

Lecture Notes in Computer Science 4420

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Shriram Krishnamurthi Martin Odersky (Eds.)

Compiler
Construction

16th International Conference, CC 2007

Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2007

Braga, Portugal, March 26-30, 2007

Proceedings

13

Volume Editors

Shriram Krishnamurthi
Brown University
Computer Science Department
Providence, RI, USA
E-mail: sk@cs.brown.edu

Martin Odersky
EPFL
School of Computer and Communication Sciences
Institute of Core Computing
Lausanne, Switzerland
E-mail: martin.odersky@epfl.ch

Library of Congress Control Number: 2007921957

CR Subject Classification (1998): D.3.4, D.3.1, F.4.2, D.2.6, F.3, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71228-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71228-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12029303 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.

VI Foreword

The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998–2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informática of the Uni-
versidade do Minho, in cooperation with

Foreword VII

– European Association for Theoretical Computer Science (EATCS)
– European Association for Programming Languages and Systems (EAPLS)
– European Association of Software Science and Technology (EASST)
– The Computer Science and Technology Center (CCTC, Universidade do

Minho)
– Camara Municipal de Braga
– CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

– João Saraiva (Chair)
– José Bacelar Almeida (Web site)
– José João Almeida (Publicity)
– Lúıs Soares Barbosa (Satellite Events, Finances)
– Victor Francisco Fonte (Web site)
– Pedro Henriques (Local Arrangements)
– José Nuno Oliveira (Industrial Liaison)
– Jorge Sousa Pinto (Publicity)
– António Nestor Ribeiro (Fundraising)
– Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundação para a Ciência e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ingólfs-
dóttir (Aalborg), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), João Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, João Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume constitutes the proceedings of the 2007 Compiler Construction (CC)
conference, held March 26–27, 2007 in Braga, Portugal as part of the ETAPS
umbrella.

In keeping with tradition, CC solicited both research descriptions and tool
papers, though most submissions were in the former category. We accepted 14
out of 60 submissions, all in the research paper category. Each submission was
reviewed by at least three PC members, with papers co-authored by PC members
receiving at least one additional reviewer. Forty-two papers had at least some
support, and thus warranted deliberation. (Only one paper was entirely outside
the scope of the conference.) The papers were discussed at a (lively!) live PC
meeting held in Lausanne, Switzerland, on December 4, 2006. Almost all PC
members attended the meeting, with the remainder participating by telephone.

CC had, in a few instances, to contend with the growing problem of defining
what constitutes a prior publication in an era when workshops are now published
in the ACM’s Digital Library (and other such formal on-line repositories). As we
have observed on the PCs of other venues, PC members in CC had mixed views
on this matter. In a few years we therefore expect to see standardized policy to
cover such cases.

We thank the many people who eased the administration of CC 2007. Fore-
most, the PC (and their subreviewers) did a thorough and conscientious job.
Perdita Stevens invested enormous effort into the smooth running of ETAPS.
Jay McCarthy offered round-the-clock support for the Continue software that
handled our papers. Yvette Dubuis (of EPFL) and Dawn Reed (of Brown) pro-
vided stellar administrative support to the Chairs, with Mme. Dubuis also or-
ganizing the PC meeting. EPFL helped sponsor the PC meeting. Philipp Haller
provided valuable help in preparing the proceedings. Finally, the ETAPS and
CC Steering Committees ensured the smooth passage of many matters.

January 2007 Shriram Krishnamurthi
Martin Odersky

Organization

Program Committee

Chairs: Shriram Krishnamurthi, Brown University, Providence
Martin Odersky, EPFL, Lausanne

Eric Allen, Sun Microsystems, Inc.
Emery Berger, University of Massachusetts Amherst
Rastislav Bodik, University of California, Berkeley
William Cook, University of Texas at Austin
Chen Ding, University of Rochester
Sabine Glesner, Technical University of Berlin
Dan Grossman, University of Washington
Rajiv Gupta, University of Arizona
Andrew Kennedy, Microsoft Research Cambridge
Christian Lengauer, University of Passau
Cristina Videira Lopes, University of California, Irvine
Todd Millstein, University of California, Los Angeles
G. Ramalingam, Microsoft Research India
Vijay Saraswat, IBM TJ Watson Research Center
Zhong Shao, Yale University
Yannis Smaragdakis, University of Oregon
Gregor Snelting, University of Passau
Joost Visser, Universidade do Minho
Reinhard Wilhelm, Saarland University

Reviewers

Arnold, Gilad Lin, Calvin
Arnold, Matthew Lucas, Philipp
Barik, Raj Marlow, Simon
Bastoul, Cedric Merz, Peter
Bierman, Gavin Naeem, Nomair
Bond, Michael Nagarajan, Vijay
Brandes, Thomas Palsberg, Jens
Chilimbi, Trishul Penso, Lucia Draque
Cohen, Albert Pierce, Benjamin
Felleisen, Matthias Pister, Markus
Größlinger, Armin Rabbah, Rodric
Griebl, Martin Reineke, Jan
Grund, Daniel Reppy, John

XII Organization

Herrmann, Christoph A. Shankar, AJ
Hind, Mike Solar-Lezama, Armando
Ibrahim, Ali Sridharan, Manu
Joyner, Mackale Tallam, Sriraman
Jump, Maria Vouillon, Jerome
Kelsey, Kirk Whalley, David
Kitchin, David Wiedermann, Benjamin
Kulkarni, Prasad Ylvisaker, Benjamin
Lhotak, Ondrej von Praun, Christoph

Table of Contents

Architecture

New Algorithms for SIMD Alignment . 1
Liza Fireman, Erez Petrank, and Ayal Zaks

Preprocessing Strategy for Effective Modulo Scheduling on Multi-issue
Digital Signal Processors . 16

Doosan Cho, Ravi Ayyagari, Gang-Ryung Uh, and Yunheung Paek

An Array Allocation Scheme for Energy Reduction in Partitioned
Memory Architectures . 32

K. Shyam and R. Govindarajan

Garbage Collection and Program Analysis

Using Prefetching to Improve Reference-Counting Garbage
Collectors . 48

Harel Paz and Erez Petrank

Accurate Garbage Collection in Uncooperative Environments with
Lazy Pointer Stacks . 64

Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek

Correcting the Dynamic Call Graph Using Control-Flow
Constraints . 80

Byeongcheol Lee, Kevin Resnick, Michael D. Bond, and
Kathryn S. McKinley

Obfuscating Java: The Most Pain for the Least Gain 96
Michael Batchelder and Laurie Hendren

Register Allocation

A Fast Cutting-Plane Algorithm for Optimal Coalescing 111
Daniel Grund and Sebastian Hack

Register Allocation and Optimal Spill Code Scheduling in Software
Pipelined Loops Using 0-1 Integer Linear Programming Formulation 126

Santosh G. Nagarakatte and R. Govindarajan

Extended Linear Scan: An Alternate Foundation for Global Register
Allocation . 141

Vivek Sarkar and Rajkishore Barik

XIV Table of Contents

Program Analysis

Program Refactoring, Program Synthesis, and Model-Driven
Development . 156

Don Batory

A Practical Escape and Effect Analysis for Building Lightweight
Method Summaries . 172

Sigmund Cherem and Radu Rugina

Layout Transformations for Heap Objects Using Static Access
Patterns . 187

Jinseong Jeon, Keoncheol Shin, and Hwansoo Han

A New Elimination-Based Data Flow Analysis Framework Using
Annotated Decomposition Trees . 202

Bernhard Scholz and Johann Blieberger

A Declarative Framework for Analysis and Optimization 218
Henry Falconer, Paul H.J. Kelly, David M. Ingram,
Michael R. Mellor, Tony Field, and Olav Beckmann

Author Index . 233

New Algorithms for SIMD Alignment⋆

Liza Fireman1, Erez Petrank2,⋆⋆, and Ayal Zaks3

1 Dept. of Computer Science, Technion, Haifa 32000, Israel

liza@cs.technion.ac.il
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

erez@cs.technion.ac.il
3 IBM Haifa Research Laboratory, Mount Carmel, Haifa 31905, Israel

zaks@il.ibm.com

Abstract. Optimizing programs for modern multiprocessor or vector platforms

is a major important challenge for compilers today. In this work, we focus on one

challenging aspect: the SIMD ALIGNMENT problem. Previously, only heuristics

were used to solve this problem, without guarantees on the number of shifts in the

obtained solution. We study two interesting and realistic special cases of the SIMD

ALIGNMENT problem and present two novel and efficient algorithms that provide

optimal solutions for these two cases. The new algorithms employ dynamic pro-

gramming and a MIN-CUT/MAX-FLOW algorithm as subroutines. We also discuss

the relation between the SIMD ALIGNMENT problem and the MULTIWAY CUT and

NODE MULTIWAY CUT problems; and we show how to derive an approximated

solution to the SIMD ALIGNMENT problem based on approximation algorithms

to these two known problems.

1 Introduction

Designing effective optimizations for modern architectures is an important goal for

compiler designers today. This general task is composed of many non-trivial problems,

the solution to which is not always known. In this paper we study one such problem

— the SIMD ALIGNMENT problem, which emerges when optimizing for multimedia

extensions. Previously only heuristics were studied for this problem [25,30,14]. In this

paper we present two novel algorithms that obtain optimal solutions for two special

cases. These special cases are actually broad enough to cover many practical instances

of the SIMD ALIGNMENT problem.

Multimedia extensions have become one of the most popular additions to general-

purpose microprocessors. Existing multimedia extensions are characterized as Single

Instruction Multiple Data (SIMD) units that support packed, fixed-length vectors, such

as MMX and SSE for Intel and AltiVec for IBM, Apple and Motorola. Producing SIMD

codes is sometimes done manually for important specific application, but is often pro-

duced automatically by compilers (referred to as auto-vectorization or simdization).

Explicit vector programming is time consuming and error prone. A promising alterna-

tive is to exploit vectorization technology to automatically generate SIMD codes from

⋆ This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 845/06).
⋆⋆ On sabbatical leave from the Computer Science Department, Technion, Haifa 32000, Israel.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 1–15, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

2 L. Fireman, E. Petrank, and A. Zaks

programs written in standard high-level languages. However, simdization is not trivial.

Some of the difficulties in optimizing code for SIMD architectures stem from hardware

constraints imposed by today’s SIMD architectures [25].

One restrictive hardware feature that can significantly impact the effectiveness of

simdization is the alignment constraint of memory units. In AltiVec [10], for example,

a load instruction loads 16-byte contiguous memory from 16-byte aligned memory ad-

dress (by ignoring the least significant 4 bits of the given memory address). The same

applies to store instructions. Now consider a stream: given a stride-one memory refer-

ence in a loop, a memory stream corresponds to all the contiguous locations in mem-

ory accessed by that memory reference over the lifetime of the loop. The alignment

constraint of SIMD memory units requires that streams involved in the same SIMD

operation must have matching offsets.

Consider the following code fragment, where integer arrays a, b, and c start at 16-

byte aligned addresses.

for (i = 0; i < 1000; i++) do

a[i] = b[i+ 1] + c[i+ 2];
end for

The above code includes a loop with misaligned references. It requires additional

realignment operations to allow vectorization on SIMD architectures with alignment

constraints. In particular, unless special care is taken, data involved in the same com-

putation, i.e., a[i], b[i + 1], c[i + 2], will be relatively misaligned after being loaded to

machine registers. To produce correct results, this data must be reorganized to reside

in the same slots of their corresponding registers prior to performing any arithmetic

computation.

The realigning of data in registers is achieved by explicit shift instructions that ex-

ecute inside the loop and therefore affect performance significantly. The problem is to

automatically reorganize data streams in registers to satisfy the alignment requirements

imposed by the hardware using a minimum number of shift executions. Prior research

has focused primarily on vectorizing loops where all memory references are properly

aligned. An important aspect of this problem, namely, the problem of minimizing the

number of shifts for aligning a given expression has been studied only recently.

An alternative to performing shift operations at runtime is to modify the layout of

the data in memory. This alternative suffers from several obvious limitations. In this

paper the initial data alignment is assumed to be predetermined.

1.1 This Work

In this work we investigate the computational complexity of the SIMD ALIGNMENT

problem. A formal definition of the problem, motivation, and examples from current

modern platforms appear in Section 2. The main contribution of this paper is the pre-

sentation of two new algorithms that provide optimal solutions for two special cases.

These special cases are quite general and cover many practical instances.

A polynomial-time algorithm for expressions with two alignments. For expressions that

contain two distinct predetermined alignments, an efficient algorithm based on solving

New Algorithms for SIMD Alignment 3

a MINIMUM NODE S-T CUT problem can compute an optimal solution to the SIMD

ALIGNMENT problem.

A polynomial-time algorithm for a single-appearance tree expression. For expressions

that contain no common sub-expressions (i.e. form a tree) and where each array appears

only once in the expression, an efficient algorithm based on dynamic programming can

compute an optimal solution to the SIMD ALIGNMENT problem.

We stress that both cases are realistic and are common in practice. Also, the two

cases do not supersede one another: one case is broader in the sense that it works on

any expression, not necessarily a tree, and the other case is broader in the sense that it

applies to an arbitrary number of alignments.

The SIMD ALIGNMENT problem can be mapped to the MULTIWAY CUT problem, and

known algorithms for MULTIWAY CUT [11] can be used to solve the SIMD ALIGNMENT

problem. However, known hardness results [12,5] do not hold for the SIMD ALIGN-

MENT problem if a shifted stream may be used in both its original form and its shifted

form (see Section 9). Furthermore, the mapping to the MULTIWAY CUT problem is more

involved in this case (see Section 7).

1.2 Organization

In Section 2 we formally define the SIMD ALIGNMENT problem. In Section 3 we list

useful heuristics proposed in the literature so far.In Section 4 we propose a graph repre-

sentation of the SIMD ALIGNMENT problem, which will be used by the algorithms. In

Sections 6 and 5 we present the efficient algorithms for the special case of expressions

with only two alignments and for single-appearance tree expressions, respectively, and

in Section 8 we present the effectiveness of these algorithms. Section 7 relates the SIMD

ALIGNMENT problem to MULTIWAY CUT problems. Relevant prior art is described in

Section 9 and Section 10 concludes.

2 An Overview of the SIMD ALIGNMENT Problem

We begin by defining the SIMD ALIGNMENT problem.

Definition 1. The SIMD ALIGNMENT problem

Input: An expression containing input operands, sub-expressions (operations) and out-

put operands, with an alignment value assigned to every input and output operand.

Solution: A specification of shifts for some input operands and operations, such that

the inputs to each operation all have the same alignment values and the inputs to output

operands have the desired alignment values.

Cost: The number of shifts in the solution.

Note that for each operation of the given expression, the solution may specify several

shifts if the result of the operation is needed in different alignments, or it may specify

no shifts at all if the result is needed only in the same alignment as its inputs. This

applies to input operands as well. However, a solution is feasible only if the inputs of

4 L. Fireman, E. Petrank, and A. Zaks

each operation and output operand are properly aligned. An elaborate description of

how the shift operation is used with real platforms and a detailed example may be found

in the thesis [15].

Shifting of data from one alignment value to another requires one shift operation but

typically may require preliminary preparation of pre-loading and setting shift amount

[23]. This preliminary work can often be placed before the loop where it is tolerable,

whereas the shift operations themselves are part of the expression and must remain

inside the loop. That is why our objective is to minimize the number of shifts.

3 Previous Heuristics

Previous work concentrated on identifying operations that can be vectorized assum-

ing all operands are aligned. Several simple heuristics have been proposed to solve

the alignment problem. In this section we shortly survey these heuristics, originally

presented in [14], each of which can be shown to be sub-optimal for simple realistic

instances [15].

– Zero-Shift Policy. This policy shifts each misaligned load stream to offset zero, and

shifts the store stream from offset zero to the alignment of the store address. This

simple policy is employed by the widespread GCC compiler [21,24].

– Eager-Shift Policy. This policy shifts each load stream to the alignment of the store.

– Lazy-Shift Policy. This is a greedy policy of inserting shifts as late as possible in

the expression. This policy does not specify how to break ties when different shifts

may be used.

– Majority Policy. This policy shifts each load stream to the majority of the align-

ments of the input and output streams, and shifts the store stream from the majority

offset to the alignment of the store address.

4 An Abstraction of SIMD Alignment

In what follows, it will be useful to represent instances of the SIMD ALIGNMENT prob-

lem using annotated graphs. We provide a graph representation for instances in which

an array appears in the expression in one alignment only. The proposed representation

may also be used in the general case, but for arrays appearing with multiple alignments

the cost of the solution cannot be easily translated from graphs to expressions. This is

because a single shift can be used for multiple alignments of the same array (e.g. to

align both a[i] to match b[i+ 1] and a[i+ 1] to match c[i+ 2]). Note, however, that this

does not hold if only two distinct alignments are considered, as is the case in Section 6.

We call an expression in which each array appears with one alignment only a single-

appearance expression. Most of the techniques employed in this paper relate to the

study of graph algorithms. The representation of a single-appearance expression as a

directed graph is the standard representation of expressions as graphs, except for two

modifications. First, we add alignment labels to the nodes. Second, all appearances of

the same array are represented by a single node. The nodes that represent the input

and output streams are associated with alignment labels that signify the initial and final

New Algorithms for SIMD Alignment 5

alignments, respectively, and the name of the array. Each operation (sub-expression) is

also represented by a graph node. The operation nodes are labelled with the operation

they carry. The nodes for input streams of an operation are connected to the node of the

operation by incoming edges.

Consider the following example:

for (i = 0; i < 1000; i++) do

a[i+ 3] = b[i+ 1] ∗ c[i+ 2]+ c[i+ 2] ∗ d[i+ 1];
end for

The corresponding graph representation for the above expression is shown in

Figure 1. This graph has three leaves (input nodes) labelled 1(b),2(c),1(d) and one

root (output node) labelled 3(a). The labels signify the initial and final alignments and

the array names. The operation nodes are labelled with the operation they represent.

Note that the graph in this example in not a tree. It is a Directed Acyclic Graph (DAG).

Fig. 1. A graph representation of a[i+3] = b[i+1] ∗c[i+2]+ c[i+2] ∗ d[i+1]

4.1 A Solution to a Graph Representation of a Single-Appearance

An important property of the expression execution is that once we shift a stream, we

can use the shifted stream repeatedly without paying more shifts. In addition, even if

we shift a stream we can still use its original alignment. We consider this property in

the solution representation and its cost definition.

A solution to the graph representation of a single-appearance SIMD ALIGNMENT

problem is a labelling of the nodes. The cost of a solution for the graph G(V,E) is the

sum of the costs c(v) associated with each node v ∈ V , where c(v) is the number of dis-

tinct labels of v’s successor nodes that are also different from the label of v. We claim

that this cost of the graph solution is equal to the cost of the corresponding solution of

the expression. We interpret the solution to the graph as shifting specifications for the

expression execution as follows. Each operation is executed at the alignment that is the

label of its corresponding node in the graph. A stream represented by node v should be

shifted from the alignment represented by its label to the alignments of its successors

(if different from its own). This specifies a valid execution of the expression because

all operations have their input stream shifted to the same alignment. We need to show

that the computed cost represents the minimal number of shifts required to execute the

operations at the alignment specified by the graph solution. The expression is a single-

appearance expression and therefore a shift must be done for a node if its successors

6 L. Fireman, E. Petrank, and A. Zaks

do not have the same label. If an array appears with more than one alignment in the

expression, shifting it once could save shift to another use of this array. We do not

deal with sharing shifts among multiple alignment appearances of input operands or

subexpressions. Therefore, the cost of the solution for a graph is exactly the number of

shifts that should be executed in order to compute the expression with the alignments

specified by the graph solution. In Figure 2 we show an example of a graph with a given

solution.

Fig. 2. A graph that exemplifies the cost of SIMD

The labelling shown in Figure 2 costs only two shifts, because the descendants of v

have only two distinct shift labels that are also different from its own label (2 and 3).

Therefore, v should be shifted from alignment 1 to alignments 2 and 3, enabling the

execution of the rest of the computation without any further shift.

We are now ready to define the problem SIMDG.

Definition 2 (The SIMDG Problem)

Input: (G,L) where G(V,E) is a DAG representation of a single-appearance expression

and L is a set of predetermined shift labels for the source and sink nodes.

Solution: a labelling c for all nodes, which is an extension of the given labelling L.

Cost function: for a labelling c the cost is:

∑
v∈V

|{c(u) : ∃u ∈ S(v) c(u) �= c(v)}|

where S(v) is the set of successor nodes of v.

Goal: finding a solution with minimum cost.

From this point on we stick to the graph representation and consider the SIMDG prob-

lem rather than the original SIMD ALIGNMENT problem.

5 A Polynomial-Time Algorithm for Single-Appearance Tree

Expressions

In this section we deal with expressions having an arbitrary number of alignments, but

whose graph representations form a tree and any array appears in the expression at most

once. We show that the SIMD ALIGNMENT problem can be solved in polynomial-time

using dynamic programming in such cases.

New Algorithms for SIMD Alignment 7

In what follows, we consider the SIMD ALIGNMENT problem in its graph represen-

tation as defined in Section 4 and denote the input graph by T = (V,E). The graph T

is a directed tree, with edges oriented from leaves to root. We further denote by I the

set of all predetermined alignment labels appearing in the leaves and the root of the

given tree. We consider only solutions that restrict the labelling of the inner nodes to

alignment labels in I. The optimal solution is again among the considered solutions.

A solution to the graph representation of a SIMD ALIGNMENT problem is again an

alignment labelling of the operation nodes in the graph, i.e., a complete alignment

labelling of the entire graph. Such a labelling can be translated into a solution for the

SIMD ALIGNMENT associated instance in the following way. For every edge (u,v) ∈ E

connecting nodes of different labels: c(u) �= c(v), a shift is introduced from alignment

c(u) to alignment c(v). Clearly, any labelling of the graph represents a feasible solution

(though not necessarily an optimal one). The cost of a solution is equal to the number

of such shifts, because shifts cannot be reused (the out-degree is 1).

Definition 3. We say that a graph edge is a shift edge, with respect to a given alignment

labelling of a tree, if its two incident nodes have distinct labels.

The dynamic programming algorithm computes incremental solutions to the problem

by considering larger and larger subtrees. The optimal solution of a subtree is computed

using the values computed for its immediate subtrees. In particular, let v be a node in

the tree T and consider the subtree Tv of T rooted at v. For each possible alignment i ∈ I,

denote by OPTT (v, i) the minimum number of shift edges required by any labelling of

Tv that assigns label i to node v. Note that the optimal labelling and the corresponding

cost may be different for different i’s in I.

The dynamic programming algorithm computes the entries of a matrix val with an

entry val(v, i) for each node v and each possible shift i ∈ I. For each node v, the entry

val(v, i) represents a partial solution for Tv such that val(v, i) = OPTT (v, i). After com-

puting the values val(v, i) for all nodes v and alignments i, the algorithm uses them to

label the tree optimally.

Recall that the tree representing the expression has leaves representing the input

operands and a root representing the output. The edges are directed from the leaves to

the root. The algorithm (see Algorithm 1) iterates over the nodes of the tree in topolog-

ical order (starting from leaves and reaching the root at the end), filling the rows in the

matrix val(v, i). The base of this computation are the leaves for which a predetermined

alignment label is provided. For each leaf v we set the value of val(v, i) to be 0 if i is

the predetermined alignment of v and ∞ otherwise. Then, the inner nodes of the tree are

traversed in topological order, such that a node is visited after all its predecessors in the

tree have been visited. The value of val(v, i) for a node v with label i is computed by

adding the costs associated with all incoming edges (u,v) ∈ E , where each such cost is

the minimum of val(u, j)+ I(i�= j) taken over all j ∈ I, where I(i�= j) is 1 if i �= j and 0

otherwise. Finally, the algorithm considers the entry val(v, i) where v is the root node

and i = sv is the predetermined alignment of the root as the cost of the solution. It is

shown in the proof that this process computes val(v, i) so that val(v, i) =OPTT (v, i), for

each node v and i ∈ I.

8 L. Fireman, E. Petrank, and A. Zaks

Next, the tree is traversed from root to leaves in order to label all inner vertices in

a consistent manner that matches the minimum number of shift edges. Given that each

vertex has only one outgoing edge, its value is determined once, creating no conflicts.

Algorithm 1. Solving a Single-Appearance Tree expression.

Input: a tree G(V,E) with the leaves and root having predetermined labels.

Output: a labelling s(v) for all vertices.

1: for every node v in topological order (from leaves to root) do

2: for every i ∈ I do

3: if v is a leaf, having predetermined alignment label sv then

4: val(v, i) =

{

0 i = sv

∞ i �= sv

5: else

6: val(v, i) = ∑u:(u→v)∈E min
j

{val(u, j)+ I(i�= j)}

7: where Ii�= j equals 1 if i �= j and 0 otherwise

8: end if

9: end for

10: end for

11: Set s(v) = sv for root and leaf nodes

12: for every node u in reverse topological order from root (excluding) to leaves (excluding) do

13: Let v be the unique successor of u: (u → v) ∈ E.

14: s(u) = argmin j{val(u, j)+ Is(v) �= j}
15: where argmin j is an index j for which the value val(u, j)+ Is(v) �= j is minimal.

16: end for

For a rigorous proof of correctness the reader is referred to the thesis [15]. The

complexity of Algorithm 1 is governed by line 6 in which the algorithm computes

the entries of the matrix val. There are k|V | entries in this matrix where k = |I|, and

for every node v ∈ V we add d−(v) addends each requiring k comparisons, where

d−(v) is the in-degree of v in the tree. Hence the total complexity of the algorithm

is O(k ∑v∈V d−(v)k) = O(k2|E|) = O(k2|V |).

6 A Polynomial-Time Algorithm for Expressions with Only Two

Alignments

In this section we present a polynomial-time algorithm for a restricted SIMD ALIGN-

MENT problem. We restrict the expression to be a SIMDG expression (and in particular,

a single-appearance expression) that contains only two distinct predetermined align-

ments associated with the input and output operands. Note that such restricted cases

can appear in practice, when there are only two possible alignment values (0 and 1, e.g.

when vectorizing for pairs of elements) or when more than 2 alignment values exist but

all input and output operands are confined to two values (not necessarily 0 and 1).

Our algorithm uses a variant of the standard cut problem in graphs. In this variant,

the cut is specified by nodes and not by edges. Let us first define a node cut in a graph.

New Algorithms for SIMD Alignment 9

Definition 4. A node s-t cut [1]

Given a connected undirected graph G = (V,E) and two specified vertices s,t ∈ V, for

which (s,t) �∈ E, a node s-t cut is a subset of V \ {s,t} whose removal from the graph

disconnects the vertices s and t from each other.

We now define the MINIMUM NODE S-T CUT problem that we use to solve the variant

of the SIMD ALIGNMENT problem restricted to two alignments. An optimal solution to

the MINIMUM NODE S-T CUT problem can be constructed in polynomial time using a

max-flow algorithm [1,9].

Definition 5. MINIMUM NODE S-T CUT problem

Input: a connected, undirected graph G = (V,E) and two specified vertices s, t ∈V , for

which (s,t) �∈ E.

Problem: find a node s-t cut with a minimum number of nodes.

Given an expression as an input to the SIMD ALIGNMENT problem, we represent it as a

graph and then use an algorithm for MINIMUM NODE S-T CUT to construct a minimum

node s-t cut, which is then used to provide a solution to our original problem in terms

of minimum shifts.

Algorithm 2 for handling two alignments proceeds as follows. We start by consid-

ering the directed graph G = (V,E) that represents the SIMD ALIGNMENT expression.

Denote the two alignments by 0 and 1 for clarity; the algorithm depends neither on the

values of the alignments nor on the possible number of alignments. We construct an

undirected graph H by performing the following actions to the graph G. First, each pair

of nodes u and v that share a common successor node w (that is: (u,w),(v,w) ∈ E) are

connected by an edge (u,v), if not already connected1. The direction of this (u,v) edge

is immaterial, as we will be ignoring the directions of the edges E from now on. We

further add two “terminal” nodes s0 and s1 that serve as source and target nodes s and

t for the MINIMUM NODE S-T CUT problem. An edge is added between s0 and each

node whose alignment label is predetermined to 0, and similarly for s1. In addition,

sink nodes (which do not feed other nodes, but typically store into memory) are not ex-

pected to host shifts and should refrain from being cut nodes. This can be accomplished

by merging each terminal node with all sink nodes connected to it, or by assigning in-

finite capacity (for max flow routine below) to sink nodes with predetermined labels2.

Denote by H the obtained graph.

Next, we find a minimum node s-t cut C in H. Finding a solution to the MINIMUM

NODE S-T CUT problem is possible in polynomial time using MAX FLOW algorithms

[1,9]. Denote by G′ the (undirected) graph obtained by removing the cut C from H.

Clearly s0 and s1 belong to G′ and there is no path connecting s0 and s1 in G′. As the cut

is in nodes, there may be more than two connected components on G′. All nodes in the

component S0 that contains s0 are labelled 0 and all nodes in the connected component

S1 that contains s1 are labelled 1. We now return to the original (directed) graph G to

label the remaining nodes. The labelled predecessor nodes (excluding those that belong

1 Graphs with such additional edges are sometimes called moral, stressing that the parents of

each node are “married”. Note however that a parent may have more than one spouse.
2 If a sink node does not have predetermined alignment, it will not belong to any minimum

node-cut due to the “morality” property.

10 L. Fireman, E. Petrank, and A. Zaks

to C) of each yet-unlabelled node must all have the same label, because every pair of

such predecessors has been connected by an edge in H. We label each un-labelled node

by the label of its predecessors. Source nodes (without predecessors) may belong to C,

typically have predetermined labels which they retain. All remaining nodes are labelled 0

(we could label them 1 as well). Finally, a shift is provided for each node of the cut, to be

applied to the result of the corresponding operation (i.e. after the operation is executed),

from the label of the cut node to the “other” label (of one or more successor nodes).

An example. Consider the following code and its corresponding DAG which appears in

Figure 3 (a). Two shifts are required to compute this expression.

for (i = 0; i < 1000; i++) do

f [i] = (a[i+ 1] ∗ b[i+ 1] + a[i+ 1] ∗ c[i+ 1])
+ (a[i+ 1] ∗ d[i] + a[i+ 1] ∗ e[i]);

end for

Algorithm 2 produces the graph H with two additional terminals s0 and s1, and parent-

connecting edges. It then finds a node-cut as in Figure 3 (b). We mark the cut nodes by

encircling them with a bold line. The sets S0 and S1 are also marked.

Finally, we interpret the cut nodes as creating shifts in the computation. Array a

is shifted from alignment 1 to alignment 0 (this is node v3 in the cut). As previously

stressed, even though the array a is shifted, it may still be used with its original

Fig. 3. (a) The DAG corresponding to f [i] = (a[i+1]∗b[i+1] + a[i+1]∗c[i+1])+(a[i+1]∗
d[i] + a[i+1]∗e[i]). (b) A minimum node s0 − s1 cut for the corresponding graph H.

New Algorithms for SIMD Alignment 11

alignment. Node v10 is the other cut node, therefore, the result of the computation

a[i + 1] ∗ b[i + 1] + a[i + 1] ∗ c[i + 1] is shifted from alignment 1 to alignment 0, en-

abling the execution of the final computation. Note that node v8 has two predecessors

both with predetermined labels: v3 and v4. The label of v8 is set to the (predetermined)

label of v4, because v4 is not a cut-node (as opposed to v3).

For a rigorous proof of correctness the interested reader is referred to the thesis [15].

The complexity of the algorithm is governed by the node cut phase whose complexity

is O((|V |H)2 · |E|H) = O(|V |2 · |V |2) = O(|V |4) [9], implying that the complexity of

Algorithm 2 is O(|V |4).

7 The MULTIWAY CUT and the NODE MULTIWAY CUT Problems

We now compare the SIMDG alignment problem to the MULTIWAY CUT and the NODE

MULTIWAY CUT problems. We show the relations and the differences between the

SIMDG problem and these two known problems.

Definition 6 (Multiway Cut). Given an undirected graph G(V,E) and a set of termi-

nals S = {s1,s2, . . . ,sk} ⊆V, a multiway cut is a set of edges whose removal disconnects

the k terminals from each other. The Multiway Cut Problem is the problem of finding a

multiway cut with minimum weight, where the weight is the sum over the weights of the

cut-edges.

Multiway cuts appear, for example, in the problem of loop fusion for optimal reuse

[13,18,16].

Definition 7 (Node Multiway Cut). Given an undirected connected graph G(V,E)
and a set of terminals S = {s1,s2, . . . ,sk} ⊆ V, a node multiway cut is a subset of V \ S

whose removal disconnects the k terminals from each other. The NODE MULTIWAY CUT

Problem is the problem of finding a node multiway cut with minimum weight. Here the

weight of the cut is the sum of the weights of the cut-nodes.

We stress the difference between the above problems using the example in Figure 2. A

minimal multiway cut for the undirected graph corresponding to the graph in Figure 2

includes three edges — when v is labelled 3. A minimal node multiway cut for this graph

includes a single node — v. An optimal solution to the SIMDG problem for this graph

costs two shifts — when v is labelled 1, indicating that it should be shifted to label 2 and

to label 3. We now state the relations between the problems without proofs and derive

approximation algorithms from them. (For more motivation and full proofs see [15].)

Lemma 1. Every approximation algorithm to the MULTIWAY CUT problem with ap-

proximation ratio r provides an approximation algorithm to the SIMDG problem with

approximation ratio deg(G) · r where deg(G) is the maximum degree of graph G.

Lemma 2. Every approximation algorithm to the NODE MULTIWAY CUT problem with

approximation ratio r yields an approximation algorithm with approximation ratio

(k − 1) · r for the SIMDG problem.

12 L. Fireman, E. Petrank, and A. Zaks

For the MULTIWAY CUT problem there exist a (2-2/k)-approximation algorithm and a

3/2-approximation algorithm. For the NODE MULTIWAY CUT problem there exists a

(2-2/k)-approximation [29]. Therefore we can deduce the following.

Corollary 1. Using the MULTIWAY CUT approximation algorithms and Lemma 1 yield

approximation algorithms for the SIMDG problem of approximation ratios deg(G) ·
(2 − 2/k) and deg(G) ·3/2.

Corollary 2. Using the NODE MULTIWAY CUT approximation algorithm and Lemma 2,

we obtain an approximation ratio of (2 − 2/k) · (k − 1) for the SIMD ALIGNMENT

problem.

8 Results

In Sections 6 and 5 we provided optimal algorithms for two special cases. In this sec-

tion we demonstrate the practical advantage of using these algorithms compared to the

heuristics mentioned in Section 3.

The effectiveness of Algorithm 1 was tested on complete binary tree expression

graphs of various depths. Denote by k the number of possible different alignments in

the tree. For each depth d we consider the full binary tree of depth d and randomly gen-

erate the alignments (shift labels) of the input vertices (the leaves) and the alignment of

the output vertex (the root) in the range of 1 to k. We also let the bound k range from 2

to 7. For the trees randomly obtained as above, we ran Algorithm 1 and each heuristic

described in Section 3. Table 1 tells for how many of the random trees (of depth d and

k different alignments) none of the heuristics matched the optimal solution obtained by

Algorithm 1. Note that as the size of the tree grows, the percentage of trees in which

Algorithm 1 outperformed all of the heuristics grows rapidly. For intuition on where

the heuristics fail the reader is referred to the thesis [15].

We now turn to examine the case of a general DAG with only two possible shift labels

in their input and output vertices. The effectiveness of Algorithm 2 was tested on layer

graphs of various depths and widths. Given the depth d and the width w, the vertices are

determined and (assuming that operations are binary) two parents are randomly selected

for each node. Random shift labels out of the two possible alignments are then assigned

Table 1. The percentage of test-runs

in which Algorithm 1 outperformed all

heuristics

k d=3 d=5 d=8

2 24.2% 94.6% 98.5%

3 28.4% 96.7% 98.8%

4 32.7% 95.4% 99.3%

5 27.4% 96.6% 98.1%

6 26.3% 94.7% 99.0%

7 29.2% 95.3% 98.7%

8 30.7% 96.4% 99.0%

Table 2. The percentage of test-runs in which Al-

gorithm 2 outperformed all heuristics

width depth 3 4 5 6 7

3 23.0% 18.8% 30.5% 17.3% 24.3%

4 23.4% 21.5% 26.3% 35.2% 29.6%

5 23.3% 38.4% 28.8% 31.0% 24.7%

6 27.1% 32.2% 24.9% 38.1% 46.4%

7 37.4% 50.3% 32.3% 34.6% 45.4%

8 33.2% 34.3% 53.2% 42.8% 53.8%

9 45.6% 38.8% 40.3% 37.6% 48.9%

New Algorithms for SIMD Alignment 13

to the input and output nodes. Again, Algorithm 2 and all heuristics were run on these

randomly generated graphs and Table 2 shows the percentage of test-runs in which the

algorithm outperformed all the heuristics. Further discussion and an example on which

the heuristics fail appear in the thesis.

Finally, in order to check the shifting overhead on the execution of a program, we

ran a program containing a loop that repeatedly computes an expression on the AltiVec

platform, with various numbers of iterations. The optimal solution imposes one shift on

this expression, whereas the best heuristic imposes two. The percentage of running time

difference grows as the number of iterations increases, steadying eventually around 6%.

More details appear in the thesis [15].

9 Related Work

There are two general approaches to optimizing code for SIMD architectures: the clas-

sical loop-based vectorization scheme [2] and the extraction of parallelism from acyclic

code [19,27]. Our scheme applies generally to the simdization of any expression, al-

though due to the overheads associated with shifts it is more relevant to expressions

that reside in loops, as in the loop-based scheme.

The work that is most closely related to ours is that of Eichenberger, Wu and

O’Brien [14], which presents a set of heuristics for placing shifts in given expressions.

These heuristics are described in Section 3. The study there first finds the shift schedule

and then generates the relevant code. The shift schedule computed by our algorithms

can be used to replace the first part of their study and feed their code generation to obtain

more efficient code. A subsequent work [30] extends some of these heuristics to handle

runtime alignment and alignment in the presence of length conversion operations.

Several compilers including VAST [28], GCC [21], compilers for SSE2 [3,4] and

VIS [8] provide re-alignment support using the Zero-Shift heuristic which shifts all

arrays to alignment zero before each operation. Our work can be used to further improve

the code generated by such compilers. Some SIMD architectures provide re-alignment

capabilities without requiring explicit shift operations [22]. Such architectures do not

suffer (or suffer less) from the SIMD ALIGNMENT problem. Additional related work

concentrates on detection of misalignment and techniques to increase the number of

aligned accesses[20]. Our work deals with minimizing the number of shifts given a set

of misaligned accesses, and is complementary to these techniques.

More heuristics for a more general case have been recently proposed by Ren et al.

[26]. Typically, an SIMD platform may allow more advanced operations than just shifts.

For example, Altivec allows any general projection of elements from two registers into

a third register. Ren et al. propose a heuristic method to deal with streams of strides

greater than one. This is an important related task that we do not consider here.

In [12,6,17,7] an interesting similar, yet different, problem is considered. They

consider the efficient distribution of data to a set of distributed processors so that the

communication required to compute the given program expressions is minimized. The

distribution of array elements is restricted to affine transformations. There is a cost for

communication if during an operation a processor has to access array cells that are not

included in the data distributed to this processor. On one hand, this problem generalizes

14 L. Fireman, E. Petrank, and A. Zaks

ours as shifts are a special case of general communication, and putting array entries in

subsequent locations in memory is a special case of affine transformations on array en-

tries. However, these works assume a severe restriction which makes their case very dif-

ferent than ours in practice. They assume no copies are made, so if data is moved it cannot

be used in the original location (unless moved back again). In contrast, we assume that

once a shift has been executed the data stream can be used both in its shifted form and in

its original form without paying any extra cost. The inability to use streams in this man-

ner is crucial to several positive and negative results, and in particular to NP-Hardness

proofs [12]. Furthermore, the ability to parallelize communication and computation costs

is crucial to NP-Hardness proofs [5] but is not relevant to our model. Thus, these hard-

ness results do not directly apply to our problem. Another difference which is less crucial

but should be noted when comparing the results is that we assume predetermined align-

ments of the arrays, whereas these papers assume that they can set the alignment of the

involved arrays. This assumption always allows a no-shift solution to a single-appearance

tree expression. Such a solution does not always exist in our formulation.

10 Conclusion

Various challenging problems stand in the way of effective optimizations for vector

platforms. In this paper we focused on the SIMD ALIGNMENT problem. In most pre-

vious work simdization was studied assuming the input streams are all aligned. This

is not the case in practice. Previous study of the SIMD ALIGNMENT problem offered

heuristics, with no guarantees on the quality of the obtained solution. In this paper we

present two novel efficient algorithms that solve the SIMD ALIGNMENT problem opti-

mally for two important special cases. For the case in which the input expression has

only two distinct alignments we present an algorithm that finds an optimal solution by

solving the well known MINIMUM NODE S-T CUT problem. For the case where the in-

put expression is a tree containing each array only once, we presented an algorithm that

finds an optimal solution using dynamic programming. These two special cases cover

many practical instances of the SIMD ALIGNMENT problem.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall, 1993.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kauf-

mann, 2001.

3. A. Bik. The Software Vectorization Handbook: Applying Multimedia Extensions for Maxi-

mum Performance. Intel Press, June 2004.

4. A. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic intra-register vectorization for the

intel architecture. International J. of Parallel Programming, 2:65–98, April 2002.

5. V. Bouchitt’e, P. Boulet, A. Darte, and Y. Robert. Evaluating array expressions on massively

parallel machines with communication/computation overlap, 1995.

6. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic array alignment in

data-parallel programs. In Proceedings of POPL, pages 16–28. ACM Press, 1993.

7. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Optimal evaluation of array ex-

pressions on massively parallel machines. ACM Trans. Program. Lang. Syst., 17(1):123–156,

1995.

New Algorithms for SIMD Alignment 15

8. G. Cheong and M. S. Lam. An optimizer formultimedia instruction sets. In In Second SUIF

Compiler Workshop, August 1997.
9. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2001.

10. M. Corporation. Altivec technology programming interface manual. June 1999.
11. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The

complexity of multiway cuts (extended abstract). In Proceedings of the 24th ACM symposium

on Theory of computing, pages 241–251, New York, NY, USA, 1992. ACM Press.
12. A. Darte and Y. Robert. On the alignment problem. Parallel Processing Letters, 4(3):259–

270, 1994.

13. C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhancement of

global cache reuse. J. Parallel Distrib. Comput., 64:108–134, 2004.
14. A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for SIMD architectures with align-

ment constraints. In Proceeding of PLDI, June 2004.
15. L. Fireman. The complexity of SIMD alignment. M.Sc. thesis, Technion

— Israel Institute of Technology, Department of Computer Science, June 2006.

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2006/MSC/MSC-2006-17.
16. G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contraction.

In Workshop on Languages and Compilers for Parallel Computing, pages 281–295, 1992.

17. J. R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel architectures.

J. Parallel Distrib. Comput., 13(1):58–64, 1991.
18. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data locality

via loop fusion and distribution. In Workshop on Languages and Compilers for Parallel

Computing, pages 301–320, 1993.
19. S. Larsen and S. Amarasinghe. Exploiting superword level parallelism with multimedia

instruction sets. In Proceedings of PLDI, pages 145–156, 2000.

20. S. Larsen, E. Witchel, and S. Amarasinghe. Increasing and detecting memory address con-

gruence. In Proceedings of PACT, 2002.
21. D. Naishlos. Autovectorization in gcc. In Proceeding of GCC Developers Summit, pages

105–118, 2004.
22. D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks. Vectorizing for a SIMdD DSP

Architecture. In Proceedings of CASES, pages 2–11, 2003.

23. D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In Proceedings of CGO,

pages 281–294, 2006.
24. D. Nuzman and A. Zaks. Autovectorization in gcc – two years later. In Proceedings of GCC

Developers Summit, pages 145–158, 2006.
25. G. Ren, P. Wu, and D. Padua. A preliminary study on the vectorization of multimedia ap-

plications for multimedia extensions. In 16th International Workshop of Languages and

Compilers for Parallel Computing, October 2003.
26. G. Ren, P. Wu, and D. A. Padua. Optimizing data permutations for simd devices. In Pro-

ceedings of PLDI, pages 118–131, 2006.

27. J. Shin, M. Hall, and J. Chame. Superword-level parallelism in the presence of control

flow. In Proceedings of CGO, pages 165–175, Washington, DC, USA, 2005. IEEE Computer

Society.
28. C. B. Software. VAST-F/AltiVec: Automatic Fortran Vectorizer for PowerPC Vector Unit.

http://www.psrv.com/vast altivec.html, 2004.
29. V. V. Vazirani. Approximation Algorithms, pages 38–40,155–160. Springer-Verlag, 1st edi-

tion, 2001.

30. P. Wu, A. E. Eichenberger, and A. Wang. Efficient simd code generation for runtime align-

ment and length conversion. In Proceedings of CGO, pages 153–164, Washington, DC, USA,

2005. IEEE Computer Society.

Preprocessing Strategy for Effective Modulo Scheduling

on Multi-issue Digital Signal Processors⋆

Doosan Cho2, Ravi Ayyagari1, Gang-Ryung Uh1, and Yunheung Paek2

1 Computer Science Dept., Boise State University
2 Electrical and Computer Science Dept.,Seoul National University

Abstract. To achieve high resource utilization for multi-issue Digital Signal

Processors (DSPs), production compilers commonly include variants of the it-

erative modulo scheduling algorithm. However, excessive cyclic data depen-

dences, which exist in communication and media processing loops, often prevent

the modulo scheduler from achieving ideal loop initiation intervals. As a result,

replicated functional units in multi-issue DSPs are frequently underutilized. In

response to this resource underutilization problem, this paper describes a com-

piler preprocessing strategy that capitalizes on two techniques for effective mod-

ulo scheduling, referred to as cloning1 and cloning2. The core of the proposed

techniques lies in the direct relaxation of cyclic data dependences by exploiting

functional units which are otherwise left unused. Since our preprocessing strategy

requires neither code duplication nor additional hardware support, it is relatively

easy to implement in DSP compilers. The strategy proposed has been validated

by an implementation for a StarCore SC140 optimizing C compiler.

1 Introduction

As communication and media signal processing applications get more complex, system

designers seek programmable high performance fixed-point Digital Signal Processors

(DSPs). Recent multi-issue high performance DSPs1 are designed to meet such demand

by providing (1) multiple functional units, (2) advanced issue logic that allows a vari-

able number of instructions to be dispatched in parallel, and (3) optimizing compilers

that automatically tune C algorithms for performance [8,17].

In particular, to exploit the multiple functional units available in multi-issue DSPs, op-

timizing compilers commonly use a software pipelining strategy. Software pipelining is

a global loop scheduling concept which exploits instruction level parallelism across loop

iteration boundaries. Optimizing C compilers for multi-issue DSPs commonly adopt

variants of the iterative modulo scheduling pioneered by Rau and Glaser [2]. Although

existing iterative modulo scheduling approaches [7,17] are proven to be effective, ex-

cessive cyclic data dependences, which are frequently observed in communication and

⋆ Research is supported in part by NASA Idaho EPSCoR, Intel Corporation, Korea MIC grant

#A1100-0501-0004, Korea MOST grant #M103BY010004-05B2501-00411, Korea IITA grant

#IITA-2005-C1090-0502-0031, and NANO IP/SOC Promotion Research Program.
1 Dominant market players in multi-issue DSPs are ADI/INTEL Blackfin ADSP-BF53x, Mo-

torola StarCore SC140, and Texas Instruments TMS320C64x.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 16–31, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

Preprocessing Strategy for Effective Modulo Scheduling 17

media processing loops, restrict modulo scheduling quality [13]. As a result, replicated

functional units in multi-issue DSPs are often left underutilized.

To address this resource utilization problem, the objective of this paper are twofold:

(1) analyzing the nature of the data dependences existing in various signal processing

applications, and (2) engineering an effective compiler preprocessing strategy for multi-

issue DSPs to help an existing modulo scheduler achieve a high quality loop schedule.

For this, the paper describes our preprocessing that directly relaxes excessive cycle data

dependences with two techniques, referred to as cloning1 and cloning2. Since these

two techniques exploit underutilized functional resources, neither code duplication nor

additional hardware support are required, and therefore, it is relatively amenable to

implement in DSP compilers. To measure the feasibility and effectiveness of our pre-

processing strategy for multi-issue DSPs, the StarCore SC140 DSP processor is used as

the representative.

2 Motivation: Excessive RecMII

We formally define the commonly used loop scheduling terms in this paper; for the

definitions of other modulo scheduling terms, consult [2].

Definition 1. A candidate loop for an iterative modulo scheduler is the loop with the

branch-free body that can run in DSP hardware looping mode [10]. 2

Definition 2. A recurrence circuit is a data dependence circuit that exists in a Data

Dependence Graph (DDG), which is formed from an instruction to an instance of itself.

Definition 3. ExRecMII is the difference between RecMII and ResMII, iff RecMII ≥
ResMII.

According to our benchmark for SC140, various signal processing loop kernels manifest

that ExRecMII is the dominant limiting factor that either fails candidate loops to be

modulo scheduled or modulo schedules with excessively large II.

2.1 Loop-Carried True Dependence

As the first example of ExRecMII, consider the C code fragment shown in Figure 1(a)

that implements the Fast Fourier Transformation (FFT) algorithm. For the shaded can-

didate loop body in Figure 1(a), the SC140 optimizing compiler produces highly opti-

mized assembly code as shown in Figure 1(b), which is yet to be modulo scheduled.

For iterative modulo scheduling, II of the candidate loop in Figure 1(b) is initially

set equal to MII, which is computed as follows. First, each iteration of the branch-

free loop body shown in Figure 1(b) requires 7 units of Arithmetic and Logic Unit

(ALU) and 6 units of Address Arithmetic Unit (AAU), and the SC140 multi-issue DSP

can supply at most 4 units of ALU and 2 units of AAU per cycle 3. Thus, ResMII
is 3, which is max(⌈ 7

4⌉,⌈ 6
2⌉). Second, this candidate loop body contains several data

2 The optimizing C compiler performs if-conversion to allow more loops to be modulo sched-

uled.
3 To support high computing needs, StarCore 140 has 4 ALU units and 2 AGU units.[17]

18 D. Cho et al.

for (n=0; n<6; n++) {
 for (k=64; k<128; k++) {

twa_1 = re_ac[m][k];
 twa_2 = im_ac[m][k];
 re_tw = twiddle[n][j];
 j++;
 im_tw = twiddle[n][j];
 j++;
 re_ac[m][k] = (twa_1*re_tw) – (twa_2*im_tw);
 re_ac[m][k] = re_ac[m][k] >> 10;
 im_ac[m][k] = (twa_1*im_tw) + (twa_2*re_tw);
 im_ac[m][k] = im_ac[m][k] >> 10;

 }

m. : ALU instruction

True Data Dependence,
where i represents

latency and j represents
loop iteration difference

i/j Anti Data Dependence

i/j Ouput Data Dependence

i/j

(c) A simplified data dependence graph of
figure (b)

1

3

6

7

8

9

1/1

1/0

1/0

1/0

1/0

1/0

n.

(a) A candidate loop from FFT

d5 <- twa_1 * re_tw

Load im_ac[m][k] to d6

Load twiddle[n][j] to d7
And postincrement the array
index by 4 bytes

d5 <- d5 – (twa_2 * im_tw)

d5[39:32] <- d5[31]

d5 <- (d5 >> 10)

Store d5 to re_ac[m][k] and
postincrement the array index
by 4 bytes

d8 <- twa_2 * re_tw

d8 <- d8 + (twa_1 * im_tw)

d8 <- (d8 >> 10)

Store d8 to im_ac[m][k] and
postincrement the array index
by 4 bytes

1. move.w (r1),d3

2. move.w (r6)+n3,d4

3. impy d4,d3,d5

4. move.w (r0),d6

5. move.w (r3)+n3,d7

6. imac -d7,d6,d5

7. sxt.l d5

8. asrr #<10,d5

9. move.l d5,(r1)+

10 impy d4,d6,d8

11. imac d7,d3,d8

12. asrr #<10,d8

13. move.l d8,(r0)+

ALU instructionn. AAU instruction m.

(b) An assembly code of figure (a)

SC140 Instruction Comments

Load twiddle[n][j] to d4
and postincrement the array
index by 4 bytes

Load re_ac[m][k] to d3

: AAU instruction

Fig. 1. C Code fragment from FFT and corresponding loop body in SC140

dependence recurrence circuits. RecMII is 6 for the FFT and one such circuit is de-

picted in Figure 1(c).4 Since MII is max(ResMII,RecMII), II is initially set to 6

for a modulo schedule.

For analysis, consider the loop-carried data dependence in Figure 1(c). This depen-

dence is true since the value of induction variable r1 in the 9th instruction is referenced

by the 1st instruction in the subsequent loop iteration. In addition, the dependence chain

from the 1st instruction down to the 9th instruction is transitively true. This type of

cyclic true dependence is often created by the compiler when a source address for a

computation is used as the destination address to store the result of the computation,

which is a very common pattern in DSP applications. Due to this cyclic true depen-

dences, the FFT candidate loop fails to be modulo scheduled since MII of 6 is the ratio

which can be achieved by local acyclic scheduling.

2.2 Loop-Carried False Dependence

As the second example for ExRecMII, consider the C code fragment in Figure 2(a) that

implements the half-rate Global System for Mobile communication (GSM) algorithm.

For the candidate loop body in Figure 2(a), that uses the European Telecommunications

Standards Institute (ETSI) compliant C macros [6], the optimizing compiler produces

highly optimized assembly code as shown in Figure 2(b), which is yet to be modulo

scheduled.

4 The other RecMII circuit is omitted since the type of loop-carried data dependence is same

as that of the circuit in Figure 1(c).

Preprocessing Strategy for Effective Modulo Scheduling 19

For iterative modulo scheduling, candidate loop II is initially set equal to MII,

which is computed as follows. First, each iteration of the branch-free loop body shown

in Figure 2(b) requires 4 units of ALU and 5 units of AAU. Thus, ResMII is 3, which

is max(⌈ 4
4⌉,⌈ 5

2⌉). Second, RecMII for the half-rate GSM is 5 and the corresponding

RecMII recurrence circuits are depicted in Figure 2(c). Since MII is max(ResMII,
RecMII), II is initially set to 5 for modulo scheduling.

1 2

3

5

4

6

7

8

1/0 1/0

1/0

1/0 1/0

1/0

9

1/0

0/1
1/1

n. : AAU instruction

m. : ALU instruction

True Data Dependence, where i
represents latency and j
represents loop iteration

difference

i/j Anti Data Dependence

i/j Ouput Data Dependence

i/j

1/0
1. move.f (r11)+,d8

Load pswVOld[i] to d8 and
postincrement the array
index by 2 bytes

2. move.l #32768,d10
Load L_ROUND, which is
0x8000, to d10

4. move.f (r13)-,d9
Load pswVOld[-i] to d9 and
postdecrement the array
index by 2 bytes

3. mac d8,d5,d10
d10 <- d10 +
 (pswVOld[i] *pswQntRc[j])

6. move.f (r14)-,d12
Load pswPOld[i] to d12 and
postdecrement the array
index by 2 bytes

n. AAU instruction m. ALU instruction

5. mac d14,d9,d10
d10 <- d10 +

(pswVOld[-i]*pswQntRc[j])

7. mac d3,d12,d10
d10 <- d10 +
 (pswPOld[i] *pswQntRcSqd[j])

8. mac -d3,d12,d10
d10 <- d10 -
 (pswPOld[i] *pswQntRcSqd[j])

SC140 Instruction Comments

...
for (i=0; i<=bound; i++) {

L_sum = L_mac(L_Round,pswVOld[i],pswQntRc[j]);
 L_sum = L_mac(L_sum,pswVOld[-i],pswQntRc[j]);
 L_sum = L_mac(L_sum,pswPold[i],pswQntRcSqd[j]);
 L_sum = L_msu(L_sum,pswPOld[i],SW_MIN);
 pswPNew[i] = extract_h(L_sum);
}
...

9. move.f d10,(r4)+

Store d10, which is L_sum,
to pswPNew[i] and
postincrement the array
index by 2 bytes

(a) A candidate loop from half rate GSM

(b) An assembly code of figure (a) (c) A data dependence graph of figure (b)

Fig. 2. C Code fragment from half-rate GSM and corresponding loop body in SC140

For analysis, consider the two loop-carried data dependences in Figure 2(c). First, the

dependence from the 9th back to the 2nd instructions is anti since d10 value claimed

from the 9th instruction is generated by the 2nd instruction. Second, the dependence

from the 8th back to the 2nd instructions is output since both instructions store results

to d10. This type of composite loop carried dependences is often observed when DSP

specific instructions are selected by the code generator. Due to these two RecMII=5
recurrence circuits, half-rate GSM candidate loop fails to be modulo scheduled with II
smaller than 5.

Note that modulo scheduling requires a candidate loop II be selected before

scheduling is attempted. A smaller II corresponds to a shorter execution time. Since

the MII is a lower bound on the smallest possible value of II for which a modulo

schedule exists, the candidate loop II is initially set equal to the MII and increased

until a modulo schedule is obtained. Therefore, a preprocessing strategy that lowers the

MII by reducing RecMII can be quite an effective preparation to achieve high loop

initiation rate modulo schedules.

20 D. Cho et al.

3 Problem Formulation

The compiler eases our preprocessing task by putting every candidate loop body such

that intra-loop false dependences are removed whenever possible. In that setting, our

preprocessing reduces ExRecMII by exploiting underutilized functional resources by

capitalizing on the following two techniques.

– Cloning1: eliminate loop-carried true dependences of RecMII recurrence circuits

by cloning the value of an induction register, and

– Cloning2: relax loop-carried false dependences of RecMII recurrence circuits by

splitting and cloning the excessive lifetime data value used in a destructive instruc-

tion that requires use of the same register for source and destination, i.e. mac [14].

Since few functional resources are typically left for the preprocessing, the challenge

is to find an optimal allocation of critical resources for cloning1 and cloning2, which

reduces RecMII by the largest degree, subject to the constraints of ResMII increase.

Definition 4. Splittable points: splittable points are candidate instructions to which

cloning1 and cloning2 can potentially be applied for RecMII data dependence cir-

cuits. According to the corresponding data dependences, these points are classified into

true and false types. In particular, cloning1 is engineered to remove the loop-carried

true dependence created by a load/store instruction with postincrement (or postdecre-

ment) addressing mode. Thus, the splittable point for cloning1 takes only the load/store

instruction that forms the loop-carried true dependence. Cloning2 is engineered to split

the excessive lifetime of the data value created by a sequence of destructive DSP instruc-

tions [14]. Therefore, for loop-carried false dependences, each destructive instruction

of the RecMII data dependence circuit is a potentially splittable point.

3.1 Benefit Estimation

Once splittable points are identified for a set C of RecMII recurrence circuits, these

points need to be partially ordered to make the best use of underutilized resources for

our preprocessing. First, the potential benefit of the preprocessing for the kth RecMII
circuit ∈ C, is estimated by the following equation:

Bk = RecMIIk − RecMIIk’ (1)

where RecMIIk’ is the largest dependence length of the dismantled recurrence circuits

when cloning1 and cloning2 are applied to the kth RecMII circuit. Bk is used as a

metric to estimate the local benefit of the preprocessing. Second, the overall (global)

benefit of clonings for C is estimated by the following equation:

BC = RecMII − MAX(RecMIIk’) for all RecMIIk ∈ C (2)

However, Equations 1 and 2 are not sufficient to achieve the desired partial ordering

since a splittable point can be shared by multiple RecMII recurrence circuits. For this

reason, the benefit estimation can potentially make our preprocessing fail to find the

desired partial ordering.

Preprocessing Strategy for Effective Modulo Scheduling 21

Note that since the preprocessing techniques cloing1 and cloning2 require additional

registers and functional resources, the proposed preprocessing is required to check the

availability of these resources while estimating benefit.

3.2 Register Constraint and Resource Constraint

The number of architected registers of a processor is denoted as RT , where T represents

a register file type, i.e., data or address, which depends on architecture character-

istics. First, to avoid spill code in a candidate loop, our preprocessing applies cloning1

and cloning2 only when the register budget allows. This register budget is the first con-

straint, which requires that additional register need N for clonings must not exceed the

difference between RT and the number of loop variables kept in registers.

Fig. 3. A negative effect of cloning2

Improper application of clonings to a given

set of RecMII circuits either makes no im-

provement on II by simply wasting resources

or may even make IIworse due to the excessive

increase in ResMII. As an illustration, con-

sider the example candidate loop in Figure 3(a),

which contains a RecMII= 3 recurrence circuit

(2-3-4) and ResMII= 1. When the data regis-

ter d5 of the 3rd mac instruction is cloned with

additional data register d8, MII is reduced by 1

in Figure 3(b).5 Nevertheless, in case clonings

increase ResMII more than the decrease in

RecMII, net effect can make MII worse.

To prevent such an indiscriminate application

of clonings which may require more resources

than the architecture can possibly provide, re-

source budget is additionally considered as the second constraint for our preprocessing.

The resource budget is modeled using Rau’s reservation table [2], which represents the

resource occupation of each loop instruction in a partial schedule.

3.3 Problem Formalization: MAX-MIN

The solution to our resource allocation problem, which searches for an optimal se-

quence of splittable points, requires the ability to identify the best splittable point Is

from all possible permutations of splittable points. Obviously, a backtracking-based al-

gorithm cannot be a viable approach since the runtime complexity of this combinatorial

problem grows exponentially in terms of the number of splittable points. To respond to

this intractability,

1. Max-Min problem is formulated that requires a solution to maximize the decrease

in II while minimizing both register pressure and resource bound, and

2. Branch and Bound approach is employed to effectively search for an optimal split

point Is.

5 ExRecMII is reduced from 2 to 0.

22 D. Cho et al.

In particular, the Max-Min problem for our preprocessing is to seek an Is that maxi-

mizes profit under the register and resource constraints described in Section 3.2.

profit(Is) = (BC/N) (3)

where BC is computed by Equations 1 and 2, and N is the number of additional

registers required for clonings. Note that, since the benefit estimation with Equations 1

and 2 is not sufficient to find an optimal partial ordering, the branch and bound approach

may produce a suboptimal solution.

4 Preprocessing Strategy for Effective Modulo Scheduling

Since a candidate loop can have exponentially many recurrence dependence circuits, the

proposed preprocessing strategy sets up the Max-Min problem described in Section 3.3,

and exploits a divide-and-conquer principle to effectively search for a suboptimal split-

table point Is.

4.1 Divide Step: Detecting ExRecMII Recurrence Circuits and Finding

Splittable Points

To identify all recurrence circuits which account for ExRecMII in a candidate loop,

we use Tiernan’s algorithm [12] with the C data structures shown in Figure 4:

/* Elementary Circuit (Recurrence Circuit) */
struct EM_CT {
 unsigned char head ; // Inst number: head of the circuit
 unsigned char tail ; // Inst number: tail of the circuit
 unsigned char II_rc ; // Initiation interval of rc
unsigned char * P; /* Elementary Path building array

 used in Tiernan’s algorithm */
bvect circuit ; /* Circuit representation

 in bit vector */
 struct LIST * i_ecs ; /* Other recurrence circuits that

 intersect with this circuit */
struct LIST * p_ecs; /* Other recurrence circuits

 that are properly contained */
 int status ; // DRYRUN|DONE|CLONE1|CLONE2
};

/* List of Ex-RecMII Recurrence Circuit */
static struct LIST *ECs;

Fig. 4. Elementary Circuit (EC) and EC list C data structures

1. When Tiernan’s algorithm confirms a non-trivial 6 recurrence circuit rc=(inst1→
inst2→. . . →instn), each dependence edge in rc is retrieved from DDG to es-

timate IIrc.

6 A trivial recurrence circuit is a self recurrence circuit whose dependence arc is from an opera-

tion to itself.

Preprocessing Strategy for Effective Modulo Scheduling 23

2. The confirmed rc is added to EC list, which is sorted in descending order using

IIrc as key. For this step, C data structures in Figure 4 are used; struct EM CT
for a recurrence circuit and struct LIST for EC list.

3. Prior to rc insertion, for each rci in EC list, the following two EM CT fields of rci

and rc are updated.

– i ecs: set of intersecting recurrence circuits, and

– p ecs: set of properly contained recurrence circuits.

The i ecs and p ecs fields are later exploited to find an optimal splittable point

for cloning2. Since the initialization of these two fields for each recurrence circuit po-

tentially requires the algorithm to determine set relationships with all other recurrence

circuits, the upper bound for set operations is O(n2), where n is the number of recur-

rence circuits of a candidate loop body. Therefore, in order to perform a set operation in

constant time, we represent the constituent instructions of a recurrence circuit as a bit

vector, which are encoded into the circuit field of EM CT.

When the circuit confirmation completes, the IIrc of the head circuit in the EC list is

the RecMII recurrence circuit. If RecMII > ResMII, then all the circuits that share

the same value of IIrc in the EC list are ExRecMII circuits. For each ExRecMII
recurrence circuit, splittable points are determined as a divide step. In particular, starting

backward from the loop instruction indexed by tail to the head, splittable points are

detected while performing a local reaching definition analysis to estimate the register

need N for clonings.

4.2 Conquer Step

PHASE 1: Simplification

Theorem 1. Unless all loop-carried true dependences ofExRecMII circuits are elim-

inated by cloning1, the RecMII of a candidate loop cannot be reduced by cloning2.

Proof. For a candidate loop that contains ExRecMII circuits, C={c1,c2,. . .,cn}, as-

sume that ck and cl ∈ C are dependence recurrence circuits which share a splittable

point Is. Without loss of generality, let the loop-carried dependence of ck be false for

cloning2 and let the loop-carried dependence of cl be true for cloning1. When cloning2

is first applied to Is along ck dependence path, the technique introduces additional

data transfer instruction that clones the value of destination operand u to other register

v. Since cl also shares the splittable point Is, subsequent references to u in cl must

be renamed to v to preserve the original semantic. Therefore, cloning2 cannot reduce

RecMII since ExRecMII of cl remains unchanged.

Theorem 1 implies the following corollaries which simplifies the desired search into

three steps.

Corollary 1. Cloning1 must be applied prior to applying cloning2 to reduce

ExRecMII.

Corollary 2. The optimality in allocating functional resources is not affected by the

order of splittable points selection for cloning1.

24 D. Cho et al.

1. Partition the set of ExRecMII recurrence circuits into c-worklist for cloning1 and

d-worklist for cloning2, where c-worklist is a set of ExRecMII circuits whose

loop-carried dependences are true and d-worklist is a set of ExRecMII recurrence

circuits whose loop-carried dependences are false.

2. According to Corollaries 1 and 2, randomly select a sequence of splittable points

from c-worklist as long as register and resource constraints can be met.

3. Find an optimal sequence of splittable points from d-worklist using a branch-and-

bound search algorithm.

PHASE 2: Search for an optimal solution from a d-worklist

An optimal sequence of splittable points for a d-worklist can be found only when the

following side effects are accurately estimated.

1. The number of circuits in the d-worklist whose RecMII can be simultaneously im-

proved when a particular splittable point is cloned.

2. The prediction whether the overall loop schedule gets worse when the particular

point is cloned.

As an instance of the first side effect, consider Figure 2(c) that shows two RecMII=5
recurrence circuits. When the 7th mac instruction is cloned, the loop-carried false de-

pendences from these two circuits can be simultaneously relaxed with no increase in

ResMII.7

1. move.f (r7),d8
2. move.f (r8)+,d6
3. mac d6,d7,d8
4. move.l d8,(r12)+

RecMII=2 recurrence circuits A
and B:

Recurrence Circuit A: 1->3->4
Recurrence Circuit B: 2->3->4

1. move.f (r7)+,d8
 2. move.f (r8)+,d6

3a. tfr d8, d15
3b. mac d6,d7, d15
4. move.l d15,(r12)+

RecMII=3 recurrence circuit B:

Recurrence Circuit B:2->3a->3b->4

1

1/0

1/0

3

2

4

1

1/0

1/0

3b

2

4

3a

1/0

0/1

0/1

0/1

0/1

0/1

1/0

1/0

(a) Before Cloning2 (b) After Cloning2: RecMII=3
recurrence circuit B

Fig. 5. An example of indiscriminate cloning2

As an illustration of the second side

effect, consider the example candidate

loop in Figure 5(a), which contains two

RecMII=3 recurrence circuits. When

the 3rd mac instruction is accidentally

cloned for rcA, the dependence path

of rcB is increased by 1 as shown in

Figure 5(b), and as a result, the overall

loop schedule can get worse.

To consider these two side effects in

finding an optimal sequence of split-

table points from d-worklist, our pre-

processing first formulates an instance

of Max-Min problem, that has the form

(S,p), where S is the set of splittable

points {IS1
, IS2

, · · · , ISn
} from d-worklist and p is the profit function that estimates

the benefit of a given splittable point in terms of overall number of delisted circuits

from d-worklist when the point is cloned. For this profit estimation, the i ecs and

p ecs fields in EM CT which are described in Section 4.1 are exploited.8 Second, the

7 This happens because the resource bound for half-rate GSM is determined by the contention

on AAU in SC140 DSP.
8 When the second side effect is forecasted for a given splittable point, the profit function returns

a negative value.

Preprocessing Strategy for Effective Modulo Scheduling 25

preprocessing exploits the branch and bound search approach [4] and effectively

searches for an optimal splittable point ISx
∈ S whose p(ISx

) ≥ p(ISy
) for all

y=1,2,· · · ,n and y �= x.

1. Initialization: the maximal Priority Queue(PQ) [5] as an abstract data type is ini-

tialized with a set of splittable points defined in Definition 4, where the priority

of each splittable point ISi
∈ S is set to p(ISi

). PQ has four basic operations:

isEmpty(), delMax(), validate(IS), and insert(IS). Second, the branching factor bf ,

which is the lower bound of the profit function p, will be initialized to 0.

2. Analyze and Bound: the delMax() returns the current maximum splittable point

ISi
together with the EM CT rci. First, the resource and register constraints for ISi

will be checked. Second, if these constraints can be satisfied, the profit p(ISi
) will

be compared to the current lower bound to determine whether it is beneficial to

explore the search space rooted at ISi
. Third, if ISi

is beneficial, the lower bound

bf will be reset to p(ISi
).

3. Branch: If ISi
is not beneficial, then the profit p(ISi

) will be adjusted and ISi
will

be enqueued with insert(ISi
). Otherwise, the current context before the branching

will be saved so that remaining search space rooted at other splittable points can be

explored.
4. Iteration: steps 2 and 3 will be repeated until isEmpty() returns true.

PHASE 3: Code Generation with Cloning1 and Cloning2

1

3

6

7

8

9

1/1

1/0

1/0

1/0

1/0

1/0

n.
: AAU
instruction

m.
: ALU
instruction

C
a
n
d
i
d
a
t
e

L
o
o
p

B
o
d
y

1. move.w (r1),d3
…
3. impy d3,d4,d5
…
6. imac -d7,d6,d5
7. sxt.l d5
8. asrr #<10,d5
9. move.l d5,(r1)+
…

tfra r1,r10
move.w #2,n0

P
r
e
h
e
a
d
e
r

1. move.w (r10)+n0,d3
…
3. impy d3,d4,d5
…
6. imac -d7,d6,d5
7. sxt.l d5
8. asrr #<10,d5
9. move.l d5,(r1)+
…

C
l
o
n
e
d

L
o
o
p

B
o
d
y

(b) SC140 instructions after
cloning1

1

3

6

7

8

9

0/1

2/0

1/0

1/0

1/0

1/0

2/1

(a) SC140 instructions before
cloning1

Fig. 6. RecMII=6 recurrence circuit of FFT candidate loop

Phase 3 - Cloning1: The recurrence circuit in Figure 6(a) highlights RecMII=6 of

the FFT loop illustrated in Figure 1. Since this circuit is formed with cyclic true de-

pendences, the ExRecMII deems irreducible. However, careful analysis on this circuit

leads us to observe the following:

1. The loop-carried true dependence is an artifact of scheduling insensitive loop opti-

mization, such as induction variable elimination and addressing mode optimization.

2. The loop-carried true dependence has no memory (store-load) dependence.

When these two conditions are met, the loop-carried true dependence edge can be

removed by cloning1, which replicates an original induction register. As an illustration,

cloning1 removes the loop-carried true dependence in Figure 6(a) as follows.

26 D. Cho et al.

1. Allocate one additional induction register to clone the value of the original induc-

tion register r1, and initialize it at the loop preheader. First, live-variable analysis

followed by local reaching definition indicates the availability of additional regis-

ter r10 to clone the value of r1. Second, a transfer instruction tfra r1,r10,

which initializes the cloned register r10, is placed at the loop preheader as shown

in Figure 6(b).

2. Prepare one additional operation that clones the induction register r1 used in the

1st instruction, which was selected according to Definition 4. Place this additional

operation prior to the update of r1 value. In particular, to minimize resource pres-

sure on AAU units, postincrement addressing mode is exploited at the 1st instruc-

tion. Note that, since the memory stride between the 1st and 9th instructions dif-

fers by two bytes, indexed postincrement addressing mode is selected as shown in

Figure 6(b).

3. Finally, eliminate the original loop-carried true dependence by making the cloned

operand being referenced. Since the 1st instruction is already amended to reference

clone operand r10, no additional change is required.

As a result of this transformation, the original loop-carried true dependence is

removed. By applying cloning1 to other RecMII=6 recurrence circuit that exists in

Figure 1(b), MII is reduced from 6 to 4. Without a single modification to an exist-

ing modulo scheduler, a higher loop initiation rate of 4 is effectively achieved and the

modified schedule results in a 17% performance improvement.

Fig. 7. GSM code applied the solution

Phase3 - Cloning2: Figure 7(a) shows the candidate loop body, which contains two

RecMII=5 recurrence circuits highlighted in Figure 2(c). To relax the loop-carried

false dependences from these RecMII recurrence circuits without strip-mining the

original loop and unrolling the loop kernel, cloning2 technique is engineered, which

splits excessive lifetimes of registers by moving data values around. In particular,

cloning2 targets for complex [14] and destructive instructions that requires use of the

Preprocessing Strategy for Effective Modulo Scheduling 27

same register for source and destination. As an illustration, cloning2 relaxes the

RecMII loop-carried false dependences that exist in Figure 7(a) as follows.

1. BB search in phase 2 selects the 7th mac instruction as the splittable point.

2. Allocate one additional register to clone the excessive lifetime of d10 of the mac.

For this task, the same live-variable analysis, followed by local reaching definition

analysis, tells us the availability of d11.

3. Place one additional transfer instruction, the 7a
th instruction in Figure 7(b), to split

the lifetime of d10 with the cloned d11.

When this modification is made, the loop-carried anti dependence from the 9th back

to the 2nd instruction and the loop-carried output dependence from the 8th back to the

2nd instruction in Figure 7(a) are both relaxed; Figure 7(c) depicts relaxed recurrence

circuits. As a result of cloning2, the original RecMII=5 for half rate GSM candidate

loop is effectively lowered to 3 and the modified schedule results in a 4.7% performance

improvement.

4.3 Unified Framework: Divide-and-Conquer

For a given candidate loop, the actual cloning1 and cloning2 techniques will be per-

formed only when the analysis from divide-and-conquer steps forecasts the entire re-

currence circuits in c-worklist and d-worklist can be simultaneously relaxed. Since this

process iterates until there is no further change in ExRecMII, most of the search space

for an optimal sequence of splittable points, which means an optimal allocation of un-

derutilized functional units in a multi-issue DSP, is typically exhausted.

5 Experimental Results

This section describes results of a set of experiments to illustrate effectiveness of the

unified preprocessing strategy described in Section 4.3, which is implemented for the

SC140 optimizing C compiler. The experimental input is a set of candidate loops ob-

tained from DSPStone [18], MediaBench [3], half-rate GSM, enhanced full rate GSM,

and other industry signal application kernels. Table 1 lists benchmarks used for our

experiments.

In order to isolate impacts on performance and code size purely from our preprocess-

ing, two sets of executables for SC140 multi-issue DSP are produced for benchmarks

listed in Table 1;

– ORIG: fully optimized one with original C compiler, and

– PRE: fully optimized one with revised C compiler with our preprocessing pro-

posed.

With these two sets of executables, we measured (1) cycle counts with StarCore

cycle count accurate simulator simsc100, and (2) code size with StarCore utility

tool, sc100-size. The performance improvements (decrease in cycle counts) and

code size increase due to our preprocessing were measured in percent, using formula

((ORIG − PRE)/ORIG) ∗ 100.

28 D. Cho et al.

Table 1. Benchmarks used in experiments

complex FFT FFT Matrix FIR

Matrix1x3

ConvolutionLMSFIR2DIM

ComFFT FFT Matrix FIR

Mat1x3

ConvLMSFD

Program

Acronym

128 point
complex FFT

Integer stage
scaling FFT

Generic matrix
multiply

Finite impulse
response filter

1x3 matrix
multiply

Convolution
Least mean

squared adaptive
filters

2 dimensional
 Finite

Response Filter
Description

GSM

GSM (sc, af, ut,
dec, ad, sy)

V_search,
aflatRecursion, utcount,

decode, add, syn_fil
modules from Global

System for Mobile
telecommunication

IIR

IIR

IIR filter

Lattice
synthesis

Latsyn

Typical DSP
multiply two

vector
operation

Panama
cryptographic

module

Pcrypto

Panama
stream/hash

module

N_complex_upd
ates

Ncomp

Complex multiply

Biquad_N_sec
tion

BiNsec

One IIR
biquad

Program

Acronym

Description

Figure 8(a) reports performance improvements achieved by applying the unified al-

gorithm in Section 4.3, which is based on cloning1 and cloning2 techniques respec-

tively. The overall performance improvement from our preprocessing ranges from 0.3%
to 29.5%, and the average performance improvement is 12.9%. Considering there is no

modification made to existing iterative modulo scheduler and the performance compar-

ison is made to highly optimized SC140 DSP code, performance gain from our pre-

processing was impressive. In particular, the performance improvements on Mat1x3,

FIR, FFT and ComFFT benchmarks were brought to our attention, since

1. iterative application of cloning1 followed by cloning2 for an existing modulo sched-

uler can deliver more performance gain by effectively reducing the ExRecMII of

a candidate loop, and

2. the preprocessing strategy described in Section 4.3 can detect and exploit such op-

portunities for an effective modulo scheduling.

Note that none of benchmarks in Figure 8(a) reports performance degradation. This

is not a coincidence, since our algorithm is designed to apply cloning1 and cloning2

only when the additional operations for these techniques can be placed in non-critical

recurrence circuits.

Figure 8(b) reports code size increase due to the unified algorithm. Since cloning1

and cloning2 reduces ExRecMII, existing modulo scheduler discovers instruction

level parallelism across more loop iteration boundary and as a result, achieves a better

modulo schedule. Since the size of the prologue and the epilogue grow proportionally

as more loop iterations of a candidate loop get overlapped for a final schedule, code

size increase is unavoidable. However, we also observed that existing modulo sched-

uler can find a better loop schedule for a number of loop iteration boundaries when our

preprocessing is applied. This is the reason why our preprocessing to IIR, GSMdec,

GSMad and GSMsy benchmarks, reports significant performance improvements with

negligible increase in code size.

For benchmarks listed in Figure 8(b), overall code size increase from the proposed

preprocessing ranges from 0% to 63.1%, and the average increase is 13.99%. However,

note that benchmarks in Table 1 are critical loop kernels which typically account for

Preprocessing Strategy for Effective Modulo Scheduling 29

0 5 10 15 20 25

ComFFT

FFT

GSMsc

BiNsec

Ncomup

Matrix

GSMdec

FIR

Mat1x3

IIR

Latsyn

Pcrypto

GSMaf

GSMut

GSMad

Conv

LMS

FD

Cloning1 Cloning2

30

GSMsy

16.61

 11.87

21.25

6.8

5.3

15.28

13.05

24

15.66

19.87

4.04

26.7

29.5

15.6

14.1

4.73

20.3

5.2

25.9

3.68

4.08

4.6

0.3

1.31

0 5 10 15 20 25

ComFFT

FFT

GSMsc

BiNsec

Ncomup

Matrix

GSMdec

FIR

Mat1x3

IIR

Latsyn

Pcrypto

GSMaf

GSMut

GSMad

Conv

LMS

FD

Cloning1 Cloning2

30 65

28

23.2

15.3

13.40

26.90

3.70

 63.1

17.6

60

4.70

10.4

10.46

19.38

6.3

11.1

17.02

GSMsy

1.56

2.05

6.9

0.65

2.3

(a) Performance improvement (%) (b) Code size increment (%)

Fig. 8. Percent wise performance improvement (number of cycles reduction) and code size incre-

ment compared to the original

5% - 10% of entire application code size. By carefully applying the preprocessing to

mission critical loops with profiling, overall code size increase can be hold to a moderate

amount.

6 Related Work

To effectively lower this ExRecMII, Lam pioneered a compiler technique, referred to

as Modulo Variable Expansion (MVE), that removes loop-carried anti and output de-

pendencies in recurrence circuits [15]. Since MVE achieves the desired removal with

loop unrolling followed by register renaming, a high loop unrolling factor might incur

an increase in code size and register pressure. Another drawback of this scheme is that

those candidate loops which execute for a multiple number of times the unrolling factor

can only be properly accommodated. To overcome this problem, either peeling candi-

date loops for some number of loop iterations or adding a branch out of the unrolled

loop body are required [11].

To duplicate the effect of MVE without loop unrolling, Huff proposed an innovative

rotating register files as an architectural feature in a hypothetical VLIW processor similar

to Cydrome’s Cydra 5 [16]. Since the Huff technique still requires a large number of the

architected rotating registers to support MVE without code expansion, Tyson and et al.

ameliorated Huff technique with register queues and rq-connect instruction [9]. In their

technique, register queues share a common name-space with physical register files. As

a consequence, the architected rotating register space is no longer a limiting factor.

7 Conclusion

This paper describes compiler optimizations that preprocess loop kernels of signal

processing applications to relax their intrinsic data dependencies and thereby, com-

plementing iterative modulo scheduler. The presented strategy is implemented for the

30 D. Cho et al.

StarCore SC140 optimizing C compiler backend. As a result of the implementation,

a 12.9% average runtime improvement is reported for benchmarks in Table 1; This

runtime improvement is made at the expense of a 13.99% average code size increase.

Considering that no modification is made to existing modulo scheduler and that the per-

formance comparison is made to highly optimized SC140 DSP code, we believe that

this gain is impressive.

Acknowledgement

We thank Bharadwaj Yadavalli, John Griffin, Ramesh Peri, Robert Cohn, and Sanjay

Jinturkar for many valuable discussions that improved the quality of this paper. We

thank the anonymous reviewers for their constructive comments and suggestions.

References

1. A. Stoutchinin. An Integer Linear Programming Model of Software Pipelining for the MIPS

R8000 Processor. In Proceedings of the 4th International Conference on Parallel Computing

Technologies, 1997.

2. B. Rau. Iterative modulo scheduling. In HP Laboratories Technical Report, HPL94115, Nov

1995.

3. C. Lee, M. Potkonjak, and W. Smith. MediaBench: A Tool for Evaluating and Synthesizing

Multimedia and Communications Systems. In Proceedings of the 30th Annual IEEE/ACM

International Symposium on Microarchitecture, Nov 1997.

4. D. Smith. Random trees and the analysis of branch and bound procedures. In Journal of the

Association for Computing Machinery, Jan 1984.

5. R. Sedgewick. Algorithms in C. Third Edition, Addison-Wesley Pearson Education, 2003.

6. D. Batten, S. Jinturkar, J. Glossner., M. Schulte, and P. D’Arcy. A new approach to DSP

intrinsic functions. In Proceedings of the Hawai International Conference on Systems and

Science, Jan 2000.

7. E. Stotzer and E. Leiss. Modulo Scheduling for the TMS320C6x VLIW DSP Architecture.

In Proceedings of the SIGPLAN’99 Workshop on Languages, Compilers, and Tools for Em-

bedded Systems, May 1999.

8. E. Tan and W. Heinzelman. DSP architectures: past, present and futures. In ACM SIGARCH

Computer Architecture News, Vol.31, No.3, pages 6-19, June 2003.

9. G. Tyson, M. Smelyanskiy, and E. Davidson. Evaluating the Use of Register Queues in

Software Pipelined Loops. In IEEE Transactions on Computers, Vol.50, No.8, pages 769-

783, Oct 2001.

10. G. Uh, Y. Wang, D. Whalley, and et al. Compiler Transformations for Effectively Exploiting

Zero Overhead Loop Buffer. In Software-Practice & Experience, Vol 35, pages 393-412,

2005.

11. H. Allan, B. Jones, M. Lee, J. Allan. Software Pipelining. In ACM Computing Surveys,

Vol.27, No.3, Sep 1995.

12. J. Tiernan. An efficient search algorithm to find the elementary circuits of a graph. In

Communications of the ACM, pages 12-35, Dec 1970.

13. J. Sias, H. Hunter, and W. Hwu. Enhancing loop buffering of media and telecommunications

applications using low-overhead predication. In Proceedings of the 34th Annual Interna-

tional Symposium on Microarchitecture, Dec 2001.

Preprocessing Strategy for Effective Modulo Scheduling 31

14. R. Leupers and P. Marwedel: Instruction selection for embedded DSPs with complex in-

structions. In Proceedings of European Design Automation Conference, Sep 1996.

15. M. Lam. Software pipelining: an effective scheduling technique for VLIW machines. In

Proceedings of the SIGPLAN’88 Conference on Programming Language Design and Imple-

mentation, June, 1988.

16. R. Huff. Lifetime-Sensitive Modulo Scheduling. In Proceedings of the SIGPLAN’93 Con-

ference on Programming Language Design and Implementation, June, 1993.

17. StarCore, Inc. SC140 DSP Core Reference Manual. Atlanta, GA, 2001.

18. V. Zivojnovic, J. Velarde, C. Schager, and H. Meyr. DSPStone - A DSP oriented Bench-

marking Methodology. In Proceedings of International Conference on Signal Processing

Applications and Technology, 1994.

An Array Allocation Scheme

for Energy Reduction in

Partitioned Memory Architectures

K. Shyam1 and R. Govindarajan2

1 Sasken Comunication Technologies Limited
Bangalore, India

kshyam@sasken.com
2 SuperComputer Education and Research Center

Indian Institute of Science, Bangalore 560 012, India
govind@serc.iisc.ernet.in

Abstract. This paper presents a compiler technique that reduces the
energy consumption of the memory subsystem, for an off-chip partitioned
memory architecture having multiple memory banks and various low-
power operating modes for each of these banks. More specifically, we
propose an efficient array allocation scheme to reduce the number of
simultaneously active memory banks, so that the other memory banks
that are inactive can be put to low power modes to reduce the energy. We
model this problem as a graph partitioning problem, and use well known
heuristics to solve the same. We also propose a simple Integer Linear
Programming (ILP) formulation for the above problem. Our approach
achieves, on an average, 20% energy reduction over the base scheme, and
8% to 10% energy reduction over previously suggested methods. Further,
the results obtained using our heuristic are within 1% of optimal results
obtained by using our ILP method.

1 Introduction

The use of portable hand-held devices like PDAs mobile phones, laptops, palm-
tops, etc., is on the increase. Further, portable devices of today are becoming
functionally more and more sophisticated. As the functionalities of these devices
increase, it places a huge demand on the power source. Since most of these devices
rely on internal sources of power, i.e., batteries and are hand-held, it is impor-
tant to make these devices as energy efficient as possible. Reducing the energy
consumption is important as it improves the lifetime, and cost of the battery.
Further, as it reduces the heat dissipated by the system, it increases the relia-
bility of the device.

A majority of embedded applications are data intensive and access a large
number of arrays in deeply nested loops. It has been observed that a major por-
tion of the energy expended by the programs is in the memory subsystem [3].
In light of these observations, this paper presents a technique to minimize the
energy consumed by off chip memory modules, which are divided into banks.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 32–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Array Allocation Scheme for Energy Reduction 33

Each of these banks can operate at various low-power operating modes. In such
an architecture, if the data segments of an application are allocated to memory
banks such that, a majority of the memory banks can be placed in a low-power
mode, for large parts of the duration of execution of a program, it leads to a
reduction in the energy consumed by the memory subsystem. Thus in this paper
we try to present a technique for such a data segment (array) placement for
energy reduction.

Techniques for allocating arrays to memory banks have been proposed earlier.
Earlier approaches [6,7] either model the array allocation problem as a maximum
weight path cover problem or use a set of heuristics and certain subgroup or-
dering. As will be observed in Section 3, neither of these approaches is akin
to the array allocation problem and results in inferior solution. We model this
problem as a graph partitioning problem which is a natural way of formulating
the array allocation problem. The arrays in a single partition are allocated to a
single memory bank. During this partitioning process, we try to minimize the
sum of the weights of the edges that are being cut. We use existing well-known
heuristics to solve the graph partitioning problem. Lastly formulating the array
allocation problem as a graph partitioning problem has also led us to develop
an Integer Linear Programming formulation(ILP) for it.

Initial experiments on array intensive benchmarks show that, on an average
our approach obtains around 21% reduction over energy-unaware allocation and
8% to 10% improvement over the method proposed in [6]. In comparison to the
optimal solution obtained from the ILP formulation, our heuristic approach pro-
duces near optimal allocation in most of the cases and is within 1% of the energy
consumption values obtained by using ILP techniques.

Section 2 presents a brief introduction to partitioned memory architectures
and low-power operating modes. Section 3 motivates the problem addressed and
the issues involved with earlier approaches using an example. In Section 4, we
discuss our problem formulation techniques and heuristics that we have used to
solve them. We present experimental results in Section 5. Section 6 compares
our work with related work. Finally, we conclude the paper in Section 7.

2 Background

In this section we give a brief background about the partitioned memory ar-
chitecture and various low-power operating modes. The memory is divided into
banks and each of these banks can be placed into one of the following low-power
modes, Standby, Napping, Power-Down and Disabled, depending on the access
patterns. A memory bank is in active mode when it is processing read and write
requests [14]. Each low-power operating mode is characterized by the energy
consumed in that mode and the resynchronization time. Resynchronization time
is the time that is needed for the bank to move from the low-power mode it is
currently in to the active mode. The resynchronization times (in cycles), and the
energy consumption (in nJ), of various low power operating modes are: 9000 cy-
cles and 0.00875 nJ for Power-Down mode, 30 cycles and 0.0206 nJ for Napping

34 K. Shyam and R. Govindarajan

mode, 2 cycles and 0.468 nJ for Stand-By mode and zero cycles and 0.718 nJ
for Active mode respectively. These memory bank energy values and resynchro-
nization times are obtained from the current values of a 2.5V, 1.25nS cycle time,
4MB memory bank [14]. Since resynchronization times are high for those modes
which consume the least energy we must choose a low-power mode carefully.

In our study, initially we assume an oracle memory bank activation, i.e., the
memory bank m that would be required at time t, is transitioned exactly at time
(t − rt), where rt is the resynchronization time from the low-power mode the
bank is currently in, to the active mode. We also study the effects of waking
up the memory bank at time t, when the actual memory request is made. This
incurs a penalty of rt cycles as the memory bank becomes available only at time
(t + rt). We refer to this scheme as on-demand activation.

If a memory bank m is accessed at times t1 and t2, for the purpose of our experi-
ments, the low power mode that the bank can be put into for the duration [t1 − t2]
is calculated as follows. We consider only those low power modes for which the re-
synchronization time is less than (t2 − t1). Let (Epd, Rpd), (Enp, Rnp), (Esb, Rsb)
be the energy consumption and resynchronization times of the memory bank in
Power-Down, Napping, Standby modes and Eact the energy consumption in the
Active mode. If Rsb < (t2−t1), then the energy that would have been expended, if
a bank is in a particular low-powermode Elp is given by min((Epd∗(t2−t1−Rpd)+
Eact ∗Rpd), (Enp ∗(t2 −t1 −Rnp)+Eact ∗Rnp), (Esb ∗(t2 −t1 −Rsb)+Eact ∗Rsb)).
Thus for the duration [t2 − t1] the bank is put into that mode which consumes the
minimum energy. This paper, however, does not deal with how the appropriate
low-power mode is identified and the memory bank is transitioned into that mode.
This requires an estimation of the duration (t2 − t1) which can be obtained either
through compile time analysis or through profile runs.

3 Motivation

3.1 Motivating Example

 L1: f or(i = 0; i < N ; i + +)

 {d[i], a[i]}

 L2: f or(i = 0; i < N ; i + +)

 {a[i], b[i]}

 L3: f or(i = 0; i < N ; i + +)

 {c[i], d[i]}

 L4: f or(i = 0; i < N ; i + +)

 {b[i], c[i]}

 L5: f or(i = 0; i < N ; i + +)

 {b[i], d[i]}

float a[N]; double b[N], c[N]; float d[N];

Fig. 1. Motivating Example

In this section we describe the problem
formulation with the help of the exam-
ple. Consider the example code given in
Figure 1. In loops L1, L2, L3, L4, and L5,
the pairs of arrays accessed are a and d,
a and b, c and d, b and c, and b and d.
Let us assume loops L1, L2, L3, L4 and
L5 take N , 2N , 4N , 8N and N cycles
respectively. Further let us assume that
arrays a and d occupy 1 MB each, while
arrays b and c each occupy 2 MB. Last,
let there be two memory banks in the
architecture, each of size 4MB. For sim-
plicity, in this example, we assume that

An Array Allocation Scheme for Energy Reduction 35

the memory bank can be in either active or power-down mode and the resyn-
chronization time is zero.

In an energy unaware allocation, the arrays are allocated in the order in
which they are declared. In this example, arrays a and b will reside in memory
bank M1, while array c will partially reside in both banks. Array d will reside
in bank M2. For this allocation, since arrays a and d are accessed in loop L1,
both memory banks need to be in the active mode during its execution. Since
2 memory banks are active for N cycles, we say that for 2N bank-cycles1 the
memory is active. Similarly for loops L2, L3, L4, and L5, the memory is active for
2N , 8N , 16N and 2N bank-cycles respectively. Table 1 shows that in the energy
unaware allocation, the memory banks are active for a total of 30N bank-cycles.

Table 1. Memory Banks Active under Various Methods for the Example Code

Loop No. of Arrays Energy-Unaware MWPC Method Graph Partitioning
Exec.Cycles Accessed Banks Bank- Banks Bank- Banks Bank-

Active Cycles Active Cycles Active Cycles

L1 N a, d 1, 2 2N 1, 2 2N 1 N
L2 2N a, b 1 2N 1 2N 1, 2 4N
L3 4N c, d 1, 2 8N 2 4N 1, 2 8N
L4 8N b, c 1, 2 16N 1, 2 16N 2 8N
L5 N b, d 1, 2 2N 1, 2 2N 1, 2 2N

Total 30N 26N 23N

3.2 Problems with Existing Approaches

The Maximum Weight Path Cover (MWPC) method proposed by Delaluz et.al
in [6] uses the Array Relation Graph (ARG). The ARG for our motivating exam-
ple is shown in Figure 2. The maximum weight cover of a graph is a path which
includes all the nodes in the graph (but not necessarily all the edges) such that
the sum of the weights of all edges in the path is the maximum among all covers.

a

b

d c

N

N 8N

2N

4N

Fig. 2. Array Relation Graph and its
Maximum Weight Path Cover

A MWPC for the ARG is a—b—c—d,
which is depicted in the figure using
thick edges. The method proposed in [6]
suggests that the nodes are traversed
in the order in which they appear in
the MWPC and are allocated to vari-
ous memory banks, subject to availabil-
ity of space in each memory bank. We
will assume an array is allocated fully
to a single memory bank, whenever the
size of the array is less than that of any
memory bank. According to the above

1 We introduce the metric bank-cycle (similar to man-months) to collectively represent
the number of memory banks and the cycles for which they remain active.

36 K. Shyam and R. Govindarajan

MWPC, arrays a and b will be allocated to memory bank M1 and c and d to
memory bank M2. For this allocation, the memory banks that are active in each
loop and the bank-cycles for which the memory is active are shown in Table 1.
We see that memory is active for a total of 26N bank-cycles.

Although the MWPC method correctly identifies that edge (b, c) has a large
weight, the requirement to allocate arrays to memory banks in the order in which
they appear in the MWPC causes the bad decision in this example. Further,
MWPC does not take into account the set of nodes that are already allocated
to a partition. More specifically, if nodes v1, v2, v3 are already allocated, in that
order to partition P1, and in choosing between v4 and v5 that can also be allo-
cated to the same partition P1, it only considers the weight of edges (v3, v4) or
(v3, v5), and not the cumulative benefits due to edges from v1 and v2 to v4 or
v5. This is a basic limitation of formulating the array allocation problem as a
Maximum Weight Path Cover problem.

We now visit the heuristic proposed in [7] and show that it has a few ambi-
guities. The authors propose the use of compiler-directed clustering, where the
objective is to group array variables with similar lifetime access patterns, so that
they can be placed in the same memory module. This method uses three heuris-
tics namely last-use, first-use, and same-use pattern to divide the arrays into
subgroups and then using the fourth heuristic, reorder the array variables across
two neighboring subgroups which have similar access patterns. However the or-
dering of the subgroups in the first 3 steps (sub-grouping steps) is arbitrary and
is not akin to the underlying problem. As a consequence, the heuristic may or
may not result in a good partition depending on the subgroup order generated
by the implementation. Further, the sub-grouping may result in a degenerated
case where each array is in a subgroup by itself. In fact, for our motivating ex-
ample this degenerated situation arises after applying the first-use and last-use
heuristics. This prevents an efficient allocation of arrays to memory banks.

3.3 Overview of Our Approach

From the discussion in the previous sections, we observe that, given an ARG,
we need to partition it into a number of sub-graphs such that the sum of the
sizes of the arrays corresponding to the nodes in each sub-graph is less than that
of a memory bank size. The edges across the sub-graphs correspond to the cost
of keeping multiple memory banks simultaneously active. The objective of the
graph partitioning problem is to minimize the sum of the weights of the edges
across two partitions.

Let us partition the example ARG into two sub-graphs, one containing nodes
a and d and another containing nodes b and c. The sum of the sizes of the
array corresponding to these sub-graphs is less than 4MB, the size of a memory
bank. The edges that are across the two sub-graphs are: (a, b), (b, d), and (c, d).
The sum of the weights of these edges is 7N . For this allocation, the memory
banks that are active in each loop and the bank-cycles for which the memory is
active are shown in Table 1. We see that memory is active for a total of 23N
bank-cycles.

An Array Allocation Scheme for Energy Reduction 37

4 Our Approach

In this section we formulate the array allocation problem as a graph partitioning
problem, which, in turn, leads to an Integer Linear Programming formulation.

4.1 Graph Partition Formulation

We now give a formal definition of this problem. Let G = {V, E, w, c} be the
array relation graph which is an undirected graph where each vertex v represents
an array. We use the same symbol v to denote the node as well as the array it
represents. An edge (u, v) represents that the arrays corresponding to u and v
are accessed together in same region of program execution. Associated with each
edge (u, v) is a cost cu,v, which represents the number of cycles for which arrays
u and v are accessed together. Since G is undirected, cu,v = cv,u. Finally we
associate a weight wv with each vertex v which corresponds to the size of the
array v. Let w be a positive number, such that 0 < wv ≤ w for all v. We are given
a memory architecture with k memory banks where the size m of each memory
bank is greater than w. We can make this assumption without loss of generality
since, if for some v, wv > m, then a number of memory banks l = ⌊(wv/m)⌋
can be allocated exclusively for v and the remaining array locations in v can be
considered in our array allocation problem.

A k-way partition of G is a set of subsets Gi = {Vi, Ei, w, c}, such that

1. Any pair of subsets Gi and Gj are disjoint.

2.
⋃k

i=1 Vi = V and
3. For all (u, v) ∈ E, (u, v) is in Ei iff u ∈ Vi and v ∈ Vi.

A partition is admissible if
∑

v ∈ Vi
wv ≤ m for all Gi. An edge (u, v) ∈ E is

said to be an external edge for a partition if u ∈ Ei and v ∈ Ej and i �= j.
The cost of a partition is the summation of weights of all external edges. We
refer to this cost as the external cost of the partition. The partitioning problem
is thus to find an admissible partition of G with minimal external cost.

The optimal partitioning problem is NP-Complete [11]. There are a number
of heuristic approaches to this problem. We used one such heuristic proposed
in [11]. The heuristic proposed primarily aims to find a minimal cost partition
of a set of 2n elements into two sets of n elements each. The heuristic algorithm
works by starting with a pair of initial partitions A and B and swapping vertices
a ∈ A and b ∈ B to the other partition based on External Cost (ECost) and
Internal Cost (ICost). We define ECost of a as Ea =

∑

y∈B cay. We also define
ICost Ia as Ia =

∑

x∈A cax. Similarly we define ECost Eb and ICost Ib for
each b ∈ B. Let Da = Ea − Ia for each a ∈ A be the difference between the
ECost and ICost. Now according to a lemma proved in [11], for any a ∈ A and
b ∈ B, if they are interchanged, the reduction in the partitioning cost is given
by Rab = Da + Db − 2 ∗ cab. The nodes a and b are interchanged to partitions
B and A respectively if Rab > 0.

38 K. Shyam and R. Govindarajan

Next we generalize the heuristic algorithm for doing a k-way partition (refer
to Algorithm 1). In Step 1 the graph is partitioned into a set of k admissible
partitions. We then proceed to make sure that they are pairwise optimal. To do
that we consider a pair of such partitions. In Step 5 and Step 7 we calculate the
ICost and ECost. In Step 9 we iterate through the elements of each of the pairs
and calculate the reduction in partitioning costs, if they were to be interchanged.
In Step 14 we choose the pair of nodes a and b, which has the largest positive
Rab value. We move a to partition Gj and b to partition Gi if the resulting
partitions are admissible. We repeat the steps till no more such interchanges are
possible. This process is performed pair-wise on the partitions till no interchange
of elements occurs.

We shall illustrate the heuristic on the example graph in Figure 2. The graph
is split into two sets A, containing the elements {a, b}, and B, containing the
elements {c, d}. Now if we consider a ∈ A and c ∈ B we have Ea = N ,
Ia = 2N , Ec = 8N , Ic = 4N , Da = − N and Dc = 4N The Rac

value is now 3N . We see that this is the maximum value and hence we need to
interchange a and c. We get the partition (a, d) and (b, c). The algorithm iterates
over step 2 to step 11 and then concludes that no more interchanges are possible
and hence terminates.

Algorithm 1. Algorithm to partition a graph

1. Partition the graph G randomly into subsets G1, G2, ..., Gk such that Gi =
{Vi, Ei, w, c} and

�
j ∈ Vi

wj ≤ m. (Admissible Partitions)
2. Do
3. Take a pair of partitions Gi and Gj that are not marked as

pairwise optimal.
4. Repeat
5. For each a ∈ Gi calculate Ea, Ia, Da

6. EndFor
7. For each b ∈ Gj calculate Eb, Ib, Db

8. EndFor
9. For each a ∈ Gi do
10. For each b ∈ Gj do
11. Calculate Rab.
12. EndFor
13. EndFor
14. For the largest Rab value, Rab > 0, interchange a ∈ Gi

and b ∈ Gj if the resulting partitions Gi′ and
Gj ′ are admissible.

15. Until all Rab > 0
16. Mark Gi and Gj as being optimal with respect to each

other
17. While there is no interchange of elements between any two

pairs Gi and Gj

An Array Allocation Scheme for Energy Reduction 39

There are quite a number of implementations of the graph partitioning algo-
rithm available. We use one such implementation described in [10]. A detailed
discussion on the technique used for performing the partitioning can be found
in [10].

4.2 Integer Linear Programming Formulation

In this section we formulate the array allocation problem as an Integer Linear
Programming problem. We use the Array Relation Graph representation for this
formulation too. We use a 0-1 integer variable with xij = 1 to denote that array
i is allocated to a memory bank j. Let sj denote the size of memory bank j. If
all memory banks are of size m, then sj = m for all j. Once again we assume
that the size of an array wv is less than that of a memory bank size sj . Further,
since we assume an array can be allocated to only one memory bank, we have
the following constraint:

k
∑

j=1

xij = 1 for all i = 1, n (1)

Now the sum of the sizes of arrays allocated to each memory bank must be less
than the size of the memory bank. This constraint can be formulated as:

n
∑

i=1

xij ∗ wi ≤ sj for all j = 1, ..., k (2)

Note that in the above equation wi is a constant. To model whether an edge
(i, j) is an external edge, i.e., spans two partitions, we use a 0-1 integer variable
eij . If xip = 1 and xjq = 1, where p �= q, indicating that arrays i and j are
placed in two different memory banks (viz. p and q), then the edge (i, j) is an
external edge and therefore the value of eij must be one. This is specified by the
following logical statement (xip Λ xjq) =⇒ eij . This can be written as a linear
constraint as follows:

xip + xjq − eij < 2 for all i, j ∈ [1, n] and p, q ∈ [1, m] (3)

It can be seen that if xip = 1 and xjq = 1, then eij should be equal to 1 to
satisfy the above equation. Although the above constraint does not necessarily
set the value of eij to 0 when either of (xip = 0) or (xjq = 0), the use of eij in
the objective function will ensure this. Thus the objective function of the array
allocation problem is to minimize the sum of the weights on the external edges.
That is

minimize

n
∑

i=1

n
∑

j=i+1

eij ∗ cij (4)

subject to Equations 1, 2 and 3. Note that cijs in the objective function are
constants.

40 K. Shyam and R. Govindarajan

5 Experimental Results

5.1 Implementation Details

We have used the SUIF compiler framework [18] to implement our data alloca-
tion heuristics. We first compile the given benchmark into a SUIF intermediate
file. SUIF provides a framework to analyze this intermediate file on the basis
of data dependence framework, live dependence analysis, etc. We use the de-
pendency analysis framework to compute a co-access index matrix, which is the
edge weight matrix Cuv. That is, for a given array A in the program, this matrix
is used to find out those arrays that are accessed together along with this array.
The sizes of the arrays, along with co-access index matrix are used to construct
the ARG which in turn is used as input to the array allocation heuristic. We
have implemented Algorithm 1 for our array allocation heuristic. The output
of the heuristic is the partition of arrays into different memory banks. For the
Integer Linear Programming problem formulation we have used the commercial
solver CPLEX R© [5]. From the partition obtained from the heuristic or CPLEX
solver, we derive the declaration order of the arrays (with appropriate padding)
to enforce the partition to different memory banks. We also make necessary
modifications to accommodate arrays whose sizes are greater than the memory
banks.

We have used Simple-Scalar[16] to simulate the execution of the benchmark
programs. The benchmarks with modified array declaration order, are compiled
using the PISA tool-chain compiler provided along with the Simple-Scalar distri-
bution with -O2 optimizations. We have simulated full program execution. The
energy consumption of the memory subsystem is estimated by first generating
the address trace and determining the active or low-power modes in which the
memory banks are in during the different regions of program execution. The
energy consumption of the memory subsystem is estimated using the method
outlined in Section 2.

5.2 Evaluation Methodology

We have used six array-dominated and data-intensive benchmarks, four from
scientific applications and two applications from the embedded systems domain.
Liv8 is a part of the Livermore[12] kernel, which does 2D ADI Integration and
has 6 arrays with a dataset size of 33MB. tomcatv having 6 arrays and a dataset
of 48MB, is a part of SPEC’95 benchmark suite and is a vectorized mesh genera-
tion program. eflux is a part of Perfect Club benchmark suite and is widely used
in image processing applications. It has 5 arrays and a data set size of 42MB.
vpenta having 8 arrays and a dataset of size 34MB, is a part of the nasa7 kernel,
a program in the SPEC’92 floating-point benchmark suite, and is a routine to
invert 3 pentadiagonals. The MPEG-4 Encoder and Decoder is a video decoder
and encoder, having 12 arrays and a dataset of 54MB. The AMR Encoder and
Decoder is a speech encoder and decoder. It has 10 arrays and a dataset of size
57MB. These are primarily used in many multimedia applications for portable

An Array Allocation Scheme for Energy Reduction 41

devices like video capture etc. For the purposes of our experiments, a fifteen
minute raw video sample and a fifteen minute raw audio sample were used.
These samples were encoded and then decoded back to raw video and raw audio
samples.

Many portable devices of today do not provide multiprogramming environ-
ment nor have a virtual memory subsystem. Hence, we have assumed a single
program environment and all addresses are physical addresses. Further, for most
of our experiments, we have assumed a memory system without caches. We
have assumed an in-order execution processor having two memory system ports,
four integer and floating point ALU’s, and one integer and one floating point
multiplier/divider.

5.3 Results

First we report the performance comparison of four different array allocation
techniques. The No-allocation scheme refers to one in which arrays are allocated
to memory banks in the order in which they are declared in the program. How-
ever, we assume that, whenever possible, inactive memory banks are put into
appropriate low power mode even in this No-Allocation scheme. The MWPC
technique refers to Delaluz’ scheme [6] which allocates arrays to memory banks
based on the Maximum Weight Path Cover approach. The HGPS scheme cor-
responds to the heuristic graph partitioning scheme discussed in Section 4.1.
Finally, the ILPS scheme refers to the ILP formulation presented in Section 4.2.
In this study we assume a memory bank size of 2MB and a memory subsystem
having enough memory banks to hold all the arrays. In all these experiments,
we assume oracle activation of a memory bank as discussed in Section 2. The
oracle activation scheme, assumed equally for all four schemes, gives the up-
per bound of the energy reduction achievable by each of the schemes. We will

Fig. 3. Energy Comparisons for a 2MB
Memory Bank

Fig. 4. Power-Down Cycle Comparisons for
a 8MB Memory Bank

42 K. Shyam and R. Govindarajan

evaluate our schemes under a more realistic on-demand activation scheme later
in this section.

In Figure 3 we plot the energy consumption of the memory subsystem, for
all the benchmarks under various allocation schemes normalized to the No-
Allocation scheme, which is treated as the base case. We observe that the the
MWPC scheme achieves an energy reduction of 8% to 12% in various bench-
marks programs. Whereas, HGPS and ILPS achieve a reduction of 18% to 20%
in comparison to the No-Allocation scheme. Thus the HGPS and ILPS schemes
achieve a further reduction in energy of 8% to 10% over MWPC. This clearly
demonstrates the limitation of formulating the array allocation problem as a
Maximum Weight Path Cover problem and also highlights the benefits of the
graph partitioning approach.

Further, we observe that our heuristic graph partitioning method performs as
well as the optimal solution given by the ILPS solver. This is encouraging, given
that the heuristic approach takes only 0.1 seconds on the average to solve an
average graph partitioning problem, while the ILPS solver could take hundreds
of seconds for the same problem. However, in many cases, when the number of
arrays and/or memory banks is small (less than 20), the ILPS solver was also
able to obtain the optimal partition within 2 seconds.

Much of the effectiveness of the heuristic in trying to reduce the energy con-
sumed by the memory subsystem comes from placing a memory bank in the
lowest power mode possible viz., Power-Down mode for the largest number of
cycles. Hence an increase in number of Power-Down cycles would mean that
it is able to find large intervals of idle time for a particular memory bank.
Figure 4 plots the power-down mode cycles for all the benchmarks running on a
system which has memory banks of size 8MB, normalized to the base case i.e.,
the No-Allocation scheme. As can be observed from Figure 4, the HGPS heuristic
scheme proposed in this paper is able to place a memory bank in Power-Down
mode for as much as 25% more cycles when compared to the base case and upto
12% when compared to using MWPC heuristic. Further, the number of cycles
in the power-down mode for the HGPS is within 1% of that for ILPS.

Next we study the impact of memory bank size on energy reduction. In Figure 5
we plot the actual energy consumed (in micro-Joules) by the memory system, with
memory bank sizes of 2MB, 4MB, or 8MB, for MPEG-4 and AMR benchmarks un-
der various array allocation schemes. The results for other benchmarks are similar
and are not included here due to space constraints. We observe that even under
various memory bank sizes HGPS and ILPS perform significantly better than No-
Allocation and MWPC schemes. An average improvement of 8% over MWPC and
18% over No-Allocation is seen in all cases. Also we observe that the difference in
the energy consumed by the HGPS and ILPS array layouts is within 1%. Next,
as the memory bank size is increased from 2MB to 4MB and 8MB, the energy con-
sumedby thememory subsystem increases by 14% in case ofAMRand105% in case
of MPEG-4. However this increase is seen uniformly across all allocation schemes.

An Array Allocation Scheme for Energy Reduction 43

Fig. 5. Energy Comparisons for MPEG-4 and AMR Benchmarks

This is due to fewer memory banks and hence fewer opportunities available for the
memory allocation scheme to put them to low power modes.

Next we compare the oracle memory bank activation and on-demand mem-
ory bank activation schemes. As explained in Section 2, the on-demand ac-
tivation scheme results in increased execution time due to resynchronization
time. Further, the low-power mode (Standby, Napping, Power-down) to which
a memory bank is put into is determined assuming oracle knowledge. Figure 6
plots the energy consumed by MWPC and HGPS methods with oracle and on-
demand memory bank activation, normalized to No-Allocation method. In this
graph MWPC(OD) and HGPS(OD) refer to MWPC method and HGPS schemes
with on-demand memory bank activation, while MWPC and HGPS refer to
the respective schemes with oracle activation. The graphs in Figure 6 clearly
shows that HGPS with on-demand activation performs better than MWPC and
MWPC(OD) by 5% to 8%. Further, for HGPS method it can be observed that
the energy consumption difference is only around 3% between oracle and on-
demand activation, while this difference is upto 6% for MWPC method. This
could be due to the fact that HGPS method is able to place a large number of
memory banks in optimum low-power mode, which reduces the need to perform
frequent resynchronization.

Figure 7 plots the execution cycles for on-demand memory bank activation
for MWPC and HGPS methods normalized to No-Allocation method. We have
not plotted the execution cycles for oracle memory bank activation schemes as
they remain the same. Here we observe that the increase in execution cycles for
HGPS method is within 3% while it goes upto 5% for MWPC method. Thus we
conclude that even when we use an on-demand activation scheme, we are still
able to obtain sufficient energy reduction with little increase in execution time
of the program.

In order to study the effect of our array allocation scheme in the presence
of caches, we have performed experiments assuming two different L1 cache con-
figurations, a 4K 2-way set associative cache and a 4k 4-way set associative
cache. We assumed a memory bank size of 2MB in this experiment. In all these

44 K. Shyam and R. Govindarajan

Fig. 6. Energy Comparisons between oracle
and on-demand memory bank activation for
a 2MB memory bank

Fig. 7. Execution Cycle Comparisons for
on-demand memory bank activation for
2MB memory bank

Fig. 8. Energy Comparisons for a 2MB Memory Bank with caches

experiments, we assume oracle activation of a memory bank. Figure 8 gives de-
tails of energy consumption of the memory subsystem with caches, for all the
benchmarks under various allocation schemes normalized to the No-Allocation
scheme. We observe that the energy reduction due to various array allocation
schemes decreases when the memory subsystem consists of a cache. This is due
to the fact that the cache filters many of the memory accesses (due to local-
ity), which, in turn, enables the memory banks to be put into low-power modes
for longer duration even in No-Allocation scheme. However, we also make an
important observation that the HGPS and ILPS schemes are able to obtain a
reduction of about 8% in the energy consumption when compared to MWPC
scheme, even when a cache is present. The results for remaining memory bank
configurations (4MB, 8MB) are along similar lines and have not been included
due to space constraints.

An Array Allocation Scheme for Energy Reduction 45

6 Related Work

The problem of minimizing the energy consumption of the memory subsystem
is dealt with in [6]. They have also proposed loop optimizations such as tiling
for reducing the energy consumption which are orthogonal to the array place-
ment technique considered in this paper. Also the loop optimization considered
in their paper might introduce control overheads, which may lead to increase in
execution time, which in turn may increase the energy consumed by the system.
Their work does not model these appropriately.

Array allocation techniques to minimize the energy consumption of the mem-
ory subsystem is dealt with in [2]. They have proposed Array-interleaving and
memory layout modifications for identifying memory banks which can be tran-
sitioned into low power modes. However they focus mainly on optimizations
meant for the Java Virtual Machine environment. The array allocation we have
proposed however does not limit itself to any particular run-time environment.

A memory bank assignment algorithm for retargetable compilers is proposed
in [9]. They profile the program to obtain data access patterns of variables and
use this information to place the variables in such a way that the memory banks
can be transitioned to a low power mode. However, unlike the various low-power
operating modes for memory banks considered in this paper, they assume that
each memory bank is either kept in active state or is switched off.

Energy aware variable partitioning along with instruction scheduling for multi-
bank architectures has also been dealt with in [17]. An optimal assignment of
variables to memory banks is obtained through effective scheduling of memory
intensive instructions. The heuristic we have proposed focuses directly on allo-
cating variables to memory banks by making use of the features provided by the
underlying hardware.

Assignment of variables to memory banks is also dealt with in [4]. Their work
tries to optimize the assignment mainly for Digital Signal Processors. Although
they have also reduced the assignment problem to a graph partitioning problem,
they use the idea of Maximum Spanning Tree to partition their graph. Array
allocation to memory banks that provide various low power operating modes
was also done in [15]. The arrays that are accessed together for a large number
of times are allocated to a single memory bank by a greedy heuristic which eval-
uates a trade-off between size of array and access with other arrays currently in
the memory banks.

In [1] they consider Page allocation policies, controlled by operating system,
that can take advantage of the various low power modes of the memory banks
are considered in [1]. They try to reassign frequently used pages to common
memory banks, so that the remaining memory banks can be switched to a low
power mode without impacting program performance. While their study con-
centrates on pages and interaction between the operating system and memory
banks, our study focuses on arrays and how compilers can make use of the hard-
ware features.

46 K. Shyam and R. Govindarajan

7 Conclusions

In this paper we formulate the array allocation problem as a graph partitioning
problem. We observe that this is a more natural formulation for the problem
that the earlier approaches [6], [7]. We have used existing heuristic approaches
for the graph partitioning problem as a solution to the array allocation problem.
We have shown that the array allocation problem can also be formulated as an
Integer Linear Programming problem. Our heuristic approaches obtain, on an
average, 20% reduction in memory subsystem energy over energy unaware array
allocation methods, and 8% to 10% reduction over other competitive methods.
Further the heuristic solution performs as well as the optimal solution obtained
from the ILP solution, and results in energy consumption that is within 1% of the
optimal solution. As future work, we are investigating on methods to determine
the appropriate low-power mode for the memory banks.

References

1. A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In
Proc. of the Ninth International Conference on Architectural support for program-
ming languages and operating systems. pp.105-116, 2000.

2. R. Athavale, N. Vijaykrishnan, M. Kandemir, M.J. Irwin. Influence of array allo-
cation mechanisms on memory system energy. In Proc. of the 15th International
Parallel and Distributed Processing Symposium, 2001.

3. F. Cathoor, S. Wuytack, E. De Greef, F. Fransen L.Nachtergaele, and H. De Man.
System-level transformations for low-power data transfer and storage. In Low-
Power CMOS Design, R. Chandrakasan and R. Brodersen, Eds. IEEEPress, Pis-
cataway, NJ.

4. Jeonghun Cho, Yunheung Paek, David Whalley, Fast memory bank assignment for
fixed-point digital signal processors, ACM Transactions on Design Automation of
Electronic Systems (TODAES), pp:52-74, 2004

5. CPLEX. http://www.ilog.com/products/cplex/
6. V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-Oriented

Compiler Optimizations for Partitioned Memory Architectures. In Proc. of Interna-
tional conference on Compilers, architecture, and synthesis for embedded systems,
pp.138-147, 2000.

7. V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramniam, and M. J. Irwin.
DRAM Energy Management Using Software and Hardware Directed Power Mode
Control. In Proc. of The Seventh International Symposium on High-Performance
Computer Architecture January 2001.

8. L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton, New Jersey: Princeton
University Press, p.11, 1962.

9. J. D. Hiser and J. W. Davidson. EMBARC: an efficient memory bank assignment
algorithm for retargetable compilers. ACM SIGPLAN Notices, v.39 n.7, July 2004

10. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. Technical
Report TR 98-036, Department of Computer Science , University of Minnesota,
1998.

11. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291-307, 1970.

An Array Allocation Scheme for Energy Reduction 47

12. Livermore Kernels. http://www.netlib.org/benchmark/
13. lp solve. http://groups.yahoo.com/group/lp solve/
14. Samsung R© Electronics - Direct RDRAM DataSheet 2005.
15. V.V.N.S. Sarvani. Compiler Techniques for Code Size and Power Reduction for

Embedded Processors, M.Sc[Engg] Thesis, Department of Computer Science and
Automation, Indian Institute of Science, Bangalore, India, 2003.

16. D. Burger and T. Austin. The SimpleScalar Tool Set, Version 3.0. Technical report,
Department of Computer Science, University of Wisconsin, Madison, 1999.

17. Z. Wang and X. S. Huw Energy-aware variable partitioning and instruction schedul-
ing for multibank memory architectures. ACM Transactions on Design Automation
of Electronic Systems (TODAES), pp:369-388, 2005.

18. R. Wilson, et al. SUIF: An infrastructure for research on parallelizing and opti-
mizing compilers. ACM SIGPLAN Notices, 29(12):31-37, December 1994.

Using Prefetching to Improve Reference-Counting

Garbage Collectors⋆

Harel Paz1,⋆⋆ and Erez Petrank2,⋆ ⋆ ⋆

1 IBM Haifa Research Laboratory, Mount Carmel, Haifa 31905, Israel

paz@il.ibm.com
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

erez@cs.technion.ac.il

Abstract. Reference counting is a classical garbage collection method. Recently,

a series of papers have extended the basic method to drastically reduce its notori-

ous overhead and extend the basic method to run concurrently and efficiently on

a modern computing platform. In this paper we investigate the use of prefetching

to further improve the efficiency of the reference-counting collector.

We propose potential prefetching opportunities for the advanced reference-

counting collector and report an implementation of a collector that employs

such prefetching. The proposed prefetch instructions were inserted into the Jikes

reference-counting collector obtaining an average reduction of 8.7% of the mem-

ory management overheads.

1 Introduction

The performance gap between memory latency and processors’ speed is increasing,

causing memory accesses to become a performance bottleneck. Cache hierarchies are

used to reduce this gap, but caches are of limited size and usually cannot hold the ap-

plication’s entire working set. Thus, cache misses typically form a performance bottle-

neck. Data prefetching is a technique for reducing or hiding the memory stalls caused by

cache misses. Prefetching data to the cache before being accessed by the program hides

the latency of loads that miss the cache, and improves the overall program execution

time (as prefetch is a non-blocking memory operation). On the negative side, prefetch-

ing increases memory traffic, cache pollution, and the number of executed instructions.

In addition, to achieve performance improvement, prefetch scheduling should be done

with care. Data prefetched too early may be evicted from the cache before used, while

a late prefetch will not mask the system latency.

Compiler-inserted data prefetching have been proposed for predictable access pat-

terns such as accesses to arrays and certain pointer applications (e.g., [1,2,3,4]). Stan-

dard platforms usually automatically prefetch data from the memory whose access can

be easily predicted.

Boehm [5] was the first to study the use of prefetching for garbage collection.

Prefetching turned out to be very effective for a mark-sweep collector, especially since

⋆ This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 845/06).
⋆⋆ Work done while the author was at the Computer Science Dept. at the Technion.

⋆⋆⋆ On sabbatical leave from the Computer Science Department, Technion, Haifa 32000, Israel.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 48–63, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

Using Prefetching to Improve Reference-Counting Garbage Collectors 49

the collector accesses each object once in an order that may be predicted. Subsequent

work [4,6,7] showed that prefetching was able to further reduce the cost of a tracing

garbage collection. But all of this work has concentrated on tracing collectors and the

potential of prefetching for reference-counting collectors remained open.

In this work we study the use of prefetching for reference counting. Reference count-

ing [8] differs from tracing collectors in the sense that its cost is directly related to the

execution of the program, rather than being proportional to the amount of live space.

Also, it has better cache behavior, since the objects that are touched during the collec-

tion are allocated thereafter and used by the program. Traditionally, it was believed that

reference counting had a high overhead and that it required an atomic update for any

pointer modification, making it unsuitable for modern parallel platforms. However, it

was lately shown [9,10] that the overhead can be dramatically decreased and that the

atomicity requirement can be eliminated. Thus, reference counting became a viable op-

tion again for modern computing. Subsequent papers [11,12,13,14] have further shown

that techniques developed for tracing collectors, can be modified and extended to work

with reference-counting collectors as well. This line of work is crucial to making refer-

ence counting compete with the efficiency of the thoroughly studied tracing collectors.

This paper reports an additional such study, the use of prefetching to improve reference

counting efficiency, and show that data accessed by a reference-counting collector can

be partially predicted. Thus, prefetching can be used to reduce the cache misses’ over-

head incurred by a reference-counting collector and improve the collector efficiency.

The representative generic reference-counting algorithm that we use to develop the

prefetching techniques in this work uses deferred reference counting [15] and employs

the update coalescing write-barrier proposed in [9,10]. The State-of-the-art efficient

reference-counting collectors employ these mechanisms to obtain their efficiency.

We consider three main parts of the memory manager: (1) the reference-count in-

crements stage, (2) the reference-count decrements and object deletion stage, and (3)

objects’ allocation. In accordance with these stages, we identify five major opportuni-

ties where data accesses can be predicted in advance, and prefetch instructions may be

inserted to improve performance. We study these opportunities and measure the im-

proved performance of each stage, and of the overall garbage collection execution. We

do not study prefetch opportunities with a cycle collection algorithm. A cycle collector

is based on some sort of tracing, and hence Boehm’s work [5] already handles it.

Implementation and measurements. We have implemented the proposed prefetching

insertions with the reference-counting collector supplied with the Jikes RVM [16]. We

used the SPECjbb2000 benchmark, the SPECjvm98 benchmarks suite [17] and the

DaCapo benchmarks suite [18]. We first measure the general behavior of these bench-

marks and show that most objects are accessed multiple times by the reference-counting

collector. This means that the original collector (without the prefetching) encounters a

lot of cache hits, perhaps reducing the potential impact of prefetching on the execution.

Moreover, repetitive accesses tend to be close in time. Nevertheless, the implemented

prefetch instructions reduce garbage collection overhead by as much as 14.9% and on

average by 8.7% when measured across all benchmarks.

50 H. Paz and E. Petrank

Organization. We review the reference-counting collector in Section 2. The prefetch

insertion opportunities of the reference-counting collector are presented in Section 3.

Results and related work are discussed in Sections 4 and 5. We conclude in Section 6.

Due to lack of space, implementation details and more results are provided in [19].

2 The Reference-Counting Collector

We start by reviewing the reference-counting collector and presenting a pseudo code

that will be used to explain the prefetch instructions insertions later (in Section 3). Ba-

sically, a reference-counting collector maintains a reference-count field for each object

signifying the number of pointers that reference the object. A naive reference-counting

system updates the reference counts during each pointer update via a write barrier.

When a pointer is modified from pointing to O1 into pointing to O2, the write barrier

decrements the count of O1 and increments the count of O2. When the counter of an

object is decremented to zero, it is reclaimed. At that time, the counts of its children are

decremented as well, possibly causing more reclamations recursively.

The reference-counting collector we refer to includes two major improvements,

which substantially reduce the computational overhead required to adjust reference

counters. First, it employs the deferred reference-counting method of Deutsch and Bo-

brow [15], which tracks only stores into the heap (ignoring local references stores).

The second technique employed is the Levanoni-Petrank update-coalescing write bar-

rier [9,10], which records information on modified objects and uses it to update the

reference counts during garbage collection. Consider a pointer slot that, between two

garbage collections, is assigned the values o0,o1,o2, . . . ,on. Instead of executing 2n

reference-count updates for these assignments: RC(o0)−−, RC(o1)++, RC(o1)−−,

RC(o2)++, . . . , RC(on)++, only the two required updates are executed: RC(o0)−−
and RC(on)++.

To implement update coalescing, the collector we investigate employs two buffers:

ModBuffer and DecBuffer. ModBuffer contains the addresses of the objects which were

created or modified since the previous collection. Reading these addresses during the

garbage collection gives us the on values, whose RC values should be incremented. The

DecBuffer contains the addresses of the o0 objects recorded before the objects in the

ModBuffer were first modified after the previous collection. The reference counts of

these objects should be decremented. Note that in the DecBuffer we have objects that

were referenced in the previous collection by the objects that are in the ModBuffer.

To simplify this work, the collector we have used works in a stop-the-world manner.

An involved mechanism is developed in the original paper [9,10] to support collector

concurrency and application parallelism.

2.1 Pseudo Code

Next, we present a general pseudo code of a reference-counting collector which em-

ploys the coalescing write barrier. The pseudo code assumes the existence of two

buffers, ModBuffer and DecBuffer as explained above.

Mutator cooperation. The mutators need to execute garbage-collection related code

on two occasions: when updating an object and when allocating a new object. This

Using Prefetching to Improve Reference-Counting Garbage Collectors 51

is accomplished by the Update (Figure 1) Procedure and the New (Figure 2) Proce-

dure. Procedure Update (Figure 1) describes the write barrier which is activated at

each (heap’s) pointer assignment1. During the first modification of an object after a col-

lection, the write barrier records the modified object in ModBuffer and it sets its dirty

bit. Next, the modified object’s pointers are recorded in the DecBuffer. After the log-

ging has occurred, the actual pointer modification happens. Procedure New (Figure 2)

is used when allocating an object. Upon the creation of an object, its address is logged

onto ModBuffer, and the dirty bit of the new object is set. There is no need to record its

children slot values as they are all null at creation time.

Phases of the collection. The collector’s algorithm runs in phases as follows.

– Mark roots: the objects directly reachable from the program roots are marked.

– Process ModBuffer: the collector clears the dirty marks of the objects logged in

ModBuffer, while incrementing the reference counts of their current descendants.

– Reclaim garbage: the collector decrements the reference counts of the objects

logged in DecBuffer while (recursively) reclaiming objects which have a zero ref-

erence count and which are not referenced by the system roots.

– Prepare next collection: un-marks the objects referenced from the program roots

and prepares the buffers for the next collection.

Collector code. The reference-counting collector’s code for a collection cycle is pre-

sented in Procedure Collection-Cycle (Figure 3). Procedure Process-ModBuffer
(Figure 4) handles the objects logged in ModBuffer. These are the objects that were

modified or created since the previous collection cycle. This procedure first clears the

dirty bit of an object logged in ModBuffer, and then increments the reference count

of the objects it references. Procedure Process-DecBuffer-and-Release (Figure 5)

decrements the reference counts of objects logged in DecBuffer, and performs the re-

cursive deletion if necessary. Procedure Prepare-Next-Collection (Figure 6) cleans

the Roots, ModBuffer and DecBuffer buffers.

2.2 Allocation Using Segregated Free Lists

A garbage collector is accompanied by a memory allocator that serves the applica-

tion’s allocations requests and the collector’s reclamations requests. We have built our

implementation on the Jikes RVM, which uses the standard segregated free lists alloca-

tor [20,21,22] with the reference-counting collector. Since a couple of prefetch insertion

opportunities are proposed for the allocator, we review this allocator below.

A segregated free lists allocator holds, for each possible allocation size, a linked list

of available memory. Upon an allocation request, a chunk is taken from the free list of

the appropriate size. When a chunk is freed, it is returned to the appropriate free list.

Jikes RVM implementation uses a block-oriented segregated free lists allocator [20]

1 When dealing with multithreading the write barrier must be modified by either using an

atomic operation for the pointer assignment or the non-atomic extension proposed by Lev-

anoni and Petrank [9,10]. To simplify the discussion, we consider the simplest form of the

write barrier. This treatment handles well atomic operations and does not change much if we

adopt the more sophisticated non-atomic write-barrier.

52 H. Paz and E. Petrank

Procedure Update(o: object, offset: int , new: object)

1. if not o.dirty then // OBJECT NOT DIRTY

2. add o to ModBuffer

3. o.dirty :=true // SET DIRTY

4. foreach pointer field ptr of o which is not NULL

5. add ptr to DecBuffer

6. write(o, offset ,new)

Fig. 1. Reference counting: Update Operation

Procedure New(size: Integer, obj: Object)

1. Obtain an object obj of size size from the allocator.

2. insert the address of obj into ModBuffer

3. obj.dirty := true

4. return obj

Fig. 2. Reference counting: Allocation Operation

Procedure Collection-Cycle
1. accumulate all object directly reference by the program roots onto Roots

2. Process-ModBuffer
3. Process-DecBuffer-and-Release
4. Prepare-Next-Collection

Fig. 3. Reference counting- Collection Cycle

Procedure Process-ModBuffer
1. for each object ob j whose address is in ModBuffer do

2. ob j.dirty := false

3. // INCREMENT CURRENT REFERENT OF THE OBJECT ob j

4. for each pointer ptr of ob j do

5. increment rc of object referenced by ptr

Fig. 4. Reference counting- Process-ModBuffer

that works as follows. The heap is divided into blocks, partitioned to chunks of a single

size. The free list of any given size consists of a chain of blocks. Each block has an

associated bit-per-chunk mark array (bitmap), which records the occupancy status of

each chunk. When a chunk is allocated the relevant bit is marked. The bit is un-marked

Using Prefetching to Improve Reference-Counting Garbage Collectors 53

Procedure Process-DecBuffer-and-Release
1. for each object ob j whose address is in DecBuffer do

2. ob j.rc−−
3. if ob j.rc = 0 ∧ ob j /∈ Roots then

4. for each pointer ptr of ob j do

5. push ptr onto DecBuffer

6. return ob j to the general purpose allocator

Fig. 5. Reference counting- Process-DecBuffer-and-Release

Procedure Prepare-Next-Collection
1. Roots := ⊘
2. ModBu f f er := ⊘
3. DecBu f f er := ⊘

Fig. 6. Reference counting- Prepare-Next-Collection

Procedure Build-Block-Free-List
1. markWordAddress := address of the first word in the block’s bitmap

2. markWordEnd := address of the last word in the block’s bitmap

3. previousFree := cursor address

4. while markWordAddress ≤ markWordEnd

5. markWord := word referenced by markWordAddress

6. foreach bit in markWord

7. if bit is not set then

8. ob jectRe f := address of chunk relevant to bit

9. write ob jectRe f into previousFree

10. previousFree := ob jectRe f

11. markWordAddress += size of word

12. write null into previousFree

Fig. 7. Reference counting- Build-Block-Free-List

when the object held in this chuck is reclaimed. Unused blocks are kept in a block pool.

If, upon an allocation request, the relevant free list is empty, a block is taken from the

blocks pool, and the first chunk of this block is returned. An empty block (whose all

chunks are free) is returned to the blocks pool, and may be used later with a different

object size. The collector is responsible of returning empty blocks to the blocks pool.

In Jikes, each free list employs a cursor pointing to the next available chunk for

allocation in the corresponding size. After allocating the chunk referenced by the cursor,

the cursor is advanced to the next available chunk. To save scanning the bitmap during

each allocation, a linked list, containing all the free chunks of a block, is created when

the block is first employed after a collection. The Procedure Build-Block-Free-List
which builds a block’s free list is presented in Figure 7.

54 H. Paz and E. Petrank

3 Prefetching for Reference Counting

We now proceed to describing the prefetch opportunities existing for a reference-

counting collector (accompanied by a segregated free lists allocator), and the prefetch

insertions that we have applied. We partition the discussion according to the collector

phases.

3.1 Process-ModBuffer Stage

Consider the pseudo code of the Process-ModBuffer Procedure presented in Fig-

ure 4. In this procedure, the collector clears the dirty marks of the objects logged in

ModBuffer, while incrementing the reference count of their descendants. For this phase

Procedure Process-ModBuffer
1. prefetch the first object whose address is in ModBuffer

2. previous := dummyObject

3. for each object ob j whose address is in ModBuffer do

4. prefetch the next object whose address is in ModBuffer

5. ob j.dirty := false

6. // INCREMENT CURRENT REFERENT OF THE OBJECT ob j

7. for each pointer ptr of ob j do

8. prefetch the rc field of the object referenced by ptr

9. increment rc of object referenced by previous

10. previous := ptr

11. increment rc of object referenced by previous

Fig. 8. Reference counting- Process-ModBuffer with prefetch

Procedure Process-DecBuffer-and-Release
1. prefetch the rc field of the first object whose address is in DecBuffer

2. for each object ob j whose address is in DecBuffer do

3. prefetch the rc field of the next object whose address is in DecBuffer

4. ob j.rc−−
5. if ob j.rc = 0 ∧ ob j /∈ Roots then

6. prefetch the word containing the mark-bit relevant to ob j

7. for each pointer ptr of ob j do

8. push ptr onto DecBuffer

9. return ob j to the general purpose allocator

10. //UNMARK THE MARK-BIT RELEVANT TO ob j

Fig. 9. Reference counting- Process-DecBuffer-and-Release with prefetch

Using Prefetching to Improve Reference-Counting Garbage Collectors 55

we propose two prefetch opportunities. The modified Process-ModBuffer Procedure,

including the prefetch instructions, is presented in Figure 8. An explanation follows.

The first prefetch opportunity appears during the traversal of ModBuffer. The scan of

each object referenced by ModBuffer imposes a potential cache miss. Since ModBuffer

is traversed sequentially, this cache miss can be anticipated and avoided. A prefetching

of the object that should be scanned in the next iteration is inserted just before scanning

the current object. This follows a standard prefetch strategy for loops, placing prefetches

for data accessed by the future loop iteration(s) (e.g., [3]). One can imagine prefetching

further ahead, but we have obtained the most significant improvements by prefetching a

single address ahead. Lines 1 and 4 in Figure 8 execute the proposed prefetch. We will

later refer to this strategy as the ModBuffer-traversal strategy.

The second prefetch opportunity appears during the reference-count increments.

Each increment accesses a reference-count field. To handle a potential cache miss, we

slightly delay the increment of an object’s reference count. When an increment to a

count is required, the count of the object is prefetched; it is only incremented in the

following loop iteration. The location of the count is stored in a temporary variable

named previous. To avoid a special treatment to the first iteration and the implied ‘if‘

statement, we use a dummy object whose reference count is incremented when the first

count is prefetched. This delaying strategy is presented in lines 2 and 8-11 of Figure 8.

We will later refer to this strategy as the delay-increment strategy.

3.2 Process-DecBuffer-and-Release Stage

Figure 5 describes the Process-DecBuffer-and-Release Procedure, in which the col-

lector decrements the reference counts of the objects logged in DecBuffer, and recur-

sively reclaims the dead objects. This phase also offers two prefetch opportunities. The

modified Process-DecBuffer-and-Release Procedure, which includes these prefetch

modifications, is presented in Figure 9. A description follows.

Similarly to the Process-ModBuffer stage, the first prefetch opportunity for the

Process-DecBuffer-and-Release stage occurs with the traversal of DecBuffer. The

reference-count field is accessed for each decrement. This time, we do not typically

touch the referent, unless we reclaim it. So only the reference-count field of the refer-

ent need be prefetched. Note that unlike before, the objects for which we modify the

counts are directly referenced by the buffer (and not the children of the objects pointed

from the buffer, as in the handling of the Process-ModBuffer Procedure). We exploit

the loop prefetch strategy described in the previous stage and prefetch the reference-

count field of the next object in the buffer before handling the current one. Lines 1 and

3 of Figure 9 present this prefetch strategy. We will later refer to this strategy as the

DecBuffer-traversal strategy.

The second prefetch opportunity at this stage occurs during the reclamation of an

object. Once an unreachable object is discovered (line 3 of Figure 5), the object is first

scanned and all its descendants are recorded in the DecBuffer; only then the object is

reclaimed. As described in Section 2.2, the reclamation of an object sums up to un-

marking the mark-bit corresponding to this object. Accessing the mark-bit creates a

potential miss and so we prefetch the relevant mark-bit word as soon as we realize that

the object should be reclaimed. Namely, the prefetch is performed right after line 3 of

56 H. Paz and E. Petrank

Procedure Build-Block-Free-List
1. markWordAddress := address of the first word in the block’s bitmap

2. markWordEnd := address of the last word in the block’s bitmap

3. previousFree := cursor address

4. while markWordAddress ≤ markWordEnd

5. markWord := word referenced by markWordAddress

6. markWordAddress += size of word

7. prefetch markWordAddress

8. foreach bit in markWord

9. if bit is not set then

10. ob jectRe f := address of chunk relevant to bit

11. write ob jectRe f into previousFree

12. previousFree := ob jectRe f

13. write null into previousFree

Fig. 10. Reference counting- Build-Block-Free-List with prefetch

Figure 5. This way, the miss penalty for unsetting the relevant bit later is reduced or

even eliminated. Line 6 in Figure 9 presents this prefetch modification. We will later

refer to this strategy as the object-release strategy.

3.3 Build-Block-Free-List Stage

The fifth prefetch opportunity occurs with the segregated free lists allocator. While

iterating over a block’s bitmap words, we’ve inserted a prefetch to the next mark-bit

word, before processing the current one. The Build-Block-Free-List Procedure was

modified to exploit this loop prefetching strategy as presented in lines 6-7 of Figure 10.

4 Measurements

Platform and benchmarks. We have run our measurements on a dual Intel’s Xeon

1.8GHz processors workstation. These processors have a 16KB sized L1 cache and

a 512KB sized L2 cache. We have used the SPECjvm98 benchmark suite, the

SPECjbb2000 benchmark2 (both described in SPEC’s web site [17]), and the DaCapo

benchmarks [18]3.

The collector. We have inserted the proposed prefetch instructions into the reference-

counting collector of Jikes [16]. Next, we have compared the original reference-

counting collector of Jikes, against the collector modified to include these prefetch

instructions. In both collectors, we have disabled the cycle collection algorithm. The

cycle collector has a characteristic behavior that resembles tracing collectors and it may

2 We have slightly modified SPECjbb2000, to run a fixed number of transactions instead of

running during a fixed time period.
3 Measurements of 222 mpegaudio and 201 compress are not presented. 222 mpegaudio

does not perform meaningful allocation activity. 201 compress main allocation activity con-

cerns cyclic structures, whose reclamation is not relevant in this work. The DaCapo bench-

marks presented are the ones we were able to run with Jikes.

Using Prefetching to Improve Reference-Counting Garbage Collectors 57

Table 1. Reduction in reference-counting overheads obtained by prefetching

overhead reduction overall

Process Process DecBuffer Build overall benchmark

Benchmarks ModBuffer and Release Blocks gc improvement

jess -0.1% (36.6%) -0.9% (51.5%) -11.9% (11.0%) -1.8% -0.9%

db -11.2% (39.2%) -6.7% (50.5%) -8.0% (8.9%) -8.5% -0.9%

javac -12.2% (31.6%) -8.4% (38.6%) -18.4% (28.4%) -12.3% -3.4%

mtrt -12.3% (26.8%) -3.3% (46.4%) -12.3% (25.2%) -8.0% -1.5%

jack -16.3% (31.3%) -5.9% (54.5%) -23.2% (11.6%) -10.8% -3.1%

jbb -8.3% (24.9%) -6.5% (34.0%) -26.5% (40.1%) -14.9% -4.6%

fop -12.5% (38.7%) -8.1% (39.5%) -11.3% (20.8%) -10.5% -2.1%

antlr -16.1% (30.6%) -8.4% (42.4%) -24.3% (25.6%) -14.6% -1.3%

pmd -8.7% (30.8%) -8.4% (43.8%) -12.3% (25.3%) -9.6% -3.3%

ps 3.0% (38.2%) -3.7% (52.5%) -13.0% (7.3%) -1.7% -0.6%

hsqldb -18.8% (30.1%) -11.0% (41.0%) -17.6% (26.9%) -14.9% -4.6%

jython -9.4% (32.4%) -0.5% (50.8%) -6.6% (15.7%) -4.4% -1.7%

xalan 2.4% (43.6%) -1.2% (51.8%) -24.4% (4.4%) -0.6% -0.6%

average -9.3% -5.6% -16.1% -8.7% -2.2%

interfere with the comparison of the reference-counting collectors. For most applica-

tions this means a negligible increase in the heap size [13].

Testing procedure. Each benchmark was run ten times for both the original reference-

counting collector and the modified reference-counting collector. We report the average

of these runs. To guaranty a fair comparison of the garbage collection characteristics,

we included only runs in which each benchmark performs the same amount of garbage

collections on both collectors. The benchmarks’ heap size, employed in our runs, dou-

bles the minimum heap size required (by the reference-counting collector).

4.1 Prefetch Improvements

Table 1 presents the improvements achieved by using prefetching. A negative percent-

age represents a performance improvement, while a positive percentage represents dete-

rioration in performance. Columns 2-4 present the improvements achieved for each one

of the reference-counting collector stages implemented by the Process-ModBuffer
Procedure (presented in Figure 4), by the Process-DecBuffer-and-Release Proce-

dure (presented in Figure 5), and by the Build-Block-Free-List Procedure (presented in

Figure 7). These presented improvements are calculated relatively to the corresponding

reference-count stages. Hence, for example, a -10.0% appearing on the second column

indicates a 10.0% performance improvement of the Process-ModBuffer stage. To make

the picture complete, the numbers in parenthesis (in columns 2-4) present the distrib-

ution of Jikes original reference-counting collector overhead within the three different

stages. These do not add up to 100% as stages such as scanning threads’ stack are not

counted. The fifth column presents the overall reference-counting’s performance im-

provement achieved. The sixth column introduces the benchmark’s overall throughput

improvement due to prefetching.

58 H. Paz and E. Petrank

Normally, Jikes runs the Build-Block-Free-List Procedure lazily when a new block

is selected for allocations. Therefore, while the Process-ModBuffer and the Process-
DecBuffer-and-Release Procedures are activated once per a garbage collection cycle,

the Build-Block-Free-List Procedure is activated numerous times during the bench-

mark run (i.e., between the collections). In order to accurately measure the time over-

head of this procedure, we have slightly modified Jikes reference-counting collector

(in both versions) to activate the Build-Block-Free-List Procedure continuously (non-

lazily), for all non-empty blocks, once at the end of each collection.

One can see that the proposed prefetch strategies reduce the overall overhead of

reference-counting for all benchmarks. This is emphasized by the last line of Ta-

ble 1, which presents the average improvement of each column. For most benchmarks,

prefetching is able to reduce the overhead imposed by each one of the three stages.

Note, however, that the improvements are not steady among the different benchmarks

and among the different stages. We study this issue in Section 4.2 below.

4.2 Reference-Counting Objects’ Access Behavior

In order to understand the potential of prefetch instruction insertions, we investigate

the memory access patterns of the reference-counting collector. Recall that tracing col-

lectors traverse the application’s live objects in an arbitrary order (depending on the

object’s graph). If a mark table is used by a tracing collector, each live object is likely

to be read exactly once during a collection, since if it was already traversed, its corre-

sponding mark bit in the mark table would indicate that it should not be touched (read)

again. This one-touch behavior creates a high miss rate, highly suitable for prefetching.

The cache-miss behavior of reference counting is not that simple to describe. To

analyze the way a reference-counting collector accesses objects, we ran the following

profiling on memory accesses. We considered each scan of an object and each update

of a reference-count as a single memory access4. Each such access may cause a cache

miss. We recorded the address of each such access into gc-log files, one log file per

collection. Next, each gc-log file was analyzed in the following manner. For a given

window size w, we checked for each access, if the same address was accessed during

the last w (distinct) accesses, creating a cache hit5. For each benchmark, we outputted

the fraction of hits, i.e., the fraction of repeating accesses within the window size, as a

function of the window size.

The results appear in Table 2. We ran the above measurements with five window sizes

(addresses): 100, 1000, 10000, 100000, and 1000000. The smaller windows are more

representative of L1 cache-miss behavior, whereas the larger window sizes represent

behavior with L2 cache sizes.

The measurement should be read as follows. If a 40% percentage appears in the

100 column of a benchmark’s line, it means that 40% of the accesses were to memory

locations that have been previously accessed during the last 100 accessed (distinct) ad-

dresses. A higher percentage means high cache hit ratio and a low potential for effective

4 In this liberal measurement, we counted an object’s scan as a single access, although it may

have involved multiple accesses, e.g., because a large object may contain several pointer slots.
5 We always consider a first access of an object in a collection as a miss.

Using Prefetching to Improve Reference-Counting Garbage Collectors 59

Table 2. Percentage of repeated object accesses (hit ratios) for the entire collection

window size

Benchmarks 100 1000 10000 100000 1000000

jess 58.2% 64.1% 66.9% 68.0% 72.7%

db 15.1% 15.8% 16.8% 68.3% 80.2%

javac 31.3% 37.5% 40.5% 42.8% 50.9%

mtrt 13.6% 17.0% 18.5% 19.8% 22.1%

jack 25.9% 27.9% 29.0% 30.5% 36.3%

jbb 23.5% 30.5% 34.7% 38.2% 46.2%

fop 28.5% 33.4% 35.1% 37.0% 42.0%

antlr 23.2% 26.2% 28.1% 29.1% 33.3%

pmd 28.9% 32.0% 35.4% 39.9% 47.3%

ps 78.2% 79.5% 79.8% 80.2% 90.7%

hsqldb 26.0% 27.9% 29.5% 31.7% 40.0%

jython 54.5% 55.4% 56.1% 56.5% 57.1%

xalan 0.4% 0.6% 2.8% 99.0% 99.5%

average 31.3% 34.4% 36.4% 49.3% 55.3%

prefetching. For a tracing collector, the corresponding measurement would produce an

all zeros table (since an object is not traversed twice during a collection).

It turns out that unlike tracing collectors, the repeated access with reference counting

is quite high and the repeated accesses have temporal proximity. Hence, many memory

accesses hit the L1 cache, making the prefetch a burden, or hit the L2 cache, making

the prefetch less effective. Nevertheless, as seen in Table 1, properly inserted prefetch-

ing instructions can improve performance substantially. A further exploration (phases

profiling) of this memory accesses behavior is provided in [19] for lack of space.

Usually there is correspondence between benchmark improvement percentages (Ta-

ble 1) and repeated object accesses behavior (Table 2). However, the correspondence

is not perfect as repeated object accesses behavior is not the only parameter influenc-

ing prefetch improvements. For example, if many benchmark’s objects do not contain

pointers, then prefetching an object (in order to read its pointers) is a waste. Hence,

even if the repeated object accesses fraction of this benchmark is low, prefetching could

not improve performance much in this case.

4.3 Prefetch Strategy Profiling

Table 1 presented the prefetch improvements achieved for the different reference-

counting stages. However, two different prefetch strategies were implemented in both

the Process-ModBuffer stage and the Process-DecBuffer-and-Release stage. Table 3

breaks the overall improvement into the shares of each particular strategy.

Columns 2-4 of Table 3 present the Process-ModBuffer stage, displaying the effect

of the strategies ModBuffer-traversal and delay-increment (presented in Section 3.1).

As can be seen, the ModBuffer-traversal strategy is the major cause for the prefetch

60 H. Paz and E. Petrank

Table 3. A break of the prefetching improvement due to the two strategies involved in the Process-

ModBuffer stage and the two strategies involved in the Process-DecBuffer-and-Release stage

ModBuffer delay Process DecBuffer object Process DecBuffer

traversal increment ModBuffer traversal release and Release

Benchmarks improvement improvement improvement improvement improvement improvement

jess -5.5% 5.3% -0.1% -0.9% -0.1% -0.9%

db -7.4% -3.8% -11.2% -6.4% -0.2% -6.7%

javac -9.2% -3.0% -12.2% -6.8% -1.6% -8.4%

mtrt -9.5% -2.9% -12.3% -2.0% -1.4% -3.3%

jack -13.8% -2.5% -16.3% -4.3% -1.7% -5.9%

jbb -7.9% -0.3% -8.2% -5.6% -0.9% -6.5%

fop -10.7% -1.8% -12.5% -6.7% -1.3% -8.1%

antlr -13.2% -2.8% -16.1% -6.9% -1.4% -8.4%

pmd -6.6% -2.1% -8.7% -6.6% -1.8% -8.4%

ps -4.0% 7.1% 3.0% -3.4% -0.1% -3.7%

hsqldb -12.5% -6.3% -18.8% -10.0% -1.0% -11.0%

jython -10.8% 1.4% -9.4% -0.1% -0.4% -0.5%

xalan 0.2% 2.1% 2.4% -0.8% -0.4% -1.2%

average -8.5% -0.7% -4.7% -0.9%

improvement of the Process-ModBuffer stage. An investigation into the reasons for

these improvement differences is provided in [19], due to lack of space.

Columns 5-7 of Table 3 present the Process-DecBuffer-and-Release stage, display-

ing the effect of the strategies DecBuffer-traversal and object-release (presented in

Section 3.2). Here, the strategy responsible for most of the benefit is the DecBuffer-

traversal strategy. This may be expected as the other prefetching strategy only applies

to objects whose reference counts drops to zero. We have not further analyzed the ob-

jects’ access behavior of the Process-DecBuffer-and-Release stage.

4.4 Hardware Counters Measurements

In order to better understand the effect of the inserted prefetch instructions, we have also

measured several relevant hardware counters using PAPI (the Performance API [23]).

These counters were measured during the garbage collection work of both versions

of the reference-counting collector: with and without prefetching. Table 4 presents the

difference of these counters between the versions for the entire garbage collection work.

Columns 2-4 present the difference in the number of cycles stalled on any resource, the

L2 load misses difference and the data TLB misses difference. Column 5 presents the

overall garbage collection improvement (presented in Table 1).

It turns out that the strongest influence of the prefetching had been on the TLB misses

rather than on the cache itself. The reason is probably that the prefetches were issued

too late and therefore only the TLB managed to gain some performance improvement.

An attempt to issue the prefetch instructions earlier did not succeed due to the pay in

temporary variables (and register pressure).

Using Prefetching to Improve Reference-Counting Garbage Collectors 61

Table 4. Hardware counters measurements

Cycles L2 cache TLB overall

Benchmarks stalled misses misses gc

jess -8.8% -1.1% -17.3% -1.8%

db -4.3% -0.7% 10.1% -8.5%

javac -17.4% -1.8% -6.6% -12.3%

mtrt -15.8% -0.6% -20.1% -8.0%

jack -20.0% -3.2% -21.1% -10.8%

jbb -14.8% 2.5% -9.4% -14.9%

fop -6.6% 0.1% -14.0% -10.5%

antlr -6.3% 0.1% -15.1% -14.6%

pmd -9.6% 0.2% -11.2% -9.6%

ps -2.0% 0% -21.6% -1.7%

hsqldb -14.1% -0.8% -21.8% -14.9%

jython -4.8% 0.4% -1.6% -4.4%

xalan -0.7% 0.2% 37.6% -0.6%

average -9.6% -0.4% -8.6%

5 Related Work

VanderWiel and Lilja [3] provide a detailed survey examining diverse prefetching strate-

gies, such as hardware prefetching, array prefetching and other software prefetching.

Similarly to our approach, several previous studies proposed adding, by hand,

prefetch instructions to specific locations in several garbage collectors. However, they

all studied tracing collectors. Boehm [5] proposed prefetching objects that are pushed

to the mark stack during the mark phase of a mark-sweep collector. This prefetch makes

the first cache line of the object available later when popped from stack to be scanned.

This prefetching strategy yields improvements in execution time, although suffering

from prefetch timing problems: too early prefetches and too late prefetches. These tim-

ing problems were addresses by [6,7]. Both suggested improved prefetching strategies

to the mark phase by imposing some sort of FIFO processing over the mark stack, in

order to control the time between the data prefetch and its actual access. In another re-

lated work, Cahoon [4] employs prefetching to improve the memory performance of a

generational copying garbage collector.

Appel [24] emulates a write-allocate policy on a no-write-allocate machine by

prefetching garbage before it is written (during its space allocation). Hence, the rel-

evant cache line is allocated and the write (occurring during the object allocation) hits

the cache.

6 Conclusions

We have studied prefetch opportunities for a modern reference-counting garbage col-

lector. It turns out that several such opportunities typically exist and an implementation

62 H. Paz and E. Petrank

on the Jikes Research JVM demonstrates effectiveness in reducing stall times and im-

proving garbage collection efficiency. In particular, the average garbage collection time

was reduced by 8.7%.

Investigating the memory access patterns of the reference-counting collector, we

found out that, unlike tracing collectors, objects are accessed repeatedly, reducing the

potential benefit due to prefetching. These measurements explain the effectiveness of

the various strategies at the various stages. Repetitive accesses to objects increase the

hit rate and reduce the efficacy of prefetch insertions.

References

1. Callahan, D., Kennedy, K., Porterfield, A.: Software prefetching. In: ASPLOS-IV: Pro-

ceedings of the fourth international conference on Architectural support for programming

languages and operating systems, New York, NY, USA, ACM Press (1991) 40–52

2. Luk, C.K., Mowry, T.C.: Compiler-based prefetching for recursive data structures. In: In-

ternational Conference on Architectural Support for Programming Languages and Operating

Systems. (1996) 222–233 SIGLAN Notices 31(9).

3. VanderWiel, S.P., Lilja, D.J.: Data prefetch mechanisms. ACM Computing Surveys 32

(2000) 174–199

4. Cahoon, B.: Effective Compile-Time Analysis for Data Prefetching in Java. PhD thesis

(2002)

5. Boehm, H.J.: Reducing garbage collector cache misses. In Hosking, T., ed.: ISMM 2000 Pro-

ceedings of the Second International Symposium on Memory Management. Volume 36(1) of

ACM SIGPLAN Notices., Minneapolis, MN, ACM Press (2000)

6. Cher, C.Y., Hosking, A.L., Vijaykumar, T.: Software prefetching for mark-sweep garbage

collection: Hardware analysis and software redesign. In: Eleventh International Conference

on Architectural Support for Programming Languages and Operating Systems, Boston, MA

(2004) 199–210

7. van Groningen, J.: Faster garbage collection using prefetching. In C.Grelck, Huch, F., eds.:

Proceedings of Sixteenth International WOrkshop on Implementation and Application of

Functional Languages (IFL’04), Lübeck, Germany (2004) 142–152

8. Collins, G.E.: A method for overlapping and erasure of lists. Communications of the ACM

3 (1960) 655–657

9. Levanoni, Y., Petrank, E.: An on-the-fly reference counting garbage collector for Java. In:

OOPSLA’01 ACM Conference on Object-Oriented Systems, Languages and Applications.

Volume 36(10) of ACM SIGPLAN Notices., Tampa, FL, ACM Press (2001)

10. Levanoni, Y., Petrank, E.: An on-the-fly reference-counting garbage collector for java. ACM

Transactions on Programming Languages and Systems 28 (2006)

11. Azatchi, H., Levanoni, Y., Paz, H., Petrank, E.: An on-the-fly mark and sweep garbage

collector based on sliding view. [25]

12. Blackburn, S.M., McKinley, K.S.: Ulterior reference counting: Fast garbage collection with-

out a long wait. [25]

13. Paz, H., Petrank, E., Bacon, D.F., Rajan, V., Kolodner, E.K.: An efficient on-the-fly cycle

collection. [26]

14. Paz, H., Petrank, E., Blackburn, S.M.: Age-oriented garbage collection. [26]

15. Deutsch, L.P., Bobrow, D.G.: An efficient incremental automatic garbage collector. Com-

munications of the ACM 19 (1976) 522–526

Using Prefetching to Improve Reference-Counting Garbage Collectors 63

16. Alpern, B., Attanasio, C.R., Cocchi, A., Lieber, D., Smith, S., Ngo, T., Barton, J.J., Hummel,

S.F., Sheperd, J.C., Mergen, M.: Implementing Jalapeño in Java. In: OOPSLA’99 ACM

Conference on Object-Oriented Systems, Languages and Applications. Volume 34(10) of

ACM SIGPLAN Notices., Denver, CO, ACM Press (1999) 314–324

17. SPEC Benchmarks: Standard Performance Evaluation Corporation. http://www.spec.org/

(1998,2000)

18. DaCapo benchmark suite: The dacapo benchmark suite - version beta051009. (http://www-

ali.cs.umass.edu/DaCapo/)

19. Paz, H.: Efficient Memory Management for Servers. PhD dissertation, Technion, Israel

Institute of Technology, Department of Computer Science (2006)

20. Boehm, H.J., Demers, A.J., Shenker, S.: Mostly parallel garbage collection. ACM SIGPLAN

Notices 26 (1991) 157–164

21. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic storage allocation: A sur-

vey and critical review. In Baker, H., ed.: Proceedings of International Workshop on Mem-

ory Management. Volume 986 of Lecture Notes in Computer Science., Kinross, Scotland,

Springer-Verlag (1995)

22. Jones, R.E.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management.

Wiley, Chichester (1996) With a chapter on Distributed Garbage Collection by R. Lins.

23. PAPI: The Performance API. (http://icl.cs.utk.edu/papi/overview/)

24. Appel, A.W.: Emulating write-allocate on a no-write-allocate cache. Technical Report TR-

459-94, Department of Computer Science, Princeton University (1994)

25. OOPSLA’03 ACM Conference on Object-Oriented Systems, Languages and Applications.

In: OOPSLA’03 ACM Conference on Object-Oriented Systems, Languages and Applica-

tions. ACM SIGPLAN Notices, Anaheim, CA, ACM Press (2003)

26. Proceedings of the 14th International Conference on Compiler Construction. In: Proceedings

of the 14th International Conference on Compiler Construction, Edinburgh, Springer-Verlag

(2005)

Accurate Garbage Collection in

Uncooperative Environments with

Lazy Pointer Stacks

Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek

Computer Science Department
Purdue University

West Lafayette, IN 47906, USA
{baker29,cunei,filip,jv}@cs.purdue.edu

Abstract. Implementing a new programming language by the means of
a translator to an existing language is attractive as it provides portability
over all platforms supported by the host language and reduces the devel-
opment time as many low-level tasks can be delegated to the host com-
piler. The C and C++ programming languages are popular choices for
many language implementations due to the availability of efficient com-
pilers on many platforms, and good portability. For garbage-collected
languages, however, they are not a perfect match as they provide no
support for accurately discovering pointers to heap-allocated data. We
evaluate the published techniques, and propose a new mechanism, lazy
pointer stacks, for performing accurate garbage collection in such unco-
operative environments. We implemented the new technique in the Ovm
Java virtual machine with our own Java-to-C++ compiler and GCC as a
back-end, and found that our technique outperforms existing approaches.

1 Introduction

Implementing a high-level programming language involves a large development
effort. The need for performance of the resulting environment has to be balanced
against portability and extendibility. One popular implementation technique is
to use a language translator to transform the code into an existing language,
thus leveraging existing technology for part of the implementation. A time tested
road has been to use C or C++ as a form of portable assembly language. This
approach takes advantage of the portability of C++ and offloads many opti-
mizations to the native compiler.

However, these advantages come at a price. Some control over representation
and code generation must be relinquished. One often encountered problem is
that a C++ compiler such as GCC[1] will not provide support for automatic
memory reclamation. It is up to the language implementer to bridge the semantic
mismatch between the features of the high-level language and what is available
in the low-level language. In the case of garbage collection, implementers end up
programming around the C++ compiler to ensure that garbage can be reclaimed.

The most straightforward solution to the problem is to use a conservative gar-
bage collection algorithm. A conservative collector does not require cooperation

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 64–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Accurate Garbage Collection in Uncooperative Environments 65

from its environment – it will traverse the stack and heap, and treat every value
that could possibly be a pointer as a pointer. Conservative garbage collection al-
gorithms, however, may not be appropriate for the task at hand. For example, in
the domain of real-time systems, all application deadlines must be met even in the
presence of collector-induced pauses. For this to happen, the garbage collector has
to be predictable – a trait not found in conservative collectors. Conservative col-
lectors may also fail to reclaim some unused memory because of non-pointer words
that appear to be valid pointers to dead objects.

This paper looks at how to support accurate garbage collection, in which all
pointers can be correctly identified in an uncooperative environment. Although
our work environment is Java, the discussion generalizes to other high-level lan-
guage translators. We evaluate several approaches to generating idiomatic C++
code that maintains enough information to allow a garbage collector to accu-
rately find and replace pointers. Our goal is to minimize the overheads, bringing
the performance of our accurate configuration as close as possible to that of our
conservative configuration. The work is being done in the context of the Ovm
virtual machine framework. We offer the following contributions:

– Lazy pointer stack: We present a class of new techniques for maintaining
accurate information on the call stack. It promises lower overheads than
previous work because the information is only materialized when needed
leaving the native compiler free to perform more optimizations.

– Catch & thunk stack walking: We propose an efficient technique for
saving and restoring the pointers on a call stack, which extends lazy pointer
stacks by exploiting the exception handling features of the C++ language.

– Implementation: We implemented our technique in the Ovm framework.
We report on our implementation and describe our optimizations.

– Evaluation: We compare our technique against an efficient conservative
collector and two previously published techniques for accurate collection. The
results suggest that our approach incurs less overhead than other techniques.

– Validation: We report on the implementation of a real-time garbage collec-
tor within Ovm using lazy pointer stacks to obtain accurate stack roots.

2 The Ovm Virtual Machine

Ovm is a framework for building virtual machines with different features. An
Ovm configuration determines a set of features to be integrated into an exe-
cutable image. While Ovm supports many configurations, one of the project’s
topmost goals was to deliver an implementation of the Real-time Specification
for Java running at an acceptable level of performance [4]. This section discusses
the two most important aspects of the real-time configuration of Ovm with re-
spect to our implementation of the collection algorithms described in this paper.
Sources and documentation for Ovm are available from our website [5]. The
reader is referred to [6,4,7] for further description of the framework.

The J2c Compiler. The Real-time Ovm configuration relies on ahead-of-time
compilation to generate an executable image that can be loaded in an embedded

66 J. Baker et al.

device (such as the UAV application discussed in [4]). The Ovm ahead-of-time
compiler called j2c performs whole-program analysis over the user code as well
as the Ovm source (the virtual machine framework consists of approximately
250’000 lines of Java code). j2c translates the entire application and virtual
machine code into C++, which is then processed by the GCC compiler.

The Ovm Threading subsystem. Ovm uses user-level threading. Multiple Java
threads are mapped onto one operating system thread. Threads are implemented
by contexts which are scheduled and preempted under VM control. Asynchronous
event processing, such as timer interrupts and I/O completion is implemented
by the means of compiler-inserted poll checks. A poll check is simply a function
call guarded by a branch on the value of a global variable. Our current poll check
insertion strategy leads to less than 2.5% overhead. Studies we have done with a
real-time application show that the latency between the arrival of an event and
the execution of a poll check tends to be under 6μs. For a detailed description
of these results the reader is referred to [4].

We leverage poll checks in our implementation of memory management. Con-
text switches only occur at poll checks and a small well-understood set of sched-
uler actions. The garbage collector can only run while a thread is blocked at a
poll check, calling the memory allocator or invoking a scheduler operation. This
makes for a simple definition of garbage collection safe points: in Ovm the only
safe points are method calls and poll checks.

3 Previous Work: Accurate Stack Scanning

It is often possible to assume that heap-allocated data structures have accurate
type-descriptors, and that information can be used by the garbage collector.
Determining the location of pointers in the stack, however, is less easy. While
the native C/C++ compiler knows which locations in the call stacks contain
pointers and which don’t, this knowledge is normally lost once the executable
has been produced.

We found two previously used techniques for accurately scanning C call stacks.
The simpler of the two uses an explicit stack of live pointers. The other approach,
presented by Henderson [8], involves building a linked list of frames that contain
pointers. This section describes both techniques in detail.

Explicit Pointer Stacks. While a C compiler is free to lay out local variables
however it wants, it has less freedom when dealing with objects in the heap.
When generating C code, a language translator can choose to emit code that
will store all pointers in an array that is at a known location and has a fixed
layout. We call this array an explicit pointer stack. Consider Fig. 1(a), where a
function allocates an object, stores a pointer to it in a local variable, and then
calls a second function passing the pointer as an argument. Fig. 1(b) illustrates
the same function using an explicit pointer stack. The code uses a global pointer
to the topmost element of the stack, PtrStackTop. The prologue of the function
increments the stack top by the number of pointer variables used in the function

Accurate Garbage Collection in Uncooperative Environments 67

void Foo(void) {
void *ptr = AllocObject();
Bar(ptr);
...

}

(a) Generated C code

static void **PtrStackTop;
void Foo(void) {

// allocate stack slot for the pointer
PtrStackTop++;
PtrStackTop[-1] = AllocObject();
Bar(PtrStackTop[-1]);
...
// relinquish stack slot
PtrStackTop--;

}

(b) Explicit pointer stack

struct PtrFrame {
PtrFrame *next;
unsigned len;

}
static PtrFrame *PtrTop;
void Foo(void) {

// describe this frame
struct Frame: PtrFrame {

void *ptr;
}
Frame f;
f.len = 1;
f.next = PtrTop;
PtrTop = &f;
f.ptr = AllocObject();
Bar(f.ptr);
...
// pop the stack
PtrTop = f.next;

}

(c) Henderson’s linked lists

Fig. 1. Example of previous techniques for accurate stack traversal in C++ code. In
(a), we see the original code. In (b) and (c) we see the same code converted to use
explicit pointer stacks and Henderson’s linked frames.

(one in this case), and the epilogue decrements it by an equal quantity. References
are then stored in the reserved stack slots.

Henderson’s Linked Frames. Henderson proposed a different approach, taking
advantage of the fact that in C a local variable’s address may either be passed
to another function or stored in the heap. A C or C++ compiler handles these
variables specially, to ensure that changes made through these external references
are visible locally. Fig. 1(c) illustrates Henderson’s technique. The PtrFrame data
structure is used to build a linked list of frames which hold live pointers. The
translator emits a function prologue that declares a frame with sufficient space
to hold all the pointers (just one in our example). places The frame is placed
into a linked list which can be subsequently traversed by the garbage collector.

Both techniques pin local variables into specific memory location that can-
not easily be optimized by the C/C++ compiler. In the absence of good alias
analysis, any write to a pointer variable will invalidate previous reads of all
other pointer variables. Hence, the effectiveness of optimizations such as register
allocator is limited, as pointers can not be moved around or stored in register.

4 Accuracy with Lazy Pointer Stacks

The key to accurately obtaining references in the call stack is to force the com-
piler to place references in specific locations, which the approaches above do
by segregating references to an explicit pointer stack or, in Henderson’s case,

68 J. Baker et al.

to a linked frame structure. Both approaches are eager in the sense that the
data structures describing live pointers are always up-to-date. We investigate
here techniques that constructs the equivalent of a pointer stack on demand. We
refer to this approach as lazy pointer stacks.

The goal of a lazy pointer stack algorithm is to produce at any GC safe point
a list of all references on the call stack of each thread. We shall assume that safe
points are associated to call sites, de facto the case in Ovm as GCs are triggered
by calls to the memory allocator. Other granularities are however possible.

For every safe point, the language
void Foo(void) {

void *ptr = AllocObject();
Bar(ptr);
if (save()) {

lazyPointerStack->pushFrame(1);
lazyPointerStack->pushPtr(ptr);
return;

}
...

}

Fig. 2. Lazy pointer stack construction:
generated C++ code

translator has a set of reference variables.
that may be live. Each safe point is fol-
lowed by a guarded sequence that saves
all the live references and simply returns,
as in Fig. 2. When a stack needs to be
scanned, we arrange for the guard to eval-
uate to true and return from the topmost
frame. The call stack then unwinds sav-
ing all references in the process. Once all
pointers are saved to the lazy stack, the
GC can use this data to work accurately.

After unwinding the stack, we restore
the thread to its initial state; specifically we restore the C++ call stack and
the register file. If we are unwinding a thread we just context-switched to, we
already have a copy of the register file, otherwise, we save it using setjmp. To
be able to restore the stack, we simply save the original C++ call stack before
unwinding and replace the unwound stack with its copy afterwards.

void Foo(void) {
void *ptr = AllocObject();
Bar(ptr);
if (save()) {

lazyPointerStack->pushFrame(1);
lazyPointerStack->pushPtr(ptr);
return;

} else if (restore()) {
ptr = lazyPointerStack->popPtr();
lazyPointerStack->popFrame();

}
...

}

Fig. 3. Prototype of lazy pointer stack with
frame counting guard: generated C code

This simple strategy is all that is
needed if the garbage collector does
not move objects. Supporting a mov-
ing collector, however, requires the
ability to update the pointers con-
tained in local variables. We devel-
oped two original solutions for this
purpose: pointer frame counting, and
the safe point catch and thunk.

4.1 Pointer Frame Counting

Updating pointers held in local vari-
ables can also be done lazily, as in
Fig. 3. After collection, when each
thread resumes execution, we cause
each frame to perform pointer restoration as control returns to it, thanks to
an additional post-safe-point guard which retrieves the possibly updated point-
ers. So, when the garbage collector runs, the pointers stored in the lazy pointer

Accurate Garbage Collection in Uncooperative Environments 69

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .

height++;
functionCall();
height--;
if (save()) {

if (height < auxHeight) {
stop unwinding, restore the stack;

} else {
lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .

return;
}

} else if (height < auxHeight) {
ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .

lazyPointerStack->popFrame();
auxHeight--;

}

(a) Function call with pointer frame counting

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .;

try {
functionCall();

} catch (const StackScanException&) {
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .

throw;
} else {

ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .

lazyPointerStack->popFrame();
if (had application exception) {

throw application exception
} else {

retrieve return values
}

}
}

(b) Function call, safe point catch and thunk

Fig. 4. Lazy pointer stack techniques

stack structure are used and modified. When the collector yields back to the
application threads, the pointers are automatically restored from the pointer
stack, frame by frame.

The restoration logic has two key aspects. First, restore()must only evaluate
to true the first time we return to a frame after a collection, which may happen
immediately after the collection, or later. Second, a thread may return to a
frame only after several collections have occurred. This complicates the stack
unwinding procedure.If at the time of a stack scanning request it is found that
a frame has not been active since before a previous garbage collection, then the
pointers in that frame are no longer valid, and the collector should not use that
frame’s pointers as roots but rather reuse the pointers in its lazy pointer stack.

We illustrate these issues in the following example. The program is composed
of four method M, A, B, C, and G, which is the invocation of the memory allo-
cator which triggers garbage collection. A frame is said to be dirty if it contains
references to objects that were not updated after a collection (these reference
are stale if the objects were moved). We denote a dirty frame using bold face.

(a) [M] The main function.
(b) [M →A→B] M calls A, which then calls B.
(c) [M →A→B→G] B requests memory and triggers a collection.
(d) [M →A→B→G] The stack is scanned and restored.

70 J. Baker et al.

(e) [M → A → B → G] The garbage collector runs, potentially moving objects
referenced from the stack. All frames below that of the garbage collector are
now dirty as they contain pointers to the old locations of objects.

(f) [M→A→B] We return to a dirty frame, B, and must restore pointers.
(g) [M→A→B] Execution proceeds in a clean frame.
(h) [M→A→B→C] Call into C.
(i) [M→A→B] Return to B. Because it is clean, we do not restore pointers.
(j) [M→A→B→G] Consider what happens if B triggers another collection.
(k) [M→A→B→G] The stack is scanned only as far as B, since frames below

it contain contain old, now invalid, pointers.

We see that there is a frontier between dirty and clean frames. For dirty
frames, the lazy pointer stack has correct pointers. For clean frames, the lazy
pointer stack has no information. The pointer frame counting technique for accu-
rate stack scanning is shown in Fig. 4(a). We keep track of the frontier between
dirty frames and clean frames by using two counters: height is the height of
the stack below the current frame; auxHeight is the height of the lazy pointer
stack managed by the garbage collector, and it keeps track of the frontier be-
tween dirty and clean frames. We only restore pointers in a frame when the
height becomes smaller than auxHeight. After stack scanning, the collector
resets the height to its previous value, and auxHeight to the same value as
height.

Non-local returns can interfere with
unsigned savedHeight = height;
. . .

try {
. . .

} catch (const ApplicationException&) {
// restore counts
height = savedHeight;
while (height < auxHeight-1) {

// ignore pointers in frame
lazyPointerStack->popFrame();
auxHeight--;

}
if (height < auxHeight) {

ptr = lazyPointerStack->popPtr();
lazyPointerStack->popFrame();
auxHeight--;

}
// handle application exception
. . .

}

Fig. 5. Compiling try blocks to restore
the pointer frame counts

this scheme. In our case the language
translator uses C++ exceptions, so we
have to handle them appropriately, pro-
viding a way to maintain the correct
value of height. The solution is to com-
pile try blocks as shown in Fig. 5. Be-
fore entry into the try block we save
the value of height, and we restore it
when an exception is caught. Because
the exception may have traversed mul-
tiple dirty frames, we need to pop those
from the lazy pointer stack. This is the
purpose of the while loop. Finally, we
check if the current frame is dirty; if
so, we restore the pointers.

This gives us a complete system,
with all the features necessary to accu-
rately scan the stack and find pointers.
However, this solution still has some
overheads. In particular, it is necessary to execute code that counts the stack
height before and after each function call.

Accurate Garbage Collection in Uncooperative Environments 71

Thunk PC

Caller

ht
w

org
kcats

f
o

n
oitceri

D

Return PC

Return PC

Caller

Caller

(a) Ordinary callstack

for C or C++ code.

TheThunk

h t
w

o rg
kca ts

f
o

n
oit cer i

D

Thunk PC

Thunk PC

Caller

Caller

(b) "Thunkified" callstack.

TheThunk

ht
w

org
kcats

f
o

n
oitceri

D

Thunk PC

Caller

(c) If a function completes (either by

return or throw), the thunk runs.

!s
n

u
R

k
n

u
h

T

Fig. 6. Installing thunks in a C++ call stack

4.2 Safe Point Catch and Thunk

On most systems, enclosing a group of instructions in a try/catch block does
not require any additional code to be executed when no exceptions are thrown.
The fast path has virtually no overhead. Instead of using a costly conditional to
protect entry to the save and restore sequences, therefore, we can obtain better
performance by implementing the accurate pointer guard using C++ exceptions.

To scan the stack, we simply throw a distinguished StackScanException.
That exception is caught by the catch block in Fig. 4(b) and, if the save()

predicate is set, the pointers in the receiver frame are saved. The exception
propagates until all pointers are saved. During the traversal, for every dirty
frame we install a helper routine, a thunk, by modifying the return address in
the C++ call stack. After GC, whenever control would return to a function with
a dirty frame, the thunk runs instead, throwing again a StackScanException.
That causes the pointers in the corresponding frame to be restored before normal
execution resumes. At all times, thunks delimit the frontier between clean and
dirty frames. This approach is illustrated in Fig. 4(b).

void thunk() {
if (unwinding stack) {

stop unwinding, restore the stack
} else {

if (target frame threw exception) {
save exception

} else {
save return values

}
restore proper return PC
throw StackScanException;

}
}

Fig. 7. Thunk algorithm

Thunks are invoked on both normal
and exceptional returns. During the
normal return sequence, the ordinary
return sequence of the target frame re-
sults in the thunk being called. Fig. 6
shows this process. During exceptional
returns, the C++ runtime unwinds
the stack using the return PCs to de-
termine if a frame is able to handle
exceptions of a given type. We replace
the return PC with the address of our
thunk; therefore, we simply have to
enclose the entry point of our thunk
within a suitable exception handler.

72 J. Baker et al.

As a result, the thunk also automatically runs as a result of exceptional returns
as well.

The thunk algorithm is shown in Fig. 7. If we are unwinding the stack in
preparation for GC, it means we hit the frontier between clean and dirty frames.
We stop (all pointers have been copied), restore the original stack, and proceed
with GC. Otherwise, we save the current exception or the value returned by the
routine from which we were returning when control was assumed by the thunk,
we restore the original return PC, and throw a StackScanException, triggering
the pointer restoration code in Fig. 4(b) and the retrieval of the original saved
exception or return value. Although thunks do incur some execution overhead,
they are only installed for the stack frames seen at the time of a garbage collec-
tion, and run once per frame. Hence, the thunk overhead is in any case bounded
by the stack height at the time of the collection.

4.3 Practical Considerations

Henderson [8] argues that his approach is fully portable as it uses only standard
C. The same holds for explicit pointer stacks. Our approach uses some platform-
specific knowledge in order to save and restore the stack. We also rely on using
only one stack frame at a time, not the case for lexically nested functions or if
objects are on the stack. The safe point catch and thunk technique also requires
some knowledge of the C++ calling convention. While the implementation of
thunks does require some platform specific code, we argue that the such depen-
dencies are small. The platform specific code in our thunking implementation
amounts to just 30 lines of code, supporting both IA32 and PPC architectures.

5 Compiler Optimizations

We have described four methods for accurate stack scanning: explicit pointer
stacks and Henderson’s frame lists, and two new techniques, frame counting and
catch & thunk. All four have been implemented in the Ovm virtual machine.
We found that the overheads imposed by those techniques can be reduced by
carefully applying a number of optimization strategies.

General Optimizations. The adoption of certain optimization techniques proved
to have a positive effect on the performance of both eager and lazy stack scanning
techniques. Inlining at the bytecode level, within our compiler, produced smaller
code than relying exclusively on the GCC inliner, as we can rely on a higher-level
knowledge of the program structure. Method devirtualization is more effective
after bytecode inlining, as our analysis can rely on additional context. Refining
our liveness analysis also proved beneficial. By reducing as much as possible the
set of variables known to be live at each call site, we can both reduce the size of
the added code, and improve the efficiency of the garbage collector at runtime.

Fine Tuning Further optimizations, specifically concerning our new techniques,
also proved very valuable. When lazy pointer stacks are used, we treat safe points
where no pointers are live as a special case. With catch & thunk, a function call

Accurate Garbage Collection in Uncooperative Environments 73

with no live pointers does not require a try/catch block at all. In the pointer
frame counting approach, empty safe points just require a simple guard, as show
below. In SPECjvm, 26% of all safe points are empty.

If no variables are live across any safe point in a method, that method can
avoid using the pointer stack entirely. Because we only emit poll checks on back-
ward branches, many methods fall into this category (roughly 34% of all methods
after bytecode inlining). Certain function calls do not need a guard even if point-
ers are live at the call. This includes function calls that are known not to return
normally, for which the set of exceptions thrown is known, and whose excep-
tions are not caught locally. We currently use this optimization at array bounds
checks, explicit type checks, and implicit type checks when writing to an array of
object references. Only 5% of our runtime checks include non-empty safe points.
In certain cases, we can also coalesce multiple exception handlers within each
method. That allows us to further contain the code size overhead.

6 Experimental Evaluation

Our experimental evaluation was performed on a Pentium 4 machine at 1600
MHz, 512 MB of RAM, running Linux 2.6 in single-user mode. All results are
based on the SPECjvm98 benchmark suite. The results reported here are the
arithmetic mean of fifty individual runs of each test, using a range of heap sizes
from 2MB to 256MB. We show the results from the smallest heap size in which
each test ran succesfully. The heap sizes do not include static data, which is
instead pre-allocated by the j2c ahead-of-time compiler at compile time. We use
Ovm’s most reliable production garbage collector, called mostlyCopying, which
has two operational modes. When accurate information is available it behaves
as a traditional semi-space collector. Otherwise it runs in ‘conservative’ mode
and pins pages referenced from the stack.

Overhead of Accurate Techniques. Figure 8 shows the percent overhead of using
the four accurate stack scanning techniques. catch & thunk is significantly better
than other techniques. It has a geometric mean overhead of less than 3.5% over
a conservative collector, while the others are no better than about 6%. In large
heap configurations, many of the SPECjvm98 benchmarks only collect when the
benchmark asks for it directly using System.gc(). Hence, results using the large
heap configurations place more emphasis on the mutator overheads of the stack
scanning techniques. Smaller heap configurations place more emphasis on the
cost of stack scanning and collection time. Detailed overhead numbers for 32MB
and 256MB heaps are shown in Figure 9.

Time Spent in GC. Sometimes thunking can lead to a speed up, as our garbage
collector can work more efficiently if accurate pointer information is available.
We profiled the time spent in the garbage collector, and verified that the time
used for GC in mtrt is shorter in the accurate configuration, consistently with
the speed-ups shown in Fig. 9.

74 J. Baker et al.

16.300

16.500

16.700

16.900

17.100

17.300

17.500

17.700

Heap Size

)
s

d
n

o
c

e
s

(
e

mi
T

n
oit

u
c

e
x

E

PtrStack
Henderson
Counter
Thunking
Conservative

PtrStack 17.464 17.385 17.247 17.487

Henderson 16.771 16.667 16.827

Counter 17.589 17.491 17.365 17.130

Thunking 16.878 16.795 16.786 16.901

Conservative 16.788 16.529 16.484 16.377

16MB 64MB 128MB 256MB

(a) 201 compress

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

Heap Size

)
s

d
n

o
c

e
s

(
e

m i
T

n
oit

u
c

e
x

E

PtrStack

Henderson

Counter

Thunking

Conservative

7.321 6.227 5.876 6.069

7.332 6.331 5.929 6.154

6.981 6.108 5.593 5.763

6.336 5.377 5.011 5.234

5.617 4.967 4.781 5.195

16MB 32MB 128MB 256MB

(b) 202 jess

18.000

20.000

22.000

24.000

26.000

28.000

30.000

32.000

Heap Size

)
s

d
n

o
c

e
s

(
e

mi
T

n
oit

u
c

e
x

E

PtrStack

Henderson

Counter

Thunking

Conservative

PtrStack 31.328 29.085 28.586 19.362

Henderson 31.363 29.278 28.000 19.419

Counter 31.253 29.207 27.970 19.555

Thunking 30.587 28.822 27.448 18.920

Conservative 30.158 28.279 27.071 18.976

32MB 64MB 128MB 256MB

(c) 209 db

11.500

12.500

13.500

14.500

15.500

16.500

17.500

18.500

Heap Size

)
s

d
n

o
c

e
s

(
e

mi
T

n
oit

u
c

e
x

E

PtrStack

Henderson

Counter

Thunking

Conservative

17.619 15.160 13.716

18.041 15.113 13.748

18.090 15.418 14.063

17.248 14.853 13.790

16.510 13.366 12.199

32MB 64MB 256MB

(d) 213 javac

11.500

12.000

12.500

13.000

13.500

14.000

14.500

Heap Size

)
s

d
n

o
c

e
s

(
e

m i
T

n
oit

u
c

e
x

E

PtrStack

Henderson

Counter

Thunking

Conservative

PtrStack 13.165 13.194 13.184 13.415 13.267 13.110 13.344 13.392

Henderson 12.625 12.522 12.658 12.583 12.497 12.754 12.726 12.825

Counter 13.099 13.402 12.885 12.902 12.803 12.886 12.854 13.317

Thunking 12.336 12.169 12.284 12.262 12.410 12.099 12.554 12.475

Conservative 12.164 12.132 12.210 12.036 11.998 12.107 12.121 12.030

2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

(e) 222 mpegaudio

5.000

5.200

5.400

5.600

5.800

6.000

6.200

6.400

6.600

6.800

7.000

Heap Size

)
s

d
n

o
c

e
s

(
e

mi
T

n
oi t

u
c

e
x

E

PtrStack

Henderson

Counter

Thunking

Conservative

9.346 6.211 5.386

9.391 6.317 5.384

9.562 6.432 5.506

8.843 5.812 5.095

7.041 5.108

16MB 32MB 256MB

(f) 227 mtrt

Fig. 8. Overhead of accurate collection. Execution times of SPECjvm98 benchmarks,
in seconds, using the different techniques, with Ovm and bytecode inlining. The times
are arithmetic means of 50 runs. (Continues on the next page.)

Accurate Garbage Collection in Uncooperative Environments 75

12.000

12.500

13.000

13.500

14.000

14.500

15.000

15.500

16.000

Heap Size

E
x

e
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

PtrStack
Henderson
Counter
Thunking
Conservat ive

Pt rStack 18.654 15.336 14.420 13.799 13.531 13.576 13.724

Henderson 18.860 15.558 14.495 14.348 13.767 13.830 14.011

Counter 19.033 15.630 14.498 13.959 13.746 13.980 14.201

Thunking 19.261 15.521 14.759 13.689 13.602 13.898 13.798

Conservat ive 22.065 14.614 13.217 13.029 12.803 12.821 13.615

4MB 8MB 16MB 32MB 64MB 128MB 256MB

(g) 228 jack

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

Heap Size

G
e

o
m

e
tr

ic
 M

e
a

n
 o

f
O

v
e

rh
e

a
d

s,
re

la
ti

v
e

 t
o

 C
o

n
se

rv
a

ti
v

e

PtrStack
Henderson
Counter
Thunking
Conservat ive

Pt rStack 5.90% 8.85% 8.39% 7.81%

Henderson 6.15% 8.24% 7.68% 7.16%

Counter 6.33% 8.73% 8.41% 8.02%

Thunking 0.56% 3.20% 3.48% 2.98%

Conservat ive 0.00% 0.00% 0.00% 0.00%

32MB 64MB 128MB 256MB

(h) Geom. mean of SPECjvm overheads

Fig. 8. Overhead of accurate collection, SPECjvm98 execution times (continued)

Average of Execution
time in seconds -

(Overhead relative to
Conservative)

Thunking Counter PtrStack Henderson

201_compress 3.20% 4.60% 6.78% 2.75%

202_jess 0.75% 10.94% 16.84% 18.46%

209_db -0.30% 3.05% 2.03% 2.33%

213_javac 13.04% 15.28% 12.43% 12.69%

222_mpegaudio 3.70% 10.69% 11.32% 6.61%

227_mtrt -0.25% 7.80% 5.45% 5.41%

228_jack 1.34% 4.31% 0.80% 2.91%

Geometric Mean 2.98% 8.02% 7.81% 7.16%

Average of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm
Configuration - Ovm inlining, 65000 vars, copy propagation, Heap Size: 256m,

Compiler: gcc-4.0.2, 50 runs - (Overhead relative to Conservative)

(a) 256MB heap

Average of Execution
time in seconds -

(Overhead relative to
Conservative)

Thunking Counter PtrStack Henderson

201_compress 1.09% 5.39% 4.02% 1.88%

202_jess 8.25% 22.98% 25.36% 27.47%

209_db 1.42% 3.63% 3.88% 4.00%

213_javac 4.47% 9.57% 6.72% 9.27%

222_mpegaudio 3.43% 6.71% 10.58% 4.16%

227_mtrt -17.47% -8.65% -11.80% -10.29%

228_jack 5.07% 7.14% 5.91% 10.12%

Geometric Mean 0.56% 6.33% 5.90% 6.15%

Average of Execution time in seconds - Spec JVM 98 Benchmark vs. Ovm
Configuration - Ovm inlining, 65000 vars, copy propagation, Heap Size: 32m,

Compiler: gcc-4.0.2, 50 runs - (Overhead relative to Conservative)

(b) 32 MB heap

Fig. 9. Percent overhead of accurate garbage collection in Ovm. The overhead of ac-
curate stack walking when using the safe point catch and thunk is significantly smaller
than that of the other techniques.

Comparing VMs. Our goal in implementing Ovm was to deliver a competitive
Java implementation. We compare Ovm and stack walking configurations (con-
servative and thunking) against HotSpot Client and Server version 1.5, and GCJ
version 4.0.2, with a 256 MB heap. Fig. 11 shows the results. We were unable
to obtain 228 jack results for GCJ in our setup. Ovm’s performance is highly
competitive with that of the other systems, therefore our overhead results are
likely not due to implementation inefficiencies.

Conservative 3,376

Explicit Pointer Stack 3,857

Henderson 4,031

Counter 9,320

Thunking 11,081

Fig. 10. Code Size in KB

Code Size. All accurate techniques increase
code size. In the case of Ovm with j2c we can
measure the code component of the Ovm exe-
cutable image. Fig. 10 shows the image sizes in
KBytes for the SPEC benchmark executable
image (includes the application as well as the
VM code, and approximately 30MB of data.)

76 J. Baker et al.

The code size overhead for the counter and thunking techniques is relevant,
but not unreasonable. It should be kept into consideration, however, while eval-
uating the tradeoffs of each approach.

6.1 Understanding the Overheads

We used gprof[9] to obtain profiling information for the javac benchmark in
both the conservative and catch and thunk configurations, and found three main
sources of overhead in these methods.

Exception Dispatch Code. Up to two call-preserving registers may be used by
exception dispatch code generated by GCC. This appears to be the dominant
cost in ScannerInputStream.read, where the presence of catch and thunk code
spills a loop induction variable from %edi. The generated code is significantly
more complicated where two or more exception handlers are nested.

Extra Assignments of Return Values. We replace method calls with wrapper
macros that add our lazy stack walking code. Those macros may lead to extra
assignments of return values. When a method produces a value, the safe point
code serves as the right-hand side of an assignment expression. The return value
is saved in a macro-generated variable and returned to the macro’s caller using
GCC’s statement-in-expression syntax. These extra assignments invariably re-
main after GCC’s optimization, but are usually simple register-to-register moves.
However, in Scanner.xscan, these extra variables and assignments do result in

Fig. 11. Comparing Virtual Machines. 256MB heap, arithmetic mean of 50 runs.
Comparing two Ovm configurations (conservative and thunking) with HotSpot Client
1.5, HotSpot Server 1.5 and GCJ 4.0.2.

Accurate Garbage Collection in Uncooperative Environments 77

additional variables being spilled to the stack, leading to a marked slowdown
(about 40%). It should be possible to eliminate this overhead by treating an
assignment expression whose right-hand-side is a method call as a safe point,
thus moving the real assignment inside the safe point try block.

Code Motion Across Exception Handlers. Code motion across exception handlers
is sometimes less profitable than it would be in the absence of exception handlers.
GCC occasionaly performs extra work to ensure that variables that are not used
by safe point code are available inside the safe point catch clause.

7 Validation: Real-Time Garbage Collection

One of our goals in starting this project was to support real-time garbage col-
lection (RTGC) in the real-time configuration of Ovm. While it is reasonable to
think that lazy pointer stacks are able to deliver both the level performance and
predictability needed in a real-time GC, it is difficult to have confidence in such a
claim without an actual implementation. We therefore implemented a real-time
garbage collector within Ovm using the lazy pointer stack technique [10]. The
success in this endeavor increased our confidence in the general applicability of
the techniques introduced here.

The Ovm real-time collector is a mark-sweep snapshot-at-the-beginning non-
copying incremental garbage collector. The collector, just as the rest of the VM,
is written in Java. We thus used features of the Real-time Specification for Java
in the implementation. The collector thread is a real-time Java thread with a
priority high enough that, unless it yields, it will not be interrupted by applica-
tion threads. When memory usage increases beyond a user-specified threshold,
the collector thread is scheduled. Because of its priority, it immediately preempts
any application threads. It then accurately scans the stack, the Ovm boot im-
age, which contains immortal objects used by the VM, and then incrementally
traverses the heap reclaiming unused objects. Accurate stack scanning takes less
than 250μs for the mtrt benchmark, and the maximum collector pause time for
this benchmark is 1.022ms. Further details on our real-time collector are in [10].

8 Related Work

Language implementations that use a C or C++ compiler as a back-end have
a choice between conservative collection and the accurate techniques presented
here. Techniques for accurate stack scanning in uncooperative environments have
been previously described in detail in [13,8]. Popular techniques for conservative
garbage collection include the Boehm-Weiser collector[2] and various incarna-
tions of mostly-copying collectors[14,15,16].

JamaicaVM uses explicit pointer stacks [13], but they differ from our imple-
mentation. First, objects referenced from the stack cannot move (in Ovm they
can). Second, JamaicaVM uses write barriers on the pointer stack to enable in-
cremental stack scanning. Ovm uses stop-the-world stack scanning. JamaicaVM

78 J. Baker et al.

may choose to place pointers on the pointer stack at safe points rather than
upon each write. However, our lazy pointer stacks go further, only saving point-
ers when a stack scanning is actually requested, and additionally allowing for
objects referenced by pointers on the stack to be moved.

The motivation behind generating C or C++ code is to create a compet-
itive, portable language implementation with minimal effort. Jones, Ramsey,
and Reig[17,18] point out that what is really needed is a portable assembly
language. They propose C--, which has a structured C-like syntax and comes
complete with a runtime system that supports accurate garbage collection. C--
is attractive, but its stage of development cannot compete with GCC, especially
for implementations of languages that map nicely onto C++, and where either
conservative collection is acceptable, or the accurate stack walking techniques
within this work are applicable. The Quick C-- compiler currently only supports
IA32, while Ovm is available on IA32, PPC, and ARM. Using GCC allows us to
generate fast code on each of these architectures.

It possible to modify, with some effort, the GCC compiler to support accurate
garbage collection. Diwan, Moss, and Hudson [19] describe changes to GCC
version 2.0 to support accurate garbage collection in Modula-3. A further effort
in this area is described in [20]. Our work has the advantage of not being strictly
specific to GCC; the techniques described in this paper can be used with any
compiler that has a reasonable binary interface for exceptions.

9 Conclusions

We have extended the state of the art for accurate garbage collection in unco-
operative environments. The lazy pointer stacks technique shows significantly
improved performance over previous techniques. Further, we show the need for
optimizations such as inlining to be implemented in the high-level compiler for
accurate garbage collection to pay off. To our knowledge, our experimental eval-
uation is the first to compare multiple approaches to accurate stack scanning
within the same system. Of the previously known techniques, Henderson’s ap-
proach fared the best in our tests; however, it showed more than twice the over-
head of our new strategy. We claim therefore that our new approach improves
the viability of accurate garbage collection in uncooperative environments and
makes it easier for language implementors to use C++ as portable low-level
representation.

References

1. Free Software Foundation: Gnu compiler collection. (http://gcc.gnu.org/)

2. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment.
Software—Practice and Experience 18(9) (1988) 807–820

3. Boehm, H.J.: Space efficient conservative garbage collection. In: Proceedings of
the ACM Conference on Programming Language Design and Implementation. Vol-
ume 26. (1991) 197–206

Accurate Garbage Collection in Uncooperative Environments 79

4. Baker, J., Cunei, A., Flack, C., Pizlo, F., Prochazka, M., Vitek, J., Armbuster,
A., Pla, E., Holmes, D.: A real-time Java virtual machine for avionics. In: Pro-
ceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2006), IEEE Computer Society (2006)

5. Vitek, J., Baker, J., Flack, C., Fox, J., Grothoff, C., Holmes, D., Palacz, C., Pizlo,
F., Yamauchi, H.: The Ovm Project. (http://www.ovmj.org)

6. Palacz, K., Baker, J., Flack, C., Grothoff, C., Yamauchi, H., Vitek, J.: Engineering
a common intermediate representation for the Ovm framework. The Science of
Computer Programming 57(3) (2005) 357–378

7. Flack, C., Hosking, T., Vitek, J.: Idioms in Ovm. Technical Report CSD-TR-03-
017, Purdue University Department of Computer Sciences (2003)

8. Henderson, F.: Accurate garbage collection in an uncooperative environment. In:
Proceedings of the ACM International Symposium on Memory Management. Vol-
ume 38., ACM (2002) 256–263

9. Free Software Foundation: Gnu binutils. (http://www.gnu.org/software/

binutils/)

10. Pizlo, F., Vitek, J.: An empirical evaluation of memory management alternatives
for Real-Time Java. In: Proceedings of the 27th IEEE Real-Time Systems Sympo-
sium (RTSS 2006), 5-8 December 2006, Rio de Janeiro, Brazil. (2006)

11. Baker, H.G.: List processing in real time on a serial computer. Communications
of the ACM 21(4) (1978) 280–294

12. Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low over-
head and consistent utilization. In: Conference Record of the ACM Symposium on
Principles of Programming Languages. Volume 38. (2003) 285–298

13. Siebert, F.: Constant-time root scanning for deterministic garbage collection. In:
International Conference on Compiler Construction (CC). (2001) 304–318

14. Bartlett, J.F.: Compacting garbage collection with ambiguous roots. Research
Report 88/2, Western Research Laboratory, Digital Equipment Corporation (1988)

15. Smith, F., Morrisett, J.G.: Comparing mostly-copying and mark-sweep conserva-
tive collection. In: Proceedings of the ACM International Symposium on Memory
Management. Volume 34., ACM (1998) 68–78

16. Bartlett, J.F.: Mostly-copying garbage collection picks up generations and C++.
Technical Note TN-12, Western Research Laboratory, Digital Equipment Corpo-
ration (1989)

17. Jones, S.P., Ramsey, N., Reig, F.: C--: a portable assembly language that sup-
ports garbage collection. In: International Conference on Principles and Practice
of Declarative Programming. (1999)

18. C--: (http://www.cminusminus.org)
19. Diwan, A., Moss, J.E.B., Hudson, R.L.: Compiler support for garbage collection in

a statically typed language. In: Proceedings of the ACM Conference on Program-
ming Language Design and Implementation. Volume 27. (1992) 273–282

20. Cunei, A.: Use of Preemptive Program Services with Optimised Native Code. PhD
thesis, University of Glasgow (2004)

Correcting the Dynamic Call Graph

Using Control-Flow Constraints⋆

Byeongcheol Lee, Kevin Resnick, Michael D. Bond, and Kathryn S. McKinley

The University of Texas at Austin

Abstract. To reason about programs, dynamic optimizers and analy-
sis tools use sampling to collect a dynamic call graph (DCG). However,
sampling has not achieved high accuracy with low runtime overhead. As
object-oriented programmers compose increasingly complex programs,
inaccurate call graphs will inhibit analysis and optimizations. This paper
demonstrates how to use static and dynamic control flow graph (CFG)
constraints to improve the accuracy of the DCG. We introduce the fre-
quency dominator (FDOM), a novel CFG relation that extends the dom-
inator relation to expose static relative execution frequencies of basic
blocks. We combine conservation of flow and dynamic CFG basic block
profiles to further improve the accuracy of the DCG. Together these
approaches add minimal overhead (1%) and achieve 85% accuracy com-
pared to a perfect call graph for SPEC JVM98 and DaCapo benchmarks.
Compared to sampling alone, accuracy improves by 12 to 36%. These re-
sults demonstrate that static and dynamic control-flow information offer
accurate information for efficiently improving the DCG.

1 Introduction

Well-designed object-oriented programs use language features such as encapsula-
tion, inheritance, and polymorphism to achieve reusability, reliability, and main-
tainability. Programs often decompose functionality into small methods, and vir-
tual dispatch often obscures call targets at compile time. The dynamic call graph
(DCG) records execution frequencies of call site-callee pairs, and dynamic op-
timizers use it to analyze and optimize whole-program behavior [2,3,4,5,11,21].
Prior approaches sample to collect the DCG, trading accuracy for low over-
head. Software sampling periodically examines the call stack to construct the
DCG [4,12,17,20,24]. Hardware sampling lowers overhead by examining hard-
ware performance counters instead of the call stack, but gives up portability.
All DCG sampling approaches suffer from sampling error, and timer-based sam-
pling suffers from timing bias. Arnold and Grove first measured and noted these
inaccuracies [4].

⋆ This work is supported by NSF CCF-0429859, NSF CCR-0311829, NSF EIA-
0303609, DARPA F33615-03-C-4106, Samsung, Intel, IBM, and Microsoft. Any
opinions, findings and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 80–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Correcting the DCG Using Control-Flow Constraints 81

Figure 5(a) (appears in Section 6) shows DCG accuracy for the SPEC JVM98
benchmark raytrace using Jikes RVM default sampling. Each bar represents the
true relative frequency of a DCG edge (call site and callee) from a fully instru-
mented execution. Each dot is the frequency according to sampling. Vertical
dashed lines separate the calling method. Notice that many methods make calls
with the same frequency (i.e., bars have the same magnitude between dashed
lines), but sampling tells a different story (i.e., dots are not horizontally aligned).
These errors are due to timing bias.

This paper presents new DCG correction algorithms to improve DCG accu-
racy with low overhead (1% on average). Our insight is that a program’s static
and dynamic control flow graph (CFG) constrains possible DCG frequency val-
ues. We introduce the static frequency dominator (FDOM): given statements x
and y, x FDOM y if and only if x executes at least as many times as y. FDOM ex-
tends the dominator and strong region relations on CFGs. For example, FDOM
tells us when two calls must execute the same number of times because the static
control flow dictates that their basic blocks execute the same number of times.

We also exploit dynamic basic block profiles to improve DCG accuracy. Most
dynamic optimizers collect accurate control-flow profiles such as basic block and
edge profiles to make better optimization decisions [1,3,12,16,17]. We show how
to combine these constraints to further improve the accuracy of the DCG. Our
intraprocedural and interprocedural correction algorithms require a single pass
over the basic block profile, which we perform periodically.

We evaluate DCG correction in Jikes RVM [3] on the SPEC JVM98 and
DaCapo [8] benchmarks. Our approach improves DCG accuracy over the default
sampling configuration in Jikes RVM, as well as over the counter-based sampling
(CBS) configuration recommended by Arnold and Grove [4]. Compared to a
perfect call graph, default sampling attains 52% accuracy and DCG correction
algorithms boost accuracy to 71%; CBS by itself attains 76% accuracy and DCG
correction boosts its accuracy to 85%, while adding 1% overhead.

Clients of the DCG include alias analysis, escape analysis, recompilation
analysis, and inlining. We use inlining to evaluate accurate DCGs. The adap-
tive compiler in Jikes RVM periodically recompiles and inlines hot methods. We
modify Jikes RVM to apply DCG correction immediately before recompilation.
We measure the potential of inlining with a perfect call graph, which provides
a modest 2% average improvement in application time, but significantly im-
proves raytrace by 13% and ipsixql by 12%. DCG correction achieves a similarly
high speedup on raytrace and improves average program performance by 1%.
We speculate that these modest improvements are the result of tuning the in-
lining heuristics with inaccurate call graphs and that further improvements are
possible.

2 Background and Related Work

This section first discusses how dynamic optimizers sample to collect a DCG
with low overhead. It then compare the new frequency dominator relation to

82 B. Lee et al.

Timer tick

(a)

Stride

(b)

Profiling window

Fig. 1. Sampling. Filled boxes are taken samples and unfilled boxes are skipped. Arrows
are timer ticks. (a) Timer-based sampling: one sample per timer tick. (b) CBS: multiple
samples per tick, randomly skips initial samples, and strides between samples.

dominators and strong regions. Finally, it compares DCG correction to previous
static call graph construction approaches for ahead-of-time compilers.

2.1 Collecting Dynamic Call Graphs

Dynamic optimizers could collect a perfect DCG by profiling every call, but the
overhead is too high [4]. Some optimizers profile calls fully for some period of
time and then turn off profiling to reduce overhead [17,20]. For example, HotSpot
adds call graph instrumentation only in unoptimized code [17]. Suganama et al.
insert call instrumentation, collect call samples, and then remove the instru-
mentation [20]. This one-time profiling keeps overhead down but loses accuracy
when behavior changes.

Many dynamic optimizers use software sampling to profile calls and identify
hot methods [4,6,12]. Software-based approaches examine the call stack period-
ically and update the DCG with the call(s) on the top of the stack. For example,
Jikes RVM and J9 use a periodic timer that sets a flag that triggers the system
to examine the call stack at the next yield point and update the DCG [6,12].
These systems insert yield points on method entry and exit, and on back edges.

Figure 1(a) illustrates timer-based sampling. Arnold and Grove show that this
approach suffers from insufficient samples and timing bias: some yield points
are more likely to be sampled than others, which skews DCG accuracy [4]. To
eliminate bias, they present counter-based sampling (CBS), which takes multiple
samples per timer tick by first randomly skipping zero to stride-1 samples and
then striding between samples. Figure 1(b) shows CBS configured to take three
samples for each timer tick and to stride by three. By widening the profiling
windows, CBS improves DCG accuracy but increases profiling overhead. They
report a few percent overhead to attain an average accuracy of 69%, but to attain
85% accuracy, they hit some pathological case with 1000% overhead. With our
benchmarks, their recommended configuration attains 76% accuracy compared
to a perfect call graph, whereas our approach combined with the recommended
configuration reaches 86% accuracy by adding 1% overhead.

Other dynamic optimizers periodically examine hardware performance coun-
ters such as those in Itanium. All sampling approaches suffer from sampling er-
ror, and timer-based sampling approaches suffer from timing bias as well. DCG
correction can improve the accuracy of any DCG collected by sampling and
Section 6 demonstrates improvements over two sampling configurations.

Correcting the DCG Using Control-Flow Constraints 83

Zhuang et al. [24] present a method for efficiently collecting the calling context
tree (CCT), which represents the calling context of nodes in the DCG. Their work
is orthogonal to ours since they add another dimension to the DCG (context
sensitivity), while we improve DCG accuracy. We believe that our correction
approach could improve CCT accuracy as well.

2.2 Constructing the DCG Using Control-Flow Information

Static compilers have traditionally used control-flow information to construct a
call graph [13,23]. Hashemi et al. use static heuristics to construct an estimated
call frequency profile [13], and Wu and Larus construct an estimated edge pro-
file for estimating call frequency profile [23] for C programs. These approaches
use static heuristics to estimate frequencies, while DCG correction uses static
constraints and combines them with dynamic profile information.

2.3 The Dominator Relation and Strong Regions

This paper introduces the frequency dominator (FDOM) relation, which ex-
tends dominators and strong regions [7,10,22]. The set of dominators and post-
dominators of x is the set of y that will execute at least once if x does. The set
that frequency dominates x, is the subset that executes at least as many times
as x. While strong regions find vertices x and y that must execute the same
number of times, FDOM also identifies vertices x and y where y must execute
at least as many times as x.

3 Dynamic Call Graph Correction Algorithms

This section describes DCG correction algorithms. We first present formal defi-
nitions for a control flow graph (CFG) and the dynamic call graph (DCG). We
introduce the frequency dominator (FDOM) and show how to apply its static
constraints to improve the accuracy of the DCG, and how to combine them with
dynamic CFG frequencies to further improve the DCG.

3.1 Terminology

A control flow graph represents static intraprocedural control flow in a method,
and consists of basic blocks (V) and edges (E). Figure 2 shows an example
control flow graph CFGp that consists of basic blocks ENTRY, a, b, c, d, e,
and EXIT. The dashed lines show edges between basic blocks. The dark edges
show calls between methods (other CFGs). A call edge represents a method
call, and consists of a call site and a callee. An example call edge in Figure 2
is e5, the call from csc to CFGt. The DCG of a program includes the dynamic
frequency of each call edge, from some execution. For a call site cs, OutEdges(cs)
is the set of call edges that start at call site cs. OutEdges(csa) = {e3, e4} in
Figure 2. For a method m, InEdges(m) is the set of call edges that end at m.
InEdges(CFGt) = {e4, e5} in Figure 2.

84 B. Lee et al.

..
...
.

..
.

..
.

..
.

..
.

CFG
CFG

CFG

CFG

CFGb

a

r

s
p

t

q

e d

c

cs

e

EXIT

ENTRY

e

e

2

1
3

a

ccs

ENTRY

ENTRY

e4

e5

Fig. 2. Example dynamic call graph (DCG) and its control flow graphs (CFGs)

Definition 1. The INFLOW of a method m is the total flow into m:

INFLOW(m) ≡
∑

e∈InEdges(m)

f(e)

where f(e) is the execution frequency of call edge e. INFLOW(m) in an accurate
DCG is the number of times m executes.

Definition 2. The OUTFLOW of a call site cs is:

OUTFLOW(cs) ≡
∑

e∈OutEdges(cs)

f(e)

OUTFLOW(cs) in an accurate DCG is the number of times cs executes.

Because a sampled DCG has timing bias and sampling errors, the DCG yields
inaccurate OUTFLOW and INFLOW values. DCG correction corrects OUT-
FLOW using constraints provided by static and dynamic control-flow informa-
tion (doing so indirectly corrects method INFLOW as well).

DCG correction maintains the relative frequencies between edges coming out
of the same call site (which occur because of virtual dispatch), and does not cor-
rect their relative execution frequencies. For example, DCG correction maintains
the sampled ratio between f(e3) and f(e4) in Figure 2.

3.2 The Frequency Dominator (FDOM) Relation

This section introduces the frequency dominator relation, a static property of
CFGs that represents constraints (theorems) on program statements’ relative
execution frequencies. Due to space constraints, we omit the algorithms for com-
puting FDOM and only sketch the constraint propagation algorithms based on
FDOM. The detailed algorithms may be found in an extended technical re-
port [15]. The FDOM algorithm is closely related to dominator algorithms [10].
Like the dominator relation, FDOM is reflexive and transitive.

Correcting the DCG Using Control-Flow Constraints 85

Definition 3. Frequency Dominator (FDOM). Given statements x and y in
the same method, x FDOM y if and only if for every possible path through the
method, x must execute at least as many times as y. We also define FDOM(y)
≡ {x | x FDOM y}.

3.3 Static FDOM Constraints

We first show how to propagate the FDOM constraint to DCG frequencies.

Theorem 1. FDOM OUTFLOW Constraint: Given method m and two call
sites cs1 and cs2 in m, if cs1 FDOM cs2, OUTFLOW(cs1) ≥ OUTFLOW(cs2)

Intuitively, the OUTFLOW constraint tells us that flow on two call edges is
related if they are related by FDOM. For example, in Figure 2, csa FDOM csc

and thus OUTFLOW(csa) ≥ OUTFLOW(csc).

Theorem 2. FDOM INFLOW Constraint: Given method m, if cs FDOM
ENTRY (m’s entry basic block), INFLOW(m) ≤ OUTFLOW(cs)

Intuitively, the INFLOW constraint specifies that a call site must execute at
least as many times as a method that always executes the call site.

3.4 Static FDOM Correction

We use an algorithm called FDOMOutflowCorrection to apply the FDOM OUT-
FLOW constraint to a sampled DCG. We give pseudocode in the technical
report [15]. The algorithm compares the sampled OUTFLOW of pairs of call
sites that satisfy the FDOM relation. If their OUTFLOW s violate the FDOM
OUTFLOW constraint, FDOMOutflowConstraint sets both OUTFLOW s to the
maximum of their two OUTFLOW s. After processing a method, FDOMOutflow-
Constraint scales the OUTFLOW s of all the method’s call sites to preserve the
sum of the frequencies out of the method. For instance, consider a call site cs1

and a call site cs2 in the same method, and suppose that cs1 executes at least
as many times as cs2 due to the FDOMOutflowConstraint. However, suppose
also that the call graph profiler samples cs1 10 times and cs2 30 times since the
program spends a lot of time executing the callee of cs2. The FDOMOutflow-
Correction algorithm corrects this anomaly and assigns 30 to OUTFLOW(cs1),
and scales the two OUTFLOW s by (10+30)/(30+30) = 2/3 so the OUTFLOW
sum is preserved. Then both call sites have 20 as their corrected execution
frequency.

We also implemented correction algorithms using the INFLOW constraint,
but they degraded DCG accuracy in some cases. This class of correction algo-
rithms requires high accuracy in the initial INFLOW for a method to subse-
quently correct its OUTFLOW. In practice, we found that errors in INFLOW
information propagated to the OUTFLOW s, degrading accuracy.

86 B. Lee et al.

3.5 Dynamic Basic Block Profile Constraints

This section describes how to incorporate constraints on DCG frequencies pro-
vided by basic block profiles, and the following section shows how to correct
the DCG with them. The Dynamic OUTFLOW constraint computes execution
ratios from the basic block execution frequency profiles, and then applies these
ratios to the OUTFLOW of call sites in the basic blocks.

Theorem 3. Dynamic OUTFLOW Constraint: Given two call sites cs1
and cs2, and execution frequencies fbprof(cs1) and fbprof(cs2) provided by a basic
block profile,

OUTFLOW(cs1)

OUTFLOW(cs2)
=

fbprof(cs1)

fbprof(cs2)

We apply the Dynamic OUTFLOW constraint within the same method, i.e., in-
traprocedurally. Edge profiles alone do not compute accurate relative basic block
profiles between methods, i.e., basic block profiles with interprocedural accu-
racy. To attain interprocedural accuracy, we experiment with using low-overhead
method invocation counters to provide basic block profiles interprocedural ac-
curacy. In this case, Dynamic OUTFLOW can correct call sites in different
methods (see Section 4).

Theorem 4. Dynamic INFLOW Constraint: Given a method m with a
single basic block and a call site cs in m, INFLOW(m) = OUTFLOW(cs)

The Dynamic INFLOW constraint uses the total flow (frequency) coming into
the method to constrain the flow leaving any call sites in the method (OUT-
FLOW). When basic block profiles do not have interprocedural accuracy, the
Dynamic INFLOW constraint is useful for methods with a single basic block
because the Dynamic OUTFLOW constraint cannot constrain the OUTFLOW
of call sites in a single basic block.

3.6 Dynamic Basic Block Profile Correction

We use an algorithm called DynamicOutflowCorrection to apply the Dynamic
OUTFLOW constraint [15]. This algorithm sets the OUTFLOW of each call
site cs to fbprof(cs), its frequency from the basic block profile. The algorithm
then scales all the OUTFLOW values so that the method’s total OUTFLOW is
the same as before (as illustrated in Section 3.4). This scaling helps to maintain
the frequencies due to sampling across disparate parts of the DCG.

Since DynamicOutFlowCorrection determines corrected DCG frequencies us-
ing a basic block profile, accuracy may suffer if the basic block profile is inac-
curate. Jikes RVM collects an edge profile (which determines the basic block
profile) in baseline-compiled code only, so phased behavior may affect accuracy,
although we find that the edge profile is accurate enough to improve DCG accu-
racy in our experiments. To avoid the effects of phased behavior, DCG correction
could use edge profiles collected continuously [1,9].

Correcting the DCG Using Control-Flow Constraints 87

We also use an algorithm called DynamicInflowCorrection that applies the
Dynamic INFLOW constraints to the DCG [15]. For each method with a single
basic block, DynamicInflowCorrection sets the OUTFLOW of each call site
in the method to the INFLOW of the method. As in the case of the FDOM
INFLOW constraint, we do not use the Dynamic INFLOW constraint together
with an intraprocedural edge profile. However, with an interprocedural edge
profile, INFLOW is accurate enough to improve overall DCG accuracy.

4 Implementing DCG Correction

Dynamic compilation systems perform profiling while they execute and optimize
the application, and therefore DCG correction needs to occur at the same time
with minimal overhead.

We minimize DCG correction overhead by limiting its frequency and scope.
We limit correction’s frequency by delaying it until the optimizing compiler re-
quests DCG information. The correction overhead is thus proportional to the
number of times the compiler selects optimization candidates during an execu-
tion. Correction overhead is thus naturally minimized when the dynamic opti-
mizer is selective about how often and which methods to recompile.

We limit the scope of DCG correction by localizing the range of correction.
When the compiler optimizes a method m, it does not require the entire DCG,
but instead considers a localized portion of the DCG relative to m. Because we
preserve the call edge frequency sum in the OUTFLOW correction algorithm,
we can correct m and all the methods it invokes without compromising the
correctness of the other portions of the DCG. Because we preserve the DCG
frequency sum, the normalized frequency of a call site in a method remains
the same, independent of whether call edge frequencies in other methods are
corrected or not.

For better interaction with method inlining, one of the DCG clients, we limit
correction to nontrivial call edges in the DCG. Trivial call edges by definition
are inlined regardless of their measured frequencies because their target methods
are so small that inlining them always reduces the code size.

Table 1 summarizes the correction algorithms and their scope. The algorithms
take as input the set of call sites to be corrected. Clearly, for FDOM correction,
the basic unit of correction is the call sites within a procedure boundary. For
dynamic basic block profile correction, there are two options. The first limits
the call site set to be within a procedural boundary, and the second corrects all
the reachable methods. Since many dynamic compilation systems support only
high precision intraprocedural basic profiles, the first configuration represents
how much DCG correction would benefit these systems.

Because our system does not collect interprocedural basic block profiles, we
implement interprocedural correction by adding method counters. DCG correc-
tion multiplies the counter value by the normalized intraprocedural basic block
frequency. We find this mechanism is a good approximation to interprocedural
basic block profiles.

88 B. Lee et al.

Table 1. Call Graph Correction Implementations

Correction algorithm Input Correction unit Algorithms

Static FDOM Sampled DCG Call sites in method FDOMOutflowCorrection

CF Correction to be optimized
Dynamic Intraprocedural Sampled DCG Call sites in method DynamicOutflowCorrection

CF Correction block profile to be optimized
Dynamic Interprocedural Sampled DCG Call sites in DCG DynamicOutflowCorrection &
CF Correction block profile DynamicInflowCorrection

5 Methodology

This section describes our benchmarks, platform, implementation, and VM com-
piler configurations. We describe our methodologies for accuracy measurements
against the perfect dynamic call graph (DCG), overhead measurements, and
performance measurements.

We implement and evaluate DCG correction algorithms in Jikes RVM 2.4.5,
a Java-in-Java VM, in its production configuration [3]. This configuration pre-
compiles the VM methods (e.g., compiler and garbage collector) and the libraries
the VM uses into a boot image. Jikes RVM contains two compilers: the base-
line compiler and optimizing compiler with three optimization levels. (There is
no interpreter.) When a method first executes, the baseline compiler generates
assembly code (x86 in our experiments). A call-stack sampling mechanism iden-
tifies frequently executed (hot) methods. Based on these method sample counts,
the adaptive compilation system then recompiles methods at progressively higher
levels of optimization. Because it is sample-based, the adaptive compiler is non-
deterministic.

Jikes RVM runs by default using adaptive methodology, which dynamically
identifies frequently executed methods and recompiles them at higher optimiza-
tion levels. Because it uses timer-based sampling to detect hot methods, the
adaptive compiler is non-deterministic. For our performance measurements, we
use replay compilation methodology, which forces the compiler to behave in de-
terministically. We use advice files to specify which methods to compile and at
what level. For each method in the file, Jikes RVM compiles it to the specified
level when it is first invoked. We use advice files that include all methods and
represent the best performance of 25 adaptive runs. The advice files specify (1)
the optimization level for compiling every method, (2) the dynamic call graph
profile, and (3) the edge profile. Fixing these inputs, we execute two consecutive
iterations of the application. During the first iteration, Jikes RVM optimizes
code using the advice files. The second iteration executes only the application at
a realistic mix of optimization levels. Both iterations eliminate non-determinism
due to the adaptive compiler.

We use the SPEC JVM98 benchmarks [18], the DaCapo benchmarks (beta-
2006-08) [8], and ipsixql [14]. We omit the DaCapo benchmarks lusearch, pmd

Correcting the DCG Using Control-Flow Constraints 89

and xalan because we could not get them to run correctly. We also include
pseudojbb (labeled as jbb), a fixed-workload version of SPEC JBB2000 [19].

We perform our experiments on a 3.2 GHz Pentium 4 with hyper-threading
enabled. It has a 64-byte L1 and L2 cache line size, an 8KB 4-way set associative
L1 data cache, a 12Kμops L1 instruction trace cache, a 512KB unified 8-way set
associative L2 on-chip cache, and 2GB main memory, and runs Linux 2.6.0.

Accuracy Methodology. To measure the accuracy of our technique against the
perfect DCG for each application, we first generate a perfect DCG by modifying
Jikes RVM call graph sampling to sample every method call (instead of skipping).
We also turn off the adaptive optimizing system to eliminate non-determinism
due to sampling and since call graph accuracy is not influenced by code quality.
We modify the system to optimize (at level 1) every method and to inline only
trivial calls. Trivial inlining in Jikes RVM inlines a callee if its size is smaller than
the calling sequence. The inliner therefore never needs the frequency information
for these call sites. We restrict the call graph to the application methods by
excluding all call edges with both the source and target in the boot image, and
calls from the boot image to the application. We include call edges into the boot
image, since these represent calls to libraries that the compiler may want to
inline into the application.

To measure and compare call graph accuracy, we compare the perfect DCG
to the final corrected DCG generated by our approach. Because DCG clients
use incomplete graphs to make optimization decisions, it would be interesting,
although challenging, to compare the accuracy of the instantaneous perfect and
corrected DCGs as a function of time. We follow prior work in comparing the final
graphs [4] rather than a time series, and believe these results are representative
of the instantaneous DCGs.

Overhead Methodology. To measure the overhead of DCG correction without
including its influence on optimization decisions, we configure the call graph
correction algorithms to perform correction without actually modifying DCG
frequencies. We report the first iteration time because the call graph correction
is triggered only at compilation time. We report the execution time as the median
of 25 trials to obtain a representative result not swayed by outliers.

Performance Methodology. We use the following configuration to measure the
performance of using corrected DCGs to drive inlining. We correct the DCG as
the VM optimizes the application, providing a realistic measure of DCG cor-
rection’s ability to affect inlining decisions. We measure application-only perfor-
mance by using the second iteration time. We report the median of 25 trials.

6 Results

This section evaluates the accuracy, overhead and performance effects of the
DCG correction algorithms.

We use the notation CBS(SAMPLES, STRIDE) to refer to an Arnold-Grove
sampling configuration [4]. To compare the effect of the sampling configuration

90 B. Lee et al.

on call graph correction, we use two sampling configurations: CBS(1,1) and
CBS(16,3), 16 samples with a stride of 3. The default sampling configuration in
Jikes RVM is CBS(1,1), which is equivalent to the default timer-based sampling
in Figure 1(a). Arnold and Grove recommend CBS(16,3), which takes more
samples to increase accuracy while keeping average overhead down to 1-2%.

6.1 Accuracy

We use the overlap accuracy metric from prior work to compare the accuracy of
DCGs [4].

overlap(DCG1, DCG2) =
∑

e∈CallEdges min(weight(e,DCG1), weight(e, DCG2))

where CallEdges is the intersection of the two call edge sets in DCG1 and DCG2

respectively, and weight(e, DCGi) is the normalized frequency for a call edge e
in DCGi. We use this function to compare the perfect DCG to other DCGs.

Figures 3 and 4 show how DCG correction boosts accuracy over the CBS(1,1)
and CBS(16,3) sampling configurations. The perfect DCG is 100% (not shown).
The graphs compare the perfect DCG to the base system (No Correction), Static
FDOM CF Correction, Dynamic Intraprocedural CF Correction and Dynamic
Interprocedural CF Correction. Arnold and Grove report an average accuracy
of 50% on their benchmarks for CBS(1,1), and 69% for CBS(16,3) for 1 to 2%
overhead [4]. We show better base results here with an average accuracy of 52%
for CBS(1,1) and 76% for CBS(16,3).

These results show that our correction algorithms improve over both of the
sampled configurations, and that each of the algorithm components contributes
to the increase in accuracy (for example, raytrace in Figure 3 and jack in
Figure 4), but their importance varies with the program. FDOM and intrapro-
cedural correction are most effective when the base graph is less accurate as in
CBS(1,1) because they improve relative frequencies within a method. Interpro-
cedural correction is relatively more effective using a more accurate base graph
such as CBS(16,3). This result is intuitive; a global scheme for improving accu-
racy works best when its constituent components are accurate.

Figure 5 shows how the correction algorithms change the shape of the DCG
for raytrace for CBS(1,1), our best result. The vertical bar presents normalized
frequencies of the 150 most frequently executed call edges from the perfect DCG.
The call edges on the x-axis are grouped by their callers, and the vertical dashed
lines show the group boundaries. The dots show the frequency from the sampled
or corrected DCG. In the base case, call edges have different frequencies due to
timing bias and sampling error. Static FDOM CF Correction eliminates many
of these errors and improves the shape of the DCG; Figure 5(b) shows that
FDOM eliminates frequency variations in call edges in the same routine. Since
FDOM takes the maximum of edge weights, it raises some frequencies above
their true values. Dynamic Intraprocedural CF Correction further improves the

Correcting the DCG Using Control-Flow Constraints 91

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
hsqldb

jython

luindex

ipsixql

jbb
A

vg

0

10

20

30

40

50

60

70

80

90

100
A

cc
u

ra
cy

(%
) No Correction

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Fig. 3. Accuracy of DCG correction over the CBS(1,1) configuration

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
hsqldb

jython

luindex

ipsixql

jbb
A

vg

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

) No Correction

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Fig. 4. Accuracy of DCG correction over the CBS(16,3) configuration

DCG because it uses fractional frequency between two call sites, while FDOM
gives only relative frequency. We can see in Figure 5(c) several frequencies are
now closer to their perfect values. Finally, Interprocedural CF Correction further
improves the accuracy by eliminating interprocedural sampling bias. The most
frequently executed method calls, on the left of Figure 5(d), show particular
improvement.

6.2 Overhead

Figure 6 presents the execution overhead of DCG correction, which occurs each
time the optimizing compiler recompiles a method. Correction could occur on
every sample, but our approach aggregates the work and eliminates repeatedly
correcting the same edges. We take the median out of 10 trials (shown as dots).
Static FDOM Correction and Dynamic Intraprocedural CF Correction add no
detectable overhead. The overhead of the interprocedural correction is on average
1% and at most 3% (on jython). This overhead stems from method counter
instrumentation (Section 4).

92 B. Lee et al.

0

2

4

6

8

10

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy
(%

)

(a) No Correction

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy
(%

)

(b) Static FDOM CF Correction

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy
(%

)

(c) Dynamic Intraprocedural CF Correction

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy
(%

)

(d) Dynamic Interprocedural CF Correction

Fig. 5. Call graph frequencies for raytrace in CBS(1,1) configuration

6.3 Performance

We evaluate the costs and benefits of using DCG correction to drive one client,
inlining. We use the default inlining policy with CBS(1,1). Figure 7 shows
application-only (second iteration) performance (median of 10 trials) with sev-
eral DCG correction configurations. The graphs are normalized to the execution
time without correction. We first evaluate feeding a perfect DCG to the in-
liner at the beginning of execution (Perfect DCG). The perfect DCG improves
performance by a modest 2.3% on average, showing that Jikes RVM’s inliner
does not currently benefit significantly from high-accuracy DCGs. This result is
not surprising, since the heuristics were developed together with poor-accuracy
DCGs.

Static FDOM CF Correction shows the improvement from static FDOM cor-
rection, which is 1.1% on average. Dynamic Intraprocedural CF Correction im-
proves performance by 1.7% on average. Dynamic Interprocedural CF Correction

Correcting the DCG Using Control-Flow Constraints 93

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
hsqldb

jython

luindex

ipsixql

jbb
A

vg

0.90

0.95

1.00

1.05

1.10
N

o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Fig. 6. The runtime overhead of call graph correction in CBS(1,1) configuration

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
hsqldb

jython

luindex

ipsixql

jbb
A

vg

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Perfect DCG

Fig. 7. The performance of correcting inlining decisions in CBS(1,1) configuration

shows 1.3% average improvement. However, a perfect call graph does improve
two programs significantly: raytrace and ipsixql by 13% and 12% respectively,
and DCG correction gains some of these improvements: 18% and 2% respec-
tively. For raytrace, corrected (but imperfect) information yields better perfor-
mance than perfect information. This perfect information has strictly more call
edges and tends to report smaller normalized call edge frequencies as shown in
Figure 5(d), leading the optimizer not to inline one important call edge. This
effect occurs in hsqldb as well.

7 Conclusion

This paper introduces dynamic call graph (DCG) correction, a novel approach
for increasing DCG accuracy using static and dynamic control-flow information.
We introduce the frequency dominator (FDOM) relation to constrain and correct
DCG frequencies based on control-flow relationships in the CFG. We also show
how to combine these constraints with intraprocedural and interprocedural basic
block profiles to correct the DCG. By adding just 1% overhead on average, we

94 B. Lee et al.

show that DCG correction increases average DCG accuracy over sampled graphs
by 12% to 36% depending on the accuracy of the original. We believe DCG
correction will be increasingly useful in the future as object-oriented programs
become more complex and more modular.

Acknowledgments

We thank Xianglong Huang, Robin Garner, Steve Blackburn, David Grove, and
Matthew Arnold for help with Jikes RVM and the benchmarks. We thank Calvin
Lin, Curt Reese, Jennifer Sartor, Emmett Witchel, and the anonymous reviewers
for their helpful suggestions for improving the paper.

References

1. J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.
Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Con-
tinuous Profiling: Where Have All the Cycles Gone? In Symposium on Operating
Systems Principles, pages 1–14, 1997.

2. M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A comparative study of static
and profile-based heuristics for inlining. pages 52–64, Boston, MA, July 2000.

3. M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization
in the Jalapeño JVM. In ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 47–65, Minneapolis, MN, October
2000.

4. M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph profiles
in virtural machines. In Symposium on Code Generation and Optimization, pages
51–62, Mar. 2005.

5. M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented
code. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming language design and implementation, pages 168–179, New York, NY,
USA, 2001. ACM Press.

6. M. Arnold and P. F. Sweeney. Approximating the calling context tree via sampling.
Technical Report RC 21789, IBM T.J. Watson Research Center, July 2000.

7. T. Ball. What’s in a region?: or computing control dependence regions in near-
linear time for reducible control flow. ACM Letters on Programming Languages
and Systems, 2(1-4):1–16, 1993.

8. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks: Java bench-
marking development and analysis. In ACM Conference on Object-oriented pro-
graming, systems, languages, and applications, Portland, OR, USA, Oct. 2006.
http://www.dacapobench.org.

9. M. D. Bond and K. S. McKinley. Continuous path and edge profiling.
In IEEE/ACM International Symposium on Microarchitecture, pages 130–140,
Barcelona, Spain, 2005.

10. K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.
Software Practice & Experience, 4:1–10, 2001.

Correcting the DCG Using Control-Flow Constraints 95

11. J. Dean, C. Chambers, and D. Grove. Selective specialization for object-oriented
languages. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pages 93–102, New York, NY,
USA, 1995. ACM Press.

12. N. Grcevski, A. Kielstra, K. Stoodley, M. G. Stoodley, and V. Sundaresan. Java
just-in-time compiler and virtual machine improvements for server and middleware
applications. In Virtual Machine Research and Technology Symposium, pages 151–
162, 2004.

13. A. Hashemi, D. Kaeli, and B. Calder. Procedure mapping using static call graph
estimation. In Workshop on Interaction between Compiler and Computer Archi-
tecture, San Antonio, TX, 1997.

14. J. Henkel. Colorado Bench. http://www-plan.cs.colorado.edu/henkel/projects/-
colorado bench.

15. B. Lee, K. Resnick, M. D. Bond, and K. S. McKinley. Correcting the Dynamic
Call Graph Using Control-Flow Constraints. Technical report, University of Texas
at Austin, 2006.

16. M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and W. mei W. Hmu.
A Hardware Mechanism for Dynamic Extraction and Relayout of Program Hot
Spots. In International Symposium on Computer Architecture, pages 59–70, 2000.

17. M. Paleczny, C. Vick, and C. Click. The java hotspot server compiler. In Usenix
Java Virtual Machine Research and Technology Symposium (JVM’01), pages 1–12,
April 2001.

18. Standard Performance Evaluation Corporation. SPECjvm98 Documentation, re-
lease 1.03 edition, March 1999.

19. Standard Performance Evaluation Corporation. SPECjbb2000 (Java Business
Benchmark) Documentation, release 1.01 edition, 2001.

20. T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A Dynamic
Optimization Framework for a Java Just-in-Time Compiler. In ACM Conference
on Object Oriented Programming, Systems, Languages, and Applications, pages
180–195, 2001.

21. T. Suganuma, T. Yasue, and T. Nakatani. An empirical study of method inlining
for a java just-in-time compiler. July 2002.

22. R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal of Computing,
3(1):62–89, 1974.

23. Y. Wu and J. R. Larus. Static branch frequency and program profile analysis. In
ACM/IEEE International Symposium on Microarchitecture, pages 1–11, 1994.

24. X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and
adaptive calling context profiling. In ACM Conference on Programming Language
Design and Implementation, pages 263–271, 2006.

Obfuscating Java: The Most Pain for the Least Gain⋆

Michael Batchelder and Laurie Hendren

School of Computer Science, McGill University, Montreal, QC, Canada

mbatch@cs.mcgill.ca, hendren@cs.mcgill.ca

Abstract. Bytecode, Java’s binary form, is relatively high-level and therefore

susceptible to decompilation attacks. An obfuscator transforms code such that

it becomes more complex and therefore harder to reverse engineer. We develop

bytecode obfuscations that are complex to reverse engineer but also do not sig-

nificantly degrade performance. We present three kinds of techniques that: (1)

obscure intent at the operational level; (2) complicate control flow and object-

oriented design (i.e. program structure); and (3) exploit the semantic gap between

what is legal in source code and what is legal in bytecode. Obfuscations are ap-

plied to a benchmark suite to examine their affect on runtime performance, con-

trol flow graph complexity and decompilation. These results show that most of the

obfuscations have only minor negative performance impacts and many increase

complexity. In almost all cases, tested decompilers fail to produce legal source

code or crash completely. Those obfuscations that are decompilable greatly re-

duce the readability of output source.

1 Introduction

Reverse engineering is the act of uncovering the underlying design of a product through

analysis of its structure, features, functions and operation. It has a long history, includ-

ing applications in military and pharmacology industries, but it could be argued that

software has proven to be among the most susceptible to its attacks. Since software

is an easily and cheaply reproduced product it must rely on either passive protection

such as a patent or some form of active protection such as hiding software on servers,

encryption, or obfuscation.

Obfuscation is the obscuring of intent in design. It is one way of foiling decom-

pilers. With software this means transforming code such that it remains semantically

equivalent to the original, but is more esoteric and confusing. A simple example is the

renaming of variable and method identifiers. By changing a method from getName to

a random sequence of characters such as sdfhjioew, information about the method

is hidden that a reverse engineer could otherwise have found useful. A more complex

example is introducing unnecessary control flow that is hidden using opaque predi-

cates, expressions that will always evaluate to the same answer (true or false) but whose

value is not possible to estimate statically. Obfuscation is one of the more promising

forms of code protection because, while it may be obvious to a malicious attacker that a

program has been obfuscated, this fact will not necessarily improve their chances at de-

compilation. Also, obfuscation can severely complicate a program such that even if it is

⋆ This work was supported, in part, by NSERC and FQRNT.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 96–110, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

Obfuscating Java: The Most Pain for the Least Gain 97

decompilable it is very difficult to understand, making extraction of tangible intellectual

property close to impossible, without serious time investment.

Java is particularly vulnerable to reverse engineering because its binary form, byte-

code, is relatively high-level and contains considerable information about types, and

field and method names. There are also many references in the code to known fields

and methods in publicly-available class libraries, including the standard ones provided

with a Java implementation. Java decompilers exploit these weaknesses and there are

quite a few products that convert bytecode into Java source code that very similar to the

original and is quite readable, particularly when the bytecode is in exactly the format

produced by known javac compilers [20, 15, 12, 17, 14, 13].

This paper presents and studies a wide range of techniques for obfuscating Java

bytecode. However, a very important factor is that one wants the obfuscations to make

reverse engineering difficult (the most pain), but at the same time not hurt performance

of the obfuscated application (the least gain). This tradeoff is not obvious, since the

same obfuscations that make it hard for a decompiler may also severely impact the

analysis and optimizations in JIT compilers found in modern Java Virtual Machines

(JVMs).

This tradeoff is the main goal of our work. We developed and implemented a collec-

tion of obfuscations that hinder reverse engineering attempts, while at the same time do

not affect performance too much. We examine some variations of previously suggested

obfuscations and we also develop some new techniques, most notably those which ex-

ploit the semantic gap between what can be expressed in Java bytecode and what is

allowed in valid Java source.

The remainder of the the paper is organized as follows. In Section 2 we give a short

summary of previous work. Section 3 gives a high-level overview of our software ob-

fuscator, the Java Bytecode Obfuscator (JBCO). Sections 4 through 6 present our ob-

fuscations grouped by type: operator-level obfuscation, program structure modification,

and semantic gap exploitation. Each section ends with a summary of the impact of the

obfuscations on three decompilers. Due to space limitations we briefly describe each

obfuscation. However, detailed code examples and challenge cases for decompilers can

be found at http://www.sable.mcgill.ca/JBCO. In Section 7 we introduce

a benchmark set and provide a summary of the impact of each obfuscation on runtime

performance and control flow complexity. Finally, Section 8 gives conclusions and fu-

ture work.

2 Related Work

Obfuscation is a form of security through obscurity. While Barak argues that there are

seemingly few truly irreversible obfuscations [2] and, in theory, “deobfuscation” under

certain general assumptions has been shown by Appel to be NP-Easy [1], obfuscation

is nevertheless a valid and viable solution for general programs.

Early attempts involved machine-level instruction rewriting. Cohen used a tech-

nique he called “program evolution” to protect operating systems that included the

replacement of instructions, or small sequences of instructions, with ones that perform

98 M. Batchelder and L. Hendren

semantically equal functions. Transformations included instruction reordering, adding

or removing arbitrary jumps, and even de-inlining methods [5].

Much later, a theoretical approach was presented by Collberg et al. [6]. They outline

obfuscations as program transformations and develop terminology to describe them in

terms of performance effect and quality. They rely on a number of well-known soft-

ware metrics [4, 11, 16] to measure quality. Later, in [7], they reconsider lexical obfus-

cations (name changing) and data transformations (e.g., splitting boolean values into

two discrete numerics that are combined only at evaluation time). However, their chief

contributions are in control-flow modifications. They make use of opaque predicates to

introduce dead code, specifically engineering the dead branches to have buggy versions

of the live branches.

Sakabe et al. concentrate their efforts on the object-oriented nature of Java — the

high-level information in a program. Using polymorphism, they invent a unique return

type class which encapsulates all return types and then modify every method to return

an object of this type [18]. Method parameters are encapsulated in a similar way and

method names are cloned across different classes. In this way the true return types of

methods and the number and types of a method’s parameters are hidden. They fur-

ther obfuscate typing by introducing opaque predicates that branch around new object

instantiations which confuses the true type of the object and they use exceptions as

explicit control flow. Unfortunately, their empirical results show significantly slower

execution speeds — an average slowdown of 30% — and a 300% blowup in class file

size.

Sonsonkin et al. present more high-level obfuscations which attempt to confuse pro-

gram structure [19]. They suggest the coalescing of multiple class files into one —

combining the logic of two or more functionally-separate sections of the program —

and its reverse, splitting a single class file into multiples.

The obfuscations presented in this paper build upon both the simple operation-level

obfuscations as well as control flow and program structure obfuscations. We have also

developed a new set of obfuscations, which exploit the semantic gap between Java byte-

code and Java source. Many of these were inspired by our experiences in building Java

bytecode optimizers and and decompilers. The cases that are difficult for those tools are

exactly the cases that should be created by obfuscators.

3 JBCO Structure

JBCO – our Java ByteCode Obfuscator – is built on top of Soot [21]. Soot is a Java byte-

code transformation and annotation framework providing multiple intermediate repre-

sentations and infrastructure for dataflow analysis and transformations. JBCO uses two

intermediate representations: Jimple, a typed 3-address intermediate form; and Baf, a

typed abstraction of bytecode.

JBCO is a collection of Jimple and Baf transformations and analyses. Whenever

possible, we analyze and transform Jimple, since it is at a higher abstraction and easier

to work with. However, some low-level obfuscations are implemented in Baf since they

require modifying actual bytecode instructions. There are three categories of analyses

and transformations:

Obfuscating Java: The Most Pain for the Least Gain 99

Information Aggregators: collect data about the program for the transformationsi,

such as constant usage and local variable-to-type pairings.

Code Analyses: collect information about the code such as control flow graphs, type

data, and use-def chains, which help identify where in the program transformations

can be applied (e.g. in order to produce verifiable bytecode we must ensure proper

matchings between allocations of objects and their initializations).

Instrumenters: are the actual obfuscations, ransforming the code to obscure meaning.

JBCO can be used as a command-line tool or via a graphical user interface.1 Each

obfuscation can be activated independently and, depending on the severity of the ob-

fuscation desired, a weight of 0-9 can be given where 0 turns it off completely and 9

corresponds to applying it everywhere possible. We also provide a mechanism to limit

the obfuscations to specific regions of a program by using regular expressions to spec-

ify certain classes, fields or methods. This is useful if a user wants certain parts to be

heavily obfuscated or when a specific hot method should not be obfuscated because of

performance considerations.

4 Operator-Level Obfuscation

Our first group of obfuscations works at the operator level. That is, we convert a local

operation into a semantically equivalent computation that is harder for a reverse en-

gineer to understand. These obfuscations should be decompilable, but the decompiled

code is expected to be harder to understand.2,3

4.1 Embedding Constant Values as Fields (ECVF)

Programmers often use constants, particularly string constants, to convey important in-

formation. For example, a statement of the formSystem.err.println("Illegal
argument, value must be positive."); provides some context to the reverse

engineer. The point of the ECVF obfuscation is to move the constant into a static field

and then change references to the constant into references to the field. This could lead

to something like System.err.println(ObjectA.field1);, which conveys

significantly less meaning. An interprocedural constant propagation could potentially

undo this obfuscation. However, if the initialization of the field is further obfuscated

through the use of an opaque predicate, this is no longer possible.

4.2 Packing Local Variables into Bitfields (PLVB)

In order to introduce a level of obfuscation on local variables with primitive types

(boolean, char, byte integer), it is possible to combine some variables and pack them

1 JBCO will soon be released as a new component of Soot.
2 Our identifier renamer obfuscation was left out of the paper due to space limits. We developed

a unique approach to garbleing names, but the overall technique is quite common.
3 For each obfuscation, we give the acronym we use for it. This acronym is used both in the

experimental results and also as the flag used to enable the obfuscation in JBCO.

100 M. Batchelder and L. Hendren

into one variable which has more bits. To provide maximum confusion we randomly

choose a range of bits to use for each local variable. For example, an integer variable

may get packed into bits 9 through 43 of a 64-bit long. Each read or write of the orig-

inal variable must be replaced by packing and unpacking operations in the obfuscated

code and this might slow down the application. Thus, it is used sparingly and applied

randomly to only some locals. Without further obfuscation of the bitshifting and bit-

masking constants used for packing and unpacking, however, a clever decompiler could

overcome this technique.

4.3 Converting Arithmetic Expressions to Bit-Shifting Operations (CAE2BO)

Optimizing compilers sometime convert a complex operation such as multiplication

or division into a sequence of cheaper ones. This same trick can be used to obfuscate

the code. In particular, we look for instances of expressions in the form of v ∗ C (a

similar technique is used for v/C), where v is a variable and C is a constant. We extract

from C the largest integer i where i < C and is also a power of 2, i = 2s, where

s = floor(log2(v)). We then compute the remainder, r = v − i. If s is in the range of

−128 . . .127, we can convert the original to (v << s)+(v ∗r) and the expression v ∗r
can be further decomposed. In order to further obfuscate we don’t use the shift value

s directly, but rather find an equivalent value s′. To do this we take advantage of the

fact that shifting a 32-bit word by 32 (or a multiple of 32) always returns the original

value. We choose a random multiple m, and compute a new but equivalent shift value,

s′ = (byte)(s + (m ∗ 32)).
As an example, an expression of the form v ∗ 195 would be converted first to

(v << 7) + (v << 6) + (v << 1) + v and then the three shift values would be

further obfuscated to something like (v << 39) + (v << 38) + (v << −95) + v.

A decompiler that is aware of this calculation could potentially reverse it, but if one

or more of the constants were hidden with an opaque predicate, it could stymie the

attempt.

4.4 Impact of Operator-Level Obfuscations on Decompilers

Although we fully expected all of these simple, operator-level, obfuscations to be de-

compilable (i.e. correct and compilable source code would be produced, even if less

readable than the original), we were surprised to find the results in Table 1. For these

and subsequent decompiler tests in this paper, we created some small micro-tests for

each obfuscation.4 A score of Pass indicates that the decompiler produced correct Java

source that could be recompiled by javac, Fail indicates that the produced code would

not recompile, and Crash is the result of a decompiler not terminating normally.

Why do decompilers fail on these simple obfuscations? The three obfuscations un-

wittingly exploit a semantic gap between bytecode and Java source. Booleans, bytes and

4 We used micro-tests because some decompilers, most notably pattern-based Jad, are very sen-

sitive to whether the bytecode looks exactly like it came from a javac compiler or not. Since

all of our tests have been run through Soot, which even without obfuscations is sometimes

enough to confuse decompilers, we wanted to ensure that our tests were small enough to mea-

sure the impact of the obfuscation itself and not indirect effects due to processing with Soot.

Obfuscating Java: The Most Pain for the Least Gain 101

Table 1. Measuring Decompiler Success against Operator-level Obfuscations

Obfuscation Jad SourceAgain Dava

Embedding Constant Values as Fields Fail Fail Fail

Packing Local Variables into Bitfields Fail Fail Fail

Converting Arithmetic Expressions to Bit-Shifting Ops Fail Fail Pass

chars are expressed as integers in bytecode, whereas in source these are given unique

types which must be used consistently and in a manner so as not to lose precision.

The decompilers failed to properly type and cast for these computations and produced

output that was not recompilable.5

5 Obfuscating Program Structure

Program structure can be thought of as the framework. In a building this would be the

supporting beams, the floors, and the ceiling. It would not be the walls or the carpeting.

We define structure to include two facets: low-level method control flow and high-level

object-oriented design. Modern decompilers such as SourceAgain and Dava should be

able to handle these techniques, in principle.

5.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in bytecode offers a useful control flow obfuscation tool. It is the

only organic way (other than the try-catch structure) to manufacture a control flow graph

that has a node whose successor count is greater than two. This can severely increase

the complexity of a method.

This obfuscation adds edges to the control flow graph by inserting a dead switch. To

ensure that the switch itself is never executed it is wrapped in an opaque predicate. All

bytecode instructions with a stack height of zero are potentially safe jump targets for

cases in the switch. We implemented an analysis to find these zero-height locations and

we randomly select some as targets for the cases switch. This increases the connected-

ness and overall complexity of a method. A decompiler cannot remove the dead switch

because it cannot statically determine the value of the opaque predicate.

5.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair amount of duplication even within

a single method. By finding these clones and replacing them with a single switched

instance we can potentially reduce the size of the method while also confusing the

control flow, creating patterns not naturally expressed in Java.

We determine when a duplicate sequence D is a clone of the original sequence O
using the following rules:

5 Clearly our research group would like to fix Soot/Dava to properly handle this variation of the

typing problem - it is quite interesting to have one subgroup building a decompiler, while at

the same time another subgroup is trying to break it!

102 M. Batchelder and L. Hendren

– D must be of the same length as O and for each index i, instruction Di must

equal Oi.

– Each Di must be protected by the same (or no) try blocks as the original Oi.

– Every instruction in a sequence other than the first must have no predecessors that

fall outside the sequence (i.e. no branching into the middle of a sequence).

– Each Di must share the same stack height and types as the original Oi.

– Each Di must not have the same offset within the method as any instruction Oj .

The algorithm searches for duplicates of length 3 to 20. When a duplicate sequence

is found, a new integer is created to act as a control flag. Each duplicate is removed

and replaced with an assignment of the flag to a unique id followed by a goto directed

at the first instruction in the original sequence. The original sequence is prepended

with instructions which store 0 to the flag (the “first” unique id) and appended with a

switch. The default switch jump falls through to the next instruction (the successor of

the original sequence). A jump to the successor of each duplicate sequence is added to

the switch based on its flag id.

5.3 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs because of the widespread use of the

Java libraries. These libraries have clear and well-defined documentation. The very ex-

istence of library objects and method calls can give shape and meaning to a method

based entirely on how they are being used. The method calls that direct execution into

the native Java libraries cannot be renamed because the obfuscator should not change li-

brary code6. Therefore, the next best option is to hide library method calls. We do this by

indirecting library calls through intermediate methods that have nonsensical identifiers.

Each program method is checked for library calls. A new method M is then created

for each library method L referenced in the program. M is modified to invoke L. M is

placed in a randomly chosen class in order to cause “class-coagulation” — an increase

in class interdependence. Therefore, this obfuscation is two-fold. It confuses the object-

oriented design of the program and hides the library method calls by indirecting them

through a different “physical” part of the program.

5.4 Building Library Buffer Classes (BLBC)

Having a class that extends a library class directly can also lend a certain amount of

clarity to a program. Parent class methods that are over-ridden in the child are more

obvious as well. Experienced Java programmers are able to quickly grasp design intent

from this information.

This obfuscation attempts to cloud this particular design structure of Java. For each

class C, which directly extends a library class L, we create a new buffer class B. It is

inserted as a child of L and a parent of C. Since no part of the program itself ever uses

6 While it is not impossible, it is not reasonable. Obfuscating library code would mean that those

modified libraries would have to be distributed with the program, causing both licensing issues

and an unreasonable increase in the program’s distribution size.

Obfuscating Java: The Most Pain for the Least Gain 103

B directly, methods over-ridden in C can be defined as nonsense methods in B, further

adding confusion. This complicates and confuses the design of the program by adding

extra layers. Ultimately, it spreads the single-intent class structure over multiple files

making it difficult for a reverse engineer to understand.

5.5 The Impact of Program Structure Obfuscations on Decompilers

The results are shown in Table 2. Jad fairs badly when decompiling our structure ob-

fuscations, most likely due to its lack of control flow analysis. It resorts to leaving pure

bytecode in its output where it is unable to produce correct source. More surprisingly,

SourceAgain also has difficulty with the heavier control flow obfuscations. RDS causes

it to crash completely.

Table 2. Measuring Decompiler Success against Structure Obfuscations

Obfuscation Jad SourceAgain Dava

Adding Dead-Code Switch Statements Fail Fail Pass

Finding and Reusing Duplicate Sequences Fail Crash Pass

Building API Buffer Methods Fail Fail Fail

Building Library Buffer Classes Fail Pass Pass

None of the decompilers were able to properly mark which methods might throw ex-

ceptions, which is a requirement of Java source. Because some methods indirected by

BAPIBM might throw exceptions the new methods that call them are required to as well.

6 Exploiting the Design Gap

Certain gaps between what is representable in Java source code and what is repre-

sentable in bytecode exist. The classic example is the goto instructioni that has no direct

counterpart in source7.

The obfuscations detailed in this section were designed to exploit these bytecode-

to-source gaps. Smart decompilers can sometimes transform the obfuscated bytecode

into a semantically equivalent form of source code yet it is usually unreadable. Often,

however, the result is incorrect decompiled code or no decompiler output whatsoever.

Sometimes a decompiler crashes altogether.

6.1 Converting Branches to jsr Instructions (CB2JI)

The jsr bytecode8, short for Java subroutine, is analogous to the goto other than the

fact that it pushes a return address on the stack. Normally, the return address is stored

7 Abrupt jumps in source must be performed through the break or continue statements

which force a certain level of structure since they must always be directly associated with

well-defined statement blocks.
8 The jsrwas originally introduced to handle finally blocks — sections of code that are ensured

to run after a try block whether an exception is thrown or not. It is a historical anomaly that is

no longer used by modern javac compilers.

104 M. Batchelder and L. Hendren

to a register after a jsr jump and when the subroutine is complete the ret bytecode

is used to return.

The jsr - ret construct is very difficult to handle when dealing with typing issues

because each subroutine can be called from multiple places, requiring that type infor-

mation be merged which gives a more conservative estimate. Also, decompilers will

usually expect to find a specific ret for every jsr.

This obfuscation replaces if and goto targets with jsr instructions. The old jump

targets are each prepended by a pop in order to throw away the return address which is

pushed onto the stack. If the jump target’s predecessor in the instruction sequence falls

through then a goto is inserted after it which jumps directly to the old target (stepping

over the pop).

6.2 Reordering load Instructions Above if Instructions (RLAII)

Patterns in bytecode produced by javac can be examined for areas of possible ob-

fuscation. This simple obfuscation looks for situations where a local variable is used

directly following both paths of an if. That is, along both branches the first instruction

loads the variable on to the stack. This is a somewhat common occurance.

The obfuscation then moves the load instruction above the if, removing its clones

along both branches. While a modern decompiler like Dava, which is based on a 3-

address intermediate representation, will be able to overcome this change, any decom-

piler relying on pattern matching (such as Jad) will become very confused.

6.3 Disobeying Constructor Conventions (DCC)

The Java language specification [8] stipulates that class constructors – those methods

used to instantiate a new object of that class type – must always call either an alternate

constructor of the same class or their parent class’ constructor as the first directive. In

the event that neither is specified in source javac explicitly adds a call to the parent at

the beginning of the method.

While this super call, as a rule, must be the first statement in the Java source it is,

in fact, not required to be the first within the bytecode. By exploiting this fact it is pos-

sible to create constructors with no valid source code representation. This obfuscation

randomly chooses among four different approaches in order to confuse decompilers:

Wrapping the super call within a try block: This ensures that any decompiled source

will be required to wrap the call in a try as well to conform to the rules of Java. To

properly allow the exception to propagate, the handler unit — a throw instruction

— is appended to the end of the method.

Taking advantage of classes which are children of java.lang.Throwable: This app-

roach inserts a throw before the super call and creates a new try block that traps

just the new throw. The handler unit is designated to be the super call itself. This

takes advantage of the fact that the class is throwable and can be pushed onto the

stack through the throw mechanism instead of the standard load.

Obfuscating Java: The Most Pain for the Least Gain 105

Inserting a jsr jump and a pop directly before the super constructor call: The

jsr’s target is the pop, which removes the subsequent return address that is pushed

on the stack by the jsr. This confuses the majority of decompilers which have

problems dealing with jsr instructions.

Adding new instructions before the super call: This approach inserts a dup follo-

wed by an ifnull before the super call. The ifnull target is the super call.

The if branch instruction will always be false since the object it is comparing is

the object being instantiated in the current constructor. A push null is inserted,

followed by a throw, along the false branch of the if. A try block is created

spanning from the ifnull up to the super call. The catch block is appended to the

end of the method as a sequence of pop, load o, goto sc (o is the object

being instantiated and sc is the super call). This confuses decompilers because it

is more difficult to deduce which local will be on the stack when the super call site

is reached.

6.4 Partially Trapping Switch Statements (PTSS)

There is a big gap between high-level structured use of try-catch blocks in Java source

and their low-level byte implementation. The Java construct allows only well-nested and

structured uses, but the bytecode implementation is at a lower abstraction. A bytecode

trap specifies a bytecode range a . . . b, a handler unit h, and an exception type E. If an

exception T is raised within the method at bytecode c then the JVM searches for a trap

in the list matching either the type of T or a parent type of T whose bytecode range

a . . . b contains c. If a trap is found then the stack is emptied, T is pushed on top, and

the program counter is set to the handler h. There are no rules that enforce nesting of

these ranges. They may overlap or even share code with handler code.

Thus, one way of confusing decompilers is to trap sequential sections of bytecode

that are not necessarily sequential in Java source code. An example of this is the switch

construct. In source, the switch encapsulates different blocks of code as targets of the

switch. However, in bytecode there is nothing explicitly tying the switch instruction

to the different code blocks (i.e. there is no explicit encapsulation).

If the switch is placed within a trap range along with only part of the code blocks

which are associated as its targets then there will be no way for an automatic decompiler

to output semantically equivalent code that looks anything like the original source. It

must reproduce the trap in the output, potentially by duplicating code.

This transformation is conservatively limited to those switch constructs which are

not already trapped, which alleviates some analysis work. This implies that the switch
instruction itself and any additional instructions that are selected for trapping were not

previously trapped in any way.

6.5 Combining Try Blocks with Their Catch Blocks (CTBCB)

Java source code can only represent try-catch blocks in one way: with a try block di-

rectly followed by one or more catch blocks associated with it. In bytecode, however,

106 M. Batchelder and L. Hendren

try blocks can protect the same code that is used to handle the exceptions it throws or

one of its catch blocks can appear “above” it in the instruction sequence.

This obfuscation combines a try-catch block such that both the beginning of the try

block and the beginning of the catch block are the same instruction. This is accom-

plished by prepending the first unit of the try block with an if that branches to either

the try code or the catch code based on an integer control flow flag. Once the try section

has been officially entered, the flag is set to indicate that any execution of the if in the

future should direct control to the catch section. The integer flag is reset to its original

value when the try section is completed.

6.6 Indirecting if Instructions (III)

While javac always produces predictable try blocks it is possible to abuse them

in other ways. This obfuscation takes advantage of this by indirecting if branching

throughgoto instructions which are within a special try block. Normally, modern com-

pilers would remove the goto and modify the if to jump directly to its final target.

However, since a try block protects all these gotos it is not valid to remove them unless

the code can be statically shown to never raise an exception. Since there is no explicit

goto allowed in Java source, it is difficult for decompilers to synthesize equivalent

source code.

6.7 Goto Instruction Augmentation (GIA)

Explicit goto statements are not allowed in Java source.9 One must use abrupt state-

ments instead. However, the goto exists in bytecode. It is possible to insert an explicit

goto in bytecode. While reversible using control flow graph analysis, some simple

decompilers will still struggle with this.

Our obfuscation randomly splits a method into two sequential parts: The first, con-

taining the start of the method, P1 and a second, containing the end of the method, P2.

It then reorders these two parts and inserts two goto instructions. One is made the first

instruction in the method and points to the start of P1. The other is appended to P1 and

targets P2. The new layout is now: { goto P1, P2, P1, goto P2}. A try block is then

created, spaning from the end of P2 to the beginning of P1, thereby “gluing” the two

together. This makes it difficult to shuffle them back to their original order.

6.8 The Impact of Exploiting the Semantic Gap on Decompilers

All of the decompilers have difficulty with the obfuscations from this section. Table 3

shows that both Jad and SourceAgain fail all tests and Dava is only successful once. Jad

generates source with much bytecode left in it, making it difficult to identify anything

specific as the cause. SourceAgain was unable to analyze the scope of local variables.

It would declare a local within a nested block even when the parent block used that lo-

cal. Both SourceAgain and Dava had difficulties marking methods which might throw

exceptions. They also could not recognize the super constructor method calls in DCC

9 Studies have shown this to be a good design decision [3].

Obfuscating Java: The Most Pain for the Least Gain 107

Table 3. Measuring Decompiler Success against Semantic Gap Obfuscations

Obfuscation Jad SourceAgain Dava

Converting Branches to jsr Instructions Fail Fail Crash

Reordering loads Above if Instructions Fail Fail Pass

Disobeying Constructor Conventions Fail Fail Crash

Partially Trapping Switch Statements Fail Fail Fail

Combining Try Blocks with their Catch Blocks Fail Fail Fail

Indirecting if Instructions Fail Fail Fail

Goto Instruction Augmentation Fail Fail Fail

either, leaving the bytecode name <init> which is not legal. Dava crashed on DCC

due to its inability to handle explicitly null exceptions.10

7 Empirical Evaluation

An important aspect of our work is the evaluation of the impact of obfuscations on per-

formance. To test this we have gathered a set of computation-extensive benchmarks.

They represent a wide array of programs each with their own unique coding style, re-

source usage, and ultimate task. Below is a list of brief descriptions of the programs.

Asac: compares the performance of the Bubble Sort, Selection Sort, and Quick Sort

algorithms. It creates a thread for each algorithm.
Chromo: runs a genetic algorithm; a technique using randomization instead of a de-

terministic search strategy. It instantiates many chromosome objects and performs

many 64-bit array comparisions for each generation it simulates.

Decode: implements Shamir’s Secret Sharing algorithm for decoding encrypted mes-

sages.
FFT: performs fast fourier transformations on double precision data.

Fractal: generates a fractal image. It performs many trigonometric functions and is

deeply recursive.

LU: implements Lower/Upper Triangular Decomposition for matrix factorization.
Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoretical approximation of pi.

Triphase: contains three programs: (1) a Linpack linear system solver performing

heavy floating-point math; (2) a multithreaded matrix multiplier; and (3) a mul-

tithreaded Sieve prime-finder algorithm.

7.1 Impact of Obfuscations on Performance

Figure 1(a) summarizes the ratio of the execution times of the obfuscated benchmark

to the original benchmark.11 A ratio of 1 indicates no effect on performance, a ratio of

10 Soot is unable to read in classfiles that include jsr instructions with no matching ret. This

is not a limitation of Dava itself but we marked it as having crashed on the CB2JI obfuscation

because of this.
11 To time the original benchmark, we first processed it via Soot with no obfuscations turned on.

This is to factor out any differences due to Soot processing.

108 M. Batchelder and L. Hendren

(a) (b)

Fig. 1. Comparing obfuscated programs to their original forms: (a) Performance Ratio — (av-

erage execution time of obfuscated program)/(average execution time of original program); (b)

Complexity Ratio — (sum of edges and nodes in obfuscated CFG)/(sum of edges and nodes in

original CFG)

less than 1 indicates that the obfuscated benchmark was faster, and a ratio greater than

1 indicates that it was slower.12 Each bar corresponds to one obfuscation, the diamond

on the bar indicates the average over all the benchmarks. The bars show the range of

ratios with the bottom of the bar indicating the benchmark with the lowest ratio and the

top of the bar corresponds to the benchmarks with the highest ratio.

All experiments were run on an AMD AthlonTM64 X2 3800+ machine with 4GB

of RAM running Ubuntu 6.06 Linux. Sun Microsystem’s Java HotSpotTM64-Bit Server

VM (build 1.5.0 06 b05) was used with the initial and maximum Java heap sizes set to

128MB and 1024MB, respectively.

As shown by recent empirical studies by Gu et al. [9, 10], small variations in code

layout can lead to relatively large performance differences in Java (on the order of 5-

10%). Thus, we can expect some performance differences between the original and ob-

fuscated code just because the obfuscated code leads to different code layouts. Notable

performance differences are those less than .95 or greater than 1.05.

Average performance of the obfuscated code is very reasonable and quite a few are,

in fact, faster. The most expensive is CB2JI, which converts branches to jsr instructions,

with an average slowdown of 1.16 and a maximum slowdown of almost 1.6.13 Only 6

obfuscations lead to a maximum slowdown > 1.2. These should be used carefully,

avoiding hot methods if possible.

In some cases the obfuscations actually seem to slightly improve peformance. The

RLAII obfuscation that moves loads above ifs is one such case.14

12 The execution time is computed by timing 10 runs, dropping the slowest and fastest and aver-

aging the remaining 8. The largest standard error we saw was 2.6% and most measurements

were well below that.
13 The maximum slowdown was in the LU benchmark and we found th entire slowdown was

caused by one deeply nested loop which had very complex control flow after obfuscation. The

JIT compiler struggled to analyze this, causing a 5-fold slowdown in compilation time.
14 This makes sense since it is moving a load that is known to be needed on both branches earlier

in the computation.

Obfuscating Java: The Most Pain for the Least Gain 109

7.2 Impact of Obfuscations on Control-Flow Complexity

Figure 1(b) shows the increase in code complexity due to obfuscations (the pain). We

have opted for a simple measure of complexity based on the total number of nodes and

edges in the control flow graphs of the program. Each node is a basic block and each

edge is a control flow edge. Obfuscations which change the structure of the code may

introduce new edges and/or redirect existing edges to split basic blocks. Figure 1(b)

displays the ratio of the sum of nodes and edges of the obfuscated code over the sum of

the original. This count captures the impact of control flow obfuscations well.15

Some structure obfuscations show a signficant increase in complexity.16

As we have shown in Table 3, the third group of obfuscations are those that are

most effective in breaking decompilers. Some of these also show significant increases

in complexity. Based on our experiences with Dava, which can partially handle many

of these cases, we expect that a complete decompilation will lead to source code with a

lot of code duplication and heavy use of labeled blocks.

8 Conclusions and Future Work

Fourteen obfuscations have been presented. The intent was to hinder reverse engineer-

ing while maintaining performance. The operator-level techniques are intended to make

the code less readable. We didn’t expect these to break decompilers, yet several de-

compilers failed to properly type the obfuscated code. The structure obfuscations were

meant to confuse control flow and object-oriented design. The decompilers also had

trouble with some of these techniques, although they should in principle be decompil-

able. These failures were mostly due to obfuscations creating unstructured control flow

which is more difficult to handle than structured control flow. The gap obfuscations

were new techniques and were aimed at exploiting the differences between bytecode

and Java source. These were very successful in increasing the complexity of the code

and breaking the decompilers.

The effect on performance varied. The average performance ratio of obfuscated/

original ranged from .96 to 1.16. The maximum ratio reached almost 1.6 but only 6

of 14 obfuscations were over 1.2. These 6 should not be used heavily in hot methods of

a program. More detailed analysis of specific instances showed that performance slow-

downs were often due to the increased time needed by the JIT compilers to analyze the

complex control flow created by our modifications. Hence the obfuscations are not just

more difficult for reverse engineers to understand, they also cause problems for tools

like compilers and decompilers.

We presented obfuscations we developed and this paper has shown how they work in-

dividually. The next step is to develop techniques to automatically determine optimized

obfuscation sites and how to best select a combination of obfuscations so that the best

15 As expected, the operation-level obfuscations have no impact on control flow complexity.

Complexity for these obfuscations is better demonstrated by an increase in the number of

operations. We have collected these kinds of metrics, which do demonstrate an increase.
16 The two obfuscations that confuse the object-oriented design, BAPIBM and BLBC, do not

increase complexity, but would affect other metrics which measure coupling.

110 M. Batchelder and L. Hendren

overall protection is acheived. We have also started to develop metrics to quantify the

effect of obfuscators and decompilers.

References

1. A. W. Appel. Deobfuscation is in NP, Aug. 21 2002.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On

the (im)possibility of obfuscating programs. Lecture Notes in Computer Science, 2139:1–??,

2001.

3. B. A. Benander, N. Gorla, and A. C. Benander. An empirical study of the use of the goto

statement. J. Syst. Softw., 11(3):217–223, 1990.

4. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans.

Softw. Eng., 20(6):476–493, 1994.

5. F. B. Cohen. Operating system protection through program evolution. Comput. Secur.,

12(6):565–584, 1993.

6. C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and unstructuring data

structures. In ICCL ’98: Proceedings of the 1998 International Conference on Computer

Languages, page 28, Washington, DC, USA, 1998. IEEE Computer Society.

7. C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation - tools

for software protection. In IEEE Transactions on Software Engineering, volume 28, pages

735–746, Aug. 2002.

8. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Second

Edition. Addison Wesley, 2000.

9. D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source of noise in JVM performance.

In Component And Middleware Performance workshop, OOPSLA 2004, 2004.

10. D. Gu, C. Verbrugge, and E. M. Gagnon. Relative factors in performance analysis of Java

virtual machines. In VEE ’06: Proceedings of the 2nd international conference on Virtual

execution environments, pages 111–121. ACM Press, 2006.

11. S. Henry and K. Kafura. Software structure metrics based on information flow. IEEE Trans-

actions on Software Engineering, 7(5):510–518, 1981.

12. Jad - the fast Java Decompiler. Available on: http://www.kpdus.com/jad.html.

13. J. Miecnikowski and L. J. Hendren. Decompiling Java bytecode: problems, traps and pit-

falls. In R. N. Horspool, editor, Compiler Construction, volume 2304 of Lecture Notes in

Computer Science, pages 111–127. Springer Verlag, 2002.

14. J. Miecznikowski and L. Hendren. Decompiling Java using staged encapsulation. In Pro-

ceedings of the Working Conference on Reverse Engineering, pages 368–374, October 2001.

15. Mocha, the Java Decompiler. Available on: http://www.brouhaha.com/∼eric/
computers/mocha.html.

16. J. C. Munson and T. M. Khoshgoftaar. Measurement of data structure complexity. J. Syst.

Softw., 20(3):217–225, 1993.

17. N. A. Naeem and L. Hendren. Programmer-friendly decompiled Java. In Proceedings of the

14th IEEE International Conference on Program Comprhension, 2006.

18. Y. Sakabe, M. Soshi, and A. Miyaji. Java obfuscation with a theoretical basis for building

secure mobile agents. In Communications and Multimedia Security, pages 89–103, 2003.

19. M. Sosonkin, G. Naumovich, and N. Memon. Obfuscation of design intent in object-oriented

applications. In DRM ’03: Proceedings of the 3rd ACM workshop on Digital rights manage-

ment, pages 142–153, New York, NY, USA, 2003. ACM Press.

20. Source Again - A Java Decompiler. Available on: http://www.ahpah.com/.

21. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java

optimization framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

A Fast Cutting-Plane Algorithm

for Optimal Coalescing

Daniel Grund1,⋆ and Sebastian Hack2

1 Department of Computer Science, Saarland University
grund@cs.uni-sb.de

2 Department of Computer Science, University of Karlsruhe
hack@ipd.info.uni-karlsruhe.de

Abstract. Recent work has shown that the subtasks of register allo-
cation (spilling, register assignment, and coalescing) can be completely
separated. This work presents an algorithm for the coalescing subproblem
that relies on this separation. The algorithm uses 0/1 Linear Program-
ming (ILP), a general-purpose optimization technique, to derive optimal
solutions.

We provide the first optimal solutions for a benchmark called “Optimal
Coalescing Challenge”, i.e., our ILP model outperforms previous
approaches. Additionally, we use these optimal solutions to assess the qual-
ity ofwell-knownheuristics.A secondbenchmark onSPECCPU2000pro-
grams emphasizes the practicality of our algorithm.

1 Introduction

Coalescing is an important compiler optimization that removes useless copy in-
structions from a program to improve its performance. Because it needs informa-
tion about assigned registers it is commonly performed as a subtask of register
allocation besides spilling and register assignment.

The first published coalescing heuristic [1] did not know about the negative
influence of aggressive coalescing on spilling. Later approaches discovered these
effects and restricted coalescing [2,3] or avoided harmful cases by partial undo-
ing [4].

Latest work [5] suggests to perform register allocation while the program is
in SSA form (static single assignment). The chordality of the SSA programs’
interference graphs allows for an allocation scheme in which each subtask needs
to be processed only once, see Figure 1. For the same reason the effects of
coalescing on the colorability of an already colored interference graph can be
predicted precisely.

Our main contribution is an algorithm for optimal coalescing using 0/1 lin-
ear programming (ILP) that outperforms previous approaches, e.g., most re-
cently [6]. Basically, the algorithm only relies on the strict separation of spilling

⋆ Partially supported by the German Research Foundation (DFG) GK 623.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 111–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 D. Grund and S. Hack

IFG

Spill

Coalesce Color

not k-colorable

(a)

Spill Color IFG

Coalesce SSA destruction

(b)

Fig. 1. Rough register allocation schemes: (a) Traditional, “iterative” Chaitin style
allocator. (b) “Sequential” SSA form allocator. For spilling and coloring an interference
graph is not strictly necessary.

and coalescing, although there is one step that can be handled more efficiently
for chordal graphs.

Optimization of the ILP solution process is key to obtain suitable solution
times. We present optimizations including a preprocessing that reduces the prob-
lem size, cutting planes pruning the search space as well as alternative ILP
constraints that are most easily generated for chordal graphs.

We use a set of interference graphs published by Appel [7] to assess the speed
of our algorithm. Our algorithm is the first to actually compute optimal solutions
thereby outperforming Appel’s approach [6]. Furthermore, we use the obtained
solutions to absolutely qualify coalescing heuristics presented in [8] and [7] and
the well-known ones presented in [3] and [4]. I.e., we judge them by how close
they are to the optimum; we do not ask how much they improved some objective
function but how much potential is left over.

The next section gives the necessary concepts from graph theory and integer
linear programming. Section 3 describes in detail all sources of copy instructions
(especially the handling of φ-functions) and defines the coalescing problem in
terms of an augmented interference graph. The main contribution is presented
in Section 4: The first part deals with the basic ILP model while the second part
presents the optimizations. The benchmark results are contained in Section 5.
Finally, Section 6 contrasts this paper to related work and Section 7 concludes.

2 Foundations

Concepts from graph theory: A chord is an edge connecting two non-adjacent
nodes on a cycle. A cycle with k nodes and without chords is called a k-hole.
A graph is called chordal if it does not contain any k-holes for k ≥ 4. A clique
is a completely connected subgraph. An alternative characterization of chordal
graphs can be given iteratively: A clique is a chordal graph. Gluing together two
chordal graphs such that the shared nodes are a clique is again a chordal graph.
More precisely, G = G1 ∪ G2 is chordal if the subgraphs Gi are chordal and
G1 ∩ G2 is a clique.

A Fast Cutting-Plane Algorithm for Optimal Coalescing 113

C
h
or

d

(a) (b) (c) (d)

Fig. 2. Concepts from graph theory related to chordality: (a) A chord in a cycle building
a 4-hole and a 6-hole. (b) Two non-chordal graphs. (c) Some cliques. (d) A chordal
graph constructed with the cliques of (c).

Integer linear programming (ILP) is the problem of maximizing or min-
imizing an objective function subject to (in)equality constraints and integrality
restrictions on a (sub)set of variables. In general, solving an ILP is NP hard,
but in practice even large instances can be solved. Let P = {x | Ax ≥ b, x ∈
R

n
+}, c ∈ R

n, b ∈ R
m, A ∈ R

m×n. Then ILP is the problem:

min f = cT x, x ∈ P ∩ Z
n

P

PI

I

The set P is called the feasible region. P
is called integral if it is equal to the convex
hull PI = conv(P ∩ Z

n) of the integer points
I. In case of an integral feasible region, an
optimal solution of the ILP can be efficiently
computed by solving the LP relaxation of the
problem by dropping all the integrality con-
straints. The figure to the right illustrates the
coherence of these sets. Closing the gap be-
tween the feasible region and the convex hull by an efficient problem formula-
tion or by adding additional constraints/cuts helps ILP solvers to find good or
optimal solutions more quickly. In contrast to constraints cuts do not rule out
any feasible integer points. For more details on (I)LP refer to [9,10].

3 The Problem

Let us first briefly summarize register allocation for SSA-form programs as de-
scribed in [5] and illustrated in Figure 1. First, the register pressure is reduced
to the number of available registers k by selecting certain abstract values and
generating spill code for them. Then the actual assignment of registers takes
place by performing a walk over the dominance tree of the program. Coalescing
is an optional optimization that may be disregarded. If applied, it may either
improve a given coloring or it can subsume coloring by combining the two phases.

114 D. Grund and S. Hack

At last, the SSA form is destructed by replacing the φ functions with register
permutations. For the details we have to refer to [11] or most recently to [8].

In such a setting, the starting point for coalescing is a k-colored chordal inter-
ference graph G = (V, E). To express the subjects of coalescing we add a second
type of undirected, so called affinity edges to the graph yielding G = (V, E, A).
An affinity edge is assigned an additional positive weight that represents the
penalty incurred whenever the two incident nodes have different colors. Thus,
coalescing is the optimization problem to color as many affinity pairs as pos-
sible with only one color each, while retaining a correct coloring. In the fol-
lowing, we list the origin of these edges (how they emerge) and describe their
construction.

φ functions represent control-flow-dependent data flow. Because there is no
immediate hardware support for this abstraction, one has to realize them with
suitable instruction sequences. This is called SSA destruction. All prior SSA
destruction algorithms insert sequences of copy instructions in the predecessor
blocks to implement the behavior of the φ functions and (try to) merge nodes
in the resulting interference graph to reduce the number of copy instructions.

But as described in [5], inserting sequences of copy instructions is in general
neither desirable (may destroy chordality) nor possible (may raise register de-
mand). Instead, the intermediate step of implementing φs with permutations
respects the requirement that all φs in a basic block must be carried out simul-
taneously. Thus, the semantics of φ functions in the same basic block may be
described as the simultaneous permutation of registers contents on the incom-
ing control flow edges. That is why φ functions should or must be replaced by
permutations that are finally implemented by copy or swap instructions.

Regarding coalescing, our approach is to add an affinity edge for each operand
of a φ function connecting it to the result of the φ. Coalescing may assign such
a pair of nodes the same color, in which case no value movement is necessary.
When SSA destruction inserts permutations, the prior optimization has already
maximized the number of fixed points of these permutations. Figure 3 shows an
exhaustive example.

Register constraints, the requirement that the assignable registers of cer-
tain arguments or results of an instruction are limited to a subset of all registers,
are another source of permutations.1 But as they are beyond the scope of this
paper, we will not elaborate this topic deeply. In general, completing the coloring
of a graph with pre-colored nodes is NP complete, even for chordal graphs [12].
But if each color is used only once by the pre-coloring the problem becomes easy
for chordal graphs.

As shown in Figure 4, we insert a permutation in front of each instruction
having a register constraint on one of its arguments or results (e.g., mul or div on
IA32 architecture). Therefore, every live range ends before such an instruction
and the interference graph is split into several unconnected components, each
containing every constraint color only once. To maximize the number of fixed

1 Permutations for register constraints are inserted before coloring, permutations for
φ functions during SSA destruction, after coalescing.

A Fast Cutting-Plane Algorithm for Optimal Coalescing 115

ar4 = . . .

br3 = . . .

cr2 = . . .

dr1 = . . .

er2 = . . .

2

4

xr1

yr2

zr3

3

5 = Φ

2

4

ar4 dr1

br3 er2

cr2 er2

3

5

. . . = ar4

(a)

ar4 = . . .

br3 = . . .

cr2 = . . .
»

b′

r2

c′

r3

–

= σ1

»

br3

cr2

–

ār1 = ar4

dr1 = . . .

er2 = . . .
»

d′

r1

e′

r2

–

= σ2

»

dr1

er2

–

ēr3 = er2

2

4

xr1

yr2

zr3

3

5 = Φ

2

4

ār1 d′

r1

b′

r2 e′

r2

c′

r3 ēr3

3

5

. . . = ar4

(b)

a

b
c d

e

x

y z

(c)

Fig. 3. Connection between Φs, permutations, and SSA destruction. (a) Example SSA
program. The subscripts of the variables denote the assigned registers. (c) Interference
graph of the program in (a) with dashed affinity edges ([a, x] was left out due to
infeasibility). (b) The program after SSA destruction without prior coalescing. The
abstract values v′ hold the results of the permutations. σ1 is inserted to swap the
registers of b and c. σ2 is the identity function. Its insertion is not strictly necessary. Now
the Φ function can be omitted because the registers of arguments and corresponding
results match. In addition this example contains all details and special cases one has to
consider: The abstract values v̄ are introduced to duplicate values. The value of a must
be duplicated because it is used at the end of the last basic block and thus interferes
with x. The value e must be duplicated because upon entering the last block the value
must be present in two registers (y and z). The duplicated value ē could be assigned
to y or z. Since the registers of e and y match, ē is assigned to z.

points of a permutation of size k we add k affinity edges to the interference graph
connecting the corresponding nodes of a permutation.

Register identity in two-address code, the requirement that the same reg-
ister must be assigned to the first operand and the result of an instruction, can
be seen as a register constraint. But it is handled differently to keep the number
of affinity edges small. We simply express the wish to have the result and the
first operand in the same register by adding an affinity edge between the two

116 D. Grund and S. Hack

...
(a′, b′, . . .) = σ(a, b, . . .)
x = op(a′, b′)
d = c′ + b′

(a)

r1

r2

r2

r1

r3

r5

r4

r3

r5

r4

r6

r6

(b) (c)

Fig. 4. (a) Before every register-constrained operation op we permute by σ all abstract
values (a, b, . . .) live at that position. (b) Cutout of an interference graph showing
nodes at such a program point: The upper nodes correspond to the original abstract
values (a, b, . . .) to permute, the lower nodes correspond to the results (a′, b′, . . .) of
the permutation. Some of the lower nodes are subject to register constraints imposed
by op. The affinity edges connect each v with its v′. Thus, coalescing will maximize
the number of fixed points of σ, and a lower number of instructions will result when
generating code for σ. (c) The permutation corresponding to the register assignment
in (b).

corresponding nodes. If this wish is declined one can still fulfill this constraint
by generating suitable code not considered here.

4 Optimal Solutions Using ILP

In this section, we will develop a 0/1-LP (an ILP with all variables being binary)
to solve coalescing problems represented by a graph G = (V, E, A) as introduced
in Section 3. The idea is to use a standard ILP to model the graph-coloring
problem and to introduce separate variables to express the target function to
optimize. Finally, one has to interrelate these two components with additional,
well chosen constraints.

4.1 Formalization

Let us first model the correct coloring of the interference graph G = (V, E, A)
with k available colors. For each node vi ∈ V , we add k binary variables xi1 . . . xik

to the model (we know that the graph is k-colorable), where xic = 1 if and only
if node vi has color c. To express that each node gets assigned exactly one color,
we add the constraints

∑k
c=1 xic = 1.

For each interference edge eij ∈ E connecting two nodes vi and vj we must
assure the nodes get assigned different colors. This is simply achieved by adding
xic +xjc ≤ 1 for each color c. So far this corresponds to Appel’s formulation [6].

Now let us focus on the affinity edges. First we model the objective function:
For each affinity edge aij ∈ A with the positive weight wij , we add the summand
wijyij to the objective function being minimized. The binary variables yij shall
be 1 if and only if the adjacent nodes vi and vj have different colors. Therefore
the costs wij are incurred iff yij = 1 iff the two nodes have different colors.

So far, the last property is not modelled, yet, because the optimality variables
yij are completely unconstrained. We have to interrelate these variables with

A Fast Cutting-Plane Algorithm for Optimal Coalescing 117

the coloring variables. All the variables yij are optimized to 0 automatically, if
possible. Thus, we only have to take care of the case where two affinity nodes have
different colors. In this case we force yij to be 1 with the following constraints:
yij ≥ xic − xjc for each color c. If the two involved nodes have different colors,
there exists an inequality constraint with the right hand side evaluating to 1,
and therefore enforcing yij = 1. If the two nodes have the same color, all right
hand sides evaluate to 0 and the variable yij is effectively not constrained by
these constraints and will be minimized to 0.

To sum things up, here is the complete model:

min f =
∑

aij∈A wijyij

where
∑k

c=1 xic = 1 vi ∈ V
xic + xjc ≤ 1 (vi, vj) ∈ E, c = 1 . . . k
yij ≥ xic − xjc (vi, vj) ∈ A, c = 1 . . . k
yij , xic ∈ {0, 1}

4.2 Optimizations

Although the above model yields correct results, even the runtimes of industry
strength ILP solvers are unsatisfactory as we will show later in the measurements
section. Therefore we increase the performance of the solution process by taking
the following measures.

Data Size Reduction. The first optimization is a preprocessing that takes
place before the graph is transformed to an ILP. We unburden the ILP solver by
reducing the problem to its core, thereby reducing the number of variables and
constraints it has to deal with. More precisely, we want the solver to only think
about the parts of the graph related to affinity edges, and complete the optimal
partial coloring by a standard algorithm.

Remember that a node with degree strictly less than k (insignificant degree)
can be colored regardless of the colors assigned to its neighbors and can be
removed from the graph. This elimination was already used in Chaitin’s alloca-
tor [1]. With this in mind, we remove a maximum number of nodes from the
graph that satisfy the following conditions:

– The node removed is not incident with an affinity edge.
– The node is not subject to any register constraints.
– The node has insignificant degree in the current graph.

Thus, we end up with a maximal prefix of an elimination order. The remaining
nodes are the core of the problem that is solved by the ILP solver. Afterwards,
the removed nodes are colored in reverse order resulting in a global optimal
solution.

Note, that this reduction can split the graph into unconnected components.
Solving each connected component separately reduces the total solution time
significantly.

118 D. Grund and S. Hack

Clique Inequalities. The second optimization modifies the ILP model. It uses
the well known clique inequalities [10] to model the interference edges. Given an
interference clique v1 . . . vn, it is clear that each color can appear at most once in
this clique. Thus, instead of modeling each of the interference edges one by one,
we replace the O(n2) constraints xic + xjc ≤ 1 with just one

∑n

i=1 xic ≤ 1 per
color. If the clique is of size k such constraints are always satisfied at equality.
Thus, one can demand equality to add more explicit knowledge to the model.

In general, computing a minimum clique cover is NP complete [13]. However,
there is an efficient O(|V |+ |E|) algorithm for chordal graphs [14]. For arbitrary
graphs one must fall back to a heuristic computing some clique cover.

Reverse Affinity Cuts. As we have seen, only one of the two possible sets of
inequations yij ≥ xic − xjc and yij ≥ xjc − xic is necessary to model an affinity
edge [i, j] ∈ A. But the other one can be used to tighten the LP relaxation.
Consider the following example with three colors. The fractional values of the x
variables might occur as a solution of the LP relaxation:

⎧

⎨

⎩

y ≥ 0.4 − 1.0
y ≥ 0.3 − 0.0
y ≥ 0.3 − 0.0

⎫

⎬

⎭

Effectively this only yields y ≥ 0.3. Adding all inequations with switched
minuend and subtrahend results in y ≥ 0.6.

Path Cuts. In some sense, an ILP solver is a generic piece of software. As
described in Section 2 supporting it with cuts that describe problem specific
knowledge can lead to better performance. The last two optimizations provide
such cuts: They encode a lower bound for certain subsets of affinity edges.

The first class of cuts uses the contradictoriness of affinity and interference
edges. Affinity edges represent the wish to assign the same colors, but interfer-
ence edges are hard constraints for different colors. Consider a path of affinity
edges where only its ends are connected by an interference edge, e.g., Figure 5:
Clearly, one of the affinity edges must break, because along the path the coloring
must change at least once. To be precise:

Definition 1 (Affinity-connected). Let the graph G = (V, E, A). Two nodes
a, b ∈ V are affinity-connected, if a and b are connected by a path of affinity
edges and no inner nodes of this path are connected with an interference edge:
∃v1, . . . , vn ∈ V :

– a = v1, b = vn

– vi = vj ⇒ i = j
– ∀1 ≤ i < n : (vi, vi+1) ∈ A
– ∀1 ≤ i < j ≤ n : (vi, vj) ∈ E ⇒ {vi, vj} = {a, b}

Lemma 1 (Path Cut). If two nodes interfere and are affinity-connected with

the path v1, . . . , vn the following inequation holds:
∑n−1

i=1 yi,i+1 ≥ 1

A Fast Cutting-Plane Algorithm for Optimal Coalescing 119

Clique-Ray Cuts

Definition 2 (Clique Ray). A subgraph consisting of an interference clique
C = {v1, . . . , vn} and a node a
∈ C with affinity edges to all v ∈ C is called a
clique ray.

At first, this compound of cliques and affinity edges illustrated in Figure 5 may
seem very special. But this pattern occurs in real problems, e.g., if one and the
same variable is used multiple times in different φ functions in the same basic
block at the same argument position. Due to the simultaneous execution of all
φ functions in a basic block, all results interfere pairwise and form an interference
clique. The affinity edges to the multiply used node/variable build the rest of
the clique ray.

Lemma 2 (Clique-Ray Cut). For a given clique ray (C, a) the following in-
equation holds:

∑

v∈C yv,a ≥ |C| − 1

1 4

2 3

(a) A pattern for a
path cut

1

2

3

4

(b) A pattern for a
clique-ray cut

Fig. 5. (a) At least one affinity edge must break due to the interference edge: y12 +
y23 + y34 ≥ 1 (b) At most one affinity edge can hold: y14 + y24 + y34 ≥ 2

5 Measurements

5.1 The Optimal Coalescing Challenge

The first benchmark is a collection of interference graphs provided by Appel [7]
known as the optimal coalescing challenge (OCC). These graphs were produced
using a variant of SML/NJ that implements optimal register spilling as described
in [6] and live-range splitting after each instruction. This kind of splitting adds
an extreme amount of affinity edges, which makes the problems harder to solve.
Strictly speaking, the problem to solve is optimal live-range splitting, which
subsumes optimal coalescing that is not allowed to split live ranges to coalesce
others.

We compared Appel’s approach [6] to some variations of our proposal by
building and solving all ILPs on an Athlon 64 3200+ using CPLEX 9.0. The
cuts described in Section 4.2 were all generated before invoking the ILP solver,
which only used the necessary ones out of a so called cut pool. We generated the
clique-ray cuts for each applicable node by taking the subgraph induced by its
affinity neighborhood and computing a minimum clique cover of this subgraph.

120 D. Grund and S. Hack

#

Sec.50 100 150 200 250 300 350 400 450

50

100

200

300

400

474

Hybrid

Appel

Basic
Clique

Cut

Complete

Fig. 6. Distribution of the solution times of the 474 OCC problems. The #-axis gives
the number of problems solved within a certain time. The basic model is described
in Section 4.1, clique uses clique inequalities to model interferences, cut extends the
clique model by path cuts and clique-ray cuts, complete additionally includes reverse
affinity cuts. Finally, hybrid combines Appel’s model with our cuts.

The path cuts were generated by a simple recursive search2, looking for a cycle
containing exactly one interference edge and at least three affinity edges.

Figure 6 shows the runtimes of different ILP models. The use of clique inequal-
ities improves the performance very little (compared to basic), because CPLEX

analyses dependencies between binary variables. Thus, the lack of clique inequal-
ities in Appel’s model does not greatly matter, at least for mature solvers.

Adding the cuts to the model (cut, complete) increases the performance sig-
nificantly: The number of optimally solved problems rises from 243 to 430. Low-
ering the time limit to 6 seconds would still yield 300 solved problems, i.e., most
problems can easily be solved using the cuts.

Interestingly, for the easy problems our basic model performs better than
Appel’s, but solves less problems in the end. Intuitively, one would expect better
results when combining his model with our cuts, but the combination (hybrid)
increases the overhead and degrades performance. Therefore, the performance
of our best model must come from our tighter affinity encoding combined with
the application of cuts.

Table 1. Solution times (in seconds) of the 309 OCC instances optimally solved by
both ILPs within 450 seconds

ILP Appel Complete

Sum 20852.7 1332.3
Average 67.5 4.3
Max 432.4 195.1

2 This may be intractable for arbitrary graphs, i.e., with high affinity degree.

A Fast Cutting-Plane Algorithm for Optimal Coalescing 121

To complement the big picture with some numbers, Table 1 shows the solution
times for the 309 problems optimally solved by both, Appel’s model and our
complete model. Our method is approximately 15 times faster in these cases and
could optimally solve 430 problems within time in contrast to the 311 solved by
Appel’s.

Another indicator for the strength of our ILP is the solution quality produced
within a given time limit. Table 2 lists properties of the best known solutions
after 450 seconds of computing, including and excluding the optimally solved
problems. The objective is minimized, so lower is better here. The gap absolute
and gap relative rows show the distance between the best known solution and
the optimal solution theoretically still possible.

Table 2. Solution quality (in millions of objective units) of feasible solutions after the
time limit, excluding (EO) and including (IO) optimally solved problems

ILP Appel EO Complete EO Appel IO Complete IO

Sum 126.7 2.7 128.1 3.0
Gap abs 126.1 1.3 127.4 1.3
Gap rel 99.5% 49.4% 99.4% 44.5%

First of all, our method produced solutions being 50 times better. Second,
the lower gap values indicate that our ILP produces tighter relaxations, which
is useful to argue about solution quality. These advantages can be used if one is
only interested in a solution provably lying in a certain distance to the optimum.
However the tightness has one negligible drawback: There were 7 problems for
which our ILP did not even yield a feasible solution in time. Although Appel’s
approach did yield feasible solutions, this is negligible because these solutions
were far from optimal. Informally speaking, our first integer solution might take
some time longer to pop up but then is better than those produced by Appel’s
ILP in the same time.

Last but not least we dropped the time limit to compute all optimal solu-
tions. These were used to determine the absolute quality of the following coa-
lescing heuristics: Iterated Coalescing [3], Optimistic Coalescing [4], a heuristic
by Hack [8] directly designed for the SSA case, and another result set by Fang,
which was produced with a local search SAT solver and is published on [7].

Figure 7 illustrates the big picture and Table 3 gives the corresponding num-
bers. The best heuristics solve about 175 problems optimally. Most of the prob-
lems can be solved with an objective function below 2 ·OPT (100%). The graph
shows, again, previous experience [4,15] that optimistic coalescing performs bet-
ter than iterated coalescing. From the table, one can derive that optimistic co-
alescing has a good average-case behavior (34%), but some difficult problems
raised the overall deviation to 53%. A tuned version (Optimistic II) behaves
vice versa: 60% on average but only 44% in total. Our SSA heuristic is compet-
itive and comparable to optimistic coalescing, but more balanced (46%, 51%).

122 D. Grund and S. Hack

#

% above OPT10 20 30 40 50 60 70 80 90 100 110

100

200

300

400

474

Iterated

Local SAT

SSA Heuristic

Optimistic II

Optimistic I

Fig. 7. Distribution of the solution qualities for coalescing heuristics. The %-axis gives
the quality in terms of the allowed deviation from an optimal solution. The #-axis gives
the number of solutions within a certain quality. E.g., iterated coalescing produces 200
solutions such that each is not more than 40% above the respective optimal solution.

Table 3. Comparison of different coalescing algorithms. The first two rows are given
in millions of objective function units, the last was obtained by first calculating the
percentage differences for all problems and then taking their arithmetic mean. (3 ILP
solutions might not be optimal, but tight bounds can be given).

Algorithm ILP Iterated Optimistic I Optimistic II SSA Heur Local SAT

Objective sum 26.3 66.4 40.4 37.8 38.4 38.9
Difference to Opt 0.1 40.0 14.0 11.5 12.1 12.6
% above Opt 0.4 152 53 44 46 48
Average % above Opt 0 219 34 60 51 60

No heuristic yields solutions better than 44% (over all cases) above the optimal
solution. This picture changes only little if one removes the outliers.

Some last remarks on the OCC: Due to the live-range splitting after each
instruction we could only generate 22 clique-ray cuts, all equivalent to a path
cut of length two, compared to 135942 path cuts. For the same reason the data
size reduction was not applicable at all to this test set.

5.2 SPEC CPU2000 Benchmarks

To compensate the disadvantages of the OCC we performed a second benchmark,
this time on a Pentium 4 2400. We compiled a subset of the SPEC CPU2000-
benchmarks [16] consisting of C programs using Firm [17] with its SSA-based
x86 backend. In this setting, live-range splitting is limited to SSA construction,
spilling3 and the handling of register constraints.

3 All subranges between two references (def/use) can be spilled separately.

A Fast Cutting-Plane Algorithm for Optimal Coalescing 123

Here, the data size reduction is applicable and worthwhile: The average num-
ber of removed nodes was 10%. Since live-range splitting is frequent for x86
(high number of constrained instructions), we assume that this percentage is
even higher for standard RISC architectures. The number of generated clique-
ray cuts was 227 and the number of path cuts was 112486.

Prior to the ILP, we ran the SSA heuristic on the graph and provided its
solution as a start value to the ILP solver. Hence, there always was at least a
feasible solution. Out of 4459 problems, only 211 (4.7%) were not solved opti-
mally within 5 minutes. In those cases we also recorded the best lower bound
(BLB in the following) known to the solver after the time limit was reached.
The optimal solution of a problem lies between the BLB and the objective value
returned. However, a common observation in practice is that the solver lowers
the objective value and then remains a long time at the same best solution, only
raising the lower bound, i.e., proving optimality of that solution. Therefore, some
of the 211 feasible solutions might be optimal but the solver failed to prove it
within time.

Table 4. Results of the SPEC2000 benchmark

Max Costs 5min BLB 5min %5min %BLB 5min

164.gzip 3456885 97356 30935 2.82 0.89
175.vpr 17105748 218105 215758 1.28 1.26
176.gcc 221483452 3429671 2641368 1.55 1.19
181.mcf 136390 6925 4567 5.08 3.35
186.crafty 27781660 852833 390419 3.07 1.41
197.parser 22227033 678415 609249 3.05 2.74
253.perlbmk 49321969 1596567 1424011 3.24 2.89
254.gap 131547137 2908392 1930799 2.21 1.47
255.vortex 28572683 1292513 1248252 4.52 4.37
256.bzip2 7007580 239528 196840 3.42 2.81
300.twolf 162497955 2915713 1253567 1.79 0.77

Table 4 shows the results of the benchmark. The column “Max Costs” lists
the maximal costs of the benchmark, “5min” shows the remaining costs after at
most five minutes of optimization. “BLB 5min” shows the costs if the best lower
bound is assumed as the optimal objective value for problems that could not
be solved within five minutes. “%5min” and “%BLB 5min” show the respective
percentages regarding “Max Costs”. The ILP formulation was able to compute
optimal solutions in 95% of all cases and the other solutions were near-optimal.

6 Related Work

Goodwin and Wilken [18] were the first applying ILP to register allocation. They
addressed the full problem of register allocation including spilling, rematerial-
ization, callee/caller save register handling, register assignment and coalescing.

124 D. Grund and S. Hack

Thus, they solved a much harder problem on older hardware with older ILP
solver technology. The only optimization they performed, was to reduce the size
of the ILP by restricting the spill and reload decisions to sensible program points.

Fu and Wilken [19] improved this work by speeding up solution times. They
identified several kinds of redundant or symmetric decisions and removed them
from the ILP formulation. These optimizations together with faster hardware
and better ILP solvers (7 years in between), resulted in significantly more func-
tions being optimally allocated in less time.

Between these two publications, Appel and George [15] proposed decomposing
this problem into two subproblems: Spill code placement and register coalescing,
of which the latter also includes the actual assignment. They solved both prob-
lems by ILP and empirically showed that decomposing the problem does not
significantly worsen the overall allocation quality. One point is unique to their
approach: They potentially allow splitting live ranges after each instruction.
However, this may be one of the reasons why the authors called their coalescing
ILP far too slow and left an efficient algorithm for optimal coalescing as an open
problem [7].

Our setting compares best to Appel’s: We also separate spilling and coalescing,
but for a better reason (chordality), and have basically the same starting point
for coalescing, with the following differences: We do not allow live-range splitting
after each instruction, although we are capable of solving such problems. Instead,
our split points are limited to those introduced by SSA construction, spilling,
and the handling of register constraints.

Concerning the ILP, our formulation differs from Appel’s in the following
points: We use a smaller and more efficient encoding of the affinity edges and
efficiently generate clique inequalities to express the interference constraints.
Admittedly, the clique inequalities contribute little to the performance because
modern solvers have this optimization as a built-in function. Furthermore, all
prior approaches focused on reducing the size of the ILP formulation. Addition-
ally, we add supplementary cuts to cut down the search space, which is more
sensible than a smaller formulation with a larger feasible region.

7 Conclusions and Further Work

Although this work began in a SSA context, the algorithm and all optimizations
are applicable to the non-SSA case, as long as coalescing is separated from
spilling. Our ILP model performs better than previous approaches: It needs
significantly less time to compute optimal solutions or it can produce better
solutions within a given time limit. If one should point out one crucial point it
is the cutting planes. But to achieve top performance all the optimizations must
go hand in hand.

For very large problems and extreme live-range splitting scalability comes to
an end: The ILPs are so large (200000×200000 matrix) that solving the continu-
ous relaxations consumes too much time. Future work could push this limit and
investigate whether a benders decomposition or the new feature of CPLEX 10

A Fast Cutting-Plane Algorithm for Optimal Coalescing 125

to model implications are worthwhile. Other constraint solving techniques could
be considered but 0/1-LP already is a very special problem class and ILP has
the advantage to provide lower bounds. Another point that could be interesting
for practical and theoretical reasons is the question which live-range splitting
points are really necessary to achieve an optimally coalesced program.

References

1. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: SIGPLAN
symposium on Compiler construction, New York, NY, USA, ACM Press (1982)

2. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16 (1994)

3. George, L., Appel, A.: Iterated Register Coalescing. ACM TOPLAS 18 (1996)
4. Park, J., Moon, S.M.: Optimistic Register Coalescing. ACM TOPLAS 26 (2004)
5. Hack, S., Grund, D., Goos, G.: Register Allocation for Programs in SSA-Form. In:

Compiler Construction 2006. Volume 3923., Springer (2006)
6. Appel, A., George, L.: Optimal Spilling for CISC Machines with Few Registers.

Technical report, Princeton University (2000)
7. Appel, A.: Optimal Coalescing Challenge. http://www.cs.princeton.edu/

∼appel/coalesce (2000)
8. Hack, S.: Register Allocation for Programs in SSA-Form (to appear). PhD thesis,

University of Karlsruhe (2006)
9. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons (1986)

10. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley-
Interscience New York (1988)

11. Hack, S., Grund, D., Goos, G.: Towards Register Allocation for Programs in SSA-
form. Technical report, University of Karlsruhe (2005)

12. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. Interval graphs. Discrete
Mathematics 100 (1992)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979) ISBN: 0716710455.

14. Gavril, F.: Algorithms for Minimum Coloring, Maximum Clique, Minimum Cov-
ering by Cliques, and Independent Set of a Chordal Graph. SIAM Journal on
Computing 1 (1972)

15. Appel, A., George, L.: Optimal Spilling for CISC Machines with Few Registers.
In: ACM SIGPLAN Conference PLDI. (2001)

16. Standard Performance Evaluation Corp.: http://www.spec.org/cpu2000/ (2000)
17. Lindenmaier, G., Beck, M., Boesler, B., Geiß, R.: Firm, an Intermediate Language

for Compiler Research. Technical Report 2005-8, University of Karlsruhe (2005)
18. Goodwin, D.W., Wilken, K.D.: Optimal and Near-optimal Global Register Allo-

cations Using 0-1 Integer Programming. Softw. Pract. Exper. 26 (1996)
19. Fu, C., Wilken, K.: A Faster Optimal Register Allocator. In: Proceedings of the

ACM/IEEE international symposium on Microarchitecture, Los Alamitos, CA,
USA, IEEE Computer Society Press (2002)

Register Allocation and Optimal Spill Code

Scheduling in Software Pipelined Loops Using

0-1 Integer Linear Programming Formulation

Santosh G. Nagarakatte1 and R. Govindarajan1,2

1 Department of Computer Science and Automation,
2 Supercomputer Education and Research Center,

Indian Institute of Science, Bangalore 560012, India
{santosh,govind}@csa.iisc.ernet.in

Abstract. In achieving higher instruction level parallelism, software
pipelining increases the register pressure in the loop. The usefulness of
the generated schedule may be restricted to cases where the register
pressure is less than the available number of registers. Spill instructions
need to be introduced otherwise. But scheduling these spill instructions
in the compact schedule is a difficult task. Several heuristics have been
proposed to schedule spill code. These heuristics may generate more spill
code than necessary, and scheduling them may necessitate increasing the
initiation interval.

We model the problem of register allocation with spill code genera-
tion and scheduling in software pipelined loops as a 0-1 integer linear
program. The formulation minimizes the increase in initiation interval
(II) by optimally placing spill code and simultaneously minimizes the
amount of spill code produced. To the best of our knowledge, this is
the first integrated formulation for register allocation, optimal spill code
generation and scheduling for software pipelined loops. The proposed
formulation performs better than the existing heuristics by preventing
an increase in II in 11.11% of the loops and generating 18.48% less spill
code on average among the loops extracted from Perfect Club and SPEC
benchmarks with a moderate increase in compilation time.

1 Introduction

Software pipelining [14] is the most commonly used loop scheduling technique for
exploiting higher instruction level parallelism. In a software pipelined loop, in-
structions from multiple iterations are executed in an overlapped manner. Several
heuristic methods [2,19] have been proposed to construct a software pipelined
schedule. In addition a number of methods [10] have also been proposed to find
an optimal schedule considering resource constraints. A schedule is said to be
optimal if the initiation interval (II) of the schedule is not greater than that of
any other schedule for the loop with the given resource constraints.

Software pipelining, like other instruction scheduling techniques, increases the
register pressure. A number of heuristic approaches to reduce the register pressure

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 126–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Register Allocation and Optimal Spill Code Scheduling 127

of the software pipelined schedule have been proposed [11]. Also, approaches to
minimize the register pressure of the software pipelined schedule using linear [16]
and integer linear program formulation have been reported in literature. However,
these methods do not guarantee that the register requirements of the constructed
schedule is less than the available registers. If the register need of the constructed
schedule is greater than the available number of registers, either spill code needs
to be introduced or the initiation interval needs to be increased [21]. In order to
determine whether the constructed schedule is feasible for the given number of reg-
isters, register allocation must be performed with necessary spill code generation.
Further the spill code must be scheduled in the compact schedule, without violat-
ing any resource or dependence constraints. Currently heuristic approaches [21]
have been proposed for the introduction of spill code. Unfortunately, introduction
of spill code can saturate the memory units and thereby force an increase in the
initiation interval.

In this paper, we are interested in addressing the following problem: Given a
modulo scheduled loop L, a machine architecture M and an initiation interval II,
is it possible to perform register allocation with the given registers and optimally
generate and schedule necessary spill code such that the register requirement of
the schedule is lesser than or equal to the available number of registers? We
propose a 0-1 integer linear programming formulation for register allocation,
optimal spill code generation and spill code placement in software pipelined
loops. The proposed approach is guaranteed to identify a schedule with necessary
spill code, whenever such a schedule exists, without increasing the initiation
interval. Further the proposed approach generates minimal spill code, thereby
improving the code quality. The proposed formulation takes into account both
the compactness of the schedule and memory unit usage. Further the formulation
incorporates live range splitting [4] which allows a live range to be assigned to a
register at specific time instances and be resident in memory in rest of the time
instances. To the best of our knowledge, this is the first integrated formulation
for register allocation, optimal spill code generation and scheduling for software
pipelined loops. The formulation is useful in evaluating various heuristics and
one can generate a better quality code with a moderate increase in compilation
time. We have implemented the solution method on loops from Perfect Club and
SPEC2000 benchmarks. On an average, we prevent an increase in the initiation
interval in 11.11% of the 90 loops on an architecture with 32 registers and in
12% of the 157 loops on an architecture with 16 registers when compared to the
heuristic approach [21]. We also generate roughly 18.48% less spill code compared
to the heuristic solution.

The paper is organized as follows: Section 2 provides a brief motivation for
optimal spill code generation and scheduling. In Section 3, we explain our integer
linear programming formulation. Section 4 presents the simplified formulation.
Section 5 presents the experimental methodology and results. In Section 6, we
discuss the related work and concluding remarks are provided in Section 7.

128 S.G. Nagarakatte and R. Govindarajan

2 Motivation

Traditionally, the process of adding spill code is done iteratively [21] for architec-
tures with no rotating registers. First, the loop is modulo scheduled, then register
allocation is performed. If the register pressure of the schedule is greater than
the available number of registers, then spill candidates are chosen. Subsequently
spill code is added and the loop is rescheduled. In the process above, since the
selection of spill candidates is based on a certain heuristic, it may result either
in the addition of extra spill code or the introduction of spill code at a time step
where no memory unit is available. These, in turn, may increase the memory
unit usage necessitating an increase in the initiation interval. Various heuristics
have been proposed for generating spill code and scheduling spill code [1].

Critical cycle is one of the key characteristics used by heuristics to decide on
the spill candidates. A time step t is said to be a Critical cycle in the kernel if
the number of live ranges at that instant is greater than the number of available
registers. In Figure 1(a), we show the live ranges of a software pipelined schedule
with II = 6 and assume there are four registers available. For this schedule,
cycle 2 is the critical cycle. To perform register allocation with the available
four registers for the given schedule, one of the live ranges must be spilled. A
commonly used heuristic gives priority to the spill candidate with longest live
range [21]. Unfortunately, it is possible that the longest live range does not span
through critical cycle. Hence, spilling the longest live range may not necessarily
reduce the register pressure. A refined heuristic considering the above prioritizes
the spill candidate which is live at the critical cycle and has the longest lifetime
among the the spill candidates [21]. The heuristics may not be able to capture
all the scenarios.

used

0

1

0

0

0

1
Time

Slot

 A B C D E
Mem units

0

1

2

3

4

5

X

O

O

X

X

O

X

O

O

O

X

(a) Initial Schedule

1

1

1

0

0

1

 A B C D E

0

1

Mem units
used

Time

Slot 2

3

4

5 X

loadX

O

X

X

OO

XO

O

O

store

(b) Final Schedule

Fig. 1. Initial kernel with II = 6. X is the definition and O is the use of the live range.

Consider the kernel shown in Figure 1(a). In this example, we have assumed a
load and a store latency of 1 cycle and the presence of a single memory unit and
4 registers. The memory unit usage in the kernel is indicated in the figure. The
kernel is obtained for an initiation interval of 6. The register need of the schedule

Register Allocation and Optimal Spill Code Scheduling 129

is 5. So we need to insert spills in order to reduce register need. Figure 1(b) shows
the kernel after the spill code has been scheduled. Among the spill candidates,
variables D and E have the longest live range and pass through the critical cycle
2. In the kernel in Figure 1(b), though the spill store for E is scheduled at cycle
0, the value in the register continues and ends only at cycle 1. If we had chosen
D as the spill candidate, we would not have been able to spill and hence reduce
the register pressure at cycle 2. This is because of the use of D in cycle 2. As
a result, it is not only necessary to select the right spill candidate but also to
schedule the spill loads and stores so that the register need of the loop is reduced
without unnecessarily requiring an increase in the initiation interval.

The recent work in spill code generation [21] addresses the iterative process of
adding spill code by selecting a finite number of candidates for spilling based on
a quantity factor which is determined experimentally. By adopting the notion of
quantity factor, we are making the decision of selecting the spill candidate and
scheduling them incrementally, considering a few candidates. It is possible that
the greedy approach can fail. In our experimentation, the quantity factor of 0.5
resulted in an increase in the initiation interval in 12% of the loops that had
sufficent register pressure and needed the addition of spill code.

Moreover, there are a plethora of factors that need to be considered while
choosing the right spill candidate which can be suitably scheduled with a min-
imal amount of spill code. An injudicious selection and subsequent scheduling
can result in an unnecessary increase in the initiation interval, which can be
attributed to addition of otherwise superfluous spill code saturating the memory
usage.

3 ILP Formulation for Spill Code Minimization and

Scheduling

In this section, we explain our 0-1 integer linear programming formulation for
register allocation and spill code scheduling in software pipelined loops assum-
ing a load-store architecture with no rotating registers. A solution to the ILP
formulation would represent a valid schedule with spill code suitably sched-
uled satisfying the register and functional resource constraints. Given a software
pipelined loop with modulo variable expansion [14] carried out, our efficient reg-
ister allocation and spill code scheduling formulation involves the association
of decision variables to the live range, formulation of relationship between the
decision variables that need to be satisfied, solving the integer linear program
and rewriting the original code.

3.1 Generation of Decision Variables

Given a data dependence graph and a periodic schedule, we model a live range
with a set of decision variables. The live range produced by instruction i is
denoted by the temporary name TNi. Without the loss of generality, we use
the term temporary variable and live range interchangeably as each temporary

130 S.G. Nagarakatte and R. Govindarajan

variable has exactly one definition point. The live range TNi is represented with
a series of liveness decision variables from its definition time (T def

i) to its last
use time (T end

i). A live range can be allocated to any of the R registers. Hence

corresponding to each time instant t ∈ [T def
i , T end

i] and register r, we create
liveness decision variables of the form TNi,r,t. The decision variable TNi,r,t = 1
represents the fact that the TNi is allocated to register r at time instant t.

To determine where to introduce spill stores and loads in the schedule, we
introduce two kinds of spill decision variables namely store decision and load
decision variables.

1. Store decision variable: We introduce store decision variables STNi,r,t for
every live range TNi, for register r and time t. The store decision variable
STNi,r,t = 1 implies that there is a spill store of the live range TNi in
register r at time instant t. The store decision variable is defined only for
a subset of the time steps in the kernel. More specifically, it is defined only
for time step t ∈ [T def

i ⊕ lati, T end
i ⊖ latstore ⊖ latload] where lati, latstore

and latload are latencies of instruction i, store and load respectively. This
is because the spill store can be scheduled only after T def

i ⊕ lati. Further
the spill store must be scheduled latstore + latload cycles before the last
use. Since all time steps should be within [0, II −1], the add and subtract
operations are performed modulo II and represented as ⊕ and ⊖ respectively.
The store decision variable STNi,r,t is defined for time steps t ∈ storeset(i)

where storeset(i) = [T def
i ⊕ lati, T end

i ⊖ latload ⊖ latstore].
2. Load decision variable: We introduce load decision variable LTNi,r,t for

every live range TNi, register r, and time step t. The load decision vari-
able LTNi,r,t = 1 implies that there is a spill load of the live range TNi

scheduled at time instant t. The load decision variable LTNi,r,t is defined

for time steps t ∈ loadset(i) where loadset(i) = [T def
i ⊕ lati ⊕ latstore,

T end
i ⊖ latload].

We illustrate the introduction of live range and spill decision variables with a
specific example in Figure 2. An instruction which defines the value of a tem-
porary variable TN1 is scheduled at time 0. The last use of TN1 is scheduled
at time 9. The liveness, spill load and store decision variables introduced corre-
sponding to register R0 are shown in Figure 2. In this example, the latency of
the instruction producing the live range TN1 is 1, and that of store or load is 2.
To represent whether the live range TN1 is live in register R0 at various time
steps during its live range, we use decision variables TN1,0,0, . . . TN1,0,9. The
store decision variables are defined for time steps [1, 5]. We do not define the
store decision variable at time instant 0 since it is the definition time. Similarly
the store decision variable is not defined for time steps [6, 9] as splitting the live
range beyond time step 5 does not result in a meaningful spill load to be sched-
uled before the last use of TN1. Similarly we do not create spill load decision
variables at time steps [0, 2], since spill store would not have completed by that
time, and at time steps [8, 9], as the spill load would not complete before the
last use at 9.

Register Allocation and Optimal Spill Code Scheduling 131

1

2

3

4

5

6

7

8

9

Time

0

Decision variables for

=

register R0

TN1 =

.. op TN1

=.. op TN1

TN1,0,0

TN1,0,1 STN1,0,1

TN1,0,2 STN1,0,2

TN1,0,3 STN1,0,3 LTN1,0,3

TN1,0,4 STN1,0,4 LTN1,0,4

TN1,0,5 STN1,0,5 LTN1,0,5

TN1,0,6
LTN1,0,6

TN1,0,7 LTN1,0,7

TN1,0,8

TN1,0,9

Fig. 2. Decision variables associated with live range TN1 and register 0 with an II=10

3.2 Constraints

Having discussed the liveness, spill store and spill load decision variables cor-
responding to each time instant and register, we now explain how register al-
location and spill code scheduling can be formulated using a set of constraints.
Satisfaction of these constraints results in a schedule with valid register alloca-
tion and appropriate spill code placement.

Must-Allocate Definition Constraint: The Must-Allocate Definition Con-
straints ensure that a register is allocated to a live range when the live range is
defined. That is, for each instruction that produces a value, a register must be
allocated to the live range. If I is the set of instructions that produce a result
value and TNi be the temporary variable corresponding to instruction i ∈ I, the
following must-allocate definition constraint must be satisfied.

∑

r∈R

TNi,r,t = 1 ∀i ∈ I and t = T def
i (1)

There are exactly |I| constraints produced by the above equation. For the ex-
ample shown in Figure 2, corresponding to TN1, the following must-allocate
definition constraint must be satisfied.

∑

r∈R

TN1,r,0 = 1

Must-Allocate Use Constraint: Must-Allocate Use Constraints ensure that
a live range is in a register at the time instant where there is an use. Let use(TNi)
represent the set of instructions that use the temporary variable TNi produced

132 S.G. Nagarakatte and R. Govindarajan

by instruction i. The live range TNi must be available in a register at time
instant t corresponding to its use since we assume a load-store architecture.

For each instruction j ∈ use(TNi), scheduled at time instant t,

∑

r∈R

TNi,r,t −
∑

r,t′

LTNi,r,t′ ≥ 1 for all t = T def
j and j ∈ use(TNi) (2)

where t′ ∈ (t ⊖ latload, t]. There are exactly
∑

i∈I

|use(TNi)| constraints cor-

responding to the above equation. We refer to these as must-allocate use con-
straints.

For the example shown in Figure 2, corresponding to TN1, the following must-
allocate use constraints must be satisfied.

∑

r∈R

TN1,r,5 −
∑

r∈R

(LTN1,r,4 + LTN1,r,5) ≥ 1;
∑

r∈R

TN1,r,9 ≥ 1

At-most Single Store Constraints: The live range TNi need to be stored at-
most once. For every instruction i ∈ I, at-most one store constraint is given by

∑

t

∑

r∈R

STNi,r,t ≤ 1 (3)

where t is in the range [(T def
i ⊕ lati), (T end

i ⊖ latload ⊖ latstore)].
As the objective minimizes the spill loads and stores, this constraint is re-

dundant. However, this constraint reduced the solution time taken by the ILP
solver.

Store Before Load Constraints: A spill load can be scheduled for a live
range provided there is an earlier spill store for that temporary name. At every
time instant where a spill load is possible, there must be a store which has
been scheduled earlier. For every spill load corresponding to live range TNi, the
following constraints must be satisfied.

∑

r

LTNi,r,t ≤
∑

r

∑

t′

STNi,r,t′ ∀t ∈ loadset(i) (4)

where t′ is in the range [(T def
i ⊕ lati), (t ⊖ latstore)]. There are exactly

|loadset(i)| such constraints for each TNi

In Figure 2, each of the spill loads corresponding to time steps [3, 7] must
satisfy the following constraints. We have assumed a store latency of 2.

∑

r∈R

LTN1,r,3 ≤
∑

r∈R

STN1,r,1

∑

r∈R

LTN1,r,4 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2)

Register Allocation and Optimal Spill Code Scheduling 133

∑

r∈R

LTN1,r,5 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3)

∑

r∈R

LTN1,r,6 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3 + STN1,r,4)

∑

r∈R

LTN1,r,7 ≤
∑

r∈R

(STN1,r,1 + STN1,r,2 + STN1,r,3 + STN1,r,4 + STN1,r,5)

Spill Load Store Constraints: In order to schedule spill code in the compact
schedule, we have introduced store and load decision variables at multiple time
instants. The following set of constraints ensure that there are no unnecessary
spill code instructions and formulation generated schedule is valid.

At each time instant t for any live range, if t ∈ loadset(i) and t ∈ storeset(i),
then the store before load and at-most only one store constraints ensure that
both load and store cannot be scheduled at t. For each store decision variable at
time t corresponding to live range TNi, a store can actually take place at that
instant only if the variable is in the register.

STNi,r,t ≤ TNi,r,t ∀r ∈ R and ∀t ∈ storeset(i) (5)

In Figure 2, the following constraints corresponding to store of live range TN1

in register 0, at time steps [1, 5] must be satisfied.

STN1,0,1 ≤ TN1,0,1; STN1,0,2 ≤ TN1,0,2; STN1,0,3 ≤ TN1,0,3;

STN1,0,4 ≤ TN1,0,4; STN1,0,5 ≤ TN1,0,5;

After a spill store, the live range in a register may continue to exist or cease
to exist. But if there is a load in the subsequent time instant, then the load
constraints can bring the live range back into existence in the register. If a spill
store is possible for live range TNi at time instant t and spill load is not possible
at time instant t + 1, then the following constraints need to be satisfied.

TNi,r,t⊕1 ≤ TNi,r,t ∀r ∈ R, for all t ∈ storeset(i) and t⊕1 /∈ loadset(i) (6)

In Figure 2, the following constraints must be satisfied corresponding to the
live range TN1 at time instant 1

TN1,0,2 ≤ TN1,0,1

The spill load brings back the live range into the register. There is no necessity
of a spill load for any live range TNi corresponding to register r if the live range
is already in the register r. Further, a temporary name is live in a register r at
time t either if it was live at time step t ⊖ 1 or if a spill load is scheduled in
time step t. For a spill load at time instant t, the following constraints need to
be satisfied.

TNi,r,t ≤ TNi,r,t⊖1 + LTNi,r,t ∀r ∈ R, ∀t ∈ loadset(i) (7)

134 S.G. Nagarakatte and R. Govindarajan

In Figure 2, the spill loads at time steps [3, 7] in register 0 must satisfy the
following constraints.

TN1,0,3 ≤ TN1,0,2 + LTN1,0,3; TN1,0,4 ≤ TN1,0,3 + LTN1,0,4

TN1,0,5 ≤ TN1,0,4 + LTN1,0,5; TN1,0,6 ≤ TN1,0,5 + LTN1,0,6

TN1,0,7 ≤ TN1,0,6 + LTN1,0,7

If a spill load is not possible at time instant t, i.e t /∈ loadset(i) and a spill store
is not possible at time instant t ⊖ 1, i.e t⊖1 /∈ storeset(i), then the following
continuation constraints must be satisfied.

TNi,r,t ≤ TNi,r,t⊖1 ∀r ∈ R, for all t /∈ loadset(i) ∧ t ⊖ 1 /∈ storeset(i) (8)

In Figure 2, the continuation constraints corresponding to time instants 1, 8 and
9 for register 0 and live range TNi are

TN1,0,1 ≤ TN1,0,0; TN1,0,8 ≤ TN1,0,7; TN1,0,9 ≤ TN1,0,8

Interference Constraints: It is important to ensure that the same register is
not allocated to multiple live ranges. Interference constraints ensure that at any
instant of time, a register holds a single live range. It is sufficient to ensure that
after each live range definition, the register holds a single live range. At time
instant t which is the definition time of live range TNi, the following constraints
must be satisfied for each register r

∑

j

TNj,r,t ≤ 1 (9)

where TNj,r,t = 0 for t /∈ [T def
j , T end

j].

Functional Unit Constraints: The spill loads and store generated require
memory functional units. Thus a spill load or a store can be scheduled at a
particular instant t provided there is a free memory unit available. Hence for
scheduling spill loads or stores, the following memory unit constraints need to
be satisfied for each time slot t’ ∈ [0, II-1].

∑

i,r

LTNi,r,t +
∑

j,r

STNj,r,t ≤ M for all t ∈ [0, II − 1] (10)

TNi is the live range with t ∈ loadset(i) and TNj is the live range with t ∈
storeset(j). M is the number of memory units available for spill loads and stores
after the memory requirements of instructions that are scheduled at time instant
t in the kernel are satisfied. The above constraint ensures that sum of all spill
loads and stores scheduled at any time instant t in the kernel is lesser than or
equal to the number of free memory units available.

Register Allocation and Optimal Spill Code Scheduling 135

3.3 Objective Function

The objective function is to minimize the number of spill loads and stores.

Minimize :
∑

i,r,t

(STNi,r,t + LTNi,r,t) (11)

4 Simplified Formulation

The previous formulation can be simplified by omitting the r indices from the
spill load and store decision variables. In this formulation, we decide whether a
spill load or a store is necessary at a given time step without considering which
register the store or load should use. The constraints are suitably modified to
reflect the same. The register used by the spill store and loads can be easily
inferred from the TNi,r,t variables as a post-processing step. The simplified for-
mulation is given below:

Minimize
�

i,t

(STNi,t + LTNi,t)

�

r∈R

TNi,r,t = 1 ∀i ∈ I and t = T def
i (12)

�

r

TNi,r,t −
�

t′

LTNi,t′ ≥ 1 ∀t = T def
j and (13)

j ∈ use(TNi)

t′
∈ (t ⊖ latload, t]

LTNi,t −
�

t”

STNi,t” ≤ 0 ∀t ∈ loadset(i) ∀i (14)

t” ∈ [T def
i + lati, t ⊖ latstore]

STNi,t −
�

r

TNi,r,t ≤ 0 ∀t ∈ storeset(i) ∀i (15)

TNi,r,t − TNi,r,t⊖1 − LTNi,t ≤ 0 ∀t ∈ loadset(i) ∀i (16)
�

r

TNi,r,t −
�

r

TNi,r,t⊖1 − LTNi,t ≤ 0 ∀t ∈ loadset(i) ∀i (17)

�

j

TNj,r,t ≤ 1 ∀t ∈ [0, II − 1] ∀r (18)

�

i

LTNi,t +
�

j

STNj,t ≤ M ∀t ∈ [0, II − 1] (19)

TNi,r,t⊕1 − TNi,r,t ≤ 0 ∀t ⊕ 1 /∈ loadset(i) ∀i ∀r (20)

Equation 17 ensures that each spill load loads the live range in at-most one reg-
ister.

136 S.G. Nagarakatte and R. Govindarajan

5 Experimental Evaluation

5.1 Experimental Methodology

We have used the SUIF [12] as the compiler front end for the benchmarks. For
the compiler back end, we have used Trimaran [13] compilation and simulation
environment for VLIW architectures. The data dependence graphs are generated
using the Trimaran’s back end . The initial modulo schedule is obtained using
an integer linear program formulation [10]. The machine architecture used in
the formulation is a load-store architecture with 3 memory units, 3 integer units
and 4 floating point units. For the constructed schedule, modulo variable expan-
sion [14] is performed to ensure that no live range is longer than II. We then
generate the formulation proposed in this paper to perform register allocation
and necessary spill code generation and scheduling. We have considered archi-
tectures with 16 and 32 registers. The integer linear programming formulation
is solved using the CPLEX 9.0 solver [5] running on a Pentium 4, operating at
3.06 GHz with 4 GB RAM. A CPU-time limit of 600 seconds is used for solving
our integer linear program. The loops in which the integer linear program timed
out are not considered for evaluation.

5.2 Results

We compare our approach with the best performing heuristic [21], viz spilling
uses, with a quantity factor of 0.5 and a traffic factor of 0.3. The quantity factor
is used for deciding the number of spill candidates and traffic factor is used for
the selection of spill candidates. We refer to the above heuristic as SU and our
formulation as ILP .

Spill Code. The amount of spill code introduced impacts the code quality of
the schedule. We evaluated the amount of spill code generated by ILP and SU .
In this result, we do not consider amount of spill code generated with the loops
requiring an increase in II with SU as it is not fair to compare schedules with

Table 1. Spill code and prevention of II increase with 32 registers

#loops Total % decrease #loops % loops
Benchmark #loops with reg spill code in spill without II without II

pressure ILP SU code(ILP) increase(ILP) increase(ILP)

168.wupwise 25 12 96 123 21.95 1 8.33
179.art 40 15 46 57 19.3 1 6.67

183.equake 42 9 44 53 16.98 1 11.11
188.ammp 46 14 56 63 11.11 2 14.29

200.sixtrack 46 9 70 84 16.67 1 11.11
Perfect Club 69 31 191 237 19.41 4 12.9

Total 268 90 503 617 18.48 10 11.11

Register Allocation and Optimal Spill Code Scheduling 137

Table 2. Spill code and prevention of II increase with 16 registers

#loops Total % decrease #loops % loops
Benchmark #loops with reg spill code in spill without II without II

pressure ILP SU code(ILP) increase(ILP) increase(ILP)

168.wupwise 25 19 128 152 15.79 0 0
179.art 40 26 85 106 19.81 1 3.85

183.equake 42 19 88 104 15.38 4 21.05
188.ammp 46 21 88 95 7.37 2 9.52

200.sixtrack 46 23 112 131 14.50 3 13.04
Perfect Club 69 49 313 346 9.54 9 18.37

Total 268 157 814 934 12.85 19 12.10

different initiation intervals. Table 1 and Table 2 report the amount of spill gen-
erated for an architecture with 32 and 16 registers respectively. Though number
of loops with higher register pressure (greater than the available registers) is
small, we find that there is fairly large spill code being generated. The amount
of spill code reduction with ILP when compared to SU ranges from 11.11% to
21.95% for 32 registers and it ranges from 7.37% to 19.81% for 16 registers. On
an average ILP produces 18.48% less spill code on an average for an architecture
with 32 registers and 12.85% less spill code on an average for an architecture
with 16 registers.

Initiation Interval. The throughput of a software pipelined loop is measured
in terms of the initiation interval. Table 1 and Table 2 report the number of
loops requiring an increase in the initiation interval in SU and do not require
an increase in II while using ILP . ILP eliminates the need for an increase in II
when compared to SU in 6.67% to 14.29% of the loops in various benchmarks.
On an average, ILP eliminates an increase in II in 11% of the loops for an
architecture with 32 registers and 12% of the loops for 16 registers.

(a) 16 registers (b) 32 registers

Fig. 3. Solution time taken by ILP

138 S.G. Nagarakatte and R. Govindarajan

In summary, we observe that our ILP approach is able to reduce the amount
of spill code by 18.48% and eliminate an increase in II by 11.11% on average
among 90 loops on an architecture with 32 registers.

Solution Time. In Figure 3(a) and Figure 3(b), we report the time taken by
the ILP, where the X-axis represents the time taken and Y-axis, the number of
loops for which the solution can be found with the given time. For example, for
the case of 16 registers, 136 out of 268 loops take less than one second each. The
arithmetic mean of the time taken by ILP for each loop is 18.44 seconds in the
case of 16 registers and is 77.79 seconds in the case of 32 registers.

6 Related Work

Software pipelining has been extensively studied and few of the contributions
in this area are in [6,7,14,17,19]. A comprehensive survey is available in [2]. A
considerable amount of work has been done to minimize the register requirements
of the the software pipeline schedule. Among these, Huff [11] uses slack scheduling
and tries to minimize the combined register pressure. In [8], ILP formulation for
generating the schedule has been proposed and minimization of the number of
buffers required in such a scenario is addressed in [10]. A number of modulo
scheduling heuristics that reduce the register pressure and generate schedules
with smallest number of registers have been proposed in [15]. All these do not
consider the dual problem of scheduling with a given number of registers.

Register allocation for software pipelined loops was proposed by Rau et al. [18].
They consider an architecture that incorporates rotating registers. However spill
code generation and scheduling was not considered. Ning et al. [16] have pro-
posed an algorithmic framework for concurrent scheduling and register alloca-
tion. Their approach estimates the register requirement with the help of buffers.
Zalamea et al. [21] have described methods for generating spill code when the
register pressure is greater than the number of registers. But they did not con-
sider register allocation and introduction of spill code was based on heuristics.

Goodwin et al. [9] have proposed a 0-1 integer linear programming formula-
tion for global register allocation. Our model inherits certain ideas from their
approach. They do not consider register allocation for software pipelined loops
and hence does not deal with the problem of spill code scheduling in a cyclic
schedule. Methods for generating spill code on-the-fly using heuristics have been
proposed in [1]. Since the generation of spill code is based on heuristics, solution
may not always be optimal.

Integer linear programming formulations for instruction scheduling have been
proposed by Chang [3] and Wilken [20]. In [3], the authors consider instruction
scheduling and spill code generation. However, they do not perform register al-
location and their technique does not guarantee optimal spill code. They also
do not address the problem of scheduling the generated spill code in a compact

Register Allocation and Optimal Spill Code Scheduling 139

cyclic schedule. Our work, for the first time proposes an integrated formulation
for register allocation, optimal spill code generation and scheduling in software
pipelined schedules.

7 Conclusions

The paper presents an optimal method for integrated register allocation and
spill code scheduling in software pipelined loops, using a 0-1 integer linear pro-
gramming formulation. We formulate it as an integer linear program because
the selection of a spill candidate based on a certain heuristic can generate ex-
traneous spill code, which in turn may necessitate an increase in the initiation
interval. The formulation serves as a framework with which various heuristics
can be evaluated. Experiments show that our formulation outperforms the best
performing heuristic proposed in [21]

– By eliminating an increase in the initiation interval in 11.11% of the 90 loops
that had sufficient register pressure for an architecture with 32 registers and
in 12% of the cases with 157 loops on a machine with 16 registers.

– By generating on an average, 18.48% less spill code for an architecture with
32 registers and 12.85 % less spill code for an architecture with 16 registers.

Acknowledgments

The authors are thankful to the members of the High Performance Comput-
ing Laboratory for their useful comments and discussions. The authors are also
thankful to the anonymous reviewer for suggesting the simplified formulation.
The first author acknowledges the partial support provided by the Philips re-
search fellowship.

References

1. Alex Aleta, Josep M. Codina, Antonio Gonzalez, and David Kaeli. Demystifying
on-the-fly spill code. SIGPLAN Not., 40(6):180–189, 2005.

2. Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software
pipelining. ACM Comput. Surv., 27(3):367–432, 1995.

3. C.M Chen C.M Chang and C.T King. Using integer linear programming for in-
struction scheduling and register allocation in multi-issue processors. Computers
and Mathematics with Applications, 34(9):1–14, 1997.

4. Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring
register allocator. In CC ’98: Proceedings of the 7th International Conference on
Compiler Construction, pages 174–187, London, UK, 1998. Springer-Verlag.

5. ILOG CPLEX:. http://www.ilog.com.
6. James C. Dehnert and Ross A. Towle. Compiling for the cydra 5. J. Supercomput.,

7(1-2):181–227, 1993.
7. Kemal Ebcioglu and Alexandru Nicolau. A global resource-constrained paralleliza-

tion technique. In ICS ’89: Proceedings of the 3rd international conference on
Supercomputing, pages 154–163, New York, NY, USA, 1989. ACM Press.

140 S.G. Nagarakatte and R. Govindarajan

8. Paul Feautrier. Fine-grain scheduling under resource constraints. In LCPC ’94:
Proceedings of the 7th International Workshop on Languages and Compilers for
Parallel Computing, pages 1–15, London, UK, 1995. Springer-Verlag.

9. David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register
allocations using 0-1 integer programming. Softw. Pract. Exper., 26(8):929–965,
1996.

10. R. Govindarajan, Erik R. Altman, and Guang R. Gao. A framework for resource-
constrained rate-optimal software pipelining. IEEE Transactions on Parallel and
Distributed Systems, 07(11):1133–1149, 1996.

11. Richard A. Huff. Lifetime-sensitive modulo scheduling. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 258–267, 1993.

12. SUIF Compiler Infrastructure. http://suif.stanford.edu/suif/.
13. Trimaran: An infrastructure for research in instruction level parallelism.

http://www.trimaran.org.
14. M. Lam. Software pipelining: an effective scheduling technique for vliw machines.

In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 318–328, New York, NY, USA, 1988.
ACM Press.

15. Josep Llosa, Mateo Valero, and Eduard Ayguade. Heuristics for register-
constrained software pipelining. In MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture, pages 250–261, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

16. Qi Ning and Guang R. Gao. A novel framework of register allocation for soft-
ware pipelining. In Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 29–42,
Charleston, South Carolina, 1993.

17. B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In MICRO 14:
Proceedings of the 14th annual workshop on Microprogramming, pages 183–198,
Piscataway, NJ, USA, 1981. IEEE Press.

18. B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for
software pipelined loops. SIGPLAN Not., 27(7):283–299, 1992.

19. B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm for software
pipelining loops. In MICRO 27: Proceedings of the 27th annual international sym-
posium on Microarchitecture, pages 63–74, New York, NY, USA, 1994. ACM Press.

20. Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling us-
ing integer programming. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages 121–133,
New York, NY, USA, 2000. ACM Press.

21. Javier Zalamea, Josep Llosa, Eduard Ayguade, and Mateo Valero. Improved spill
code generation for software pipelined loops. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation,
pages 134–144, New York, NY, USA, 2000. ACM Press.

Extended Linear Scan: An Alternate

Foundation for Global Register Allocation

Vivek Sarkar1 and Rajkishore Barik2

1 IBM T.J. Watson Research Center

vsarkar@us.ibm.com
2 IBM India Research Laboratory

rajbarik@in.ibm.com

Abstract. In this paper, we extend past work on Linear Scan register allocation,

and propose two Extended Linear Scan (ELS) algorithms that retain the compile-

time efficiency of past Linear Scan algorithms while delivering performance that

can match or surpass that of Graph Coloring. Specifically, this paper makes the

following contributions:

– We highlight three fundamental theoretical limitations in using Graph Col-

oring as a foundation for global register allocation, and introduce a basic

Extended Linear Scan algorithm, ELS0, which addresses all three limitations

for the problem of Spill-Free Register Allocation.

– We introduce the ELS1 algorithm which extends ELS0 to obtain a greedy

algorithm for the problem of Register Allocation with Total Spills.

– Finally, we present experimental results to compare the Graph Coloring and

Extended Linear Scan algorithms. Our results show that the compile-time

speedups for ELS1 relative to GC were significant, and varied from 15× to

68×. In addition, the resulting execution time improved by up to 5.8%, with

an average improvement of 2.3%.

Together, these results show that Extended Linear Scan is promising as an alter-

nate foundation for global register allocation, compared to Graph Coloring, due

to its compile-time scalability without loss of execution time performance.

1 Introduction

Register allocation is the process of determining which variables (symbolic registers)

should be held in physical machine registers at different program points and which

should be spilled. Register assignment is the sub-process of identifying which specific

machine registers should be used at different program points to hold which variables.

The scope of register allocation may be local (restricted to a small region of a procedure,

such as an innermost loop or an extended basic block), global (performed on an entire

procedure) or interprocedural (performed across multiple procedures). Ever since its

inclusion in the first compiler for FORTRAN five decades ago, register allocation has

retained its role as one of the most important optimizations performed by compilers for

high-level programming languages, and the algorithms used for register allocation have

matured accordingly.

Starting with the seminal paper by Chaitin [5], the dominant approaches for global

register allocation have been based on the idea of building an Interference Graph (IG)

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 141–155, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

142 V. Sarkar and R. Barik

for variables in a procedure, and employing Graph Coloring (GC) heuristics to perform

the allocation. Significant advances have been achieved over these years through the

introduction of new coloring, spilling, and coalescing heuristics based on the IG e.g.,

[2, 3, 4, 6, 7, 12]. However, a key limitation that underlies all register allocation algo-

rithms based on Graph Coloring is that the number of variables that can be processed by

the register allocation phase in an optimizing compiler is limited by the size of the IG.

The number of edges in the IG can be quadratic in the number of nodes in the worst case,

and is usually observed to be super-linear in practice. The results in Section 4 show that

the IG size is typically O(n1.5) for n nodes. This non-linear complexity in space and time

limits the code size that can be optimized and thereby has a damping effect on aggres-

sive use of code transformations that can potentially increase opportunities for register

allocation, such as variable renaming, loop unrolling and procedure inlining, but which

also have the side effect of increasing the size of the IG. Finally, the non-linear complex-

ity makes it prohibitive to use Graph Coloring for register allocation in just-in-time and

dynamic compilers, where compile-time overhead contributes directly to run-time.

Recent work on Linear Scan algorithms [14, 16] has led to more efficient algorithms

for global register allocation that use data structures with size that is linear in the num-

ber of variables. The results reported thus far suggest that Linear Scan should be used

when compile-time space and time overhead is at a premium (as in dynamic compila-

tion), but an algorithm based on Graph Coloring should be used when the best runtime

performance is desired.

This paper extends past work on Linear Scan register allocation, and proposes two

Extended Linear Scan (ELS) algorithms that retain the compile-time efficiency of past

Linear Scan algorithms while delivering performance that can match or surpass that of

Graph Coloring. The focus of this paper is on revisiting the premise that Graph Coloring

is the most suitable foundation for global register allocation, and on evaluating ELS as

an alternate foundation. Specifically, this paper makes the following contributions:

1. It highlights three fundamental theoretical limitations in using Graph Coloring as a

foundation for global register allocation (Section 2.2).

2. It introduces the basic Extended Linear Scan algorithm, ELS0 (Section 2.3), which

addresses all three limitations for the problem of Spill-Free Register Allocation.

3. It introduces the ELS1 algorithm (Section 3), which extends ELS0 to obtain a greedy

algorithm for the problem of Register Allocation with Total Spills (RATS).

4. It includes experimental results for eight SPECint2000 benchmarks to compare the

Graph Coloring and Extended Linear Scan algorithms (Section 4). The results show

that the space and time used by ELS1 is significantly smaller than those used by GC

– the compile-time speedups for ELS1 relative to GC varied from 15× to 68×. In

addition, the runtime performance improved by up to 5.8% for ELS1 relative to GC,

with an average improvement of 2.3%. This is a significant improvement over past

Linear Scan algorithms which delivered compile-time efficiency but lagged behind

Graph Coloring in runtime performance.

Together, these results show that Extended Linear Scan is promising as an alter-

nate foundation for global register allocation, compared to Graph Coloring, due to its

compile-time scalability without loss of execution time performance. Our expectation

is that the coloring, spilling, and coalescing heuristics that have been developed over the

Extended Linear Scan 143

past decades as refinements to Graph Coloring, will be equally amenable to adaptation

in an Extended Linear Scan foundation.

2 Spill-Free Register Allocation

This section introduces the Spill-Free Register Allocation (SFRA) problem as a theoret-

ical foundation for comparing the fundamental differences between the Graph Coloring

and Extended Linear Scan algorithms.

Spill-Free Register Allocation (SFRA): Given a set of symbolic registers, ℜ, and k

physical registers, determine if it is possible to assign each symbolic register s ∈ ℜ to

a physical register, reg(s,P) at each program point P where s is live. If so, report the

register assignments, including any register-to-register copy statements that need to be

inserted. If not, report that no feasible solution exists. �

Two key assumptions in the specification of the SFRA problem are as follows. First,

two “program points” are defined for each instruction, ik. i−k denotes the point at which

the input operands of instruction ik are read, and i+k denotes the point at which the

output operands of instruction ik are written. Second, we assume that register allocation

is performed as a separate pass from instruction scheduling — instruction scheduling

considerations for register allocation [1, 9, 11, 13] are beyond the scope of this paper.

2.1 Basic Graph Coloring Solution to the SFRA Problem

Figure 1 summarizes the basic Graph Coloring algorithm for Spill-Free Register Al-

location as described by Chaitin [5]. The correctness of this algorithm has also been

established earlier in [5]. It is easy to see that the algorithm requires O(|ℜ|2) space,

since the interference graph can be quadratic in the number of symbolic registers. The

major overhead in execution time occurs in constructing the interference graph in step 2,

which takes O(|ℜ|2) time. (This assumes that the liveness information in input 3 has

been precomputed in a way such that each instance of the simultaneously live condition

in step 2 can be computed in constant time. Otherwise, the execution time for step 2

could be larger than O(|ℜ|2).)

2.2 Theoretical Limitations of Graph Coloring Solution

In this section, we summarize three fundamental theoretical limitations in using Graph

Coloring as a foundation for global register allocation.

First, Graph Coloring is a more limited problem than Register Allocation. Transform-

ing Register Allocation to Graph Coloring ensures that finding a k-coloring of an Inter-

ference Graph will lead to a feasible solution to the SFRA problem, but the converse

is not true i.e., it is not necessary that an SFRA problem instance for which a solution

exists can be transformed into a Graph Coloring problem for which a solution exists.

Consider the two examples in Figure 2, assuming that there are two physical registers

available. In each case, a spill-free solution exists for the SFRA problem instance, but

not for the Graph Coloring instance. In Example #2, the solution to the SFRA problem

includes a register move instruction in the loop, but a solution based on Graph Coloring

144 V. Sarkar and R. Barik

Inputs:

1. IR, intermediate representation for program to be optimized.

2. ℜ, set of symbolic registers that are candidates for allocation.

3. Liveness information that can be used to query if a symbolic register s ∈ ℜ is live at program

point P

4. k, number of registers available for allocation.

Outputs:

1. Success, a boolean value that indicates whether or not a spill-free allocation was found for

all symbolic registers in ℜ.

2. If Success = true, then reg(s) specifies the physical register assigned to symbolic register s,

for all s ∈ ℜ. (For basic Graph Coloring, no register moves are necessary because the register

assignment will be the same for s at all program points.)

Algorithm:

1. Initialize an empty undirected Interference Graph (IG) with one node for each symbolic

register.

2. for each pair of distinct symbolic registers, si and s j, such that there exists a program point

P where both si and s j are simultaneously live do

(a) Insert an edge in IG between node si and s j

end for

3. /* “Simplify” step in graph coloring heuristic */

Initialize T := an empty stack;

4. Initialize IG′ := copy of IG;

5. while ∃ a node si in IG′ with degree < k do

(a) Delete node si from IG′

(b) Push si on T

end while

6. if IG′ is now an empty graph then Success := true;

else Success := false; return;

end if

7. /* “Assignment” step in graph coloring heuristic */

Initialize reg(si) := null for each node si in IG;

while T is non-empty do

(a) si := pop(T);

(b) reg(si) := any register in 1 . . .k that is distinct from reg(s j) for all nodes s j that are

adjacent to si in IG;

end while

Fig. 1. Overview of Graph Coloring algorithm for Spill-Free Register Allocation

instead inserts a spill instruction in the loop. It is of course well known (e.g., [2]) that

renaming of variables or live-range splitting can be performed to obtain spill-free solu-

tions with Graph Coloring for the examples in Figure 2. The observation being made

here is that these transformations are orthogonal to Graph Coloring and are equally

Extended Linear Scan 145

SFRA problem instance #1: Find a spill-free register allocation for symbolic registers sA,sB,sC

in the program shown below, assuming that there are k = 2 physical registers available.

switch (. . .) {
case 0:

i1: sA := . . .
i2: sB := . . .
i3: . . . := sA op sB

break;

case 1:

i4: sB := . . .
i5: sC := . . .
i6: . . . := sB op sC

break;

case 2:

i7: sA := . . .
i8: sC := . . .
i9: . . . := sA op sC

break;

}

Graph Coloring problem instance: the Interference Graph is a complete clique for the three

nodes sA, sB, sC, and is therefore not 2-colorable.

SFRA solution: A simple solution exists to the above SFRA problem instance as follows, as-

suming that the two physical registers available are r1 and r2. No register moves are necessary

for this solution:

reg(sA, [i+1 , i−3]) = r1, reg(sB, [i+1 , i−3]) = r2, reg(sB, [i+4 , i−6]) = r1, reg(sC , [i+4 , i−6]) = r2,

reg(sA, [i+7 , i−9]) = r1, reg(sC, [i+7 , i−9]) = r2.

SFRA problem instance #2: Find a spill-free register allocation for symbolic registers sA,sB,sC

in the program shown below, assuming k = 2 physical registers.

i1: sC := . . .
/* Start of loop */

i2: sA := . . .
i3: . . . := sC op . . .
i4: sB := . . .
i5: . . . := sA op . . .
i6: sC := . . .
i7: . . . := sB op . . .
i8: if sC <= 0 goto i10

i9: goto i2
/* End of loop */

i10: . . .

Graph Coloring problem instance: the Interference Graph is again a complete clique for the

three nodes sA, sB, sC, and is therefore not 2-colorable.

SFRA solution: The following solution exists to the above SFRA problem instance assuming

that there are two physical registers available, r1 and r2. It also requires the insertion of a register-

move instruction r1 := r2 between instructions i8 and i9.

reg(sC , [i+1 , i−3]) = r1, reg(sA, [i+2 , i−5]) = r2, reg(sB, [i+4 , i−7]) = r1, reg(sC , [i+6 , i+8]) = r2.

Fig. 2. Examples #1 and #2 for which a solution exists to the SFRA problem instance, but no

solution exists to the corresponding Graph Coloring instance

146 V. Sarkar and R. Barik

applicable to Extended Linear Scan (ELS). Also, these transformations come at the

cost of increasing the number of nodes and edges in IG, thereby further exacerbating

the time and space complexity of register allocation based on Graph Coloring.

Second, the O(|ℜ|2) space requirement for constructing the interference graph is a

scalability limitation because the overhead of any register allocation algorithm based on

Graph Coloring becomes prohibitively large when compiling procedures with a large

number of symbolic registers (especially after transformations such as procedure inlin-

ing and loop unrolling are performed), or in scenarios where compiler space and time

overhead is at a premium (as in dynamic compilation).

Third, Graph Coloring is an NP-hard optimization problem (without even the guar-

antee of a constant performance bound), whereas an exact solution can be obtained for

SFRA in time that is linear in the number of live intervals for all symbolic registers as

shown below in Section 2.3.

Together these limitations suggest that the Graph Coloring formulation may have

made the global register allocation algorithm harder to solve than necessary, and thereby

provide the motivation for our work on Extended Linear Scan.

2.3 Basic Extended Linear Scan Algorithm, ELS0

In this section, we introduce the basic Extended Linear Scan algorithm, ELS0, for the

SFRA problem. ELS0 addresses the three limitations of Graph Coloring outlined in the

previous section, and also serves as the foundation for the ELS1 algorithm. A summary

of the ELS0 algorithm can be found in Figures 3 and 4. The live range of a symbolic reg-

ister s is represented by an Interval Set, I (s). Each interval, [P,Q] in I (s) represents

a range of program points at which s is live. The interval set is a precise representation

Inputs: Same as in Figure 1 (IR, ℜ, liveness information, k).

Outputs:

1. Success, a boolean value as in Figure 1.

2. If Success = true, then reg(s, [P,Q]) specifies the physical register assigned to symbolic reg-

ister s, for all program points in interval [P,Q] ∈ I (s). This reg mapping can be used to

easily compute reg(s,x) for any program point x where s is live, by identifying the interval

in I (s) that contains x.

3. Modified IR with insertion of register-move instructions to handle cases when different phys-

ical registers may be assigned to the same symbolic register in different intervals.

Data structure initialization:

1. Interval Set I (s) for each symbolic register s

2. I = ∪
s∈ℜI (s), the set of all intervals in the program (each interval is labeled with its

symbolic register)

3. IEP, the set of interval endpoints in I

4. numlive := 0

5. count[P] := 0, for each point in IEP

Fig. 3. Inputs, Outputs, Initialization for Extended Linear Scan algorithm ELS0 for Spill-Free

Register Allocation (see Figure 4)

Extended Linear Scan 147

Algorithm:

1. for each program point P in IEP, in increasing order do

(a) for each interval [O,P] ∈ I do numlive-- end for

(b) for each interval [P,Q] ∈ I do numlive++ end for

(c) count[P] := numlive

end for

2. if (∃ a program point P in IEP with count[P] > k) then

(a) Success := false; return;

end if

3. /* A feasible solution exists. Compute reg mapping and register-moves. */

Success := true;

4. Initialize avail := set of all physical registers, 1 . . .k
5. for each program point P in IEP, in increasing order do

(a) for each interval [O,P] ∈ I do

i. avail := avail ∪ { r j }, where r j is the physical register that had been previously

assigned to interval [O,P]
end for

(b) for each interval [P,Q] ∈ I do

i. Let s := symbolic register corresponding to [P,Q]
ii. Select a physical register r j from avail, using the following heuristics:

– If s is live at P, then prefer selecting r j previously assigned to s, and

– If program point P corresponds to a register-to-register copy statement of the

form, s := t, then prefer selecting r j reviously assigned to t.

iii. reg(s, [P,Q]) := r j /* s is assigned r j for all points in [P,Q] */

iv. avail := avail - { r j } ;

end for

6. /* Insert register move instructions as needed. */

for each program point P do

for each program point Q that is a control flow successor to P do

(a) Initialize M to be an empty set of move instructions

(b) for each symbolic reg. s such that s is live at P and Q do

i. if (reg(s,P) �= reg(s,Q)) then

insert a move instruction “reg(s,Q) := reg(s,P)” into set M end if

end for

(c) Treat the move instructions in M as a directed graph G in which there is an edge from

move instruction m1 to move instruction m2 if m1 reads the register written by m2

(d) Compute the strongly connected components (SCC’s) of directed graph G

(e) For each SCC, create a sequence of move and xor instructions to implement its regis-

ter moves without the use of a temporary register, and insert these instructions on the

control flow edge from P to Q (as part of Output 3 in Figure 3)

end for

end for

Fig. 4. Overview of Extended Linear Scan algorithm ELS0 for Spill-Free Register Allocation (see

Figure 3)

of liveness — as in [16], there may be “holes” in the interval set corresponding to pro-

gram points where s is not live. We also define I = ∪
s∈ℜI (s) to be the set of all

intervals in the program, and IEP to be the set of interval endpoints i.e., program points

148 V. Sarkar and R. Barik

that correspond to endpoints of intervals in I . In the worst case theoretically, the size

of I can be quadratic (|ℜ|×|IR|), where ℜ is the set of symbolic registers and IR is the

intermediate representation of the procedure. The worst case can be achieved (for ex-

ample) when each symbolic register is live at every other instruction in IR and therefore

has |IR|/2 intervals. However, as shown in Section 4, in practice the average number of

intervals per symbolic register is bounded by a small constant (≈ 2).

The outputs listed for the ELS0 algorithm in Figure 4 are an extension of the outputs

for the Graph Coloring algorithm in Figure 1. The boolean value, Success, indicates

if a feasible SFRA solution can be found. The register map, reg is finer-grained for

ELS0 than for GC since it is capable of assigning different physical registers to different

intervals in the Interval Set of a given symbolic register. The third output of the ELS0

algorithm is a set of register-move instructions needed to support the register map. We

assume that it is preferable to generate register-register moves than spill loads and stores

on current and future systems, even for loads and stores that results in cache hits. This

is because many processors incur a coherence overhead for loads and stores, compared

to register accesses. Further, register-register moves can be optimized by efficient copy

coalescing algorithms such as the one presented in [3].

We now outline how the ELS0 algorithm addresses the three limitations for Graph

Coloring discussed in Section 2.2:

1. The ELS0 algorithm is guaranteed to find a feasible solution to an SFRA problem

instance if and only if a feasible solution exists (Theorem 1).

2. The ELS0 algorithm has a space requirement that is linear in the size of the input

SFRA problem instance (Theorem 2).

3. The ELS0 algorithm also has a time complexity that is linear in the size of the input

SFRA problem instance (Theorem 2).

Theorem 1. The ELS0 algorithm always computes a correct solution for the SFRA

problem.

Proof: [Sketch] The ELS0 algorithm returns Success = false only if there exists a pro-

gram point P with count[P]> k i.e., with more than k symbolic registers that are live at P

(which means that a spill-free register allocation is not possible). If the ELS0 algorithm

returns Success = true then count[P] ≤ k must be true at all program points P ∈ IEP.

Therefore, there must be a physical register available in the avail set for each symbolic

register at each program point. The register-move instructions inserted by step 6 ensure

that a symbolic register’s value is correctly carried across different physical registers

that may be assigned to the same symbolic register. �

Theorem 2. The ELS0 algorithm takes O(|IR|+ |I |) space and O(|IR|+ |I |) time.

Proof: [Sketch] It is easy to see that steps 1–5b take O(|IR| + |I |) space and time,

assuming that all liveness information is precomputed (as in the Graph Coloring

algorithm in Figure 1). Note that the size of the avail set is bounded by a constant,

k (= number of physical registers). For step 6, the key observation is that there can be

at most k register move instructions inserted on any control flow edge. �

Extended Linear Scan 149

3 Register Allocation with Total Spills

In this section, we extend the SFRA problem statement to allow for total spills i.e.,

for identifying a subset of symbolic registers for which all accesses will be performed

through memory instead of registers, with the goal of finding a solution with the small-

est spill cost. Since the GCC compiler used to obtain our experimental results lacks

support for pseudo-register live range splitting [8], an investigation of live range split-

ting and partial spills in the ELS framework is a subject for future work.

Register Allocation with Total Spills (RATS): Given a set of symbolic registers, ℜ,

k physical registers, and estimated execution frequency f req[P] for each program point

P, a register allocation with total spills consists of

1. a boolean function, spilled(s), which indicates if s is to be spilled, and

2. for each symbolic register with spilled(s) = f alse, a register assignment, reg(s,P)
at each program point P where s is live.

There are two versions of the RATS problem, depending on whether or not insertion of

register-move instructions is permitted:

– regMoves = false. In this version, no register-move instructions are allowed to be

inserted, and the optimization problem is to find a register allocation with lowest

spill cost i.e., the lowest number of dynamic load and store instructions for the

spilled symbolic registers, as determined by the f req[P] values.

– regMoves = true. In this version, register-move instructions are permitted as in the

SFRA problem statement, and the optimization goal is to minimize the combined

overhead of spill cost and register moves. The relative weightage to be given to spill

costs and register moves is architecture-specific. �

The SFRA problem in Section 2.3 is a decision problem which indicates whether a fea-

sible spill-free register allocation can be obtained or not. In contrast, the RATS problem

is an optimization problem, with the goal of minimizing spill costs (for the regMoves =

false version) and a combination of spill costs and register-move cost (for the regMoves

= true version). Note that it is trivial to obtain a feasible solution to the RATS problem

by marking all symbolic registers as spilled — the challenge is to find a least-cost so-

lution. It is well known that both versions of the RATS problem outlined above (with

regMoves = false or true) are NP-hard.

The original algorithm by Chaitin addressed the regMoves = false version of the RATS

problem by extending the algorithm in Figure 1 with a priority function that favored

spilling symbolic register s with the smallest value of totalSpillCost(s)/iDegree(s),
where

totalSpillCost(s) = ∑
point P w/ read of s

f req[P] + ∑
point Q w/ write of s

f req[Q]

is the frequency-weighted sum of all read and write accesses to s, and iDegree(s) is

the degree of s in the simplified Interference Graph. There has been a very substantial

amount of past work on augmenting and refining this priority function, starting with

[6]. As mentioned earlier, we expect that these advanced spill heuristics designed for

GC will be equally applicable to an ELS foundation.

150 V. Sarkar and R. Barik

Inputs:

1. IR, ℜ, k, as in Figure 1.

2. f req[P], estimated frequency for program point P ∈ IEP.

3. regMoves, version of the RATS problem to be solved.

Outputs:

1. spill(s), indicates if symbolic register s was spilled.

2. If spill(s) = false, then reg(s,P) specifies the physical register assigned to s at each program

point P where s is live.

3. If regMoves = true, the IR is modified with insertion of register-move instructions as in

Figure 4.

Data structure initialization:

Initialize I (s), I , IEP, and count as in Figure 3, an empty stack T , and spill(s) := false and

totalSpillCost(s) as defined in Section 3.

Fig. 5. Inputs, Outputs, and Initialization for Extended Linear Scan algorithm ELS1 for Register

Allocation with Total Spills (see Figure 6)

Figures 5 and 6 summarize our Extended Linear Scan algorithm for the RATS

problem, ELS1. This algorithm uses an input parameter, regMoves, to address both

versions of the RATS problem. Figure 5 includes initialization steps from the ELS0 al-

gorithm, and also initializes spill(s) and totalSpillCost(s). Figure 6 contains the main

ELS1 algorithm. Step 1 in Figure 6 is the Spill Identification pass. It uses the observa-

tion from the SFRA problem that the only program points P for which spill decisions

need to be made are those for which count[P] > K. The heuristic used in step 1a is

to process these program points in decreasing order of f req[P]. As in Chaitin’s Graph

Coloring algorithm, Step 1b selects the symbolic register with the smallest value of

totalSpillCost(s)/iDegree(s,P) for spilling. A key difference with graph coloring is

that this decision is driven by the choice of program point P, and allows for assigning

different physical registers to the same symbolic register at different program points,

when regMoves = true. We define iDegree(s,P) = count[P]− 1 to be the number of

symbolic registers that interfere with s at some program point P with count[P] > k,

when computed in step 1b of ELS1 algorithm. After Step 1 has completed, a feasible

register allocation is obtained with count[P]≤ k at each program point P. The set of reg-

isters selected to be spilled are identified by spill(s) = true, and are also pushed on to

stack T . Step 2 is the Spill Resurrection pass. It examines the symbolic registers pushed

on the stack to see if any of them can be “unspilled”. Opportunities for resurrection

arise when a later spill decision causes an earlier spill decision to become redundant.

Step 3 is the Register Assignment pass. If regMoves is true, the algorithm uses steps

4, 5, 6 of the ELS0 algorithm in Figure 4. If regMoves is false, then we use a different

register assignment algorithm that does not insert any register-move instructions. As

indicated in step 3, the regMoves = false case can result in additional symbolic registers

being spilled.

Extended Linear Scan 151

Algorithm:

1. /* Spill Identification. */

while (∃ a program point Q ∈ IEP with count[Q] > k) do

(a) P := program point in IEP with count[P] > k and largest estimated frequency, f req[P] ;

(b) s := symbolic register s that is live at P, has spill(s) = f alse, and has the smallest value

of totalSpillCost(s)/iDegree(s,P) ;

(c) Set spill(s) := true and push s on stack T ;

(d) for each program point X ∈ IEP where s is live do

count[X] := count[X]−1 ;

end for

end while

2. /* Spill Resurrection. */

while (stack T is non-empty) do

(a) s := pop(T) ;

(b) if (count[Q] < k at each point Q where s is live) then

/* Resurrect symbolic register with largest spill cost. */

i. Set spill(s) := f alse

ii. for each program point X where s is live do

count[X] := count[X]+1 ; end for

end if

end while

3. /* Register Assignment. */

if (regMoves) then

Run steps 4, 5, 6 of the ELS0 algorithm, restricted to symbolic registers s with spill(s) =
f alse

else /* Modified version of steps 4 and 5 in Figure 4. */

for each program point P in IEP, in decreasing order of f req[P] do

(a) avail := set of physical registers that have not been assigned to a symbolic register that

is live at P

(b) for each symbolic register s that is live at P and does not have an assigned physical

register, in decreasing order of totalSpillCost(s) do

i. Select a physical register r j from avail using the copy heuristic from step 5(b)ii in

Figure 4.

ii. if no register r j was found then spill(s) := true;

else reg(s,∗) := r j ; avail := avail −{r j} ;

end if

end for

end for

end if

Fig. 6. Overview of Extended Linear Scan algorithm ELS1 for Register Allocation with Total

Spills (see Figure 5)

Theorem 3. The ELS1 algorithm always computes a correct solution to the RATS

problem.

Proof: [Sketch] The solution obtained after step 2 in the ELS1 algorithm (Figure 6) is

guaranteed to have count[P] ≤ k at each program point P. If regMoves = true, then the

152 V. Sarkar and R. Barik

RATS problem degenerates to SFRA in Step 3, and the correctness result from Theo-

rem 1 holds. If regMoves = false, then steps 3(b)i and 3(b)ii ensure that each non-spilled

symbolic register is assigned a physical register, or is spilled if no physical register is

available, for each program point in IEP. �

Theorem 4. The ELS1 algorithm takes O(|IR| + |I |) space and O(|IR| +
|I |(log(countmax)+ log|IR|)) time, where countmax is the maximum value of count[P]
at any program point P.

Proof: It is easy to see that the initialization in Figure 5 will take O(|IR|+ |I |) space

and O(|IR| + |I |) time. Note that the computation of totalSpillCost(s) just takes

O(|IR|) time because each instruction in the intermediate representation can result in

the increment of totalSpillCost(s) for at most a constant number of symbolic registers.

For Step 1 (Spill Identification), the selection in step 1a of program point P with

count[P] > k and largest estimated frequency, f req[P], contributes O(|I |log|IR|) time

and step 1b contributes O(|I |log(countmax)) time, assuming that a heap data structure

(or equivalent) is used in both cases. Finally, step 2 (Spill Resurrection) and step 3

(Register Assignment) contribute at most O(|I |) time. �

4 Experimental Results

In this section, we report on experimental results obtained from a prototype implemen-

tation of Graph Coloring (as described in [10]) and ELS1 in version 4.1 of the gcc

compiler using the -O3 option. Compile-time and execution time were measured on a

POWER5 processor running at 1.9GHz with 31.7GB of real memory running AIX 5.3.

Experimental results are presented for eight out of twelve programs from v2 of the

SPECint2000 benchmark suite. Results were not obtained for 252.eon because it is

a C++ benchmark, and for the three other benchmarks — 176.gcc, 253.perlbmk, and

255.vortex — because of known issues [15] that require benchmark modification or

installation of v3 of the CPU2000 benchmarks.

Table 1 summarizes compile-time overheads of the Graph Coloring and Extended

Linear Scan algorithms. The measurements were obtained for functions with the

largest interference graphs in the eight SPECint2000 benchmarks, using the -O3

-finline-limit=3000 -ftime-report options in gcc. It is interesting to note that

the Interference Graph size, |IG|, typically grows as O(|S|1.5), where as the number of

intervals, |I | is always ≤ 2|S|. This is one of the important reasons behind the compile-

time efficiency of the Linear Scan and Extended Linear Scan algorithms. While it is

theoretically possible for the number of intervals for a symbolic register to be as high as

half the total number of instructions in the program (e.g., if every alternate instruction is

a “hole” – which could lead to a non-linear complexity for ELS), we see that in practice

the average number of intervals per symbolic register is bounded by a small constant

(≈ 2). We see that the Space Compression Factor (SCF) = |I |/|IG| varies from 4.5%

to 22.7%, indicating the extent to which we expect the interval set, I , to be smaller

than the interference graph, IG. Finally, the last two columns contain the compile-time

spent in global register allocation for these two algorithms. For improved measurement

accuracy, the register allocation phase was repeated 100 times, and the timing (in ms)

Extended Linear Scan 153

Table 1. Compile-time overheads for functions with the largest interference graphs in

SPECint2000 benchmarks. |S| = # symbolic registers, |IG| = # nodes and edges in Interference

Graph , |I | = # intervals in interval set, Space Compression Factor (SCF) = |I |/|IG|, GC =

graph coloring compile-time, ELS1 = ELS1 compile-time with regMoves = true.

Function |S| |IG| |I | SCF GC ELS1

164.gzip.build tree 161 2301 261 11.3% 141.4ms 9.4ms
175.vpr.try route 254 2380 445 18.7% 208.7ms 9.5ms
181.mcf.sort basket 138 949 226 22.7% 6.8ms 0.1ms
186.crafty.InputMove 122 1004 219 21.8% 150.2ms 7.8s
197.parser.list links 352 9090 414 4.5% 114.4ms 7.4ms
254.gap.SyFgets 547 7661 922 12.0% 118.8ms 8.0ms
256.bzip2.sendMTFValues 256 2426 430 17.7% 133.0ms 7.4ms
300.twolf.closepins 227 5105 503 9.8% 212.8ms 9.1ms

reported in Table 1 is the average over the 100 runs. While compile-time measurements

depend significantly on the engineering of the algorithm implementations, the early

indications are there is a marked reduction in compile-time when moving from GC to

ELS1 for all benchmarks. The compile-time speedups for ELS1 relative to GC varied

from 15× to 68×, with an overall speedup of 18.5× when adding all the compile-times.

Figure 7 shows the SPEC rates obtained for the Graph Coloring and ELS1 algo-

rithms, using the -O3 option in gcc. Recall that a larger SPEC rate indicates better

743

992

2031

999

605

790

919

1283

1045

753

1014

2003

1036

633

801

972

1289

1063

0

500

1000

1500

2000

164.gzip 175.vpr 181.mcf 186.crafty 197.parser 254.gap 256.bzip2 300.twolf MEAN

S
P

E
C

 r
a
te

 (
b

ig
g

e
r

is
 b

e
tt

e
r)

GC

ELS1

Fig. 7. SPEC rates for Graph Coloring and ELS1 with regMoves = true

154 V. Sarkar and R. Barik

performance. In summary, the runtime performance improved by up to 5.8% for ELS1

relative to GC (for 197.parser), with an average improvement of 2.3%. There was

only one case in which a small performance degradation was observed for ELS1, rel-

ative to GC – a slowdown of 1.4% for 181.mcf. These results clearly show that the

compile-time benefits for Extended Linear Scan can be obtained without sacrificing

runtime performance — in fact, ELS1 delivers a net improvement in runtime perfor-

mance relative to GC. Further, these measurements were obtained with regMoves =

true, indicating that the extra register moves did not contribute a significant performance

degradation. Runtime results were not obtained for the original Linear Scan algorithms,

because it has already been established in prior work that their performance is inferior

to that of Graph Coloring [14, 16].

5 Conclusions

This paper makes the case for using Extended Linear Scan as an alternate foundation

to Graph Coloring for global register allocation. It highlighted three fundamental theo-

retical limitations with Graph Coloring as a foundation (Section 2.2). It introduced the

basic Extended Linear Scan algorithm, ELS0 (Section 2.3), which addressed all three

limitations for the problem of Spill-Free Register Allocation (SFRA). It also introduced

the ELS1 algorithm (Section 3), which extended ELS0 to obtain a greedy algorithm for

the problem of Register Allocation with Total Spills (RATS). Finally, it included exper-

imental results for eight SPECint2000 benchmarks to compare the Graph Coloring and

Extended Linear Scan algorithms (Section 4).

The results show that the space and time used by ELS1 is significantly smaller than

those used by GC. The Space Compression Factor (SCF) = |I |/|IG| varied from 4.5%

to 22.7%, and the compile-time speedups for ELS1 relative to GC varied from 15× to

68×. In addition, the runtime performance improved by up to 5.8% for ELS1 relative

to GC, with an average improvement of 2.3%. This is a significant improvement over

past Linear Scan algorithms which delivered compile-time efficiency but lagged behind

Graph Coloring in runtime performance. Together, these results show that Extended

Linear Scan is promising as an alternate foundation for global register allocation, com-

pared to Graph Coloring, due to its compile-time scalability without loss of execution

time performance. Directions for future work include further study of the trade-off

between register-move instructions and spill load/store instructions, and support for

region-based live range splitting.

References

[1] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register allocation and

instruction scheduling for riscs. In ASPLOS-IV, pages 122–131, 1991.

[2] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, April

1992.

[3] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S. Oberg,

and Steven W. Reeves. Fast copy coalescing and live-range identification. In PLDI ’02:

Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design

and implementation, pages 25–32, 2002.

Extended Linear Scan 155

[4] David Callahan and Brian Koblenz. Register allocation via hierarchical graph coloring. In

PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming language

design and implementation, pages 192–203, 1991.

[5] Gregory J. Chaitin. Register allocation and spilling via graph coloring. In ACM SIGPLAN

’82 Symposium on Compiler Construction, pages 98–105, June 1982.

[6] Frederick Chow and John Hennessy. Register allocation by priority-based coloring. In

Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages 222–232,

1984.

[7] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions on

Programming Languages and Systems, 18(3):300–324, May 1996.

[8] Vladimir N. Makarov. Yet another gcc register allocator. In Proceedings of the GCC De-

velopers Summit, pages 148–157, May 2005.

[9] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen. Combining register

allocation and instruction scheduling. In Technical Report STAN-CS-TN-95-22, Department

of Computer Science, Stanford University, 1995.

[10] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers, 1997.

[11] Cindy Norris and Lori L. Pollock. An experimental study of several cooperative register

allocation and instruction scheduling strategies. In MICRO 28, pages 169–179, 1995.

[12] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 196–204, October 1998.

[13] Shlomit S. Pinter. Register allocation with instruction scheduling. In PLDI ’93: Proceedings

of the ACM SIGPLAN 1993 conference on Programming language design and implementa-

tion, pages 248–257, 1993.

[14] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transactions

on Programming Languages and Systems, 21(5):895–913, 1999.

[15] Standard Performance Evaluation Corporation (SPEC). http://www.spec.org/

cpu2000/issues/, 2006.

[16] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and speed in linear-scan

register allocation. In SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 142–151, 1998.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 156 – 171, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Program Refactoring, Program Synthesis, and
Model-Driven Development

Don Batory

Department of Computer Sciences
University of Texas at Austin

Abstract. Program refactoring, feature-based and aspect-oriented software
synthesis, and model-driven development are disjoint research areas. However,
they are all architectural metaprogramming technologies as they treat programs
as values and use functions (a.k.a. transformations) to map programs to other
programs. In this paper, I explore their underlying connections by reviewing
recent advances in each area from an architectural metaprogramming
perspective. I conjecture how these areas can converge and outline a theory that
may unify them.

1 Introduction

Among the greatest challenges that we face today is dealing with the alarming
complexity of software, and the alarming rate at which software complexity is
increasing. Brooks observed 20 years ago that programmers spent a majority of their
time on accidental complexity, rather than essential complexity [12]. Unfortunately,
we often can’t tell the difference between the two.

Complexity is controlled by imposing structure. This paper is about the essential
complexity of software structure. There are increasingly overlapping ideas in the
areas of program refactoring, program synthesis, and model-driven development, all
of which deal with program structure and maintenance. I conjecture how these areas
can converge and outline a theory that may unify them.

I have long believed there is a common conceptual foundation for what we do in
programming, software design, and maintenance. The results I expect from making
these foundations explicit are increasing automation, building better tools, writing
better code, and reducing program development and maintenance costs. All are
worthy goals. But there may be an even bigger prize: discovering the material that
will be taught to future graduates and undergraduates.

By, say, 2020 (which I hope will be a good year), programmers will be writing
functions, objects, classes, and methods just as they do today. But there will be a
difference in the level of abstraction at which programs are written. I expect the rise
of architectural metaprogramming: the idea that programming and design is a
computation, where programs are values and functions (a.k.a. transformations) map
programs to programs.

In the following sections, I sketch the ideas architectural metaprogramming, and
then reflect on recent advances in program refactoring [17][18], program synthesis
[26], and model-driven development [7][37] from its perspective.

 Program Refactoring, Program Synthesis, and Model-Driven Development 157

class c {
int z;
void inc(){z++;}

}

Fig. 3. Value C3

class c {
 int x;

void inc() {x++;}
}

class d {
int compute() {}

}

(a) value C

(b) value D

Fig. 1. Values C and D

2 Basics of Architectural
 Metaprogramming

Programs are values. Figure 1a shows a value C that is
the Java definition of a class c. Figure 1b shows another
value D; it is the Java definition of a class d.
(I use Java, but any language could be used provided
that one shows how concepts translate).

Values can be added. The sum C+D is a program
with classes c and d. As another example: let C1 be
the definition of a class c with a comp() method
(Figure 2a), and let C2 be another definition of class c which has an x field and an
inc() method (Figure 2b). C1+C2 yields a single definition of class c (Figure 2c),
formed by the disjoint union of the members in C1 and C2.1

Fig. 2. Sum

class c {
int comp() {}

}

(a) value C1

class c {
int x;
void inc() {x++;}

}

(b) value C2

class c {
int comp() {}
int x;
void inc() {x++;}

}

(c) value C1+C2

Summation (or simply “sum”) is disjoint set union with the properties:
• Sum identity 0 is the null program or null value. For any program P: P+0=P

• Sum is commutative (as disjoint set union is commutative): A+P=P+A

• Sum is associative (as disjoint set union is associative): (A+B)+C=A+(B+C)

Values can be subtracted. Subtraction is set difference; if a program is formed by
C+D, and C is subtracted, the result is D: (D+C)-C=D. Subtraction has the properties:

• 0 is the identity: P-0=P and P-P=0

• Subtraction is left associative: P-C-D=((P-C)-D)
• Subtraction is not commutative: P-C ≠ C-P

A third operation is really a menagerie of operations
called distributive transformations (DTs). (The reason for
the name will become clear shortly). One is
rename(p,q,r): in program p, replace name q with name r. Recall program C2
(Figure 2b). Suppose we want to replace name “x” with name “z”. The computation
rename(C2,x,z) does this replacement and yields value C3, shown in Figure 3.

1 Think of a primitive value as an aspect-oriented introduction that defines a member and its

class (e.g., “int c.x;”) . The same for other declarations such as initialization blocks,
extends clauses, etc. When values are converted to source code, their members are
collected into classes, and classes into packages, to show their hierarchical modularities.

158 D. Batory

Consider another computation: rename(D,x,z) which equals D. That is, rename

leaves D unaltered as D does not reference x. In mathematics this is a fixed point, i.e.,

a value x such that f(x)=x. DTs usually have many fixed points.

The key property of DTs is that they distribute over + and - (hence their name).

That is, a DT f of a sum equals the sum of the transformed values. The same for

subtraction:

 f(A+B) = f(A) + f(B)

f(A-B) = f(A) - f(B) (1)

As an illustration, consider renaming “x” to “z” in program C2+D. This

computation, rename(C2+D,x,z), is performed by applying rename to programs

C2 and D individually, and summing their results:

rename(C2+D,x,z)
= rename(C2,x,z) + rename(D,x,z) // distribution
= C3 + D // evaluation

DTs have other properties. Transforming a non-null value yields a non-null value:

f(x) ≠ 0 ; where x ≠ 0 (2)

That is, applying a DT to a non-null value will not nullify (erase, delete) that value,

but may alter it. If a value is to be deleted, subtraction should be used. And the null

value cannot be transformed:

f(0) = 0 (3)

Another property is composition. DTs are functions, and thus compose like

functions. If f1 and f2 are DTs, f1•f2 denotes their composition. Function

composition is not commutative (f1•f2 ≠ f2•f1) and is associative ((f1•f2)•f3 =

f1•(f2•f3)).

Expressions that are formed by adding, subtracting, and transforming programs are

architectural meta-expressions or simply meta-expressions.

Before proceeding further, I use the term “structure” to mean what are the parts and

how are they connected? The structure of a cube, for example, is a solid bounded by six

equal squares, where two adjacent faces meet at a right angle. The term “property” is an

attribute that is given or is derivable from a structure. If E is the length of an edge (a

given property), derivable properties of a cube are its surface area (6*E2) and volume

(E3). The software analog: the structure of a program is its architectural meta-expression.

Compilers prove properties of a program by analyzing its structure, such as the property

of type correctness. In this paper, I focus solely on program structure. Now let’s look at

some applications of architectural metaprogramming.

3 Recent Advances in Program Refactoring

A refactoring is a transformation that changes the structure of a program, but not its

behavior [20]. Classic examples include rename method and move a method from a

sub-class to a superclass. Common Integrated Development Environments (IDEs),

such as Eclipse, Visual Studio, and IntelliJ, have built-in or plug-in refactoring tools.

Discussed below is an interesting problem in program refactoring.

 Program Refactoring, Program Synthesis, and Model-Driven Development 159

Fig. 4. Move Method

class host {}

class home {
void m() {}

}

class kcode {
void y(){

home h;
h.m()

}}}
}

class host {
static void m(home h)
{}

}

class home {}

class kcode {
void y’(){

home h;
host.m(h)

}
}

(a)

(b)

The use of components (e.g., frameworks and libraries) is common in

contemporary software development. Components enable software to be built quickly

and in a cost-effective way. The Application Program Interface (API) of a component

is a set of Java interfaces and classes that are exported to application developers.

Whenever an API changes, client code that invokes the API must also change. Such

changes are performed manually and are disruptive events in program development.

Programmers want an easy (push-button) and safe (behavior-preserving) way to

update their applications when a component API changes [17][18].

Figure 4 illustrates an API change called “move

method”. An instance method m of a home class

(Figure 4a) becomes a static method m of a host

class (Figure 4b). The moved method takes an

instance of the home class as an extra argument, and

all calls to the old method are replaced with calls to

the new method.

Figure 4 shows the essence of the problem:

above the dashed lines is component code, and

below is client code. When the API is refactored,

the client code changes. As component developers

do not have access to client code, the client

programmer must manually update his/her own

code.

This API change can be written as an

architectural meta-expression. Let value home.m

denote the home method m(), and let host.m

denote the host method m(). Let µ be the DT that

transforms home.m to host.m, and otherwise

leaves all other primitive values unchanged. That

is, µ(home.m)=host.m and for all x≠home.m:

µ(x)=x. Let φ be the DT that renames all calls to

home.m to calls to host.m, and otherwise leaves

primitive values unchanged. That is, φ(kcode.y)=kcode.y’ and for all primitives x

that do not call home.m: φ(x)=x. The meta-expression that relates the updated

program (Pnew) to the original program (Pold) is:

Pnew = φ•µ(Pold) = µ•φ(Pold) (4)

In this particular case, the order in which µ and φ are composed does not matter.

The reason is that each transformation changes different code fragments (much like

two pieces of aspect-oriented advice advising different join points [22]).

To see how computation (4) proceeds, let Pold=home.m+kcode.y+..:

φ•µ(Pold)
= φ•µ(home.m + kcode.y + ..) // substitution
= φ•µ(home.m) + φ•µ(kcode.y) + .. // distribution
= φ(host.m) + φ(kcode.y) + .. // evaluation of
= host.m + kcode.y’ + .. // evaluation of
= Pnew

160 D. Batory

Other API changes (refactorings) besides move method include: move field, delete

method (which is usually done after a method is renamed or moved), change

argument type (replace an argument type with its supertype), and replace method call

(with another that is semantically equivalent and in the same class) [17]. My

preliminary work suggests that these and other refactorings can be written as meta-

expressions.

In a recent paper, Dig and Johnson explored how APIs evolve [18]. They manually

analyzed the change logs, release notes and documentation of different versions of

five medium to large systems (e.g., 50K to 2M LOC), including Eclipse, Struts, and

JHotDraw. They discovered that over 80% of the API changes were due to

refactorings. This means that a large fraction of API changes can be fully automated.

By 2020, programmers will use advanced IDEs that will “mark” API interfaces,

classes, methods, and fields. The only way marked elements can change is by

refactorings. When a new version of a component is released, the refactorings of its

API are also released. These refactorings are applied automatically to the client code

whenever a client installs a new version of a component, thereby avoiding the tedious

and error prone changes that are now performed manually. In this way, the disruptive

effects of updating component versions are minimized.

Underneath the covers, future IDEs will use architectural meta-expressions to

perform these updates. Assume that DTs θ are sufficient to express API refactorings.

Further assume that private edits to a component, which change component internals

and are invisible to clients, are also modeled by transformations ε. Updating

component V0 to version V1 is an interleaved sequence of refactorings and private

edits, such as:

V1 = ε6•ε5•ε4•θ3•ε3•ε2•θ2•θ1•ε1(V0) (5)

The IDE will keep a history of these changes. The modifications θ of V0 that may

alter client code are the API refactorings, which is the projection of the changes of

(5) with private edits removed:

θ = θ3•θ2•θ1 (6)

The metaprogramming function U automatically updates a client program P0 that

uses V0 to a program P1 that uses V1, where P1=U(P0):

U(x) = θ(x - V0) + V1 (7)

To see a computation, let client program P0=C+V0, where C is the client code to be

updated. Applying U to P0 updates P0’s code (transforming C to θ(C)) and replaces V0
with V1. This is the essential idea behind [18].

U(P0)
= θ(P0 - V0) + V1 // substitution of U
= θ(C + V0 - V0) + V1 // substitution of P0
= θ(C) + V1 // subtraction
= P1

Note that U can be applied to any program P0, whose size can be arbitrarily large.

One of the benefits of architectural metaprogramming is that its concepts scale to

large programs.

 Program Refactoring, Program Synthesis, and Model-Driven Development 161

Fig. 5. DDSL for the Graph Product Line

Perspective. By 2020, IDEs will be component evolution calculators. They will allow

programmers to edit components, and perhaps invisible to programmer actions, IDEs

will create metaprogramming update functions like U for distribution. When a client

wants a new version of a component, s/he will download a metaprogramming

function U rather than the new version itself. The client’s IDE will then apply U to the

client’s code base, automatically and safely updating the client’s program.
2
 An

interesting research problem is to generalize the above analysis to deal with

refactorings that involve value additions and subtractions, and to develop in detail an

algebra for refactorings in conjunction with a refactoring tool to show the connection

between theory and practice.

4 Recent Advances in Program Synthesis

Declarative languages will be used to specify programs in 2020. Unlike past work that

relied on formal logic specifications (and compilers to derive program

implementations from such specifications), the languages I envision will be much

simpler. They will exploit results from Software Product Lines (SPLs), an area of

research that focuses on designs for a family of systems and on automating system

construction. A fundamental idea in SPL is using features to describe and differentiate

programs within a family, where a feature is an increment in functionality [21][14].

Features are used in many engineering disciplines for product specification. At the

Dell web site, customers configure a personal computer (i.e., a product in a Dell

product line) by selecting optional hardware and software features listed on a web

page [16]. Such pages are Declarative Domain-Specific Languages (DDSLs) for Dell

products. Another example is BMW’s web site to customize an automobile [11].

Software can be

specified in the same

way. Figure 5 shows

an elementary DDSL

for a product-line of

Java programs. Called

the Graph Product

Line (GPL), each pro-

gram implements a

unique combination of

graph algorithms [25].

A particular program

is specified by sele-

cting a set of features.

The program specified in Figure 5 (reading selected features from left to right)

implements vertex numbering, strongly connected components, and cycle checking

using a depth first search (DFS) on a weighted, directed graph. More generally, each

2
 There is a database transaction-like quality to this update. If any refactoring of θ fails, then the

all changes are rolled back, and client-programmer intervention is needed to repair the

program for subsequent U application.

162 D. Batory

feature can be customized via parameters (much like GUI components have

customizable property lists [2]), but the essential idea of declarative feature selections

remains.

The compiler for the GPL DDSL outputs a meta-expression, shown below:

Number•StrongC•Cycle•DFS•Weighted(Directed)

As users select GPL features, terms are inserted into this expression. Evaluating the

expression synthesizes the specified program. My students and I have built many

examples of more realistic applications using this technology, ranging from customized

or extensible database systems twenty years ago [3], to extensible Java preprocessors ten

years ago [4], to web portlets [37] (which we’ll consider later). We call this technology

Feature Oriented Programming (FOP), where features are either metaprogramming

constants or functions [6]. A model of a product-line is an algebra: constants represent

base programs (e.g., Directed), and functions add features (Weighted, DFS, etc.) to

programs. Each domain has its own algebra, and different meta-expressions synthesize

different programs of that domain (product-line). How are features expressed by

architectural metaprogramming? This is the topic of the next subsections.

4.1 A Look Inside Features

If we peer inside implementations of FOP functions and constants, we find two ideas

that have been popularized by Aspect Oriented Programming (AOP) [22]. (I will use

the ideas of AOP, rather than their AspectJ semantics which has problems [26].) The

first is introduction, also known as inter-type declarations. An introduction adds a

new member to an existing class, or more generally adds a new class or package to a

program. Introduction is metaprogramming addition.

The second idea is advice, which is the execution of additional code at points

called join points. Although it is not obvious, advice is a distributive transformation

(see [26] for an explanation, including examples of how complex pointcuts like

cflow [22] are expressed transformationally). That is, applying advice A to a program

P is the same as applying A to each component of P and summing the results. Advice

or the act of advising is quite different from a refactoring even though both are

transformations: refactoring is behavior preserving, whereas advise is behavior-

extending. Neither AOP or FOP support subtraction.

Here’s how introduction works. Start with a simple program P consisting of a

single class r with field b (Figure 6a), and incrementally add or introduce method

foo (Figure 6b), integer i (Figure 6c), and class t (Figure 6d). From a

class r {
String b;

}

class r {
String b;
void foo()
{..}

}

class r {
String b;
void foo(){..}
int i;

}

class t {
String bar;
int cnt(){..}

}

class r {
String b;
void foo(){..}
int i;

}

(a)

(b) (c)

(d)Fig. 6. Incremental Development of Program P

 Program Refactoring, Program Synthesis, and Model-Driven Development 163

class c {
int i,j;
void setI(int x)
{ i=x; }
void setJ(int x)
{ j=x; }

}

aspect asp {
after(): execution(

void c.set*(..))
{ print(“hi”); }

}

class c {
int i,j;
void setI’(int x)
{ i=x; print(“hi”); }
void setJ’(int x)
{ j=x; print(“hi”); }

}

(a)

(b)

Fig. 7. Compiling Advice

metaprogramming viewpoint, the original program in Figure 5a is P=r.b. That is,

program P consists of a single member b in class r. Introducing method foo adds

another term to P’s meta-expression: (P=r.b+r.foo). Introducing field i adds yet

another term (P=r.b+r.foo+r.i). And introducing class t adds even more terms

(P=r.b+r.foo+r.i+t.bar+t.cnt). Evaluating the meta-expression for P in each

figure synthesizes the listed program.

Now consider advice. Join points are events that occur during program execution,

such as when a method is called, or when a method is executed, or when a field is

updated [21]. Advice is a piece of code that is executed when designated join points

occur. Although advice is usually given a dynamic interpretation (i.e., when an event

occurs at run-time), it is also possible to give it a static metaprogramming interpretation

“at this point in the program, insert this code” [26]. The latter interpretation is common

for implementations of many aspect compilers, including the AspectJ compiler ajc [21].

Here’s how advice works. Consider program P of Figure 7a. It consists of a single

class c and an aspect with a single piece of advice. The advice extends each set

method of c by printing “hi”. A program that an aspect compiler synthesizes or

weaves is shown in Figure 7b. A metaprogramming explanation of weaving is that an

aspect compiler inhales the program’s source, creates a meta-expression that sums all

base code and introductions, and then applies advice. The meta-expression for

program P in Figure 7a is:

P = hi(i + j + setI + setJ) (8)

where values i, j, setI, and setJ correspond to

the members of class c, and function hi is the

advice. Evaluation of (8) proceeds incrementally.

First hi distributes over each term:

P = hi(i) + hi(j) + hi(setI) +
 hi(setJ) (9)

and then each term is evaluated:

P = i + j + setI’ + setJ’ (10)

Some terms are fixed points (e.g., hi(i)=i

and hi(j)=j, meaning that hi does not advise

join points in i and j), while others trans-

form values (hi(setI)=setI’ and hi(setJ)=

setJ’). Again, the view from an aspect compiler

is to in-hale aspect files and base Java files,

construct a meta-expression, and evaluate the

expression to synthesize the specified pro-

gram [26].

4.2 Architectural Metaprogramming Implementation of Features

A base program in FOP is a constant, which is a sum of introductions. An FOP

function F(x) is a feature that advises or modifies (af) its input program x and

introduces new terms (if). In other words, F(x) adds new members, classes,

164 D. Batory

class c {
int i,j;
void SETI(int x)

{i=x;}
void SETJ(int x)

{j=x;}
}

aspect adv {
after():
execution
(void c.SET*(..))
{ print(“hi”); }

}

Fig. 8. Program P’

packages to an input program x, and integrates this new functionality by modifying or

advising x. A general form of all FOP features F is:

F(x) = if + af(x)

Given a base program B and features F and G, their composition expands into

architectural meta-expressions. The FOP expressions B, F(B), and G•F(B) expand to:

B = b
F(B) = if + af(b)

G•F(B) = ig + ag(if + af(b)) = ig + ag(if) + ag•af(b)

A program’s code is synthesized by evaluating its meta-expression. This is how

GenVoca [3] and AHEAD [6], two different implementations of FOP, work.

Perspective. By 2020, many narrow domains will be well-understood, and whose

programs are prime candidates for automated construction from declarative specs.

The complexity of these programs will be controlled by standardization, where

programs will be specified declaratively using “standardized” features, much like

personal computers are customized on Dell web pages. Programming languages will

have constructs to define features and their compositions (e.g.[31][29]). Compilers

will become program calculators: they will inhale source code, produce a meta-

expression, perhaps even optimize the meta-expression [5], and evaluate the

expression to synthesize the target program. Architectural metaprogramming will be

at the core of this technology.

5 How Are Advice and Refactorings Related?

Program refactorings and advice are transformations. What does it mean to compose

them? There is a lot of work on refactoring object-oriented code into aspects (e.g.,

[10][39]), but less work on refactoring programs that have both object-oriented code and

aspect code (e.g.,[19][15]). Refactorings are not language constructs; they are

transformations that are defined and implemented by tools that are “outside” of a target

language. Thus, refactorings can modify both object-oriented

code and aspect code. In contrast, advice only applies to

constructs within a host language, i.e. object-oriented code

and other aspect code, but not to refactorings.

To illustrate, let P be the program of Figure 7a.

Applying the refactoring rename(P,set*,SET*)

renames all lowercase set methods to uppercase SET

methods, we obtain the program P’ of Figure 8. Programs

P and P’ have the same behavior. The rename refactoring

alters the Java source (by renaming setI to SETI and

setJ to SETJ), and alters the advice declaration (by

renaming set* to SET*).

How can this be explained in terms of architectural

metaprogramming? Recall differential operators in

 Program Refactoring, Program Synthesis, and Model-Driven Development 165

calculus: they transform expressions. The differential with respect to x of a

summation is straightforward: every term is transformed:

(a+b) = +
x

a
x

b
x

rename is similar: it transforms each term of a meta-expression. Let β be a DT of re-

name, i and j be introductions, and a and b be advice. Beyond the distributivity of β

over + and - in (1), the β refactoring also distributes over advice application and

composition:

β(a(i)) = β(a)(β(b)) (11)

β(a•b) = β(a) • β(b) (12)

A β transformation of expression i+b•a(x) is β(i)+β(b)•β(a)(β(x)). Mapping

terms of an expression in this manner is called a catamorphism [27], a generalization

of folds on lists in functional programming. Catamorphisms are grounded in category

theory, the theory of mathematical structures and their relationships [32]. More later.

Here’s how a meta-calculation proceeds. Given program P of Figure 7a, a compiler

creates its meta-expression. The rename refactoring β is then applied to P; β

distributes over each term of P, and then each term is evaluated: β(hi)=HI,

β(setI)=SETI, and β(setJ)=SETJ. The terms β(i)=i and β(j)=j are fixed

points. The result is the meta-expression for program P’:

β(P)

= β(hi(i + j + setI + setJ)) // substitution
= β(hi)(β(i) + β(j) + β(setI) + β(setJ)) // distribution
= HI(i + j + SETI + SETJ) // evaluation

= P’ (13)

Perspective. Refactorings are operators on meta-expressions that have higher prece-

dence than advice. Interesting research problems are to determine if (a) all common

refactorings can be expressed as meta-expressions, and (b) the exact relationship

between refactorings and advice, and (c) to show under what circumstances the

relationship is (or is not) a catamorphism. Catamorphisms are particularly simple

mappings, and knowing when they can (or cannot) be applied may be very useful

when building tools.

Note that refactorings, advice, and introductions modify the structure of a

program’s code, but they could also be used to express and modify the structure of

grammars, makefiles, XML documents, and other non-code artifacts. We are now

ready to make a conceptual leap to generalize architectural metaprogramming to non-

code structures.

6 Recent Advances in Model-Driven Development

Model-Driven Development (MDD) is an emerging paradigm for software creation. It

advocates the use of Domain Specific Languages (DSLs), encourages the use of

automation, and exploits data exchange standards [13][33]. An MDD model is written in

a DSL to capture the details of a slice of a program’s design. Several models are typically

166 D. Batory

Fig. 9. PinkCreek
Models

ctrl

act_sk

act

code_sk

code

view_sk

view

jsp_sk

jsp

sc

ctrl

act_sk

act

code_sk

code

view_sk

view

jsp_sk

jsp

sc

S0 S1

B0 B1

javac

F

G

javac

Fig. 10. Commuting Diagram

needed to specify a program completely. Program synthesis is the process of transform-

ing high-level models into executables, which are also considered models [9].

There are many MDD technologies. The most well-known is OMG’s Model-

Driven Architecture, where models are defined in terms of UML and are manipulated

by graph transformations [23]. Vanderbilt’s Model Integrated Computing [35] and

Tata’s Mastercraft [24] are pioneering examples of MDD. More recently, other

groups have offered their own MDD technologies (see [30] for a recent list).

MDD is an architectural metaprogramming paradigm. Models are values and

transformations map models to models. To illustrate, consider two models: the Java

source of a program and its bytecode. The transformation that maps Java source to Java

bytecodes is javac, the Java compiler. If javac is a transformation, an interesting

question to ask if it is distributive. That is, can each Java file be compiled separately from

other files, and the bytecodes added? Does javac(C+D)=javac(C)+javac(D)?

Unfortunately, the answer is no: javac is not distributive. I note that research by

Ancona, et al. on separate class compilation may lead to a future version of javac that is

distributive [1].

A more conventional example of MDD is PinkCreek. It is an

MDD case study for synthesizing portlets, which are web

components [37]. Transformations map an annotated state chart

to a series of different platform-specific models. Figure 9 shows a

graph where models are nodes and arrows are transformations;

the most abstract model in a PinkCreek specification is a state

chart (sc), and the most implementation-specific is Java source

(code) and JSP code (jsp). The graph is created by a

metaprogram that takes a state chart (sc) and applies

transformations successively to derive each representation. (That

is, a transformation maps an sc model to a ctrl model, another

transformation maps a ctrl model to an act_sk model, etc.).

As FOP and MDD are both metaprogramming

paradigms, how can they be combined? Recall that

features extend the functionality of a program or a

model. Let S0 and S1 be the source code represent-

tations of programs P0 and P1. And let feature

F(x) relate S0 and S1 by S1=F(S0). Let B0 and

B1 be the bytecode representations of S0 and S1,

and let G(x) be the bytecode feature that relates B0

to B1, i.e., B1=G(B0). These relationships are

captured by the commuting diagram of Figure 10. It expresses a fundamental

relationship in MDD between features (model-extension transformations) and

derivations (model-conversion transformations) [37]. Bytecode B1 can be synthesized

from S0 in two different ways: either derive B0 from S0 using javac and then apply

feature G, or extend S0 to S1 by applying feature F and then derive B1 using javac.

Their equivalence is expressed compositionally as:

javac • F = G • javac (14)

 Program Refactoring, Program Synthesis, and Model-Driven Development 167

start

end

start

end

Fig. 11. Commuting Paths

Another interesting point is the relationship between functions F and G. We know that

F and G are features of the form: F(x)=if+af(x) and G(x)=ig+ag(x). In effect, G is a

compiled version of F: both F and G advise their input programs x in equivalent ways

(F advises source and G performs the corresponding advise in bytecodes) and both add

equivalent introductions (F adds source members and G adds the corresponding members

in bytecode). We have seen this correspondence before. The relationship between F and

G appears to be a catamorphism: each source term of function F is mapped to a

corresponding bytecode term of function G. Exploring this connection may be an inter-

esting research problem.

Let’s now return to commuting diagrams. An important property of commuting

diagrams is that they can be pasted together. Given a model in the upper-left corner,

we often want to compute the model in the lower right. Any path from the upper-left

corner to the lower right produces the same result [32]. Three different paths are

indicated in Figure 11.

To make this idea concrete, consider how

features alter state charts in PinkCreek. In

general, a feature extends a state chart by

(a) adding new states, (b) adding new

transitions, and (c) altering existing

annotations. Figure 12a depicts a state chart of

a base portlet. Figure 12b shows the result of a

feature that adds a new state and transitions to

Figure 12a.

s2Select s3Summarys1Search s5Itinerarys4Reserve

sView

s2Select s3Summarys1Search s5Itinerarys4Reserve

sView

s6Seating

(a) Base

(b) Seat Base

Fig. 12. State Chart Extensions

When a feature extends one representation, it may extend derived representations

as well. In the case of PinkCreek, all of the models in Figure 9 may be modified when

the state chart is extended. That is, if the state chart sc is extended, so too must its

controller ctrl, and its action skeleton (act_sk), etc. (Figure 13a). PinkCreek has a

metaprogram that translates a state chart feature into a feature of each lower-level

representation; as a rule, the ability to translate features of one model to features of

another is not always possible or practical. For PinkCreek, it was both possible and

practical.

As features are composed, a multi-pleated commuting diagram is swept out

(Figure 13b). Traversing this diagram synthesizes the representations of a target

portlet. Synthesis begins at the root of the base diagram and ends at the target models

168 D. Batory

which are produced by the last feature. Although all traversals produce the same

results, not all traversals are equally efficient. Diagram traversal is an interesting

optimization problem. Finding the cheapest traversal is equivalent to finding the most

efficient metaprogram that will synthesize the target portlet. This is a form of multi-

stage programming (i.e., writing programs that write other programs) and multi-stage

optimization [36].

Fig. 13. PinkCreek Diagrams

sc0

ctrl0

act-sk0

act0

code-sk0

code0

view-sk0

view0

jsp-sk0

jsp0

sc1

ctrl1

act-sk1

act1

code-sk1

code1

view-sk1

view1

jsp-sk1

jsp1

ctrl1

act1

view1

jsp1

base
portlet

feature-extended
portlet

sc0

ctrl0

act-sk0

act0

code-sk0

code0

view-sk0

view0

jsp-sk0

jsp0

sc0

ctrl0

act-sk0

act0

code-sk0

code0

view-sk0

view0

jsp-sk0

jsp0

sc1

ctrl1

act-sk1

act1

code-sk1

code1

view-sk1

view1

jsp-sk1

jsp1

ctrl1

act1

view1

jsp1

base
portlet

feature-extended
portlet

sc1

ctrl1

act-sk1

act1

code-sk1

code1

view-sk1

view1

jsp-sk1

jsp1

sc1

ctrl1

act-sk1

act1

code-sk1

code1

view-sk1

view1

jsp-sk1

jsp1

ctrl1

act1

view1

jsp1

ctrl1

act1

view1

jsp1

base
portlet

feature-extended
portlet(a) (b) B ase

F 1
F 2

F 3
F 4

F 5
F 6

s ta rt

end

endend

endend

B ase
F 1

F 2
F 3

F 4
F 5

F 6

B ase
F 1F 1

F 2F 2
F 3F 3

F 4F 4
F 5F 5

F 6F 6

s ta rt

end

endend

endend

Perspective. Initially PinkCreek tools did not satisfy the properties of commuting

diagrams: synthesizing via different paths yielded different results. This exposed

previously unrecognized errors in PinkCreek tools and specifications. The

significance of commuting diagrams became immediately clear: they provided

validity checks on the correctness of model abstractions, portlet specifications, and

tools. They offered constraints on both individual transformations and compositions

of transformations. In short, commuting diagrams are very useful as they provided a

better understanding of the portlet domain and the PinkCreek model.

PinkCreek also revealed a theoretical backbone of architectural metaprogramming:

category theory, where catamorphisms and commuting diagrams arise. As mentioned

earlier, category theory is a theory of mathematical structures and relationships

between these structures. As we are studying the structure of software, and

mathematics is the science of structure, architectural metaprogramming may be a

direct connection.

Although this connection is preliminary, I have already found that category

theory unifies several previously disconnected results in metaprogramming and

software design in a surprisingly simple and elegant way [8]. It points to an

interesting and very different way of teaching and understanding software design

and construction with an emphasis on science, and less on ad hoc techniques. Of

course, much more work needs to be done to confirm this conjecture, but so far

results are encouraging.

And finally, refactorings are not limited to the restructuring of source code;

they apply to models and features as well (e.g., [34][38][40]), where the results of

Section 3 and Section 5 should be directly applicable. Demonstrating this unity should

be both an interesting and important research topic as it will further underscore the

importance of architectural metaprogramming in software design and maintenance.

 Program Refactoring, Program Synthesis, and Model-Driven Development 169

7 Conclusions

Just as the structure of matter is fundamental to chemistry and physics, so too is the
structure of software fundamental to computer science. By structure, I mean what
are modules and how do they compose? Today, the structure of software is not
well-understood. Software design is an art form. As long as it remains so, our abilities
to automate key tasks in program design, synthesis, and maintenance will be limited.

Recent work in program refactoring, program synthesis, and model-driven design
are raising the level of abstraction in programming. Their individual successes are not
accidental; I contend they focused on the essential complexities of software structure,
and not on accidental complexities. Like other results, they are examples of a general
programming paradigm that we are only now beginning to recognize. As is evident
from the discussions in this paper, many details of architectural metaprogramming are
not well understood and it is an open problem to nail them down precisely.

By 2020 the purview of software engineering, as before, will be to manage
complexity. Embracing the ideas of architectural metaprogramming offers an
appealing future: they will enable us to automate what is well-understood, to
customize programs for performance, capability, or both, and to reduce maintenance
and development costs, all on a principled basis. It will lead to higher-level
programming languages, declarative languages for specifying programs in narrow
domains, IDEs as program evolution calculators, and compilers as program
calculators. Our understanding of programs, their representation and manipulation
will be greatly expanded beyond code. But again, the grand prize is discovering the
material that we will be teaching our future graduates and undergraduates that ties
together these areas in an elegant way. An exciting future awaits us.

References

[1] D. Ancona, F. Damiani, and S. Drossopoulou. “Polymorphic Bytecode: Compositional
Compilation for Java-like Languages”, POPL 2005.

[2] M. Antkiewicz and K. Czarnecki. “FeaturePlugin: Feature Modeling Plug-In for Eclipse”,
OOPSLA Eclipse Technology eXchange (ETX) Workshop, 2004.

[3] D. Batory. “Concepts for a Database System Compiler”, ACM PODS 1988.
[4] D. Batory, B. Lofaso, and Y. Smaragdakis. “JTS: Tools for Implementing Domain-

Specific Languages”. International Conference on Software Reuse, 1998.
[5] D. Batory, G.Chen, E. Robertson, and T. Wang. “Design Wizards and Visual

Programming Environments for GenVoca Generators”, IEEE TSE, May 2000.
[6] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-Wise Refinement”, IEEE

TSE, June 2004.
[7] D. Batory. “Multi-Level Models in Model-Driven Development, Product-Lines, and Met-

aprogramming”, IBM Systems Journal, 45#3, 2006.
[8] D. Batory. “From Implementation to Theory in Product Synthesis”, POPL 2007 keynote.

Acknowledgments.฀ I฀ gratefully฀ acknowledge฀ the฀ helpful฀ comments฀ of฀ S.฀ Apel,฀ O.฀
Diaz,฀ D.฀ Dig,฀ C.฀ Kaestner,฀ V.฀ Kulkarni,฀ C.฀ Lengauer,฀ R.฀ Lopez-Herrejon,฀ and฀ S.฀
Trujillo฀on฀earlier฀drafts฀of฀this฀paper.฀This฀work฀was฀ supported฀by฀NSF’s฀Science฀of฀
Design฀Project฀#CCF-0438786.

฀

170 D. Batory

[9] J. Bezivin. “From Object Composition to Model Transformation with the MDA”,

TOOLS’USA, August 2001.

[10] D. Binkley, et al. “Automated Refactoring of Object Oriented Code into Aspects”, ICSM

2005.

[11] BMW. www.bmwusa.com
[12] F.P. Brookes. “No Silver bullet: Essence and Accidents of Software Engineering”, IEEE

Computer, April 1987.

[13] A. W. Brown, G. Booch, S. Iyengar, J. Rumbaugh, and B. Selic. “An MDA Manifesto”,

Chapter 11 in Model-Driven Architecture Straight from the Masters, D. S. Frankel and J.

Parodi, Editors, Meghan-Kiffer Press, Tampa, FL, 2004.

[14] P. Clements and L. Northrup. Software Product Lines: Practices and Patterns, Addison-

Wesley, 2001.

[15] L. Cole and P. Borba. “Deriving Refactorings for AspectJ”, AOSD 2005.

[16] Dell Computers. www.dell.com
[17] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. “Automated Detection of Refactor-

ings in Evolving Components”, ECOOP 2006.

[18] D. Dig and R. Johnson. “How do APIs Evolve? A Story of Refactoring”, Journal of

Software Maintenance and Evolution, 18#2, 2006.

[19] S. Hanenberg, C. Oberschulte, and R. Unland. “Refactoring of Aspect-Oriented

Software”. Net.ObjectDays 2003.

[20] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the

Design of Existing Code, Addison-Wesley, 2000.

[21] K. Kang, et al. “Feature-Oriented Domain Analysis (FODA) Feasibility Study”, Tech. Re-

port CMU/SEI-90-TR-21.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, and W.G. Griswold. “An over-

view of AspectJ”, ECOOP 2001.

[23] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model-Driven Architecture --

Practice and Promise, Addison-Wesley, 2003.

[24] V. Kulkarni and S. Reddy. “Model-Driven Development of Enterprise Applications”, in

UML Modeling Languages and Applications, Springer LNCS 3297, 2005.

[25] R.E. Lopez-Herrejon and D. Batory. “A Standard Problem for Evaluating Product-Line

Methodologies”, GCSE 2001.

[26] R. Lopez-Herrejon, D. Batory, and C. Lengauer. “A Disciplined Approach to Aspect

Composition”, PEPM 2006.

[27] E. Meijer, M. Fokkinga, and R. Paterson. “Functional Programming with Bananas,

Lenses, Envelopes, and Barbed Wire”, FPCA 1991.

[28] M.P. Monteiro and J.M. Fernandes. “Towards a Catalog of Aspect-Oriented Refactor-

ings”, AOSD 2005.

[29] N. Nystrom, X. Qi, A.C. Myers. “J&: Nested Intersection for Scalable Software Composi-

tion”, OOPSLA 2006.

[30] Object Management Group. www.omg.org/mda/committed-products.htm
[31] Odersky, M., et al. “An Overview of the Scala Programming Language”. September

2004, scala.epfl.ch
[32] B. Pierce. Basic Category Theory for Computer Scientists, MIT Press, 1991.

[33] D.C. Schmidt. “Model-Driven Engineering”. IEEE Computer 39(2), 2006.

[34] G. Sunyé, D. Pollet, Y. Le Traon, J-M. Jézéquel. “Refactoring UML Models”. Int Conf.

UML, LNCS 2185, Springer-Verlag 2001.

[35] J. Sztipanovits and G. Karsai. “Model Integrated Computing”, IEEE Computer, April

1997.

 Program Refactoring, Program Synthesis, and Model-Driven Development 171

[36] W. Taha and T. Sheard. “Multi-Stage Programming with Explicit Annotations”, PEPM

1997.

[37] S. Trujillo, D. Batory, and O. Diaz. “Feature Oriented Model-Driven Development: A

Case Study for Portlets”, ICSE 2007.

[38] R. Van Der Straeten, V. Jonckers, and T. Mens. “Supporting Model Refactorings through

Behaviour Inheritance Consistencies”, Int Conf. UML, LNCS 3273, Springer-Verlag

2004.

[39] C. Zhang and H.-A. Jacobsen. “Resolving Feature Convolution in Middleware Systems”,

OOPSLA 2004.

[40] J. Zhang, Y. Lin, and J. Gray. “Generic and Domain-Specific Model Refactoring using a

Model Transformation Engine”, in Model-driven Software Development, (S. Beydeda, M.

Book, and V. Gruhn, eds.), Springer 2005.

A Practical Escape and Effect Analysis for Building

Lightweight Method Summaries⋆

Sigmund Cherem and Radu Rugina

Computer Science Department

Cornell University

Ithaca, NY 14853

{siggi,rugina}@cs.cornell.edu

Abstract. We present a unification-based, context-sensitive escape and effect

analysis that infers lightweight method summaries describing heap effects. The

analysis is parameterized on two values: k, indicating the heap depth beyond

which objects escape; and b, a branching factor indicating the maximum number

of fields per object that the analysis precisely tracks. Restricting these parameters

to small values allows us to keep the method summaries lightweight and practical.

Results collected from our implementation shows that the analysis scales well to

large code bases such as the GNU Classpath libraries. They also show that sum-

maries can help analysis clients approximate the effects of method calls, avoiding

expensive inter-procedural computations, or imprecise worst-case assumptions.

1 Introduction

In the presence of method calls and heap allocation, program analyses must reason

about the potential effects of invoking methods. When faced with this problem, typical

analyses choose one of the two standard approaches: either perform an expensive inter-

procedural analysis; or use a worst-case approximation of the possible method effects.

The former affects the scalability and modularity of the analysis, whereas the latter can

affect its precision. A middle ground is to summarize method behavior using effects [1]

or other forms of method summaries, thus avoiding the costly inter-procedural com-

putations or imprecise assumptions, at the expense of requiring method summaries to

be provided from an external source. Summaries can be either supplied by a user and

checked by the compiler; or computed automatically by a separate inference engine.

This paper proposes a practical inference algorithm that extracts lightweight method

summaries (or signatures) to describe heap effects in Java programs. Our summaries

serve as a foundation for other analyses, to approximate the effects of method calls.

They can also be regarded as types; as such, they can be used to statically enforce a

desired side-effect discipline, or for program understanding purposes.

This paper makes three contributions. First, it proposes lightweight method sum-

maries in the form of effect signatures that concisely describe heap aliasing and heap

access effects. Signatures provide information about objects being read or written, about

returned objects, as well as about the aliasing effects of the method. Object are referred

⋆ This work was supported in part by NSF grants CCF-0541217 and CNS-0406345.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 172–186, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

A Practical Escape and Effect Analysis 173

to by their reachability from the parameters. Our signatures use k-limiting [2] to bound

the heap depth in signatures. Objects beyond the k limit escape the k-bounded heap

and are conflated into a ⊤ value denoting the rest of the heap. We distinguish between

objects reachable through different fields, but we use a branching factor b to limit the

number of outgoing fields per object. The key aspect of our approach is that the k and

b parameters control the size of the signatures: small values of these parameters make

the signatures lightweight. In our experience, small signatures are humanly readable,

and can help programmers quickly understand the overall heap behavior of methods

without exploring their code.

The second contribution is a flow-insensitive unification-based, context-sensitive

analysis that infers method summaries for given values of parameters k and b. For

each method, the analysis computes two signatures: a static signature, describing the

effects of calling that method; and a virtual signature, describing the effects of calling

the method, or any method that overrides it.

Third, the paper presents an evaluation of method signatures. We perform a case

study of effect signatures for the entire GNU Classpath Java libraries version 0.92,

and present signature statistics. We also perform case studies involving two dataflow

analysis clients that use method signatures for the analysis of method calls. Our results

indicate that both analyses benefit from using method summaries, but the benefits of

using higher values of the parameters depends on the client.

The rest of the paper is organized as follows. Section 2 introduces the effect signa-

tures. Section 3 presents our escape analysis algorithm. Section 4 presents experimental

results. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 Effect Signatures

The effect signature of a method describes the heap objects that the method accesses

(i.e., reads or writes), and the aliases it might create. Method signatures use the notion

of k-limiting [2] to bound potion of the heap that they accurately model. More pre-

cisely, objects reachable from static fields or through more than k field accesses from

the method parameters are conflated together, and their access or alias effects are com-

bined. We say that these objects escape the k-limited heap area of the current method.

This definition extends the traditional notion of escaped objects. Escape analyses

commonly divide objects in three categories: a) those that never escape the current

method’s scope, e.g., objects unreachable outside the method; b) those that may escape

the current method’s scope but can be captured in the callers, e.g., returned objects; and

c) those that may escape the current scope and are unrecoverable, e.g., objects stored in

static fields. In our work, objects beyond the k-limit are also unrecoverable.

For clarity, we first discuss signatures that do not distinguish between different kinds

of accesses (i.e., read vs. write), or between different object fields. The discussion about

accesses and field-sensitivity follows afterward.

Consider a method m with parameters p0, ..., pn and return value r. The k-level

effect signature of m uses at most k + 1 attributes for each parameter and for the return

value, and is written as follows:

m : (α0,0, .., α0,i0) × ... × (αn,0, .., αn,in
) → (αr,0, .., αr,ir

)

174 S. Cherem and R. Rugina

Each attribute αi,j is either ⊥, ⊤, or a symbolic value. Bottom values ⊥ correspond

to parameters that have non-reference types (e.g., void, int, char, etc). Top values

⊤ correspond to objects that escape the k-limited heap. Symbolic values α describe

abstract sets of objects (or regions). Different symbols refer to disjoint sets of objects.

For each parameter pj , the attributes in its sequence αj,0, .., αj,ij
correspond to the

accessed objects at depth 0, 1, .., ij from pj . If pj has at most k attributes (ij < k) and

αj,ij
�= ⊤, then the method does not access objects deeper that ij levels from pj . If pj

has k + 1 attributes, the last attribute must be ⊤, indicating that the method accesses

objects reachable from pj that are beyond the k limit. Multiple occurrences of the same

attribute in the signature indicate aliasing effects. Below we give several examples to

illustrate how method signatures capture different forms of effects.

Heap-escape effects. Consider k = 1. The following is the signature of a method that

doesn’t escape its first parameter to the heap, but escapes its second parameter, and

returns an escaped reference:

m : α × ⊤ → ⊤

In general, if the first attribute of a parameter is a value α �= ⊤, then the parameter does

not escape the k-limited area. In addition, if α doesn’t occur elsewhere in the signature,

the parameter is never store in a heap field.

Allocator methods. The following is the signature of a method that doesn’t store its

first parameter in the heap, and allocates and returns a fresh object. This is the typical

signature of toString methods in Java:

toString : α → β

In general, if the first attribute of the returned value is a symbol that doesn’t occur

elsewhere in the signature, then the method behaves as an object allocator.

Returned parameters. Returned parameters are described using the same attribute

for the parameter and the return value. For instance, method append(int) in class

StringBuffer returns its parameter, without storing it into the heap:

append : α × ⊥ → α

Signatures can also express cases where the returned value is one among several para-

meters. For instance, method max in java.math.BigDecimal can return either of

its two arguments. This behavior is described as follows:

max : α × α → α

Heap accesses. Method signatures can indicate the portion of the heap that methods

access. Consider the following methods:

m1 : α → ⊥
m2 : (α, ⊤) → ⊥

A Practical Escape and Effect Analysis 175

Neither method escapes its parameter. However, m1 doesn’t access objects other than

its first parameter, whereas m2 does.

Consider the heap effects of functions set(o,v), that assigns v to the field f of object

o; and get(o) that retrieves the value of the same field. The 1-level signatures of these

methods are:
set : (α, ⊤) × ⊤ → ⊥
get : (α, ⊤) → ⊤

Neither method escapes the receiver object (the first parameter), but set escapes its

second argument, and get returns an escaped reference. In contrast, 2-level signatures

are more accurate and indicate where objects are loaded from or stored into:

set : (α, β) × β → ⊥
get : (α, β) → β

Here, α corresponds to the receiver object, and β to any objects that the fields of the

receiver may reference during the execution of the method. The object loaded or stored

is located one level deep from the receiver object.

In general, method signatures can describe the effects of methods that contain a

combination of field load and store operations. For instance, the effects of m(x,y)with

body “x.f = y.f; return x” is described by the following 2-level signature:

m : (α, γ) × (β, γ) → (α, γ)

Modeling read and write effects. In the signatures above, an attribute α or ⊤ indicates

that the method accesses, i.e., reads or writes, the corresponding portion of the heap.

We refine our representation by tagging with a label that indicates the kind of access:

– a write access “w” shows that an object field has been written;

– a read-field access “r” indicates that an object field has been read;

– a read-address access “a” shows that the reference of an object has been read.

Tags form a lattice where a ≤ w and a ≤ r, since accessing a field requires reading

its reference. An rw tag indicates the combination of r and w tags: r ≤ rw and w ≤
rw. Tags are placed on all attributes, including ⊤, and are shown in superscripts. The

signatures of methods set and get become:

set : (αw , βa) × βa → ⊥
get : (αr , βa) → βa

The signatures indicate that references to any of the objects described by β might be

read, but their contents are not accessed.

Field sensitivity. We further refine signatures to describe the fields needed to reach

objects in the signature. For example, the field-sensitive signature of set is:

set : (αw , f : βa) × βa → ⊥

The signature says that the second argument might alias the field f of the receiver, but

not any other field. When multiple fields are used, the signature lists each accessed field.

176 S. Cherem and R. Rugina

For example, a method setFG that receives two arguments and stores them in the f and

g fields of the receiver object, would have the signature:

setFG : (αw , (f : βa | g : γa)) × βa × γa → ⊥

To maintain the signatures small we introduce a branching limit b, and restrict all

attributes to have at most b different outgoing fields. When methods access more fields

than the branching limit, fields are collapsed together, as in the field-insensitive case.

3 Signature Inference Algorithm

The goal of the k-level escape and effect analysis is to compute method signatures for

all methods. We consider programs with the following syntax:

Locations: loc ::= x | x.f | C.f

Expressions: e ::= loc | null | new C | m(x0, .., xn)
Statements: s ::= loc = e

Here, x ranges over variables, f over fields, C over classes, and m over methods. Vari-

ables include formal method parameters, denoted p0, .., pn. For virtual methods, p0 is

the reference to the receiver object. Expressions include static field accesses C.f and

instance field accesses x.f . To simplify the presentation, we assume that all expres-

sions have reference types, and that methods always return a value. A throw statement

“throw x” is represented as “Exc.exc = x” where exc is a static field of a spe-

cial class Exc; catching an exception “catch(Exception x)” is represented as “x
= Exc.exc”; and a return statement “return x” is modeled as an assignment to a

special return variable: “ret = x”. Arrays are modeled as a special field “[]”.

The algorithm derives two signatures for each method m: a static signature sigS(m),
that models a call to the method itself; and a virtual signature sigV (m) that models a

virtual call that might be dispatched to the method or any of the methods that override it.

This is motivated by the invokespecial bytecode instruction that statically calls a

virtual method. The callee is determined statically using type information, even though

the method is virtual and the call could have been dispatched. An important occurrence

of this situation is the <init> method of Object, which is statically called after

each object allocation. If one of the <init> methods escapes its receiver object, then

Object’s <init> signature would be polluted and each object would escape right

after allocation. The use of two signatures automatically solves this issue.

Figure 1 shows the k-level escape and effect analysis. The algorithm is formulated

as a constraint-based analysis that uses unifications. The algorithm first performs an

initialization, then analyzes each method by visiting each of its statements. Finally, it

performs a context-sensitive instantiation of the callees’ signatures into their callers.

Initially, each variable x is assigned a fresh attribute α representing the first attribute

in its sequence. Each attribute has two pieces of information: the access tag (r, w, or

a), and the maximum heap depth from any variable in the current scope. Subsequent

attributes are generated lazily, as the analysis proceeds and determines that methods

access deeper objects in the heap. Attributes are generated on-demand using a successor

A Practical Escape and Effect Analysis 177

Defintions:

e = first attribute of e

sig(m) = signature of m(p1....pn)
p1 × .. × pn → ret

succ = lazy successor function

succ(α[j], f) =

��
�

α′

[j+1] if α[j] �= ⊤

and j < k

⊤ otherwise

Checking the branch limit:

If: | {f | hasSucc(α[j], f)} | > b

Then: unify(succ(α[j], ∗), succ(α[j], f))

Initialization:

For each variable x:

x = α[0], fresh attribute α[0] at depth 0

For each field access x.f :

x.f = succ(x, f)

For each static field C.f :

C.f = ⊤

Set successor of ⊤:

unify(⊤, succ(⊤, ∗))

Recursive Unifications:

If: unify(α, β) and

(hasSucc(α, f) or hasSucc(β, f))
Then: unify(succ(α, f), succ(β, f))

Intra-procedural constraints:

Build the static signature sigS(m) :
For each assignment loc = e :

unify(loc, e) if e ∈ {x, x.f, C.f}
a ∈ tag(x) if e ∈ {x}
r ∈ tag(x) if e ∈ {x.f, m(x, ...)}
r ∈ tag(⊤) if e ∈ {C.f}
w ∈ tag(x) if loc ∈ {x.f}
w ∈ tag(⊤) if loc ∈ {C.f}

Inter-procedural signature constraints:

For each static call loc = m(y0, .., yn) :

sigS(m) ≤ y0 × ... × yn → loc

For each virtual call loc = m(y0, .., yn) :

sigV (m) ≤ y0 × ... × yn → loc

For each method m : sigS(m) ≤ sigV (m)

If m overrides m′ : sigV (m) ≤ sigV (m′)

Signature embedding:

α0 × .. × αn → αr ≤ α′

0 × .. × α′

n → α′

r

If there exists µ such that:

µ(⊤) = ⊤
µ(αi) = α′

i, ∀i = 0..n, r

succ(α, f) = β ⇒ succ(µ(α), f) = µ(β)
tag(α) ≤ tag(µ(α))

Fig. 1. The k-level escape and effect analysis. An expression e has an attribute sequence starting

with attribute e. Successors in the sequence are obtained lazily with function succ().

function succ. Given an attribute α[j] at depth j, and a field f , function succ returns the

successor attribute for that field if one exists. Otherwise, it creates a fresh successor

α′

[j+1] at depth j + 1. The successor function returns the ⊤ value when the maximum

depth j = k has been reached; and collapses all successors when the branching limit b

is reached. A special field “*” denotes that all fields have been collapsed.

When the analysis unifies two attributes, it merges their access tags, and takes the

maximum heap depth. Unifications are recursive, so that unifying two attributes re-

quires unifying each of their corresponding successors. To ensure laziness, this is done

only if at least one of them has a successor. As usual, unifications can be implemented

efficiently using union-find structures.

After initialization, the algorithm performs an intra-procedural computation of static

method signatures. For each assignment, the analysis unifies the attributes of the ex-

pressions in the assignment. It also sets the appropriate access tags, according to the

semantics of assignments, as shown in the top right corner of Figure 1.

178 S. Cherem and R. Rugina

sigS(m3)

sigV (m1)

o
v
er

ri
d

es

sigV (m2)

o
v
er

ri
d

es

sigV (m)

sigS(m1)

sigS(m)

sigS(m2)

called-by

called-by

called-by

called-by

sigS(m5) sigS(m6)

sigS(m4)

Fig. 2. Dependences between static and virtual method signatures for a method m

Finally, the analysis runs the inter-procedural part of the algorithm. The analysis

imposes two kinds of inter-procedural signature constraints: call-site and overriding

constraints. We use a notion of signature embedding (or subtyping) to describe the fact

that the effects in a signature are reflected in another signature. We write sig ≤ sig′

to denote that signature sig is embedded in sig′. Signature embedding is defined in the

lower right part in Figure 1. With this definition, the analysis requires that: 1) each static

signature of a method must be embedded in the virtual signature of that method; 2) the

virtual signature of a method must be embedded in the virtual signature of the method it

directly overrides, if any; and 3) at each call site, the appropriate signature of the callee

must be embedded into the call site signature. Hence, the analysis uses the overriding

relations to determine possible targets at each call. The analysis is context-sensitive: it

instantiates the signature of the callee at each call site via embedding.

Inter-procedural signature constraints are graphically illustrated in Figure 2. In the

presence of recursive functions, signature constraints become circular and require a

fixed-point-computation.The analysis uses a worklist algorithm to solve the constraints.

Initially, all methods are added to the worklist. At each step, the algorithm removes a

method m from the worklist and enforces the embedding constraints corresponding to

the incoming edges to m in Figure 2. If the signature of m changes, then the analysis

adds to the worklist the signatures of all methods on the outgoing edges from m.

Treatment of recursive structures. With the analysis presented so far, objects be-

longing to cyclic structures always escape the k-limited heap, and objects in recursive

structures typically escape, too. We briefly sketch an extension that improves the analy-

sis precision in such cases. The idea is to regard the escape signatures as graphs where

nodes are attributes, and edges model the successor relations. Using this conceptual rep-

resentation, signatures in the standard algorithm are k-bounded DAGs. In the extended

algorithm, they are k-bounded cyclic graphs. This is done by changing the meaning of

depth: the depth of each attribute is the depth in the spanning tree of the graph. The

algorithm is changed so that, after the succ or unify functions are applied, the depths of

all attributes are recomputed; those beyond the k limit are conflated into ⊤. This ex-

tension allows the analysis to treat all elements of a recursive structure such as a list as

non-escaping, by representing them using a single non-top attribute having a self loop.

A Practical Escape and Effect Analysis 179

class Vector {
Object[] data;
int length;
void printAll() {

Iterator itr = new Iterator(this);
while (itr.hasNext()) {

Object o = itr.getNext();
System.out.println(o);

}
}

}

class Iterator {
Vector vec;
int crt;
Iterator(Vector v) {

this.vec = v;
crt = 0;

}
Object getNext() {

Vector v = this.vec;
Object[] d = v.data;
return d[crt++];

}
boolean hasNext() {

return crt < vec.length;
}

}

hasNext(this)

this
γr

1
γr

2

γr

1
γr

2
→ ⊥

getNext(this)

this
δr

1
δr

2
δr

3
δa

4
δr

2
δr

3
δa

4

δr

3
δa

4
δa

4

v

dret

δr

1
δr

2
δr

3
δa

4
→ δa

4

o

itr

this

printAll(this)
αr

1
αr

2
αr

3
→ ⊥

αr

1

αw

4
αr

1
αr

2
αr

3

αr

3

Iterator(this,v)

βa

2

βw

1
βa

2

βw

1
βa

2
× βa

2
→ ⊥

v

this

(a) (b)

Fig. 3. Escape and effect analysis with k = 4, b = 0: a) example program; and b) analysis

results for each method. The call to System.out.println() is omitted; this method reads

the content of the object passed in.

Example. Figure 3 shows an example of inter-procedural k-level effect analysis. This

example uses a Vector class and an Iterator for vectors. The Vector class has

a method printAll() that uses an Iterator to print all of the elements in the

vector. The right part of the figure shows the analysis result for k = 4 and b = 0 for

methods printAll, getNext, hasNext, and for the constructor Iterator. For

each method, the dashed box groups the variables of that method. The arrows show the

inter-procedural constraints at the call sites to getNext, hasNext, and Iterator.

The escape attributes of each variable are shown above the variable. Method signatures

are shown above each method’s box.

The limit of k = 4 allows the analysis to precisely identify the accessed objects.

For instance, the 4-level signature of getNext identifies that the returned object is an

object at depth 3 from the receiver; and that no object beyond that level is accessed.

Java Features. We briefly discuss several other Java features.

Interface, abstract, static, and native methods. Interface and abstract methods only have

a virtual signature, since they cannot be called statically. Similarly, static methods only

have a static signature. For native methods, we manually wrote signatures to model their

effects.

Threads and calls by reflection. All objects passed to child threads, or passed as

arguments to calls by reflection are marked as escaped. This is done by providing

180 S. Cherem and R. Rugina

hand-written signatures for reflection methods (e.g. forName in java.lang.Class)

and forking methods (i.e. start0 in java.lang.Thread).

Dynamic class loading. Our current analysis system is static. However, we believe

that support for dynamic class loading could be provided in one of the following two

ways: 1) either use signatures as extended method types, include them in class files, and

extend the bytecode verifier to type-check signatures at run-time; or 2) extend the JIT

compiler and derive new signatures as new classes get loaded.

4 Results

We have implemented the escape and effect analysis in a compilation system for Java

using the Soot infrastructure version 2.2.2 [3]. We have conducted several case stud-

ies using programs from the SPECjvm98 benchmark suite [4] and the GNU Classpath

Java libraries version 0.92 (available at: www.gnu.org/software/classpath).

Table 1 presents the sizes of the evaluated programs in kilobytes of Java bytecodes, as

well as the number of classes and methods in each program. We excluded the SPEC

program mpegaudio because it uses field names and method names containing non-

printable characters, that certain components of our system were not able to handle.

The libraries and the application code were analyzed separately. Our system analyzed

libraries first, and generated signature files containing signatures for all library methods.

A separate signature file was generated for each parameter combination. The signature

files are in text format; they are humanly readable and can be manually edited 1. Next,

when analyzing an application, the system first loaded signatures from the appropriate

signature file. Our tool automatically detected when the application changed library

method signatures via overriding. This was the case for a few methods in the SPEC test

harness that extended classes in java.io or java.awt. To preserve soundness, we

have manually edited the violating signatures (13 in total) and reanalyzed the libraries.

No violations were then reported with the new signatures.

The remaining of this section presents three case studies: a study of library methods

and two analysis clients. The signatures in these studies use values of k between 1 to

4, and values of b of 0, 1, 2, 5, and 15. The extension for cyclic and recursive structures

discussed in Section 3 has only been used in the first study; in the other two studies it

was disabled because it did not impact the analysis clients.

4.1 Case Study 1: Library Methods

The first case study evaluates the analysis of the GNU Classpath Java libraries and

presents statistics regarding the method effects in these libraries. In this experiment we

used a Dual Xeon 3 Ghz machine with 4Gb of memory, running Linux.

Analysis cost. Table 2 presents the analysis times for the entire GNU Classpath

libraries, for different values of k and b. These results demonstrate the scalability of

our approach: the analysis can analyze a code base containing more than 50K methods

and 16 Mb of Java bytecodes in 1 minute or less. For example, for k = 3 and b = 5, the

1 The signature files can be browsed online at: http://www.cs.cornell.edu/projects/frex/sigs

A Practical Escape and Effect Analysis 181

Table 1. Application sizes

Program Size(Kb) Classes Methods

compress 68 12 44

jess 319 151 690

raytrace 110 25 176

db 67 3 34

javac 579 176 1190

mtrt 110 26 180

jack 180 56 316

Total SPECjvm98 1433 473 2851

GNU Classpath v.092 16815 6586 54436

Table 2. Analysis times (in seconds)

for the GNU Classpath libraries

b\k 1 2 3 4

0 23 25 25 26

1 25 27 28 32

2 26 28 35 39

5 33 35 37 43

15 34 41 66 280

analysis takes less than 40 seconds. In comparison, the time needed by Soot just to load

the class files from disk and build the intermediate representation is about 6 minutes,

an order of magnitude larger. Memory consumption is also a concern when performing

whole-program analysis on a very large code base. Loading the intermediate represen-

tation requires about 900Mb of memory. The memory needed by our analysis ranged

from 100Mb to 300Mb, for different values of the parameters.

Signature information. To better understand the escape behavior of methods in the

Java libraries, we have collected statistics about reference parameters and returned val-

ues in library methods. Reference parameters can be classified in four categories: es-

caped, stored, returned, and borrowed. Escaped parameters are reachable from static

fields, thrown exceptions, or objects beyond the k-limit. Stored parameters are reach-

able through one or more field dereferences (within the k-limit) from another parameter.

All of the other parameters are borrowed. If a reference is passed into a borrowed para-

meter of a method, then the method does not create additional copies of that reference.

Return values are divided in five groups: escaped, stored, loaded, parameter, and

fresh. Stored return values are objects that, besides being returned, are also reachable

from a parameter’s field. Loaded return values are objects that were reachable from

a parameter’s field even before executing the method. Write effects play a key role

in distinguishing loaded values from stored values: if an object is represented by an

attribute with only read effects, all of the object’s fields may be loaded but are never

stored. Fresh returned values denote new objects returned by allocator methods.

Table 3 shows the distribution of reference parameters and return values among all

signatures generated for the GNU library. The following summarizes our findings:

– A large fraction (roughly 69%) of the method parameters are just borrowed;

– An escape analysis with k ≥ 2 can identify that about 6% of the parameters are

being stored in the field of another parameter;

– Few of the parameters (1%) are returned, and few of the returned objects 4% come

from the parameters;

– A large fraction of methods, 42%, are allocator methods that return fresh objects.

An additional 14% of the returned objects are loaded from a parameter field;

– Signatures improve for higher values of k and b. However, increasing values of

these parameters yield diminishing returns. Signatures can be further improved us-

ing the more precise treatment of cycles and recursive structures.

182 S. Cherem and R. Rugina

Table 3. Distribution of parameters and return values in static signatures

k b model

cycles

1 0 no

2 2 no

3 5 no

4 15 no

4 15 yes

Parameter values

Escaped Stored Returned Borrowed

30.7% 0% 0.9% 68.4%

24.3% 5.9% 0.9% 68.9%

23.2% 6.9% 0.9% 69.0%

22.3% 7.5% 1.0% 69.2%

17.9% 11.8% 1.0% 69.3%

Returned values

Escaped Stored Loaded Returned Fresh

param.

53.8% 0% 0% 4.3% 41.9%

39.3% 0.7% 13.6% 4.3% 42.1%

36.8% 1.1% 15.5% 4.3% 42.3%

35.4% 1.4% 16.2% 4.4% 42.6%

33.9% 2.3% 16.8% 4.4% 42.6%

4.2 Case Study 2: Variable Uniqueness Analysis

The second case study evaluates method summaries in the context of a dataflow analysis

client aimed at identifying unique variables. A variable is unique if it holds the only live

reference to the object it points to. The uniqueness information is used by a compiler to

provide compile-time memory management for Java programs, by automatically insert-

ing free statements when the program updates a unique variable. In this study, method

summaries are used to improve the analysis precision at method calls.

The uniqueness analysis is formulated as a forward dataflow analysis. At each pro-

gram point, the analysis computes a partition of variables, i.e., a set of disjoint sets of

variables. A heap object referenced by a variable in a set can be referenced only by other

variables in the same set. When a set contains a single variable, that variable is unique.

At each allocation site x = new(), the analysis creates a new partition {x}. The transfer

functions remove variables when they are updated; move them to other sets when they

are copied; or kill entire sets when variable references are stored into the heap.

In the absence of method signatures, method calls are also treated conservatively:

variable sets are killed when a reference in the set is passed as an argument or returned

from a method. When method summaries are available, the analysis of method calls is

enhanced in three ways. First, calls to allocator method are treated as allocation sites.

Second, a set is not killed when a variable in the set is passed as an argument to a

method, but the method signature indicates that the corresponding parameter is just

borrowed. Finally, the analysis models returned parameters as assignments in the caller.

Evaluation. We ran two versions of the uniqueness analysis, with and without method

summaries, and compared the amount of memory freed using these analyses. We also

compared these memory savings to those obtained from a sophisticated inter-procedural

shape analysis that we previously developed [5]. For a fair comparison, we used the

same machine as in our previous work, a 2Ghz Pentium with 1Gb of memory.

When using worst-case assumptions for method calls, the uniqueness analysis took

2 seconds for all the the benchmarks together. The compiler inserted 86 frees, allowing

the deallocation of 4% of the total memory. When using the method summaries of

k = 1 and b = 0 to model method calls, the analysis took 3 seconds, inserted 710 free

statements, and enabled the deallocation of 36% of the total memory. In comparison,

shape analysis [5] is able to reclaim up to 54% of the memory, but it is significantly

more expensive, requiring a total of 11 minutes for the analysis of all of the benchmarks.

Table 4 shows a breakdown of the memory savings for each benchmark, using each of

A Practical Escape and Effect Analysis 183

Table 4. Case Study 2: Maximum memory usage

with no GC, and total analysis times

Program Memory (Mb) Savings (%) Shape

Total Summaries Summaries analysis

allocated No Yes No Yes savings[5]

compress 111 111 111 0% 0% 78%

jess 305 305 246 0% 19% 19%

raytrace 161 138 32 14% 80% 81%

db 81 81 37 0% 54% 86%

javac 240 238 230 1% 4% 14%

mtrt 170 147 41 13% 75% 77%

jack 313 313 257 0% 17% 24%

Average 4% 36% 54%

Total analysis time 2sec 3sec 11 min

Table 5. Case Study 3: Addi-

tional redundant loads for the

SPECjvm98 programs

b\k 1 2 3 4

0 6% 6% 7% 7%

1 7% 11% 13% 13%

2 8% 11% 13% 13%

5 8% 11% 14% 14%

15 8% 11% 14% 14%

the three analyses. For some applications, such as db and jess, the additional saving

when using summaries are due to the ability of recognizing allocator methods. We also

experimented with larger values k > 1 and b > 0, but although the compiler added a

few more frees, the memory usage of the transformed programs was unchanged.

In summary, the uniqueness analysis with method summaries runs much faster than a

full-blown inter-procedural shape analysis; it is more precise compared to using worst-

case assumptions; and higher values of k and b do not bring more benefits.

4.3 Case Study 3: Redundant Loads

The third study is a dataflow analysis aimed at identifying redundant loads. We ran this

analysis with and without using method summaries, and compared the total number of

identified redundant loads.

The analysis is a forward dataflow analysis that computes a set of available loads

at each program point. The analysis is similar to the standard available expressions

analysis and uses set intersection as the merge operator. A load statement x = y.f is

redundant if y.f is available before the statement.

At method calls, the analysis uses the method signatures to determine the fields that

the callees might update. A method updates field f if the signature of that method con-

tains an attribute with write effects and outgoing edge f or “*”. The analysis preserves

a load x.f if it determines that the callee doesn’t update field f .

Evaluation. Table 5 shows the analysis results for the SPECjvm98 benchmarks. For

each value of k and b, the table shows the number of additional redundant loads that

the analysis has identified, as a percentage of the number of redundant loads identified

when using worst-case assumptions at method calls. The results indicate an increase of

up to 14% more redundant loads. Unlike in the previous case study, higher values of k
and b lead to performance improvements in the client analysis. However, there seems

to be no additional improvement beyond k = 3 and b = 5. For this experiment we used

the same machine as in the previous experiment. The analysis time for any parameter

combination took less than 2 seconds per benchmark.

184 S. Cherem and R. Rugina

Table 6. Comparison of related pointer and escape analyses. Columns indicate: flow-sensitivity

(FS); context-sensitivity (CS); unification-based analyses (Unif); the k and b limits; whether

method summaries are computed; and the largest application analyzed (only for Java analyses).

Notes: 1 context-insensitive within an SCC; 2 object-sensitive; 3 estimated bound.

Algorithm FS CS Unif k b Method Largest Java app. analyzed

Summaries Name Size(Mb)

Choi et. al. [8] � � ∞ ∞ � Trans 0.5

Whaley, Rinard [9] � � ∞ ∞ � Pbob 0.3

Blanchet [10] � ∞ 0 � Jess 0.4

Gay, Steensgaard [11] � 1 ∞ Marmot 1.53

Bogda, Hoelzle [12] � � 2 ∞ � Javac 0.6

Ruf [13] �
1

� ∞ ∞ � Marmot 1.53

O’Callahan [14] � � ∞ ∞ � Ladybug 0.4

Cherem, Rugina [15] � � ∞ ∞ � Javac 0.6

Whaley, Lam [16] � ∞ ∞ Gruntspud 0.7

Milanova et al. [17] �
2 ∞ ∞ Soot-1.beta.4 1.1

Sridharan,Bodı́k [18] � ∞ ∞ Sablecc-j 2.4

Wilson, Lam [19] � � ∞ ∞ � — —

Liang, Harrold [20] � � ∞ ∞ � — —

Fähndrich et al. [21] � � ∞ ∞ — —

Lattner,Adve [22] �
1

� ∞ ∞ � — —

This paper � � any any � Classpath v0.92 16.3

5 Related Work

Type and effect systems. Type and effect systems have been originally proposed in

the seminal work of Gifford and Lucassen on type and effect systems for mostly func-

tional languages [1]. Effect annotations for Java have been proposed in several systems,

including JML [6], a specification language that allows specifying pure methods, and

assignable locations that a method can mutate; or AliasJava [7], a system that supports

an annotation lent that indicates non-escaping method parameters. Our effect signa-

tures are richer and cover a larger set of effects compared to these systems. In addition

to read/write effects, our signatures can describe method allocator effects, aliasing ef-

fects in the shallow heap, or returned parameters. Furthermore, our work focuses on the

efficient static inference of such effects, rather than on type-checking effect annotations.

Escape and pointer analysis. Escape and pointer analyses has been an active area of

research for many years. A large number of algorithms have been proposed in the past

two decades. Table 6 summarizes a relevant subset of these algorithms and classifies

them according to their features, shown in the columns of the table. The distinctive

feature of our algorithm is that it is parameterized on the values of parameters k and b.

These values can be tuned to trade precision for efficiency, and vice-versa.

Most analyses use infinite depth and field branching (k = b = ∞). Exceptions

include the analysis of Gay and Steensgaard [11] where objects escape when they are

stored in the heap, i.e. k = 1; the analysis of Bodga and Hoelzle [12], with k = 2; and

the analysis of Blanchet [10] which identifies objects by their heap depth, hence b = 0.

In essence, our parameterized escape analysis generalizes all of these analyses.

A Practical Escape and Effect Analysis 185

Escape analyses have been traditionally used to identify objects that do not escape

their method or thread scopes, thus enabling stack allocation or synchronization elim-

ination optimizations [11,9,12,10]. Pointer analyses have been mainly concerned with

building points-to sets, or resolving alias queries [21,16,17,18]. Other pointer analy-

ses have been used to summarize method effects [22,15,23]. Our work focuses on this

last use of pointer analysis. Therefore, the ability of the analysis to compute and build

procedure summaries becomes an important aspect, as effects can be expressed more

naturally using summaries. In existing algorithms, method summaries are points-to

graphs [20,13,22,15]; type representations of points-to graphs [14]; or pairs of input-

output points-to graphs, in the case of flow-sensitive analyses [9,19,23]. Pointer analy-

ses that do not compute method summaries require an additional MOD analysis to

translate the points-to set information into side-effect information for each method [17].

In contrast to all of the existing analyses that compute method summaries, our analysis

has the ability to control the sizes of the summaries, by tuning the values of k and b.

For small values of k and b, the analysis becomes scalable and efficient, and signatures

become lightweight and humanly readable.

Although all analyses in Table 6 exhibit a certain degree of context-sensitivity, some

use restricted forms. Some analyses treat recursive cycles in a context-insensitive man-

ner to avoid fixed-point computations for recursive procedures [13,22]. For large code

bases such as the Java libraries that have large recursive cycles, large portions of the

code will end up being analyzed in a context-insensitive manner. Object-sensitive analy-

ses [17] use another restricted form where calling contexts distinguish only the receiver

object. Our analysis uses the general, unrestricted notion of context-sensitivity, and uses

a context-sensitive heap abstraction.

As shown in the last column of Table 6, our case study on the GNU Classpath li-

braries involves a whole-program code base larger than those experimented with in

previous escape or pointer analysis studies. This demonstrates the scalability of our

escape analysis using lightweight summaries.

6 Conclusions

We have proposed lightweight method signatures to summarize heap aliasing and heap

access effects. We also have presented a very efficient unification-based, context-sensitive

algorithm to derive such signatures. We have demonstrated the scalability of signature

inference a large code base, and shown that computed summaries can help analysis clients

to approximate the effects of methods calls and avoid worst-case assumptions.

References

1. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the Sympo-

sium on the Principles of Programming Languages. (1988)

2. Jones, N., Muchnick, S.: Flow analysis and optimization of Lisp-like structures. In: Confer-

ence Record of the Symposium on the Principles of Programming Languages, San Antonio,

TX (1979)

3. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a Java

optimization framework. In: CASCON ’99, Toronto, CA (1999)

186 S. Cherem and R. Rugina

4. Uniejewski, J.: SPEC Benchmark Suite: Designed for today’s advanced systems. SPEC

Newsletter Volume 1, Issue 1, SPEC (1989)

5. Cherem, S., Rugina, R.: Compile-time deallocation of individual objects. In: Proceedings of

the International Symposium on Memory Management, Ottawa, Canada (2006)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, R., Poll, E.: An

overview of JML tools and applications. International Journal on Software Tools for Tech-

nology Transfer 7(3) (2005) 212–232

7. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program understanding. In:

Proceedings of the Conference on Object-Oriented Programming Systems, Languages and

Applications, Seattle, WA (2002)

8. Choi, J.D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack allocation and

synchronization optimizations for java using escape analysis. ACM Trans. Program. Lang.

Syst. 25(6) (2003) 876–910

9. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java programs. In:

Proceedings of the Conference on Object-Oriented Programming Systems, Languages and

Applications, Denver, CO (1999)

10. Blanchet, B.: Escape analysis for Java: Theory and practice. ACM Transactions on Program-

ming Languages and Systems 25(6) (2003) 713–775

11. Gay, D., Steensgaard, B.: Fast escape analysis and stack allocation for object-based pro-

grams. In: Proceedings of the International Conference on Compiler Construction, Berlin,

Germany (2000)

12. Bogda, J., Hoelzle, U.: Removing unnecessary synchronization in Java. In: Proceedings

of the Conference on Object-Oriented Programming Systems, Languages and Applications,

Denver, CO (1999)

13. Ruf, E.: Effective synchronization removal for Java. In: Proceedings of the Conference on

Program Language Design and Implementation, Vancouver, Canada (2000)

14. O’Callahan, R.: Generalized Aliasing as a Basis for Program Analysis Tools. PhD thesis,

School of Computer Science, Carnegie Mellon Univ. (2001)

15. Cherem, S., Rugina, R.: Region analysis and transformation for Java programs. In: Proceed-

ings of the International Symposium on Memory Management, Vancouver, Canada (2004)

16. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. In: Proceedings of the Conference on Program Language Design and

Implementation. (2004)

17. Milanova, A., Rountev, A., Ryder, B.: Parameterized object sensitivity for points-to analysis

for Java. ACM Transactions Softw. Eng. Methodol. 14(1) (2005) 1–41

18. Sridharan, M., Bodı́k, R.: Refinement-based context-sensitive points-to analysis for java. In:

Proceedings of the Conference on Program Language Design and Implementation. (2006)

19. Wilson, R., Lam, M.: Efficient context-sensitive pointer analysis for C programs. In: Pro-

ceedings of the Conference on Program Language Design and Implementation. (1995)

20. Liang, D., Harrold, M.: Efficient points-to analysis for whole-program analysis. In: Pro-

ceedings of the Symposium on the Foundations of Software Engineering, Toulouse,France

(1999)

21. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using instan-

tiation constraints. In: Proceedings of the Conference on Program Language Design and

Implementation, Vancouver, Canada (2000)

22. Lattner, C., Adve, V.: Data Structure Analysis: An Efficient Context-Sensitive Heap Analy-

sis. Tech. Report UIUCDCS-R-2003-2340, Computer Science Dept., Univ. of Illinois at

Urbana-Champaign (2003)

23. Salcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In: Proceedings

of the Conference on Verification, Model Checking and Abstract Interpretation. (2005)

Layout Transformations for Heap Objects

Using Static Access Patterns⋆

Jinseong Jeon, Keoncheol Shin, and Hwansoo Han

Division of Computer Science
Korea Advanced Institute of Science and Technology (KAIST)

Daejeon 305-701 Republic of Korea
{jinseong.jeon,keoncheol.shin}@arcs.kaist.ac.kr, hshan@cs.kaist.ac.kr

Abstract. As the amount of data used by programs increases due to
the growth of hardware storage capacity and computing power, efficient
memory usage becomes a key factor for performance. Since modern appli-
cations heavily use structures allocated in the heap, this paper proposes
an efficient structure layout based on static analyses. Unlike most of the
previous work, our approach is an entirely static transformation of pro-
grams. We extract access patterns from source programs and represent
them with regular expressions. Repetitive accesses are usually important
pieces of information for locality optimizations. The expressive power of
regular expressions is appropriate to represent those repetitive accesses
along with various access patterns according to the control flow of pro-
grams. By interpreting statically obtained access patterns, we choose
suitable structures for pool allocation and reorganize field layouts of
the chosen structures. To verify the effect of our static optimization, we
implement our analyses and optimizations with the CIL compiler. Our
experiments with the Olden benchmarks demonstrate that layout trans-
formations for heap objects based on our static access pattern analysis
improve cache locality by 38% and performance by 24%.

1 Introduction

E ffi c i e n t m e m o r y u s a g e i s g e t t i n g m o r e i m p o r t a n t a s m o r e p r o g r a m s t r y t o d e a l
w i t h l a r g e a n d c o m p l e x d a t a s e t s . R e s e a r c h e r s i n v e s t i g a t e d m a n y w a y s t o i m -
p r o v e t h e e ffi c i e n c y o f m e m o r y m a n a g e m e n t , i n c l u d i n g a d d i t i o n a l h a r d w a r e , n e w
a r c h i t e c t u r e s , a n d c o m p i l e r o p t i m i z a t i o n s . C o m p i l e r o p t i m i z a t i o n s a r e m o r e a t -
t r a c t i v e t h a n o t h e r m e t h o d s , s i n c e c o m p i l e r s c a n t r a n s f o r m a p p l i c a t i o n c o d e s
t o h a v e m o r e m e m o r y - f r i e n d l y b e h a v i o r s w i t h o u t a n y a d d i t i o n a l c o s t s b u t a
l o n g e r c o m p i l e t i m e s p e n t i n s t a t i c a n a l y s e s . S e v e r a l c o m p i l e r o p t i m i z a t i o n s f o r
m e m o r y m a n a g e m e n t a t t e m p t t o a t t a i n b e t t e r l o c a l i t y b y m o d i f y i n g a p p l i c a t i o n
c o d e s . S e g r e g a t i n g t h e h e a p a c c o r d i n g t o t h e l i f e t i m e o f o b j e c t s [1] o r t h e p o i n t -
i n g s h a p e s o f d a t a s t r u c t u r e s [2], for instance, is studied. Region-based memory
management [3], array regrouping [4, 5], and field layout restructuring [6–8] are

⋆ This work was supported by grant No. R01-2006-000-11196-0 from the Basic Re-
search Program of the Korea Science & Engineering Foundation.

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 187–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 J. Jeon, K. Shin, and H. Han

other optimizations investigated by researchers. Some techniques use compile-
time evaluated properties of programs by applying data structure analysis [2] or
region inference [9]. Other techniques, on the other hand, rely on profiling for
necessary information.

Previous studies on optimizations using memory access patterns are usually
profile-based, since it is difficult to analyze memory access behaviors at compile-
time. Profiling, however, is sensitive to inputs and execution environments some-
times. Hence profile-based optimizations can be limited in their usages. On the
contrary, our goal is to predict memory access patterns through static analysis.
In this paper, we propose a novel method to represent memory access patterns
as regular expressions. This method is a completely compile-time process. Once
we obtain memory access patterns in the forms of regular expressions, we use
those pieces of information to guide heap layout transformations based on pool
allocation and field layout restructuring.

The common essence of pool allocation and field layout restructuring is to
enhance data locality by modifying the heap layout of programs. To achieve bet-
ter data locality, both techniques find data that are simultaneously referred and
collocate them with one another. Granularity is the only difference; the former
deals with instances of structures, but the latter focuses on fields within struc-
tures. Our pool allocation scheme is similar to the pool allocation by Lattner
and Adve [2] in that both use custom memory allocation routines for certain
data structures. The difference is how to choose target structures for pool allo-
cation; they use an expensive pointer analysis to find close relationships among
structures, while we use an inexpensive pattern analysis to find heavily accessed
ones. Our earlier work [8] used profiling to find memory access sequences of pro-
grams. In this paper, we propose a regular expression technique to make the
whole optimizing procedure static.

Regular expressions are simple yet expressive enough to capture important
access patterns for locality optimizations. Affinity relations among fields or ob-
jects are mostly determined by frequently executed portions of programs such
as loops. The Kleene Closure1 [10] in regular expression is intuitively appro-
priate to represent repetition. Considering other features commonly found in
C-like imperative languages, regular expressions are indeed adequate for denot-
ing the memory access patterns of programs. Not only can we abstract repetitive
accesses with closure but also consecutive instructions with concatenation and
conditional branches with alternation. Moreover, interpreting regular expressions
is straightforward, thanks to their conciseness.

This paper makes the following contributions:

– We propose a novel method to represent the memory access patterns of
programs with regular expressions.

– We present new analyses to select structures for pool allocation and to es-
timate their field affinity relations by interpreting memory access patterns
represented as regular expressions.

1 We use the term closure for the rest of this paper.

Layout Transformations for Heap Objects Using Static Access Patterns 189

On.dataOn.key

On.key On.next On.dataO2.data

(b)

...

... ...

O1.g1 Oi.g1

Oi.g2

P P next

P data

...

O1.key

(c)

O1.data

Oi.data

...

...

O2.key O2.next

Oi.next On.next

O1.key O1.next O2.key O2.next Oi.key ...

O1.data Oi.data

Oi.keyO2.dataO1.next

Oi.next

P

P data P next

O1.g2

Node {

 int key;

 char data[6];

 Node *next;

};

char* search(int k) {

 ...

 while (...) {

 if (h->key == k)

 return h->next;

 h = h->next;

 }

 ...

}
(a)

Fig. 1. (a) Motivating example, (b) structure layout with pool allocation, (c) structure
layout after field layout restructuring [8]

– We evaluate the performance impact of our static scheme with the compiler
implementation of our analyses and heap layout transformations.

The rest of this paper is organized as follows. Section 2 briefly introduces
pool allocation and field layout restructuring. Calculating memory access pat-
terns with regular expressions is detailed in Sect. 3. Selecting structures for pool
allocation and estimating field affinity relations are discussed in Sect. 4. Section 5
shows our experimental environments and evaluations. Finally, Sect. 6 contrasts
our work with prior studies and Sect. 7 concludes this paper.

2 Heap Layout Transformations

Before we discuss how to extract access patterns at compile-time, this section
describes two heap layout transformations. Pool allocation [2] and field layout
restructuring [8] are main transformations which use our static access patterns.
Detailed descriptions on how to use our static access patterns for two transfor-
mations will be presented later in Sect. 4.

2.1 Pool Allocation

When objects are individually managed by malloc and free, compilers can-
not predict exact addresses of dynamically allocated objects. This lack of layout
information causes many compiler techniques (e.g., field layout restructuring,
software prefetching, etc.) to be either less effective or not exploitable [2]. Pool
allocation [2, 8] is an effective technique that provides compilers with layout in-
formation and leads to better data locality as well. Figure 1(b) shows a structure
layout when objects are allocated in a pool.

Collocating closely related objects with one another improves data locality by
the effect of prefetching in the cache memory. In addition to that, pool allocation

190 J. Jeon, K. Shin, and H. Han

can improve performance due to a simpler scheme for memory management. The
general memory allocation routines in the standard C library consume lots of
execution cycles due to complex free-list management. For every allocation, they
try to find an available fraction of memory searching the free-list. On the con-
trary, custom memory management routines for pool allocation are quite simple.
They reserve chunks of memory beforehand and assign a fraction of the chunks
for each object allocation in a simple and uniform way. In the event of memory
releases, custom free routine just restore given fractions to corresponding pools.
Thus, pool allocation schemes execute less number of instructions resulting in
the performance increase.

2.2 Field Layout Restructuring

Considering the example code shown in Fig. 1(a), we notice that key and next
fields are referred every loop iteration whereas data field is referred just once
when the function search finds the node whose key matches with the argument
k. According to this reference behavior, it is expected that grouping key and next
fields as shown in Fig. 1(c) has an advantage over the original pool layout as in
Fig. 1(b) in terms of data locality and performance. Based on this observation,
we proposed a field layout restructuring scheme in our previous work [8]. Because
the key and next fields are frequently accessed in the loop, they are collocated
together in a group. The data fields are shaped into another group and placed
apart from the key and next group. The drawbacks of field layout restructuring
in Fig. 1(c) are extra run-time instructions to compute correct field o ff sets from
the base pointers of objects. Although extra instructions are not necessary for the
first group, the rest of groups require extra run-time calculations. Nevertheless,
compiler optimization and pool alignment are able to make the overhead lower.

3 Regular Expressions for Access Patterns

Our specific goal is to establish a fully automatic compile-time framework for
field layout restructuring with pool allocation. Such framework needs to find
structures whose instances are intensively used and to estimate adequate field
layouts for those structures. Then the framework finally transforms the heap
layout into the locality-enhanced layout as shown in Fig. 1(c). In order to design
the compile-time framework, we have to obtain memory access patterns from the
semantics of programs. Moreover, the memory access patterns should imply both
repetitive accesses and field affinity relations. Considering the empirical knowl-
edge that the repetitive small parts of programs dominate the most of data
usage, we notice that field affinity relations will be heavily affected by frequently
executed parts of programs such as loops. Regular expressions can naturally rep-
resent repetitions with closures, which make regular expressions suitable for the
abstraction of memory access patterns. Besides the repetition (closure), regu-
lar expressions can capture the access patterns in sequential instructions with
concatenation and conditional branches with alternation.

Layout Transformations for Heap Objects Using Static Access Patterns 191

start

return

h == NULL

h key == k

h = h nexth data

NotFound

T F

T F

k

d n

(a) (b)

Fig. 2. (a) Control-flow graph of the motivating example, (b) converted automaton

3.1 Conversion of CFGs into Automata

Access patterns of programs are determined by their control flow and data ac-
cess instructions. When we want to obtain field access patterns, we can use the
sequence of referred field names. The sequence, however, can be too long and we
need to statically abstract the sequence somehow. The control-flow information
obtained from the control-flow graph (CFG) plays a critical role in reducing the
sequence of field names. Observing that automata and regular expressions are
equivalent, we find a novel method to capture access patterns with regular ex-
pressions. By converting CFGs into automata with access sequences labeled on
edges, we can express access patterns with automata. We then exploit an au-
tomata reduction technique to summarize access patterns as regular expressions.

Figure 2(a) depicts the CFG of the motivating example and Fig. 2(b) depicts
the automaton2 converted from Fig. 2(a). Each instruction is converted to its
own start state and end state. An edge is added between the two states and
labeled with the access pattern of the instruction. In order to preserve control-
flow information, we connect the end state to the start states of its successors,
labeling the edges with empty strings. Finally, we link the start state of a function
to a corresponding start point, and end points to the accepting state of the
function, labeling the edges with empty strings too. Consequent automaton as
shown in Fig. 2(b) encompasses all the possible behaviors of a function, since it
mimics the CFG of the function without loss of control-flow information.

2 For convenience, we use an initial letter of each field for the rest of this paper.

192 J. Jeon, K. Shin, and H. Han

k

d n

k

d

n
k

(
k
n
)
*
(
k
d
+
)kd+

kn
n

k

kd+

Fig. 3. Automata reduction

3.2 Access Pattern Extraction from Automata

Extracting regular expressions from automata is an instance of path problems
[11, 12]. Regular expressions for access patterns are simply obtained by using a
state elimination technique (Chap. 3.2.2 of [10]). Figure 3 shows the progress
of automata reduction. The order of state elimination is crucial for compilers
to extract understandable patterns from automata. First of all, we remove the
states which have outgoing edges labeled with empty strings and no incoming
back-edges. Because these states represent the instructions unrelated with field
accesses or straightforward control-flow information, removing them first helps
automata more concise. The remaining steps follow the weak topological order
(WTO) that combines hierarchical ordering and topological ordering [13]. To
make closures correctly enclose loops, we need to postpone the elimination of
the states that have incoming back-edges, since those states are the heads of
components (usually the heads of loops). The elimination order among the heads
of components follows the recursive strategy that is also introduced in [13]. Not to
prematurely evaluate outer components before the analyses of inner components
stabilize, the heads of components should be eliminated from the inner-most one
to the outer-most one. The excluded states from the criteria mentioned above
are erased in topological order.

The second automaton in Fig. 3 depicts the status after removing all the states
which have outgoing edges labeled with empty strings and no incoming back-
edges. The third and fourth automata show progressive changes, eliminating the
rest of states except for the one that has an incoming back-edge. In the last
automaton, the field access pattern of the motivating example is abstracted as
(kn)∗(kd + ε). This pattern implies all the possible behaviors of the function
search as follows:

– (kn)∗kd: the function successfully finds the specific key.
– (kn)∗: the search of the matching key failed, or the first while condition check

fails due to the null-valued head of the linked list.

Layout Transformations for Heap Objects Using Static Access Patterns 193

(a) (b) (c)

b

a

b

a

f()

f() {

 ... = s.a;

 if (!end)

 f();

 ... = s.b;

}

Fig. 4. (a) Example code for self recursive function, (b) automaton after intra-
procedural pattern analysis, (c) automaton after inter-procedural pattern analysis

3.3 Extension to Inter-procedural Patterns

Since the CFG in Fig. 2(a) has just intra-procedural information, the access
pattern extracted from the corresponding automaton includes the reference be-
havior of the function body only. To gain accurate field affinity relations over the
entire execution, access patterns should cover the semantics of the whole pro-
grams as well. Thus, function call relations are also important. Unless programs
have mutually recursive calls, extending our scheme to inter-procedural access
patterns is straightforward. Unfortunately, we cannot handle mutual recursion
yet. The following description only deals with normal and self recursive calls.

To obtain inter-procedural patterns, we visit functions in reverse topological
order of a call graph. When we meet a call site while building an automaton
for a function, we label the corresponding edge with the name of callee. We can
guarantee that access patterns for normal call sites are already completed, since
we are visiting in reverse topological order of the call graph. For such cases, we
just replace function names with access patterns of callees. As for self recursions,
consider the example code in Fig. 4(a). The function f has a recursive call to
itself. Once we calculate the intra-procedural access pattern of the code, we will
have the automaton shown in Fig. 4(b) that has the function name on the edge
representing the call site. Obviously, we do not have the access patterns for the
function. For such recursive call sites, we connect the state before the call site
to the start state of the function and connect the accepting state of the function
to the state after the call site. Then we eliminate the edge representing the call
site. Figure 4(c) depicts the consequent automaton.

Although the method described above can resolve self recursive functions well,
obtained patterns through that solution are not precise enough to express the
access patterns of self recursive functions. Let the access pattern of the function
in Fig. 4(a) be F . The precise access pattern, F can be described with the
following grammar:

F → ab | aFb

This grammar is represented as aibi (i > 0). This pattern is one of the typical
examples that cannot be expressed by regular expressions. In other words, an

194 J. Jeon, K. Shin, and H. Han

exact way to represent the access patterns for recursive cases requires Context-
free Grammar. Nevertheless, regular expressions have enough evidences to un-
derstand the reference behaviors of programs. For example, the automaton in
Fig. 4(c) implies the regular expression a∗abb∗. We can, however, infer a very
helpful knowledge that a and b are accessed frequently but separately. We only
lose the information that a and b are accessed at the same number of times as
aibi can imply. This may not be an important fact for our optimization.

4 Interpretation of Regular Expressions

This section explains how we interpret regular expressions for access patterns.
We use regular expressions to identify beneficial structures for pool allocation
and to estimate affinity relations among the fields of chosen structures. In the
following subsections, we introduce previous work and a profiled-based method,
and then describe our static methods.

4.1 Structure Selection for Pool Allocation

Lattner and Adve [2] proposed a structure selecting algorithm for their automatic
pool allocation framework. They find data structures whose instances have dis-
tinct behaviors, and then segregate the instances into separate memory pools.
According to their experimental results, most pools are used in a type-consistent
style [2]. From this observation, our pool allocation uses a “one structure per
pool” policy. We simply focus on how to choose structures that are intensively
used in programs. Those structures are easily identified by investigating regular
expressions for structure access patterns. The structures in closures of regular
expressions are what we want to identify as intensively used ones.

A structure access pattern is obtained by substituting field names in a field
access pattern with the structure names to which the fields belong. As for the
motivating example in Fig. 1(a), structure access pattern (N · N)∗(N · N + ε)
(N denotes the structure Node) is obtained from the corresponding field access
pattern (kn)∗(kd+ε). Since the structure Node is the only structure that appears
in the closure, it becomes a candidate for pool allocation. Lastly, we accept the
only structures that are frequently allocated with dynamic memory allocation
routines. We can obtain allocation patterns for candidate structures by labeling
automata with their allocation sites. As we did in structure selection, we regard
the structures in closures as frequently allocated ones.

4.2 Field Affinity Estimation

One way to analyze field affinity relations is counting co-occurrences within
a window sliding over a field access sequence. The counted number is called
neighbor affinity probability (NAP) [7]. Figure 5 depicts the progress of profile-
based affinity estimation. Temporal relationship graph (TRG) [14] is a weighted
graph where its nodes represent fields and the weights of its edges represent

Layout Transformations for Heap Objects Using Static Access Patterns 195

key

next data

datakey,next

712440

2849975

704860

30278

7580

4267275

37858

(a)

(b) (c)

o4.key ...o4.next o5.key o5.nexto3.next... o6.key

Fig. 5. (a) Profiled memory access sequence and a sliding window to calculate NAP,
(b) initial STRG, (c) STRG after grouping key and next fields

NAPs between fields. Since one field can be accessed consecutively, we extend
TRG to have self-edges and name it STRG. Figure 5(a) shows the concept of
NAP calculation using a sliding window over a profiled field access sequence.
An initial STRG after profiling the motivating example is shown in Fig. 5(b).
Since the NAP between key and next fields is larger than the sum of their
own self-affinities, we choose two fields as a group. After grouping, the resulting
STRG is shown in Fig. 5(c). The edges are merged and the weights are modified
to encompass the previous relationships. Until the STRG does not change, we
repeat the following procedure: finding a beneficial grouping and merging fields.
Each node in the final STRG becomes a group in a field layout restructuring
scheme. The groups in final STRG are placed in decreasing order of the weights
of self-edges. In Fig. 5(c), we cannot find a profitable grouping any more. As a
result, {key, next} and {data} are placed in the heap as shown in Fig. 1(c).

Statically obtained field access patterns imply the abstract relationship be-
tween fields, but not presented with numerical values. To overcome the gap be-
tween realistic values and abstract relationships, we devise a symbolic approach.
Instead of NAP, we label edges of STRG with closure signs to indicate how often
two fields are accessed together. Consider the example in Fig. 6, assuming a pro-
gram that performs list generation, parity check, and random search in turn. The
regular expression that represents the access pattern of the program is shown in
the top of the figure. Based on this regular expression, we construct a symbolic
STRG as shown in Fig. 6(a) where the weights of the edges are denoted with
closure signs.

Note that the access patterns which reside within doubly nested closures are
denoted with double closure signs to distinguish nested levels. For example,
imagine that the search function is invoked repeatedly. The pattern for this
case is ((kn)∗(kd + ε))∗. We get this by enclosing the pattern of the function
with an outer closure. From that pattern, we label the edge between key and next

196 J. Jeon, K. Shin, and H. Han

(kdn(n)*)* ((kn)*(kd+))* ((kn)*(kd+))*

List generation Parity check Random search

next

key

data

**

*
*

**

*

*

**

*
*

next

key

data

(a) (b)

2x2+2x
3x

x

x2

Fig. 6. (a) STRG with closure signs, (b) STRG with a closure variable

fields with one double closure and another single closure. The former represents
the presence of two fields in the inner-most closure. The latter represents that
the next field appears at the end of the inner-most closure and meets the key
field at the very following access. Similarly, we label the edge between key and
data fields with one single closure. If more than two fields are concatenated
within a closure (e.g., (kdn)∗), we label with closure signs all the edges of all
possible combinations of two consecutive fields within the closure (as if we see
(kd)∗(dn)∗(nk)∗).

After building symbolic STRGs, we regard all closure signs as the same vari-
able as shown in Fig. 6(b). Since it is next to impossible to predict the number
of loop iteration (function invocation) at compile-time, we assume loops (func-
tions) are iterated (invoked) at the same number of times. Finally, we evaluate
the affine equations by assigning the fairly large value (100) to the closure vari-
able. 10, 100, and 1000 make the same field layouts in our evaluations. The rest of
estimating procedure is the same as profile-based estimation depicted in Fig. 5.

5 Experimental Evaluation

5.1 Implementation

We implement our framework based on the CIL framework [15], which includes
access pattern analysis, structure selection analysis, field affinity analysis, and
layout transformation. We assume that most programs access fields by explicit
field names, since users cannot ensure the memory layouts generated by compil-
ers. Under this assumption, we transform explicit field names to field references
on modified field layouts. For some field references we add extra instructions to
calculate field offset as described in [8]. Memory management routines such as
malloc and free calls are transformed into custom memory management rou-
tines using pool allocation [2, 8]. Programs used in our evaluations do not have
mutually recursive calls. Therefore, our framework can obtain inter-procedural
patterns without any effort to handle such cases.

Layout Transformations for Heap Objects Using Static Access Patterns 197

Table 1. Times spent in analysis and compilation

Program SLOC Structure Field Code Total GCC
Selection Affinity Transform

chomp 378 0.021 0.006 0.003 0.030 0.212
ft 926 0.050 0.014 0.010 0.074 0.298
health 474 0.024 0.004 0.002 0.030 0.202
mst 408 0.031 0.004 0.002 0.037 0.195
perimeter 345 0.012 0.012 0.001 0.025 0.197
treeadd 154 0.002 0.000 0.000 0.002 0.120
tsp 433 0.011 0.004 0.002 0.017 0.201
voronoi 975 0.048 0.004 0.003 0.055 0.295

One limitation in our framework is that we cannot recognize custom memory
management routines alreadyusedby original programs. In addition, it handles the
only structures that are allocated in a type-aware fashion. If our framework cannot
recognize dynamic allocations for certain structures due to lack of type informa-
tion, the structures will be discarded by the structure selection analysis. Health in
the Olden suite [16] has its own allocators, which lose type information and cause
both the structure selection analysis and the transformer not to identify beneficial
structures. For such cases, we feed the structure selection analysis with user-given
hints which consist of target structures and corresponding custom allocators. The
CIL is extended to accept user-given hints for our experiments.

5.2 Experimental Environment

Our evaluations are performed on a Redhat 9.0 Linux PC equipped with a
2.6GHz Pentium4 processor. This machine contains 8KB L1D cache (64byte
cache line, 4-way set associative), 512KB L2 cache (64byte cache line, 8-way
set associative), and 1.7GB main memory. All the benchmarks are compiled
with GCC 3.2.2 at -O3 optimization level. We use the Cachegrind from the Val-
grind’s Tool suite (ver. 3.1.0) [17] to simulate cache behaviors and to measure
cache misses using the same cache configuration as the machine on which we
evaluate execution times. We measure the number of cache misses at both levels
of cache in order to estimate locality improvements in the cache memory hierar-
chy. We measure execution times to evaluate the effect of layout transformations
on performance by using the UNIX time command. All the reported execution
times are the minimum elapsed time out of ten runs. To confirm the effect of
our static mechanism, we examine programs with two different size inputs.

Some of the Olden suite, “chomp” from the McGill benchmark suite [18], and
“ft” from the Ptrdist suite [19] are used in our evaluations. Some benchmarks
in those suites do not use dynamic structures at all and some are not compiled
with the CIL. Those benchmarks are excluded from our experiments. Table 1
shows source lines of code (SLOC) [20] and analysis times for each program. As
shown in the table, additional times spent in our analyses and conversion are
small enough for all cases.

198 J. Jeon, K. Shin, and H. Han

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ch
o

m
p

ft h
ea

lth

m
st

p
erim

eter

tre
ea

d
d

tsp

v
o

ro
n

o
i

A
v

g
. L

1
D

N
o

rm
a

li
ze

d
 L

1
D

 c
a

ch
e

m
is

s
(1

.0
 =

 O
r
ig

in
a

l)

Pool

Pool + Re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ch
o

m
p

ft h
e
a

lth

m
st

p
e
rim

e
ter

treea
d

d

tsp

v
o

ro
n

o
i

A
v

g
. L

2

N
o

r
m

a
li

z
e
d

 L
2

 c
a

c
h

e
 m

is
s

(1
.0

 =
 O

ri
g

in
a

l)

Pool

Pool + Re

(a) (b)

Fig. 7. Normalized numbers of misses in (a) L1D and (b) L2 caches

5.3 Improvements in Cache Locality

Figure 7 shows normalized cache misses in L1D and L2. The numbers are aver-
ages of two different size inputs. Pool and Pool + Re denote the effect of pool
allocation alone and field layout restructuring with pool allocation, respectively.

In our evaluations using data intensive benchmarks, pool allocation is sig-
nificantly effective. Compared with original programs, its miss reductions are
roughly 30% for L1D and 22% for L2 on average. These miss reductions are due
to better locality by gathering instances of certain structures in the same pools.

Under pool allocation, field layout restructuring can be an auxiliary method to
reduce cache misses more. Compared with original programs, its miss reductions
are 38% for L1D and 32% for L2 on average. In four cases (chomp, mst, perimeter,
and tsp), it is quite beneficial to miss reductions in both cache levels. For the
particular case (treeadd), the field affinity analysis choose an inefficient layout,
which makes more cache misses. But, the miss increases are very marginal. In
the remaining three cases, cache misses in either L1D or L2 are reduced more
than pool allocation alone.

There are some cases in which cache misses in either L1D or L2 increase. The
miss increases in one cache are usually canceled out by the reductions in the
other level cache. For ft and health, miss reductions in one cache are influential
enough to eliminate the effect of increased cache misses in the other level. For
voronoi, however, the miss increase in one cache is not canceled out due to
relatively small improvements of the other level cache.

5.4 Improvements in Performance

Table 2 shows execution times and dynamic instruction counts of benchmarks.
The column labeled with Original provides base results from original programs.
Pool and Pool + Re columns show the impact of pool allocation alone and

Layout Transformations for Heap Objects Using Static Access Patterns 199

Table 2. Execution times and dynamic instruction counts

Program Input Original Normalized (1.0 = Original)
Parameters exec #instr Pool Pool + Re

(sec) (×109) exec #instr exec #instr

chomp 7,8 7.44 2.28 0.59 1.34 0.47 1.34
6,10 18.05 3.77 0.55 1.43 0.50 1.43

ft 103, 2 × 105 8.25 1.78 0.83 0.97 0.73 0.97
103, 3 × 105 19.40 3.13 0.87 0.97 0.79 0.97

health 11, 50, 1, 1 56.24 40.59 0.78 0.75 0.70 0.81
11, 60, 1, 1 86.05 49.69 0.71 0.76 0.63 0.81

mst 5000 19.23 19.12 0.84 0.82 0.83 0.83
9000 65.73 62.08 0.82 0.82 0.82 0.84

perimeter 12 7.18 10.85 0.78 0.77 0.84 0.81
13 17.11 25.59 0.76 0.74 0.84 0.78

treeadd 24 2.52 4.60 0.48 0.44 0.55 0.44
26 10.17 18.39 0.48 0.44 0.55 0.44

tsp 106 9.92 15.33 0.96 0.99 0.97 1.02
2 × 106 20.44 31.68 0.96 0.99 0.97 1.02

voronoi 106 5.22 7.53 0.98 0.99 0.99 1.00
2 × 106 11.03 15.81 0.99 0.99 0.99 1.00

Avg. % improved 22.64% 11.24% 24.04% 9.41%

field layout restructuring with pool allocation, respectively. The results of layout
transformations are normalized with original programs.

As a result of the enhancement of cache locality, the performance of pro-
grams also improves. Compared with original programs, execution times of pool
allocation are reduced by 23% on average. This substantial improvements in per-
formance are due to not only the remarkable miss reductions of the caches, but
also the reductions in the number of instructions executed in custom memory
management routines using pools. As shown in the table, dynamic instruction
counts of pool allocation are reduced by 11% on average. These results are due
to simpler internal structures for memory management and removal of many
custom malloc and free calls.

As shown in the Pool + Re column, the performance of transformed programs
with the field layout restructuring improves less than the corresponding cache per-
formance. This result is caused by the overhead of run-time address calculations,
which is not negligible for some benchmarks. Although we can have no doubt that
our affinity analysis is beneficial to enhance cache behavior, field affinity relations
are not dominant factors to determine the ideal field layout for real executions.
We guess that the overhead of field offset calculations should have been consid-
ered as importantly as field affinity relations. Taking run-time overhead into field
layout selection is another direction of future work. Nevertheless, there are three
cases (chomp, ft, and health) where the performance improvements are quite siz-
able. These results are occurred when the benefits gained from enhancing cache
locality overwhelm the overhead of run-time address calculations.

200 J. Jeon, K. Shin, and H. Han

6 Related Work

Rabbah and Palem [7] suggest a field clustering technique that consecutively puts
the same fields from numerous structure instances by employing customized allo-
cation routines. After clustering the instances, they place the fields in vertically
aligned layouts. Their layouts have no overhead of run-time field offset calcula-
tion, however, require extra padding space to be inserted between fields to make
constant offsets for all fields. These useless padding sometimes incurs the waste
of memory usage and causes more cache misses.

Our previous work [8] proposes a field layout restructuring scheme that com-
bines the benefits of previous works and relieves the problems of Rabbah and
Palem’s scheme [7]. We compact fields by eliminating useless padding. This con-
densation demands extra run-time instructions for some fields accesses. Due to
pool alignment and field grouping, however, we can eliminate or reduce the over-
head of run-time offset calculations.

Shen et al. [4] develop a frequency-based affinity analysis for array regrouping.
Their approach is similar to the work of Chilimbi et al. [6] in that both are based
on data access frequencies. They enrich their analysis by designing a context-
sensitive inter-procedural analysis. They implement both static estimation and
lightweight profiling of the execution frequency, and compare them with each
other. According to their experiments, it is a fairly safe to assume that all the
counts of loops and function calls are the same.

Lattner and Adve [2] devise an automatic pool allocation, which segregates
pointer-based data structure instances in C and C++ programs into separate
memory pools. Based on a context-sensitive pointer analysis and the escape
property for data structures, they determine which structures are beneficial to
pool allocation. As shown in our experimental results, pool allocation improves
program performance due to locality enhancement.

Java enables researchers to apply dynamic analyses [21, 22], since it is in-
herently performed on a run-time system. Dynamic analyses can obtain very
accurate information in that they take run-time behaviors into account. This
advantage leads run-time optimizations to better performance if their overheads
are sufficiently relieved.

7 Conclusion

We present a novel method to represent memory access patterns with regular
expressions. Using statically obtained access patterns, we select structures for
pool allocation and estimate field affinity relations for field layout restructuring.
These analyses and both layout transformations are integrated into our frame-
work based on the CIL. Our evaluation shows that the cache misses for L1D and
L2 are reduced by 38% and 32%, respectively. As a result, performance improve-
ment is 24% on average. Statically analyzed access patterns are useful not only
for layout transformation but also for the compiler techniques that attempt to
optimize memory management of data intensive programs. We believe our access
pattern analysis will find profitable usages in many compiler optimizations.

Layout Transformations for Heap Objects Using Static Access Patterns 201

References

1. Seidl, M.L., Zorn, B.G.: Segregating heap objects by reference behavior and life-
time. In: ASPLOS-VIII. (1998) 12–23

2. Lattner, C., Adve, V.: Automatic pool allocation: improving performance by con-
trolling data structure layout in the heap. In: PLDI ’05. (2005) 129–142

3. Cherem, S., Rugina, R.: Region analysis and transformation for java programs. In:
ISMM ’04: International Symposium on Memory Management. (2004) 85–96

4. Shen, X., Gao, Y., Ding, C., Archambault, R.: Lightweight reference affinity analy-
sis. In: ICS ’05: International Conference on Supercomputing. (2005) 131–140

5. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array regrouping and structure
splitting using whole-program reference affinity. In: PLDI ’04. (2004) 255–266

6. Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-conscious structure definition.
In: PLDI ’99. (1999) 13–24

7. Rabbah, R.M., Palem, K.V.: Data remapping for design space optimization of
embedded memory systems. ACM TECS 2(2) (2003) 186–218

8. Shin, K., Kim, J., Kim, S., Han, H.: Restructuring field layouts for embedded
memory systems. In: DATE ’06: Design, Automation and Test in Europe. (2006)
937–942

9. Tofte, M., Birkedal, L.: A region inference algorithm. ACM TOPLAS 20(4) (1998)
724–767

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 2nd edition. Addison-Wesley (2001)

11. Tarjan, R.E.: A unified approach to path problems. J. ACM 28(3) (1981) 577–593
12. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3) (1981)

594–614
13. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: FMPA

’93: Formal Methods in Programming and their Applications. (1993) 128–141
14. Gloy, N., Smith, M.D.: Procedure placement using temporal-ordering information.

ACM TOPLAS 21(5) (1999) 977–1027
15. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language

and tools for analysis and transformation of c programs. In: CC ’02. (2002) 213–228
16. Rogers, A., Carlisle, M.C., Reppy, J.H., Hendren, L.J.: Supporting dynamic data

structures on distributed-memory machines. ACM TOPLAS 17(2) (1995) 233–263
17. : Valgrind. (http://valgrind.org/)
18. : McGill benchmark suite. (http://llvm.org/)
19. Austin, T.M., Breach, S.E., Sohi, G.S.: Efficient detection of all pointer and array

access errors. ACM SIGPLAN Notices 29(6) (1994) 290–301
20. Wheeler, D.A.: SLOCcount. (http://www.dwheeler.com/sloccount/)
21. Guyer, S.Z., McKinley, K.S.: Finding your cronies: static analysis for dynamic

object colocation. In: OOPSLA ’04. (2004) 237–250
22. Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:

The garbage collection advantage: improving program locality. In: OOPSLA ’04.
(2004) 69–80

A New Elimination-Based Data Flow Analysis

Framework Using Annotated Decomposition Trees

Bernhard Scholz1 and Johann Blieberger2

1 The University of Sydney
2 Technische Universität Wien

Abstract. We introduce a new framework for elimination-based data flow analy-

sis. We present a simple algorithm and a delayed algorithm that exhibit a worst-

case complexity of O(n2) and Õ(m). The algorithms use a new compact data

structure for representing reducible flow graphs called Annotated Decomposition

Trees. This data structure extends a binary tree to represent flowgraph informa-

tion, dominance relation of flowgraphs, and the topological order of nodes. The

construction of the annotated decomposition trees runs in O(n + m). Experi-

ments were conducted with reducible flowgraphs of the SPEC2000 benchmark

suite.

1 Introduction

Elimination-based approaches [19] are used for data flow analysis problems [17, 18, 15,

5, 3, 4] that cannot be solved with iterative approaches [12, 8]. There exist other appli-

cations for elimination methods, which go beyond the area of program analysis [24].

For solving data flow analysis problems there are two families of elimination-based

approaches: algebraic methods and methods using path expressions.

Algebraic elimination methods [1, 9, 6, 21] consist of three steps: (1) reducing the

flowgraph to a single node, (2) eliminating variables in the data flow equations by sub-

stitution, and (3) back-propagating the solution to other nodes. Algebraic elimination

methods require two algebraic operations for a set of equations: substitution and loop-

breaking. The substitution transformation is the replacement of the occurrence of a vari-

able by its term whereas loop-breaking eliminates the occurrence of a variable on the

right-hand side. Though not very efficient, Gaussian elimination is a generic algebraic

elimination method to solve data flow equations in cubic time [16].

Path expressions were introduced in [24] to solve data flow equations. The flowgraph

is seen as a deterministic finite state automata [10] whose language consists of all paths

emanating from the start node to a node. The language is represented as a regular ex-

pression whose alphabet is the edge-set of the flowgraph. To find the data flow solution

of a node, a path homomorphism is applied to the path expression. The operators ·, ∪,

and ∗ of the regular expressions are re-interpreted. An elimination method using path

expressions comprises two steps: (1) the computation of path expressions for all nodes

in the flowgraph, and (2) the application of the path homomorphism. An inefficient al-

gorithm for converting flowgraph to path expressions is described in [10] and runs in

O(n3).
In this paper we present a new path expression algorithm using the decomposition

properties of reducible flowgraphs. The contribution of our work is threefold:

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 202–217, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

A New Elimination-Based Data Flow Analysis Framework 203

– a new representation of reducible flowgraphs called Annotated Decomposition Trees

that combines control flow information, dominance relation, and topological order,

– an algorithm for computing annotated decomposition trees in linear time,

– an elimination framework based on annotated decomposition trees that computes

path expressions.

The paper is organized as follows. In Section 2 we describe the basic notions required

to present our approach. In Section 3 we outline the idea behind elimination-based

methods using path expressions and show a motivating example. In Section 4 we present

the construction of annotated decomposition trees for reducible flowgraphs. In Section 5

we show a simple and a delayed algorithm for computing path expressions. In Section 6

we present the results of our experiment. Related work is surveyed in Section 7. We

draw our conclusions in Section 8.

2 Background

Flowgraph and Path Expressions. A flowgraph is a directed graph G(V, E, r) where

V is the set of nodes and E is the set of edges. We refer to n as the number of nodes

and m as the number of edges. A flowgraph is trivial if there is a single node in V. Edge

u → v has source u and destination v. Vertex r is a distinguished root node (aka. start

node). A path π is a sequence of edges 〈(v1 → v2), (v2 → v3), . . . , (vk−1 → vk)〉 such

that two consecutive edges (vi → vi+1) ∈ E and (vi+1 → vi+2) ∈ E share the same

node vi+1. The empty path is denoted by ε. In a flowgraph all nodes are reachable, i.e.,

there is a path from r to every other node in V.

Definition 1. The path set Paths(u, v) is the set of all paths from u to v in the flowgraph.

In a regular expression, ε denotes the empty string, ∅ denotes the empty set, ∪ denotes

set union, · denotes concatenation, and ∗ denotes reflexive, transitive closure under

concatenation. Thus each regular expression R over Σ represents a set σ(R) of strings

over an alphabet Σ defined as:

1. σ(ε) = {ε}; σ(∅) = ∅; σ(a) = {a} for a ∈ Σ.

2. σ(R1 ∪ R2) = σ(R1) ∪ σ(R2) = {w | w ∈ σ(R1) or w ∈ σ(R2)};

3. σ(R1 · R2) = σ(R1) · σ(R2) = {w1w2 | w1 ∈ σ(R1) and w2 ∈ σ(R2)};

4. σ(R∗) =
⋃∞

k=0 σ(R)k, where σ(R)0 = {ε} and σ(R)i = σ(R)i−1 · σ(R).

For the algorithms in this paper we implicitely use simplifications for the regular ex-

pression operators: [ε · R] = R, [R · ε] = R, [∅ · R] = ∅, [R · ∅] = ∅, [∅ ∪ R] = R,

[R ∪ ∅] = R, [∅∗] = ε, and [ε∗] = ε.

Definition 2. A path expression P (u, v) is a regular expression over E whose language

σ(P (u, v)) is the path set Paths(u, v).

A node u dominates a node v if all paths from r to v include node u. All nodes u that

dominate v are also called dominators of v. The immediate dominator u of a node v

is a dominator of v that does not dominate any other dominator of v and u is not v.

204 B. Scholz and J. Blieberger

The immediate dominator of node v is written as idom (v). The immediate dominators

of nodes form a tree called a dominator tree.

A back edge in a flowgraph is an edge whose destination dominates its source. A

flowgraph is reducible if the set of edges E can be partitioned into disjoint sets EF

and EB where EF is the set of forward edges and EB is the set of back edges. The set

of forward edges must form a directed acyclic graph. A graph which is not reducible

is called irreducible. Reducible flowgraphs (RFG) have the property that for each loop

there exists a single entry point.

Binary Leaf Trees. A binary leaf tree1 T (V, E, r) is a rooted binary tree whose inner

nodes always have two children. Set V is the set of nodes, E is the set of edges and r is

the root node of the tree. The left child of a node x is denoted by l(x) and the right child

as r(x). The parent node of a node x is denoted by p(x). A path in the tree is a sequence

of nodes 〈v1, v2, . . . , vk〉 for which vi is the parent of vi+1 for all i, 1 ≤ i < k.

Data Flow Analysis. A monotone data flow analysis problem [8] is a tuple DFAP(L, ∧,
F, c, G, M), where L is a bounded semi-lattice with meet operation ∧, F ⊆ L →
L is a monotone function space associated with L, c ∈ L are the “data flow facts”

associated with start node r, G(V, E, r) is a flowgraph, and M : E → F is a map from

G’s edges to data flow functions. We extend function M to map a path π = 〈(u1 →
u2), . . . , (uk−1 → uk)〉 to a function of F .

M(π) =

{

M(uk−1 → uk) ◦ . . . ◦ M(u1 → u2), if π
= ε

ι, otherwise
(1)

where ι is the identity function.

3 Motivation

In program analysis we compute a value for each node in the flowgraph. This value is

called the meet-over-all-paths solution. It is the solution of applying the meet operator

for the analysis result of all paths from the root node to a given node in the program2.

Definition 3. The meet-over-all-path (MOP) solution is defined for a node u ∈ V as

MOP (u) =
∧

π∈Paths(r,u)

M(π)(c) (2)

where c is the initial data flow value associated with the root node.

Elimination methods directly compute the MOP solution. They solve the set of local

data flow equations by either using substitution and elimination (aka. Gaussian Elim-

ination) or by employing a path homomorphism [24]. In this work we focus on the

latter approach. Path expressions represent path sets that are mapped into the function

1 Binary leaf trees are sometimes also called extended binary trees [13].
2 For backward problems we are interested in the set of reverse paths from the end node to a

given node.

A New Elimination-Based Data Flow Analysis Framework 205

a

b c

d e f

P (a, a) = (a → b · (b → d · d → d∗ · d → e∪
b → e) · e → a)∗

P (a, b) = P (a, a) · a → b

P (a, c) = P (a, a) · a → c

P (a, d) = P (a, b) · b → d · d → d∗

P (a, e) = P (a, b) · b → e ∪ P (a, d) · d → e

P (a, f) = P (a, c) · c → f

(a) Flowgraph (b) Regular Expressions

Fig. 1. Running Example

space of the data flow problem. This mapping is defined by reinterpreting the ∪, ·, and

∗ operators used to construct regular expressions as shown in [23]. The central idea of

elimination methods is that MOP is computed as:

MOP (u) =
∧

π∈Paths(r,u)

M(π)(c) = M(P (r, u))(c), (3)

where P (r, u) is the path expression for path set Paths(r, u). The mapping function is

extended with the following operators of the regular expressions

M(P1 · P2) = M(P2) ◦ M(P1)

M(P1 ∪ P2) = M(P1) ∧ M(P2)

M(P ∗) = M(P)∗

M(ε) = ι

The operation M(P2) ◦ M(P1) is the function composition and M(P)∗ is a fixpoint

operation. For simple data-flow analysis problems the fixpoint operation is quite often

the identity function [19].

The complexity of elimination methods using path expressions depends on the path

expression size. Consider the example depicted in Figure 1. Assume we want to solve

a data flow analysis problem for the flowgraph given in Figure 1(a). An elimination

method using path expressions computes a path expression as given in Figure 1(b).

Then, mapping function M is applied to path expression P (r, u). To improve the per-

formance of such an approach, expressions are reused (such as P (a, a) in the running

example). Without reuse of sub-expressions the memory complexity grows exponen-

tially with the size of the flowgraph [10].

4 Annotated Decomposition Trees

For the elimination framework we introduce a new data structure called an Annotated

Decomposition Tree (ADT) that recursively splits the reducible flowgraph into inter-

vals. An interval is a subgraph of the flowgraph and has the following properties: (1)

206 B. Scholz and J. Blieberger

r1

u1

uk

r2

v1

vl

G1 G2

(a) Composition

Dominator

Tree:

r

c1 ck−1 ck

T1 T2

=⇒

ADT: ⊕

T1 T2

(b) Decomposition

Fig. 2. Composition and Decomposition of Reducible Flowgraphs

every interval has a single entry node, and (2) the single-entry node of the interval dom-

inates all nodes of the interval.

The ADT is a binary leaf tree. An inner node in the ADT represents a composition

operation that composes two disjoint intervals G1 and G2. The leaves of the tree rep-

resent trivial intervals consisting of a single node in the flowgraph3. The composition

operation is a generalisation of work published in [25, 26, 11].

Definition 4. Let G1(V1, E1, r1) and G2(V2, E2, r2) be flowgraphs such that V1 and

V2 are disjoint sets. The composition G1 ⊕(F,B) G2 is defined as

(V1 ∪ V2, E1 ∪ E2 ∪ (F × {r2}) ∪ (B × {r1}), r1)

where F ⊆ V1 and B ⊆ V2 denote the sources of the forward and backward edges.

Node r1 becomes the new single-entry node of the composed interval.

The composition of two intervals G1 and G2 is depicted in Figure 2(a). The single-entry

nodes of the intervals are denoted by r1 and r2. The edge set F ×{r2} connects a subset

of nodes in G1 to r2. The edge set B × {r1} connects a subset of nodes in G2 to r1.

By Definition 4, root node r1 dominates all nodes of G1 and G2 because every node

in the composed interval can only be reached via r1. The same holds for r2, i.e., r2

dominates all nodes in G2. This implies that the nodes of G1 form a sub-tree in the

dominator tree with r1 as a root-vertex of the sub-tree, and single-entry node r2 is

immediately dominated by r1.

The forward edges of a reducible flow graph form a directed acyclic graph imposing

a topological order < such that for all edges (u, v) ∈ EF , u < v holds. Since the single-

entry node of an interval dominates all nodes in the interval, the single-entry node of the

3 Because ADTs are binary leaf trees, there are n−1 inner nodes where n is the num. of leaves.

A New Elimination-Based Data Flow Analysis Framework 207

a

b

d e

c

f

(a) Ordered Dominator Tree

C0

C1

a C3

C4

b d

e

C2

c f

(b) Decomposition Tree

Fig. 3. Dominator and Decomposition Tree of Example

interval is smaller than the nodes in the interval with respect to the topological order.

The composition implies that r1 < r2. Given a composition G1 ⊕ G2, the inequality

∀u ∈ V1 : ∀v ∈ V2 : r1 ≤ u < r2 ≤ v (4)

holds. Assume a total order R of nodes in the flowgraph [u1, . . . , un] such that for

(ui, uj) ∈ EF , i < j. An interval decomposition of the flowgraph partitions the ordered

nodes into two parts. Vertex r1 has index 1 and all the nodes between 1 and r2 − 1 be-

long to the interval G1. The nodes from r2 to n belong to G2. By recursively applying

the decomposition for ordered nodes, we have a range representation of the tree. For ex-

ample a possible total order for the flowgraph in Figure 1(a) is [a, b, d, e, c, f]. The first

composition of the ADT splits the ordered nodes in two halves, i.e., [[a, b, d, e], [c, f]].
By recursively splitting intervals, we obtain [[[a], [[b, d], e]], [c, f]] representing the in-

tervals of the flowgraph.

In the following we deal with the problem of finding an ADT for a given flowgraph.

Because there might be several possible topological orders of a flowgraph, we can have

several ADTs for a single flowgraph. However, for a given topological order of a flow-

graph there exists a single ADT. The ADT is constructed by using the dominator tree

and a given topological order.

We observe that the root node r2 is immediately dominated by r1 and therefore is

a child of r1 in the dominator tree. Assume that the children c1, . . . , ck−1, ck of node

r1 in the dominator tree are ordered by the topological order, i.e., ci < cj . Vertex r2

is the child ck (cf. Equation 4) and the nodes of G2 are nodes which are dominated

by r2. A simple decomposition scheme of the ordered dominator tree (as illustrated

in Figure 2(b)) allows the construction of the ADT. Interval G1 is the result of the

decomposition of the dominator tree without subtree ck. Interval G2 is the result of the

decomposition of subtree ck.

The decomposition of the dominator tree results in a simple algorithm for construct-

ing an ADT: (1) order the children of the dominator tree with respect to topological

order of the nodes and (2) recursively traverse the ordered dominator tree and construct

the ADT. The algorithm for constructing the decomposition tree is shown in Figure 4.

208 B. Scholz and J. Blieberger

CONSTRUCTADT ()
1 for i ← |V | . . . 2 do

2 u ← order(i)
3 v ← idom (u)
4 PUSH u onto sv

5 endfor

6 return TRAVERSE(r)

TRAVERSE (u)
1 x ← LEAF(u)
2 while stack su is not empty do

3 v ← POP node from su

4 x ← NODE(x, TRAVERSE(v))
5 endwhile

6 return x

Fig. 4. Construction of the ADT

For constructing an order among children we use a stack su for each node u in the flow-

graph. Procedure ConstructADT pushes nodes in reverse topological order onto the

stack of its immediate dominator. Before calling Traverse in Procedure ConstructADT,

the stack of a node contains all its children in reverse topological order. The element on

top of the stack is the right-most child of the node and the bottom element of the stack is

the left-most child of the node. The stack allows us to partition the graph as illustrated

in Figure 2(b).

The construction of the ADT is performed in function Traverse. Function Leaf with

parameter u creates a new leaf in the decomposition tree where u is a node of the flow-

graph. Function Node creates an inner node with a left and right child. The construction

is performed recursively beginning with the root node of the dominator tree. Inside the

loop the children of node u are popped from the stack in reverse topological order and

for each child a decomposition operation is created. The function Traverse pops exactly

n − 1 elements from the node stacks. We have n function calls of Traverse. Thus, the

space and time complexity of function Traverse is O(n).
For the running exampe the dominator tree is shown in Figure 3(a). The children

of the nodes are ordered with respect to the topological order. The first composition is

the cut between node a and c because c is the right-most children with respect to the

topological order. The resulting two dominator trees are recursively cut and each cut

represents an inner node in the ADT. The resulting decomposition tree is depicted in

Figure 3(b).

So far, we have not discussed how to determine the forward and backward edges of a

composition. To compute F - and B-sets we traverse the set of edges and associate each

edge to a composition in the ADT. The edge is associated to the composition node in

the ADT that is the nearest common ancestor of leaves u and v. An edge is an element

of set F if it is a forward edge, otherwise it is element of set B. Set F is empty for

leaf nodes in the ADT. The algorithm in Figure 5(a) annotates the decomposition tree

with sets F and B. It exhibits a complexity of O(n + m) by using the efficient nearest

common ancestor algorithms [7, 2] with a complexity of O(1) for a single NCA query.

The F - and B-sets are given in Figure 5(b). For example, consider edge a → c.

The nearest common ancestor of leaves a and c is the extended composition C0 in the

decomposition Tree of Figure 3(b). Vertex a is smaller then node c in the topological

order. Therefore, the edge is a forward edge and stored in FC0
. Because the target of an

edge is inherently defined by the composition, i.e. either node r1 or node r2 depending

whether it is a forward or backward edge, we only add the source of an edge to F or B.

This means, that for edge a → c node a is added to FC0
.

A New Elimination-Based Data Flow Analysis Framework 209

COMPUTEFBSETS(ADT)
1 for all u → v ∈ E do

2 x ← NCA(ADT, u, v)
3 if u → v ∈ EB then

4 Bx ← Bx ∪ {u}
5 else

6 Fx ← Fx ∪ {u}
7 endif

8 endfor

(a) Algorithm

u Fu Bu

C0 {a} {}
C1 {a} {e}
C2 {c} {}
C3 {b, d} {}
C4 {b} {}
a n/a {}
b n/a {}
c n/a {}
d n/a {d}
e n/a {}
f n/a {}

(b) F- and B-sets

Fig. 5. Algorithm and Example for Computing F- and B-Sets

5 Path Expressions

We compute path expressions for nodes using the annotated decomposition tree of a

reducible flowgraph as the underlying data structure. Path expressions are computed by

an inductive scheme. For the inductive step we construct path expressions by using the

properties of the composition (see Def. 4).

Theorem 1. If G(V, E, r) is a trivial flowgraph, then

P (r, r) =

{

(r → r)∗, if (r → r) ∈ E,

ε, otherwise.
(5)

Otherwise the flowgraph is composed and G(V, E, r) = G1(V1, E1, r1)⊕(F,B) G2(V2,
E2, r2). For given path expressions P1(r1, u) of G1 (for all u ∈ V1) and given path

expressions P2(r2, v) of G2 (for all v ∈ V2), the path expressions of the composed

flowgraph are:

∀u ∈ V1 : P (r, u) = L · P1(r1, u) (6)

∀v ∈ V2 : P (r, v) = R · P2(r2, v) (7)

where4

X =
⋃

u∈F

P1(r1, u) · (u → r2) (8)

Y =
⋃

v∈B

P2(r2, v) · (v → r1) (9)

L = [X · Y]
∗

(10)

R = L · X (11)

Proof. See Appendix.

4
�

x∈X f(x) is the empty set if set X is empty.

210 B. Scholz and J. Blieberger

COMPUTEPATHEXPR (w)
1 if w is not a leaf then

2 COMPUTEPATHEXPR(l(w))
3 COMPUTEPATHEXPR(r(w))
4 X ←

�
u∈Fw

[EVAL(u) · u → r2]
5 Y ←

�
v∈Bw

[EVAL(v) · v → r1]
6 L ← [X · Y]∗

7 R ← L · X

8 z ← l(w)
9 if z is a leaf and z → z ∈ E then

10 L ← L · (z → z)∗

11 endif

12 z ← r(w)
13 if z is a leaf and z → z ∈ E then

14 R ← R · (z → z)∗

15 endif

16 LNK UPD(w, r(w), L)
17 LNK UPD(w, l(w), R)
18 endif

LNK UPD (x, y, v)
1 p(y) ← x

2 Ry ← v

EVAL (x)
1 if p(x) �= p(p(x)) then

2 Rx ← [EVAL(p(x)) · Rx]
3 p(x) ← p(p(x))
4 endifreturn Rx

MAIN ()
1 adt ← CONSTRUCTADT()
2 COMPUTEFBSETS(adt)
3 COMPUTEPATHEXPR(adt)
4 if G is not trivial then

5 for u ∈ V do

6 P (r, u) ← EVAL(u)
7 endfor

8 else

9 P (r, r) ←

�
(r → r)∗, if (r → r) ∈ E,

ε, otherwise.

10 endif

Fig. 6. Computing Path Expressions: Delayed Algorithm

Simple Algorithm: A simple algorithm traverses the ADT in bottom-up fashion and

updates the path expressions for nodes in G1 and G2 according to Theorem 1. The

complexity of the simple algorithm is O(n2) because in the worst case O(n) updates

are performed for a node in the ADT and there are O(n) nodes in the ADT.

Delayed Algorithm: A more efficient algorithm does not update the path expressions

of all nodes in the intervals G1 and G2. Only the nodes in F and B of a composition

are updated and the update of the remaining nodes is deferred to a later stage.

The construction of path expressions implies that a path expression of node u in the

flowgraph is a sequence of L and R prefixes followed by either ε or (u → u)∗. We store

the path expressions L and R at the left and right child of an inner node in the ADT and

the path expression ε or (u → u)∗ at the leaves. Then, a path from the root of the ADT

to node u defines the path expression5 by mapping the nodes of the path to their path

expressions. This observation enables the usage of a path compression scheme [22] to

implement the delayed update.

In Figure 6 we outline the algorithm for constructing path expressions with a delayed

update. The LNK UPD operation assigns a path expression to a node in the ADT and

constructs the tree for path compression. The EVAL operation queries the sequence of L
and R prefixes for a node of the flowgraph. The complexity of the algorithm is bounded

by the number of composition nodes in the decomposition tree (i.e. n − 1) and the

5 Without loss of generality we store ε in the root of the ADT.

A New Elimination-Based Data Flow Analysis Framework 211

number of leaves (i.e. n). With a simple path compression scheme the delayed update is

bounded by O(m log n) (as outlined in Figure 6). A more sophisticated path compres-

sion algorithm with O(mα(m, n)) introduced in [22] improves the upper bound of the

overall algorithm. However, in practice the sophisticated path compression scheme will

not be superior to the simple path compression scheme due to small problem sizes [14].

6 Experimental Results

We have implemented the simple and the delayed algorithm in C and measured the

performance of the algorithms on a 2.6GhZ AMD computer. We also implemented

Sreedhar’s algorithm [21] and compared its performance to the simple and the delayed

algorithm. As a benchmark we used the SPEC2000 benchmark suite. The flowgraphs

were generated by the GCC compiler. In this experiment we are interested in the follow-

ing numbers: (1) the execution time to construct ADTs for SPEC2000, (2) the speed-ups

of the simple and delayed algorithm vs. Sreedhar’s algorithm, and (3) the reduction of

the number of ·, ∪ and ∗ operators by using the delayed algorithm.

The results of the experiment are shown in Table 1. The execution times for con-

structing the ADT and computing the path expressions are given in columns tadt and

tc. Note that all time measurements are in microseconds. The construction of ADTs

is fast but it takes longer than computing path expressions. The computation of ADTs

requires four steps: (1) compute topological order, (2) compute dominator tree, (3) per-

form the pre-processing step for NCAs, and (4) construct the ADT using the dominator

tree, topological order, and NCA relation. Hence, the execution time to construct ADTs

ytfarc.
6

8
1

kcart
xis.

0
0

2

ase
m.

7
7

1

cc
g.

6
7

1

esi
w

p
u

w.
8

6
1

fl
o

wt.
0

0
3

p
m

ma.
8

8
1

ul
p

pa .
3

7
1

resra
p.

7
9

1

pa
g.

4
5

2

k
m

blre
p.

3
5

2

xetr
o

v.
5

5
2

2
piz

b.
6

5
2

tra.
9

7
1

r
p

v.
5

7
1

is
pa.

1
0

3

piz
g.

4
6

1

e
ka

u
qe.

3
8

1

dir
g

m.
2

7
1

fc
m.

1
8

1

mi
ws.

1
7

1

0

2

4

6

8

10

12

14

16

p
u

dee
p

S

Simple vs. Sreedhar

Delayed vs. Sreedhar

Fig. 7. Speed-Ups: Simple and Delayed Algorithm vs. Sreedhar

212 B. Scholz and J. Blieberger

186.crafty
200.sixtrack

177.mesa
176.gcc

168.wupwise
300.twolf

188.ammp
173.applu
197.parser

254.gap
253.perlbmk

255.vortex
256.bzip2

179.art
175.vpr
301.apsi
164.gzip

183.equake
172.mgrid

181.mcf
171.swim

0 10 20 30 40 50 60 70 80 90 100

Reduction (%)

Fig. 8. Reductions of Operations (%) between 0% and 100%. Benchmarks achieving better re-

ductions are listed first.

Table 1. Results of the simple and delayed ADT algorithm, and results of Sreedhar’s algorithm.

Columns n and m are the number of nodes and edges in the flowgraph. Column tADT is the exe-

cution time to construct the ADT. n∗, n∪, and n· are the number of regular expression operators

and tc is the execution time to compute path expressions. Note that the n∗ and n∪ are identical

for the simple and delayed algorithm. For Sreedhar’s algorithm the number of E1, E2a, and E2b

reductions are nE1, nE2a, and nE2b. The execution time to construct the DJ-graph and the time

to perform the reductions are tdj and tr. All execution times are given in µs.

Problemsize Simple Algo Delayed Algo Sreedhar’s Algo

Bnchm. n m tadt n∗ n∪ n· tc n· tc nE1 nE2a nE2b tdj tr

gzip 1639 2369 2.09 201 613 5723 1.27 3500 1.23 199 636 966 5.36 7.25

wupwise 444 657 0.78 58 175 3031 0.72 1010 0.44 58 148 317 1.58 3.89

swim 109 158 0.16 27 28 280 0.09 223 0.09 27 30 56 0.43 0.39

mgrid 179 269 0.26 51 49 628 0.16 408 0.16 51 46 111 0.64 0.74

applu 590 899 0.78 172 153 3958 0.72 1538 0.52 172 156 567 1.93 4.33

vpr 4227 5973 5.51 498 1509 16672 3.54 9161 3.15 494 1437 2991 13.75 21.57

gcc 60818 96156 88.47 3412 33822 468454 90.28 148878 49.38 3303 24761 58003 203.85 863.93

mesa 21981 31418 32.22 1330 9171 196921 42.15 48257 16.20 1300 8071 17989 72.61 245.83

art 615 924 0.87 130 205 2720 0.68 1462 0.55 125 213 505 2.06 4.61

mcf 449 660 0.59 57 180 1290 0.34 968 0.37 57 173 265 1.53 1.79

equake 309 423 0.43 67 73 1041 0.24 676 0.25 66 66 232 1.10 1.66

crafty 6161 9563 7.69 403 3107 70633 14.13 14941 5.34 401 2359 6619 20.40 183.23

ammp 3773 5754 6.53 431 1725 24543 5.03 9013 3.09 427 1408 3390 12.30 28.53

parser 4967 7428 6.90 655 2099 27705 5.37 11056 3.84 652 1756 3584 16.16 30.65

sixtrack 6998 10576 15.41 947 2844 74721 13.57 16941 5.61 293 694 1619 6.83 13.07

perlbmk 6904 10464 9.11 265 3529 33429 6.89 15495 5.28 254 3004 4892 22.68 46.98

gap 21178 31685 26.78 1490 9847 109902 20.61 47878 15.98 1459 9188 16587 68.75 123.09

vortex 18633 27490 24.82 236 9539 80959 17.02 37950 13.86 235 7630 11138 60.62 96.50

bzip2 1648 2495 2.07 277 642 7563 1.56 3619 1.30 276 590 1024 5.35 9.99

twolf 7294 11216 10.39 875 3227 51216 9.27 17397 5.74 863 2763 5845 23.76 70.05

apsi 2009 2968 2.64 367 688 7782 1.64 4413 1.53 364 696 1257 6.45 9.79

Total 170925 259545 244.50 11949 83225 1189171 235.28 394784 133.91 11076 65825 137957 548.15 1767.87

A New Elimination-Based Data Flow Analysis Framework 213

has the same magnitude as computing path expressions with the simple algorithm. The

delayed algorithm has a significantly smaller runtime and is approx. 1.8 times faster

than the simple algorithm.

We compared the runtime of our algorithms6 with the runtime of a C++/STL imple-

mentation of Sreedhar’s eager algorithm. For the comparison we measured the time to

construct the DJ-graphs (Column tdj) and the reduction phase (tr). However, we did

not measure the propagation phase which is a simple traversal over the dominator tree.

The speed-ups of the simple and delayed algorithm vs. Sreedhar’s algorithm are shown

for each Spec2000 benchmark in Figure 7. The speed-ups vary depending on the size

of the flowgraphs. For small flowgraphs the execution time of the simple and delayed

algorithm is of the same magnitude. For large flowgraphs the execution time diverges

by up to a factor of 9.3 and 15.6, respectively.

The delayed algorithm has significantly smaller path expressions. The delayed algo-

rithm reduces the number of regular expression operators by 38.1%. We attribute the

more compact path expressions to the re-use of regular expressions. Though the num-

ber of ∗ and ∪ operators is the same for both algorithms, the number of · operators is

reduced by a factor of three. This substantial reduction is due to reusing the same L and

R sub-sequences. The reductions for all benchmarks are shown in Figure 8. The reduc-

tions vary between 24.8% (best case) and 83.0% (worst case) depending on how many

sub-sequences of L and R prefixes can be reused. Larger flowgraphs have a greater

potential for reuse of sub-path expressions.

7 Discussion and Related Work

Besides Gaussian elimination with order O(n3) complexity, there are five elimination

algorithms known in literature: (1) Allen-Cocke interval analysis [1], (2) Hecht-Ullman

T1−T2 analysis [9], (3) Graham-Wegman analysis [6], (4) Sreedhar-Gao-Lee DJ graph

based analysis [21], (5) Tarjan interval analysis [23], (see [19] for a comparison of

the first four algorithms). Algorithms (1) to (4) are algebraic elimination-based algo-

rithms using substitution and loop-breaking. Only (5) is an elimination-based approach

using path expressions. Note the approach introduced in [20] is marginally related

to elimination-based algorithms because this approach detects standard structured

control-flow patterns, such as “if-then-else”, “begin-end”, or “while-do”, which is not

our concern.

Allen-Cocke interval analysis establishes a natural partition of the variables and a

variable order on each of a sequence of systems that, when used to order the equa-

tions, results in a highly structured coefficient matrix facilitating the equation-reduction

process. Hecht-Ullman T1−T2 analysis, Tarjan interval analysis, and Graham-Wegman

analysis avoid repeated calculations of common substitution sequences in the equations

by delaying certain computations. Sreedhar-Gao-Lee DJ graph based analysis employs

structural information of the so-called DJ graph, a union of the CFG and its dominator

tree, to find efficient substitution sequences.

Hecht-Ullman T1 − T2 analysis uses a nondeterministic substitution order for terms

in the equations; the substitutions are recorded in a height-balanced 2 − 3 tree to take

6 Our algorithms are highly-tuned C-algorithms.

214 B. Scholz and J. Blieberger

advantage of possible common factors in subsequent calculations. Tarjan interval analy-

sis establishes a linear variable order and eliminates variables from the system of equa-

tions in that order, delaying some calculations; a path compressed tree is used to remem-

ber sequences of reduced equations for these delayed calculations. Graham-Wegman

analysis establishes an order of substitutions for each term in the system that avoids du-

plication of common substitution sequence calculations. It uses a transformed version

of the original flowgraph to remember previous substitutions. By delaying computa-

tions, Sreedhar-Gao-Lee DJ graph based analysis can be made more efficient. In con-

trast to Tarjan interval analysis, the Sreedhar-Gao-Lee algorithm employs simple path

compression on the dominator tree.

Among the known elimination algorithms the best in terms of worst-case complex-

ity is Tarjan’s interval analysis algorithm, which balances the path compressed tree in

a preprocessing operation. This algorithm has a runtime of O(m log m) employing a

simple path compression scheme. By using a sophisticated data structure for path com-

pression a better upper bound of O(mα(m, n)) can be achieved. However, the simple

path compression scheme will outperform the sophisticated one for typical problem

sizes in program analysis.

Our algorithm is based on structural information of the decomposition tree. Thus it

is more similar to the Sreedhar-Gao-Lee algorithm than to the other algorithms. It uses

simple path compression employed on the decomposition tree to remember sequences

of reduced equations for delayed calculations. It is, however, easy to use Tarjan’s pre-

processing operation and a separate data structure to achieve a more efficient version of

our algorithm.

8 Conclusion

In this paper we introduced a new framework for elimination-based data flow analysis

using path expressions. Elimination-based frameworks are used for program analysis

problems [17, 18, 15, 5, 3, 4] that cannot be solved with iterative solvers. The framework

uses a new data structure called annotated decomposition trees (ADTs) that comprises

topological order, dominance relation, and the control flow. We presented a simple al-

gorithm and a delayed algorithm that employed annotated decomposition trees as a data

structure. The worst-case complexities of both algorithms are O(n2) and Õ(m).
We conducted experiments with the SPEC2000 benchmark suite. The delayed algo-

rithm runs 1.8 times faster than the simple algorithm and has 38.1% of the operators in

comparison with the simple algorithm.

Acknowledgement

We would like to thank Bernd Burgstaller, Shirley Goldrei, and Wei-ying Ho for their

useful comments and for proof-reading the manuscript. This work has been partially

supported by the ARC Discovery Project Grant “Compilation Techniques for Embed-

ded Systems” under Contract DP 0560190.

A New Elimination-Based Data Flow Analysis Framework 215

References

1. F. E. Allen and J. Cocke. A program data flow analysis procedure. Comm. ACM, 19(3):137–

147, 1976.
2. M. Bender and M. Farach-Colton. The lca problem revisited. In Proc. of Latin American

Theoretical Informatics, pages 88–94, 2000.
3. J. Blieberger. Data-flow frameworks for worst-case execution time analysis. Real-Time Syst.,

22(3):183–227, 2002.
4. R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of redundant computations. In

Proc. of PLDI, pages 1–14, 1998.
5. T. Fahringer and B. Scholz. A Unified Symbolic Evaluation Framework for Parallelizing

Compilers. IEEE TPDS, 11(11), November 2000.
6. S. L. Graham and M. Wegman. Fast and usually linear algorithm for global flow analysis. J.

ACM, 23(1):172–202, 1976.
7. D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. Siam J.

Comput., 13(2):338–355, May 1984.
8. M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland, New York, 1

edition, 1977.
9. M. S. Hecht and J. D. Ullman. A simple algorithm for global data flow analysis problems.

SIAM J. Comput., 4(4):519–532, 1977.
10. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages,

and computation, 2nd edition. SIGACT News, 32(1):60–65, 2001.
11. R. Joshi, U. Khedker, V. Kakade, and M. Trivedi. Some interesting results about applications

of graphs in compilers. CSI J., 31(4), 2002.
12. G. A. Kildall. A unified approach to global program optimization. In Proc. of Symposium on

Principles of Programming Languages, pages 194–206. ACM, ACM Press, 1973.
13. D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.

Addison-Wesley, Reading, Mass., third edition, 1997.
14. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM

Trans. Program. Lang. Syst., 1(1):121–141, 1979.
15. E. Mehofer and B. Scholz. A Novel Probabilistic Data Flow Framework. In Proc. of CC,

pages 37 – 51, Genova, Italy, April 2001. Springer.
16. M. C. Paull. Algorithm design: a recursion transformation framework. Wiley-Interscience,

New York, NY, USA, 1988.
17. G. Ramalingam. Data flow frequency analysis. In Proc. of PLDI, pages 267–277, New York,

NY, USA, 1996. ACM Press.
18. T. Robschink and G. Snelting. Efficient path conditions in dependence graphs. In Proc. of

ICSE ’02, pages 478–488, New York, NY, USA, 2002. ACM Press.
19. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM Computing

Surveys, 18(3):277–315, Sept. 1986.
20. M. Sharir. Structural analysis: A new approach to flow analysis in optimizing compilers.

Computer Languages, 5:141–153, 1980.
21. V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for elimination-based data flow

analysis using DJ graphs. ACM TOPLAS, 20(2):388–435, 1998.
22. R. Tarjan. Applications of path compression on balanced trees. J. of the ACM, 26(4):690–

715, Oct. 1979.
23. R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614, 1981.
24. R. E. Tarjan. A unified approach to path programs. J. ACM., 28(3):577–593, 1981.
25. O. Vernet and L. Markenzon. Maximal reducible flowgraphs. Technical Report RT029/DE9,

D. de Engenharia de Sistemas, Instituto Militar de Engenharia, Rio de Janeiro, Brasil, 1998.
26. O. Vernet and L. Markenzon. Solving problems for maximal reducible flowgraphs. Disc.

Appl. Math., 136:341–348, 2004.

216 B. Scholz and J. Blieberger

A Appendix

Definition 5. Path a = 〈(u1, u2), . . . , (uk−1, uk)〉 is connectable to path b = 〈(v1, v2),
. . . , (vl−1, vl)〉 if uk is equal to v1.

Definition 6

A · B =

{

⋃

a∈A

⋃

b∈B a · b, if a is connectable to b

∅, otherwise
(12)

Proof (Proof of Theorem 1). Proof by structural induction over the ADT. Each subtree

in the ADT represents a sub-flowgraph of the flowgraph.

Inductive Hypothesis: ∀u ∈ V : σ(P (r, u)) = Paths(r, u)
Basis: Both cases are trivially true by Proposition of Theorem 1.

Induction Step: The composition operation ⊕(F,B) (cf. Figure 2 and Def. 4) allows us

to break the paths of the composition into segments, as suggested in Figure 9. Note that

r1 becomes r after the composition. Path set Paths(r, r) is depicted in Figure 9(a). A

path in Paths(r, r) starts in r and uses a path in G1 as a sub-path to reach a node u ∈ F .

From node u ∈ F there exists an edge to node r2 by Def. 4. From node r2 a path in G2

is used as a sub-path to reach a node v ∈ B. By Def. 4 there exists an edge from v ∈ B
to r. Since a path may consist of several cycles we express the path set Paths(r, r) as

Paths(r, r) =
⋃

i≥0

[

⋃

u∈F

⋃

v∈B

Paths(r, u) · {〈u → r2〉} · Paths(r2, v) · {〈v → r〉}

]i

(13)

where the inner term describes for a concrete u ∈ F and v ∈ B all possible simple

cycles. Note that if set B is empty, the path set Paths(r, r) becomes ε because the inner

term reduces to an empty set and Kleene’s closure of the empty set yields ε, i.e. ∅0 = ε.

A node u ∈ V1 is described by path set Paths(r, r) concatenated by path set Paths(r1, u)
that is a path in G1 as illustrated in Figure 9(b). Therefore,

∀u ∈ V1 : Paths(r, u) = Paths(r, r) · Paths(r1, u). (14)

As depicted in Figure 9(c), a node v ∈ V2 can be described by the concatenation of a

path from r to r2 and a path in G2 from r2 to node v:

∀v ∈ V2 : Paths(r, v) = Paths(r, r) · Paths(r, r2) · Paths(r2, v) (15)

r u r2 v

(a) Paths(r, r), (∀u ∈ F, ∀v ∈ B)

r u r r2 v

(b) Paths(r, u), (∀u ∈ V1) (c) Paths(r, v), (∀v ∈ V2)

u1

r r2

uk

(d) Paths(r, r2)

Fig. 9. Piecewise description of path sets: dotted lines are paths; solid lines are edges

A New Elimination-Based Data Flow Analysis Framework 217

The paths of path set Paths(r, r2) are depicted in Figure 9(d). The possible paths from

Paths(r1, u) to r2 are merged:

Paths(r, r2) =
⋃

u∈F

Paths(r1, u) · {〈u, r2〉} (16)

It can be shown by an indirect argument (using Def. 4) that all paths from r to u ∈ V1

are contained in set Paths(r, u) of Equation 14 and that all paths from r to v ∈ V2

are contained in set Paths(r, v) of Equation 15. By using the inductive hypothesis we

transform Equation 13 to the following path expression:

Paths(r, r)=
⋃

i≥0

[(

⋃

u∈F

σ(P1(r1, u) · (u → r2))

)

·

(

⋃

v∈B

σ(P2(r2, v) · (v → r1))

)]i

(17)

=σ([X · Y]
∗
) = σ(L) (18)

Equations 14 and 15 are transformed as

∀u ∈ V1 : Paths(r, u) = σ(L) · σ(P1(r1, u)) = σ(L · P1(r1, u)) (19)

∀v ∈ V2 : Paths(r, v) = σ(L) · σ(X) · σ(P2(r2, v)) = σ(R · P2(r2, u)) (20)

where Paths(r, r2) =
⋃

u∈F σ(P1(r1, u) · (u → r2)) = σ(X).

A Declarative Framework for Analysis and

Optimization

Henry Falconer, Paul H.J. Kelly, David M. Ingram, Michael R. Mellor,
Tony Field, and Olav Beckmann

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, U.K.

p.kelly@imperial.ac.uk

Abstract. DeepWeaver-1 is a tool supporting cross-cutting program
analysis and transformation components, called “weaves”. Like an as-
pect, a DeepWeaver weave consists of a query part, and a part which
may modify code. DeepWeaver’s query language is based on Prolog,
and provides access to data-flow and control-flow reachability analy-
ses. DeepWeaver provides a declarative way to access the internal struc-
ture of methods, and supports cross-cutting weaves which operate on
code blocks from different parts of the codebase simultaneously. Deep-
Weaver operates at the level of bytecode, but offers predicates to extract
structured control flow constructs. This paper motivates the design, and
demonstrates some of its power, using a sequence of examples including
performance profiling and domain-specific performance optimisations for
database access and remote method invocation.

Introduction. Aspect-oriented programming tools, such as AspectJ [12], can be
used to implement performance optimizations. However, tools like AspectJ are
too weak, both to perform interesting optimizing transformations, and to capture
the conditions for their validity. Similar problems arise when using AspectJ for
static program analysis, e.g. to check usage rules for library code, or to detect
software defects. For many, this is a consequence of deliberate simplicity in the
aspect language design. This paper presents a prototype system which is powerful
enough to express complex analyses (and transformations) - yet, like an aspect
weaver, retains a declarative style by which some simplicity can be retained.
The tool is motivated and illustrated using a series of examples, including intra-
method performance profiling, and domain-specific optimizations for database
access and remote method invocation.

Example. We begin with a very simple motivating example, a domain-specific
performance optimisation for Java code that uses the JDBC (Java Database
Connectivity) library. Consider this Java fragment:

ResultSet staff = statement.executeQuery("SELECT * FROM employees");

ResultSet clients = statement.executeQuery("SELECT * FROM customers");

... complex and messy code that uses clients but not staff ...

S. Krishnamurthi and M. Odersky (Eds.): CC 2007, LNCS 4420, pp. 218–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Declarative Framework for Analysis and Optimization 219

The first “executeQuery” call is redundant since its result set “staff” is never
used. With DeepWeaver-1, we can write a weave that eliminates such redundant
calls; see Figure 1.

The query part of the weave is a subset of ISO Prolog, with a rich set of built-
in predicates to query properties of Java bytecode. When the query succeeds,
the value bound to the weave’s parameters (in this case “ExecCall”) are passed
to the Java action.

weave removeSelect(CodeBlock ExecCall):

method("ResultSet Statement.executeQuery(String)", ExecMethod),

call(ExecMethod, _, ExecCall, _),

assignment(Result, ExecCall, _),

\+ reaching_def(Result, _, _).

{

System.out.print("Removing redundant SELECT at ");

System.out.println(ExecCall.method);

ExecCall.remove();

}

Fig. 1. A complete DeepWeaver-1 weave to locate and remove “executeQuery” calls
whose results could never be used. The Java action is triggered for each instance of the
Prolog variable “ExecCall” for which the query succeeds. The \+ operator is Prolog’s
“not”, and in this example it succeeds if no match for the “reaching def” predicate can
be found.

How it works: The first step in Figure 1 is to find “ExecMethod”, the body of
the “executeQuery” method. Then we find a call to this method, “ExecCall”.
Then we find the assignment of “ExecCall”s return value to a variable “Result”.
Finally, we check that no reaching definition for “Result” can be found - that is,
that the value returned by the “executeQuery” call is not used. Note that the
SQL query string (String) cannot induce side effects, so the transformation is
always valid, provided no exceptions are thrown.

1 Contributions

This paper introduces the DeepWeaver-1 language design, and illustrates its
power using selected examples. The key contributions offered include:

– JoinPoints are CodeBlocks: the query part of a weave binds the weave para-
meters to CodeBlocks, which are contiguous regions of bytecode. The action
part of the weave can then operate on these CodeBlocks, removing, modify-
ing or replacing them. We show that this simple idea is remarkably effective.

220 H. Falconer et al.

– Structured control flow is rendered as predicates, which yield CodeBlocks.
Thus, we operate on a low-level intermediate representation, yet can analyse
code in structured, source-code terms - independently of source code details.

– Actions can operate on CodeBlocks from different parts of the codebase
– thus, weaves can be truly “cross-cutting”. The parameters bound by an
action’s query may refer to CodeBlocks gathered from disparate parts of the
codebase.

– DeepWeaver-1’s “interjections” provide a way for an action to inline ad-
vice before, after, around or instead of any CodeBlock. Interjections provide
typed templates which can be bound to free variables at the context of
use. Interjections can, furthermore, be specialised by replacing placeholder
method calls.

– We introduce, motivate and demonstrate these concepts by means of a series
of example applications. We conclude with a critical evaluation of the success
of the work.

2 Background

Our primary motivation has been to build performance optimisation tools, in par-
ticular tools which embody domain-specific performance optimisation expertise.
We have found AspectJ a remarkably valuable tool for building extensible profil-
ers. We have also explored “domain-specific optimisation components” - which ap-
ply performance optimizations automatically. Our experience has been extremely
positive: using AOP techniques has the potential to reduce dramatically the com-
plexity of such software. It has also been frustrating; our requirements stretch the
capabilities of conventional aspect languages. This paper reports on our first at-
tempt to build a tool that does what we want.

We are not the first to explore these ideas. AspectJ extensions such as trace-
match [4] and dataflow pointcut [15] cover some of the same ground. Meanwhile
quite a number of tools have used Prolog or Datalog to query the codebase
[9,13,18]. We review these and other work from the literature, and contrast them
to DeepWeaver-1, in Section 5.

3 The Design of a Deeper Weaver

Program Representation. A key feature of our design is our decision to
operate on a low-level intermediate representation (our implementation is built
on SOOT [17]). A common alternative is to work with the abstract syntax tree
(AST), and many successful tools do this [19,7,6,8]. This supports transformation
by pattern-matching and tree rewriting very easily. However, our experience has
been that more complex and interesting transformations are not easily expressed
this way. Some support for this view will, we believe, be provided by examples
presented later in this paper.

A Declarative Framework for Analysis and Optimization 221

weave loopWithNoYield(CodeBlock Loop):

method("* Thread.yield()", YieldMethod),

loop(Loop),

searchForCall(Loop, Loop, YieldMethod, TargetIfFound),

null(TargetIfFound).

{

System.out.print("Found a loop not broken by a yield() call in ");

System.out.println(Loop.method);

}

Fig. 2. This weave finds loops which are not broken by a call to the yield method
(as might be required in a non-pre-emptive threading context). The loop predicate
matches all loops, whether arising from Java’s while, do..while or for constructions.
The searchForCall predicate finds the targets of all calls to the specified method
between two points, and yields null if a path with no call exists.

Predicates Capture Control Structure. An AST makes it easy to match
structured control-flow constructs such as loops. However, you need a rule for
each loop type (or perhaps introduce a hierarchy of node subtypes). Using Prolog
(or Datalog) predicates to characterise loops accounts for this rather neatly. For
example, in Figure 2, the predicate loop matches all control-flow cycles.

CodeBlocks. DeepWeaver predicates are used to identify program constructs,
which can then be operated on in the Java action part of the weave. This is
done using CodeBlocks. A CodeBlock is a contiguous, non-empty sequence of
bytecode.

Since Java only has structured control-flow, control flow constructs can be
represented faithfully as CodeBlocks.

To avoid the confusion caused by stack instructions, CodeBlocks are rep-
resented using the SOOT “Jimple” intermediate representation [17]. For many
common uses of DeepWeaver, the programmer need not be concerned with details
of the SOOT representation, and we discourage programmers from operating at
that level.

In the Java part of a weave, the programmer has access to the CodeBlocks
passed in from the Prolog query part. We have imposed no limit to the possi-
ble transformations that can be applied. However, there are common operators
which are “safe”, in that they cannot yield invalid bytecode control flow when ap-
plied to well-formed CodeBlocks1. These include cb.remove(), cb.interject-
Before() and cb.interjectAfter(). As we shall see in the next section, these
allow code to be inserted at any specified point.

1 In the current implementation, we do have some predicates that can create non-well-
formed CodeBlocks (such as the LHS of an assignment).

222 H. Falconer et al.

aspect counters

{ // table of counter variable ids for each method

static Hashtable counterLocals = new Hashtable();

// first, a weave to add a counter variable to all methods

weave addCounterVariable(SootMethod Method):

method("* *(..)", Method).

{

DeepWeaverClass targetClass = DeepWeaverClass.classFromMethod(Method);

Local myCounter = targetClass.insertLocalIntoMethod(Method,

IntType.v());

counterLocals.put(Method, myCounter);

}

// now, a template for the code to insert

interjection incrementCounter(int counter) {

counter += 1;

}

// Insert the code at each access to an object of class C

weave countAccesses(CodeBlock Access):

assignment(Access, Rhs, Assignment), type(Access, "C").

{

InterjectionPrototype incCode

= Interjection.getInterjectionByName("counters.incrementCounter")

.makePrototype();

// Create one-element parameter list for interjection

List params = new ArrayList();

Local myCounter = (Local)counterLocals.get(Access.method);

params.add(myCounter);

// Insert the parameterised interjection

Access.interjectBefore(incCode, params);

} }

Fig. 3. This aspect consists of two weaves, applied one after the other. The first adds
a counter variable to each method. The second inserts code to increment the counter
wherever an object of class C is updated. The interjection is a template whose bytecode
is inserted at each insertion point. It is parameterised with the id of the counter variable.

Interjections. Interjections are templates for code that is to be inserted. A
simple example is shown in Figure 3. The body of the interjection is copied
directly at the specified location. Thus, in this example, it is the context’s copy
of the counter variable that is incremented. We discuss type safety of interjection
parameters in Section 4.3.

Structure of a DeepWeaver Aspect. A DeepWeaver aspect consists of a
sequence of weaves, together with definitions of interjections, helper predicates,
and helper methods in Java. Each weave consists of a Prolog “query” part,
followed by a Java “action” part.

A Declarative Framework for Analysis and Optimization 223

aspect placeholders {

interjection maybeCall() {

if (Math.random() < 0.5) {

Interjection.PLACEHOLDER_METHOD_FT(0);

} else {

System.out.println("Call omitted to reduce load");

} }

weave chickenOut(SootMethod Method, CodeBlock Target,

CodeBlock Location, List Params):

method("static void C.*()", Method),

call(Method, Target, Location, Params).

{

InterjectionPrototype ip

= Interjection.getInterjectionByName("placeholders.maybeCall")

.makePrototype();

ip.replaceMethodCall(0, null, Method, Params);

Location.replace(ip, Params);

} }

Fig. 4. This example shows the use of an interjection placeholder method. This weave
rewrites calls to (static, void, parameterless) calls of class C, so they are omitted ran-
domly. The method being called, Method, is substituted into the interjection.

The action part of a weave is executed once for each successful match of the
query part.

Weave Composition. Weaves are applied to the target program in the se-
quence they appear in the aspect. Each weave is applied across the whole code-
base, before the next begins.

Actions change the codebase. To avoid chaos, updates to the codebase are not
executed immediately, during execution of the action. Instead, the implementa-
tion defers changes until all query matching has been completed. Thus, queries
always apply to a consistent, static view of the codebase — and CodeBlocks
always refer to what they were bound to.

Note that interjections provide a mechanism for “code quoting”. However, it
is substitution into quoted code that is often tricky in metaprogramming sys-
tems. Figure 4 shows our current solution. The interjection calls a special sta-
tic method, Interjection.PLACEHOLDER METHOD FT(0). We replace this with
the method we need to call using “ip.replaceMethodCall(0, null, Method,

Params)”. Each placeholder is numbered, from zero.

4 Evaluation

To evaluate the effectiveness of the DeepWeaver-1 design, we present two exam-
ple optimisations that we have developed. In section 4.3 we review the results of
these case studies.

224 H. Falconer et al.

predicate columnUsed(CodeBlock Target, CodeBlock Column):

// Find program points where Target is used

reaching_def(Target, Use, false),

// Check that use is subject of a "get"

call("* ResultSet.get*(String)", Use, Location, ColumnArgs),

encloses(Location, Use),

// Get parameter value, i.e. column name

member(ColumnArg, ColumnArgs),

local_constant_def(ColumnArg, Column).

}

Fig. 5. To rewrite the “select” query to specify the columns needed, we need to track
down which columns will be accessed. We need to trace all possible control paths, and
find where the ResultSet is used. Each use involves a “get” method, whose parameter
is the name of the column being accessed. We need to collect all these names. It may
be that the ResultSet escapes (by being returned, or passed as a parameter) — in
which case we give up. Reaching def’s third parameter reflects whether the definition
escapes from the current method; set to “false” ensures the predicate fails if we are
unable to track down all the uses.

weave refineSelectQuery(CodeBlock QueryString, List Columns):

// Find JDBC execute() call site

method("ResultSet Statement.executeQuery(String)", ExecMeth),

call(ExecMeth, _, ExecCall, QueryStringLocal),

// Find variable to which result is assigned

assignment(Target, ExecCall, _),

// Find the query string (from the method’s constant pool)

member(QSLocal, QueryStringLocal),

local_constant_def(QSLocal, QueryString),

// Collect set of Column strings used to access the ResultSet

findall(Column, columnUsed(Target, Column), Columns).

{

// (Assume for brevity that it is a SELECT * and Columns is not empty)

// Create new query String from list of Columns to select

// (definition omitted for brevity)

String newQuery = makeNewQuery(QueryString, Columns);

// Replace existing string constant with new query string

QueryString.replaceValue(StringConstant.v(newQuery));

}

Fig. 6. A weave to implement the “select *” optimisation. We use Prolog’s “findall”
to collect all the columns accessed, using the predicate in Figure 5.

A Declarative Framework for Analysis and Optimization 225

4.1 The “Select *” Optimisation

Many common tutorial introductions to using the Java Database Connectivity
(JDBC) library begin with code like this:

ResultSet r = s.execute("select * from employee");

while (r.next()) {

String col1 = r.getString("Name"); // Get column 1

}

This is inefficient; we found, for example, that with a 10-column table, it is about
twice as fast to select just the one column that is being used:

ResultSet r = s.execute("select Name from employee");

while (r.next()) {

String col1 = r.getString("Name"); // Get column 1

}

To implement this in DeepWeaver-1, we need to find the columns being ac-
cessed, as illustrated in Figure 5. The DeepWeaver predicate to do this collects
the set of parameters of get methods applied to the result set returned by the call
to the execute method. Figure 6 shows how this is used to rewrite the original
query to specify the columns needed.

void m(RemoteObject r, int a)

{

int x = r.f(a);

int y = r.g(a,x);

int z = r.h(a,y);

System.out.println(z);

}

Client Server

f

g

h

Network

Client Server

f

g

h

Network

Six messages Two messages, no
need to copy x and y

a

x
a,x

y
a,y

a,z

a

z

Fig. 7. A sequence of three method calls on a remote object “r” results in three call-
return round-trip network transactions. Furthermore, parameter “a” is transferred sev-
eral times, and also results “x” and “y” are returned unnecessarily. The aggregated
implementation suffers fewer network latencies and transfers less data.

4.2 The RMI Aggregation Optimisation

Java’s Remote Method Invocation (RMI) mechanism is convenient but if used
carelessly results in unnecessary communication. Figure 7 illustrates the poten-
tial value of aggregating RMI calls. We have built several implementations of
this optimisation [21]. Correctness issues for the optimisation are quite subtle; a
formal analysis is given in [2].

226 H. Falconer et al.

Consider an RMI call A, followed by some intervening code, then a second
RMI call B. Our approach to RMI aggregation is to consider whether RMI call
A can be relocated so that it can be combined with the later call, RMI B.

predicate isAggregatableRMIPair(CodeBlock CallA, CodeBlock CallB,

List ParamA, List ParamB, CodeBlock ResultOfA):

// A and B are distinct RMI calls, and A precedes B:

call(RemoteMethodA, RemoteObjectA, CallA, ParamA),

type(RemoteObjectA, "java.rmi.Remote"),

precedes(CallA, CallB), CallA \= CallB,

call(RemoteMethodB, RemoteObjectB, CallB, ParamB),

type(RemoteObjectB, "java.rmi.Remote"),

dominates(A,B), post_dominates(B,A),

// If A or B is in a loop they’re both in the same one:

forall (loop(Loop),

((encloses(Loop, CallA), encloses(Loop, CallB)

); // OR

(\+ encloses(Loop, CallA), \+ encloses(Loop, CallB)

))),

// A’s result is not used before B

assignment(ResultOfA, CallA, _),

\+ (reaching_def(ResultOfA, UseOfResult, _),

precedes(UseOfResult, CallB)

),

// Assignments between A and B do not have externally-visible effects:

\+ (between(CallA, OnPath, CallB, false),

assignment(Lhs, Rhs, OnPath),

externally_visible(Lhs)

),

// No method or constructor calls can occur between call A and call B:

\+ (between(CallA, Location, CallB, false),

call(Method, Target, Location, Params),

\+ side_effect_free_method(Method)).

Fig. 8. A predicate to test the validity of RMI aggregation

RMI Aggregation validity conditions. The conditions under which this is
valid are encoded in Figure 8. In summary, this states:

– A and B are distinct RMI calls, and A precedes B.
– All paths to B go through A, that is, “dominates(A,B)”)
– All paths from A go through B (“post dominates(B,A)”)
– If A or B is in a loop they’re both in the same one.

Note that the forall predicate succeeds when all instances of Loop satisfy
the condition. In Prolog, “;” is logical “or”; recall that \+ is “not”).

– A’s result is not used before B

A Declarative Framework for Analysis and Optimization 227

– Assignments on paths between A and B do not have externally-
visible effects. This is necessary for two reasons: firstly, another thread
might observe changes to externally-visible objects out-of-order relative to
the state of the remote server. Secondly, if call A throws an exception, the
intervening code will already have been executed — so we must ensure it
has no effects visible in or beyond the exception handler.

The “false” parameter to between ensures we find all assignments OnPath
that might be reached. The definition of “externally visible” could be
very sophisticated; a simple implementation would check that the LHS is a
local variable with no escaping uses prior to call B.

– No method or constructor calls can occur between call A and call

B – apart from those known to be side-effect free. This is required
because DeepWeaver’s analysis is currently not inter-procedural. In our pro-
totype implementation we treat simple String operations as side-effect free
in order to allow aggregation in the presence of simple code to prepare string
parameters.

This example has been simplified for presentation purposes. In particular we
have only considered the case where A returns a result but B does not.

RMI Aggregation Implementation. The conditions for validity of the RMI
aggregation optimisation, listed above, can easily be assembled to form a Deep-
Weaver predicate for the query part of the weave:

isAggregatableRMIPair(CallA, CallB, ParamA, ParamB,

ResultA, ResultB)

The action part of the weave is sketched in Figure 9. The code required to do this
is somewhat involved. First we delete call A. We need to identify any parameters
common to the two calls, and to check for where the result from call A is used as
a parameter to call B. We then need to construct the body and formal parameter
list for the aggregate call, which is inserted into the server class (if the target
object’s type is actually an interface, we need to insert the code into all classes
that implement it). Finally, we need to construct the actual parameter list for
the call to this new method, which replaces call B.

4.3 Evaluation: Discussion

Performance: Weave-Time. The time taken to apply a weave to a codebase
depends, of course, on the weave itself. To evaluate this, we created an artificial
benchmark generator creating simple candidates for the RMI aggregation op-
timisation. Applying the RMI aggregation weave to 100 such classes takes less
than 20 seconds.

It is quite possible to write predicates which are extremely inefficient (for
example, queries involving all control flow paths in a method). Although this
has not yet proven a serious concern, the worst-case behaviour could be very
poor.

228 H. Falconer et al.

weave rmiResultForwarding(

CodeBlock CallA, CodeBlock CallB,

List ParamA, List ParamB,

CodeBlock ResultA, CodeBlock ResultB)

isAggregatableRMIPair(CallA, CallB, ParamA, ParamB, ResultA, ResultB).

{

...Remove call A.

...Create new server method, to implement the aggregated call.

...Insert it into each potential callee class.

...Replace call B with call to the new aggregated method.

}

Fig. 9. Outline of implementation of RMI aggregation. The implementation is too
complicated to include here, mainly due to the necessary manipulation of parameter
lists for the new aggregated method.

Performance: Execution Time. There is no performance overhead for code
inserted using interjections (for example in Figure 3 where interjected code in-
crements a counter). The bytecode is inlined directly. The performance imporve-
ment that can be achieved by changing the code base obviously depend on the
nature of the transformations specified by the Deepweaver actions. For example,
we have found that the “Select *” optimisation can easily yield a factor of two
reduction in query execution time (MS SQL Server, using one column from a 10
column table). The value of the RMI aggregation optimisation depends on the
network performance, and the amount of redundant data movement that can be
avoided. The performance improvements of the optimisation were evaluated in
our earlier work, which used a run-time framework with higher overheads [21].

The Query Language and Program Model. DeepWeaver’s design centres
on the use of Prolog predicates to identify CodeBlocks within a low-level three-
address-code IR. Many interesting applications are expressed quite naturally this
way. Some are difficult. For example, a transformation that interchanges a pair
of nested loops: this is easy to express as rewriting in an abstract syntax tree.
With DeepWeaver the loop (excluding its body) is not a contiguous block.

Queries are not always easy to write or to understand. We are developing
idioms for common situations, and aim to support them with more built-in
operators – for example to express regular expressions over paths [11].

The separation between query and action parts can sometimes be awkward,
since some queries need to use Java (for example to query a software configura-
tion description). Also, actions commonly need to issue followup queries.

A key design decision was whether to build our own Prolog engine. The al-
ternative would be to export the code factbase into an external Prolog engine,
or to implement the Prolog primitives as calls from Prolog to Java. We made
this decision in order to retain control over query execution, and we plan to ex-
plore query optimisation. The disadvantage is that our Prolog implementation

A Declarative Framework for Analysis and Optimization 229

is partial, and there would be advantages in exploring the use of the full power
of Prolog, perhaps including constraint Prolog.

As it stands our Prolog implementation is very restrictive; we lack terms,
higher-order and non-declarative features.

The Action Language. DeepWeaver resembles AspectJ (and is built as a pure
extension of the AspectBench compiler for AspectJ [3]). In AspectJ, the Java
“advice” is inserted at the selected joinpoint. In DeepWeaver, we don’t have a
joinpoint - we have a set of bindings for the query predicate’s parameters. This
is passed to the Java action part, which is executed at weave time.

This gives us considerable expressive power, which we need for complex ex-
amples like RMI aggregation. However it makes some tasks much more difficult
and more prone to error. A key area for enhancement is to introduce a more
refined type system that distinguishes different kinds of CodeBlock – essentially
we need to expose SOOT’s Jimple IR more explicitly.

The Interjection Mechanism. DeepWeaver’s interjections provide a means to
create a bytecode template that can be parameterised and then inserted into the
codebase. A key weakness is that we cannot check that actual parameter types
match formal parameter types. Note also that interjections are naturally used in
a polymorphic way – this is what we need, for example, in the RMI aggregation
example, where the type of the aggregated method depends on the type of the
original methods. We also need to take care with exceptions: if interjected code
might throw an exception, the host code must be able to handle it.

Another weakness is that only interjections can be used as prototypes - we
commonly wish to move or duplicate CodeBlocks. To handle this we need to
account for a CodeBlock’s free variables and ensure inserted code’s variables are
bound properly.

5 Related Work

Query Languages for Code. DataLog, a similarly restricted, declarative form
of Prolog, has been adopted by several projects. JQuery [20] and CodeQuest [9]
use it to query the Eclipse [16] IDE’s abstract syntax tree. CrocoPat [5] uses it
for design pattern recovery and metrics. Bddbddb [13] is closer to our work in op-
erating at the bytecode level, and supports intra- and inter-procedural dataflow
analyses. CrocoPat and bddbddb include substantial query optimisation.

Transformation and Rewriting. AspectJ [12] provides a join point model
for matching points in Java code, at which new code will be inserted before
and/or after. A code matching query is restricted, for comprehensibility reasons,
to various predefined code points (e.g. method call) but allows flexibility in
identifier and type matching. Aspicere [1] tries to work around the restrictions
in the joinpoint model when applied to C using a Prolog-like query language.

230 H. Falconer et al.

Many IDEs support refactoring program transformations initiated by the user.
JunGL [18] is an interesting refactoring scripting language, quite comparable to
DeepWeaver-1, that uses Datalog queries embedded within an ML-based lan-
guage.

TXL [6] and Stratego [19] are very general and powerful tools for source-
code transformation. They both provide a mechanism to specifying grammars,
pattern matching and rewriting. Stratego supports strategies to control rewrite
order, and dynamic rules for context sensitive rewrites.

Establishing the soundness of optimizing program transformations is an issue
that we have not dealt with formally in this paper. Soundness has been addressed
in other contexts, however, for example Rhodium [14], which is a domain-specific
language for specifying program analysis and transformation in the context of a
C-like intermediate language.

6 Conclusions and Further Work

DeepWeaver-1 is a prototype tool which shows considerable promise:

– It provides a delivery vehicle for domain-specific performance optimisation
components. DeepWeaver aspects package together a declarative statement
of the conditions for validity of an optimisation (the “query part”), with the
implementation of the transformation (the “action part”).

– DeepWeaver-1’s low-level IR, and the role of CodeBlocks as the focus for
queries, works remarkably well when combined with the power of a Prolog-
like query language. Prolog predicates allow structured control flow to be
captured where it is needed, whilst also supporting control-flow and data-
flow–based reasoning. These are often useful for characterising the validity
of optimisations.

– We have demonstrated the power of the approach using a small number of
application examples.

There remain many challenges in developing these ideas. We plan two major
directions for further work:

1. Enhancing the query language. We need to clarify the rendering of the IR in
the query language, and refine the type system. We also need to support user-
definable data-flow analyses in an elegant and expressive way (bddbddb [13]
is promising in this regard). Similarly, and likely by this means, we need
to handle inter-procedural analysis. Key to these is query optimisation. We
may also extend the query language conceptually to handle CodeBlocks with
holes, free variables, and to represent “slices” of dependent instructions.

2. Enhancing the static safety and expressiveness of the action language. Our
goal is to attain a statically-verifiable guarantee that a weave cannot generate
a “broken” codebase: basic safety properties such as stack balance, name
clashes, initialised and bound variables (see, for example, SafeGen [10]).
Central to this is to support type-checked parameterisation of interjections,
and to check that the free variables of cloned CodeBlocks are bound to
variables of the right type when they are interjected.

A Declarative Framework for Analysis and Optimization 231

Acknowledgments. This work was supported by the EPSRC SPOCS grant
(EP/E002412), EPSRC PhD studentships, and by an IBM Faculty Award.

References

1. Bram Adams and Tom Tourwé. Aspect orientation for C: Express yourself. In
AOSD SPLAT Workshop, 2005.

2. Alexander Ahern and Nobuko Yoshida. Formalising Java RMI with explicit code
mobility. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming, systems, languages, and applications, pages
403–422, New York, NY, USA, 2005. ACM Press.

3. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Bruno Dufour, Christo-
pher Goard, Laurie Hendren, Sascha Kuzins, Jennifer Lhotḱ, Ondrej Lhotḱ, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, Julian Tibble, and Clark Verbrugge.
ABC the AspectBench compiler for AspectJ: A workbench for aspect-oriented pro-
gramming language and compilers research. In OOPSLA ’05: Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 88–89, New York, NY, USA, 2005. ACM Press.

4. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables to AspectJ. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 345–364, New York, NY,
USA, 2005. ACM Press.

5. Dirk Beyer and Claus Lewerentz. CrocoPat: Efficient pattern analysis in object-
oriented programs. In Proceedings of the 11th IEEE International Workshop on
Program Comprehension (IWPC 2003, Portland, OR, May 10-11), pages 294–295.
IEEE Computer Society Press, Los Alamitos (CA), 2003.

6. James R. Cordy, Charles D. Halpern-Hamu, and Eric Promislow. TXL: a rapid
prototyping system for programming language dialects. Computer Languages,
16(1):97–107, 1991.

7. Kei Davis and Daniel J. Quinlan. Rose: An optimizing transformation system for
C++ array-class libraries. In ECOOP ’98: Workshop on Object-Oriented Technol-
ogy, pages 452–453, London, UK, 1998. Springer-Verlag.

8. Dawson R. Engler. Incorporating application semantics and control into compi-
lation. In USENIX Conference on Domain-Specific Languages (DSL’97), pages
103–118. USENIX, 1997.

9. Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable source
code queries with datalog. In Dave Thomas, editor, ECOOP’06: Proceedings of
the 20th European Conference on Object-Oriented Programming, volume 4067 of
Lecture Notes in Computer Science, pages 2–27, Berlin, Germany, 2006. Springer.

10. Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically safe program
generation with SafeGen. In GPCE, pages 309–326, 2005.

11. David Lacey, Neil Jones, Eric Van Wyk, and Carl Christian Frederikson. Proving
correctness of compiler optimizations by temporal logic. Higher-Order and Symbolic
Computation, 17(2), 2004.

12. Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA, 2003.

232 H. Falconer et al.

13. Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzin-
tars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program
analysis as database queries. In PODS ’05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
1–12, New York, NY, USA, 2005. ACM Press.

14. Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules. In POPL
2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 364–377, New York, NY, USA, 2005. ACM Press.

15. Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented
programming. In The First Asian Symposium on Programming Languages and
Systems (APLAS’03), volume 2895 of Lecture Notes in Computer Science, pages
105–121. Spinger-Verlag, November 2003.

16. The Eclipse Foundation Inc. The Eclipse extensible development platform.
17. Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,

and Phong Co. SOOT - a Java optimization framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

18. Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a scripting language
for refactoring. In ICSE ’06: Proceeding of the 28th international conference on
Software engineering, pages 172–181, New York, NY, USA, 2006. ACM Press.

19. Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
216–238. Springer-Verlag, June 2004.

20. Kris De Volder. Jquery: A generic code browser with a declarative configura-
tion language. In Pascal Van Hentenryck, editor, PADL ’06: Eighth International
Symposium on Practical Aspects of Declarative Languages, volume 3819 of Lecture
Notes in Computer Science, pages 88–102. Springer, 2006.

21. Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java RMI programs by
communication restructuring. In Proceedings of the ACM/IFIP/USENIX Inter-
national Middleware Conference 2003, Rio De Janeiro, Brazil, 16–20 June 2003,
LNCS, June 2003.

Author Index

Ayyagari, Ravi 16

Baker, Jason 64
Barik, Rajkishore 141
Batchelder, Michael 96
Batory, Don 156
Beckmann, Olav 218
Blieberger, Johann 202
Bond, Michael D. 80

Cherem, Sigmund 172
Cho, Doosan 16
Cunei, Antonio 64

Falconer, Henry 218
Field, Tony 218
Fireman, Liza 1

Govindarajan, R. 32, 126
Grund, Daniel 111

Hack, Sebastian 111
Han, Hwansoo 187
Hendren, Laurie 96

Ingram, David M. 218

Jeon, Jinseong 187

Kelly, Paul H.J. 218

Lee, Byeongcheol 80

McKinley, Kathryn S. 80
Mellor, Michael R. 218

Nagarakatte, Santosh G. 126

Paek, Yunheung 16
Paz, Harel 48
Petrank, Erez 1, 48
Pizlo, Filip 64

Resnick, Kevin 80
Rugina, Radu 172

Sarkar, Vivek 141
Scholz, Bernhard 202
Shin, Keoncheol 187
Shyam, K. 32

Uh, Gang-Ryung 16

Vitek, Jan 64

Zaks, Ayal 1

