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Preface

The field of multirate signal processing has witnessed a great deal of progress
and an increasingly wide range of applications since the publication of the
first textbook by Crochiere and Rabiner (1983). However, this progress has
been mainly in the area of deterministic systems with emphasis on perfect-
reconstruction and/or orthogonal systems.

This book introduces a statistical theory for extracting information from
signals that have different sampling rates. This new theory generalizes the
conventional (deterministic) theory of multirate systems beyond many of its
constraints. Furthermore, it allows for the formulation of several new problems
such as spectrum estimation, time-delay estimation and sensor fusion in the
realm of multirate signal processing.

I have arrived at the theory presented here by integrating concepts from
diverse areas such as information theory, inverse problems and theory of in-
equalities. The process of merging a variety of concepts of different origin
results in both merits and shortcomings. The former include the fresh and un-
differentiated view of an amateur, providing scope of application. The latter
include a lack of in-depth experience in each of the original fields. Granted,
this may lead to gaps in continuity, however it goes without saying that a
complete theory can seldom be achieved by one person and in a short time.

My goal in writing this book has been to inspire the reader to initiate his
own research and add to the theory of multirate statistical signal processing.
I have tried to present background material, key principles, potential appli-
cations and open research problems while striking the appropriate balance
between clarity and brevity. I hope you find it informative, useful and above
all interesting!
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1

Introduction

1.1 Digital signal processing

Digital signal processing (DSP) is one of the great technological innovations
of the twentieth century. DSP is the art of analysis, manipulation and in-
terpretation of signals using digital computers. This includes a wide variety
of goals: noise reduction, classification, enhancement, compression, filtering
and much more. With the increasing use of general-purpose and embedded
computers the usage and need of digital signal processing has increased dra-
matically. DSP has revolutionized not only industrial applications such as
radar, communications receivers and medical imaging, but also our everyday
life. Today, advanced DSP computations are done routinely in mobile phones,
in entertainment appliances such as CD/DVD/MP3-players, in high-definition
television (HDTV), in car safety systems and so on. DSP will remain as one
of the most powerful technologies to shape science and engineering in the
twenty-first century as well.

The popularity of digital signal processing stems from certain advantages:
DSP filters do not need tuning and may be exactly duplicated from unit to
unit; temperature variations are virtually non-existent; and DSP represents
the ultimate in flexibility, since general-purpose DSP hardware can be pro-
grammed to perform many different functions, often eliminating other hard-
ware.

The world of science and engineering is filled with signals: images captured
by remote space probes, voltages generated by the heart and brain, radar and
sonar echoes, seismic vibrations, and countless other natural and artificial
sources. Virtually all natural signals are analog, which means they are real-
valued quantities varying continuously in time. In order to process an analog
signal on a digital computer the signal must be digitized. An analog signal
x(t) can be digitized using a process involving sampling and quantization.
Sampling simply means taking samples of the signal at discrete times t = nTs,
n = 0, 1, 2, 3, etc. The rate at which the signal is sampled is called the sampling
rate or sampling frequency and is denoted fs. Clearly, fs = 1/Ts.

1



2 1 Introduction

One of the main consequences of sampling an analog signal is a phenom-
enon known as aliasing. Aliasing is an effect that causes different continuous
signals to become indistinguishable (or aliases of one another) when sampled.
When this happens, the original signal cannot be uniquely reconstructed from
the sampled signal. If the effective bandwidth of an analog signal x(t) is W
Hz, the famous Nyquist Sampling Theorem states that the minimum sampling
frequency needed for aliasing-free discretization of x(t) is fs = 2W .

Aliasing is a major concern in the analog-to-digital conversion of au-
dio/visual signals: improper sampling of the analog signal might cause high-
frequency components to be aliased with genuine low-frequency ones, and be
incorrectly reconstructed as such during the subsequent digital-to-analog con-
version. To prevent this problem, the signals must be appropriately filtered
before sampling.

Once a signal has been sampled, one needs to convert the samples into a
binary (digital) number that is directly proportional to the real-valued input
sample. This process is called quantization. Obviously, this is a process of
approximation since the number of bits in the binary output limits the number
of discrete signal levels that can be represented. Therefore, some information
is lost.

Remark 1.1. In this book we assume that sufficiently long binary numbers are
used during analog to digital conversion so that the error caused by quan-
tization (or quantization noise as it is often called) is negligible. In view of
this, we use the terms discrete-time signal and digital signal interchangeably
unless otherwise stated.

In addition to quantization noise, noise is introduced in practical analog to
digital converters (ADCs) by slight variations in the exact times of sampling.
Phase noise in the ADC’s clock source, as well as other inaccuracies in the
sampling mechanisms contribute to this aperture jitter noise.

The nature of the above mentioned noise sources is such that if we could
increase the sampling rate by a factor of N , then digitally filter the output
and convert it back down to a lower rate, we could improve the signal to noise
ratio by almost the factor N . This is because both the quantization noise and
the aperture jitter noise would be spread over a larger band width thus much
of the high-frequency noise would be eliminated by the digital filter. This
technique is called over sampling1. Sampling at high rates is beneficial during
digital to analog conversion as well. It reduces the effect of zero-order sample-
and-hold distortion used in practical digital to analog converters (DACs) and
simplifies the design of the filters used to avoid aliasing.

1 So-called sigma-delta converters use this method to achieve the best possible dy-
namic range. They use one-bit quantizers at a very high sampling rate and digital
decimation techniques (described later in this chapter) to reduce the sampling fre-
quency, thus improving signal to noise ratio. Sigma-delta converters represent the
state of the art in ADC technology at the time of this writing.
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While an artificial increase in sampling rate is beneficial both during analog
to digital conversion and converting back to analog, lower internal sampling
rates help reduce the computational burden in DSP systems. In addition, when
digitally filtering some signals, making the filters’ bandwidth a large fraction
of the sampling frequency makes it easier to build sharp-skirted filters —
exactly what DSP is famous for. In view of these considerations, there is a
clear need for sampling rate conversion in DSP systems. To meet this need
and to provide a deeper understanding of how to process digital signals in
systems that require more than one sampling rate, an entire subfield of digital
signal processing known as multirate signal processing has been developed.

1.2 Multirate signal processing

Conceptually, there is a very simple and straightforward approach to changing
the sampling rate of a digital signal. In this approach one merely reconstructs
the continuous-time signal from the original set of samples and then resamples
the signal at the new rate (assuming that no additional anti-aliasing filtering
is required). This approach, however, is not without problems in practice. A
major practical problem is that the ideal operations required to reconstruct
the continuous-time signal from the original samples and to resample the
signal at the new rate cannot be implemented exactly. Due to limitations of
practical ADC and DAC devices, the resulting signal will have additive noise
(due to resampling), signal-dependent distortions (due to non-ideal samplers),
and frequency distortions (due to non-ideal frequency response of the analog
filters used). These practical distortions can be minimized by a careful design
of the individual components used but cannot be eliminated entirely.

Multirate signal processing techniques provide a very attractive alternative
to the above analog approach to sampling rate conversion. The following basic
operations are essential in multirate signal processing:

(i) Decimation (sampling rate decrease) by an integer factor M
(ii) Interpolation (sampling rate increase) by an integer factor L

1.2.1 Decimation by an integer factor M

Consider a discrete-time signal x(n) which has been obtained by sampling
an analog signal x(t). Assume that the sampling frequency is fs and that
x(n) is a full-band signal, that is, its spectrum is nonzero for all frequencies
in the interval [−fs/2 fs/2], except possibly at an isolated set of points. To
convert the signal x(n) to a signal y(m) corresponding to a lower sampling
rate f

′

s = fs/M , one must first filter x(n) with a digital low-pass filter that
approximates the ideal characteristics

H(ejω) =
{

1, |ω| < π/M
0, otherwise (1.1)
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The sampling rate reduction is then achieved by keeping only every Mth
sample of the filtered output. Let v(n) be the low-pass filter’s output. Then,
we have

y(m) = v(Mm). (1.2)

This process is illustrated in Fig. 1.1. The box in this figure containing a
down arrow followed by an integer is called a decimator or down sampler and
corresponds to the resampling operation described by (1.2).

x(n)
H(z)

v(n) y(m)
M 

fs fs f  =f  /M s
'

s

Fig. 1.1. Reducing the sampling rate of a signal by an integer factor M.

The purpose of the lowpass filter H(z) is to filter x(n) sufficiently so that
its energy above the frequency ω = π/M is negligible. Thus it serves as an
antialiasing filter. If the frequency response H(ejω) of this filter closely ap-
proximates the ideal response of (1.1), then

Y (ejω) =
1
M

X(ejω/M ), |ω| < π. (1.3)

1.2.2 Interpolation by an integer factor L

Consider the process of increasing the sampling rate (interpolation or upsam-
pling) of a discrete-time signal x(n) by an integer factor L. This implies that
we must interpolate L − 1 new sample values between each pair of sample
values of x(n). This is done by inserting L − 1 zeros between each pair of
samples of x(n) resulting to the signal

u(m) =
{

x(m/L), m = 0,±L,±2L, . . .
0, otherwise (1.4)

Inserting zero samples in between the samples of x(n) results in unwanted
spectral image components. To eliminate this artifact, it is necessary to filter
the signal u(m) with a digital lowpass (anti-imaging) filter that approximates
the ideal characteristics

F (ejω) =
{

L, |ω| < π/L
0, otherwise (1.5)

Note that the filter has a gain L in the passband. This is necessary to
ensure that the amplitude of the final interpolated signal y(m) is correct.
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The process of interpolating a digital signal by a factor of L is illustrated in
Fig. 1.2. As with the resampling operation, the block diagram symbol of an up
arrow with an integer corresponds to increasing the sampling rate as specified
by (1.4), and is referred to as expander or upsampler.

x(n)
F(z)

u(m) y(m)
L 

fs f  =L f   s
' s f    s'

Fig. 1.2. Increasing the sampling rate of a signal by an integer factor L.

Remark 1.2. From now on, we will use the same variable name, say n, to de-
note the time index for the signals before and after a decimator or expander
block. This is a common practice and is done to simplify notation. It is implic-
itly understood that the indices before and after down/up sampling pertain
to different time instances.

The reader is referred to the excellent texts Crochiere and Rabiner (1983),
Vaidyanathan (1993), Fliege (1994) and Mertinz (1999) for further reading on
multirate signal processing theory and techniques.

1.3 Applications of multirate signal processing

The basic multirate signal processing building blocks introduced above are
key to many signal compression and communication applications. In this sec-
tion, we mention two classic applications where multirate signal processing
techniques have proved viable. We will also introduce a new third area where
we believe multirate techniques can have significant potential impact.

1.3.1 Scalable representation of multimedia signals

In many multimedia applications, it’s very desirable to store or broadcast a
signal in multiple resolutions. This is to say, it is desirable to have a signal
representation where various “coarse” or “fine” approximations to the signal
are readily retrieved.

posing the original signal into M components. The components are formed
such that the first component represents the signal at the lowest resolution,

In principle, a multi-resolution representation can be obtained by decom-
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the second component, when added to the first one, provides a better ap-
proximation; the third component, once added to the first two, provides an
even better approximation and so on. Finally, the original signal (i.e. highest
quality approximation) is retrieved when all the components are put together.

A very interesting question is whether it is possible to obtain an “optimal”
multi-resolution representation where every approximation provided by the
representation is as good as possible at it’s respective resolution. When the
answer is yes, the resulting decomposition is called scalable or optimal in the
sense of scalability.

x(n)

H  (z)0

0
v  (n)x  (n)0

H  (z)1
1

v  (n)x  (n)1

H     (z)Μ−1

M-1
v     (n)x     (n)M-1

N 0

N M-1

N 1

. . .

Fig. 1.3. An M -channel multirate analysis filter bank.

Scalable representation of audio-visual signals is of paramount importance
in multicasting applications where a group of users, each with different de-
mands for quality of service, are to be addressed by a single source through
a communication network. In the literature, the broad concept of scalability
is also described by such terms as progressive transmission, multi-resolution
coding, successively refinable coding, multi-scale representation and so on. See,
for example, Bull et al. (1999) and Goyal (2001).

A natural way to obtain a multi-resolution representation of a signal is to
use a multirate analysis filter bank shown in Fig. 1.3. This system decomposes
the input signal x(n) into M low-rate components v0(n), v1(n), . . ., vM−1(n)
called subband components or subband signals. At the receiving end or during
retrieval, some or all of the subband components are passed through a mul-
tirate synthesis filter bank (Fig. 1.4) to reconstruct an approximation y(n) to
the original signal x(n).

Let y0(n) denote the output of the synthesis filet bank when only the sub-
band component v0(n) is present. Then, define y1(n) as the approximation
obtained by feeding both subband signals v0(n) and v1(n) to the synthesis
filter bank. Similarly, define y2(n), y3(n), . . ., yM−1(n) to denote the approx-
imations obtained by including successively more subbands.
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y(n)

F  (z)0
0v  (n)

F  (z)1

1
v  (n)

F     (z)Μ−1

M-1
v     (n)

N 0

N M-1

N 1

. . .
Fig. 1.4. An M -channel multirate synthesis filter bank.

To obtain a scalable representation, we have to design the analysis and
synthesis filter banks such that all of the approximations y0(n), y1(n), · · · ,
yM−1(n) are as close to the original measurement signal x(n) as possible. This
is a multi-objective optimization problem. Therefore, it is possible that the
objective functions to be minimized have no common solution. This means,
in general, a scalable decomposition of an arbitrary signal might not be be
possible. We will give an extensive analysis of the problem of scalable decom-
position of signals in Chapter 6.

1.3.2 Subband coding

Most current image/video compression standards such as JPEG, MPEG-2
and H.264 (a.k.a. MPEG-4, part 10) are based on block-based discrete co-
sine transform (DCT). However, a significant amount of research work has
demonstrated the benefits of more elaborate subband coding techniques that
use multirate filter banks instead of block transforms. This is reflected in the
upcoming JPEG-2000 image compression standard as well as modern audio
compression techniques such as MP3, ATRAC3plus2 and AAC3.

2 This is a proprietary audio compression technique used in SONY’s HiMD players,
PSP console and ATRAC CD players. It is thought to be a hybrid subband/DCT
codec where the signal is split into 16 sub-bands before MDCT and bit allocation,
though not much information has been released.

3 Advanced Audio Coding (AAC) is a lossy audio compression scheme developed
with the contributions of several companies including Dolby, AT&T, Sony and
Nokia. It was officially declared an international standard by the Moving Pictures
Experts Group in April of 1997. As a result, it is also known as MPEG-2 Part
7 and MPEG-4 Part 3 depending on its implementation. The popularity of this
format is maintained by it being the default codec on iTunes, the jukebox which
powers Apple’s iPod, the most popular digital audio player on the market as of
2006.
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x(n)

H  (z)0

H  (z)1

H     (z)Μ−1 M 

. . .

y(n)

F  (z)0

F  (z)1

F     (z)Μ−1

. . .

M 

M 

M 

M 

M 

Q0

Q1

QM-1

. . .
Fig. 1.5. An M -channel subband coding system.

Subband coding is a classic method for compression of raw audio/visual
signals (Jayant and Noll, 1984). In this method, the input signal x(n) is de-
composed into M subbands which are then decimated and quantized by a set
of M memoryless quantizers Q0 to QM−1 (Fig. 1.5). An approximation to the
original input is then synthesized by up-sampling the quantized subbands and
combining them using a set of synthesis filters. The following problem natu-
rally arises in the context of designing an efficient subband coding system:

Problem 1.1 (Optimal Subband Coding). Assume that the input signal
x(n) is a random signal with known statistical properties. Assume, also that
the analysis and synthesis filter banks used belong to a specific class L. Given
these information, specify

(i) a way to distribute btotal bits among the quantizers
(ii) a filter bank in L
such that the expected difference between the input x(n) and output y(n) is
minimized.

The problems of scalable signal decomposition and optimal subband cod-
ing are closely connected. We will discuss the precise mathematical connection
between these two problems in Chapter 6 as well.

1.3.3 Distributed measurement and sensor networks

In recent years, a new information collection paradigm which advocates con-
necting a large number of inexpensive and small sensors in a sensor network
has emerged. In defence applications, sensor networks can provide enhanced
battlefield situational awareness which can revolutionize a wide variety of
operations from armored assault on open terrain to urban warfare. Sensor
networks have many potential applications in environmental monitoring, bio-
medicine, factory automation and control of transportation systems as well4.
4 The reader is referred to the IEEE Signal Processing Magazine, special issue on

sensor networks (Vol. 23, No. 4, July 2006) for pointers to further applications.
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The trend to network many sensors together has been reinforced by the
widespread availability of cheap embedded processors and easily accessible
wireless networks. The building blocks of a sensor network, often called
“Motes”, are self-contained, battery-powered computers that measure light,
sound, temperature, humidity, and other environmental variables (Fig. 1.6).
Motes can be deployed in large numbers providing enhanced spatio-temporal
sensing coverage in ways that are either prohibitively expensive or impossible
using conventional techniques.

Fig. 1.6. A wireless sensor node or “Mote” made by Crossbow Technology, Inc. in
San Jose, California.

In this book we focus on sensor network applications where a collection
of Motes placed at various locations observe a single information source. It
is assumed that this source produces some kind of information-bearing signal
such as sound, speech, electromagnetic wave, etc. The goal is to measure the
information-bearing signal produced by the source as accurately as possible
using distorted, low-resolution and possibly noisy measurements made by the
Motes (Fig. 1.7).

In principle, a distributed network of sensors can be very flexible, cost
effective, and robust with respect to individual Mote’s failure. However, there
are many technological hurdles that must be overcome for sensor networks to
become viable. For instance, Motes are inevitably constrained in processing
speed, storage capacity, and communication bandwidth. Additionally, their
lifetime is determined by their ability to conserve power. These constraints
require new hardware designs, novel network architectures and special infor-
mation processing algorithms.

The design of information processing algorithms under energy, bandwidth
and other application-specific constraints results in theoretical challenges that
span all layers of the network’s protocol stack. However, there are some
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microphone

data acquisition and
 processing module

communications
       module

speech
source
      

sensor
nodes
      

Fig. 1.7. A sensor network monitoring a speech source in a room.

fundamental challenges that clearly fall in the realm of digital signal process-
ing. Central among these is the establishment of models, metrics and algo-
rithms for efficient fusion of sensory information on a common mathematical
framework.

In this book we advocate the use of multirate signal processing building
blocks for modelling sensor network information fusion problems. To give the
reader an idea how signal fusion in a sensor network can be cast as a multi-
rate signal processing problem, we consider a simple two-sensor measurement
scenario in the example below.

Example 1.1. Consider the two-sensor distributed measurement scenario shown
in Fig. 1.8(a). In this figure, x(t) denotes the source signal arriving at the ref-
erence sensor node. This signal is the object of measurement.

Assume that attenuation is negligible and the environment is non-dispersive.
In this case, the signal received by the second sensor is x(t−∆) where ∆ rep-
resents the unknown time-delay of arrival (TDOA). Each sensor node samples
and communicates its measured data at only half of the Niquist rate required
to discretize x(t) faithfully.
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The objective is to design the sensor nodes and the reconstruction system
at the receiving end such that the signal y(n) reconstructed at the receiver
is equivalent to the direct high-sampling-rate measurement x(n) obtained as
shown in Fig. 1.8(b).

Fig. 1.8. (a) A two-node multirate sensor array system. Each sensor node samples
and communicates data at only half of the Niquist rate required to discretize the sig-
nal x(t) faithfully. The objective is to design the sensor nodes and the reconstruction
system at the receiving end such that the signal y(n) reconstructed at the receiver
is a replica of the direct high-sampling-rate measurement x(n) shown in (b).

In the special case that the time-delay of arrival ∆ is an integer multiple
of the Nyquist sampling period (i.e. if ∆

�
= D/fs, D ∈ Z) the observation

model shown in Fig. 1.8(a) is easily discretized, leading to the multirate fil-
ter bank model shown in Fig. 1.9(a). In the general case that ∆ is not an
integer multiple of the Nyquist sampling period 1/fs, the transfer function
z−D in Fig. 1.8 has no formal meaning. However, if we assume that x(t) is
bandlimited to W = fs/2 Hz, z−D can be interpreted “symbolically” in light
of the following generalized interpolation formula (Oppenheim and Schafer,
1989, Sec 3.5), (Meyr et al., 1998, Sec 4.2.2):

Y (z) = z−DX(z) ⇔ y(n) =
∞∑

k=−∞
x(k)

sin(π(n − D − k))
π(n − D − k)

.
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Fig. 1.9. (a) Discrete-time filter bank model for the measurement scenario shown in
Fig. 1.8. (b) Simplified model where the delay block in the lower channel is integrated

with the linear filter in that channel. Here, H0(z) = H̃0(z) and H1(z) = z−DH̃1(z).

Therefore, when x(t) is bandlimited to W = fs/2 Hz, the relationship be-
tween the desired full-rate measurement x(n) and the low-rate measurements
vi(n) can be modelled by linear filters and decimators as shown in Fig. 1.9(b).
♦

The above example suggests that a multirate analysis filter bank such
as the one shown in Fig. 1.3 can be a useful model for posing signal fusion
problems in sensor networks. The filters Hi(z) in the filter bank can represent
several effects at the same time:

(i) the frequency response of the actual sensory device or transducer used by
a Mote,

(ii) signal propagation effects such as attenuation, time delay of arrival, re-
verberation, frequency-selective fading and so on,

(iii) any filtering or other linear operation deliberately performed on the mea-
sured signal by Mote’s signal processing hardware.

The decimator blocks in the filter bank can represent one or more of the
following artifacts:

(i) the difference between the actual sampling rate of the ADC used by a
Mote and the sampling rate with which we would like to monitor the
information baring signal,
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(ii) the difference between symbol rate by which a Mote can transmit its
measured data and and the sampling rate with which we would like to
monitor the information baring signal,

(iii) the difference between symbol rate by which a Mote’s DSP hardware can
process it’s measured data and the sampling rate with which we would
like to monitor the information baring signal.

In future chapters, we will address several key problems in distributed
measurement by reference to the filter bank model shown in Fig. 1.3.

1.4 Multirate statistical signal processing

Statistical signal processing is a subfield of digital signal processing which
deals with random processes and their manipulation using digital comput-
ers. Classic problems in statistical signal processing include power spectrum
estimation, parametric signal modelling, detection and estimation of signals
contaminated by noise and adaptive filtering.

In this book we discuss the use of statistical modelling as a powerful and
unifying tool for processing multirate signals. We assume that a signal of in-
terest, denoted x(n), can be modelled as stationary random process. Then, we
consider a measurement model where x(n) is observed or measured indirectly
through a multirate analysis filter bank of the type shown in Figs. 1.3 or 1.9.
The goal is to make inferences about the non-observable signal x(n) or other
quantities of interest such as the time-delay D in Fig. 1.9 using the observable
low-rate signals vi(n).

The theory of multirate statistical signal processing as presented in this
book consists of several interconnected sub-theories. Each sub-theory deals
with a specific problem as described below.

Multirate Spectrum Estimation (Chapter 3) : Consider the multirate
system shown in Fig. 1.3. Estimate the statistical properties of x(n) given
statistical properties of vi(n).

Multirate Signal Estimation (Chapter 4): Consider the multirate sys-
tem shown in Fig. 1.3. Assume that the statistical properties of x(n) are
known. Estimate some sample values of x(n) given some sample values of
vi(n).

Multirate Time-Delay Estimation (Chapter 5): Consider the multi-
rate system shown in Fig. 1.9(a). Estimate the time-delay D given the
observable low-rate measurements vi(n). Also, specify conditions on the
filters Hi(z) such that the time-delay D can be reliably estimated from
the low-rate measurements vi(n).
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Optimal Multirate Decomposition of Signals (Chapter 6): Consider
the multirate system shown in Fig. 1.3. Assume that the statistical prop-
erties of x(n) are known. Characterize a filter bank within a given class of
filter banks such that it decomposes x(n) in a way which is more scalable
than all other filter banks in that class. Also, discuss the existence and
uniqueness of such a filter bank.

Information in Multirate Systems (Chapter 7): Consider the multirate
system shown in Fig. 1.3. Assume that the statistical properties of x(n)
are unknown. Quantify the amount of information gained about statistical
properties of x(n) if we specify statistical properties of one or more low-
rate signal vi(n).

The statistical approach to multirate signal processing presented in this
book has several advantages over classical (deterministic) formulations devel-
oped in previous works. Some of these advantages are as follows:

(i) The statistical theory is applicable to a very broad class of analysis system
models regardless of the sampling rates used or the types of filters used. In
contrast, previous material on multirate systems and filter banks covered
only FIR, Perfect Reconstruction and/or orthogonal filter banks and often
required uniform sampling rate in all the channels.

(ii) Statistical algorithms can estimate an arbitrarily large number of samples
of the original signal and provide a bound on the expected error for each
and every one of the samples estimated.

(iii) When it is possible to uniquely specify some samples of the original
signal, our estimator will do that too! This is because the statistical idea of
estimation used in this book is much more powerful than the deterministic
idea of reconstruction used in classical filter bank literature.

(iv) The concept of “aliasing” which is a key ingredient of the classical theory
of multirate systems is almost nonexistent in the statistical theory!

in signal processing, applied mathematics and statistical research communi-
ties in developing multi-resolution data models and algorithms. Basseville,
Benveniste, Willsky and their coworkers have put considerable effort into the
development of a theory of multi-resolution stochastic modeling and associ-
ated techniques for optimal “multi-scale statistical signal analysis” (Basseville
et al., 1992a), (Basseville et al., 1992b), (Basseville et al., 1992c), (Chou et al.,
1994a), (Chou et al., 1994b). These authors consider processes indexed by
nodes on binary (or n-ary) lattices (or trees) in which different depths in the
lattice or tree correspond to different spatial scales in representing a signal or
an image. It is important to note that this paradigm is conceptually differ-
ent from our theory which uses the classical wide-sense stationary model for
random processes.

Remark 1.3. Since mid 1980’s, there has been considerable interest and activity
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1.5 Notation

We use capital letters or boldface lowercase letters to represent vectors. Bold-
face capital letters are reserved for matrices. Elements of a matrix A are
referred to as [A]ij . We denote the set of real M -tuples by R

M and use the
notation R+ for positive real numbers. The expected value of a random vari-
able x is denoted by E{x}. The end of an example is indicated using the
symbol ♦. The linear convolution operator is denoted by �.

The spaces of Lebesgue-measurable5 functions are represented by L1(a, b),
L2(a, b), etc. For f(x) ∈ Lp(a, b), p < ∞, the Lp norm is defined by

‖f‖p
�
=

1
b − a

p

√∫ b

a

|f(x)|pdx.

The L∞ norm is defined by

‖f‖∞
�
= sup

x∈(a,b)

|f(x)|.

5 See Jones (1993) for an excellent introduction to the theory of Lebesgue measures.
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Background

This chapter is intended to provide some background material which is funda-
mental in construction of the theory of statistical multirate signal processing.
It also serves as a means to introduce certain notation and conventions which
will be needed in later chapters. It is assumed that the reader is already famil-
iar with elementary notions of probability theory, linear algebra and digital
signal processing.

2.1 Inverse and ill-posed problems

When using the term inverse problem one would naturally ask “inverse to
what?” In mathematical physics, two problems are called inverse to each other
if the formulation of one problem involves the other one. For mostly historic
reasons, one might call one of these problems (usually the simpler one or the
one which was studied earlier) the direct problem, the other one the inverse
problem. However, if there is a real-world problem behind the mathematical
problem studied, there is, in most cases, a quite natural distinction between
the direct and the inverse problem. For example, if one wants to predict the
future behaviour of a physical system from knowledge of its present state
and the physical laws, one will call this the direct problem. Possible inverse
problems are the determination of the present state of the system from future
observations (i.e., the calculation of the evolution of the system backwards in
time) or the identification of physical parameters from observations of the evo-
lution of the system. Thus, one might say the inverse problems are concerned
with determining causes for a desired or an observed effect.

Most often, inverse problems are much more difficult to deal with (from
a mathematical point of view) than their direct counterparts. This is be-
cause they might not have a solution in the strict sense or solutions might
not be unique and/or might not depend continuously on data. Mathematical
problems having such undesirable properties are called ill-posed problems and

17
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cause (mostly because of the discontinuous dependence of solutions on the
data) severe numerical difficulties.

The study of inverse problems has been one of the fastest-growing areas
in applied mathematics in the last two decades. This growth has largely been
driven by the needs of applications in both natural sciences (e.g. inverse scat-
tering theory, astronomical image restoration and statistical learning theory)
and industry (e.g. computerized tomography). See e.g. Tikhonov and Arsenin
(1977), Vasin and Ageev (1995), Engl et al. (1996) and Tikhonov et al. (1998).

The study of concrete inverse problems often involves the question “how
can one enforce uniqueness by additional information or assumptions?” Not
much can be said about this in a general context. However, the aspect of lack
of stability and its restoration by appropriate methods (regularization) can be
treated in sufficient generality. The theory of regularization is well-developed
for linear inverse problems and will be introduced, very briefly, in the next
subsections.

2.1.1 Ill-posed linear operator equations

Formally, a mathematical problem is called well-posed if it fulfills Hadamard’s
conditions:

(i) For all admissible data, a solution exists.
(ii) For all admissible data, the solution is unique.
(iii) The solution depends continuously on the data.

A problem for which one or more of the above conditions are violated
is called ill-posed. Note that the conditions mentioned above do not make a
precise definition for well-posedness. To make a precise definition in a concrete
situation, one has to specify the notion of a solution, which data are considered
admissible, and which topology is used for measuring continuity.

Example 2.1. Let the linear operator equation

Ax = y (2.1)

be defined by the continuous operator A that maps the elements x of a metric
space E1 into elements y of another metric space E2. Consider that A is a
Fredholm integral operator of the first kind so that

(Ax)(s)
�
=
∫ b

a

K(s, t)x(t)dt. (2.2)

The kernel K(s, t) is continuous on [a b] × [a b] and maps a function x(t)
continuous on [a b] to a function y(s) also continuous on [a b].

It is well known that the Fourier series coefficients of a continuous function
tend to zero at high frequencies (Jones, 1993, Chapter 14, Section I). This
implies that the continuous function



2.1 Inverse and ill-posed problems 19

gω(s)
�
=
∫ b

a

K(s, t) sin(ωt)dt, (2.3)

which is formed by means of the continuous kernel K(s, t) satisfies

lim
ω→∞

gω(s) = 0 (2.4)

for all s ∈ [a, b]. Now, consider the perturbed equation

Ax = y + gω, (2.5)

where y is given and gω is defined in (2.3). Since the above equation is linear
its solution x̂(t) has the form

x̂(t) = x∗(t) + sin(ωt), (2.6)

where x∗(t) is a solution to the original integral equation Ax = y. For suffi-
ciently large ω, the right hand side of (2.5) differs from the right hand side
of (2.1) only by the “small” amount gω(s). However, its solution differs from
that of (2.1) by the considerable amount sin(ωt). This shows that the problem
of solving (2.1) where A is a Fredholm integral operator of the first kind is
ill-posed. ♦

In the early 1900s, Hadamard had already observed that under some (very
general) circumstances the problem of solving the operator equation (2.1) is ill-
posed. However, he believed that ill-posed problems are a pure mathematical
phenomenon and that all real-life problems are “well-posed”. In the second
half of the 20th century, a number of very important real-life problems were
found to be ill-posed.

The discovery of various regularization methods in the 60’s made it possible
to construct a sequence of well-posed solutions that converges to the desired
one. Regularization theory was one of the first signs of existence of intelligent
inference methods. It demonstrated that whereas the “self-evident” methods
of solving an operator equation might not work, the “non-self-evident” meth-
ods of regularization theory do. See Vapnik (1999) for the influence of the
regularization philosophy on statistical inference.

2.1.2 Regularization of ill-posed operator equations

One can easily verify that the problem of solving the operator equation (2.1)
is equivalent to finding an element x∗ ∈ E1 such that the functional

R(x)
�
= ‖Ax − y‖E2 (2.7)

is minimized1. If the right-hand side of (2.1) is not exact, that is, if we replace
y by yδ such that ‖y − yδ‖E2 < δ where δ is a small value, a function xδ ∈ E1

1 To save in notation, we write ‖a − b‖E to denote the distance between the two
elements a, b ∈ E whether the metric space E is a normed space or not. If E is a
normed space too, our notation is self-evident. Otherwise, it should be interpreted
only as a symbol for the distance between a and b.
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shall minimize the functional

Rδ(x)
�
= ‖Ax − yδ‖E2 . (2.8)

However, if the operator equation Ax = y is ill-posed, the new solution xδ

is not necessarily close to the desired solution x∗ even if δ tends to zero. In
other words, limδ→0 ‖x∗ − xδ‖E1 �= 0.

It was discovered by Tikhonov (1963) that, if instead of the functional
Rδ(x) one minimizes

Rreg(x)
�
= ‖Ax − yδ‖E2 + ξ(δ)S(x), (2.9)

where S(x) is a stabilizing functional (that belongs to a certain class of func-
tionals) and ξ(δ) is an appropriately chosen constant (whose value depends on
the noise level δ), then one obtains a sequence of solutions xδ that converges
to the desired one as δ tends to zero. For the above result to be valid, it is
required that

(i) the problem of minimizing Rreg(x) is well-posed for fixed values of δ and
ξ(δ), and

(ii) lim
δ→0

‖x∗ − xδ‖E1 → 0 when ξ(δ) is chosen appropriately.

Consider a real-valued lower semi-continuous2 functional S(x). The func-
tional S(x) can be a stabilizing functional if it possesses the following prop-
erties:

(i) The solution of the operator equation Ax = y belongs to the domain of
definition D(S) of the functional S.

(ii) S(x) ≥ 0, ∀x ∈ D(S).
(iii) The level sets {x : S(x) ≤ c}, c = const., are compact.

The above conditions essentially ensure that the problem of minimizing
Rreg(x) is well-posed (Tikhonov and Arsenin, 1977, Page 51). Now, the im-
portant remaining problem is to determine the functional relationship between
δ and ξ(δ) such that the sequence of solutions obtained by minimizing (2.9)
converges to the solution of (2.7) as δ tends to zero. The following theorem
establishes sufficient conditions on such a relationship:

Theorem 2.1. (Vapnik, 1999, Page 55) Let E1 and E2 be two metric spaces
and let A : E1 → E2 be a continuous and one-to-one operator. Suppose that for
y ∈ E2 there exists a solution x ∈ D(S) ⊂ E1 to the operator equation Ax = y.
Let yδ be an element in E2 such that ‖y − yδ‖E2 ≤ δ. If the parameter ξ(δ) is
chosen such that
2 A function f : R

N → [−∞,∞] is called lower semi-continuous at X ∈ R
N if for

any t < f(X) there exists δ > 0 such that for all y ∈ B(X, δ), t < δ. The notation
B(X, δ) represents a ball with centre at X and radius δ. This definition generalizes
to functional spaces by using the appropriate metric in defining B(X, δ).
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(i) ξ(δ) → 0 when δ → 0,

(ii) lim
δ→0

δ2

ξ(δ)
< ∞,

Then the elements xδ ∈ D(S) minimizing the functional

Rreg(x) = ‖Ax − yδ‖E2 + ξ(δ)S(x)

converge to the exact solution x as δ → 0.

If E1 is a Hilbert space, the stabilizing functional S(x) may simply be cho-
sen as ‖x‖2, which, indeed, is the original choice made by Tikhonov. In this
case, the level sets of S(x) will only be weakly compact. However, the con-
vergence of the regularized solutions will be a strong one thanks to favorable
properties of Hilbert spaces. The conditions imposed on the parameter ξ(δ)
are, nevertheless, more stringent than those stated in the above theorem. (In
this case, ξ(δ) should converge to zero strictly slower than δ2. In more precise
terms, limδ→0

δ2

ξ(δ) = 0 must hold.)

2.2 Measuring inequality

The book History of the Peloponnesian War by the ancient Greek historian
Thucydides is widely considered the first work of scientific history, describing
the human world as produced by men acting from ordinary motives, without
the intervention of the gods.

In the Melian dialogue, Thucydides recounts the historical background of
the invasion of the island of Melos by Athens in 416 BC. During the dialogue,
the Athenians present Melos with an alternative: the island can pay tribute to
Athens and thus survive, or fight Athens and be destroyed. Melos presents sev-
eral counter-arguments: showing mercy towards Melos will win the Athenians
more friends; the Spartans will come to their aid; the gods will protect them.
The Athenians, however, refuse to discuss either the justice of their demand
or any substantive argument by the Melians. Instead, the long-remembered
Athenian commentary is one of hard realism:

“We shall not trouble you with specious pretences — either of how we
have a right to our empire because we overthrew the Mede, or are now
attacking you because of wrong that you have done us— and make a
long speech which would not be believed; and in return we hope that
you ... will aim at what is feasible, holding in view the real sentiments
of us both; since you know as well as we do that right, as the world
goes, is only in question between equals in power, while the strong do
what they can and the weak suffer what they must.”

The origin of inequality among mankind, and whether it is authorized by
natural law is open to broad debate. However, as the above quote painfully



22 2 Background

0 1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Population index

In
di

vi
du

al
 w

ea
lth

0 1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

Population Index

In
di

vi
du

al
 w

ea
lth

(a) (b)

Fig. 2.1. Wealth distribution data for two hypothetical communities.

reveals, it has always been a most influential factor in human affairs; leading
to profound political and moral consequences.

Over the years, scientists have tried to develop numerical indices to quan-
tify various forms of inequality among human societies. In 1905, economist
Max Lorenz suggested the idea of using partial sums to compare income dis-
tribution between two populations. He plotted cumulative partial sums of
each distribution in a curve which is now called Lorenz curve. This curve is
essentially a graph showing the proportion of the distribution assumed by the
bottom x% of the values. It is often used to represent income distribution,
where it shows for the bottom x% of households, what percentage y% of the
total income they have.

Example 2.2. Consider two hypothetical communities each comprised of ten
households. The annual household income for these two communities are de-
picted in Fig. 2.1. The income figures in each plot are normalized so that the
total income for each community adds up to one. The question is to find out
which community enjoys a more uniform or fairer income distribution?

To answer this question by using the method devised by Lorenz, we first
sort the income figures reported in each plot from the lowest to the highest.
Then, for each distribution, we add the sorted values together to form a series
of successively increasing partial sums. These partial sums are plotted as two
curves in Fig. 2.2. This figure also shows a straight line which represents a
perfectly uniform distribution.

the straight line is more uniform than distribution A. In other words, the
households in community B enjoy a more even income distribution compared
to community A. ♦

Lorenz’s work in economics led to the abstract mathematical notion of
majorization to quantify non-uniformity or inequality among the components
of a vector or a set. In simple terms, a set of numbers majorizes another if the

From Fig. 2.2 we can argue that distribution B whose curve is closer to
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Fig. 2.2. Lorenz curves associated with the wealth distributions shown in Fig. 2.1.
The straight line here represents the uniform distribution.

Lorenz curve associated with the first set lies below the curve associated with
the second. We will use the concept of majorization extensively in Chapter 6
where we develop a theory of optimal multirate signal decomposition. A brief
introduction to the theory of majorization is given in the next subsections.
The reader is referred to the excellent monograph by Marshall and Olkin
(1979) for a detailed treatment of the history and the theory of majorization.

2.2.1 Definition of majorization

Let ξ = {a0, . . . , aM−1} be a set of M non-negative real numbers; thus, order
is irrelevant. Let Ω denote the set of all such sets. One can always permute
the indices such that elements of sets are indexed in a descending order. When
such a permutation has been introduced, we use indices in brackets. Using this
convention, for instance, ξ is equivalently represented as {a[0], a[1], . . . , a[M−1]}
where a[0] ≥ a[1] ≥ a[2] ≥ . . . ≥ a[M−1].

Definition 2.1. The set ξ = {a0, . . . , aM−1} is said to be majorized by η =
{b0, . . . , bM−1}, in symbols ξ � η, if

(i)
∑M−1

i=0 ai =
∑M−1

i=0 bi and
(ii)

∑k
i=0 a[i] ≤

∑k
i=0 b[i] for all 0 ≤ k ≤ M − 2.

Example 2.3. Let ξ = {a0, . . . , aM−1} be any arbitrary set in Ω such that∑M−1
i=0 ai = 1. Then, { 1

M , . . . , 1
M } � ξ � {1, 0, . . . , 0}. ♦

The above example suggests that majorization can be used to quantify
“inequality” or “nonuniformity” among the elements of a set. In fact, ξ � η
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Fig. 2.3. Geometric representation of majorization. (a) The convex set {X � Y }.
(b) The non-convex set {Y � X}.

means the elements of ξ are “more uniform” or “more equal” than those of η.
We extend the definition of majorization to a vector in R

M
+ simply by treating

its components as elements of a set. In other words, for two vectors X and Y
in R

M
+ we write X � Y if {xi} � {yi}.

2.2.2 Geometrical properties of majorization

Let Y be a point in R
M
+ . In general, we can form up to M ! different M -vectors

by using the elements of {yi} as components. These vectors (points) simply
constitute the orbit of Y under the group of permutation matrices. Connected
together, these points form a plain polytope in R

M
+ . (See Fig. 2.3(a).)

Theorem 2.2. A vector X is majorized by Y ∈ R
M
+ if and only if X lies in

the convex hull of the orbit of Y under the group of permutation matrices.

An immediate result of the above theorem is that for a fixed Y the set
{X : X � Y } is convex. It is, however, not true for {X : Y � X} as illustrated
in the following example.

Example 2.4. Consider a point Y ∈ R
3
+ as our reference point. Let c =

∑3
1 yi.

Define ∆ = {X ∈ R
3
+ : x1 +x2 +x3 = c}. Obviously, ∆ is a plane triangle that

also includes Y . The sets {X : X ∈ ∆,X � Y } and {X : X ∈ ∆,Y � X} are
denoted by gray color in Fig. 2.2. As seen in the figure, the first set is convex
while the latter is not. Note also that the triangle ∆ contains points that
belong to neither set. These are the points which are not majorized by Y nor
do they majorize it. This observation has important algebraic interpretations
as discussed in the next subsection. ♦

2.2.3 Algebraic properties of majorization

In this subsection we review properties of the binary relation � as an ordering
relation on sets. Our treatment is very brief and intended, mainly, to establish
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terminology. See Rosenfeld (1968) or Mac Lane and Birkhoff (1967) for a well-
written introduction to the theory of ordered sets.

Let ξ, η and ν be any three elements of Ω. You can yourself verify that
the following statements hold:

ξ � ξ (Reflexivity) (2.10)
ξ � η , η � ξ =⇒ ξ = η (Antisymmetry) (2.11)
ξ � η , η � ν =⇒ ξ � ν (Transitivity) (2.12)

The three properties above show that the binary relation � induces a partial
ordering on Ω. A set endowed with a partial ordering is called a partially
ordered set, or simply a poset. A poset Ω is called a chain or a simply ordered
set when its elements satisfy the property that given any ξ and η in Ω, either
ξ � η or η � ξ.

Example 2.5. Let Ω = {ξ : ξ = {a0, a1, a2}, ai ∈ R+,
∑2

i=0 ai = 1}. One can
easily find two elements in Ω (for instance ξ1 = {.5, .4, .1} and ξ2 = {.6, .2, .2})
such that neither ξ1 � ξ2 nor ξ2 � ξ1. This shows that, in general, the ordering
of majorization is not a simple ordering. ♦

For a poset, one can identify two types of extremal elements. Below, we
define these elements following the terminology of Mac Lane and Birkhoff
(1967).

Definition 2.2. Let Ω be a poset supplied with a partial order �. An element
ω∗ ∈ Ω is called the “greatest element” if ω � ω∗ for all ω ∈ Ω. An element
ω̂ ∈ Ω is called a “maximal element” if no ω ∈ Ω, ω �= ω̂, exists such that
ω̂ � ω .

In words, the greatest element in a poset majorizes all other elements whereas
a maximal element is not majorized by any other element.

Theorem 2.3. The greatest element is unique. If it exists, it will be the unique
maximal element as well. When the greatest element does not exist, a poset
can have more than one maximal element.

Definition 2.3. Let � be an order relation on a set ∆ and let Ω be a subset
of ∆. We say that ξ ∈ ∆ is an “upper bound” for Ω if ω � ξ for all ω ∈ Ω.

Note that if ω ∈ Ω is an upper bound for Ω, it is the greatest element of Ω.
Closely related to the notion of partial ordering is the concept of order-

preserving functions. A class of such functions related to partial ordering of
majorization will be introduced in the next subsection.
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2.2.4 Schur-convex functions

The first comprehensive study of functions preserving the order of majoriza-
tion was made by I. Shur in 1923 (Brauer and Rohrbach, 1973). Such functions,
called Schur-convex, are defined as follows.

Definition 2.4. Let � denote the majorization ordering defined on some sub-
set Ω ⊂ R

M
+ . A function φ : R

M
+ → R is said to be Schur-convex if

X � Y =⇒ φ(X) ≤ φ(Y ), ∀X,Y ∈ Ω.

If, in addition, φ(X) < φ(Y ) whenever X � Y but Y � X, φ is called strictly
Schur-convex.

Schur-concave and strictly Schur-concave functions are defined in an analo-
gous manner. In words, φ(X) is Schur-convex if the functional value becomes
smaller when the components of X are less diverse in the sense of majoriza-
tion. Note that φ(X) ≤ φ(Y ) does not necessarily imply X � Y .

A Schur-convex function φ might operate on a vector X or a set ξ = {xi}.
This is simply because the components of vectors or elements of sets are
reordered decreasingly in the definition of majorization. In fact, because of this
very property, any Schur-convex function must necessarily be symmetric in
its arguments. The following basic theorem, due to Schur, provides necessary
and sufficient conditions for a function to be Schur-convex:

Theorem 2.4. (Marshall and Olkin, 1979, Page 13) Let φ : R
M
+ → R have

continuous partial derivatives φ(i)(X) = ∂φ(X)
∂xi

. Then, φ is Schur-convex if
and only if

(i) φ is permutation symmetric, that is, φ(X) = φ(ΠX) for all X ∈ R
M
+ and

all permutation matrices Π, and
(ii) (x1 − x2)(φ(1)(X) − φ(2)(X)) ≥ 0 for all X ∈ R

M
+ .

Conditions for a Schur-concave function are the same except the ≥ sign
in (ii) should be replaced by ≤. The following theorem, also due to Schur,
provides sufficient conditions for a function to be strictly Schur-convex:

Theorem 2.5. (Marshall and Olkin, 1979, pp. 56-58) Let φ : R
M → R be

twice differentiable with continuous partial derivatives φ(i)(X) = ∂φ(X)
∂xi

and

φ(i,j)(X) = ∂2φ(X)
∂xi∂xj

. Then, φ is strictly Schur-convex if

(i) φ is permutation symmetric,
(ii) (x1 − x2)(φ(1)(X) − φ(2)(X)) ≥ 0,
(iii) φ(1)(X) = φ(2)(X) =⇒ φ(1,1)(X) + φ(2,2)(X) > φ(1,2)(X) + φ(2,1)(X).

There are a number of useful facts relating to compositions that involve
Schur-convex or Schur-concave functions. Here, we mention a few such results.
The reader is referred to the classic monographs by Hardy et al. (1934) and
Marshall and Olkin (1979) for an exhaustive account of this topic.
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Theorem 2.6. If φi(X) is (strictly) Schur-convex, i = 1, . . . , k, and φi(X) ≥
0 for all i and X, then

ψ(x) =
k∏

i=1

φi(X)

is (strictly) Schur-convex.

Theorem 2.7. If I ⊂ R is an interval and g : I → R is (strictly) convex,
then

φ(X) =
N−1∑
i=0

g(xi)

is (strictly) Schur-convex on IN .

Theorem 2.8. If φ : R
M → R is symmetric and strictly convex on sets of the

form {X|
∑

xi = c}, then φ is strictly Schur-convex.

Theorem 2.9. Let φ : R
N → R satisfy the following conditions:

(i) φ(X) > 0 when X �= 0,
(ii) φ(γX) = |γ|φ(X) for all real γ,
(iii) φ(X + Y ) ≤ φ(X) + φ(Y ),
(iv) φ(x0, x1, . . . , xN−1) = φ(ε0xi0 , ε1xi1 , . . . , εN−1xiN−1) where (i0, i1, . . . ,

iN−1) is a permutation of (0, 1, . . . , N − 1) and εi = ±1.

Then, φ is Schur-convex.

A function satisfying the conditions of the last theorem above is called
a symmetric gauge function. As special cases, it follows that the following
functions are Schur-convex:

φ(X) = max|xi| = ‖X‖∞. (2.13)

φ(X) = (
N−1∑
i=0

|xi|p)1/p = ‖X‖p, p > 1. (2.14)

Finally, note that the regular Lp norms ‖X‖p, p > 1, are also strictly Schur
convex but the infinity norm ‖X‖∞ is not.

2.3 Measuring information

In communication theory, the term “information” refers to a measure of the
freedom of choice with which a message is selected from the set of all possible
messages. As such, information is a deterministic quantity and is measured in
bits.

Entropy is a statistical concept which has its origins in thermodynamics.
It quantifies how random a probabilistic event is. In his landmark paper,
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Shannon (1948) defined a formula for entropy that, when applied to a proba-
bilistic information source (i.e. discrete random variable) could determine the
minimum number of bits required to reliably transmit the source’s output.
Shannon’s work showed that the concepts of information and entropy have
deep links with one another.

Kullback-Leibler divergence is a quantity that measures how separable or
distant two probability distributions are from the point of view of a statistical
observer. More precisely, it measures how difficult it is to distinguish between
two candidate probability distributions given a series of sample data.

Entropy and Kullback-Leibler divergence are fundamental measures that
quantify statistical information. In the following subsections, we introduce
these two measures and discuss their interconnection.

2.3.1 Entropy

Let X ∈ R
N be a continuous random variable with PDF pX(X). The entropy3

of X is denoted by H(X) and defined by:

H(X)
�
= −

∫
pX(X) ln pX(X)dX. (2.15)

Note that H(·) is a functional of pX so its OK if we use the notation H(pX)
for entropy of X as well. It is easy to check that entropy is a convex functional
of pX and ranges from −∞ to ∞.

Let X and Y be two random vectors that possess a joint probability density
function pXY (X,Y ), and marginal densities pX(X) and pY (Y ). We define the
mutual information or redundancy I(X;Y ) between X and Y as

I(X;Y )
�
=
∫ ∫

pXY (X,Y ) ln
pXY (X,Y )

pX(X)pY (Y )
dXdY. (2.16)

Example 2.6. Let X ∈ R
N and Y ∈ R

M be two random variables with a
jointly Gaussian probability density function. If CXY represents the joint
covariance matrix of the two random variables and CX and CY represent the
marginal covariance matrices associated with each variable, then (Kullback,
1954, Chapter 9)

I(X;Y ) =
1
2

ln
|CX ||CY |
|CXY | . (2.17)

♦

The joint information in X and Y is denoted by H(X,Y ) and is defined
as

H(X,Y )
�
= −

∫ ∫
pXY (X,Y ) ln pXY (X,Y )dXdY. (2.18)

3 For simplicity, in this book we use the term entropy for what is more precisely
called “differential entropy” in the information theory literature.
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Note that H(X,Y ) is the same as H(pXY ). Furthermore, it holds that

H(X,Y ) = H(X) + H(Y ) − I(X;Y ). (2.19)

Extension of the concepts of mutual information and joint information to
more then two random variables is straightforward. Detailed discussions on
entropy, mutual information and joint information can be found in any stan-
dard text on information theory, e.g. (Reza, 1961, Chapter 8) or (Csiszár and
Körner, 1981, Chapter 1). For a more detailed exposition, including discus-
sions on existence and interpretations, the reader is referred to Gray (1990)
and MacKay (2003).

2.3.2 Kullback-Leibler divergence

Let p1(·) and p2(·) be two PDFs defined on C ⊂ R
N . If Hi, i = 1, 2, is the

hypothesis that a certain random variable is from the statistical population
with PDF pi, then the standard likelihood test would accept H1 if Pr{H1} >
Pr{H2}. In other words, H1 is accepted if

ln
Pr{H1}
Pr{H2}

> 0,

otherwise the hypothesis H2 would be accepted. Now, assume that we actually
observe a sample value of that random variable and find out that its value is
equal to X. It follows from Bayes’ theorem, or the theorems on conditional
probability, that

Pr{Hi|X} =
Pr{Hi}pi(X)

Pr{H1}p1(X) + Pr{H2}p2(X)
, i = 1, 2, (2.20)

from which we obtain

ln
p1(X)
p2(X)

= ln
Pr{H1|X}
Pr{H2|X} − ln

Pr{H1}
Pr{H2}

, (2.21)

where Pr{Hi}, i = 1, 2, is the prior probability of Hi and Pr{Hi|X} is the
posterior probability of Hi, which is in fact the conditional probability of Hi

given X. The right-hand side of the above equation is a measure of the differ-
ence between the logarithm of the odds in favor of H1 after the observation
that the random variable under consideration assumed the value X and be-
fore the observation. Kullback and Leibler were the first to observe that this
difference, which can be positive or negative, may be considered as the in-
formation resulting from the observation (Kullback and Liebler, 1951). They
defined the logarithm of the likelihood ratio, ln p1(X)

p2(X) , as the information in X

for discrimination in favor of H1 against H2. The mean value of this informa-
tion, that is, the mean information for discrimination in favor of H1 against
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H2 per observation from the PDF p1 is called the Kullback-Leibler divergence
of p1 from p2:

D(p1 ‖ p2)
�
=
∫
C

p1(X) ln
p1(X)
p2(X)

dX. (2.22)

The base of the logarithm in the above definition is not important and
only represents the choice of the unit of measurement. For discrete random
variables, the Kullback-Leibler divergence is usually defined using base-2 log-
arithm in order to be consistent with the binary unit ‘bit’ as the unit of
information:

D(p1 ‖ p2)
�
=
∑
Ω

p1(X) log2

p1(X)
p2(X)

, (2.23)

where p1(·) and p2(·) now represent two probability density functions defined
on a countable set Ω.

Using (2.22) or (2.23) one can easily check that D(p1 ‖ p2) has the following
properties:

(i) D(p1 ‖ p2) ≥ 0.
(ii) D(p1 ‖ p2) = 0 if and only if p1 = p2.
(iii) In general, D(p1 ‖ p2) �= D(p2 ‖ p1).

The property (iii) prevents D(p1 ‖ p2) from satisfying the conditions of
a metric on the space of probability density functions. However, as we will
discuss shortly, D(p1 ‖ p2) has a strong appeal as a measure of distance
between probability density functions.

Example 2.7. Let p1 and p2 be N -dimensional Gaussian PDFs with zero mean
and covariance matrices C1 and C2 respectively. The Kullback-Leibler diver-
gence of p1 from p2 is given by (Kullback, 1954, Chapter 9)

D(p1 ‖ p2) =
1
2
Tr(C1C−1

2 ) − 1
2

ln
|C1|
|C2|

− N

2
. (2.24)

♦

Example 2.8. Let X and Y be two random variables with the joint probabil-
ity density function pXY (X,Y ) and marginal density functions pX(X) and
pY (Y ). It can be easily verified that

I(X;Y ) = D(pXY (X,Y ) ‖ pX(X) × pY (Y )). (2.25)

♦

Again, suppose that a probability density function of interest for the sta-
tistician is either p1(·) or p2(·). He has to decide between p1 and p2 on the
basis of a sample of size k, i.e., the result of k independent drawings from the
unknown distribution. Now, how separable or distant are p1 and p2 from the
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point of view of a statistical observer? In other words, how difficult is it to
distinguish between p1 and p2 having a series of sample data?

We can provide an answer to the above questions if we identify separabil-
ity or statistical distance with low probability of miss-classification using some
sort of optimal decision procedure. The following analysis shows that statis-
tical distance, interpreted this way, is closely related to the Kullback-Leibler
divergence of the two probability measures under consideration.

For simplicity, we consider a discrete and countable sample space. That
is, p1 and p2 are two possible probability density functions associated with a
discrete random variable X which takes values in a countable set Ω. A (non-
randomized) test is characterized by a set Θ ⊂ Ωk, in the sense that if the
sample ω = {X1, · · ·Xk} belongs to Θ, the statistician accepts p1 and else he
accepts p2. It’s important to note that the roles of the two hypotheses are not
symmetric. It is, therefore, customary to prescribe a bound ε for the tolerated
probability of wrong decision if p1 is the true distribution. Then the task is to
minimize the probability of wrong decision if hypothesis p2 is true. The latter
minimum is denoted by β and is given by

β(k, ε)
�
= min pk

2(Θ), subject to Θ ⊂ Ωk and pk
1(Θ) ≥ 1 − ε. (2.26)

We are not interested in finding the optimal decision set Θ that achieves
this minimum but in the minimum itself. The following theorem, known as
Stein’s Lemma, gives an asymptotic expression for β(k, ε):

Theorem 2.10. (Csiszár and Körner, 1981, page 19) For any 0 < ε < 1,

lim
k→∞

1
k

log2 β(k, ε) = −
∑
X∈Ω

p1(X)log2
p1(X)
p2(X)

.

It follows from the above theorem that, for large k,

β(k, ε) � 2−kD(p1‖p2) (2.27)

Therefore, one can say that the larger D(p1 ‖ p2) is, the less is the risk of
miss-classification between p1 and p2 or, in other words, the larger D(p1 ‖ p2)
is, the more distant (from the point of view of hypothesis testing) p1 and p2

are.
We can also interpret (2.27) in the sense that with a fixed probability of

error, distant PDFs (for which D(p1 ‖ p2) is large) can be classified with
fewer samples available. In fact, the number of samples required is inversely
proportional to D(p1 ‖ p2).

2.4 Statistical inference

Probability theory is a mathematical discipline developed as an abstract model
and it’s calculations are deductions based on certain axioms. Statistics deals
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with the application of probability theory to real problems and its conclusions
are inferences based on observations, often without total justification.

Example 2.9 (A simple inference problem). Let x represent a random variable
which is not observable to us. Let v denote an observable variable which is
dependent on x through a known functional relation of the form v = f(x).
The problem is to determine a unique plausible value for x given the value of
the dependent v. If f(·) invertible and the observed value of v is in the range of
f(·), then the answer is simply x = f−1(v). However, if f(·) is not invertible,
then knowing that f(x) = v would, in general, specify a set of values for x.
Which particular value of this set should we pick? ♦

In general, there is no answer to the question posed in the above example
unless we make further assumptions about the nature of the variable x. We
can go forward only if we submit to inductive reasoning which means that we
are willing to accept plausible results generated by an inference rule.

2.4.1 The Maximum Likelihood principle

A popular statistical inference rule used widely by scientists and engineers is
the Maximum Likelihood principle. According to this principle, to solve the
inference problem mentioned in the above example we have to first assume
that there exist a known probability distribution associated with the variable
x. Then, we should calculate the most probable value for x given the data v
according to the laws of probability theory. If this value exists and is unique,
we shall use it as the inferred value of x.

A major issue with the maximum likelihood principle is that in many
real-world inference problems, there is no straightforward way to assign an a
priori probability distribution to the quantity to be inferred. For instance, in
the above example where x is not observable, one might wonder how to assign
a probability distribution to it?

One way to get out of this deadlock and move forward is to assume that we
know the probability density function associated with the dependent variable
v. Can this assumption help us infer a unique value for x subject to the condi-
tion that f(x) = v? The answer is, unfortunately, negative. This is because if
f(·) is not invertible, it is not possible to specify a unique probability distrib-
ution for x given the probability distribution of v. To resolve this difficulty we
need to look for an extra inference rule which enables us to infer a probability
distribution given certain conditions on that distribution. This is the subject
of the next subsection.

2.4.2 The Maximum Entropy principle

Mathematically speaking, the Maximum Entropy principle is a tool that en-
ables one to infer a function p(x) defined on a given set X when the available
information specifies only a feasible set P of such functions.
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Originally coming from the works of Boltzmann and Gibbs in statistical
physics, the Maximum Entropy principle has been promoted to a general
method of inference primarily by Edwin Jaynes (Jaynes, 1982), (Jaynes, 1983),
(Jaynes, 2003). According to this principle, in an inference problem dealing
with inferring probability distributions, one should choose a distribution which
has maximum entropy among all those which are consistent with the problems’
constraints.

In the following, we will outline two of the strongest arguments that have
been put forth to support the principle of Maximum Entropy as the just rule
of inference for choosing probability distributions.

Justification based on large deviation results: The idea of Maximum
Entropy is closely connected to the subject of large deviations in probabil-
ity theory, which, in turn, is closely related to information theory. Here, we
provide some simple, yet fundamental, large deviation results which we may
use to argue that Maximum Entropy is “right”. The results stated below are
regarded as key ingredients of information theory. However, they have been
known in statistical physics much earlier, dating back to Boltzmann.

Theorem 2.11. (Csiszár and Körner, 1981, Page 30) Given a finite set X
of size |X |, let Nn(p̂) denote the number of n-tuples (x1, · · · , xn) ∈ Xn with
a given empirical density p̂, where

p̂(x)
�
=

1
n

(number of indices i with xi = x). (2.28)

Also, let H(p̂) denote the entropy of p̂. Then,

Nn(p̂) = exp[nH(p̂) − rn(p̂)], (2.29)

where
0 ≤ rn(p̂) ≤ |X | log n. (2.30)

Corollary 2.1. If x1, x2, · · · , xn are drawn independently from X , governed
by the probability density function q, then the empirical density will be p̂ with
probability

exp[−nD(p̂ ‖ q) − rn(p̂)], (2.31)

where D(p̂ ‖ q) denotes the Kullback-Leibler divergence of p̂ from q.

Suppose now that p̂ is known to belong to a closed, convex feasible set P,
and let p∗

�
= arg maxp∈P H(p). Then, providing P contains empirical densities

arbitrarily close to p∗ if n is sufficiently large, the above theorem implies that
all but an exponentially small fraction of the n-tuples (x1, x2, · · · , xn) with
empirical distribution p̂ ∈ P will be in an arbitrarily small neighborhood of
p∗, if n is large. Similarly, the above corollary implies that if x1, x2, · · · , xn

are drawn independently from X , governed by q, the conditional probability
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(on the condition p̂ ∈ P) that p̂ will be in an arbitrarily small neighborhood

of p∗
�
= arg minp∈P D(p ‖ q) is exponentially close to 1, if n is large.

The above results represent very strong arguments for Maximum Entropy
inference, providing the probability mass function to be inferred is an empirical
distribution4. More general results of the above kind, for general rather than
finite X , are also available. See Van Campenhout and Cover (1981) and Csiszár
(1984).

Justification based on axiomatization: A very attractive alternative is
to take an axiomatic approach: Start from certain properties that a sound
method of inference must have, and investigate whether the postulated prop-
erties uniquely characterize a distinguished method, or else what alternatives
come into account. Such an approach was first put forward in the important
paper by Shore and Johnson (1980) which inspired several later works includ-
ing the excellent paper by Csiszár (1991). Below, we review certain axioms
that, if one would require an inference method to satisfy them, one would
arrive at “the inevitability of maximum entropy”. Our account here is very
brief and follows that of Csiszár (1991). The reader is referred to Shore and
Johnson (1980), Skilling (1988), Paris and Vencovská (1990), Csiszár (1991),
Csiszár (1996) and Jaynes (2003) for detailed discussions of this topic.

Assume, for simplicity, that X is a finite set of size |X | ≥ 3, and that p(x)
is a strictly positive function on X . Our problem is to infer p(x), knowing only
a feasible set P and a “default” model q(x). It is assumed that the feasible
set is defined via linear constraints, that is,

P �
= {p(x) :

∑
X

ai(x)p(x) = bi, i = 1, 2, . . . , k}

for some given functions ai(x) and constants bi.
By an inference method we mean any rule that assigns, to every feasible set

P defined be linear constraints and any default model q, an inferred function
p∗ ∈ P, denoted by p∗[P; q]. We emphasize that it is not postulated that p∗

is the minimizer of some measure of distance of p from q. It is proved that
this does follow from the regularity and locality axioms below and the proof
constitutes a major step of the axiomatic approach.

(i) (Regularity axiom) If P1 ⊂ P and p∗[P; q] ∈ P1 then p∗[P1; q] =
p∗[P; q].

4 This is explicitly the case in many applications of the Maximum Entropy principle
in physics and implicitly the case for the problems we consider in this book.
Note that if we accept Richard von Mises’ “frequency definition” as our formal
notion of probability, we have agreed that all probability measures, including
those conceived for random processes, are limiting cases of their corresponding
empirical distributions.
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(ii) (Locality axiom) If the constraints defining P can be partitioned into
two sets, the first involving functions ai(x) that vanish for x /∈ X1 and
the second involving functions ai(x) that vanish for x ∈ X1, where X1 is
a subset of X , then the values of p∗[P; q] for x ∈ X1 depend only on the
first set of constraints and on the values of q for x ∈ X1.

(iii) (Transitivity axiom) If P1 ⊂ P then p∗[P1; p∗[P; q]] = p∗[P1; q].

(iv) (Weak scaling axiom) If P = {p(x) : p(x1) + p(x2) = t} for some
x1, x2 ∈ X and t > 0, then p∗ = p∗[P; q] satisfies p∗(xi) = λq(xi) for
i = 1, 2 and λ = t/(q(x1) + q(x2)).

The regularity axiom formalizes the intuitive idea that if the inference
based on some knowledge happens to be consistent also with some additional
knowledge then the new knowledge provides no reason to change that infer-
ence. The locality axiom means that if the available knowledge contains pieces
pertaining to disjoint subsets of X , then, on each of these subsets, the inference
must be based on the knowledge pertaining to that subset. The transitivity
axiom is self-evident. The weak scaling axiom appears to be natural if we
think of p(x) as a probability mass function5. However, it is not self-evident
and whether it is desirable or not-so-desirable would depend on the nature of
the function p(x) to be inferred.

Theorem 2.12. (Csiszár, 1996, Theorem 7.1) The regularity, locality, tran-
sitivity and weak scaling axioms are satisfied if and only if

p∗[P; q] = arg min
p∈P

D(p ‖ q).

The inference rule suggested by the above theorem is called the princi-
ple of “Minimum Cross-Entropy.” The Maximum Entropy principle follows
immediately if we assume that q(x) is the uniform prior.

Criticism: The Maximum Entropy principle has always remained con-
troversial. This controversy, in part, derives from the fact that it relies on a
subjective interpretation of probability as a measure of the degree of belief
which a rational person ought to assign to the event. This contrasts with the
ensemble or frequency of occurrence interpretations which are more common
in many traditional applications of probability.

Another problem is that, the subjective interpretation of probability, even
when equipped with the Principle of Maximum Entropy, does not resolve the
issue of assigning prior probabilities in all cases. For instance, complications
5 If a prior guess about a probability mass function has to be updated subject to

a single constraint that specifies the probability of a given set, it is standard to
assign probabilities to the elements of this set proportional to the prior ones. This
is, in fact, what the weak scaling axiom requires.



36 2 Background

arise in the infinite case, since there cannot be a flat distribution over de-
numerably many outcomes, on pain of violating Kolomogorov’s probability
calculus (with countable additivity).

The interested reader is referred to Uffink (1995), Uffink (1996) and Jaynes
(2003) for further reading on this important topic. The fundamental texts
by von Mises (1964) and Jeffreys (1967) represent the two major schools of
thought in defining the meaning of probability. The authoritative book by
Watanabe (1969) is highly recommended as well.

2.4.3 Probability density estimation

Let’s go back to Example 2.9 at the beginning of this section. Under some mild
mathematical conditions, the Maximum Entropy principle makes it possible
to assign a unique probability distribution to the non-observable variable x
given a probability distribution for the dependent variable v. The problem
now remains as to how to choose a representative probability distribution for
the variable v given a certain number of its observed values?

In probability theory, a probability distribution cannot be constructed
based on finite-sample observations. This fundamental limitation causes ma-
jor conceptual difficulties in applying both the axiomatic and the frequency
theories of probability to modeling empirical data. J. Rissanen (Rissanen,
1989, Page 2) describes the problem with the axiomatic approach as follows:

“We have grave difficulties in ensuring that the observed data behave
as typical samples from the assumed distribution and checking the
probabilistic consequences. Worse than that, while we know all about
the behaviour of probabilities by Kolmogorov’s axioms, no way has
been found to give a constructive definition of probability which would
allow us to recognize it in observed data in a clear-cut way. Similarly,
there is no way for us to tell when a given data sequence is ‘random’ or
‘randomly drawn’ from a distribution. Indeed, even the ‘mathematical’
notion of randomness can only be defined in a relative sense . . . As a
consequence, all attempts to attach inherent probabilities to observed
data have failed, as they indeed must.”

The frequency definition of probability has nothing to say about finite data
records either, as pointed out in the following words by Kolmogorov (Li and
Vitányi, 1997, Page 55):

“The frequency concept based on the notion of limiting frequency as
the number of trials increases to infinity does not contribute anything
to substantiate the application of the results of probability theory to
real practical problems where we always have to deal with a finite
number of trials.”

In spite of the fundamental difficulties mentioned above, statisticians have
made up a wide variety of inference rules that, relying on various extra “as-
sumptions”, try to construct a probability distribution for a random variable
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given some samples instances of that variable. These empirical methods col-
lectively form the art of “statistical inference”.

In statistical inference, the problem of estimating a probability distribution
using sample observations is cast in several forms including hypothesis testing
(deciding between two or more possible probability distributions), parameter
estimation (estimating the value of some parameters that specify a probability
distribution within a particular class) and non-parametric estimation, which
considers the more general problem of estimating an arbitrary probability
distribution based on observed data.

Hypothesis testing and parameter estimation are subjects that are stan-
dard fare in almost any book that deals with statistical inference. Such books
range from the highly theoretical expositions written by statisticians, e.g.
Kullback (1954) and Vajda (1989), to the more practical treatments con-
tributed by the many users of applied statistics, e.g. Kay (1993), Kay (1998)
and Duda et al. (2001). For an analysis of methods devised for non-parametric
probability density estimation see Vapnik (1982), Devroye et al. (1996), Vap-
nik (1999), Duda et al. (2001) and Eggermont and LaRiccia (2001). Notable
non-parametric probability density estimation methods include traditional
histogram-based or Parzen-window methods (Duda et al., 2001, Chapter 4),
kernel-based methods (Eggermont and LaRiccia, 2001) and methods based on
structural risk minimization (Vapnik, 1982).

Any of the common probability density estimation methods may be used to
complete the process of inferring x given the related variable v in Example 2.9.

2.4.4 Reliability of statistical inference principles

A very important question that comes to mind with regards to the empirical
inference principles described above is how reliable they are?

For any density estimation method to be reliable, we need to have a suffi-
ciently long series of independent data samples6. For the Maximum Entropy
principle to be reliable, the density to be estimated should be among the so-
called typical densities that satisfy the constraints (Csiszár, 1996). Finally, the
maximum likelihood principle is reliable if the probability density function is
highly concentrated around its maximum.

In real world, some of the above conditions might not hold for a particular
application. In this case, using the inference methods described above might
lead to nonsense. Ultimately, it is the user’s responsibility to verify whether
the assumptions based on which each inference step is formulated are indeed
just, and, then, whether to associate any meaning to the results generated at
the end. That’s why statistical inference is an art not a science!

6 Obviously, it is not clear what is meant by “sufficiently long” and this is yet
another difficulty that exists in probability density estimation.
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2.5 Stochastic processes

From a physical point of view, a stochastic process is a process whose behav-
ior is governed at least in part by a random mechanism. Familiar examples
of stochastic processes include stock market and exchange rate fluctuations,
electronic signals such as speech, and audio; and medical signals such as a pa-
tient’s EKG. A physical stochastic process is modelled by a random variable
x(t) with the continuous parameter t ∈ R representing time. A discrete-time
stochastic process x(n), n ∈ Z, might be generated by sampling a physical
continuous-time process at regular times t = nT .

2.5.1 Stationary stochastic processes

A discrete-time stochastic process x(n) can be modelled by a set {x(n) : n ∈
Z} of real-valued random variables defined on the same probability space. In
this book we work exclusively with discrete-time stochastic processes so we will
drop mentioning the word “discrete-time” hereafter. A wide-sense stationary
(WSS) stochastic process x(n) is a process such that

(i) E{x2(n)} < ∞, ∀n,
(ii) E{x(n)} = µ (constant), ∀n,
(iii) E{(x(n + k) − µ)(x(n) − µ)} = E{(x(k) − µ)(x(0) − µ)} ∀n, k;

that is, the process has finite second moment at each instant and the mean
values E{x(n)} and covariance values E{(x(n+k)−µ)(x(n)−µ)} are invariant
with respect to shifts in the discrete time-parameter n.

We assume, without loss of generality, that µ = E{x(n)} = 0. In this case

the function Rx(k)
�
= E{x(n+k)x(n)} will be called the autocorrelation func-

tion (ACF) associated with the process x(n). It is sometimes more convenient
to consider the set of ACF values Rx(k), k ∈ Z, as a sequence. Therefore, we
sometimes call Rx(k) the autocorrelation sequence (ACS) as well.

Due to the importance of the ACF, we review some of its main properties
in this subsection. The reader is referred to any standard text on stochastic
processes, e.g. Papoulis (1991), for proofs.

(i) Rx(0) ≥ 0.
(ii) Rx(−k) = Rx(k).
(iii) |Rx(k)| ≤ Rx(0).
(iv) Rx(k) is a non-negative definite sequence. This is to say

∑N
i=1

∑N
j=1 aiaj

Rx(i − j) ≥ 0 for any N and any real numbers a1, a2, · · · , aN .
(v) Let Cxx be the N by N covariance matrix associated with the WSS

process x(n), that is, [Cxx]ij = Rx(i−j), 1 ≤ i, j ≤ N . Then, detCxx ≥ 0.
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2.5.2 The power spectrum

One of the most important attributes of a stationary random process x(n)
is its power spectrum, also referred to as power spectral density or PSD for
short. In this section, we provide a definition of power spectrum and clarify
some issues regarding its interpretation. Our approach closely follows that of
Mandel and Wolf (1995). The books by Middleton (1960), Caines (1988) and
Papoulis (1991) contain well-written treatments of this topic as well.

Heuristically, one could try to introduce the spectrum of a random process
as follows. Let’s formally represent x(n) as a Fourier integral,

x(n) =
1
2π

∫ π

−π

X(ejω)ejωtdω, (2.32)

and let’s assume that the integral exists and may be inverted, i.e., that

X(ejω) =
∞∑

n=−∞
x(n)e−jωn. (2.33)

We might then attempt to define the spectrum S(ejω) of x(n) by the expec-
tation value of |X(ejω)|2, i.e.,

S(ejω) = E{|X(ejω)|2} (2.34)

so that S(ejω) would be a measure of the strength of the fluctuations asso-
ciated with a particular Fourier component of x(n). However, it turns out
that the definition (2.34) is mathematically unsound. For if x(n) is a station-
ary random process, it does not tend to zero as n → ∞, simply because the
underlying probability densities that characterize the fluctuations of x(n) are
invariant with respect to the translation of the origin of time. Thus, in the sta-
tistical sense, x(n) can not behave any differently for large values of |n| than it
does for any other value of n. Consequently, x(n) is neither square-integrable
nor absolutely integrable and hence the Fourier integral (2.32) does not exist
within the framework of the theory of ordinary functions. The difficulty just
noted can be overcome only if we interpret our formulas within the framework
of generalized harmonic analysis.

Generalized harmonic analysis originated by Wiener (1930). Wiener did
not employ any statistical concepts in his analysis. Four years after publication
of Wiener’s classic paper, Khintchine (1934) derived results which were of the
same nature as those of Wiener but were derived from a statistical point
of view. It’s worth noting that both Wiener and Khintchine employed the
notion of integrated spectrum rather than spectral density, probably because
the spectral density may become singular, though no more singular than the
Dirac delta function. In the following, as in the rest of the book, we shall not
hesitate to use the Dirac delta function and we will, therefore, work with the
spectral density.
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To have our historical perspective complete, we should also mention that it
was not generally known till long after the publication of the papers by Wiener
and Khintchine that the essential aspects of their results were discovered much
earlier by Einstein7 in 1914.

Now, let us return to the problem of defining the power spectrum. For this
purpose, we will again use the Fourier transform relations (2.32) and (2.33),
considering them now as symbolic formulas which, as just noted, can be given
rigorous mathematical meaning if one goes beyond ordinary function theory.

For each realization of the real stationary random process x(n), (2.33) will
generate a complex function X(ejω), and, hence, X(ejω) is also a random
function (process) in which frequency is the parameter rather than time. Let
us now consider the expectation of the product X(ejω)∗X(ejω

′
). From (2.33)

we have, if we interchange the operations of expectation and summation, that

E{X(ejω)
∗
X(ejω

′

)} =
+∞∑

k=−∞

+∞∑
k′=−∞

E{x(k)x(k
′
)}ej(ωk−ω

′
k
′
). (2.35)

Since the process x(n) is assumed to be stationary, E{x(k)x(k
′
)} = Rx(k−k

′
),

where Rx(·) is the ACF of x(n). Using this fact, and setting l = k − k
′
, we

find that

E{X(ejω)
∗
X(ejω

′

)} =
+∞∑

k′=−∞

ej(ω−ω
′
)k

′ +∞∑
l=−∞

Rx(l)e−jω
′
l, (2.36)

which implies that

E{X(ejω)
∗
X(ejω

′

)} = Px(ejω
′

)δ(ω − ω
′
), (2.37)

where

Px(ejω)
�
=

+∞∑
l=−∞

Rx(l)e−jωl. (2.38)

The two formulas (2.37) and (2.38) are both of fundamental importance.
The first shows that the (generalized) Fourier components of a stationary
random process belonging to different frequencies are uncorrelated, and that
Px(ejω) is a measure of the strength of the fluctuations of the Fourier com-
ponent at frequency ω, that is, Px(ejω) may be identified with the spectral
density S(ejω) of x(n).

Formally, we regard the formula (2.38) as defining the power spectrum
of the stationary random process x(n) and use (2.37) as the justification of

7 An English translation of Einstein’s original 1914 paper has been published, along
with interesting commentaries by A. M. Yaglom, in the IEEE ASSP magazine,
Vol. 4, No. 4, November 1987.
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our definition. Note that the singularity at ω
′

= ω in (2.37) doesn’t cause
any problem since it can be removed if we integrate both sides over a small
ω

′
-range around ω. Doing this, we might write our justifying formula (2.37)

in the following form

Px(ejω) = lim
∆ω→0

∫ ω+∆ω

ω−∆ω

E{X(ejω)
∗
X(ejω

′

)}dω
′
. (2.39)

The similarity between the above formula and the naive definition (2.34)
should be noted. Using the properties mentioned earlier for the ACF, one can
prove the following properties for the power spectrum:

(i) Px(ejω) is a real function of ω.
(ii) Px(e−jω) = Px(ejω).
(iii) Px(ejω) ≥ 0.

2.5.3 Processes with rational power spectra

In this book, we will consider WSS processes whose power spectral density
Px(ejω) is a continuous function of ω and satisfies the following condition:

∫ π

−π

ln Px(ejω)dω > −∞. (2.40)

The above condition (known as the Paley-Wiener condition) ensures that
the WSS process x(n) is non-deterministic or linearly unpredictable (Caines,
1988, Section 1.3), (Papoulis, 1991, Section 14.2). A process that enjoys this
property is called regular.

It is well known that the PSD of a regular WSS process may be factored
into a product of the form

Px(ejω) = σ2
0 |Q(ejω)|2, (2.41)

or, if we replace ejω by the complex variable z,

Px(z) = σ2
0Q(z)Q(z−1), (2.42)

where
σ2

0 = exp{ 1
2π

∫ π

−π

ln Px(ejω)dω}, (2.43)

and Q(z) is the z-transform of a causal and stable sequence q(k):

Q(z) = 1 + q(1)z−1 + q(2)z−2 + · · ·

It also turns out that Q(z) has no poles or zeroes outside the unit circle,
which, in turn, implies that Q(z) has a stable and causal inverse 1/Q(z).
Furthermore, one can show that
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(i) Any regular WSS process x(n) may be realized as the output of a causal
and stable filter Q(z) that is driven by white noise having a variance of
σ2

0 . This is known as the innovations representation of the process. The
filter Q(z) is called the innovations filter or modeling filter of x(n).

(ii) The inverse filter 1/Q(z) is a called a whitening filter. That is because, if
x(n) is filtered with 1/Q(z), then the output is white noise process with
variance σ2

0 . This white noise process is called the innovations process
associated with x(n).

An important subset of regular WSS processes are those whose PSD is
rational. In this case, the modelling filter Q(z) might be written as the ratio
of two monic polynomials A(z) and B(z) in z−1:

Q(z) =
A(z)
B(z)

=
1 + a(1)z−1 + a(2)z−2 + · · · + a(q)z−q

1 + b(1)z−1 + b(2)z−2 + · · · + b(p)z−p
, (2.44)

For completeness, let a(0) = b(0) = 1. A process whose modelling filter is of
the above form is known as an autoregressive moving average process of order
(p, q) and is referred to as an ARMA(p, q) process. Important special types of
ARMA(p, q) processes result when either p or q is equal to zero. If q = 0, the
process is generated by filtering white noise with an all-pole filter of the form

Q(z) =
1

1 +
∑p

k=1 b(k)z−k
. (2.45)

An ARMA(p, 0) process is called an autoregressive process of order p and will
be referred to as an AR(p) process. If, on the other hand, p = 0, the process is
generated by filtering white noise with an FIR filter that has a system function
of the form

Q(z) = 1 +
q∑

k=1

b(k)z−k. (2.46)

Such a process is known as a moving average process of order q and will
be referred to as an MA(q) process. Note from (2.41) that the PSD of an
MA(q) process is completely specified by a set of q + 1 numbers (parame-
ters) {σ0, b(1), · · · , b(q)}. Similarly, to completely characterize the power spec-
trum of an AR(p) process, we need p + 1 parameters represented by the set
{σ0, a(1), · · · , a(p)}.

The following properties of MA(q) and AR(p) processes are important and
will be used frequently in our subsequent developments:

(i) The ACS Rx(k) of an MA(q) process is zero for all values of k that lie
outside the interval −q ≤ k ≤ q.

(ii) There is a one-to-one correspondence between the first q + 1 coefficients
of the ACS of an MA(q) process and the q + 1 parameters that specify
its PSD. This correspondence, however, is nonlinear and is given by the
following convolution equation

Rx(k) = σ2
0b(k) � b(−k). (2.47)
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(iii) The ACS Rx(k) of an AR(p) process is non-zero for infinitely many values
of k.

(iv) There is a one-to-one correspondence between the first p + 1 coefficients
of the ACS of an AR(p) process and the p + 1 parameters that specify its
PSD. This correspondence is also nonlinear and is given by the so-called
Yule-Walker equations

Rx(k) +
p∑

l=1

b(l)Rx(k − l) = σ2
0δ(k), k = 0, 1, · · · , p. (2.48)

2.5.4 Information rate of stochastic processes

The concept of entropy for random variables generalizes to the concept of
information rate for WSS stochastic processes. Let x(n) be a Gaussian WSS
random process with PSD Px(ejω). The information rate of this process is
defined by

H(x)
�
= lim

N→∞

1
N

H(x(n), x(n + 1), · · · , x(n + N − 1)).

It can be shown that the above limit exists and is given by (Papoulis, 1991,
Page 568)

H(x) =
1
2

ln 2π +
1
2

+
1
4π

∫ π

−π

ln Px(ejω)dω, (2.49)

where Px(ejω) is the power spectrum of x(n). Since H(·) is a functional of Px,
we will use the notations H(x) or H(Px) interchangeably for the entropy rate
of a Gaussian WSS random process x.

For two or more correlated random processes, one can define mutual in-
formation rate and joint information rate as well but these concepts are not
needed in this book. Information theory of WSS stochastic processes has been
studied in detail in the classic book by Pinsker (1964). More recent books con-
taining readable accounts on information rate are Caines (1988), Gray (1990),
Cover and Thomas (1991), and Papoulis (1991).

The definition of Kullback-Leibler divergence given in (2.22) can be ex-
tended to zero-mean Gaussian WSS stochastic processes as well. As mentioned
earlier in this chapter, the statistical properties of such processes are com-
pletely determined by their PSD function or, equivalently, by their ACS. So,
let P1(ejω) and P2(ejω) represent two hypotheses for the PSD of a zero-mean
Gaussian stochastic process x(n). Now, define XN as the vector containing N
samples of the process x(n), that is,

XN
�
= [x(0) x(1) · · · x(N − 1)]T . (2.50)

Obviously, XN is an N -dimensional Gaussian random vector with zero mean
and an N × N covariance matrix which is uniquely determined by the PSD
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of x(n). We denote by DN the Kullback-Leibler divergence between the two
possible PDFs of XN . From, (2.24), we can then write

DN =
1
2
Tr(C1C−1

2 ) − 1
2

ln
|C1|
|C2|

− N

2
, (2.51)

where C1 represents the covariance matrix of XN if P1(ejω) is the true PSD
and C2 represents the covariance matrix of XN for the case that P2(ejω) is
true.

One can show that under mild conditions lim
N→∞

DN exists. This limit, when

it exists, is defined as the Kullback-Leibler divergence D(P1 ‖ P2) between
the two power spectral densities P1(ejω) and P2(ejω).

Theorem 2.13. (Pinsker, 1964, Theorem 10.5.1) (Vajda, 1989, Proposition
8.29) Let P1(ejω) and P2(ejω) be two candidate PSDs for the zero-mean
Gaussian WSS random process x(n). If P1(ejω) and P2(ejω) are essentially
bounded from below8, then the Kullback-Leibler divergence of P1(ejω) from
P2(ejω) exists and is given by

D(P1 ‖ P2) =
1
4π

∫ π

−π

(
P1(ejω)
P2(ejω)

− ln
P1(ejω)
P2(ejω)

− 1
)

dω. (2.52)

Note that if P1(ejω) and P2(ejω) are rational with no poles or zeroes on
the unit circle, then the conditions of the above theorem are satisfied and
D(P1 ‖ P2) exists.

The Kullback-Leibler divergence between two candidate PSDs has impor-
tant distance-like properties which can be used to introduce certain geometries
on the space of PSD functions. The reader is referred to Amari and Nagaoka
(2000) for further discussions on this very interesting topic.

8 This is to say, there is a positive constant ε such that P1(e
jω) and P2(e

jω) are
both greater than ε for almost all ω.
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Multirate Spectrum Estimation

3.1 Introduction

A fundamental problem in statistical signal processing is how to estimate the
power spectrum of a random process given a finite number of it’s samples.
Spectrum estimation has important applications in many fields of applied
physics and engineering. Examples can be found, for instance, in oceanogra-
phy, radar, geophysics, optics and oil exploration. See Kay (1988), Percival
and Walden (1993), Hayes (1996) and Buttkus (2000).

In this chapter we consider the problem of estimating the power spectrum

sensor network setup shown in Fig. 3.1 represents a simple instance of this
scenario. In this setup, a stationary sound source is to be monitored by a
collection of wireless sensors (Motes) put at various known locations in a room.
Assume that each Mote can process its observed signal and calculate it’s first
L correlation coefficients. The correlation coefficients are then transmitted
to a central station for processing. Our goal is to consolidate the statistical
measurements sent in by each Mote and make an accurate estimate of the
power spectrum of the sound source.

The material in this chapter are based on the paper by Jahromi et al.
(2004b).

3.2 Mathematical modelling of the problem

We discussed in Chapter 1 that in many cases multirate measurements can be
modelled by a multirate filter bank. Consider the filter bank in Fig. 3.2. This
filter bank can model an M -channel sensor system where each sensor produces
a low-rate (low-resolution) measurement vi(n) of an original physical signal
x(n). The filters in Fig. 3.2 can model the bandwidth limitations of each sensor
as well as reverberations, time-difference of arrival (TDOA), attenuation and
other linear propagation artifacts. Each filter is followed by a down-sampler
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of a random process using a series of multirate statistical measurements. The
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communications
       module

sound
source
      

sensor
nodes
      

data acquisition and
 processing module

microphone

Fig. 3.1. A distributed network of sensors monitoring a stationary sound source in
a room.
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M-1
v     (n)x     (n)M-1

N 0

N M-1

N 1

. . .

Fig. 3.2. An M -channel multirate filter bank can be used to model multirate sensors.
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device which models the (possible) difference in sampling rate among the
sensors. The decimators can also represent the limited processing speed the
sensors’ on-board processor.

Assume that the signal under measurement x(n) is a realization of a zero-
mean stationary random process. Recall from Chapter 2 that a complete sta-
tistical description of such a process is provided by its autocorrelation sequence
(ACS)

Rx(k)
�
= E{x(n)x(n + k)}

or, equivalently, by its power spectrum which is also known as the power
spectral density (PSD)

Px(ejω) =
∞∑

k=−∞
Rx(k)e−jωk.

The autocorrelation sequence is a time-domain description of the second or-
der statistics of a random process. The power spectrum provides a frequency
domain description of the same statistics.

It is straightforward to show that the observations v0(n) to vM−1(n) in
Fig. 3.2 are also WSS processes. The ACS of the low-rate measurements can
be written as

Rvi
(k) = Rxi

(Nik) (3.1)

where
Rxi

(k) = (hi(k) � hi(−k)) � Rx(k), (3.2)

and hi(k) denotes the impulse response of Hi(z). We can express Rvi
(k) as a

function of the input PSD as well. Let’s define Gi(z)
�
= Hi(z)Hi(z−1). Now,

(3.2) can be written as

Rxi
(k) =

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejkωdω. (3.3)

From (3.1) and (3.3), we can then write

Rvi
(k) =

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejNikωdω. (3.4)

The above relation shows that we can uniquely specify Rvi
(k) for all values

of i and k if we know Px(ejω). Here, we are interested in the following inverse
problem:

Problem 3.1. Estimate Px(ejω) given Rvi
(k) for i = 0, . . . , M − 1 and k =

0, 1, . . . , L − 1.

It is easy to check that, in general, knowing Rvi
(k) for some limited values

of i and k is not sufficient for characterizing Px(ejω) uniquely. That is, given
a finite set of ACS values Rvi

(k) there usually exist infinitely many Px(ejω)
which can generate those values. Thus, Problem 3.1 is ill-posed.
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Fig. 3.3. The basic problem in multirate spectrum estimation is to estimate Px(ejω)
given certain statistics of the low-rate observations vi(n).

3.3 The Maximum Entropy principle

We discussed in Chapter 2 that the Maximum Entropy principle can be used
to resolve certain ill-posed statistical inference problems. According to this
principle, one should choose the most random solution that satisfies the known
constraints.

The Maximum Entropy principle was introduced in 1957 by E. T. Jaynes in
the field of thermodynamics. Applying this principal to spectrum estimation
is credited to Burg (1967) who used Jaynes’ idea to estimate the PSD of a
random signals given a limited number of its autocorrelation coefficients. In
this chapter, we will generalize Burg’s method to the multirate case. This is
to say, we try to solve Problem 3.1 by finding a Px(ejω) which is

(i) consistent with the given ACS values Rvi
(k),

(ii) associates with the most random input signal x(n).

In the literature on the Maximum Entropy principle, e.g. Wu (1997), ran-
domness is usually quantified using Shannon’s entropy. Recall from Chapter 2
that the notion of entropy of a scalar random variable translates to the no-
tion of entropy rate for WSS random signals. Recall also that when x(n) is
Gaussian, the entropy rate is given by

H(Px) =
1
2

ln 2π +
1
2

+
1
4π

∫ π

−π

ln Px(ejω)dω. (3.5)
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Let Γ
�
= {ρi(k) : i = 0, . . . ,M − 1, k = 0, 1, . . . , L − 1} denote the set of

known autocorrelation coefficients obtained from the available low-rate signals
vi(n). The set Ω of all input PSDs which are consistent with these data is
given by

Ω
�
=


Px :

1
2π

∫ π

−π
Px(ejω)Gi(ejω)ejNikωdω = ρi(k);∀ρi(k) ∈ Γ

Px(ejω) ∈ L1(−π, π);
Px(ejω) ≥ 0


 (3.6)

Definition 3.1. The data set Γ is called “admissible” if Ω �= ∅.

Now, the Maximum Entropy principle asserts that we should pick a
Px(ejω) ∈ Ω which has maximum entropy. This means we have to solve the
following constrained optimization problem:

Problem 3.2. Find P ∗
x (ejω) = arg max H(Px) subject to Px ∈ Ω.

Theorem 3.1. If Problem 3.2 has a solution, it is in the form

P ∗
x (ejω) =

1∑M−1
i=0 Gi(ejω)Fi(ejNiω)

, (3.7)

where Fi(z)
�
=
∑L−1

k=−(L−1) 2λikz−k. The coefficients λikof the transfer func-
tions Fi(z) in (3.7) are specified such that

1
2π

∫ π

−π

Gi(ejω)ejNikω∑M−1
j=0 Gj(ejω)Fj(ejNjω)

dω = ρi(k) (3.8)

holds for all values of i = 0, 1, · · ·M − 1 and k = 0, 1, · · ·L − 1.

Proof. By using standard techniques from calculus of variations, we can con-
vert Problem 3.2 to an unconstrained optimization problem. To do so, we
form the functional

J
�
=

1
4π

∫ π

−π

ln P ∗
x (ejω)dω + (3.9)

M−1∑
i=0

L−1∑
k=−(L−1)

λik

[
ρi(k) − 1

2π

∫ π

−π

P ∗
x (ejω)Gi(ejω)ejNikωdω

]

where λik are the Lagrange multipliers. Note that since both ρi(k) and Rvi
(k)

are symmetric in k, we have λik = λi(−k). Taking the variation of J with
respect to P ∗

x we get

δJ =
1
4π

∫ π

−π

δP ∗
x (ejω)

1
P ∗

x (ejω)
dω −

1
2π

∫ π

−π

δP ∗
x (ejω)


M−1∑

i=0

L−1∑
k=−(L−1)

λikGi(ejω)ejNikω


 dω.
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Putting δJ equal to zero1 leads to

∫ π

−π


 1

P ∗
x (ejω)

− 2
M−1∑
i=0

Gi(ejω)


 L−1∑

k=−(L−1)

λikejNikω




 δP ∗

x (ejω)dω = 0.

Since δP ∗
x (ejω) is arbitrary, the quantity in the square brackets must be zero.

Therefore, we obtain

P ∗
x (ejω) =

1∑M−1
i=0 Gi(ejω)

(∑L−1
k=−(L−1) 2λikejNikω

) . (3.10)

It’s convenient to define Fi(z)
�
=
∑L−1

k=−(L−1) 2λikz−k such that (3.10) can be
written in the compact form

P ∗
x (ejω) =

1∑M−1
i=0 Gi(ejω)Fi(ejNiω)

. (3.11)

To uniquely specify our solution, we have to calculate the Lagrange mul-
tipliers λik which characterize the FIR transfer functions Fi(z) in (3.11). As
is standard in calculus of variations, λik are obtained by the requirement that
P ∗

x (ejω) must satisfy the constraints, i.e. P ∗
x (ejω) ∈ Ω. Thus, Fi(z) must be

chosen such that

1
2π

∫ π

−π

Gi(ejω)ejNikω∑M−1
j=0 Gj(ejω)Fj(ejNjω)

dω = ρi(k) (3.12)

holds for all values of i = 0, 1, · · ·M − 1 and k = 0, 1, · · ·L − 1. ��

Note that the transfer function Fi(ejω) is a real function of ω. Thus, we
might use the simpler expression Fi(ejω) =

∑L−1
k=0 λik cos(kω) in (3.7) and

(3.8).

3.4 A geometric interpretation

Let X = [x0 x1 x2]T be a vector in the Euclidean space R
3 and define N =

{X | 〈X,X0〉 = 3,X ≥ 0} where X0 = [1 1 1]T is fixed reference vector. The
equation 〈X,X0〉 = 3 specifies a plane surface. The set N simply represents
those vectors (points) on this surface which are confined to the first (positive)
quadrant (Fig. 3.4).

The Burg entropy of each point in the set N is given by H(X) =∑2
k=0 ln xk. Fig. 3.5 shows the contours induced by the Burg entropy on the

1 We’ll show in the next section that the functional H(Px) is strictly concave on
its domain of definition. Thus, putting the first variation δJ of the functional J
is sufficient for obtaining a global maximizer.
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N

Fig. 3.4. Geometric visualization of N as a closed triangular region in the Euclidean
space.
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Fig. 3.5. A linear constraint will specify a line in R
3. The set of feasible solutions

is represented by the segment of this line which intersects with the triangular region
that represents N . The Maximum Entropy principle chooses a point on this segment
which has the highest entropy. As entropy increase for points close the centre of the
triangle N , the selected point will be “close” to the centre.

triangular region specified by N . Clearly, entropy increases as we approach the
center of the triangle and decreases as we approach its borders. The Entropy
is −∞ on the side of this triangle. An extra linear constraint will specify a
line in N (Fig. 3.5).

The above geometrical picture can be extended to the space of power spec-
tra as follows: Many power spectra of practical interest are square integrable.
Thus, we can imagine that P (ejω) are “points” in the functional Hilbert space
L2(−π, π). In this space, the constraint set Ω can be pictured as the intersec-
tion of the linear manifold defined by (3.14) and the positive quadrant defined
by P (ejω) > 0.

The Maximum Entropy principle chooses the closest point to the center
of the triangle N among all the points in the feasible set, where “close” is
interpreted as“high entropy”. This is shown in Fig. 3.5.
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3.5 Properties of the Maximum Entropy solution

The use of entropy-based stabilizing functions for regularizing various ill-posed
inverse problems has been an active area of research in applied mathematics.
See, e.g. Klaus and Smith (1988), Borwein and Lewis (1991), Engl and Landl
(1993), Eggermont (1993), Engl et al. (1996) and Leonev (2000).

Entropy-based regularization methods usually lead to an optimization
problem of the form

minimize
∫ b

a

φ(P (ω))dω, P (ω) ∈ L1(a, b) (3.13)

subject to
∫ b

a

Gi(ω)P (ω)dω = αi,

where i = 0, 1, · · · , N − 1 indexes the constraints, Gi(ω) are known functions
and αi are the measured data. The function φ(·) reflects the choice of the
entropy measure. Two popular choices for φ(·) are (negative) Shannon entropy

φ(P )
�
= P log P

and (negative) entropy rate

φ(P )
�
= − log P

which is sometimes called Burg entropy.
Well-posedness of the minimization problem (3.13) when φ is the Shannon

entropy has been established in several works including Klaus and Smith
(1988), Amato and Hughes (1991), Borwein and Lewis (1991), Eggermont
(1993) and Teboulle and Vajda (1993). Well-posedness results exist for certain
classes of functions φ as well. See Teboulle and Vajda (1993) and Leonev
(2000). Unfortunately, the function φ(P ) = − log P which leads to entropy
rate (3.5) does not satisfy the conditions required in the above mentioned
works2.

While entropy rate (3.5) lacks theoretical support as a regularizing func-
tional, it has been used extensively and successfully in many areas of applica-
tion including spectral estimation and image restoration. What makes entropy
rate attractive in the context of spectrum estimation is that its minimization
subject to linear constraints implied by Px(ejω) ∈ Ω leads to a rational func-
tion. This is a very desirable property since the theory of stationary random
processes with rational spectra is well known.

In the rest of this section we present some of the available (albeit par-
tial) results on uniqueness, existence and stability of the Maximum entropy
spectrum estimate parameterized in Theorem 3.1.
2 The classes of stabilizing functionals studied by Teboulle and Vajda (1993) and

Leonev (2000) require that limP→∞
φ(P )

P
= ∞. This property is not satisfied by

φ(P ) = − log P .
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3.5.1 Uniqueness

Lemma 3.1. When it exists, the solution to Problem 3.2 is unique.

Proof. The proof is based on the fact that the entropy rate (3.5) is a concave
functional. To see this, let P1(ejω) and P2(ejω) be two distinct PSDs in the
constraint set Ω. Define Pα(ejω) = αP1(ejω) + (1 − α)P2(ejω). It is easy to
check that Ω is a convex set. Thus Pα(ejω) ∈ Ω for 0 ≤ α ≤ 1 as well. Now,
we define

H(α)
�
= H(Pα) =

1
2π

∫ π

−π

ln(αP1(ejω) + (1 − α)P2(ejω))dω.

It is easy to check that

∂2H(α)
∂α2

=
1
2π

∫ π

−π

−(P1(ejω) − P2(ejω))2

(Pα(ejω))2
dω < 0.

The above expression shows that (3.5) is a (strictly) concave functional
which, in turn, proves that its maximum over Ω, when it exists, is unique. ��

3.5.2 Existence

A comprehensive analysis of the problem of existence of a Maximum Entropy
solution has been done by Borwein and Lewis (1993). Their results show that
if one can specify the Lagrange multipliers λik such that P ∗(ejω) is positive,
then P ∗(ejω) is the solution to Problem 3.2. However, if P ∗(ejω) obtained
after finding the Lagrange multipliers is not positive definite, then the solution
to Problem 3.2 may contain a singular part as well.

In genera, it’s not known if the solution given by Theorem 3.1 is positive
for all feasible data ρi(k). Because of this and other computational difficulties,
we will use a modified parameterization of P ∗

x (ejω) in our computational algo-
rithms introduced in the next section. This modified parameterization is only
an approximation but has the practical advantage of being positive definite.

3.5.3 Stability

For stability analysis, it is more convenient if we represent the individual
equality constraints imposed on the solution P ∗

x (ejω) by a single operator
equation. To do this, we define

R
�
= [ρ0(0), · · · , ρ0(L − 1), ρ1(0), · · · ρ1(L − 1), · · · · · · , ρM−1(L − 1)]T

as the long vector containing all the known ACS values in Γ . Then, the condi-
tion that Px(ejω) must be consistent with all these given data can be simply
expressed as
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APx = R, (3.14)

where A is a linear integral operator from L1(−π, π) to R
ML. The operator

A itself is given by

A
�
= [A0,0, · · · , A0,L−1, A1,0, · · ·A1,L−1, · · · · · · , AM−1,L−1]T , (3.15)

where
Ai,kPx

�
=

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejNikωdω. (3.16)

Now, consider the functional

W (Px)
�
= ‖APx − R‖ + α2D(Px ‖ P0), (3.17)

where P0 is a reference (flat) power spectrum and α is a small constant.
Minimizing this functional can be regarded as an approximation to solving
Problem 3.2.

Let Rδ denote a perturbed data vector (which might be obtained, for
example, by a noisy measurement of the true autocorrelation values that
constitute the data vector R) and assume that ‖Rδ − R‖ ≤ δ. The follow-
ing theorem, essentially due to Eggermont (1993), establishes a bound on the
Kullback-Leibler divergence between the solutions of the original problem and
the perturbed one:

Theorem 3.2. Let R and Rδ be two admissible data vectors such that ‖Rδ −
R‖ ≤ δ. Also, let P , Pδ and P0 denote three power spectra in L1(−π, π). If
P minimizes the functional W (P ) = ‖AP − R‖ + α2D(P ‖ P0) over and Pδ

minimizes the functional Wδ(P ) = ‖AP − Rδ‖ + α2D(P ‖ P0), then

‖A(P − Pδ)‖ + α2D(P ‖ Pδ) ≤ 4δ2. (3.18)

The above theorem shows that the Kullback-Leibler divergence between
the solution of the perturbed problem and that of the original problem is
bounded by 4

α2 ‖Rδ − R‖2. However, since the Kullback-Leibler divergence is
not a metric, this does not imply continuous dependence of the solution of
Problem 3.2 on the data. To obtain a formal continuity result, one has to
further show that the distance (in the metric of some valid topology) between
the solution of the perturbed problem and that of the original problem is
bounded when ‖Rδ − R‖ is bounded. This is an open research problem.

3.6 Computing the Maximum Entropy solution

Theorem 3.1 indicated that the solution to Problem 3.2 has the functional
form

P ∗
x (ejω) =

1∑M−1
i=0 |Hi(ejω)|2Fi(ejNiω)

, (3.19)
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where Fi(z)
�
=
∑L−1

k=−(L−1) 2λikz−k, and λik are Lagrange multipliers to be
found. Since Px(ejω) is real, we must have λik = λi(−k). This means there are
only L coefficients to be specified for each Fi(z).

The above solution exists only if it is possible to choose the Lagrange
multipliers embedded in Fi(z) such that P ∗

x (ejω) ∈ Ω. That is, only if it is
possible to choose Fi(z) such that

1
2π

∫ π

−π

|Hi(ejω)|2ejNikω∑M−1
j=0 |Hj(ejω)|2Fj(ejNjω)

dω = ρi(k) (3.20)

for all values of i = 0, 1, · · ·M − 1 and k = 0, 1, · · ·L − 1. In practice, it is
often the case that the set Ω is empty due to inconsistent ρi(k) found empir-
ically. In this case, the system of equations (3.20) does not have a solution.
To get around this difficulty, give up the strict equality constraints imposed
by P ∗

x (ejω) ∈ Ω and instead seek a solution to the following least-squares
problem:

Problem 3.3. Find λik such that Fi(z)
�
=
∑L−1

k=−(L−1) 2λikz−k minimize

J =
M−1∑
i=0

L−1∑
k=0

(
1
2π

∫ π

−π

|Hi(ejω)|2ejNikω∑M−1
j=0 |Hj(ejω)|2Fj(ejNjω)

dω − ρi(k)

)2

. (3.21)

Note that when Problem 3.2 has a solution, it will be the solution to
Problem 3.3 as well. However, if Problem 3.2 doesn’t have a solution, then the
solution to Problem 3.3 which always exists provides a viable approximation.
We will use a semi-numerical algorithm for approximately solving Problem 3.3.
We call this algorithm the Maximum Entropy Inference Engine or MEIE for
short. For convenience, the main steps of this algorithm are listed in the box
below.

Some of the steps outlined in Algorithm 3.1 still require special tricks and
numerical methods. For instance, a key step is calculating the integrals neces-
sary to compute the functions gi,k(Λ). Experiment shows that these integrals
are very difficult to calculate numerically because the integrand tends to blow-
up whenever any Hj(ejω) gets close to zero. To avoid this difficulty, we have
to work out an indirect method for calculating gi,k(Λ). A possible formulation
which enables calculating gi,k(Λ) without having to perform ill-conditioned
numerical integrations is presented below.

Recall from Chapter 2 that every PSD function Px(ejω) admits a spectral
factorization of the form

Px(ejω) = σ2
0 |Q(ejω)|2, (3.22)

or, if we replace ejω by the complex variable z,
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Px(z) = σ2
0Q(z)Q(z−1), (3.23)

where Q(z) represents the transfer function of a causal and stable system.
Let Q∗(z) represent the spectral factor of the rational PSD P ∗

x (ejω) given
in (3.19). Algorithm 3.1 calculates P ∗

x (ejω) as an optimal element among
a family Px(Λ; ejω) of PSDs parameterized by the parameter vector Λ. Let
us denote by Q(Λ; z) the spectral factor associated with this parameterized
family of PSDs. Then, Q∗(z) would be equal to Q(Λ∗; z) where Λ∗ denotes
the optimal value of the parameters.

One easily observes that, for any Λ, Q(Λ; z) can be identified with the
modeling filter of an ARMA(p, q) process where p and q depend on the degree
and nature of the analysis filters Hi(z), the down-sampling ratios Ni and the
number of ACS values available as data.

Any WSS process can be represented by its modeling filter driven by (unit-
variance) white noise. Applying this fact to the input signal x(n) in Fig. 3.2, it
would be straightforward to calculate the ACS values Rvi

(k) of the observable
signals vi(n).

Define q(Λ; k) as the impulse response of the modeling filters Q(Λ; z) and
hi(k) as the impulse response of the analysis filters Hi(z). Then, we have

Rxi
(k) = (hi(k) � hi(−k)) � (q(Λ; k) � q(Λ;−k)), (3.24)

from which we can calculate

Rvi
(k) = Rxi

(Nik). (3.25)

Algorithm 3.1: Maximum Entropy Inference Engine

Input: Autocorrelation measurements ρi(k), the transfer functions Hi(z) and the
down-sampling ratios Ni for i = 0, · · · , M − 1 and k = 0, · · ·L − 1.
Output: An estimate P ∗

x (ejω) of the input power spectrum.
Procedure:

1. Let Λ
�
= [λ00 λ01 . . . λ(M−1)(L−1)]

T .

2. Form the auxiliary functions gi,k(Λ)
�
=

1

2π

∫ π

−π

|Hi(e
jω)|2ejNikωdω∑M−1

j=0 |Hj(ejω)|2(
∑L−1

l=0 λjl cos(Njω))
.

3. Find Λ∗ �
= arg min J(Λ) where

J(Λ) =

M−1∑
i=0

L−1∑
k=0

(gi,k(Λ) − ρi(k))2 .

4. Return

P ∗
x (ejω) =

1∑M−1
i=0 |Hi(ejω)|2(

∑L−1
k=0 λ∗

ik cos(Niω))
.
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The functions gi,k(Λ) in Algorithm 3.1 are, in fact, Rvi
(k) calculated for

a certain value of the parameter Λ. Thus, (3.24) and (3.25) enable one to
calculate gi,k(Λ) without integration! There is a price, however, to be paid for
this convenience: We have to know the functional form of the spectral factors
Q(Λ; z) in order to use (3.24).

From (3.19) we observe that Px(Λ; ejω) has the form

Px(Λ; ejω) =
1∑M−1

i=0 |Hi(ejω)|2Fi(Λ; ejNiω)
, (3.26)

where the parameter vector Λ is embedded in the (non-causal) FIR trans-

fer functions Fi(Λ; z)
�
=
∑L−1

k=−(L−1) 2λikz−k. It is not, in general, true that
Px(Λ; ejω) ≥ 0 for all values of Λ. Thus, it is not possible to use standard
packages for finding the spectral factors of Px(Λ; ejω) in its original form
given in (3.26) while Λ is being changed for optimization purposes. To circum-
vent this difficulty, we enforce the extra condition that the transfer functions
Fi(Λ; ejNiω) be positive definite. Thus, we force Fi(Λ; z) to have the form

Fi(Λ; z)
�
= Ai(z)Ai(z−1) where Ai(z)

�
=

L−1∑
k=0

λikz−k. (3.27)

The above parameterization ensures that Px(Λ; ejω) ≥ 0 for all Λ3. Note
that the number of parameters remains the same, but (3.27) is not equiva-
lent to the original case where Fi(Λ; z) =

∑L−1
k=−(L−1) 2λikz−k. Nonetheless,

backed by the results of our numerical simulations, we believe that the new
parameterization (3.27) has enough degrees of freedom to capture the essence
of the original case for most practical applications. We leave it as an open
problem to investigate, theoretically, how well this new parameterization ap-
proximates the original one and/or find some bounds on the error caused by
(possible) lack of enough degrees of freedom.

The steps involved in calculating gi,k(Λ) using the alternative method are
summarized in Algorithm 3.2 below. Note that several steps in Algorithm 3.2
require operations on infinite impulse-response sequences. Such operations, of
course, can only be performed approximately after the sequence is truncated
to a reasonable length. Also, the spectral factorization required in Step 6 may
be performed, after truncating e(n) to a reasonable length, by the MATLAB
function ac2poly.

3.7 Simulated examples

Here, we demonstrate the performance of MEIE by providing two simulated
examples.
3 Note that Px(Λ; ejω) being positive definite is a weaker condition that Fi(Λ; ejNiω)

being positive definite.
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Algorithm 3.2: Computing gi,k(Λ) without integration

Input:

1. Two natural numbers i and k; 0 ≤ i ≤ M − 1, 0 ≤ k ≤ L − 1.

2. The parameter vector Λ
�
= [λ00 λ01 . . . λ(M−1)(L−1)]

T .
3. Transfer functions Hi(z) and down-sampling ratios Ni.

Output:

The functions gi,k(Λ) to be used by Algorithm 3.1.

Procedure:

1. For 0 ≤ j ≤ M − 1, form Aj(z) =
∑L−1

l=0 λjlz
−k.

2. For 0 ≤ j ≤ M − 1, form Bj(z) = Hj(z)Aj(z
Nj ).

3. For 0 ≤ j ≤ M − 1, form Cj(z) = Bj(z)Bj(z
−1).

4. Form D(z) =
∑M−1

j=0 Cj(z).
5. Find the impulse response d(n) of D(z).
6. Find e(n) such that d(n) = e(n) 	 e(−n).

7. Form E(z) =
1∑∞

n=0 e(n)z−n
.

8. Form Ui(z) = E(z)Hi(z).
9. Find the impulse response ui(n) of Ui(z).

10. Return gi,k(Λ) =
∞∑

n=−∞
ui(n)ui(Nik + n).

Example 3.1. Consider a 4-channel multirate observer system of the form
shown in Fig. 3.2. Assume that the down-sampling ratio is equal to four for
all channels. Thus, N0 = N1 = N2 = N3 = 4. Assume, further, that the linear
filters H0(z) to H3(z) are given as follows4.

H0(z) =
0.0753 + 0.1656z−1 + 0.2053z−2 + 0.1659z−3 + 0.0751z−4

1.0000 − 0.8877z−1 + 0.6738z−2 − 0.1206z−3 + 0.0225z−4

H1(z) =
0.4652 − 0.1254z−1 − 0.3151z−2 + 0.0975z−3 − 0.0259z−4

1.0000 − 0.6855z−1 + 0.3297z−2 − 0.0309z−3 + 0.0032z−4

H2(z) =
0.3732 − 0.8648z−1 + 0.7139z−2 − 0.1856z−3 − 0.0015z−4

1.0000 − 0.5800z−1 + 0.5292z−2 − 0.0163z−3 + 0.0107z−4

H3(z) =
0.1931 − 0.4226z−1 + 0.3668z−2 − 0.0974z−3 − 0.0405z−4

1.0000 + 0.2814z−1 + 0.3739z−2 + 0.0345z−3 − 0.0196z−4

4 The transfer functions used for this simulation example were chosen simply to
show low-pass, band-pass and high-pass characteristics. They do not belong to
any specific classes of filters (e.g., orthogonal or Perfect Reconstruction filters)
used in classical filter bank theory.
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Fig. 3.6. Frequency response of the analysis filters used in Example 3.1.

The frequency response |Hi(ejω)| associated with each filter is shown in
Fig. 3.6.

For simplicity, we chose the input signal x(n) to be a low-pass Gaussian
WSS process with modelling filter of the form

Qx(z) =
∑10

i=0 a(i)z−i∑10
j=0 b(j)z−j

.

The coefficients a(i) and b(i) were calculated using the MATLAB command

[a,b]=YULEWALK( 10, [0 .5 .8 1], [1 1 0 0])

which implements the Yule-Walker filter design algorithm. We then calcu-
lated the ACS of the observable signals for the above input PSD using (3.4).
The results are shown in Table 3.1. The numbers in Table 3.1 serve as the
“observed” or “measured” values for the statistics of the low-rate observable
signals vi(n).

We used the MEIE to estimate the input PSD Px(ejω using some or all
of the data shown in Table 3.1. The resulting estimated PSDs are shown in
Fig. 3.7. As clearly seen in Fig. 3.7, the quality of estimation increases as we
provide the MEIE with more data.

Table 3.1. Correlation coefficients used as data in Example 3.1.

ρi(k) k = 0 k = 1 k = 2 k = 3 k = 4

i=0 0.3536 -0.0649 0.0143 0.0004 -0.0010
i=1 0.3395 -0.0059 0.0052 0.0028 0.0012
i=2 0.2618 0.1180 0.0035 0.0003 0.0024
i=3 0.0947 0.0378 0.0002 0.0003 0.0002
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Fig. 3.7. Power spectral densities estimated using only part of the ACS data given in
Table 3.1. Each plot shows the estimated PSD using ρi(k) data up to and including
the kth lag: (a) k = 0, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4. Note how the
matching quality increases as k increases.
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We should emphasize, however, that increasing the number of data does
not necessarily mean better matches because of i) the approximate nature of
MEIE and ii) the nature of the optimization problem being solved. Please see
Section 3.8 for further discussion on this topic. ♦

x(n)

H  (z)0

0
v  (n)x  (n)0

H  (z)1
1

v  (n)x  (n)1

2 

H  (z)2

x  (n)2 2
v  (n)

2 

4 

Fig. 3.8. A 3-channel nonuniform multirate observer system.

Example 3.2. Consider the 3-channel multi-rate observer system shown in
Fig. 3.8. The down-sampling ratios for this system are N0 = 2, N1 = 2 and
N2 = 4. Therefore, it represents a non-uniform over-sampled analysis filter
bank. The filters H0(z) to H2(z) are chosen to be FIR. The transfer function
of each filter is as follows5.

H0(z) = 0.0753 + 0.1656z−1 + 0.2053z−2 + 0.1659z−3 + 0.0751z−4

H1(z) = 0.4652 − 0.1254z−1 − 0.3151z−2 + 0.0975z−3 − 0.0259z−4

H2(z) = 0.1931 − 0.4226z−1 + 0.3668z−2 − 0.0974z−3 − 0.0405z−4

The frequency response |Hi(ejω)| associated with each of the above filters
is shown in Fig. 3.9. The non-observable input signal x(n) was chosen to be
the same low-pass WSS random process described in Example 3.1.

The calculated correlation coefficients associated with the low-rate observ-
able signals vi(n) are shown in Table 3.2. The PSD estimates obtained by the
MEIE using these correlation coefficients are shown in Fig. 3.10.

It’s observed that the estimates quickly capture the shape of the actual
PSD and approximate it more accurately as the number of input data (i.e., k)

5 Again, we emphasize that the transfer functions used here were designed simply
to show low-pass, band-pass and high-pass characteristics. They do not belong to
any specific classes of filters used in classical filter bank theory.
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Fig. 3.9. Frequency response of the linear filters used in Example 3.2.

Table 3.2. Correlation coefficients used as data in Example 3.2.

ρi(k) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

i = 0 0.1084 0.0583 0.0056 -0.0001 -0.0000 0.0000
i = 1 0.1974 -0.1260 0.0423 -0.0169 0.0063 -0.0038
i = 2 0.0438 0.0141 -0.0002 0.0008 0.0002 0.0001

increases. However, the approximation does not improve uniformly (compare,
e.g., Fig. 3.10(d) with Fig. 3.10(e)). ♦

3.8 Complements

3.8.1 Does the estimate converge to the actual spectrum?

In classical Maximum Entropy spectrum estimation problems where the PSD
of a given signal is being estimated using a few numbers of its own autocor-
relation coefficients, it is possible, at least in principle, to achieve arbitrarily
good estimates if a sufficiently large number of the ACS values are used. How-
ever, in the multirate case, the estimate P ∗

x (ejω) might or might not converge
to the true PSD Px(ejω) depending on the nature of the filters Hi(z) and the
down-sampling rations Ni.

It is possible for the constraint set Ω to reduce to a single power spectrum
as k → ∞ in which case P ∗

x (ejω) will converge to the true PSD Px(ejω).
However, in general, the set Ω may retain infinitely many elements even when
k → ∞. In this case, P ∗

x (ejω) will converge to the PSD in Ω which has the
highest entropy and not necessarily to the actual PSD Px(ejω).

An investigation of the issues mentioned above leads to interesting topic
of the quantity of information contained in individual low-rate measurements.
This topic is covered in Chapter 7
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Fig. 3.10. Intermediate and final PSD estimates obtained from the ACS data given
in Table 3.2. Each plot shows the estimated PSD using ρi(k) data up to and including
the kth lag: (a) k = 0, (b) k = 1, (c) k = 2, (d) k = 3, (e) k = 4, (f) k = 5,. Observe
that the estimation quality improves (although not uniformly) from (a) to (f).
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3.8.2 Why is the cross-correlation information not used?

It is possible to take the cross-correlation between the low-rate measurements
into account while estimating the PSD of the high-rate signal. Technically,
this would improve the accuracy of the estimates. However, we chose not to
incorporate cross-correlation coefficients in our Maximum Entropy inference.
There are several reasons for this choice. The most important one is that, in
practice, cross-correlation estimates are far more erroneous than autocorrela-
tion estimates6. To see why, imagine that we want to estimate the covariance
matrix CXX of a zero mean Gaussian random vector X of dimension N from L
realizations {Xk}0≤k<L. If we try to do this using the sample-mean estimator

C̄XX =
1
L

L−1∑
k=0

XkXT
k , (3.28)

it turns out (Mallat, 1999, Page 509) that the expected squared error for each
element [C̄XX ]lm of C̄XX will be

E{([C̄XX ]lm − [CXX ]lm)2} =
1
L

(([CXX ]lm)2 + [CXX ]ll[CXX ]mm) (3.29)

and the total error variance is given by

E{‖C̄XX − CXX‖2
HS} =

‖CXX‖2
HS

L
+

E2{‖X‖2}
L

(3.30)

where ‖.‖2
HS denotes the squared Hilbert-Schmidt norm7. The formula (3.29)

shows that for off-diagonal elements, E{([C̄XX ]lm − [CXX ]lm)2} depends not
only on ([CXX ]lm)2 but also on the amplitude of the diagonal coefficients
[CXX ]ll and [CXX ]mm. Thus, even though [CXX ]lm may be small, the esti-
mation error is large if the diagonal coefficients are large:

E{([C̄XX ]lm − [CXX ]lm)2} ≥ [CXX ]ll[CXX ]mm

L
. (3.31)

Other reasons for ignoring the statistical information contained in cross-
correlation coefficients include tremendous increase in the complexity of the
MEIE and the necessity of synchronization between the measurement signals
vi(n).

3.9 Open problems

In this chapter we used the Maximum Entropy principle to solve the ill-posed
problem of multirate spectrum estimation. We formulated a parameterized
6 Please see (Mallat, 1999, Section 10.6) for more details on this subject.
7 For a matrix A we have ‖A‖2

HS
�
= Tr(AAT ).
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solution and introduced a semi-numerical method to calculate the parameters.
We also analyzed the existence, uniqueness and stability of the solution.

While uniqueness of the Maximum Entropy solution is guaranteed, the
issues of existence and stability are not resolved completely. A complete and
rigorous analysis of the stability of the Maximum Entropy solution is an open
research topic.

Another open problem is how to design an efficient and stable numerical
procedure to compute the solution. We presented an ad-hoc algorithm for
computing an approximate solution. However, this algorithm is neither the
most accurate nor the most efficient algorithm that can be devised. For in-
stance, our algorithm requires the use of some external optimization package
which would consume considerable computational resources. This, and other
computationally demanding steps make our algorithm unfit for large-scale or
real-time applications.



4

Multirate Signal Estimation

4.1 Introduction

In this chapter we consider the problem of estimating samples of a random
process x(n) given a set of low-rate measurements vi(n) derived from it. We
use the multirate filter bank model shown in Fig. 4.1 to formulate the problem.

x(n)

H  (z)0

0
v  (n)x  (n)0

H  (z)1
1

v  (n)x  (n)1

H     (z)Μ−1

M-1
v     (n)x     (n)M-1

N 0

N M-1

N 1

. . .

Fig. 4.1. An analysis filter bank can be used as a model for linear multirate mea-
surement system.

In our model, x(n) represents the non-observable signal under measure-
ment. It is assumed that this signal is a zero-mean Gaussian wide-sense sta-
tionary (WSS) random process. The linear filters Hi(z) model the bandwidth
characteristics of each sensor. Each filter is followed by a down-sampling device
which models the (possible) difference in sampling rate among the sensors. We
assume that the filters H0(z) to HM−1(z) and the down-sampling ratios N0

to NM−1 are known.

67
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Fig. 4.2. A multirate signal estimator estimates a specified number of input signal’s
samples from a specified number of low-rate observations.

A multirate signal estimator is a function that calculates a unique estimate
x̂(n) of x(n) from the data vi(n) (Fig. 4.2). A popular way to specify an esti-
mator function is to use the least-squares formulation. In subsequent sections,
we show that the optimal least-squares estimator for samples of x(n) is a lin-
ear operator (matrix) whose coefficients depend on the spectrum Px(ejω) of
the non-observable signal x(n). In practical applications, the exact functional
form of Px(ejω) is often unknown. To get around this difficulty, we suggest
using a Maximum Entropy estimate of Px(ejω) — which can be obtained
from the low-rate signals vi(n) — in the least-squares estimation formulae.
We show through simulated examples that the ad-hoc least-squares estimator
obtained this way is still very viable. The chapter ends with a discussion of
open problems and directions for future research.

4.2 Stochastic least-square estimation

4.2.1 Problem formulation

Let us assume that L samples for each signal vi(n) are known. We can pack
these values in a column vector called Vi:

Vi
�
= [vi(0), vi(1), · · · , vi(L − 1)]T .

Then, we can stack all the Vi, i = 0, 1, . . . ,M − 1, together and form the long
observation vector

V
�
= [V T

0 V T
1 · · · V T

M−1]
T .

Similarly, we define
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X
�
= [x(Q), x(Q + 1), · · · , x(Q + P − 1)]T

to contain those samples x(n) that we want to estimate. Here, the constant P
represents the number of samples to be estimated and Q represents the time
index where the input samples to be estimated start.

Problem 4.1 (Multirate Signal Estimation). Given the filter bank model
in Fig. 4.1, the observation vector V and the input power spectrum Px(ejω),
find an estimate X̂ of X such that E{||X − X̂||} is minimum.

4.2.2 Solution

It is well-known that the optimal least squares estimator of a random vec-
tor X given the value of a correlated random vector V is the conditional
expectation of X given V . That is, X̂ = E{X|V }. In general, the optimal
least-square estimate X̂ is a nonlinear function of the data V . But, luckily, it
becomes a linear function of V in the important special case where the ran-
dom variables X and V are jointly Gaussian. An introduction to the theory of
stochastic least-squares estimation can be found in many texts on statistical
signal processing. See, for example, Papoulis (1991) and Kailath et al. (2000).

Let X and V be a pair of random vectors with a jointly Gaussian dis-
tribution and zero mean. Let CXX and CV V represent the autocorrelation
matrices associated with X and V , respectively, and let CXV denote their
cross-correlation matrix. Assume, further, that the augmented covariance ma-
trix R constructed as

R
�
=
[
CXX CXV

CT
XV CV V

]
(4.1)

is non-singular. Under this assumption, it is straightforward to show that the
optimal least-square estimate of X given V is

X̂ = FV

where
F

�
= CXV C−1

V V . (4.2)

Let e
�
= X − X̂ represent the estimation error vector associated with

the optimal least-squares estimator F. The covariance matrix of e can be
calculated as

Cee = CXX − CXV C−1
V V CT

XV . (4.3)

The optimality of F means that E{||e||2} —which is given by the trace of
Cee — is minimum.
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4.3 More on linear least-squares estimation

A significant feature of the least-squares formulation is that it regularizes the
ill-posed problem of calculating X from V . This is to say, the solution X̂
provided by the least square formulation is unique and stable.

Another important property of the least-squares estimator matrix F is
that it minimizes not only the overall expected estimation error E{||e||} but
also the estimation error associated with each individual component of X!
This means, if we define e(n)

�
= x(n) − x̂(n) for Q ≤ n ≤ Q + P − 1, then

E{e(n)2} = [Cee]mm, m
�
= n − Q + 1, (4.4)

are minimized individually. Note, however, that the expected estimation error
E{e(n)2} depends on n and may vary for different samples of x(n). This is
not a very desirable property but, fortunately, E{e(n)2} can be specified a
priori if the input signal’s power spectrum is known.

In theory, one can try to estimate thousands of samples of x(n) given a few
low-rate data samples vi(n). However, the accuracy of the individual estimated
samples x̂(n) — measured by E{e(n)2} — depends on the actual amount of
correlation between each of these samples and the measured low-rate data.
As the time lag between the available samples of vi(n) and those samples of
x(n) which are being estimated increases, the amount of correlation between
these samples fades out. As a result, the expected estimation error E{e(n)2}
increases to the same level as E{x(n)2}, rendering the estimates useless at
large time lags.

The interested reader is referred to (Kailath et al., 2000, Chapter 3) for a
general discussion of the properties of linear least-squares estimators.

4.4 Computing the estimator matrix

In order to compute the least-square estimator F and the associated error
variance estimates E{e(n)2}, we need the covariance matrices CXX , CV V

and CXV . In this section we present a method to calculate these covariance
matrices given Px(ejω) and the filter bank model shown in Fig. 4.1.

The computational method presented in this section is not the simplest
way to calculate F nor is it the most computationally efficient. It is, nonethe-
less, simple enough to understand and can be readily implemented in MAT-
LAB. Devising more elaborate ways for calculating F is open for research.

Calculating CXX :
Calculating CXX is very simple. Let Px(ejω) denote the power spectrum

of x(n). The autocorrelation coefficients Rx(k) associated with x(n) are given
by
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Rx(k) =
1
2π

∫ π

−π

Px(ejω)ejkωdω. (4.5)

The P × P matrix CXX is then formed as [CXX ]mn = Rx(m − n).

Calculating CV V :
The observation signals vi(n) are obtained from x(n) by a filtering op-

eration followed by down-sampling. It is straightforward to show that the
autocorrelation coefficients of vi(n) are given by

Rvi
(k) =

1
2π

∫ π

−π

Px(ejω)|Hi(ejω)|2ejkNiωdω, (4.6)

which enables us to construct [CViVi
]ml = Rvi

(m− l). Next, we calculate the
intra-channel cross-correlation matrices CViVj

associated with Vi and Vj from

[CViVj
]ml =

1
2π

∫ π

−π

Px(ejω)Hi(ejω)H∗
j (ejω)ej(mNi−lNj)ωDω. (4.7)

The covariance matrix of the long observation vector V is formed by putting
the autocorrelation matrices CViVi

and the cross-correlation matrices CViVj

together:

CV V
�
=




CV0V0 · · · CV0VM−1

...
. . .

...
CVM−1V0 · · · CVM−1VM−1


 . (4.8)

Calculating CXV :
To calculate CXV , we start by calculating CXVi

�
= E{XV T

i } which rep-
resent the cross-correlation between X and Vi. Clearly,

[CXVi
]ml = E{x(Q + m − 1)vi(l − 1)}. (4.9)

Let hi(k) denote the impulse response sequence of the filters Hi(z) in the filter
bank model shown in Fig. 4.1. This model implies that an expression of the
form E{x(p)vi(q)} can be expanded as

E{x(p)vi(q)}
= E{x(p)xi(Niq)}
= E

{
x(p)

(∑∞
k=−∞ hi(k)x(Niq − k)

)}
=
∑∞

k=−∞ hi(k)E {x(p)x(Niq − k)}
=
∑∞

k=−∞ hi(k)Rx(p − Niq + k).

(4.10)

Combining the above expansion and (4.9), we get

[CXVi
]ml =

∞∑
k=−∞

hi(k)Rx([Q + m − 1 − Ni(l − 1)] − k). (4.11)
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Finally, the covariance matrix CXV is constructed as

CXV
�
= [CXV0 ,CXV1 , · · · ,CXVM−1 ]. (4.12)

Summary:
The necessary steps for calculating the least-square estimate X̂ from the

data vectors Vi are summarized in the algorithm below.

Estimates x(n) given vi(n) and Px(ejω)

Input:

1. vi(n) for i = 0, · · · , M − 1 and n = 0, · · ·L − 1.
2. Transfer functions Hi(z) and down-sampling ratios Ni for i = 0, · · · , M − 1.
3. Px(ejω) or, equivalently, Rx(k).
4. The numbers Q (integer) and P (natural).

Output:

The vector X̂ containing estimated values of x(n) for n = Q, Q+1, · · · , Q+P −1.

Procedure:

1. Calculate CViVj for 0 ≤ i, j ≤ M −1 using (4.7) and then form CV V using (4.8).
2. Calculate CXVi for 0 ≤ i ≤ M −1 using (4.11) and then form CXV using (4.12).
3. Calculate the estimator matrix F = CXV C−1

V V .
4. Form the vectors Vi = [vi(0), · · · , vi(L − 1)] and combine Vi together to form

V = [V T
0 · · · V T

M−1]
T .

5. Calculate the estimate X̂ = FV .

Once samples of x(n) are estimated, the expected accuracy of estimation
for each sample can be assessed by calculating the expected error variance
E{e(n)2 associated with each sample. This is done by first computing

Cee = CXX − CXV C−1
V V CT

XV

and then calculating
E{e(n)2} = [Cee]mm

where m = n − Q + 1 and Q ≤ n ≤ Q + P − 1.

4.5 Simulated examples

In this section, we present two simulated examples to demonstrate the per-
formance of the least-squares estimator derived in the above sections.
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Remark 4.1. The computational procedures introduced in the previous section
sometimes require operations on infinite length sequences. Such operations can
only be performed approximately after the sequence is truncated to a reason-
able length. Thus, in practice, the matrices CXV , CXX and CV V are not
obtained exactly. This, in turn, might cause numerical difficulties in calculat-
ing Cee = CXX − CXV C−1

V V CT
XV and F = CXV C−1

V V . To circumvent such
numerical we used generalized (Moore-Penrose) inverses when calculating Cee

and F.

Example 4.1. Consider a 4-channel multirate measurement system where a
discrete-time stochastic signal x(n) is observed using linear sensors whose
sampling rate is only 25% of the sampling rate associated with x(n). This
measurement setup can be modelled using the filter bank model shown in
Fig. 4.1.

We use a Gaussian random process with a low-pass power spectrum as
shown in Fig. 4.4 as input and assume that the sensors are modelled using
linear filters whose transfer functions H0(z) to H3(z) are as follows:

H0(z) =
0.0753 + 0.1656z−1 + 0.2053z−2 + 0.1659z−3 + 0.0751z−4

1.0000 − 0.8877z−1 + 0.6738z−2 − 0.1206z−3 + 0.0225z−4

H1(z) =
0.4652 − 0.1254z−1 − 0.3151z−2 + 0.0975z−3 − 0.0259z−4

1.0000 − 0.6855z−1 + 0.3297z−2 − 0.0309z−3 + 0.0032z−4

H2(z) =
0.3732 − 0.8648z−1 + 0.7139z−2 − 0.1856z−3 − 0.0015z−4

1.0000 − 0.5800z−1 + 0.5292z−2 − 0.0163z−3 + 0.0107z−4

H3(z) =
0.1931 − 0.4226z−1 + 0.3668z−2 − 0.0974z−3 − 0.0405z−4

1.0000 + 0.2814z−1 + 0.3739z−2 + 0.0345z−3 − 0.0196z−4

The amplitude response |Hi(ejω)| of these filters are shown in Fig. 4.3.
Since the sensors have a sampling rate only 25% of that associated with x(n),
the down-sampling rate in the filter bank model of Fig. 4.1 is equal to four
for all channels (N0 = N1 = N2 = N3 = 4). We assume that 6 samples of the
observable signals vi(n) from n = 1 to n = 6 are available. These samples are
shown in Fig. 4.5.

We designed a least-squares estimator to estimate 31 samples of the non-
observable input signal x(n) from n = −10 to n = 30. The estimation results
are shown in Fig. 4.6(a). Fig. 4.6(b) shows the error associated with these
estimated values. As seen in this figure, the estimation accuracy is not uniform:
the estimates for −3 ≤ n ≤ 20 are very accurate while those obtained for
−10 ≤ n ≤ −4 are not.

Fig. 4.6(c) shows E{e(n)2} i.e. the expected error of individual estimated
samples. It is clear from this graph that E{e(n)2} is a very good predictor of
the actual estimation error. ♦
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Fig. 4.3. Frequency response of the multirate observer filters used in Example 4.1.
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Fig. 4.4. Power spectrum of the ARMA(10, 10) random signal used as input in
Example 4.1.

Example 4.2. In this example we present an over-sampled multirate measure-
ment scenario. Consider a measurement set up consisting of four linear sensors
where the sensors can be modelled by linear filters H0(z) to H3(z) given be-
low:

H0(z) =
0.1

1.0000 − 0.9577z−1
, H1(z) =

0.1

1.0000 − 0.8855z−1
,

H2(z) =
0.1

1.0000 − 0.6800z−1
, H3(z) =

0.1

1.0000 − 0.3140z−1
.
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Fig. 4.5. Low-rate measurements vi(n), 1 ≤ n ≤ 6 produced by the multirate
observer system described in Example 4.1.

The frequency response amplitude |Hi(ejω)| for these filters is shown in
Fig. 4.7. Note that these filters are all low-pass! We Assume that each sensor
(observer) outputs its data at a sampling rate which is 33% less than the
sampling rate of x(n). This means the down-sampling ratio Ni is equal to 3
for all channels. The non-observable full-rate signal x(n) is a WSS random
process with power spectrum shown in Fig. 4.8. The observed low-rate data
(i.e. available samples of vi(n)) are shown in Fig. 4.9.

We designed an optimal least-squares estimator to estimate 26 samples of
x(n) from the observed vi(n) samples shown in Fig. 4.9. The result is shown
in Fig. 4.10(a). The estimation error is plotted in Fig. 4.10(b).

It is seen from the error plot that the estimated input values for 1 ≤
n ≤ 20 are very accurate while those for −5 ≤ n ≤ 0 are not. As in the
previous example, the accuracy of individual estimated samples can be reliably
predicted from the expected error norm figures shown in Fig. 4.10(c). ♦
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Fig. 4.6. Estimation results for the 4-channel multirate observer system described in
Example 4.1. (a) Estimated samples of the full-rate input signal x(n). (b) Estimation
error. (c) Expected norm of estimation error calculated a priori using the trace of
Cee. Note how well the expected error norm predicts the actual error magnitude.
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Fig. 4.7. Frequency response of the filters associated with the multirate observer
system described in Example 4.2.
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Fig. 4.8. Power spectrum of the random signal used as input in Example 4.2.

4.6 Multirate least-squares estimation in practice

In order to calculate the optimal least-squares estimator F, we need to know
the power spectrum of x(n). In practice, the power spectrum of x(n) is not
known a priori so we have to somehow estimate it from the available obser-
vations vi(n).

In Chapter 3 we introduced an algorithm to estimate Px(ejω) from low-
rate auto-correlation coefficients. Auto-correlation coefficients associated with
the low-rate signals vi(n) are probabilistic quantities. As we discussed in
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Fig. 4.9. Low-rate measurement signals vi(n) used in Example 4.2.

Chapter 2, the theory of probability does not provide a method to construct
probabilistic measures such as power spectrum or autocorrelation coefficients
from observed sample values of a random process. As a result, we have to
resort to some practical trick. A widely used trick is to use appropriate time-
averages as estimates for autocorrelation coefficients. This is to say, we may
use

ρi(k)
�
=
∑L−k−1

n=0 vi(n)vi(n + k)
L − k − 1

, 0 ≤ k ≤ L − 1, (4.13)

as estimates for the actual autocorrelation coefficients Ri(k). Using these esti-
mates, we can summarize our practical procedure for estimating sample values
of x(n) from sample values of vi(n) as follows.

(i) Estimate a few autocorrelation coefficients Ri(k) from available samples
of vi(n) using the time average method mentioned above.

(ii) Use the Maximum Entropy algorithm described in Chapter 3 to estimate
Px(ejω) from the autocorrelation coefficients estimated in the previous
step.

(iii) Feed Px(ejω) obtained in the previous step into Algorithm 5.1 described
in this chapter and estimate the desired samples of x(n).
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Fig. 4.10. (a) Estimated values of the full-rate signal x(n) obtained using the
low-rate measurement system described in Example 4.2. (b) Estimation error. (c)
Expected norm of the estimation error.
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Fig. 4.11. A practical procedure for estimating the full-rate signal x(n) from low-
rate measurements vi(n).

A block-diagram representation of this procedure is shown in Fig. 4.11.
Note that when the power spectrum of x(n) is known, the linear estimator F
is optimal in the sense of minimizing the mean-squared-error between the esti-
mated values of x(n) and the actual ones. However, it is not possible to make
this optimality claim when Px(ejω) is itself estimated. Therefore, in practice,
one must judge the viability of the three-step estimation procedure outlined
above based on the actual results it produces for a particular application. The
following example illustrates this point.

Example 4.3. Let’s consider the 4-sensor multirate observer scenario described
in Example 4.1 and try to estimate Px(ejω) from the observed data. To do this,
we can take the available low-rate data (6 samples of vi(n) per channel, shown
in Fig. 4.12) and put them in (4.13) to estimate the first two autocorrelation
coefficients Ri(0) and Ri(1) for each channel. We can then pass these estimated
autocorrelation coefficients on to the spectrum estimation algorithm described
in Chapter 3 to estimate Px(ejω). The resulting power spectrum is shown in
Fig. 4.13. The actual input power spectrum is shown in the same figure as
well. Clearly the two spectra are different but, given the small number of
available data, our estimation has captured the band-pass nature of the input
spectrum fairly well.

Now, let’s use this estimated spectrum to estimate samples of x(n) for
−15 ≤ n ≤ 15. The resulting estimates are shown in Fig. 4.14(b). The esti-
mation error is depicted in Fig. 4.14(d). For comparison, the estimates which
would have been obtained if we had used the correct power spectrum are
shown in Fig. 4.14(a). The resulting error values for this case are shown in
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Fig. 4.12. Low-rate measurement data v0(n) to v3(n) used in Example 4.3.
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Fig. 4.13. Power spectral density of the full-rate signal x(n) used in Example 4.3.
The solid curve shows the actual PSD. The dashed curve shows the PSD estimated
from available samples of the low-rate measurements vi(n).
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Fig. 4.14. (a),(b): Estimates of the full-rate signal x(n) for −15 ≤ n ≤ 15 for the
observer systems described in Example 4.3. (c), (d): Estimation error associated with
the estimated values shown in (a) and (b). (e), (f): The expected norm of estimation
error for each sample. In each row, the plot on the left-had side corresponds to the
case where the power spectrum of x(n) was known. The plots on the right had side
correspond to the case where the full-rate power spectrum was estimated from the
measured data.



4.7 Open problems 83

Fig. 4.14(c). It is clear that the estimation error would have been slightly
reduced if we have had access to the actual power spectrum. However, the
extra error due to discrepancy between the actual input spectrum and the
estimated one is not very large. This shows that the three-step estimation
procedure suggested in this section is in fact viable.

It is instructive to compare the expected error norm figures calculated
based on the true spectrum and the estimated one. These figures are plotted
in Fig. 4.14(e) and Fig. 4.14(f). It is seen from the plots that the estimated
error norm values are no longer an accurate indicator of the actual estimation
error. This is justified because the expected error norms given in (4.3) and
(4.4) depend on Px(ejω). The interesting observation is that actual errors are
consistently less than what their expected value suggests! ♦

4.7 Open problems

Estimating the samples of a non-observable high-rate signal from low-rate
measurements is an ill-posed inverse problem. In this chapter we opted for
a statistical formulation to find a well-posed solution to this problem. The
stochastic least-squares formulation is a very viable engineering solution in
the sense that it can be applied, with appropriate modifications, to many real
world engineering applications. However, the computational procedure intro-
duced to calculate the least-squares solution was intended only as a “proof of
concept”. It is not suited for large-scale real-world signal estimation applica-
tions due to its very high computational complexity and lack of scalability.
Finding practical numerical methods for signal estimation in multirate sys-
tems remain an open challenge.

In general, a high-rate signal can be reconstructed from low-rate observed
data by finding a left-inverse for the linear operator that maps the high-
rate samples to the low-rate data. The least-squares estimator is one possible
left-inverse among a (usually infinite) number of valid solutions. It would
be interesting to study other viable optimization criteria whereby alternative
left-inverse operators might be selected.
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Multirate Time-Delay Estimation

5.1 Introduction

Time-delay estimation is a key step in many sensor-array signal processing
applications. Most notable among these applications are source localization,
direction of arrival estimation and multi-sensor data fusion.

In this chapter, we will study time-delay estimation in multirate sens-
ing systems. We will address questions such as “How to extend conventional
time-delay estimation techniques to multirate signals”? and “How to design
a multirate sensor system to allow signal fusion when time-delay is present?”

For simplicity, we will pose and solve these problems by reference to a basic
model involving only two multirate sensors. The problem of multirate time-
delay estimation when more than two sensors are present remains an open
problem for research. The material in this chapter are based on the paper by
Jahromi and Aarabi (2005).

5.2 Time-delay estimation techniques

Waves in nature propagate at a finite speed. This causes a time delay between
the signals arriving at sensors located in different positions in a distributed
sensor array. In signal processing literature, this delay is called Time Difference
Of Arrival (TDOA). The basic discrete-time model for TDOA estimation can
be stated as follows:

u0(n) = x(n) + s0(n) (5.1)
u1(n) = x(n − D) + s1(n) (5.2)

where u0(n) and u1(n) are the signals received at the observation points (i.e.
sensors). Here, x(n) is the signal of interest that is referenced (zero time-
delay) according to the first sensor and will have a delay of D by the time it
arrives at the second sensor. The signals s0(n) and s1(n) model the (possibly

85
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dependent) noise/reverbration signals arriving at the first and second sensors,
respectively. The goal of TDOA estimation is to estimate D given a segment
of data obtained from each sensor, without any prior knowledge regarding the
source signal x(n) or the noise sources.

Time-delay estimation has been extensively explored in the past, and de-
pending on the application at hand, different approaches have been proposed.
See, e.g., Knapp and Carter (1976), Brandstein and Silverman (1997) and
Aarabi (2001). The most commonly used TDOA estimation algorithm is the
generalized cross-correlation based technique introduced by Knapp and Carter
(1976). This approach suggests the use of an estimator of the form

D̂ = arg max
D

∫
ω

Q(ejω)U0(ejω)U∗
1 (ejω)e−jωDdω (5.3)

where U0(ejω) and U1(ejω) are the discrete-time Fourier transforms of the sig-
nals u0(n) and u0(n) respectively and Q(ejω) is a cross-correlation weighting
function.

While various weighting functions are possible, the so-called PHAse Trans-
form (PHAT) whitening functions are commonly used due to the robustness
of the resulting technique to reverberations. The PHAT weighting function is
expressed as

Q(ejω) =
1

|U0(ejω)U1(ejω)| . (5.4)

Using this weighting function, the following form of the generalized cross-
correlation formula is obtained:

D̂ = arg max
D

∫
ω

cos
(
ωD − (∠U0(ejω) − ∠U1(ejω))

)
dω (5.5)

We will use the generalized cross-correlation technique with PHAT weight-
ing function for TDOA estimation in this chapter. While there are many al-
ternatives to this approach, PHAT was chosen because of its widespread use
for microphone array based TDOA estimation as well as its proven robustness
to reverberation artifacts. The reader is referred to Brandstein and Silverman
(1997), Aarabi (2003) and Aarabi et al. (2005) for further practical discussions
on this topic.

5.3 Time-delay estimation in multirate systems

Consider the multirate measurement model shown in Fig. 5.1. In this section
we show that under some mild conditions, the unknown time delay D can
be estimated by examining the phase of the cross spectral density (CSD)
Pv0v1(e

jω) of the low-rate signals v0(n) and v1(n). This will enable us to
adapt conventional cross-correlation based techniques for estimating TDOA
in multirate systems. Our key result is stated in the theorem below.
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Fig. 5.1. Filter bank model for the multirate TDOA estimation problem.

Theorem 5.1. Assume that the TDOA D is an integer and let W (ejω)
�
=

H0(ejω)H∗
1 (ejω) where H0(z) and H1(z) are the analysis filters shown in

Fig. 5.1. If ∠W (ej ω
2 ) = ∠W (ej(π−ω

2 )), then

∠Pv0v1(e
jω) =

{
−D ω

2 + ∠W (e
jω
2 ) D even

−D ω
2 + ∠W (e

jω
2 ) + λ(ω)π D odd

where λ(·) is a binary-valued function of ω assuming the values 0 and 1 only.

Proof. Consider the diagram shown in Fig. 5.1. It is straightforward to ver-
ify that the output signals v0(n) and v1(n) are jointly wide-sense stationary
(Sathe and Vaidyanathan, 1993). Thus, the cross-correlation function Rv0v1(k)
defined by

Rv0v1(k)
�
= E{v0(n)v1(n + k)} (5.6)

exists. The signals v0(n) and v1(n) are down-sampled versions of x0(n) and
x1(n − D). That is, v0(n) = x0(2n) and v1(n) = x1(2n − D). Thus we have

Rv0v1(k) = E{x0(2n)x1(2n + 2k − D)}
= Rx0x1(2k − D). (5.7)

The above equation allows us to express the CSD Pv0v1(e
jω) of the low-rate

signals in terms of the CSD Px0x1(e
jω) associated with x0(n) and x1(n):

Pv0v1(e
jω)

�
=
∑∞

k=−∞ Rv0v1(k)e−jωk

=
∑∞

k=−∞ Rx0x1(2k − D)e−jωk = 1
2e−jω D

2 ×
{

Px0x1(e
j ω

2 ) + Px0x1(e
j ω−2π

2 ) D even

Px0x1(e
j ω

2 ) − Px0x1(e
j ω−2π

2 ) D odd

(5.8)

In the last step of the above derivations we used the following properties
of the discrete-time Fourier transform:
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x(n)
F� X(ejω) ⇒




x(2n)
F� X(ej ω

2 )+X(ej ω−2π
2 )

2

x(n − D)
F� e−jωDX(ejω)

It is straightforward to show that

Px0x1(e
jω) = W (ejω)Pxx(ejω), (5.9)

where Pxx(ejω) is the power spectral density (PSD) of the input signal. It
follows from (5.8) and (5.9) that

∠Pv0v1(e
jω) =




−D ω
2 +

∠
(
Pxx(ej ω

2 )W (ej ω
2 ) + Pxx(ej ω−2π

2 )W (ej ω−2π
2 )

)
D even

−D ω
2 +

∠
(
Pxx(ej ω

2 )W (ej ω
2 ) − Pxx(ej ω−2π

2 )W (ej ω−2π
2 )

)
D odd

The PSD of a real-valued WSS process is a real and positive function of
frequency. Thus, ∠Pxx(ejω) = 0. If the condition ∠W (ej ω

2 ) = ∠W (ej ω−2π
2 )

holds, we can simplify the above equation to get

∠Pv0v1(e
jω) =




−D ω
2 + ∠W (ej ω

2 ) D even

−D ω
2 + ∠W (ej ω

2 )+
∠
(
Pxx(ej ω

2 )
∣∣W (ej ω

2 )
∣∣− Pxx(ej ω−2π

2 )
∣∣∣W (ej ω−2π

2 )
∣∣∣) D odd

In the above expression, the terms within the brackets are real. Thus, the
phase contribution of the bracketed terms is either zero or π. ��

The above theorem shows that, under suitable conditions on the phase
of the analysis filters, the time delay D can be recovered by examining the
phase of the cross spectral density of the low-rate measurements v0(n) and
v1(n). In practice, one has to start with an estimate P̂v0v1(e

jω) of the cross
spectral density of the low-rate measurements. The estimate P̂v0v1(e

jω) can
be obtained using any of the standard spectral estimation methods discussed
in texts such as Kay (1988) and Hayes (1996). Then, ∠P̂v0v1(e

jω) is used to
calculate an estimate D̂ of the actual time delay D by maximizing the PHAT
integral

D̂ = arg max
D

∫
ω

cos
(
−D

ω

2
− (∠P̂v0v1(e

jω) − ∠W (ej ω
2 ))

)
dω. (5.10)

In principle, PHAT is a nonlinear regression method which fits the linear
model −D ω

2 to the data represented by ∠P̂v0v1(e
jω)−∠W (ej ω

2 ). If D is even
and the available estimate P̂v0v1(e

jω) is accurate, then Theorem 5.1 shows
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that ∠P̂v0v1(e
jω)−∠W (ej ω

2 ) will be close to the linear function −D ω
2 . In this

case, the PHAT integral (5.10) produces accurate TDOA estimates. When D
is odd, Theorem 5.1 indicates that ∠P̂v0v1(e

jω) − ∠W (ejω) will be close to
−D ω

2 + λ(ω)π. The binary-valued function

λ(ω)
�
=




0 if Pxx(ej ω
2 )
∣∣W (ej ω

2 )
∣∣ > Pxx(ej ω−2π

2 )
∣∣∣W (ej ω−2π

2 )
∣∣∣

1 if Pxx(ej ω
2 )
∣∣W (ej ω

2 )
∣∣ < Pxx(ej ω−2π

2 )
∣∣∣W (ej ω−2π

2 )
∣∣∣ (5.11)

is representative of the sign ambiguity which occurs in the determining the
phase of Pv0v1(e

jω). As can be seen from the expression above, λ(ω) depends
on the input signal statistics through Pxx(ejω).

In principle, it is possible to estimate Pxx(ejω) from v0(n) and v1(n) using
the technique described in Jahromi et al. (2003) and then estimate λ(ω) from
(5.11). However, we do not follow this possibility here due to its very high
computational burden. Instead, we choose to ignore the term λ(ω)π while
calculating the PHAT integral. Our rationale is that for most sensor array
applications (e.g., microphone arrays), the low-frequency half of the spectrum
hugely dominates the high frequency half in terms of energy. As a result, λ(ω)
will be equal to zero much more frequently than 1. This makes the overall
contribution of the term λ(ω)π to the PHAT integral (5.10) negligible. We
will demonstrate the general validity of this assumption in Section 5.5 where
we present actual TDOA estimation experiments. There, we will provide cases
where this assumption fails to hold as well.

Note, also, that the results of Theorem 5.1 remain valid even when in-
dependent noise components s0(n) and s1(n) are added to the input signals
x(n) and x(n−D), respectively. However, if the noise sources s0(n) and s1(n)
are correlated, an extra term (which depends on the cross-correlation between
the two noise signals) will be added to the right hand side of (5.7). This will
introduce additional terms in the phase of Pv0v1(e

jω) and, hence, bias in the
estimation of D. Our experiments with microphone arrays showed that nomi-
nal room noise (air conditioning systems, etc. resulting in 20dB SNR) had no
noticeable effect on the accuracy of TDOA estimates (See the experiments in
Section 5.5).

Practical experiments via microphone arrays have showen that the TDOA
estimator D̂ given by (5.10) is robust and does not collapse when the actual
TDOA is not an integer multiple of the sampling interval. In fact, Theorem 5.1
is valid for the non-integer case too provided that the term λ(ω)π in its state-
ment is replaced by a general ambiguous phase term. This ambiguous term
can be neglected if the spectral domination condition discussed before is sat-
isfied. In this case, the TDOA estimation procedure is the same as before
except that, now, the search for the D which maximizes the PHAT integral
(5.10) should include non-integer values as well.
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5.4 Multirate sensors that allow time-delay estimation

In order to use the PHAT integral (5.10) as a valid estimator of D, one must
choose sensor filters H0(z) and H1(z) whose phase response satisfy the sym-
metry condition

∠
(
H0(ej ω

2 )H∗
1 (ej ω

2 )
)

= ∠
(
H0(ej(π−ω

2 ))H∗
1 (ej(π−ω

2 ))
)

(5.12)

required by Theorem 5.1. Several classes of filters satisfy (5.12). For instance,
the reader may observe that if H0(z) and H1(z) are linear-phase, FIR and
with the same length N , then ∠H0(ejω)H∗

1 (ejω) becomes a constant which,
in turn, implies (5.12). It is possible to satisfy (5.12) by using certain types of
IIR filters as well. In the examples that follow, we present three representative
choices for H0(z) and H1(z).

5.4.1 Sensors based on linear-phase FIR filters

Linear-phase FIR filters with good frequency selectivity can be designed using
a variety of methods, most notably the weighted-Chebyshev method of Parks
and McClellan (1972a). In programming this method, an error function is
formulated for the desired amplitude response in terms of a linear combination
of cosine functions and is then minimized by using a very efficient multivariable
optimization method known as the Remez exchange algorithm, see e.g. Parks
and McClellan (1972b) and (Antoniou, 1993, Ch. 15).

Example 5.1. One can use the MATLAB function remez which implements
the Parks-McClellan algorithm to obtain a low-pass filter H0(z) with sym-
metric impulse response of length N = 9. A high-pass filter H1(z) of the same
length whose amplitude response is the mirror-image of H0(z) was obtained
by simply replacing z in H0(z) with −z. The amplitude responses of H0(z)
and H1(z) are shown in Fig. 5.3(a) where their phase responses are depicted
in Fig. 5.3(b). The amplitude and phase of H0(z)H∗

1 (z) for the filters designed
in this example are shown in Fig. 5.4 (a) and (b). It is clear that the phase
symmetry condition (5.12) is satisfied. ♦

5.4.2 Sensors based on Bessel IIR filters

In general, it is not possible to achieve linear phase response with IIR fil-
ters. However, it is possible to design IIR low-pass and high-pass filters H0(z)
and H1(z) such that the product H0(z)H∗

1 (z) has linear phase. This can be
achieved, for instance, using second-order Butterworth filters. Another ap-
proach is to design almost-linear-phase H0(z) and H1(z) by discretizing ana-
log Bessel filters via the impulse-invariant transformation. Here, we opt for
the latter approach.
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Fig. 5.2. A two-channel analysis/synthesis filter bank with TDOA.

Example 5.2. For the purpose of this example, we used the MATLAB function
besself to design an 8-order analog Bessel filter with cutoff frequency of 40Hz.
Then, we discretized it using the MATLAB function impinvar at a sampling
frequency of 20 Hz to obtain the low-pass filter H0(z). A high-pass filter H1(z)
of the same order was obtained by replacing z in H0(z) with −z. The ampli-
tude responses of H0(z) and H1(z) are shown in Fig. 5.3(c) where their phase
responses are depicted in Fig. 5.3(d). The amplitude and phase of H0(z)H∗

1 (z)
for the Bessel filters designed in this example are shown in Fig. 5.4 (c) and
(d). It is clear from Fig. 5.4(d) that H0(z) and H1(z) obey (5.12) with a good
approximation. ♦

5.4.3 Sensors based on perfect-reconstruction filter banks

Multirate filter banks for which it is possible to reconstruct the input signal
from the low-rate components are called perfect reconstruction filter banks. It is
possible to design perfect reconstruction filter banks for which the analysis and
synthesis filters are both linear-phase and FIR (Vaidyanathan, 1993, Chap.
7). In this section we introduce a special class of such filter banks which can
be used for TDOA estimation in multirate sensor systems.

Consider the two-channel analysis filter bank shown in Fig. 5.2 and assume
that D is zero. It is well-known that the transfer functions H0(z) and H1(z)

can be compactly represented by the transfer vector h(z)
�
= [H0(z) H1(z)]T

and that h(z) can be factored as h(z) = E(zM )e(z). In this factorization,
e(z) � [1 z−1]T and E(z) is called a type-1 polyphase matrix (Vaidyanathan,
1993).

We define the class PN as the set of filter banks for which the following
two conditions are satisfied:

(i) The filters H0(z) and H1(z) are of length N
�
= 2(K + 1), where K ∈ Z

+

is fixed. In other words, E(z) is FIR of order K.
(ii) The matrix E(z) has the factorization

E(z) = AKD(z)AK−1D(z) . . .D(z)A0 (5.13)

where
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D(z)
�
=
[
1 0
0 z−1

]
(5.14)

and

Ai
�
=
[

1 θi

θi 1

]
0 ≤ i ≤ K − 1,

Ai
�
=
[
1 1
1 −1

]
i = K.

(5.15)

One can verify that the above conditions result in analysis filter banks
for which the impulse response of one filter is symmetric while the impulse
response of the other is anti-symmetric. Thus, H0(z) and H1(z) will have
linear phase. Furthermore, we have

|∠H0(ejω) − ∠H1(ejω)| =
π

2
.

The synthesis filters are obtained by first constructing the adjoint polyphase
matrix

R(z) = AT
0 C(z)AT

1 C(z) . . .C(z)AT
K (5.16)

where

C(z) =
[
z−1 0
0 1

]
. (5.17)

The synthesis filters F0(z) and F1(z) are then calculated from
[
f0(z) f1(z)

]
= eT (z)R(zM ). (5.18)

The above filters lead to perfect reconstruction with an overall delay of K +1
samples.

Clearly, the filter banks in the class PN are fully parameterized by the K
free parameters θ0 to θK−1. These parameters may be optimized such that
certain frequency response requirements are satisfied or at least approximated.

Example 5.3. Let us choose a pair of analysis filters in P1. The filters in this
class are parameterized by only one parameter θ0! We can specify θ0 by min-
imizing an objective function like

γ =
∫ ωpass

0

(
1 − |H0(ejω)|

)2
dω +

∫ π

ωstop

|H0(ejω)|2dω (5.19)

+
∫ π

ωstop

(
1 − |H1(ejω)|

)2
dω +

∫ ωpass

0

|H1(ejω)|2dω. (5.20)

This objective function simply reflects the mean-square deviation of the fre-
quency responses of the filters H0(z) and H1(z) from ideal low-pass and high-
pass responses, respectively. With ωpass = 0.45π and ωstop = 0.55π, the opti-
mal value for θ0 was found to be 78.04. This leads to
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H0(z) = 0.0091 + 0.7070z−1 + 0.7070z−2 + 0.0091z−3,

and
H1(z) = 0.0091 + 0.7070z−1 − 0.7070z−2 − 0.0091z−3.

The amplitude and phase responses of H0(z) and H1(z) designed above
are shown in Fig. 5.3 (e) and (f). The amplitude and phase response of the
product filter H0(z)H∗

1 (z) are shown in Fig. 5.4 (e) and (f). It is clear from
this figure that H0(z) and H1(z) obey (5.12). ♦
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Fig. 5.3. Amplitude response and phase response of various sensor filters H0(z)
and H1(z) introduced in Section 5.4. (a) and (b): ordinary linear-phase FIR filters.
(c) and (d): Bessel IIR filters. (e) and (f) Perfect Reconstruction linear-phase FIR
filters.
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Fig. 5.4. Amplitude response and phase response of the product filter H0(z)H∗
1 (z)

for the sensor filters introduced in Section 5.4. (a) and (b): ordinary linear-phase FIR
filters. (c) and (d): Bessel IIR filters. (e) and (f) perfect Reconstruction linear-phase
FIR filters.



Fig. 5.5. The microphone array setup at the Artificial Perception Laboratory, Uni-
versity of Toronto.

5.5 Laboratory experiments

Here we present some actual multirate TDOA estimation experiments to back
up the theoretical results presented in the previous sections. The experiments
were performed at the Artificial Perception Laboratory, University of Toronto,
using the linear microphone array shown in Fig. 5.5(a). A female student was
asked to speak the sentence “Edward S. Rogers Sr. Department of Electrical
and Computer Engineering” in front of a microphone array standing at the
location specified in Fig. 5.5(b). The signal arriving at each microphone was
sampled at 20 KHz and recorded for about 4 seconds.

5.5 Laboratory experiments 95
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We used two microphones in the microphone array (No. 3 and No. 5)
to simulate a multirate sensor array measurement system similar to the one
shown in Fig. 5.1. The output of microphone No. 3 was used as the reference
signal x(n). This signal and its spectrogram are shown in Fig. 5.6 (a) and
(b), respectively. The signal recorded by microphone No. 5 was used as the
delayed input. We used the example analysis filters described in Section 5.4
to filter these signals and then down-sampled the results to obtain v0(n) and
v1(n).

An estimate P̂v0v1(e
jω) of the cross spectral density of the low-rate obser-

vations v0(n) and v1(n) was obtained by using the MATLAB function csd.
This function estimates the cross spectral density of two signals using Welch’s
averaged periodogram method (see, e.g., Hayes (1996)). The parameters of
the function csd were chosen such that it would operate as follows: First, the
signals v0(n) and v1(n) were divided into overlapping sections of length 1024
and then each section was windowed by a von Hann window. The overlap
length was set to 512. Several overlapping sections would form a “block”. The
products of the DFTs of the sections of v0(n) and v0(n) which were in the
same block were averaged to form P̂v0v1(e

jω) for that block. The block length
was set to 4096.

The above procedure provided us with a short-time cross spectrum es-
timate for each block (4096 samples or about 0.4 seconds) of the low-rate
measurements. We used this estimate to calculate the PHAse Transform in-
tegral ∫

ω

cos
(
−D

ω

2
− (∠P̂v0v1(e

jω) − ∠W (ej ω
2 ))

)
dω. (5.21)

for each block and for all delay values D from -40 to 40. This process, which
we call short-time PHAse Transform, was repeated until all the blocks in the
signals v0(n) and v0(n) were covered. In Fig. 5.7, we have used shades of gray
to depict the numerical value of the integral in (5.21) for all blocks in the
signals v0(n) and v0(n) and for −40 ≤ D ≤ 40. For each block, the D value
which maximizes the integral in (5.21) (i.e. the one which has produced the
brightest color) represents the time delay estimate D̂ for that block. Fig. 5.7
also shows the value of the integral (5.12) as a function of D averaged over the
entire length of the signals v0(n) and v0(n). The D value which maximizes this
quantity represents the TDOA estimate for the entire signal1. The plots in
Fig. 5.7 show that D̂ = 13. This value was validated with estimates obtained
from the original (full-rate) microphone signals.

Remark 5.1. Note that the in the above experiments, the TDOA value is
odd which means the phase of Pv0v1(e

jω) contains the ambiguous component
λ(ω)π. Recall that in the odd TDOA case, the PHAT estimator is guaranteed
to work only if the spectrum dominance condition mentioned in Theorem 5.1
is satisfied. This condition is not satisfied for the blocks centered at t = 0.5,
t = 1 and t = 2.75 since these blocks contain strong components in both high
1 Of course this assumes that D remains constant during the recording.
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Fig. 5.6. (a) The reference speech signal x(n) recorded by Microphone No. 3 in
the array. The array was receiving the voice of a female speaker saying the sentence
“Edward S. Rogers Sr. Department of Electrical and Computer Engineering”. (b)
The spectrogram of x(n).

and low frequencies (see Fig. 5.5(b)). The short-time PHAT plots in Fig. 5.7
(a) and (c) do not show a prominent peak for these blocks. This indicates the
failure of the PHAT-based TDOA estimation for these blocks in agreement
with our theory.
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Fig. 5.7. TDOA estimation results using the filters H0(z) and H1(z) described
in Section 5.4. Each row shows Short-time PHAse Transform results in the left
and PHAse Transform averaged over the entire signal on the right. (a) and (b):
ordinary linear-phase FIR filters. (c) and (d): Bessel IIR filters. (e) and (f) perfect
reconstruction linear-phase FIR filters.
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5.6 Multirate sensor fusion in the presence of time-delay

If we ignore the extra delay block, the multirate sensor model shown in Fig 5.1
resembles a standard two-channel analysis filter bank. It seems reasonable,
therefore, to try to recover the high-rate signal x(n) from the low-rate signals
vi(n) using a standard synthesis filter bank equipped with a compensating
advance block zD as shown in Fig 5.2. However, theoretical analysis shows
that it is impossible to achieve perfect reconstruction for all TDOA values in
systems that use finite-order analysis and synthesis filters.

In this section, we first present a fundamental theorem which shows that
it is impossible to design finite-order (practical) analysis and synthesis filters
that achieve perfect reconstruction for all time-delay values. Then, we present
an optimization method which enables us to design optimum synthesis filters
for given analysis filters and a given (fixed) time delay. We show trough sim-
ulated design examples that this optimization technique is quite powerful in
the sense that almost perfect reconstruction can be achieved in many practical
cases.

5.6.1 Perfect reconstruction for arbitrary time-delays

The following theorem establishes necessary conditions under which the sys-
tem shown in Fig 5.2 can achieve perfect reconstruction for arbitrary values
of the time-delay D.

Theorem 5.2. The multirate analysis/synthesis system shown in Fig 5.2 can
achieve perfect reconstruction for all values of D only if

H0(ejω) = F0(ejω) = 0, ∀ω ∈ Ω

H1(ejω) = F1(ejω) = 0, ∀ω ∈ Ω̂

where Ω = [0 π
2 ) and Ω̂ = (π

2 π] or the other way around.

Proof. Consider the block diagram shown in Fig. 5.2. When x(n) ∈ �2, the
Fourier transforms V0(ejω) and V1(ejω) of the low-rate signals v1(n) and v2(n)
exist and can be expressed as

V0(ejω) =
1
2
[H0(ej ω

2 )X(ej ω
2 ) + H0(ej ω−2π

2 )X(ej ω−2π
2 )],

V1(ejω) =
1
2
[e−j ω

2 DH1(ej ω
2 )X(ej ω

2 ) + e−j ω−2π
2 DH1(ej ω−2π

2 )X(ej ω−2π
2 )].

The Fourier transforms U0(ejω) and U1(ejω) of the synthesized signals u0(n)
and u1(n) can be written as

U0(ejω) = F0(ejω)V0(ej2ω),
U1(ejω) = ejωDF1(ejω)V1(ej2ω).
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Finally, Y (ejω) = U0(ejω) + U1(ejω). It is straightforward to combine the
previous four equations and express Y (ejω) in terms of the true spectrum
X(ejω) and the image spectrum X(ej(π−ω)) as follows

Y (ejω) =
1
2
A(ejω)X(ejω) +

1
2
B(ejω)X(ej(π−ω));

where

A(ejω)
�
= [F0(ejω)H0(ejω) + F1(ejω)H1(ejω)],

B(ejω)
�
= [F0(ejω)H0(ej(π−ω)) + ejπDF1(ejω)H1(ej(π−ω))].

A necessary condition for perfect reconstruction is that terms pertaining to
the image spectrum X(ej(π−ω)) are completely eliminated in the output. That
is B(ejω) = 0. Another necessary condition is that A(ejω) becomes a non-zero
constant. The condition that B(ejω) = 0 is possible for all values of D ∈ Z

only if both F0(ejω)H0(ej(π−ω)) = 0 and F1(ejω)H1(ej(π−ω)) = 0 for all ω. To
satisfy the latter condition, the products F0(ejω)H0(ejω) and F1(ejω)H1(ejω)
should not vanish simultaneously. Using logical notation we can write these
necessary conditions in the compact form:

F0(ejω)H0(ejω) = 0 XOR F1(ejω)H1(ejω) = 0 (5.22)
F0(ejω)H0(ej(π−ω)) = 0 AND F1(ejω)H1(ej(π−ω)) = 0 (5.23)

Let Γ
�
= [0 π

2 )
⋃

(π
2 π]. Denote by Ω the set of all frequencies in Γ for which

F0(ejω) is identically zero and define Ω
�
= Γ − Ω. In other words, assume

F0(ejω)
�
= 0, ω ∈ Ω, (5.24)

F0(ejω) �= 0, ω ∈ Ω. (5.25)

It follows from (5.22) that the synthesis filters F0(ejω) and F1(ejω) cannot
vanish at the same frequencies. They cannot be both nonzero at the same
frequency either. The reason is that if they become nonzero at the some fre-
quencies, (5.23) will require that H0(ej(π−ω)) and H1(ej(π−ω)) both be zero
at those frequencies. This implies that H0(ejω) and H1(ejω) will vanish simul-
taneously and therefor contradicts (5.22). Thus, in summary, F1(ejω) should
vanish wherever F0(ejω) is nonzero and vice versa:

F1(ejω) �= 0, ω ∈ Ω, (5.26)
F1(ejω) = 0, ω ∈ Ω. (5.27)

To satisfy (5.24)-(5.27) along with the original conditions in (5.22) and (5.23),
it is further required that

H1(ejω) �= 0 AND H1(ej(π−ω)) = 0, ω ∈ Ω, (5.28)
H0(ejω) �= 0 AND H0(ej(π−ω)) = 0, ω ∈ Ω. (5.29)
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The above conditions can be satisfied only if

ω ∈ Ω =⇒ π − ω ∈ Ω AND ω ∈ Ω =⇒ π − ω ∈ Ω (5.30)

which is possible only if Ω = [0 π
2 ) or Ω = (π

2 π]. Thus, to satisfy (5.28) and
(5.29) simultaneously it is required that Ω = [0 π

2 ), Ω = (π
2 π] or Ω = [0 π

2 ),
Ω = (π

2 π] and that

H0(ejω) = 0, ω ∈ Ω, (5.31)
H1(ejω) = 0, ω ∈ Ω. (5.32)

��

The ideal brick-wall frequency responses that satisfy the conditions of the
above theorem cannot be realized using FIR or IIR structures. Therefore, it
is not possible to perfectly recover the high-rate signal x(n) from the low-rate
measurements vi(n) using fixed finite-order filters.

One way to get around this difficulty is to use different pairs of synthesis
filters for different TDOA values. Let us write the TDOA D as D = 2K + D̃
where K ∈ Z and D̃ ∈ [0, 2). In this case, the delay block in the sensors’
filter bank model (Fig. 5.2) can be decomposed into an integer, even, delay
z−2K and a residual delay z−D̃. z−2K commutes with down-sampling and up-
sampling operation. Thus, it can be readily compensated for in the receiving
end by adding an equivalent delay z−2K to the other channel. The residual
part z−D̃, however, does not commute with the down-sampling or up-sampling
blocks. Thus, when designing the fusion system, we have to consider it along
with the filter H1(z) in Fig. 5.2. In other words, H1(z) subsumes z−D̃ as
shown in Fig. 5.8.

When D̃ is different from 0 or 1, the transfer function z−D̃ cannot be real-
ized using a finite-order physical system. In this case, one must approximate
z−D̃ by a finite-order rational transfer function. This can be done by using
the classic Padé approximation (Lam, 1993) or other more recent techniques
(Yoon and Lee, 1997), (Philipp et al., 1999).

Once z−D̃ is approximated and combined with H1(z), a synthesis filter
bank must be designed to reconstruct x(n) as faithfully as possible (Fig. 5.8).
The synthesis filters F0(z) and F1(z) depend on D̃. Thus, they must be de-
signed (in real time if needed) after the TDOA D is estimated. An efficient
way to do this is the model-matching technique first proposed by Shenoy in
the context of multirate systems (Shenoy, 1994) and (Shenoy et al., 1994).

In the next subsection, we will use an elegant variation of this approach
due to Chen and Francis (1995a) to design optimal synthesis filters for a given
time-delay. These authors used H∞ optimization theory to minimize the �2-
induced norm between a pure delay system and the multirate system to be
designed. A version of the H∞ optimization method which uses linear matrix
inequalities (LMIs) and achieves reduced-order solutions has been recently
proposed by Li and Kok (2003).
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Fig. 5.8. The structure of the central fusion system along with the analysis filter
bank model used for designing F0(z) and F1(z).

5.6.2 A practical design method using H∞ optimization

H∞ optimization is central in modern control theory. See e.g. Francis (1987),
Green and Limebeer (1995) and Chen and Francis (1995b). The Hardy space
H∞ consists of all complex-valued functions H(z) that are analytic and
bounded outside the unit disc, that is for all |z| > 1. Therefore, H∞ is the
space of transfer functions of causal and LTI systems which are stable in the
bounded-input, bounded-output (BIBO) sense. The norm of a multi-input
multi-output transfer function H(z) ∈ H∞ is defined as the peak magnitude
of its maximum singular value on the unit circle:

||H||∞
�
= sup

ω
σmax[H(ejω)]. (5.33)

If H(z) is the transfer function of a stable, causal LTI system with input
X(n) of dimension m and output Y (n) of dimension p, so that H(z) is p×m,
then the induced norm from the input space �m

2 to the output space �p
2 equals

the H∞-norm of H(z). That is,

sup
||X||2=1

||Y ||2 = ||H||∞ (5.34)

where the norm of a signal X(n) in �m
2 is defined to be

||X||2
�
=

(∑
n

XT (n)X(n)

) 1
2

. (5.35)

Now, consider the analysis/synthesis filter bank shown in Fig. 5.8. Because
of the down-sampling and up-sampling operations, the system which relates
the output signal y(n) to the input signal x(n) is, in general, a linear period-
ically time-varying (LPTV) system. Thus, it does not admit a transfer func-
tion. However, we can “block” the input and output signals to obtain an LTI
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input-output equivalent system. This latter system has the two-dimensional
input and output

X(n)
�
=
[
x(2n) x(2n + 1)

]T
, Y (n)

�
=
[
y(2n) y(2n + 1)

]T (5.36)

and a 2 × 2 transfer matrix which we denote by P(z).
To find an expression for P(z), we have to use the polyphase representation

of the analysis and synthesis filters (Vaidyanathan, 1993). Let us represent
the analysis filters H0(z) and H1(z) compactly by defining the transfer vector

h(z)
�
= [H0(z) H1(z)]T . It is possible to factor h(z) as the product of a 2 × 2

transfer matrix E(z) and a delay vector e(z). That is,

h(z) = E(z2)e(z) (5.37)

where e(z) � [1 z−1]T . The matrix E(z) is called the type-1 polyphase matrix
associated with the analysis filter bank h(z). Similarly, the synthesis filters

can be represented in the compact form f(z)
�
= [F0(z) F1(z)] which, in turn,

may be factored as
f(z)

�
= eT (z)R(z2). (5.38)

The matrix R(z) is called a type-2 polyphase matrix. Using the polyphase
notation, it is straightforward to show that

P(z)
�
= R(z)E(z). (5.39)

Our objective is to design the synthesis filters F0(z) and F1(z) given the
analysis filters H0(z) and H1(z), and a tolerable delay Td ∈ Z+ such that y(n)
is “as close as possible” to x(n − Td). This objective can be made precise by

defining the error signal e(n)
�
= y(n) − x(n − Td) and then minimizing the

performance measure
J

�
= sup

||x||=1

||e||2 (5.40)

which measures the worst-case �2-induced norm from the input signal x(n) to
e(n). Blocking preserves �2 norm, that is, the norm of a signal in �2 is equal
to the norm of its blocked version in �m

2 . Using this fact and (5.34), it can be
shown (Chen and Francis, 1995a, Theorem 2.1) that

J = ||C − RE||∞ (5.41)

where

C(z)
�
=




z−k

[
1 0
0 1

]
, if Td = 2k + 1,

z−k

[
0 z
1 0

]
, if Td = 2k.

(5.42)

Based on the above result, our design problem can be precisely stated as
follows: Given causal and stable (FIR or IIR) analysis filters H0(z) and H1(z)
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and given a tolerable overall delay Td, find causal, stable IIR synthesis filters
F0(z) and F1(z) such that J is minimized. The optimum performance measure
Jopt is therefore

Jopt = inf
F0(z),F1(z)

sup
||x||=1

||e||2 = inf
R(z)∈H∞

||C − RE||∞. (5.43)

The latter optimization is a standard H∞ model matching problem and can be
solved using existing software tools, e.g. the µ-Analysis and Synthesis Toolbox
of MATLAB. For reader’s convenience, the H∞-optimal synthesis filter design
procedure is outlined in the text box below.

H∞-optimal synthesis filter design

Input: The analysis filters H0(z) and H1(z), and the tolerable system delay Td.
Output: The synthesis filters F0(z) and F1(z), and the worst-case reconstruction
error Jopt.
Procedure:

1. Construct the polyphase matrix E(z) associated with the analysis filters H0(z)
and H1(z).

2. Construct the delay matrix

C(z)
�
=




z−k

[
1 0
0 1

]
, if Td = 2k + 1,

z−k

[
0 z
1 0

]
, if Td = 2k.

3. Find Ropt(z) ∈ H∞ which minimizes J = ||C − RE||∞.
4. Return [F0(z) F1(z)] = eT (z)Ropt(z

2).
5. Return Jopt = ||C − RoptE||∞.

5.6.3 Example designs

Assume that D takes integer values only. In this very simple case, two pairs
of synthesis filters are sufficient for all TDOA circumstances since D̃ is either
0 or 1. Here, we provide three design examples for this simple case assuming
that the sensor filters are those designed in Section 5.4.

The H∞-optimal synthesis filters F0(z) and F1(z) (designed for even- and
odd-TDOA values separately) are shown in Fig. 5.9. The total system delay
Td which was chosen for each case is also quoted in this figure. The worst-case
reconstruction error norm Jopt for the synthesis filter bank pairs depicted in
Fig. 5.9 are shown in Table 5.1.

The figures reported in Table 5.1 are quite impressive once we note that
the reconstruction error norm Jopt represents the worst-case scenario and the
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Fig. 5.9. H∞ optimal synthesis filters designed for each pair of analysis filters
introduced in the design examples of Section 5.4. The right hand plot in each row
shows the synthesis filters Fi(z) used for even TDOA values while those on the left
are Gi(z) used for odd TDOA values. (a) and (b): ordinary linear-phase FIR analysis
filters, Td = 27 samples. (c) and (d): Bessel IIR analysis filters, Td = 35 samples. (e)
and (f) Perfect Reconstruction linear-phase FIR analysis filters, Td = 7 samples.
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Table 5.1. Worst-case reconstruction error norm Jopt for the optimal synthesis
filters shown in Fig. 5.9.

Type of analysis filters Jopt (even TDOA values) Jopt (odd TDOA values)

ordinary linear-phase FIR -70.4 dB -65.3 dB

Bessel IIR - 54.6 dB less than -80 dB

Linear-phase FIR filter banks less than -80 dB less than -80 dB

actual reconstruction error for a concrete case can be much less. Moreover,
the reader is reminded that the peak reconstruction error Jopt depends on
both the analysis filters and the value chosen for Td. Chen and Francis (Chen
and Francis, 1995a, Theorem 4.1) show that under a mild condition2 on the
analysis filters limTd→∞ Jopt = 0. This means arbitrary good reconstruction is
possible if a sufficiently large time delay is tolerated. We were able to achieve
Jopt ≤ −80dB for all the example analysis filter banks introduced in Sec-
tion 5.4 by choosing a large enough Td.

5.7 Open problems

In this chapter we studied the effects of time-delay in multirate sensor systems.
First, we extended a well-known method of time delay estimation to multirate
signals and showed that it can lead to reliable TDOA estimations even where
reverberations and noise are present. Then, we turned our focus to the design
of practical analysis and synthesis filters to allow signal fusion when TDOA
is present.

The algorithms and techniques presented in this chapter where developed
with reference to a simple model involving only two sensors. We did not ad-
dress signal fusion in M -channel systems with M > 2 neither did we discuss
important issues such as the accuracy of the low-rate TDOA estimator and
optimal selection of sensor filters to facilitate both TDOA estimation and
signal fusion. These remain as challenging topics for future research.

2 The condition is that the polyphase matrix E(ejω) associated with the analysis
filters must be nonsingular for all ω.
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Optimal Multirate Decomposition of Signals

6.1 Introduction

In many multimedia applications, it’s desirable to store or broadcast a signal
in multiple resolutions. This is to say, it is desirable to have a signal repre-
sentation where various “coarse” or “fine” approximations to the signal are
readily retrieved.

In this chapter, we examine the problem of decomposing an information
bearing signal x(n) into a set of lower-rate subband components v0(n), v1(n),
. . ., vM−1(n) for efficient storage or broadcasting purposes.

x(n)

H  (z)0

0
v  (n)x  (n)0

H  (z)1
1

v  (n)x  (n)1

H     (z)Μ−1

M-1
v     (n)x     (n)M-1

N 0

N M-1

N 1

. . .

Fig. 6.1. An M -channel multirate analysis filter bank.

An analysis filter bank as shown in Fig. 6.1 is used to perform the decom-
position. We assume that at the receiving end or during retrieval, some or
all of the low-rate components v0(n), v1(n), etc. will be used to reconstruct
an approximation y(n) to the original signal x(n). The approximation y(n) is
obtained via a synthesis filter as shown in Fig. 6.2.

107
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y(n)

F  (z)0
0v  (n)

F  (z)1

1
v  (n)

F     (z)Μ−1

M-1
v     (n)

N 0

N M-1

N 1

. . .
Fig. 6.2. An M -channel synthesis filter bank.

Let y0(n) denote the output of the synthesis filet bank when only the sub-
band component v0(n) is present. Then, define y1(n) as the approximation
obtained by feeding both subband signals v0(n) and v1(n) to the synthesis
filter bank. Similarly, define y2(n), y3(n), . . ., yM−1(n) to denote the approx-
imations obtained by including successively more subbands.

A very interesting question is whether it is possible to design the filters
Hi(z) and Fi(z) such that all of the approximations y0(n), y1(n), · · · , yM−1(n)
are as close to the original measurement signal x(n) as possible. When the
answer is yes, the resulting decomposition is called scalable or optimal in the
sense of scalability1.

When x(n) is a stationary random process, Tsatsanis and Giannakis (1995)
demonstrated that it is possible to achieve scalable decomposition using what
they called a Principal Component Filter Bank. A Principal Component Filter
Bank, or PCFB for short, is an M -channel uniform filter bank (i.e. N0 =
N1 = · · · = NM−1 = M) that decomposes the input signal into M low-rate
components. It has the property that all the approximations y0(n), y1(n), etc.
obtained by feeding successively more components v0(n), v1(n), etc. to its
synthesis filter bank are optimal in the mean-squared-error sense2. However,
the analysis and synthesis filter of the PCFB have ideal straight-wall frequency
response characteristics. As a result, it cannot be realized using practical FIR
or IIR filters.

1 In the source compression and information theory literature, the broad concept
of scalability is also described by such terms as progressive transmission, multi-
resolution coding, successively refinable coding, multi-scale representation and so
on, c.f. Bull et al. (1999) and Goyal (2001).

2 In general, the definition of the best approximation depends on the specific appli-
cation and the type of signals to be dealt with. In a deterministic setting, where
x(n) is in the space l2(Z), different techniques for achieving a scalable decompo-
sition can be envisioned; c.f. Mallat (1999) and references therein.
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The concept of scalability is inherently associated with a multi-objective
optimization problem. Naturally, the objective functions to be minimized
might not admit a common solution. The existence of the PCFB proves that a
common solution always exist if we do not impose realizability constraints on
the filters’frequency response. However, if we require the filters in our system
to be realizable, then it turns out that in many cases a scalable decomposition
is not possible3.

Since in general it is not possible to achieve a scalable decomposition using
practical filter banks, it is very desirable to develop a quantitative notion
of scalability. That is, it is desirable to be able to measure how scalable a
decomposition produced by a certain filter bank is. The main goal of this
chapter is to develop such a theory.

To construct a quantitative theory of scalability, we follow a rigorous al-
gebraic approach: We consider a specific set L of analysis filter banks. For
simplicity, we use the adjoint adjoint of the analysis filter banks for synthesis.
Next, we endow the set L with an algebraic ordering that represents scalabil-
ity. Then, we establish an equivalence relation between the order of scalability
and another order called majorization. Using either ordering, specifying the
best (optimal) analysis system in L translates to finding the so-called greatest
element associated with the order.

It turns out that the ordering of scalability is partial. While we prove that
this partial ordering has maximal elements in L, the existence of a greatest
element is not guaranteed. We move forward by embedding the partial order-
ing of scalability in a simple (total) ordering. This is done by using a special
class of functions known as Schur-convex functions. Using the simple ordering
generated on L by these functions, we are able to introduce a formal way for
measuring the scalability of the filter banks in L. As is always the case in
real life, there is catch to this achievement: There are infinitely many possible
choices for Schur-convex functions and our measure of scalability depends on
this (subjective) choice!

Remark 6.1. For reasons of rigor and clarity, our usage of some terminology is
more precise than that in the existing literature. For instance, we shall reserve
the term PCFB for the (non-realizable) system defined in section 6.5.1 only.
If a filter bank exists in L better than all other elements in the sense of
scalability, it will be called an SC-optimal filter bank and not a PCFB.

The sections in the rest of this chapter are organized as follows: In the next
section, we introduce some basic concepts pertaining to FIR analysis and syn-
thesis filter banks. We also define the admissible class L of the filter banks that
we shall deal with in the rest of the chapter. The main body of the algebraic
theory of scalability starts with Section 6.3 where we establish a partial order-
ing representing scalability on the set L. In Section 6.4, we embed this partial

3 See Example 6.2 in this chapter and Kirac and Vaidyanathan (1998a) for counter
examples.
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ordering in a total order by appealing to a set of order-preserving functions.
We explore the connection between the quantitative theory of scalability de-
veloped in Sections 6.3 and 6.4 and the theory of optimum subband coding in
Section 6.6. In Section 6.5 we review in more detail the connection between the
concepts of optimum scalability in finite-order systems and the PCFB. This
section shows that the quantitative notion of scalability developed in Sections
6.3.2 and 6.4 is consistent in the sense that it has an interpretation as approx-
imating PCFB using filter banks in L. Section 6.7 contains complementary
material including possible generalizations and the connection between our
work and the existing literature on the design of optimal filter banks.

The material in this chapter are based on the paper by Jahromi et al.
(2003).

6.2 Review of FIR filter banks

6.2.1 Some basic notions

An M -channel analysis filter bank is shown in Fig. 6.1. The filters H0(z) to
HM−1(z) together with the decimators following them generate the low-rate
subband signals v0(n), v1(n), . . . , vM−1(n). In this chapter, we assume the
same down-sampling rate Ni = 1/M for all the channels. Thus, sampling rate
of each subband signal is 1/M of the sampling rate of the input signal x(n).

In the synthesis filter bank (Fig. 6.2) the subband signals are up-sampled
to the original rate using M expanders and then combined, after passing
through the synthesis filters F0(z) to FM−1(z), to generate the output signal
y(n). To learn more about the basic theory of multirate filter banks, see the
excellent books by Vaidyanathan (1993), Fliege (1994) or Mertinz (1999).

A filter bank for which the output signal y(n) is an exact reproduction
of the input x(n) (within, perhaps, a multiplicative constant and a delay) is
called a perfect reconstruction (PR) filter bank. An interesting class of PR
filter banks are those whose analysis and synthesis filters satisfy an orthog-
onality condition. Such filter banks, called orthogonal or paraunitary filter
banks, admit several nice properties which make their analysis, design and
implementation much easier. In this chapter, we consider this class of filter
banks only.

6.2.2 Orthogonal FIR filter banks (the class L)

We denote by L the class of M -channel orthogonal FIR analysis filters of
order less than or equal to N = (K + 1)M , where K is a fixed integer. To
specify this class more precisely, it is convenient to represent the filters Hi(z)
in the polyphase form. In this representation, the analysis filters are packed
in a transfer vector
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h(z)
�
= [H0(z) H1(z) · · · HM−1(z)]T .

Then, h(z) is factorized as the product of a matrix transfer function and a
vector transfer function consisting only of delay elements:

h(z) = E(zM )e(z) (6.1)

In the above formula, e(z) � [1 z−1 · · · z−(M−1)]T and E(z) is called the
polyphase matrix associated with the analysis filter bank h(z).

Definition 6.1. h(z) ∈ L if its polyphase matrix E(z) satisfies the following
conditions

(i) E(z) is paraunitary, i.e., E(z)−1 = E(z−1)T .
(ii) E(z) is FIR of order at most K.

The filter banks in the class L possess many desirable properties
(Vaidyanathan, 1993) . The following properties will be used later in this
chapter:

1. Implementation based on rotation matrices: The matrix E(z) can
be factored as

E(z) = AKD(z)AK−1D(z) . . .D(z)A0 (6.2)

where

D(z) =
[
IM−1 0

0 z−1

]

and Ai are constant orthogonal matrices. Not all of these matrices have to
be general unitary matrices in order for the factorization in (6.2) to cover
all possible orthogonal filter banks in L. In fact, the matrices A0, · · · ,AK−1

have only to belong to the subset of all possible M ×M unitary matrices that
can be written as a sequence of M − 1 Givens rotations (Vaidyanathan, 1993,
Section 14.6). The last matrix AK has to be a general M ×M unitary matrix
which, in turn, can be decomposed into M(M − 1)/2 Givens rotations. This
leads to the following theorem:

Theorem 6.1. A filter bank h in L is uniquely parameterized by P rotation
angles, where P = K(M −1)+M(M −1)/2. Thus, elements of L are indexed
by the points in the closed and bounded cube Γ = [−π, π]P ⊂ R

P .

Note that the factorization presented here is not canonical. This means differ-
ent parameter vectors in Γ can lead to the same transfer vector h(z) ∈ L. For
a discussion on canonical realization of lossless transfer functions see (Dewilde
and van der Veen, 1998, Chapter 14).

2. The adjoint system is FIR and achieves PR: The factorization intro-
duced above suggests that the corresponding synthesis polyphase matrix can
be designed as
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R(z) = AT
0 C(z)AT

1 C(z) . . .C(z)AT
K (6.3)

where

C(z) =
[
z−1IM−1 0

0 1

]
.

Observe that R(z) is the adjoint of E(z) and FIR too! The synthesis filters
F0(z) to FM−1(z) are then obtained from

f(z) = eT (z)R(zM ) (6.4)

where f(z) � [F0(z) F1(z) · · · FM−1(z)]. It’s easy to verify that, by the
above choice of the synthesis filters, the overall analysis/synthesis system is
PR within a delay of D = MK + (M − 1) samples.
When analysis filters are specified, the synthesis filters are given by (6.4). For
filter banks in the class L, therefore, design can be carried out by defining
an objective function and optimizing the P rotation angles that parameterize
the analysis bank.

3. Making a perfect transmultiplexer: Switching the role of analysis and
synthesis banks, one can use a multirate filter bank as a transmultiplexer
(Vaidyanathan, 1993, Sec. 5.9). It is easy to verify that filter banks in L
generate perfect reconstruction transmultiplexers. This property of the class
L is used in Section 6.3.2 to show a direct connection between scalability and
power distribution.

4. Power preservation: When driven by a stationary zero-mean stochastic
signal, the filter banks in L preserve the input signals’ power (variance) within
a multiplicative constant. In other words, the input power is distributed among
the subband signals such that

M−1∑
i=0

E{x2
i (n)} = M × E{x2(n)}. (6.5)

6.3 Scalability in the class L

We mentioned in the introduction section that a multirate decomposition is
scalable if subband signals generated by it, and proper combinations of several
of them, provide best possible approximations to the original full-rate signal.
In this section we use the mathematical concept of majorization (introduced
in Section 2.2) to give a precise definition for scalability.

6.3.1 Ordering the filter banks in L based on their scalability

Consider the setup shown in Fig. 6.3 where the analysis filter bank belongs
to class L. Assume that the input signal x(n) is wide-sense stationary (WSS)
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Fig. 6.3. A setup which shows how the approximation error is measured for scala-
bility analysis.

with zero mean and known power spectral density Px(ejω). The delay D is
introduced to synchronize the original signal with the filter bank output.

Let ei(n) = x(n−D)− yi(n), 0 ≤ i ≤ M −1, represent the reconstruction
error when only subband signals v0 to vi are used to synthesize the output.
Obviously, when the filter banks are Perfect Reconstruction, eM−1(n) = 0.
In general the error signals ei(n) are cyclostationary random processes with
period M . To measure their expected power, therefore, one needs to consider
both time and ensemble averaging. In view of this fact, we define

εi
�
=

1
M

M−1∑
k=0

E{e2
i (n − k)}

to represent the expected error power when only i out of M subband signals,
namely, v0 to vi−1, are used for reconstruction. It’s convenient to pack the set
of all expected error powers εi associated with h in the error vector :

eh
�
= [εM−1 εM−2 · · · ε0]T . (6.6)

The following definition allows us to formally rank the filter banks in L based
on their error vectors:

Definition 6.2. (Scalability) A filter bank h1(z) ∈ L is more scalable4 than

h2(z) ∈ L, in symbols h1(z)
SC
≥ h2(z), if eh1 ≤ eh2 .

The binary relation
SC
≥ introduced in the above definition induces an or-

dering on the set L. One might easily verify that it satisfies the conditions of
a partial ordering as discussed in Section 2.2. Now, we are ready to search in
L for a filter bank more scalable than all others. If such a filter bank exists,
we would call optimal in the sense of scalability or SC-optimal for short.
4 The modifier more used here is meant to imply equality as well.
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Definition 6.3. (SC-optimality) A filter bank h∗(z) ∈ L is optimal in
terms of scalability (SC-optimal) if

h∗(z)
SC
≥ h(z), ∀ h(z) ∈ L.

In the next subsection we consider the issue of existence of h∗(z). For
reasons that will become clear later, we do this in an indirect way through a
new, yet equivalent, partial ordering on L.

6.3.2 Scalability in terms of power distribution

In this subsection, we compare the analysis filter banks in class L in terms
of the way they distribute the input signal’s power among the M subband
signals. We show that distribution of power among the subbands is intimately
connected to the scalability of a filter bank.

Again, consider the setup in Fig. 6.3, where the analysis filter bank belongs
to class L and the input x(n) is WSS with power spectral density Px(ejω).
It is straightforward to calculate the variances of the subband signals xi(n).
Denote by ph the vector whose components are these variances; that is,

ph = [E{x2
0(n)} E{x2

1(n)} · · · E{x2
M−1(n)}]T .

The set of all variance vectors ph generated by the whole class L will be
denoted by Ω: Ω = {ph|h ∈ L}. Each h(z) ∈ L, therefore, produces some5

ph ∈ Ω. We can now establish the following theorem:

Theorem 6.2. For any two filter banks h1(z) and h2(z) in L, h1(z)
SC
≥ h2(z)

if and only if ph1 � ph2 .

Proof. Consider the setup shown in Fig. 6.4. In this figure, an extra analysis
filter bank is used to decompose the error signal ei(n) into M low-rate error
signals. This is taken to be the same analysis bank used to decompose x(n).
Using the power preservation property of class L, it is not difficult to show
that

εi =
M−1∑
j=0

E{u2
j (n)},∀i. (6.7)

The error signal ei(n) is made up of two components, a delayed version of
the input signal x(n) and the reconstructed signal y(n). We recall that filter
banks in the class L make perfect transmultiplexers. Thus, the contribution of
y(n) to the error subbands will be, within a delay D and a sign change, those
subband signals that were not dropped while synthesizing y(n). Contribution
of x(n−D), however, will produce error subbands which are, within a delay D,
5 Note that the mapping between L and Ω is not one-to-one. Different h ∈ L can

lead to the same ph ∈ Ω.
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Fig. 6.4. Setup to show the relation between scalability and power distribution.

exactly the same as those available at the output of the original analysis bank.
In other words, when subband signals v0(n) to vi−1(n) are used to produce
y(n), we have

uj(n) =
{

0 if 0 ≤ j ≤ i − 1
vj(n − D) if i ≤ j ≤ M − 1 . (6.8)

The signals vj(n) and uj(n) are both stationary. From (6.7) and (6.8), it then
follows that

εi =
M−1∑
j=i

E{v2
j (n)}. (6.9)

The above formula, and the fact that E{v2
j (n)} = E{x2

j (n)}, allow us to
expand the relation eh1 ≤ eh2 as

M−1∑
j=i

E{x2
j (n)} for h1 ≤

M−1∑
j=i

E{x2
j (n)} for h2, ∀i.

For filter banks in L the total sum
∑M−1

j=0 E{x2
j (n)} is a constant. Hence, the

above result can be modified as

eh1 ≤ eh2 ⇐⇒
i−1∑
j=0

E{x2
j (n)} for h1 ≥

i−1∑
j=0

E{x2
j (n)} for h2, ∀i; (6.10)
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which, in the language of majorization, means

eh1 ≤ eh2 ⇐⇒ ph1 � ph2 . (6.11)

��

The above theorem has important consequences. Recall from Section 2.2 that
majorization is a measure of nonuniformity. Hence, ph1 � ph2 means that
h1(z) distributes the input signal’s power among the subbands more nonuni-
formly than h2(z) does. Thus, Theorem 6.2 states that a filter bank is good
in the sense of scalability when it distributes the input signal’s power among
the subbands in a very nonuniform way.

One might use the notion of majorization introduced above to induce an
ordering on the set Ω. It is easily verified that this ordering satisfies all the
requirements of a partial ordering as well. From Definition 6.3 and Theo-
rem 6.2 we then conclude that an optimal filter bank in L is associated with
the greatest element in Ω. This is to say,

Lemma 6.1. An element h∗(z) ∈ L is SC-optimal if and only if ph∗ is the
greatest element of Ω.

The greatest element ph∗ is necessarily a maximal element of Ω (see Theo-
rem 2.3). Hence, to find the greatest element, one has to search among the
maximal elements only. The following theorem asserts that maximal elements
always exist in Ω.

Theorem 6.3. The set Ω has a maximal element.

Proof. Our proof is by construction and consists of three steps: First, we
observe that components of ph are continuous functions of a parameter vector
V ∈ Γ ⊂ R

P . Then, we show that the level sets of these functions are closed
and bounded subsets of the domain set Γ themselves. Finally, we use this
result to construct a maximal element in Ω.
Step I: Recall from Proposition 6.1 that a filter bank h1(z) ∈ L is uniquely
parameterized by P rotation angles where P = K(M − 1) + M(M − 1)/2.
In other words, elements of L are indexed by the points in the closed and
bounded cube Γ = [−π, π]P ∈ R

P .
From the discussion in section 6.2.2 we also observe that:

(i) Each element of the polyphase matrix E(z) is itself a polynomial in z−1

whose coefficients depend on the vector V = [θ0, θ1, . . . , θP−1]T of rotation
angles.

(ii) The dependence in Item 1 is through a combination of sine, cosine and
polynomial functions only.

(iii) Let the vector Li = [l0 l1 · · · lN−1]T denote the impulse response of
the filter Hi(z). Components of Li are functions of V through (the time-
domain version of) (6.1). These components are, therefore, polynomials
in the sine and cosine of θj as well.
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(iv) The observation in Item 3 implies that each component of Li is a con-
tinuous function of V .

(v) Variance of the ith subband signal is a quadratic function of the impulse
response vector Li. That is, E{x2

i (n)} = LT
i RxxLi, where Rxx is the

N × N autocorrelation matrix of x(n).

The last observation together with the one in Item 4 justifies that the com-
ponents of ph, that is, E{x2

i (n)}, are all continuous functions of V ∈ Γ . For
simplicity, let’s denote components of ph by pi and their functional relation
with V by fi(.). That is, ph = [p0 p1 · · · pM−1]T where pi = fi(V ).
Step II: Recall the following two results from the theory of continuous func-
tions (Taylor and Mann, 1972):

Theorem 6.4. Let Γ be a non-empty bounded and closed set, and suppose f
is a function defined on Γ and continuous at each point of Γ . Let m and M
be the greatest lower bound and least upper bound, respectively, of the values
of f on Γ . Then there is some point of Γ at which f has the value M , and
there is also a point at which f has the value m.

Theorem 6.5. Level curves of a continuous function are closed. In other
words, S = {X : f(X) = c} is a closed set where f is continuous on its
domain.

Step III: We use the results of the previous two steps to construct a maximal
element in Ω. Consider the first component of ph, that is, p0 = f0(V ). Let
Γ0 ⊂ Γ denote the set of all points in Γ for which f0(V ) attains its maximum.
Call this maximum pMax

0 . Theorem 6.4 guarantees that Γ0 is not empty. It
then follows from continuity of f(V ) that Γ0 is closed and bounded as well
(Theorem 6.5 above).
Now, consider the second component of ph, namely, p1 = f1(V ). The function
f1(V ) and the set Γ0 satisfy the conditions of Theorem 6.4. Therefore, for the
points in a (nonempty) closed and bounded set Γ1 ⊂ Γ0, the function f1(V )
attains its maximum value pMax

1 . Proceeding in this way, we can find non-
empty, closed and bounded sets Γi ⊂ Γi−1 that maximize the functions fi(V )
over Γi−1 and, accordingly, specify the maximum values pMax

i for 2 ≤ i ≤
M − 1. The maximum values found this way constitute an element pMax =
[pMax

0 pMax
1 · · · pMax

M−1]
T ∈ Ω.

By its very construction, no point in Ω can majorize pMax. Therefore, it is a
maximal element of Ω. ��

Remark 6.2. Note that more than one h(z) ∈ L might have ph = pMax. We
regard all such h(z) as maximal elements of L.

Although Theorem 6.3 confirms the existence of a maximal element in Ω,
it can be shown that this element does not always satisfy the requirements of
a greatest element. In fact, one can find examples6 for which several maximal
6 See Example 6.2 in the next section.
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elements exist in Ω and, by Theorem 2.3, this can only happen when a greatest
element doesn’t exist.

In summary, the best one can do, in general, is to find a maximal element
in L. Theoretically, this can be done using the procedure outlined in the proof
of Theorem 6.3. However, this is not an easy thing to do numerically. The
difficulty arises because there does not exist any systematic numerical method
to specify the level sets Γi as required by this procedure. Luckily, there exist
alternative methods for characterizing a maximal element. One such method
is provided later in Theorem 6.6.

In the next section, we consider converting the partial ordering of scalabil-
ity into (non-unique) total orderings. This relaxes our notion of SC-optimality,
originally stated in Definition 6.3, and solves the problem of non-existence of
an optimal solution. The price we have to pay, however, is the subjectivity
introduced in the definition of an optimal solution. Now, one has to choose
among an infinite number of possibilities for defining an optimal solution!

6.4 Embedding the ordering of scalability
in a total ordering

We showed in the previous section that the ordering introduced on L by
scalability is associated with the ordering induced by majorization on Ω. It
is sufficient, therefore, to study the implications of the latter ordering. Recall
that majorization is a partial ordering. Therefore, it does not always specify
an SC-optimal solution in L. In this section, we embed the partial ordering of
majorization in a total ordering by introducing appropriate order-preserving
functions.

By choosing a function φ which preserves the order of majorization, we
can come up with a more relaxed definition of scalability. That is to say, we
can rank the elements in Ω based on the value of an order-preserving function
rather than comparing its elements directly via the relation �. This way, we
can always specify an optimal point in Ω. The problem now is that the optimal
solution might change if we use a different order preserving function!

6.4.1 SCφ-optimality

Definition 6.4. (Scalability with respect to φ) Let φ be strictly Schur-
convex. A filter bank h1(z) ∈ L is more scalable than h2(z) ∈ L with respect

to φ, in symbols h1(z)
φ

≥ h2(z), if φ(ph1) ≥ φ(ph2).

This new definition has the important advantage that it induces a simple (to-
tal) ordering on L. This is because, now, any two elements in L are comparable
using this ordering:

h1,h2 ∈ L =⇒ φ(ph1) ≥ φ(ph2) or φ(ph2) ≥ φ(ph1).
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It is clear that the set L with the ordering induced by the binary relation
φ

≥ constitutes a chain. The greatest element of this chain is called SC-optimal
with respect to function φ, or SCφ-optimal for short.

In the following example we explore the geometry of some typical Schur-
convex functions.

Example 6.1. (Geometry of Schur-convex functions) Consider a 3-channel
filter bank in the class L. In this case, M = 3 so the variance vector p will have
three components, namely p = [p0 p1 p2] where pi = E{x2

i (n)}, i = 0, 1, 2.
Recall that p ∈ R

3
+. Since p0 +p1 +p2 is a constant, assumed to be 1 here,

the set Ω of all error vectors p will be located on the intersection of the plane
p0 + p1 + p2 = 1 and R

3
+. This intersection forms a triangle which we call ∆.

The level sets of Schur-convex functions are contours on the two-
dimensional plane that includes ∆. This is shown in Fig. 6.5 for three strictly
Schur-convex functions. The horizontal and vertical scales in Fig. 6.5 repre-
sent an orthogonal coordinate system on the plane of ∆. The coordinates are
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Fig. 6.5. Contours generated on the surface of the triangle ∆ by typical Schur-
convex functions: (a) Negative entropy, (b) Euclidean norm, (c) Coding Gain,
(d) Top-central part of (c) enlarged to show singularity of Coding Gain on the
sides of ∆. Contours that lay outside ∆ are irrelevant.
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chosen such that their center coincides with the center of ∆ but are otherwise
arbitrary.

The contours in Fig. 6.5(a) represent the (negative) entropy

φ1(p) =
2∑

i=0

pi log(pi),

while those in Fig. 6.5(b) represent the familiar Euclidean norm

φ2(p) =
2∑

i=0

p2
i .

Fig. 6.5(c) shows contours associated with the Coding Gain7 function

φ3(p) =
p1 + p2 + p3

3 3
√

p1 × p2 × p3
.

It is easily observed that, for the points on ∆, all these functions achieve
their minimum at the central point and their maximum at any of the three
corners8. The corners of ∆ represent the vectors [1 0 0]T , [0 1 0]T and [0 0 1]T .
These vectors (points) majorize all other points in ∆. The central point
1/
√

3[1 1 1]T is majorized by all other points in ∆. ♦

Note from Fig. 6.5 that the sample Schur-convex functions we presented
generated fairly similar contours on the triangle S (at least as long as we are
not very close to the corners). This means that the SCφ-optimal solutions
obtained via different Schur-convex functions φ tend to be close to each other
although they are not necessarily the same.

As we mentioned earlier, using the relaxed definition of scalability, the
optimal filter bank picked in L depends on the choice of the specific Schur-
convex function used. In fact, each SCφ-optimal solution is a maximal element
of Ω:

Theorem 6.6. Let h∗ ∈ L be an SCφ-optimal filter bank. Then, h∗ is a
maximal element of L.

Proof. Assume that there exist h1 ∈ L deferent from h∗ such that ph1 � ph∗ .
This implies that φ(ph1) > φ(ph∗) since φ preserves the order of majorization.
However, this will contradict our original assumption that h∗ is SCφ-optimal.
Therefore, no other element exists in Ω that majorizes ph∗ . Thus, h∗ is a
maximal element of L. ��

7 This function arises in the study of optimal subband encoders and is proved to
be strictly Schur-convex. See section 6.6.

8 Note that φ3 is not defined on the sides of ∆ and is particularly singular at its
corners.
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6.4.2 An illustrative design example

In the following, we provide a simple design example to illustrate the concepts
and ideas discussed so far. We choose two Schur-convex functions and design
two SCφ-optimal filter banks accordingly. It turns out that neither is better
than the other in the sense of scalability ordering. This demonstrates that
maximal elements can be found in L which do not satisfy the requirement of
being a greatest element. Since a greatest element is necessarily a maximal
element, this proves that, for the case considered, L doesn’t have a greatest
element, i.e. an SC-optimal filter bank does not exist.

Example 6.2. (SCφ-optimal Filter Bank Design) Let L be the class of
filter banks which have 3 channels. Assume, further, that the filters are of
length 6. This means M = 3, N = 6 and K = N/M − 1 = 1. It follows
from the results in Section 6.2.2 that the class L is parameterized by P =
K(M − 1)+M(M − 1)/2 = 5 rotation angles. Let us pack these angles in the
parameter vector V = [θ0, θ1, · · · , θ4]T ∈ [−π π]5.

Table 6.1. Correlation coefficients used in Example 6.2.

ρ(1) ρ(2) ρ(3) ρ(4) ρ(5)

0.2624 -0.2746 0.1781 0.4023 0.1780

For our design, we assume that x(n) is a WSS random signal with auto-

correlation coefficients ρ(i)
�
= E{x(n)x(n − i)} as shown in Table 6.1. Given

these autocorrelation coefficients9, and the analysis filters, it is possible to
calculate the power vector p. For the sake of brevity, we omit the details of
this process here. It suffices to know that, once the input signal statistics are
fixed, the output power vector p is only a function of the rotation parameters
that specify the analysis filter bank. This is to say, p = f(V ) where f is a
fixed function f : [−π π]5 −→ Ω.

Now, we may use the strictly Schur-convex function

ψ1(p) = ‖p‖2

to find our first SCφ-optimal element in Ω. We can then use the “Coding
Gain”

ψ2(p) =
p1 + p2 + p3

3 3
√

p1 × p2 × p3

which is also strictly Schur-convex to find a second solution.
The resulting maximizing vectors p1 and p2 obtained by maximizing

ψ1(f(V )) and ψ2(f(V )), respectively, over the parameter space [−π π]5, are
9 In general, the variance of x(n), i.e. ρ(0), is irrelevant in scalability analysis. Also,

due to the finite order of the analysis filters used here, higher-order autocorrelation
coefficients not shown in the table are irrelevant as well.
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Table 6.2. Optimization results for Example 6.2.

p ψ1(p) ψ2(p)

p1 = [0.4170 1.8333 0.7497]T 4.0969 1.2038

p2 = [0.3441 1.7244 0.9315]T 3.9597 1.2185
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Fig. 6.6. Positions of p1 and p2 obtained in Example 6.2 on the triangle ∆. The
two positions are denoted by ’+’ and ’*’ respectively. The plot in (a) shows the
contours of ψ1(p) while the one in (b) shows the contours of ψ2(p). The two plots
are otherwise the same.

shown in Table 6.2. These vectors along with contours of ψ1 and ψ2 are shown
in Fig. 6.6 as well. Note that we are mainly interested in the power vectors
p associated with each solution. The parameter vectors that produce the so-
lutions are not important to us. The frequency response of the SCφ-optimal
filter banks associated with p1 and p2 are shown in Fig. 6.7.

The important observation here is that p1 is better than p2 with respect
to ψ1, while the reverse is true with respect to ψ2. So neither is better than
the other with respect to the ordering of scalability. Since SCφ-optimal solu-
tions are maximal elements, we conclude that, for the class L defined in this
example, a greatest element (i.e. an SC-optimal solution) does not exist.

Finally, we would like to mention in passing that, for this example, we cal-
culated a third SCφ-optimal solutions using entropy as the order-preserving
function. This solution was virtually the same as the one obtained using Cod-
ing Gain. ♦

In general, all Schur-convex functions are equivalent as far as the mathe-
matical formulation of SCφ-optimality is concerned. In other words, maximal
elements do not have any preference over each other. One might, nevertheless,
consider other factors such computational cost and prefer one Schur-convex
function over another.
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Fig. 6.7. Frequency response of optimal 3-channel filter banks designed in Exam-
ple 6.2. The filters associated with p1 are shown in (a) while those associated with
p2 are depicted in (b).

In subsequent sections, we will show that several well-known notions of
optimality for filter banks are intimately related to scalability via particular
choices of Schur-convex functions. which itself is not in L.

6.5 SC-Optimality vs PCFB

Let L̄ denote the class of all orthogonal M channel filter banks without any
restriction on realizability or order. That is,

L̄ = {h(z) : h(z) = E(zM )e(z), E(z)−1 = E(z−1)
T }.

It was shown by Tsatsanis and Giannakis (1995) that a filter bank hP (z)
can be constructed in L̄ such that ehP ≤ eh for all h ∈ L̄. They called hP (z)
the Principal Component Filter Bank (PCFB).

Recall that we defined L as the class of orthogonal FIR filter banks of fixed
order. Clearly, L ⊂ L̄. Recall also that PCFB is not in L. In this section, we
show that an SCφ-optimal element (which is in L) can be interpreted as the
best approximation to PCFB from among the elements in L.

6.5.1 A constructive definition of the PCFB

To characterize PCFB, we need to make a couple of definitions.

Definition 6.5. Let S denote a (measurable) subset of the interval Ω0 =
[0 2π]. It is called an invariant subset if the following two properties hold:

1.
∫

S
dω = 2π

M . This is to say, S has measure (bandwidth) 2π
M .

2. ∀ω ∈ S ⇒ (ω + k 2π
M )mod 2π /∈ S for k = 1, 2, . . . ,M − 1. This is to say, S

is an alias free frequency range.
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Band-pass signals whose PSD is an invariant subset, have the important
property that they will remain invariant under combined multirate operations
of decimation, expansion and indeal interpolation (Sathe and Vaidyanathan,
1993). There are an infinite number of invariant subsets of Ω0. We are only
interested in certain ones that can gather a random signal’s energy as much
as possible. Such subsets are defined below.

Definition 6.6. An invariant subset S0 ⊂ Ω0 is called first principal subset
of Ω0 if it maximizes the integral

∫
S0

Px(ejω)dω.

In words, the frequency band represented by S0 contains the maximum
energy of the random process x(n) that one can collect in a frequency band
subject to the condition that the portion of the signal in that frequency band
remains invariant under multirate operations of decimation by M and up-
sampling by M . The second principal subset is obtained by first defining
Ω1 = Ω0−S0 and then finding an invariant set S1 ⊂ Ω1 such that it maximizes
the integral ∫

S1

Px(ejω)dω.

Following a similar procedure, we can find M principal subsets S0, S1,
. . ., SM−1 in Ω0. These subsets partition Ω0 into M disjoint frequency bands:
Ω0 = ∪M−1

i=0 Si. Using the notion of principal subsets, the PCFB is defined as
follows:

Definition 6.7. A bank of M linear filters H0(z),H1(z), . . . , HM−1(z) is
called a Principal Component Filter Bank (PCFB) if

|Hi(ejω)| =
{

1 ω ∈ Si

0 ω /∈ Si
for i = 1, 2, . . . ,M − 1. (6.12)

Characterizing the synthesis bank associated with PCFB is straightforward.
One might simply choose the synthesis filters such that

Fi(ejω) =
{

M/Hi(ejω) ω ∈ Si

0 ω /∈ Si
for i = 1, 2, . . . M − 1. (6.13)

Note that the above definitions do not impose any constraint over the
filters’ phase response. Therefore, a PCFB is an equivalence class of filter
banks whose magnitude response satisfy the above definition.

Here, we are not going to describe how one can actually specify the PCFB
for a given PSD. We just mention that the construction procedure for PCFB
is similar to the water pouring technique well-known in information theory,
c.f. (Gallager, 1968, Section 9.7) and (Berger and Gibson, 2000, Section III).
The only difference is that one now has to construct invariant sets rather
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than simple bandlimited ones. The invariance restriction makes construction
of PCFB more involved than traditional water pouring. The reader is referred
to Tsatsanis and Giannakis (1995) and Vaidyanathan (1998) for details on
how to construct the PCFB.

6.5.2 PCFB is an upper bound for L

As mentioned at the beginning of this section, our interest in PCFB stems
from the fact that it provides the most scalable decomposition of a random
signal possible by uniform orthogonal filter banks.

Theorem 6.7. (Tsatsanis and Giannakis (1995), Unser (1993)) Let hP ∈ L̄
be the PCFB. Then hP

SC
≥ h for all h ∈ L.

It is not difficult to verify that PCFB satisfies the requirements of The-
orem 6.2. Thus, phP � ph, ∀h ∈ L. Since hP /∈ L, hP specifies an upper
bound for the poset L of FIR filter banks. An equally valid statement is that
phP is the greatest element of L̄ with respect to the ordering induced by �.

6.5.3 Historical notes

Since phP is the greatest element of L̄ it will maximize any Schur-convex
function of the variance vector ph. Recall that, this statement is a purely
mathematical result due to Schur. Yet Schur’s results seem to have been un-
noticed in the early literature on PCFB. An initial comment on the relation
between majorization and certain convex functions seems to be the one made
by Unser (1993). Unser remarks in passing that phP maximizes convex func-
tions of the form φ1(p) =

∑M−1
i=0 g(pi). Later, Akkarakaran and Vaidyanathan

(2001a) proved a result slightly more general than Unser’s: They showed that
φ2(p) =

∑M−1
i=0 gi(pi), where gi(·) are possibly different convex functions, is

also maximized by phP . One easily notices that φ2 is nothing but a special
case in the broad class of Schur-convex functions.

The authors of (Akkarakaran and Vaidyanathan, 2001a) make a very brief
note of Schur-convex functions in the last paragraph of Section III of this
paper. As noted above, it appears that a major part of the paper (e.g. the
whole of Section III) is devoted to deriving a result which can be interpreted
as a special case of Schur’s theory. These authors have published two other
papers on this topic which again do not contain references to Schur’s work
(Akkarakaran and Vaidyanathan, 2001b), (Vaidyanathan and Akkarakaran,
2001).

The systematic theory of scalability presented in this chapter and the clear
connection between the PCFB and scalable FIR filter banks were developed
by Jahromi et al. (2003).
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6.5.4 Approximating PCFB using the filter banks in L

The PCFB is a bank of ideal band-pass filters. Obviously, such filters are
not realizable using any finite-order FIR or IIR discrete-time system. The
PCFB, therefore, can only be approximated using realizable structures of
finite order. In this subsection, we define the notion of approximating PCFB
in a mathematically precise manner.

From the viewpoint of ordering induced by scalability, it is reasonable to
choose the greatest element of L as the best approximation of hP . This is
simply because should a greatest element h∗ exist in L its associated power
vector ph∗ would always sit immediately below phP when the elements in the
augmented set Ω ∪ {phP } are ordered10:

. . . � pi−1 � pi � pi+1 . . . � ph∗ � phP . (6.14)

Recall from the previous section that a greatest element usually doesn’t ex-
ist in L. Hence, the problem of finding the closest element in L to PCFB
is indeterminate. To remove this indeterminacy, we need to specify a well-
behaved measure of closeness to PCFB which preserves the ordering of scala-
bility as well (see Fig. 6.8). Such a measure of closeness, or divergence function
D(h : hP ), should satisfy the following condition

ph1 � ph2 ⇒ D(h1 : hP ) ≤ D(h2 : hP ). (6.15)

Note that we are not interested in inducing any topology on the set L, simply
because a notion of distance between two filter banks in L doesn’t seem to
have any application! Therefore, we regard D(h : hP ) as a function of h only.
We suggest a simple divergence function in the following definition.

Definition 6.8. (Approximate PCFB) A filter bank h∗ ∈ L is called the
best approximation to PCFB if it minimizes the divergence function

D(h : hP ) = φ(phP ) − φ(ph);

where φ is strictly Schur-convex and hP is PCFB.

The main property of D(:) introduced in Definition 6.8 is that it preserves
the ordering of scalability as required by (6.15). In addition, it is non-negative
and becomes zero if and only if h = hP . Having defined the notion of ap-
proximate PCFB, we have, in fact, established a direct connection between
SC-optimality and approximating PCFB: Let h∗ ∈ L be an SCφ-optimal
filter bank; it is the best approximation to PCFB as well. In other words,
D(h∗ : hP ) is minimum.

In summary, PCFB represents an orthogonal multirate system from which
one can obtain the best low-rate approximations of the original (full-rate)
10 The ordering presented in (6.14) is for the purpose of illustration only. The set Ω

is not countable.
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Fig. 6.8. A symbolic set diagram showing how the “distance” between an element
in L and PCFB is defined.

signal. This system, however, is an ideal concept and one can only approximate
it using FIR filter banks (Fig. 6.8). In our discussion above, we provided
a precise (but not objective) definition of approximating PCFB using filter
banks in L. Objectivity is lost because the definition of the best approximation
depends on the choice of a Schur-convex function. Our definition, however, has
the interesting consequence that finding an SC-optimal filter bank in L and
approximating the PCFB become equivalent.

6.6 SC-Optimality vs Subband Coding optimality

In this section, we consider the relation between optimality in the sense of
scalability and optimality in the sense of minimum quantization noise in a
subband coding (SBC) system. We show that the optimality of a filter bank
for subband coding falls within the scope of SCφ-optimality. In other words,
an optimal filter bank for subband coding is an SCφ-optimal filter bank where
φ is a particular Schur-convex function called Coding Gain.

The basic block diagram of a subband coding system is shown in Fig. 6.9.
The input signal x(n) is decomposed into M subband signals which are then
decimated and quantized by a set of M memoryless quantizers Q0 to QM−1.
An approximation to the original input is then synthesized by up-sampling
the quantized subbands and combining them using a set of synthesis filters.
One can express the basic subband coding problem as follows:

Problem 6.1. (Optimal Subband Coding) Given that the input signal is
zero-mean wide-sense stationary, find

(i) a way to distribute btotal bits among the quantizers
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Fig. 6.9. An M -channel uniform filter bank with quantizers in the subbands.

(ii) a filter bank in L
such that the expected mean square error between the input x(n) and output
y(n) is minimized.

Designing an optimal system with regards to the above requirements has
been a subject of research since the early 90s, e.g. Soman and Vaidyanathan
(1993), Ase and Mullis (1996), Vaidyanathan (1998), Moulin et al. (2000).
Assuming that the bit rate is high enough11 to replace the nonlinear effect of
quantizers with uncorrelated noise sources, it turns out that the optimal bit
allocation depends on the variance of the subband signals only. The ultimate
performance of the system, therefore, is determined by the way the analysis
filter bank distributes the input signal’s variance among the subbands.

Detailed analysis (e.g., Soman and Vaidyanathan (1993)) shows that for a
filter bank with orthogonal filters, the mean-squared error between x(n) and
y(n) is minimized when

(i) The following function of the subband signals’ power is maximized

G =
1
M

∑M−1
k=0 E{x2

k(n)}
(
∏M−1

k=0 E{x2
k(n)}) 1

M

. (6.16)

(ii) The available bits are distributed among the quantizers according to the
following formula12:

bk = btotal + 0.5 log2

E{x2
k(n)}∏M−1

k=0 E{x2
k(n)}

. (6.17)

From the above discussion, we can define an optimal filter bank for sub-
band coding as follows:
11 Designing an optimal subband coding system for low bit rates is an open problem.

The reader is referred to Mallat and Falzon (1998) for an analysis of this situation.
12 In general, (6.17) doesn’t lead to integer values for bk. One should round up the

results to the closest integer which will, then, lead to suboptimal quantization. It
may also result in negative values which should be replaced by zero in practice.
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Definition 6.9. (CG-optimality) A filter bank h ∈ L is optimal for subband
coding (CG-optimal for short) if ph maximizes, among all elements of L, the
coding gain function given in (6.16).

Note that the performance of a subband coder is a signal dependent quan-
tity whose value is determined by the input signal’s PSD, number of bits
available and frequency response of analysis filters. The dependency on the
filters, however, is solely through the way they distribute the input signal’s
power among the subbands as expressed quantitatively by (6.16). This is re-
flected in the fact that G is a function only of the subband power vector p
introduced earlier in Section 6.3.2. Therefore, as in the case for scalability,
choosing an optimal filter bank h ∈ L is determined by the relative position
of ph in Ω. The following theorem establishes the fundamental connection
between the two notions of optimality:

Theorem 6.8. If an SC-optimal filter bank exists in L, then it is CG-optimal

too. More generally, h1

SC
≥ h2 =⇒ G(ph1) ≥ G(ph2),∀h1,h2 ∈ L.

Proof. It suffices to show that G(.) is Schur-convex. To show this, we first
consider the function S(p) = p0 × p1 . . . × pM−1 where pi > 0 are the com-
ponents of p. This function is symmetric in its arguments and satisfies the
property

(p0 − p1)(
∂S

∂p0
− ∂S

∂p1
) ≤ 0.

Therefore, by Theorem 2.4, S(p) is Schur-concave. Next, we note that for the
filter banks in L, the numerator of G is a (positive) constant. Thus, G(p) =

const.
M
√

S(p)
. Since the function 1

M√
S

is strictly decreasing for S ≥ 0, we conclude

that G(p) is Schur-convex13. ��

The reader is referred to Fig. 6.5 (c) and (d) for an illustration of the
contours generated by the Coding Gain function G. Note that this function
follows the limits introduced by the sides of the triangle ∆ more notably than
other Schur-convex functions shown in Example 6.1. In fact, it grows very
quickly as one approaches the sides of ∆ and eventually becomes singular on
them (Fig. 6.5 (d)).

6.7 Complements

In this chapter, we showed that for the filter banks in class L several notions
of optimality, each arising from a different viewpoint, can be unified under
one algebraic framework, namely the set-theoretic concept of partial ordering.

13 It is further verified that G(p) is strictly Schur-convex. The proof is straightfor-
ward.
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The presented algebraic approach, however, seems to be more powerful than
covering (and unifying) the optimality concepts of coding gain, scalability
and PCFB! In this section, we shall probe some generalizations and discuss,
in some detail, connections between concepts developed here and those that
already exist in the literature.

6.7.1 Algorithmic aspects of finding an SCφ-optimal element in L
and previous works

Optimal filter banks are replacements for fixed ones where statistical proper-
ties of the input signal can be incorporated in their design for improving the
performance. Many practical applications require this optimized solution to
be estimated in an on-line fashion. In other words, the input signal’s statistics
are not known a priori so the optimization should eventually be formulated
as an adaptive algorithm. This introduces many concerns on both the Schur-
convex function to be used as an objective function and the way it is to be
estimated and maximized on-line.

Some results have appeared with regards to designing CG-optimal filter
banks14. An early work in this area is the adaptive algorithm devised by
Delsarte and co-workers Delsarte et al. (1992). It is designed around a two-
channel orthogonal filter bank and searches for an optimal solution in an on-
line (adaptive) fashion. Other results in this direction can be found in Regalia
and Huang (1995), (Jahromi, 1997, Chapters 6,7), Jahromi and Francis (1999)
and Douglas et al. (1999). None of these algorithms, however, is guaranteed to
converge to a global optimum nor are there any rigorous results available on
their convergence performance. A major challenge here is that, even for the
simple case of two-channel filter banks, the optimization involved is highly ill-
conditioned (Jahromi and Francis, 1999, Section 6). Another issue, as severe
as the previous one, is the existence of local maxima!

In addition to on-line algorithms, several off-line optimization techniques
(analytic and semi-numerical) have been proposed for designing what the
authors have considered optimal FIR filter banks. Notable among these are
the linear programming techniques developed by Moulin et al. Moulin and
Mihçak (1998) and a constrained optimization method proposed by Xuan and
Bamberger Xuan and Bamberger (1998)15. The method proposed in Moulin
and Mihçak (1998) leads to a maximal element which, in a loose sense, can be
interpreted as an SCφ-optimal solution where φ is selected as in (2.13). The
optimization technique in Xuan and Bamberger (1998) achieves a CG-optimal
filter bank which the authors wrongly call PCFB.

14 Recall that from the viewpoint of our algebraic theory, this corresponds to finding
an SCφ-optimal solution where φ is the coding gain function (6.16).

15 The reader is referred to (Kirac and Vaidyanathan, 1998b, section II.A) for point-
ers to other related works.
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Fig. 6.10. Components of the error vector e plotted vs the fraction of the original
sampling rate used in synthesis. ‘*’ represents PCFB and ‘o’ represents an arbitrary
element in L.

6.7.2 Similarity with rate-distortion theory

Let x(n) be a stationary random signal with given PDF and let ehP =
[εM−1 εM−2 · · · ε0]T denote the error vector when PCFB is used to approxi-
mate x(n) using its low-resolution components. Recall that εi represents the
mean-squared reconstruction error where the synthesis filter uses i out of
M subband signals to generate the output. In other words, reconstruction is
performed using a fraction (i/M) of the original sampling rate. We can plot
components of ehP vs this fraction. This is done in Fig. 6.10 for M = 5. In
this figure, we have also plotted an extra point to represent the reconstruction
error (zero) when all the subbands are present (i.e. i/M = 1).

If we connect the ‘*’s in Fig. 6.10 using a smooth curve, the result will
look very similar to a rate-distortion curve Berger and Gibson (2000), Gal-
lager (1968). Like the rate-distortion curve, the error vs sampling rate curve
generated by the PCFB is a characteristic of the signal. The significance of
the error vs sampling rate curve is that its shape shows how scalable a signal
is.

No matter how high is the order of the filter bank used, it is not possible
to achieve an error-sampling rate curve which lies below that of PCFB. The
performance (i.e. scalability) of a finite-order filter bank is determined by the
closeness of its error-sampling rate curve to that of PCFB. The divergence
function introduced in Definition 6.8 is, simply, a quantitative measure of this
closeness!
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6.7.3 On partial ordering and subjectivity

The most notable instance of the occurrence of a partial ordering is, per-
haps, in the philosophy of science where one wants to choose among empirical
theories based on their degree of falsifiability (Popper, 1959, Chapter VI).
While the notion of partial ordering is not a well-known one in signal process-
ing, one can find its traces in related areas like information theory Shannon
(1958),(Csiszár and Körner, 1981, pp. 115-116), statistical inference (Vajda,
1989, Chapter 6) and system identification (Caines, 1988, Chapter 5).

Basically, a partial ordering is likely to occur when one tries to rank en-
tities based on more than one criteria. In system identification, for example,
one selects a model for the observations at hand based on several factors in-
cluding model complexity and its accuracy in predicting the observed signal.
Having chosen suitable measures of model complexity and prediction error,
one can then induce a partial ordering on the set of feasible models. The
partial ordering is embedded in a total ordering by selecting a scalar-valued
criterion function that penalizes model complexity and its prediction error
at the same time. A great deal of subjectivity has been introduced into the
field with regards to the choice of this criterion function Caines (1988), Ljung
(1999).

6.8 Summary

We considered the problem of characterizing an optimal filter bank from the
scalability point of view. We presented a quantitative notion of scalability
and, based on that, derived an optimality theory applicable to the class L of
FIR filter banks. Our approach to the problem was abstract and algebraic:
We endowed the set L with an ordering that represented scalability. Then,
we established an equivalence relation between the order of scalability and
another order called majorization.

We showed that, using either ordering, specifying the optimal filter bank
in L translates to finding the greatest element associated with the order. The
ordering of scalability is partial. Thus, while we are able to prove that it
has maximal elements, the existence of a greatest element is not guaranteed.
In view of this fact, we relaxed our original notion of optimality (i.e. SC-
optimality) to that of SCφ-optimality. An SCφ-optimal solution is viable since

(i) it is equal to an SC-optimal solution if the latter exists,
(ii) it always exists in L.

We showed, moreover, that an SCφ-optimal solution has the interpretation
as an approximation to PCFB when the approximation is from the scalability
point of view. Table 3 summarizes various notions of optimality we considered
in this chapter and their connection to the poset L.
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Table 6.3. Various types of optimal solutions considered.

SC-optimal The greatest element of L
SCφ-optimal A maximal element of L
CG-optimal A maximal element of L

PCFB An upper bound for the poset L

6.9 Open problems

The algebraic theory of scalability developed in this chapter is not restricted to
uniform or orthogonal filter banks. In this section we provide some hints with
regards to some possible directions in which this theory might be extended.
Graduate students and other interested researchers might use this directions
as starting points for new research on scalable multirate systems.

6.9.1 Extension to non-perfect-reconstruction filter banks

It should be possible to apply the quantitative concept of scalability intro-
duced in Section 6.3 to filter bank classes which are not PR. In this case,
the error vector eh should be augmented to include one more component
representing the reconstruction error when all the channels are used by the
synthesis bank16. Then, one might use the same definitions of scalability and
SC-optimality as in Section 6.1.

Again, the ordering introduced by
SC
≥ will be a partial ordering. But,in

general, Theorem 6.2 is not valid for non-PR systems. A way forward might

be apply an order-preserving function directly on the ordering
SC
≥ . Let φ(.)

be such a function. An SCφ-optimal filter bank can then be defined as the
one that maximizes φ(eh) among all filter banks h in the considered non-PR
class.

Note that any lp norm ‖.‖p, p ≥ 1, has the property that eh1 ≤ eh2 ⇒
‖eh1‖p ≤ ‖eh2‖p. Hence, φ = −||e||p for some fixed p can be used as an order
preserving function.

6.9.2 Extension to tree-structured filter banks

The optimality theory presented in this chapter can be extended to orthogonal
tree-structured filter banks as well. Some initial work in this direction has been
reported in Jahromi and Francis (1999) but a more thorough construction is
needed.

16 This means, in a plot similar to Fig. 6.10, the ‘o’ associated with full-rate recon-
struction will not necessarily be located on the horizontal axis.
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6.9.3 Scalability with respect to other error measures

In Section 6.3.1, we defined the error vector e such that its components repre-
sent expected mean square errors when the input signal is reconstructed using
i out of M subbands. One, nevertheless, can define e such that its compo-
nents represent any other meaningful measure of the difference between the
original signal and its low-resolution reconstructions. For instance, one can
take into account properties of human perceptual system when defining εi if
applications in digital audio are concerned (Gold and Morgan, 2000, Part IV).

6.9.4 Scalability when an optimal synthesis system is used

We mentioned at the beginning of this chapter that, in general, the adjoint
of an analysis system is not the best system (from a minimum-mean-square-
error point of view) to use for approximating the input signal using a selected
number i < M of subbands. We already showed in Chapter 4 how to for-
mulate an optimal synthesis procedure for a given analysis filter bank. The
synthesis technique introduced in Chapter 4 is quite general and works for
analysis systems which are not in class L or even PR. One might use this
optimal procedure (or any other feasible synthesis system) and calculate an
error vector e such that its components represent the expected mean-square-
errors when the input signal is reconstructed using i out of M subbands. Once
e is defined, the definitions of scalability, SC-optimality and SCφ-optimality
introduced earlier in this chapter would become applicable again.
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Information in Multirate Systems

7.1 Introduction

Recall from Chapter 2 that all the statistical information about a Gaussian
WSS random signal x(n) is contained in its power spectrum Px(ejω) or, equiv-
alently, in its autocorrelation sequence Rx(k). This is because if we know
Px(ejω), we can calculate the probability density functions that govern the
statistical dependence among any number of samples of x(n).

x(n)

H  (z)0

0
v  (n)x  (n)0

H  (z)1
1

v  (n)x  (n)1

H     (z)Μ−1

M-1
v     (n)x     (n)M-1

N 0

N M-1

N 1

. . .

Fig. 7.1. An analysis filter bank can model a multirate measurement system.

Assume that a WSS signal x(n) is not available for statistical experiment
directly but we have access some multi-rate measurement signals vi(n) ob-
tained indirectly via a multirate measurement system (Fig. 7.1). One may
pose questions like these: How much statistical information about x(n) can
be gained if we calculate statistical properties of v0(n)? Which signal, v2(n)
or v3(n), gives more statistical information about x(n)? If we know statistical
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properties of v0(n), how much more information about x(n) will be gained by
doing statistical experiments on v1(n)?

To answer questions of the type mentioned above, we need to establish a
quantitative measure of statistical information gained about x(n) by statistical
experiments performed on the multirate measurements vi(n). The purpose of
this chapter is to introduce one such measure.

The material in this chapter are based on the paper by Jahromi et al.
(2004a).

7.2 Information as distance from uniform spectrum

Consider the multirate filter bank in Fig. (7.2) and assume that we know a
priori that x(n) is a regular WSS random signal with zero mean and unit
variance1.

We say that the state of our knowledge regarding the statistics of x(n)
is “complete ignorance” if all we know about the statistics of x(n) is the
assumptions stated in the above paragraph. By definition, we assign the value
zero to the quantity of information associated with this state of knowledge.

When in the state of complete ignorance, we assume based on the principle
of Maximum Entropy that the power spectrum of x(n) is a white (constant)
spectrum with unit variance. In other words, in the state of complete ignorance
we assume that Px = P̄x where

P̄x(ejω)
�
= 1, ω ∈ [−π π]. (7.1)

We say that the state of our knowledge regarding the statistics of x(n) is
“complete information” if we know Px(ejω) exactly. By definition, the amount
of information associated with this state of knowledge is given by

I(x)
�
= D(Px‖P̄x), (7.2)

where D(Px‖P̄x) is the Kullback-Leibler divergence of Px from P̄x.
Obviously, “complete information” and “complete ignorance” are two ex-

treme states of knowledge with regards to the statistics of x(n). These states,
therefore, mark the upper and lower limits on the information scale (Fig. 7.2)
which represents the quantity of information that can be gained via multirate
measurements.

Recall from Chapter 2 that the entropy rate H(x) of a Gaussian random
process x(n) is given by

1 The assumption that the input signal’s variance is normalized to one is neces-
sary to avoid the ambiguity caused by the scale-dependence of our information
measure. This is a regrettable limitation but is shared by all entropy-based infor-
mation measures
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Information scale

0

I(x)

Complete
Ignorance

Complete
Information

Fig. 7.2. “Complete information” and “complete ignorance” mark the upper and
lower limits of the quantity of information that can be gained about x(n).

H(x) =
1
2

ln 2π +
1
2

+
1
4π

∫ π

−π

ln Px(ejω)dω, (7.3)

and that D(P2‖P1) is given by

D(P2‖P1) =
1
4π

∫ π

−π

(
P2(ejω)
P1(ejω)

− ln
P2(ejω)
P1(ejω)

− 1
)

dω. (7.4)

It follows from (7.1) - (7.4) that

H(x) + I(x) = c (7.5)

where c
�
= 1

2 ln 2π + 1
2 is a constant. The statistical information I(x) is always

positive or zero while H(x) can become negative or even, for a non-regular
random process, −∞. This is shown graphically in Fig. 7.3.

Let Q denote the set of all power spectra associated with regular WSS
processes with unit variance. Let S(i;N) ⊂ Q denote the set of those spectra
in Q which are consistent with first N autocorrelation coefficients Rvi

(k),
k ∈ {0, 1, · · · , N − 1} obtained from the low-rate signals v0(n) to vi(n).
In Chapter 3, we developed a Maximum Entropy inference algorithm which
would pick a unique power spectrum from the infinitely many spectra in S(i;N).
Let P

(i;N)
x (ejω) denote this power spectrum. Now, we are ready to make the

following fundamental definition:

Definition 7.1 (Information content of low-rate measurements). The
quantity of statistical information contained in v0(n) to vi(n) about x(n) is
given by

I(v0, · · · , vi)
�
= lim

N→∞
D(P (i;N)

x ‖P̄x). (7.6)
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Statistical 
Information

0

I(x)

H(x)
C

Entropy

Fig. 7.3. Statistical information I(x) and entropy rate H(x) of a Gaussian WSS
random process x(n) add up to a constant if the variance of x(n) is held fixed.

The above definition allows us to measure quantitatively the statistical
information provided by one or a multitude of low-rate measurements. Note,
however, that this definition ignores any (potential) information that could
have been obtained by considering the cross-correlation among the low-rate
measurements v0(n) to vi(n).

Theorem 7.1. The limit used in Definition 7.1 exists.

Proof. It follows from the definition of S(i;N) that

(S(i;N+1)
⋂

Q) ⊂ (S(i;N)
⋂

Q). (7.7)

Also, it is obvious that Px(ejω) ∈ (S(i;N)
⋂
Q) for all values of i and N . Now,

let P
(i;N)
x (ejω) and P

(i;N+1)
x (ejω) represent the Maximum Entropy estimates

corresponding to the constraint sets (S(i;N)
⋂
Q) and (S(i;N+1)

⋂
Q) respec-

tively. It follows from this fact and (7.7) that

H(P (i;N)
x (ejω)) ≥ H(P (i;N+1)

x (ejω)) ≥ H(Px(ejω)). (7.8)

Using (7.1), (7.3) and (7.4) we can then write

D(P (i;N)
x ‖P̄x) ≤ D(P (i;N+1)

x ‖P̄x) ≤ D(Px‖P̄x). (7.9)

The above relation shows that the sequence D(P (i;N)
x ‖P̄x) is bounded from

above and also non-decreasing in N . Thus, it has a limit. ��

The following theorem shows that the information content of low-rate mea-
surements increases (or in the worst case remains constant) as we include more
channels. It also indicates that the information provided by multirate mea-
surements cannot exceed that of the original signal:
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Theorem 7.2. If i ≥ j then

I(v0, . . . , vj) ≤ I(v0, . . . , vi) ≤ I(x). (7.10)

Proof. Using a procedure similar to the one used in the proof of the above
lemma, one can show that

H(P (i;N)
x (ejω)) ≥ H(P (i+1;N)

x (ejω)) ≥ H(Px(ejω)), (7.11)

and then proceed to

D(P (i;N)
x ‖P̄x) ≤ D(P (i+1;N)

x ‖P̄x) ≤ D(Px‖P̄x) (7.12)

from which the asserted inequality follows in the limiting case when N → ∞
��

It follows from the above theorem that, as we include more channels in
our multirate measurement system, we can expect to gain more information.
However, the total amount of information will eventually saturate to a limit-
ing value below I(x) which represents the “complete information” needed to
specify statistics of x(n). This is shown graphically in Fig. 7.4

Statistical 
Information

0

I(x)

M-1

Channel
Number

1 2 . . .

. . .

Fig. 7.4. A fictional plot depicting the amount of statistical information
I(v0, · · · , vi) as a function of the number of channels included in the measurement
process.

7.3 An illustrative example

It is time to illustrate the ideas developed in the previous sections using a
concrete example.
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In practice, it is not possible to c P
(i;N)
x (ejω) when N → ∞. For this reason

we have to limit ourselves to a fixed number of autocorrelation coefficients per
channel. In this section we use P

(i;4)
x (ejω) as an approximation to P

(i;∞)
x (ejω)

calculations.
Another practical difficulty is that the inference algorithm introduced in

Chapter 3 does not satisfy the constraints exactly. This means that the so-
lution provided by it may not be a unit variance spectrum. We got around
this issue by modifying the algorithm in Chapter 3 such that it considered
the input variance as a specific constraint. Then, to make the variance of the
solution as close to one as possible, we made sure that the algorithm would
emphasize the variance constraint 10 times more than the constraints imposed
by the measured autocorrelation coefficients.

Example 7.1 (A 3-channel multirate measurement system). Consider a 3-
channel analysis filter bank in a structure similar to the one shown in
Fig. 7.1. Assume that the down-sampling rate is equal to four for all channels
(N0 = N1 = N2 = 4) and that the linear filters H0(z), H1(z) and H2(z) are
specified as follows:

H0(z) =
0.0753 + 0.1656z−1 + 0.2053z−2 + 0.1659z−3 + 0.0751z−4

1.0000 − 0.8877z−1 + 0.6738z−2 − 0.1206z−3 + 0.0225z−4

H1(z) =
0.4652 − 0.1254z−1 − 0.3151z−2 + 0.0975z−3 − 0.0259z−4

1.0000 − 0.6855z−1 + 0.3297z−2 − 0.0309z−3 + 0.0032z−4

H2(z) =
0.1931 − 0.4226z−1 + 0.3668z−2 − 0.0974z−3 − 0.0405z−4

1.0000 + 0.2814z−1 + 0.3739z−2 + 0.0345z−3 − 0.0196z−4

The frequency response curves |Hi(ejω)| for these filters are shown in
Fig. 7.5. For this example, the input signal x(n) is chosen to be a Gaussian
WSS process2 whose power spectrum Px(ejω) is a simple low-pass function as
shown in Fig. 7.6.

In this example, we use P
(i;4)
x (ejω) calculated by our Maximum Entropy

inference algorithm as an approximation to P
(i;∞)
x (ejω) in our information

calculations. The spectra estimated using the data provided by each channel
of the analysis system described above are shown in Fig. 7.7. Fig. 7.8 shows

2 The process used in this example is an ARMA(4, 4) process whose modeling filter
was calculated using the MATLAB command

[a,b]=YULEWALK( 4, [0 .35 .85 1],[1 1 0.1 0])

that implements the Yule-Walker filter design algorithm. The process’ amplitude
was then scaled such that E{x2(n)} = 1.
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Fig. 7.5. Frequency response of the analysis filters used in Example 7.1.
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Fig. 7.6. The input power spectrum estimated using 4 autocorrelation coefficients
per channel and all the channels of the filter bank described in Example 7.1. The
doted curve shows the estimate while the solid one shows the actual spectrum.

the PSDs estimated using data produced by three different pairs of the chan-
nels of this analysis system. All PSD estimates shown have a variance in the
range 1 ± 0.01. Given these estimates, one can easily calculate the quantity
of information provided by each channel and the quantity of information pro-
vided by various combinations of the channels. These values, along with the
value I(x) corresponding to complete statistical information about x(n) are
plotted in Fig. 7.9. As can be seen in these plots, the collective quantity of
information provided the channels increase as we include new ones but there
exists a considerable amount of redundancy as well.
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Fig. 7.7. The input power spectra estimated using 4 autocorrelation coefficients
calculated for each individual channels of the filter bank described in Example 7.1.
(a) The estimate obtained using Channel 1 data, (b) the estimate obtained using
Channel 2 data, (c) the estimate obtained using Channel 3 data. In each plot, the
doted curve shows the estimate while the solid one shows the actual spectrum for
comparison.
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Fig. 7.8. The input power spectra estimated using 4 autocorrelation coefficients
per channel for various 2-channel combinations of the filter bank described in Ex-
ample 7.1. (a) Channels 1 and 2, (b) Channels 1 and 3, (c) Channels 2 and 3. Note
that the scale in plots (b) and (c) has changed to accommodate the overshoots that
occurs in these estimated spectra. In each plot, the doted curve shows the estimate
while the solid one shows the actual spectrum for comparison.
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Fig. 7.9. The quantity of statistical information gained by using different combi-
nations of channels of the filter bank described in Example 7.1: (a) Channels 1, 1,2
and 1,2,3, (b) Channels 2, 2,3 and 2,3,1, (c) Channels 3, 3,1 and 3,1,2.
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7.4 Redundancy

The saturating nature of I(v0, · · · , vi) as i increases does not mean that the
new channels contribute a small amount of information. It means that the
new channels contribute a small amount of additional information. In other
words, the information provided by the new channels becomes more and more
redundant as the number of channels increases. This observation motivates
defining a quantitative measure for the redundancy of the statistical informa-
tion provided by a multitude of low-rate signals.

To define redundancy, we first need to define the information content of
a single low-rate signal vi(n). This can be done similar to what we did for
multiple measurements before. Namely, we let Q, as before, denote the set of
PSDs with unit variance. We use the notation S̃(i;N) to denote the set of all
PSDs which are consistent with N ACS values measured from the signal vi(n).
We then define P̃

(i;N)
x (ejω) as the estimate of Px(ejω) provided by the MEIE

from the constraint set S̃(i;N)
⋂
Q. The definition of the information content

of the ith channel —independent of any other channels— is then made as
follows:

Definition 7.2 (Information content of a single measurement signal).
The statistical information contained in the signal vi(n) about x(n) is given
by

I(vi)
�
= lim

N→∞
D(P̃ (i;N)

x ‖P̄x). (7.13)

By using the above definition, the definition of redundancy follows naturally3:

Definition 7.3 (Redundancy). The redundancy R(v0, · · · , vi) of the statis-
tical information contained in v0(n) to vi(n) about x(n) is given by

R(v0, · · · , vi)
�
=

i∑
k=0

I(vk) − I(v0, · · · , vi). (7.14)

Finally, it would be illuminating to recall the notion of “mutual informa-
tion” introduced in classical information theory (Section 2.3.1) and see how it
compares to our definition of information above. Let X ∈ R

N be a continuous
random variable with PDF pX(X) and let Y ∈ R

M , M < N , be a non-
invertible function of X so that the conditional density function pX|Y (X|Y )
exists. Then, the (average) information contained in Y about X is defined
as the mutual information between X and Y , which, in turn, can be writ-
ten as the difference between the entropy of X and the conditional entropy
of X given Y (Gallager, 1968, Equation 2.2.17). In other words, in classical

3 The reader should easily notice the similarity between the definition of redun-
dancy here and the definitions of “mutual information” and “mutual information
rate” made in information theory (see Sections 2.3.1 and 2.5.4).
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information theory the “information contained in Y about X” is quantified
by R(X;Y ) = H(X) − H(X|Y ).

It is easy, using equations (7.1) - (7.5), to show that limN→∞ D(P (i;N)
x ‖P̄x)

used in Definition 7.1 can be written as H(P̄x) − limN→∞ H(P (i;N)
x ). Thus,

I(v0, · · · , vi) is similar to mutual information in the sense that it too mea-
sures the reduction in entropy of a random variable after a related variable
is observed. There is, however, an important conceptual difference between
mutual information and the quantity measured by I(v0, · · · , vi): The PDFs
used in the classical formula H(X) − H(X|Y ) are “actual” while the PSDs
used in Definition 7.1 are “inferred”. (Recall that there is no deductive way
to specify these PSDs even after doing statistical experiments on the low-rate
signals.)

7.5 Scalability in terms of information

In the previous sections we discussed in detail how a multirate observation is
done and how much information is gained in each observation. In this section,
we are going to compare multirate analysis systems in terms of the amount
of information provided by their output about their input.

A very desirable property of a multirate analysis system is that it can
supply most of the information about the input signal in a few number of its
low-rate outputs. If this is the case, we might save in our computational or
communication resources by picking those low-rate signals as representatives
of the original full-rate signal. The property just described is often referred
to as “scalability”. Here, we consider scalability of multirate analysis systems
with regard to the “statistical information” contained in their outputs. The
reader is referred to Chapter 6 for an indepth description of the concept of
scalability and its quantification in general.

To make things formal, let’s consider a class K of M -channel analysis
systems.

Definition 7.4 (Information vector). Let vi(n), 0 ≤ i ≤ M − 1, de-
note the low-rate outputs of a multirate analysis system h ∈ K and let
µi = I(v0, · · · , vi) for 0 ≤ i ≤ M − 1. The vector Jh = [µ0, µ1, · · · , µM−1]T is
called the information vector associated with h.

In simple terms, the components of the information vector Jh show the cumu-
lative amount of information gained by the channels of the analysis system h.
Using the same approach used in Chapter 6, we consider an analysis system
h1 ∈ K to be more scalable from the information point of view or, simply,
more informative than h2 ∈ K if all the low-rate observations on the outputs
of h1 are more informative than similar observations made using outputs of
h2.
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Definition 7.5 (Information scalability). A multirate analysis system

h1 ∈ K is more informative than h2 ∈ K, in symbols h1

INF
≥ h2, if Jh1 ≥ Jh2 .

Let h1, h2 and h3 be any three elements in K. It is easily verified that the
following statements are true:

h1

INF
≥ h1 (Reflexivity)

h1

INF
≥ h2 , h2

INF
≥ h1 ⇒ h1 = h2 (Antisymmetry)

h1

INF
≥ h2 , h2

INF
≥ h3 ⇒ h1

INF
≥ h3 (Transitivity)

The three properties above show that the binary relation
INF
≥ induces a

partial ordering on K. The set K is therefore a poset (see Section 2.2.3). We
call the greatest element of the poset K the optimal multirate analysis system
from the information viewpoint:

Definition 7.6 (INF-optimality). A multirate analysis system h∗ ∈ K is

called optimal in the sense of informativity (INF-optimal for short) if h∗ INF
≥

h,∀h ∈ K.

When it exists, h∗ is the most informative multirate analysis system to ob-
serve x(n) with. In other words, all the low-rate Maximum Entropy estimates
of Px(ejω) obtained by observing the outputs of h∗ are the most accurate
possible. For a poset the existence of a greatest element is not guaranteed.
Therefore, an INF-optimal analysis system h∗ might not exist in K. It is possi-

ble, nonetheless, to embed the partial ordering introduced by
INF
≥ into a total

(simple) ordering using appropriate order-preserving functions. This helps to
re-define the notion of INF-optimality such that an optimal solution exists.
Such issues might be worked out similar to those in Chapter 6 and will not
be considered here.

7.6 Open problems

In this chapter we introduced a quantitative measure for the statistical in-
formation gained in multirate observations. We also introduced the notion
of INF-optimality for comparing different analysis systems. Here, we point
out some aspects of our definition of statistical information that deem further
attention and may be investigated in future research.

7.6.1 Cross-correlation data are ignored

Recall from Chapter 3 that the PSD estimates provided by the Maximum
Entropy Inference Engine are based on the autocorrelation coefficients of the
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low-rate signals. This means that any (potential) information that could have
been obtained by considering the cross-correlation between the low-rate mea-
surements is ignored.

7.6.2 Information rate of the low-rate signals

The notion of “statistical information” defined in this chapter is conceptually
different from “information rate” defined in Chapter 2. A major distinction
is that the statistical information provided by a low-rate signal depends both
on that signal’s statistical properties and on the characteristics of the analy-
sis system that produced it. Nonetheless, there are certainly connections be-
tween, say, the “mutual information rate” of the low-rate signals and their
redundancy. Investigating relations of this type is an open topic.

7.6.3 INF-optimality, SC-optimality and PCFB

Investigating the connection between the concept of SC-optimality introduced
in Chapter 6 and the concept of INF-optimality introduced in this chapter is
another open problem. Specifically, it would be interesting to apply the notion
of INF-optimality to the class L of analysis systems introduced in Chapter 6
and investigate whether PCFB is optimal from the information point of view
as well.
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Distributed Algorithms

8.1 The need for distributed algorithms

In recent years, a new information collection paradigm which advocates con-
necting a large number of inexpensive and small sensors in a wireless sen-
sor network has emerged. The building blocks of a sensor network, often
called “Motes”, are self-contained, battery-powered computers that measure
light, sound, temperature, humidity, and other environmental variables (See
Fig 8.1).

As we mentioned in Chapter 1, a wireless sensor network can be very
flexible, cost effective, and robust with respect to individual Mote’s failure.
However, there are many theoretical and engineering obstacles that must be
overcome for sensor networks to become viable. For example, new networking
protocols must be devised to allow the sensor nodes to spontaneously create an

Fig. 8.1. A wireless sensor node or “Mote” made by Crossbow Technology, Inc. in
San Jose, California.
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impromptu network, dynamically adapt to device failure, manage movement
of sensor nodes, and react to changes in task and network requirements.

From the signal processing point of view, the main challenge is the dis-
tributed fusion of sensor data across the network. In order to be viable, the
distributed data fusion algorithm must meet the following requirements:

(i) It must be very efficient in utilizing the limited range and data rate of
each sensor’s communication module.

(ii) It must networkeven if some sensors in thework fail.

In this chapter, we introduce a class of multirate information fusion algo-
rithms which are highly suited for distributed applications such as wireless
sensor networks. In our algorithms, the data fusion problem is formulated as
a problem of finding a “point” in the intersection of some “convex sets”. The
key advantage of this viewpoint is that the solution can be found using a se-
ries of projections onto the individual sets. The projections can be computed
locally at each sensor node allowing the fusion process to be done in a parallel
and distributed fashion.

For clarity and simplicity, we will introduce our method by applying it
to the problem of multirate spectrum estimation — which we are already
familiar with. However, the algorithms discussed in this chapter are separate
from the specific problem that is used to illustrate them. They are much more
general, much bigger, than multirate spectrum estimation. Somewhere over
the horizon, in the direction in which these algorithms point, a whole new
field of “distributed signal processing” is waiting for us!

The material in this chapter are based on the author’s research originally
published in (Jahromi and Aarabi, 2006).

8.2 Spectrum estimation as a convex feasibility problem

Consider a hypothetical scenario where a sound source (say a speaker) is
monitored by a collection of Motes put at various known locations in a room
(Fig. 8.2). Because of reverberation, noise and other artifacts, the signal arriv-
ing at each Mote location is different. The Motes (which constitute the sensor
nodes in our network) are equipped with microphones, sampling devices, suffi-
cient signal processing hardware and some communication means. Each Mote
can process its observed data, come up with some statistical inference about it
and share the result with other nodes in the network. However, to save energy
and communication bandwidth, the Motes are not allowed to share their raw
observed data with each other.

Our goal is to design a fusion algorithm so that an estimate of the power
spectrum of the sound source consistent with the observations made by all
Motes is obtained after a number of local calculations and local communica-
tions between the Motes. One way to achieve this goal is to formulate the



8.2 Spectrum estimation as a convex feasibility problem 151

microphone

data acquisition and
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       module
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Fig. 8.2. A sensor network monitoring a stationary sound source in room.

spectrum estimation problem as a convex feasibility problem. This is done
below.

Let x(n) denote a discrete version of the signal produced by the source
and assume that it is a zero-mean Gaussian wide-sense stationary (WSS)
random process. The sampling frequency fs associated with x(n) is arbitrary
and depends on the frequency resolution desired in the spectrum estimation
process.

We denote by vi(n) the signal produced at the front end of the ith sensor
node. We assume that vi(n) are related to the original source signal x(n) by
the model shown in Fig. 8.3. The linear filter Hi(z) in this figure models the
combined effect of room reverberations, microphone’s frequency response and
an additional filter which the system designer might want to include. The
decimator block which follows the filer represents the (potential) difference
between the sampling frequency fs associated with x(n) and the actual sam-
pling frequency of the Mote’s sampling device. Here, it is assumed that the
sampling frequency associated with vi(n) is fs/Ni where Ni is a fixed natural
number.

It is straightforward to show that the signal vi(n) in Fig. 8.3 is also a WSS
processes. The autocorrelation coefficients Rvi

(k) associated with vi(n) are
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speech
source
      x(n)

H (z)i
v  (n)ix(n-D)

Ni
x  (n)i

processor

Fig. 8.3. The relation between the signal vi(n) produced by the front end of the
ith sensor and the original source signal x(n).

given by
Rvi

(k) = Rxi
(Nik) (8.1)

where
Rxi

(k) = (hi(k) � hi(−k)) � Rx(k), (8.2)

and hi(k) denotes the impulse response of Hi(z). We can express Rvi
(k) as a

function of the source signal’s power spectrum as well. To do this, we define
Gi(z)

�
= Hi(z)Hi(z−1) and then use it to write (8.2) in the frequency domain:

Rxi
(k) =

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejkωdω. (8.3)

Combining (8.1) and (8.3), we then get

Rvi
(k) =

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejNikωdω. (8.4)

The above formula shows that Px(ejω) uniquely specifies Rvi
(k) for all

values of k. However, the reverse is not true. That is, in general, knowing
Rvi

(k) for some or all values of k is not sufficient for characterizing Px(ejω)
uniquely.

Recall that vi(n) is a WSS signal so all the statistical information that can
be gained about it is confined in its autocorrelation coefficients. One might
use the signal processing hardware available at each sensor node and estimate
the autocorrelation coefficients Rvi

(k) for some k, say 0 ≤ k ≤ L − 1. Now,
we may pose the sensor network spectrum estimation problem as follows:
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Problem 8.1. Let Qi,k denote the set of all power spectra which are con-
sistent with the kth autocorrelation coefficient Rvi

(k) estimated at the ith
sensor node. That is, Px(ejω) ∈ Qi,k if

1
2π

∫ π

−π

Px(ejω)Gi(ejω)ejMkωdω = Rvi
(k),

Px(ejω) ≥ 0,

Px(ejω) = Px(e−jω),
Px(ejω) ∈ L1(−π, π).

Define Q �
=
⋂N

i=1

⋂L−1
k=0 Qi,k where N is the number of nodes in the network

and L is the number of autocorrelation coefficients estimated at each node.
Find a Px(ejω) in Q.

The above problem essentially means finding a P (ejω) in the intersection
of the feasible sets Qi,k. It is easy to verify that the sets Qi,k are closed and
convex. The problem of finding a point in the intersection of finitely many
closed convex sets is known as the convex feasibility problem and is an active
area of research in applied mathematics.

In the ideal case where the observed autocorrelation coefficients Rvi
(k)

are exact, the sets Qi,k are non-empty and admit a non-empty intersection
Q as well. In this case Q contains infinitely many Px(ejω). In the case that
the measurements vi(n) are contaminated by noise or Rvi

(k) are estimated
based on finite-length data records, the intersection set Q might be empty
due to the potential inconsistency of the autocorrelation coefficients used. So
Problem 8.1 has either infinitely many solutions or no solution at all! In any
case, it is ill-posed.

8.3 Solution using generalized projections

An elegant way to solve a convex feasibility problem is to employ a series of
generalized projections (Censor and Zenios, 1997). A generalized projection is
essentially a regularization method with a generalized distance serving as the
stabilizing functional. A great advantage of using the generalized projections
formulation is that the solution P ∗ ∈ Q can be found using a series of projec-
tions onto the intermediate sets Qi,k. These intermediate projections can be
computed locally at each sensor node thus allowing the computations to be
done simultaneously and in a highly distributed fashion.

A generalized distance is a real-valued non-negative function of two vector
variable D(X,Y ) defined in a specific way such that it’s value may represent
the distance between X and Y in some generalized sense. When defining
generalized distances, it is customary not to require the symmetry condition.
Thus, D(X,Y ) may not be the same as D(Y,X). Moreover, we do not insist
on the triangle inequality that a traditional metric must obey either.
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Example 8.1. Let P1(ejω) > 0 and P2(ejω) > 0 be two power spectra in
L1(−π, π). The functions

D1(P1, P2) =
∫ π

−π

(P1 − P2)
2
dω,

D2(P1, P2) =
∫ π

−π

(
P1 ln

P1

P2
+ P2 − P1

)
dω,

D3(P1, P2) =
∫ π

−π

(
P1

P2
− ln

P1

P2
− 1

)
dω,

can be used to measure the generalized distance between P1(ejω) and P2(ejω).
These functions are non-negative and become zero if and only if P1 = P2. Note
that D1 is simply the Euclidean distance between P1 and P2. The functions
D2 and D3 have roots in information theory and statistics. They are known
as the Kullback-Leibler divergence and Burg cross entropy, respectively. ♦

By using a suitable generalized distance, we can convert our original sen-
sor network spectrum estimation problem (Problem 8.1) into the following
minimization problem:

Problem 8.2. Let Q be defined as in Problem 8.1. Find P ∗
x (ejω) in Q such

that
P ∗ = arg min

P∈Q
D(P,P0), (8.5)

where P0(ejω) is an arbitrary power spectrum, say P0(ejω) = 1,−π ≤ ω < π.

When a unique P ∗ exists, it is called the generalized projection of P0 onto
Q (Bauschke and Borwein, 1996). In general, a projection of a given point
onto a convex set is defined as another point which has two properties: First,
it belongs to the set onto which the projection operation is performed and,
second, it renders a minimal value to the distance between the given point
and any point of the set (Fig. 8.4).

If the Euclidean distance ||X − Y || is used in this context then the pro-
jection is called a metric projection. In some cases, such as the spectrum es-
timation problem considered here, it turns out to be very useful to introduce
more general means to measure the “distance” between two vectors. The main
reason is that the functional form of the solution will depend on the choice of
the distance measure used in the projection. Often, a functional form which
is easy to manipulate or interpret (for instance, a rational function) can not
be obtained using the conventional Euclidean metric.

It can be shown that the distances D1 and D2 in Example 8.1 lead to well-
posed solutions for P ∗. The choice D3 will lead to a unique solution given that
ceratin singular power spectra are excluded from the space of valid solutions
(Borwein and Lewis, 1993). It is not known whether D3 will lead to a stable
solution. As a result, the well-posedness of Problem 8.2 when D3 is used is
not yet established.
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Q

||X-Y||
Y

X

X*

Q

D(X,Y)

(a) (b)

Fig. 8.4. Symbolic depiction of metric projection (a) and generalized projection
(b) of a vector Y into a closed convex set Q. In (a) the projection X∗ is selected
by minimizing the metric ||X − Y || over all X ∈ Q while in (b) X∗ is found by
minimizing the generalized distance D(X, Y ) over the same set.

Remark 8.1. Well-posedness of the minimization problem (8.5) when D is the
Kullback-Leibler divergence D2 has been established in several works includ-
ing Klaus and Smith (1988), Amato and Hughes (1991), Borwein and Lewis
(1991), Eggermont (1993) and Teboulle and Vajda (1993). Well-posedness re-
sults exist for certain classes of generalized distance functions as well Teboulle
and Vajda (1993), Leonev (2000). Unfortunately, the Burg cross entropy D3

does not belong to any of these classes. While Burg cross entropy lacks the-
oretical support as a regularizing functional, it has been used successfully to
resolve ill-posed problems in several applications including spectral estimation
and image restoration. See, for example, Wu (1997) and references therein.
The desirable feature of Burg cross entropy in the context of spectrum es-
timation is that its minimization subject to linear constraints P ∗

x (ejω) ∈ Q
leads to rational power spectra.

8.4 Distributed algorithms based on local generalized
projections

As we mentioned before, a very interesting aspect of the generalized projec-
tions formulation is that the solution P ∗ ∈ Q can be found using a series
of projections onto the intermediate sets Qi,k. In this section, we first calcu-
late the generalized projection of a given power spectrum onto the sets Qi,k

for the sample distance functions introduced in Example 8.1. Then, we pro-
pose a distributed algorithm for calculating the final solution P ∗ from these
intermediate projections.



156 8 Distributed Algorithms

Let P[P1 	→Qi,k;Dj ] denote the power spectrum resulting from projecting a
given power spectrum P1 onto the set Qi,k using a given distance functions
Dj . That is,

P[P1 	→Qi,k;Dj ]
�
= arg min

P∈Qi,k

Dj(P,P1). (8.6)

Using standard techniques from calculus of variations we can show that the
generalized distances D1, D2 and D3 introduced in Example 8.1 result in
projections of the form

P[P1 	→Qi,k;D1] = P1(ejω) − αGi(ejω) cos(Mkω),
P[P1 	→Qi,k;D2] = P1(ejω) exp

(
−βGi(ejω) cos(Mkω)

)
,

P[P1 	→Qi,k;D3] =
(
P1(ejω)−1 + γGi(ejω) cos(Mkω)

)−1
,

where α, β and γ are parameters (Lagrange multipliers). These parameter
should be chosen such that in each case P[P1 	→Qi,k;Dj ] ∈ Qi,k. That is,

1
2π

∫ π

−π

P[P1 	→Qi,k;Dj ]Gi(ejω)ejMkωdω = Rvi
(k). (8.7)

The reader may observe that the above equation leads to a closed-form for-
mula for α but in general finding β and γ requires numerical methods. The
projection formulae developed above can be employed in a variety of itera-
tive algorithms to fined a solution in the intersection of Qi,k. We discuss two
example algorithms below.

8.4.1 The Ring Algorithm

Ring Algorithm is a very simple algorithm: it starts with an initial guess
P (0) for Px(ejω) and then calculates a series of successive projections onto
the constraint sets Qi,k. Then, it takes the last projection, now called P (1),
and projects it back onto the first constraint set. Continuing this process
will generates a sequence of solutions P (0), P (1), P (1), · · · which will eventu-
ally converge to a solution P ∗ ∈

⋂
i,k Qi,k (Censor and Zenios, 1997). Steps

of the Ring Algorithm are summarized in the text box below. A graphical
representation of this algorithm is shown in Fig. 8.5.

Example 8.2. Consider a simple 4-sensor network similar to the one shown in
Fig. 8.4. Assume that the down-sampling ratio in each Mote is equal to 4.
Thus, N0 = N1 = N2 = N3 = 4. Assume, further, that the transfer functions
H0(z) to H3(z) which relate the Motes’ front-end output vi(n) to the original
source signal x(n) are given as follows:

H0(z) =
0.0753 + 0.1656z−1 + 0.2053z−2 + 0.1659z−3 + 0.0751z−4

1.0000 − 0.8877z−1 + 0.6738z−2 − 0.1206z−3 + 0.0225z−4
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speech
source
      x(n)

P    (j  )ω(0)

P    (j  )ω(m)
i,kfeasible sets Q

P    (j  )ω(m)

P    (j  )ω(m)

P    (j  )ω(m)

Input P    (j  )ω(m)

Output P    (j  )ω(m)

Fig. 8.5. Graphical depiction of the Ring Algorithm. For illustrative reasons, only
three feasible sets Qi,k are shown in the inside picture. Also, it’s shown that the
output spectrum P (m)(ejω) is obtained from the input P (m)(ejω) only after three
projections. In practice, each sensor node has L feasible sets and has to repeat
the sequence of projections many times before it can successfully project the input
P (m)(ejω) into the intersection of its feasible sets.

H1(z) =
0.4652 − 0.1254z−1 − 0.3151z−2 + 0.0975z−3 − 0.0259z−4

1.0000 − 0.6855z−1 + 0.3297z−2 − 0.0309z−3 + 0.0032z−4

H2(z) =
0.3732 − 0.8648z−1 + 0.7139z−2 − 0.1856z−3 − 0.0015z−4

1.0000 − 0.5800z−1 + 0.5292z−2 − 0.0163z−3 + 0.0107z−4

H3(z) =
0.1931 − 0.4226z−1 + 0.3668z−2 − 0.0974z−3 − 0.0405z−4

1.0000 + 0.2814z−1 + 0.3739z−2 + 0.0345z−3 − 0.0196z−4

The above transfer functions were chosen to show typical low-pass, band-
pass and high-pass characteristics (Fig. 8.6) They were obtained using stan-
dard filter design techniques. The input signal whose power spectrum is to be
estimated was chosen to have a smooth low-pass spectrum . We used the Ring
Algorithm with L = 4 and the Euclidean metric D1 as the distance function
to estimate the input signal’s spectrum. The results are shown in (Fig. 8.7).
As seen in this figure, the algorithm converges to a solution which is in this
case almost identical to the actual input spectrum in less than 100 rounds. ♦

8.4.2 The Star Algorithm

The Ring Algorithm is completely decentralized. However, it will not converge
to a solution if the feasible sets Qi,k do not have an intersection (which can
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The Ring Algorithm

Input: A distance function Dj(P1, P2), an initial power spectrum P0(e
jω), the

squared sensor frequency responses Gi(e
jω), and the autocorrelation estimates Rvi(k)

for k = 0, 1, · · · , L − 1 and i = 1, 2, · · · , N .
Output: A power spectrum P∗(e

jω).
Procedure:

1. Let m = 0, i = 1 and P (m) = P0.
2. Send P (m) to the ith sensor node.

At the ith sensor:
(i) Let k = 0 and define P̃k = P (m).
(ii) Calculate P̃k = P[P̃k−1 �→Qi,k;Dj ] for k = 1, 2, · · · , L − 1.

(iii) If D(P̃L−1, P̃0) > ε then let P̃0 = P̃L−1 and go back to item (ii). Otherwise,
let i = i + 1 and go to Step 3.

3. If (i mod N) = 1 then set m = m+1 and reset i to 1. Otherwise, set P (m) = P̃L−1

and go back to Step 2.
4. Define P (m) = P̃L−1. If D(P (m), P (m−1)) > ε, go back to Step 2. Otherwise

output P ∗ = P (m) and stop.
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Fig. 8.6. Frequency response amplitude of the transfer functions used in Exam-
ple 8.2. The curves show, from left to right, |H0(e

jω)|, |H1(e
jω)|, |H2(e

jω)| and
|H3(e

jω)|.

happen due to measurement noise) or one or more sensors in the network are
faulty. The Star Algorithm is an alternative distributed algorithm for fusing
individual sensors’ data. It combines successive projections onto Qi,k with a
kind of averaging operation to generate a sequence of solutions P (m). This
sequence will eventually converge to a solution P ∗ ∈

⋂
i,k Qi,k if one exists.

The Star Algorithm is fully parallel and hence much faster than the Ring
Algorithm. It provides some degree of robustness to individual node’s failure as
well. However, it includes a centralized step which needs to be accommodated
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Fig. 8.7. Ring algorithm convergence results. In each figure, the dashed curve shows
the source signal’s actual power spectrum while the solid curve is the estimate
obtained by the Ring Algorithm after m rounds. A “round” means projections have
been passed through all the nodes in the network.

for when the system’s network protocol is being designed. Steps of the Star
Algorithm are summarized in the text box below. A graphical representation
of this algorithm is shown in Fig. 8.8.
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speech
source
      x(n)

i,kfeasible sets Q

Input 
P     (j  )ω(m)

i,kfeasible sets Q i,kfeasible sets Q

...

P 
(m)

i

P (m+1)

Fig. 8.8. The Star Algorithm. Again, only three feasible sets Qi,k are shown in the
inside picture. In practice, each sensor node has to repeat the sequence of projec-
tions and averaging many times before it can successfully project the input P (m)(ejω)
supplied by the central node into the intersection of its feasible sets. The projec-
tion result, which is called P

(m)
i (ejω) is sent back to the central node. The central

node then averages all the P
(m)
i (ejω) it has received and averages them to produce

P (m+1)(ejω). This is sent back to the individual nodes and the process repeats.

Example 8.3. Consider a simple 5-sensor network similar to the one shown in
Fig. 8.8. Assume that the down-sampling ratio in each Mote is equal to 4.
Thus, again, N0 = N1 = N2 = N3 = 4. Assume, further, that the transfer
functions H0(z) to H3(z) which relate the Motes’ front-end output vi(n) to the
original source signal x(n) are the same as those introduced in Example 8.2.
We simulated the Star Algorithm with L = 4 and the Euclidean metric D1

as the distance function to estimate the input signal’s spectrum. The results
are shown in (Fig. 8.9). Like the Ring Algorithm, the Star Algorithm also
converges to a solution which is almost identical to the actual input spectrum
in less than 100 rounds. ♦
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Fig. 8.9. Star algorithm convergence results.

8.5 Open problems

In this chapter we considered the problem of fusing the statistical information
gained by a distributed network of sensors. We constructed a mathematical
model for this problem where the solution is obtained by finding a point in
the intersection of finitely many closed convex sets. Some key advantages of
the convex feasibility formulation are summarized below.
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The Star Algorithm

Input: A distance function Dj(P1, P2), an initial power spectrum P0(e
jω), the

squared sensor frequency responses Gi(e
jω), and the autocorrelation estimates

Rvi(k).
Output: A power spectrum P∗(e

jω).
Procedure:

1. Let m = 0 and P (0) = P0.
2. Send P (m) to all sensor nodes.

At the ith sensor:
(i) Let n = 0 and define P̃ (n) = P (m).
(ii) Calculate P̃k = P[P̃ (n) �→Qi,k;Dj ] for all k.

(iii)Calculate P̃ (n+1) = arg minP

∑
k D(P, P̃k).

(iv) If D(P̃ (n+1), P̃ (n)) > ε go to item (ii) and repeat. Otherwise, define P
(m)
i =

P̃ (n+1) and send it to the central unit.
2. Receive P

(m)
i from all sensor and calculate P (m+1) = arg minP

∑
i D(P, P

(m)
i ).

3. If D(P (m+1), P (m)) > ε, go to step 2 and repeat. Otherwise stop and output
P ∗ = P (m+1).

(i) The global solution is unique and stable in the sense that small perturba-
tions in the observed data will cause a small change in the solution.

(ii) The functional form of the solution will depend on the choice of the gener-
alized distance used in the projections. Therefore, a functional form which
is easy to manipulate or interpret for a specific application (for instance,
a rational function) can be obtained using a proper generalized distance.

(iii) The formulation can be extended to a variety of network topologies.
Some topologies might allow for the most efficient computation, some
might generate a more robust setup, and others lead to varies degrees of
compromise between these desirable properties.

(iv) The formulation has a very rich mathematical structure relying on recent
results in several fields of applied mathematics including convex analysis,
parallel optimization and regularization theory.

The information fusion theory presented in this chapter is by no means

mentation of the two algorithms we introduced need to be investigated. Also,
various other distributed algorithms for solving the problem of finding a so-

reader to use the ideas introduced in this chapter as a starting point and de-
velop a more complete theory for “distributed signal processing” in networked
environments!

complete. Many issues regarding theoretical performance and practical imple-

lution in the intersection of the feasible sets can be devised. We encourage the



9

Epilogue

In this book we studied a variety of signal processing problems that mainly
involved processing low-rate components of a full-rate information bearing
signal.

In developing mathematical models for these problems, we opted for a
statistical viewpoint where the original full-rate signal is assumed to be a
stationary random process. This allowed us to find unique and stable solutions
to the ill-posed inverse problem of reconstructing the samples of the original
signal from the available low-rate observations. It also allowed us to pose and
solve other interesting problems such as estimating the spectrum of a full-
rate signal from low-rate observations, quantifying the information content of
individual low-rate measurements and specifying multirate filter banks that
lead to scalable decompositions.

The statistical theory presented in this book is very general in the sense
that it can be used to pose and solve multirate signal processing problems
involving both FIR and IIR filter banks. Furthermore, there are no restrictions
on the number of channels and/or the down-sampling ratio in each channel.
These are important advantages that distinguish the statistical approach from
conventional deterministic formulations considered in the past.

While I have tried my best to provide a systematic introduction to the
theory of statistical multirate signal processing, it is a fact that this theory
is still far from complete. I invite the reader to examine the initial results
presented in this book and extend them to overcome their numerous gaps and
shortcomings. Somewhere over the horizon, in the direction in which this book
points, a beautiful unified theory of “multirate statistical signal processing”
is waiting for us!

163



References

Aarabi, P. (2001). The Integration and Localization of Distributed Sensor Arrays.
PhD thesis, Stanford University.

Aarabi, P. (2003). The fusion of distributed microphone arrays for sound localiza-
tion. EURASIP Journal of Applied Signal Processing (Special Issue on Sensor
Networks), 2003(4):338–347.

Aarabi, P., Shi, G., Shanechi, M. M., and Rabi, A. (2005). Phase-Based Speech
Processing. World Scientific Press.

Akkarakaran, S. and Vaidyanathan, P. P. (2001a). Filter bank optimization with
convex objective functions, and the optimality of principal component forms.
IEEE Transactions on Signal Processing, 49(1):100–114.

Akkarakaran, S. and Vaidyanathan, P. P. (2001b). Results on principal component
filter banks: color noise suppression and existence issues. IEEE Transactions on
Information Theory, 47(3):1003–1020.

Amari, S. I. and Nagaoka, H. (2000). Methods of Information Geometry. American
Mathematical Society and Oxford University Press.

Amato, U. and Hughes, W. (1991). Maximum entropy regularization of Fredholm
integral equations of the first kind. Inverse Problems, 7:793–808.

Antoniou, A. (1993). Digital Filters: Analysis, Design and Applications. McGraw-
Hill, 2nd edition.

Ase, K. C. and Mullis, C. T. (1996). Minimum mean-squared error transform coding
and subband coding. IEEE Transactions on Information Theory, 42(4):1179–
1192.

Basseville, M., Benveniste, A., Chou, K. C., Golden, S. A., Nikoukhah, R., and
Willsky, A. S. (1992a). Modeling and estimation of multiresolution stochastic
processes. IEEE Transactions on Information Theory, 38(2):766–784.

Basseville, M., Benveniste, A., and Willsky, A. (1992b). Multiscale autoregressive
processes, Part I: Schur-Levinson parametrization. IEEE Transactions on Signal
Processing, 40(8):1915–1934.

Basseville, M., Benveniste, A., and Willsky, A. (1992c). Multiscale autoregressive
processes, Part II: Lattice structures for whitening and modeling. IEEE Trans-
actions on Signal Processing, 40(8):1935–1953.

Bauschke, H. H. and Borwein, J. M. (1996). On projection algorithms for solving
convex feasibility problems. SIAM Review, 38:367–426.

165



166 References

Berger, T. and Gibson, J. D. (2000). Lossy source coding. In Verdú, S. and McLaugh-
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