up addresses in X/HTML, so can we
find one elsewhere?

It may come as something of a surprise to those who work with the Web to know that the
World Wide Web Consortium, or W3C, is not the only source of widely adopted standards
for the Web and, in particular, the Internet. Another common source of standards is the
Internet Engineering Task Force (IETF). If you’ve ever seen a reference to a Request for
Comment or a specific RFC, then IETF is very likely its source. An RFC is in effect a stan-
dard. One commonly used IETF standard, which you’ve almost certainly used even if you
didn’t know it, is vCard (RFC 2426). A great many applications use or support the vCard
format for storing contact details, among them Outlook, Apple’s Address Book applica-
tion, and Evolution, the popular Linux contact information management application.

Because it’s widely adopted, vCard is an ideal candidate for solving our problem of finding
a standard on which to base a microformat for addresses. vCard allows us to mark up all
kinds of contact information beyond simply an address, so if we want to start as simply as
possible, we find there is a subset of vCard specifically for addresses called adr. Adr allows
us to mark up the following address information:

post-office-box

extended-address

street-address

locality

region

postal-code

country-name

Yes, you with your hand up at the back. HTML does have an <address> element,
so why not use that, I hear you ask. This is where we have to pay careful attention
to the HTML specification. On close reading, we find that for whatever reason, the
<address> element is for the contact information of the author of the page—so
it doesn’t fit the bill for a more general standard for marking up addresses.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

8

8148Ch01.qxp 2/28/07 5:49 PM Page 8

The adr subset would appear to be an ideal solution to our problem of how to best mark
up addresses on the Web.

Let’s recap the process. We identified a problem: the need to mark up address information
semantically. We identified that HTML itself does not have the appropriate elements or
attributes to do this, so we looked elsewhere for existing formats and schemas to help us
solve the problem. We recognize that the IETF standard vCard (in fact, a subset of vCard:
adr) provides exactly the format we need, and now we want to adopt it for HTML to fully
solve our problem.

So, as web developers, how can we use adr? We examine how adr and many other micro-
formats work later in the book, including how and why we translate the “properties” of
vCard into particular HTML constructs (elements like <div> and , and attributes like
class, title, etc.), but for now, let’s take a look at what our finished adr microformat
might look like in code:

<div class="adr">
<abbr class="type" title="dom">U.S.</abbr>
home address, for
<abbr class="type" title="postal">mail</abbr> and
<abbr class="type" title="parcel">shipments</abbr>:
<div class="street-address">123 Main Street</div>
Any Town,
CA
91921-1234

</div>

You can see a couple of other microformats principles in action here. As clean semantic
HTML, it’s designed for humans [well, at least web developers] first, machines second.
Compare the preceding HTML with the following vCard equivalent:

ADR;TYPE=dom,home,postal,parcel:;;123
Main Street;Any Town;CA;91921-1234;

That’s a little more compact, but it’s clearly designed for machines first.

This is where the microformat really wins out: the code is far more human-readable. If you
render it in a browser, even with no style sheet, you have a fully readable address, as
shown in Figure 1-1.

Figure 1-1. Microformats are easily human-readable when rendered in a browser.

You can also see that this HTML is both modular and embeddable. You could validly and easily
put this code on any web page, and as you’ll see a little later in the book, the adr microformat

WHAT ARE MICROFORMATS?

9

1

8148Ch01.qxp 2/28/07 5:49 PM Page 9

is part of the more complex hCard microformat, and it could, of course, be used with other
microformats where addresses might be needed (e.g., in restaurant reviews).

We’ll now move on to look at the last of the microformats principles, enable and encour-
age decentralized development, content, and services, because that’s where I think micro-
formats get really exciting. Let’s consider how adr might do this.

Imagine trying to build a directory of cinemas, bookstores, butchers—indeed, any direc-
tory of businesses—by searching the Web for address information. Software recognition
of addresses is a surprisingly hard problem to solve, but if addresses were marked up using
adr, it would be much, much easier. If you throw in telephone numbers (and, as you’ll see
a little later, the vCard microformat has telephone numbers as well as adr-based address
information), you can start imagining a distributed Yellow Pages or White Pages, where you
publish and update your own details at your own site, and aggregators routinely check
pages for changes, and then update their indexes of addresses and other contact details.
No more centralized system required for registering and updating information.

And it’s just a little step from there to the ideas discussed at the beginning of the chapter:
distributed film, book, and restaurant reviews; distributed bookmarking services similar to
del.icio.us; and even decentralized classified ads. In fact, some of these products and serv-
ices are already in development with the help of microformats, and we’ll discuss them
later in the book.

The core microformats principles of solving real, existing problems; starting simply; build-
ing on existing standards; being embeddable and modular; and enabling decentralized
development, content, and services recur throughout the book. If you grasp these princi-
ples—the underlying philosophies of microformats—then the technology itself will make
a lot of sense to you, and the various ways you can use microformats will jump out at you.
You’ll start seeing opportunities for working with microformats everywhere.

Benefits of microformats
You might be thinking, “I’m a web developer, and I get by fine without microformats. Why
should I bother learning something new? I’ve only just gotten the hang of CSS, I need to
get up to speed with Ajax, and my manager says we must be Web 2.0–compliant as soon
as possible. I’m too busy as it is!”

If you go back a few years, you would have heard exactly the same thing said about CSS
(trust me, I did). But it is important to remember that the Web is a relatively new technol-
ogy and medium, and it is still evolving. Fortunately, microformats are deliberately evolu-
tionary, unlike the radically new Semantic Web or even CSS, which require new tools, new
browsers, and new developer skills. Microformats build on the existing skills of web devel-
opers, because they are just valid, semantic HTML or XHTML. They work with existing
tools, and they work in existing browsers. They are just a more structured, more semantic
way of using HTML. And structured, semantic HTML is definitely a trend that has been
growing for the last few years. Increasingly, developers have been using lists for navigation
and other places where lists are appropriate, using heading elements for the headings in

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

10

8148Ch01.qxp 2/28/07 5:49 PM Page 10

their content, and using CSS rather than presentational HTML such as font elements or
tables for layouts. Microformats just take this trend forward another step.

As a bottom-line value proposition, here’s what you can get out of using microformats
right now, in practical terms:

By providing a standardized way of marking up content that developers are already
marking up in many different ways, microformats help us code more efficiently and
it becomes easier to maintain code.

By making commonly published data available in standard formats, microformats
help enable distributed software services such as aggregation and indexing, which
would otherwise be extremely difficult or unfeasible to implement.

By using existing schemas where possible, microformats enable seamless interoper-
ability between web-based content and desktop applications, such as Outlook and
iCal for calendaring information, or Evolution, Address Book, and many others for
vCard.

But perhaps the best way to convince yourself of the value of learning to use microformats
is to consider what people are saying and, more important, doing with microformats already.

For example, in March 2006, during the keynote at Microsoft MIX06, none other than Bill
Gates said, “We need microformats and to get people to agree on them. It is going to
bootstrap exchanging data on the Web . . . we need them for things like contact cards,
events, directions.”

Whatever you might think about William H. Gates III, there is little doubt that if something
crosses his radar, and he takes enough notice to mention it explicitly at such a high-profile
event, then it is worth investigating further.

Staying with Microsoft for just a moment, Ray Ozzie, legendary developer of Lotus Notes
and now Chief Technology Officer at Microsoft, wrote the following in his blog (http://
rayozzie.spaces.live.com/Blog/cns!FB3017FBB9B2E142!377.entry): “Microformats are
ideal for representing structured data in HTML; we use them extensively in our demos.”

To have such significant, influential members of our industry recognizing and indeed using
microformats should underscore just how much potential they have to become very
important very quickly.

You can watch the keynote just mentioned if you like, via the
magic of YouTube: www.youtube.com/watch?v=Z9X-vHJ_Z-I.

WHAT ARE MICROFORMATS?

11

1

8148Ch01.qxp 2/28/07 5:49 PM Page 11

Summary
This chapter introduced the core concepts, principles, and philosophies behind microfor-
mats. You saw a sampling of the kinds of practical, current problems they are designed to
solve, and how they set about solving these problems without breaking existing browsers,
tools, and markup, and without developers needing to learn whole new technologies, as
required with CSS and XML.

In the next chapter, you’ll take a look at how microformats are being used today by some
of the biggest names on the Web. After that, you’ll be ready to jump in and start working
with microformats.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

12

8148Ch01.qxp 2/28/07 5:49 PM Page 12

8148Ch01.qxp 2/28/07 5:49 PM Page 13

8148Ch02.qxp 2/28/07 5:50 PM Page 14

2 THE STATE OF THE ART
IN MICROFORMATS

8148Ch02.qxp 2/28/07 5:50 PM Page 15

New technologies often face a “chicken or egg” moment. No matter how much promise a
technology has, it must be adopted and word of mouth about it must spread, or it will sim-
ply fade away, much like “push” technologies and Smell-O-Vision.

Let’s take the example of the fax machine. By itself, a fax machine is pretty useless. You
need a “network effect” of other adopters. The more fax machines there are, the more
useful every single one becomes.

A more topical example is Microsoft’s new Zune (currently on sale for less than a week as
I write this). The feature Microsoft hopes will offer a killer alternative to the iPod is its wifi-
based “squirting,” which allows you to transfer a song to another Zune user. One challenge
Zune faces is that to start with, there aren’t that many Zunes out there, making the feature
less useful than if Zunes were as ubiquitous as mobile phones. But Microsoft’s strategic
decision to allow a song to be transferred from one Zune to another only once (this sec-
ond Zune cannot then transfer the song on) bafflingly hobbles the network effect required
to make the feature’s use reach a tipping point and become a must-have social technology.

We forget that the Web was once like this, too. The early 1990s saw a great deal more Gopher
content, newsgroup content, mailing list content, and content available in “walled garden”
networks like CompuServe and AOL, not to mention thousands of dial-up bulletin boards,
than was then on the Web. Developing web-based content was consequently a risk—maybe
it would be better to develop content to be delivered by one of these other channels.
Developing browsers, publishing tools, search engines, and other web-based services was also
a risk—maybe all the content would end up elsewhere, and the effort developing these serv-
ices be wasted, and opportunities would be lost developing for other services.

Web pioneers like David Filo and Jerry Yang (who started Yahoo as simply a list of sites they
were interested in, kind of like del.icio.us with just two users), or Marc Andreesen (who
was, along with Eric Bina, the developer of Mosaic, and whose incorporation of inline
images into a web browser is widely credited with the explosion of interest in the Web,
and who went on to found Netscape Communications with Bina) are some of those early
adopters, who benefited rather significantly from taking the risk on the Web.

In the case of microformats, as a content developer you might fairly ask, “If there are no
services that take advantage of microformatted data, why should I use microformats?”
Service and software developers might similarly ask, “If there is no microformatted data,
why should I develop services in the hope that there might one day be that data available?”

Well, maybe Smell-O-Vision wasn’t such a promising idea, but it was indeed an actual,
used invention—go look it up (http://en.wikipedia.org/wiki/Smell-o-vision).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

16

8148Ch02.qxp 2/28/07 5:50 PM Page 16

This chapter aims to demonstrate that these fears are no longer as well founded as they
might have been even a year ago, when you might have argued that microformats were a
great idea, yet to be proven. Today, all manner of publishers, publishing and content devel-
opment tools, and online services are supporting microformats, from big, well-known
names like Yahoo to innovative startups like Cork’d. To get some inspiration before we ven-
ture into the nitty-gritty of the technology, let’s take a look at some of what’s going on in
the microformats world.

The future of browsers
Imagine if publishers could mark up contact details in a way that browsers knew they were
there and could display them to users. What if when you visited a television program list-
ing site or a movie listing site, your browser could find all the program times or showing
times, and present them to you? What if you could simply subscribe to these listings with
a single click?

Right now, if the page is marked up using the hCard microformat for contact detail, and
you use Firefox with an extension called Tails Export installed, you can call up a list of the
contacts on that page or the list of events published in the hCalendar microformat, as
shown in Figure 2-1.

Figure 2-1. Calling up a list of hCard contacts on a web page using the Tails Export Firefox extension

The left pane shows all of the events on the page, and on the right is the page itself. It’s a
great example of how browsers will very likely make the microformatted metadata in a
page visible, should users wish to see it. We’ll take a deeper look at Tails Export and the
closely related Tails extension for Firefox in Chapters 7 and 8.

THE STATE OF THE ART IN MICROFORMATS

17

2

8148Ch02.qxp 2/28/07 5:50 PM Page 17

But it’s not just about viewing the data. Microformats make web-based data much more
interoperable with other applications. If you use the Mac OS X iCal application, or the
open source Sunbird calendaring application from the Mozilla foundation (or indeed any
software that supports the iCalendar format), and a page has its event details marked up
using the hCalendar microformat, then using either X2V or Technorati Events Feed Service,
both of which you’ll explore in detail in Chapters 7 and 8, you can subscribe to any web
page of events, and iCal or Sunbird will remain synchronized if the events on the page
change or are updated.

While as yet these aren’t mainstream use cases, indications are that upcoming versions of
widely used browsers such as Internet Explorer and Firefox 3 will include built-in support
for microformats.

Internet Explorer platform architect (and long-time Internet Explorer, and prior to that
Mosaic developer) Chris Wilson has, along with others at Microsoft (all the way to the top:
Ray Ozzie and Bill Gates himself), shown considerable interest in microformats. Speculation
is strong that future versions of Internet Explorer will have native support for viewing
microformats. In a similar vein, Alex Faaborg, user experience designer on Firefox 3, has
been considering how structured data and specifically microformatted content might be
supported directly inside browsers. Faaborg concludes, “it is time for Web browsers to pro-
vide the user with a clean, consistent, and simplistic user interface”1 for structured content
generally, and specifically microformats.

And released literally as this chapter was being finalized is Operator by IBM’s Michael Kaply.
Another Firefox extension (the ability to extend Firefox in this way really does make it a test
bed for future browser functionality), Operator gives users a toolbar of actions that they
can easily perform on the microformatted content in a page, as shown in Figure 2-2.

Figure 2-2. The Operator Firefox extension in action

For example, this is the toolbar generated when a user visits a page with one hCard (the
microformat for contact details), one hCalendar (for events), one location marked up with
the GEO microformat, and eight tags (marked up using rel-tag). Operator presents the
user with a number of options for each kind of content. Users can add contacts to their
desktop address book application or online address books such as Yahoo contacts. I pre-
dict that the Operator extension is a lot like what future native support for microformats
will look like in browsers.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

18

1. See http://blog.mozilla.com/faaborg/author/afaaborg@mozilla.com/feed.

8148Ch02.qxp 2/28/07 5:50 PM Page 18

Tools to help publish microformatted content
As you’ll see throughout the book, microformats are usually very easy to hand-code using
nothing more than a text editor. That said, there is already a high degree of support for
developing and publishing microformatted content in new and existing development and
publishing tools, as outlined in the sections that follow.

Online creators

The Microformats community has developed a number of creators for hCard, hCalendar,
and hReview. These provide a simple way to start publishing microformatted content and
are available from the following URLs:

http://microformats.org/code/hcard/creator

http://microformats.org/code/hcalendar/creator

http://microformats.org/code/hreview/creator

Dreamweaver

The Web Standards Project, via Drew McLellans’s Dreamweaver Microformats toolbar,
makes developing with microformats as easy as filling in a form for Dreamweaver users.
Visit www.webstandards.org/action/dwtf/microformats for more information.

Blogging tools and content management systems

Because of the open way in which many blogging tools and content management systems
(CMSs) are developed, and their extensible nature via plug-ins, there is significant support
for microformats publishing with systems such as WordPress (which even has built-in sup-
port for some microformats) and Texpattern, while there is strong interest from other sim-
ilar projects, like Drupal, in supporting microformat publishing. The Structured Blogging
project (http://structuredblogging.org) has plug-ins for both WordPress and Movable
Type to help publish microformatted content such as reviews, contact details, and events.

This book covers solutions for specific platforms and particular microformats, when indi-
vidual microformats are covered in detail.

THE STATE OF THE ART IN MICROFORMATS

19

2

8148Ch02.qxp 2/28/07 5:50 PM Page 19

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

20

Publishers using microformats
Perhaps the most exciting and vibrant aspect of microformats right now is the variety and
number of publishers using them to publish all kinds of information. This section presents
just a few of those publishers and examples of their microformats usage.

Yahoo

Let’s start with Yahoo, one of the most widely used, widely recognized sites on the Web.
Over the last couple of years, Yahoo has been demonstrating considerable innovation and
community-mindedness when it comes to its development strategies. Yahoo Developer
Network (http://developer.yahoo.com) is the focal point for Yahoo’s interaction with
web developers, and it includes the Yahoo Design Pattern Library (http://developer.
yahoo.com/ypatterns), an open and growing set of design patterns for web user inter-
faces. While these design patterns are not directly related to microformats, the concepts
are in many ways similar.

One measure of Yahoo’s innovative spirit is their broad adoption of microformats. Later in
the book, we’ll devote some time to an in-depth look at some of the company’s efforts,
but for now, let’s quickly overview how microformats are in use across the family of Yahoo
sites.

Two of Yahoo’s review-focused sites, Yahoo Local (http://local.yahoo.com) and Yahoo
Tech (http://tech.yahoo.com), use the hReview format for publishing reviews. They also
use the hCard format for reviewer details and, in the case of Yahoo Local, for contact
details for the businesses being reviewed.

The increasingly popular Flickr photo sharing service (http://flickr.com), which is a Yahoo
company, uses microformats in a couple of ways. On its profile page for a user, details are pub-
lished using hCard. Flickr also recently added geotagging—that is, the ability to say where a
photo was taken using longitude and latitude. This information (and there are currently mil-
lions of photos that have been geotagged in this way) is published using the GEO microformat.

Recent Yahoo acquisition Upcoming (http://upcoming.org), a site for publishing and
tracking events, uses the hCalendar format for publishing event details. As you’ll see later
in this book, use of this microformat makes it possible to easily subscribe to all the events
in an area or all events that have been given a specific tag by other Upcoming users, such
as “design,” using iCal or Sunbird.

We’ll revisit these Yahoo sites in Chapter 12, where we focus on how Yahoo uses microfor-
mats on quite a number of its sites.

8148Ch02.qxp 2/28/07 5:50 PM Page 20

Cork’d

Yahoo isn’t the only one using microfor-
mats—they’ve been adopted by a range
of innovative publishers and developers.
Cork’d (http://corkd.com), brainchild of
noted web designer and developer Dan
Cederholm and Hivelogic’s Dan Benjamin,
is a site for wine lovers (from amateur to
expert) to review wine and for anyone to
get wine recommendations and reviews.
We’ll revisit Cork’d in depth later, as it’s a
great example of how small teams and
startup sites can benefit from microfor-
mats as much as the big guys. Cork’d uses
the hReview format for reviews, hCard for
marking up reviewers names, and XFN for
marking up the relationships between
reviewers (you can find and mark up
members of Cork’d who are your friends,
colleagues, etc.).

Figure 2-3 shows the X-ray power of Tails
in action on Cork’d—lurking beneath the
lovely design is well-structured, semantic,
microformatted content.

Eventful

Eventful (http://eventful.com) is in many ways similar to Upcoming: it’s a way of broad-
casting events you are organizing, or keeping track of and discovering events that are com-
ing up. Eventful uses hCalendar for events (not surprisingly), hCard for event addresses,
and geotagging for event locations.

Online magazines

Digital Web magazine (www.digital-web.com), the venerable online publication for web
designers and developers, publishes a calendar of upcoming web-related events in
hCalendar. Vitamin magazine (www.thinkvitamin.com), another design- and development-
focused online publication, as well as the UK division of Ziff Davis technology publications
(www.zdnet.co.uk) use hCard for contact details.

THE STATE OF THE ART IN MICROFORMATS

21

2

Figure 2-3. Using the Tails extension to reveal
microformatted content on Cork’d

8148Ch02.qxp 2/28/07 5:50 PM Page 21

Apple

Often—in fact, typically—microformats are used for public-facing information, but that’s
not necessarily how they have to be used. Apple’s .Mac online mail application
(www.apple.com/dotmac) is one use of microformats you’ll see only if you have an account
with them. On top of being chock-full with Ajaxie goodness, users’ address book details
are in fact marked up using hCard.

edgeio

One last example we’ll take a look at for now is in some ways quite different from the oth-
ers we’ve seen, and it embodies one of the key promises of microformats: enabling
“decentralized development, content, services.” edgeio (www.edgeio.com), a recent
entrant in the online classifieds world, aggregates and publishes classified listings from all
over the Web. edgeio uses the hListing draft microformat to publish, and it also aggregates
listings posted in hListing format. For example, if you post a listing in this format on your
blog, and then let edgeio know about it using a form on its front page, they’ll aggregate
and publish your listing.

Services using microformats
Over time, the distinction between publishers and services will in many cases become hazy.
After all, is edgeio a publisher or a service? For that matter, is a search engine a publisher
or service? Depending on how you use a search engine, it can be both (a bit like light can
be both a wave and a particle, depending how you look at it. Well, nothing like that except
by analogy). For now, though, let’s keep the distinction, and look at some of the services
using microformats in the sections that follow.

Technorati

A name you’ll encounter often in this book, Technorati (http://technorati.com), whose
employees Tantek Çelik, Ryan King, and Kevin Marks all play significant roles in the micro-
formats community, has several services associated with microformats.

The most widely used Technorati service is no doubt its tag search, which uses author-
defined tags (using the rel-tag microformat) instead of keywords to find content on the
Web.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

22

8148Ch02.qxp 2/28/07 5:50 PM Page 22

The Technorati Events Feed Service (http://technorati.com/events) allows you to
download or subscribe to online events marked up using the hCalendar format. Similarly,
the Technorati Contacts Feed Service (http://technorati.com/contacts) allows users to
grab contact details marked up using hCard on any page, and add them to any address
book application that supports the (almost universally supported) vCard format.

At the Technorati Kitchen (http://kitchen.technorati.com/search), you can find a
search engine specifically for microformatted content. With this tool, users can search for
contact details, events, or reviews marked up using the appropriate microformat.

Pingerati

You’ve seen a number of times that a significant goal of microformats is to enable “decen-
tralized development, content, services.” Aggregating and indexing is difficult and expen-
sive, and yet it’s absolutely vital for decentralized services. One service that provides big
shortcuts to this process is Pingerati (a second such service, Alexa, is discussed next).

Websites and applications can “ping” (i.e., inform) the Pingerati service (http://
pingerati.net) about new or changed content containing microformats. Some of the pub-
lishers discussed previously, like edgeio, Eventful, Upcoming, and Yahoo Tech, send pings to
Pingerati when they have new or updated microformatted content. Even more important,
services can automatically receive notification of new and changed content. Technorati and
Eventful are two such services at present, but any service can do this.

Alexa

Alexa, a subsidiary of Amazon, is a search engine that opens its index to developers as a
search platform. Most people will probably have heard of Alexa via its traffic rankings, or
the Alexa Toolbar, but the fact that developers can use Alexa’s data to build search appli-
cations opens significant opportunities for interesting, “vertical” search engines.

One such example is an hCard search engine (www.alexa.com/site/devcorner/
samples?page=hcard) that looks through Alexa’s index for hCard-formatted information.
While it’s not yet a production-level tool, it demonstrates the kind of vertical, microformat-
based search service that Alexa could enable.

Summary
The examples presented in this chapter do not represent an exhaustive list of what big and
small publishers, service providers, and tool developers are doing with microformats, but they
do serve to show the breadth of adoption of a technology still in many ways in its infancy.
Throughout the book, you’ll explore these companies, sites, and examples in more detail.

THE STATE OF THE ART IN MICROFORMATS

23

2

8148Ch02.qxp 2/28/07 5:50 PM Page 23

In many ways, this really is the perfect time to begin adopting microformats, if you’ve not
yet done so. Others have taken the early adopter risks and demonstrated the technical
feasibility and business cases for using microformats, and they are not yet ubiquitous.
There are still opportunities for novel uses and for novel services based on microformats.

Now it’s time to get practical and sharpen your semantic HTML skills (you’ll use them time
and again throughout the book) in the next chapter. After that, you’ll dive headlong into
microformats.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

24

8148Ch02.qxp 2/28/07 5:50 PM Page 24

PART TWO USING MICROFORMATS

The first part of the book covered the concepts, philosophies, and principles associated
with microformats. We looked at some of the problems microformats help solve and
some of the interesting, powerful uses they are being put to by publishers (big and
small), aggregators, indexers, and other web services developers. Hopefully now you
want to join their ranks.

In this part of the book, you’ll get your hands dirty. You’ll begin by looking at the foun-
dations underpinning all microformats: the correct, structural, and semantic use of
HTML and XHTML. You’ll then examine the main microformats in turn and learn what
problems they were designed to solve, how they work, and how you can integrate them
into your web development more fully—through web services that may work with a
particular microformat, or through the use of CSS to style microformatted content.

8148Ch03.qxp 2/28/07 5:51 PM Page 25

8148Ch03.qxp 2/28/07 5:51 PM Page 26

3 STRUCTURAL AND SEMANTIC HTML

8148Ch03.qxp 2/28/07 5:51 PM Page 27

The history of HTML is convoluted. HTML began life as a simple, structural, semantic
markup language for publishing scientific documents. As the popularity of the Web grew,
more and more presentational aspects (elements like and attributes like bgcolor)
were added by browser developers (I’m looking at you, Netscape; what were you thinking
with <blink>?), until HTML morphed into a mishmash of ad hoc “innovations” that strayed
far from the original intent of its developer, Tim Berners-Lee.

In this chapter, you’ll see how the damage done to HTML has been reversed over the last
decade or so, through the standardization process of the W3C. You’ll also gain an under-
standing of what semantic HTML really means, and you’ll learn how to use HTML and
XHTML as they were intended and designed. Because microformats explicitly build on the
semantic foundations of HTML, it’s essential that you have an understanding of semantic
HTML; without this understanding, microformats will make little sense. In the process,
you’ll examine what HTML isn’t and is, cover bad practices that you need to shy away from,
and see examples of correctly marked-up HTML. Finally, you’ll explore the limitations of
HTML that led to microformats being developed in the first place.

The bad old days of HTML
Chances are that whether you started developing for the Web months or years ago, at
some point you’ve done something like this:

<h1>This is a heading</h1>

I admit it: I have. In fact, I guarantee that even Eric Meyer has probably done something
like this at some point. Don't believe me? Let’s ask him, shall we? (See Figure 3-1.)

OK, so Mr. Meyer is being a bit coy.

Or perhaps you’ve done something like this:

this is very important

Chances are good that you know you shouldn’t do this, but maybe you aren’t really sure
why.

Even if you have been developing HTML for years by hand, do take the time to read
this chapter. The ideas and themes considered here will recur throughout the remain-
der of the book.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

28

8148Ch03.qxp 2/28/07 5:51 PM Page 28

Figure 3-1. Even Eric Meyer isn’t completely absolved!

Web developers used to do these sorts of things because before CSS, if we wanted to add
style to web pages, we had no other choice. There was no other way to style web pages.

Now, what you might not know (unless you are really old like me) is that there was a time
when there was no element. Introduced by Netscape Navigator, with considerable
controversy, the element was not part of the original HTML language. This original
HTML was purely a structural markup language, not the presentational markup language it
slowly became from about 1993 onward with the addition of presentational elements like
 and attributes like bgcolor.

Many people would consider (and a good number even argued so at the time) the whole
sidetrack into presentational markup to be a mistake. Indeed, the last decade, beginning
with the introduction of CSS in 1996, then the strict version of HTML 4.0, and finally
XHTML 1.1 (which no longer permits presentational markup in valid HTML documents),
has seen the long, painful process of putting this genie back into its bottle. But like all
genies, it won’t go quietly.

The key to modern web development is understanding that HTML is for marking up con-
tent structurally, not describing the presentation of pages. Microformats build on top of
the correct, structural, and semantic use of HTML, so using microformats to their full
potential depends on understanding how HTML should properly be used.

STRUCTURAL AND SEMANTIC HTML

29

3

8148Ch03.qxp 2/28/07 5:51 PM Page 29

HTML isn’t a presentational markup language

Sometimes it's easier to start with what is going wrong. I’ve already said it, but just for
emphasis:

HTML is not a presentational markup language.

The best use of HTML—the appropriate, current use of HTML—is for structural and
semantic markup.

Many people will argue that you can write valid XHTML using the element, and that
you can use tables for layout with valid XHTML 1.0. So who says HTML is not a presenta-
tional language?

While presentational aspects of HTML are valid HTML 4.01 (in the Transitional doctype)
and even XHTML 1.0 (again, in the Transitional doctype), they are officially deprecated in
these specifications and obsolete in the most recent HTML specification, XHTML 1.1. When
an aspect of a language is deprecated, this indicates that it will be obsolete in a future ver-
sion (and, as we have seen, presentational aspects of HTML are obsolete in XHTML 1.1).

So the W3C says HTML is not a presentational language. That’s who.

Uncovering the deprecated aspects of HTML
In the HTML specifications, nowhere is it explicitly spelled out that “these are the presen-
tational elements and attributes of the language.” However, it is largely a matter of com-
mon sense. If an element (like) or attribute (like bgcolor) clearly exists to bring
style to a page, it is very likely deprecated. You can easily verify this by validating your
pages against a strict doctype, or by looking up the attribute or element in the XHTML 1.0
specification to determine whether it has been deprecated.

For example, if I try to validate a document with the following HTML using the strict ver-
sion of HTML 4.01:

<p>Here is some text</p>

Figure 3-2 shows what the W3C’s HTML validator tells me.

Figure 3-2. The W3C validator lets you know what’s not acceptable in your HTML under the doctype
you are using.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

30

8148Ch03.qxp 2/28/07 5:51 PM Page 30

Validating an HTML document
The first step in validating an HTML document is to ensure that your document declares a
doctype—that is, it states which version of HTML or XHTML it is. In order for an HTML
document to be considered valid, a doctype must be included.

To do this, you add a doctype declaration (DTD) to the top of the HTML file, outside the
<html> element. For example, the following DTD says that the document that follows is
HTML 4.01 Strict:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" å

"http://www.w3.org/TR/html4/strict.dtd">

This DTD says the document is XHTML 1.1:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" å

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Notice that a URL appears in each of these DTDs. The URL is not required, but when a doc-
type doesn’t include it, something special happens in all modern browsers: they draw or
render pages in what’s commonly called quirks mode. In other words, they effectively
emulate how older browsers would render the page. If the doctype includes a URL, the
page is rendered in standards mode or standards-compliant mode, meaning according to
the latest W3C specifications for HTML and CSS.

The reason for this difference is that going back to the time when decent CSS support first
appeared in browsers, generally considered to be Internet Explorer 5 for the Mac in 2000,
if this and later browsers started rendering every web page strictly according to the HTML

Remember, there is no Transitional version of XHTML 1.1.

Ensuring that your HTML is syntactically correct—that is, that it follows all the rules of
the HTML language—can be either extremely complex if you try to do it all “in your
head” or straightforward if you just use a validator.

A validator won’t ensure that your HTML is perfect in terms of using the right element
for the right reason, but it will ensure that you haven’t broken the grammatical rules
of HTML. For example, a validator will ensure that all your start and end tags are bal-
anced correctly (every start tag must have an end tag, and every end tag must have a
start tag); that you don’t break containment rules, such as having block elements
inside inline elements or paragraphs; and that you have the required attributes for
elements, such as the alt attribute for elements, and have not used incorrect
attributes, such as proprietary browser extensions or obsolete attributes.

Choosing a strict doctype to validate against goes a step further, as the validator will
then flag any use of presentational elements like or presentational attributes
like bgcolor.

STRUCTURAL AND SEMANTIC HTML

31

3

8148Ch03.qxp 2/28/07 5:51 PM Page 31

and CSS specifications, many millions of pages on the Web would be broken, because they
had been authored to take advantage of current browser bugs. The assumption behind
rendering documents with a full doctype including the URL in conformance with standards
is that the browser treats these as an assertion that the page is fully standards-compliant,
whereas the absence of a doctype altogether indicates the very real likelihood that the
developer did not design the page with standards compliance in mind. The halfway posi-
tion of allowing developers to include a doctype to allow validation, but leave off the URL
to indicate that the page is designed to render using older, less conformant rendering
models, has been adopted by all contemporary browsers.

The most important thing to take away from this discussion is that pages will often render
quite differently in exactly the same browser, depending on whether you add or leave off
a doctype, or leave in or omit the URL. If you have added a doctype to your pages for the
first time to validate them, and they suddenly appear “broken” when rendered by a
browser, then leave off the URL and all should be fine—your pages will validate, and yet
not break when rendered in older browsers.

Several online validators and many web development applications include a validator, but I
recommend going to the source and using the W3C’s own validator. You’ll find it at http://
validator.w3.org, and there are three ways to use it:

If your page is already online, you can just enter your page’s URL into the validator,
as shown in Figure 3-3.

Figure 3-3. You can enter the URL of a page into the W3C validator to check it.

You can upload your HTML file directly from your hard disk, as shown in Figure 3-4.

Figure 3-4. You can upload a page from your hard disk to the W3C validator.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

32

8148Ch03.qxp 2/28/07 5:51 PM Page 32

You can simply paste your HTML directly into a form field, as shown in Figure 3-5.
Be aware that some browsers may have problems with large HTML documents if
you do this.

Figure 3-5. You can paste code that you want checked directly into the W3C validator.

Whichever method you use, the W3C validator will return the results of checking your
document against the version of HTML declared by your DTD. Figure 3-6 shows what you’ll
hopefully see.

Figure 3-6. Output from the W3C validator when a page has passed its checks

Figure 3-7 shows what you might well see if this is the first time you’ve tried validating
your HTML.

STRUCTURAL AND SEMANTIC HTML

33

3

8148Ch03.qxp 2/28/07 5:51 PM Page 33

Figure 3-7. Output from the W3C validator when a page has failed its checks

I don’t have the space to go into how to use the results, but you should know that the val-
idator will report every error, its line number, the cause of the error, and often even links
to further reading. Don’t despair if you get a lot of errors initially. It’s likely that the same
smallish set of errors is repeated throughout your document, and you can rapidly get the
number of errors down to a reasonable number, and then fully validate your document.

There are a couple of gray areas and apparent exceptions to the rule of thumb that pre-
sentational HTML is deprecated. One regards the use of tables for marking up page layout,
which we’ll turn to in just a moment. Another is that both the bold and italic elements (but
not the underline element) are still valid, nondeprecated parts of HTML. Exactly why this is
the case is perhaps a little too time consuming to explain here, and the topic is not without
some controversy. In keeping with our rule of thumb, though, using or <i> is to be
avoided. Very often the emphasis or strong emphasis element is appropriate
to use here, although in English, the use of italics may indicate not emphasis; rather, it may
indicate the use of a foreign-language word not commonly used in English. For example, if
you were to use the German word “schadenfreude” on your page, you would italicize it to
indicate that it is a borrowed word. schadenfreude would not be an appropri-
ate use of the element, because you are not emphasizing this word. Perhaps schadenfreude would be more appropriate; here, you create a
class to use any time we use a word borrowed from a language other than English.

Tables are bad—m’kay?

The use of tables helps illuminate the difference between structural and presentational
markup. It demonstrates that using HTML properly is not merely about inflexibly following

See my article “The State of the Art in Australian Web Development” for more
information on the common errors I have found on major websites: http://
westciv.com/style_master/house/good_oil/best_practices/index.html.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

34

8148Ch03.qxp 2/28/07 5:51 PM Page 34

a set of rules (such as “tables are bad”), but understanding the philosophy or spirit of cor-
rect markup and using the elements of HTML within that spirit.

Tables are valid HTML 4.01 Strict, XHTML 1.0 Strict, and XHTML 1.1, so you may create a
perfectly valid page that uses 40 nested tables for the layout. But the purpose of tables is
to allow the markup of tabular data. A timetable is a perfect example of what tables in
HTML are designed for.

Figure 3-8 shows an entirely appropriate use of a table in HTML. (This table also has some
sophisticated microformatting, which you’ll learn about in a later chapter.)

Figure 3-8. An acceptable use of an HTML table

Figure 3-9 shows the kind of thing tables are not designed for.

Figure 3-9. This type of layout is not what you use HTML tables for!

STRUCTURAL AND SEMANTIC HTML

35

3

8148Ch03.qxp 2/28/07 5:51 PM Page 35

Almost all the layout at The White House site (www.whitehouse.gov) is done with tables.
Why is this bad? The HTML 4.01 specification states the following (see www.w3.org/TR/
PR-html40-971107/struct/tables.html):

The HTML table model allows authors to arrange data—text, preformatted text, images,
links, forms, form fields, other tables, etc.—into rows and columns of cells.

Tables should not be used purely as a means to layout [sic] document content as this may
present problems when rendering to non-visual media. Additionally, when used with
graphics, these tables may force users to scroll horizontally to view a table designed on a
system with a larger display. To minimize these problems, authors should use style sheets
to control layout rather than tables.

So while using tables for layout is, strictly speaking, valid (i.e., the validator won’t report an
error), it is not good contemporary structural and semantic markup practice.

Now that you have a handle on what HTML is not meant to do, let’s next take a look at
what it is designed for.

HTML is a structural and semantic markup language

One of the most intimidating words for many web developers is “semantics.” Sometimes it
seems that everyone knows what it means, yet it’s not clearly defined anywhere. If you do
a web search for “semantics,” or even “HTML semantics,” you probably won’t find a lot of
help clarifying what it means. This is ironic, because if you turn to a dictionary, you’ll find
that the term is defined as “the study of meanings.”

So, at the risk of being wrong (which has never stopped me in the past!), let me try a work-
ing definition:

Semantic HTML is the use of the most appropriate HTML elements and attributes for the
content we are marking up.

Perhaps the best way of thinking about HTML in this context is to consider the elements
and attributes of HTML as building blocks, or LEGOs, for creating meaningful documents.
HTML provides special-purpose components, some of which all developers will be very
familiar with, such as headings, lists, and paragraphs, and others of which we might have
heard of or even use, but less frequently, such as and . Still others we may
never have heard of, but can be very useful, such as quotations and citations. Then, of
course, there are the elements very few people know about, which show HTML’s origins,
such as <kbd> for marking up keyboard input, <var> for variables, and <samp> for samples.
In the building-block/LEGO analogy, these components are akin to LEGO pieces designed
for specific purposes, such as specially molded heads for people. You could, of course, use
a plain square block for a head, and you could even use a pen to draw a face on the block,
but it’s really not as appropriate as using the piece designed for this job.

In addition to all those specialized pieces, there are generic LEGO pieces that you can use for
all kinds of building—from walls, to aircraft, to trees, to cows. HTML also provides mecha-
nisms for creating our own purpose-built blocks, using the <div> and elements,
along with the class and id attributes. These components can be very useful, and indeed,

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

36

8148Ch03.qxp 2/28/07 5:51 PM Page 36

microformats make extensive use of this aspect of HTML to create rich document semantics.
However, they are often overused, which leads to the condition many of us suffer from when
we begin using HTML in this more “sophisticated” way: the excessive use of classes and divs,
even where not necessary (referred to as classitis and divitis, respectively).

Let’s look at a classic example of classitis, from the CSS Zen Garden of all places. The Zen
Garden HTML was originally designed to be very stylable with CSS, and so class is used
extensively as hooks for CSS. Now, using this as an example might be seen as being critical
of Dave Shea for his code, but if we keep in mind what he was trying to attempt with the
Zen Garden—very stylable HTML at a time when the support for CSS in a lot of browsers
was not fantastic (well, it was mostly rubbish, actually)—I think his choices were entirely
valid. But nonetheless, it shows us what classitis looks like.

<div id="container">
<div id="intro">
<div id="pageHeader">
<h1>css Zen Garden</h1>
<h2>The Beauty of

<acronym title="Cascading Style Sheets">CSS</acronym>
Design</h2>

</div>
<div id="quickSummary">
<p class="p1">

A demonstration of what can be accomplished visually å

through <acronym title="Cascading Style Sheets">CSS å

</acronym>-based design. Select any style sheet from the å

list to load it into this page.

</p>
<p class="p2">

Download the sample <a href="/zengarden-sample.html"å

title="This page's source HTML code, not to be modified."> å

html file and <a href="/zengarden-sample.css"å

title="This page's sample CSS, the file you may modify."> å

css file

</p>
</div>

Unfortunately, too, I think an unintended side effect of the success of the CSS
Zen Garden was that it exposed a lot of developers to one way of using CSS—
with class—and encouraged this rather bad habit. Later in the book, I cover
techniques for reducing reliance on classes using descendent selectors attribute
selectors, and other powerful, still underused CSS features.

STRUCTURAL AND SEMANTIC HTML

37

3

8148Ch03.qxp 2/28/07 5:51 PM Page 37

<div id="preamble">
<h3>The Road to Enlightenment</h3>
<p class="p1">

Littering a dark and dreary road lay the past relics of å

browser-specific tags, incompatible <acronym title= å

"Document Object Model">DOM</acronym>s, and broken å

<acronym title="Cascading Style Sheets">CSS</acronym> å

support.

</p>
<p class="p2">

Today, we must clear the mind of past practices. Web å

enlightenment has been achieved thanks to the tireless å

efforts of folk like the <acronym title="World Wide Web å

Consortium">W3C</acronym>, <acronym title="Web Standards å

Project">WaSP</acronym> and the major browser creators.

</p>
<p class="p3">

The css Zen Garden invites you to relax and meditate on å

the important lessons of the masters. Begin to see with å

clarity. Learn to use the (yet to be) time-honored å

techniques in new and invigorating fashion. Become one å

with the web. å

</p>

</div>
</div>

</div>

As you can see, just about every element in the document has a class or id value!

Document structure
Before worrying all that much about more advanced aspects of HTML, let’s focus on the
fundamentals: document structure. Using paragraphs, lists, headings, and other key build-
ing blocks of HTML appropriately provides our documents with solid structural and
semantic foundations. Without them, adding more sophisticated HTML and microformats
is simply building on sand.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

38

8148Ch03.qxp 2/28/07 5:51 PM Page 38

Headings and paragraphs

Not too long ago, you would often find markup like this on the Web (and sadly, if you look
under the hood of many sites, it persists even today):

<p>What HTML Is</p>

Clearly the contents of the paragraph are meant to be a heading! We should, of course,
simply use the following:

<h1>What HTML is</h1>

That is, we should use the elements provided by HTML in the appropriate way.

Here’s another common problem:

<div class="header">What HTML is</div>

This is an example of classitis, where <div> and elements are used with classes,
instead of the appropriate HTML elements. In many respects, it’s not really any better than
using presentational HTML like the element.

Similarly, you can find developers using headings when they want “big and bold” text, even
for content that isn’t a heading. But the simple lesson is, HTML has headings, so use them
when your content has “a title, subtitle, or topic that stands at the top or beginning, as of
a paragraph, letter, or chapter.”1

Using headings appropriately brings practical benefits. It’s quite probable that search
engines use heading markup to look for more significant content on a page (though
search engine developers keep to themselves just how their search engines work), and we
do know that screen-reader software (i.e., software that reads web pages to its users, who
typically suffer from some kind of visual disability), such as JAWS, uses the headings on a
page to create navigation for its users. It’s a common misconception that screen reader
users simply “listen to” web pages. Just as we know most sighted users will skim content,
looking at significant parts of a page like headings, a screen reader allows its users to do
likewise. If you use HTML appropriately, one of the many benefits is that you help people
listen to your web pages more effectively.

Lists

One of the most flexible and perhaps most underutilized semantic features of HTML is its
various list types. HTML features unordered lists, ordered lists, and definition lists. An
excellent example of the increasing semantic sophistication of web development is the
now quite common use of unordered lists for navigation.

Here’s an example from my own site:

STRUCTURAL AND SEMANTIC HTML

39

3

1. From The American Heritage Dictionary of the English Language (Houghton Mifflin, 2000).

8148Ch03.qxp 2/28/07 5:51 PM Page 39

<ul id="site-sections">
<a href="index.html" id="current-section"

>home
style master
learning
support
downloads
store

Figure 3-10 shows what this list looks like with just a little CSS styling.

Figure 3-10. An elegant navigation menu, created with nothing more than an unordered list and
some CSS

One perhaps not particularly obvious advantage of this
list is that if a reader turns CSS off or uses a text-based
browser, the logic of the document is still immediately
apparent. Figure 3-11 shows the same list with no CSS
applied.

Why is a list appropriate for marking up site navigation?
Well, that’s what navigation is after all: a list of links to
other parts of a site.

Another common and sensible use of lists is for instruc-
tions. Here, an ordered list may make the most sense,
as instructions typically involve steps that must be fol-
lowed in a strict sequence. Here is an example from www.
cacaoweb.net:

Preheat oven to 350 deg F (Gas mark 4 or 180 deg C).
Line a 13 x 9 in (33 x 23 cm) cake tin ... tin.
Melt the butter.
Beat eggs with sugar, and ... butter.
Add chopped nuts.
Bake at 350 degrees until ... minutes.
Cool the cake. Dust with powdered sugar ...

Using lists like this has an advantage similar to the accessibility benefit we saw with head-
ings. Screen readers typically read out the number of items in a list before reading out
each item. So lists provide context for screen reader users, and help them make decisions
about what content to read and what content to skip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

40

Figure 3-11. The unordered
list navigation menu still
makes perfect sense
without CSS.

8148Ch03.qxp 2/28/07 5:51 PM Page 40

Lists such as these might have been marked up using a table, or even with a paragraph and
line breaks, not too long ago. (And indeed lists are marked up in this fashion to this day by
those less enlightened than ourselves.) Using lists appropriately (and using HTML in a
structural, semantic way) makes styling our sites typically much easier than older
approaches, such as using tables or paragraphs with line breaks. We’ll take a look at a
number of simple yet powerful CSS techniques utilizing the nature of well-structured doc-
uments in upcoming chapters.

Beyond the <p> tag

Most of us have learned HTML on the job. Typically, we’ve acquired the skills we needed to
solve problems at hand, and as that wonderful expression goes, “To a man with a hammer,
everything looks like a nail.” Once we learn how to use a particular technique, we’ll often
reuse that technique over and over again, because it “works,” despite there potentially
being something better out there.

In my experience, many web developers acquire a set of HTML skills and reuse these. But
HTML probably has many more features than most of us are familiar with. Let’s delve into
some of the less commonly used but still very useful elements and attributes of HTML, as
many of these will come in handy when you use microformats.

Citations, quotations, and more
At the heart of the Web is the link (or “hyperlink” as it was once called, although somehow
“hyperlink” sounds quaint to me nowadays, a little like the way my grandmother called the
radio a “wireless.” Ironic that “wireless” is a contemporary term once more). And a link is
often a reference to what someone else has said—that is, a citation. When we link to
something we are often citing, and HTML has the underused <cite> element, which
enables us to semantically mark up the reference for what it is, a citation.

Similar to but not to be confused with a citation is a quote. HTML provides not just one,
but two elements for quoting. For short quotes there is the <q> element (an inline ele-
ment), and for longer quotes there is the <blockquote> element (not surprisingly, a block

Yes, you in the back, who pointed out the address element of HTML—this time, you
are right, <p> is in fact an element, not a tag. Well, there are both a <p> element and
a <p> tag, but typically people mean element when they say tag. What? Here’s one for
the pedants among us.

This is an element: <p>This is a paragraph</p>. It has both a start tag <p> and an end
tag </p>. I’ve been referring to <elements> in this book, including the angle brackets to
make them stand out more on the page, even if that is not quite correct, strictly speak-
ing. But at least you notice them better.

Perhaps the most egregious error many of us commonly make along these lines is to
refer to the “alt tag” (don’t be embarrassed if you use that expression—most of us do,
and it’s a hard habit to break). But not only is alt not a tag, it’s not even an element.
It’s an attribute. So just say “alt text,” and that should cover it nicely.

STRUCTURAL AND SEMANTIC HTML

41

3

8148Ch03.qxp 2/28/07 5:51 PM Page 41

element). If you are not quite sure of the difference, I’ll discuss both inline and block ele-
ments in a moment. Of course, when quoting, we often cite the source of our quote, so
citations and quotes naturally go together.

For example, referring to Lincoln’s address at Gettysburg, among the most famous of all
speeches, we could mark it up as follows:

<p>Ironically, <cite>Lincoln's Gettysburg address</cite> through å

its brevity and power proved to contradict itself.å

<q cite="http://en.wikipedia.org/wiki/Gettysberg_address">
The world will little note, nor long remember å

what we say here</q> for indeed the å

world has ever since noted this speech.</p>

If you pay careful attention, you’ll see that the quote element contains a cite attribute,
which points to a source for the quotation, using a URL. For our purposes, only the <q>
and <blockquote> elements can take the cite attribute.

If you burrow even more deeply into HTML, you’ll find other very useful elements and
attributes of HTML you may well not have heard of, but which you’ll soon see microfor-
mats cleverly use to create sophisticated valid HTML constructs.

For example, the <abbr> element indicates “an abbreviated form,” according to the HTML
specification. Obviously, you can use this element to mark up abbreviations like
<abbr>W3C</abbr>, <abbr>WHO</abbr> or <abbr>WIPO</abbr>. WIPO . . . what’s that, you
ask? Well, here you can add a little more HTML, for example, the title attribute (yes, the
title attribute is not just for links) to “provide the full or expanded form of the expres-
sion.” So, you would have <abbr title="World Intellectual Property Organization">
WIPO</abbr> to mark up the abbreviation and its expansion.

Browsers like Firefox and other Mozilla-based browsers, and Opera (but sadly neither
Safari 2.0 nor Internet Explorer 6 or older on Windows), show the contents of the title in a
tooltip. While the HTML specification doesn’t require the title attribute’s value to be dis-
played in a tooltip, it’s still a very helpful feature of those browsers that provide it. We
could use CSS to provide a tooltiplike expansion of the title attribute value when the
mouse hovers over the <abbr> element (at least in Safari, which supports the generated
content aspects of CSS2), but I’ll leave that for you to play around with. Even the just-
released Internet Explorer 7 as well as older versions of Internet Explorer don’t support
this aspect of CSS. We’ll look at generated content in some detail in later chapters.

As you’ll see when you start looking at microformats in detail, the <abbr> element and
title attribute (among other HTML elements and attributes for marking up content) are
very powerful mechanisms for marking up content, and they are used extensively.

XHTML compounds
By now you might be asking, “Why haven’t you covered divs and spans, ids and classes?
These are all-purpose tools for adding semantics to HTML, and I see and use them all the
time.” It’s a fair question, and there is a specific reason why I’ve left off discussing these
commonly used aspects of HTML so far (and, in fact, will for a little while longer). But I’ll
get to them, I promise.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

42

8148Ch03.qxp 2/28/07 5:51 PM Page 42

Tantek Çelik, among others, has proposed that before we simply revert to divs, spans, ids,
and classes, we look first to both existing aspects of HTML and what he calls HTML com-
pounds (by analogy, with chemistry we treat HTML elements like, well, elements, so by
combining them, we get compounds).

An HTML compound is “two or more XHTML Elements used in combination to express
new, perhaps more specific, semantics.”2 Once more, let’s look at a practical example, this
one based on an example by Tantek Çelik. Suppose you are marking up a bibliography—a
list of books cited in an article. You already have an inkling of the HTML that might go into
making the compound bibliography: lists and cite elements. Here is the unmarked-up text
of the bibliography (from the CSS2.1 specification’s list of normative references, if you
were wondering):

“Colorimetry, Second Edition”, CIE Publication 15.2-1986, ISBN 3-900-734-00-3,
http://www.cie.co.at/publ/abst/15-2-86.html.

“Cascading Style Sheets, level 1”, H. W. Lie and B. Bos, 17 December 1996, revised 11
January 1999. The latest version is available at http://www.w3.org/TR/REC-CSS1.

“Cascading Style Sheets, level 2, CSS2 Specification”, B. Bos, H. W. Lie, C. Lilley and I.
Jacobs, 12 May 1998. The latest version is available at http://www.w3.org/TR/
REC-CSS2.

Each of these entries is a citation, so you’ll mark them up as such:

<cite>"Colorimetry, Second Edition", CIE Publication 15.2-1986, å

ISBN 3-900-734-00-3.
http://www.cie.co.at/publ/abst/15-2-86.html</cite>
<cite>"Cascading Style Sheets, level 1", H. W. Lie and B. Bos, 17 å

December 1996, revised 11 January 1999 The å

latest version is available at http://www.w3.org/TR/REC-CSS1
</cite>
<cite>"Cascading Style Sheets, level 2, CSS2 Specification", B. Bos, å

H. W. Lie, C. Lilley and I. Jacobs, 12 May 1998, The latest å

version is available at http://www.w3.org/TR/REC-CSS2</cite>

While we are at it, let’s make the online references into links:

<cite> å

"Colorimetry, Second Edition", CIE Publication 15.2-1986, å

ISBN 3-900-734-00-3</cite>
<cite>"Cascading å

Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996, å

revised 11 January 1999
</cite>
<cite>"Cascading Style å

Sheets, level 2, CSS2 Specification", B. Bos, H. W. Lie, å

C. Lilley and I. Jacobs, 12 May 1998</cite>

STRUCTURAL AND SEMANTIC HTML

43

3

2. See http://tantek.com/presentations/2005/09/elements-of-xhtml.

8148Ch03.qxp 2/28/07 5:51 PM Page 43

Now this is a list, typically ordered alphabetically, so we’ll mark it up as an ordered list:

<cite> å

"Colorimetry, Second Edition", CIE Publication 15.2-1986, å

ISBN 3-900-734-00-3</cite>
<cite>"Cascading å

Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996, å

revised 11 January 1999
<cite>"Cascading Style å

Sheets, level 2, CSS2 Specification", B. Bos, H. W. Lie, å

C. Lilley and I. Jacobs, 12 May 1998</cite>

Figure 3-12 shows what the list will look like in a browser, without any CSS. (Of course, you
could style the list in any number of ways with CSS.)

Figure 3-12. Semantic markup made easy, with an ordered list this time

And so you have semantic markup for the bibliography, using off-the-shelf HTML elements.

If you’re familiar with citations, you know they are more complex than this example
demonstrates—there is the issue of authors, serial numbers, publications dates, and so on.
So how would you mark up these items semantically? There is often going to be a limit to
what you can mark up using just the building blocks of HTML elements and attributes. To
really create semantically rich constructs for marking up complex things like citations, you
need to go beyond these basic HTML building blocks.

This is the point at which we can turn to the generic semantic markup of HTML: divs and
spans, classes and ids.

divs, spans, classes, and ids
Precisely because HTML has so few building blocks, its developers introduced the <div>
and elements to provide, in their words, a “generic mechanism for adding struc-
ture to documents.”

What’s the difference between a div and span? Technically, the <div> element is a generic
block element, while the element is a generic inline element. The terms “block”
and “inline” are a little misleading. After all, I’ve just spent quite some time emphasizing
that HTML is for marking up structured content, not presentation, and yet “block” and
“inline” sound suspiciously presentational, do they not?

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

44

8148Ch03.qxp 2/28/07 5:51 PM Page 44

The terms are left over from a time when this separation of presentation and structure in
HTML was less rigidly enforced. But even now, there is a difference between block and
inline elements, and it doesn’t relate just to presentation. In fact, it has nothing to do with
presentation at all. You are probably aware that in HTML, a heading may contain an <a>
element, but a an <a> element must not contain a heading. A document with this markup
would be flagged as invalid by an HTML validator, because it breaks an HTML containment
rule. The HTML containment rules are (with some complications) that block elements may
contain other block elements as well as inline elements, but inline elements may only con-
tain other inline elements.

There are some exceptions to this generalization. For example, although the <p> element
is a block element, it cannot contain other block elements, only inline elements. When we
discuss individual microformats in detail in upcoming chapters, these containment rules
will become very relevant.

As noted already, the class and id attributes of HTML are increasingly commonly used by
web designers and developers—though not always correctly. This is frequently because
developers use class and, to a lesser extent, id to simply create “hooks” for styling with CSS,
as you saw a little earlier in this chapter with the CSS Zen Garden example. When this tech-
nique is overused, you’ll find developers adding class values to just about everything that
moves on their web pages, to make styling with CSS “easier”—a prime example of classitis.

If you think about it for a moment, even though such developers are using valid strict
HTML, they are violating the spirit of the principle of contemporary web development:
separating the presentation of a page from the structured content of that page. Does that
mean developers shouldn’t use class, id, <div>, and ? Not at all, but developers
should use them appropriately. Use them to mark up the logical structure of your pages,
not to tag the bits of the pages you want to style later on.

Let’s look again at some code we saw a moment ago, to illustrate the difference between
these two approaches. The following is how many developers would mark up the previous
recipe example:

<h2 class="instruction-heading">Instructions</h2>
<ol class="instructions">
<li class="instruction-step1">Preheat oven to 350 deg F (Gas mark å

4 or 180 deg C).
<li class="instruction-step2">Line a 13 x 9 in ... tin å

with grease-proof paper and grease the tin.
<li class="instruction-step3">Melt the butter.
<li class="instruction-step4">Beat eggs with ... vanilla, å

flour, cocoa, baking powder, salt (optional) and melted
butter.
<li class="instruction-step5">Add chopped nuts.
<li class="instruction-step6">Bake at 350 degrees until a wooden å

pick inserted stands up. Should take 20-30 minutes.
<li class="instruction-step7">Cool the cake. Dust with powdered å

sugar.

STRUCTURAL AND SEMANTIC HTML

45

3

8148Ch03.qxp 2/28/07 5:51 PM Page 45

And no, that is not an exaggeration! A perfect example of classitis is the use of a CSS class
selector throughout a style sheet instead of more appropriate selectors (it’s so common
that it even has its own Wikipedia entry: http://en.wikipedia.org/wiki/Classitis).

Now, let’s think about what we are really trying to mark up here with all these class values.
We have a couple of related elements: the heading and the list. Since these are related, we
can group them together using a generic element. We’ll have to use a div because it will
contain block elements, and the HTML containment rules specify that block elements can
only be contained within other block elements.

So, let’s wrap the heading and list in a <div> element (the generic block element):

<div>
<h2 class="instruction-heading">Instructions</h2>
<ol class="instructions">
<li class="instruction-step1">Preheat oven to 350 deg F (Gas å

mark 4 or 180 deg C).
<li class="instruction-step2">Line a 13 x 9 in ... tin å

with grease-proof paper and grease the tin.
<li class="instruction-step3">Melt the butter.
<li class="instruction-step4">Beat eggs with ... vanilla, å

flour, cocoa, baking powder, salt (optional) and melted
butter.

<li class="instruction-step5">Add chopped nuts.
<li class="instruction-step6">Bake at 350 degrees until a wooden å

pick inserted stands up. Should take 20-30 minutes.
<li class="instruction-step7">Cool the cake. Dust with powdered å

sugar.

</div>

Now, because the div contains a lot of related information, it makes sense to give it a
class, and as the information it contains is instructions, it makes sense for the class value
to be instructions. Why not use an id here? Well, it’s quite possible that a single page
might contain several recipes, so we’ll have quite a few blocks of instructions on the page.
The difference between ids and classes is that an id value can appear on a particular
page only once. Using the same id value twice on a page makes the page invalid, so we use
class for this <div> element instead.

Once we give our div a class value of instructions, something magical happens: we can
make all the other classes we added disappear.

<div class="instructions">
<h2 class="instruction-heading">Instructions</h2>

Preheat oven to 350 deg F (Gas mark 4 or 180 deg C).
Line a 13 x 9 in (33 x 23 cm) cake tin with grease-proof å

paper and grease the tin.
Melt the butter.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

46

8148Ch03.qxp 2/28/07 5:51 PM Page 46

Beat eggs with sugar, and add vanilla, flour, cocoa, baking å

powder, salt (optional) and melted butter.
Add chopped nuts.
Bake at 350 degrees until a wooden pick inserted stands up. å

Should take 20-30 minutes.
Cool the cake. Dust with powdered sugar.

</div>

The div creates a context on the page—in essence, it’s like a root element for our
instructions compound. Typically, the only reason developers would have added all
those classes we saw in the earlier example was for styling with CSS. But once we create
this context, we no longer need to give class values to the list items, because instead of
styling the list items as follows:

li.instruction-step {list-style-type: decimal}

we can style them like this, using the descendent selector of CSS:

.instructions li {list-style-type: decimal}

The limits of HTML: Why we need microformats
In a sense, div and span, in conjunction with the class and id attributes, enable develop-
ers to create their own semantic building blocks. This is, in fact, how many developers use
them. It’s a very powerful approach, but it also has drawbacks.

The biggest problem is that there is essentially no way of standardizing the class and id
values used, so there is not much real value in doing this, because across sites there will be
little or no consistency in the use of class and id values. In a technical sense, we could say
that we aren’t developing consistent semantics. Very often, too, if we look under the hood
at the class and id values people are using, they are things like BigBlue or leftCol—that
is, presentational names. It makes much more sense to name an element with class and
id values according to what it is rather than what it looks like. For instance, is the leftCol
actually site-level navigation? If so, let’s give it a name that reflects that.

A detailed survey I did in late 2005 of over 1,000 websites shows what is happening with
the use of class and id attributes. The survey found nearly 5,000 distinct class and id
values in those 1,200 or so sites (so on average, each site invented four or more unique
class or id values that were used on no other site). Only a handful of class or id values
recurred more than about 5% of the time, among them header, footer, content, and
search. If you look more deeply, developers are using synonymous terms, such as header,
logo, title, main, and banner, which I suspect all refer to the same basic construct: a main
title block at the top of the page. All of which emphasizes that without some form of stan-
dardization, the value of using class and id attributes to provide consistent semantics is
very limited.

STRUCTURAL AND SEMANTIC HTML

47

3

8148Ch03.qxp 2/28/07 5:51 PM Page 47

But where is any consistency going to come from? It certainly doesn’t appear to be emerg-
ing from common practice; the surveys just mentioned show that well enough. Do we
need to wait for some standards body like the W3C to devise a standard set of class and
id values? We might be waiting for a long time. While the HTML specification does have,
for example, a list of possible values for the rel attribute, and XHTML 2.0 has a limited
vocabulary associated with the role attribute, that’s as far as it goes. In reality, is a body
like the W3C going to be able to provide class and id values for every possible situation
we might need? Clearly the answer is no.

Enter microformats. Microformats aim to solve the consistency problem, one step at a time,
from the bottom up. Anyone can be involved in proposing or developing a microformat,
and the success or otherwise of a new format doesn’t depend on browser support or the
standards process, but on the marketplace of ideas. If there is a need for a particular micro-
format, it will be adopted. The more the microformat is adopted, the more of a network
effect it will have associated with it. In other words, the more content in that format, the
more incentive for software developers to create tools to work with that content; the more
tools there are, the more incentive web developers have to create content in that format.

Summary
I hope you can see precisely what motivates the development of microformats: filling a need
that HTML by itself cannot. You should also see by now that microformats are evolutionary,
not revolutionary. They utilize only valid current HTML and only use HTML appropriately,
according to the HTML specification.

In this chapter, you’ve gone right to the foundations of modern web development and
taken a long, hard look at the following topics:

What HTML isn’t (a presentational markup language)

What HTML, underneath it all, is (a structural semantic markup language)

How HTML is commonly misused as a presentational language, and the overuse of
“correct” features like class and id attributes, and <div> and elements

How to ensure our HTML documents are valid

Some of the more sophisticated, often overlooked features of HTML

You can find the results of my survey at http://westciv.typepad.com/
dog_or_higher/2005/11/real_world_sema.html. Related results from
a later Google study are here: http://code.google.com/webstats/
2005-12/classes.html.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

48

8148Ch03.qxp 2/28/07 5:51 PM Page 48

You’ve also seen that eventually, HTML in itself is not enough to provide all the tools you
need to publish semantically rich content for today’s Web, which is where microformats
come in.

Now you’re ready to examine specific, widely used microformats. The principles, tech-
niques, and features of HTML this chapter covered will stand you in very good stead as you
come to grips with the nitty-gritty details of microformats.

STRUCTURAL AND SEMANTIC HTML

49

3

8148Ch03.qxp 2/28/07 5:51 PM Page 49

8148Ch04.qxp 3/2/07 5:04 PM Page 50

4 LINK-BASED MICROFORMATS:
REL-LICENSE, REL-TAG,

REL-NOFOLLOW, AND VOTELINKS

8148Ch04.qxp 3/2/07 5:04 PM Page 51

By now I’m sure you’re itching to get your hands on some actual microformats. The previ-
ous chapters covered a lot of reasonably theoretical aspects of HTML that you’ll need to
understand to really come to grips with microformats in practice. Now it’s time to get your
hands dirty.

In this chapter, you’ll look at a family of microformats based on the link ()
element and two particular attributes, rel and rev. All the microformats presented in this
chapter are constructed simply by adding one of a set of values to the rel or rev attribute
of HTML. But with just this simple pattern, you’ll see that you can add quite a lot of meta-
data, or additional information about the page (e.g., license or copyright information for
the page, or “tags” that describe what the page is about). You’ll also take a look at how to
add some style to these microformatted links using some less well-known and often
underutilized features of CSS.

Let’s begin by taking a look at the specific features of HTML that make all these particular
microformats possible: the rel and rev attributes of the <a> element.

The rel and rev attributes
Both the link and anchor elements may have a rel and/or a rev attribute. These attributes
were a source of some initial confusion among the members of the microformats com-
munity, who were among the first to really utilize them in a way that extends their basic
use as spelled out in the HTML specification.

The rel attribute, according to the HTML specification, “describes the relationship from
the current document to the anchor specified by the href attribute.” If, however, we take
a look at the examples in the specification, we’ll find the following possible values for the
rel attribute:

stylesheet

next

copyright

bookmark

So, it might be better to restate the rel attribute definition as “describes the relationship
of the anchor specified by the href attribute to the current document.” After all,
rel="stylesheet" does not mean that the current document is a style sheet for the
anchor specified by the href attribute—indeed, quite the opposite. Similarly, rel="next"
does not mean that this document is the next document after the one being pointed to in
a sequence, nor does rel="copyright" mean that this document is a copyright statement
for the document the href points to.

What about rev? Well, according to the HTML specification, it describes “a reverse link
from the anchor specified by the href attribute to the current document.” Given that the
two attributes are in effect defined together, rev is generally taken to mean the symmet-
ric reverse of rel. That is, rev defines the reverse relationship to rel.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

52

8148Ch04.qxp 3/2/07 5:04 PM Page 52

HTML provides a dozen or so link types or values for rel and rev, but leaves open the
possibility of defining our own link types. Link microformats take advantage of this feature
of HTML. Does that mean we can just “make up” values for rel and rev? Indeed we can.
The HTML specification states,

Authors may wish to define additional link types not described in this specification. If they
do so, they should use a profile to cite the conventions used to define the link types.

The term “should” tells us the following, according to Network Working Group RFC 2119
(see www.ietf.org/rfc/rfc2119.txt for more information):

There may exist valid reasons in particular circumstances to ignore a particular item, but the
full implications must be understood and carefully weighed before choosing a different course.

So, the best way to add our own rel and rev values is to link to a profile that defines the val-
ues we wish to use. In general, however, this is considered overkill. These rel and rev micro-
formats do illustrate just how “micro” a microformat can be. And, in the case of rel-license,
the microformat consists of a single attribute, rel, and a single possible value, license.

Now it’s time to delve into this family of microformats, starting with rel-license.

The rel-license microformat
In general, copyright law in most countries grants the creator (or other owner) of any
material an exclusive set of rights, which can be granted to others through a license. The
rise of open source software and other associated open source content, exemplified by
but not restricted to the Creative Commons movement, has seen a significant increase in
people licensing the use of their material to others, often without cost and with very little
restriction on the ways in which that material can be used.

If you publish on the Web, it would make sense if you could somehow mark up how the
material could be used by others. Enter the rel-license microformat. But before we exam-
ine rel-license, we’ll first look at how to create a license for copyrighted work through
Creative Commons.

Creating a Creative Commons license

If you publish material—to a blog; at presentations, conferences, or other groups; and/or on
a website—you may want to make it widely usable by others. You may want to do this with-
out restriction, meaning people can use your material in any way they wish. Alternatively, you
may want to do this with some restrictions—for example, you may want attribution to
appear where your work is used. Or you may even want to restrict the use of your material
to noncommercial uses, and if someone wants to republish your material in a commercial
product or work, he or she needs to negotiate with you for that right. The Creative
Commons organization makes it very easy to create licenses for any of these situations.
Creative Commons uses the slogan “some rights reserved” (as opposed to the traditional
copyright notice “all rights reserved”) to capture the intent of this licensing approach (see
http://creativecommons.org for more information).

L INK-BASED MICROFORMATS

53

4

8148Ch04.qxp 3/2/07 5:04 PM Page 53

Just why you might want to license in this way, and how the different levels of licensing
work, goes beyond the scope of this chapter and book, but you’ll find detailed discussions
of these topics at the Creative Commons site. For now, let’s quickly step through the
process of creating a license at Creative Commons for you to use.

When you get to the Creative Commons site, click the Publish image, as shown in Figure 4-1.

You can then choose one of a number of common licenses, as shown in Figure 4-2.

Or you can create a customized license by selecting options from a form, as shown in
Figure 4-3.

Figure 4-2. The different Figure 4-3. You can even create a custom license using the
standard license options available form.
available on the Creative
Commons site

Figure 4-1. The Creative
Commons Publish icon

Image used in accordance with the Creative
Commons Attribution 2.5 license (http://
creativecommons.org/licenses/by/2.5/).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

54

Im
ag

e
us

ed
in

ac
co

rd
an

ce
w

it
h

th
e

C
re

at
iv

e
C

o
m

m
o
ns

A
tt

ri
b
ut

io
n

2.
5

lic
en

se
(h
tt
p:
//
cr
ea
ti
ve
co
mm
on
s.
or
g/
li
ce
ns
es
/b
y/
2.
5/

).

Image used in accordance with the Creative Commons Attribution 2.5
license (http://creativecommons.org/licenses/by/2.5/).

8148Ch04.qxp 3/2/07 5:04 PM Page 54

Click Select a License, and Creative Commons creates some HTML for you to add to
your site, for example:

<!--Creative Commons License-->

<img alt="Creative Commons License" style="border-width: 0"

src="http://creativecommons.org/images/public/somerights20.png"/>

This work is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by/2.5/">
Creative Commons Attribution 2.5 License.
<!--/Creative Commons License-->
<!-- <rdf:RDF xmlns="http://web.resource.org/cc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Work rdf:about="">
<license

rdf:resource="http://creativecommons.org/licenses/by/2.5/" />
</Work>
<License

rdf:about="http://creativecommons.org/licenses/by/2.5/"><permits
rdf:resource="http://web.resource.org/cc/Reproduction"/><permits
rdf:resource="http://web.resource.org/cc/Distribution"/><requires
rdf:resource="http://web.resource.org/cc/Notice"/><requires
rdf:resource="http://web.resource.org/cc/Attribution"/><permits
rdf:resource="http://web.resource.org/cc/DerivativeWorks"/></License>
</rdf:RDF> -->

Paste this code into the <body> of your document, and you are done! The result in a
browser is shown in Figure 4-4.

Figure 4-4. The standard Creative Commons license attribution
Image used in accordance with the Creative Commons Attribution 2.5 license
(http://creativecommons.org/licenses/by/2.5/).

Of course, you can style this attribution with CSS to make it look a little nicer. More on
that later in the chapter.

Using rel-license

Let’s start with a sample rel-license link. As you can see by looking at the source code in
the preceding section, Creative Commons has created the link for us:

L INK-BASED MICROFORMATS

55

4

8148Ch04.qxp 3/2/07 5:04 PM Page 55

Creative Commons Attribution version 2.5

The most important thing here is the rel="license" attribute. This attribute means (in
rather tortuous language) that “the document this link points to has the relationship of
being a license for this document.” Or, put a little more nicely, “this link points to the
license for this document.”

Next, we have the URL for the license:

href="http://creativecommons.org/licenses/by/2.5/"

The text for the link is simply there for our readers. It’s a description of the link, but what
make this a rel-license microformat are the rel="license" and the href.

So, to add any particular license to a page, you need to know the URL for that license, and
you need to use the following form:

A description of the license for your readers

Typically when you add a license link to a page, you are indicating that the license for the
whole page is the linked license document. Some more complex microformats like hReview,
which you’ll see in later chapters, include rel-license as a possible component. When a review
microformat includes a rel-license link inside it, then the linked license applies to the specific
review, not the page as a whole. This way, you might have several reviews on the same page,
each with a different license. How might this happen? It can occur if, for instance, you are
aggregating reviews from different reviewers, and each has chosen a different license.

At this point you may be thinking, “What? Is it really that simple?” Yes, microformats can
be and often are that simple. Going back to the discussion of the underlying principles of
microformats from the first chapter, you can see that even such a simple format as rel-
license embodies these principles. It’s simple. It solves a specific problem. It’s embeddable.
Now let’s see how it enables decentralized services.

If you find this approach too daunting, an extension for Dreamweaver is available that
makes it even easier to create rel-licenses for your content. You can find this extension
at www.webstandards.org/action/dwtf/microformats.

There’s also a plug-in for the blogging tool Textpattern, pnh_mf, by HTML guru Chris
Casciano, for creating rel-licenses and many other kinds of microformatted content.
You can find it at http://placenamehere.com/TXP/pnh_mf.

Note that you can use the rel-license microformat with any kind of license—it doesn’t
have to be a Creative Commons one.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

56

8148Ch04.qxp 3/2/07 5:04 PM Page 56

Enabling decentralized services with rel-license

Now you might be thinking that the rel-license microformat is a kinda cool, in a geeky way,
but really, there isn’t much practical benefit for you as a developer (or for anyone else, for
that matter) in using this microformat to add licensing information to your content. Or
maybe you’re thinking that rel-license is a nice way to make a statement about copyright,
and to give a little back to the Web, but there’s not much more to it than that.

Well, a couple of little companies like Google and Yahoo might disagree.

Both of these web behemoths have implemented searching for content based on its license
type, as specified by the rel-license microformat. Yahoo has a dedicated Creative Commons
Search feature (see Figure 4-5), which you can find at http://search.yahoo.com/cc.

Figure 4-5. Yahoo’s Creative Commons Search page
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

And Google lets you specify a license type in its Advanced Search functionality (see Figure 4-6),
which you can find at www.google.com/advanced_search.

If you develop content and then license it so that people may use, share, or modify it in
various ways, by simply adding this single microformatted link, you’ll be making your con-
tent known and available to a far wider audience.

This is an excellent example of how even a simple microformat can enable decentralized
services. There’s no need for you to register your licensed material with anyone to let oth-
ers easily know that it is available, and under what conditions. You simply add the link with
the rel="license" value to your site and let license developers like Creative Commons
and search engines like Yahoo and Google take care of the rest.

L INK-BASED MICROFORMATS

57

4

8148Ch04.qxp 3/2/07 5:04 PM Page 57

Figure 4-6. Google’s Advanced Search functionality allows you to specify a license type when
searching for pages

Styling rel-license content with CSS

So far in this book I haven’t made much mention of styling websites. While much of the
focus of microformats is, of course, on content, by intelligently structuring our content,
we get the ability to easily add a little style, which may aid the usability and attractiveness
of the content we publish.

As the saying goes, a picture is worth a thousand words. So adding a small icon that indi-
cates how your content is licensed will add some visual communication to the written
word. Now, the obvious way to do this would be to add an image element to the HTML of
your link. But you can, in fact, take advantage of CSS to do this.

If you don’t know a great deal about CSS, there are many places online and lots of use-
ful books to help you get started or to build on your existing knowledge. For nearly a
decade, I’ve been publishing articles, tutorials, a comprehensive guide, and more about
CSS (along with the Style Master CSS editor). You can find all this at my company’s
website: http://westciv.com.

In addition, two great books are available from the same publisher as this book: Simon
Collison’s Beginning CSS Web Development: From Novice to Professional (Apress, ISBN:
1-59059-689-7), and Andy Budd’s CSS Mastery: Advanced Web Standards Solutions
(friends of ED, ISBN: 1-59059-614-5). You’ll find these resources very useful if your taste
runs to printed material.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

58

Im
ag

e
us

ed
in

ac
co

rd
an

ce
w

it
h

th
e

C
re

at
iv

e
C

o
m

m
o
ns

A
tt

ri
b
ut

io
n

2.
5

lic
en

se
(h
tt
p:
//
cr
ea
ti
ve
co
mm
on
s.
or
g/
li
ce
ns
es
/b
y/
2.
5/
).

8148Ch04.qxp 3/2/07 5:04 PM Page 58

To demonstrate, let’s add a background image to the link and use a bit of padding to make
it appear that this image is part of the link. In fact, it will be part of the link, so it will be
clickable. First, we’ll need a selector to select only links with rel="license". The standard
way for designers to do this is to add a class value to the link—something like
class="license". But this only styles the link, and it’s redundant, because we’ve already
used the rel attribute to denote this as a license link.

This is a classic example of classitis—using class attributes when they aren’t needed—
because CSS provides a selector for selecting elements based on their attribute values. It’s
supported in modern browsers (including Internet Explorer 7), though not in Internet
Explorer 6 or older for Windows. You might argue that this makes bothering to style rel-
license links this way reasonably worthless, because a good many people won’t be able to
see the style we add, so our pages won’t look the same in all browsers. But this demon-
strates an important concept when working with browsers that have varying degrees of
support for CSS: progressive enhancement. If we design with progressive enhancement in
mind, users of newer browsers that support more features have a richer experience than
those with older browsers. It gets us away from the outdated idea that when we design for
the Web, all pages should look the same in all browsers. The important thing is that we
provide all the basic information to all browsers, and it’s just the enhancements like this
image that some users won’t see. By adopting this strategy for styling our pages, we avoid
as much as possible complex hacks and redundant CSS and HTML.

The attribute selector of CSS is among the trickiest to use. It can be used in a number of
different ways, but we’ll focus on a specific technique here. We can use the attribute selec-
tor to select any element with a particular value for a particular attribute. In this case, we
want a selector that will select any anchor element when it has a rel attribute value of
license. We specify this using the CSS selector a[rel="license"].

So now we have a selector for our license links (yes, you can have more than one license
link, and this statement will select all of them). Next, we want to add a background image.
For the sake of simplicity, let’s suppose our image is in a directory called “images” in the
same parent directory as our style sheet, and it’s called cc-logo.png. To add it as a back-
ground image to our statement, we use the background-image property:

a[rel="license"] {
background-image: url(images/cc-logo.png)

}

Currently, the background image will repeat across and down the background of the ele-
ment, as shown in Figure 4-7.

Figure 4-7. Our rel-license CSS styling doesn’t look great at first.

L INK-BASED MICROFORMATS

59

4

8148Ch04.qxp 3/2/07 5:04 PM Page 59

To remedy this, we need to set the background-repeat to no-repeat, which gives us the
element shown in Figure 4-8.

Figure 4-8. Using no-repeat, the background image displays only once,
which is better, but not great.

It’s common for visual cues like our icon (e.g., images that indicate a download is a PDF, a
link is external to a site, etc.) to be placed to the right of the link. To relocate our icon,
we’ll need to set the background-position of the image to right, giving us the result in
Figure 4-9.

Figure 4-9. Now we’ve used background-position: right to make the
background graphic shift over to the right . . . but it’s still not quite there.

Finally, we need to ensure that the image is not covered up by the text of the element. To
do this, we add padding to the right of the element (we use padding rather than margin
because padding is between the content of an element and its edge, while margin is
between the edge of an element and the edge of an adjacent element). The image is 16
pixels wide, so we’ll use a padding of 20px to allow for some extra whitespace between the
image and the edge of the text. Our finished link is shown in Figure 4-10.

Figure 4-10. Finally, a dash of padding on the right side of our link sorts out the
positioning issues—nice!

Our final statement is as follows:

a[rel="license"] {
background-image: url(images/cc-logo.png);
background-repeat: no-repeat;
background-position: right center;
padding-right: 20px;

}

All the code examples in this book are available online. The HTML and CSS for this exam-
ple are available at http://microformatique.com/book/chapter4/rel-license.zip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

60

8148Ch04.qxp 3/2/07 5:04 PM Page 60

We’ll use techniques like this throughout the book to add additional, meaningful visual
cues to the information already provided within the document. It’s important that the
visual cues alone don’t convey the information; rather, they should augment the informa-
tion. This ensures we don’t discriminate against certain readers, whether they have visual
disabilities or use devices that don’t support the features of CSS we are using here (or
don’t support images at all).

The rel-tag microformat
The last two or three years have seen an explosion of tagging on the Web. The idea behind
tagging is that users or publishers spontaneously label things like images or web pages
according to their personal or idiosyncratic decisions as to what those images or pages are
about. Two of the best-known tag-based systems are Flickr and del.icio.us.

One of the photo-sharing service Flickr’s (www.flickr.com) most powerful features is that
as the owner of a photo, or as one of the photo owner’s contacts, you can tag that photo
with a label or labels that describe the image. Figure 4-11 shows an example from a recent
conference I was involved with. In the case of Flickr, the tags are labels for the photo.

del.icio.us (http://del.icio.us), a social bookmarking site where anyone can bookmark
a page and add their own labels, or tags, to classify these pages, uses a different tagging
model: anyone can tag external resources, typically web pages like blog posts. For exam-
ple, Figure 4-12 shows some pages I’ve tagged in my del.icio.us account.

The second line of each entry (starting with “to”) lists the tags I have given this resource
and how many others have also bookmarked it (but not necessarily with the same tag).

As you’ve discovered, one of the important goals of microformats is to help enable decen-
tralized services. Flickr and del.icio.us are both centralized tagging services—the tags are
entered and maintained at centralized sites. As you might guess, the rel-tag microformat
exists to enable decentralized tagging for web-based content. Next, we’ll take a look at
how to use rel-tag microformats to tag content and then see how this works on the Web.

Figure 4-11. Tags for one of my images
on Flickr
Reproduced with permission of Yahoo! Inc. © 2007
by Yahoo! Inc. YAHOO! and the YAHOO! logo are
trademarks of Yahoo! Inc.

L INK-BASED MICROFORMATS

61

4

8148Ch04.qxp 3/2/07 5:04 PM Page 61

Figure 4-12. Some of the pages I’ve tagged in my del.icio.us account
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Using rel-tag

If you think a bit about Flickr and del.icio.us, you’ll realize that even though they both use
the term “tagging” to describe how users label content, the process of tagging on those
sites works in quite different ways. With Flickr, a tag is a label a photograph owner (typi-
cally) uses to describe his or her photo. The tag is associated with the photo, and it is
added and displayed on the page where the photo appears. With del.icio.us, a tag is a link
from another page, created by anyone, that describes the page linked to.

rel-tag is Flickr-like tagging—a microformat tag is used by the author of a page to describe
that page. Like rel-license, rel-tag is a rel-based link microformat, and so you code it very
similarly. You simply have a link with a URL and a rel value of tag. For example, here is
how you would tag a page as being about microformats:

 å

microformats

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

62

8148Ch04.qxp 3/2/07 5:04 PM Page 62

This link says about the page containing it, “I am labeling this page with the tag ‘microfor-
mats’.” In fact, to be more specific, the tag may apply to a page or part of a page. So, if you
have several blog posts on a page, each may have its own tag or tags.

Tagging with rel-tag, then, is different from tagging in del.icio.us. Tagging systems like
del.icio.us let anyone tag a page on the Web. In del.icio.us, users tag other resources, in
effect saying, “I am labeling the page found at the URL http://microformatique with the
tag ‘microformats.’”

Let’s take a closer look at the URL value of the href attribute. What does it actually point
to? Is that URL significant? The destination of the link is termed a tag space, and the final
part of the link after the last forward slash (/) in the URL is the tag value, which makes it
very easy to extract the value of the tag from the URL. The destination of the link should
exist (in technical terms, this means that it does not necessarily have to, but there should
be a good reason if it doesn’t).

Note that the actual text of the link is not the value of the rel-tag microformat, and while
it makes sense that it should usually be the same as the value as the microformat, this is
not required. Why not require the text of the link to match the value of the tag? One rea-
son is accessibility. Screen readers help people read pages by presenting the content of
links to the reader in a list. A single word value is often not nearly as useful as a phrase.
Another reason for the link text not necessarily matching the tag value is for internation-
alization purposes. If you are tagging a page in a language other than English, you can use
the same tag space, despite the language being used, and have the content of the link in
the relevant language. Here’s a simple example:

casa

Here the page is tagged with “house,” but because the page is in Spanish, the Spanish word
for house, “casa,” is used.

A moment ago, I said that the destination of the link is a “tag space”—but what exactly is
that? The rel-tag specification describes a tag space as “a place that collates or defines
tags.” There is no requirement to point to a particular tag space, such as Technorati’s. You
may create your own tag space or use, say, Wikipedia as a tag space (so when the link is
followed, the reader gets further reading on the related subject). It doesn’t matter that
people use different tag spaces because again, the specification of rel-tag makes it clear
that it is only the tag value (the part after the / in the href value) that matters. So even if
different developers point to different tag spaces, tag-based search engines can identify
pages tagged with the same label.

There is, in fact, a microformat called xFolk that enables tagging of the desti-
nation of a link, much like del.icio.us tagging, but you use it to do so on your
own pages, not at a centralized site. xFolk is not yet widely adopted, so I don’t
cover it in detail in this book, but you can find more information about it here:
http://microformats.org/wiki/xfolk.

L INK-BASED MICROFORMATS

63

4

8148Ch04.qxp 3/2/07 5:04 PM Page 63

rel-tag vs. the meta element

“Hold on,” I hear some readers say. “HTML provides a framework for adding keywords that
describe the content of a page, using the meta element and its keyword attribute.
Shouldn’t we be using this feature of HTML instead of inventing a new way? How does
using the rel-tag differ from simply using the meta element to add keywords for the page
like this?”

<meta name="keywords" content="microformats">

There are a several significant problems with the meta element. First, it’s hidden—when
you visit a page, you don’t see its keyword values unless you inspect the source of the
page. This has two consequences. The first is that the value of those keywords may
become incorrect over time, as pages are edited or changed. The second is that there is, in
effect, no accountability. The meta element can easily be used to make false assertions
about the content of the page, which readers don’t see but search engines do.

Meta elements also suffer from being page-specific, so that for pages with multiple pieces
of content about quite different subject areas, meta elements aren’t nearly as useful as rel-
tag links; unlike meta keywords, rel-tag links can tag parts of a page. For blog posts this is
particularly relevant, as different posts on a blog often cover a wide range of subjects, and
unless each post appears on a single page, meta keywords would have to be updated for
each post.

Ultimately, rel-tag illustrates an important aspect of microformats. Microformats try to
capture emergent behavior—that is, what developers are actually doing. Meta keywords,
through both their abuse and lack of use, are in effect dead on the Web (though they are
of considerably greater use on intranets and with internal search engines). Yet we still need
to add meta-level descriptions about content on the Web, as evidenced by the popularity
of tagging in services like del.icio.us and Flickr. rel-tag exists to enable this tagging of con-
tent in a distributed fashion. And as you’ll see in a moment, it’s extraordinarily popular.

Benefits of using rel-tag: Technorati tags

Web developers, and in particular bloggers, are amazingly practical people. They tend to
do things that work and have perceived value, and ignore things that they view as having
little practical application in their lives, despite how theoretically useful these things may
be. They also tend to be a bit faddish, too, but we’ll forgive them that. At times this focus
on the practical has drawbacks—it has been a long, hard road to convince many develop-
ers to adopt development practices that make web content more accessible, because by

In fact, the second consequence just noted has happened so routinely with people try-
ing to game search engines that major search engines do not take meta element key-
words into account when indexing pages. See the article “Death of a Meta Tag” by
Danny Sullivan at http://searchenginewatch.com/sereport/article.php/2165061
for more information about this.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

64

8148Ch04.qxp 3/2/07 5:04 PM Page 64

and large developers are young, able-bodied people with little exposure to or familiarity
with disabilities.

When it comes to tagging using the rel-tag, adoption has been extremely—indeed
astonishingly—rapid. Introduced only at the beginning of 2005, Technorati was, within 18
months, tracking 100 million tagged blog posts. Clearly this is something a lot of people
are doing. What’s particularly interesting is that by doing so, web developers and bloggers
have developed a bottom-up way of classifying information, termed folksonomies
by Thomas Vander Wal, which is distinct from the traditional top-down approach of
taxonomy.

But why are millions of people adding tags to their web content? Let’s take a look at the
benefits to developers of tagging their content with Technorati’s tag search feature, and
keep in mind that it’s surely only a matter of time before the big-name search engines
start taking advantage of this extra information as part of their indexing process.

Technorati, in addition to providing search features based on keywords (the kind of
searching we’ve been doing for years on the Web), provides searching by tags, using the
rel-tag values that developers have added to their pages to return matching pages.
Technorati even lets you subscribe to results using RSS, so users can track pages that have
a particular tag from all over the Web. As the number of blogs and other “real-time” infor-
mation sources (such as online news outlets) increases, the idea of subscribing to these
sources individually makes increasingly less sense. Subscribing to particular tags, regardless
of which sites or blogs they appear in, makes increasingly more sense, as it keeps us
abreast of issues, events, and people (typically ourselves) of interest, regardless of where
that information is published and even if we have never heard of the publishers before.

As developers, we’ve seen that costs are very low for tagging content—all we need to do
is add rel-tagged links and let the Technorati search engine know about the new content
(it’s not just for blog posts either; any HTML-based web resource can be tagged). Then the
content will be available to anyone who uses Technorati tag searching, or who subscribes
to a tag via Technorati.

Tools for tagging

Several blogging tools have plug-in support for rel-tag. This can help take any lingering
tedium out of the task of creating the link to a particular tag space.

For WordPress:

SimpleTags: www.broobles.com/scripts/simpletags/

Bunny’s Technorati Tags: http://dev.wp-plugins.org/wiki/BunnysTechnoratiTags

Unfortunately, I don’t have space here to go into detail about folksonomies, but for a
great introduction and overview, see Bruce Sterling’s Wired Magazine article titled
“Order Out of Chaos” at www.wired.com/wired/archive/13.04/view.html?pg=4.

L INK-BASED MICROFORMATS

65

4

8148Ch04.qxp 3/2/07 5:04 PM Page 65

For Textpattern:

pnh_mf: http://placenamehere.com/TXP/pnh_mf (mentioned earlier in the rel-
license discussion)

tru_tags: www.truist.com/blog/493/trutags

For Bloxsom:

Tagging plug-in from Axel Beckert: http://noone.org/blog/tags/Tagging

For Dreamweaver:

Drew McLellan’s WaSP Dreamweaver microformats extension allows you to easily
add tags to any web page you are working on: www.webstandards.org/action/
dwtf/microformats

Styling rel-tag content with CSS

Typically, developers add tags at the end of a blog post or page, in lists that look some-
thing like this:

Tags: microformats folksonomy tags technorati

Each word in the list is a rel-tag link. It’s quite possible to have your links as part of the
main content of a page, using a rel-tag link at the first occurrence of your tag word.

We might even use a similar technique to the one we used with rel-license links, and add
an icon as a background image to the link. Recently, Chris Messina (http://facto-
ryjoe.com/blog) proposed a number of icons for various microformats, including one for
rel-tag content. We’ll style our tagged links with this.

To add an image to our rel-tag links, we’ll use a very similar selector and set of properties
for our style sheet. The selector has the same pattern as our rel-license selector, but now
we are selecting a link with the rel attribute value of tag, so our selector will be

a[rel="tag"]

Again, we’ll add a background image, this time with the name tag-icon.png, but all the
other properties are more or less identical:

a[rel="tag"] {
background-image: url(images/tag-icon.png);
background-repeat: no-repeat;
background-position: center left;
padding-left: 32px;

}

We make sure the image doesn’t repeat and is aligned to the left of the background of our
link, and we add some padding to make sure that the text doesn’t cover up the back-
ground image. Figure 4-13 shows how our microformats link will look.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

66

8148Ch04.qxp 3/2/07 5:04 PM Page 66

Figure 4-13. Our styled tag, complete with background TAG tag

If we have more than one tag, they will look like Figure 4-14, where our two tag links are
as follows:

microformats,
semantics

Figure 4-14. A couple of tags in a row

The last thing we’ll do is take a cue from Tantek Çelik, who suggests that tag links be green
as a visual cue (see http://tantek.com/log/2005/06.html#d03t2359). We simply need to
add a color value of green (or, to closely match the microformats icon, #a8c90b):

a[rel="tag"] {
background-image: url(images/tag-icon.png);
background-repeat: no-repeat;
background-position: center left;
padding-left: 32px;
color: #a8c90b;

}

Something else we might want to do to use structured semantic HTML even more appro-
priately is identify that this is in fact a list. We can make the HTML a list like so:

microformats

semantics

Of course, we’ll need to add a little CSS trickery to make these items display in a line,
rather than displaying as list items, as they will by default. To do this, we change the dis-
play type of the elements to inline, like so:

li {display: inline}

which gives us more or less what we want. The only other problem with this approach is
that if other list items are on the page, these too will appear inline, which may well not be
what we want. Unfortunately, CSS doesn’t provide a “parent” selector, or we could select
list items only when they were the parent of links with a rel value of tag. So here is one
place where, if we want to use styling, we’ll have to add to our HTML. We could add a class

L INK-BASED MICROFORMATS

67

4

8148Ch04.qxp 3/2/07 5:04 PM Page 67

to each list item here, but it would be better to add a single class value to the parent
ordered list. So we add a class of tags to this element:

<ul class="tags">

microformats

semantics

Then we use a descendent selector to style only the list items inside lists with this class:

ul.tags li {display: inline}

You’ll see later in the chapter how we could even add in commas between the tags by
using the content property of CSS.

So far we’ve examined two straightforward, widely used, and useful rel-based link micro-
formats. Next we’ll take a look at a new link microformat that uses the rev attribute and
can take more than a single value: VoteLinks, along with a related, but simpler (and some-
what controversial) microformat, rel-nofollow.

The rel-nofollow and VoteLinks microformats
The revolutionary system that Google employs to make its results so relevant, PageRank,
uses links to a site as an indicator of the site’s popularity. The more links to a site (and the
relative popularity of the sites those links come from), the higher the ranking of that site.

But there is a drawback to this approach: what if you link to a site that you violently dis-
agree with—perhaps a site that rips off a design of yours? Google treats this as a sign of
popularity. So we want a way of linking to such sites that does not give them “Google
juice.”

Two microformats address this issue—one very simply (rel-nofollow) and one in a way that
leads to other interesting possibilities (VoteLinks). Both are discussed in the sections that
follow.

rel-nofollow

rel-nofollow was introduced by Google to address precisely the problem that any link to a
site, even a link that is highly critical of that site, is considered by Google to be an endorse-
ment and adds to that site’s PageRank. When rel-nofollow was introduced, it was immedi-
ately criticized, in terms of both implementation and implication. The main criticism was

You can grab the HTML, CSS, and image for this design from http://microformatique.
com/book/chapter4/rel-tag.zip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

68

8148Ch04.qxp 3/2/07 5:04 PM Page 68

that indiscriminate use of rel-nofollow (as was common in many blogging engines,
because comment spammers could leave comments with links to their sites to gain
PageRank) meant that legitimate sites lost PageRank credit they might otherwise have
received, creating potentially a two-tier system that further entrenched the currently pop-
ular sites. “rel-nofollow” is also something of a misnomer, as it does not tell a search
engine not to follow a link, but rather not to give any PageRank credit for the link. The
term “nofollow” comes from the possible values for the robots’ meta element, and so was
used by analogy. Ironically, the value noindex would arguably have been more accurate.

As with the other rel-based link microformats discussed in this book, all we need to do is
add a single rel value to our links, rel="nofollow", and search engines like Google will no
longer count this link as going toward the PageRank of the linked page. For example, to
add a link to a page critical of an article I wrote, while not giving it any extra PageRank
credit, I’d link like this:

<a href="http://westciv.typepad.com/dog_or_higher/ å

2006/09/free_trade_agre.html" rel="nofollow">
John Allsopp's illogical rant about free trade

.

VoteLinks

Links to other sites are often endorsements (votes for) or criticisms (votes against) of those
pages or the product, person, philosophy, or whatever those pages represent. While humans
can readily determine from reading a web page whether the author of that page might be
critical or approving of something, it’s much more difficult for software to determine this.

But what if we could encode in our links whether they were an endorsement or criticism
of the destination? Not only could search engines weigh the value of these links differently
(perhaps subtracting some link weight for votes against, or giving no weight to negative
vote links), but also it would be much easier for search engines to determine whether a
particular movie, person, idea, or product was popular or unpopular on the Web—the
very idea discussed at the beginning of Chapter 1.

VoteLinks are, according to Brian Suda, “Romanesque.” The gladiatorial battles of classical
Rome, despite popular belief, did not typically end in the death of combatants, who were
often, after all, valuable slaves. When a gladiator was at the mercy of his or her opponent
(there were women gladiators), the crowd would signify by thumbs up or down whether
the felled gladiator should be spared. Many voting systems also work in this way (e.g., the
“first past the post”/“winner take all” voting systems of the United Kingdom, Canada, and
the United States, among other countries), and VoteLinks exist to mark up precisely this
kind of voting on the Web.

For more on the rel-nofollow issues, see the Wikipedia entries on rel-nofollow and PageRank
at http://en.wikipedia.org/wiki/Nofollow and http://en.wikipedia.org/wiki/
PageRank, respectively. And for a particularly strong criticism of rel-nofollow, visit the
NoNoFollow website at www.nonofollow.net.

L INK-BASED MICROFORMATS

69

4

8148Ch04.qxp 3/2/07 5:04 PM Page 69

Using VoteLinks
Earlier you learned about the rel and rev attributes of HTML, and how they describe the
relationships between web documents via link or anchor elements. You saw that rel
“describes the relationship of the anchor specified by the href attribute to the current
document,” while rev describes the reverse of this (i.e., the relationship of the current
document to the linked document).

Now, if you are going to use a link to vote for or against a page you link to, you are
describing the relationship of this page (or part of it) to the destination. So the rev attrib-
ute, rather than the rel attribute, is appropriate for this kind of link. In the original
VoteLinks specification, the rel attribute was used, but this has subsequently been
changed.

VoteLinks is different in still another way from the other rel-based microformats: there
are three possible values for the rev attribute, rather than the single rel values of rel-
license and rel-tag.

rev="vote-for"

rev="vote-against"

rev="vote-abstain"

So, to say you are in favor of the rel-nofollow microformat, use the following link:

the nofollow microformat roxor

To vote against the idea, use the following link:

the nofollow microformat suxor

And to abstain from voting (or sit on the fence), use this link:

I can see pros and cons with the no-follow microformat

Benefits of using VoteLinks
As you saw with rel-tag and rel-license, search engines and other services are already using
these microformats, so there are some really good reasons to start using them right now.
VoteLinks is not widely adopted by search engines and other web services, so there is not
quite the same immediate benefit. Why adopt this microformat, then?

Adopting a particular microformat can be a classic “chicken or egg” situation. If few peo-
ple use a microformat like VoteLinks on their sites, then there is little or no incentive for
search engines or other services to look for votes online. If no one is looking for the con-
tent, then why mark it up as a VoteLink?

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

70

8148Ch04.qxp 3/2/07 5:04 PM Page 70

I’d suggest that if VoteLinks is a relevant semantic way of marking up content that is already
on your sites, then given that the cost of using the microformat is so low (simply adding a
rev value), there really is no reason not to implement it. It seems such a simple way to make
opinions easily known to software that I’d be surprised if it isn’t ultimately widely adopted.

Styling VoteLinks content with CSS
One way the VoteLinks microformat is useful right now is in enabling styling of content,
much like you saw with rel-license and rel-tag. In this section’s example, we’ll add thumbs-
up and thumbs-down icons to vote for and vote against links. We need two different state-
ments, one for each rev value, so we’ll use these two different selectors:

a[rev="vote-for"]
a[rev="vote-against"]

This time we achieve a similar effect as with rel-license, but use a very different technique.
This technique is supported in modern browsers (Firefox and other Mozilla-based
browsers, Safari, and Opera, though sadly not Internet Explorer 7). The best bit is that the
browsers that don’t support this technique also don’t support the attribute selector, so we
don’t need to worry about those browsers at all. The link will be still visible as a link, but
the extra styling we add will be visible only to the users of contemporary browsers—
another example of progressive enhancement.

Instead of adding a background image, we use the generated content feature of CSS2 to
add an image after an element. Generated content works with a special kind of selector.
We append :before or :after (much like the :link or :hover pseudoclass selectors) to
any other selector. So if we want to add something to the end of an element with a rev
value of vote-for, we append :after to the selector for that element, giving us this:

a[rev="vote-for"]:after

Similarly, to add content after a link with a rev value of vote-against, we use this selector:

a[rev="vote-against"]:after

Next, we add the image as content. To do this, we use the content property of CSS2. This
property can get quite complicated, but here we’ll use it quite simply. We can add a URL
value to the content property to indicate an external resource (typically an image) to be
displayed after the element. So the CSS rule

a[rev="vote-for"]:after {
content : url("images/vote-for-logo.gif")

}

will add the image after links with a rev value of vote-for. The image is actually added as
part of the link element, so the underline or any other styling for the link element also
affects the image, and the image is clickable. So, for example, if I am voting for Buffy the
Vampire Slayer over Neo from The Matrix in a death match, I use this markup:

a href="http://en.wikipedia.org/wiki/Buffy_the_vampire_slayer"
rev="vote-for">Buffy the Vampire Slayer

LINK-BASED MICROFORMATS

71

4

8148Ch04.qxp 3/2/07 5:04 PM Page 71

The result looks something like Figure 4-15 when styled with CSS.

Figure 4-15. Our initial VoteLinks vote-for styling.
I’ve given Buffy the Vampire Slayer a big thumbs up!

We can also style the generated image “element” using the selector—for example, we can
give it a different background color from the link element, or even give it a background
image. In this case, if we give the link element itself some padding, then it will in fact be
added to the right of the added image, so we’ll have to actually add margin to the added
image to create some spacing between the image and the link text. Instead of using pixels to
account for the width of the image, we can use the more recommended em unit. This way, as
the size of the font of the link text increases, the space between the image and the text
grows and shrinks in proportion to that text size. This is in contrast to the previous examples,
where we used pixels to create this whitespace, so the space between the text and the image
would remain the same, regardless of how large or small the text was zoomed.

a[rev="vote-for"]:after {
content : url(images/vote-for-logo.gif);
margin-left: .5em
}

The result is shown in Figure 4-16.

Figure 4-16. Using a bit of margin-left to
space out the link a bit makes it look better.

In Figure 4-16, we’ve added spacing between the left edge of the added image element
and the right edge of the link element of .5em, or roughly half the width of a letter “m” at
the current font size for the link element. We could also use padding-left on the added
image or padding-right on the link element. The difference between these is as follows:

When using margin between the elements, the background color you see between
the text and the image is the background color of the first ancestor element with
an explicit background color set. This may cause a visual separation between the
link text and the image, breaking down the value of the image to communicate
additional information about the link.

When using padding, the background color, which shows between the elements, is
the background color of the element that has the padding on it.

So, as a picture tells ~2^10 words, Figure 4-17 shows this in action.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

72

8148Ch04.qxp 3/2/07 5:04 PM Page 72

Figure 4-17. Our completed vote-for and
vote-against VoteLinks. I knew Buffy
would fare better in a fight against Neo.

Both the links are in paragraphs, like this:

<p>
<a href="http://en.wikipedia.org/wiki/Buffy_the_vampire_slayer"

rev="vote-for">Buffy the Vampire Slayer

</p>
<p>
<a href="http://en.wikipedia.org/wiki/Neo_%28The_Matrix%29"
rev="vote-against">Neo (Mr Anderson)

</p>

We give paragraphs a white background in our CSS:

p {background-color: #fff}

Now, for the vote-for link, we have a padding-left on the image, which we added after
the link:

a[rev="vote-for"]:after {
content : url(images/thumbs-up.png);
padding-left: .5em;
background-color: #bbb;

}

Because padding is between the edge of an element and its content, this shows as the gray
background color.

For the vote-against link, we have a margin-left on the image that we added after the
link:

a[rev="vote-against"]:after {
content : url(images/thumbs-down.png);
margin-left: .5em;
background-color: #bbb;

}

Because the margin of an element is between its edge and the edge of the adjacent ele-
ment, in this case the paragraph, the gray background doesn’t show; rather, the white
background of the adjacent paragraph shows.

L INK-BASED MICROFORMATS

73

4

8148Ch04.qxp 3/2/07 5:04 PM Page 73

Summary
In this chapter, you came to grips with the rel-license, rel-tag, rel-nofollow, and VoteLinks
microformats, and you saw how they all simply use the rel and rev attributes of the anchor
element. We refer to these as link microformats. These link microformats together with a
number of other simple microformats (some of them link-based, like XFN, which you’ll see
in the next chapter, and others like XOXO) built from other standard HTML elements are
collectively referred to as elemental microformats. Later in the book we’ll turn our atten-
tion to more complex microformats, often referred to as compound microformats.

Though all the microformats you’ve encountered in this chapter are conceptually simple
and easy to use, you’ve seen that they can bring immediate significant benefits to web-
based content. If you cast your mind back to Chapter 1 and the microformats principles,
you might recall that one of those principles was that microformats be modular and
embeddable. You’ll see some of these kinds of microformats (in particular, rel-tag) being
used again as parts of other, more complex microformats, demonstrating this modularity
and embeddability in action.

But before turning to these more complex compound microformats, in the next chapter
you’ll look at the original microformat, XFN (XHTML Friends Network). XFN, like the
microformats you’ve examined in this chapter, is an elemental link format, but it is more
complex again than any of the formats covered so far.

You can download the source HTML, CSS, and images for this example
from http://microformatique.com/book/chapter4/votelinks.zip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

74

8148Ch04.qxp 3/2/07 5:04 PM Page 74

8148Ch04.qxp 3/2/07 5:04 PM Page 75

8148Ch05.qxp 3/2/07 5:04 PM Page 76

5 MICROFORMAT TO DESCRIBE
RELATIONSHIPS BETWEEN PEOPLE: XFN

8148Ch05.qxp 3/2/07 5:04 PM Page 77

As you progress through the book, the microformats you encounter will become increas-
ingly more complex. In the last chapter, you learned about link microformats, and their
use of the rel and rev attributes of HTML. The chapter ended with a discussion of
VoteLinks, which, unlike the previous formats you saw, allows multiple values on the rev
attribute.

This chapter looks at another, even more complex link microformat: XFN, or XHTML
Friends Network. I start out with an overview of XFN before moving on to examine how to
use it. You’ll then see some examples of XFN in action and how to style XFN content with
CSS.

XFN overview
XHTML Friends Network (XFN) is a microformat that in fact predates microformats. It is
the original microformat, legendarily conjured up by Eric Meyer, Matt Mullenwegg, and
Tantek Çelik in the corridors at the South by Southwest Interactive (SxSWi) conference in
2004.

XFN grew out of the observation that blogrolls (the list of other blogs that bloggers read
frequently) are in fact a list of all kinds of relationships with the people publishing those
other blogs. XFN was developed as a simple way of expressing in HTML the relationships
between people—for example, friendships, romantic relationships, and work or kinship
relationships.

While more complex than the formats you’ve seen so far in this book, XFN is still a very
simple format, using only a small number of permitted rel values to express the relation-
ship between the person represented by the page linked to and the person represented by
the page linked from.

For example, Brian Suda is the technical reviewer of this book. That makes him my col-
league. Though we’ve never (quite) met in person, we chat frequently about technical stuff
and about more lighthearted things, too. In my book, this makes Brian a friend (you’ll see
soon that XFN defines the relationships you can encode using it). So, when I link to Brian’s
site, I want to be able to mark up that he is a friend and a colleague. In XFN, I’d do that like
this:

Brian Suda

The editor of this book is Chris Mills. I’ve met Chris and consider him a friend, and of
course he is a colleague, so I’d mark up a link to his site like this:

<a href="http://www.friendsofed.com/bloggED/" å

rel="friend met colleague">Chris Mills

By the way, if you are scratching your head about rel="friend met colleague", then rest
assured, it’s quite acceptable to have space-separated words as the value of the rel, as
well as rev, class, and other HTML attributes. This feature will soon come in handy when
using the class attribute.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

78

8148Ch05.qxp 3/2/07 5:04 PM Page 78

Conceptually, Figure 5-1 shows what my XFN links are saying.

Figure 5-1. A summary of the XFN relationships I have defined between Brian, Chris, and me

The solid lines represent the links from my blog (representing me) to the sites represent-
ing Chris and Brian. The dotted lines represent the relationships between Chris and me,
and Brian and me, as marked up using the rel attribute and XFN values. If you find your-
self getting the direction of rev and rel mixed up (trust me, almost everyone does), then
remember it is rel="stylesheet", and it’s the destination of the link that is a style sheet
for the page with the link, not the other way around.

Recall from the original microformats principles that one important principle when devel-
oping a microformat is to solve a specific problem. XFN does precisely this. At the time
XFN was developed, many bloggers were adding specific formatting to their blogrolls. Two
or three years ago, for example, a blogger might have added an asterisk (*) to indicate he
or she had met someone. Given that this practice was in existence, it made sense to for-
malize it, which is something microformats focuses on doing.

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

79

5

8148Ch05.qxp 3/2/07 5:04 PM Page 79

XFN also follows the principle of reusing existing practices by utilizing the HTML rel attrib-
ute, which, as you’ve already seen, expresses the relationship between pages. In this case,
we extend the idea to have pages represent the people who develop them. There have
been some criticisms of XFN along the lines that since rel is about the relationship
between pages, it doesn’t make sense to have it represent the relationship between peo-
ple, even if these people are closely related to the pages themselves. However, this under-
standing of a page representing a person was already in use in the blogging world, so XFN,
rather than inventing the concept, simply formalized it and provided a means of marking
it up in HTML.

XFN relationships
As with the other rel-based microformats you’ve seen, XFN uses a specific set of values
(or controlled vocabulary) for the rel attribute. The possible values fall into seven cate-
gories, with definitions as follows:

Friendship

Friend: Someone you are a friend to. (I have a feeling the developers of XFN
kept this one vague, as what constitutes a “friend” will vary perhaps significantly
from person to person.)

Acquaintance: Someone you have exchanged greetings with and not much (if
anything) more—maybe a short conversation or two.

Contact: Someone you know how to get in touch with.

Physical

Met: Someone you have actually met in person.

Professional

Co-worker: Someone you work with or who works at the same organization as
you.

Colleague: Someone in the your same field of study/activity.

Geographical

Co-resident: Someone you share a street address with.

Neighbor: Someone who lives nearby, perhaps only at an adjacent street
address or doorway. (Like “friend,” “neighbor” is a more fluid concept, varying
from context to context.)

Family

Child: Your genetic offspring, or someone you have adopted and take care of.

Parent: Your biological (or adopted) mother or father.

Sibling: Someone you share a parent with.

Spouse: Someone you are married to.

Kin: A relative, or someone you consider part of your extended family who
doesn’t fit into any of the preceding criteria.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

80

8148Ch05.qxp 3/2/07 5:04 PM Page 80

Romantic

Muse: Someone who brings you inspiration.

Crush: Someone you have a crush on.

Date: Someone you are dating.

Sweetheart: Someone with whom you are intimate and at least somewhat com-
mitted.

Identity

Me: A link to yourself at a different URL.

For in-depth details of each possible value, see Appendix A. For now, let’s take a look at a
couple of inherent XFN design philosophies.

First, notice that there is no “enemy” or other negative relationship; these types of rela-
tionships were deliberately omitted by the designers of XFN. The XFN designers remark in
the specification that “there is enough hatred in the world. We should work to eliminate
hatred, not to spread it,” which is indeed laudable. But it does bring to mind the sugges-
tions that the fylfot character (a character similar to the swastika, widely found in Eastern
texts—often Buddhist ones) be omitted from Unicode, because of its negative association.
In this case, would it make more sense to have people expressly state their negative as well
as positive relationships with people? Would this transparency have positive as well as neg-
ative implications and effects? And perhaps more important, to what extent should values
be embedded in technologies, particularly information technologies? Should the develop-
ers of various microformats preclude by license their use by particular governments, par-
ticular companies, or even specific people? How about restricting particular uses? These
are, to me at least, important and very interesting issues, but of course, I’ve long since
gone beyond the scope of this book.

Criticisms have been leveled at XFN that, in essence, the relationships XFN allows us to
model are such a small sample of the broad range of human relationships, that it’s an exer-
cise of little lasting value. Specific criticisms have been aimed at particular values, such as
“date,” with the objection that the term “date” does not describe someone you are dating.
Similarly, “spouse” is defined in terms of “marriage,” relegating nonmarriage relationships
to the status of “sweetheart,” itself defined in terms of a lesser commitment than spouse
(“at least somewhat”), ignoring same-sex relationships, which in many parts of the world
cannot be “strengthened” by marriage, and also ignoring relationships between people who
for whatever reason actively choose not to have a marriage. There is, of course, no reason
why, over time, XFN might not grow to encompass other forms of relationships.

You might also notice that there are no gender-specific descriptions. XFN uses “sibling,” not
“brother” or “sister”; “spouse,” not “wife” or “husband”; and so on. The specification
observes that the description of the relationships is based on the perspective of the person

And by the way, for all you social networking junkies, you haven’t
physically met the people you know in Second Life or World of
Warcraft, or on LinkedIn, unless you have met them in the physical
world, too. rel="met" is only for people you have physically met.

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

81

5

8148Ch05.qxp 3/2/07 5:04 PM Page 81

making the description, and describes the relationship, not the person—hence there is no
reference to gender, for example. If XFN introduced descriptions of the people involved in
these relationships, as well as the relationships themselves, it would become a considerably
more complex entity. People also often ask, “Why is there no ‘ex-spouse,’ ‘ex-friend,’ or sim-
ilar possible values?” XFN is designed to express information about relationships at the time
it is published. So be careful about what you say, and be ready to edit when you marry your
sweetheart or fall out with a friend.

One last thing to observe here, which we’ll look into shortly, is rel="me". This is different
from all the other possible values, which describe relationships with other people. Why
would we need a way of saying “I am me”? rel="me" has a particular use: it can be used to
establish that two or more sites or pages (e.g., your profile page at claimID or a social soft-
ware site like LinkedIn) are associated with the same person. A number of online services
use rel="me" to allow you to claim things like the blog you write.

XFN in action
Now that you’ve seen other link microformats in the previous chapter, new link microfor-
mats like XFN become very straightforward to understand and use. To use XFN, you simply
add one or more of the rel values listed previously as the value of a rel attribute in a link
to another web page. You can use more than one value, for example:

<a href="http://marxandmarzipan.com" rel="friend met colleague å

neighbor">Maxine, the co-founder of westciv

This indicates that this person is, well, a friend, someone I’ve met, a colleague, and a neighbor.

While the markup of XFN is really quite straightforward, remembering and entering vari-
ous values can get tedious. In this section, we look at XFN-compatible tools and how to
make XFN connections more efficiently than by hand-coding, and we also cover how XFN
is being used in search engines, products, and applications.

Tools

Even though hand-coding XFN is very straightforward, there is a fair degree of support for
XFN in blogging and development tools, as you’ll see in the sections that follow.

WordPress
If you’ve used WordPress (http://wordpress.org) and its built-in feature for editing blog
rolls (see Figure 5-2), you’ll probably have guessed that it has built-in support for XFN.

This is the standard “Add a link” feature of WordPress 2, which automatically creates the
HTML for a blogroll. When you use the Link Relationship (XFN) form, WordPress will auto-
matically create the relevant XFN for each blogroll entry.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

82

8148Ch05.qxp 3/2/07 5:04 PM Page 82

Figure 5-2. The blogroll editor in WordPress, including an XFN Creator feature

Given that Matt Mullenwegg was one of the early developers of XFN, and he is one of the
main forces behind WordPress, this high level of support should come as no surprise. For
more information on XFN in WordPress, see the WordPress documentation at http://codex.
wordpress.org/Defining_Relationships_with_XFN.

Bloxsom
Autoxfn is a plug-in for the Bloxsom blogging platform by Buzz Anderson. You can find it
at http://weblog.scifihifi.com/2004/02/08/autoxfn-10.

Moveable Type
Design guru D. Keith Robinson explains how to set up an XFN link list for Moveable Type
at his widely read blog, Asterisk. See www.7nights.com/asterisk/archive/2004/01/xfn-
friendly-link-list-with-movable-type for details.

XFN Creator
Originally created by Matt Mullenwegg and now maintained by Tantek Çelik, XFN Creator is an
online form-based editor for creating XFN for your links. You can find it at http://gmpg.org/
xfn/creator.

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

83

5

8148Ch05.qxp 3/2/07 5:04 PM Page 83

Existing pages
If you already have a site full of links (and who doesn’t?), then Exefen, by the prodigious
Matt Mullenwegg, is an online tool that grabs all the links of a page and helps you create
XFN for any or all of them at once. See http://photomatt.net/tools/exefen.

Search engines, services, and applications

Being the earliest microformat meant that XFN saw some experimental services, notably
rubhub and XHTML Friends. Interestingly, these services have not evolved much from their
early incarnations, which showed considerable promise. However, XFN is still being used in
quite interesting ways.

As the number of services that work in conjunction with websites and allow people to
claim these grows, it remains a challenge for these services to enable people to easily but
correctly make these claims. What’s to stop me from claiming www.microsoft.com (or any
other site) as my own? What’s to stop someone else from claiming my sites?

Technorati, for instance, has a number of possible systems. One involves checking your
credentials by asking for the username and password to log into your blog and claim it. Of
course, I trust Technorati with this information, and I trust its claim that it won’t keep this
information, but this approach would not work for an arbitrary service that I didn’t already
know and trust. Sounds a bit too much like phishing for my liking.

Another approach is to add some code to your blog, to demonstrate that you are indeed
the owner of the blog. The clever way that Technorati enables this is by using reciprocal
rel="me" links. The theory is that if you can add a link to a site, with a rel="me" XFN value,
then it demonstrates you own the site. If you create reciprocal links, then you can claim
one site from the other.

More generally, rel="me" helps deal with a problem that will only increase as more people
get online, with photosharing accounts, blogs, accounts with services like del.icio.us and
Ma.gnolia, and other online presences: how can you tell whether a site is associated with a
particular person? A name—even a reasonably unusual name like John Allsopp—is no
guarantee of unique identity. For example, this is not me:

http://johnallsopp.com

nor is this:

http://www.johnallsopp.co.uk (despite this John Allsopp being a web developer)

Yet, this is me:

http://www.flickr.com/photos/johnfallsopp

and this is also me:

http://westciv.typepad.com/dog_or_higher

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

84

8148Ch05.qxp 3/2/07 5:04 PM Page 84

and this is as well:

http://microformatique.com

(There are more, but that ought to do for now.) Using a rel="me" link from one particular
site to all the others, I can establish this association between all of these sites and me. As I
add sites and other kinds of online presence, I can simply add an XFN link to them, too.

Making connections

One site that has made extensive use of XFN is Web Connections (http://connections.
webdirections.org), a simple social networking engine first developed for the Web
Directions South conference by Tim Lucas and Cameron Adams, to help conference-goers
develop, maintain, and grow their relationships with one another, particularly after the
conference ended. Web Connections has a simple, form-based approach to “making con-
nections,” not unlike WordPress, and it uses XFN to mark up these connections.

The first step in using Web Connections is to locate the profile of the person you wish to
make a connection with. As shown in Figure 5-3, I’ve chosen my business partner, the very
glamorous Maxine Sherrin.

Figure 5-3. Maxine’s profile in Web Connections

Next, you edit your connection, as shown in Figure 5-4.

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

85

5

8148Ch05.qxp 3/2/07 5:04 PM Page 85

Figure 5-4. Editing the details of the connection I have with Maxine

If you take a look at Maxine’s profile, you’ll find her connections with their relationships
listed and marked up using XFN, as shown in Figure 5-5.

Figure 5-5. Maxine’s XFN relationships on Web Connections

In the left column, Maxine’s connection to me is third in the list, while the right column
shows other people’s relationships as they have marked them up using XFN, including
mine, which I just created, at the top.

Although it’s a simple idea, XFN provides an easy-to-use, commonly understood vocabu-
lary for marking up connections. You could imagine all kinds of data representations and

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

86

8148Ch05.qxp 3/2/07 5:04 PM Page 86

retrieval from even this simple system. You could, for example, decide to find all of your
friends’ friends who are not your friends. Or you could have a rule that only showed your
email address, phone number, or other such details to people who you have called a
friend. The important thing, particularly if we want such a solution to scale beyond a sin-
gle system like Web Connections, is to have some agreed-upon standard for marking up
things like relationships. And that’s precisely what microformats aim to help provide—in
this case, with XFN, it’s a controlled vocabulary for relationships.

Styling XFN content with CSS
Because XFN is based on the value of an attribute, rel, to style XFN links in such a way that
they will appear similar in all browsers currently in wide use, we need to add a class value.
The alternative and better approach is to use the attribute selector, which you saw in the
last chapter, but which as you know isn’t supported in Internet Explorer 6 or older for
Windows. Internet Explorer 7, however, does support this selector.

In keeping with our approach of “progressive enhancement” and “keeping our code sim-
ple,” rather than adding class values such as class="friend met" to enable styling in any
browser, we’ll stick to using just the rel values for XFN, and we’ll use attribute selectors to
style our content. This way, we are enhancing the experience of users of more contempo-
rary browsers, while maintaining the best possible code. Meanwhile, users of older
browsers won’t know what they are missing (kind of like vegetarians).

You might imagine a number of different icons for friends, colleagues, and so on, and you
could use either the background image or content property techniques you saw in the last
chapter to add these as icons on your links. Chris Messina (who you met in the last chap-
ter) and Wolfgang Bartelme have designed a number of XFN icons that could be used for
precisely this purpose, as shown in Table 5-1.

Table 5-1. XFN icons

Icon Description

Me

Friend

Friend you’ve met

Sweetheart

Sweetheart you’ve met (I’m not thinking about the kind you haven’t met
too much)

Colleague

Colleague you’ve met

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

87

5

8148Ch05.qxp 3/2/07 5:04 PM Page 87

You already know how to add background images using CSS, so rather than repeat the
technique, let’s look at something new. In this chapter, you’re going to use an old-school
technique for styling blogrolls (or other XFN links) with asterisks if you’ve met that partic-
ular person. I call this technique “old-school” because it’s something some bloggers used
to do to signify precisely this, which led in part to the design of XFN, and in some ways,
ultimately to microformats.

You’ll use the :after selector and add content, in this case a string, after links that have a
rel attribute whose value includes the value met. Now, you might be thinking this is just
like what you learned in the previous chapter. The selector will be

a[rel="met"]:after

which will work fine if you have the following link:

However, it will not work if you have this:

In this case, the value of the rel attribute is not equal to met, but includes met as one of
its values. Fortunately, CSS provides a selector for precisely this use (as you’ll see later, this
selector also comes in handy for other situations, such as multiple class values on the same
element, which commonly occurs with more complex microformats). The syntax of this
selector is a little different from the one just shown. You add a tilde (~) like so:

a[rel~="met"]:after {}

This selects any link (<a> element) with a rel attribute value that includes met. Now, you
might be wondering if it also selects links like the following:

It doesn’t, because what CSS means by “includes” is “the element’s attribute value is a
space-separated list of ‘words,’ one of which is exactly the value.” This doesn’t include
parts of words.

Now, you just need to add an asterisk after these elements, which you do using the con-
tent property, like when you added an image after the element in the previous chapter.
All you need to do is add the following property:

content: " *"

You can grab all the icons shown in Table 5-1 from
http://microformats.org/wiki/icons.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

88

8148Ch05.qxp 3/2/07 5:04 PM Page 88

giving you this:

a[rel~="met"]:after {
content: " *"

}

(Note how I got lazy and instead of adding a left margin or padding, I just used a space as
well as the *.)

So, if you had a link to Eric Meyer in your blogroll, and you had met him, you’d have some
HTML like this:

Eric Meyer

In a browser, this link will look something like Figure 5-6.

So you’ve now used the XFN attribute values as “hooks” for adding meaningful style to the
page. You haven’t amended the HTML to accommodate styling, which is a principle you
should try to keep in mind time and again throughout the book.

Once upon a time, designers were obsessed with pages looking identical in all browsers,
and so they spent a lot of time and effort making their markup much more complicated
than required in order to achieve this goal. The reality is that users’ platforms vary dramat-
ically, while users themselves are capable of making all kinds of changes to their viewing
setup—it’s one of the strengths and beauties of the Web as a medium. By letting go of the
desire to control the pages our readers see, we make our lives as designers and develop-
ers much easier, and in fact enhance our users’ experience.

Summary
In Chapter 4, you saw a number of link-based “elemental” microformats. This chapter
showed a more complex link-based microformat: XHTML Friends Network (XFN).

XFN allows us to model the relationships between ourselves and others on the Web, using
links between our sites and sites developed by other people. Using XFN, we can say
whether we have met someone, and whether that person is a friend, acquaintance, rela-
tive, or possibly some combination of these. Why bother? When I think of XFN, I often
recall this quote from Tim Berners-Lee, inventor of the World Wide Web:

The HTML and CSS for this example is available online at
http://microformatique.com/book/chapter5/XFN.zip.

Figure 5-6. The final styled XFN link

MICROFORMAT TO DESCRIBE RELATIONSHIPS BETWEEN PEOPLE: XFN

89

5

8148Ch05.qxp 3/2/07 5:04 PM Page 89

The dream behind the Web is of a common information space in which we communicate by
sharing information. There was a second part of the dream, too . . . That was that once the state
of our interactions was on line, we could then use computers to help us analyse it, make sense
of what we are doing, where we individually fit in, and how we can better work together.

XFN simply but elegantly allows us to mark up this “state of our interactions,” and so helps
this dream of the Web come one step closer to being realized.

But there’s much more to cover—you’ve only just started on this journey. Now that you’ve
seen a number of elemental microformats, let’s next turn to some more complex micro-
formats, sometimes referred to as compound microformats.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

90

8148Ch05.qxp 3/2/07 5:04 PM Page 90

8148Ch05.qxp 3/2/07 5:04 PM Page 91

8148Ch06.qxp 3/2/07 5:07 PM Page 92

6 LOCATION MICROFORMATS:
GEO AND ADR

8148Ch06.qxp 3/2/07 5:07 PM Page 93

Google Maps, along with Yahoo Maps, Microsoft’s mapping products, and a significant
number of smaller, dynamic mapping companies like Multimap and ZoomIn, coupled with
increasingly inexpensive Global Positioning System (GPS) devices (now you can even get
cameras that know where they are using GPS!), have all been part of the explosion of geo-
graphical and address data on the Web over the last couple of years. But standardized for-
mats for marking up addresses or geographical locations using longitude and latitude have
been missing from the equation. Each service typically has its own way of marking up
data—for example, Google uses Keyhole Markup Language (KML), an XML-based format,
while Yahoo uses GeoRSS, a variation on RSS. In the meantime, this lack of uniformity has-
n’t stopped developers from adopting all kinds of conventions for marking up location-
related data, such as visible geotags by Flickr users (you’ll see how Flickr now provides a
way of geotagging using microformats later in the chapter).

This chapter takes a look at how microformats address the clear need to mark up
addresses and geographical data. The chapter starts off with an overview of location
microformats, and then delves into two specific location microformats: geo and adr.

Location microformats overview
As you’ve already seen, addresses are very difficult for software to extract from unstruc-
tured text. For example, here’s a challenge you’ll find quite straightforward, but imagine
how difficult it might be for a computer. There are three locations in the following para-
graph. Can you identify them?

If you want to visit our offices, they are at Suite 5 Level 18 Clarence Street Sydney, on the
corner of Erskine. Send any packages to P.O. Box 1189 Sydney 2000, but the best way to
find us is at the Fox and Hounds on George Street, opposite the Sheraton Hotel just near
The Rocks. We are there every Thursday night playing Trivia.

Getting software to extract structured data from text is difficult, even if it conforms to
expected patterns, like the physical address in the preceding paragraph, but by the time
you get to an “anecdotal” location like a pub on a particular street, or a location opposite
a familiar landmark, it’s getting nigh on impossible. Yes, well-resourced teams may be able
to develop software to extract information like this meaningfully, but ideally the Web is a
relatively level playing field, where innovative solutions shouldn’t require teams of the very
best computer scientists in the world and large sums of money to develop.

Now, if we had way of encoding locations in our markup, then we’d have human-accessi-
ble data like “opposite the Sheraton Hotel on George Street just near The Rocks” (which,
let me tell you as a Sydney-sider is a lot more meaningful than “13 George Street”—
George Street runs several kilometers, but everyone knows where “The Rocks” is, and from
there you can easily find the Sheraton Hotel, even if you’ve never been there), and we’d
also have a format that software could easily identify. As you can probably guess, micro-
formats can come to our aid to provide a solution.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

94

8148Ch06.qxp 3/2/07 5:07 PM Page 94

There are two common ways of pinpointing your location uniquely on earth: one that will
work anywhere and one that will work anywhere you have a postal system. The first uses
what’s loosely termed geodata (e.g., longitude and latitude), and the other uses a postal
address. Both of these methods are hundreds of years old, and they are very well under-
stood. There are microformats that address each of them: the geo and the adr microfor-
mats. In the following sections, we’ll look at both formats, how you can use them, and how
they are already being used by some significant websites.

The geo microformat
Any place on earth can be uniquely described using longitude and latitude. If you are a
computer geek, you can think of a longitude and latitude pair as a globally unique identi-
fier (GUID) for a location, whether it’s the South Pole, the café around the corner, or your
office (well, it will identify your office building; if you also want to specify that your office
is on the 15th floor, you’ll need altitude as well to differentiate it from all the other offices
at the same longitude and latitude). The geo (pronounced “gee-oh”) microformat allows
you to encode longitude and latitude in your web content.

You’ve seen that an important microformats principle is to “reuse building blocks from
widely adopted standards.” So to develop a microformat for geodata, again we look for an
existing standard that addresses this issue. We find it in an IETF RFC mentioned in Chapter 1
that we’ll look at in detail in the next chapter: vCard. The role of vCard is for encoding “con-
tact information . . . for people, companies, and organizations,” and one small part of it
(remember the “keep it simple” principle) is the geo field, for encoding—surprise, surprise—
geodata.

Now, you should be aware that there is an important restriction on the use of the geo
microformat. The geo microformat specification states the following:

If the publisher knows and is publishing the name of the location in addition to its GEO
lat/long, then the publisher MUST use hCard instead of just GEO to publish the name and
GEO lat/long of the location.

Even if your chemistry education stopped in high school, you should be able to recall
the fundamental concepts of elements, like hydrogen or oxygen, and compounds,
which are combinations of two or more elements. By analogy, the microformats
you’ve seen so far are called elemental microformats. This type of microformat is,
according to microformats.org, “a minimal solution to a single problem, built from
standard XHTML elements.” More-complex microformats that are built from elemen-
tal microformats and often also other HTML elements are, unsurprisingly, referred to
as compound microformats.

Now that you have a solid understanding of microformat concepts and principles, and
you have number of elemental formats under your belt, you’ll start building and using
more complex formats.

LOCATION MICROFORMATS: GEO AND ADR

95

6

8148Ch06.qxp 3/2/07 5:07 PM Page 95

If the publisher knows and is publishing the address of the location, OR if the address of
the location was what was actually entered by a human, and the publisher simply turned
that into lat/long using some sort of a service, then the publisher SHOULD use ADR to
publish the actual human entered address information since it communicates far more
semantic information than a simple GEO lat/long coordinate.1

So, if we have the name of a hotel, such as “The Sheraton, Sydney,” or “The White House,”
or some other named location, we must use the hCard microformat (more information on
this microformat in the next chapter). If we know the address of the location, we should
use the adr microformat, rather than just the longitude or latitude (more information on
adr is coming up later in this chapter).

When might it be sensible to use the geo microformat by itself? Well, many places don’t
have an address—for example, the summit of Mount Everest (longitude 86° 56' 40" E, lati-
tude 27° 59' 16" N), or the splashdown site of Apollo 11 after returning to earth (13° 19' N,
169° 9' W). Both of these locations would be perfect candidates for the geo microformat.

Similarly, tourist information (whether personal travel diaries, blog posts, or commercial
travel sites) is a perfect candidate for the use of geo, as is web content on historical events,
where location is often very important (e.g., places where battles took place or important
documents were signed). Place is a profoundly important piece of information, and the
phenomenal rise in mapping applications like Google Maps and Yahoo Maps, along with
map-based “mashups” demonstrates the importance of some form of standardized way of
marking up geographic information.

A common use for geodata that’s already in use by bloggers and others on the Web is tag-
ging the location a photo was taken. You an imagine a search engine that looks for geo
information associated with images and presents it on a world map (perhaps mashed up
using Yahoo Maps or Google Maps), or that enables you to find photos of nearby spots,
photos of a particular location, and so on.

Recently, Flickr, responding to the common practice of tagging such photo locations with
Flickr tags, implemented a feature that allows you to geotag photos on Flickr using a map
interface. Overnight, more than 1 million photos were geotagged in this way. And exciting
news for those associated with the microformats community was that Flickr chose to use
the geo microformat to mark up this information.

Let’s take a quick look at how this geotagging works and the code that Flickr uses to mark
up locations. If you have a Flickr account, start up the organizer, choose the Map tab, and
then move the map to the location you took your photo, as shown in Figure 6-1.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

96

1. See http://microformats.org/wiki/geo#Draft_Specification.

8148Ch06.qxp 3/2/07 5:07 PM Page 96

Figure 6-1. The Flickr organizer Map tab
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

LOCATION MICROFORMATS: GEO AND ADR

97

6

8148Ch06.qxp 3/2/07 5:07 PM Page 97

Now drag one of your photos to the place it was taken, as shown in Figure 6-2.

Figure 6-2. Dragging a photo to the location it was taken

If you look at the photo in its original location and click “map” in the list of properties, you
get a pop-up map, similar to the one shown in Figure 6-3.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

98

Re
pr

o
d
uc

ed
w

it
h

pe
rm

is
si

o
n

o
f

Ya
ho

o
!I

nc
.©

20
07

b
y

Ya
ho

o
!I

nc
.

YA
H

O
O

!a
nd

th
e

YA
H

O
O

!l
o
go

ar
e

tr
ad

em
ar

ks
o
f

Ya
ho

o
!I

nc
.

8148Ch06.qxp 3/2/07 5:07 PM Page 98

Figure 6-3. For all images that you’ve assigned a location in Flickr in this manner, you can get a pop-
up map to show where they were taken.
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Now if you take a look at the code for the longitude and latitude in the bottom-right area
of the pop-up map, you’ll see something like this:

<div style="position: absolute; right:7px; bottom:7px; å

font-family: Arial; font-size: 11px; color: #999"><i> å

33°53' 27" S, 151°16' 55" E<span class='geo' å

style='display:none'>-33.890937 å

151.281985</i></div>

Leave aside the fact that Flickr has mixed in inline CSS, as well as presentational HTML (yes,
I know, <i> is valid strict HTML and XHTML, but this is still a presentational use of the <i>
element). As you’ll see in just a moment, this is, in fact, the geo microformat in action.

Using geo

The microformats presented so far in the book have been associated with single HTML ele-
ments. From this chapter on, the formats covered are compounds of two or more HTML
elements. All compound microformats of two or more elements are contained inside what
is termed the root element. Root elements typically have a class value that indicates the
microformat values they contain. In the case of the geo microformat, the root element has
a class value of geo.

LOCATION MICROFORMATS: GEO AND ADR

99

6

8148Ch06.qxp 3/2/07 5:07 PM Page 99

A geo root element may look like this, for example:

...

In geo, the root element contains two properties, each of them HTML elements: one for
longitude and one for latitude. Here’s a very simple example:

27.976628,
86.933302

In the previous Flickr example, we had this geo microformat (which I’ve slightly reformat-
ted to make it more readable):

-33.890937
151.281985

(Don’t worry about those large numbers right now—we’ll get to those in a moment.)

The root element in both cases is a element with a class value of geo. This con-
tains geo’s two properties, longitude and latitude, themselves also elements, with
class values of longitude and latitude, respectively. The actual longitude and latitude
values are the text (or content) of the respective elements.

This example demonstrates something really important in microformats: the class design
pattern, which is used frequently for constructing a microformat. The class design pattern
uses the class attribute value on HTML elements to add more meaning (or “richer seman-
tics”) than is inherently available in HTML. For a microformat, it’s actually the attribute val-
ues of elements, rather than the elements themselves, that are important. So the same
class value might be used with different kinds of elements, and it will still be a properly
formatted geo microformat. For example, instead of the span elements we have here, we
could have the following:

<dl class="geo">
<dt>Lat:</dt>
<dd class="latitude">27.976628 </dd>
<dt>Lon:</dt>
<dd class="longitude">86.933302</dd>

</dl>

which is completely equivalent from a microformat perspective to the same construction
using span elements. The definition list approach is actually how the mapping service
Multimap reports location.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

100

8148Ch06.qxp 3/2/07 5:07 PM Page 100

But what are those large numbers, like “27.976628”? These are longitude and latitude in a
decimal format, or decimal degrees. Traditionally, longitude and latitude are reported as
degrees, minutes, and seconds, such as 57 degrees, 21 minutes, 8 seconds (or 57° 21' 8"). But
computers like the decimal format (actually, the decimal format makes it much easier for
programmers to do calculations), so it is commonly used, particularly by mapping software.

How do you convert from traditional to decimal mapping values? It’s probably rare that
you’ll have to do this by hand, but if you do, then you’re in luck—the formula you need is
of the following form:

decimal degrees = degrees . (minutes+(seconds/60))/60)

Taking our example of 57 degrees, 21 minutes, 8 seconds from earlier, the decimal degrees
value would be 57.(21+8/60)/60 or 57.352222 (typically, decimal degrees are reported to
six decimal places).

Getting location data

“But wait,” I hear you say. “How do I get these values—whether decimal or traditional—in
the first place?” Well, if you can convince your boss or financers to let you travel around
the world with a GPS device, that’s one way, but if time and money are an issue, several
online mapping services can help you here. The following sections describe some possible
options.

Google Maps
You can use Google Maps to get location values, although it is a bit of a hack, because
Google Maps doesn’t actually display the longitude and latitude on the page. It is there,
though—you just need to know how to find it:

1. Find the location on Google Maps by searching or browsing.

2. Double-click the location you want the geo code for.

3. From the “Link to this page” link near the top-right corner (see Figure 6-4), get the
URL value, which will look something like this:

http://maps.google.com/maps?f=q&hl=en&sll=37.795678, å

122.400699&sspn=0.021195,0.026178&q=Embarcadero&ie= å

UTF8&ll=37.793915,-122.403145&spn=0.010598,0.013089&om=1

For the lazy among us, here’s a site that will convert in either direction:
www.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html.

LOCATION MICROFORMATS: GEO AND ADR

101

6

8148Ch06.qxp 3/2/07 5:07 PM Page 101

Figure 6-4. Google Maps shows geo information via the “Link to this page” link.
Google Maps™ mapping service/NAVTEQ™. Used with permission.

The longitude and latitude are 37.795678 and –122.400699. Like I said, it’s a bit of a hack,
but there are other possibilities, too.

Multimap
Multimap (www.multimap.com) makes it very easy to get location data, in both traditional
and decimal degree formats. It even uses the geo microformat for this information. Just
search for or browse to a location. You’ll find the location information under the Map
Information heading, as shown in Figure 6-5.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

102

8148Ch06.qxp 3/2/07 5:07 PM Page 102

Figure 6-5. It’s easy to find geo information in Multimap.

Yahoo Maps
The process of getting longitude and latitude values from Yahoo Maps is almost identical
to the Google Maps method.

1. Search for or browse to a location in Yahoo Maps.

2. In the top-right corner of the map is a link for linking to the map, as shown in
Figure 6-6.

Figure 6-6. Yahoo Maps includes a Link to this Map link,
which contains geo data.
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

LOCATION MICROFORMATS: GEO AND ADR

103

6

8148Ch06.qxp 3/2/07 5:07 PM Page 103

3. Inside the URL the link is pointing to, which looks something like this:

http://maps.yahoo.com/linkmap?addr=&csz= å

San+Francisco%2C+CA&state=CA&uzip=94103&ds= å

n&name=&desc=&lat=37.7742&lon=-122.417068&mlt= å

37.7742&mln=-122.417068&zoomin=yes&BFKey=&mag=4

we find lat=37.7742 and lon=-122.417068, which is marginally friendlier than
Google Maps (where you have to remember that latitude comes first).

Getting geo data with an address
A special case is where you have an address and want to convert it to a geo location. A
number of services will do this, in addition to Google Maps, which as you just saw is able
to convert an address in a convoluted fashion. Most of these services are specific to a sin-
gle country, although Maporama (http://maporama.com) is able to search for an address
in a great many countries, and return longitude and latitude with the results.

Imagine I’m staying in San Francisco for a few days, and because I am a very geeky kind of
guy, I want to publish the geographic location of the hotel I am staying at. I know the
address:

757 Market Street
San Francisco
CA 94103

First, I need to look up the geographic location for that address. Maporama provides a
simple search interface for this. I enter the address, as shown in Figure 6-7.

Figure 6-7. Searching for a location by address in Maporama

Maporama returns a map, with the longitude and latitude displayed, as shown in Figure 6-8.

Keep in mind that if you have an address, and you also want to add the geo data, then
it is recommended you add the address using the adr microformat, which we’ll look at
in a moment.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

104

8148Ch06.qxp 3/2/07 5:07 PM Page 104

Figure 6-8. Maporama displaying the location, along with the longitude
and latitude

Sadly, Maporama doesn’t use the geo microformat for this.

If you are manually marking up locations and have addresses, Maporama and Multimap
are good services for getting the geo data you need. But what if you are looking to grab
this kind of data programmatically? While the specifics of how you would do this are
beyond the scope of this book, Yahoo has a Geocoding API that facilitates looking up geo-
data from addresses: http://developer.yahoo.com/maps/rest/V1/geocode.html. And
for addresses within the United States, Geocoder.us (http://geocoder.us) is a free service
based on U.S. Census data.

So go ahead and use this data in all kinds of creative ways—just make sure that if you pub-
lish longitude and latitude, you use the geo microformat to do so.

The abbr design pattern
So far you’ve seen how to mark up longitude and latitude when these values are visible on
the page. But what if you are referring to a location, such as the splashdown point for
Apollo 11, and you want to add geo data, but not have this visible as part of the content?
For example, you might want to add this information to a page as additional data for soft-
ware to use, like in a mashup of the locations of all the splashdown locations of Apollo
command modules. Here you can use another microformats design pattern: abbr.

LOCATION MICROFORMATS: GEO AND ADR

105

6

8148Ch06.qxp 3/2/07 5:07 PM Page 105

According to microformats.org, the abbr design pattern is designed to “make text that is
human readable also formally machine readable.” You’ll see in later chapters that other
microformats besides geo make use of this design pattern.

To understand how the abbr design pattern works, think back to Chapter 4, where you
examined the <abbr> element. The <abbr> element indicates “an abbreviated form”
according to the HTML specification. Obviously, you can use this element to mark up
abbreviations like <abbr>W3C</abbr>, <abbr>WHO</abbr>, or <abbr>WIPO</abbr>. But
what’s WIPO, you ask? Well, here you can add a little more HTML, the title attribute (yes,
the title attribute is not just for links), to “provide the full or expanded form of the
expression.”

In this case, we’ll mark up our splashdown location like this:

Apollo 11 splashed down <abbr title="13.150000;169.150000" å

class="geo"> 400 miles (640 km) South West of Wake Island, å

in the North Pacific Ocean</abbr>

Notice that the latitude and longitude are the value of the title attribute, separated by
just a semicolon, and latitude precedes longitude. With the abbr design pattern, we can,
according to the abbr design pattern specification, “enclose the human-friendly text that
you want to make machine readable with <abbr>” and “add a title attribute to the abbr
element with the machine-readable data as the value.” So, our human-readable text is
“400 miles (640 km) South West of Wake Island, in the North Pacific Ocean,” and the
machine-readable part is “13.150000;169.150000.”

Again, one of the important aspects of microformats is to use HTML correctly and appro-
priately. Here, we’ve taken an existing feature of HTML and used it semantically. Because
this is an approach to markup we can use time and again, we formalize it as a pattern.
You’ll see the abbr design pattern used frequently in other microformats in the same way:
to encode machine-readable and human-readable data.

Benefits of using geo

You’ve no doubt seen Google Maps or other mapping system–based mashups. One of the
more famous mashups is Adrian Holovaty’s chicagocrime.org mashup (www.chicagocrime.
org), which takes publicly available data about crimes in Chicago and “mashes it up” with
Google Maps. As an example, Figure 6-9 shows some of the heinous pay TV service
offenses committed in Chicago (sadly, I couldn’t find a list of really serious offenses, like
illegal music downloads).

The key to mashups is having readily machine-readable information to mash up with a
mapping service. At present, there are a number of different, though somewhat similar
online geodata formats, including Google Earth’s KML (an XML format) and GeoRSS (an
extension to RSS for encoding geodata), but there is no widely adopted web/HTML-
friendly format for marking up geodata. The geo microformat’s simplicity means not only
that is it very easy for content developers to adopt, but also that using geodata in map
mashups is straightforward for application developers.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

106

8148Ch06.qxp 3/2/07 5:07 PM Page 106

Figure 6-9. Mashup example: chicagocrime.org
Google Maps™ mapping service/TeleAtlas. Used with permission.

Already some experimental tools have been created to mash up geodata with Google
Maps, like the one from Brian Suda (whose very cool X2V service you’ll see when we look
at the hCard and hCalendar microformats). This service, which at the time of this writing
doesn’t have a name, finds geodata on a page, converts it to Google’s KML, and then
passes this to Google Maps via its API, which plots the geocoded data on a Google Map.
The mashup even takes event or location names from other microformats like hCard and
hCalendar, and adds these to the map mashup as well. This probably sounds a little com-
plicated, but the great part is that once you as a developer have used the geo microfor-
mat, you have nothing else to worry about.

Here’s an example from the wild. At the site for a conference I help run, we mark up all
the data we can with microformats. For locations, we use geo, and our information looks
something like this:

<abbr class="geo" title="-37.831107;144.962325">
Bell's Hotel and Brewery, 157 Moray St, å

CNR with Coventry, South Melbourne
</abbr>

I’ve simplified this example, because as you saw a short time ago, we should be using
the adr microformat for the address. At the site, we actually do so.

LOCATION MICROFORMATS: GEO AND ADR

107

6

8148Ch06.qxp 3/2/07 5:07 PM Page 107

We use the abbr pattern to show people human-readable information, and we use the
title attribute to encode the machine-readable latitude and longitude. Let’s see how
Brian Suda’s web-based service uses this.

At http://suda.co.uk/projects/microformats/geo, we just add the URL of our site. We
can choose to convert it to either Google Maps KML format or GeoRSS (Yahoo Maps sup-
ports GeoRSS). These files can then easily be used with these mapping systems, with no
need to learn the different mapping formats or APIs, or separate files can be written for
different mapping systems.

You can even automatically create a Google Maps mashup from your geo-encoded data—
here’s how:

1. Take this URL at Google Maps: http://maps.google.com/maps?q=.

2. Escape the URL for Brian’s converter service, and then append it to the Google
Maps URL:

http://maps.google.com/maps?q=http%3A//suda.co.uk/projects/ å

microformats/geo/get-geo.php%3Ftype%3Dkml%26uri%3D

3. Finally, append the URL for your page (or any other page) that contains the geo-
data you want to mash up with, and add the URL of the page you want to create a
mashup for (either escaped or not), which should give you this:

http://maps.google.com/maps?q=http%3A//suda.co.uk/projects/ å

microformats/geo/get-geo.php%3Ftype%3Dkml%26uri% å

http://microformatique.com/book/chapter6/geo.html

If you put this into your browser’s address field, you’ll get something like the page shown
in Figure 6-10.

Figure 6-10. Creating an ad hoc mashup with Google Maps and Brian Suda’s geo service
Google Maps™ mapping service/MapData Sciences Pty Ltd., PSMA. Used with permission.

Not only do you have the location extracted and mapped, but you also have the human-
readable address extracted from the <abbr> element. No need for a Google Maps API key
or any JavaScript coding. By comparison, here’s what you’d have to add to your HTML to
get a similar effect:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

108

8148Ch06.qxp 3/2/07 5:07 PM Page 108

<head>
<script type="text/javascript">
//<![CDATA[
function load() {
if (GBrowserIsCompatible()) {
var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(-37.831192, 144.962561), 15);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
var point = new GLatLng(-37.831192, 144.962561)
//map.addOverlay(new GMarker(point));
var marker=new GMarker(point);
map.addOverlay(marker);
marker.openInfoWindowHtml("<p style='font-size: small; å

width=10em'><div class='vevent' style='font-size: small'> å

 Web Directions presents å

<div class='vcard' style='display: inline'> å

Ben Barren<\/span><\/span><br \/> <abbr class='dtstart' å

title='20060810T1800+1000'> 6.00pm Thursday August 10 2006 å

<\/abbr><\/span><br \/> Bell's Hotel å

and Brewery, 157 Moray St <br \/>South Melbourne<\/span><br \/> å

<\/div><\/p>");
}

}
//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>

</body>

Mashups are already very big news. And the more geodata there is on the Web, the more
interesting applications along these lines we’ll see, including mashups using your data. By
using the geo microformat to mark up location information, you’ll be giving your data a
much better chance of ending up playing a part in as-yet-unthought-of map mashups.

Styling geo content with CSS

Unlike with rel-based microformats, which require the use of the poorly supported attrib-
ute selector to style with CSS, because the geo microformat is class based, we can style our
geo content in just about any browser, using the class selector.

We might, for instance, want to indicate locations that are geo encoded, not unlike how
we used CSS to style license or tag links in a previous chapter. To do so, we start with a
selector for any element with a class value of geo:

.geo {}

LOCATION MICROFORMATS: GEO AND ADR

109

6

8148Ch06.qxp 3/2/07 5:07 PM Page 109

Then we use either of the techniques from the previous chapter for adding an image after
the text of the element with a class of geo: using background-image or using the :after
selector to add generated content. Using the former technique, we have a statement like
this:

.geo {
background-image: url(geo-logo.png);
background-repeat: no-repeat;
background-position: right center;
padding-right: 36px;
}

Using generated content, we get this:

.geo:after {
content: url(geo-logo.png);
padding-left: .5em

}

We’ll use this technique to style a photo on a site that is also geotagged using the geo
microformat:

<p>Photo taken at <abbr title="-33.890937;151.281985" class="geo">
North Bondi</abbr></p>

The result looks like Figure 6-11 when viewed in a browser.

Figure 6-11. An image caption marked up with the geo microformat and
including a geo icon

The first technique, as you saw previously, works in any browser from Internet Explorer 4
and Netscape 4 upward (this time, because we are using the class selector, even these
browsers will display the style). The second technique works only in contemporary browsers
(Safari, recent versions of Opera, and Firefox and other Mozilla-based browsers).

You can download the HTML and CSS for this section’s example from
http://microformatique.com/book/chapter6/geo.zip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

110

8148Ch06.qxp 3/2/07 5:07 PM Page 110

The adr microformat
While geographic data is quite new to the Web, I suspect adding physical addresses to web
pages goes back to some of the earliest pages, and there must be many millions of
addresses online. But HTML doesn’t provide a standardized way of marking up addresses
(the <address> element, as you saw, is restricted to “supply[ing] contact information for a
document or a major part of a document”).

So, using the microformats approach, we look for a simple, specific, existing standard for
address information. Almost every one of us uses a well-established format for this all the
time, in our address books in applications like Entourage, or in the Mac OS X Address Book.
Typically, address book applications use the vCard format, which you encountered briefly
earlier in the book, and a subset of the vCard format is adr for—you guessed it—addresses.
In Chapter 1, you were introduced to adr and saw that it has the following fields:

post-office-box

extended-address

street-address

locality

region

postal-code

country-name

The adr subset of vCard is an ideal candidate for our microformat for addresses, as it’s
simple, modular, and widely used. The following sections describe how to use adr, the ben-
efits of doing so, and how to style adr content with CSS.

Using adr

adr is reasonably simple to hand-code, and some tools are available to help you add it to
your websites. The following sections discuss the available options, starting with how to
hand-code adr content.

Hand-coding adr content
How do we translate the existing vCard format into HTML markup? After all, as demon-
strated in Chapter 1, it’s not a pretty sight. Here is the adr component of a simple vCard:

ADR;TYPE=dom,home,postal,parcel:;; å

123 Main Street;Any Town;CA;91921-1234;

LOCATION MICROFORMATS: GEO AND ADR

111

6

8148Ch06.qxp 3/2/07 5:07 PM Page 111

Again, we’ll implement the class design pattern and use class attribute values to add
these fields to standard HTML elements, giving them more semantics than HTML alone.
Just as with geo, we’ll have a root element, which contains all the address information.
We’ll use adr as the class value for this root element, which, as you saw, can be any HTML
element but will often be a <div> or element.

Using the class design pattern, the locality field in adr becomes <span class="local-
ity">, the country-name field becomes <div class="country-name">, and so on, giving
us an HTML fragment like this:

<div class="adr">
<div class="street-address">2560 Ninth Street </div>
<div class="extended-address">Suite 219</div>
Berkeley,
CA
94710
<div class="country-name">USA</div>

</div>

which is displayed in HTML as follows:

2560 Ninth Street
Suite 219
Berkeley, CA 94710
USA

You can see that each adr property is mapped into an HTML element, using the class design
pattern to give each element a class value of the name of the associated vCard adr field.

You might be wondering why street-address, extended-address, and country-name are
<div> elements, while the other properties of adr are elements. Remember, using
the class pattern, it doesn’t matter what elements you use, provided they are valid HTML
(so, if you used for the root element, the HTML containment rules presented in
Chapter 3 require all of the elements contained in the root element to be inline elements).
We’ve in fact chosen these elements to be divs because they’ll appear on their own line in
the browser—recall that divs are block elements, so by default that’s how they’ll appear,
while spans are inline elements, and so will appear by default inline, not on a new line. We
could just as readily have made all of the elements inside the root element spans, but then
we’d need to use some extra CSS if we wanted the address to appear in the browser in the
conventional way. We’ll take a look at styling adr with CSS shortly.

Tools for coding adr
If you don’t want to hand-code adr, there are quite a few tools available to do the heavy
lifting for you:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

112

8148Ch06.qxp 3/2/07 5:07 PM Page 112

hCard Creator (http://microformats.org/code/hcard/creator): You can use the
hCard Creator from microformats.org and only take the adr part it generates
(remember, adr is a subset of hCard).

Dreamweaver Extensions Suite (www.webstandards.org/action/dwtf/microfor-
mats): This suite, available, from the Web Standards Project, provides tools for
adding various microformats, including hCard, to your HTML.

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf): The
very geekily named pnh_mf plug-in provides a simple way for adding various
microformats, again including hCard, to Textpattern-based sites.

Structured Blogging (http://structuredblogging.org): This site offers plug-ins for
WordPress and Moveable Type that allow easy creation of microformatted content
and support hCard.

Let’s take a closer look at the first of these tools, hCard Creator.

hCard Creator (or “hCard-o-matic”), is a form-driven tool for creating hCard microformatted
content.

To use the tool, you simply fill in the relevant fields in the hCard-o-matic form, as shown
in Figure 6-12.

Figure 6-12. hCard-o-matic from microformats.org allows you to create hCards automatically.
The hCard-o-matic is copyright © 2005 Tantek Çelik. Some rights reserved (http://creativecommons.org/licenses/by/2.0/).

You’ll take a detailed look at hCard in the next chapter, but as
you’ve already seen, adr is a subset of hCard.

LOCATION MICROFORMATS: GEO AND ADR

113

6

8148Ch06.qxp 3/2/07 5:07 PM Page 113

hCard-o-matic creates the HTML code for you, like so:

<div class="vcard">

<div class="adr">
<div class="street-address">1600 Pennsylvania Ave</div>
Washington, å

DC,
20520
USA

</div>
</div>

For now, let’s simply take the adr part of the hCard code it creates, giving us the following
adr microformat:

<div class="adr">
<div class="street-address">1600 Pennsylvania Ave</div>
Washington,
DC,
20520
USA

</div>

Without any CSS styling, the result looks like Figure 6-13 in most browsers.

Figure 6-13. Example adr microformat
viewed in a browser

In a moment, we’ll look at styling adr content and see some techniques that will come in
handy for styling many other kinds of compound microformats as well.

Benefits of using adr

Why go to the trouble of adding this extra markup for your address information? By now
the importance of the promise of standardized markup conventions for common web-
based information has likely dawned on you, as it has quite a few people and organizations
who have built services associated with the hCard format, from which adr is derived.

Brian Suda, whom you met in the “The geo microformat” section of this chapter, has a
service called X2V, which takes a URL page with hCard (and other microformatted) infor-
mation and converts it to vCard, allowing you to save it to your hard disk and open it in an
address book application or other vCard-aware application. There are also extensions to
Firefox, like Smartzilla and Tails, which will extract hCard and other microformatted data,
presenting it in floating windows and also enabling you to download it to your hard disk.
We’ll look at these services in more detail in later chapters.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

114

8148Ch06.qxp 3/2/07 5:07 PM Page 114

But perhaps the most exciting developments in this area are those that enable distributed
services, such as Technorati’s microformats search, as well as a number of open source
libraries and toolkits for Ruby, PHP, and other development tools. These tools can enable
tens, or even hundreds of thousands, of developers to easily add microformat searching
and extraction features to existing and new online applications. Do you want your location
(and other) data left out of this revolution?

We’ll take a look at a number of these services in the next chapter, where we cover hCard
in detail and we also take a closer look at what Technorati already offers by way of micro-
formats searching, which your site can benefit from in a matter of hours, or even less.

Styling adr content with CSS

As with geo, because adr is class based, you can style its content easily with the CSS class
selector. Again, one simple, useful idea is to add visual cues for address information, using
either background images (which, along with the class selector, are widely supported in

About Technorati

Founded by David Sifry, Technorati is a search engine focusing on the blogosphere and
real-time web searching. Chief Technologist Tantek Çelik, frequently mentioned in this
book, is one of the most important members of the microformats community, and
along with Ryan King and Kevin Marks, he has been involved with developing a number
of microformats and guiding the community. Technorati has promoted and adopted
numerous microformats, including the use of rel-tag (as of late 2006, Technorati was
indexing more than 100 million tagged posts), hCard, and xFolk.

In May 2006, Technorati introduced its first public version of a search engine specifi-
cally for microformatted data (see http://kitchen.technorati.com), along with a
“distributor” for microformatted data called Pingerati (see http://pingerati.net).

Let’s start with the second of these two innovations. You’ve seen that one promise of
microformats is distributed services—for example, an aggregator of event information
published at sites all over the Web. A significant impediment to the reality of such
services is the difficulty of developing a search engine to trawl the Web for microfor-
matted content. With Pingerati, Technorati has created a service that publishers can
“ping” (a geeky way of saying “inform”) to let it know about new microformatted data.
Obviously, this is very useful for Technorati, but Technorati also sends updates of this
data to services interested in indexing them. At present, Pingerati knows about pages
that contain contacts (hCard), events (hCalendar), classified listings (hListing), reviews
(hReview), and link tags (xFolk.)

Technorati microformats search uses the information indexed by Pingerati to enable
searching for this kind of information. But while this service works a lot like traditional
index/search services, some of the services using Pingerati, such as Yahoo Tech,
demonstrate the possibilities of a new age of distributed, rather than centralized, data.
You learned about some of these possibilities in Chapter 2, and you’ll see others pop
up throughout the rest of the book, when we look at the specific microformats that
help drive them.

LOCATION MICROFORMATS: GEO AND ADR

115

6

8148Ch06.qxp 3/2/07 5:07 PM Page 115

browsers) or the content property (which is less supported in browsers; Internet Explorer
7 still does not support generated content).

An adr is the first block of content you’ve marked up with microformats so far, so it gives
us an opportunity to look at some new styling techniques. At present, it’s very common to
style blocks of content with rounded-corner boxes. There are a number of ways of doing
this, some much cleaner than others. We’ll take a look at a couple of them here.

Using the border-radius property
First we’ll consider a theoretical solution, with minimal support in browsers (it has some
support in Firefox 1.5 and newer). You might wonder why we would even touch on some-
thing that barely has any support, but it demonstrates the progressive enhancement prin-
ciple of CSS-based design, where rather than aiming for pages that look identical in all
browsers, our goal is good design, with some enhancements for browsers that support
newer features. It’s very important to note that using this technique, users of browsers
with more limited CSS support should get access to all the content and services of a
page—users of newer browsers simply have an enhanced experience. One benefit of this
approach is you don’t need to frequently update your site design as newer versions of
browsers add support for more-advanced CSS features.

CSS3 features several new border properties associated with rounded corners on borders.
The border-radius property allows us to add a rounded corner of a given radius to all
edges of an element at once, or alternatively to individual corners. Right now, this is only
supported in Gecko-based browsers, like Firefox (1.5 and higher), Mozilla (1.7 and higher),
and less well-known Gecko-based browsers like Flock and Camino. Keep in mind that, for
the border-radius property to have an effect, we need to give the element a border in
the first place!

To add a border with a 1em rounded corner on each edge to our adr elements, we use the
following statement:

.adr {
border: thin solid black;

}

This statement styles our address from the previous example as shown in Figure 6-14.

Figure 6-14. Adding a border to our adr microformat

Let’s add a little padding to create some space between the border and the content:

.adr {
border: thin solid black;
padding: 1em

}

The result is something like Figure 6-15.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

116

8148Ch06.qxp 3/2/07 5:07 PM Page 116

Figure 6-15. Adding some padding to our adr microformat

Now it’s time to add the rounded corners. In theory, we add the CSS3 rounded corners like this:

border-radius: 1em

But as mentioned earlier, as of the time of this writing, the border-radius property is sup-
ported only by Mozilla-based browsers as an experimental property (and a beta version of
WebKit, the rendering engine of Apple’s Safari, which is also used in projects like Nokia’s
S60 mobile device browser and Apple’s recently announced iPhone).

Now, a CSS convention for browser developers is that when implementing experimental
properties, you prefix them with an identifier for that browser. Gecko-based browsers use
the prefix -moz-, WebKit uses -webkit-, and so on. So it won’t surprise you that the prop-
erty for Mozilla-based browsers is as follows:

-moz-border-radius

And in WebKit-based browsers (like Safari) it’s this:

-webkit-border-radius

So, putting these all together, we have the following:

.adr {
border: thin solid black;
-webkit-border-radius: 1em;
-moz-border-radius: 1em;
border-radius: 1em;
padding: 1em

}

When a future version of Mozilla supports the CSS3 border-radius property natively, then
the border-radius property will override the -moz-border-radius property (because
border-radius comes after -moz-border-radius in the style sheet cascade). In essence,
we are future proofing our site. In a browser that supports rounded corners, we get the
display shown in Figure 6-16.

Figure 6-16. Adding rounded corners to our adr microformat border using the CSS3 border-
radius property

LOCATION MICROFORMATS: GEO AND ADR

117

6

8148Ch06.qxp 3/2/07 5:07 PM Page 117

This is not yet perfect, but it’s a very big step in the right direction.

Using background images
Another widely used technique for adding rounded corners with CSS uses background
images on various elements to give the appearance of rounded corners. One problem with
this technique is that developers frequently add HTML elements to their content simply to
enable the technique to work, which is problematic in terms of separating content from
appearance. But using your HTML intelligently can enable this technique to work in many
situations without you having to add extraneous HTML simply for the sake of the technique.

There are two forms of this technique. In one, the box with the rounded corners will have
a fixed width, requiring only two background images. In the other, we want the width of
the box to grow and shrink, perhaps based on the page width (making the width of the
box a percentage of the width of its parent element), or perhaps as a function of the size
of the text (giving roughly the same line length in terms of characters regardless of the
user’s referred font size). This second fluid, or elastic, technique requires background
images on four elements, and so it can be harder to pull off without adding elements sim-
ply for achieving the effect.

The secret to implementing this technique correctly is using the HTML you already have
intelligently for styling. Let’s take a different, slightly more complex adr microformatted
address and use the technique to style it with a rounded corner box.

<div class="adr">
<div class="street-address">2560 Ninth Street </div>
<div class="extended-address">Suite 219</div>
Berkeley,
CA
94710
<div class="country-name">USA</div>

</div>

This is the address of this book’s publisher in the United States.2 If we want a fixed-width
(in terms of pixels) box with rounded corners, we can achieve it reasonably simply. Let’s
give the containing <div> of class adr a width in pixels:

.adr {
width: 312px

}

With this, you might have already noticed a problem—the Internet Explorer box model
bug. If you aren’t familiar with this bug, then very simply, Internet Explorer 5, 5.5, and 6 for
Windows (6 only in quirks mode, which you’ll remember from Chapter 3) treat the width
of an element as shown in Figure 6-17.

While this treatment seems logical, it’s actually not how the CSS specification says width
should be calculated, which is as shown in Figure 6-18.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

118

2. Please send notes of praise, large sums of money, and gifts of an automotive nature, by way of thanks
to the author, to this address.

8148Ch06.qxp 3/2/07 5:07 PM Page 118

Figure 6-17. This is how older versions of Internet
Explorer interpret the box model in quirks mode.

Figure 6-18. This is how the box model should be
interpreted correctly, according to the W3C specification.

LOCATION MICROFORMATS: GEO AND ADR

119

6

8148Ch06.qxp 3/2/07 5:07 PM Page 119

The problem is, if you set an explicit width as well as padding and/or margin on an ele-
ment using CSS, then in older versions of Internet Explorer, the width of the element will
be different from that in newer browsers. The secret here is to not set margin or padding
on the element you are adding the background image to. You’ll see later that if you use
the fluid technique, this is not an issue.

So, let’s now add a background image to the adr element, which will be the top of our
rounded corner “box.” We’ll also stop it from repeating in either direction, as that is obvi-
ously not what we want.

.adr {
width: 312px;
background-image: url(images/fixedroundtop.png);
background-repeat: no-repeat;

}

Our adr now looks like Figure 6-19.

Figure 6-19. Our adr is not looking very stylish just yet, but we can
fix it.

Don’t panic—we aren’t finished yet.

Next, we’ll add some background color to the adr element, matching the color of our
box’s top rounded edge and giving our text some color to make it readable:

.adr {
width: 312px;
background-image: url(images/fixedroundtop.png);
background-repeat: no-repeat;
background-color: #333333;
color: #b5b5b5;

}

Our full adr element now looks like Figure 6-20.

Figure 6-20. Better, but we still have more work to do.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

120

8148Ch06.qxp 3/2/07 5:07 PM Page 120

Obviously, we need to add some whitespace, but this is where we need to keep in mind
the Internet Explorer box model bug, and actually add the whitespace to the other ele-
ments. We’ll start by adding it to the <div> of class street-address.

We’ll add padding to the top and left of the element like so:

.street-address {
padding-top: 1em;
padding-left: 1em;

}

This gives us the display shown in Figure 6-21.

Figure 6-21. Using padding to give the address some space away
from the edge of the container

We similarly add padding to the left of the other elements like this:

.extended-address {
padding-left: 1em;
}
.locality {
padding-left: 1em;

}
.country-name {
padding-left: 1em;

}

This gives us the output shown in Figure 6-22.

Figure 6-22. After we give all our different adr fields some padding,
the element looks a whole lot better.

Now it’s time to add the bottom edge. We can’t use the adr element, as we’ve already
added a background image to it (in CSS3, you can add multiple background images, but
this is not something supported in browsers other than Safari yet). So we need to look for

LOCATION MICROFORMATS: GEO AND ADR

121

6

8148Ch06.qxp 3/2/07 5:07 PM Page 121

another element to add this image to. Luckily for us, the country-name element provides
us with a hook for our style. We’ll add a nonrepeating background image to it, like we did
to the top image, as follows:

.country-name {
padding-left: 1em;
background-image: url(images/fixedroundbottom.png);
background-repeat: no-repeat;

}

If we take a look at the browser output now, something looks off. Where’s the bottom
image? It’s there, but we just can’t see it, because right now, the background image starts
in the default position: the top-left corner of the element it is attached to. If we change
the background position to bottom, here’s what we get:

.country-name {
padding-left: 1em;
background-image: url(images/fixedroundbottom.png);
background-repeat: no-repeat;
background-position: bottom;

}

We’re now able to see the bottom image, as shown in Figure 6-23.

Figure 6-23. Now we can see our image’s bottom rounded corners.

To balance the top and bottom whitespace on the whole element, we add some padding
to the bottom of the country-name element, like so:

.country-name {
padding-left: 1em;
background-image: url(images/fixedroundbottom.png);
background-repeat: no-repeat;
background-position: bottom;
padding-bottom: 1em;

}

This gives us our nice, complete rounded-corner box, as shown in Figure 6-24.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

122

8148Ch06.qxp 3/2/07 5:07 PM Page 122

Figure 6-24. Some bottom padding as a final touch gives us a nicely
displayed adr microformat.

In this example, we used the structure of our HTML to facilitate styling with CSS. As other
adr elements will typically have a very similar structure, particularly within a single site,
microformats provide us the benefit of more streamlined style sheets (in addition to their
other benefits). If we set up our CSS like this and use the adr microformat for any addresses
at our site, then all our addresses get a similar appearance, with essentially no more effort.

This example suffers a little from requiring the adr element to have a fixed width. In a later
chapter, we’ll take a look at developing fluid rounded-edge boxes using only the HTML
associated with the hCard microformat.

Summary
Throughout this book, the complexity of the microformats you’ve been working with has
steadily increased. I’ve been incrementally introducing concepts like the use of attributes
such as rel; classes; and microformats design patterns, like the abbr and class design pat-
terns, as they become appropriate.

This chapter focused on two conceptually related microformats, both of which are subsets
of the more complex hCard microformat we’ll turn to in the next chapter. The geo micro-
format allows you to mark up geodata, longitude, and latitude semantically, using HTML
appropriately. You learned about the abbr design pattern, which is used to “make text that
is human readable also formally machine readable,” and the class design pattern, for
adding the semantics of other formats like hCard to HTML.

You were also introduced to the adr microformat, a compound microformat. adr maps
part of the vCard standard onto HTML, using the class design pattern.

Now it’s time to start looking at some increasingly complex compound microformats, which
use all of the concepts and techniques presented in this chapter. The next chapter covers
hCard, which you should be quite familiar with by now—it’s been used in a number of exam-
ples in this chapter, as geo and adr are subsets of it. Things are about to get really interesting.

You can find the HTML, CSS, and images for this example at
http://microformatique.com/book/chapter6/adr.zip.

LOCATION MICROFORMATS: GEO AND ADR

123

6

8148Ch06.qxp 3/2/07 5:07 PM Page 123

8148Ch07.qxp 2/28/07 6:05 PM Page 124

7 CONTACT INFORMATION
MICROFORMAT: HCARD

8148Ch07.qxp 2/28/07 6:05 PM Page 125

Above all else, and despite the wishes of traditional media companies, the Web is a
medium for two-way communication. Technology sites like Slashdot and Digg, and politi-
cal sites like Daily Kos are as much about the discussion as they are about the articles. Rare
is the site that does not prominently feature a Contact link on its home page. And with
blogging in particular, the two-way conversation of trackbacks and comments are essential
to the medium.

But precisely how these almost ubiquitous contact details are marked up from site to site
varies dramatically. This makes a seemingly simple task like building a white pages–style
directory from freely published information on the Web a daunting challenge, as observed
previously.

In this chapter, we’ll take a close look at a microformat that aims to provide this missing,
vital, common format for contact details online: hCard.

hCard overview
As you learned in Chapter 1, microformats are a whole new approach to solving the prob-
lem of how to best mark up certain types of commonly used content on the Web. This
approach includes a set of underlying principles, of which two of the most important are
“solve a specific problem” and “reuse building blocks from widely adopted standards.”

Now, of all the kinds of content on the Web, surely one of the most common must be con-
tact information for people and/or organizations. This information might be as simple as a
link to a contact form or an email address, all the way up to a detailed set of addresses,
telephone numbers, and other forms of contact. But as demonstrated in the last chapter,
where we looked at a couple of subsets of this data (addresses and geographic location),
HTML does not provide any built-in mechanism for marking up contact details.

Here are a couple of examples of some famous addresses and how they are marked up at
their official pages:

The White House

1600 Pennsylvania Avenue NW

Washington, DC 20500

<td valign="top" width="50%" rowspan="2">
Address

Please include the recipient's first and last name,
or the department name.

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399</td>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

126

8148Ch07.qxp 2/28/07 6:05 PM Page 126

I’ve included these just to show how little consistency there is in marking up contact infor-
mation—that is, apart from using
 elements to separate lines.

Enter hCard. The hCard microformat solves the specific problem of marking up contact
information for people or organizations, reusing building blocks from a widely existing
standard: vCard. But in fact, hCard goes even further, providing us with a more semantic
way of marking up people, organizations, and places, not just in the context of contact
information. So, whenever we refer to a person, place, or organization, we can mark these
up using hCard.

I’ve touched on vCard, the existing standard that hCard is based on, a number of times in
this book, but let’s take a closer look at it here. vCard is a standard from IETF, an organiza-
tion responsible for a wide range of standards used on the Internet. IETF’s stated goal is “to
make the Internet work better.” The IETF standards are published as Requests for Comment
(RFCs), one of which, RFC2426 (www.ietf.org/rfc/rfc2426.txt), is vCard, described as
“directory information for a white–pages person object.” It’s also often described as an
“electronic business card” format.

vCard is widely used in desktop address book–style applications such as Microsoft Outlook
and Mac OS X’s Address Book. Figure 7-1 shows Apple’s vCard, as seen in Address Book.

Figure 7-1. A vCard in Apple’s Address Book
application

Here’s what the vCard code looks like:

BEGIN:VCARD
VERSION:3.0
N:;;;;
FN:Apple Computer Inc.
ORG:Apple Computer Inc.;
TEL;type=MAIN;type=pref:1-800-MY-APPLE
item1.ADR;type=WORK;type=pref:;;
1 Infinite Loop;Cupertino;CA;95014;United States

CONTACT INFORMATION MICROFORMAT: HCARD

127

7

8148Ch07.qxp 2/28/07 6:05 PM Page 127

item1.X-ABADR:us
item2.URL;type=pref:http\://www.apple.com
item2.X-ABLabel:_$!<HomePage>!$_
X-ABShowAs:COMPANY
X-ABUID:B4DB7A3B-3E21-4E5A-9014-3745ECAC3CCD\:ABPerson
END:VCARD

vCard provides both a schema and the semantics for publishing structured contact infor-
mation. It just doesn’t provide a particularly human-friendly format for doing so. hCard
explicitly adopts both this schema and the semantics of vCard as they pertain to its possi-
ble values, or “fields,” but it loosens the association by allowing hCard to be used for
marking up people, organizations, and places, not simply in the context of contact details.

vCard has a rich set of properties that enable publishers to mark up the following, among
other things:

Identification details, such as name, nickname, photos, date of birth, and so on

Postal contact details

Electronic contact details, such as email address(es) and telephone number(s)

Place and time details, such as geographic location and time zone

Information associated with an organization, such as the organization someone is a
member of or works for, and his or her role and title

hCard, being modeled explicitly on vCard, allows us to mark up any or all of this informa-
tion, though typically only a small subset is used in most hCards.

Whenever we publish information about people or organizations, particularly in the con-
text of contacting them, hCard is the ideal markup microformat.

Using hCard
As with other compound microformats you’ve seen (and indeed all compound microfor-
mats), hCard has a root element that contains all of the properties for that hCard. This can
be any HTML element (though typically it will be a span or a div) with a class value of
vcard (note that we don’t use hcard as the class value).

We then use the class design pattern to give HTML elements inside this root element
richer semantics taken from the vCard specification. You saw this in action a couple of
times in the previous chapter, as both the adr and geo microformats are a subset of hCard.

In the sections that follow, we’ll examine ways of using hCard to mark up various types of
contact information. We’ll start by looking how to use hCard to mark up the names of
people.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

128

8148Ch07.qxp 2/28/07 6:05 PM Page 128

Names of people

vCard has a number of name-related fields. These aren’t all particularly human-friendly,
but they are easy enough to get the hang of. There are three name elements (or techni-
cally “types”) in vCard: FN, N, and nickname. Here’s how they work and what they do:

FN, or “formatted name,” is for how a name should appear for the hCard. My FN
would be John Allsopp.

N, or “structured name,” is a name with prefixes, suffixes, middle names, and so on.
For example, I might have an N value of Mr. John Francis Allsopp. You’ll see shortly
how to actually encode these in HTML.

Nickname is for a shorthand name for the hCard. In my case, the nickname might
be “Jack” (which my brothers use, but no one else) or “Sweep” (which a particular
set of friends uses).

Very often, all that will be required for an hCard is an FN value, so we’ll start with that. We
know the root element is an element with a class value of vcard. Because we aren’t sure
yet what elements it will contain, let’s make this a <div>, as it can then contain both block
and inline elements.

<div class="vcard"></div>

Next, we need to add an element with a class value of fn . If we think about this, it’s most
likely to be displayed as an inline element, so let’s make it a :

<div class="vcard">
Buffy Summers

</div>

That’s all we need for an hCard for this person, and in many contexts, this would be quite
useful. For example, we could mark up the speakers at a conference with hCards just like
this (in fact, many conferences do exactly this). But, of course, we can take hCards much
further by using the schema of vCard.

To recap, FN is for the formatted name of our person, organization, or place (we’ll get to
entities other than people shortly), but sometimes the “display name” is different from the
actual name. For a person’s actual name, we have the N property, which is used in con-
junction with several subproperties. When you use the N property, you must use one or
more subproperties with it. These subproperties, like all other properties of hCard, come
from vCard and are as follows:

You’ll notice that throughout this chapter I present some vCard properties like FN in
capital letters, but I’ve just marked up this property using lowercase letters for the
class value. Because XHTML is case sensitive, by convention we use lowercase for class
and other attribute values in hCard and other microformats, but in vCard, property
names are defined in capital letters.

CONTACT INFORMATION MICROFORMAT: HCARD

129

7

8148Ch07.qxp 2/28/07 6:05 PM Page 129

family-name

given-name

additional-names

honorific-prefixes

honorific-suffixes

If we want the full, structured name of this person, we’d have the following:

<div class="vcard">

Ms.
Buffy
Anne
Summers

V.S.

</div>

Note the difference with the FN property: whereas FN does not have subproperties, N
does (and must). So, while the following is valid hCard:

Buffy Summers

this is not:

Ms. Buffy Anne Summers V.S.

The hCard must be written as follows:

Ms.
Buffy
Anne
Summers

If this is also to be the FN (i.e., how the full structured name is to be displayed), then
rather than duplicating it all with a second span with a class of fn, we just give the n span
a second class, fn, resulting in the following:

<div class=vcard>

Ms.
Buffy
Anne

Summers
V.S.

</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

130

8148Ch07.qxp 2/28/07 6:05 PM Page 130

The vCard specification requires that all vCards have both N and FN values. However, since
this may be overkill in many circumstances, we can leave out the N value in the case of
people (we’ll look at the special case of organizations shortly). If we have one of the fol-
lowing situations for a person, we can use FN alone, and the value for N is inferred from
the FN value.

If the value of the FN property is exactly two words (separated by whitespace), and there
is no explicit N property, then the N property is inferred from the FN property as follows:

The content of the FN is broken into two “words” separated by whitespace.

The first word of the FN is interpreted as the given-name for the N property.

The second/last word of the FN is interpreted as the family-name for the N property.

However, if the first word ends in a comma (,) or if the second word is a single
character (optionally followed by a period, .), then the first word (minus the
comma at the end, if any) is interpreted as the family-name and the second word
is interpreted as the given-name.

While seemingly complicated, these are very commonsense rules, with the result that we
often do not have to have an N value for our hCards. If N values were required, hCard
would be a much more cumbersome construct to use in many situations.

In practice, the following:

Buffy Summers

is semantically equivalent to this:

Buffy
Summers

And the following is equivalent to the preceding examples:

Summers, Buffy

whereas the following:

Summers, B

is equivalent to this:

B
Summers

In a great many cases, constructs such as Buffy Summers will
suffice. Only in more formal circumstances, such as an address book entry or a white
pages–style directory entry, will the N property be required.

CONTACT INFORMATION MICROFORMAT: HCARD

131

7

8148Ch07.qxp 2/28/07 6:05 PM Page 131

I should touch on the nickname property , too, while considering the issue of names.
People use nicknames, or “handles,” commonly on the Web. vCard, and so hCard, has an
explicit property for this, which we could use like this:

Bono

But remember, an FN is required for hCard, so we could add it as follows:

Bono

There is one more “optimization” possible with hCard: if an FN has a single-word value, we
imply that this is a nickname. So we could optimize the preceding as follows:

Bono

To state this technically, if the value of the FN property is one word, we treat it as a nick-
name, and we consider that there is an N value with no content. So, for our Buffy hCard,
we would now have this:

<div class=vcard>

Ms.
Buffy
Anne
Summers
V.S.

</div>

URLs

Not surprisingly, vCard includes a property for a URL. The most obvious way for us to add
a URL to an hCard is to add a separate field like this:

http://en.wikipedia.org/wiki/Buffy_Summers

But, of course, this doesn’t really make the link all that human-readable. What we as
humans want from a link is to be able to follow it. So, why not make the hCard’s FN also a
link? Let’s go back to the original hCard we were developing:

<div class="vcard">
Buffy Summers

</div>

Note that I’ve reused the given name and nickname value by adding the nickname
class value to the given-name subproperty of N.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

132

8148Ch07.qxp 2/28/07 6:05 PM Page 132

If we change the inner span to a link and give it a class of url as well as an FN, we have
this:

<div class="vcard">

Buffy Summers
</div>

Here we have a human-readable link (we can see it is a link, and we can also follow it), as
well as a machine-readable URL. And we’ve relied on our N optimization rules to keep the
hCard as simple as possible.

You might be wondering why you actually need the url class value. After all, even a
machine can see it is a URL. The issue here is that you may want more than one link in your
hCard—for example, an email link, or links to an organization, a map for an address, and
so on. By giving this link the class url you are saying that this link is a URL for this hCard.
And you may want to have multiple URLs for a single person (which is permitted in vCard,
and so hCard). This “trick” is used to provide ways of encoding instant messenger
addresses, which you’ll see in a moment.

Back to our growing hCard for Buffy, we now have the following:

<div class="vcard">
<a class="fn n url"

href="http://en.wikipedia.org/wiki/Buffy_Summers">
Ms.
Buffy
Anne
Summers
V.S.

</div>

We’ve taken care of the basics of an hCard for a person (and in fact have a perfectly valid
hCard). Now let’s start extending it.

Date of birth

What self-respecting address book entry would be complete without a date of birth?
vCard has a date of birth field named BDAY.1

CONTACT INFORMATION MICROFORMAT: HCARD

133

7

1. The French might find this a little amusing.

8148Ch07.qxp 2/28/07 6:05 PM Page 133

The obvious way for us to add a date of birth is something like the following:

5 11 1981

But it’s clear we already have a problem. Well, several problems. Is this May or November?
Is this 1981 BCE or CE, and are we going by the Jewish, Buddhist, Gregorian, or Julian cal-
endar? These sound like pedantic issues, because we humans can typically deduce the
meaning from the context. But we also know that software is not nearly so smart as us. We
need to spell out everything for our silicon-powered friends.

Humans can reasonably easily disambiguate something like this:

November 5 1981

Given that the date is the birthday of someone in the United States, even if he or she is a
vampire slayer, we can reasonably guess that the date is according to the Gregorian calen-
dar (the commonly used calendar in the Western world). But of course, machines aren’t
quite so clever at working this sort of thing out, and we need to mark up this information
in a way to help them.

We’ve already seen with microformats a way for presenting information that is both
human- and machine-readable, using the abbr design pattern introduced with the geo
microformat in the previous chapter. With this design pattern, we use an <abbr> element;
the human-readable part is the content of the <abbr> element, while the machine-read-
able part is stored in the title of the <abbr> element.

Back to our example, Buffy was born on January 19, 1981, so that gives us the following
basic HTML:

<abbr title="" class="bday"> Jan 19 1981</abbr>

It just remains for us to put the date in a machine-readable format. I don’t want to go any-
where near the controversy this problem has caused over the years, but suffice it to say
that the International Organization for Standardization (ISO) has a standard format for
date and time interchange:

YYYYMMDDThh:mm:ss

If you are wondering why vCard has all these far from human-friendly field names like
N, FN, and BDAY, it’s because back when vCard was invented, people still used to
worry about things like the size of data structures, due to low-bandwidth network
connections and considerably smaller disk sizes. vCard began life in 1992, when a
50MB hard drive was probably on the large side, 10MB of RAM nothing to be sneezed
at, and a 14Kb (yes, kilobit) modem was state of the art. Back then, we worried about
a few bytes here and there.

What I don’t quite understand is why occasionally field names get very profligate. I
mean, “nickname” is surely at least twice as big as it has to be—wouldn’t “NN” suffice?
That’s a story for another day.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

134

8148Ch07.qxp 2/28/07 6:05 PM Page 134

And here is the (slightly) more readable “extended” format:

YYYY-MM-DDThh:mm:ss

This format uses the Gregorian calendar, and all dates must be the same length (so single-
digit dates and times are padded with zeros: 4:30 a.m. becomes 04:30, and 5 November is
1105). Why does the month come before the day? Well, the cynical might say it’s because
that’s how they do it in the United States, but the format has its logic: it goes from the
most significant to the least significant values, from years through to seconds.

The time part can be left off, which for birth dates makes sense. Our BDAY element
becomes

<abbr title="19810191" class="bday"> Jan 19 1981</abbr>

So, we have a human-friendly and yet machine-readable date, using the <abbr> design
pattern for dates.

Building on our existing hCard, we get this:

<div class="vcard">
<a class="fn n url"

href="http://en.wikipedia.org/wiki/Buffy_Summers">
Ms.
Buffy
Anne
Summers
V.S.

<p><abbr title="19810191" class="bday"> Jan 19 1981</abbr></p>

</div>

Photos

We can add a photo for the person whose hCard this is using the PHOTO property of
vCard. A photo is an image, and as we are discussing content on the Web, it makes sense
to link to a web-based image for this property. We’ll have an image element with a class of
photo and an src value of the URL to this image. And, of course, we’ll have some alt text
to make it accessible. This makes our ever-growing hCard for Buffy look like this:

<div class=vcard>
<a class="fn n url"

href="http://en.wikipedia.org/wiki/Buffy_Summers">
Ms.
Buffy

You’ll see quite a bit more on dates in the next chapter during the discussion of
hCalendar, so don’t fret if you don’t have the concept down perfectly yet.

CONTACT INFORMATION MICROFORMAT: HCARD

135

7

8148Ch07.qxp 2/28/07 6:05 PM Page 135

Anne
Summers
V.S.

<img class="photo" src="http://en.wikipedia.org/wiki/

Image:Buffy_Summers.jpg" alt="Buffy Summers" />
<p><abbr title="19810191" class="bday"> Jan 19 1981</abbr></p>

</div>

Organizations

There are two ways in which an organization like a company might be associated with an
hCard. One is in the hCard for the organization, and the other relates to the role that the
person for whom this is the hCard plays at that organization (i.e., as an employee or in
some other capacity). In this section, we’ll look at the hCard for a person at an organiza-
tion first, and then we’ll look at the hCard for an organization itself.

hCard for a person at an organization
For individuals, we can specify the organization (or organizations) in which that person
plays a role, the title the person holds at the organization, and even a logo for the organ-
ization. In most cases, it’s very straightforward—we simply add new elements for the prop-
erties we want to add to our hCard.

First, we can add the organization someone works for (or owns, or has some other associ-
ation with). The vCard property for this is ORG. Here’s our example, using the class design
pattern:

Scooby Gang

I’m not quite sure what title Buffy has in this gang, but she certainly seems to be some kind
of leader, so let’s make her the CEO (people seem to be able to be the CEO of just about
anything these days):

CEO

But Buffy’s role is not the same—she’s a vampire slayer, so we give her this role in addition
to the title:

Vampire Slayer

If we want to add the logo for the organization, we can do that, too. It makes sense that
we’ll link to an image file for the logo, so it will be an element, with a class of logo
and an href containing the URL of the image file. As far as I am aware, the Scooby Gang,
being a secretive sort of outfit, doesn’t have a logo (though that hardly stopped the
Thunderbirds, or SMERSH, for that matter), so we’ll have to pretend they have one for the
sake of the example:

<img class="logo" src="http://www.scoobygang.com/logo.gif"
alt="Scooby Gang secret logo" />

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

136

8148Ch07.qxp 2/28/07 6:05 PM Page 136

Our increasingly complex hCard now looks like this:

<div class=vcard>
<a class="fn n url"

href="http://en.wikipedia.org/wiki/Buffy_Summers">
Ms.
Buffy
Anne
Summers
V.S.

<p class="nickname">Buffy</p>
<p><abbr title="19810191" class="bday"> Jan 19 1981</abbr></p>
CEO
Scooby Gang
Vampire Slayer
<img class="logo" src="http://www.scoobygang.com/logo.gif"

alt="Scooby Gang secret logo" />
</div>

If we view this in a browser (see Figure 7-2), it doesn’t look all that nice, but we’ll take care
of that a bit later with some CSS.

Figure 7-2. Our completed Buffy hCard, as viewed in a
browser

I told you it wouldn’t be pretty. (And what’s with that logo? Look, the Scooby Gang,
despite its ironic pretensions, is a really lame name, so the logo befits the name.)

hCard for an organization
For the most part, we can think of organizations as being like people—they have names,
addresses, phone numbers, and so on. Some properties, like nicknames or photos, are per-
haps less relevant to companies, and so are less likely to be used in an organization hCard.
And other properties, like role and title, probably don’t make sense at all for organizations.
But on the whole, we can think of organizations as being very similar to people when it
comes to hCards.

The biggest challenge is determining when an hCard is for a person and when it is for an
organization. To create an hCard for a company (or other organization), all we need to do

CONTACT INFORMATION MICROFORMAT: HCARD

137

7

8148Ch07.qxp 2/28/07 6:05 PM Page 137

is set the value of the FN and ORG properties to the same thing, which typically we do by
having one element with the two class values set on it, like this:

Scooby Gang

It’s also important that no value for the N property is set in the hCard for an organization,
but that’s really about all we have to address directly for an hCard for an organization as
opposed to one for a person. We mark up other properties, such as addresses, URLs, and
so on, exactly as we would for a person.

Addresses

In the last chapter, when examining the adr and geo microformats, you saw that these are, in
fact, parts of the vCard specification, and thus the hCard microformat. You just used them in
isolation, reinforcing the microformats principles of modularity and embeddability discussed
in the first chapter. As such, there’s no need to go into great detail about them here.

Here’s our example of an address from the previous chapter:

<div class="adr">
<div class="street-address">2560 Ninth Street </div>
<div class="extended-address">Suite 219</div>
Berkeley,
CA
94710
<div class="country-name">USA</div>

</div>

All we need to do is embed this in an hCard to give the person or organization an address.
In Buffy’s case, the address is as follows:

<div class="adr">
<div class="street-address">1630 Revello Drive</div>
Sunnydale,
CA
<div class="country-name">USA</div>

</div>

But it’s not always quite as simple as that all the time. Many of us have more than one
address—for the place we live, for the place we work, and perhaps for another, separate
postal address as well (e.g., P.O. box).

To deal with this in vCard, addresses, email addresses, and telephone numbers have an
optional TYPE property, which takes a value from a list of possible values. For addresses,
the possible values are as follows:

intl: An international delivery address

postal: A postal delivery address

parcel: A parcel delivery address

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

138

8148Ch07.qxp 2/28/07 6:05 PM Page 138

work: A delivery address for a place of work

dom: A domestic delivery address

home: A delivery address for a residence

pref: The preferred delivery address when more than one address is specified

Of these, we are most likely to use home, work, and postal. So how do we mark up our
postal addresses if we have two or more addresses for our hCard—say, postal and work
addresses? To add the type value, we add a element with a class of type, and the
element’s content is the value. For example, to denote our postal address we use the fol-
lowing:

<div class="adr">
postal:

...

</div>

Also, if we have more than one address, we simply create separate adr divs for each. For
example, if we have a postal address and a work address, our markup is along these lines:

<div class="adr">
<div class="type">Work</div>:
<div class="street-address">2560 Ninth Street </div>
<div class="extended-address">Suite 219</div>
Berkeley,
CA
94710
<div class="country-name">USA</div>

</div>

<div class="adr">
<div class="type">Postal</div>:
<div class="street-address">1855 Haight Street </div>
San Francisco,
CA
94117
<div class="country-name">USA</div>

</div>

Places

In the previous chapter, you learned about the geo microformat, which is for adding infor-
mation about a geographic location using longitude and latitude. To use geo in an hCard,
you just take the geo content and embed it in your hCard. Using Multimap, it’s easy to
discover that the preceding work address translates to a latitude of 37.8688 and a longitude
of –122.2976. Now, this is most likely something we would provide for machine-readable
rather than human-readable purposes, so we’ll use the abbr design pattern like so:

CONTACT INFORMATION MICROFORMAT: HCARD

139

7

8148Ch07.qxp 2/28/07 6:05 PM Page 139

<abbr class="geo" title="37.8688; -122.2976">Work</abbr>

which gives us an address element like this:

<div class="adr">
<div class="type">
<abbr class="geo" title="37.8688; -122.2976">Work</abbr>

</div>:
<div class="street-address">2560 Ninth Street </div>
<div class="extended-address">Suite 219</div>
Berkeley,
CA
94710
<div class="country-name">USA</div>

</div>

Telephone numbers

Do people still call one another in this age of instant messaging, text messaging, email, and
other forms of electronic communication? I guess they still do so enough that telephone
information is important for contact details. Adding a single phone number is, like most
things in hCard, straightforward. An element with a class value of tel contains our phone
number, and the number itself is the value of this field, for example:

<div class="tel">+61 2 9130 1731</div>

If, as is often the case, you have more than one phone number, you might want to label
the type of each phone number. As with addresses, vCard allows a number of specified
types for telephone numbers:

voice: The default type

home: Telephone number associated with a residence

msg: Telephone number that has voice messaging support

work: Telephone number associated with a place of work

pref: Preferred-use telephone number

fax: Facsimile telephone number

cell: Cellular telephone number

video: Video conferencing telephone number

pager: Paging device telephone number

bbs: Bulletin board system telephone number

modem: A modem-connected telephone number

car: Car phone telephone number

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

140

8148Ch07.qxp 2/28/07 6:05 PM Page 140

isdn: An ISDN service telephone number

pcs: Personal communication services telephone number

To add both a work and cell phone number, we use the following:

<div class="tel">Work:
+61 2 9130 1731</div>
<div class="tel">Cell:
+61 504 149 597</div>

Notice that we add a special element, in this case a span, with the class of value, for the value
of the telephone property, along with the span of class type, whose content is the type of the
phone number taken from the list of telephone number types defined for vCard and enu-
merated previously. This is similar to how we marked up an address with a type and value.

Email addresses

It should come as no surprise that email addresses work in a similar way to phone numbers
in vCard and thus hCard. We can simply add an email address like so:

john@westciv.com

Again, if there is more than one email address, we can mark them up similarly to tele-
phone numbers, once more using the type property. But here is one place that vCard
shows its age to an extent: with the set of possible email types. vCard (and so hCard,
because hCard takes its semantics from vCard) has the following possible email types:

INTERNET: An Internet addressing type (the default, and almost certainly the only
type people will typically use)

x400: An X.400 addressing type

pref: A preferred-use email address when more than one is specified

Other IANA registered address types

Here the origins of vCard, which predates the widespread adoption of the Internet,
become obvious. It seems no one imagined I might have a work and home email address,
just as I have work and home phone numbers. In effect, this means that unlike with tele-
phone numbers and addresses, email addresses have limited scope to be marked up more
semantically in hCard, using the schema from vCard. We can still have multiple email
addresses in an hCard with no problem, but perhaps the best we can do is to mark them
up like this:

john@westciv.com

CONTACT INFORMATION MICROFORMAT: HCARD

141

7

8148Ch07.qxp 2/28/07 6:05 PM Page 141

john@webdirections.org

Representing new interweb technologies with hCard

As previously mentioned, vCard, which hCard is based on, has been around for some time.
While this means vCard is tried, tested, and widely adopted, it also means that some of the
newer Net-based ways of communicating, like instant messaging, were simply unimagined
at the time of its development, and so are not catered for explicitly in vCard. So how can
we mark up various chat addresses, Skype handles, and other Voice over IP (VoIP) handles
and so forth in hCard?

You might think this would require extensions to vCard, but by using the URL property
intelligently and creatively, and by looking at current practices among web developers, we
can use protocol prefixes like aim: (much like mailto:) to indicate AOL Instant Messenger
(AIM) and similarly other, newer protocols.

For example, an AIM ID could be represented like this:

Say hi on AIM

or a Yahoo ID like this:

Say hi on Yahoo instant messenger

or a Skype handle like this:

skype me

We haven’t invented these uses of protocols; rather, we’ve adapted them from current
practice, again adhering to the principles of microformats. And if you have these (and
other) protocols set up in your browser with the applications you want to use to handle
them, simply clicking these links will launch or bring to the front the right handler appli-
cation and initiate the call, chat session, or other process.

There is, in fact, a current proposal to add instant messaging to vCard, but such processes
can take a considerable amount of time. Should instant messaging be adopted in vCard,
I’ve little doubt that future versions of hCard would adopt this new aspect of the vCard
schema.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

142

8148Ch07.qxp 2/28/07 6:05 PM Page 142

Tools for working with hCard
Now that I’ve taken you through all the details of how to put hCards together on your web
pages, let’s have a look at what tools are available to make working with hCards easier,
both in terms of harvesting them and creating them.

Web-based tools/extensions for harvesting hCards

Because hCard is a kind of metadata (it’s not always apparent that contact details, for
instance, are marked up as hCard), a couple of interesting web-based tools are available to
help locate and extract hCard content (and other microformatted content) from the pages
you are reading.

The following two closely related (and confusingly similarly named) Firefox extensions can
extract hCard, hCalendar, and hReview content as you read a page, and allow you to view
it in a separate pop-up window within the browser window. They’re also great for testing
whether your hCards are working properly.

Tails (by Calvin Yu): http://blog.codeeg.com/tails-firefox-extension-03

Tails Export (by Robert DeBruin): https://addons.mozilla.org/firefox/2240

Another tool that works in a similar fashion is Brian Suda’s X2V (http://suda.co.uk/
projects/X2V), which extracts hCards and other microformatted content from web pages
and saves them as vCards.

In the following sections, we’ll look at the Tails Export extension and X2V, and in the next
chapter, we’ll delve into the Tails extension.

Tails Export extension
If you have Tails Export installed, when you visit pages that have microformatted content,
the icon in Figure 7-3 appears in the bottom-right corner of your browser.

Figure 7-3. Icon indicating that
microformats are present on the
web page being viewed

Click the icon, and a summary of all of the microformatted content in the page is dis-
played in a sidebar, as shown in Figure 7-4 (if you leave this sidebar open, it is updated
when you visit other pages).

CONTACT INFORMATION MICROFORMAT: HCARD

143

7

8148Ch07.qxp 2/28/07 6:05 PM Page 143

Figure 7-4. Tails Export in action, pulling up the microformats it has found on the current web page

On the right of Figure 7-4 is the page itself, with the program for the conference marked
up using the hCalendar microformat. On the left, the microformatted content is displayed.

X2V
As previously mentioned, Brian Suda’s online X2V tool extracts hCards and other micro-
formatted content from web pages and saves them as vCards. X2V is open source, so you
can incorporate it into online services that need to parse such content.

What’s particularly cool about X2V is that you can use it to add a downloadable vCard (or,
as you’ll see in the next chapter, an iCalendar file, as supported by Apple’s iCal, Microsoft
Outlook, and other calendaring applications). Of course, you can readily make a .vcf
vCard file available online for downloading, but this approach actually converts the con-
tent published on your page when it’s requested by the user. With X2V, there’s no need to
keep two file versions synchronized and no possibility that the linked .vcf file might get
out of date.

Here’s an example of X2V in action. At my conference company’s site, we have contact
information published using hCard (you’ll see this in more detail shortly when we look at
styling hCards using CSS). If I want to make a downloadable version of this information,
here’s what I need to do.

Just released as this book was being finalized is the Operator extension for Firefox, by
Michael Kaply of IBM (https://addons.mozilla.org/firefox/4106). While I don’t
have the space to go into this extension and all its functionality in detail, it has already
caused a good deal of excitement and is considered by many to point the way for
future incorporation of microformats support directly inside the next generation of
web browsers, such as Firefox 3.

A similar extension for Firefox is Smartzilla (www.stripytshirt.co.uk/features/
firefox/smartzilla), which enables you to extract microformatted content from a
page. In addition, Chris Casciano has a script for NetNewsWire (the Mac OS X RSS
application), which allows users to extract hCard (and hCalendar) content as vCards
and iCalendar files (see http://placenamehere.com/mf/nnwextract).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

144

8148Ch07.qxp 2/28/07 6:05 PM Page 144

I start by creating a link:

Download contact details as a vCard

Next, I create the URL for the X2V service, beginning with the URL to X2V itself:

http://suda.co.uk/projects/X2V/get-vcal.php?uri=

Then I just append the URL for the page with the hCard on it:

http://webdirections.org/contact-web-directions/

which gives me the following:

<a href="http://suda.co.uk/projects/X2V/get-
vcard.php?uri=http://www.webdirections.org/contact-web-directions/">
Download contact details as a vCard

To test this, just follow the link (or paste the URL into the address field of your browser).
At this point, depending on your operating system and browser, a number of things will
happen.

On Mac OS X with Safari, the vCard is downloaded and automatically added to Address
Book, displaying an entry like the one shown in Figure 7-5.

Figure 7-5. The vCard created from the Web Directions contact hCard using X2V

With Firefox and other Mozilla browsers, and on Windows, you may have to manually
open the file, but other than that, the process is basically the same. The only thing to keep
in mind is that if you are likely to have a lot of downloads, it’s probably best to grab the
code and run the service from your own servers. The code is published under a W3C open
source license (see www.w3.org/Consortium/Legal/copyright-software-19980720).

CONTACT INFORMATION MICROFORMAT: HCARD

145

7

8148Ch07.qxp 2/28/07 6:05 PM Page 145

Tools for creating hCards

For publishing and working with hCard content, a number of very helpful tools are avail-
able. I describe some of these in the sections that follow.

Publishing
For Dreamweaver users, Drew McLellan has developed a toolbar that easily enables creat-
ing hCard and other microformatted content. It’s available from the Web Standards
Project at www.webstandards.org/action/dwtf/microformats. Once installed, the Insert
bar for Dreamweaver has a new set of features added to it, labeled “Microformats,” as
shown in Figure 7-6.

Figure 7-6. Drew McLellan’s Microformats toolbar adds a special set of microformats options to the
Dreamweaver Insert bar.

Click the second icon from the left to open the hCard editor, which is shown in Figure 7-7.

Figure 7-7. The hCard editor of the Dreamweaver Microformats toolbar

Simply fill in the details, and it creates your hCard for you.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

146

8148Ch07.qxp 2/28/07 6:05 PM Page 146

Next up, we’ll look at hCard Creator from microformats.org (http://microformats.org/
code/hcard/creator). This is one of several easy-to-use, web-based, form-driven creators
for microformatted content. It generates the HTML for you, based on your form input.

Figure 7-8 shows hCard Creator in action with our Buffy hCard.

Figure 7-8. microformats.org’s hCard Creator in action
The hCard-o-matic is copyright © 2005 Tantek Çelik. Some rights reserved

(http://creativecommons.org/licenses/by/2.0/).

Not every last feature of hCard is available using hCard Creator. For instance, nickname
isn’t supported, you may want or need to change some of the elements hCard Creator
uses to mark up the content, and the formatting depends on how addresses are formatted
in a particular country. But it is a simple, useful way to start creating hCards.

For those of you who use the Textpattern blogging system/CMS, Chris Casciano has cre-
ated a plug-in called pnh_mf for easily marking up microformatted content, including
hCard. You can obtain pnh_mf from http://placenamehere.com/TXP/pnh_mf.

Libraries
A number of libraries are available for developers, to help accelerate development of serv-
ices that consume or process hCard content:

hKit Microformats Toolkit for PHP5 (http://allinthehead.com/hkit): Drew McLellan,
developer of the Dreamweaver Microformats toolbar, has also developed hKit, a PHP5
toolkit for extracting common microformats, including hCard.

Microformat Parser for Ruby (http://blog.labnotes.org/2005/11/20/microfor-
mat-parser-for-ruby): Assaf Arkin developed this microformat parser for Ruby
and Rails developers.

XV2 (http://suda.co.uk/projects/X2V): You’ve already seen it in action in this
chapter, but I thought I’d mention XV2 again, because it’s so cool. X2V allows for
easy extraction of hCards and hCalendars (converting them to vCards and
iCalendars, respectively). Remember that XV2 is open source, so you can use it in
your own projects—it is actually a set of XSLT files. In addition to handling the sim-
ple process of converting an hCard to a vCard, XV2 could be very useful for build-
ing all kinds of applications that need to extract data from hCards.

CONTACT INFORMATION MICROFORMAT: HCARD

147

7

8148Ch07.qxp 2/28/07 6:05 PM Page 147

Aggregators and indexers
At the start of the book, you learned that a major motivation for microformats is to enable
“decentralized development, content, services.” It’s in this area of aggregators, indexers,
and other decentralized services that the true promise of microformats lies.

In the last chapter, you were introduced to Technorati’s Microformats search
(http://kitchen.technorati.com) and the Pingerati service (http://pingerati.net).
With these services, the foundations are in place for smarter, more focused, and more use-
ful search engines, and services that aggregate microformatted content.

If you publish hCards, or any other kind of microformatted content, and you let Pingerati
know about them, then all kinds of services that you may never have heard of (and that
may not even exist yet) can find your content without you having to do anything more.
You can manually ping by visiting the Pingerati site and entering the URL of the page you
want Pingerati to crawl in search of microformatted content.

Automatically letting Pingerati know about updated content is as simple as sending an
HTTP GET with this format:

http://pingerati.net/ping/[url of update page]

For example, to inform Pingerati of content updated on http://webdirections.org, I just
send HTTP GET to

http://pingerati.net/ping/http://webdirections.org

Services publishing with hCard
Because microformats are markup, it probably won’t be immediately obvious that a page
you’re reading contains them. One tool you can use to determine whether microformats
are being used on a page is the Tails Export extension, if you use Firefox (as discussed in
the “Tails Export extension” section earlier).

It might surprise you that hCard and other microformats are widely used by some very big
publishers, as well as some smaller, innovative publishers:

Avon (www.avon.com), a large cosmetics manufacturer, publishes the contact details
of more than 40,000 representatives using hCard.

Yahoo Local (http://local.yahoo.com), Yahoo’s recommendation and review
service for tens of thousands of businesses all across North America, publishes the
contact details of these businesses using hCard.

Popular photo-sharing site Flickr (http://flickr.com) uses hCard to mark up pro-
file details on its profile pages. Flickr also makes use of geo, as demonstrated in the
last chapter, and XFN for marking up “contacts.”

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

148

8148Ch07.qxp 2/28/07 6:05 PM Page 148

Yahoo Tech (http://tech.yahoo.com), Yahoo’s technology review site, also uses
hCard for reviewer details.

Cork’d (http://corkd.com), the recently launched wine review site, uses hCard to
mark up reviewer details. The site also uses the hReview microformats for reviews,
as you’ll see in our case study later in the book, in Chapter 11.

One of my favorite uses of hCard is the Cambodian Yellow Pages (www.yellowpages-
cambodia.com).2 Figure 7-9 shows the Bars and Pubs section, which I investigated
using Tails (another Firefox extension for extracting microformatted content from
pages, which we’ll look at more in the next chapter).

Figure 7-9. The Bars and Pubs section of the Cambodian Yellow Pages

CONTACT INFORMATION MICROFORMAT: HCARD

149

7

2. I kid you not, it’s time to put aside any stereotypical notions we might have of Southeast Asia’s
once- war-ravaged countries.

8148Ch07.qxp 2/28/07 6:05 PM Page 149

It turns out that every single business contact published in the Cambodian Yellow Pages—
and there must be tens of thousands—is published as an hCard!

That such a broad range of sites, some of which are extremely popular, have adopted
hCard (and other microformats) as ways of publishing structured content should give you
confidence that using microformats is not a fad, but an increasingly established best prac-
tice in web development.

Styling hCard content with CSS
Being rich, quite complex structures, hCards provide designers with both a bit more of a
challenge than you’ve seen in previous chapters and sophisticated scaffolding for styling
them. A recent example of styling hCards that plays on the business card metaphor is by
Andy Hume, at http://thedredge.org/2005/06/using-hcards-in-your-blog. While his
approach of using fixed-width cards (similar in technique to the rounded corner boxes
from the last chapter) is a pretty good one, I thought I’d try something different here. Let’s
take a look at how we might style a variable-width business card style for our hCards.

Let’s take a common hCard, which includes address, telephone, and email details:

<div class="vcard">
<p class="fn org">Web Directions Conference Pty Ltd
<a href="http://suda.co.uk/projects/X2V/get-vcard.php?

uri=http://microformatique.com/book/chapter7/index.html">
</p>

<div class="adr">
<p class="street-address">8/54 Mitchell St</p>
<p>
Bondi
NSW
2026

</p>
<p class="country-name">Australia</p>

</div>

If you want to play with the HTML, CSS, and images for this design and use
them to follow along with the example in this section, you can download them
from http://microformatique.com/book/chapter7/hcard.zip.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

150

8148Ch07.qxp 2/28/07 6:05 PM Page 150

<div class="telecommunications">
<p class="tel">Phone/Fax:
Work:

61 2 9365 5007
</p>
<p class="email">Email:

info@webdirections.org

</p>

</div>
</div>

We’ll use a variation on the now well-established “sliding doors” technique (if you create a
CSS technique, it’s very important to give it a memorable name) created by Douglas
Bowman and enhanced by Scott Schiller (see www.schillmania.com/projects/dialog),
which will give us a final design that looks like Figure 7-10.

Figure 7-10. The example’s final design

The technique, in a nutshell, uses background images on four elements, two at the top,
and two at the bottom, to add each rounded corner.

We’re going to make this design “fluid” in the sense that it grows and shrinks in proportion
to the font size of the element’s text. This is sometimes referred to as an em-driven design
(you’ll discover why in a moment). To see how this works in practice, Figure 7-11 shows
the same design with the text’s size increased.

CONTACT INFORMATION MICROFORMAT: HCARD

151

7

8148Ch07.qxp 2/28/07 6:05 PM Page 151

Figure 7-11. Because of the sliding doors technique, our hCard still works just fine with the text’s size
increased.

Figure 7-12 shows the same design again, with the text’s size decreased.

Figure 7-12. And it’s fine with the text’s size decreased as well!

Compare this with our design for the address in the last chapter, where the width of the
element was fixed, regardless of how wide or narrow the page, or how big or small the
text.

With CSS3, the entire task would be considerably easier, because we can add multiple back-
ground images to an element and border images for each edge of an element. Safari (ver-
sion 1.3 and higher) actually supports multiple background images, but sadly, they’re not
supported in Firefox 1.5, or even Firefox 2.0 (let’s not even mention Internet Explorer 7, eh?).

The example’s hCard image comes from Chris Messina. You can download it and other
microformat icons from http://microformats.org/wiki/icons.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

152

8148Ch07.qxp 2/28/07 6:05 PM Page 152

This technique is probably not supported enough to use now. Instead, we’ll use a technique
that involves only CSS2 and works in pretty much any browser.

As you saw with the rounded corner adr box example in the last chapter, very often devel-
opers add div or span elements as containers for background images. In fact, if you visit
Scott Shiller’s site, that’s what he has done there. But if at all possible you shouldn’t add
any HTML simply for presentational purposes, even if the presentation is done via CSS.
Rather, you should aim to use the HTML you have already, as much as possible, to add the
style you want. This approach can take some creative thinking, but once you get the hang
of it, it becomes a more natural way of using HTML compared with simply adding divs and
spans at will as hooks for style. Of course, this technique isn’t always simple, and in fact,
sometimes it’s simply not possible, requiring you to add just a little HTML to provide the
hooks for your style.

The first step is to add a background image to the whole vCard element, as shown in
Figure 7-13.

Figure 7-13. The example’s background image

We make this wide enough (e.g., 1,000 or more pixels) and tall enough so that no matter
how large the content of the vCard grows, it will never overflow this area. We can’t simply
repeat the image, because the top-left corner will show when the image repeats.

We add this as the background image of the vCard element using CSS. While we’re at it,
let’s give the text a sans serif font and some color so that it will be visible, and let’s stop
the image from repeating.

.vcard {
background-image: url(images/vcardfill.png);
background-repeat: no-repeat;
color: #666;
font-family: "Lucida Grande", Verdana, Helvetica, Arial, sans-serif;

}

CONTACT INFORMATION MICROFORMAT: HCARD

153

7

8148Ch07.qxp 2/28/07 6:05 PM Page 153

In a browser, our work so far will look something like Figure 7-14.

Figure 7-14. The first background border image added to our hCard

Next, we need to add the top-right corner of the vCard. In keeping with our aim of not
adding HTML simply for styling purposes, we want to use the existing structure of the page
where possible. Here, we’ll use the paragraph of class fn and org, which is the first child
element of the vCard element.

<p class="fn org">Web Directions Conference Pty Ltd å

</p>

Here’s our CSS:

.fn {
background-image: url(images/topright.png);
background-repeat: no-repeat;
background-position: top right;
padding-top: 2em;
font-weight: bold;
font-size: 1.1em;

}

Again, we don’t want the image to repeat, but this time, we’ve specified a background
position for the image. This will make the background image start from the top, but its
right edge will be located at the right edge of the element. We also make the font size a
little bigger and the weight bold, to differentiate it from the rest of the text in the hCard.

Figure 7-15 shows the image we are adding as the background to this element.

Figure 7-15. Our top-right rounded corner image

Putting our two CSS rules so far together gives us something like Figure 7-16.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

154

8148Ch07.qxp 2/28/07 6:05 PM Page 154

Figure 7-16. The completed top border

We specify a padding-top of 2em to give some space between the content of the FN element
and the edge of the FN element. Otherwise, the top of the vCard image would be hard
against the border. To see this in action, just remove the padding-top: 2em; declaration and
preview the image in a browser.

So, with just two statements, we are well under way, and we haven’t had to add any HTML
so far. Let’s turn to the bottom of the element and add the bottom border (well, the back-
ground image, which will serve as that border).

Now, which element are we going to use to add this background image to? OK, here I have
to admit to a teensy bit of cheating. If you look at the HTML of the hCard, I’ve grouped the
email and telephone properties into a div, with a class of telecommunications. This group-
ing is not strictly required for our hCard.

<div class="telecommunications">
<p class="tel">Phone/Fax:
Work:
61 2 9365 5007

</p>
<p class="email">Email:

info@webdirections.org

</p>

</div>

I chose that class name because that is what the vCard specification calls this group of
properties. And typically, I do tend to group together related elements using divs when I
mark up content; it makes the page structure more logical. But strictly speaking, this isn’t
necessary, so you may consider it cheating. My advice here is that if you are going to add
markup, try to make it as meaningful as possible.

CONTACT INFORMATION MICROFORMAT: HCARD

155

7

8148Ch07.qxp 2/28/07 6:05 PM Page 155

As you have probably guessed by now, we are going to add one part of the bottom border
image to this element first—the main length of the bottom border—before then adding
the rounded bottom-right corner as a separate image. Figure 7-17 shows this first back-
ground image.

Figure 7-17. The main bottom border image

Again, this will be a very wide image, like the top-left one, so that no matter how wide the
element might get, the background image will still be wide enough. We’ll need to make
this image sit in the bottom left of the element we attach it to, so we use a background
position of left bottom (we put the horizontal position before the vertical). Here’s our
CSS statement for this:

.telecommunications {
background-image: url(images/bottom-left.png);
background-repeat: no-repeat;
background-position: left bottom;
margin-bottom: 2em;

}

With this new CSS rule added, our hCard now looks like Figure 7-18.

Figure 7-18. The first bottom border image has been added.

We’re not quite there yet, but we’re well on the way. It’s time for the final piece in the puz-
zle. OK, I admit, I might have cheated just a little bit more in this step. But like the previ-
ous step, it’s all valid and (hopefully) quite justifiable markup. If you look at the HTML
again, you’ll find that our email address is marked up like this:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

156

8148Ch07.qxp 2/28/07 6:05 PM Page 156

<p class="email">Email:

info@webdirections.org

</p>

which is a little different from how we have previously marked up emails, which was more
like this:

info@webdirections.org

Think back to when we looked at how telephone numbers are marked up in hCard.
Because telephone numbers have a type (work, home, etc.), we typically mark them up
like this:

<div class="tel">Work:
+61 2 9130 1731</div>

I’ve just used the same kind of markup here for our email address (but only because the
vCard specification allows for different types of email address). Why have I gone to all this
trouble? Well, when it came to styling the hCard, I realized I needed a block element to
attach the background image for the bottom-right corner to. Typically, the last block ele-
ment in the containing element is the ideal choice (and sometimes it’s possible to take an
inline element—for example, the link here—and use CSS to make it a block element, and
attach it to that, but that really doesn’t work with this design). So, if we are going to use
the paragraph that contains the email link, we need a way to select it exclusively, which
means that with CSS2 at least, we need a class or id as a hook for our CSS selector (in
CSS3, we could use the last-child selector, which selects the last child element of a spec-
ified element, but again, because last-child is not widely supported yet, we won’t rely on
it here).

The least-worst thing we could do is take an existing element and add some reasonably
meaningful markup to it. That’s why we gave the paragraph a class of email and the email
address a class of value (which reminds me a little of a moment in Hamlet: “The lady doth
protest too much, methinks” . . .).

OK, let’s get back to the CSS. We add the bottom-right corner image, positioning it in the
bottom right of the element and making sure it doesn’t repeat. We also add some padding
to the bottom, to balance out the padding we added to the top of the hCard:

p.email {
background-image: url(images/bottom-right.png);
background-position: right bottom;
background-repeat: no-repeat;
padding-bottom: 2em;

}

This all goes to make our hCard look like Figure 7-19.

CONTACT INFORMATION MICROFORMAT: HCARD

157

7

8148Ch07.qxp 2/28/07 6:05 PM Page 157

Figure 7-19. With the second bottom border image added, the rounded corners are finished.

Now we need to just clean up a little. Let’s start from the top. We’ll float the download
image to the right like this:

.vcard img {
float: right;
padding-right: 1em;
margin-top: -1em

}

See how we didn’t have to add a class to style the image? We used the fact that the image
is a descendent of the vCard element and a descendent selector. In my experience, the
very widely supported, powerful descendent selector is one of the most underused
aspects of CSS. So if you don’t use it frequently, look into it in more detail.

We’ll add some space to the right of the image and pull it up a bit closer to the top of the
hCard, giving us Figure 7-20.

We also want to add some whitespace between the edge of the hCard and the text. We
would typically add padding to the left of the containing element (in this case, the vCard
element), but this would break our bottom-left corner, as shown in Figure 7-21.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

158

8148Ch07.qxp 2/28/07 6:05 PM Page 158

Figure 7-20. Our design with the text vertically centered and the card flattened a bit

Figure 7-21. Adding padding to the left of the containing element breaks the design in this case.

That’s because the div element we added to this bottom-left background image to would
be moved in by the padding on its containing element. Instead, we add some left margin
to all the paragraphs in the hCard:

.vcard p {margin-left: 1em;}

(There’s the descendent selector again—it’s the Swiss Army knife of CSS.)

We haven’t yet made the width of the hCard a function of the size of the text inside it (or
em-driven, as discussed earlier). We do this by giving the hCard a width specified in em
units. Here we set a width of 28em, which makes the hCard always roughly as wide as 28
characters (strictly speaking, 28 times the width of the capital letter “M”). The statement
for our containing vCard element becomes

.vcard {
background-image: url(images/vcardfill.png);
background-repeat: no-repeat;
color: #666;
font-family: "Lucida Grande", Verdana, Helvetica, Arial, sans-serif;
width: 28em

}

and our element looks like Figure 7-22.

CONTACT INFORMATION MICROFORMAT: HCARD

159

7

8148Ch07.qxp 2/28/07 6:05 PM Page 159

Figure 7-22. Our final CSS design

We’ve used almost entirely the existing HTML from our original hCard (adding just a little,
and trying as much as possible to keep that additional markup meaningful) and just six CSS
statements.

Summary
Well, this was a chapter and then some. You learned what hCard is (in short, vCard for the
Web), explored all the different properties of vCard, and discovered how to use them in
hCard. You took a look at some tools for making your life as a developer easier; some of
the major publishers, such as Yahoo, using hCard; and some of the services that index and
aggregate hCard, such as Technorati Microformats search.

hCard is perhaps the most widely used of all microformats—certainly of the compound
microformats—and it’s not difficult to see why: contact information is just so common on
the Web. hCard also serves as an excellent starting point for learning about other com-
pound microformats, which you’ll continue to look at in detail throughout the rest of the
book.

The next chapter covers hCalendar, a microformat for events, which shares much in com-
mon with hCard, beginning with its origins as an IETF RFC. As a consequence, much of
what you’ve learned in this chapter will be very useful in the next chapter.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

160

8148Ch07.qxp 2/28/07 6:05 PM Page 160

8148Ch07.qxp 2/28/07 6:05 PM Page 161

8148Ch08.qxp 3/2/07 5:06 PM Page 162

8 EVENT MICROFORMAT: HCALENDAR

8148Ch08.qxp 3/2/07 5:06 PM Page 163

The rise of blogging demonstrated something that was always true about the Web, but
that got somewhat lost in the feverish explosion of online sandwich delivery and multimil-
lion-dollar sock puppets in the late 1990s web bubble: the Web is about people and their
relationships. It’s about what we feel and believe, and it’s about conversations—online and
in person.

The last chapter covered how microformats help make contacting people (and organiza-
tions) easier. In this chapter, you’ll see how microformats help mark up another piece of
extremely common information, events, with the hCalendar microformat. An event might
be something as informal as coffee with a friend, a party you are throwing, or an internal
meeting at your company. At the other end of the spectrum, an event could be the Nobel
Prize conference, or even the Football (that’s soccer for our American friends) World Cup,
arguably the biggest sporting event in the world. This chapter provides examples of all of
these types of events, using hCalendar.

hCalendar overview
The Web is full of event details—personal events, corporate events, concerts, movie
timetables, television listings, conferences, and much more. Many of these are published
by centralized services like Upcoming (http://upcoming.org), and many others are pub-
lished on company and personal sites. Yet, as you saw with contact details, the way these
events are published differs markedly from site to site.

Let’s take a look at just a couple of major events and how they are marked up in HTML.
Here is how the official site for the Beijing 2008 Olympics publishes event details in HTML:

<tr><td valign=top class=dian1 width=9>•</td><td class=f12_5959>
IOC Coordination Commission
plenary session held in Beijing (photos attached)(2)
[2006-10-24]</td></tr>

While the official Academy Awards site publishes the main events associated with the
Oscars on the front page like this:

Sunday, February 25, 2007: 79th Annual
Academy Awards Presentation

(What is it with the
 element?)

The events themselves have no particular markup whatsoever to identify them as such,
which I suspect we would find to be the case for almost all events published online. These
examples also show how hard it might be to extract meaningful information from an event
published online—identifying and extracting dates. Here we have two significantly differ-
ent date forms, and a quick look around the Web will find many others.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

164

8148Ch08.qxp 3/2/07 5:06 PM Page 164

Now if something as seemingly simple as an address can be extremely difficult for software
to recognize and extract relevant details from, as demonstrated in previous chapters,
imagine how much more difficult it is to recognize an event, which may well include an
address (or other location, such as Room 101 or “the Chairman’s Room”), and additionally
dates and times (as you learned in the date of birth discussion in the previous chapter,
ambiguities can creep into even something as simple as a date) and other details.

Returning once more to the microformats principles from Chapter 1, recall that microfor-
mats are designed to “solve a specific problem.” Given that so many events are published
online without any real consistency, they are excellent candidates for a microformat.
Another key principle is that microformats should “reuse building blocks from widely
adopted standards.” In the previous chapter, you saw a similar situation—contact details
published online without any real consistency—and found the IETF RFC vCard fit the need
very well. Rather than reinventing the wheel of creating a schema for contact details, we
reused a well-established existing one.

So, is there a good candidate schema for event details, like vCard? Luckily, there is:
iCalendar, the IETF RFC 2445. The stated purpose of iCalendar is to “provide the definition
of a common format for openly exchanging calendaring and scheduling information
across the Internet.”1

You might be asking, if we have iCalendar for exchanging this information “across the
Internet,” why do we need a microformat? iCalendar is not designed for the Web itself;
rather, it’s a way of synchronizing data between different applications. In essence, it’s a
common file, or data interchange, instead of a publishing format. Here’s an example of a
typical iCalendar:

BEGIN:VCALENDAR
PRODID:-//xyz Corp//NONSGML PDA Calendar Version 1.0//EN
VERSION:2.0
BEGIN:VEVENT
DTSTAMP:19960704T120000Z
UID:uid1@host.com
ORGANIZER:MAILTO:jsmith@host.com
DTSTART:19960918T143000Z
DTEND:19960920T220000Z
STATUS:CONFIRMED
END:VEVENT

This is perhaps marginally more readable than vCard, but it’s still far from human-friendly
(and not at all like HTML, so it’s not suitable for embedding in web pages).

In a nutshell, hCalendar is the schema of iCalendar, expressed in HTML. It reuses the prop-
erties of iCalendar, utilizing the class design pattern and the abbr design pattern, to mean-
ingfully bring the rich semantics of iCalendar to the Web. Let’s next take a look at how this
works.

EVENT MICROFORMAT: HCALENDAR

165

8

1. See www.ietf.org/internet-drafts/draft-ietf-calsify-rfc2445bis-03.txt.

8148Ch08.qxp 3/2/07 5:06 PM Page 165

Using hCalendar
Because hCalendar is, according to microformats.org, a “1:1 representation of the
iCalendar standard, in semantic XHTML,” to really get to grips with hCalendar, we need to
take a close look at the iCalendar specification. This can be a little daunting, because the
specification is largely written for developers working on software that uses the format,
and not for publishers. Not to mention that it’s 148 pages of plain, monospaced text. But
you don’t have to read the specification in its entirety, because I’ve done that for you.
(Surely that’s worth the price of this book alone?)

iCalendar is designed to be an interchange format for essentially all of the information
that might go into a calendaring application, like Apple’s iCal or Microsoft Entourage. But
a great deal of the specification will hardly ever (or never) be required for the purpose for
which the hCalendar microformat was designed: publishing events online. So, rather than
laboriously translating all of the iCalendar specification into HTML, let’s think about what
we’ll commonly need to publish event details online.

A straightforward event will most likely have

A name

A description

A date (or, for longer events, a start date and an end date)

A location

A URL

Some contact details

A more-complex event might also have

Start and end times

Detailed locations, with addresses and even geographic data (these might ring a
bell from Chapter 6)

The term “schema” is one you’ll probably have heard used a bit, particularly in rela-
tion to XML or databases. In fact, it’s been used in relation to hCard and now
hCalendar in this book. In my experience, you’ll be hard-pressed to get a good defini-
tion of the term from someone, outside of those who have formally studied computer
science. The definition at Wikipedia of XML schema, “a way to define the structure,
content and, to some extent, the semantics of XML documents,”2 is as good and suc-
cinct a definition as I’ve seen. Although the definition specifically relates to XML, it is
also a good general definition in the context of microformats.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

166

2. See http://en.wikipedia.org/wiki/XML_schema.

8148Ch08.qxp 3/2/07 5:06 PM Page 166

We’ll then think about quite complex events that actually consist of a series of events. For
example, a conference is an event that consists of sessions, each of which is itself an event.
So we’ll see how we can nest events inside calendars to group them together.

In the sections that follow, we’ll start with the simplest kinds of events and work our way
up to some more-complex examples.

Simple events

Typically an event will have

A name

A description

A date (or for longer events a start and end date)

A location

A URL

Not surprisingly, iCalendar defines properties for each of these.

Recall that compound microformats require a root element, in the case of hCard, for
example, an element with a class value of vcard, which contains the rest of the content of
that microformat. With hCalendar, the root element is an element with a class value of
vcalendar. To simplify the use of hCalendar where our calendar is simply a single event,
we can use vevent as the class of the root element.

What? OK, it does sound a bit weird, but here is the reasoning. The iCalendar format is for
whole calendars. A calendar in iCalendar is made up of one or more events, and each
event can stand alone as an entity. While there is no explicit event microformat (as yet), we
can think of events (inside iCalendar, an event is known as a “vevent,” so we’ll refer to an
event in this way for now) as their own distinct microformat. In addition, in iCalendar, the
calendar itself effectively has no data associated with it, other than the events it contains
(and a couple of properties that are almost always used as their defaults). We can optimize
a bit by leaving out the containing vcalendar element.

So, we have a root element with a class of vevent. As you saw with hCard, this element can
be any kind of HTML element, provided you keep in mind the standard HTML containment
rules, such as inline elements must not contain block elements. For this simple event, we’ll
make the containing element a div:

<div class="vevent">
...

</div>

The order in which details for the event—name, description, and so on—occur inside this
element isn’t important (this is almost always the case for microformats). But following a
logical sequence, we’ll add the name of the event next.

EVENT MICROFORMAT: HCALENDAR

167

8

8148Ch08.qxp 3/2/07 5:06 PM Page 167

If you guessed that our next element will look something like this:

<h3 class="name">...</h3>

that’s not a bad guess, but you’d be wrong. The name property in iCalendar is called sum-
mary (for which I am sure there is a good reason—it just escapes me at the moment).
Then, using the class design pattern you’ve seen a number of times now, here’s how we
create the summary element:

<h3 class="summary">Web Directions North</h3>

Putting these together, we get our basic event:

<div class="vevent">
<h3 class="summary">Web Directions North</h3>

</div>

This is not quite a valid vevent yet, because at a minimum, an event requires a summary
and a start date. We’ll do that in a moment.

Next, we might want to add some further information about the event, in a structured
way. In iCalendar, the description property is used for this purpose. Again, using the class
design pattern, we add a class value of description (i.e., a class value matching the prop-
erty name in iCalendar) to an HTML element. Most likely, the description will be some kind
of block of information. If it is a single paragraph, it makes sense to make this a paragraph
of class description, like so:

<p class="description">
A Web design and development conference in Vancouver Canada.

</p>

What if we want more than one paragraph? You might suggest we have two paragraphs of
class description, like so:

<p class="description">
A Web design and development conference in Vancouver Canada.

</p>
<p class="description">
Featuring a who's who of international web experts....

</p>

This makes sense and is valid HTML (the same class value can, of course, be used on sev-
eral elements), but when we look at the iCalendar specification, we find that among a
number of other properties, description must not occur more than once. To comply with
this aspect of iCalendar, we need to group these paragraphs together using a div element,
and place the class value on the div like this:

<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

168

8148Ch08.qxp 3/2/07 5:06 PM Page 168

Now, what would happen if we had used the previous “invalid” construct where we had
two paragraphs, each with a class of description? Here the hCalendar specification (and
this rule applies to all microformats) says, “For properties which are singular . . . the first
descendant element with that class should take effect, any others being ignored.” In our
case, the description would only include the content from the first paragraph, and not the
second, or any subsequent ones that had a class value of description. As I mentioned,
this is true for any microformat where the property is a “singular” one. The first instance is
considered to be the sole value, and all other instances are ignored.

Now we have the following:

<div class="vevent">
<h3 class="summary">Web Directions North</h3>
<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>
</div>

It’s not yet a complete event, because it still lacks a start date, but let’s take a quick look
at it in a browser anyway (see Figure 8-1).

Figure 8-1. Our event so far, as shown in a browser

Now, why might we be interested in this rather plain-looking page? It simply illustrates that
when we use structured HTML appropriately, even when CSS is turned off or not available
because it is not supported by the browsing device, our pages render meaningfully. This is
usually a reasonably good basic test for whether assistive devices (screen readers, Braille
devices, etc.) will be able to present the page contents in a meaningful way.

But as mentioned, we are still lacking a required element: the start date for the event.
We’ve seen dates as part of a microformat before, with birthdays in the previous chapter.
To recap, in order to deal with the potential ambiguity of a date (e.g., is 5.3.2006 May 3 or
March 5?), and to make dates both human- and machine-readable, we use the date abbr
design pattern. The abbr design pattern uses the abbr element of HTML, with the
machine-readable data as the value of the title attribute, and the human-readable data
as the content of the element. For instance, Buffy’s birthday is as follows:

<abbr title="19810191" class="bday"> Jan 19 1981</abbr>

In the case of our conference, it began on February 6, 2007. Our machine-readable version
of that date, using the ISO date-time standard (8601) is 20070206 (we go from most

EVENT MICROFORMAT: HCALENDAR

169

8

8148Ch08.qxp 3/2/07 5:06 PM Page 169

significant data, the year, to the least significant, the day). Or, to make it slightly more
human-readable but still ISO8601-conformant, 2007-02-06. Using the abbr design pattern,
we create our date element:

<abbr title="20070206">Feb. 6th 2007</abbr>

All we need to do now is to add the appropriate class value. In iCalendar, start dates (and
times) are specified with the dtstart (date-time start) property (a little later you’ll see
how to add time information to this property):

<abbr title="20070206" class="dtstart">Feb. 6th 2007</abbr>

The conference runs for three days, so we’ll need to add an end date. You would probably
guess that the property in iCalendar for this is dtend, and again, we’ll use the abbr design
pattern to construct our end date element.

So, what’s the ISO8601 form of the date February 8, 2007? You might think that it is
20070208, but in fact, that specifies midnight between February 7 and 8! So, to be exact,
we either add a time component or use the date 20070209:

<abbr title="20070209" class="dtend">Feb. 8th 2007</abbr>

All we need to do now is incorporate this into our event element:

<div class="vevent">
<h3 class="summary">Web Directions North</h3>

<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>

<p>Featuring a who's who of international web experts....</p>
</div>
<p>From <abbr title="20070206" class="dtstart">Feb. 6th å

2007</abbr> to <abbr title="20070209" class="dtend">Feb. 8th å

2007</abbr></p>
</div>

We could, of course, add our start and end dates in a number of ways. Recall from the last
chapter that the actual date value is the value of the title attribute, not the human-read-
able content, so we could express the preceding information in a slightly more compact,
human-friendly way like this:

<p>From <abbr title="20070206" class="dtstart">Feb. 6th</abbr> å

to <abbr title="20070209" class="dtend">Feb. 8th</abbr> 2007</p>

We might also want to add the names of the days for the benefit of our human readers
(software can work it out from the date if it is important):

<p>From <abbr title="20070206" class="dtstart">Tuesday Feb. 6th å

</abbr> to <abbr title="20070209" class="dtend">Thursday å

Feb. 8th</abbr> 2007</p>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

170

8148Ch08.qxp 3/2/07 5:06 PM Page 170

We’ll also want to mark up any link to the event (e.g., the main page of its website), and
just as demonstrated with hCard, we can do this explicitly by adding a class value of url,
which is found in iCalendar, to such links. Again, as with hCard, rather than adding a sepa-
rate element for the link, we’ll just turn the summary text into a link as well:

<h3 class="summary"><a href="http://north.webdirections.org"
class="url">Web Directions North</h3>

This example shows that microformats, rather than imposing a particular rigid format on
how we express information, give us a lot of flexibility to express content in meaningful
ways for our human audience, and also for our machine audience.

Adding location information

The conference in our example took place at the Renaissance Vancouver Hotel
Harbourside. I suspect our audience will have been quite interested in knowing this, so we
need a way of publishing the location of the event. In this instance, iCalendar uses the
obvious property name location:

<p class="location">Renaissance Vancouver Hotel Harbourside</p>

giving us the following so far:

<div class="vevent">
<h3 class="summary"><a href="http://north.webdirections.org"

class="url">Web Directions North</h3>

<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>
<p>From <abbr title="2007

0206" class="dtstart">Tuesday Feb. 6th å

</abbr> to <abbr title="20070209" class="dtend">Thursday å
Feb. 8th</abbr> 2007</p>

<p class="location">Renaissance Vancouver Hotel Harbourside</p>
</div>

Finally, we’ll want to add a URL for the event. Instead of adding a separate URL element, as
with our hCard example, we’ll add a link to the name of the event and give it a class of url
(like all the other class values in this event, this one comes from iCalendar). Our final event
code looks like this:

<div class="vevent">
<h3 class="summary"><a href="http://north.webdirections.org"

class="url">
Web Directions North</h3>

EVENT MICROFORMAT: HCALENDAR

171

8

8148Ch08.qxp 3/2/07 5:06 PM Page 171

<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>
<p>From <abbr title="20070206" class="dtstart">Tuesday Feb. 6th å

</abbr> to <abbr title="20070209" class="dtend">Thursday å
Feb. 8th</abbr> 2007</p>

<p class="location">Renaissance Vancouver Hotel Harbourside</p>
</div>

In a browser, the event will look as shown in Figure 8-2.

Figure 8-2. Our event is now looking more complete when rendered,
with a link to the event home page and additional information.

It’s not particularly exciting to look at, but let’s see it using Firefox with the
Tails extension installed. Recall from the last chapter that two popular
Firefox extensions for extracting and displaying microformats are Tails
Export (covered in the last chapter) and Tails (covered later in this chapter).

With Tails installed, as with Tails Export, when you load a page with micro-
formatted content, you get a colored microformats icon (see Figure 8-3).

When you click the icon, you get a list of all the microformatted content
on the page. Then you click one of the events to get its details, which are
displayed as shown in Figure 8-4.

Figure 8-4. Our hCalendar event rendered by Tails

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

172

Figure 8-3. The Tails/Tails Export icon
indicates that microformats are
available on a web page.

8148Ch08.qxp 3/2/07 5:06 PM Page 172

As a basic microformats debugging tool, Tails is very useful. You can simply load your page
in Firefox with Tails installed, and check whether all the data you think should be displayed
actually is. Keep in mind that Tails may not be error-free (you’ll see an example of when it
is not, at least with the versions current in late 2006, later in this chapter), so it’s not quite
the same as validating your HTML with the W3C validator. But for a quick check, it’s a great
tool.

Now that we have a straightforward vevent working, let’s think about making it a little
more sophisticated.

Adding contacts

For events you’ll typically want to include some kind of contact details. In the last chapter,
we took a detailed look at a microformat for precisely this purpose, so it would make
sense to somehow use an hCard as part of an event. Remember that microformats aim to
be “modular” and “embeddable,” and you saw with the geo and adr microformats how
these can be used inside other microformats when you need a format for geodata or
addresses. In exactly the same way, you can embed an hCard in a vevent.

First, let’s quickly construct our hCard for contacting the conference. We’ll have an organ-
ization with a URL, an email address, and a postal address:

<div class="vcard contact">
<p class="fn org">Web Directions North</p>
<div class="adr">
<p class="street-address">1485 Laperrière Avenue</p>
<p>Ottawa <abbr class="region" å

title="Ontario">ON</abbr> K1Z å

7S8</p>

Tails is one of a great many extensions for the Firefox browser (there are currently over
200 developer-oriented extensions for Firefox), which many web developers find indis-
pensable as part of their development process. You can find Tails at http://blog.
codeeg.com/tails-firefox-extension-03.

Tails, developed by Calvin Yu, allows a user to see the microformatted content in a page.
What’s particularly interesting about Tails is that recently (late 2006 as this book was
being written), the Firefox 3 development team and Chris Wilson, a longtime Windows
Internet Explorer developer (and one of the Mosaic developers in the early 1990s), have
been showing considerable interest in microformats, and inclusion of support for micro-
formats in those browsers is being actively discussed. For example, you can see a brain-
storm on Firefox microformat inclusion at http://wiki.mozilla.org/Firefox/
Feature_Brainstorming:Microformat_Handling.

Extensions like Tails give us some idea of how native browser support for microfor-
matted content might play out in browsers in the next couple of years.

EVENT MICROFORMAT: HCALENDAR

173

8

8148Ch08.qxp 3/2/07 5:06 PM Page 173

<p class="country-name">Canada</p>
<p> å

north@webdirections.org</p>
</div>

</div>

Notice that on the div of class vcard, we add a second class value, contact. The first class
value, vcard, is associated with the hCard, while this second class value, contact, is actu-
ally part of the hCalendar microformat that this hCard is embedded in.

Now, where does this hCard go? Like any other part of a vevent, it will be a descendent
element of the root vevent element. We’ll add it to give the following vevent element:

<div class="vevent">
<h3 class="summary"><a href="http://north.webdirections.org"

class="url">
Web Directions North</h3>

<div class="description">
<p>A Web design and development conference in Vancouver Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>
<p>From <abbr title="20070206" class="dtstart">Tuesday Feb. 6th å

</abbr> to <abbr title="20070209" class="dtend">Thursday Â
Feb. 8th</abbr> 2007</p>

<p class="location">Renaissance Vancouver Hotel Harbourside</p>

<div class="vcard contact">
<p class="fn org">Web Directions North</p>
<div class="adr">
<p class="street-address">1485 Laperrière Avenue</p>
<p>Ottawa <abbr class="region" å

title="Ontario">ON</abbr> K1Z å

7S8</p>
<p class="country-name">Canada</p>
<p>

north@webdirections.org</p>
</div>

</div>
</div>

Adding start and end times

For a conference spanning several days, a start and end date will probably be sufficient
information for attendees to help them make travel and accommodations plans. But for
other events, like meetings or individual sessions within the conference, we are definitely
going to want start and end times as well as dates.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

174

8148Ch08.qxp 3/2/07 5:06 PM Page 174

I touched on times in the last chapter during the discussion of the ISO standard for dates.
The ISO date-time standard, ISO 8601, allows us to specify both a date and a time. You know
how to specify a date already—you specify the year (four digits), month (two digits), and day
of the month (two digits), in that order. To specify a date and time, you use the same format
but simply append the letter “T” and the time in 24-hour time, with hours, minutes, and sec-
onds separated by a colon (:). For example, 22 minutes after 5:00 p.m. the afternoon of
February 22, 2007, is 20070222T17:22 or 20070222T17:22:00 (seconds are optional).

This leaves us with an issue. When it is 11:00 a.m. in Sydney, Australia, where I live, it is 6:00
p.m. on the West Coast of the United States and Canada, and quite a few different times
elsewhere in the world, depending on the time zone being considered. So if I tell you we’ll
have a conference call next Wednesday at 6:00 p.m., and you are in Vancouver while I am
in Sydney, we have a problem. Clearly, we need some way of specifying a universal time.
ISO 8601 does this by appending the time zone relative to Coordinated Universal Time
(UTC) (which is very closely associated with Greenwich Mean Time, but based on an
atomic standard time unit, rather than astronomical observation—aren’t you glad you
asked?) like this: +02:00, or +02, or +0200.

For example, in Sydney, which is nine hours ahead of London, the current time to the sec-
ond as I write this is 20061028T17:53:17+0900, or 20061028T17:53:17+09:00, or
20061028T17:53:17+09. (If daylight saving time commences, I have to write +10 instead of
+09—another thing to keep in mind.)

Some locations are actually behind UTC, in which case, you use a minus sign instead of a
plus sign. For example, Vancouver, Canada, is seven hours behind UTC when observing
daylight saving time, so you would write the current time and date in Vancouver as
20062810T07:57:17-0700.

How about in London itself? Well, you might think that leaving off the time difference
altogether indicates that the location is +0 UTC, but this is not the case. It actually indi-
cates local time wherever the value is being read. You need to add the +0 (or 00, or 00:00).
And, of course, to make it trickier still, when the UK observes daylight saving time, it is one
hour ahead of UTC, so in that case, you’d need to add +0100.

There is a shorthand for +0000—simply append the letter “Z” after the time. When it is not
daylight saving time in London (or, technically, British Summer Time), you specify a date
and time in London and elsewhere in Greenwich Mean Time as 20061122T09:00:59Z.

A good online resource for time zone differences is The World Clock – Time Zones page
at www.timeanddate.com/worldclock/difference.html?p1=769.

To aid readability, the year, month, and day may be separated by hyphens (-) like this:
2007-02-22T17:22.

EVENT MICROFORMAT: HCALENDAR

175

8

8148Ch08.qxp 3/2/07 5:06 PM Page 175

OK, so how does ISO8601 help us specify a start and/or end date and time for an event?
As recommended by the W3C for dates and times on the Internet, microformats use the
ISO 8601 as the date-time standard. To specify that our conference begins at 9:00 a.m.
local time in Vancouver, on February 6, 2007, we have this date:

20070206T09:00-0800

(By the way, I needed to look up the time difference on that date using http://timeand-
date.com/worldclock/city.html?n=256.)

Our start date and time for the event now becomes

<abbr title="20070206T09:00-0800" class="dtstart">
Tuesday Feb. 6th art 9.00am</abbr>

while our end date and time becomes

<abbr title="20070208T17:00-0800" class="dtend">
Thursday Feb. 8th at 5.00pm</abbr>

Note that we use 20070208, because the addition of the time component means this value
no longer indicates midnight between February 7 and 8, but rather a specific time on
February 8.

In the next section, we’ll put all this together for one of the sessions at Web Directions
North.

Marking up a complete event in hCalendar

On the first day of the conference there are two whole-day workshops. Each of these is an
event, and we’ll mark it up as such. In a moment, we’ll add more than one event to a cal-
endar, but let’s first create these events, using what we’ve covered so far.

The first event has these details:

Ironically, like many ISO standards, the 8601 standard is not available online, but only
for purchase, so you’ll have to rely on the descriptions of the standard in this chapter,
or purchase the standard from ISO. Makes the W3C’s publishing of all standards
online with the aim to have them permanently available at the URL at which they are
published all the better, doesn’t it?

For more detail on ISO 8601 date-time values, see www.cs.tut.fi/~jkorpela/
iso8601.html and http://hydracen.com/dx/iso8601.htm. If you’d like to know why
the letter “Z” is associated with Greenwich Mean Time, the article “Z-Time” by Harold
F. Maybeck (www.maybeck.com/ztime) will be of interest.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

176

8148Ch08.qxp 3/2/07 5:06 PM Page 176

Title: Accessibility 2.0 – Build applications the smart way: Make them accessible and
usable.

Description: Web applications are fundamentally different from websites, and their
creation demands that we break out of our usual development routines and take a
whole new approach. Reputations are built on web apps that excite rather than
frustrate users.

Where: Renaissance Vancouver Hotel Harbourside, Vancouver, Canada.

When: 9:00 a.m. to 5:00 p.m., Tuesday, February 6, 2007.

Details: http://north.webdirections.org/?page_id=4/#feather.

We wrap the whole chunk of this event’s information in a <div> element of class vevent.
Like our first example, we have the name of the event (the “summary”) as a heading, and
we wrap the name in a link with an href of the details for the event. Here’s our first chunk
of information:

<div class="vevent">
<h3 class="summary">
<a href="http://north.webdirections.org/?page_id=4/#feather" å

class="url">Accessibility 2.0 - Build applications the smart å

way: Make them accessible and usable
</h3>

</div>

Next we add the description. In this case, it’s a single paragraph, so we can use just a para-
graph with a class of description; there’s no need to add an extra div.

<p class="description">Web applications are fundamentally different å
from web sites, and their creation demands that we break out of å

our usual development routines and take a whole new approach. å

Reputations are built on web apps that excite rather than å

frustrate users.</p>

We add the location as we did the contact for the conference as a whole—as an hCard. We
could do this simply as follows:

<div class="vcard location">
Location: <p class="fn org">Renaissance Vancouver Hotel å

Harbourside</p>
<p class="adr">Vancouver
Canada</p>

</div>

Now, we add the start and end times:

<p>When: <abbr title="20070206T0900-0800" class="dtstart"> å
9:00 a.m.</abbr>to <abbr title="20070206T1700-0800" å

class="dtend">5:00 p.m.</abbr>, Tuesday, February 6, 2007</p>

And we are done, giving us the following completed HTML:

EVENT MICROFORMAT: HCALENDAR

177

8

8148Ch08.qxp 3/2/07 5:06 PM Page 177

<div class="vevent">
<h3 class="summary">

<a href="http://north.webdirections.org/?page_id=4/#feather" å

class="url">Accessibility 2.0 - Build applications the smart å

way: Make them accessible and usable
</h3>

<p class="description">Web applications are fundamentally å
different from web sites, and their creation demands that å

we break out of our usual development routines and take å

a whole new approach. Reputations are built on web apps å

that excite rather than frustrate users.</p>

<div class="vcard location">
Location: <p class="fn org">Renaissance Vancouver Hotelå

Harbourside</p>
<p class="adr">Vancouver
Canada</p>

</div>

<p>When: <abbr title="20070206T0900-0800" class="dtstart"> å
9:00 a.m.</abbr> to <abbr title="20070206T1700-0800" å

class="dtend">5:00 p.m.</abbr>, Tuesday, February 6, 2007</p>
</div>

Our second event will be marked up in a similar fashion:

<div class="vevent">
<h3 class="summary">
<a href="http://north.webdirections.org/schedule/tuesday/#CSS" å

class="url">Creative web development with CSS and DOM å

scripting
</h3>

<p class="description">U.K. Design guru Andy Clarke and Ajax å

superstar Aaron Gustafson will take your CSS-based skills and å

supercharge them with a little bit of JavaScript magic. å

So all you designers out there, learn how to take å

your skills to the next level by combining CSS and å

JavaScript.</p>

<div class="vcard location">
Location: <p class="fn org">Renaissance Vancouver Hotel å

Harbourside</p>
<p class="adr">Vancouver
Canada

</p>
</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

178

8148Ch08.qxp 3/2/07 5:06 PM Page 178

<p>When: <abbr title="20070206T0900-0800" class="dtstart"> å

9:00 a.m.</abbr> to <abbr title="20070206T1700-0800" å

class="dtend">5:00 p.m.</abbr>, Tuesday February 6, 2007
</p>

</div>

Both events take place as part of the larger event—the conference—so ideally we’d like to
include them in a single hCalendar.

So far, you’ve seen that if you have a single event, you simply create a vevent, but you also
saw at the outset that the schema you are using to do this is from iCalendar. When you
have multiple events, you group them together into a vCalendar microformat. To do this,
you create a root element with a class value of vcalendar, and then each of the events is
a descendent element of this root element.

Logically, you have something like this:

<div class="vcalendar">
<div class="vevent">[first event]</div>
<div class="vevent">[second event]</div>
...
<div class="vevent">[last event]</div>

</div> <!-- end vcalendar -->

For our example, we might add the vevent for the whole conference and follow it up with
individual events for the workshops, sessions, lunch breaks, parties, and so on. Note that
the root vcalendar element is, in fact, optional—where none exists, the page itself is
taken to be the root element of the hCalendar.

Finally, you might be asking, why vcalendar? After all, I’ve been referring to iCalendar
throughout this whole chapter. Well, the original specification was called vCalendar (like
vCard), and the root property of an iCalendar is still called a vCalendar. Version 2 of the
specification, which was published in 1998, jumped on board the “i”+everything naming
convention (right after Apple released the iMac, “cool” online names went from e-* to i-*,
it seems).

Other iCalendar properties

The iCalendar specification has a great many more properties than the ones discussed in this
chapter. As hCalendar is, in effect, iCalendar for HTML, strictly speaking all of these other
properties are part of hCalendar. But the ones presented in this chapter are typically just
about all you’ll need to mark up the vast majority of events. Earlier, I mentioned that
iCalendar supports, among other things, recurring events (e.g., weekly or monthly meetings).

If you want to take a look at this whole example, you can download it
from http://microformatique.com/book.chapter8/vcalendar.zip.

EVENT MICROFORMAT: HCALENDAR

179

8

8148Ch08.qxp 3/2/07 5:06 PM Page 179

In theory, this too is part of hCalendar, but in practice, at the time of this writing, precisely
how best to implement this in HTML has yet to be fully finalized.

This incrementalist approach may sound like a drawback of the microformats process, but
in a sense it demonstrates a considerable strength. If we were to wait until all the complex-
ities and subtleties of iCalendar were fully available in HTML through the hCalendar micro-
format, the task would take considerably longer, and the likelihood of it being completed
at all would diminish. And, ironically, we’d probably only meet the needs of a reasonably
small percentage more developers this way, while making everyone’s life more difficult. The
incremental approach of starting with widely needed solutions (in this case, a way of mark-
ing up reasonably straightforward information about events) means that in the significant
majority of cases we have a solution earlier than we otherwise would have, and with con-
siderably less effort. This approach is sometimes referred to as the 80/20 rule, or the Pareto
principle (after early twentieth-century Italian economist Vilfredo Pareto). When develop-
ing a microformat, it is better to focus on the solution that meets the needs of a significant
majority of users and use cases (based on observation of actual practice, not theoretical
need), rather than all use cases and all possible needs.

At times, a particular microformat may seem less than complete, or a seemingly obvious
(from the perspective of a sophisticated user) piece of functionality might appear to be
missing. Rest assured, it is likely that this use has been considered and put to one side, pos-
sibly for later, more complete development, based in part on the consideration of this
80/20 rule. And, if you have a particular need you want fulfilled by microformats, you
could always contribute your energy and expertise toward making it happen (as we’ll dis-
cuss in Chapter 13).

hCalendar and tables
So far, we’ve been marking up our event information from scratch, and we have been able
to tailor our examples to make the job seem pretty effortless. But real-world observation
about how events are marked up for the Web, particularly complex events like confer-
ences, show that often they use tabular markup. Before you get excited and start exclaim-
ing about how tables are “bad,” understand that in this situation, it makes perfect sense to
use a table. After all, an event listing is literally a “timetable.”

Figure 8-5 shows a typical example of how events are marked up.

Right away, you might see some problems. Because a table has been used, the time part of
the event is in a different cell from the summary, location, and description, like this:

<tr>
<th>10.15am - 10.45am</th>
<td>Morning tea</td>

</tr>

Recall that root elements contain all the elements of a compound microformat, so what
should be our “root” element be in this case? Well, the <tr> element is the parent of both
these elements, so we could do this:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

180

8148Ch08.qxp 3/2/07 5:06 PM Page 180

<tr class="vevent" >
<th><abbr class="dtstart" title="20060928T1015+1000">10.15am</abbr> å

<abbr class="dtend" title="20060928T1045+1000">
10.45am</abbr></th>

<td colspan="2">Morning tea</td>
</tr>

Figure 8-5. A typical web-based calendar of events

This is fine, but we are still not able to include the location, which is in the first row of the
table, not contained within the row we have just made the root of this event. So that’s not
the answer.

EVENT MICROFORMAT: HCALENDAR

181

8

8148Ch08.qxp 3/2/07 5:06 PM Page 181

It gets even more complicated when we have simultaneous events like in Figure 8-6.

Figure 8-6. Marking up two simultaneous events in hCalendar gives us more of a challenge.

Here’s our basic HTML for these two events:

<tr>
<th>10.45am - 11.45am</th>
<td>
<p>Laurel Papworth - The business of online communities</p>

</td>
<td>
<p>Cheryl Lead and Ben Buchanan -

Moving your organisation to web standards</p>
</td>

</tr>

The <tr> is a common parent to both events, as well as the <th> element with the date
and time details. We can’t add a class of vevent to the <tr> element, like we did in the
previous example, because we’d only have one event, when we really need two.

And in both examples, we haven’t included the location, despite it being in the head of the
table, like in Figure 8-7.

Figure 8-7. The table head, showing the locations of the events

We could, of course, add the date, time, and location information, and then hide it using
CSS with HTML like so:

<td class="vevent">
<p class="summary">Laurel Papworth - The business of online å

communities <abbr class="dtstart" title="20060929T1045+1000"> å

10.45am</abbr> - <abbr class="dtend" title="20060929T1145+1000"> å

11.45am</abbr></p>
</td>

and CSS like this:

abbr.dtstart, abbr.dtend {
display: none

}

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

182

8148Ch08.qxp 3/2/07 5:06 PM Page 182

But this adds considerable complexity and redundancy to our HTML and CSS. In addition
to adding information we already have elsewhere in our HTML, there will be other <abbr>
elements of class dtstart and dtend that we do want displayed, so we’ll probably have to
make these selectors even more specific, probably something like td.vevent abbr.dtend
to specify only <abbr> elements of class dtend and dtstart inside <td> elements of class
vevent. And we still haven’t even added in the location information.

Ideally, we’d want to mark up the location, date, and time information just once. This not
only makes our pages smaller and our development effort simpler, but it also makes main-
tenance easier and reduces the chance of errors. After all, we need to make sure that the
displayed information and the machine-readable information are the same, and if we
change our HTML at all (e.g., if we move an event to another time on the program), we
must keep these in sync. The more we need to edit and maintain, the greater the chance
that we’ll make mistakes.

But is there a way of using appropriate, correct HTML and achieving this goal of not
repeating information? I am sure you’ll have guessed that there is, but it does rely on a rel-
atively complex and little-used aspect of HTML tables, one that has particular relevance for
accessibility: table axis and headers.

Axis, scope, and headers in HTML tables

Before we see this technique in action, let’s take a quick look at the axis, scope, and
headers attributes of HTML.

One of the problems with HTML tables is that they are two-dimensional—that is, they
relate information only on two axes, either in a row or a column. A header element applies
only to the other cells in its row or column. For example, a common table might have
items and their prices:

<table>
<tr>
<th>Item</th>
<th>Price</th>

</tr>
<tr>
<td>apple</td>
<td>50c</td>

</tr>
<tr>
<td>orange</td>
<td>66c</td>

</tr>
<tr>
<td>banana</td>
<td>$4</td>

</tr>
</table>

EVENT MICROFORMAT: HCALENDAR

183

8

8148Ch08.qxp 3/2/07 5:06 PM Page 183

Even with such simple tables we have a problem. How do we associate the table data cells
with the correct header? In this simple case, it seems logical that <th>Item</th> is the
header for the first column, comprising the first <td> of each subsequent <tr>. But why is
<th>Item</th> not a heading for the next table cell in its row, <th>Price</th>?

We can explicitly state which cells a <th> is the header for using the scope attribute. We
can specify whether the header is associated with other cells in its row or column using
this attribute. For example, in our simple table, we use the following:

<th scope="col">Item</th>
<th scope="col">Price</th>

to specify that each of these are headers for the other cells in their columns, not their
rows.

In more complex tables, it may not be the case that the header for a particular cell is at the
beginning of the column or row containing the cell itself. In this case, the scope attribute
is not sufficient to specify the header for a given cell; we need to specify the header explic-
itly. We do this with a combination of the id attribute on a <th> element and the headers
attribute on a cell. Here’s how this works.

We give the <th> element an id, just as we would any element, following the id naming
rules. As an example, let’s give our element an id of d21045 (if you are wondering, that’s
short for day 2 at 10:45):

<th id="d21045">

From our example, we know that two table cells will have this as their header, so for each
of them we specify a header value of d21045, like this:

<td headers="d21045">

It doesn’t matter where in the table these cells appear—they both share the <th> element
with this id as a header. But notice one more crucial thing: the attribute name is headers
(note the plural). The headers attribute allows a cell to have more than one header, as well
as a cell to be the header for more than one cell. Technically, we can create multidimen-
sional tables in this way.

If you think back to the problem we had with our timetable, it essentially stemmed from
not being able to contain the date and time information and location information for our
events inside the events themselves, because of the table structure. But, logically, we can
consider a header as part of the vevent construct, and so in this way, we can “share” the
time and location parts among a number of vevents.

Let’s see this in action. Remember our simultaneous events (see Figure 8-6)? In that case,
we have two events happening at the same time, so ideally we want to have them “share”
the start and end date and time. First, we create these events, which are two cells in the
same row:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

184

8148Ch08.qxp 3/2/07 5:06 PM Page 184

<tr>
<td class="vevent">
<p class="summary">Laurel Papworth - å

<a href="http://www.webdirections.org/online-communities/" å

class="url">The business of online communities</p>
</td>
<td class="vevent">
<p class="summary">Cheryl Lead and Ben Buchanan - å

<a href="http://www.webdirections.org/moving-to-web-standards/" å

class="url">Moving your organisation to web standards</p> å

</td>
</tr>

Now, we create the table header, which contains the dtstart and dtend for both events:

<th><abbr class="dtstart" title="20060929T1045+1000">10.45am å

</abbr> - <abbr class="dtend" title="20060929T1145+1000"> å

11.45am</abbr></th>

giving us the following:

<tr>
<th><abbr class="dtstart" title="20060929T1045+1000">10.45am å

</abbr> - <abbr class="dtend" title="20060929T1145+1000"> å

11.45am</abbr></th>
<td class="vevent">
<p class="summary">Laurel Papworth - å

<a href="http://www.webdirections.org/online-communities/" å

class="url">The business of online communities</p>
</td>
<td class="vevent">
<p class="summary">Cheryl Lead and Ben Buchanan - å

<a href="http://www.webdirections.org/moving-to-web-standards/" å

class="url">Moving your organisation to web standards</p> å

</td>
</tr>

We need to associate the <th> with each of the events, using the headers attribute. Step 1
is to give our <th> an id:

<th id="d21045">

Step 2 is to use the headers attribute on the <td> elements to associate this <td> element
with each of them, like so:

<td class="vevent" headers="td21045">

giving us the following:

EVENT MICROFORMAT: HCALENDAR

185

8

8148Ch08.qxp 3/2/07 5:06 PM Page 185

<tr>
<th id="d21045">

<abbr class="dtstart" title="20060929T1045+1000">10.45am</abbr> -
<abbr class="dtend" title="20060929T1145+1000"> å

11.45am</abbr></th>
<td class="vevent" headers="td21045">
<p class="summary">Laurel Papworth - å

<a href="http://www.webdirections.org/online-communities/" å

class="url">The business of online communities</p>
</td>
<td class="vevent" headers="td21045">
<p class="summary">Cheryl Lead and Ben Buchanan - å

<a href="http://www.webdirections.org/moving-to-web-standards/" å

class="url">Moving your organisation to web standards</p> å

</td>
</tr>

Now we have associated the dtstart and dtend found in the <th> with these events. Next
we’ll want to associate the location information in the cells with the appropriate header.

Taking a look at the rendered table (see Figure 8-8), you can see that the location is found
at the top of the table.

We’ll use the same technique, giving the <th> elements, which specify a location, an id. In
this case, the two events are in different locations, and so will have different headers for
location. Here are our header elements, with their id values:

<th id="universityhall">Stream 1 (å

University Hall)</th>
<th id="mcfarlane">Stream 2 (McFarlane å

Theatre)</th>

We associate the first event, held in University Hall, with the <th> element like this:

<td class="vevent" headers="d21045 universityhall">
<p class="summary">Laurel Papworth - å

<a href="http://www.webdirections.org/online-communities/" å

class="url">The business of online communities</p>
</td>

The second event is in the McFarlane Theatre, which we specify similarly, like this:

<td class="vevent" headers="d21045 mcfarlane">
<p class="summary">Cheryl Lead and Ben Buchanan - å

<a href="http://www.webdirections.org/moving-to-web-standards/" å

class="url">Moving your organisation to web standards</p>
</td>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

186

8148Ch08.qxp 3/2/07 5:06 PM Page 186

Figure 8-8. Our final events table. But we’d still like to attribute location details to each individual
event, as well as the table header.

We have now associated the location for each event and the times for each event with the
events themselves. But instead of putting all the information for a vevent inside a root ele-
ment, we use headers and id to associate <th> element with more than one vevent.

EVENT MICROFORMAT: HCALENDAR

187

8

8148Ch08.qxp 3/2/07 5:06 PM Page 187

A short while ago, you learned that the scope attribute lets us specify whether a header
applies to a row or column. In this example, the date and time headers have a scope of
row, while the location headers apply to the column they are in. Let’s add a scope attrib-
ute to each <th> element to specify this:

<th id="universityhall" scope="col">Stream 1 (å

University Hall)</th>
<th id="mcfarlane" scope="col">Stream 2 (å

McFarlane Theatre)</th>
<th id="d21045" scope="row"><abbr class="dtstart" å

title="20060929T1045+1000">10.45am</abbr> - å

<abbr class="dtend" title="20060929T1145+1000">11.45am å

</abbr></th>

Axis of good
We still have one more subtle problem: what is the nature of the association between a
given <th> and the <td> elements it is the header for? We can specify this with another,
not commonly used attribute associated with tables: the axis attribute. While it’s not
absolutely required for our purposes with hCalendar, it has particular benefits for accessi-
bility with complex tables when a person is using a screen reader. It requires little extra
effort, so while we are marking up our tables for the hCalendar microformat, let’s spend
the small amount of time to make them more accessible.

The axis property in effect allows us to create categories of cells. So, in our case, we can
create two categories of cell, “time” and “location,” using this attribute. To achieve this, we
add axis="categoryname" to our <th> elements. To create a location category, we simply
give all the <th> elements associated with location this axis value:

<th axis="location">

Similarly, to create a time category, we give the <th> elements associated with time an
axis value of time:

<th axis="time">

Now, any <td> element associated with a <th> element using the headers attribute in
effect belongs to the category we have created for that <th> element.

Again, let’s put this into practice with our example. For our location headers at the top of
the table, we create a location category like this:

<th id="universityhall" axis="location" scope="col">Stream 1 å

(University Hall)</th>
<th id="mcfarlane" axis="location" scope="col">Stream 2 å

(McFarlane Theatre)</th>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

188

8148Ch08.qxp 3/2/07 5:06 PM Page 188

For our date/time headers, we create a time category like this:

<th id="d21045" axis="time" scope="row">
<abbr class="dtstart" title="20060929T1045+1000">10.45am</abbr> å

- <abbr class="dtend" title="20060929T1145+1000">11.45am</abbr>
</th>

So, what have we achieved with our hCalendar timetables? We started with a problem. If
we use a table for our event details, then when two events share a time slot, or a location,
it would seem we’d have to duplicate the time and location information if we want to use
hCalendar. This makes our pages larger and more complicated than they otherwise might
be, potentially impacting the maintainability of the information.

But looking more closely at the existing features of HTML, we discover that by creating an
association between a cell (<td>) and a header (<th>) using the headers and id attributes,
we can virtually include the headers specifying time and location into an event. By using
axis, we can categorize the association, as time or location, making the association more
accessible, too.

This feature of the hCalendar microformat is not just of theoretical value either, as you’ll
see when we look at X2V and how it handles hCalendars in just a moment. X2V under-
stands the use of headers and id, and will correctly convert hCalendars marked up like
this to iCalendar.

Downloading your calendar

You saw in the last chapter how to use the X2V service to add a link to a page and make
an hCard on that page downloadable as a vCard, which users can use in any application
that supports vCard. We can also use X2V to convert hCalendars to iCalendar, which is also
widely supported by desktop applications like Apple’s iCal and Microsoft Outlook. To do
so, we just add a link like the following to our page:

<a href="http://suda.co.uk/projects/X2V/get-
vcal.php?uri=http://microformatique.com/book/tests/vCalendar.html">
Download this calendar

The href has two parts. The href of the X2V service

http://suda.co.uk/projects/X2V/get-vcal.php?

followed by the href of the page containing our hCalendar content.

http://microformatique.com/book/tests/vCalendar.html

Using Mac OS X, for example, if you click this link using Safari, the iCal application asks
which calendar you want to add these events to, as shown in Figure 8-9.

EVENT MICROFORMAT: HCALENDAR

189

8

8148Ch08.qxp 3/2/07 5:06 PM Page 189

Figure 8-9. You can add hCalendar events to the Address Book automatically using some web
browsers.

Choose a calendar, and iCal then adds the events to your calendar, as shown in Figure 8-10.

Figure 8-10. Our events successfully imported into Apple’s Address Book

You might be wondering why the calendar shows the event as starting at 3:00 a.m. on
February 7. Didn’t we specify 9:00 a.m. on February 6? We did, but we specified a time
zone as well. I am actually downloading these events in Sydney, where it will be 3:00 a.m.,
February 7, when in Vancouver it will be 9:00 a.m. February 6. iCal knows where I am and
coverts the date for me.

And if you think that’s impressive, there’s one more trick we can do with iCal and X2V. In
iCal, you can subscribe to calendars that have been published online in the iCalendar for-
mat. The result of using X2V like we did a moment ago is an iCalendar, so our readers can
simply subscribe to a URL like this: http://suda.co.uk/projects/X2V/get-vcal.php?uri=
http://microformatique.com/book/tests/vCalendar.html, as if we had published our

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

190

8148Ch08.qxp 3/2/07 5:06 PM Page 190

event information as iCalendar using iCal. In iCal, you can specify that the application check
for updates, so if the hCalendar changes, it will be automatically updated in iCal. As pub-
lishers, we get the benefit of automatically updating calendars, simply by using the
hCalendar microformat.

As X2V demonstrates, using the hCalendar microformat brings direct benefits today, for
both publishers and users, by enabling this closer integration with desktop applications
and other software that works with the iCalendar format, like Apple’s iCal.

It’s taken quite some effort to cover the core of hCalendar, but hopefully it’s been a lot
less painful than reading the 148 pages of plain, monospaced text that is the iCalendar
specification. As with other microformats, help is at hand in the guise of plug-ins and
applications to ease the process and make developing and publishing hCalendar content
more efficient. Let’s take a look at some of these now.

Tools for authoring hCalendars
As with hCard, there are quite a few tools to help make publishing hCalendar content eas-
ier than hand-coding. Let’s take a look at a few options:

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf): As
you saw in the last chapter, the pnh_mf plug-in helps publish hCard-formatted
data, and it also supports publishing hCalendar content.

Dreamweaver Extensions Suite (www.webstandards.org/action/dwtf/microformats):
This extensions suite by Drew McLellan, which you saw in action in the last chapter,
not only allows easy hCard creation, but also hCalendar creation in Dreamweaver.

hCalendar Creator (http://microformats.org/code/hcalendar/creator): This
tool provides an easy-to-use, form-driven interface for creating hCalendar content.

Conference Schedule Creator (http://dmitry.baranovskiy.com/work/csc):
Dmitry Baranovsky developed this tool to help easily create schedules such as the
conference timetable we just developed.

In addition, two recently released desktop-based blogging tools have hCalendar support:
Microsoft’s Windows Live Writer (see http://ideas.live.com/programpage.aspx?
versionId=4372c8c2-b76f-4d44-aea1-9835b61d8dc1; yes, they certainly do know how to
construct a URL at Microsoft) and the Java-based xfy (www.xfytec.com; this product runs
on Windows, Mac OS X, and Linux).

Benefits of using hCalendar
As you’ve seen, there can be a little work involved in publishing hCalendar content, so
other than being on the bleeding edge of markup, why bother? In addition to the benefits
of consistency and maintainability, there are already hCalendar aggregators as well as
other direct benefits of adopting this microformat, which we’ll discuss in this section.

EVENT MICROFORMAT: HCALENDAR

191

8

8148Ch08.qxp 3/2/07 5:06 PM Page 191

Technorati Microformats search engine

Technorati’s Microformats search engine should now be familiar to you, as it was featured
in the hCard chapter. This search engine also indexes and aggregates events published
using hCalendar.

If you publish your event information using hCalendar, you simply ping Pingerati by send-
ing an HTTP GET with this format:

http://pingerati.net/ping/[url of update page]

This informs not only the Technorati Microformats search engine about your hCalendar
content, but also any service that uses Pingerati to keep abreast of changes to information
published using microformats. If you only infrequently publish microformatted content,
you can manually inform Pingerati at http://pingerati.net.

X2V

You saw a little earlier how you can make your hCalendar content downloadable in
iCalendar (.ics) format, which is compatible with most desktop calendaring software,
using X2V. Users can even subscribe to your hCalendar content using Apple’s iCal, by sub-
scribing to the URL for a page containing hCalendar content.

To take the strain off X2V (itself open source, licensed under the very liberal W3C Open
Source License), Technorati provides the X2V service as well. This allows end users to grab
hCalendar content from any site that publishes it and download it in iCalendar format, or
subscribe to it. This service is available at http://technorati.com/events.

The download and subscribe services also available via favelets, which are little bits of
JavaScript that you can put in your bookmarks/favorites folder.

Life Lint parser

Similar to X2V, Life Lint (www.lifelint.net) converts hCalendar to iCalendar or RDF, and
has optional Outlook 2002 compatibility (Outlook’s support for iCalendar format is not
perfect, though). Readers can use the parser to convert any hCalendar-formatted content
they find, or you can add a link to your site to enable the service directly within your own
pages where this content appears.

Publishers using hCalendar
hCard is increasingly being used by even large publishers, such as Yahoo, as well as inno-
vative startup services like Cork’d. If anything, the use of hCalendar is even more wide-
spread. In short, all the main publishers of aggregated event information are using it. The
sections that follow present some examples.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

192

8148Ch08.qxp 3/2/07 5:06 PM Page 192

Upcoming

Recent Yahoo acquisition Upcoming (http://upcoming.org), like a number of other serv-
ices you’ll see in a moment, provides a way of easily adding events you are organizing or
interested in to a centralized registry of events, which others can express interest in or let
you know they are going to. Upcoming, not surprisingly, publishes the event information
using hCalendar, even embedding the location details using hCard.

Figure 8-11 shows how Upcoming publishes details on Web Directions North.

Figure 8-11. Web Directions North, as detailed on Upcoming
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

But if we look behind the scenes using the magic of the Firefox Tails extension, we see the
metadata Upcoming has published using hCalendar (and hCard), shown in Figure 8-12.

EVENT MICROFORMAT: HCALENDAR

193

8

8148Ch08.qxp 3/2/07 5:06 PM Page 193

Figure 8-12. Tails showing how Upcoming uses hCalendar
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

And here is the actual HTML Upcoming uses to publish the event (whitespace has been
added for clarity, but the actual HTML is the same):

<div id="event" class="vevent">
<h1 class="name summary">Web Directions North </h1>
<div id="eventMain">
<div id="eventMetadata">

<div class="small">When</div>
<div class="date">
<abbr class="dtstart" title="2007-02-07"> å

Wednesday, February 7, 2007</abbr>
- <abbr class="dtend" title="2007-02-10"> å

Saturday, February 10, 2007.</abbr>
</div> <!-- /.date -->

<div class="time"></div> <!-- /.time -->

<div class="venue location vcard">

<div class="small">Where</div>

Marriott Renaissance Harbourside (Vancouver)

<div class="address adr">

1133 West Hastings Street

Vancouver,

British Columbia

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

194

8148Ch08.qxp 3/2/07 5:06 PM Page 194

V6E 3T3

</div>
<div class="directions">
(<a href="http://maps.yahoo.com/py/maps.py?addr=1133+West+ å

Hastings+Street&csz=Vancouver+British+Columbia+V6E+3T3"> å

Yahoo! Maps,
<a href="http://maps.google.com/maps?q=1133+West+Hastings+ å

Street,+Vancouver,+British+Columbia+V6E+3T3"> å

Google Maps)

</div>

</div> <!-- /.venue -->

<div class="category">
<div class="small">Category</div>
Education

</div>

<div class="description">
<div class="small">Description</div>
We're crossing hemispheres...

</div>

<div class="url">
<div class="small">Homepage</div>

http://north.webdirections.org/
</div>

</div>
</div>

</div>

Upcoming mixes its own class-based semantics (e.g., venue) with hCalendar’s semantic
vocabulary, showing the flexibility of microformats. They work around your existing code,
rather than enforcing a complete change in your development practices.

Upcoming publishes hundreds of thousands of events, from thousands of individuals,
almost none of whom know anything about microformats or hCalendar. These individuals
simply enter the details in a form-based interface, and out comes hCalendar when pub-
lished. It’s true that Upcoming and other services like it are centralized, but there’s little
reason that in time they can’t also aggregate events published elsewhere using hCalendar.
Before a standardized format like hCalendar, this would have been essentially impossible.

Meetup and Eventful

Two similar services, Meetup (www.meetup.com) and Eventful (http://eventful.com), also
publish event details and contact details using hCalendar and hCard, respectively. It’s clear
that if you aggregate and publish event details, you should be using hCalendar. Hopefully

EVENT MICROFORMAT: HCALENDAR

195

8

8148Ch08.qxp 3/2/07 5:06 PM Page 195

soon these sites will also be aggregating events published elsewhere online in hCalendar,
so by publishing event details that way, your content will be aggregated by all these serv-
ices and more with no further effort on your part than pinging Pingerati.

Last.fm

Last.fm (www.last.fm) is a music community site where listeners can share their taste in
music. It also provides, not surprisingly, information about upcoming concerts and other
music events. And it publishes these using—you guessed it—hCalendar. For example,
Figure 8-13 shows the Massive Attack artist page, as viewed with Tails, showing microfor-
matted details of the group’s upcoming concerts (which you might even miss without Tails
installed).

Figure 8-13. Tails showing microformatted concert details on Last.fm

World Cup KickOff

Just to show the diversity of the kind of content and uses hCalendar is being put to, here’s
something a little different. The biggest sporting event in the world in 2006 was the
Football World Cup. The popularity of football (known in America as soccer) in most parts
of the world is hard to convey. And the Football World Cup itself is very hard to keep track
of, with 64 games over a month, at all kinds of times.

World Cup KickOff (www.worldcupkickoff.com) published event details for every one of
the games of the Football World Cup using hCalendar, which enabled readers to download
and import the details into their calendaring software. This kind of event shows the real
benefit of the subscription approach we saw earlier that iCal allows. Because the teams
contesting the later rounds are determined by earlier results, the publishers needed only
to update their hCalendar content, and readers who subscribed to these pages using iCal
would automatically have their calendars updated.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

196

8148Ch08.qxp 3/2/07 5:06 PM Page 196

Summary
While hCard is probably the single most widely used compound microformat, the range of
services and publishers using hCalendar makes it currently perhaps the most interesting
microformat.

As this chapter demonstrated, hCalendar is certainly more complex, and to an extent more
difficult to use, than the simpler microformats presented in previous chapters. But it’s also
certainly not rocket science. The principles underpinning hCalendar, of simple data for-
mats based on existing widely used schemas and meeting a real current need, are the same
as for all other microformats. The HTML principles and design patterns, such as the abbr
design pattern, which allows us to mark up both human-friendly and machine-readable
content, and the class design pattern, which provides a powerful, simple mechanism to
incorporate the semantics of a schema like iCalendar into standard HTML, are also familiar
and are reused by all the compound microformats. So while hCalendar in one sense
appears complicated, in other ways it’s simple—just a little more involved than some of
the microformats you’ve encountered thus far.

At this point, we’ve actually covered all the widely adopted, finalized microformats—that is,
those microformats that aren’t still in draft form. However, a number of draft microformats
are reasonably stable and widely used, or show considerable promise. In the following
chapters, we’ll look at a number of these draft microformats.

EVENT MICROFORMAT: HCALENDAR

197

8

8148Ch08.qxp 3/2/07 5:06 PM Page 197

8148Ch09.qxp 2/28/07 6:07 PM Page 198

9 REVIEW AND RESUME
MICROFORMATS: HREVIEW

AND HRESUME

8148Ch09.qxp 2/28/07 6:07 PM Page 199

So far, all the microformats presented in this book have been at what’s termed the
specification stage. To reach this stage, according to the microformats process (which we’ll
discuss in more detail in Chapter 13), a format “should be stable enough so that develop-
ers can pick it up and write to it.” Before a microformat reaches this stage, but is still suf-
ficiently advanced in development, it is considered to be in draft stage.

In this chapter, we’ll look at two draft microformats that are quite stable, advanced, and
well used. These microformats, one for reviews and one for resumes, illustrate the princi-
ples and practices you’ve seen before and build on them nicely. They differ in one signifi-
cant way from the other compound microformats you’ve encountered thus far: their
schemas (i.e., the set of properties that make them up) are not found in other pre-existing
standards (in the way that hCard, for example, implements the schema for vCard in HTML).
Rather, their schemas were developed through analyzing existing practices on the Web in
the related areas of reviews and resumes.

This chapter takes a slightly different approach from earlier chapters, by first looking at
the properties of the two microformats under consideration, and then presenting some
examples of their use. In part, this is because the formats are logically quite straightfor-
ward, and their use does not involve some of the complications we’ve seen with earlier
formats, such as hCalendar (e.g., adapting an hCalendar to a complex timetable). It’s also
because we’ve already covered the core microformats concepts, techniques, and princi-
ples, and in this chapter we can simply watch them in action, rather than having to delve
into them in detail.

hReview
At the beginning of the book we considered the issue of reviews on the Web and the chal-
lenges of aggregating related reviews published across different sites, in myriad formats.
The goal of hReview is to provide a standardized format for publishing reviews and,
according to microformats.org, “enable and encourage the sharing, distribution, syndica-
tion, and aggregation, of reviews.”

As mentioned in the introduction to this chapter, despite the existence of a number of
review formats, there was no single, widely adopted existing format, like vCard or iCalendar,
for hReview to adopt. Instead, the hReview schema was developed through a brainstorming
and research approach by the editors and authors of the specification and others with
expertise and interest in publishing reviews online. Examples were taken from sites such as
Amazon, Insider Pages, Epinions, Zagat, Yahoo Local, IMDb, and other widely used review
sites. Where possible, and utilizing the 80/20 rule, which aims to provide as much possible
value to adopters of a microformats with as little complication as possible, hReview has
taken a minimum common subset of the properties found at this collection of sites.

It’s important to note that hReview was designed from the outset to not include any “type-
specific” fields. That is, it is designed to be used generally despite the type of item being
reviewed—hReview can be used for reviews of films, books, restaurants, businesses, holidays,
and much more. For example, it would make the hReview format much more complex to
include domain-specific fields such as “Contains Spoiler,” which is found at IMDb to indicate
whether the review contains information that may give away important plot information.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

200

8148Ch09.qxp 2/28/07 6:07 PM Page 200

In the sections that follow, we’ll examine the schema of hReview while building an exam-
ple review for the most popular film of 2006, Pirates of the Caribbean: Dead Man’s Chest.

The hReview schema

In this section, we’ll take a good look at what makes up an hReview, building a real exam-
ple as we go, so you can get some firsthand experience of putting the microformat to use.

The root element
As with the other compound microformats, an hReview is contained within a root ele-
ment, which may be any HTML element. Using the class design pattern, we give this root
element a class value of hreview. Typically, to provide maximum possible flexibility, we use
a block element and often a <div> element for the root of compound microformats, as
these can contain any kind of HTML element. Using a or another inline element
would restrict us to using only inline elements within the root element.

For example, our root element will typically be as follows:

<div class="hreview">
</div>

This root element may contain one or more of the elements described in the sections that
follow, as well as other elements, of course (all compound microformats allow for nonmi-
croformatted content within them). This approach allows for domain-specific information
(such as IMDb’s “Contains Spoiler” details) to be mixed in with the formal hReview content.

version
The version field is optional. This field does not specify the version of the review; rather,
it specifies the version of hReview used to mark up the content. If no version is specified,
then the version can be taken to mean any version from 0.2 onward. In practice, the ver-
sion used has little real impact, because the hReview specification’s authors are committed
to maintaining backward-compatibility for hReview specifications. The current version of
hReview is 0.3 (a number less than 1 typically indicates that the format has not yet reached
specification status).

To indicate that the version of this hReview is 0.3, we have the following:

<div class="hreview">
<p>hReview version0.3<p>

</div>

Again, the order in which elements appear within the root element is typically not impor-
tant, so where this information appears it usually makes sense for it to appear toward the
end of the review, because it’s of little interest (if any) to most readers.

summary
You might remember from hCalendar that the name of a vevent (i.e., events in hCalendar)
is designated by the summary property. Where possible, hReview takes properties from

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

201

9

8148Ch09.qxp 2/28/07 6:07 PM Page 201

hCard and hCalendar. So, instead of inventing a new property name—for example,
title—we reuse summary from hCalendar.

Here, for example, is an example title from a review of a movie I happened to watch last
night:

<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>

which gives me the following hReview:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p>hReview version0.3<p>

</div>

By the way, summary too is an optional property—as indeed are all properties other than
the item property, which we’ll get to shortly.

type
The Zagat website contains restaurant reviews. IMDb contains movie reviews. Amazon
(largely) contains book reviews. The type of thing we are reviewing is clearly important in
many instances (e.g., the indexing software for a decentralized movie review site will prob-
ably want an indication of whether a review is about a movie or something else, and then
skip any review it finds that is not for a movie).

We can indicate the kind of thing a review is for with the type property. The field is, again,
optional, but may take one of a short list of possible values:

product

business

event

person

place

website

url

You’ll note that in the preceding movie review example, hReview actually won’t help our
review indexing software. Remember that the hReview specification is still in draft form,
and in fact explicitly notes that “the enumerated list of item types is under development
and may be extended.” Hopefully, some of the most commonly reviewed types, such as
book, movie, song, game, and so on, will be added to hReview.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

202

8148Ch09.qxp 2/28/07 6:07 PM Page 202

In the case of the preceding movie review, we might add type information as follows:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

Adding a review type of “product” is probably artificial, and it’s likely never to be used in
this context, but it serves at least as an example of how this property might be used. It also
presents internationalization issues. In Korean, for instance, the string product may make
little sense. Hopefully, future versions of hReview will address internationalization con-
cerns such as this.

item
A moment ago you saw that hReview has only one required property: item. It provides a
name and should also provide other identifying information, particularly a URL for the
item we are reviewing. As shown earlier, where it makes sense, hReview takes its property
names from hCard or hCalendar. In hCard, we know there is a way of specifying names
using FN. We also know that there is a url property. So for things like movies, books, and
so on, we can reuse these.

For example, the review could have an item like so:

<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>

giving us the following hReview so far (and now it’s a valid hReview because it has an item
property):

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

203

9

8148Ch09.qxp 2/28/07 6:07 PM Page 203

If we are reviewing something and want to include a photograph of the item, we can do
that using the class design pattern and a value of photo, as follows:

<div class="item">
<p><a href="http://www.yourpsp.com/psp/locale.html" å

class="fn url">Play Station Portable
<img src="http://www.lis186.com/works/psp_url/psp_url.swf" å

class="photo" /></p>
</div>

This is all quite straightforward. But different values apply if we are reviewing a person, a
business, or an event. Why? Well, these should all sound quite familiar from previous
chapters—and we have microformats already for marking up each of them. So, again, in
keeping with the microformats principles of embeddability and modularity, we can embed
hCard or hCalendars inside our hReview.

In fact, not only can we do this, but in the case of businesses or people, hCard must be
used, while in the case of events, hCalendar should be used for marking up the item. For
example, suppose we are reviewing a concert. In that case, we should mark up the
reviewed item as follows:

<div class="item vevent">
<h3 class="summary fn">
<a href="http://www.asmf.org/html/concerts/uk/30Nov.htm"

class="url">Simply Strings

</h3>
<p>
<abbr title="20061130T19:30Z">

Sunday, November 30, 2006 7.30pm</abbr>
</p>

</div>

Because items require names, we add the value of fn to the class of the h3.

The case of an hReview for a business or person is similar, except that here we must use
hCard to mark up the item. For example, if we are reviewing a particular bank, we could
have something like the following for our item property:

<div class="item vcard">
ING Bank

</div>

Notice how the item element also has a vcard value for its class. We saw this in the last chap-
ter where hCards were embedded in hCalendars. The item value is in fact part of the
hReview, not the hCard, which follows our general principle that the root element of a
microformat only has the root class value for that microformat set on it (but where a micro-
format is embedded in another microformat, the root element of the embedded microfor-
mat may contain a class value for its role in the microformat in which it is embedded).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

204

8148Ch09.qxp 2/28/07 6:07 PM Page 204

To summarize this rather complex aspect of hReview,

The item property is required.

The item must contain an element with a name, specified by a FN class value; it
should provide a URL; and it may provide a photo.

When the item being reviewed is a person or business, the item must be marked up
as an hCard.

When the item being reviewed is an event, it should be marked up with an hCalendar.

reviewer
While not required, the name of the reviewer is often important information for a review.
When a reviewer is provided, you might guess that as with people and the item property,
hCard is required. So, if the author of this book is the reviewer of the movie, we have the
following:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>
<p class="reviewer vcard">
John Allsopp

</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

Or, if our reviewer feared the wrath of Keira Knightley, he or she may wish to be anony-
mous, like so:

<p class="reviewer vcard">anonymous</p>

In short, we use an hCard, with an fn value of anonymous.

This does present some internationalization issues, because of course “anonymous” is an
English word. If our review is in a language other than English, then the appearance of the
word “anonymous” is likely to appear incongruous. Perhaps the current best option in a
non-English language review by an anonymous reviewer is to simply leave out the reviewer
altogether, as reviewer is an optional property.

dtreviewed
The date on which something is reviewed is often of some significance. Restaurants may
change considerably over time, for instance, as do software and hardware products.
Fashions and tastes change, too. For example, Citizen Kane, now widely considered one of

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

205

9

8148Ch09.qxp 2/28/07 6:07 PM Page 205

the best films of all time, only started making the top ten lists of reviewers’ best films in
the 1970s, 30 years or so after it was made.

The dtreviewed property exists to mark up and publish review dates. As with other date
values we’ve discussed, we can use the abbr design pattern to give both human-friendly
and machine-readable values. For example, our review of the movie Pirates of the
Caribbean: Dead Man’s Chest was written on November 18, 2006. In this instance, the time
is not relevant, nor indeed is the time zone, so we may leave off that information.

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>
<p class="reviewer vcard">
John Allsopp

</p>
<p>Date reviewed <abbr title="20061118" class="dtreviewed">
November 18, 2006</abbr>.

</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

ratings
In many ways, ratings are the heart and soul of a reviewing system. Three stars is the Michelin
Guide’s ultimate restaurant accolade, and the goal of many restaurateurs. “Two thumbs up”
is worth a great deal to a movie, literally. But as these two examples demonstrate, not only
are ratings fundamental to reviews, but also rating systems vary dramatically. hReview allows
us to easily rate the item we are reviewing and even create our own rating system.

By default, a rating is a numerical value to one fixed decimal point of precision, out of
five—that is, values like 1.0, 3.5, and so on (2.59 is not a valid value).

It’s clear that I didn’t particularly like the movie I’m reviewing. I’d give it 2/5. To mark this
up with hReview, I do something like this:

<p>Rating: 2/5</p>

If, however, I want to use another rating system—for example, 0 on a scale of –10 to 10—
I can do that as well. I specify the best (and optionally the worst, too) on my scale, as well
as the actual rating value I have given the item I’m reviewing:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

206

8148Ch09.qxp 2/28/07 6:07 PM Page 206

<p>
Rating: 0
on a scale of -10 to å

10
</p>

So, the lowest end of my range is marked up like this (an integer value may be used for worst):

-10

and the highest end of the range is marked up like this:

10

The actual rating is as follows:

0

The worst value is optional, and I can even have a higher value for worst than best, as
occasionally is seen with rating systems. For example, while it’s not quite a review, in yacht
racing, the winner of a regatta is typically the boat with the lowest score.

In this case, I’ll use a common score out of 10, and give the film a 4:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>
<p class="reviewer vcard">
John Allsopp

</p>
<p>Date reviewed <abbr title="20061118" class="dtreviewed">
November 18, 2006</abbr>.

</p>
<p>Rating: 4
out of 10

</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

207

9

8148Ch09.qxp 2/28/07 6:07 PM Page 207

description
Longer reviews will usually give the reviewer’s opinions, comments, and arguments, and
the description property is for this purpose. The description may be any length, and it
may, of course, be formatted HTML. Remember the description property of an
hCalendar event? There, where the description was longer than a single paragraph, we
wrapped the description content in a <div> of class description. We use the same pat-
tern here.

With a description added, our movie review looks like this:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url">Pirates of the Caribbean: Dead Man's Chest

</p>
<p class="reviewer vcard">
John Allsopp

</p>
<p>Date reviewed <abbr title="20061118" class="dtreviewed">
November 18, 2006</abbr>.

</p>
<p>Rating: 4
out of 10

</p>
<div class="description">
<p>After the success and excitement of the original Pirates of å

the Caribbean...</p>
<p>The characters lack any of the real freshness and cleverness å

of the original, even Depp's Jack Sparrow has become more...</p>
<p>Disappointing, to say the least.</p>

</div>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

tags
What’s a format these days without tagging? hReview doesn’t disappoint, using rel-tag as a
mechanism for tagging a review. We covered rel-tag extensively in Chapter 4, so there’s no
need to go into great detail here. One thing to note is that the tag applies to a review here,
rather than the whole page, which is a more typical case. As a rule, when a rel-tag is found
inside an hReview, it applies to the review it is inside.

One other specific aspect of tagging in relation to reviews is that tags may have ratings
associated with them. This may sound strange, but think about restaurant reviews. Often
these will give ratings for different aspects of the experience—ambience, service, and

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

208

8148Ch09.qxp 2/28/07 6:07 PM Page 208

food, for instance. There are two ways of doing this: we can either put the rating inside the
tag or put the tag inside a rating property. For example, we could have the following:

<li class="rating">
food
7 out of >10

The rating contains a tag, as well as the value and scale for the rating itself. In this case, the
tag is not for “food” in general, but for the rating of food. At the destination of the tag
link, there should be a description of how the rating system for food (or whatever is being
rated) works. We could also do this:

food: 7 out of

10

This flexibility enables the rating and tag construction to cover more-common situations
than would otherwise be the case, if only one approach to markup were allowed.

permalink
Recall that permalinks are typically used in blogs to link to the permanent location of a
blog post. In hReview, this is a URL for the permanent location of the review. It’s useful for
when a review is aggregated, so if someone reads a review aggregated at another site, the
permalink allows the reader to find the original context of the review and other reviews by
the same reviewer or other related reviews.

A permalink is marked up using the rel attribute, and has the values self and bookmark
added to it. The following:

<a href="http://blogs.westciv.com/reviews/pirates2" å

rel="self bookmark">http://blogs.westciv.com/reviews/pirates2

or this:

<a href="http://blogs.westciv.com/reviews/pirates2" å

rel="self bookmark">Pirates of the Caribbean 2

are both permalinks for the review found at the location specified by the href value.

license
When we looked at rel-license back in Chapter 4, we observed that a rel-license link typi-
cally refers to the license for a page, but when found inside an hReview, it specifies the
license for the review, rather than the page.

To quickly recap the rel-license microformat, it’s simply a hyperlink with a rel value of
license and an href value pointing to the license for the review. If we wish to license our
review under a Creative Commons Attribution-ShareAlike license (that way, if others wish
to use our review as part of their content, they must attribute it to the reviewer and

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

209

9

8148Ch09.qxp 2/28/07 6:07 PM Page 209

release any work based on this under the same license conditions), we add the following
to our review:

<a href="http://creativecommons.org/licenses/by-sa/2.5/" å

rel="license">
Licensed under a creative commons attribution share alike å

2.5 license

Let’s add a license to the review of Pirates of the Caribbean: Dead Man’s Chest:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item">
<a href="http://disney.go.com/disneypictures/pirates/"

class="fn url"> Pirates of the Caribbean: Dead Man's Chest

</p>
<p class="reviewer vcard">
John Allsopp

</p>
<p>Date reviewed <abbr title="20061118" class="dtreviewed">
November 18, 2006</abbr>.

</p>
<p>Rating:
4 our of 10

</p>
<div class="description">
<p>After the success and excitement of the original Pirates of å

the Caribbean...</p>
<p>The characters lack any of the real freshness and cleverness å

of the original, even å

 å

Depp's Jack Sparrow has become more...
</p>
<p>Disappointing, to say the least.</p>

</div>
<p>
<a href="http://creativecommons.org/licenses/by-sa/2.5/" å

rel="license">
Licensed under a creative commons attribution share alike å

2.5 license

</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

210

8148Ch09.qxp 2/28/07 6:07 PM Page 210

Publishing tools

Although still a draft format, hReview has reasonably wide adoption from publishers, and
several tools are available to help alleviate the tedium of marking up your review content.

hReview Creator (http://microformats.org/code/hreview/creator): Like micro-
format.org’s other microformat creators, this is a form-driven interface that pro-
duces microformatted HTML for your review.

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf): For
Textpattern users, Chris Casciano’s pnh_mf, which has been mentioned in several
previous chapters, supports publishing in the hReview format as well as a number
of other microformats.

WordPress users are in luck—several plug-ins help publish hReview-formatted content:

hReview WordPress Plug-in (www.aes.id.au/?page_id=28): Andrew Scott created
this form-driven hReview plug-in, which allows for easy publishing of individual or
multiple reviews on a single page or in a single post.

WP Movie Ratings (http://paulgoscicki.com/archives/2006/11/wp-movie-
ratings-v14-released): This plug-in from Paul Goscicki integrates with IMDb to
allow pain-free reviewing of movies in hReview format.

Services using hReview

Between them, the following sites alone must review tens of thousands of products, of
considerable diversity. Couple this with the fact that one of them, Revoo, is already aggre-
gating hReview-formatted reviews from elsewhere on the Web, and you can see that the
hReview format is already gaining significant adoption, despite still not officially being a
1.0 specification (as of the time of this book was written, at least).

Revoo (http://revoo.com): Revoo is a review aggregation and publishing service
that both aggregates reviews published on the Web in hReview format and pub-
lishes reviews in hReview format. Revoo publishes its reviews in a curious way: on
the main review page for a product, where all the reviews for that product are pub-
lished, Revoo does not use the hReview format. But if you follow the link at the
foot of a review titled Review Confirmed Customer, then you can get a copy of the
review formatted using hReview.

Cork’d (http://corkd.com): As mentioned in previous chapters, this wine commu-
nity site features reviews from a great many members (anyone can join up and
review wine for free). Reviews are created using a form-driven interface and then
published using hReview.

Yahoo Tech (http://tech.yahoo.com): This technology review site also uses
hReview to publish technology reviews from users.

In Chapter 11 we take a close look at Cork’d, examining the code it uses and
some of the designer’s decisions in using hReview and other microformats.

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

211

9

8148Ch09.qxp 2/28/07 6:07 PM Page 211

hReview is a straightforward, easy-to-use schema, so if you publish reviews, it’s already
pretty much an indispensable format for your efforts.

hResume
Resumes, like reviews, represent discrete, reasonably well-understood sets of information
that follow a standard set of rules about what should be included. They are also published
online typically—but not exclusively—by large, centralized job search sites. All these fac-
tors make resumes ideal candidates for a microformat, just as reviews were.

The hResume format, authored by Ryan King, was developed in a similar way to hReview
and followed the recommended process for developing a microformat proposal (which
we’ll look at in detail in Chapter 13). Existing formats, like Europass (http://europass.
cedefop.europa.eu), XML Résumé Library (http://xmlresume.sourceforge.net), and
examples of web-based resumes “in the wild” were researched, to develop a simple schema
for publishing resumes. As we saw with hReview, where possible, property names are
reused from existing microformats.

I should note that the hResume format is still a reasonably early draft, but I think it is
worth considering for a couple of reasons. First, as a more recent microformat, it draws
heavily on lessons learned from the development of earlier microformats. It also reuses
other microformats we’ve seen quite extensively. Finally, resumes are very common on the
Web, and almost all of us have them, and will rely on them to improve our professional
position in coming years.

In the sections that follow, we’ll examine the schema of hReview, while I do something I
didn’t think I’d ever do again: build my resume, using hResume.

The hResume schema

Let’s now take a closer look what makes up an hResume and build a real example as we go.

The root element
As you should know by now, all compound microformats are contained within a root ele-
ment, which may be any HTML element, denoted as a root for this microformat by the use
of a special class value, in this case—you guessed it—hresume. Within this class, hResume
defines a number of properties to publish relevant resume information.

The summary property
The summary property of hResume is for an “overview of qualifications and objectives.”
The property name is reused from hCalendar, demonstrating an important, central micro-
formats principle: “don’t repeat yourself” (or DRY). With microformats, we always look to
reuse existing work, schemas, patterns, class names, and so on, rather than reinventing the
wheel each time we have a need.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

212

8148Ch09.qxp 2/28/07 6:07 PM Page 212

Now, I haven’t needed to have a resume for many years. And I hope to never need one in
the future, for that matter—at least not for obtaining a job. I’ve worked for myself for over
a decade, and I think everyone is better off if it stays that way. But let’s try shoehorning my
decade of self-employment and many different activities into an hResume:

<div class="hResume">
<h1>Resume: John Allsopp</h1>
<p class="summary">Software developer, conference organizer, å

speaker, and author John Allsopp has spent the last 15 years å

running and developing software for Western Civilisation Pty. å

Ltd., writing and publishing training courses, speaking at å

conferences, organizing conferences, and running training å

seminars in standards-based web development.</p>
</div>

Contact details
Most people publish resumes to get work. In order to get work, you need someone to
contact you. And so it makes sense that the hResume format provides for contact details.
In fact, you already know a lot about this from Chapter 7—we’ll reuse hCard to add con-
tact details to the example resume.

As you’ve seen with other microformats, when you embed one microformat in another,
then the root element of the embedded format (in this case, the hCard) has both a class
value as the root of its format and another for the property it is playing in the microfor-
mat that contains it.

In this example, we have both vcard as the root of the hCard and contact for the role it
plays in the hResume:

<div class="hResume">
<h1 class="vcard contact">Resume:

John Allsopp

</h1>
<p class="summary">Software developer, conference organizer, å

speaker, and author John Allsopp has spent the last 15 years å

running and developing software for Western Civilisation Pty. å

Ltd., writing and publishing training courses, speaking at å

conferences, organizing conferences, and running training å

seminars in standards-based web development.</p>
</div>

The contact details must be marked up using hCard, and in addition, we should use the
address element of HTML for this element. There are two complicating factors to using an
address element, however. First, keep in mind that the HTML address element is not just
for any addresses, but specifically (according to the HTML specification) for “contact infor-
mation for a document or a major part of a document.” In this case, it could be argued
that the hResume is “a major part of a document.” So the address element makes sense,
particularly if you are publishing your own hResume. But address is an inline element,

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

213

9

8148Ch09.qxp 2/28/07 6:07 PM Page 213

which means it may only contain other inline elements. This presents complications when
marking up, for instance, postal addresses, where you can’t simply rely on the default ren-
dering of <div>, <p>, and elements, but need to use either
 elements or spe-
cific CSS for formatting these addresses correctly. It also means that with CSS off, postal
addresses won’t format correctly, unless you use
 elements. Of course, this isn’t a
fatal problem, but it’s one worth noting.

In our case, we’ll avoid the issue by only publishing an email address. The <a> element is,
of course, an inline element, so we can contain it in an address element:

<div class="hResume">
<h1>Resume:
<address class="vcard contact">

John Allsopp

</address>

</h1>
<p class="summary">Software developer, conference organizer, å

speaker, and author John Allsopp has spent the last 15 years å

running and developing software for Western Civilisation Pty. å

Ltd., writing and publishing training courses, speaking at å

conferences, organizing conferences, and running training å

seminars in standards-based web development.</p>
</div>

Education
Typically, a resume lists the writer’s educational qualifications. If you think about the
microformats we’ve covered and the importance of reuse in microformats generally, then
you can think of a person’s education as a series of events, with start and end dates, which
are amenable to marking up with hCalendar.

For this example’s list of education achievements, we’ll have a root element with a class
value of hcalendar, which contains a series of vevents that also have the class education.
In this case, it makes sense to explicitly use the hCalendar element (recall from Chapter 8
that the hCalendar element is optional, and where it’s missing, the page itself is taken to
be the calendar), because when it comes to work experience, we’ll have a second
hCalendar for those events. It also may be that an aggregator site publishes more than one
hResume per page, in which case we’ll need separate hCalendars for each resume.

In addition, if you think about the most appropriate HTML element, a list makes sense—
after all, a person’s education is a list of events. And lastly, it would be an ordered list,
because the list is ordered in reverse chronological order.

Putting this all together, we have the following hCalendar for our example’s education
portion:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

214

8148Ch09.qxp 2/28/07 6:07 PM Page 214

<ol class="vcalendar">
<li class="vevent education">
<abbr class="dtstart" title="19850101">1985</abbr>-
<abbr class="dtend" title="19891231">1989</abbr>
<abbr title="Bachelor of Science ">B.SC</abbr>

University of Sydney, Australia

Majored in computer science and mathematics.

Also studied law, English literature, and philosophy.

<li class="vevent education">
<abbr class="dtstart" title="19790101">1979</abbr>-
<abbr class="dtend" title="19841231">1984</abbr>
<abbr title="Higher School Certificate">H.S.C

Saint Ignatius College, Riverview

Notice that I’ve taken the opportunity to add informative markup, by expanding abbrevia-
tions and using hCards for educational institutions. As I mentioned in earlier chapters,
once you start thinking about HTML in a semantic way, the opportunity for richer seman-
tics in your documents presents itself all over the place. Now, you might argue it’s just
showing off, or a waste of time. Perhaps you are right. But the principle I keep in mind
when marking up is akin to Metcalfe’s Law for the value of a telecommunications network,
famously proposed by Robert Metcalfe, inventor of Ethernet. He suggested that “the value
of a telecommunications network is proportional to the square of the number of users of
the system.”

While the accuracy of Metcalfe’s Law is often criticized, few people doubt the general pre-
dictive power of the observation. Similarly, I think the value of a body of information is
somehow a function of the complexity of its semantic markup—or, to put it simply, the
more semantic markup there is in a body of information, the more valuable it is. I'd argue
that increasing the volume of information, from say 20 billion to 100 billion indexed doc-
uments, won’t increase the value of the Web nearly as much as increasing the amount of
structured semantic markup in the existing body information in a nontrivial way.

By taking every opportunity to meaningfully mark up our content with appropriate HTML
and microformats, we are contributing to the increased value of the Web. That seems a
reasonable motivation for a little extra effort to me.

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

215

9

8148Ch09.qxp 2/28/07 6:07 PM Page 215

Experience
Just as a person’s education can be considered a series of events, so too can an individual’s
work experience. So again we’ll use an ordered list, which is an hCalendar with a set of
vevents, to represent work history in our example. Each entry in the list gets a class value
of experience to denote that the event is an experience.

<ol class="vcalendar">
<li class="vevent experience">
<abbr title="19940101" class="dtstart">1994</abbr>

- present. Chief Technology Officer,

Western Civilisation Pty. Ltd.

Responsible for the development of software, including å

Palimpsest, Style Master, and Layout Master

<li class="vevent experience">
<abbr title="20060101" class="dtstart">2006</abbr>-present,
Director

Web Directions Conferences Pty. Ltd.

Responsible for a broad range of logistical and management å

aspects of organizing the Web Directions conferences.

<li class="vevent experience">
<abbr title="20030101" class="dtstart">2003</abbr> -
<abbr title="20051231" class="dtstart">2005</abbr> Director,

WE04 and WE05 conferences

Responsible for a broad range of logistical and management å

aspects of organizing the WE04 and WE05 conferences.

Here you might notice that I’ve used the summary property of hCalendar for the descrip-
tion of my role and an hCard for the company or organization I played the role at—just as
I did for the school, university, or other institution at which I was educated.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

216

8148Ch09.qxp 2/28/07 6:07 PM Page 216

If you think back to Chapter 7, the idea of roles and titles should be familiar. In this case, we
have “Chief Technology Officer” and “Director,” both of which are titles. It makes sense to
mark these up with hCard—but we have a problem. hCards require a formatted name (FN),
so we would have to add an extraneous name for every hCard, perhaps hiding it with CSS,
which is something you should always try to avoid. In fact, this problem has shown up more
than once during the evolution of microformats, leading to the development of a new
design pattern along the lines of the class and abbr design patterns: the include pattern.

The problem we are trying to solve with this pattern is how to include data from one
microformat on a page into another. So, for example, here we have a need for several
hCards on the page that all have the same FN value, but different title or role property val-
ues. Ideally we’d only include the FN after having specified it once, rather than repeating
the value in every hCard with that FN value.

The include pattern enables this as follows. First, we need to uniquely identify the hCard
(or other microformatted) element of the page to be included. We know the standard
HTML mechanism for this: using an id value. In the first of the hCards on the page, then,
we add an id value to the root element (the properties of which we’ll want to include else-
where)—in this case, that will be the hCard.

<div class="hResume">
<h1 class="summary">Resume: John Allsopp</h1>
<div class="vcard contact" id="jafn" >

John Allsopp

</div>

</div>

Now, to include the FN into another hCard, we use a link to the hCard we want to include
a value from, and additionally give the link a class value of include:

Chief Technology Officer

This gives us experience properties like the following:

<li class="vevent experience">
<abbr title="19940101" class="dtstart">1994</abbr> - present.

Chief Technology Officer

,

Western Civilisation Pty. Ltd.

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

217

9

8148Ch09.qxp 2/28/07 6:07 PM Page 217

Responsible for the development of software, including å

Palimpsest, Style Master, and Layout Master

Skills
In a resume, the skills a person has are typically presented as a list of descriptive words or
phrases. For example, I might list my skill set as follows: software engineering, program-
ming, web development, C++, REALbasic, Java, CSS, HTML, XHTML, XML, DOM, JavaScript,
surf lifesaving. Not only is there a mechanism for us to list our skills in an hResume, but
also we can actually tag our resume with these skills.

Given that our set of skills is a list, we’ll use a standard HTML list to mark them up. We’ll
denote this as a list of skills by giving each entry in the list a class value of skill. And
we’ll turn each of the entries in the list into a tag by making it a link to a tag space, with a
rel value of tag. For example, my set of skills might be marked up as follows:

<a class="skill" å

href="http://en.wikipedia.org/wiki/Software_engineering" å

rel="tag">software engineering

<a class="skill" href="http://en.wikipedia.org/wiki/Programming" å

rel="tag">programming

<a class="skill"å

href="http://en.wikipedia.org/wiki/Web_development" å

rel="tag">web development

<a class="skill" href="http://en.wikipedia.org/wiki/C++" å

rel="tag">C++

<a class="skill" href="http://en.wikipedia.org/wiki/Realbasic" å

rel="tag">REALbasic

<a class="skill" href="http://en.wikipedia.org/wiki/Java" å

rel="tag">Java

<a class="skill" href="http://en.wikipedia.org/wiki/CSS" å

rel="tag">CSS

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

218

8148Ch09.qxp 2/28/07 6:07 PM Page 218

<a class="skill" href="http://en.wikipedia.org/wiki/HTML"å

rel="tag">HTML

<a class="skill" href="http://en.wikipedia.org/wiki/XHTML" å

rel="tag">XHTML

<a class="skill" href="http://en.wikipedia.org/wiki/XML" å

rel="tag">XML

<a class="skill"å

href="http://en.wikipedia.org/wiki/Document_Object_Model" å

rel="tag">DOM

<a class="skill" href="http://en.wikipedia.org/wiki/Javascript" å

rel="tag">JavaScript

<a class="skill" å

href="http://en.wikipedia.org/wiki/Surf_lifesaving" å

rel="tag">surf lifesaving

Or we could mark this up in a less highly structured, more narrative way as follows:

I've been a <a class="skill" href="http://en.wikipedia.org/wiki/
Software_engineering" rel="tag">software engineer and
<a class="skill" href="http://en.wikipedia.org/wiki/Programming"
rel="tag">programmer, with languages such as <a class="skill"
href="http://en.wikipedia.org/wiki/C++" rel="tag">C++,
<a class="skill" href="http://en.wikipedia.org/wiki/Java"
rel="tag">Java, and <a class="skill"
href="http://en.wikipedia.org/wiki/Realbasic" rel="tag">REALbasic
for nearly 20 years, and a standards-based <a class="skill"
href="http://en.wikipedia.org/wiki/Web_development"
rel="tag">web developer with a strong
understanding of <a class="skill" href="http://en.wikipedia.org/wiki/
CSS" rel="tag">CSS, <a class="skill" href="http://en.wikipedia.org/
wiki/HTML" rel="tag">HTML, <a class="skill"
href="http://en.wikipedia.org/wiki/XHTML" rel="tag">XHTML,
<a class="skill" href="http://en.wikipedia.org/wiki/DOM"
rel="tag">the DOM, and <a class="skill"

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

219

9

8148Ch09.qxp 2/28/07 6:07 PM Page 219

href="http://en.wikipedia.org/wiki/Javascript" rel="tag">JavaScript
for over a decade. In my occasional spare moments, I am an experienced
volunteer <a class="skill" href="http://en.wikipedia.org/wiki/
Surf_lifesaving" rel="tag">surf lifesaver, and regularly train
people in <a class="skill" href="http://en.wikipedia.org/wiki/
First_aid" rel="tag">first aid<a>, <a class="skill"
href="http://en.wikipedia.org/wiki/CPR" rel="tag">
<abbr title="Cardio Pulmonary Resuscitation">CPR</abbr>,
use of the <a class="skill" href="http://en.wikipedia.org/wiki/
defibrillator" rel="tag">defibrillator, as well as surf rescue skills.

Again, here you can see the flexibility of microformatted markup. You aren’t required to
use a list or any specific elements—rather, you can fill in the microformat information
around existing markup.

Affiliations
An important part of a professional resume is the organizations with which you are affili-
ated. You can use hResume to create these associations by listing or otherwise publishing
the names of the organizations. In what should be becoming a familiar pattern, we’ll use a
list in our example. Each list item will have a class value of affiliation, and each affili-
ated organization will be, not surprisingly, marked up using hCard.

In my case, I’ve been a member of the Web Standards Project (WaSP) for quite a few years
now, so I’ll add that, as well as my surf lifesaving club, North Bondi SLSC.1 To the best of
my knowledge, I am the only surf lifesaving member of WaSP.

<li class="vcard affiliation">

Web Standards Project

<li class="vcard affiliation">

North Bondi SLSC

I could, of course, similarly mark up these affiliations in a more narrative manner as well:

Early member of the CSS Samurai, a part of
<abbr title="Web Standards Project" class= "vcard affiliation">
WaSP
</abbr>. Patrol captain,
<a href="http://www.northbondisurfclub.com/"
class="fn org url">North Bondi SLSC.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

220

1. For you Macintosh aficionados out there, the original Mac color, “Bondi Blue,” was named after the
beach at which I am a lifesaver.

8148Ch09.qxp 2/28/07 6:07 PM Page 220

Publications
In many fields, particularly academic ones, what you publish is central to your professional
history, so hResume provides a way of marking up publications. At present, the citation
microformat is still very much under development, so we can use the HTML compound for
citations we put together in Chapter 4. In my case, I’ve published quite a few online arti-
cles, and of course this book. I can list these publications as follows:

<cite href="http://www.alistapart.com/articles/dao/"> å

 A Dao of å

Web Design</cite> A List Apart, April 2000

<cite href="http://www.westciv.com/style_master/house/good_oil/ å

not_paper/"><a href="http://www.westciv.com/style_master/house/ å

good_oil/not_paper/">Web Pages aren't printed on paper å

</cite>September 1999

You might notice that I didn’t add any class values to the list of the items to denote these
are publications; simply using the cite element is sufficient. This also means that any cited
works like this in an hResume are assumed to be published by the person for whom this is
the resume.

hResume tools and services

Although still a new draft format, a number of tools for helping publish hResume content
are available:

hResume Creator (http://hresume.weblogswork.com/hresumecreator): This form-
based resume creator from Spur, Inc. is much like the other microformats creators,
such as hCard Creator and hCalendar Creator.

hResume WordPress Plug-in (http://hresume.weblogswork.com/?page_id=3):
Another tool from Spur, Inc., this plug-in for WordPress helps publish hResumes on
WordPress-based blogs.

Microformat Resume Plug-in for WordPress (www.ssdesigninteractive.com): Sajid
Sayid created this easy-to-use plug-in for adding hResume content to a WordPress-
based site.

A couple of services are already using the format as well:

Emurse (http://emurse.com): This service for building, hosting, and publishing
resumes online uses the hResume format.

LinkedIn (www.linkedin.com): This professional online networking service uses
hResume for publishing resume details.

REVIEW AND RESUME MICROFORMATS: HREVIEW AND HRESUME

221

9

8148Ch09.qxp 2/28/07 6:07 PM Page 221

Styling hReview and hResume content with CSS
Hopefully by now you’re starting to see how CSS can be used with microformats. What
makes hReview and hResume so easy to style with CSS is that they largely work with the
class design pattern, making almost all the property elements available to any browser
using the class selector. In the case of publications, where we don’t have an explicit class,
we can easily use the descendent selector:

.hresume cite {}

which selects any <cite> element inside an element of class hresume.

Coming up in the Cork’d case study in Chapter 11, you’ll see how noted designer and
developer Dan Cederholm uses hReview with CSS—making anything I can tell you here
redundant.

Summary
I hope that this chapter has been relatively smooth sailing for you, after all your hard work
examining the intricacies of semantic HTML, the various microformats, and design patterns
over the first eight chapters of this book. In this chapter, you saw how these techniques
and the microformats principles combine to help you develop a logical schema to consis-
tently mark up quite complex types of information in HTML. You also saw a new design
pattern, the include design pattern, which you’ll revisit in Chapter 11 during an analysis of
the wine review site Cork’d.

You have one more new microformat, hAtom, to cover in the next chapter. Again, it’s a
draft microformat, and again you’ll be putting a lot of the knowledge you’ve gained so far
to work. Then it will be time to take a look in detail at how a number of sites are using
microformats today.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

222

8148Ch09.qxp 2/28/07 6:07 PM Page 222

8148Ch09.qxp 2/28/07 6:07 PM Page 223

8148Ch10.qxp 2/28/07 6:08 PM Page 224

10 SYNDICATED CONTENT
MICROFORMAT:

HATOM

8148Ch10.qxp 2/28/07 6:08 PM Page 225

Syndicated content, most commonly blog posts, has been one of the fastest growing kinds
of content on the Web the last four or five years. Typically, the syndication is enabled not
with HTML-based content, but with complementary formats, like RSS.

In this chapter, we’ll examine hAtom, a microformat for marking up syndicated content log-
ically in HTML, aiding archiving and content subscription. But first, we’ll look at web-based
subscription services in general.

Web-based subscription services
One of the significant changes in web use of the past few years has been the increased use
of subscription-based services (typically blogs, and similar reasonably frequently updated
information) to syndicate content, using RSS. While we typically think of RSS as a single,
monolithic technology, it is in fact a number of somewhat incompatible versions of Rich
Site Summary (RSS 0.91 and RSS 1.0), Really Simple Syndication (RSS 2.0), and RDF Site
Summary (RSS 0.9 and 1.0), as well as the totally unrelated (technically at least) Atom,
which is usually lumped in with RSS despite this technical difference.

For the moment, let’s forget the differences and think about the similarities among these
formats. They exist to allow publishing “feeds” of usually frequently updated content in a
format that enables dedicated software to present new content to users, allowing users to
manage a potentially large number of these feeds. While we usually associate RSS and
feeds with blogs, RSS is increasingly being used by web applications to notify users of all
kinds of changes to information. For example, the photo sharing site Flickr allows you to
subscribe to a number of different feeds: a feed of the comments on photos you have
posted, or feeds of photos by particular people or a group of people, such as your friends,
family, or contacts. So the similarities are that, in effect, all these different versions of
“RSS” enable more or less the same thing.

In addition, all of these RSSs are also XML-based languages, meaning that feeds must at
least be well-formed documents. It is a feature of XML that any XML processor must
report an error and stop processing as soon as an error occurs; compare this with the
extreme leniency of HTML processors.

A significant difference between RSS (RDF Site Summary, Really Simple Syndication, and
Rich Site Summary) and Atom is that Atom is in fact a draft IETF standard (RFC 4287), while
the various RSSs are de facto standards, meaning that they’re widely adopted and used,
but nowhere are they standardized.

So what does all this have to do with microformats, which are about marking up web
pages, not about creating XML-based syndication formats? Recall that microformats exist
to solve problems. The feeds for blogs and other syndicated content (e.g., newspaper arti-
cles online) generally only carry relatively recently published posts or articles. This means
that for archiving purposes, feeds are typically of limited value. After a reasonably short
period of time, posts disappear from a feed, and finding them becomes difficult. For
example, one of my blogs has several hundred posts, and I often need to search my own
blog using Google to find something I posted in the last few months, because it has van-
ished from the feed for that blog.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

226

8148Ch10.qxp 2/28/07 6:08 PM Page 226

Actual blog posts and other such syndicated content are almost invariably published as
HTML, as well as in a feed format, leading both to duplication and to poorer semantics for
the permanent, more widely available, and more likely search engine–indexed HTML-
based content. The feed, which typically has a use-by date of a certain number of posts, is
much less likely to be indexed by search engines. In fact, if you take a look at the HTML
code produced by just about any widely used blogging tool such as Moveable Type or
WordPress, you’ll probably find some kind of idiosyncratic, pseudo-semantic markup, but
of course, little if any consistency across systems.

So, having identified a problem, we turn to existing schemas to help us develop a format
for marking up blogs and other syndicated content in HTML. As you’ve seen, there are a
number of quite widely used formats, of which Atom has the benefit of being (very nearly)
an IETF standard (it’s in the final stages of draft status), and as such presents probably the
best candidate for a syndicated content microformat. Enter hAtom.

hAtom overview
hAtom is a draft microformat, based on a “minimal” subset of the draft Atom 1.0 specifi-
cation. The focus of hAtom is that “content that can be syndicated, primarily but not
exclusively weblogs,” and the aim is a format for “identifying semantic information in
weblog posts and practically any other place Atom may be used, such as news articles”
(per microformats.org). So what’s left out of hAtom that’s in Atom? hAtom restricts itself
to that part of the Atom schema specifically associated with blog posts.

Because hAtom is focused on the kind of information typically produced by some form of
tool, content management system (CMS), or application, hand-coding of Atom content
will most likely be rare. But an ideal place for developing hAtom content is in blogging sys-
tem and CMS templates. So if that’s something you’ve done or are interested in doing, you
can bring hAtom to a lot of people by simply modifying your templates (typically it should-
n’t be all that difficult). That way, anyone who uses your templates will have hAtom
marked-up content the moment he or she switches on the template.

Using hAtom
As mentioned previously, hAtom is based on a subset of Atom (we’ll cover the properties
of hAtom in just a moment). It’s worth noting that semantically Atom and hAtom content
are essentially equivalent. But in terms of markup, hAtom and Atom are often very differ-
ent. This is not simply because Atom is an XML-based language, but also because while
Atom feeds are typically a simple list of entries, the way real, live blogs and other forms of
syndicated content are published on the Web differs markedly. hAtom also provides a set
of guidelines for addressing this divergence where it may be an issue.

In many ways, hAtom is like hCalendar. The root element is an optional hfeed element,
which contains one or more hentry elements. Compare this with hCalendar, which has an
optional vcalendar element and one or more vevent elements.

SYNDICATED CONTENT MICROFORMAT: HATOM

227

10

8148Ch10.qxp 2/28/07 6:08 PM Page 227

Each hAtom entry has required title, updated, published, and author properties, and
optional content, summary, and permalink (bookmark) properties. Let’s take a look at
these in detail, marking up a blog post as we go. Here’s our unadorned HTML:

<h3>Introducing Web Connections</h3>

<p>Super smart, far too young and good-looking, å

Tim Lucas and Cam (" å

the man in blue") Adams å

have just taken the wraps off a fantastic web app, " å

Web å

Connections" they've built to help networking å

at our upcoming (next week!) conference, å

Web Directions å

.</p>

<p>Tim and Cam have incorporated rel-tag, XFN, hCard, and hCalendar. å

Seriously microformatted.</p>

<p>Right now you can check it out, but to keep weight off the å

servers, it's only open to signup for conference attendees for å

now, but I am sure that will change down the track.</p>

<p>So check it out. Fantastic work, Tim and Cam.</p>

First, we need a root element for the feed, of which this is an entry:

<div class="hfeed">
<div class="hentry">
</div>

</div>

Next, we have a title, which is one of the required properties. Illustrating how microfor-
mats aim to work with existing content, we can reuse our h3 for this, and using the class
design pattern (you’ll be dreaming about design patterns by the time I’m finished with
you), we get this title for our entry:

<div class="hentry">
<h3 class="entry-title">Introducing Web Connections</h3>

</div>

entry-title, like all the property names we use for hAtom, comes straight from Atom.

Next, we do the required updated date. We actually have to add this; typically, this is
something that our publishing tool will do for us automatically. In this case, the post was
published using WordPress, which adds the publication date. You now know a lot about
dates in microformats, so it will come as no surprise that we use the date design pattern
to mark up the date.

<p>Published:<abbr class="updated published" title="20060920"> å

September 20, 2006</abbr></p>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

228

8148Ch10.qxp 2/28/07 6:08 PM Page 228

Now, I did something sneaky here: as the updated date and the published date are the
same, I overloaded the published element. But we could, of course, have two elements: one
for the publication date and one for any updated date.

<p>Published:<abbr class="published" title="20060920">September 20, å

2006</abbr>, last updated:<abbr class="updated" title="20060924"> å

September 24, 2006</abbr></p>

The last of the required properties is author, so we add that:

<p>By: <a href="http://blogs.westciv.com" å

rel="me" class="fn url">John Allsopp</p>

There’s a bit going on there, so let’s take a look at it piece by piece. First, as with educa-
tion events in hResume, we have two class values on the vcard span. The value vcard
makes the element an hCard, while the value author designates that this hCard is for the
author of the entry. We also add a rel="me" value, which helps identify all my blog posts
wherever they might be posted (after all, in a previous chapter you saw that there are
other John Allsopps out there).

Now let’s take a look at the optional properties. People write and publish blog posts and
other kinds of entries for people to read. Or at least I assume so (sometimes I think they
post them for other people to comment on, which is not exactly the same thing). The
meat of an entry, the content, is marked up in an entry property. An entry doesn’t have to
have content; it can have more than one content property, as well.

In our case, it makes sense to mark up all the content as a single content property,
because it consists of a single chunk of information. If for some reason a post contained
two discrete chunks of information, then it makes sense to mark these up as distinct con-
tent elements. Our example entry now looks like this:

<div class="hentry">
<h3 class="entry-title">Introducing Web Connections</h3>
<p>Published:<abbr class="updated published" title="20060920"> å

September 20, 2006</abbr></p>
<div class="content">
<p>Super smart, far too young and good-looking, å

Tim Lucas and Cam å

("the man in blue") å

Adams have just taken the wraps off a fantastic web app, å

"Web å

Connections " they've built to help networking å

at our upcoming (next week!) conference, å

Web å

Directions.</p>

<p>Tim and Cam have incorporated rel-tag, XFN, hCard, å

and hCalendar. Seriously microformatted.</p>

SYNDICATED CONTENT MICROFORMAT: HATOM

229

10

8148Ch10.qxp 2/28/07 6:08 PM Page 229

<p>Right now you can check it out, but to keep weight off the å

servers, it's only open to signup for conference attendees å

for now, but I am sure that will change down the track.</p>

<p>So check it out. Fantastic work, Tim and Cam.</p>

</div>
</div>

Now that we have the required properties of our hAtom marked-up feed done, let’s take
a look at some more detailed, optional, but commonly used properties.

Summaries

Blog posts often appear in a feed with a short entry and a link to the full post. The short
“teaser” in Atom (which often simply turns people off—who really wants to visit a site to
read a few more lines?) is called a summary. This could be a completely distinct part of the
entry, for example:

<p class="summary">Smart young guys build cool new web app</p>

Or we could reuse a relevant part of the content like this:

<div class="content">
<p><span, class="summary">Super smart, far too young and good- å

looking, Tim Lucas and Cam å

("the man in blue") å

Adams have just taken the wraps off a fantastic web app, å

"Web Connections å

" they've built to help networking at our upcoming å

(next week!) conference, å

Web Directions.</p>

...

</div>

Notice again with the microformats approach, we don’t have to bend existing content and
markup out of shape. We just use the existing structure of our content intelligently, adding
an element here, an attribute there, and maintaining as much of the original as possible.

Permalinks

Articles like blog posts are typically published on the main page of a blog or site section,
and then after a period of time, they end up archived on secondary pages. But it’s impor-
tant to enable someone to link to an entry once and for that link to always be maintained
as the permalink to this post. hAtom supports permalinking—all we need to do is use a

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

230

8148Ch10.qxp 2/28/07 6:08 PM Page 230

draft microformat, rel-bookmark, which uses one of the HTML specification’s “reserved”
values for the rel attribute described in Chapter 4.

rel-bookmark is a hyperlink element, with a rel of bookmark. In effect, using this micro-
format, we say that the destination of the link is a bookmark, or permanent location for
the part of the page where the link appears. So, to indicate that that the URL
http://microformatique.com/?p=37 is the permalink for our post, we use this link:

Permalink

Categories

What’s a good post without a category or three? Categories are the forerunners to tagging
(and, in fact, Technorati tag search treats categories from blogging systems like Blogger
and WordPress as tags for the purposes of indexing). It should come as no surprise that
Atom, and thus hAtom, supports categories, and that it uses rel-tag to do so.

There are two kinds of categories: feed categories, which are labels or tags that describe
what whole feeds are about, and entry categories, which describe what an individual entry
is about. Both categories are marked up in the same way, using the rel-tag microformat.
The only difference is where the tags appear. rel-tags inside an entry property are tags or
categories for the entry, while those outside any entry, but inside a feed, apply to the
whole feed.

For example, the blog in which the post we are marking up appears is about microformats,
semantics, HTML, and patterns. To give these categories to the feed as a whole, we have
this:

<div class="hfeed">

<a href="http://www.technorati.com/tag/microformats"

rel="tag"> microformats
 å

semantics
 å

HTML
 å

patterns

...

</div>

On the other hand, the particular entry is about web applications, microformats, WD06
(the tag invented for the Web Directions conference), and so on. We simply add a list like
the following to our entry to add these categories to it:

SYNDICATED CONTENT MICROFORMAT: HATOM

231

10

8148Ch10.qxp 2/28/07 6:08 PM Page 231

<a href="http://www.technorati.com/tag/microformats"
rel="tag"> microformats
 å

webapps
 å

WD06

and put it anywhere inside our hentry property element.

Putting all of this together, here’s the markup for our feed:

<div class="hfeed">

<a href="http://www.technorati.com/tag/microformats"

rel="tag"> microformats
 å

semantics
 å

HTML
 å

patterns

[there may be many hentries here before we get to the entry we have å

been marking up]

<div class="hentry">
<h3 class="entry-title">Introducing Web Connections</h3>
<p>Published:<abbr class="updated published" title="20060920"> å

September 20, 2006</abbr></p>
<div class="content">
<p><span, class="summary">Super smart, far too young and good- å

looking, Tim Lucas and å

Cam ("the man in å

blue")Adams, have just taken the wraps off a fantastic CCC
web app, "~ å

Web Connections " they've built to help networking å

at our upcoming (next week!) conference, å

Web Directions.</p>

<p>Tim and Cam have incorporated rel-tag, XFN, hCard, and å

hCalendar. Seriously microformatted.</p>

<p>Right now you can check it out, but to keep weight off the å

servers, it's only open to signup for conference attendees å

for now, but I am sure that will change down the track.</p>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

232

8148Ch10.qxp 2/28/07 6:08 PM Page 232

<p>So check it out. Fantastic work, Tim and Cam.</p>
</div>

<p>Categories</p>

<a href="http://www.technorati.com/tag/microformats"

rel="tag"> microformats
 å

webapps
 å

WD06

</div>

[there may be many more entries after this one in the feed]

</div>

Services using hAtom
Because hAtom is still young, it has not seen (as yet) the level of adoption of some of the
other microformats. However, there are already some interesting hAtom developments,
both on the publishing and processing side, as outlined in the sections that follow.

Publishing

The open source WordPress blogging system (which is increasingly used as a content man-
agement system) is where the most hAtom-related action seems to be taking place.

The Sandbox theme (www.plaintxt.org/themes/sandbox), hinted to likely be the basis for
the upcoming default WordPress theme, by Scott Allan Wallick and Andy Skelton, is a
skeleton theme (i.e., you can use it to develop your own themes on top of) that supports
hAtom. There’s also a version of the venerable Kubrick theme (the default 2.0 theme for
WordPress) by Bill Humphries that uses hAtom.

If you are interested in adding hAtom to your existing WordPress theme or install, Frances
Berriman has a WordPress loop to add hAtom to your blog (see www.fberriman.com/?p=86).

There’s also an hAtom Creator for creating individual posts, at http://dichotomize.com/
uf/hatom/creator.html. Along with the other microformats creators covered in this
book, it’s a great way of experimenting with a new format.

SYNDICATED CONTENT MICROFORMAT: HATOM

233

10

8148Ch10.qxp 2/28/07 6:08 PM Page 233

Processing

On the processing side, a number of projects and toolkits are available that can help make
processing hAtom content pain-free.

First, there’s hAtom2Atom, an XSLT processor for transforming hAtom marked-up content
to Atom (see http://rbach.priv.at/hAtom2Atom/). It’s used by the online hatom2atom
service by Luke Arno (find it at http://lukearno.com/projects/hatom2atom) and by Chris
Casciano’s extension for the Mac OS news reader NetNewsWire (see http://placenamehere.
com/mf/netnewswire), which allows users to subscribe to any page marked up using
hAtom just like they would subscribe to an RSS or Atom feed.

The venerable Tails extension for Firefox (http://blog.codeeg.com/tails-firefox-
extension-03) supports the hAtom microformat. Figure 10-1 shows one of the developers
of Sandboxes blog, as seen through the eyes of Tails.

Figure 10-1. hAtom in action, as seen through the eyes of Tails

This demonstrates how with hAtom, every page becomes its own feed, without the need
for RSS or Atom.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

234

8148Ch10.qxp 2/28/07 6:08 PM Page 234

Summary
It’s early days for hAtom, but by leveraging the hard work of those who came before (mod-
ular open source software like WordPress and hAtom2Atom, as well as a community-based
approach to development), hAtom has come a long way very quickly and shows how agile
the evolution of a microformat can be.

I’ll leave the last word on hAtom to one of the rising stars of the Web, Matt Mullenweg,
developer of WordPress and founder of Automattic:

I’m not excited about hAtom because I think it will replace RSS or Atom. (Not in a million
years.) Rather, it offers a normalized semantic way to class elements of a page, which is
something we’ve been trying to get folks to agree on for years. I think consistency in tem-
plates here will be a big boon to people just starting to learn HTML and CSS. 1

With hAtom, we’ve finished with our in-depth coverage of specific microformats. In this
part of the book we took a look at each of the current “specification” level formats and
some of the fast-emerging draft specifications.

In the next section of the book, we’ll look at two of the current innovators with microfor-
mats, Cork’d and Yahoo, to see how and why nimble startups as well as the biggest pub-
lishers on the Web use microformats. Then we’ll finish off the book by detailing the
process by which microformats come into being.

SYNDICATED CONTENT MICROFORMAT: HATOM

235

10

1. See the Comments section of http://factoryjoe.com/blog/2006/08/06/wordpress-makes-a-
move-towards-hatom-gets-upgrades.

8148Ch10.qxp 2/28/07 6:08 PM Page 235

8148Ch10.qxp 2/28/07 6:08 PM Page 236

PART THREE CASE STUDIES

In this part of the book, we look in detail at two publishers using microformats exten-
sively today, from two ends of the publishing spectrum. In Chapter 11, we study Cork’d,
a startup wine review site. Then in Chapter 12, we look at how Yahoo—arguably the
biggest publisher on the Web—uses several different now-familiar microformats on a
number of its sites.

8148Ch11.qxp 2/28/07 6:09 PM Page 237

8148Ch11.qxp 2/28/07 6:09 PM Page 238

11 CASE STUDY: CORK’D

8148Ch11.qxp 2/28/07 6:09 PM Page 239

In this chapter, we take a look at what a fresh new startup, Cork’d (http://corkd.com), is
doing. In the process, one of the founders of Cork’d, renowned developer, designer, blog-
ger, and author Dan Cederholm, talks about microformats, why they interest him, what
he’s been doing with them, and what he thinks he’ll be doing with them in the near future.

Introducing Dan Cederholm
The name Dan Cederholm will be familiar to many web designers and developers. His site
SimpleBits (http://simplebits.com) is widely read in the web design community. His
SimpleQuiz publication introduced a great many developers to the ideas associated with
semantic HTML markup, his clients include such popular sites as MTV and ESPN.com, and his
two books, Bulletproof Web Design (New Riders, 2005) and Web
Standards Solutions (friends of ED, 2004; ISBN: 1-59059-381-2), are
pretty much required reading for web designers and developers.

Dan’s also been heavily involved with microformats for some time,
designing both the microformats community website and logo, as well
as extensively using microformats with his new project, Cork’d. The
fact that innovative, widely respected designers and developers like
Dan, who were early adopters of web standards, CSS, and the more
semantic use of HTML, have embraced microformats is, to me, a clear
indication of the future importance of microformats. People like Dan
have been leading the way in web development for some time.

When I interviewed Dan recently, I started by asking him how he first came to hear about
microformats.

I’m sure I first heard about them from either Matt Mullenweg or Tantek Çelik, but more
specifically XFN (the XHTML Friends Network). I’m not sure if the term “microformats” was
even being used at this point, but in any case, I can remember lots of buzz around using
XFN to mark up your “blogroll,” noting relationships to the various people you were link-
ing to. This was right around the time of the annual SxSWi festival, and so updating your
XFN lists was a favorite pastime for newly acquainted geeks.

At this point, it was microformats at their birth—a simple tweak of markup using the rel
attribute—but one that sparked the rest.

Dan focuses on the simplicity of microformats—and simplicity of design is one of Dan’s
hallmarks, as you’ll see. It’s noteworthy, too, that he zooms in on one of the features of
microformats I’ve remarked on a number of times in this book: microformats work with
your existing content and markup rather than forcing changes on you.

You learned earlier that microformats were legendarily born in the
halls of the South by Southwest (SxSW) conference (an annual confer-
ence in Austin, Texas). If you get the chance you should try attending,
but make your plans months in advance, as it’s very popular.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

240

Photo by Jeremy Keith

8148Ch11.qxp 2/28/07 6:09 PM Page 240

Dan continues:

I was drawn to the “indie” spirit of microformats right away. I liked how microformats
aimed to work right away, rather than waiting for the Semantic Web to take hold (will it
ever?). One of my favorite bands is Guided by Voices. Many of their early recordings were
done crudely on cassette boom boxes and 4-track recorders. They used what was lying
around, and in the end it didn’t matter—the songs rang true. Microformats, to me, are
about “using what’s lying around,” namely XHTML, XML, etc., and using what already works
and is understandable in a really new and powerful way.

Back in 2004 and 2005, microformats were very much an early adopter technology. Just
why did Dan invest the energy in something that may have shown a lot of promise, but
that didn’t really hold any immediate payoffs?

Early on, choosing to use microformats to describe a relationship (XFN) or a contact
(hCard) was more about “planting seeds”—there were few if any tools/apps/developers
taking advantage of this rich, bubbled-to-the-surface data, but the promise was there. By
planting the seeds, I knew that eventually people would come along and start to do cool
stuff with the microformats I’d implemented. And we’re starting to see more and more of
that now.

We should be very thankful that early adopters like Dan made this investment, just as we
owe a great deal of thanks to early web pioneers and early advocates of CSS and web stan-
dards. Their names are often not well known, but the seeds they sowed have made the
Web a more fruitful place for us all.

Dan, as I mentioned, designed both the microformats.org site and logo (see Figure 11-1).
Of that experience, he says,

That was a fun project—helping to build microformats into a “brand” by designing the
logo and website. We went through quite a few concepts for the logo itself, settling on the
three-tiered layered box mark that you’ll see today. I like talking about the logo, because
as simple as it is, it actually conveys a lot about what microformats are. The three layers
represent the “building blocks” of semantic markup, and the idea of smaller blocks being
built on top of larger, more established ones. The large base block could be XML, while the
middle block could represent XHTML jutting out from XML, and then the third, smallest
layer could be microformats, which build from the others that precede it. That third small
block is also a brighter green, signifying “new growth.” As microformats are growing from
the current technologies that available, it’s the third “branch” that the community has
taken on itself to create off the W3C’s previous specs. A renegade, if you will.

Introducing Cork’d
So Dan’s a fan of microformats, but the proof of the pudding is in the eating—let’s see
how he’s been putting his code where his mouth is. Recently, Cederholm started Cork’d
with Hivelogic’s Dan Benjamin. Cork’d uses microformats extensively, as you’ll see in a
moment, but first, what is Cork’d? According to Cederholm,

CASE STUDY: CORK’D

241

11

Figure 11-1. The
microformats logo,
designed by
Dan Cederholm

8148Ch11.qxp 2/28/07 6:09 PM Page 241

Cork’d is a community-based, free service for wine aficionados. Cork’d members can keep
track of wines they’ve tasted, wines they own, or wines they’d like to buy. Many wine fans
use a “wine journal”—a notebook of sorts to keep tasting notes, remembering what they
thought of a particular bottle. Dan Benjamin (cofounder and developer of Cork’d) and I
thought it’d be fun to place this information on the Web, and then allow people to share
those notes and reviews with their friends. Community plays a large role in Cork’d, in that
friends can add each other as “Drinking Buddies,” keeping tabs on what wines they’ve
tasted as well as recommendations and messaging. The thought was, let’s bring wine to
people who would rather trust a friend’s opinion than that of a highbrow, snobby wine
publication. So, we’re trying to take the intimidation out of wine, while providing a fun,
free service. It was launched in May 2006.

Just from Dan’s description, you can probably start imagining how Cork’d uses microfor-
mats (I promised you you’d start seeing them everywhere way back in Chapter 1). “Cork’d
member” sounds like the kind of thing we could mark up using hCard, while a “wine jour-
nal” would logically contain “reviews” of the wine people have tasted. Because community
is important, you can imagine that establishing the relationships between people is an
important part of Cork’d as well, and we know XFN suits that task well.

You might think that as an early promoter and adopter, Dan built microformats right into
the application from the beginning, but he says,

(Embarrassingly) it [our adoption of microformats] didn’t happen right away. The way
Cork’d was constructed was very organic, with Dan B. and I working in tandem via SVN.
This means we could both chip away at the app independently, without getting in each
other’s way. This also gives the interface designer a great deal of flexibility—to swap
markup/CSS/images in and out to experiment with different combinations. So, once the
basic framework of the application was in place, I then went back and modified the
markup to support microformats.

This was largely a nonissue, however, as we were already being pretty semantic about
everything, and what was needed was the classes that describe those pieces correctly. I
think that’s a good point about implementing microformats.

I’ve commented on this quite a number of times: microformats can generally be retrofit-
ted into a site or application without too much effort, particularly where the site uses
good development practices, such as the use of valid, semantic HTML or XHTML. That’s
why we devoted quite a bit of time to the issue of valid and semantic HTML in Chapter 3.

And where else has Dan been using microformats?

I’d also been using microformats on my business/blog, SimpleBits. Again, it’s a case where I
have total control over the markup, so it’s a nice playground. Just recently, I coded some
templates for a well-known design organization and used hCalendar to mark up the listing
of events. It’ll be interesting to see if the CMS developers take care in preserving that struc-
ture, what obstacles they encounter, or if they ignore them completely. Unfortunately, it
takes at least a basic understanding of what microformats are in order to make sure they’ll
work. That could change, though. People are creating new tools every day, and as we get
CMS and software developers on board, much of the implementation I hope will be trans-

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

242

8148Ch11.qxp 2/28/07 6:09 PM Page 242

parent, second-nature, and omnipresent. Thankfully, since microformats are equally
human- and machine-readable, it doesn’t take long to grasp the concepts.

So, let’s get into the details of how Dan uses microformats in Cork’d. He had this to say:

On Cork’d we use three microformats: hCard, hReview, and rel-tag. We’re also “sort of”
using XFN, currently marking all of your contacts as “friend” in order for people to take
advantage of that info (more on that in a minute). Ideally, we’ll have the ability to mark
relationships in the future.

Using hReview was a no-brainer, as member-created wine reviews are what drive the site.
And since Cork’d is a community-based site, it also makes good sense to use hCard to
mark up your Drinking Buddies (aka contacts). The contact information of each member is
somewhat limited on the site, but we’ve seen benefits from using hCard here, even if to
describe sparse data.

In terms of motivation, I was excited to use microformats beyond tinkering with a personal
blog, and this was a prime opportunity. I was particularly excited to play with hReview, as
in a perfect world, every wine blogger could write their tasting notes on their own respec-
tive sites, and then a site like Cork’d could merely be an aggregator of that information if
hReview is involved. That’s the future I suppose.

So, has it been worth their while? What benefits have they seen?

I think it’s the unexpected benefits that are the most exciting. For example, a developer
contacting me saying that he’d scraped the XFN’d contact list, then the hReviews, ran
everything though a SPARQL engine that could generate a list of reviews only from his
trusted friends. Now this would be a great feature to have as part of Cork’d—but the
beautiful thing is that this guy was able to build it himself using microformatted data that
was revealed on Cork’d. I have to admit I had no idea what he was talking about—and
that’s fantastic! I’m calling this oblivious development—that I as an interface designer can
choose to use microformats, and then people who actually know what they’re doing can
come along and do really cool stuff with the data.

Drew McLellan gave a great presentation recently titled “Can Your Website be Your API?”
and this is a great example of that. Cork’d has no official public API, yet because of simple
microformats, we do. There’s another site called Scrugy that’s scraping our hReviews and
adding them to their wine search engine. No work on our part, and more Cork’d content
distributed elsewhere. This, to me, is a beautiful thing. And those seeds that we’ve been
planting are now legitimately being harvested. Microformats are no longer just an ideal,
but rather real benefits are popping up every day.

I’ve reiterated throughout the book that enabling “decentralized development, content,
services” is a key principle of microformats, and Dan’s experience at Cork’d definitely
emphasizes this.

I asked Dan whether they’d run into any issues or “gotchas” while working with microfor-
mats, and here was his response:

CASE STUDY: CORK’D

243

11

8148Ch11.qxp 2/28/07 6:09 PM Page 243

I did run into an issue with the (then) recommended way of including a wine’s title for
each hReview on the page. There was a method that utilized the <object> element that
caused issues in Safari. I ended up abandoning that in favor of repeating the wine name
for each hReview, and then hiding that using CSS. Later, a new and improved method for
include patterns (http://microformats.org/wiki/include-pattern) emerged. I need to
give this a second look.

Other gotchas may have gone unnoticed. In other words, without a “microformats valida-
tor” it can be difficult to be confident in the way you’ve implemented them. This can be a
stumbling block for those just getting started. I recommend using the code creators to
visualize how the structure is easily set up (more on that in a bit).

Dan is very much known as a designer as well as a developer. I wondered whether using
microformats had any impact on his designs. Did they help in implementing designs? Did
they hinder his work as a designer in any way? One common and, I think, completely
unfounded criticism of web standards, which I’ve also heard in relation to microformats, is
that they “inhibit creativity.” Did Dan find that?

Since I designed first, and then retrofitted the microformats after the fact, they didn’t
impact the design all that much. I think that speaks volumes about the simplicity of what
microformats are—there’s nothing out of the ordinary in terms of required markup. One
thing I need to keep in mind when dealing with microformats is that I can attach the rec-
ommended classes to elements other than <div> and . If a list or heading makes
more semantic sense, then so be it. I hope that designers realize that flexibility is there.
Another thing to keep in mind is that CSS will be able to make your microformats appear
however you’d like. Utilize the display property in CSS to change inline elements to
“block,” to force things on another line. Or conversely, give block elements the “inline”
value to string things together. Just because the markup behaves a certain way by default
doesn’t mean we can position the elements however we’d like later on. This is a core prin-
ciple of CSS-based design—that separation of content and design—but it rings true with
microformats as well, and I hope designers understand that while certain markup patterns
are recommended via their specifications, using CSS to alter the presentation is always
available.

I’ll also mention that the code creators on microformats.org are incredibly helpful for
designers implementing microformats. They’ll take the guesswork out of using the correct
markup and create the structure for you automatically. It’s the first place I’d send a curious
designer new to microformats. Oftentimes seeing is believing, and seeing the way in which
the creator plugs in data is extremely useful in grasping how a microformat works. I used
both the hCard and hReview creators in setting up the microformats on Cork’d.

In Chapter 9, we looked at the now recommended way of including details from one
microformat in another, the include pattern, which was redesigned precisely because
of this issue with the <object> element in Safari.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

244

8148Ch11.qxp 2/28/07 6:09 PM Page 244

Next, let’s take a look at how Cork’d uses microformats, both the HTML markup and the
CSS used to style the resulting content. We’ll begin with our old favorite, hCard, and then
move on to hReview.

hCard on Cork’d

Here’s my membership hCard at Cork’d. (I’ve used mine as an example because you never
know who might have an account and is reviewing very nice wine, but their husband or
wife [or creditors] might not know about this purchase.)

<div class="vcard">
<img src="/img/icon-user-64.gif" height="64" width="64" alt="icon" å

class="photo" />
John Allsopp

<p>Software developer, conference organiser, surf lifesaver, wine å

lover, new dad in no particular order</p>
<p>Web site: <a href="http://westciv.com" å

class="url">http://westciv.com</p>
<p>Location: Sydney, å

NSW, Australia</p>
</div>

In many ways, it’s a very straightforward hCard. It has an FN (which as you know is a
required property for an hCard), a URL, a photo, and a location, which Cork’d simply adds
as a region, rather than a fully elaborated adr element. If you look at this hCard in a
browser, with no styling (see Figure 11-2), you can see one of the key principles and ben-
efits of microformats: they are human-friendly.

Figure 11-2. The hCard is perfectly human-readable, without any styling whatsoever.

So what techniques does Dan use to style this nice, simple piece of markup? In keeping
with Dan’s philosophy of simplicity, reflected in the HTML, the CSS is also unfussy. Much of
the style relies on inheritance—of font family and size—and on background color “shining
through” from other elements.

For example, here is how the member’s name is styled:

CASE STUDY: CORK’D

245

11

8148Ch11.qxp 2/28/07 6:09 PM Page 245

#content div.vcard span.fn strong {
font-size: 140%;
font-weight: bold;
color: #630;

}

By itself, this looks like Figure 11-3.

With the full page, the member’s name looks as shown in
Figure 11-4.

Rather than redefining the font family for every element,
Dan relies on the inheritance from the body. While it
seems to be a simple point, developers often needlessly
add styling to elements instead of relying on inheritance.
The simpler a style sheet is, the easier it is to debug, main-
tain, and modify.

If you look at the CSS in total, you’ll see that Dan uses
descendent selectors extensively. Microformats are ideal in
many ways for descendent selectors, as compound microformats create a context via their
root elements that is tailor-made for this approach.

The last little trick we might pick up from Dan is the simple way he uses float to position
the user’s icon to the left of the user’s details. In fact, we used this technique in Chapter 7
to add an hCard icon to the right of our hCard, but such simple powerful techniques are
always worth reinforcing. Here’s the CSS:

#content div.vcard img.photo {
float: left;
margin: 0 10px 0 0;
text-align: center;
padding: 6px;
border: 4px double #E7DAC0;
background: #fff;

}

The margin of 0 10px 0 0 means that only the right edge will have a 10-pixel margin, creat-
ing the separation from the text of the hCard. The fully styled hCard looks like Figure 11-5.

Figure 11-5. The fully styled hCard

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

246

Figure 11-3. In an isolated
scenario, the FN looks like this.

Figure 11-4. In the full page,
the FN has inherited styles
from the rest of the page.

8148Ch11.qxp 2/28/07 6:09 PM Page 246

Note, too, how Dan has used a plain image but a white background color, padding, and
border to create the stylized effect of the image. Why do this and not add the effects
straight onto the image? Although it’s not available right now, Cork’d plans uploadable
images, so members can upload their own photo or avatar. Styled this way, all these
images will have a similar appearance, and yet there will be no need to process the images
at all on the server.

Dan has again used descendent selectors and the inherent semantics in hCard to select this
image element (that way, if a wine was marked up using a future hItem microformat, for
example, and it included the photo class, too, this selector would not select those ele-
ments, only photos inside hCards).

hReview on Cork’d

Although hReview is still a draft format, we’ve seen that it is widely used. Cork’d makes use
of hReview, which makes sense because at the heart of Cork’d are wine reviews. Let’s take
a look at how hReviews get used at Cork’d.

I am quite a fan of Pinot Noir; its lightness and subtlety make it a perfect red wine for the
Australian climate. Ironically, it grows best in cool climates, and while we do make some
good Pinot here, the best Pinots definitely come from elsewhere.

Here’s the review for an inexpensive, highly rated Pinot I found at Cork’d:

<div id="review_7713" class="hreview">
<h5 class="item">2000 Flowers Camp Meeting Ridge å

Pinot Noir</h5>
<abbr class="dtreviewed" title="20061009">(49 days ago)</abbr>

<img class="photo" src="/img/icon-user-64.gif" height="48" å

width="48" alt="buddy icon" />
mikewillison

<abbr class="rating" title="5"><img src="/img/icon-rate5.gif" å

alt="*****" /></abbr>
<blockquote class="description">Well, quite frankly it has å

exceeded every expectation... It was only a glass of wine, å

wasn't it?</blockquote>
<p class="tags">Tasting Tags:
<a href="/tags/elegant" rel="tag" class="rel-tag" title="view å

all wines with this tag">elegant
<a href="/tags/moue" rel="tag" class="rel-tag" title="view å

all wines with this tag">moue
<a href="/tags/sexy" rel="tag" class="rel-tag" title="view å

all wines with this tag">sexy
</p>

</div>

CASE STUDY: CORK’D

247

11

8148Ch11.qxp 2/28/07 6:09 PM Page 247

As I said, it’s an inexpensive wine, so I hope Mike doesn’t mind me spilling the beans.

Let’s take a look at some of the specific aspects that Cork’d is using. We can see how the
existing logic of the application works well with the hReview format. Here the container
element for the review is given an internal unique identifier using id, but also serves as the
root element for the review.

<div id="review_7713" class="hreview">

I like the way the review date is really human-friendly (49 days ago), giving us an immedi-
ate sense of how “fresh” the review is, rather than using a specific date, like October 14,
2006. The abbr design pattern is used to give the machine-readable value for this date.

The reviewer is marked up as a simple hCard, with a link to his profile page. Interestingly,
Dan had marked up the reviewer’s comments (the description field) as a blockquote,
which makes sense, as the review in effect quotes the reviewer. The other thing to note is
how wine is “categorized” using tags that capture the reviewer’s impression of the wine’s
taste, using rel-tag. This way, we can actually find all wines given a particular tasting tag by
any reviewers, so if we like “berry” flavors, we can find all the wines other members think
have this flavor. I am not sure that “sexy” is a strictly technical tasting term, but I think I
know what Mike means.

One thing to note is the use of the abbr design pattern for ratings. In the hReview chapter,
you saw that ratings typically look like this:

<p>Rating: 2/5</p>

But a very common way of presenting ratings is with stars, chefs’ hats, and so on. Figure
11-6 shows an example of how Cork’d does it.

Figure 11-6. Cork’d uses a star rating system
for the wines reviewed on the site.

How can we mark up such a common form of rating with hReview? Enter the abbr design
pattern once more.

<abbr class="rating" title="5"><img src="/img/icon-rate5.gif" å
alt="*****" /></abbr>

Here, the title value is the rating, while the image inside is the human-readable version
(of course, with alt text to help those using assistive technologies).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

248

8148Ch11.qxp 2/28/07 6:09 PM Page 248

The hReview CSS

Figure 11-7 shows how hReview is styled on Cork’d using CSS.

Figure 11-7. Styling an hReview, Cork’d style

Some of the familiar tricks you’ve seen are in evidence again. This time the reviewer icon
is floated to the left, and the review date, (49 days ago), is floated to the right.

The tasting tags are styled to look like buttons, with raised edges, using the CSS border
property:

a.rel-tag {
margin: 0 2px 0 0;
padding: 3px 5px;
background: #FFF6D3 url(../img/search-bg.gif) repeat-x top left;
border-right: 1px solid #DFD5AF;
border-bottom: 1px solid #DFD5AF;

}

You’ll note that because the attr selector isn’t widely supported, Dan’s added a class of
rel-tag to the tasting tags. When the attr selector is better supported, this class will no
longer need to be added to these links.

The overall review effect of a cutout box is achieved very simply as well:

div.hreview {
margin: 15px 0 8px 0;
padding: 15px;
border-bottom: 1px solid #E5DFC7;
border-right: 1px solid #E5DFC7;
background: #fff;

}

with margin, padding, borders, and a simple colored background. No explicit width is set,
because the hReview element is 100% the width of its parent element, which is where the
width is actually set.

CASE STUDY: CORK’D

249

11

8148Ch11.qxp 2/28/07 6:09 PM Page 249

While these are simple, well-understood, long-used, and widely supported features of CSS,
they achieve a contemporary look, and again use the structure and markup of our micro-
format—working with the existing code, rather than against it, or ignoring it, as many of us
all too frequently do.

I think any aspiring designer or developer can glean a lot from Dan’s code. There is a sim-
plicity, a straightforwardness, and an intelligence to his coding that never becomes overly
clever or fussy. Yes, Dan, like most of us, uses the odd hack to work around Internet
Explorer’s box model problems, but on the whole, his coding style and very nicely com-
mented CSS mean that the code is sensible and readable.

Summary
So what’s the future for Cork’d and microformats? What other uses of microformats can
Dan see adding value to Cork’d? Here are his answers to these questions:

We could definitely add more XFN functionality, giving the members the ability to specify
relationships (rather than mark them all as friends automatically). That’d be one area to
improve. Ditto for making hCard consistent for all instances of contacts on the site. There
is actually a lot more we can do. Currently it’s up to us to manually add it in. My hope is
that over time, more software developers begin to build microformat functionality into
their CMSs, aggregators, browser extensions, etc. And we’re starting to see that already.

Whether you are beginning a new project or reworking an existing one, taking a page from
the book of someone as successful and innovative as Dan Cederholm and looking at how
you can use microformats in these projects surely can’t be a bad idea.

In the next chapter, we’ll go to the other end of the spectrum and look at how one of the
Web’s biggest publishers is using microformats across a wide variety of sites.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

250

8148Ch11.qxp 2/28/07 6:09 PM Page 250

8148Ch11.qxp 2/28/07 6:09 PM Page 251

8148Ch12.qxp 3/2/07 5:05 PM Page 252

12 CASE STUDY: YAHOO

8148Ch12.qxp 3/2/07 5:05 PM Page 253

In the last chapter, we examined Cork’d, a small, innovative, recent startup. In this chapter,
we move on to take a look at a company that represents the other extreme on the Web:
Yahoo, arguably the Web’s most visited site. Unlike many other highly visited sites, such as
Google, Yahoo’s traffic comes largely from the content it publishes across a broad spec-
trum of sites. Yahoo is almost certainly the largest publisher on the Web in this respect.

As you’ve seen throughout the book, Yahoo uses a range of microformats extensively. In
this chapter, we’ll examine some of these uses in more detail and talk to a Yahoo devel-
oper about the company’s interests in microformats, the benefits seen from adopting
them, and the lessons learned along the way.

Introducing Nate Koechley
Nate Koechley, Senior Engineer and Technical Evangelist on the Yahoo User Interface (YUI)
Library team, generously agreed to talk with me about how Yahoo is using microformats. This
is just one of many examples of an openness at Yahoo that I really admire—the company
opens up not only APIs and data for any web developer to use, but also a lot of underlying
code.

I asked Nate why such an established, huge publisher like Yahoo might be interested in a
new technology like microformats.

Why adopt microformats? First and foremost, at Yahoo! we’re just plain passionate about
the Web. We want to see it thrive. Microformats seem good for the vitality of the Web, and
ultimately good for users. It’s true there are sometimes constraints on bigger websites and
companies, but at the same time our size can be an advantage. In cases like microformats,
our scale can help technology reach its tipping point. We’re proud to play that role, and
look forward to microformats making the Web even more functional for users.

Did Yahoo consider that it was taking risks by doing so?

In terms of risks, people sometimes wonder if microformats void copyright. After speaking
with Tantek Çelik, I believe the answer is no, and that the format of data doesn’t impact
the ownership of data. That said, we’re still examining these questions on a case-by-case
basis, and we’re being cautions in a few cases. (Disclaimer: I am not a lawyer. This state-
ment has not been evaluated by any lawyer. This is NOT legal advice or legal counsel.)

On balance, however, I wish more equations took the “easy to implement + low risk +
upside for users + good for the Web’s health” format.

Take a look at the YUI Library for articles, documentation, and open source user inter-
face components you can use in your development: http://developer.yahoo.com/yui.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

254

8148Ch12.qxp 3/2/07 5:05 PM Page 254

How does Yahoo use microformats?

We use microformats all over the place, and more every day. Flickr and Upcoming have
been fortified with microformats for longer than I can remember. Yahoo! Tech launched in
May with hReview, and in June Yahoo! Local added hCards, hCalendars, and hReviews. You
can find microformats on Yahoo! Food, Finance, Movies, Games, and probably many more.
I believe our sites in Europe are rolling them out even faster than here in the States.

In addition to the formats I listed, we’re also using the hAtom, vCard, and adr formats, and
the home link and tag patterns. We have some pretty cool new implementations baking in
the oven, but unfortunately I can’t talk about them quite yet.

What benefits have you seen from using these microformats? What unexpected benefits?

I think the benefits of microformats haven’t been fully realized yet, and won’t really until
the network effect hits. I believe that day draws near. That said, a developer needs to mark
up content in some fashion no matter what, so it’s often pretty convenient that we can
turn to microformats for guidance.

I wondered, too, whether Yahoo had encountered any difficulties using microformats. The
company has adopted several microformats across a broad range of sites, so if anyone was
going to run into issues caused by using microformats, it was going to be Yahoo. When I
asked about that, Nate had the following to say:

There haven’t been too many gotchas. In one case, one of our site’s modular template sys-
tems made it difficult to associate the product name with the review, but these are solv-
able problems. Also, some of the formats aren’t fully cooked yet, so in some cases there
are gaps that I expect will get closed over time. In general, it’s been pretty painless.

In the sections that follow, we’ll take a look at some of Yahoo’s microformat implementa-
tions in action, and learn from the experience gained and efforts made by Yahoo’s devel-
opers. But first, I’d like to emphasize that Yahoo is an early adopter (and in part developer)
of microformats. There is a real danger in early adoption of changing specifications. (I
know this firsthand—years ago I implemented a draft of CSS2 in Style Master, a CSS editor
I develop, and a good deal changed between that draft and the final specification, neces-
sitating a lot of additional work.) In this chapter’s case study, you’ll see some uses of
microformats at Yahoo that aren’t 100% “correct,” but much if not all of that is a conse-
quence of being an early adopter of changing specifications, or being a true pioneer going
into uncharted territory. More than anything, we should be thankful that Yahoo has taken
the risks, and appreciative that the company is willing to share its experiences—I know I
certainly am.

CASE STUDY: YAHOO

255

12

8148Ch12.qxp 3/2/07 5:05 PM Page 255

Upcoming
Acquired by Yahoo in late 2005, Upcoming (http://upcoming.org) hosts details about
tens of thousands of events, and lets users find and track events, and build communities
around events (by letting others know they’ll attend, or by adding comments about an
event). It features all the expected Web 2.0 goodness—an API for creating mashups, event
tagging (by organizers and by others using the rel-tag microformat, no less) and, of course,
RSS for subscribing to an event or a collection of events (e.g., all events tagged “web2.0”,
all events in Vancouver or some other area, etc.). It should come as no surprise that
Upcoming events are marked up using the hCalendar microformat. In fact, Upcoming
doesn’t use hCalendar just on an event’s page, as you would expect, but also when pre-
senting lists of events, like all those with a given tag or in a given place.

In the sections that follow, we’ll look at an example of Upcoming’s use of hCalendar and
explore definition lists in more detail.

hCalendar on Upcoming

In Figure 12-1, I’ve subscribed to all the events tagged “web2.0” (everything about the Web
is now tagged “2.0” it seems—even events for realtors).

Figure 12-1. Search results for Web 2.0 events in Upcoming
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Let’s take a look at the code underneath:

<tr class="vevent">
<td class="even" nowrap="nowrap"><abbr class="dtstart" title=""> å

Dec 04</abbr></td>
<td class="even"><a href="http://upcoming.org/event/118987" å

class="url summary" >Super Three Monday Event! - Intro to Ubertor å

Part One (Vancouver Real Estate)</td>
<td class="even"><abbr class="location" å

title="Ubertor @ Milan's Bistro, 1223 Hamilton Street, å

Vancouver, V6B6A8">Vancouver</abbr></td>
<td class="even" align="center">0</td>
<td class="even" align="center">7</td>

</tr>

As you can see, it’s not quite perfect yet—for example, the start date has a human-friendly
component, but not a machine-readable part, which makes it far less valuable than if that
machine-readable date was there. Upcoming has also interestingly used an abbr design
pattern to give the location details:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

256

8148Ch12.qxp 3/2/07 5:05 PM Page 256

<abbr class="location" title="Ubertor @ Milan's Bistro, 1223 å

Hamilton Street, Vancouver, V6B6A8">Vancouver</abbr>

Keep in mind that the page is a summary, and as such space is at a premium. As a result,
an additional usability benefit in most browsers is that by hovering over the element, the
reader gets the full details of the location. It’s a feature users will need to learn, but if they
use the site frequently, it might start coming in very handy, because if they just want a
brief overview of the event they no longer need to follow the link to the full details page,
saving a click.

If users do want more details, they can follow the link and get a more detailed hCalendar,
as shown in Figure 12-2.

Figure 12-2. Further details on each event are obtained by following the relevant links.

CASE STUDY: YAHOO

257

12

8148Ch12.qxp 3/2/07 5:05 PM Page 257

The hCalendar has this HTML (I’ve elided it a little to make it more readable):

<div id="event" class="vevent">
<h1 class="name summary">Web Directions North</h1>
<div id="eventMain">
<div id="eventMetadata">
<div class="small">When</div>
<div class="date">
<abbr class="dtstart" title="2007-02-07">Wednesday, å

February 7, 2007</abbr> - <abbr class="dtend" title="2007-02
10">Saturday, February 10, 2007</abbr>

</div> <!-- /.date -->
[...]
<div class="venue location vcard">

<div class="small">Where</div>
Marriott å

Renaissance Harbourside (Vancouver)

<div class="address adr">
1133 West Hastings å

Street

Vancouver, <span å

class="region">British Columbia <span å

class="postal-code">V6E 3T3
</div>
<div class="directions">
(Yahoo! Maps,
 å

Google Maps)

</div>

</div> <!-- /.venue -->

<div class="category">
<div class="small">Category</div>
Education

</div>

<div class="description">
<div class="small">Description</div>
We're crossing hemispheres ...

</div>

<div class="url">
<div class="small">Homepage</div> <a å

href="http://north.webdirections.org/"> å

http://north.webdirections.org/
</div>

[...]

</div> <!-- /#eventMain -->

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

258

8148Ch12.qxp 3/2/07 5:05 PM Page 258

One “gotcha” you’ve already seen with dates in hCalendar is evidenced here: the dtend
property has a value of title="2007-02-10", which as you might recall actually means in
effect midnight between February 9 and 10. To get around this nonintuitive aspect of
hCalendar, a finish time with the date such as 2007-02-10T1700-0800 or the date value of
2007-02-11 would correctly specify the machine-readable date.

We can see how the microformat markup has most likely been added to the existing
markup, for example:

<div class="venue location vcard">

and

<div class="address adr">

Commenting is something that many web developers don’t pay enough attention to.
Particularly with many nested elements like the divs here, knowing where one ends can be
difficult to work out, so adding comments like this makes the markup much more read-
able and maintainable:

</div> <!-- /#eventMain -->

There are some little things that might need some fixing up, for example:

<div class="url">
<div class="small">Homepage</div> <a å

href="http://north.webdirections.org/"> å

http://north.webdirections.org/
</div>

Because the div with the class of url contains the element <div class="small">Homepage
</div> as well as the link, the actual value of the URL includes the text Homepage. Perhaps
better markup might be as follows:

<dl>
<dt>Homepage </dt>
<dd> å

http://north.webdirections.org/</dd>
</dl>

In fact, while not strictly associated with microformats, this pattern of a definition list
could replace a number of multiple div constructs. For example, the following:

<div class="category">
<div class="small">Category</div>
Education

</div>

could be more cleanly marked up as follows:

CASE STUDY: YAHOO

259

12

8148Ch12.qxp 3/2/07 5:05 PM Page 259

<dl>
<dt class="small">Category</dt>
<dd class="category">Education</dd>

</dl>

In the original code, the value of the category property is in fact Category Education. But
what we really want is for the value of the category property to simply be Education,
which it is in the reformulation.

Definition lists

If you haven’t used definition lists before (most developers use them rarely if at all), they
are actually more broadly useful than is assumed or their name would imply. According to
the HTML specification, “Definition lists vary only slightly from other types of lists in that
list items consist of two parts: a term and a description.” So definition lists can be used in
not uncommon situations like the example shown in Figure 12-3 (from my website), where
I have labeled text entries.

Figure 12-3. A good use for the noble definition list

This list is marked up as follows in HTML:

<dl class="prod-summary">
<dt>New Version:</dt>
<dd>4.6 released November 2006</dd>
<dt>Platforms:</dt>
<dd>Windows 2000/NT/XP</dd>
<dd>MacOS X 10.3 or higher (Universal for PowerPC and Intel)</dd>
<dt>Cost:</dt>
<dd>$US59.99</dd>
<dt>Demo limit:</dt>
<dd>30 days</dd>

</dl>

As for CSS, Upcoming doesn’t really use the hCalendar markup for styling with CSS. That
would make sense where the HTML has had the microformat markup retrofitted to it.

In the preceding code, the <dt> elements are floated to the left to put the <dt> and
its associated <dd> element on the same line.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

260

8148Ch12.qxp 3/2/07 5:05 PM Page 260

Nate more or less confirmed my speculation in an email when he commented, “Your
hunches about legacy impact were basically spot on.”

Reviews at Yahoo Local
Review sites seem to be the flavor of the month, and as you learned earlier, Yahoo uses
hReview at a couple of its very popular sites.

Yahoo Local embodies the “user-generated content” nature of many recent sites. The idea
is to let users add their opinions and expertise to a site, in order to tap into the “wisdom
of the crowd.” At present, much of this content is still centralized at sites like Cork’d and
Yahoo Local, but as you’ve seen on several occasions, one of the goals of microformats is
to enable decentralized services. By adopting hReview, Yahoo makes it possible for others
to aggregate the reviews they publish much more easily than would otherwise be possible.

In the following sections, we’ll explore Yahoo Local’s use of hReview and some lessons we
can learn from that.

Review example

So what does a review look like at Yahoo Local? Figure 12-4 shows the review page for a
well-liked coffee shop in San Francisco.

Figure 12-4. A review from Yahoo Local
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

Stop for a moment and think of how you would mark this up. What hReview properties are
there? Now, how does Yahoo Local do it? Let’s have a look (I’ve elided the code that is not
directly relevant to us):

<tbody class="hreview">

<tr valign="top"><th colspan="2"><h3><u style="float:right;"><abbr å

style="border-bottom-style: none;" class="dtreviewed" å

title="2005-07-15">July 15, 2005</abbr></u> å

Best cup of coffee in SF</h3><h6 class="reviewer vcard">By å

<a ...>Ericson - See Ericson's å

reviews </h6></th></tr>

CASE STUDY: YAHOO

261

12

8148Ch12.qxp 3/2/07 5:05 PM Page 261

<tr valign="top"><td width="170" nowrap><table class="ylsrevrating">

<tr valign="middle"><th>Overall: </th><td><abbr å

style="border-bottom-style: none;" class="rating" title="5"><img å

src="http://us.i1.yimg.com/us.yimg.com/i/us/ls/gr/ å

read_star_5.gif"alt="5" width="78" height="13"></abbr></td></tr>

<tr valign="middle"><th>Food:</th><td><abbr å

style="border-bottom-style: none;" class="rating" title="5"><img å

src="http://us.i1.yimg.com/us.yimg.com/i/us/sh/karma/ å

ur_bar_4.gif"alt="4" width="79" height="6"></abbr></td></tr>

<tr valign="middle"><th>Ambiance:</th><td><abbr å

style="border-bottom-style: none;" class="rating" title="5"><img å

src="http://us.i1.yimg.com/us.yimg.com/i/us/sh/karma/ å

ur_bar_4.gif"alt="4" width="79" height="6"></abbr></td></tr>

<tr valign="middle"><th>Service:</th><td><abbr å

style="border-bottom-style: none;" class="rating" title="5"><img å

src="http://us.i1.yimg.com/us.yimg.com/i/us/sh/karma/ å

ur_bar_4.gif"alt="4" width="79" height="6"></abbr></td></tr>

<tr valign="middle"><th>Value:</th><td><abbr å

style="border-bottom-style: none;" class="rating" title="5"><img å

src="http://us.i1.yimg.com/us.yimg.com/i/us/sh/karma/ å

ur_bar_4.gif" alt="4" width="79" height="6"></abbr></td></tr> å

</table></td><td? å

width="100%"><p class="ylsratrevfull" id="full_4"><span å

class="description">I hadn't realized how good coffee can be å

until Ritual opened recently. ...<a ...>Full Review<script> å

revMin("4");</script></p>...</td></tr>

</tbody>

The first thing to note is that the review is a table. While the knee-jerk response might be
to say, “Hey, that’s not tabular data!”, I think it is fair to argue that it is. Whether I’d rec-
ommend it be marked up that way is a separate matter—some data is clearly of a tabular
nature, and tables are ideal for marking them up, but other data is less clearly so. But if we
delve more deeply, we’ll find that there are in fact two tables at play.

Inside each review is a table of the ratings. To me, this is an excellent use of tabular markup.
We have five rows of related data—Overall, Food, Ambience, Service, and Value—and for
each of these, a rating.

What about the other table? Well, from the example I’ve pulled out here, you might think
that the review itself is in a table. But in fact it’s in a table body element (<tbody>).

If you’ve used <tbody> elements, you might assume that every table has at most one
<tbody>, but a table may have any number of <tbody> elements. If we zoom out just a
fraction, we find the following structure for the collection of reviews:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

262

8148Ch12.qxp 3/2/07 5:05 PM Page 262

<table ... class="ylsreviewrow">
<tbody class="hreview">
...

</tbody>

<tbody class="hreview">
...

</tbody>

<tbody class="hreview">
...

</tbody>

</table>

Each review is not in a table to itself; rather, it’s in a <tbody> for the set of reviews, which
is in a table. We can think of the set of reviews as a one-dimensional table of reviews.
There are certainly other ways this set of reviews could be marked up, but of course that’s
one of the beauties of HTML, and indeed microformats.

It could be a list—after all, a one-dimensional table is in many ways a list. Or, each review
could be contained within a div. I suspect—though it’s purely speculation on my part—that
the choice of markup is a complex one involving legacy solutions. For example, the reviews
page allows sorting of the reviews by newest, oldest, most helpful, and so on, and there
may be constraints imposed by the server-side application providing this functionality.

None of my commentary here should be construed as criticism, by the way. Rather, I want
to demonstrate that while sometimes we have the luxury of the “ideal” or (arguably) “per-
fect” solution, in reality, we are very often constrained by factors such as the following,
which make solving a problem much harder:

Time

Resources

Legacy systems

I think Yahoo Local has done an admirable job of incorporating microformats into a complex
existing service and using HTML appropriately despite considerable constraints.

Something specific worth noting about Yahoo Local’s use of hReview is that multiple rat-
ings are used—not just an overall rating, but individual ratings for specific aspects of the
experience, like ambience and service. And Yahoo has marked these up using the abbr
design pattern, just as Cork’d marks up ratings. In both cases, rather than a textual, numer-
ical value, the reviews use a graphical indicator—stars in the case of Cork’d and bars in the

Sometimes as developers we are fortunate that we can build a brand-new system from
the ground up. But frequently we’ll be maintaining and upgrading existing systems.
That’s when our job often becomes much more difficult.

CASE STUDY: YAHOO

263

12

8148Ch12.qxp 3/2/07 5:05 PM Page 263

case of Yahoo Local. The use of a table in this case actually improves accessibility, as screen
readers can read out the <th> and <td> elements.

Styling Yahoo Local reviews

One indicator that the hReview microformatting on Yahoo Local has been retrofitted is
that little if any of the page’s styling is done using the hReview microformat. Again, this
demonstrates the flexibility of microformats—they can often be added to even very com-
plex, longstanding applications, without any significant impact on the existing code. Here’s
something you might have noticed in the code from the previous section:

<abbr style="border-bottom-style: none;" class="rating" title="5">

Why this inline style? Some browsers add dotted underlining via the CSS border property
to the <abbr> element as part of their default style sheets. This inline CSS overrides that
styling. Ideally, rather than add the inline style to each <abbr> element, we’d simply have a
CSS rule:

abbr {border-bottom-style: none}

In fact, when I raised this with Nate Koechley, he mentioned that this statement is part of
the YUI Reset CSS file (see http://developer.yahoo.com/yui/reset), which “normalizes
the default rendering of all HTML elements, for example it sets margin, padding, and bor-
der to 0, font sizes to [a] default, italic and bold styles to normal, and list-style to none.”

However, at present, Yahoo Local doesn’t use Reset CSS, and I imagine there are legacy or
perhaps internal procedural implications that make simply adding the inline style a much
easier and possibly shorter-term solution.

hReviews at Yahoo Tech
Let’s compare Yahoo Local’s reviews with those over at Yahoo Tech. Interestingly, Yahoo
Tech uses hReview for the summary page of reviews of a particular product, but not for
the full review page by an individual reviewer.

In the following sections, we’ll see how Yahoo Tech uses hReview, and how this differs
from Yahoo Local.

Review example

Figure 12-5 shows what a Yahoo Tech review looks like in a browser.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

264

8148Ch12.qxp 3/2/07 5:05 PM Page 264

Figure 12-5. A review from Yahoo Tech
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc. YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

In many ways it’s the same as (or similar to) a review at Yahoo Local. But let’s take a look at
the HTML (again, I’ve elided some code to get to the most relevant parts for our purposes):

<div class="arating hreview">
<div class="hd">
<h3 class="summary"><a ...</h3>
<p class="metadetails ">By <a href="..." ... class="reviewer å

fn"> reviewer@obfuscated.com ... - å

11/27/06<a href="#prodname" class="include å

microformatdetail"></p>
</div>

<div class="bd">
<div class="ratreviewsummary">
<ul class="ratingslist">
<li class="overall stars10 ">Overall: <span å

title="reviewer@obfuscated.com gave this product 5 out å

of 5 stars for Overall quality" class="rating"> å

<em class ="value">5/<em class="best">5

<li class="bars10">Features: <span å

title="reviewer@obfuscated.com gave this product 5 out å

of 5 stars for Features" class="rating">5/5

<li class="bars10">Quality: <span å

title="reviewer@obfuscated.com gave this product 5 out å

of 5 stars for Quality" class="rating">5/5

CASE STUDY: YAHOO

265

12

8148Ch12.qxp 3/2/07 5:05 PM Page 265

<li class="bars10">Support: <span å

title="reviewer@obfuscated.com gave this product 5 out å

of 5 stars for Support" class="rating">5/5

<li class="bars10">Value: <span å

title="reviewer@obfuscated.com gave this product 5 out å

of 5 stars for Value" class="rating">5/5

<dl class="procons description">
<dt>Pros:</dt>
<dd>Good size, good grip, great pics, super in low light!</dd>
</dl>
<dl class="procons description ">
<dt>Cons:</dt>
<dd>Funny little cover over USB, video out compartment.</dd>

</dl>
</div>
<div class="ytuserreviewtext">
<div class="ytReviewContainer">
<p class="description item fn">The A620 is my forth digital å

camera and far and away the best. I have a Canon S50, å

great but hard to handle-it's </p>
</div>

</div>
</div>

</div>

This is much closer to the div- and class-based markup we might usually expect.
Unordered lists for ratings and definition lists for marking up pros and cons are used as
well.

But there are some little issues that need fixing. Again, I don’t mean to be critical—many
of these things are still evolving, and indeed it’s most likely that this code was imple-
mented before hReview got to its current state.

First, while the overall rating is correctly marked up, as follows:

<li class="overall stars10 ">Overall: <span å

title="reviewer@obfuscated.com gave this product 5 out of 5 å

stars for Overall quality" class="rating"><em class="value">5 å

/<em class="best">5

The individual ratings are not quite right. Instead of this:

<li class="bars10">Features: <span å

title="reviewer@obfuscated.com gave this product 5 out of 5 å

stars for Features" class="rating">5/5

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

266

8148Ch12.qxp 3/2/07 5:05 PM Page 266

where the value is 5/5, but should be a numerical value to a single decimal place, we could
use the same pattern as for the overall ratings like so:

<li class="bars10">Features: <span å

title="reviewer@obfuscated.com gave this product 5 out of 5 å

stars for Features" class="rating"><em class="value">5 å

/<em class="best">5

Or, because the default “best” is 5, we could simply use the following:

<li class="bars10">Features: <span å

title="reviewer@obfuscated.com gave this product 5 out of 5 å

stars for Features" class="rating">5/5

Another important thing to note is that the FN for an item must appear inside the element
for the item, not as a class value on the same element that has item as a class value.

Here, we'll need to make a small change, because for now, the fn for the item is on the
item element, not on a descendent element:

<p class="description item fn">The A620 is my forth digital camera å

and far and away the best. I have a Canon S50, great but hard to å

handle-it's ...</p>

Also, while it is not an invalid hReview to have both a description and item for the same
element (i.e., “The A620 is my fourth digital camera . . .”), this is not really the item we are
reviewing. So, here it would be best to remove the item and fn class values from the
description paragraph:

<p class="description">The A620 is my forth digital camera and å

far and away the best. I have a Canon S50, great but hard to å

handle-it's ...</p>

But we still need an item for the review. Remember, an item property is required in
hReview. There is more than one review on this page of the same item, so that might bring
to mind the include design pattern discussed in Chapter 9. We can use this design pattern
to include details from one microformat to another, essentially when the microformats
represent the same thing.

The first step is to uniquely identify the microformatted element we want to include a
property or properties from. In this case, we’ll have to look outside the hReview element
itself for that element. If we look at the page itself, we find the following HTML:

<strong class="item fn" id="prodname">Canon PowerShot A620

We still have the problem that the fn for the item appears as a class on the element for the
item, rather than on a descendent element for the item element. So, we change it as follows:

<strong class="item" id="prodname">Canon PowerShot å

A620

CASE STUDY: YAHOO

267

12

8148Ch12.qxp 3/2/07 5:05 PM Page 267

We give the item a unique identifier, using the id. Now we can return to our individual
review, and include this in there:

<p class="description">The <a href="#prodname" å

class="include">A620 is my forth digital camera and å

far and away the best. I have a Canon S50, great but hard to å

handle-it's ...</p>

If we look back to the top of the review, we find something quite similar to this:

A couple of other little things need attention. For example, a reviewer, if included, must be
an hCard:

By reviewer@obfuscated.com

Here, we need to add a class value of vcard and then make the fn on a descendent element
of that element (remember the properties of a compound microformat are descendents of
the root element). We end up with something like this:

By å

reviewer@obfuscated.com

Styling Yahoo Tech reviews

As with Yahoo Local, the Yahoo Tech site doesn’t use the microformat markup for styling
with CSS. Once more, I suspect it’s because the markup has had microformats retrofitted
onto it, so styling was already well and truly in place with the existing markup.

Is it worth it?
Having seen how Yahoo is adopting microformats in some pretty significant ways, a ques-
tion comes to mind: is it worth it? I next asked Nate whether he felt adopting microformats
has been worth the effort.

Anything that makes the Web a better place feels like the right thing to do. When it’s as
technically low-impact as microformats, why not? Each decision needs to be considered
for each new context, of course, but implementing microformats seems like an easy win.
That our efforts might positively impact the overall evolution of the Web is a bonus.

Finally, I asked Nate if he could tell us where Yahoo might go next with microformats.

I can’t talk about future plans, but I will say that many people here are pretty excited
about microformats, and some are actively involved with microformats.org. I think we’ve
already demonstrated our willingness to deploy them, and I think it’s safe to expect more
of the same from Yahoo!.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

268

8148Ch12.qxp 3/2/07 5:05 PM Page 268

Summary
This case study on Yahoo and the previous one on Cork’d demonstrate the versatility of
microformats. New projects like Cork’d can take advantage of microformats from the
ground up, not just for markup, but for styling with CSS as well. Existing projects—even
large, sophisticated applications like those presented in this chapter from Yahoo—can be
adapted to use microformats with little impact on the existing code base, HTML, and CSS.

I hope that seeing how such a broad range of industry leaders have adopted microformats
and benefited from doing so will reassure you that microformats aren’t just great bleed-
ing-edge concepts, but a practical, useful, and increasingly commonly used technology. I
hope, too, that these case studies inspire you to start using microformats in your existing
and new projects.

In the next and final chapter, you’ll see how new microformats come into being. Not only
is this of interest if you want to be involved in the development of new microformats, but
also the process that has developed is applicable if you want to standardize internal
markup conventions for your company or develop specific microformat-like solutions to
common development problems you face.

CASE STUDY: YAHOO

269

12

8148Ch12.qxp 3/2/07 5:05 PM Page 269

8148Ch12.qxp 3/2/07 5:05 PM Page 270

PART FOUR DEVELOPING
MICROFORMATS

Throughout this book, you’ve learned about the major microformats, how they work,
and what they enable. You've seen who is publishing microformats, who is building
services around published microformat content, and the kinds of tools available to
help make developing microformatted content and services easier. But you've haven’t
yet examined how they come into being, which is what you’ll turn to in this part of the
book.

8148Ch13.qxp 3/2/07 5:06 PM Page 271

8148Ch13.qxp 3/2/07 5:06 PM Page 272

13 THE PROCESS OF DEVELOPING
MICROFORMATS

8148Ch13.qxp 3/2/07 5:06 PM Page 273

Surprisingly, one of the most common questions I get when speaking about microformats
(which for my sins I do quite a bit) is, “How can I develop a new microformat?” or at the
very least “How are microformats developed?”

I’ve stated a number of times that microformats are more than just a technology; rather,
they are an approach to solving the problem of bringing richer, more consistent semantic
markup to commonly found kinds of data on the Web. An important part of this approach
is the principles underpinning microformats, which you’ve seen in action throughout the
book, but so too is the process of developing a new format, a process that has developed
over the period that microformats have matured.

The process is quite different, much more open, and more bottom-up when compared
with the top-down, “closed-shop” approach by which “standards” are typically developed.
Yet it strives to avoid the anarchy of the free-for-all browser-driven “development” of
HTML in the early part of the 1990s.

In this chapter, we’ll take a look at the process of developing microformats and the bene-
fits it brings. While it’s unlikely that a great many of the readers of this book will develop
their own microformats soon, the principles and processes are useful generally for the
internal standardization of development practices, patterns, coding conventions, and so
on. And if you do ever feel the interest or need to get involved with the process of devel-
oping a new microformat, this chapter will give you a good starting point and inform you
of the dos and don’ts.

We’ll start by reviewing the microformat principles in the next section, and then move on
to cover determining the problem a microformat might solve, researching the problem
thoroughly, documenting the process and presenting examples, and developing a draft
schema.

Microformat principles revisited
Let’s very quickly revisit the principles underpinning microformats, which we first exam-
ined in Chapter 1. Microformats

Solve a specific problem

Start as simply as possible

Are designed for humans first, machines second

Reuse building blocks from widely adopted standards

Are modular and embeddable

Enable and encourage decentralized development, content, and services

Our process should enable and encourage these principles.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

274

8148Ch13.qxp 3/2/07 5:06 PM Page 274

Determining the problem
The first step in developing a microformat is to establish whether there really is a problem
to be solved. Microformats deal in real-world problems, not hypothetical or theoretical
“what ifs” or “Wouldn’t it be great if . . .?” kinds of problems.

If you find yourself thinking, “We tend to mark up this kind of information over and over
again at our site,” then standardizing your markup is probably an excellent idea. But the
problem or need you are facing may not extend widely beyond your particular circum-
stances—it’s only then that a particular problem might be amenable to a microformat.

The question is how to determine whether that problem is more generalizable. Because
the microformats approach is community oriented and open, it’s best to go directly to the
microformats community, in particular the uf-discuss mailing list (http://microformats.
org/mailman/listinfo/microformats-discuss), to get some feedback from people with
considerable experience in developing microformats on whether you have a suitable can-
didate for a microformat. It also makes sense to search the Web for discussions elsewhere
about similar problems.

For example, an area I recently did some research on, after discussions with a number of
people who showed interest in the problem, is tag clouds. Tag clouds, first made popular
by web applications like Flickr, use the relative text size of tags displayed together to indi-
cate how popular these tags are with respect to one another. For example, Figure 13-1
shows Flickr’s tag cloud.

Figure 13-1. An example tag cloud from Flickr
Reproduced with permission of Yahoo! Inc. © 2007 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

It’s clear from a brief inspection that tag clouds are very widely used by sites and web
applications, so this indicates that it is a problem for which the microformats approach
might be valuable. A subsequent search of the Web finds that there doesn’t appear to be
any discussion of how to best standardize the markup of tag clouds, which despite their
very common appearance across many sites are marked up differently at almost every site.

So here I have identified a problem and determined it is one for which there is as yet no
reasonable solution (if there is a solution, there’s no need for a microformat). And after
further investigation, it appears that the problem is a candidate for a microformat.

THE PROCESS OF DEVELOPING MICROFORMATS

275

13

8148Ch13.qxp 3/2/07 5:06 PM Page 275

Researching (or “paving the cowpaths”)
The goal of microformats has been described as “paving the cowpaths”—that is, microfor-
mats aim to codify current behavior, rather than stipulate new behavior. You’ve no doubt
seen a park where the natural path is across the grass, rather than along the paved area.
Consequently, no one uses the “proper” path, instead deepening the natural path, and typ-
ically killing the grass in the process. There might even be a “Keep Off the Grass” sign,
which of course is pointless, because people have made it clear precisely where they want
to walk. Like me, you’ve probably wondered why the path wasn’t actually designed where
people wanted to go in the first place.

Microformats aim to avoid precisely this problem of putting paths where they aren’t
needed, by watching what people actually do. And we do that, as part of the process of
developing a microformat, by researching how developers currently solve the problem
under consideration.

We’ve seen this in action with the hReview microformat, where the final schema of
hReview was a minimal subset of the common properties of a number of different widely
used web-based review formats. It’s recommended that this research be conducted in
public—by creating a page on the microformats wiki (but only after the earlier steps are
followed; one of the key aspects of this process is that we don’t just start dozens or hun-
dreds of ultimately unfinished microformats).

What sort of information should the research try to document? According to the process
outlined on the “So you wanna develop a new microformat?” page on microformats.org
(see http://microformats.org/wiki/process), it should be “real-world sites and pages
which are publishing the kind of data you wish to structure with a microformat.” For
example, for the tag cloud research, the following were documented for several sites and
web applications:

What tag clouds model or represent (e.g., most popular tags over time, most pop-
ular tags in the last day or week)

Screenshots of what tag clouds look like

The coding conventions and implied schemas these tag clouds adopted, with code
examples

Analysis of these conventions and schemas (e.g., strengths and weaknesses of the
particular design decisions of each of the various implementations)

This tag cloud–related information can be found on the microformats
wiki: http://microformats.org/wiki/tagcloud-examples.

The microformats wiki is located at http://microformats.org/wiki, and is, like most
wikis, open. To edit or add pages requires only an account, which anyone may create.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

276

8148Ch13.qxp 3/2/07 5:06 PM Page 276

Are we ready to propose a microformat now? In fact, we aren’t sure we need one yet.
We’ve seen that HTML contains elements and attributes that are still not fully used as
designed, so the next questions we ask are as follows:

Is there an HTML element or attribute that could solve our problem, without the
need for the complexities of a microformat?

If not, how about an HTML compound? (You saw in Chapter 3 how using two or
more HTML elements together can give you a much richer semantic vocabulary.)

Only if the answer to both of these questions is no should you really start thinking about
proposing a new microformat.

Reusing others’ work

Isaac Newton, one of the great minds and civilization-changing forces in history, remarked
of his predecessor Descartes, “If I have seen a little further it is by standing on the shoul-
ders of Giants.”

Sometimes we overlook the work that lays the foundations for a breakthrough. In the case
of microformats, we look expressly for those giants’ shoulders to stand on. After all, it’s
arrogant to assume we are the first to encounter a problem. As we saw with hCard and
hCalendar, often there exists “well established, interoperably implemented standards we
can look at which address [our] problem”1—and at this stage, that’s precisely what we
want to see if we can find. Very smart, hardworking people may have spent a lot of effort
solving the problem we face. Reusing that work has a number of benefits:

It saves a lot of time and effort on our part.

It will almost certainly be a better solution than one we can develop in a reasonable
time frame.

By adopting an existing schema, we get interoperability with the services and appli-
cations that have already adopted that schema. For example, with hCalendar, we
get integration with iCal subscriptions for no extra effort simply by using the
hCalendar markup, which is based on the iCalendar schema.

Starting from scratch

Sometimes, as we saw with hReview, there is no existing schema for us to rely on. Or, as in the
case of the long-standing work by the microformats community on citations, there may be a
number of well-established, effectively competing standards. Both situations present more
complex challenges than taking an existing widely adopted schema and mapping it onto HTML.

There are no hard-and-fast rules as to how this aspect of the process is undertaken, but
now, whether or not there is an established format, it’s time to develop a draft proposal
and iteratively improve that proposal through discussion and feedback from the microfor-
mats community.

THE PROCESS OF DEVELOPING MICROFORMATS

277

13

1. See http://microformats.org/wiki/process.

8148Ch13.qxp 3/2/07 5:06 PM Page 277

Documenting the process
As part of the process of developing a microformat, creating several pages at the wiki is
recommended, based on the experience of developing microformats so far.

Examples page

First is an examples page, which brings together real-world examples from the Web of
content that could be marked up using the proposed microformat. The examples page
should also document the implied schemas in the researched pages’ markup. Here’s an
example from the tag cloud examples page at the wiki—the hot tags code at Flickr looks
like this:

<table id="Recently">
<tr>
<td>
<p>In the last 24 hours

pics2006,
ubicomp2006,
...

</p>
</td>
<td>
<p>Over the last week

itunes7,
 Â
futureofwebappssf06,

Flickrs main tagcloud looks like this in HTML
<p id="TagCloud">
06
 å

amsterdam

...

Notes page

My notes on the Flickr tag cloud implementation are as follows:2

1. The hot tags are simply cells in a table with the id “recently”.

2. The tag cloud proper is a p with the id of “tagcloud”—which would allow only a
single tag cloud per page.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

278

2. See http://microformats.org/wiki/tagcloud-examples.

8148Ch13.qxp 3/2/07 5:06 PM Page 278

3. The links are simply links—despite this being a list of words, ordered alphabetically.

4. The rank or weight or popularity of the tag is visually created using inline style and
font-size.

5. There are at least a dozen different levels of popularity—difficult to determine
without tedious work, as these are reflected in font-sizes in pixels.

This much simpler example comes from the hReview examples page, which documents the
schema of a Yahoo Local review:

Yahoo Local

http://local.yahoo.com

author (review author)

publication date

title

description

rating

overall and by category [1–5]

positive summary

negative summary

Documenting these examples helps ensure any microformat we propose is “designed for
humans first, machines second,” in keeping with the third microformats principle.

Page for documenting existing formats and schemas

Next, where the example and notes pages exist, we need a page that documents the cur-
rent, widely used data formats and standards “that attempt to or have attempted to solve
the problem.”

In some cases, like that of the citation format, there may be several; in other cases, like tag
clouds, there may be none at all. This type of page helps ensure we adhere to the principle
“reuse building blocks from widely adopted standards.”

Brainstorming page

Now, it’s time to start developing a proposal, referred to as the “brainstorming” phase and
typically documented on a brainstorming page—for example, hResume-brainstorming
(http://microformats.org/wiki/resume-brainstorming). More on developing a pro-
posal in the next section.

THE PROCESS OF DEVELOPING MICROFORMATS

279

13

8148Ch13.qxp 3/2/07 5:06 PM Page 279

Developing a draft schema
Based on the schema of real-world cases or existing standards, a draft schema is then
developed. As we saw with hReview, this will typically be a subset of the common set of all
properties of the different schema uncovered by the research phase. The goal is not to
solve all possible problems, but rather to solve the minimal set of commonly occurring
problems and needs developers have. I referred to this earlier as the 80/20 rule. Typically,
a small part (20%) of a schema or other standard will meet the significant majority of most
users’ needs. In developing a microformat, we are aiming to hit this sweet spot.

An example from the real world touched on previously in this book can be found with
iCalendar. The iCalendar format includes all kinds of complex properties to support non-
Gregorian calendars, events recurring according to all kinds of complex and subtle rules,
invitations to events, and so on. Not only does hCalendar not really concern itself with
most of these aspects of iCalendar, but neither do most applications that actually support
iCalendar! In fact, the IETF is developing a subset of iCalendar, iCalendar Basic, that covers
the small part of iCalendar that is widely used. It’s such lessons as these that the microfor-
mats community wishes to learn, in order to avoid a lot of effort developing features that
will never be used widely, if at all.

There are several important aspects to this phase:

What other microformats might play a role within this microformat? We’ve seen
rel-tag, hCard, and even hCalendar reused in other microformats, for instance.

What names will the properties or “fields” of this microformat take? We’ve seen
that formats like vCard, as well as existing microformats (e.g., summary from
hCalendar is reused a number of times), provide a source for these names.

What name will the microformat itself take?

As this process continues, a straw man proposal (i.e., a proposal that is put up largely to
discuss its shortcomings and iteratively develop more robust proposals) will hopefully
evolve to a state where the consensus is that it is ready to be considered as a draft pro-
posal. At this stage, this proposal is documented on a separate draft proposal page.

So how does a draft become a specification? As with other steps in the process, it is essen-
tially by consensus. One criterion is that a specification “should be stable so that develop-
ers can pick it up and write to it.”3 Among other things, actual implementations of the
specification are considered an important aspect in terms of determining whether it is sta-
ble. The IETF, which we have seen in the source of standards such as vCard and iCalendar,
refers to this approach as “rough consensus and running code.”

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

280

3. See http://microformats.org/wiki/process.

8148Ch13.qxp 3/2/07 5:06 PM Page 280

Summary
It may seem that the process of developing microformats is somewhat chaotic, or at least
unstructured. No matter how well documented or structured a theoretical process is, the
reality is typically less so. As Otto von Bismarck, the Minister-President of Prussia and a
great practitioner of realpolitik, famously said, “The less people know about how sausages
and laws are made, the better they’ll sleep at night.” As with a number of aspects of
microformats, there is a pragmatism—indeed, an element of realpolitik—in their develop-
ment. The solution to complex problems often involves compromise, at the very least.

The process of developing microformats has evolved and is still evolving. But the very fact
that this evolution is documented by its practitioners means that hopefully it is also
improving, and we continue to learn the lessons of others who have developed microfor-
mats, just as we hope to stand on the shoulders of giants when it comes to other aspects
of microformats.

Microformats are young—at the time of this writing, they’re not much more than a couple
of years old. But while it’s a decade or more older, the Web too is young, in the context of
hypertext and hypermedia systems and networks, let alone publishing media. But despite
this youth, one of the signs of an emerging maturity among developers for the Web, which
is exemplified by the microformats community, is that the brash “everything is new, and
you just don’t get it” mentality of earlier years (which applied to design and development
practices, as well as business models—and we saw how well that turned out a few years
back) is being replaced with the recognition that there is much to learn from those who
came before us—both on and off the Web—again, in terms of design, development prac-
tices, business development, and more.

Where the Web takes us in 5 or 50 years is impossible to say, as I think the last 5 or so years
have demonstrated. But I have little doubt that the principles microformats embody and
help enable, of openness, interoperability, iterative development, and distributed and
decentralized data and services, will help shape that future.

THE PROCESS OF DEVELOPING MICROFORMATS

281

13

8148Ch13.qxp 3/2/07 5:06 PM Page 281

8148Ch13.qxp 3/2/07 5:06 PM Page 282

PART FIVE APPENDIXES

8148AppA.qxp 2/28/07 5:40 PM Page 283

8148AppA.qxp 2/28/07 5:41 PM Page 284

APPENDIX A MICROFORMAT
SPECIFICATION REFERENCE

8148AppA.qxp 2/28/07 5:41 PM Page 285

This appendix details all of the microformats covered in this book. For each format, the
authors or editors, a description, how the microformat is best used, the schema, and any
restrictions or important things to keep in mind when using the microformat are noted.
Each section also features one or more detailed examples for each microformat and points
to publishing tools available to help developers.

rel-license
rel-license uses the rel attribute on a hyperlink element () to indicate the
license or licenses for the current document. The document at the destination of a rel-
license link is the license or one of the licenses for this document.

Where a rel-license is found inside an hReview, the license is for the review, rather than
the page itself. This enables aggregating reviews from multiple sources that have different
license conditions.

More information: http://microformats.org/wiki/rel-license

Status: Specification

Author: Tantek Çelik (http://tantek.com)

Usage

rel-license uses standard hyperlink elements (). The addition of a rel="license"
attribute indicates that the destination document is a license for this document.

If a rel-license is embedded in an hReview, the license is the license for the review, not the
document.

Examples

Here are some examples of using rel-license:

 å

Creative Commons Attribution 2.5 License<a>

 å

GNU General Public License<a>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

286

8148AppA.qxp 2/28/07 5:41 PM Page 286

Tools

Some tools that can help you create rel-license content are as follows:

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf):
Created by Chris Casciano, the pnh_mf plug-in provides a simple way for adding
various microformats, including rel-license, to Textpattern-based sites.

Dreamweaver Microformats Extension (www.webstandards.org/action/dwtf/
microformats): This suite, created by Drew McLellan and available from the Web
Standards Project, provides tools for adding various microformats, including rel-
license, to your HTML.

Services

A couple of services using rel-license are as follows:

Yahoo Creative Commons Search (http://search.yahoo.com/cc): This service
enables searching for content based on its use license. The search uses rel-license
to find content matching certain license criteria, such as content that may be used
for commercial purposes.

Google Usage Rights Search (www.google.com/advanced_search?): This feature of
Google’s Advanced Search allows you to specify usage rights as a filter for search-
ing. It uses rel-license to facilitate this searching.

rel-tag
rel-tag uses a rel value of tag on a hyperlink element to “tag” or “label” the page, blog
post, or other major part of the page it appears in. When a rel-tag link appears inside
another microformat (e.g., in hAtom) it applies to that microformat and not the page as a
whole.

By adding a rel-tag link to a page (or other microformat), you make an assertion about
what this page or part of a page is about.

More information: http://microformats.org/wiki/rel-tag

Status: Specification

Authors: Tantek Çelik (http://tantek.com) and Kevin Marks (http://epeus.
blogspot.com)

APPENDIX A

287

A

8148AppA.qxp 2/28/07 5:41 PM Page 287

Usage

A rel-tag is a standard hyperlink element, with a rel value of (or including) tag. The href
value points to an entry in a tag space. A tag space is a set of URLs of the form
http://tagspaceURL/tagvalue. For example, http://wikipedia.org/wiki/RSS uses
Wikipedia as a tag space, and the value of this tag is RSS. Also, http://technorati.com/
tag/RSS uses Technorati as a tag space, but the value of this tag is identical to the previous
one—RSS.

The actual value of the tag is the final segment of the url value, after the last /, meaning
that the value of a tag is not dependent on the tag space being pointed to. Should the last
character be a slash (/), then this final slash is ignored when determining the tag value. A
resource should exist at the URL.

Technorati (http://technorati.com/tag) and Wikipedia (http://wikipedia.org/wiki)
are common tag spaces, but anyone may implement his or her own tag space.

Examples

microformats tags
the page or major part of the page it is in as being about microformats.

cucina tags
the page or major part of the page it is in as being about cooking. This demonstrates how
tagging works with internationalization—the human-friendly language here is Italian, the
language of the page in which it appears, but the tag value is cooking, meaning that we can
aggregate pages based on their tags despite being in different languages.

Of course, there is no reason why we could not use markup like this: cucina. But in
this case, the value of the rel-tag is cucina. There is no requirement that tag values be
English-language words, but by using the English translation of a tag value, pages can be
aggregated on the basis of their content, despite their human language.

Tools

Some tools that can help you create rel-tag content are as follows.

For WordPress:

Simpletags: www.broobles.com/scripts/simpletags/

Bunny’s Technorati Tags: http://dev.wp-plugins.org/wiki/
BunnysTechnoratiTags

For Textpattern:

pnh_mf: http://placenamehere.com/TXP/pnh_mf/

tru_tags: www.truist.com/blog/493/trutags-a-tagging-plugin-for-textpattern

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

288

8148AppA.qxp 2/28/07 5:41 PM Page 288

For Bloxsom:

Tagging plug-in from Axel Beckert: http://noone.org/blog/tags/Tagging

For Dreamweaver:

Dreamweaver Microformats Extension: www.webstandards.org/action/dwtf/
microformats

Services

A number of services using rel-tag including the following.

Tag search:

Technorati Tag search (www.technorati.com/ping): Technorati Tag search indexes
tagged blog posts and other content. Use Ping to ensure Technorati indexes your
rel-tagged content.

IceRocket Tags (http://blogs.icerocket.com/tag): Blog search engine IceRocket
also allows for tag-based searching.

Debugging:

rel-lint tool (http://tools.microformatic.com/help/xhtml/rel-lint): You can
“validate” your rel-tags using this service from Drew McLellan.

Operator (http://labs.mozilla.com/2006/12/introducing-operator/): Created
by Michael Kaply, Operator is an extension for Firefox 2 that extracts tag (and other
microformatted) data from a page and enables various actions to be performed on
it. In debug mode it shows errors to help debug problems.

Publishers

The following publishers use rel-tag for user tags:

ODEO: http://odeo.com

Eventful: http://evdb.com

LiveJournal: http://news.livejournal.com/86492.html?thread=24881884

rel-nofollow
rel-nofollow uses a rel value of no-follow for links to external resources to indicate that
search engines should not use the link to give additional PageRank to the linked page.
Search engines such as Google typically use the number and authority of inbound links to
a page to rank its place in search results.

APPENDIX A

289

A

8148AppA.qxp 2/28/07 5:41 PM Page 289

rel-nofollow, introduced by Google in an attempt to address the issue of link spam, partic-
ularly in blog comments, is not without controversy. A thorough criticism can be found at
www.nonofollow.net.

More information: http://microformats.org/wiki/rel-nofollow

Status: Specification

Editors: Tantek Çelik (http://tantek.com) and Kevin Marks (http://epeus.
blogspot.com)

Usage

To use rel-nofollow, add a rel value of nofollow to links.

Example

To link to a page while indicating to search engines that the link should not add to the
linked page’s PageRank, use the following form:

Style Master

Tools

Many blogging systems automatically add rel="nofollow" to links in comments or make
this feature available through plug-ins or other extension mechanisms.

WordPress 1.5 and higher automatically add nofollow to user-submitted comment
links. There are plug-ins to disable this feature, including dofollow (http://wp-
plugins.net/plugin/sem-dofollow) and Follow URL (http://wp-plugins.net/
?filter=follow+url).

Moveable Type and Textpattern both require a plug-in to enable rel-nofollow on
user-submitted comments.

Services

Recent research indicates that

Google follows a link with the rel value of nofollow but does not index the linked
page.

MSN does not follow a link with rel-nofollow, nor does it index the page linked.

Yahoo both follows a link with rel-nofollow and indexes the page linked.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

290

8148AppA.qxp 2/28/07 5:41 PM Page 290

VoteLinks
Whereas rel-nofollow allows a publisher to withhold PageRank from a linked page,
VoteLinks enables a publisher to explicitly endorse, vote against, or abstain from voting for
the resource linked to. The specification leaves open the issue of whether the vote per-
tains to the page linked to, or what the page linked to represents.

More information: http://microformats.org/wiki/votelinks

Status: Specification

Authors: Tantek Çelik (http://tantek.com) and Kevin Marks (http://epeus.
blogspot.com)

Usage

VoteLinks uses the rev attribute of a link, rather than the rel attribute. The rev attribute
describes the relationship between the document containing the link and the linked doc-
ument. Earlier versions of VoteLinks used the rel attribute (which describes the relation-
ship between the linked document and the document containing the link), but this is
logically incorrect and is now deprecated.

The rev attribute can take one of three values with VoteLinks:

vote-for

vote-abstain

vote-against

Examples

To vote for a linked resource, use a link like this:

Style Master

To express indifference or abstain from voting, use a link like this:

Style Master

To vote against a linked resource, use a link like this:

Style Master

Tools and services

At present there is not a significant amount of adoption of VoteLinks in tools or services.

APPENDIX A

291

A

8148AppA.qxp 2/28/07 5:41 PM Page 291

XHTML Friends Network (XFN)
XFN enables publishers to encode in HTML, XHTML, or XML markup for common profes-
sional and personal relationships, by means of the link element and the rel attribute.

More information: www.gmpg.org/xfn

Status: Specification version 1.1

Authors: Tantek Çelik (http://tantek.com), Matthew Mullenweg (http://
photomatt.net), and Eric Meyer (http://meyerweb.com)

Usage

XFN uses a set of possible values for the rel attribute. These are grouped into seven cate-
gories. Some of these values are mutually exclusive. The designations from the XFN speci-
fication are as follows:

Friendship

Friend: Someone you are a friend to. (I have a feeling the developers of XFN
kept this one vague, as what constitutes a “friend” will vary perhaps significantly
from person to person.)

Acquaintance: Someone you have exchanged greetings with and not much (if
anything) more—maybe a short conversation or two.

Contact: Someone you know how to get in touch with.

Physical

Met: Someone you have actually met in person.

Professional

Co-worker: Someone you work with or who works at the same organization as
you.

Colleague: Someone in the your same field of study/activity.

Geographical

Co-resident: Someone you share a street address with.

Neighbor: Someone who lives nearby, perhaps only at an adjacent street
address or doorway. (Like “friend,” “neighbor” is a more fluid concept, varying
from context to context.)

Family

Child: Your genetic offspring, or someone you have adopted and take care of.

Parent: Your biological (or adopted) mother or father.

Sibling: Someone you share a parent with.

Spouse: Someone you are married to.

Kin: A relative, or someone you consider part of your extended family who
doesn’t fit into any of the preceding criteria.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

292

8148AppA.qxp 2/28/07 5:41 PM Page 292

Romantic

Muse: Someone who brings you inspiration.

Crush: Someone you have a crush on.

Date: Someone you are dating.

Sweetheart: Someone with whom you are intimate and at least somewhat
committed.

Identity

Me: A link to yourself at a different URL.

Examples

The following are some examples of XFN in action:

<a href="http://marxandmarzipan.com" å
rel="friend met colleague neighbor">Maxine, the co-founder å
of westciv

 å

Also by me

Tools

Some tools that can help you create XFN content are as follows:

WordPress 2 (http://wordpress.com): WordPress has direct support for XFN in its
standard “add link” feature.

XFN Creator (http://gmpg.org/xfn/creator): This online-based tool creates XFN
links.

Autoxfn (http://weblog.scifihifi.com/2004/02/08/autoxfn-10): This is a plug-
in for Bloxsom.

Dreamweaver Microformats Extension (www.webstandards.org/action/dwtf/
microformats): The Dreamweaver microformats toolbar supports XFN.

Services

The following services use XFN content:

Rubhub (http://rubhub.com): This search engine uses XFN to present information
about the relationships between sites.

Flickr (http://flickr.com): Flickr uses XFN to publish relationships on its profile pages.

Upcoming (http://upcoming.org): This site uses XFN to publish user-defined
relationships.

Cork’d (http://corkd.com): This wine community site uses XFN to publish the rela-
tionships between members.

APPENDIX A

293

A

8148AppA.qxp 2/28/07 5:41 PM Page 293

geo
The geo microformat enables publishers to add geodata about the location of a person,
place, event, or thing to a page. The geo microformat is a one-to-one representation of
the geo property in vCard, and thus a subset of hCard.

geo microformatted content has a root element with a class value of geo and two prop-
erties, longitude and latitude.

More information: http://microformats.org/wiki/geo

Status: Draft (see http://microformats.org/wiki/geo#Draft_Specification for
the latest draft specification)

Author: Tantek Çelik (http://tantek.com)

Usage

Use the geo format to indicate a geographic location. The geo specification notes the fol-
lowing:

If the publisher knows and is publishing the address of the location, OR if the address of
the location was what was actually entered by a human, and the publisher simply turned
that into lat/long using some sort of a service, then the publisher SHOULD use adr to pub-
lish the actual human entered address information since that communicates far more
semantic information than a simple geo lat/long coordinate.

Examples

There are two forms of the geo microformat: a standard “compound” form and an abbre-
viated form. Here’s an example of the standard compound microformat:

27.976628, å

86.933302

Here’s an abbreviated form when the longitude and latitude shouldn’t actually be visible,
but should still be machine-readable:

Apollo 11 splashed down <abbr title="13.150000;169.150000" å

class="geo"> 400 miles (640 km) South West of Wake Island, in the å
North Pacific Ocean</abbr>

Tools

Some tools that can help you create geo content are as follows:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

294

8148AppA.qxp 2/28/07 5:41 PM Page 294

GEO Microformats to XML (http://suda.co.uk/projects/microformats/geo):
Brian Suda’s XSLT service extracts geodata, and it can mash up this data with
Google Maps.

Operator (http://labs.mozilla.com/2006/12/introducing-operator/): Created
by Michael Kaply, Operator is an extension for Firefox 2 that extracts geodata from
a page and enables various actions on it.

Services

The following services use geo content:

Flickr (http://flickr.com): Flickr uses geo for all geotagged photos and provides
a drag-and-drop interface for geotagging.

Multimap (www.multimap.com): Multimap uses geo to publish the location of a
location search result.

Open Guides (http://openguides.org) and Wikitravel (http://wikitravel.org):
These open source projects use the geo microformat for publishing location geodata.

adr
The adr microformat enables publishers to mark up address information in a standard,
interoperable way. The adr microformat is a one-to-one representation of the adr prop-
erty in vCard, and thus a subset of hCard.

More information: http://microformats.org/wiki/adr

Status: Draft (see http://microformats.org/wiki/adr#Draft_Specification for
the latest draft specification)

Author: Tantek Çelik (http://tantek.com)

Usage

adr elements have a root element with a class of adr and one or more of the following
subproperties (i.e., child elements with classes equal to the following values):

type: One of work, home, pref, postal, dom, or intl (these values are taken directly
from the vCard specification)

post-office-box

extended-address

street-address

locality

region

APPENDIX A

295

A

8148AppA.qxp 2/28/07 5:41 PM Page 295

postal-code

country-name

Example

Here’s an example of adr in use:

<div class="adr">
<div class="street-address">1600 Pennsylvania Ave</div>
Washington,
DC,
20520
USA

</div>

Tools

Because adr is a subset of hCard, the tools that help publish hCard content also help publish
adr content. See the “hCard” section of this appendix for more details.

Services

Because adr is a subset of hCard, the services that use hCard content also use adr content.
See the “hCard” section of this appendix for more details.

hCard
hCard is a one-to-one representation of the properties and values of vCard (IETF RFC
2426) in HTML. hCard extends the limited scope of vCard—essentially people—to include
companies, organizations, and places.

More information: http://microformats.org/wiki/hcard

Status: Specification (see http://microformats.org/wiki/hcard#Specification
for the latest specification)

Authors: Tantek Çelik (http://tantek.com) and Brian Suda (http://suda.co.uk)

Usage

hCard allows publishers to mark up details (particularly, but not exclusively, contact
details) for people, organizations, companies, and places.

hCards have a root element with a class value of vcard and a required subproperty of fn
(formatted name), for the name of the entity represented by the hCard. Where an hCard
is for an organization, the organization fn also includes a class value of org to specify this.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

296

8148AppA.qxp 2/28/07 5:41 PM Page 296

Optional subproperties include the following:

Name and personal details

N (name): This is for the structured name of the entity, and it must take one or
more subproperties from the following list: honorific-prefix, given-name,
additional-name, family-name, honorific-suffix.

nickname: A nickname.

bday: Birthday. This subproperty typically uses the abbr design pattern to have
both human-friendly and machine-readable values (see the “The abbr design
pattern” section in Appendix B for more information).

photo: An image element () with a class of photo.

url: A URL for the person or organization.

Contact information

adr (address): See the “adr” section of this appendix. The adr microformat is a
subproperty of hCard.

geo: A longitude and latitude for the person, place, or organization represented
by the hCard. See the “geo” section of this appendix for details. geo is a sub-
property of hCard.

email: A contact email address. It can take a type and value, or just a value. The
type may be one of the following: INTERNET, x400, pref, or “other IANA regis-
tered address types.”

tel: A contact telephone number. This subproperty may have multiple numbers,
and it can take a type and value, or just a value. The type may be one of the fol-
lowing: voice, home, msg, work, pref, fax, cell, video, pager, bbs, modem, car,
isdn, or pcs.

Organizational details

org: Where the hCard is for a person, this subproperty is for an organization the
person works at, or has some other role with. Where the hCard is for an organ-
ization, this is the name of the organization. In this case, the element with a class
value of fn must also have a class value of org.

role: The role a person plays within the organization specified by the org prop-
erty.

title: The title a person has at the organization specified by the org property.

logo: An image element () with a class value of logo specifies a graphic
image for the entity represented by the hCard. For a company, it will typically be
the company logo. For an individual, it may be an avatar. See also the photo
property, for photographic images of people.

Other properties

Because hCard is basically vCard represented in HTML, it acquires all the vCard properties.
Some of these are not commonly used (even by applications that support vCard), and so
are probably going to be rarely used in hCard as well. They are included here for com-
pleteness. The descriptions are largely taken from the vCard specification.

APPENDIX A

297

A

8148AppA.qxp 2/28/07 5:41 PM Page 297

agent: Specifies information about another person who will act on behalf of the
entity represented by the hCard.

categories: In effect, these are tags for the hCard, implemented using the rel-tag
microformat.

key: Specifies the public key or authentication certificate associated with the entity
the hCard represents.

class: Specifies the access classification for the hCard (e.g., public, private, or
confidential).

label: Specifies the formatted text corresponding to delivery address of the entity
represented by the hCard.

mailer: Specifies the type of electronic mail software that is used by the entity rep-
resented by the hCard.

note: Specifies supplemental information or a comment that is associated with the
hCard.

rev: A date/time value specifying revision information about the hCard.

sound: Specifies digital sound content information that annotates some aspect of
the hCard. By default, this type is used to specify the proper pronunciation of the
name type value of the hCard.

tz: Specifies information related to the time zone of the entity represented by the
hCard.

Examples

First up, here’s an hCard for a person:

<div class="vcard">
William <span å

class="additional-name">Henry å

Gates III å

(born <abbr class="bday" title="1955-10-28">October 28, 1955
</abbr>)

<div class="adr">
<p>1835 73rd Ave NE,</p>
<p>Medina,</p>
<p>WA 98039 å

</p>
<p class="country-name">USA</p>

</div>
<p>Chairman, Microsoft å

</p>
<p><a href="http://www.microsoft.com/billgates/"

class="url">http://www.microsoft.com/billgates/</p>
<p>

bill@microsoft.com</p>
</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

298

8148AppA.qxp 2/28/07 5:41 PM Page 298

Here’s an hCard for an organization:

<div class="vcard">
<p class="fn org">Web Directions Conference Pty Ltd
<a href="http://suda.co.uk/projects/X2V/get-vcard.php?uri= å

http://microformatique.com/book/chapter7/index.html">
</p>

<div class="adr">
<p class="street-address">8/54 Mitchell St</p>
<p>Bondi NSW å

 2026</p>
<p class="country-name">Australia</p>

</div>
<p>Phone/Fax: Work: å

61 2 9365 5007</p>
<p>Email: å

info@webdirections.org</p>
</div>

Tools

A number of tools can help you create hCard content:

Dreamweaver Microformats Extension (www.webstandards.org/action/dwtf/
microformats): The Dreamweaver microformats toolbar from the Web Standards
Project, by Drew McLellan, supports creating hCard.

hCard Creator (http://microformats.org/code/hcard/creator): From microfor-
mats.org, this tool generates the HTML for you, based on your form input.

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf):
Created by Chris Casciano, the pnh_mf plug-in provides a simple way to mark up
microformatted content, including hCard.

Services

The following services use hCard content:

Technorati Microformats search: http://kitchen.technorati.com

Pingerati: http://pingerati.net

X2V: http://suda.co.uk/projects/X2V

APPENDIX A

299

A

8148AppA.qxp 2/28/07 5:41 PM Page 299

hCalendar
hCalendar is a one-to-one representation of the properties and values of iCalendar (IETF
RFC 2445) in HTML. iCalendar is an interoperable format for calendaring and scheduling
applications.

More information: http://microformats.org/wiki/hcalendar

Status: Specification (see http://microformats.org/wiki/hcalendar#Specification
for the latest specification)

Authors: Tantek Çelik (http://tantek.com) and Brian Suda (http://suda.co.uk)

Usage

iCalendar is a reasonably complex standard that is often not entirely implemented by sup-
porting applications. As such, there is a current effort to create a simplified subset of
iCalendar, called iCalendar Basic. Aspects of iCalendar, while theoretically part of
hCalendar, have yet to be implemented in HTML. As such, here we’ll only consider the fully
implemented aspects of hCalendar.

According to the hCalendar specification, the basic model of hCalendar is to model
“iCalendar object/property names in lower-case for class names, and to map the nesting of
iCalendar objects directly into nested XHTML.” hCalendar allows publishers to mark up
events and other time/date based episodes (such as educational experience and work
experience).

hCalendars have an optional vcalendar root element. Where only a single calendar of
events occurs on a page, where no root element is found, the page itself is assumed to be
the root element. Where more than one calendar of events is found on a single page, the
root element is any HTML element with a class value of vcalendar.

An hCalendar consists of one or more events. These are marked up in hCalendar as
descendent elements of the root element, with a class value of vevent.

Required properties of events
At a minimum, a vevent requires a summary and a dtstart to appear as children of it:

summary: This is typically the name of the event.

dtstart: This is the event’s start date, an ISO 8601–formatted date/time for the
commencement of the event. It is recommended that the abbr design pattern be
used to give both a human-readable version and machine-readable version of the
date, for example:

<abbr title="20070207" class="dtstart">Feb. 6th 2007</abbr>

Common optional properties of events
The following are optional properties of events:

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

300

8148AppA.qxp 2/28/07 5:41 PM Page 300

description: This property provides a “more complete summary” (according to
the iCalendar specification) of the event. An event may only have one description
subproperty, so where, for instance, the description spans multiple paragraphs, a
single div with class description should contain these paragraphs.

dtend: This is the event’s end date (i.e., the date/time at which the event ends), in
ISO 8601 format. A date without a time is in effect midnight of the day before the
date, so for timeless dates you should use the date following the event date to be
correct. It is recommended that the abbr design pattern be used to give both a
human-readable version and machine-readable version of the date, for example:

<abbr title="20070206" class="dtstart">Feb. 6th 2007</abbr>

If a date and time value were used, the date part would be 20070206.

location: The location of the event. The adr, geo, or hCard microformat can be
used to mark these up in a more information-rich manner.

url: A URL for the event (e.g., for more information).

Example

Note that the following is an example of an hCalendar for a single event. The containing
vCalendar element would typically be optional (unless there were more than one distinct
calendar on this page).

<div class="vevent">
<h3 class="summary"><a href="http://north.webdirections.org" å

class="url">Web Directions North</h3>

<div class="description">
<p>A Web design and development conference in Vancouver å

Canada.</p>
<p>Featuring a who's who of international web experts....</p>

</div>
<p>From <abbr title="20070206" class="dtstart">Tuesday, å

Feb. 6th </abbr> to <abbr title="20070209" class="dtend"> å

Thursday, Feb. 8th </abbr> 2007</p>
<p class="location">Renaissance Vancouver Hotel Harbourside</p>

</div>

Due to a quirk of hCalendar, a DTEND date without a time value is midnight
between the day before and the date specified—in effect, the day before—hence
the mismatch between the title value and the human-readable version.

APPENDIX A

301

A

8148AppA.qxp 2/28/07 5:41 PM Page 301

Tools

Some tools you can use to create hCalendar content are as follows:

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf): The
pnh_mf plug-in for Textpattern helps publish hCard-formatted data and also sup-
ports publishing hCalendar content.

Dreamweaver Microformats Extension (www.webstandards.org/action/dwtf/
microformats): This Dreamweaver microformats extension by Drew McLellan
enables easy, form-driven hCalendar creation in Dreamweaver.

hCalendar Creator (http://microformats.org/code/hcalendar/creator): This
tool provides an easy-to-use, form-driven interface for creating hCalendar content.

xfy (https://www.xfytec.com) and LiveWriter (http://ideas.live.com/program-
page.aspx?versionId=4372c8c2-b76f-4d44-aea1-9835b61d8dc1): These recently
released desktop-based blogging tools both have hCalendar support. Microsoft
LiveWriter is a Windows-only product, while xfy is written in Java and runs on
Windows, Mac OS X, and Linux.

Services

These services use hCalendar:

Technorati Microformats search (http://kitchen.technorati.com): This search
engine aggregates events marked up using hCalendar. You should also ping
Pingerati (http://pingerati.net) so that Technorati and other hCalendar aggre-
gators know about your new or updated hCalendar content.

X2V (http://suda.co.uk/projects/X2V): This service by Brian Suda converts
hCalendar content to the iCalendar format, enabling applications that support
iCalendar to import hCalendar content. It also enables applications such as
Thunderbird and iCal, which support subscribing to iCalendar content to subscribe
to hCalendar marked-up calendars on web pages.

Life Lint parser (www.lifelint.net): Life Lint is similar to X2V in that it converts
hCalendar to iCalendar (and RDF), and it has optional Outlook 2002 compatibility
(although bear in mind that Outlook’s support for iCalendar format is not perfect).

hReview
hReview is a simple format for marking up reviews on the Web. The schema of hReview
was developed as a minimal subset of a broad range of review formats currently being
published by the likes of Amazon, Epinions, Zagat, iTunes, and many more, as well as ear-
lier attempts at common review formats, such as RVW, RDF Review Vocabulary, and
Simple-Review XML.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

302

8148AppA.qxp 2/28/07 5:41 PM Page 302

More information: http://microformats.org/wiki/hreview

Status: Draft (see http://microformats.org/wiki/
hreview#Microformats_Draft_Specification_2006-02-22
for the latest draft specification)

Authors: Tantek Çelik (http://tantek.com), Ali Diab (http://360.yahoo.com/
alidiabali), Ian McAllister (http://spaces.msn.com/members/ianmcallister),
John Panzer (http://journals.aol.com/panzerjohn/abstractioneer), Adam
Rifkin (http://ifindkarma.com/blog), and Michael Sippey (http://sippey.
typepad.com)

Usage

hReview is designed for publishing structured reviews of people, businesses, films, prod-
ucts, websites—indeed anything that can be reviewed online. It is used as follows.

root: An hReview has a root element, which can be any HTML element, with a class
value of hreview.

Required properties
hReview has one required property, item, with the following further requirements:

When the review is for a person, the item property must be an hCard.

When the review is of an event, the item property should be an hCalendar.

Any item must have at least a nested fn subproperty, for the name of the item.
Where the item is an hCard or hCalendar, this fn property will be automatically
part of the nested microformat.

Where an item has a photo or URL, subproperties of item with class values of url
and photo should be used to mark these up.

Optional properties
An hReview may also have the following optional properties:

summary: The title of the review itself.

type: The type of item being reviewed, which is one of the following list: product,
business, event, person, place, website, or url.

reviewer: The author of the review. This is must be an hCard. Where the reviewer
is anonymous, the value of the hCard fn is anonymous. For example, the following
is the markup for a review by Francine Smith:

Francine Smith å

An anonymous review would be marked up as follows:

anonymous å

APPENDIX A

303

A

8148AppA.qxp 2/28/07 5:41 PM Page 303

dtreviewed: The date on which the review was written or published, in ISO 8601
date/time format. Using the abbr design pattern for providing both human- and
machine-readable dates and times is recommended. For example, a review written
on May 17, 2007, in Sydney, Australia, might be marked up as follows:

Written <abbr class="dtreviewed" title="20070517"> å

May 17, 2007</abbr>

description: The full text of the review.

rating: The reviewer’s rating for the item reviewed. By default, this is a fixed-point
integer to one decimal point from 1.0 to 5.0 (e.g., 2.5 is a valid rating value, but
4.99 is not). Optionally, integer values from a specified “best” to “worst” may be
used. For example, a standard score of 4.5 out of 5 may be marked up like this:

I gave the film 4.5 out of 5

To give a nondefault rating, you could use something like this:

full marks, 10 å

out of 10

version: The version of hReview used for marking up the review. The current version
is 0.3, while this and all future versions will be backward compatible with version 0.2.

tags: A list of rel-tag tags describing the review. No particular class value is required
for the tag links to indicate they are tags; the rel="tag" value is sufficient for this.

license: To indicate a license for the review, a rel-license link may be added to the
review. In this instance, the license applies to the review, not the page containing
the review.

permalink: A link with rel values of bookmark and self indicates the permanent
URL for the review.

Example

This example demonstrates the core features of hReview:

<div class="hreview">
<h2 class="summary">Pirates of the Caribbean: Dead Man's Chest å

- Disappointing at best</h2>
<p class="item"> å

<a href="http://disney.go.com/disneypictures/pirates/" å

class="fn url">Pirates of the Caribbean 2 - Dead Man's Chest
</p>
<p class="reviewer vcard">John Allsopp</p>
<p>Date reviewed <abbr title="20061118" class="dtreviewed"> å

November 18 2006</abbr>.</p>
<p>Rating: 4 å

out of 10</p>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

304

8148AppA.qxp 2/28/07 5:41 PM Page 304

<div class="description">
<p>After the success and excitement of the original Pirates å

of the Caribbean...</p>
<p>The characters lack any of the real freshness and å

cleverness of the original, even <a å

href="http://en.wikipedia.org/wiki/Johnny_Depp" rel="tag"> å

Depp's Jack Sparrow has become more...</p>
<p>Disappointing, to say the least.</p>

</div>
<p><a href="http://creativecommons.org/licenses/by-sa/2.5/" å

rel="license">Licensed under a creative commons attribution å

share alike 2.5 license</p>
<p>Review type: product</p>
<p>hReview version0.3<p>

</div>

Tools

Some tools you can use to create hReview content are as follows:

hReview Creator (http://microformats.org/code/hreview/creator): Like micro-
format.org’s other microformat creators, this is a form-driven interface that pro-
duces microformatted HTML for your review.

Textpattern Microformats Plug-in (http://placenamehere.com/TXP/pnh_mf): For
Textpattern users, Chris Casciano’s pnh_mf supports publishing in the hReview for-
mat as well as a number of other microformats.

hReview WordPress Plug-in (www.aes.id.au/?page_id=28): Andrew Scott has cre-
ated this form-driven hReview plug-in, which allows for easy publishing of individ-
ual or multiple reviews on a single page or in a single post.

WP Movie Ratings (http://paulgoscicki.com/archives/2006/11/wp-movie-rat-
ings-v14-released): This plug-in from Paul Goscicki integrates with IMDb to allow
pain-free reviewing of movies in hReview format.

Services

Services using hReview content include the following:

Revoo (http://revoo.com): Revoo is a review aggregation and publishing service,
which both aggregates reviews published on the Web in hReview format and pub-
lishes reviews in hReview format.

Cork’d (http://corkd.com): This wine community site features reviews created
using a form-driven interface and published using hReview.

Yahoo Tech (http://tech.yahoo.com): This technology review site also uses
hReview to publish technology reviews from users.

APPENDIX A

305

A

8148AppA.qxp 2/28/07 5:41 PM Page 305

hResume
hResume is a format for semantically marking up resumes or curriculum vitae (CVs) for
publishing on the Web, typically in HTML. The set of properties of hResume (its schema)
was developed through research of existing publishing schemas for online resumes and
resume formats such as Europass and HR-XML.

More information: http://microformats.org/wiki/hresume

Status: Draft (see http://microformats.org/wiki/hresume#Status for the latest
draft specification)

Author: Ryan King (http://theryanking.com)

Usage

hResume may be used by individuals to publish their resumes or by aggregators to publish
resumes or CVs aggregated from the Web or otherwise obtained.

The root of an hResume is any HTML element with a class value of hresume. Its required
property and optional properties are as follows.

Required property
hResume has a single required property, contact, which provides the name and contact
details for the person whose resume this is. contact must be an hCard.

Optional properties
An hResume may have the following properties (the heading for each property is the class
value of that property when marking up in HTML):

summary: This property is for an “overview of qualifications and objectives” (per the
hResume specification).

education: This property is an hCalendar, the individual events of which are each
an education event (e.g., secondary schooling, undergraduate degree, etc.). Each
event has a class value of education.

experience: This property is an hCalendar, the individual events of which are each
a work event (e.g., jobs). Each event has a class value of experience. hCard should
be used for job titles or roles. In this case, to prevent tedious repetition, the include
design pattern can be used to include the fn from the contact hCard into all such
hCards.

skill: The person’s skills can be listed as a rel-tag link for each skill, with the addi-
tion of the class value of skill on each such link.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

306

8148AppA.qxp 2/28/07 5:41 PM Page 306

affiliation: Organizations with which the person has an affiliation can be marked
up with hCards, with the additional class value of affiliation on the root ele-
ment for each organization’s hCard.

publications: Articles, books, and other publications by the person can be added
to an hResume simply by using the <cite> element. Where a <cite> element
appears inside an hResume, the cited work is taken to have been authored by the
person whose resume this is.

Example

This is my (somewhat truncated) resume, shown here as an example, using all the preced-
ing features from hResume. The class values specific to hResume are emphasized.

<div class="hresume">
<h1>Resume: <address class="vcard contact"><a å

href="mailto:john@webdirections.org" class="fn email"> å

John Allsopp</address></h1>
<p class="summary">Software developer, conference organizer, å

speaker, and author John Allsopp has spent the last 15 years å

running and developing software for Western Civilisation å

Pty. Ltd., writing and publishing training courses, speaking å

at conferences, organizing conferences, and running training å

seminars in standards-based web development.</p>
<h3>Education</h3>

<ol class="vcalendar">
<li class="vevent education"><abbr class="dtstart" å

title="19850101">1985</abbr>-<abbr class="dtend" å

title="19891231">1989</abbr> <abbr title="Bachelor of å

Science "> B.SC</abbr> <a class="fn å

org url"href="http://www.usyd.edu.au/">University of å

Sydney, Australia Majoring å

in Computer Science and Mathematics. Also studied Law, å

English Literature, and Philosophy.
<li class="vevent education"><abbr class="dtstart" å

title="19790101">1979</abbr>-<abbr class="dtend" å

title="19841231"> 1984</abbr> <abbr title="Higher School å

Certificate">H.S.C<a class= å

"fn org url" href="http://www.riverview.nsw.edu.au">Saint å

Ignatius College, Riverview

APPENDIX A

307

A

8148AppA.qxp 2/28/07 5:41 PM Page 307

<h3>Experience</h3>
<ol class="vcalendar">
<li class="vevent experience"><abbr title="19940101" å

class="dtstart">1994</abbr> - present. Chief Technology å

Officer, <a class="fn org url" å

href="http://westciv.com">Western Civilisation Pty. Ltd. å

 Responsible for the development å

of Software, including Palimpsest, Style Master, and Layout å

Master
<li class="vevent experience"><abbr title="20060101" å

class="dtstart">2006</abbr>- present Director, <span å

class="vcard"><a class="fn org url" å

href="http://webdirections.org">Web Directions Conferences å

Pty. Ltd. Responsible å

for a broad range of logistical and management aspects of å

organizing the Web Directions conferences.
<li class="vevent experience"><abbr title="20030101" å

class="dtstart">2003</abbr> - <abbr title="20051231" å

class="dtstart">2005</abbr> Director, å

WE04 and å

WE05 conferences Responsible å

for a broad range of logistical and management aspects of å

organizing the WE04 and WE05 conferences.

<h3>Skills</h3>

<a class="skill" å

href="http://en.wikipedia.org/wiki/Software_engineering" å

rel="tag">Software Engineering
<a class="skill" å

href="http://en.wikipedia.org/wiki/Programming" å

rel="tag">programming
<a class="skill" å

href="http://en.wikipedia.org/wiki/Web_development" å

rel="tag">web development
...

<h3>Affiliations</h3>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

308

8148AppA.qxp 2/28/07 5:41 PM Page 308

<li class="vcard affiliation"> å

 å

Web Standards Project
<li class="vcard affiliation"> å

<a href="http://www.northbondisurfclub.com/" class= å

"fn org url"> North Bondi SLSC

<h3>Publications</h3>

<cite href="http://www.alistapart.com/articles/dao/"> å

A Dao of Web å

Design</cite> A List Apart, April 2000
<cite å

href="http://www.westciv.com/style_master/ å

house/good_oil/not_paper/"> å

<a href="http://www.westciv.com/style_master/ å

house/good_oil/not_paper/"> å

Web Pages aren't printed on paper</cite>September 1999

</div>

Tools

Some tools you can use to create hResume content are as follows:

hResume Creator (http://hresume.weblogswork.com/hresumecreator): This
form-based resume creator from Spur, Inc. is much like the other microformats
creators, such as hCard Creator and hCalendar Creator.

hResume WordPress Plug-in (http://hresume.weblogswork.com/?page_id=3):
Another tool from Spur, Inc., this plug-in for WordPress helps publish hResumes on
WordPress-based blogs.

Microformat Resume Plug-in for WordPress (www.ssdesigninteractive.com): Sajid
Sayid created this easy-to-use plug-in for adding hResume content to a WordPress-
based site.

APPENDIX A

309

A

8148AppA.qxp 2/28/07 5:41 PM Page 309

Services

Here are some services using hResume:

Emurse (http://emurse.com): This service for building, hosting, and publishing
resumes online uses the hResume format.

LinkedIn (www.linkedin.com): This professional online networking service uses
hResume for publishing 9 million resume details.

hAtom
hAtom is a microformat based on a subset of Atom, the XML syndication format for web
feeds. hAtom specifically focuses on the aspect of Atom concerned with blog posts.
Despite being a draft specification, because it is based on the nearly 1.0 standard Atom,
hAtom’s schema is quite stable.

More information: http://microformats.org/wiki/hatom

Status: Draft (0.1; see http://microformats.org/wiki/
hatom#Draft_Specification for the latest draft specification)

Authors: David Janes (http://blogmatrix.blogmatrix.com), with contributions
by Tantek Çelik (http://tantek.com) and Benjamin Carlyle (http://members.
optusnet.com.au/benjamincarlyle/benjamin/blog)

Usage

hAtom is used to mark up feeds in HTML, rather than in separate files, such as RSS or
Atom. Rather than replacing RSS or Atom, hAtom’s aim is to use the schema of Atom to
create a standardized format for publishing blogs and other feed-based content in HTML.
Because Atom and RSS feeds typically list only recent posts, hAtom is particularly benefi-
cial for archiving posts.

Schema
hAtom feeds have an optional root element of hfeed. It can be any HTML element, as long
as it has a class value of hfeed. Where there is no feed element, the page itself is assumed
to be the feed (in the same way that the hCalendar element is optional).

A feed consists of individual posts. A post element is any HTML element with a class value
of hentry.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

310

8148AppA.qxp 2/28/07 5:41 PM Page 310

Required properties
An entry must have the following properties (the heading for each property is the class
value of that property when marking up in HTML):

entry-title: The title of a particular entry (usually a heading of some level).

author: The author of the entry. This must be marked up using an hCard, and it
should, where possible, use an <address> element. Because the <address> element
is an inline element, this may cause problems for complex contact details (e.g.,
postal addresses), but with hAtom, typically contact details are the URL of a form-
based contact page or email address, so this is less of a potential problem than the
suggested use of <address> in hResume.

updated: The date the entry was last updated. Use the datetime design pattern to
publish both human- and machine-readable versions.

Optional properties
An entry may have the following properties (the heading for each property is the class
value of that property when marking up in HTML):

entry-summary: A short summary or extract from the entry.

entry-content: The full content of the post (an entry may have more than one
entry-content).

published: The date the entry was published. Use the datetime design pattern to
publish both human- and machine-readable versions. A single element can be both
the published and updated dates like so:

<abbr title="20070101" class="updated published"> å

1st January 2007</abbr>

permalink: A link with a rel value of bookmark is the permalink for an entry. No
specific class value is required for the link.

tag: Both a feed and individual entries can have one or more “categories.” Both feed
and entry categories are defined by the use of a link with a rel value of tag. Feed
categories appear inside a feed root element, but outside any particular hEntry ele-
ments. Where a link with a rel value of tag appears inside an hEntry element, it
defines a category for the entry. No specific class value is required for the link.

APPENDIX A

311

A

8148AppA.qxp 2/28/07 5:41 PM Page 311

Example

This hFeed example demonstrates all the features of hAtom. The hAtom class values are
emphasized.

<div class="hfeed">
<!-- these are the categories for the feed because they appear å

inside the hfeed element but outside any specific hEntry element -->

 å

microformats
 å

semantics
HTML
 å

patterns

<!-- there may be many hentries here before we get to the entry we å

have been marking up -->
<div class="hentry">
<h3 class="entry-title">Introducing Web Connections</h3>
<p>Published:<abbr class="updated published" title="20060920"> å

September 20, 2006</abbr></p>
<div class="content">
<p><span, class="summary">Super smart, far too young and good å

looking, Tim Lucas and å

Cam ("the man in å

blue") Adams, have just taken the wraps off a fantastic å

web app, "~Web å

Connections " they've built to help networking at å

our upcoming (next week!) conference, å

 Web Directions.</p>
<p>Tim and Cam have incorporated reltag, XFN, hCard, and å

hCalendar. Seriously microformatted.</p>
...

<p>Categories</p>
<!-- these are the categories for the entry because they appear å

inside the hEntry element -->

<a href="http://www.technorati.com/tag/microformats" å

rel="tag"> microformats
<a href="http://www.technorati.com/tag/webapps" å

rel="tag">webapps
<a href="http://www.technorati.com/tag/WD06" å

rel="tag"> WD06

</div> <!-- end hEntry -->
<!--there may be many more entries after this one in the feed -->
</div> <!-- end hFeed -->

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

312

8148AppA.qxp 2/28/07 5:41 PM Page 312

Tools

Some tools you can use to create hAtom content are as follows:

hAtom Creator (http://dichotomize.com/uf/hatom/creator.html): This is a
form-based creator for individual hAtom entries.

WordPress Sandbox theme (http://www.plaintxt.org/themes/sandbox): This
“skeleton” theme for WordPress (which you can use to develop your own themes
on top of), by Scott Allan Wallick and Andy Skelton, supports hAtom and is
rumored to be the basis for the next default WordPress theme.

WordPress loop with hAtom support (www.fberriman.com/?p=86): If you are inter-
ested in adding hAtom to your existing WordPress theme or install, use this
WordPress loop by Frances Berriman to add hAtom to your blog.

Services

The following services use hAtom:

hAtom2Atom (http://rbach.priv.at/hAtom2Atom): This XSLT processor is for
transforming hAtom marked-up content to Atom.

Tails (http://blog.codeeg.com/tails-firefox-extension-03): The venerable
Firefox extension supports hAtom.

APPENDIX A

313

A

8148AppA.qxp 2/28/07 5:41 PM Page 313

8148AppB.qxp 2/28/07 5:47 PM Page 314

APPENDIX B MICROFORMAT DESIGN
PATTERNS

8148AppB.qxp 2/28/07 5:47 PM Page 315

Microformat design patterns are not themselves microformats; rather, they formalize com-
monly reused pieces of code that are generally useful in developing new microformats (and
may also be useful in developing semantic HTML other than just in relation to microformats).

This appendix covers the design patterns you’ll encounter most frequently in your work
with microformats.

The abbr design pattern
The abbr design pattern uses the <abbr> (abbreviation) element of HTML to provide a
mechanism for marking up both human-friendly and machine-readable values for the
same element. This is important to meet the microformats principles of being “designed
for humans first, machines second” and to “enable and encourage decentralized develop-
ment, content, services.”

Usage

The human-readable value is the content of the <abbr> element, while the machine-read-
able part is the value of the title attribute of the <abbr> element. The pattern is com-
monly used with dates and times (see also the “The datetime design pattern” section), but
also with a specific form of the geo microformat. It can also be used where both a human-
and machine-readable version of the marked-up information is required.

Some common uses are as follows:

Date/time: The pattern is used to specify a human-readable date/time and an
unambiguous machine-readable date/time value (using ISO 8601, as recommended
by the W3C for dates on the Web).

Geodata: The pattern is used to specify a machine-readable decimal longitude and
latitude value, and a human-readable location.

Examples

Here’s an example for date/time:

<abbr title="20061028T17:53:17+09:00">5:53pm, 28th October 2006, in å

Sydney Australia</abbr>

Here’s an example for geodata (latitude precedes longitude):

<abbr title="13.150000;169.150000" class="geo">400 miles (640 km) å

South West of Wake Island, in the North Pacific Ocean</abbr>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

316

8148AppB.qxp 2/28/07 5:47 PM Page 316

The class design pattern
The class design pattern is a fundamental microformat design pattern. It is used to include
the semantics of a schema, either existing, like vCard, or novel, like hReview, into HTML, by
the use of specific class attribute values on HTML elements.

Usage

For more complex microformats, there is a vocabulary of possible class values. These
class values are added to HTML elements to give the semantics of the particular micro-
format to that element. Microformats never mandate the use of particular HTML element
with this design pattern (e.g., requiring a div or heading with a specific class value), but
they do at times recommend elements—such as the <address> element for the contact
property of an hResume.

To use the class design pattern, simply add a specific class value from the schema for the
microformat to an HTML element. Multiple class values are permitted and are not
uncommon.

There are some restrictions on the use of class values. class values for the subproperties
of a microformat must be on descendent elements of the root element, not on the root
element itself. However, a root element may take multiple classes, where the microformat
is nested inside another microformat. In this case, it takes both the class value for the
root element and the class value for the property it represents in the microformat it is
nested inside.

Examples

A simple use of the class design pattern is to add the semantic value country-name to an
element:

Australia

In the next example, the value vcard is the root for the hCard element, while reviewer is
the class value for the role this element plays in the hReview it is part of. hCard requires
an fn property, but this must be on a descendent element of the root element, not on the
root element itself.

Francine å

Smith

In some cases, multiple class values are required. In hCard, where the details are for an
organization, the fn (formatted name) property must also have an org value for its class:

IBM

MICROFORMAT DESIGN PATTERNS

317

B

8148AppB.qxp 2/28/07 5:47 PM Page 317

The datetime design pattern
The datetime design pattern is a specific use of the abbr design pattern. It enables mark-
ing updates in both human-friendly and unambiguous machine-readable formats, using
the ISO 8601 date/time format. See the section “The abbr design pattern” for details and
examples.

The include pattern
The same microformatted information, with small changes, may appear a number of times
on the same page. For example, in hResume, hCard is recommended for each experience
property where a title or role is involved. Because fn is required in an hCard, this necessi-
tates repeating the fn property each time the hCard for a specific person is used. Not only
is this more verbose than necessary, but it also requires some mechanism for hiding the
formatted names, as their appearance numerous times would appear incongruous.

The include pattern enables a property from one microformat (e.g., the fn from an hCard)
to be included in other microformats on the same page (the include pattern does not
allow including parts of a microformat on another page into a microformat—it is strictly
intrapage).

Usage

Because the initial include pattern proposal used the <object> element, which caused dif-
ficulties with Safari, the include pattern is, at the time of this writing, not entirely finalized.

The basic concept of the include pattern is to uniquely identify one microformat using an
id attribute, and then include this microformat in other microformats by using a link to
this uniquely identified element from within subsequent microformats. This has the effect
of including or “importing” the properties of the included microformat into the other
microformats.

Examples

The first part of the include pattern is to add a unique identifier to a microformat using
the id attribute:

<div class="hResume">
<h1 class="summary">Resume: John Allsopp</h1>
<div class="vcard contact" id="jafn">
<a href="mailto:john@webdirections.org" å

class="email fn">John Allsopp
</div>

</div>

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

318

8148AppB.qxp 2/28/07 5:47 PM Page 318

Now you include this in a subsequent microformat on the same page, using a link of class
include pointing to this element, as part of your microformat:

<li class="vevent experience"><abbr title="19940101" class="dtstart"> å

1994</abbr> - present.

Chief Technology Officer

The rel design pattern
Links often define the relationship between documents. Where that is the case, the rel
attribute of HTML can be used to encode this relationship. This aspect of HTML is used
extensively by microformats.

Usage

The rel design pattern uses a keyword value for the rel attribute and a link to indicate the
relationship between the document specified by the link href and the document containing
the link. A number of microformats use a single rel value (rel-license, rel-tag, rel-nofollow),
while XFN uses a small set of rel values.

Example

rel-tag uses a rel value of tag to identify a link as a microformatted tag link:

 å

Pareto Principle

Attribute conventions
While these are not strictly design patterns in themselves, I’ll touch on a number of con-
ventions regarding the use and priority of certain HTML attributes. Because attributes typ-
ically carry their own semantics (or, more relevantly, their own particular purpose), it’s a
convention in microformats that when a given attribute is most relevant, it should be used.

You can find examples of this throughout the book, but no particular mention has been
made of the convention. For example, where a microformat (such as hCard or hCalendar)
has a url property, rather than marking this up as follows:

Company å
Web Site

MICROFORMAT DESIGN PATTERNS

319

B

8148AppB.qxp 2/28/07 5:47 PM Page 319

where the url value would actually be Company Web Site, we make use of the semantics
and purpose of the href attribute and mark it up like this:

Company å

Web Site

Now, why don’t microformat parsers take Company Web Site as the value of the url prop-
erty in this instance? Because parsers understand the convention, which says that the href
attribute makes the most sense for the kind of data we expect to find for a url property.

Similarly, where a property is applied to an image or other replaced element (such as an
object element), because these kinds of elements have no content, we can use the alt
attribute where we’d typically use the content of the element. So, for example, instead of
the following:

Brian Suda

if we wanted to have both a photo and fn combined, we could use the alt attribute on
the element, like so:

<img class="fn photo" å

src="http://flickr.com/photos/paulhammond/149463680/" å

alt="Brian Suda"/>

Because we know the value of fn is text, and because the alt attribute is alternate text for
the image (in effect, the text equivalent), the convention is that we use the value of the
alt attribute for the value of the fn property. Similarly, as the standard way of including
image data on the Web is via the src attribute of an element, the value of the photo
property is the image at the src location.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

320

8148AppB.qxp 2/28/07 5:47 PM Page 320

8148AppB.qxp 2/28/07 5:47 PM Page 321

8148AppC.qxp 2/28/07 5:48 PM Page 322

APPENDIX C PEOPLE, TOOLS,
SERVICES, AND PUBLISHERS

8148AppC.qxp 2/28/07 5:48 PM Page 323

This appendix brings together many of the people, services, tools, and publishers covered
in the book. By no means is it definitive; it aims to give a broad overview of the more
important developments, people, and organizations involved with microformats. For more
information, see the microformats wiki http://microformats.org/wiki.

People
Wolfgang Bartelme (www.bartelme.at): Developer of the XFN icon set

Chris Casciano (http://placenamehere.com/TXP/pnh_mf): Developer of the
Textpattern microformats plug-in pnh_mf

Dan Cederholm (www.simplebits.com): Microformats icon designer, and early
adopter of microformats at Cork’d and elsewhere

Tantek Çelik (http://tantek.com): Microformats pioneer; CTO of Technorati;
author/editor of hCard, hCalendar, hReview, XFN, rel-nofollow, rel-tag, rel-license,
and VoteLinks; and developer of the hCard Creator

Michael Kaply (www.kaply.com/weblog): Developer of the Operator extension for
Firefox

Ryan King (http://theryanking.com): Author of hResume, and developer of
hCalendar Creator and hReview Creator

Nate Koechly (http://developer.yahoo.com/yui): Senior Engineer and Technical
Evangelist on the Yahoo User Interface (YUI) Library team, and microformats early
adopter

Hans Lube: Inventor of Smell-O-Vision

Kevin Marks (http://epeus.blogspot.com): Editor of rel-nofollow, VoteLinks, and
rel-tag

Drew McLellan (http://allinthehead.com): Developer of the WaSP Dreamweaver
microformats toolbar

Chris Messina (http://factoryjoe.com): Developer of the XFN icon set, and early
microformats adopter and evangelist

Eric Meyer (http://meyerweb.com): Microformats pioneer and author of XFN

Matt Mullenweg (http://photomatt.net): WordPress founder, microformats pio-
neer, author of XFN, and developer of the hCard Creator and Exefen

Brian Suda (http://suda.co.uk): Developer of X2V and other innovative micro-
formats and proof of concept services and applications, and author of hCard and
hCalendar

Thomas Vander Wal (www.vanderwal.net/random): Coined the term “folksonomy”
for bottom-up, tag-based taxonomies

Calvin Yu (http://blog.codeeg.com): Developer of the Tails extension for Firefox

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

324

8148AppC.qxp 2/28/07 5:48 PM Page 324

Tools
Autoxfn (http://weblog.scifihifi.com/2004/02/08/autoxfn-10): A Blosxom
plug-in for creating XFN.

Bunny’s Technorati Tags (http://dev.wp-plugins.org/wiki/Bunnys
TechnoratiTags): A rel-tag plug-in for WordPress.

Conference Schedule Creator (http://dmitry.baranovskiy.com/work/csc):
Authored by Dmitry Baranovskiy, this tool helps to easily create complex, table-
based schedules such as conference timetables.

Exefen (http://photomatt.net/tools/exefen/): Authored by Matt Mullenweg,
this tool creates XFN links for existing links in online pages.

hAtom Creator (http://dichotomize.com/uf/hatom/creator.html): A form-based
tool for creating individual posts, by Ben West.

hAtom2Atom (http://rbach.priv.at/hAtom2Atom): An XSLT processor for trans-
forming hAtom marked-up content to Atom. Authored by Robert Bachmann.

hCalendar Creator (http://microformats.org/code/hcalendar/creator): An
easy-to-use, form-driven interface for creating hCalendar content, by Ryan King.

hCard Creator (http://microformats.org/code/hcard/creator): An easy-to-use,
form-driven creator for hCards, by Tantek Çelik.

hKit Microformats Toolkit for PHP5 (http://allinthehead.com/hkit): Created by
Drew McLellan, this PHP5 toolkit extracts common microformats, including hCard.

hResume Creator (http://hresume.weblogswork.com/hresumecreator): This form-
based resume creator from Spur, Inc. is much like the other microformats creators.

hResume WordPress Plug-in (http://hresume.weblogswork.com/?page_id=3):
Another tool from Spur, Inc., this plug-in for WordPress helps publish hResumes
on WordPress-based blogs.

hReview Creator (http://microformats.org/code/hreview/creator): This form-
driven interface, created by Ryan King, produces microformatted HTML for your
review.

hReview WordPress Plug-in (http://aes.id.au/?page_id=28): Authored by
Andrew Scott, this tool allows for easy publishing of individual or multiple reviews
on a single page or in a single post in WordPress.

Life Lint (www.lifelint.net): This tool converts hCalendar to iCalendar or RDF,
and it has optional Outlook 2002 compatibility.

Microformat Parser for Ruby (http://blog.labnotes.org/2005/11/20/
microformat-parser-for-ruby): A microformat parser for Ruby and Rails
developers, authored by Assaf Arkin.

Microformat Resume Plug-in for WordPress (www.ssdesigninteractive.com):
Authored by Sajid Sayid, this is an easy-to-use plug-in for adding hResume
content to a WordPress-based site.

Microformatic (http://microformatic.com): This site is home to a number of
microformats tools, such as hKit and “hCard n best-guess.”

PEOPLE, TOOLS, SERVICES, AND PUBLISHERS

325

C

8148AppC.qxp 2/28/07 5:48 PM Page 325

Microformats Bookmarklets (http://microformats.org/wiki/bookmarklets):
This page presents a collection of several bookmarklets, which can be added to
your browser bookmarks or favorites to perform simple microformats actions,
such as extracting iCalendar or hCard data, or converting iCalendar to RDF.

Operator extension for Firefox (https://addons.mozilla.org/firefox/4106):
This extension extracts microformatted content from pages and presents these in
a toolbar enabling related actions relevant to the particular content. Authored by
Michael Kaply.

pnh_mf (http://placenamehere.com/TXP/pnh_mf): A Textpattern plug-in with
support for rel-tag, rel-nofollow, rel-license, hCard, and hReview.

Sandbox theme for WordPress (www.plaintxt.org/themes/sandbox): Authored by
Scott Allan Wallick and Andy Skelton, this theme is hinted to likely be the basis
for the next default WordPress theme. It’s a skeleton template you use to base
your templates on, and it utilizes hAtom for the structure of the document.

SimpleTags (www.broobles.com/scripts/simpletags/): A rel-tag plug-in for
WordPress.

Structured Blogging (http://structuredblogging.org): This plug-in for
WordPress and Moveable Type has support for creating structured content,
including hCard and hCalendar.

Tails extension for Firefox (http://blog.codeeg.com/tails-firefox-extension-03):
Authored by Calvin Yu, this extension presents microformatted content in pages
in a separate floating “window” within the browser window. It recognizes hCard,
hCalendar, hReview, xFolk, geo, hAtom, and hResume.

WaSP Dreamweaver Microformats toolbar
(www.webstandards.org/action/dwtf/microformats): Authored by Drew McLellan,
this form-based toolbar can be used for developing microformatted content for
Dreamweaver. It supports hCalendar, hCard, rel-license, rel-tag, and XFN.

WebCards (www.whymicroformats.com/webcards/index.html): This Firefox exten-
sion displays microformatted content contextually. It also features an in-page
hCard creator. Authored by Andy Mitchell.

WordPress (www.wordpress.com): A widely used, open source blogging and CMS
platform, with built-in XFN support. It features templates, such as Sandbox, that
use hAtom, and numerous plug-ins exist for most if not all microformats.

WP Movie Ratings (http://paulgoscicki.com/archives/2006/11/wp-movie-
ratings-v14-released): Authored by Paul Goscicki, this tool integrates with
IMDb to allow pain-free reviewing of movies in hReview format.

X2V (http://suda.co.uk/projects/X2V): A service (with open source XSLT code
available) for converting hCard to vCard, and hCalendar to iCalendar. X2V enables
hCard content to be downloaded for use in any desktop application that supports
vCard, and hCalendar content to be downloaded for use in any application that
supports iCalendar.

XFN Creator (http://gmpg.org/xfn/creator): An easy-to-use, form-driven cre-
ator for XFN content, by Matt Mullenweg and Tantek Çelik.

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

326

8148AppC.qxp 2/28/07 5:48 PM Page 326

Services
Alexa hCard Search (www.alexa.com/site/devcorner/samples?page=hcard): A
proof-of-concept search engine for hCard-formatted content in Alexa’s web index.

Apple .Mac (www.apple.com/dotmac): Publishes a user’s address book information
using the hCard format.

Google Advanced Search (www.google.com/advanced_search?hl=en): This search
form allows you to specify a license type when searching for pages.

Pingerati (http://pingerati.net): A ping service for microformatted content. Be
sure to notify Pingerati when publishing or modifying microformatted content.

Rubhub (http://rubhub.com): A lookup engine for determining the relationships
between people who author personal websites, based on their XFN markup.

Technorati Microformats Search (http://kitchen.technorati.com/search): A
ping-based search service for microformatted content, which indexes hCard,
hCalendar, and hReview. Notify it of new or changed microformats based content
by “pinging” Pingerati.

Technorati Tag Search (http://technorati.com/tag): A search service from
Technorati that indexes content marked up with the rel-tag microformat. Ping
Technorati at http://technorati.com/ping to notify it of new tagged content.

Yahoo Creative Commons Search (http://search.yahoo.com/cc): Searches for
web-based content based on its licensing information, using rel-license to deter-
mine the use license of the content.

Publishers
Cambodian Yellow Pages (www.yellowpages-cambodia.com): Publishes contact
details for Cambodian businesses using hCard.

Cork’d (http://corkd.com): A wine community site that uses hReview for marking
up members’ wine reviews, XFN for marking up relationships between members,
and hCard for member profiles.

Emurse (http://emurse.com): A service for building, hosting, and publishing
resumes online using the hResume format.

Eventful (http://eventful.com): Publishes details of user-submitted event details
using hCalendar and contact details using hCard.

Flickr (http://flickr.com): Supports geotagging of photos with the geo
microformat and marks up users’ profiles using hCard.

Last.fm (http://last.fm): Publishes details of upcoming concerts using
hCalendar.

LinkedIn (http://linkedin.com): A professional online networking service that
uses hResume for publishing resume details.

PEOPLE, TOOLS, SERVICES, AND PUBLISHERS

327

C

8148AppC.qxp 2/28/07 5:48 PM Page 327

Meetup (http://meetup.com): Publishes details of user-submitted event details
using hCalendar and contact details using hCard.

Multimap (http://multimap.com): Publishes the longitude and latitude of loca-
tion-based search results using the geo microformat.

Revoo (http://revoo.com): A review aggregation and publishing service that both
aggregates reviews published on the Web in hReview format and publishes
reviews in that format.

Upcoming (http://upcoming.org): Publishes details of user-submitted upcoming
events using hCalendar and contact details using hCard.

Yahoo Local (http://local.yahoo.com): Publishes reviews of businesses in the
United States, using hCard for contact details and hReview for the review itself.

Yahoo Tech (http://tech.yahoo.com): Publishes “professional” reviews of tech-
nology, along with user-generated reviews, all published using hReview. Reviewer
details are published using hCard.

Related organizations
Creative Commons (http://creativecommons.org): This organization is devoted
to encouraging more liberal licensing of copyrighted material.

Global Multimedia Protocols Group (http://gmpg.org): This group is the publisher
of XFN and began the early work that later formed the basis of microformats.

IETF (www.ietf.org): The Internet Engineering Task Force (IETF) developed vCard
(RFC 2426), iCalendar (RFC 2445), and hAtom (RFC 4287).

MICROFORMATS: EMPOWERING YOUR MARKUP FOR WEB 2.0

328

8148AppC.qxp 2/28/07 5:48 PM Page 328

8148AppC.qxp 2/28/07 5:48 PM Page 329

8148Index.qxp 2/28/07 6:15 PM Page 330

INDEX

8148Index.qxp 2/28/07 6:15 PM Page 331

A
<a> element, 52
abbr design pattern, 165, 169, 206, 248, 256, 263

date/time values and, 316
datetime design pattern and, 318
encoding machine-readable and human-readable data,

106, 316
geodata and, 316
title attribute, 105, 316
usage examples, 316

<abbr> element, 42, 134, 264, 316
accessibility, improving in HTML markup, 264
Adams, Cameron, 85
Address Book, 8, 11

Mac OS X and, 127
<address> element, 213, 317
adr microformat

adding a rounded-corner border, 116
adding physical addresses to Web pages, 111
benefits of, 114
Çelik, Tantek, 295
Dreamweaver Extensions Suite, 113
fields within, 111
hand-coding content, 111
hCard Creator (hCard-o-matic), 113–114
mapping each adr property to an HTML element, 112
pnh_mf plug-in, 113
Structured Blogging, 113
styling content with CSS, 115
subproperties of, 295
Textpattern Microformats Plug-in, 113
tools for coding, 112
usage example, 296
using adr as the class value for the root element, 112
using the class design pattern, 112
using with hCard, 138

:after selector, 71, 88, 110
Alexa

Alexa Toolbar, 23
hCard, 23

alt attribute, 41, 320
Amazon.com, 5

Alexa and, 23
Anderson, Buzz, 83
Andreesen, Marc, 16
Apple Computer

.Mac online mail application, 22
Safari, 117, 152, 189
Safari 2.0, 42

Arkin, Assaf, 147
Arno, Luke, 234
Atom, 310

as a draft IETF standard (RFC 4287), 226

INDEX

332

attribute selectors, 59, 249
styling content with, 87
support for, in Internet Explorer 7, 87

attributes
alt, 320
class, 317
href, 320
rel, 286, 291–292
rev, 291
src, 320
title, 316
usage conventions, 319

author property, 229
Autoxfn, 293
Avon, 148
axis attribute, 183, 188

B
background image property, 87
Baranovsky, Dmitry, 191
Bartelme, Wolfgang, 87
BDAY field, 133
:before selector, 71
Benjamin, Dan, 21, 241
Berners-Lee, Tim, 89
Berriman, Frances, 233, 313
Bina, Eric, 16
block elements, 45
<blockquote> element, 41
Blogger, 231
blogrolls, 78
Bloxsom, 66, 293

Anderson, Buzz, 83
Autoxfn plug-in, 83

border property, 264
border-radius property (CSS3), 116
Bowman, Douglas, 151
box model bug (Internet Explorer), 118
browsers

“broken” pages and, 32
Camino, 116
designing with progressive enhancement in mind, 59,

71, 116
earliest CSS support in, 31
Firefox, 18, 42, 143
Flock, 116
Gecko-based, 116
implementing experimental CSS properties, 117
including or omitting a DTD on a Web page, 31
Internet Explorer, 18, 42
Internet Explorer 6 and 7, 42
Opera, 42
quirks mode, 31

8148Index.qxp 2/28/07 6:15 PM Page 332

Safari, 117, 152, 189
Safari 2.0, 42
standards (standards-compliant) mode, 31
support for the attribute selector, 59, 71

Bunny’s Technorati Tags, 288

C
Cambodian Yellow Pages, 149
Camino, 116
Carlyle, Benjamin, 310
Cascading Style Sheets (CSS). See CSS (Cascading Style

Sheets)
Casciano, Chris, 56, 147, 211, 234, 287, 299
categories, 231
Cederholm, Dan, 21

interview with, 240–245, 250
microformats.org, 241, 244
oblivious development, 243
Semantic Web, 241
SimpleBits, 240, 242
SimpleQuiz publication, 240
XHTML Friends Network (XFN), 240

Çelik, Tantek, 6, 43, 67, 78, 83, 115, 240, 254, 287, 290–296,
300, 303, 310

citations and quotes, 41
cite attribute, 42
<cite> element, 41
class attribute, 36, 45, 78
class design pattern, 100, 112, 165, 201, 204, 222, 228

<address> element, 317
class attribute, 317
usage examples, 317
using multiple class values, 317

classitis, 37–39, 45, 59
commenting, adding to markup, 259
compound microformats, 74, 95, 99
Conference Schedule Creator, 191
contact property, 306
containment rules, 45
content property, 68, 71, 87–88, 116, 229
controlled vocabulary, 80
Coordinated Universal Time (UTC), 175
Cork’d, 149, 211, 293, 305

Benjamin, Dan, 241
hCard, 20, 243, 245–248
hReview, 21, 243, 247–248
include pattern, 244
interview with Dan Cederholm, 240–245, 250
oblivious development, 243
rel-tag, 243, 248
using CSS to style hReview at, 249–250
XFN, 21, 243

INDEX

333

Creative Commons
creating a customized license, 54
HTML code for publishing a license, 55
licensing copyrighted work, 53
standard license options available, 54

Creative Commons Attribution-ShareAlike license, 209
CSS (Cascading Style Sheets)

<abbr> element, 264
:after selector, 88
attribute selectors, 87, 249
benefits of a simple style sheet, 246
border property, 264
content property, 68
descendent selector, 158–159
designing with progressive enhancement in mind, 59,

71, 116
display property, 244
em-driven design, 151
fixed-width rounded-corner border technique, 118,

120–123
fluid (elastic) rounded-corner border technique, 118
implementing experimental properties, 117
needlessly adding styling to elements, 246
resources for learning, 58
selecting an anchor element with a rel attribute of

license, 59
selecting elements based on their attribute values, 59
styling adr content, 115
styling blocks of content with rounded-corner boxes,

116
styling geo content, 109
styling hCard content, 150–160
styling hReview at Cork’d, 249–250
styling rel-license content, 58–59, 61
styling rel-tag content, 66
styling VoteLinks content, 71
using a descendent selector to style list items, 68
using an inline style, 264
using background images to style rounded-corner

boxes, 118
using the attribute selector, 59
using the float element, 246

CSS Zen Garden (Dave Shea), 37
CSS2

:after selector, 71, 110
:before selector, 71
content property, 71, 116
generated content, 71, 110

CSS3
adding multiple background images to an element, 152
border-radius property, 116
last-child selector, 157

8148Index.qxp 2/28/07 6:15 PM Page 333

D
date design pattern, 228
date/time values and the abbr design pattern, 316
dates, disambiguating, 134
DeBruin, Robert, 143
decimal degrees, 101
definition lists, 259–260
definition of microformats, 7
del.icio.us, 61
descendent elements, 268
descendent selector, 158–159, 222
description property, 208, 301
developing microformats

benefits of adopting an existing schema, 277
codifying current behavior, not stipulating new behavior,

276
conducting problem research (“paving the cowpaths”),

276
creating an examples page, 278
determining whether a specification is stable, 280
developing a draft proposal, 277
developing a draft schema, 280
developing a proposal on a brainstorming page, 279
documenting existing formats and schemas, 279
documenting usage examples, 278
evolving a straw man proposal, 280
examining potentially useful HTML elements and

attributes, 277
example of iCalendar and hCalendar, 280
finding a real-world problem to be solved, 275
getting feedback from the microformats community,

275
reusing others’ work, 277
solving the minimal set of commonly occurring

problems (80/20 rule), 280
tag clouds, as a candidate for a microformat, 275–276
tag clouds, example code, 278
turning a draft into a specification, 280
See also microformats

Diab, Ali, 303
Digital Web magazine and hCalendar, 21
display property, 244
distributed services, 115
<div> element, 36, 39, 44
divitis, 37–38
doctype declaration (DTD)

adding, 31
examples of, 31
including a URL in, 31

draft stage, 200, 212
Dreamweaver, 66

Microformats toolbar, 19, 146
Dreamweaver Extensions Suite, 113, 191

INDEX

334

Dreamweaver Microformats Extension, 287, 289, 293, 299,
302

Drupal, 19
dtend property, 170, 259, 301
dtreviewed property, 205
dtstart property, 170, 300

E
edgeio and hListing, 22
elemental microformats, 74, 95
 element, 34
em-driven design, 151
Emurse, 221, 310
Entourage (Microsoft), 166
entry categories, 231
entry property, 229
entry-title property, 228
Europass, 212, 306
Eventful, 195, 289

GEO, 21
hCalendar, 21
hCard, 21

Evolution, 8, 11
Exefen, 84

F
Faaborg, Alex, 18
favelets, 192
feed categories, 231
Filo, David, 16
Firefox, 42

Operator extension, 18, 144, 289, 295
Smartzilla extension, 114, 144
Tails Export extension, 17, 143, 148, 172
Tails extension, 114, 143, 172, 234, 313

Flickr, 61, 148, 255, 275, 293, 295
geotagging photos, 20, 96
hCard, 20
visible geotags, 94

Flock, 116
folksonomies, 65
formatted name (FN value), 129

G
generated content (CSS2), 71, 110
GEO, 18, 20
geo microformat

<abbr> element, title attribute, 106
Çelik, Tantek, 294
converting from traditional to decimal mapping values,

101

8148Index.qxp 2/28/07 6:15 PM Page 334

decimal degrees, 101
encoding latitude and longitude in Web content, 95
Flickr’s use of, 96, 295
GEO Microformats to XML, 295
Geocoder.us, 105
globally unique identifier (GUID), 95
Google Maps, 101
hCard, 139
Kaply, Michael, 295
latitude and longitude properties, 100, 294
location candidates for using, 96
Maporama, 104
mashing up geodata with Google Maps, 107
Multimap, 100, 102, 295
obtaining geodata, 101, 104–105
Open Guides, 295
Operator extension, 295
root element, class value of geo, 99
root element, properties of, 100
 elements, 100
styling geo content with CSS, 109
tagging photos with location information, 96
usage examples, 294
usage restriction, 95
Wikitravel, 295
Yahoo Maps, 103

GEO Microformats to XML, 295
Geocoder.us, looking up geodata from addresses, 105
geodata, 95, 101

abbr design pattern, 316
GeoRSS, 94, 106
geotagging photos, 20, 96
Global Positioning System (GPS), 94
globally unique identifier (GUID), 95
Google, 4, 290

PageRank system, 68
rel-nofollow microformat, 68
searching by license type, 57

Google Maps
creating a mashup from geo-encoded data, 108
Keyhole Markup Language (KML), 94, 106
mashing up geodata with, 107
obtaining geodata from, 101

Google Usage Rights Search, 287
Goscicki, Paul, 211, 305
Greenwich Mean Time, 175
Gregorian calendar, 135

H
hAtom

archiving feeds from syndicated content, 226
Atom, 310
author property, 229

INDEX

335

Berriman, Frances, 313
Carlyle, Benjamin, 310
categories, as the forerunners of tagging, 231
Çelik, Tantek, 310
content property, 229
date design pattern, 228
differences between hAtom and Atom, 227
entry categories, 231
entry property, 229
entry-title property, 228
feed categories, 231
hand-coding of Atom content, 227
hAtom Creator, 233, 313
hAtom2Atom, 234, 313
hentry element, 227, 232
Janes, David, 310
Kubrick theme, 233
marking up blogs and syndicated content in HTML,

226–227
Moveable Type, 227
NetNewsWire, 234
optional properties, 228, 311
overview, 227
permalink property, 230
processing tools, 234
published property, 228
publishing feeds of frequently updated content, 226
publishing tools, 233
RDF Site Summary, 226
Really Simple Syndication, 226
rel-bookmark, 231
required properties, 228, 311
Rich Site Summary, 226
root element and hfeed element, 227–228
RSS, 226
Sandbox theme, 233
schema, 310
Skelton, Andy, 313
as a subset of the draft Atom 1.0 specification, 227
summary property, 230
syndicated content, 226
Tails extension, 234, 313
updated property, 228
usage example, 312
using in blogging-system and CMS templates, 227
using rel-tag for categories, 231
Wallick, Scott Allan, 313
WordPress, 227–228, 231, 233
WordPress loop, 313
WordPress Sandbox theme, 313

hAtom Creator, 233, 313
hAtom2Atom, 234, 313
hCalendar, 7, 17–21, 23

abbr design pattern, 165, 169

8148Index.qxp 2/28/07 6:15 PM Page 335

adding a class value of url, 171
adding contact information, 173–174
adding location information, 171–173
adding start and end times, 174–176
associating a <th> element with more than one vevent, 187
authoring tools for publishing hCalendar content, 191
benefits of, 191
Çelik, Tantek, 300
class design pattern, 165
Conference Schedule Creator, 191
defining the properties of simple events, 167–171
definition of, 165
description property, 168, 301
Dreamweaver Extensions Suite, 191
Dreamweaver Microformats Extension, 302
dtend property, 170, 259, 301
dtstart property, 170, 300
embedding an hCard in a vevent, 173
entering the start date for an event, 169
Eventful, 195
hCalendar Creator, 191, 302
how Upcoming uses hCalendar, code example, 193–195
iCal, 189
iCalendar, 165, 300
lack of current support for recurring events, 179
Last.fm, 196
Life Lint parser, 192, 302
LiveWriter, 302
marking up events in HTML, 164
marking up two whole-day workshops, 176–179
Meetup, 195
Microsoft Outlook, 189
optional properties of events, 300
Pingerati, 192
publishers using, 192
publishing event information online, 164, 166
required properties of events, 300
specifying a universal time, 175
Suda, Brian, 300, 302
summary property, 168, 300
tackling the two-dimensionality of HTML tables, 183
Technorati Microformats search, 192, 302
Textpattern Microformats Plug-in, 191, 302
Upcoming and, 164, 256
usage example, 301
using HTML tables with, 180–186, 188–189
using the location property name, 171
using X2V to convert to iCalendar, 189, 192
vcalendar root element, 167, 179, 300
vevent class value for single events, 167
Windows Live Writer, 191
World Cup KickOff, 196
X2V, 302
xfy, 191, 302

INDEX

336

hCalendar Creator, 191, 302
hCard, 7, 17–23, 248

<abbr> element, 134
adding a class of value for the telephone property, 141
adding a single telephone number, 140
adding an email address, 141
adopting the schema and semantics of vCard, 128
adr microformat, 138
adr TYPE property in vCard, possible values, 138
BDAY date of birth field, 133
Casciano, Chris, 299
Çelik, Tantek, 296
creating for a company or organization, 137
disambiguating dates, 134
Dreamweaver Microformats Extension, 299
Dreamweaver’s Microformats toolbar, 146
embedding an hCard in an hCalendar vevent, 173
extending the scope of vCard, 296
formatted name (FN value), in vCard, 129
formatted name (FN value), required for hCard, 132
geo microformat, 139
Gregorian calendar, 135
handling multiple addresses, 139
handling URLs, 132
having multiple URLs for a single person, 133
hCard Creator (hCard-o-matic), 147, 299
hKit Microformats Toolkit for PHP5, 147
HTML element with a class value of vcard, 128
inferring the N value from the FN value, 131
International Organization for Standardization (ISO), 134
libraries available for developers, 147
limitation in available email types, 141
locating and extracting hCard content from web pages,

143
marking up new interweb technologies, 142
marking up people, organizations, and places, 127
marking up the names of people, 129
Microformat Parser for Ruby, 147
nickname value, in vCard, 129, 132
optional subproperties, 297
ORG property, 136
overview of, 126–128
Pingerati, 299
pnh_mf plug-in, 299
providing latitude and longitude for places, 139
publishers using, 148
required inclusion of a formatted name (FN), 217
reusing building blocks from vCard, 127
root element, 128
seting the FN and ORG property values to the same, 138
specifying a person’s title and role at an organization, 136
specifying telephone number types in vCard, 140
structured name (N value), in vCard, 129
styling hCard content with CSS, 150–160

8148Index.qxp 2/28/07 6:15 PM Page 336

Suda, Brian, 296
Tails Export extension, 143, 148
Tails extension, 143
Technorati Microformats search, 299
Textpattern Microformats Plug-in, 299
three name elements (types) in vCard, 129
tools for publishing and working with hCard content,

143, 146
turning the FN property into a link, 132
usage examples, 296, 298
use of, at Cork’d, 245–247
using one or more subproperties with the N property, 129
using protocol prefixes, 142
using the abbr design pattern for dates, 134
using vCard’s PHOTO property, 135
using with named locations, 95
vcard class value, 167
vCard properties also supported, 297
vCard, properties of, 128
X2V, 144, 299

hCard Creator (hCard-o-matic), 113–114, 147, 299
headers attribute, 183–184
headings and paragraphs, using appropriately, 39
hentry element, 227, 232
hfeed element, 227–228
hKit Microformats Toolkit for PHP5, 147
hListing, 22
HR-XML, 306
href attribute, 52, 63, 320
hResume

contact property, 306
draft stage, 200, 212
Emurse, 221, 310
Europass, 212, 306
hCalendar element, 214
HR-XML, 306
hResume Creator, 221, 309
hResume WordPress Plug-in, 221, 309
HTML address element, 213
including a formatted name (FN) in hCards, 217
King, Ryan, 212, 306
LinkedIn, 221, 310
listing and tagging skills, 218
listing organizational affiliations, 220
listing published works, 221
marking up educational qualifications, 214
marking up work experience, 216
Microformat Resume Plug-in for WordPress, 221, 309
optional properties, 306
root element, hcalendar class value, 214
root element, hresume class value, 212
Sayid, Sajid, 221, 309
schema, 212
Spur, Inc., 221

INDEX

337

styling content with CSS, 222
summary property, 212
tools and services, 221
usage example, 306–307
using hCard to mark up contact details, 213
using the include pattern, 217
vevents, 214, 216
XML Résumé Library, 212

hResume Creator, 221, 309
hResume WordPress Plug-in, 221, 309
hReview, 7, 19–21, 56

Çelik, Tantek, 303
Cork’d, 211, 305
creating one’s own rating system, 206
Creative Commons Attribution-ShareAlike license, 209
current version of, 201
description property, 208
development of, 200
Diab, Ali, 303
draft stage, 200
dtreviewed property, 205
embedding hCard or hCalendars within, 204–205
FN class value, 203–205
goal of, 200
Goscicki, Paul, 305
hReview Creator, 211, 305
hReview WordPress Plug-in, 211, 305
internationalization concerns, 203
item property, 203–204, 267, 303
lack of type-specific fields, 200
marking up permalinks, 209
McAllister, Ian, 303
optional properties, 303
ordering of elements, 201
Panzer, John, 303
publishing tools, 211
ratings property, 206
rel-license, 209, 286
review sites using, 211
reviewer property, 205
Revoo, 211, 305
Rifkin, Adam, 303
root element, hreview class value, 201
schema, 201
Scott, Andrew, 305
Sippey, Michael, 303
styling content with CSS, 222
summary property, 201
tagging a review with rel-tags, 208
Textpattern Microformats Plug-in, 211, 305
type property, currently accepted values, 202
usage example, 303–304
use of, at Cork’d, 247–248
use of, at Yahoo Local, 261–264

8148Index.qxp 2/28/07 6:15 PM Page 337

use of, at Yahoo Tech, 264–268
using an hCard with an FN value of anonymous, 205
version field, 201
WP Movie Ratings, 211, 305
Yahoo Tech, 211, 305

hReview Creator, 211, 305
hReview WordPress Plug-in, 211, 305
HTML

<a> element, 52
<abbr> element, 42
adapting vCard for, 9
adding a background image to a license link using CSS,

58–59, 61
adding icons to XFN links, 87
<address> element, 8
:after selector, 88
alt attribute, 41
attribute conventions, 319
axis attribute, 183, 188
block elements, 45
<blockquote> element, 41
blockquote, use of, 248
Çelik, Tantek, 43
choosing a strict doctype to validate against, 31
citations and quotes, 41
cite attribute, 42
<cite> element, 41
class attribute, 36, 45, 78
classitis, 37–39, 45, 59
code for publishing a Creative Commons license, 55
compounds in, 277
containment rules, 45
content property, 87–88
controlled vocabulary, 80
creating categories of table cells, 188
creating one’s own semantic building blocks, 47
CSS Zen Garden (Dave Shea), 37
defining additional link types, 53
descendent elements, 268
difference between ids and classes, 46
<div> element, 36, 39, 44
divitis, 37–38
DTD, examples of, 31
elements and attributes as building blocks, 36
 element, 34
em-driven design, 151
excessive use of classes and divs, 37–38
fixed-width rounded-corner border technique, 118,

120–123
fluid (elastic) rounded-corner border technique, 118
 element, 29
headers attribute, 183–184
history of, 28
href attribute, 52, 63

INDEX

338

HTML compound, definition of, 43
id attribute, 36, 45, 184
improving accessibility in markup, 264
inline elements, 45
introduction of presentational elements, 29
legacy systems and the ideal markup solution, 263
<link> element, 45, 52
lists and site navigation, 40
making code modular and embeddable, 9
margin, 60, 72–73
marking up calendar events in, 164
marking up only the logical structure of Web pages, 45
meta element, 64
no built-in mechanism for marking up contact details,

126
not a presentational markup language, 30
<p> element, 41
padding, 59–60, 66, 72–73
<q> element, 41
rel attribute, 48, 52, 78, 80
rel=“copyright”, 52
rel=“next”, 52
rel=“stylesheet”, 52, 79
rev attribute, 52, 78
scope attribute, 183–184, 188
screen-reader software and, 39–40
search engines and heading markup, 39
selecting an anchor element with a rel attribute of

license, 59
semantic consistency and class and id attributes, 47
semantic HTML, definition of, 36
 element, 36, 39, 44
 element, 34
structural and semantic use of, 29
tables and their valid uses, 35, 262
<tbody> element, 262–263
<th> element, 184
title attribute, 42
trend toward structured, semantic HTML, 10
understanding the spirit of correct markup, 35
using attribute selectors for styling content, 87, 249
using background images to style rounded-corner

boxes, 118
using definition lists, 259–260
using headings and paragraphs appropriately, 39
using lists appropriately, 39
using tables with hCalendar, 180–186, 188–189
using the CSS attribute selector, 59
W3C validator, 173

HTML compound, definition of, 43
Hume, Andy, 150
Humphries, Bill, 233

8148Index.qxp 2/28/07 6:15 PM Page 338

I
iCal, 11, 18, 20, 166

iCalendar format and, 189
X2V and, 190

iCalendar
adding a class value of url, 171
defining the properties of simple events, 167–171
description property, 168
disadvantages of, 165
Entourage (Microsoft), 166
events as their own distinct microformat, 167
example of, 165
iCal, 166
IETF RFC 2445, 165
interchange format for publishing calendar information,

166
purpose of, 165
summary property, 168
support for recurring events, 179
using for whole calendars, 167
using the dtstart and dtend properties, 170
using the location property name, 171
vcalendar root element, 167

IceRocket Tags, 289
icons, adding to XFN links, 87
id attribute, 36, 45, 184, 318
IETF, goal of, 127
include pattern, 217, 244, 267

id attribute, 318
<object> element, 318
usage examples, 318
using a link with a class of include, 319

index/search/read paradigm, 6
inline elements, 45
inline style, 264
International Organization for Standardization (ISO)

Coordinated Universal Time (UTC), 175
standard format for date and time interchange, 134, 175

internationalization, 288
Internet Engineering Task Force (IETF), 8
Internet Explorer, 18, 42

box model bug, 118
Internet Explorer 6, 42, 59
Internet Explorer 7, 42, 59

support for attribute selectors, 87
Internet Movie Database, 5
item property, 203–204, 267, 303

J
Janes, David, 310

INDEX

339

K
Kaply, Michael, 18, 144, 289, 295
Keyhole Markup Language (KML), 94, 106
keyword attribute, 64
King, Ryan, 212, 306
Koechley, Nate, 264

interview with, 254–255, 268
Kubrick theme, 233

L
last-child selector (CSS3), 157
Last.fm, 196
latitude property, 294
Life Lint parser, 192, 302
<link> element, 45, 52
link microformats, 74
LinkedIn, 221, 310
lists, using appropriately, 39
LiveJournal, 289
LiveWriter, 302
longitude property, 294
Lucas, Tim, 85

M
.Mac online mail application, 22
Maporama, 104
margin, 60, 72–73
marking up address information semantically, 8
Marks, Kevin, 287, 290–291
mashups

chicagocrime.org (Adrian Holovaty), 106
popularity of, 109
using geodata in map mashups, 106

McAllister, Ian, 303
McLellan, Drew, 19, 146–147, 191, 287, 289
Meetup, 195
Messina, Chris, 66, 87, 152
meta element

keyword attribute, 64
problems with using, 64

metadata, definition of, 52
Meyer, Eric, 28, 78, 292
Microformat Parser for Ruby, 147
Microformat Resume Plug-in for WordPress, 221, 309
microformats

abbr design pattern, 105, 316
<abbr> element, 316
adding commenting to markup, 259
adr, 295

8148Index.qxp 2/28/07 6:15 PM Page 339

benefits of, 10
building on the existing skills of web developers, 10
capturing emergent behavior in, 64
Çelik, Tantek, 6
class design pattern, 100, 317
codifying current behavior, not stipulating new behavior,

276
compound, 74, 95, 99
compound microformat properties as root element

descendents, 268
content aggregators and indexers, 148
controlled vocabulary, 80
creating rich semantic markup for the Web, 6
datetime design pattern, 318
defining additional link types, 53
definition of, 7
as deliberately evolutionary, 10
design patterns, 316
designing for humans first, machines second, 9
developing and publishing microformatted content, 19
draft stage, 200
Dreamweaver Microformats Extension, 287
Dreamweaver Microformats toolbar, 19
Drupal, 19
elemental, 74, 95
em-driven design, 151
enabling decentralized services, 10, 57, 61
extracting addresses from unstructured text, 94
filling a need that HTML cannot, 48
Flickr, 255
folksonomies, 65
formatting vs. ownership of data, 254
GEO, 18, 20, 294
geodata, 95
hAtom, 310
hCalendar, 7, 17–19, 20–23, 300
hCard, 7, 17–23, 95, 126–128, 296
hListing, 22
how new microformats are developed, 274–281
hResume, 306
hReview, 7, 19–21, 56, 302
HTML attribute conventions, 319
id attribute, 318
importance of the attribute values of elements, 100
include pattern, 318
including nonmicroformatted content in compound

microformats, 201
internationalization, 288
Internet Explorer and, 18
interoperability of Web-based data and applications, 18
interview with Dan Cederholm, 240–245, 250
link, 74
location microformats, overview of, 94
mailing list for the microformats community, 275

INDEX

340

making code human-readable, modular, and
embeddable, 9

marking up address and geographical data, 94
marking up blogs and syndicated content in HTML,

226–227
microformats.org, 6, 276
Movable Type, 19
no mechanism in HTML for marking up contact details,

126
ordering of elements, 201
Pareto principle (80/20 rule), 180
pnh_mf plug-in, 287
principles underlying, 7, 274
publishers using, 20
question of voiding copyright, 254
rel attribute, 78, 80, 231
rel design pattern, 319
rel=“stylesheet”, 79
rel-bookmark, 231
rel-license, 53, 55, 209, 286
rel-nofollow, 68, 289
rel-tag, 18, 22, 62–63, 231, 287
reusing building blocks from existing standards, 8
rev attribute, 78
root element, 99
root element, in compound microformats, 167
schemas, definition of, 200
simplicity of, 240
solving specific problems, 8
South by Southwest (SxSW) 2004 technology

conference, 6
specification stage, 200–201
specifications, 6
starting simply, 8
support for, among publishers and online services, 17
tag clouds as a candidate for a microformat, 275–276
tag clouds, example code, 278
tag space, 63, 288
tag value, 63
Technorati’s adoption and promotion of, 115
Texpattern, 19
Textpattern Microformats Plug-in, 287
use of, at Upcoming, 255–256
using descendent selectors in, 246
using invalid constructs, 169
using patterns to formalize a markup approach, 106
using the abbr design pattern for entering dates, 169
using the same class value with different kinds of

elements, 100
vCard, 8, 23, 95, 111, 128
VoteLinks, 69, 291
wiki for, 276
WordPress, 19

8148Index.qxp 2/28/07 6:15 PM Page 340

XFN (XHTML Friends Network), 6–7, 21, 78–79, 81–84,
86, 88–89, 292

xFolk, 63
Yahoo, 20, 254
Yahoo Local, 255, 261–264
Yahoo Tech, 255, 264–268
See also developing microformats

microformats.org, 241, 244, 268, 276
hCard Creator (hCard-o-matic), 147

Microsoft
Gates, Bill, 11
Ozzie, Ray, 11

Microsoft Outlook, 127, 189
support for iCalendar format, 192

Mosaic, 16
Movable Type, 19, 83, 227, 290
MSN, 290
Mullenweg, Matt, 78, 83, 240, 292
Multimap, 94, 100, 139, 295

obtaining geodata from, 102

N
NetNewsWire, 234
Netscape Communications, 16
Network Working Group and RFC 2119, 53
nickname value, 129, 132
not-yet-semantic Web, 5

O
<object> element, 318
oblivious development, 243
ODEO, 289
Open Guides, 295
Opera, 42
Operator extension, 18, 289, 295
ORG property, 136
Outlook, 8, 11

P
<p> element, 41
padding, 59–60, 66, 72–73
PageRank system, 68, 289
Panzer, John, 303
Pareto principle (80/20 rule), 180
permalink property, 230
permalinks, 209
PHOTO property, 135
Pingerati, 192, 299

sending an HTTP GET to notify of updated content, 148
types of microformatted listings, 115

INDEX

341

pnh_mf plug-in, 113, 147, 191, 211, 287–288, 299
progressive enhancement, designing with, 59, 71, 116
published property, 228
publishers

Apple Computer, 22
Cork’d, 21
Digital Web magazine, 22
edgeio, 22
Eventful, 21
Flickr, 21
Upcoming, 21
Vitamin magazine, 21
Yahoo, 20

publishing reviews on the Web, 4

Q
<q> element, 41
quirks mode, 31, 118

R
ratings property, 206
RDF Site Summary, 226
Really Simple Syndication, 226
rel attribute, 48, 70, 78, 291–292, 319

definition of, 52
expressing the relationships between pages and people,

80
possible values for, 52
possible XFN values for, 80

rel design pattern
rel attribute, 319
rel-tag, 319
usage example, 319

rel=“copyright”, 52
rel=“me”, 82
rel=“met”, 81
rel=“next”, 52
rel=“stylesheet”, 52
rel-bookmark, 231
rel-license, 209

adding a license to a Web page, 56
creating with a Dreamweaver extension, 56
enabling decentralized services with, 57
Google Usage Rights Search, 287
having different licenses on a single Web page, 56
hReview, 286
licensing copyrighted work, 53
rel attribute, 286
rel=“license” attribute, 56–57
searching Google by license type, 57
selecting an anchor element with a rel attribute of

license, 59

8148Index.qxp 2/28/07 6:15 PM Page 341

styling content with CSS, 58–59, 61
usage example, 55, 286
Yahoo Creative Commons Search, 57, 287

rel-lint tool, 289
rel-nofollow

adding to a Web page, 69
Çelik, Tantek, 290
Google, 290
issues regarding, 68
Marks, Kevin, 290
Moveable Type, 290
MSN, 290
PageRank and link spam, 289
Textpattern, 290
usage example, 290
WordPress 1.5, 290
Yahoo, 290

rel-tag, 18, 22, 248
benefits of using, 64
Bunny’s Technorati Tags, 288
Çelik, Tantek, 287
Dreamweaver Microformats Extension, 289
Eventful, 289
IceRocket Tags, 289
identifying a link as a microformatted tag link, 319
LiveJournal, 289
Marks, Kevin, 287
ODEO, 289
Operator extension, 289
pnh_mf plug-in, 288
rel-lint tool, 289
Simpletags, 288
styling content with CSS, 66
tag space, 288
tagging an hReview with, 208
Tagging plug-in, 289
Technorati Tag search, 289
tools with plug-in support for, 65
tru_tags, 288
usage examples, 62–63, 288

rel-tag microformat, 231
Request for Comment (RFC), 8, 127
Reset CSS, 264
rev attribute, 70, 78, 291

contrasted with the rel attribute, 52
definition of, 52

reviewer property, 205
Revoo, 211, 305
Rich Site Summary, 226
Rifkin, Adam, 303
Robinson, D. Keith, 83

INDEX

342

root element, 99, 128, 167
compound microformats and, 180

RSS and XML, 226
Rubhub, 293

S
Safari, 117, 189

<object> element in, 244
Safari 2.0, 42
Sandbox theme, 233
Sayid, Sajid, 221, 309
Scalable Vector Graphics (SVG), 4
schema

definition of, 200
definition of, in XML, 166

Schiller, Scott, 151
scope attribute, 183, 188
Scott, Andrew, 211, 305
screen-reader software, 39–40
semantic HTML, definition of, 36
Semantic Web, 10, 241
services

Alexa, 23
Pingerati, 23
Technorati, 22–23

Shea, Dave, 37
Sifry, David, 115
SimpleBits, 240, 242
SimpleQuiz publication, 240
Simpletags, 288
Sippey, Michael, 303
site navigation and lists, 40
Skelton, Andy, 233, 313
South by Southwest (SxSW) 2004 technology conference, 6
 element, 36, 39, 44
specification stage, 200–201
specifications, 6
Spur, Inc., 221
src attribute, 320
standards (standards-compliant) mode, 31
 element, 34
Structured Blogging, 9, 113
structured name (N value), 129
subscription services, Web-based, 226
Suda, Brian, 69, 78, 296, 300, 302

X2V and, 107, 114
summary property, 201, 212, 230, 300
Sunbird, 18, 20
Surowiecki, James, 5
syndicated content, 226

8148Index.qxp 2/28/07 6:15 PM Page 342

T
tables, valid uses in HTML/XHTML, 35, 262
tag clouds, 275–276, 278
tag space, 63, 288
tag value, 63
tagging

blog posts and, 64
Bloxsom support for, 66
definition of, 61
del.icio.us, 61
Dreamweaver support for, 66
Flickr, 61
folksonomies, 65
href attribute, 63
low cost of, 65
tag space, 63
tag value, 63
Technorati’s tag search feature, 64
Textpattern support for, 66
tools for, 65
WordPress support for, 65

Tagging plug-in, 289
Tails Export extension, 17, 172

DeBruin, Robert, 143
Tails extension, 234, 313

displaying a summary of all microformatted page
content, 143

using as a microformats debugging tool, 173
Yu, Calvin, 143, 173

<tbody> element, 262–263
Technorati

adoption and promotion of microformats, 115
as a common tag space, 288
hCalendar, 23
hCard, 23
Microformats search, 148
Microformats search engine, 192
Pingerati, 115, 148
Sifry, David, 115
tag search feature, 64, 289
Technorati Contacts Feed Service, 23
Technorati Events Feed Service, 18, 23
Technorati Kitchen, 23
use of author-defined tags, 22
use of reciprocal rel=“me” XFN links, 84
vCard, 23
X2V service, 192

Technorati Microformats search, 299, 302
Technorati Tag search, 64, 289
Texpattern, 19, 66, 290

plug-in for creating rel-licenses, 56
pnh_mf plug-in, 147, 191, 211

INDEX

343

Textpattern Microformats Plug-in, 113, 211, 287, 299, 302,
305

title attribute, 42, 316
tru_tags, 288
type property, 202

U
Upcoming, 164, 293

adding commenting to markup, 259
adding microformat markup to existing markup, 259
hCalendar, 20, 256
hCalendar, code example, 193–195
site features, 256

updated property, 228
URL

including in a DTD, 31
URL property, 132

V
vcalendar root element, 167, 179, 300
vCard, 23

<abbr> element, 134
adding an email address, 141
Address Book (Mac OS X), 127
adr microformat, 138
adr subset, 8, 111
adr TYPE property, possible values, 138
BDAY date of birth field, 133
class value, 167
code example, 127
disambiguating dates, 134
“electronic business card” format, 127
encoding geodata, 95
formatted name (FN value), 129
geo microformat, 139
Gregorian calendar, 135
having multiple URLs for a single person, 133
IETF standard, 127
International Organization for Standardization (ISO), 134
limitation in available email types, 141
Microsoft Outlook, 127
nickname value, 129, 132
not a human-friendly format, 128
ORG property, 136
PHOTO property, 135
properties of, 128
property names defined in capital letters, 129
Request for Comment (RFC), 127
requiring both N and FN values in all vCards, 131
RFC2426, 127

8148Index.qxp 2/28/07 6:15 PM Page 343

specifying telephone number types, 140
structured name (N value), 129
three name elements (types), 129
using the abbr design pattern for dates, 134
using X2V to add a downloadable vCard, 144

version field, 201
vevents, 214, 216

class value, 167
Vitamin magazine and hCard, 21
VoteLinks

benefits of using, 70
Çelik, Tantek, 291
Marks, Kevin, 291
purpose of, 69
rel and rev attributes, 70, 291
styling content with CSS, 71
usage examples, 291
values for the rev attribute, 70

W
W3C validator, 173
Wallick, Scott Allan, 233, 313
Web

early development of, 16
moving beyond the index/search/read paradigm, 6
not-yet-semantic Web, 5
publishing reviews on, 4
RSS and Web applications, 226

Web Connections, 85
Web Standards Project (WaSP), 19, 113, 220, 287

McLellan, Drew, 146
WebKit, 117
Wikipedia, 46

as a common tag space, 288
Wikitravel, 295
Wilson, Chris, 18, 173
Windows Live Writer, 191
WordPress, 19, 65, 227–228, 231, 233, 293

Link Relationship (XFN) form, 82
Mullenwegg, Matt, 83

WordPress loop, 313
WordPress Sandbox theme, 313
World Cup KickOff, 196
World Wide Web Consortium (W3C), 8, 28

HTML validator, benefits of using, 31
using its online HTML validator, 32
W3C Open Source License, 192
W3C validator, 173

WP Movie Ratings, 211, 305

INDEX

344

X
X2V, 18, 107, 114, 299, 302

adding a downloadable vCard, 144
converting hCalendars to iCalendar, 189, 192
extracting hCards and microformatted content from

web pages, 144
licensing under the W3C Open Source License, 192
making a .vcf vCard file available for downloading, 144
as an open source set of XSLT files, 147

XFN (XHTML Friends Network), 6–7, 21, 240
adding a class value to XFN content, 87
adding icons to XFN links, 87
Autoxfn, 293
Bloxsom blogging platform, 83, 293
Çelik, Tantek, 292
content property, 88
controlled vocabulary for relationships, 78, 80
Cork’d, 293
designations of, 292
determining legitimate claims to websites, 84
Dreamweaver Microformats Extension, 293
Exefen, 84
Flickr, 293
inherent design philosophies, 81
lack of gender-specific descriptions, 81
Meyer, Eric, 292
Mills, Chris, 78
Moveable Type, 83
Mullenweg, Matthew, 292
overview of, 78–80
rel attribute, 80, 292
rel=“me”, 82
rel=“met”, 81
rel=“stylesheet”, 79
Rubhub, 293
styling content with CSS, 87
Technorati and reciprocal rel=“me” links, 84
Upcoming, 293
usage examples, 293
using asterisks to style links, 88
using attribute selectors for styling content, 87
using the :after selector, 88
Web Connections, 85
WordPress 2, 293
WordPress support for, 82
XFN Creator, 83, 293
XFN-compatible tools, 82

XFN Creator, 83, 293
xFolk, 63
xfy, 191, 302

8148Index.qxp 2/28/07 6:15 PM Page 344

XHTML
HTML compound, definition of, 43
tables and their valid uses, 35
using lowercase for attribute values in hCard, 129

XHTML 1.1
DTD, example of, 31
no Transitional version of, 31

XHTML Friends Network. See XFN (XHTML Friends
Network)

XML
Keyhole Markup Language (KML), 94, 106
RSS and, 226
schema, definition of, 166

XML Résumé Library, 212

Y
Yahoo, 16, 290

adoption and use of microformats, 20, 254–255
being an early adopter of changing specifications, 255
Flickr, 20
hCard, 20
hReview, 20
interview with Nate Koechley, 254–255, 268
Upcoming, 20, 256

INDEX

345

Yahoo Design Pattern Library, 20
Yahoo Developer Network, 20
Yahoo User Interface (YUI) Library team, 254

Yahoo Creative Commons Search, 57, 287
Yahoo Local, 148

hReview, use of, 261–264
use of multiple ratings, 263

Yahoo Maps
Geocoding API, 105
GeoRSS, 94, 106
looking up geodata from addresses, 105
obtaining geodata from, 103

Yahoo Tech, 149, 211, 305
hReview, use of, 264–268

Yang, Jerry, 16
Yu, Calvin, 173

Z
Zagat, 5
ZoomIn, 94
Zune, 16

8148Index.qxp 2/28/07 6:15 PM Page 345

	Microformats: Empowering Your Markup for Web 2.0
	Table of Content
	PART ONE: INTRODUCING MICROFORMATS
	Chapter 1: What Are Microformats?.
	Chapter 2: The State of the Art in Microformats

	PART TWO: USING MICROFORMATS
	Chapter 3: Structural and Semantic HTML
	Chapter 4: Link-Based Microformats: rel-license, rel-tag, rel-nofollow, and VoteLinks.
	Chapter 5: Microformat to Describe Relationships Between People: XFN
	Chapter 6: Location Microformats: geo and adr
	Chapter 7: Contact Information Microformat: hCard
	Chapter 8: Event Microformat: hCalendar
	Chapter 9: Review and Resume Microformats: hReview and hResume
	Chapter 10: Syndicated Content Microformat: hAtom

	PART THREE: CASE STUDIES
	Chapter 11: Case Study: Cork’d
	Chapter 12: Case Study: Yahoo

	PART FOUR: DEVELOPING MICROFORMATS
	Chapter 13: The Process of Developing Microformats

	PART FIVE: APPENDIXES
	Appendix A: Microformat Specification Reference
	Appendix B: Microformat Design Patterns
	Appendix C: People, Tools, Services, and Publishers

	Index

