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Preface

Each chapter in this book has an introduction, the first section. But there
is no introduction to the book itself. So, let me use the mask of the Preface
for this purpose. Of course, a plain introduction to the book is just to
place the book in your hand; but while you are reading it, you yourself
have already done that. Well done!

This is the way I will be talking to you throughout. I will ask you to
do exercises on the spot, often waiting for you up to some point, and then
give you a hint to proceed. It is something like the following commercial
for the book:

I would like to ask you three questions, would you answer them
with a plain ‘Yes’ or ‘No’?

Good, you have answered ‘Yes’, whatever be the reason. But
see, that was my first question. Would you answer the same to
the second as to the third?

Very good, you have answered ‘Yes’ again; of course, it does
not matter. If you have not bought a copy of this book, are you
going to buy it soon?

Look, if you have answered ‘Yes’ to the second question, you
are also answering ‘Yes’ to the third, and if you have answered
‘No’ to the second, you are not answering ‘No’ to the third, i.e.,
your answer to the third is undoubtedly, ‘Yes’. Excellent. That
is the end of the commercial.

You have participated well in the commercial; I hope you will be with
me throughout. It is easy to learn logic and easier to teach it; that is the
spirit of this book. I would not reveal what is logic; you will discover it
eventually. My aim is to equip you with the logical methods so that when
you take up computer science as your profession, you will feel like a fish in
water. A warning: though the book is ideal for self-learning, it would not
replace a teacher. At least on one count: you can ask a question to your
teacher and, hopefully, he1 will give you an answer, or you will be inspired

1The masculine gender is used throughout the book not because of some chauvinistic
reasons, as it is easy to do that. It is easy to write ‘he’ rather than ‘she’ or ‘one’ or ‘a
person’ or ‘a human being’ etc. You need not be offended by it.

v



vi Preface

by him for finding your own answer; the book cannot do that always.
If you are a teacher, you may not need to learn all the topics, for

you had probably learnt them. But you can really teach logic better by
helping your students in the exercises. You can supplement the book with
more computer science applications which I had to omit, for it is already
a somewhat lengthy book. It is ideal for a two-semester course for not
so advanced students. But you can cover it in one semester2 by omitting
certain proof procedures.

In Chapter 1, you will find the logic of statements. The approach is
semantic. The semantic considerations give rise to the calculational method
of proof quite naturally. Calculations have been used very informally for
proving valid formulas just as you solve problems in school algebra. All
the metaresults have been discussed except compactness. That is done via
proof theory, again, for ease. In Chapter 2, a similar approach is taken for
the logic of predicates or relations, more commonly known as the first order
logic. The first order logic discussed here includes the equality relation, and
no preference is given to one without equality, because applications demand
it. This chapter also deals with the Herbrand’s theorems without waiting
for the resolution method. The resolution method is the topic of Chapter
3. Chapter 4 is exclusively meant for various proof techniques. In a one-
semester course, you may go for only one proof method. Or, you may
do one of the proof methods formally in detail and present others in one
lecture each.

In Chapter 5, you come across a fundamental area of computer science,
the program verification. It is also one of the most useful applications of first
order logic. You should not stop just after that; you must hunt for some
more materials and pursue the topic a bit further. You must have a similar
approach to the model checking algorithms that have been introduced in
Chapter 6 as an application of modal logics. This chapter gives a very
comprehensive account of modal logics used in computer science. It does
cover the essential ingredients leaving one: decidability issues, for which
you may look through the References. Similarly, Chapter 7 introduces the
so-called nonstandard logics which are upcoming, but not entirely new.
We discuss only those nonstandard logics that have general frameworks
yet; the list is not exhaustive. You are led through the chapters towards
logic engineering, an activity that is becoming increasingly important in
current research in computer science.

The approach of the book is mathematical, in the sense that it involves
a continual interplay between the abstract and the concrete. The yearning
for understanding the concrete phenomena gives rise to abstractions and to

2It takes around 60 lectures to complete the book. In fact, it is developed from my
notes for a logic course offered to Engineering undergraduates at IIT Madras taking
theoretical computer science as their minor subject. Some of the postgraduate students
in Mathematics also credit the course as an elective.
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understand the abstract, concrete phenomena are a necessity. The typical
feeling in any concrete problem is that when you abstract it, an existence
of a solution is an opaque mystery. The concrete problems do not come
with a label that such and such method would be applicable. It is you
who may think of applying an existing method to solve it. Often, patient
and continuous involvement with the problems help you to gradually gain
insight, leading to a solution. So, be patient and persistent, rely on yourself
as far as possible; start the journey now.

I have to pause here for a second. I would like to thank all those who
have made this happy journey of yours possible. Though the book has
taken shape now, there has been a continual effort throughout. There
must be many good reasons for this, the most basic of all these being my
interest in higher studies. I thank my parents and my school teacher Mr.
Rupakar Sarangi who nourished me physically and mentally by keeping me
fit for higher studies. I thank my wife Archana for continuing in a simi-
lar vein after our marriage. She, along with my children, Anindya Ambuj
and Ananya Asmita, did suffer a lot due to my post-marriage engagement
with this book. I thank them for their patience and encouragement. I
am indebted to my friend and logic tutor Professor Chinmoy Goswami
of the University of Hyderabad. My students helped me considerably to
learn logic; in a way, this book is a reward for that. I thank my colleague
Dr. M. Thamban Nair of IIT Madras for encouraging me to bring out the
book from some scratches on a note book. I also thank the Publishers,
Prentice Hall of India, particularly, Mr. K. C. Devasia for his expert guid-
ance and the production team for their assistance.

Any constructive suggestions for improving the contents would be most
welcome. These may be emailed to me at asingh@iitm.ac.in.

Arindama Singh
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Propositional Logic

1.1 Introduction

Logic is all about how an object follows from other objects. In Proposi-
tional logic, our objects are propositions such as

Bapuji was indeed a Mahatma.

The title of a book on logic could be mis-spelt.

Five men cannot have eleven eyes.

Buddha’s original name was Arindama.

Alexander the great did not set foot in India.

The woman who committed the crime did not have three legs.

No bachelor is married.

Some unmarried men get married.

Propositions are declarative sentences which may be asserted to be true
or false. It is quite possible that you may not be able to say for certain
whether a given proposition is true (or false), without going to its meanings
or external factors. But that does not really matter. All that we need is
that it is either true or false. The so-called conjectures or open problems
are propositions, the truth of which you do not know yet. For example,
Goldbach’s conjecture: “Every even number bigger than 2 is a sum of two
prime numbers”, or the P 6= NP: “There is at least one nondeterministic
polynomial time solvable problem which is not deterministic polynomial
time solvable”. As of now, we do not have any way of showing the truth or
falsity of these propositions. However, each of them is either true or false.

Note that we are not defining here what a proposition is. In fact, we
will not even attempt to do so. We are only getting familiarized with the
kind of objects in question.

The sentences which are not propositions include questions, orders, ex-
clamations, etc., for which we may not like to associate a truth value. We
do not know how to say whether “Are you OK?” is true or false. Similarly,
we may not assert that “How beautiful is the morning sky!” is true.

Our building blocks here are propositions; we will not try to go beyond
them. It is not our concern to determine whether ‘each bachelor is married’,

1



2 Propositional Logic

for we do not know the meanings of the words uttered in the proposition.
This is so because our units here are propositions and nothing less (or
more). However, we seem to know that two propositions such as “I know
logic” and “You know logic” can be composed to get another proposition
such as “I and you know logic”. We are only interested in propositions
and how they are composed to yield other propositions. This is what we
mean when we say that propositions are our building blocks. Thus we are
interested in the forms rather than the meanings of propositions. Since
propositions can be true or false, we must know how to assign truth values
to the compound propositions.

If indeed I like logic and you like logic, then we must agree that the
proposition “I and you like logic” is true. But what about the proposition “I
like logic and you like logic or you do not like logic”? This is problematic, for
we do not know exactly how this compound proposition has been composed
of or formed. We do not know which way to parse it:

(I like logic and you like logic) or (you do not like logic)
OR

(I like logic) and (you like logic or you do not like logic)

We must use some such device, say, use of parentheses for disambiguat-
ing compound propositions. Further, we must know the connectives like
‘and’, ‘or’, as used above. It is enough to start with some commonly used
connectives. If need arises, we will enrich our formalization later by adding
new ones. Furthermore, we have the responsibility to say what ‘follows
from’ means formally.

1.2 Syntax of PL

For any simple proposition, called a propositional variable, we will use
any of the symbols p0, p1, . . . For connectives ‘not’, ‘and’, ‘or’, ‘if . . . then
. . .’, ‘if and only if’, we use the symbols ¬,∧,∨,→,↔, respectively; their
names are negation, conjunction, disjunction, conditional, biconditional.
We use the parentheses ‘)’ and ‘(’ as punctuation marks. We also have
the special propositions > and ⊥, called propositional constants, which
stand for propositions which are ‘true’ and ‘false’, respectively. Both propo-
sitional variables and propositional constants are commonly called atomic
propositions. So, the alphabet of Propositional Logic, PL, is the set

{ ), (,¬,∧,∨,→,↔,>,⊥, p0, p1, p2, . . .}

consisting of all these symbols. Any expression over this alphabet is a
string of symbols such as

(¬p0 → () ∧ p1∨, ¬p100)(→ ∨, (¬p0 → p1)

Only the last one of these is a propositional formula or a proposition. In
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fact, we are interested only in such expressions. Now how to define them?
Here are some of the ways of defining the set of all propositions, PROP.

Definition 1.1 The set of all propositions, PROP is the smallest set
of expressions such that {>,⊥, p0, p1, . . . } ⊆ PROP, and whenever x, y ∈
PROP, the expressions ¬x, (x ∧ y), (x ∨ y), (x → y), (x ↔ y) are also in
PROP. The ‘smallest’ is in the sense of the relation ⊆, i.e., A is smaller
than B iff (if and only if) A ⊆ B.

The set PROP can also be defined inductively (or recursively).

Definition 1.2
PROP(0) = {p0, p1, . . .} ∪ {>,⊥}
PROP(i+ 1) = PROP(i) ∪ {¬x, (x ∧ y), (x ∨ y), (x→ y),

(x↔ y) : x, y ∈ PROP(i)}
PROP = ∪i∈N PROP(i)
Can you see that both the definitions above define the same set PROP?

What are the sets PROP(i)?
PROP(0) contains all atomic propositions which do not contain any con-

nective. PROP(1) contains all propositions having a single occurrence of a
connective, along with those having no connectives. In general, PROP(i)
contains all propositions having i or less number of occurrences of connec-
tives. It is of course clear that any proposition has only a finite number
of occurrences of connectives,and thus, it must be in some PROP(i). Now,
can you prove it? What is there to prove? Well, if PROP(i) has been
defined by Definition 1.2, PROP has been defined by Definition 1.1, and
if PROP′ = ∪i∈N PROP(i), then you must show that PROP ⊆ PROP′ and
PROP′ ⊆ PROP. Do the following exercise before reading further.

Exercise 1.1 Show that PROP = PROP′.
We see that {>,⊥, p0, p1, . . .} ⊆ PROP(0) ⊆ PROP′. For x, y ∈ PROP′,

we also see that x ∈ PROP(i) and y ∈ PROP(j) for some i, j ∈ N. Then,
both x, y ∈ PROP(k), where k = max(i, j). This shows that the expressions
¬x, (x∧y), (x∨y), (x→ y), (x↔ y) are in PROP(k+1). Since PROP(k+1)
⊆ PROP′, whenever x, y ∈ PROP′, all of ¬x, (x∧y), (x∨y), (x→ y), (x↔ y)
are also in PROP′. Since PROP is the smallest set of expressions with this
property, we have PROP ⊆ PROP′.

To see the converse, it is enough to see that PROP(i) ⊆ PROP for
each i ∈ N. This is proved by induction on i. To start with, we have al-
ready seen that PROP(0) ⊆ PROP. Assume that (the induction hypothesis)
PROP(i) ⊆ PROP. Now let w ∈ PROP(i + 1). By Definition 1.2, w is one
of ¬x, (x ∧ y), (x ∨ y), (x → y), (x ↔ y), for some x, y ∈ PROP(i). Due to
the induction hypothesis, x, y ∈ PROP. By Definition 1.1, the expressions
¬x, (x ∧ y), (x ∨ y), (x → y), (x ↔ y) are in PROP. That is, w ∈ PROP,
proving that PROP(i+ 1) ⊆ PROP. This completes the induction proof.

We summarize the above discussion in the following statement.
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Theorem 1.1 Definitions 1.1 and 1.2 are equivalent. If W0 = PROP(0)
and Wi+1 = PROP(i+ 1)− PROP(i), then PROP = ∪i∈NWi.

It is of course easy to see the second part in the above theorem. But
what are the Wi’s? The set Wi is simply the set of all propositions having
exactly i-number of occurrences of connectives. Thus the second part of
the theorem says that each proposition has i occurrences of connectives for
some natural number i, a triviality indeed. We have yet another way of
defining propositions. See the following formation rules of propositions.

(a) > and ⊥ are propositions.
(b) Each pi is a proposition, where i ∈ N.
(c) If x is a proposition, then ¬x is a proposition.
(d) If x, y are propositions, then (x ∧ y), (x ∨ y), (x→ y), (x↔ y) are

propositions.
(e) Nothing else is a proposition unless it satisfies some or all of the

rules (a−d).

This is another way of writing Definition 1.1. Note that the formation
rule (e) simply states that “PROP is the smallest set that satisfies (a−d)”.
Such a rule, which does not add anything to the previous rules but only
says that nothing else can be added, is called a closure rule.

The formation rules can be written in a more compact way, as produc-
tion rules:

〈 proposition 〉 7−→ 〈>〉
〈 proposition 〉 7−→ 〈⊥〉
〈 proposition 〉 7−→ 〈 propositional variable 〉
〈 proposition 〉 7−→ ¬〈 proposition 〉
〈 proposition 〉 7−→ (〈 proposition 〉 ∧ 〈 proposition 〉)
〈 proposition 〉 7−→ (〈 proposition 〉 ∨ 〈 proposition 〉)
〈 proposition 〉 7−→ (〈 proposition 〉 → 〈 proposition 〉)
〈 proposition 〉 7−→ (〈 proposition 〉 ↔ 〈 proposition 〉)

Read the symbol 7−→ as ‘can be’, and the token 〈 proposition 〉 as ‘a
proposition’. A more compact way is given in the following definition.

Definition 1.3

w ::= > | ⊥ | p | ¬w | (w ∧ w) | (w ∨ w) | (w → w) | (w ↔ w)

where p stands for any propositional variable and w stands for any propo-
sition (or PL-formulas, also called well-formed formulas (wff). The lan-
guage PL consists of all such propositions.

Here we write p for any generic propositional variable, w for any generic
proposition, and the vertical bar ‘ | ’ describes alternate possibilities (read
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it as ‘or’). The same symbol w may be replaced by different propositions.
That is what the word ‘generic’ means. This way of writing the grammatical
rules is called the Bacus-Naur form.

A problem: given any string of symbols from the alphabet of PL, can
you determine whether it is a proposition or not? Of course; it is not so
difficult a grammar like that of English. You can always find by inspection,
whether any string follows the above rules or not. For example, p1 → p2

is not a proposition; you need a pair of parentheses; (p0 ∧ p1 → p2) is also
not a proposition. But that is not the question. The question is: can you
give a procedure to do this for every possible expression?

To start with, you can see that x = ¬((p0 ∧ ¬p1)→ (p2 ∨ (p3 ↔ ¬p4)))
is a proposition. But if I ask you to show that it is indeed a proposition,
what would you do? The key fact is that any object that has been formed
(generated) by this grammar can also be parsed. That is, you can always
find out the last rule that has been applied and then proceed backward.
For the proposition x, the last rule applied was w 7−→ ¬w. This means
that x is a proposition if the expression ((p0∧¬p1)→ (p2∨ (p3 ↔ ¬p4))) is
a proposition. This is so if the expressions (p0∧¬p1), (p2∨ (p3 ↔ ¬p4)) are
propositions (due to the rule w 7−→ (w → w)). If you proceed, you would
arrive at the parse tree given in Figure 1.1.

¬((p0 ∧ ¬p1)→ (p2 ∨ (p3 ↔ ¬p4)))

((p0 ∧ ¬p1)→ (p2 ∨ (p3 ↔ ¬p4)))

�
�

��

@
@

@@
(p0 ∧ ¬p1) (p2 ∨ (p3 ↔ ¬p4))

�
�

��

@
@

@@

�
�

��

@
@

@@
p0 ¬p1 p2 (p3 ↔ ¬p4)

�
�

��

@
@

@@
p1 p3 ¬p4

p4

Figure 1.1 A parse tree.

The corresponding abbreviated tree is shown in Figure 1.2.
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¬

→
�

�
�

@
@
@

∧ ∨
�

�
�

@
@
@

�
�

�

@
@
@

p0 ¬ p2 ↔
�

�
�

@
@
@

p1 p3 ¬

p4

Figure 1.2 Abbreviated parse tree.

What is the parse tree for the expression (∨(p1 ∧ p2) → (¬p1 ↔ p2))
and for (∨ → ¬p1 ↔ p2)? See Figure 1.3. Remember, while constructing
a parse tree you will be unfolding applications of appropriate production
rules.

→ →
�

�
�

@
@

@

�
�

�

@
@

@
∨(p1 ∧ p2) ↔ ∨ ¬p1 ↔ p2

@
@

@

�
�

�¬ p2

p1

Figure 1.3 Parse trees.

We cannot parse ∨(p1∧p2) further, neither can we parse ∨, nor ¬p1 ↔ p2

since none of the production rules could have produced them. What is the
difference between earlier parse trees and these? In the earlier trees, the
leaves are atomic propositions, while the leaves of the trees in Figure 1.3 are
not. The corresponding expressions in the latter cases are not propositions.
Parse trees can be employed to decide whether a given expression is a
proposition or not. But it still involves some intuition regarding the choice
of an appropriate rule. Can you make it better? Look at the parse tree in
Figure 1.2, say, the second leaf from the left, p1. You can see that there is
a subtree with parent node ¬ whose only child is p1. This corresponds to
the proposition ¬p1. You can replace this subtree, say, by p1. In the new
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tree (see T1 in Figure 1.4), there is again a subtree with parent node ∧,
whose children are p0 and p1. This corresponds to the proposition (p0∧p1).
You can replace this subtree, say by p0. In the new tree (T2), you have a
leaf p4 which is the sole child of the node ¬. So, first replace ¬p4 by p4.

¬

→
�

�
�

@
@
@

∧ ∨
�

�
�

@
@
@

�
�

�

@
@
@

p0 p1 p2 ↔
�

�
�

@
@
@

p3 ¬

p4

T1:

¬

→
�

�
�

@
@
@

p0 ∨
�

�
�

@
@
@

p2 ↔
�

�
�

@
@
@

p3 ¬

p4

: T2

¬

→
�

�
�

@
@
@

p0 ∨
�

�
�

@
@
@

p2 ↔
�

�
�

@
@
@

p3 p4

T3:

¬

→
�

�
�

@
@
@

p0 ∨
�

�
�

@
@
@

p2 p3

: T4

¬

→
�

�
�

@
@
@

p0 p2

T5:

¬

p0

T6: p0 : T7

Figure 1.4 Sequence of parse trees.
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Then replace the subtree corresponding to the proposition (p3 ↔ p4), say,
by p3. As you continue this replacements, you get the sequence of trees
(Figure 1.4): T0, T1, T2, T3, T4, T5, T6, T7, where the tree T0 is the one in
Figure 1.2.

In generating the sequence of trees in Figure 1.2, we had taken a sub-
tree of depth 1, starting from the leaves upward, the leaves being chosen
from left, whenever such a subtree exists. (This sentence may not be well
understood, think and reword it.) You can of course choose the leaves and
the subtrees of depth 1 in other ways. Try to do that for the tree in Figure
1.2. If you do that, you will be getting a different sequence of trees. But
where does that terminate?

Now apply the same process as described in Figure 1.4 on the trees in
Figure 1.3. You will get finally the trees in Figure 1.5.

→ →
�

�
�

@
@

@

�
�

�

@
@

@
∨(p1 ∧ p2) p1 ∨ ¬p1 ↔ p2

Figure 1.5 Computing with parse trees of Figure 1.3.

So, what do you observe? Computing with a parse tree, if you end up
at an atomic proposition, then the original expression is a proposition, else,
it is not. Can you think of a procedure to work with the given expression
directly than going via a parse tree? Look at the expressions corresponding
to the sequence of parse trees T0, . . . , T7. Recollect T0 stands for the tree
in Figure 1.2. They are:

¬((p0 ∧ ¬p1)→ (p2 ∨ (p3 ↔ ¬p4)))

¬((p0 ∧ p1)→ (p2 ∨ (p3 ↔ ¬p4)))

¬(p0 → (p2 ∨ (p3 ↔ ¬p4)))

¬(p0 → (p2 ∨ (p3 ↔ p4)))

¬(p0 → (p2 ∨ p3))

¬(p0 → p2)

¬p0

p0

Exercise 1.2 Construct parse trees for the following propositions in as
many ways as possible:

(a) ((p0 → p1) ∨ (p2 → (¬p1 ∧ (p0 ↔ ¬p2))))

(b) (((p5 → (p6 ∨ p8))↔ (p3 ∧ ¬p2)) ∨ (¬(p1 ↔ p3)→ p10))

Exercise 1.3 Looking at the parse trees in Figures 1.2 and 1.4, and the
above sequence of expressions corresponding to the trees, write a procedure
to determine whether a given expression is a proposition or not.
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PROCEDURE : PropDet
Input: Any expression e over the alphabet of PL.
Output: ‘Yes’, if e is a proposition, else, ‘No’.

1. If e is an atomic proposition, then print ‘yes’ and stop.
2. Scan e from left to get a subexpression w of one of the forms ¬x,

(x∧ y), (x∨ y), (x→ y), (x↔ y), where x, y are atomic propositions.
3. If not found, then print ‘no’ and stop.
4. If found, then replace w by x.
5. Go to Step 1.

Exercise 1.4 Prove by induction on the length of e that the procedure
PropDet works correctly. [Hint : The length of an expression is the number
of occurrences of symbols in it.]

What are the results of your work with Exercise 1.2? (If you have
not yet done it, do it now; then proceed further.) Could you get two
parse trees for (a)? For (b)? Why? It seems that if w is a proposition,
there is one and only one parse tree corresponding to it. If a proposition
w has been formed, then the way it has been formed is the only way it
could have been formed. Each proposition can be read in a unique way.
The set PROP is a freely generated set. The grammar of propositions
(PL) is unambiguous. All these statements express the same fact stated in
Theorem 1.2 below, referred to as unique parsing, unique formation,
or unique readability theorem.

By now you must have noticed a nice property of propositions:

Property 1 : Each proposition has the same number of left and right paren-
theses.

It is clear from the grammar we have adopted. But formally, we require
a proof. How do you prove it?

Exercise 1.5 Prove by induction on the number of occurrences of con-
nectives that each proposition has the same number of left and right paren-
theses.

Further, take a proposition, say,

w = ¬¬(> ∨ ((p2 → (p3 ↔ p4))→ (⊥ ∧ (p2 ∧ ¬p3))))

The prefixes of this expression are:

¬, ¬¬, ¬¬(, ¬¬(>, ¬¬(>∨, . . . , ¬¬(> ∨ ((· · · ¬p3)))

To get the prefixes, you just start from its leftmost position, go to the
right, and stop at some place. The proper prefixes are those excluding w
itself, and excluding the empty string (having no symbols at all), which
we denote by ε. You can see here that none of these proper prefixes has
the same number of left and right parentheses; parentheses do not match,
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leaving of course the first two prefixes ¬, and ¬¬. We have thus the second
property.

Property 2 : If u is a prefix of a proposition w , then u = ε, or u = w, or u
is a sequence of ¬’s, or the number of left parentheses is more
than the number of right parentheses in u.

Exercise 1.6 Prove Property 2 by induction on the number of occur-
rences of connectives in w.

It is now clear from Properties 1 and 2 that if u is a proper prefix
of a proposition w, then u is not a proposition. This statement is often
expressed elegantly as

Property 3 : If u and w are propositions and u is a prefix of w, then u = w.

You can prove Property 3 directly by induction (On what?). We use
these properties to prove the following statement.

Theorem 1.2 (Unique Parsing) Each proposition is parsed in exactly
one way; it has a unique parse tree.

Proof Let w be a proposition. We prove the theorem by induction on
ν(w), the number of occurrences of connectives in w.

If ν(w) = 0, then w ∈ {>,⊥, p0, p1, . . .}, in which case, its parse tree
has only one node containing w itself, and it is obviously unique.

Lay out the induction hypothesis that for any proposition u, if ν(u) ≤ n,
then it has a unique parse tree. Suppose that w is a proposition with
ν(w) = n + 1. By the grammar of propositions, w = ¬x or w = (x ∗ y),
where ∗ ∈ {∧,∨,→,↔}, x, y being some propositions. In the first case,
ν(x) = n. By hypothesis, x has a unique parse tree Tx. Then w has the
unique parse tree ¬ −−Tx, written vertically, i.e., with root node as ¬ and
then a vertical bar, and below it is appended the tree Tx as its only child.
Essentially it amounts to showing that if ¬u = ¬v, then u = v.

Now, if w = (x ∗ y), then similarly the parse tree will have root node
as ∗ and then appended to it are two trees Tx and Ty as left and right
children, respectively. But why is it unique? Because, both the trees Tx

and Ty are unique; is it so? But then the uniqueness will break down if
we have two other propositions, say v, y such that w = (v ◦ z). It needs to
be shown that w cannot be written in a different way. That is, we have to
show that if (x ∗ y) = (v ◦ z) for propositions x, y, v, z, then x = v, y = z,
and ∗ = ◦. In such a case, comparing the strings (x ∗ y) and (v ◦ z), we
see that x ∗ y) = v ◦ z). Then the proposition x is either a prefix of the
proposition v or v is a prefix of x. (Just match from the left and see that
this happens; alternatively, prove it by induction on the lengths of the
strings). By Property 3, we have x = v. We are left with the string
equality ∗y) = ◦z). Their first symbols match, giving ∗ = ◦. Their last
symbols match; delete them. Then we are left with y = z.
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Parse trees, being unique for propositions, can be used for defining many
concepts. For example, a subformula or a subproposition of a propo-
sition w can be thought of as a proposition corresponding to any subtree
of the parse tree of w. An immediate subformula or an immediate
subproposition of a proposition w is any proposition corresponding to a
subtree of the parse tree Tw of w whose depth is one less than that of Tw.
Of course, you can define these concepts directly from w. A subproposi-
tion of w is any proposition that is a substring of w, and an immediate
subproposition of ¬x is x, while the immediate subpropositions of (x ∗ y)
are x and y for any connective ∗ ∈ {∧,∨,→,↔}.

Yet one more use of the uniqueness of parse trees is that functions
from the set of atomic propositions can be extended uniquely to functions
on PROP by compositionality. For example, suppose that f is a function
with domain as AP , the set of atomic propositions, and co-domain as a
set S. Suppose further that we have five operations +1,+2,+3,+4,+5

defined on S, where +1 is unary and all the others are binary. That is,
for any s, t ∈ S, we know what are +1s, s +2 t, s +3 t, s +4 t, s +5 t, these
being again members of S. Then we can associate ¬ with +1, ∧ with
+2, etc., and extend the function f by this association. That is, since
f(p0), f(p1) are already defined, we can have f(¬p0) = +1f(p0). Similarly,
f(p0 ∧ p1) = f(p0) +2 f(p1) . . . We will make use of this idea in the next
section while giving meaning to the propositions.

After understanding what parsing is all about, we put some conven-
tions so that writing propositions will become easier. First, we drop the
subscripts i from pi’s. Instead, we write propositional variables, propo-
sitions just as p, q, r, s, t, . . ., if no confusion arises. We use less number
of parentheses by putting down some precedence rules. Remember the
precedence rule that multiplication has more precedence than addition?
This means that the expression x×y+ z is to be rewritten as ((x×y) + z),
and not as ((x× (y + z)). Our precedence rules are the following:

¬ has the highest precedence.

∧,∨ have the next precedence, their precedence being equal.

→,↔ have the lowest precedence, their precedence being equal.

This will not eliminate the use of parentheses altogether, but fewer will be
required. Further, we will omit the outer parentheses. Using the precedence
rules, the proposition ((p ∨ (q ∧ s)) → (t ↔ ¬p)) can be abbreviated to
p ∨ (q ∧ s)→ (t↔ ¬p).
Exercise 1.7 Insert parentheses at appropriate places to make the fol-
lowing abbreviated propositions members of PROP:

(a) (p→ q) ∧ ¬(r ∨ q ↔ p)↔ (¬p ∨ q → r)
(b) (p→ q)↔ (r → t ∨ p) ∧ (p ∨ q → ¬p ∧ t)
(c) p ∨ (¬q ↔ r ∧ p)↔ (p ∨ p→ ¬q)
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1.3 Semantics of PL

Syntax of a logic defines the primary objects we are interested in. It says
how our objects look like. Semantics supplies some sort of meaning to these
objects. PL, propositional logic, is the simplest of all logics we talk about
in this book. Obviously, it has the simplest semantics. Each proposition in
PROP has a meaning as a truth value. We do not go to the real meaning of
any proposition, even when it is written as an English sentence, except that
it may be either true or false. This is the concept of meaning of propositions
here. We also use the notion of compositionality in giving meanings to
propositions. In a way, we are going to interpret all our propositions in our
small set {0, 1}. This set is sometimes written as BOOL after the logician
George Boole. Note that, due to unique parsing, it is enough to start with
giving meaning to the atomic propositions. Given that atomic propositions
are given some meanings (as truth values of 0 or 1, with 0 for ‘false’ and 1
for ‘true’), we must say how to take care of the connectives. For example,
if p ∧ q is a proposition, its truth value will be determined by the truth
values of p and q, once we specify how to deal with ∧.

Since ∧ is a formal version of the English ‘and’, we hope p ∧ q will be
true when both p and q are true. We can employ truth tables (see Table
1.1) to take care of compositionality.

Table 1.1 Truth Values

>
1

⊥
0

p ¬p
1 0
0 1

p q p ∧ q p ∨ q p→ q p↔ q

1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

That is, the propositional constant > is assigned the truth value 1 (for
true) and ⊥ is assigned 0 (for false). The connective ¬ reverses the truth
values. The connectives ∧,∨,↔ are just translations of the English ‘and’,
‘or’, and ‘if and only if’. The connective → is a bit problematic. The table
above says that the only way a proposition p→ q can be false is when p is
true and q is false. Given this condition, no doubt that p→ q will be false.
It is the phrase ‘the only way’ that is problematic. However, it is not so
counter intuitive as the following illustration shows.

Your friend asks you whether you have got an umbrella, and you answer,
“If I have got an umbrella, then I would not have been wet”.

Suppose, you do not have an umbrella. Then is your statement true or
false? Certainly it is not false if you had been really wet. It is also not
false even if you had not been wet since you were at home when it was
raining, etc. That is, the statement is not false whenever its antecedent “I
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have got an umbrella” is false. Since each sentence is either true or false,
the sentence ‘if . . . then . . .’ is true, if its antecedent is false.

Consider one more situation. Your friend promises you to buy you the
book Logics for Computer Science provided you help him in solving some
problems. Certainly he had not broken his promise, when he bought you
the book in spite of the fact that you did not actually help him solve those
problems. That is, the statement is not false, when the consequent ‘I will
buy you the book’ is true.

Both these instances are taken care of in the truth values for the con-
nective →. This connective is referred to as ‘material implication’ due to
the vacuous assignment of ‘true’ when the antecedent is ‘false’. Of course,
this is the view of an implication adopted in main stream mathematics.

Given any proposition, having many occurrences of connectives in it,
it is a matter of patience to construct its truth table in accordance with
Table 1.1. If you know the truth values of propositional variables in it,
then you may be able to determine the truth value of the proposition. If
no specific truth values for the propositional variables are given, then also
by taking all possibilities (as in Table 1.1), you may proceed to find all
possible truth values of the given proposition. The truth table for the
proposition u = ¬(p ∧ q)→ (p ∨ (r ↔ ¬q)) is given in Table 1.2.

Table 1.2 A Truth Table

p q r ¬q p ∧ q ¬(p ∧ q) r ↔ ¬q p ∨ (r ↔ ¬q) u

0 0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 1 1
0 1 0 0 0 1 1 1 1
1 1 0 0 1 0 1 1 1
0 0 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1 1
0 1 1 0 0 1 0 0 0
1 1 1 0 1 0 0 1 1

The truth tables can also be constructed from the parse trees. For
example, the parse tree for u = ¬(p∧ q)→ (p∨ (r ↔ ¬q)) is the left tree in
Figure 1.6. For the assignment of 0 to p, 1 to q, and 0 to r (see the third line
of Table 1.2), we write the truth values to the right of the corresponding
leaves. Then we travel upwards in the tree for evaluating the connectives
following the truth table rules. The evaluation is given on the right tree of
Figure 1.6. Work it out.

Look at the last column of Table 1.2 and try the evaluation of u in the
parse tree. Note that the evaluation is unambiguous due to the uniqueness
of parsing. Now, you can have a formal definition of truth assignments and
evaluations of propositions under such assignments.
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Evaluation in a parse tree.

Exercise 1.8 For each of the following propositions, construct the truth
table and draw its parse tree. See how a row in the truth table evaluates
the proposition v, w via the corresponding parse tree.

(a) v = ¬(p ∧ q) ∨ r → ¬p ∨ (¬q ∨ r),
(b) w = (p ∧ q → r)↔ p ∧ (q ∧ ¬r).

Definition 1.4 A truth assignment is any partial function t : AT →
{0, 1}, where AT = {>,⊥, p0, p1, . . .}, the set of atomic propositions with
t(>) = 1, and t(⊥) = 0. A truth valuation is any partial function which
is an extension of a truth assignment to the set PROP of all propositions
satisfying the following properties:

(a) v(¬x) = 1 if v(x) = 0, else, v(¬x) = 1,

(b) v(x ∧ y) = 1 if v(x) = v(y) = 1, else, v(x ∧ y) = 0,

(c) v(x ∨ y) = 0 if v(x) = v(y) = 0, else, v(x ∨ y) = 1,

(d) v(x→ y) = 0 if v(x) = 1, v(y) = 0, else, v(x→ y) = 1,

(e) v(x↔ y) = 1 if v(x) = v(y), else, v(x↔ y) = 0,

for any propositions x, y ∈ PROP.

Exercise 1.9 Construct truth tables for each of the following proposi-
tions. See how each row in the truth tables represents a valuation.

(a) (p→ (¬p→ p))→ (p→ (p→ ¬p))
(b) (p→ q)→ ((p→ ¬q)→ ¬p)
A valuation is also called a Boolean valuation. It is a precise recursive

definition of the idea of a truth table. Can you see this? However, there is
something awkward about this definition as an alternative to truth tables.
For example, while computing the truth value of ¬p0 in a truth table, we
consider only two possibilities of assigning p0 to 0 or 1, whereas there are
infinitely many truth assignments with t(p0) = 0. To give an example, take
for each i ≥ 1, ti with ti(p0) = 0, ti(pi) = 1 and ti(pj) = 1 whenever i 6= j.
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Of course, it is irrelevant what a truth assignment assigns to proposi-
tional variables which do not occur in a proposition. On the other hand, for
a valuation to work for a proposition, the underlying truth assignment must
have been defined for all the propositional variables occurring in it. For
example, if v is a valuation extended from a truth assignment t which has
been defined only for the atomic propositions ⊥, p0, p1, then v(p0∧p2 → ⊥)
has no meaning. Such a valuation, which is appropriate for a proposition,
is called an interpretation of the proposition. The underlying truth as-
signment is also called an interpretation. It will be clear from the context,
whether we mean an interpretation to be a truth assignment or a valuation.
In most cases, it will not really matter whatever way you take it.

Suppose that you have an interpretation of a proposition A = (p ∨ q)
and you have another interpretation of the proposition B = (q ∨ r). How
do you talk about an interpretation of the formula A ∧ B? The inter-
pretation of A may not assign any truth value to r, and similarly, the
interpretation of B may not assign a truth value to p, though both the
interpretations assign the same truth value to the common propositional
variable q. Such eventualities are tackled by introducing a propositional
language. A propositional language has an alphabet which is a subset
of that of PL including all the connectives, the punctuation marks and
the constants > and ⊥. In such a case, the connectives,the punctuation
marks, and the symbols >,⊥ are called the logical constants and the
propositional variables are called the nonlogical constants. A proposi-
tional language is characterized by the nonlogical constants it uses. For
example, in this case, we would start with a propositional language having
the nonlogical constants as p, q, r. Then an interpretation is said to be an
interpretation of a propositional language instead of a proposition. When
we have another language containing all the logical constants of a given lan-
guage, then any interpretation of the bigger language is again considered
as an interpretation of the smaller one. We do not use this terminology
here, but you must be able to read and understand this terminology if used
elsewhere.

Definition 1.5 Let w be a proposition. An interpretation of w is a
valuation whose domain includes all the atomic propositions occurring in
w. An interpretation is also called a state, a situation, or a place.

Intuitively, the truth value of a proposition under an interpretation
should not depend upon the propositional variables that do not occur in
it. Can you show this?

Theorem 1.3 (Relevance Lemma) Let w be a proposition and Aw be
the set of all atomic subpropositions of w. Let s, t be two interpretations of
w. If s(p) = t(p) for every p ∈ Aw, then s(w) = t(w).

Proof Let w,Aw, s, t be as in the above statement with s(p) = t(p) for
every p ∈ Aw. If w is atomic, then Aw = {w}, and s(w) = t(w). This
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proves the basis step of induction. Lay out the induction hypothesis that
for all propositions having number of occurrences of connectives fewer than
n, the statement holds. If w has n occurrences of connectives, then either
w = ¬x or w = (x∗y) for unique propositions x, y and a unique connective
∗ ∈ {∧,∨,→,↔}, due to unique parsing. Then?

Exercise 1.10 Complete the proof of the relevance lemma.
The relevance lemma shows that the truth tables method of evaluation

of a proposition has been correctly formalized by Definitions 1.4−1.5. It
also says that an interpretation of a proposition is simply a row in the
truth table of the proposition. Look at the pattern of values for u in Table
1.2 and for v, w in Exercise 1.8. You notice that the truth values of u are
sometimes 0 and sometimes 1, while those of v are all 1, and of w are all 0.
Such propositions are called contingent, tautology (or valid propositions),
and contradiction (or unsatisfiable propositions), respectively. It is one
of the aims of semantics to filter the tautologies out of the whole lot of
propositions. In order to do that we will increase our vocabulary slightly.
It will help us in defining formally these terms.

Definition 1.6 Let w be a proposition. A model of w is an interpretation
i of w such that i(w) = 1. The fact that i is a model of w is written as
i |= w (read as i verifies w or i satisfies w). The fact that i is not a model
of w is written as i 6|= w (read as, i does not satisfy, does not verify, or
falsifies w).

In Table 1.2, let i be the interpretation as given in the first row. That
is, i(p) = i(q) = i(r) = 0. The table says that i 6|= u, i |= v and i 6|= w.
The interpretation j defined by j(p) = 1, j(q) = j(r) = 0 is a model of u.
Which line in Table 1.2 is the interpretation j?

The concepts of an interpretation and of a model can be presented in
at least three different ways. One way is to view the connectives as truth
functions, i.e., functions which map 0’s and 1’s to 0’s and 1’s. In this view,
¬ is taken as a function; ¬ : {0, 1} → {0, 1} with ¬(0) = 1 and ¬(1) = 0.
Similarly, ∧ : {0, 1} × {0, 1} → {0, 1} with ∧(0, 0) = ∧(0, 1) = ∧(1, 0) = 0
and ∧(1, 1) = 1.

Exercise 1.11 Define ∨,→,↔ as truth functions.

Exercise 1.12 How many functions are there from {0, 1} to {0, 1}? From
{0, 1} × {0, 1} to {0, 1}? Functions of the first type are called unary truth
functions, and of the second type are called binary truth functions. How
many n-ary truth functions are there?

In this view, any proposition can be thought of as a function (a circuit
or a gate as is called by Electrical Engineers) that maps a truth assignment
to {0, 1}. For example, if i assigns p to 0 and q to 1, then the formula p∧¬q
takes i to 0. A formalization of this view would look like:

p(i) = i(p), ¬x(i) = ¬(x(i)), (x∗y)(i) = ∗(x(i), y(i)) for ∗ ∈ {∧,∨,→,↔}.
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In this language, a truth assignment is simply a mapping of voltages on
a wire, when the wires represent propositional variables.

Exercise 1.13 What do > and ⊥ represent?
Exercise 1.14 Let w be any proposition. Show by induction on the
number of occurrences of connectives in w that for any truth assignment i
in the above view, i |= w iff w(i) = 1.

In another alternative presentation of semantics, a proposition is seen
as a set of truth assignments. Writing M(x) for the set of models of a
proposition x, the driving idea is to define M(x) in an alternative way.
Due to compositionality, the whole idea rests on the sets of models of
atomic propositions. Denote by T the set of all possible truth assignments,
by i any truth assignment in T , by p any propositional variable, and by
x, y any proposition(s). Then the sets of models is defined to satisfy the
following properties:

M(>) = T , M(⊥) = ∅

M(p) = {i : i(p) = 1}

M(¬x) = T −M(x)

M(x ∧ y) =M(x) ∩M(y)

M(x ∨ y) =M(x) ∪M(y)

M(x→ y) = (T −M(x)) ∪M(y)

M(x↔ y) = (M(x) ∩M(y)) ∪ ((T −M(x)) ∪ (T −M(y)))

Exercise 1.15 Let w be any proposition. For any interpretation i, show
that i |= w iff i ∈ M(w). [Hint : Use induction on the number of occur-
rences of connectives in w.]

In the third alternative view, one tries to see each model as a set of
literals, i.e., atomic propositions or their negations. For example, all
models of the proposition p ∨ q are the truth assignments i, j, k, where
i(p) = i(q) = 1; j(p) = 0, j(q) = 1; and k(p) = 1, k(q) = 0. Then the
models i, j, k, in this view, correspond to the sets {p, q}, {¬p, q}, {p,¬q},
respectively. In general, this view rests on the observation that each as-
signment i : AT → {0, 1} can be thought of as a subset of the set of literals.
This association is done by the rule:

For a truth assignment i, Mi = {p : i(p) = 1} ∪ {¬p : i(p) = 0}.

To understand this view, do the following exercise.

Exercise 1.16 Show that corresponding to each interpretation i of a
proposition w, the set Mi is unique. Further, let Aw be the set of all
propositional variables occurring in w, and letM be any subset of Aw∪{¬p :
p ∈ Aw} such that for no p ∈ Aw, both p and ¬p are in M . Show that
there is a unique interpretation i of w such that M =Mi.
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There is also a slight variation in this view, which assigns each interpre-
tation i of a proposition to a subset of atomic propositions only, negations
of them being removed. It rests on the convention that whichever atomic
subproposition is absent in such a set is in fact negated. For example,
suppose that w is a proposition having the only atomic subpropositions
p, q. If Mi = {p,¬q}, then write M ′

i = {p}. Then the primed ones are
regarded as interpretations instead of the unprimed ones; they are only
subsets of the atomic propositions. The truth assignment is constructed
from such a subset of atomic propositions by its characteristic function. If
w = (p → q) ∨ (r ↔ s ∨ t), then Aw = {p, q, r, s, t} and the interpreta-
tion i with i(p) = i(r) = i(s) = 1, i(q) = i(t) = 0 is represented by the
set {p, r, s}. Note that the characteristic function of the set {p, r, s} as a
subset of Aw is simply i. Remember that our goal was to filter out the
tautologies from the whole lot of propositions by using the idea of models.

Definition 1.7 Let w be a proposition. w is valid, written as |= w, if
each interpretation of w is its model. w is satisfiable if it has a model,
i.e., if there is an interpretation i of w such that i |= w. If w is not
valid, it is called invalid, and we write 6|= w. If w is not satisfiable, it
is called unsatisfiable. Valid propositions are also called tautologies,
and unsatisfiable propositions are called contradictions. The propositions
which are both invalid and satisfiable are called contingent.

From Table 1.2, it is clear that u is satisfiable as i |= u, where i is
the interpretation with i(p) = 1, i(q) = i(r) = 0. The proposition u is
invalid as j 6|= u, where j(p) = j(q) = j(r) = 0. In Exercise 1.8, v is
valid (|= v) as each interpretation is a model (evaluates it to 1). w is
unsatisfiable as no interpretation is its model (each evaluates it to 0). v is
also satisfiable as it has a model, e.g., i |= v. Similarly, w is invalid as it
has a nonmodel, e.g., i 6|= w. In general, each valid proposition is satisfiable
and each unsatisfiable proposition is invalid. A proposition which is neither
satisfiable nor invalid is called contingent. Contingent propositions have
some information content. In a certain context, if you affirm that a certain
contingent proposition holds, then you are really giving some information.

Exercise 1.17 Define a Boolean valuation of any proposition w starting
from a truth assignment given as a subset of Aw and then define valid and
satisfiable propositions.

Since we are concerned with consequences, we must know when a propo-
sition follows from a given set of propositions, and when a proposition is
equivalent to another.

Definition 1.8 Let Σ be a set of propositions and u, v, w be propositions.
An interpretation i is called a model of Σ, written i |= Σ, if i is a model of
every proposition in Σ. The set Σ is called satisfiable if Σ has a model.
Σ semantically entails w, written as Σ |= w, if each model of Σ is a
model of w. Propositions u and v are equivalent, written as u ≡ v if every
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model of u is a model of v and every model of v is also a model of u. Σ |= w
is also read as “the consequence Σ |= w is valid”, or as “w follows from Σ”.
For a consequence Σ |= w, the propositions in Σ are called the premises or
hypotheses, and w is called the conclusion.

Exercise 1.18 Is p→ (q → r) ≡ (p→ q)→ r?

If Σ is a singleton, say, Σ = {x}, instead of writing {x} |= w, we simply
write x |= w. When Σ = {w1, . . . , wn}, we also write the consequence
Σ |= w as w1, . . . , wn |= w. Thus, u ≡ v iff u |= v and v |= u. The
above definition says that w does not follow from Σ iff there exists an
interpretation which verifies each premise in Σ but it falsifies w. Moreover,
if Σ = ∅, then Σ |= w means that |= w since, vacuously, each interpretation
verifies every premise here (there is none).

Can you see the overuse of the symbol |=? There are three ways we are
using this symbol, one for satisfaction (i |= w), one for validity (|= w), and
one for entailment (Σ |= w). If you take the third view of semantics, where
a truth assignment is taken as a subset of atomic propositions, then all the
three uses fall in place. (Why?)

We have almost completed in describing the logic called PL, or propo-
sitional logic. It concerns with the syntactic entities as the propositions in
PROP, and the semantics as described above.

EXAMPLE 1.1 Show that the following argument is valid: If the band
performs, then the hall will be full provided that the tickets are not too
costly. However, if the band performs, the tickets will not be too costly.
Therefore, if the band performs, then the hall will be full.

Solution We translate the above argument into a consequence in PL. A
guideline in such a translation is to identify simple declarative sentences as
atomic propositions. This identification sometimes requires to determine
the connectives, or the words which look like connectives. The words ‘and’,
‘or’ and the phrases ‘it is not the case that’, ‘if · · · then’, etc. can be
identified quickly. The words like ‘unless’, ‘until’, and phrases like ‘either
· · · or’ etc. can be translated to PL by suitable connectives or as truth
functions. For example, due to absence of temporality in PL, ‘until’ and
‘unless’ will mean the same (in PL), and ‘unless’ will simply be represented
by ∨ (why?). Similarly, ‘provided that’ is simply ‘if’, the reverse of →.
With this brief guideline, let us try symbolizing the above argument.

p: the band performs

q: the hall is (will be) full

r: tickets are not too costly

Then the hypotheses are the propositions p → (r → q), p → r, and
the conclusion is p → q. Thus we are asked to see that the consequence
{p→ (r → q), p→ r} |= p→ q is valid. So, how to proceed?
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According to Definition 1.8, you have to consider all possible models of
the set of premises, and then see whether each of them verifies the conclu-
sion or not. And how to find all the models of the set of premises? Well,
construct a truth table. Since there are only three atomic propositions, by
the relevance lemma, we consider only those truth assignments that involve
these propositions. That is, there are only 23 = 8 truth assignments in all
that we may have to consider; these are given in the first three columns of
Table 1.3.

Table 1.3 Truth Table for Example 1.1

p q r p→ r r → q p→ (r → q) p→ q

0 0 0 1 1 1 1
1 0 0 0 1 1 0
0 1 0 1 1 1 1
1 1 0 0 1 1 1
0 0 1 1 0 1 1
1 0 1 1 0 0 0
0 1 1 1 1 1 1
1 1 1 1 1 1 1

For the time being do not read the column for p→ q in Table 1.3. Now
you must find out all (common) models of both p → (r → q) and p → r.
They are in rows 1,3,5,7, and 8. In order that the argument is correct, you
must check whether p → q is true (evaluated to 1) in all these rows. This
is the case. Hence the argument is correct.

Note that you need not evaluate p → q in the rows 2,4,6 since it does
not matter whether p→ q receives the truth value 0 or 1 in these cases. But
if one of the rows 1, 3, 5, 7, 8 had 0 for p→ q, then the consequence would
not have been valid. This gives an alternative way in showing that Σ |= w.
The alternative way is to search for an interpretation where i(w) = 0 but
i(x) = 1 for each x ∈ Σ. If the search fails, then Σ |= w. If the search
succeeds in finding one such interpretation, then Σ 6|= w.

To apply this method on Example 1.1, look at Table 1.3. The inter-
pretations which assign 0 to p → q are in rows 2 and 6. Row 2 assigns
0 to p → r and row 6 assigns 0 to p → (r → q), that is, whenever the
conclusion is falsified, at least one of the premises is also falsified. Hence
the consequence is valid. This method is sometimes easier to apply, and
we write it as a theorem below. (See the connection of this method to the
statement, called reductio ad absurdum or RAA.)

Theorem 1.4 (RAA) Let Σ be a set of propositions and w be any
proposition. Then Σ |= w iff Σ ∪ {¬w} is unsatisfiable.
Proof Let Σ |= w. Let i be any interpretation. If i is a model of Σ,
then as Σ |= w, i(¬w) = 0. If i 6|= Σ, then i 6|= x for some x ∈ Σ;
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hence i 6|= Σ ∪ {¬w}. On the other hand, if i is not a model of Σ, then
i 6|= Σ∪{¬w}. In any case, i 6|= Σ∪{¬w}. That is, Σ∪{¬w} is unsatisfiable.

Conversely, let Σ∪ {¬w} be unsatisfiable. Let i |= Σ. Then i(¬w) = 0,
i.e., i |= w. Therefore, Σ |= w.

Another important observation is contained in the following theorem.
This states a very common principle followed in almost every proof in
mathematics. It says that to prove p→ q, it is enough to assume the truth
of p and then conclude the truth of q.

Theorem 1.5 (Deduction Theorem) Let Σ be a set of propositions
and x, y be propositions. Then Σ |= x→ y iff Σ ∪ {x} |= y.
Proof Suppose that Σ |= x→ y. Let i be a model of Σ∪{x}. Then i |= Σ,
and also i |= x. Since Σ |= x → y, we have i |= x → y. If i(y) = 0, then
i(x) = 0 contradicting i |= x. Hence, i |= y. Thus we have shown that any
model of Σ ∪ {x} is also a model of y. That is, Σ ∪ {x} |= y.

Conversely, suppose that Σ ∪ {x} |= y. Let i |= Σ. If i 6|= x → y, then
i(x) = 1 and i(y) = 0. But then i |= Σ ∪ {x} and i 6|= y. This contradicts
the assumption Σ∪{x} |= y. Hence, i |= x→ y. Thus we have shown that
any model of Σ has to be a model of x→ y, proving Σ |= x→ y.

EXAMPLE 1.2 Use Deduction Theorem to show that the argument in
Example 1.1 is correct.
Solution By Deduction Theorem, it is enough to show (see the conse-
quence in Example 1.1) that {p → r, p → (r → q), p} |= q. To show the
validity of this consequence, we construct a truth table where p is assigned
to 1; so half of Table 1.3 is gone. The relevant ones are the rows 2,4,6,8.
Among these, p → r is 1 only in the rows 6 and 8. Out of these, the only
row where p→ (r → q) is 1, is the row 8. That is the only model of all the
premises p → r, p → (r → q), and p. Here we also find that q is assigned
to 1. The consequence is valid.

Alternatively, apply RAA to show that {p → r, p → (r → q), p,¬q} is
unsatisfiable. If the set is satisfiable, then there is an interpretation i such
that i(p → r) = i(p → (r → q)) = i(p) = i(¬q) = 1. Then, i(p) = 1,
i(q) = 0. Now, i(p→ r) = 1 forces i(r) = 1. So, i(p→ (r → q)) = 0. This
contradiction shows that {p→ r, p→ (r → q), p,¬q} is unsatisfiable.

Theorem 1.6 For any propositions u and v, u ≡ v iff |= u ↔ v. Further,
u ≡ > iff |= u.

Exercise 1.19 Show that u |= v iff |= u→ v. (Do not use the convention
∅ |= u→ v iff |= u→ v.) Using this, prove Theorems 1.6.

Before exploring equivalences, we will observe one more curious fact
about PL, namely, monotonicity. The consequence relation is monotonic
in the sense that if you add more premises, then an earlier conclusion still
holds. Later you will discover many logics which violate this property, and
as such they will be termed nonmonotonic logics.
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Theorem 1.7 (Monotonicity) Let w be a proposition and Σ, Γ be sets
of propositions with Σ ⊆ Γ. If Σ |= w, then Γ |= w.

Proof Suppose that Σ |= w. Let i |= Γ. Then i(x) = 1 for every x ∈ Γ.
As Σ ⊆ Γ, we see that i(y) = 1 for every y ∈ Σ, i.e., i |= Σ. Since
Σ |= w, i(w) = 1. Therefore, Γ |= w.

Some of the important consequences and equivalences, referred as laws,
are contained in the following statement.

Theorem 1.8 Let x, y, z be propositions. The following consequences and
equivalences hold:

(a) law of constants:

x ∧ > ≡ x, x ∧ ⊥ ≡ ⊥, x ∨ > ≡ >, x ∨ ⊥ ≡ x,
x→ > ≡ >, x→ ⊥ ≡ ¬x, > → x ≡ x, ⊥ → x ≡ >,
x↔ > ≡ x, x↔ ⊥ ≡ ⊥, ¬> ≡ ⊥, ¬⊥ ≡ >

(b) law of excluded middle: x ∨ ¬x ≡ >
(c) law of contradiction: x ∧ ¬x ≡ ⊥, x↔ ¬x ≡ ⊥
(d) law of double negation: ¬¬x ≡ x
(e) law of identity: x ≡ x, x↔ x ≡ >
(f) law of idempotency: x ∧ x ≡ x, x ∨ x ≡ x
(g) law of absorption: x ∧ (x ∨ y) ≡ x, x ∨ (x ∧ y) ≡ x
(h) law of commutativity:

x ∧ y ≡ y ∧ x, x ∨ y ≡ y ∨ x, x↔ y ≡ y ↔ x

(i) law of associativity: x ∧ (y ∧ z) ≡ (x ∧ y) ∧ z,
x ∨ (y ∨ z) ≡ (x ∨ y) ∨ z, x↔ (y ↔ z) ≡ (x↔ y)↔ z

(j) law of distributivity:

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)
x ∨ (y → z) ≡ (x ∨ y)→ (x ∨ z)
x ∨ (y ↔ z) ≡ (x ∨ y)↔ (x ∨ z)
x→ (y ∧ z) ≡ (x→ y) ∧ (x→ z)

x→ (y ∨ z) ≡ (x→ y) ∨ (x→ z)

x→ (y → z) ≡ (x→ y)→ (x→ z)

x→ (y ↔ z) ≡ (x→ y)↔ (x→ z)

(k) law of de morgan : ¬(x ∧ y) ≡ ¬x ∨ ¬y, ¬(x ∨ y) ≡ ¬x ∧ ¬y
(l) law of implication: x→ x ≡ >,

x→ y ≡ ¬x ∨ y, ¬(x→ y) ≡ x ∧ ¬y
x→ y ≡ x↔ x ∧ y, x→ y ≡ x ∨ y ↔ y,
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(m) law of contraposition: x→ y ≡ ¬y → ¬x
(n) law of hypothesis invariance: x→ (y → x) ≡ >
(o) law of hypothetical syllogism: {x→ y, y → z} |= x→ z

(p) law of exportation: x→ (y → z) ≡ (x∧ y)→ z ≡ y → (x→ z)

(q) law of biconditional:

x↔ y ≡ (x→ y) ∧ (y → x), x↔ y ≡ (x ∧ y) ∨ (¬x ∧ ¬y)

¬(x↔ y) ≡ (x ∧ ¬y) ∨ (¬x ∧ y), ¬(x↔ y) ≡ ¬x↔ y ≡ x↔ ¬y
(r) law of introduction: {x, y} |= x∧ y, x |= x∨ y, y |= x∨ y
(s) law of elimination : x ∧ y |= x, x ∧ y |= y

(t) law of modus ponens: {x, x→ y} |= y

(u) law of modus tollens: {x→ y,¬y} |= ¬x
(v) law of pierce: (x→ y)→ x |= x

(w) law of clavius: (¬x→ x) |= x

(x) law of the cases: If y |= z, then x ∧ y |= x ∧ z.

If x |= z and y |= z, then x ∨ y |= z.

(y) law of disjunctive syllogism: ((x ∨ y) ∧ ¬x) |= y

(z) law of uniform substitution: For any propositions x, y and any
propositional variable p occurring in x, let x[p/y] denote the propo-
sition obtained from x by substituting every occurrence of p by y.
If |= x, then |= x[p/y].

Exercise 1.20 Prove all the laws in Theorem 1.8.

There is no need to memorize all the above tautologies, equivalences,
and consequences. They should be internalized by their use. However,
use of these laws requires something more. For example, to show that
|= (p→ q) ∨ (p ∧ ¬q), you may proceed as follows:

(p→ q) ∨ (p ∧ ¬q) ≡ (p→ q) ∨ (¬(p→ q)) ≡ >

since ¬(p → q) ≡ (p ∧ ¬q). In so doing, you have substituted ¬(p → q)
in place of p ∧ ¬q and you have apparently claimed that this substitution
preserves equivalence, because p ∧ ¬q ≡ ¬(p → q). Essentially, you have
used the Euclidean principle that substitution of equals yields equals. Does
that principle hold in PL? For discussing that let us use a notation.

Let x, y, w be propositions. The expression w[x := y] denotes any propo-
sition obtained from w by replacing some (or none or all) occurrences of x
by y. Notice the difference between this substitution and the one w[x/y]
introduced in the law of uniform substitution (Theorem 1.8(z)). In obtain-
ing w[x/y] from w, you must substitute every occurrence of x by y in w,
while, in obtaining w[x := y] you may substitute some of the occurrences
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of x by y in w. For example, if w = p∧q∧¬r → ¬p∨q, then w[p := p] = w,
while w[p := q] can be any of

q∧ q∧¬r → ¬p∨ q, p∧ q∧¬r → ¬q∨ q, or q∧ q∧¬r → ¬q∨ q.

Similarly, w[s := p] = w since s does not occur in w at all. The following
statement approves the use of the Euclidean principle of substituting equals
by equals.

Theorem 1.9 (Equivalence Substitution) Let x, y, w be propositions
and w[x := y] denote any proposition obtained from w by substituting some
or all or no occurrences of x by y in w. If x ≡ y, then w ≡ w[x := y].
Proof : Let i be an interpretation. Since x ≡ y, i(x) = i(y). For computing
i(w), what matters is i(x) and/or i(y), but not the subpropositions x, y.
Hence, i(w) = i(w[x := y]). This completes the proof. (Imagine a truth
table for w and w[x := y], where i is simply a row.)

Note that if x does not occur in w, then w = w[x := y], and then
Theorem 1.9 is obvious. If x occurs in w, and w is atomic, then w = x, and
then either w[x := y] = w or w[x := y] = y. In any case, Theorem 1.9 is
clear. You can take this observation as the basis step of an induction proof
of Theorem 1.9 and then proceed to complete the proof.

Exercise 1.21 Give an induction proof of Theorem 1.9.

1.4 Calculations

Once we have Equivalence Substitution, we can show the validity of many
propositions and consequences with ease, avoiding construction of a truth
table. Suppose we want to show that x∧ y ≡ (x↔ (x∨ y ↔ y)). Our plan
is to use Theorems 1.6−1.9 to show this. By Theorem 1.6, it is enough to
show that |= (x ∧ y ↔ (x↔ (x ∨ y ↔ y))). Now,

x ∧ y ↔ (x↔ (x ∨ y ↔ y)) [Associativity]

≡ (x ∧ y ↔ x)↔ (x ∨ y ↔ y) [Implication, Commutativity]

≡ (x→ y)↔ (x→ y) [Identity]

≡ >

Again, the use of Theorem 1.6 completes the job.
Let us look at the above series of equivalences closely. How is the

first equivalence justified? To be specific, we know by the Law of Asso-
ciativity (Theorem 1.8(i)) that x ↔ (y ↔ z) ≡ (x ↔ y) ↔ z. Then we
uniformly substitute x as x ∧ y, y as x, and z as x ∨ y ↔ y. Similarly,
other equivalences hold. However, uniform substitution is expressed only
for one variable, and here we may have to simultaneously substitute many
variables. How to express this use of a law? Let us write any equiva-
lence or consequence, etc. as an expression E, a metaexpression indeed.
Now suppose that x1, x2, x3, . . . , xn (x, y, z above) are distinct propositions
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occurring in E. Let w1, . . . , wn be any propositions. Then an instance
of E is the expression E[x1 := w1, x2 := w2, . . . , xn := wn]. The rule of
substitution, which we have used in the above calculation is that “if E is
any law, then any of its instances can be used in a calculation”. This also
expresses the Euclidian ideal of substituting equals by equals, where equiv-
alence is the notion of equality. A more precise formulation is contained in
the statement below.

Theorem 1.10 (Leibniz Rule) Let the atomic propositions x1, . . . , xn

occur in the propositions E1, E2, and w1, . . . , wn be any propositions. Then,

(a) E1 ≡ E2 implies

E1[x1 := w1, . . . , xn := wn] ≡ E2[x1 := w1, . . . , xn := wn]

(b) E1 |= E2 implies

E1[x1 := w1, . . . , xn := wn] |= E2[x1 := w1, . . . , xn := wn].
Proof It is enough to prove (b), as (a) follows from it (why?). For (b),
suppose that E1 |= E2. By the deduction theorem, |= E1 → E2. That
is, whatever interpretation i we choose, i(E1 → E2) = 1. Now, if j is
any interpretation of (E1 → E2)[x1 := w1, . . . , xn := wn], then it assigns
values j(w1), . . . , j(wn) to w1, . . . , wn. The same truth values are also as-
signed respectively to x1, . . . , xn by some interpretation, say, k, i.e., for the
interpretation k, we have k(xm) = j(wm), for 1 ≤ m ≤ n. Then,

j((E1 → E2)[x1 := w1, . . . , xn := wn]) = k(E1 → E2) = 1

Since j is arbitrary, we have |= (E1 → E2)[x1 := w1, . . . , xn := wn]. As

(E1 → E2)[x1 := w1, . . . , xn := wn] = E1[x1, . . . , xn]→ E2[w1, . . . , wn],

by the deduction Theorem, E1[x1, . . . , xn] |= E2[w1, . . . , wn].

We can, in fact, use our theorems and laws for devising a proof system,
where equivalences and consequences can be proved as demonstrated in
the above calculation. A calculation will be written as a sequence of
propositions where successive propositions are linked by the symbol ≡ or
|=. Moreover, each step of the calculation which appears as A ≡ B or
as A |= B must be justified by a single use of Leibniz, where E1 ≡ E2

or E1 |= E2 must be a law listed in Theorem 1.8. That is, a calculation
will look like: C0 ⊕1 C1 ⊕2 . . .⊕m Cm, where ⊕i ∈ {≡, |=}, and every step
Ci−1⊕i Ci must be an instance of a law E1⊕iE2. The calculation is taken
as a proof of the metastatement C0 ⊗ Cm, where ⊗ =≡ if all of ⊕i are
equal to ≡, and ⊗ =|= if at least one of ⊕i equals |=. Moreover, a proof
of |= u can be a proof of the statements u ≡ > or of > |= u. And a proof
of |= u → v can be any of the proofs of u |= v, > |= u → v. Similarly, a
proof of |= u ↔ v can be a proof of > |= u ↔ v or of u ≡ v. Moreover,
a proof of unsatisfiability of a set Σ = {w1, . . . , wn} of propositions will
be a proof of w1 ∧ · · · ∧ wn |= ⊥. For proving a consequence of the type
{w1, . . . , wn} |= w, we may either construct a proof of w1 ∧ · · · ∧ wn |= w
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or of |= w1 ∧ · · · ∧ wn → w or of |= w1 → ((· · ·w2 → · · · (wn → w) · · · ).
By RAA, we may also prove this consequence by constructing a proof of
w1 ∧ · · · ∧ wn ∧ ¬w |= ⊥.

Another alternative is to use the hypotheses w1, . . . , wn as local truths.
That is, we use w1 ≡ >, . . . wn ≡ > as additional (local, only for this proof)
laws, and then construct a proof for |= w. It will be easier to use the first or
the last alternatives than others, in general (why?). The following examples
will illustrate the various alternatives.

EXAMPLE 1.3 Show by a calculation that {p∧ (q ∧ r), s∧ t} |= q ∧ s.

Solution We show that (p ∧ (q ∧ r) ∧ (s ∧ t) |= (q ∧ s).

(p ∧ (q ∧ r) ∧ (s ∧ t) [Associativity, Commutativity]

≡ (p ∧ (r ∧ t) ∧ (q ∧ s) [Elimination]

|= q ∧ s

EXAMPLE 1.4 Show that p→ (q → r),¬r, p |= ¬q.

Solution We use the hypotheses as additional (local) laws and try to have
a proof of ¬q ≡ >. The appropriate local laws are then p→ (q → r) ≡ >,
¬r ≡ >, p ≡ >, and these are mentioned in the proof as ‘Hypothesis’. Our
aim is to show that ¬q ≡ >. The following is such a proof.

¬q [Constants]

≡ q → ⊥ [Constants]

≡ q → ¬> [Hypothesis]

≡ q → ¬¬r [Double Negation]

≡ q → r [Constants]

≡ > → (q → r) [Hypothesis]

≡ p→ (q → r) [Hypothesis]

≡ >

Note that such a proof does not prove that a conclusion such as ¬q
above is indeed valid. It only says that if the hypotheses used in the proof
are true under any interpretation, then under all those interpretations, the
conclusion is also true.

EXAMPLE 1.5 Show that |= (p→ r)→ ((¬p→ ¬q)→ (q → r)).

Solution This can be shown in many ways. The easiest is to use the
deduction theorem and construct a proof for p → r,¬p → ¬q, q |= r as in
the following. To have a different approach from that in Example 1.4, we
show that (p→ r) ∧ (¬p→ ¬q) ∧ q |= r.



Calculations 27

(p→ r) ∧ (¬p→ ¬q) ∧ q [Double Negation]

≡ (p→ r) ∧ (¬p→ ¬q) ∧ ¬¬q [Modus Tollens]

|= (p→ r) ∧ (¬¬p) [Double Negation]

≡ (p→ r) ∧ p [Modus Ponens]

≡ r

EXAMPLE 1.6 Show that {(p → q) → r, s → ¬p, t,¬s ∧ t → q,¬r} is
unsatisfiable.

Solution We show that the conjunction of all the hypotheses in the set
entails ⊥. Hereafter, we mention the names of the laws by using abbrevi-
ations such as ‘Mod Tol’ for ‘Modus Tollens’, ‘Impl’ for ‘Implication’, etc.
We also use associativity of ∧ and ∨ without mentioning it (find where).

((p→ q)→ r) ∧ (s→ ¬p) ∧ t ∧ (¬s ∧ t→ q) ∧ ¬r [Mod Tol]

|= ¬(p→ q) ∧ (s→ ¬p) ∧ t ∧ (¬s ∧ t→ q) [Impl]

≡ p ∧ ¬q ∧ (s→ ¬p) ∧ t ∧ (¬s ∧ t→ q) [Mod Tol]

|= ¬q ∧ ¬s ∧ t ∧ (¬s ∧ t→ q) [Mod Tol]

|= ¬s ∧ t ∧ ¬(¬s ∧ t) [Const]

≡ ⊥

Alternatively, you can start with a conjunction of a few suitable hy-
potheses (or just one hypothesis), then go on introducing others, whenever
required so that a proof may be obtained. Look at the following alternate
solution to Example 1.6 (give reasons at each step):

An Alternate Solution

((p→ q)→ r) ∧ ¬r
≡ ¬(p→ q)

≡ p ∧ ¬q
≡ p ∧ ¬q ∧ >
≡ (p ∧ ¬q) ∧ (s→ ¬p)
|= ¬q ∧ ¬s
≡ ¬q ∧ ¬s ∧ >
≡ ¬q ∧ ¬s ∧ (¬s ∧ t→ q)

|= ¬s ∧ ¬(¬s ∧ t)
≡ ¬s ∧ (t→ s)

|= ¬t
≡ ¬>
≡ ⊥
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1.5 Normal Forms

Another use of the laws is to see whether you really require all the five
connectives to do propositional logic. One look at the laws will tell you
that from any proposition you can eliminate the connectives ↔,→,∨ and
also the propositional constants > and ⊥ by equivalences, since

x↔ y ≡ ¬(x ∧ ¬y) ∧ ¬(y ∧ ¬x), x→ y ≡ ¬(x ∧ ¬y)

x ∨ y ≡ ¬(¬x ∧ ¬y), > ≡ ¬(x ∧ ¬x), ⊥ ≡ x ∧ ¬x

That is, we could have started with our only connective as ¬ and ∧, and
then introduced other connectives and the propositional constants as defi-
nitions or abbreviations. This fact is often expressed by saying that in PL,
the set {¬,∧} is an adequate set of connectives.

Exercise 1.22 Show that each of the sets {¬,∨}, {¬,→}, {⊥,→} is also
an adequate set.

Can you go further in reducing the sizes of the adequate sets? Is {¬}
an adequate set? That is, can you define ∧ in terms of ¬ alone? It seems
impossible. But how to show this? Now in PL, we have the propositional
variables p0, p1, . . .. If ¬ is the only connective to be used, we would gen-
erate the formulas:

p0, p1, p2, · · · , ¬p0,¬p1,¬p2, . . . , ¬¬p0,¬¬p1,¬¬p2, . . . ,

¬¬¬p0,¬¬¬p1, . . . , ¬¬¬¬p0,¬¬¬¬p1, . . . , . . .

Up to equivalence, the propositions reduce to

p0, p1, p2, p3, · · · , ¬p0,¬p1,¬p2,¬p3, . . . , . . .

Now, is any of these propositions equivalent to p0 ∧ p1? Definitely not.
Because p0 ∧ p1 6≡ p0 as the interpretation i with i(p0) = 1, i(p1) = 0 is a
model of p0, but not a model of p0 ∧ p1. Similarly, p0 ∧ p1 6≡ p1 . . .

Exercise 1.23 The list above is infinite. Then how do you show that
p0∧p1 is not equivalent to any of the propositions p0, p1, · · · , ¬p0,¬p1, . . . ,?
[Hint : Show that p0 ∧ p1 6≡ pi if i 6= 0, i 6= 1, and that p0 ∧ p1 6≡ ¬pi if
i 6= 0, i 6= 1.]

Exercise 1.24 Show that the set {¬} is not adequate even if we use the
propositional constants > and ⊥.

The connective ∧ does not form an adequate set since ¬p is not equiva-
lent to any of p∧ p, p∧¬p, ¬p∧¬p, >, ⊥, p∧>, p∧⊥, ¬p∧>, ¬p∧⊥.

Exercise 1.25 Why does it suffice to consider the nine propositions only
for showing that {∧} is inadequate?

Exercise 1.26 Show that none of the sets {∨}, {→}, {↔} is an adequate
set. Is {¬,↔} an adequate set?
[Hint : Show that ¬p cannot be expressed by any one of them.]



Normal Forms 29

Treating the propositional constants > and ⊥ as 0-ary connectives, you
can show that ⊥,→ is adequate. For this, you only need to observe that
¬p ≡ p → ⊥. Why is it enough? However, there are two binary truth
functions which we have not taken as connectives. We will see why they
are special. They are given in the following truth table.

Table 1.4 NAND and NOR

p q p ↑ q p ↓ q
0 0 1 1
1 0 1 0
0 1 1 0
1 1 0 0

It is easy to see that p ↑ q ≡ ¬(p ∧ q) and p ↓ q ≡ ¬(p ∨ q); thus, ↑ is
called NAND and ↓ is called NOR. Now,

¬p ≡ p ↑ p, p ∧ q ≡ ¬¬(p ∧ q) ≡ ¬(p ↑ q) ≡ (p ↑ q) ↑ (p ↑ q)

Since {¬,∧} is an adequate set, so is {↑}. Similarly, you can verify that

¬p ≡ p ↓ p, p ∨ q ≡ ¬¬(p ∨ q) ≡ ¬(p ↓ q) ≡ (p ↓ q) ↓ (p ↓ q)
Therefore, {↓} is also an adequate set.

Exercise 1.27 Find explicit expressions of all the five connectives in
terms of (a) ↑ alone, (b) ↓ alone.

If you view interpretations and models as in our second view of seman-
tics, then each compound proposition is simply a truth function, i.e., a
function which takes 0’s and 1’s to 0’s and 1’s. In that sense, ¬ is the
unary truth function ¬ : {0, 1} → {0, 1}, ∧ is the binary truth function
∧ : {0, 1} × {0, 1} → {0, 1}, . . . Then ↑ is a function from {0, 1} × {0, 1}
to {0, 1} and is given explicitly by ↑ (0, 0) =↑ (0, 1) =↑ (1, 0) = 0 and
↑ (1, 1) = 0. Since ↑ alone forms an adequate set, it follows that any bi-
nary truth function, i.e., any function f : {0, 1} × {0, 1} → {0, 1} can be
expressed as a (serial) composition of ↑ alone. Since with two arguments
there are 22 = 4 interpretations, there are 24 = 16 binary truth functions.
Out of these 16 truth functions, ↑ and ↓ are the only truth functions, each
of which forms an adequate set. That is, {↑} and {↓} are the only single-
tons which are truth functionally complete (another name for ‘adequate’).
Can you prove this?

We will take a middle path. We know that both {¬,∧} and {¬,∨}
are adequate sets of connectives, and so is the set {¬,∧,∨} though a bit
superfluous. However, admitting three connectives gives us nice forms of
propositions. For example,

(¬p→ q)→ (p ∨ r → q ∧ s) [Impl]

≡ ¬(¬p→ q) ∨ (p ∨ r → q ∧ s) [Impl]



30 Propositional Logic

≡ (p ∧ ¬q) ∨ (¬(p ∨ r) ∨ (q ∧ s)) [De Mor]

≡ (p ∧ ¬q) ∨ ((¬p ∧ ¬r) ∨ (q ∧ s)) [Assoc]

≡ (p ∧ ¬q) ∨ (¬p ∧ ¬r) ∨ (q ∧ s)
The last proposition is a disjunction of conjunctions. There are certain

advantages of these types of propositions. For instance, it is relatively
easier to find out all the models of such a proposition at a glance. They
are of three types, one where p,¬q are 1, two where ¬p,¬r are 1, and three
where q, s are 1, and nothing else (Why?). We fix some terminology.

Definition 1.9 A literal is either a propositional variable, or negation of
a propositional variable. For any propositional variable p, the literals p and
¬p are called complementary (to each other) literals. A conjunctive clause
is a conjunction of literals; a disjunctive clause is a disjunction of literals. A
conjunctive normal form proposition (cnf) is a conjunction of disjunctive
clauses; a disjunctive normal form (dnf) is a disjunction of conjunctive
clauses.

The calculation above shows the equivalence

(¬p→ q)→ (p ∨ r → q ∧ s) ≡ (p ∧ ¬q) ∨ (¬p ∧ ¬r) ∨ (q ∧ s)

where the second one is in dnf. So, what do you guess?

Theorem 1.11 (Normal Form) Every proposition is equivalent to a cnf
and also to a dnf.
Proof Let w be any proposition. Suppose the set of all propositional
variables occurring in w is A = {q1, . . . , qn} 6= ∅. [If A = ∅, then replace
> by q1 ∨ ¬q1 and ⊥ by q1 ∧ ¬q1 in w to obtain an equivalent proposition
with A = {q1}.] Now any interpretation is a function from A to {0, 1}.
Consider the set M of all models of w. Corresponding to each model j of
w, we will construct a conjunctive clause Cj . If j(qk) = 1, then let ljk = qk;
else, if j(qk) = 0, let ljk = ¬qk. Take Cj = lj1 ∧ lj2 ∧ · · · ∧ ljm, and ‘or’
them together to get w′ = C1 ∨C2 ∨ · · · ∨Cn, where there are n number of
models of w. Our construction of a dnf w′ is over. It remains to show that
indeed, w ≡ w′.

To see that w ≡ w′, let i |= w. Then as per the constructions of the
literals, we see that i(li1) = i(li2) = · · · = i(lim) = 1. That is, i(Ci) = 1.
Since w′ is a disjunction of the Ci’s, we have i |= w′, proving that w |= w′.
Conversely, let v |= w′. Then there is at least one Ck such that v |= Ck.
Then v(lk1) = v(lk2) = · · · = v(lkm) = 1. That is, v coincides with the
interpretation k, which of course is a model of w. Hence v |= w. Since v is
an arbitrary interpretation, we have shown that w′ |= w.

Use the law of distributivity on w′ to get an equivalent cnf w′′.

The above proof goes like this. Suppose you want a dnf representation
of w = ¬(p↔ q). First, find all possible models of w. From the truth table
for w (construct it), you see that the models are i and j, where i(p) = 1,
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i(q) = 0 and j(p) = 0, j(q) = 1. The conjunctive clause corresponding to i
is p∧¬q, and one that corresponds to j is ¬p∧q. So, the dnf representation
of w is w′ = (p ∧ ¬q) ∨ (¬p ∧ q). The cnf is obtained by distribution of ∨
over ∧, thereby giving w′′ = (p ∨ ¬p) ∧ (p ∨ q) ∧ (¬q ∨ ¬p) ∧ (¬q ∨ q). Of
course, w′′ can further be simplified to w′′ ≡ (¬q ∨ ¬p) ∧ (p ∨ q). Why?

Exercise 1.28 Use the nonmodels of w, i.e., the interpretations which
falsify w, to construct a cnf equivalent to w. [Hint : You may have to take
p (not ¬p) when it is false (not true) in an interpretation.]

However, it looks as though the construction in the above proof is waste-
ful. To effect such a construction, you must have a truth table with 2n rows
if there are n propositional variables in w. Indeed, a cnf or a dnf conversion
can be achieved by using equivalences. The following procedure, called
NorFor, does just that.

PROCEDURE : NorFor
Input: Any proposition w of PL
Output: A cnf and a dnf equivalent to w

1. Eliminate the connectives →,↔ by using the laws of
Implication and Biconditional.

2. Use De Morgan to take ¬ close to the propositional variables.
3. Use Double Negation to have either one ¬ or none at all with

any propositional variable.
4. Use Distributivity to get the required cnf or dnf.

Try to prove that the procedure really works. Look at the laws used in
the procedure. Do you feel that using only these laws, all the other laws
in Theorem 1.8 can be derived by calculations? If so, why? If not, what
else do you require? Note that you can use other laws (like absorption,
constants, etc) for simplifying the normal forms. They can also be used
anywhere in the procedure, and not only after the procedure is complete.
It is a good idea to modify the procedure accordingly.

EXAMPLE 1.7 Convert (p → (¬q → r)) ∧ (p → ¬q) to a cnf and also
to a dnf.
Solution

(p→ (¬q → r)) ∧ (p→ ¬q)
≡ (¬p ∨ (¬q → r)) ∧ (¬p ∨ q)
≡ (¬p ∨ (¬¬q ∨ r)) ∧ (¬p ∨ q)
≡ (¬p ∨ q ∨ r) ∧ (¬p ∨ q)

The last proposition is in cnf. Distributivity gives:

(¬p ∧ ¬p) ∨ (¬p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (q ∧ ¬q) ∨ (r ∧ ¬p) ∨ (r ∧ ¬q)

This is in dnf. Further simplification gives:
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¬p ∨ (¬p ∧ ¬q) ∨ (q ∧ ¬p) ∨ (r ∧ ¬p) ∨ (r ∧ ¬q)

Looking at the procedure from inside, you will find that for computing
a dnf or a cnf representation, you must show how to compute a cnf or dnf
of the forms x ∧ y, x ∨ y and of ¬x. This is because, after eliminating the
connectives →,↔, you will be getting one of these forms. Suppose that
you have already obtained a cnf of x and of y; call them cnf(x) and cnf(y),
respectively. Then cnf(x ∧ y) is simply cnf(x) ∧ cnf(y). What about the
cnf(x ∨ y)? If x, y are literals, then cnf(x ∨ y) = x ∨ y. Otherwise? Well,
for propositional variables p, q, you have:

cnf(p ∧ q) = p ∧ q, cnf(¬p ∨ q) = ¬p ∨ q

Now, how to compute cnf((p∧q)∨(¬p∨q))? Obviously, you must distribute.
Distributivity of ∨ over ∧ gives:

cnf((p ∧ q) ∨ (¬p ∨ q)) = (p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q)

This requires to define (as in functional programming) dist(x, y). Here is
such a definition of dist(x, y) :

Let Ci, Dj be disjunctive clauses. If x = C1 ∧ C2 ∧ · · · ∧ Cm and
y = D1 ∧D2 ∧ · · · ∧Dn, then dist(x, y) = ∧i,j(Ci ∨Dj).

Once distribution is available, you can define cnf(w). There are three cases
to consider, as in the following:

(a) If w is a literal, then cnf(w) = w.

(b) If w is x ∧ y, then cnf(w) = cnf(x) ∧ cnf(y).

(c) If w is x ∨ y, then cnf(w) = dist(cnf(x), cnf(y)).

Exercise 1.29 Define dnf(w) and write programs in any language you
know to convert a proposition to a cnf and a dnf using cnf(w) and dnf(w).

The normal forms can be used to decide whether a proposition is valid,
invalid, satisfiable, or unsatisfiable. For example, (p∨¬p∨q)∧(q∨¬q∨r) is
valid. But the proposition (p∨q)∧(¬p∨p∨r) is invalid since i(p) = 0 = i(q)
with i(r) = 0 or 1 does not satisfy it. Similarly, (p ∧ ¬p ∧ q) ∨ (q ∧ ¬q ∧ r)
is unsatisfiable while (p∧ q)∨ (¬p∧ p∧ r) is satisfiable. In general, if both
p,¬p occur in a conjunctive clause, the clause is unsatisfiable. Similarly, if
both p,¬p occur in a disjunctive clause, the clause is valid. A cnf being a
conjunction of disjunctive clauses, it is easy to see that, if each disjunctive
clause in it is valid, then the cnf is valid. Similarly, if each conjunctive
clause in a dnf is unsatisfiable, then the dnf is also unsatisfiable. But to
determine the validity of a cnf or unsatisfiability of a dnf, we must also see
the converse statements. Let us see this for a dnf.

Suppose that w = D1 ∧D2 ∧ · · · ∧Dn is a dnf and that |= w. Then each
interpretation evaluates each of the clauses Dj to 1. That is, each Dj is
valid. Now, how can D1 be valid? D1 = l1 ∨ l2 ∨ · · · ∨ lk, where the l’s are
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literals. Our claim here is that for D1 to be valid, there must be a pair of
complementary literals among these. Because, otherwise, we can define an
interpretation i such that i(l1) = · · · i(lk) = 0 and this interpretation will
falsify D1. A similar argument holds for each Dj . Analogously, we have a
corresponding argument for satisfiability of a cnf. Thus, we have proved
the following statement.

Theorem 1.12 A cnf is valid iff each disjunctive clause in it contains a
pair of complementary literals. A dnf is unsatisfiable iff each conjunctive
clause in it contains a pair of complementary literals.

EXAMPLE 1.8 Categorize the following propositions into valid, invalid,
satisfiable, or unsatisfiable by converting into a suitable normal form.

(a) (p→ q) ∨ (q → ¬r) ∨ (r → q)→ ¬(¬(q → p)→ (q ↔ r))

(b) ¬((p→ q) ∧ (q → r)→ (q → r))

(c) (p→ (¬q → r)) ∧ (p→ ¬q)→ (p→ r).

Solution (a) Let us get an equivalent cnf or dnf.

(p→ q) ∨ (q → ¬r) ∨ (r → q)→ ¬(¬(q → p)→ (q ↔ r))

≡ (p→ q) ∨ (q → ¬r) ∨ (r → q)→ ¬((q → p) ∨ (q ↔ r))

≡ (p→ q) ∨ (q → ¬r) ∨ (r → q)→ (¬(q → p) ∧ ¬(q ↔ r))

≡ (p→ q) ∨ (q → ¬r) ∨ (r → q)→ (q ∧ ¬p ∧ ((q ∧ ¬r) ∨ (¬q ∧ r)))
≡ (¬p ∨ q ∨ ¬q ∨ ¬r ∨ ¬r ∨ q)→ ((q ∧ ¬p ∧ q ∧ ¬r) ∨ (q ∧ ¬p ∧ ¬q ∧ r))
≡ ¬(¬p ∨ q ∨ ¬q ∨ ¬r ∨ ¬r ∨ q) ∨ (q ∧ ¬p ∧ q ∧ ¬r) ∨ (q ∧ ¬p ∧ ¬q ∧ r)
≡ (p ∧ ¬q ∧ q ∧ r ∧ r ∧ ¬q) ∨ (q ∧ ¬p ∧ q ∧ ¬r) ∨ (q ∧ ¬p ∧ ¬q ∧ r)
≡ (p ∧ ¬q ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬q ∧ r)

This is in dnf, having at least one conjunctive clause which does not
have a pair of complementary literals. In the first and third clauses, q,¬q
occur, while in the second, ¬p occurs but not p, q occurs but not ¬q, and
¬r occurs but not r. Thus it is satisfiable.

For validity, you have to convert it to a cnf, say, by distributing the ∨’s
over ∧’s in the dnf. However, there is a shorter approach here. Since both
the first and the third clauses have a pair of complementary literals, they
are each equivalent to ⊥. Moreover, ⊥∨ x ≡ x. Therefore, the above dnf is
equivalent to the second clause only, i.e., it is equivalent to:

¬p ∧ q ∧ ¬r
which is in both cnf and dnf. The cnf has now three clauses, namely,
¬p, q,¬r; neither has a pair of complementary literals. Thus the proposition
is invalid.

This calculation shows that it is sometimes advantageous to simplify
the normal forms whenever possible. However, simplification may result in
> or ⊥ only. Of course, when you get >, the proposition must be valid;
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similarly, if you end up in ⊥, it is unsatisfiable. That is, as cnf and dnf, >
must be a cnf, while ⊥ must be a dnf.

(b) ¬(((p→ q) ∧ (q → r))→ (q → r))

≡ (p→ q) ∧ (q → r) ∧ ¬(q → r)

≡ (¬p ∨ q) ∧ (¬q ∨ r) ∧ q ∧ ¬r
This is in cnf, and you may conclude that it is invalid. But is it also
satisfiable? We need a dnf. So? Distribute and simplify to get

(¬p ∨ q) ∧ ((¬q ∧ q ∧ ¬r) ∨ (r ∧ q ∧ ¬r)) ≡ (¬p ∨ q) ∧ ⊥ ≡ ⊥

Hence, it is unsatisfiable. If you do not use ⊥, then you would end up in a
bigger expression like:

(¬p∧¬q∧q∧¬r)∨(¬p∧r∧q∧¬r)∨(q∧¬q∧q∧¬r)∨(q∧r∧q∧¬r)

from which the same conclusion is drawn.

(c) ((p→ (¬q → r)) ∧ (p→ ¬q))→ (p→ r)

≡ ¬((p→ (¬q → r)) ∧ (p→ ¬q)) ∨ (p→ r)

≡ ¬(p→ (¬q → r)) ∨ ¬(p→ ¬q) ∨ (p→ r)

≡ (p ∧ ¬(¬q → r)) ∨ (p ∧ ¬¬q) ∨ (¬p ∨ r)
≡ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q) ∨ ¬p ∨ r

This is in dnf having at least one clause, say, the last one, r, which does not
have a pair of complementary literals. Hence the proposition is satisfiable.
But is it valid? By distributing and simplifying, you find that

(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q) ∨ ¬p ∨ r
≡ (p ∧ ¬q ∧ ¬r) ∨ ((p ∨ ¬p ∨ r) ∧ (q ∨ ¬p ∨ r))
≡ (p ∧ ¬q ∧ ¬r) ∨ (> ∧ (q ∨ ¬p ∨ r))
≡ (p ∧ ¬q ∧ ¬r) ∨ (q ∨ ¬p ∨ r)
≡ (p ∨ q ∨ ¬p ∨ r) ∧ (¬q ∨ q ∨ ¬p ∨ r) ∧ (¬r ∨ q ∨ ¬p ∨ r)

This is in cnf where each clause has a pair of complementary literals. Hence
the proposition is valid.

Exercise 1.30 Redefine cnf and dnf so that ⊥ is a dnf and > is a cnf.
While solving the examples above, you had encountered an awkward

situation! Can you recollect? You had seen a proposition to be satisfiable,
but, in fact, a stronger property holds, namely, it is valid. Similarly, you
had concluded some proposition to be invalid, but later you find that it
is also unsatisfiable. (Which propositions above are we referring to?) For
concluding the stronger properties, you had to distribute and find out the
dual normal form; i.e., if you had already a cnf, you need a dnf and vice
versa. Can there be a shorter way than using distributivity? To be spe-
cific, how to determine the validity of a dnf or the satisfiability of a cnf
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without using distributivity? If you are impatient, then see the chapter on
Resolution right now.

You have seen that by using calculations, any proposition can be con-
verted to an equivalent cnf and also a dnf. Then from these normal forms,
it can be decided whether the proposition is valid or satisfiable. Moreover,
the laws are correct semantically. The correctness of the calculations may
be stated as if a calculation shows that |= w, then, it is indeed so. This
is referred to as the soundness of calculations. The fact that calculations
can be used to prove |= w is also obvious, at least through normal form
conversions. Suppose that |= w. Then our calculation procedure tells us
that we can convert w to an equivalent cnf, and then we can decide whether
w is valid or not. This is referred to as the completeness of calculations.
If a proof procedure is both sound and complete, then we say that the
procedure is adequate. You can show that for every finite set Σ of propo-
sitions and any proposition w, Σ |= w iff there is a calculational proof of
it. If Σ is infinite, will such a statement hold?

1.6 Some Applications

The logic of propositions is so fundamental that its applications are found
almost everywhere, starting from day-to-day conversation to electrical cir-
cuits and software designing. In this section we will briefly review some of
these. Though we do not discuss it further, it is nonetheless very important.
For, applications usually start a field of study and continuously enrich it
by bringing in previously unimagined problems and peculiar features. We
will not discuss all the applications of PL; see the summary at the end of
the chapter. We start with a small puzzle.

EXAMPLE 1.9 [A Puzzle] In the Kniknaord island there are knights,
knaves and possibly ordinary people. Knights always tell the truth, knaves
always lie to strangers; ordinary people sometimes tell the truth, and some-
times lie to strangers. There are two uninhabited islands A and B. In at
least one of these islands there is gold buried by some preposterous pirate.
By good fortune you find a message by an earlier gold hunter which reads:

(a) There is no gold on Kniknaord.
(b) If there are any ordinary people in Kniknaord, then there is gold

in two of the islands.

Supposing that the natives in Kniknaord know all about the buried gold,
you are (a stranger, of course) allowed to ask only one question to exactly
one native chosen at random. What question would you ask?

Take some time before reading the solution. Even while you read the
solution, do not read it at a time. Go a step, and then try to solve the
problem from that point onwards yourself. Finally, read it.
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Solution From (a), it is obvious that there is gold in at least one of the
islands A and B. Further, if there are ordinary people in Kniknaord, then
from (b) it follows that there is gold in both the islands A and B. So, you
can safely assume that there is no ordinary people in Kniknaord. Now, you
must determine by your question (and then from the answer of the native)
whether there is gold in island A (for then, there is no gold in island B,
or, even if it is, it does not matter). Thus, you might pose a question in
the form ‘Is Q true?’, whence, if there is gold in A, then no matter what
the native is, his response must be ‘yes’; and if the response is ‘no’, then it
must lead you to conclude that there is no gold in A (so that it is in B).
However, you must take care of the truth in what the native says in view
of whether he is a knight or a knave. Therefore, Q will involve two simple
propositions:

p : There is gold in island A.

q : You are a knight.

You want to determine the proposition Q so that the truth of p would
be the same as the response of the native to the question “Is Q true?”
Note that Q will be a compound proposition built from p and q. In this
case, if the response to your question is ‘no’, then p is false, irrespective of
the value of q. Similarly, if the response is ‘yes’, then p is true, whatever
the value of q may be. Writing 1 for ‘true’, 0 for ‘false’ for the values of
p, q, and 1 for a ‘yes’ response, 0 for a ‘no’ response, you get the first three
columns of Table 1.5. However, the truth of Q need not be the same as the
response. In the first row of the table, q is 1, i.e., the native is a knight.
His response is 1 means that the truth value of Q is 1. In the second row,
q is 0, so the native is a knave, and then his response and the truth value
of Q must be opposites. In the third row, q is 1, so his response must be
the same as the truth value of Q; and in the fourth row, his response must
be opposite to the truth value of Q. Thus, we have the truth values of the
unknown proposition Q corresponding to those of the atomic propositions
p, q as in Table 1.5.

Table 1.5 Kniknaordian’s Response

p q response Q

1 1 1 1
1 0 1 0
0 1 0 0
0 0 0 1

From the truth values of p, q,Q, it is clear that Q ≡ p↔ q. If it is not
very clear, you can, of course, use to construct a cnf from the truth values
as in the proof of the normal form theorem. Hence, your question is:
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Is it true that you are a knight if and only if there is gold buried in
island A?

If the answer is ‘yes’, then there is gold in island A; otherwise, there is
gold in island B. Verify whether your question works, taking the native
as a knight, knave and an ordinary person, in turn. You must verify the
solution now. There is one more solution to this puzzle, though similar.
Can you find it?

Next, we will briefly see how PL is used in circuit designs. The basic
logic functions, ‘not’, ‘and’, ‘or’ are realized in electronic circuits by the so-
called gates. The gates for the corresponding basic truth functions ¬,∧,∨
are symbolized by hardware engineers in a different way. See Figure 1.7.

NOT-gate: p PPPP

����◦ -
¬p

AND-gate:
p

q

�
� -
p ∧ q

OR-gate:

p

q

�
�

PPPPP

����� -
p ∨ q

Figure 1.7 Basic logic gates.

The NOT-gate means that if a wire carries a large amount of voltage,
then the gate outputs a small amount and vice versa. Similarly, the AND-
gate means that if two wires carry some voltage p, q, then the gate outputs
min (p, q). Similarly, the OR-gate outputs max (p, q). The voltage p, q rep-
resent either a ‘small’ or a ‘large’ amount of voltage, and are modelled by
the truth values 0 and 1.

p PPPP
����◦

q PPPP
����◦

$
%�

�

�
�

PPPPPP

������ -p↔ q

Figure 1.8 Circuit for ↔.

These gates are combined together to form a bigger circuit which can
perform many complicated jobs such as doing arithmetic and taking control
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jobs. You can, for example, construct a gate that does the job↔, by joining
the basic gates together. The circuit in Figure 1.8 does this by employing
the representation p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q). Note that the shape of a
diagram component matters, but not its size.

Now, it is clear that for any intended gate, you can use one of cnf or
dnf representations and then realize the gate. For example, suppose that
you want to construct a circuit for realizing the truth function w as given
in the following:

p 0 1 0 1 0 1 0 1
q 0 0 1 1 0 0 1 1
r 0 0 0 0 1 1 1 1

w(p, q, r) 0 1 1 1 1 1 1 0

The construction used in the proof of the normal form theorem gives:

w ≡ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ ¬r)
∨ (¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r)

Exercise 1.31 Draw the circuit for w as given above.
However, you can have a smaller circuit to do the same job as w. Group-

ing together the first and third clauses, second and sixth, and fourth and
fifth, and using the laws, you get

w ≡ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)

Since circuits will have to be implemented by actual wires (or metallic
prints), it is preferable to have a circuit of smaller size which might do the
same work than a crude one. This gives rise to the problem of minimization
of Boolean circuits. There are many methods to do it; we will point out
some bibliographic materials later.

Exercise 1.32 Draw the circuit diagram for w as given above and com-
pare that with the one you have drawn in Exercise 1.31.

We will raise another problem in PL. Given a cnf, how would you deter-
mine whether it is satisfiable? You had already got a solution, where you
require the law of distribution so that the cnf is converted to a dnf, and
then check for complementary literals in the conjunctive clauses. Now, if
the cnf has m clauses, with li number of literals in the i-th clause, then you
need to write out, and check for complementarity in the l1×· · ·× lm clauses
where each clause has m literals. In the worst case, it would require an
exponential number of checks to determine satisfiability. So, it is no better
than the truth table method. There have been many smart ways devised to
tackle this problem, called SAT. Though they work better than exponential
in most cases, the worst cases still require an exponential amount of labour.
That is, we do not yet have an algorithm which would take a polynomial
(in the length of the cnf) time for solving SAT. The collection of problems
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for which there is an algorithm to solve any instance in a polynomial time
is denoted by P.

In contrast, if you are told that here is one interpretation which is a
model of the given cnf, you can check it in a polynomial time. You just
have to evaluate the cnf under the interpretation. This class of problems
is called NP; it includes all those problems for which a suggested solution
can be verified in a polynomial time. Intuitively, for a problem in P, we
are asked to get an algorithm to solve every instance in a polynomial time
while in NP, we are asked to check whether a suggested solution is indeed
a solution, in a polynomial time. It is clear that SAT is in NP, but it is
not yet clear whether SAT is in P. Moreover, a fundamental fact with SAT
is that if it is found to be in P, then both P and NP will coincide. Such
problems are called NP-complete problems.

A related problem is the so-called k-SAT problem. This is the same
problem SAT but with the constraint that each of the clauses in the cnf
has no more than k literals. It can be shown that corresponding to each
cnf X, there exists a cnf Y where each clause in Y has no more than
three literals. For example, a disjunctive clause with four literals, say,
(p ∨ q ∨ r ∨ s) will be rewritten as (p ∨ q ∨ x) ∧ (x ↔ r ∨ s). Now, (x ↔
r ∨ s) ≡ (¬x ∨ r ∨ s) ∧ (x ∨ ¬r) ∧ (x ∨ ¬s). Hence, (p ∨ q ∨ r ∨ s) can be
rewritten as (p∨q∨x)∧(¬x∨r∨s)∧(x∨¬r)∧(x∨¬s). For any cnf, use this
technique of rewriting repeatedly for the construction of a corresponding 3-
cnf. Moreover, 3-SAT is alsoNP-complete. With this result, we would then
have: SAT is in P iff 3-SAT is in P. Thus for deciding whether P = NP,
it is enough to concentrate on 3-SAT. If you have been mystified by this
discussion, then fair enough; you need to look at the references suggested
in the summary to this chapter.

There is, however, a subclass of propositions for which we have polyno-
mial time algorithms for checking satisfiability. These are the Horn clauses,
so called after the logician A. Horn. An arbitrary disjunctive clause in a
cnf has some literals which appear with the symbol ¬, and some without.
While in a Horn clause, there is at most one literal which is unnegated.
For example, ¬p∨¬q, r,¬p∨¬q ∨ r are Horn clauses, while ¬p∨¬q ∨ r ∨ s
and r∨s are not Horn clauses. Conventionally, Horn clauses are not written
as disjunctive clauses since they can be written in another more suggestive
way. For example, we might use the equivalences ¬p ∨ ¬q ≡ p ∧ q → ⊥,
¬p∨¬q ∨ r ≡ p∧ q → r and r ≡ > → r to rewrite the above Horn clauses.

Definition 1.10 A Horn clause is a proposition of the form

q1 ∧ q2 ∧ · · · ∧ qm → q

where q1, . . . , qm, q are atomic propositions. A Horn formula is a con-
junction of Horn clauses, written often as a set of Horn clauses.

Suppose that we have a Horn formula. If > → q is a clause in it, then
in any of its models, q must be true. If q1 ∧ · · · ∧ qm → ⊥ is a clause in
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the Horn formula, and each of q1, . . . , qm is true in the already constructed
model, then the clause cannot have a model. Thus the formula will be
unsatisfiable. If there is a clause of the form q1 ∧ · · · ∧ qm → q, with q 6= ⊥,
and our model makes all of q1, . . . , qm true, then it must also make q true.

EXAMPLE 1.10 Is the following Horn formula satisfiable:
w = {(p ∧ q ∧ r → s), (t→ p), (> → t), (> → q), (u→ v), (> → u)}

Solution Let us try to construct a possible model i of w. Since > →
q,> → u and > → t are clauses, We must have i(q) = i(u) = i(t) = 1.
Next, we have the clauses t→ p and u→ v. If i is a model of these clauses,
we must have i(p) = i(v) = 1. The clause p ∧ q ∧ r → s is satisfied by
taking i(s) = 1. In the remaining clause p∧ q ∧ r → ⊥, only p, q have been
assigned some value, namely, 1. Now r can be assigned to 0 so that the
Horn clause is satisfied. hence we have a model i of the Horn formula,
where i(p) = i(q) = i(s) = i(t) = i(u) = i(v) = 1 and i(r) = 0. Do we have
to consider the last two clauses?

However, we do not require to construct a model if only satisfiability is
to be determined; see the procedure HornSat given below.

PROCEDURE : HornSat
Input: A Horn formula w
Output: w is satisfiable or w is not satisfiable

1. If > → ⊥ is a clause in w, go to Step 7.
2. For every clause of the form > → p in w, mark p if it is a propositional

variable.
3. If q1 ∧ q2 ∧ · · · ∧ qm → ⊥ is a clause in w, where all of q1, q2, . . . , qm

have been marked, then go to Step 7.
4. If q1 ∧ q2 ∧ · · · ∧ qm → q is a clause in w, where all of q1, q2, . . . , qm

have been marked and q 6= ⊥, then mark q and go to Step 3.
5. If q1 ∧ q2 ∧ · · · ∧ qm → q is a clause in w, where q 6= ⊥ and one or

more of q1, q2, . . . , qm have not been marked, then go to Step 6.
6. Return ‘w is satisfiable’ and stop.
7. Return ‘w is not satisfiable’ and stop.

Exercise 1.33 Which of the following are Horn clauses and why? For
the Horn clauses, apply HornSat for determining their satisfiability.

(a) (p ∧ q ∧ r → >) ∧ (p ∧ r → s) ∧ (s→ ⊥)

(b) (p ∧ q ∧ r → ⊥) ∧ (¬p ∧ q → r) ∧ (⊥ → s)

(c) {p ∧ q → s, p ∧ r → p, r → p ∧ t}
(d) {p ∧ q ∧ r → ¬s, s→ ⊥}
(e) (p ∧ q ∧ r → s) ∧ (> → s) ∧ (p ∧ q → ⊥)

(f) (> → p ∧ q) ∧ (⊥ → >)
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Another application of PL is the knowledge systems. For example, in
diagnosing a disease from the symptoms, we can have a data base, where
information regarding a disease is stored as propositions. Then the task is
to know whether a particular set of symptoms points to a disease. In such
cases, the data base is called a knowledge base, a propositional knowl-
edge base, and the the set of all conclusions that can be drawn from the
base is called a propositional theory. Sometimes, the propositional lan-
guage underlying the theory is also referred to as the propositional theory.
When a case is presented to the theory, it is then required to ascertain
whether a particular proposition follows from the theory. It may take a
considerable amount of time to see whether such a consequence is valid.
Thus the knowledge base, instead of just being stored, is first transformed
to a better form so that particular consequences will be easier to decide.
Such a transformation is done off-line, that is, before any suggested conclu-
sion is presented to the theory. Such off-line transformation of the theory
or the knowledge base is called knowledge compilation.

Methods of knowledge compilation depends upon the nature of the the-
ory and our requirement on the on-line inference procedure. For example,
a common approach to the knowledge compilation is to transform a set
of propositions (the knowledge base) to the set of its prime implicants
or the set of prime implicates. A prime implicant of a proposition is a
conjunctive clause that implies the proposition with the property that no
subclause of the clause implies the proposition. Similarly, a prime implicate
of a proposition is defined dually, as a disjunctive clause that is implied by
the proposition no subclause of which is implied by the proposition. It can
be proved that the set (disjunction) of all prime implicants of a proposition
is equivalent to the proposition. It can also be proved that the set of prime
implicates of a proposition is equivalent to the proposition. Now, once the
prime implicants of a propositional theory is obtained, any conclusion that
can be drawn from the theory can equivalently be drawn from the set of
prime implicants. However, drawing a conclusion from the set of prime
implicants is easy, in the sense that a conclusion as a clause must have a
subclause which is an element of the set of prime implicants. This activity
of drawing an inference from a compiled knowledge base is an on-line ac-
tivity. If we have to use some other on-line methods instead of checking for
subclauses, then some other way of knowledge compilation or an off-line
activity can be chosen.

SUMMARY

In this chapter, you have learnt that logic is concerned with methods of
reasoning, and issues such as validity of arguments and formal aspects of
truth and falsehood. You have seen that in propositional logic, the im-
portant connectives are ¬ (not), ∧ (and), ∨ (or), → (implies), ↔ (if and
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only if), ↑ (nand), and ↓ (nor). The effect of these connectives may be de-
fined by means of truth tables. The truth tables define the meanings of the
connectives unambiguously because the compound propositions are formed
from the basic ones in an unambiguous manner by a formal construction
of the language of propositional logic. Such a formal construction, where
no concept of truth is attached to the constructs is termed as the syntax
of the propositional logic.

In semantics, we attach truth values to the propositions by way of in-
terpretations. A model is defined as an interpretation that evaluates a
proposition to 1 (true). Propositions of which every interpretation is a
model are called tautologies or valid propositions. A satisfiable proposition
is one which has a model. The concept of models has been used to define
a valid consequence which formalizes the notion of an argument. A con-
sequence is valid if it is never the case that the premises are true and the
conclusion is false.

Some basic tautologies and consequences have been separated out as
laws. You have seen how to use these laws in proving validity of other
propositions and consequences by calculations. Using calculations, you
have also seen how to convert a proposition to its normal forms such as the
cnf and the dnf. In this connection, you have also learnt that each of the
pairs of connectives (¬,∧), (¬,∨), (¬,→) are adequate to express the other
connectives. Each of the truth functions ↑ and ↓ also forms an adequate
set. Finally, you have seen how to apply propositional logic to solve simple
logical problems and to the construction of logical circuits. You have also
been briefed about an important application of PL, namely, knowledge
base systems. To pursue the topics further, the following bibliographic
suggestions will be helpful.

Though propositional logic has a long history of more than 2000 years,
the truth value semantics as discussed here was invented by George Boole
[5] in the form of an algebra, now called Boolean algebra. It had been used
by Frege [25] in a somewhat awkward fashion. The modern form of the
truth table semantics was popularized by L. Wittgenstein [81] and E. Post
[56], circa 1920. There had been debates about how well the material
implication as given through the semantics of → represents the implica-
tion as found in natural languages. See [18, 51] for such discussions and
other philosophical issues related to propositional logic. The calculational
manner of proofs had been used by many in an informal way. For a formal
proof procedure basing on calculations, see [35]. For a linear time algorithm
for checking satisfiability of Horn formulas, see [13]. For algorithms and
applications of SAT, see [14]. See [57] for hypergraph representations of sat-
isfiability problem and also for many other algorithms for solving variants
of SAT. You can also find in [57] many classes of SAT including the poly-
nomial time decidability of 2-SAT and Horn-SAT . Consult [29] for more
information on NP-completeness and many problems including 3-SAT. As
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general references on propositional logic, see also the texts [6, 28, 41, 67]
and the references therein. The works by R. Smullyan [72, 73] are nice
collections of logical puzzles. For knowledge compilation and its applica-
tion to various reasoning activities and minimization of Boolean circuits,
many algorithms have been devised. The method of Karnaugh maps is one
among them. The Karnaugh maps become quite involved when the num-
ber of propositional variables and the number of clauses become large. In
our terminology this amounts to computing the prime implicants or prime
implicates of a knowledge base. One of the oldest methods of computing
prime implicants is Quine’s algorithm [58]. For more information on the
knowledge compilation techniques, see [12, 59, 65, 68, 77] and other net
resources. Before doing all these, attempt the following problems.

PROBLEMS

1. Draw parse trees of the following expressions, and then decide which of
them are propositions. Find all subpropositions of the propositions. [Treat
p, q, r, s as propositional variables.]

(a) (¬¬¬r ∧ (¬s ∨ ¬(p ∨ q)))
(b) ¬(p ∨ (q ∧ (r ∨ s) ∧ (q ∧ (p ∧ (r → ¬q) ∨ (r ↔ p)))))

(c) (((¬r ∨ (¬p ∧ ¬q))→ (r → p)) ∧ ¬(p↔ ¬(q ∧ ¬q)))

2. Let i(p) = i(q) = 1, i(r) = 0. Draw parse trees of the following
propositions, and then use the trees to evaluate the propositions under i.

(a) ¬(p ∨ ¬(p ∨ ¬(q ↔ r)))

(b) ((p↔ ¬q)→ (r → p ∧ q))
(c) ((¬p ∨ ¬q)↔ (¬r ∨ (p→ q)))

(d) (p ∧ (q ∨ ¬p)) ∨ q ∨ (p ∧ (q ∨ p))
3. Give two parse trees that do not correspond to propositions, such that

(a) one of them could be extended, by adding subtrees at the leaves, to
a parse tree which would correspond to a proposition.
(b) whatever way you extend the other, by adding subtrees at the leaves,
it cannot correspond to a proposition; it is inherently ill formed.

4. Use induction on the number of occurrences of connectives in v to prove
that for any propositions u, v, if u is a prefix of v, then u = v.

5. Let x, y, z be any three strings over the alphabet of PROP. Show that
at most one of xy and yz is a proposition.

6. Replace the formation rules of PROP by: if u, v are propositions, then
¬(u), (u) ∧ (v), (u) ∨ (v), (u)→ (v), (u)↔ (v) are propositions. Show that
the unique parsing theorem holds with such a definition also.
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7. Can you construct strings a, b and propositions u, v such that a 6= u,
b 6= v but (a ∧ b) = (u ∧ v)? What if ∧ is replaced by →?

8. In the proposition (p → q) ↔ p ∧ r, the main connective is ↔ . The
main connective in ¬(p → q ∧ r), is ¬. The main connective is the root of
the parse tree. Define the main connective of a proposition in another way.
Write a procedure to get the main connective of a proposition.

9. Suppose that we omit the right parentheses everywhere from a propo-
sition. For example, instead of defining (u ∧ v) as a proposition in our
grammar, we define (u ∧ v as a proposition. Similarly, for other connec-
tives. Then will the unique parsing theorem hold under such a definition?

10. Which of the following are tautologies, contradictions, and contingent?
For all the tautologies here, give also a calculational proof.

(a) p→ (q → p)

(b) (q → p)→ p

(c) (¬p→ ¬q)→ (q → p)

(d) (p→ (q → r))→ ((p→ q)→ (q → r))

(e) (((p ∧ q)↔ p)→ q)

(f) ((p ∨ (p ∧ q))→ (p ∧ (p ∨ q)))
(g) (((p ∨ q) ∧ (¬q ∨ r))→ (p ∨ r))
(h) (((p ∧ q) ∧ (¬q ∨ r))→ (p ∧ r))
(i) ((p↔ q)↔ r)↔ ((p↔ q) ∧ (q ↔ r))

(j) ((p ∧ q → r) ∧ (p ∧ ¬q → r))↔ (p→ (q ↔ r))

11. Simplify the following propositions:

(a) (p ∧ (q ∨ ¬p)) ∨ q ∨ (p ∧ (q ∨ p))
(b) ¬q → ¬(q → ¬p)
(c) p ∧ (¬p→ p)

(d) ((p ∨ (p ∧ q))→ (p ∧ (p ∨ q)))
(e) ((p↔ q)↔ r)↔ ((p↔ q) ∧ (q ↔ r))

(f) ¬p ∧ q ∧ (p→ (q ∨ ¬r))

12. Prove or give a counter example; u, v are any propositions:

(a) If u ∧ v is satisfiable, then u is satisfiable and v is satisfiable.
(b) If u ∨ v is satisfiable, then u is satisfiable or v is satisfiable.
(c) If u→ v is valid and u is valid, then v is valid.
(d) If u→ v is satisfiable, and u is satisfiable, then v is satisfiable.
(e) If u ∧ v is valid and u is satisfiable then v is satisfiable.
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(f) If |= w , then w must have at least two atomic propositions.
(g) If |= w, and w has an occurrence of a propositional variable, then
w has at least two occurrences of a propositional variable.
(h) If w is a contradiction, then the main connective of w must be one
of ¬ or ∧.

13. Give models for each of the following sets of propositions:

(a) {pi ∨ pi+1,¬(pi ∧ pi+1) : i ∈ N}
(b) {(pi ∨ pi+1), (pi → ¬(pi+1 ∧ pi+2)), (pi ↔ pi+3) : i ∈ N}
(c) {¬p1, p2} ∪ {(pi ∧ pj ↔ pi.j) : 1 < i, j}

14. Are the following consequences valid? Justify.

(a) p ∨ ¬q, p→ ¬r |= q → ¬r
(b) ¬(r ∧ ¬¬q) |= (¬q ∨ ¬r)
(c) p ∨ q → r ∧ s, t ∧ s→ u |= p→ u

(d) p ∨ q → r ∧ s, s ∨ t→ u, p ∨ ¬u |= p→ (q → r)

(e) p→ q ∧ r, q → s, d→ t ∧ u, q → p ∧ ¬t |= q → t

(f) p, ¬r → ¬p, (p→ q) ∧ (r → s), (s→ u) ∧ (q → t), s→ ¬t |= ⊥

15. Are the following sets of propositions satisfiable? Justify.

(a) {¬p ∨ ¬(q ∧ r), s ∨ t→ u, u→ ¬(v ∨ w), r ∧ v}
(b) {p→ q, r → s, q → s,¬r → p, t→ u, u→ ¬s,¬t→ t}
(c) {p ∨ q → r ∧ s, s ∨ t→ u, p ∨ ¬u, p→ (q → r)}
(d) {p→ q ∧ r, q → s, d→ t ∧ u, q → p ∧ ¬t,¬q → t}
(e) {p→ q ∧ r, q → s, d→ t ∧ u, q → p ∧ ¬t, q → t}
(f) {p→ q ∧ r, s→ q ∧ t, u→ ¬p, (v → w)→ u ∧ s,¬(¬r → t)}

16. Let w be a proposition having the only connective as ↔; and having
no occurrence of > or ⊥. Show that |= w iff each propositional variable
occurring in w occurs an even number of times. What happens if > or ⊥
occurs in w?

17. Are the following arguments valid? Justify.

(a) If A is a knight, then B is a knight. If C is a knave, then B is a
knight. Therefore, if A is a knight or C is a knave, then B is a knight.
(b) If A is a knave, then B is a knave. If C is a knight, then B is a
knave. Therefore, if A is a knave and C is a knight, then B is a knave.
(c) If Sam was at the fair, then his father was negligent or his mother
was not at home. If his mother was not at home, then his father was
not negligent. His mother was at home. Therefore, Sam was at the fair.
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(d) If Shaktiman were able and wiling to eradicate evil, he would do so.
If Shaktiman were not able to eradicate evil, he would be transformed
into a donkey. If Shaktiman were unwilling to eradicate evil, he would
be joining the evil. As a matter of fact, Shaktiman does not eradicate
evil. Therefore, if Shaktiman exists, then he is neither transformed into
a donkey nor does he join the evil.
(e) Either the program does not terminate or m is eventually 0. If n is
eventually 0, then m also becomes eventually 0. The program is known
not to terminate. Hence m is eventually 0.
(f) All of x, y, z cannot be negative. If they were, then x would be less
than both y and z. Hence x is not less than one of y or z.
(g) If the initialization is correct and the loop terminates, then the re-
quired output is obtained. The output has been obtained. Therefore, if
the initialization is correct, the loop must terminate.
(h) If 2 is a prime, then it is the least prime. If 1 is a prime, then 2 is
not the least prime. The number 1 is not a prime. Therefore, 2 is the
least prime.

18. In outfix notation the proposition ¬p → (q ∨ (r ∧ s)) is written as
→ (¬p,∨(q,∧(r, s)). If you omit the commas and parentheses, it will look
like → ¬p ∨ q ∧ rs. Can you see how to put commas and parentheses into
this expression so that you obtain the earlier outfix notation? Taking clues
from this, define a language of propositional logic without parentheses.
Show that unique parsing still holds. (This is called the Polish notation.)

19. Construct a cnf and a dnf for the truth function u, v given by the
following truth table. Simplify the normal forms and then draw circuits
representing the truth functions.

p q r u v

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

20. Let f : {q1, . . . , qm} → {0, 1}, where q1, . . . , qm are distinct atomic
propositions. Show that there is a proposition w such that for any function
g : {q1, . . . , qm} → {0, 1}, you have g |= w iff f = g.

21. Construct a proposition w involving three atomic propositions p, q, r
such that for any interpretation, changing any one of the truth values of
p, q, or r changes the truth value of w.
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22. Let w = (((p ∧ q) ∨ (p ∨ r ∨ q)) ∧ (¬p ∧ ¬r ∧ q)). Then show that
¬w ≡ (((¬p∨¬q)∧ (¬p∧¬r ∧¬q))∨ (p∨ r ∨¬q)). Generalize this exercise
to compute the negation of any proposition involving the only connectives
¬,∧,∨.

23. Express all the ↓ through ↑, and ↑ through ↓.

24. Instead of using truth tables, an arithmetic procedure can be used.
The basis for this is the following representation of the connectives: ¬w
is represented as 1 + w, u ∧ v as u + v + uv, u ∨ v as uv, u → v as
(1 + u)v and u ↔ v as u + v. The constants > and ⊥ are taken as 0
and 1, respectively. Now in the representation, each propositional variable
is treated as a variable over the set {0, 1}. The arithmetic operations of
addition and multiplication are taken as usual with one exception, that is,
1 + 1 = 0. Thus tautologies are those formulas which are identically 0 and
contradictions become identically equal to 1. See that in this algebra, you
have 2x = 0 and x2 = x. Justify the procedure. Use this procedure to
prove all the laws in Theorem 1.8.

25. See Problem 24. Give another arithmetic representation of the connec-
tives where > is represented as 1 and ⊥ as 0.

26. Use Problems 24 and 25 to have representations of the truth functions
↑ and ↓ . Show that every function from {0, 1}n to {0, 1} can be generated
from the mapping f : {0, 1}2 → {0, 1}, where f(x, y) = (1 + x)(1 + y).
Show that the same is true of the mapping g : {0, 1}3 → {0, 1} given by
g(x, y, z) = 1 + x+ y + xyz. Can you find another function from {0, 1}2 to
{0, 1} which behaves like f?

27. Assume that any politician is either honest or dishonest. An honest
politician, by definition, always tells the truth, and a dishonest politician
always lies. In a campaign rally, a politician declares “I am honest iff my
opponent is honest”.

(a) Let p be “The first politician is honest”, and q be “The opponent
of the first politician is honest”. Explain why p↔ (p↔ q) holds.
(b) Is the first politician honest?
(c) Is the opponent of the first politician honest?
(d) Later the opponent of the first politician declares, “If I am honest,
so is my opponent”. What new formulas now become true?
(e) Using the statements of both the politicians, answer (b) and (c).

28. Explain why you are trapped in the commercial given in the Preface
to this book.

29. In Merchant of Venice, Portia takes three caskets: gold, silver, and
lead. Inside one of the caskets, she puts her portrait, and on each of the
locked caskets, she writes an inscription. She explains to her suitors that
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each inscription could either be true or false. But on the basis of the
inscriptions, one has to choose the casket containing the portrait. We will
have two variations of the puzzle here.

(a) Suppose that Portia writes the inscriptions as
Gold: The portrait is in here.
Silver: The portrait is in here.
Lead: At least two caskets bear false inscriptions.

Which casket should the suitor choose? First, find the answer arguing
informally, and then symbolize using the following abbreviations:

G: The portrait is in the gold casket.
g: The inscription on the gold casket is true.

Similarly, use the abbreviations S, s, L, l, and argue formally.
[Hint : The inscription on the gold casket says that G ↔ g.]
(b) This time Portia says that one has to choose a casket not containing
the portrait, basing on the following inscriptions.

Gold: The portrait is in here.
Silver: The portrait is not in here.
Lead: At most one casket bears a true inscription.

30. Three inhabitants of the island of Kniknaord (see Example 1.9), A,B,C
were standing together. You asked A, “Are you a knight or a knave?” You
could not hear the low voice of A. You asked B, “What did A say?” B
replied, “A said that he was a knave.” Then C said, “Do not believe B,
he is lying.” If none of A,B,C is an ordinary person, then what are they,
knights or knaves?

31. Three inhabitants of the island of Kniknaord (see Example 1.9), A,B,C
were standing together. You asked A, “How many knights are among you?”
Again you could not listen toA.You askedB, “What didA say?” B replied,
“A said, there was only one knight among us.” C said, “Do not believe B,
he is lying.” If none of A,B,C is an ordinary person, then what are they,
knights or knaves?

32. Define the depth of a proposition d(w) recursively by:

d(p) = 0, for any atomic proposition p

d(¬w) = 1 + d(w), for any proposition w

d((u ∗ v)) = 1 + max (d(u), d(v)), for any propositions u, v, and any
binary connective ∗ ∈ {∧,∨,→,↔}

Does d(w) coincide with the depth of the parse tree for w?

33. The grammar in BNF for the set of literals can be written as
l ::= p | ¬p, where p stands for atomic propositions. Give grammars in
BNF for conjunctive clauses, disjunctive clauses, cnf, and dnf.
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34. Prove: If w is a proposition of which there are exactly n number of
models for some n > 0, then there is a dnf representation of w which is
a disjunction of exactly n conjunctions of literals. Can you formulate a
similar statement for a cnf representation of w?

35. A set Σ of propositions is an independent set if for every w ∈ Σ, we
have Σ − {w} 6|= w. Prove that every finite set Σ of propositions has a
subset Γ which is independent and that if w ∈ Σ, then Γ |= w.

36. Define a function sp : PROP→ 2PROP, (where 2PROP is the set of all
subsets of PROP) by:

sp(p) = {p}, for any atomic proposition p

sp(¬w) = sp(w) ∪ {¬w}, for any proposition w

sp(u ∗ v) = sp(u)∪ sp(v)∪ {u ∗ v}, for any propositions u, v, and any
binary connective ∗ ∈ {∧,∨,→,↔}

Prove that if a proposition w has n occurrences of connectives, then sp(w)
has 2n + 1 occurrences of connectives. Is the set sp(w) the set of all sub-
propositions of w?

37. In this exercise, assume that all our propositions are defined in terms of
the only connectives ¬,∧,∨. Define the dual dl and denial dn of a propo-
sition recursively by the following (let p stand for atomic propositions and
others for any propositions):

dl(p) = p, dl(¬w) = ¬dl(w),

dl(u ∧ v) = dl(u) ∨ dl(v), dl(u ∨ v) = dl(u) ∧ dl(v).

dn(p) = ¬p, dn(¬p) = p, dn(¬w) = ¬dn(w),

dn(u ∧ v) = dn(u) ∨ dn(v), dn(u ∨ v) = dn(u) ∧ dn(v).

Show that (a) x ≡ y iff dl(x) ≡ dl(y), (b) dn(z) ≡ ¬z.

38. Let 6↔, called the XOR or the exclusive or, be the truth function
defined by x 6↔ y ≡ ¬(x↔ y). Attempt to show that

(a) 6↔ is both commutative and associative.
(b) w 6↔ ⊥ ≡ w, w 6↔ > ≡ ¬w, w 6↔ w ≡ ⊥
(c) u∨ (v 6↔ w) ≡ (u∨ v) 6↔ (u∨w), u∧ (v 6↔ w) ≡ (u∧ v) 6↔ (u∧w)
(d) {6↔,∧,>} is an adequate set of connectives.
(e) Can you express any of 6↔,∧,> through the other two?
(f) Is {6↔,∨,>} an adequate set?

39. See Problem 38. Prove that every proposition is equivalent to either
⊥ or > or C1 6↔ · · · 6↔ Cm, where each Ci is either > or a conjunction of
propositional variables. This is called the exclusive or normal form. What
are the exclusive or normal forms of tautologies?
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40. The negation normal form(nnf) is defined recursively by:
If p is a propositional variable, then both p and ¬p are in nnf;
If u and v are in nnf, then u ∧ v and u ∨ v are in nnf.

Show that every proposition is equivalent to one in nnf. Construct a gram-
mar for nnf. Give a procedure to obtain an nnf equivalent to a proposition.

41. Let x, y be propositions having no common propositional variables.
Show that if |= x→ y, then x is unsatisfiable or y is valid.

42. Craig’s interpolation theorem: Let x, y be propositions having at least
one propositional variable in common. A proposition z is called an inter-
polant of x → y iff |= x → z, |= z → y, and all propositional variables
occurring in z are among the common propositional variables of x, y. Show
that if |= x → y, then x is unsatisfiable or y is valid or x → y has an
interpolant.

43. Apply HornSat to the following Horn formulas:

(a) {p→ q, r ∧ s ∧ t→ u,> → t, t ∧ q → ⊥}
(b) {p ∧ q ∧ s→ p, q ∧ r → p, p ∧ s→ s, s ∧ r → t}
(c) {p ∧ q ∧ r → ⊥, s→ p, t→ ⊥,> → s,> → q, u→ v,> → u}

44. Try to show that the procedure HornSat correctly checks whether a
given Horn formula is satisfiable. [Hint : You may have to use induction on
the number of times the loop in Steps 3 and 4 is executed in running the
procedure.]

45. Explain why the procedure HornSat fails if we define a Horn clause as
q1 ∧ q2 ∧ · · · ∧ qm → q admitting qi’s to be any literal. Can you specify a
syntactic criterion on cnfs so that they will be equivalent to Horn formulas?
If you answer ‘no’, why? If you answer ‘yes’, can you write a procedure to
convert such special cnfs to Horn formulas?

46. Can you use grammars in BNF to define Horn formulas? Do you
require any auxiliary category so that this can be done?
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First Order Logic

2.1 Introduction

Consider the following argument:

Bapuji was a saint.

Since every saint is an altruist, so was Bapuji.

How do you symbolize this argument in PL? Clearly, there are three declar-
ative sentences here and no connectives have been used. So each has to be
symbolized as a different proposition. Writing

p: Bapuji was a saint

q: Every saint is an altruist

r: Bapuji was an altruist

you would symbolize the argument as the consequence: {p, q} |= r. But
then this consequence is invalid, as you can have an interpretation i with
i(p) = 1, i(q) = 1, i(r) = 0. But what do you feel about the argument? It
seems to be correct. Is’nt it? So?

The answer is clear. When we say that the argument seems to be
correct, we think the sentences in terms of relations. The first sentence,
“Bapuji was a saint” tells something like: possibly, there could be many
saints, and Bapuji was one of them. That is, the property of ‘being a saint’
could be applied truthfully to ‘Bapuji’. So, we are going deeper into the
form of a sentence rather than taking it as a single unit. The units in this
sentence are a name, ‘Bapuji’, a predicate, a relation, or a property, ‘is a
saint’. In the third sentence, the same thing happens. You have two units
again, a name, ‘Bapuji’, and a predicate, ‘ is an altruist’. What about the
second sentence? Here, of course, there are two units, ‘is a saint’ and ‘is an
altruist’; but both are predicates. You can translate this by introducing a
false name, called a variable, say, x. It would look like:

For every x, if x is a saint, then x is an altruist.

Here, the variable x is not a name, but it can be replaced by any name;
it is a place holder, a gap. The name of the variable is, of course, x. That
is, it is a named gap, a variable that stands for any object whatsoever in
contrast to a name which is a particular object. Next, in this sentence, we
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have a quantifier, namely, ‘every’. This is neither a name, nor a property,
nor a variable. It only says how much of the scope of the variable x is
involved; it quantifies over the variable. In the sentence,

Bapuji liked some Russian author

the word ‘some’ is also a quantifier. Can you rewrite the sentence more
explicitly by using a variable? It would look like:

For some x, x was a Russian author and Bapuji liked x.

Can you identify the names, predicates, and quantifiers in the sentence:

Bapuji liked the author of War and Peace?

Here, ‘Bapuji’ is a name, ‘liked’ is a predicate taking two arguments (x
liked y). And what about the phrase, ‘the author of War and Peace’? Is it
a name? Of course, you can take it as a name since it refers to a particular
object. But we say something else rather than just regarding it as a name.
In the phrase, ‘the author of War and Peace’, we seem to use the expression
War and Peace as a name, the name of a particular book; the phrase ‘the
author of’ is used as a different unit, something like a predicate. But it
differs from a predicate in a significant way. Look, ‘the author of’, if used
for a book, would give rise to a single object, a person here, whereas a
predicate would give rise to a sentence when its argument is filled in with
a name. The phrase ‘the author of War and Peace’ thus is called a definite
description; it describes a person, an object in a definitive manner. Can
you translate the above sentence as

Bapuji liked x and x was the author of War and Peace

Or as

For some x, Bapuji liked x and x was the author of War and Peace?

The unique sort of reference by a definite description is not captured
by the predicates. We would view a definite description something like a
function. If you consider the phrase ‘the author of’ as a function, then
clearly, ‘the author of War and Peace’ is simply the value of the function
‘the author of’ at the object War and Peace. Moreover, it is a function of
one argument. There can be functions of many arguments, for example, ‘the
eldest daughter of Mr. X and Mrs. X’. It takes two arguments, ‘Mr. X’ and
‘Mrs. X’. The phrase ‘a Russian author’ is a predicate, and not a function.
Similarly, ‘mother of’ is a function while ‘brother of’ is not a function, but
a relation, and thus ‘is a brother of’ can be thought of as a predicate. One
more example:

Both War and Peace and Anna Karenina were authored by the same
person.

How do you rewrite it? You may take War and Peace as a name, Anna
Karenina as a name, ‘authored by’ as a binary predicate (admitting of two
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arguments), and then ‘are the same person’ as another predicate. However,
there is a difference between this predicate and other predicates. The
predicate ‘authored by’ may be interpreted in various ways, pointing to ‘the
person who actually wrote’, or ‘the person whose name appears on the title
page’, etc, the phrase ‘x is same as y’ will always be interpreted as “both
x and y refer to the same object”. We will reserve a particular symbol for
this special binary predicate. Similarly, we will have some special symbols
for the two quantifiers (we will not have any other quantifiers in first order
logic) ‘for all’ and ‘for some’. Here are our special symbols:

x ≈ y : x is same as y, the identity predicate

∀x : for every x, or, for all x, or, for each x

∃x : for some x, there exists (at least one) x

with a vocabulary for names, predicates, function symbols such as

a : Anna Karenina

b : Bapuji

c : War and Peace

f(x) : the author of x

L(x, y) : x likes y

R(x) : x is a Russian author

S(x) : x is a saint

T (x) : x is an altruist.

The above sentences can be symbolized as (ignoring the tense):

Bapuji was a saint: S(b)

Every saint is an altruist: ∀x(S(x)→ T (x))

Bapuji was an altruist: T (b)

Bapuji liked a Russian author: ∃x(L(b, x) ∧R(x))

Bapuji liked the author of War and Peace : L(b, f(c))

The authors of War and Peace, and Anna Karenina were the same:

f(c) ≈ f(a)

The logic thus obtained (in fact, to be obtained) is now capable of
going a bit deeper into the sentences. However, the quantifiers quantify
over variables which stand for objects only; we cannot quantify over the
functions, nor over the predicates, and hence the name, First Order Logic
(FL). The second order logic takes care of quantification over functions and
predicates, which we are not defining here. First Order Logic is also called
Predicate Logic with function symbols and with equality or identity. Then,
Aristotelian logic is simply the monadic predicate logic without function
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symbols, a logic where each predicate takes only one argument and there
are no function symbols. Naturally, the equality or the identity predicate
is absent in the Aristotelian logic as it is a binary predicate.

2.2 Syntax of FL

So we have decided to have our alphabet to contain variables, function
symbols, predicates, names, and quantifiers. We will also have the usual
connectives. The set of variables is denoted as V, the set of function
symbols as F , the set of predicates as P, the set of quantifiers as Q,
the set of connectives as C, the special propositions representing truth
and falsity as T , and the extra symbols, the set of punctuation marks
as E . The sets are:

V = {x0, x1, x2, . . .}

F = {f j
i : i, j ∈ N}

P = {P j
i : i, j ∈ N} ∪ {≈}

Q = {∀,∃}

C = {¬,∧,∨,→,↔}

T = {>,⊥}

E = {), (, , }

Look at the subscripts and superscripts in the function symbols and pred-
icates. The symbol f j

i is a function symbol which could have been written
as just fi ; the superscript j says that the function symbol f j

i has j ar-
guments. For example, f1

1 (x0) is allowed as this function symbol has only
one argument and here the only argument, the gap, is filled with a vari-
able x0 while f2

1 (x0) will not be allowed since this function requires two
arguments so that when these are filled in, it may stand for a definite de-
scription. Thus the definite description ‘author of’ will be denoted by a
function having a superscript 1 and not 2 or any other natural number.
The superscript j in the function symbol f j

i is referred to as its arity. The
0-ary function symbols do not require any variable or names to give us defi-
nite expressions, that is, they themselves are definite expressions or names.
Thus names, also referred to as individual constants or just constants,
are simply taken as 0-ary function symbols. Similarly, the superscripts in
the predicates also refer to the arity of those. The relation ‘brother of’ is a
binary predicate, as we would use it in the form ‘x is a brother of y’, and as
such it will be denoted by a predicate P 2

i ; notice the superscript here, the
subscript may be any of 0, 1, 2, 3, 4, . . ., it does not matter. Just like 0-ary
function symbols, the 0-ary predicates do not have any gaps to be filled in
so that they would become sentences; they are sentences already. Thus,
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0-ary predicates P 0
i ’s are simply the propositional variables which, in some

contexts, may not be analyzed any deeper. This way, we really extend the
syntax of PL to FL. We also have the special symbol ≈ for denoting the
equality or identity predicate, assumed to be binary.

The alphabet of FL is A = V ∪ F ∪ P ∪Q ∪ C ∪ T ∪ E .

Any string over A is an expression (an FL-expression). The function
symbols allow you to express very complex definite expressions such as
‘mother of mother of mother of father of Gargi’, by using composition
of functions. Thus definite descriptions may use any number of function
symbols and their compositions. All these definite descriptions, which are
only special expressions are called terms. The following is a recursive
definition of terms.

Definition 2.1 Write t for a generic term. The grammar for terms is

t ::= xi | f0
i | f

j
i (t, t, . . . , t) (j−times t here)

All it says is that the variables, and the names or 0-ary function symbols
are terms, and if t1, . . . , tj are terms, and f j

i is a j−ary function symbol,
then the expression f j

i (t1, . . . , tj) is a term. Moreover, terms are obtained
only this way, from 0-ary function symbols or other terms used as arguments
in other function symbols of appropriate arity. For example, f0

5 is a 0-ary
function symbol (an individual constant or name). By definition, it is
a term. We often write names as they occur in natural languages, such
as ‘Bapuji’, ‘Rajaji’, ‘Tolstoy’ et al. Also, ‘father of Bapuji’ is a term,
accepting ‘father of’ as a unary function symbol. However, in our formal
language, we will not admit these expressions as terms; they have to be
symbolized as some function symbols. For example, suppose we symbolize
‘Bapuji’ as f0

0 and ‘father of’ as f1
0 , then the definite description ‘father of

Bapuji’ will be symbolized as f1
0 (f0

0 ). Similarly, f1
5 (f2

3 (f0
0 , f

0
1 )) is a term;

check the arities. We will use terms for defining the (well-formed) formulas,
which would represent sentences or rather sentence-like phrases.

Definition 2.2 Writing X for a generic formula and s, t, ti for terms, the
grammar for formulas is:

X ::= > | ⊥ | P 0
i | (s ≈ t) | Pm

i (t1, t2, . . . , tm) | ¬X | (X ∧X) |
(X ∨X) | (X → X) | (X ↔ X) | ∀xiX | ∃xiX

It says that the special symbols >,⊥, and the 0-ary predicates are
(FL) formulas. Moreover, if X is any m-ary predicate, then for m terms
t1, . . . , tm, the expression X(t1, . . . , tm) is also a formula. The formulas
might be obtained by using connectives as in PL or by prefixing any other
formula to a quantifier followed by a variable. Note that the 0-ary predi-
cates are the propositional variables, and they themselves are formulas. In
fact, all propositions of PL are now treated as FL-formulas. For example,
the following expressions are formulas:
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>

(⊥ → >)

(f0
1 ≈ f0

5 )

(f2
1 (f0

1 , f
1
2 (f0

1 )) ≈ f0
11)

P 1
2 (f1

1 (x5))

¬∀x3(P 2
5 (f1

1 (x5), f0
1 )→ P 0

3 )

∀x2∃x5(P 2
5 (x0, f

1
1 (x1))↔ P 3

1 (x1, x5, x6))

whereas the following expressions are not formulas:

>(x0)

≈ (f0
1 (f0

0 ))

f0
1 ≈ f0

5

(f2
1 (f0

1 , f
0
2 (f0

1 )) ≈ f2
11(f1

12, f
0
1 ))

P 1
2 (f1

4 (x7), f0
1 )

¬∀x1(P 2
5 (f0

1 (x2), x3))

∀x2∃x5(P 2
5 (x0, f

0
1 (x1))↔ P 3

1 (x1, x5, x6))

The first expression is not a formula since after >, a variable is not allowed
to occur in parentheses. The second expression is not a formula since
f0
1 (f0

0 ) is not a term, as f0
1 is a 0-ary function symbol and as such it cannot

take an argument. The third expression is not a formula since a ≈ needs
a pair of parentheses. In the fourth expression, f1

12 needs a term as an
argument. Similarly, in the fifth expression the predicate P 1

2 can have only
one argument, and in the sixth and seventh, f0

1 cannot take any term as
an argument.

The language we are dealing with requires agreements, specially the su-
perscripts of the function symbols, and predicates must match with the
number of terms they take as arguments. Similarly, parentheses must
match. Now, you must be able to guess the reason for such agreements.
Yes, it is uniqueness of parsing; our grammar must be unambiguous. We
must be able to find out the immediate subformulas of any formula, and
the main connective or quantifier. If a formula X starts with ¬, then it is
the rule X ::= ¬X that has been applied last. Similarly, if it starts with (,
then it is one of the binary connective rules or the equality predicate rule
that had been applied last. If it starts with a P j

i , then the last rule applied
was X ::= P 0

i , and hence j must be equal to 0. These observations (and
some more) will show that formulas are uniquely parsed. Of course, you
need to construct a formal proof. The proof will also require you to show
that every term is uniquely parsed.
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Exercise 2.1 Give a formal proof of unique parsing for formulas of FL.
Show that given any expression of FL, it can be determined whether the ex-
pression is a formula or not. Write procedures for determining and parsing
formulas.

Once you are sure that unique parsing holds, we will follow some con-
ventions for using less number of parentheses, and sometimes, commas.
First, we will drop the outer parentheses from formulas. Second, we will
drop the superscripts from the predicates and function symbols, for the
information regarding them can be supplied additionally in a context; but
then, we must check that the same symbol is not used with different num-
ber of arguments in any particular context. For example, in the same
formula, we must not use P5(x, y) and P5(f2) since the first one says that
P5 is a binary predicate, and the second would require P5 to be unary.
We must avoid such confusions. In the formula ∀x2 ∃x5(P4(x0, f1(x1)) ↔
P1(x2, x5, x1)), we would take P4 a binary predicate, f1 as a unary function
symbol, and P1 as a ternary predicate. But we cannot possibly say that
∀x2∃x5(P4(x0, f1(x1))↔ P4(x2, x5, x1)) is a formula since P4 has been used
once as a binary and once as a ternary predicate. With this convention,
we agree to use different predicate symbols for those two instances.

Third, we will drop writing subscripts with variables, function sym-
bols and predicates whenever possible. Instead, we will use x, y, z, . . . for
variables, f, g, h, . . . for function symbols, and P,Q,R, . . . for predicates.
Whenever we feel short of symbols, we may go back to writing them with
subscripts. Moreover, the 0-ary function symbols (which stand for names)
will be written as a, b, c, . . ., from the first few small letters of the Roman
alphabet. For example, the formula

∀x2 ∃x5(P4(x0, f1(x1))↔ P1(x2, x5, x1))

may be rewritten as

∀x∃y(P (z, f(u))↔ Q(x, y, u))

following this convention. Take care to see that each occurrence of x2 has
been replaced by x, etc.

Fourth, we will omit the parentheses and commas in writing the ar-
guments of function symbols and predicates provided no confusion arises.
If, however, some formula written this way is not easily readable, we will
retain some of them. For example, ∀x∃y(P (z, f(u)) ↔ Q(x, y, u)) can be
rewritten as ∀x∃y(Pzf(u) ↔ Qxyu). Similarly, the term f(t1, . . . , tn) will
sometimes be written as f(t1 . . . tn) or as ft1 . . . tn. With this convention,
the formula ∀x∃y(Pzf(u)↔ Qxyu) is rewritten as ∀x∃y(Pzfu↔ Qxyu).

Fifth, we will have precedence rules for the connectives and quantifiers
to reduce parentheses. We will preserve the precedence of connectives as in
PL and give the same precedence to the quantifiers as ¬. That is, ¬,∀x,∃x
will have the highest precedence; ∧,∨ will have the next precedence; and
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→,↔ will have the lowest precedence. For example, the formula

∀x1¬(∃x2((P 1
1 (f2

1 (f0
0 , f

0
1 )) ∧ P 0

1 )→ P 2
2 (x2, f

0
1 ))

↔ ∀x3((P 1
1 (f0

5 ) ∧ P 1
2 (x1))→ P 0

3 ))

is written as

∀x¬(∃y(Pf(a, b) ∧A→ Qyb)↔ ∀z(Pc ∧Rx→ B))

where the variables x1, x2, x3 are rewritten as x, y, z; the function symbols
f0
0 , f

0
1 , f

0
5 , f

2
1 are rewritten as a, b, c, f ; and the predicates P 1

1 , P
0
1 , P

2
2 , P

1
2 , P

0
3

are rewritten as P,A,Q,R,B, respectively. Hereafter, we follow this con-
vention of rewriting the variables, function symbols, and predicates.

The rewritten forms of formulas are, strictly speaking, not formulas.
But we will regard them as formulas since they can be written back as
formulas by following our convention. We will consider some examples of
symbolizing English sentences into FL. Of course, we cannot go beyond
the declarative sentences, but now we are able to break the sentences into
subtler units involving names, definite descriptions, relations among them,
and particularly, quantifiers such as ‘for all’, and ‘there exists’.

EXAMPLE 2.1 Symbolize: Each one is older than his younger sisters.
Solution Where do we start? Identify the names, definite descriptions,
and predicates. We do not have any names here. We cannot take ‘his
younger sister’ as a definite description. (Why?) So we work with predi-
cates only. Let us build our vocabulary for translation.

Oxy : x is older than y,

Sxy : y is a younger sister of x.

It looks that the vocabulary is enough. Now, what does the sentence say?
It says that, “For every x, x is older than y if y is a younger sister of x.”

But ‘y is a younger sister of x’ means what? The article ‘a’ refers to
‘some’ or ‘all’? Is x older than all of his younger sisters or only older than
some of them? It looks that the sentence asserts x to be older than all of
his sisters. So, our semi-formal sentence looks like:

for every x, for every y, x is older than y if y is a younger sister of x.

We thus have the symbolization: ∀x∀y(Sxy → Oxy).

EXAMPLE 2.2 Symbolize: If two persons fight over a third one’s prop-
erty, then the third one gains.
Solution The vocabulary would look like (You can use different symbols):

Bxyz : x and y fight over z

Gx : x gains

f(x) : property of x

The sentence may be symbolized as ∀x∀y∀z(Bxyf(z)→ Gz).
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EXAMPLE 2.3 Symbolize: For every pair of primes differing by 2, there
is a pair of greater primes differing by 2.

Solution ∀x∀y(Px∧Py ∧Dxy → ∃z∃w(Gzx∧Gwy ∧Pz ∧Pw ∧Dzw))

What do the predicates P,G,D stand for?

Exercise 2.2 Symbolize: There is a unique person who authored the
book named Logics for Computer Science. [Hint : Use the predicate ≈.]

2.3 Preparing for Semantics

Look at the symbolizations of the three sentences in Examples 2.1−2.3.
Can you find a variable there which is not quantified? Well, can you get a
formula like ∀xPx→ Qx while symbolizing an English sentence? Definitely
not. It would tell:

If P holds for every one, then Q holds for x.

Now, if x had been a name, a constant, then it would refer to a person. But
as a variable, it does not mean anything definite, it is only a named gap to
be filled in with a name. We want, in fact, to see the difference between
any arbitrary formula and a sentence. We require some terminology.

Definition 2.3 Let Y be a formula. A substring Z of Y is called a
subformula of Y iff Z is itself a formula. The scope of an occurrence
of a quantifier occurring in Y is the subformula of Y starting with that
occurrence. An occurrence of a variable x in Y is bound iff this occurrence
is within the scope of an occurrence of ∀x or ∃x (a quantifier that uses it).
If an occurrence of a variable occurs within many occurrences of quantifiers
using that variable, then it is said to be bound by the occurrence of the
quantifier that occurs immediately to the left of it. An occurrence of a
variable is called free iff it is not bound. A variable x is a free variable
of Y iff there is at least one free occurrence of x in Y. A variable x is a
bound variable of Y iff there is at least one bound occurrence of x in Y. A
formula having no free variables is called a closed formula or a sentence.

If there is a free occurrence of a variable in a formula Y , we also say that
x occurs free in Y. In the formula ∃x(Pxy∧∀yQy), the scope of (the only
occurrence of) ∃ is the whole formula; scope of (again, the only occurrence
of) ∀ is the formula ∀yQy. Here, all the occurrences of the variable x are
bound; the first occurrence of y is free while the last two occurrences of y
are bound occurrences. The variable x is a bound variable of the formula
while y is both a free and a bound variable. The formula is not a closed
formula (not a sentence) since it has a free variable.

In the formula ∀x(∀yPxyz ∧ ∀xQx → ∃zPzzz), the first and second
occurrences of x are bound and so are the third and fourth. The third
and the fourth occurrences are within the scope of the first ∀ ; they are
also within the scope of the third ∀ . However, these occurrences of x are
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bound by the third occurrence of ∀ , and not by the first ∀ . The second
occurrence of ∀ does not use the variable x. It is the scope of the innermost
quantifier that binds a variable. All occurrences of variables x, y, z are
bound occurrences. Hence this formula is a closed formula; it is a sentence.
Is it now clear why we end up at closed formulas, or FL-sentences while
translating English sentences?

Exercise 2.3 Find out the scopes of each occurrence of each quantifier,
free and bound variables, and mark which quantifier binds which occur-
rences of variables in each of the following formulas:

(a) ∃(Px ∧Qx→ ¬Px ∨Qy)

(b) ∀x(Pyz ∧ ∀y(¬Qxy ∨ Pyz))
(c) ¬∃x(∀yPxyz ∧ ∀zQxyz)→ >
(d) ∀x∃y(Px↔ Qy) ∧ ∀x∃y(Px→ Pz ∨Qy)

Determine which of these formulas are sentences.

Consider the sentence ∀x(Nx → Ox), which you have obtained by
translating the English sentence “Every natural number is greater than or
equal to 0”. Now, how do you ascertain its truth? You take every possible
x, say, a, b, c, d, . . .. Then you are going to check whether

“If a is a natural number, then a is greater than or equal to 0.”

“If b is a natural number, then b is greater than or equal to 0.”

“If c is a natural number, then c is greater than or equal to 0.” . . .

That is, you will be interested in the truth of all the sentences

Na→ Oa, Nb→ Ob, Nc→ Oc, . . .

Syntactically, you have substituted a, b, c, . . . in place of x in the formula
Nx → Ox, and then you want to check whether the formulas so obtained
are true or not. In general, you may substitute terms in place of variables
in any formula. But if you substitute x by a in ∀x(Nx→ Ox), you are not
getting anything; it only becomes ∀a(Na→ Oa), and is not a formula as a
is not a variable. That is, substitution of terms are only used meaningfully
for free variables. We will give a notation.

We will write [x/t] for the substitution of the variable x by the term
t, and then for a formula X, we will write X[x/t] for the formula ob-
tained from X by effecting the substitution [x/t] on it, i.e., for the formula
obtained by substituting all the free occurrences of the variable x in the
formula X by the term t. Sometimes, we will also write (X)[x/t] for better
readability. For example,

(∀x∃y(Px ∧Qyx)→ Rzy)[y/t] = ∀x∃y(Px ∧Qyx)→ Rzt

(∀x∃y(Px ∧Qyx)→ Rzy)[x/t] = ∀x∃y(Px ∧Qyx)→ Rzy
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Note that the free occurrences are replaced, and not every occurrence.
However, all the free occurrences must be replaced when a substitution is
applied on the formula.

Consider the formula: ∀x∃y(Hx → Fxy), which you might have got
by symbolizing the English sentence, “Each human being has a father”.
Now to verify its truth, you are going to see whether for every object x,
the formula ∃y(Hx → Fxy) is satisfied or not. Now this ‘every object x’
can also stand for terms (definite expressions, etc). For example, f(a), the
eldest brother of a, is an object anyway. After replacement, the formula

(∃y(Hx→ Fxy))[x/f(a)] = ∃y(Hf(a)→ Ff(a)y)

says that “ a’s eldest brother, who is a human being, has a father”. Instead
of f(a), suppose you substitute f(y), then you would obtain

(∃y(Hx→ Fxy))[x/f(y)] = ∃y(Hf(y)→ Ff(y)y)

What does this formula say? It says that “ y’s eldest brother, who is a
human being, is his own father”. This is absurd, whereas the original
sentence with our common understanding sounds plausible. So, what is
wrong if that object (for x) was y’s eldest brother?

You can see what is happening after you substitute. The occurrences
of x was free in ∃y(Hx → Fxy). By substituting x as f(y), all these new
occurrences of y become bound. This is not a faithful substitution. Syntac-
tically, such a substitution is said to capture the variable. Our substitution
should not capture a variable; otherwise, we will end up at a wrong and
unintended situation. That is, the only admissible substitutions will be
those which do not capture a variable, which do not make a free occur-
rence bound. The following definition formalizes this notion.

Definition 2.4 Let Z be a formula, x, y be variables and t be a term.
The variable y is free for x in Z iff x does not occur free within the scope
of any ∀y or ∃y in Z. The term t is free for x in Z iff each variable occurring
in t is free for x in Z.

In the formula ∃y(Hx → Fxy), y is not free for x since x occurs free
within the scope of ∃y. And this is the reason that after replacing this
occurrence of x by f(y), the new occurrence of y becomes bound, that y
is getting captured by the substitution. The variable x is free for x in
∃y(Hx → Fxy); so is any variable z that does not occur in the formula.
Similarly, z is free for x in ∃y(Hx→ Fxy) as z does not at all occur in this
formula. Analogously, if t is any term that does not have an occurrence of
any variable, called a closed term, then t is free for x in any formula. If
no variable of t is bound in a formula Y , then t is free for every variable
occurring in Y. For example, the term t = f(x, y, f(a, b, c)) is free for y in
the formula ∀x∃z(Pxy ↔ Qyz).

Once t is free for x in Y , all free occurrences of variables in Y remains
free in Y [x/t], i.e., no variable of t is captured by such a substitution. We
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will use substitutions for terms also. For example, f(x)[x/t] will be taken
equal to the term f(t). We will write this equality using the same symbol
‘=’ for terms as well as formulas. For example,

f(x, y, z, g(a))[x/t] = f(t, y, z, g(a))

∀x(Pxy ↔ Qyz)[y/s] = ∀x(Pxs↔ Qsz)

assuming, of course, that t is free for x in a formula where the term
f(x, y, z, g(a)) has been used and, similarly, the term s must also be free
for y in the formula ∀x(Pxy ↔ Qyz).

Let us focus on how to interpret formulas. We go back to our old
example of translating the sentence:

All natural numbers are greater than or equal to 0.

We had the translation: ∀x(Nx→ Ox).
Now, as a formula (in FL), we do not, in fact, know what the predicates

N and O stand for; they are simply some formal syntactic entities. All that
the formula says is that N and O are unary predicates, and they can be
combined in such a manner that we may regard the expression

Y = ∀x(Nx→ Ox)

as a formula. Now, by using a vocabulary for N,O, you may read the
formula as different English sentences:

Every natural number is greater than 0.

(Nx: x is a natural number, Ox: x is greater than 0)

Authors of logic books are good teachers.

(Nx: x is an author of a logic book, Ox: x is a good teacher)

All men are females.

(Nx: x is a man, Ox: x is a female)

You can read it in many ways as you like, having the logical structure of
the sentence as ‘all so and so are such and such’. In the above readings, you
have a model of the formula Y , say, of all numbers, where the first reading
is probably meaningful. You also have models in the set of human beings,
where the second and third reading of Y can probably be interpreted. In
the first model of numbers, the predicate N stands for the unary relation
of ‘being a natural number’; in the second reading, N stands for the unary
relation of ‘being an author of a logic book’, and so on. This is how you get
infinite number of different interpretations of the same formula Y ; once by
changing the domain (a nonempty set) where you want to interpret and,
next, by reading the predicates as different relations over the same domain.

For the formula ∀xPxf(x), you can have, similarly, an infinite number
of models. For example, taking f as the function ‘father of’, and P as
the relation ‘younger than’, you have a model where the closed formula
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represents the English sentence:

Everyone is younger than his father.

You can also read the sentence ∀xPxf(x) as

Every natural number is less than its square.

Or as

Every natural number is bigger than its cube.

All these English sentences are different readings or interpretations of the
same formula ∀xPxf(x). What happens if we drop the quantifier? How
to interpret the formula Pxf(x)? What does the variable x stand for? Of
course, you can read it as

x is younger than his father . . .

But then how do you determine the truth of such an unfinished sentence?
This is unfinished because variables are just gaps, and only after substitu-
tion of a constant or a name there, you can get a sentence from it (else,
use a quantifier). You cannot possibly take this sentence to be read as
∀xPxf(x) nor as ∃xPxf(x). Moreover, which are the ones to be taken
and why? One way out is to think of a state where x is assigned to an
object. Then the formula becomes a sentence, speaking about that object
in that state. For example, in a program, you have a variable x. When this
variable is assigned a value, say, 0, then you know the state of the program.
The truth of a statement in that state now can be found out provided, of
course, all the other variables have been either quantified or assigned some
values. The truth of this kind of non-closed formulas depends upon a state.

Suppose that you admit of states for deciding the truth of such formulas
as Pxf(x) having a free variable. Now, can you connect the truth of
such a formula in a state to the truth of a sentence (like ∀xPxf(x) or
∃xPxf(x))? Clearly, if a, b, c, . . . are all possible values for x, then we
must have all of Paf(a), P bf(b), P cf(c), . . . to hold so that ∀xPxf(x) may
be true. Similarly, if in some state Pxf(x) is true, i.e., for one of these
constants, say, a, if Paf(a) holds, then ∃xPxf(x) also holds. Moreover, a
state can be thought of as assigning values to the free variables of a formula
to some objects in a model or interpretation. When we interpret Pxf(x)
in the set of human beings, with f as ‘father of’, P as ‘younger than’, and
if x is assigned to Priyanka, then in this state, the formula Pxf(x) would
be interpreted as the sentence:

Priyanka is younger than her father.

Such an assignment function `, which associates variables to elements of
the universe or domain of an interpretation is called a valuation (or a
variable assignment function). In the interpretation of x as ‘Priyanka’,
you had taken `(x) = Priyanka and `(f(x)) = Priyanka’s father. In so
doing, you have taken ` as a mapping that associates not only variables but
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also terms to elements of the domain. If ` is extended to terms, we must
see that it agrees with the mapping that associates predicates to relations
and function symbols to actual functions over the domain. Writing as φ,
the mapping that associates predicates and function symbols to relations
and functions over the domain, we have here, φ(f) = ‘father of’. But then
‘father of Priyanka’ is written in symbols, as φ(f)(`(x)). With the valuation
` extended for terms, we must have then φ(f)(`(x)) = `(f(x)). That is how
a valuation must agree with the mapping φ of the interpretation.

Suppose we fix `(x) = a and `(y) = b while interpreting the formula
∀xPxy. We must then consider all possible assignments to the variable x,
even when y is fixed to b. This is so because the truth of ∀xPxy should
not depend upon an assignment of x to some particular object, though it
may depend upon the particular value y is assigned to. How to achieve
this? We require some mechanism to consider all possible assignments
which would differ from ` in the only variable x. That is, ∀xPxy will be
true in each state fixed by ` if Pxy holds in every state fixed by `′, where
`′ may differ from ` only in assigning x. One way is to use the notation
`[x � a] denoting a valuation which equals the valuation ` except fixing
x to a. Then we would require Pxy to hold in every state fixed by each
valuation `[x � a] when a is allowed to be any arbitrary object. The other
way is to define all valuations `′ equivalent to ` along x, meaning that
`(y) = `′(y) for every variable y 6= x. And then, we would require Pxy to
hold in every state fixed by `′ so that ∀xPxy would hold. We will follow
this latter approach as it simplifies notation.

One more point, when we interpret a binary predicate P as ‘less than
or equal to’ in N, the set of natural numbers, and a constant c as 0, then
the formula ∀xPcx is interpreted as the sentence: “0 is less than or equal
to every natural number”. To know whether this formula is true under
this interpretation, we must ascertain whether the interpreted sentence,
“0 is less than or equal to every natural number” holds in N or not. So,
we assume that there is an inner mechanism of ‘truth’ in-built in every
interpretation for deciding whether a sentence in the domain holds or not.

2.4 Semantics of FL

You must remember that with all these formalisms, we are trying to capture
a simple idea. If you encounter a formula ∃xPx, then you try to find an
instance of x, a concrete object, where the property is satisfied. If you
succeed in finding one such instance, then the formula is satisfied; otherwise
not. Similarly, for the formula ∀xPx, if the property P holds for all possible
instances in your domain, then, in that domain, the formula is satisfied.

Now that we have had an elaborate preparation for giving meanings to
the building blocks of formulas, we may start with the formal definitions
of the required notions.
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An interpretation is a pair I = (D,φ), where D is a nonempty set,
called the domain or universe of I, φ is a mapping associating function
symbols with concrete functions on D and predicates with concrete rela-
tions on D, i.e., φ : P ∪ F → R, where R is the collection of all relations
and functions on D. Further, the mapping φ preserves arity, i.e.,

(a) If P is any 0-ary predicate (a proposition), then φ(P ) is a sentence
about objects in D, which may either be true or false.

(b) If P is an n-ary predicate, n ≥ 1, then φ(P ) ⊆ Dn, an n-ary relation
on D.

(c) If f is a 0-ary function symbol (a constant, a name), then φ(f) ∈ D,
an object in D.

(d) If f is an n-ary function symbol, n ≥ 1, then φ(f) : Dn → D, is a
function of n arguments on D.

A valuation under the interpretation I = (D,φ) is a mapping ` that assi-
gns each term to an element of D, which is first defined for variables and
then extended to terms satisfying:

(i) If f is a constant, then `(f) = φ(f).
(ii) If f is an n-ary function symbol and t1, . . . , tn are terms, then

`(f(t1, . . . , tn)) = φ(f)(`(t1), . . . , `(tn)).

A valuation `′ is called equivalent to a valuation ` along the variable x
iff `(y) = l′(y) for all variables y 6= x. A state I` is a triple (D,φ, `), where
I = (D,φ) is an interpretation and ` is a valuation under I. Two states I`
and I`′ are said to be equivalent along the variable x iff the valuations
` and `′ are equivalent along the variable x.

Let A,B,C be formulas and I` = (D,φ, `) be a state. Satisfaction of a
formula in the state I` is defined recursively by the following:

1. I` |= >.

2. I` 6|= ⊥.

3. If A is a proposition (0-ary predicate), then I` |= A iff φ(A) = 1
(i.e., iff φ(A) holds in D).

4. If A = P (t1, . . . , tn) for an n-ary predicate P other than ≈, and
terms t1, . . . , tn, then I` |= A iff (`(t1), . . . , `(tn)) ∈ φ(P )
(i.e., iff the objects `(t1), . . . , `(tn) in D are related by the relation
φ(P ) which is defined in D).

5. If A = (s ≈ t) for terms s, t, then I` |= A iff `(s) = `(t) holds in D.

6. If A = ¬B, then I` |= A iff I` 6|= B.

7. If A = B ∧ C, then I` |= A iff both I` |= B and I` |= C.

8. If A = B∨C, then I` |= A iff at least one of I` |= B or I` |= C holds.

9. If A = B → C, then I` |= A iff I` 6|= B holds or I` |= C holds.
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10. If A = B ↔ C, then I` |= A iff either both I` |= B and I` |= C hold,
or both I` 6|= B and I` 6|= C hold.

11. If A = ∀xB , then I` |= A iff I`′ |= B holds for every valuation `′

equivalent to ` along x.

12. If A = ∃xB, then I` |= A iff I`′ |= B holds for some (at least one)
valuation `′ equivalent to ` along x.

As in PL, there is also a notion of a first order language. In this context,
the connectives, the punctuation marks, the quantifiers, the symbols >,⊥,
and the variables are taken as the logical constants and the predicates
(including propositions) and function symbols (including names) are called
the nonlogical constants. A first order language is then formed from an
alphabet containing all the logical constants and some nonlogical constants
following the same formation rules as FL. Then an interpretation is only
defined for a first order language. In our terminology of an interpretation
of a formula, the first order language contains all the nonlogical constants
occurring in it, and possibly, some more. We do not use this terminology
here, though you should be able to follow other texts which use this.

The satisfaction relation between a state I` and a formula A, i.e., I` |=
A, is also read as “ the interpretation I is a model of the formula A in the
state ` ” or as “ the state I` is a state-model of A ”, or as “ I` satisfies
A ”, or as “ I` verifies A ”. A formula A is said to be satisfiable iff for some
interpretation I and some valuation ` under I, the state I` |= A.

An interpretation I is said to satisfy a formula A, written as I |= A iff
I` |= A, for every valuation ` (under I). I |= A is read as I is a model of
A. To distinguish between the metaphrases: ‘I is a model of’, and ‘I` is a
model of’, we will refer to I` as a state-model. To say that the state I` is a
model of a formula A, where ` is a valuation under the interpretation I, we
would rather stick to saying that I` is a state-model of A. A formula A is
called valid, written as |= A iff for every interpretation I, I |= A, i.e., for
every interpretation I, and for every valuation ` under I, the state I` |= A.

A set Σ of formulas is called satisfiable iff there is an interpretation I, a
valuation ` under I such that I` |= A for every A ∈ Σ. The interpretation
I is a model of Σ, written as I |= Σ iff I |= A for every A ∈ Σ. For a
set Σ of formulas and a formula A, Σ semantically entails A (or A is a
semantic consequence of Σ), written as Σ |= A, iff every state-model of Σ is
a state-model of A (iff for every interpretation I and for every valuation `
under I, if I` |= B for every B ∈ Σ, then I` |= A). If Σ = {X1, . . . , Xn}, the
consequence Σ |= X is also written as X1, . . . , Xn |= X. If the domain of a
model has m elements, we will say that the model has m elements. Thus
finite or infinite models are the models whose domain is finite or infinite,
respectively.

Two formulas A,B are equivalent, written as A ≡ B iff every state-
model of A is also a state-model of B and vice versa. That is, A ≡ B iff
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for every interpretation I and every valuation ` under I, we have either
I` |= A and I` |= B, or I` 6|= A and I` 6|= B.

Compare the complicated semantics of FL with that of PL. Here, sat-
isfaction is defined in a state which has an interpretation and a valuation.
So, we have the concepts of a model and of a state-model. If I is an inter-
pretation and ` is a valuation under I, we have the state I`. Now, a formula
A is satisfiable if it has a state-model. In contrast, ‘A has a model’ says
something stronger. It says that for every valuation ` under I, the state
I` is a state-model of A. Thus there can be satisfiable formulas having no
models; since there may be a state-model of it. Similarly, for validity, a
formula A is valid if, for every interpretation and for every valuation un-
der that interpretation, the state-model I` |= A, i.e., the corresponding
sentence of A holds in the domain D.

EXAMPLE 2.4 Consider the formulas Pxy, Pcf(c) and interpretations
I = (N, φ), J = (H,φ, ψ), where N is the set of all natural numbers, H is
the set of all human beings, φ(P ) =‘less than’, φ(c) = 0, φ(f) = ‘successor
function’, ψ(P ) = ‘is a brother of’, ψ(c) = Rajiv, and ψ(f) = ‘mother of’.
Determine whether I |= Pxy, I |= Pcf(c), J |= Pxy, J |= Pcf(c).
Solution Note that f is a unary function symbol; thus it can be associ-
ated to the functions ‘successor of’ and ‘mother of’, which take only one
argument. Similarly, P is a binary predicate and is associated with binary
relations ‘less than’ and ‘is a brother of’. It is immaterial what φ, ψ asso-
ciate with to the other predicates and functions. Let ` be a valuation under
I, where `(x) = 0, `(y) = 1 and m be a valuation under J with m(x) =
Rajiv and m(y) = Sanjay.

The state I` = (N, φ, `) is a state-model of Pxy. That is, I` |= Pxy
iff (`(x), `(y)) ∈ φ(P ) iff (0, 1) is a member of the relation, ‘less than’ iff
0 < 1, which holds in N. Therefore, I` |= Pxy.

Now, I` |= Pcf(c) iff (`(c), `(f(c))) ∈ φ(P ) iff (φ(c), φ(f)(φ(c))) ∈ φ(P )
iff (0, successor of 0) ∈ φ(P ) iff 0 < 1. Since this is true in N, I` |= Pcf(c).

For the state Jm, we have Jm |= Pxy iff (m(x),m(y)) ∈ ψ(P ) iff (Rajiv,
Sanjay) ∈ ‘is a brother of’ iff Rajiv is a brother of Sanjay. This latter
sentence holds (as both are sons of Mrs. Indira Gandhi). Hence Jm |= Pxy.
Note that, if you have some other Rajiv and Sanjay in mind, then in that
world, you may see that Rajiv is not a brother of Sanjay. Then Jm 6|= Pxy.
However, it will be unequivocal due to our assumption that in every domain,
we would like to consider, there must already exist a mechanism to ascertain
the truth of sentences (about objects in the domain).

Now, Jm |= Pcf(c) iff (m(c),m(f(c))) ∈ ψ(P ) iff (ψ(c), ψ(f)(ψ(c)))
∈ ψ(P ) iff (Rajiv, mother of Rajiv) ∈ ‘is a brother of’ iff Rajiv is a brother
of his own mother, which as we know, does not hold. Thus, Jm 6|= Pcf(c).

What about I, J? I |= Pxy iff I` |= Pxy for every valuation `. We have
already seen this for a particular valuation ` above which takes x to 0 and
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y to 1. Consider another valuation j with j(x) = 1, j(y) = 0. Is it that
Ij |= Pxy? Well, by definition, Ij |= Pxy iff (j(x), j(y)) ∈ φ(P ) iff 1 < 0,
which does not hold. Hence Ij 6|= Pxy. Consequently, I 6|= Pxy.

For I |= Pcf(c), we may take another valuation j and try checking
whether Ij |= Pcf(c). But, Pcf(c) has no variables, thus we will essentially
repeat the earlier argument:

Ij |= Pcf(c) iff (φ(c), φ(f)(φ(c))) ∈ φ(P ) iff n1 < n1 + 1

when φ(c) = n1 and successor of n1 is n1 + 1. This holds, whatever n1 ∈ N
we choose. Hence Ij |= Pcf(c). Consequently, I |= Pcf(c).

It is instructive to see that we cannot try all natural numbers one by
one, which is asked when we change valuations. It is then easier to check
for unsatisfiability (A is unsatisfiable if A is not satisfiable.) by a suitable
choice rather.

Now, for J |= Pxy, we have seen that Jm |= Pxy. We take one more
valuation, say, i under J with i(x) = Sonia , i(y) = Maneka. Jm |= Pxy iff
Sonia is a brother of Maneka, which does not hold. (Both Sonia and Maneka
are ladies.) Consequently, Jm 6|= Pxy. Similarly, since Jm 6|= Pcf(c), we
have J 6|= Pcf(c).

The formula Pxy is satisfiable since it has a state-model I`. The formula
Pcf(c) is also satisfiable since it too has a state-model I`. The formula Pxy
is invalid (not valid) as there is a state, say, Ij which does not satisfy (which
falsifies) Pxy. Similarly, since Jm 6|= Pcf(c), the formula Pcf(c) is also
invalid.

In the above example, you had seen that it does not matter what an
interpretation associates with to predicates or function symbols that do
not occur in a formula. Using this intuition, we may sometimes write the
corresponding relations and functions explicitly in an interpretation instead
of defining formally what φ is.

For example, if we are to interpret the formula Pxf(yz), it is enough
to write an interpretation I = (N, φ), with φ(P ) = ‘ <’, φ(f) = ‘sum of so
and so’, as I = (N, P ′, f ′), where P ′ is ‘<’ and f ′ is ‘sum of so and so’. We
follow this convention of writing interpretations in the next example.

EXAMPLE 2.5 Is the formula A = ∀xPxf(x) satisfiable? Is it valid?

Solution Take an interpretation I = (N, P ′, f ′), where P ′ is the ‘less
than’ relation and f ′ is the function ‘plus 5’. Since a variable x is occurring
in A, we must also start with a valuation, say, ` with `(x) = 2.

The state I` |= ∀xPxf(x) iff I`′ |= Pxf(x) for every valuation `′ equiv-
alent to ` along x. One such `′, for example, is given by `′(x) = 3 and
`′(y) = `(y) for y 6= x. Here, however, `′(y) or `(y) need not be defined
as the variable y does not appear in the formula. Now, I`′ |= Pxf(x) iff
`′(x) < `′(f(x)) iff `′(x) < f ′(`′(x)) iff 2 < 2 + 5 which holds in N. Hence,
I`′ |= Pxf(x).
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The same argument applies even when you take `′(x) as 0 or 1 or 3 or
4, etc. Hence, for each valuation `′ equivalent to ` along x, we see that
I`′ |= Pxf(x). This shows that I |= ∀xPxf(x).

Thus the formula ∀xPxf(x) is satisfiable as it has a state-model such
as I`′ ; it also has a model, such as I. Is it also valid? It does not seem likely
since there is too much of arbitrariness in this formula. To see that it is
invalid, you must find a state that may falsify it. For example, consider the
interpretation J = (N, P̄ , f ′), where P̄ is the ‘greater than’ relation. Take
`′ and f ′ as above. We then have J`′ |= Pxf(x) iff (`′(x), `′(f(x))) ∈ P̄
iff 2 > 2 + 5, which does not hold. Hence J`′ 6|= Pxf(x). Consequently,
J`′ 6|= ∀xPxf(x), since `′ is also equivalent to itself along x. That is, the
formula ∀xPxf(x) is invalid.

EXAMPLE 2.6 Consider the formula A = ∀x∀y(Pxa∧Pyx→ ¬Pya).
Let D = {a′, b′, c′} and P ′ = {(a′, a′), (b′, a′), (c′, a′)}. Define the interpre-
tation I = (D,P ′, a′). Here we are not using φ; instead, we implicitly write
φ(P ) = P ′ and φ(a) = a′. Now, is it true that I |= A? (Does I |= A hold?)

Solution We start with a valuation ` mapping the relevant variables to
D, say, `(x) = a′, `(y) = b′. We must first decide whether the state I`
satisfies A or not. By definition, I` |= A iff for every valuation `′ equivalent
to ` along x, I`′ |= ∀y(Pxa ∧ Pyx → ¬Pya). How do the `′ s look like?
`′(y) = `(y) = b′ but `′(x) is now free to have any of the values a′, b′, c′.
Thus, we have three choices for `′:

`′1(x) = a′, `′1(y) = b′; `′2(x) = b′, `′2(y) = b′; `′3(x) = c′, `′3(y) = b′.

We must check whether each of these satisfies the formula, i.e., whether

I`′
i
|= ∀y(Pxa ∧ Pyx→ ¬Pya) for i = 1, 2, 3

Let us check for `′1. Now, I`′
1
|= ∀y(Pxa ∧ Pyx → ¬Pya) iff for every

valuation j1 equivalent to `′1 along y, Ij1 |= Pxa ∧ Pyx → ¬Pya. There
will again be three cases for j1. This time, y varies. We have the valuations
(equivalent to j1 along y):

j11(x) = j12(x) = j13(x) = a′, j11(y) = a′, j12(y) = b′, j13(y) = c′.

We must check that Ij1k
|= Pxa ∧ Pyx→ ¬Pya for k = 1, 2, 3. Now,

Ij11 |= Pxa ∧ Pyx→ ¬Pya
iff Ij11 6|= Pxa ∧ Pyx or Ij11 |= ¬Pya
iff Ij11 6|= Pxa or Ij11 6|= Pyx or Ij11 6|= Pya

iff (j11(x), a′) 6∈ P ′ or (j11(y), j11(x)) 6∈ P ′ or (j11(y), a′) 6∈ P ′

iff (a′, a′) 6∈ P ′ or (a′, a′) 6∈ P ′ or (a′, a′) 6∈ P ′

iff (a′, a′) 6∈ P ′, which is not the case as (a′, a′) ∈ P ′.

Then it follows, in succession, that
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Ij11 6|= Pxa ∧ Pyx→ ¬Pya

I`′
1
6|= ∀y(Pxa ∧ Pyx→ ¬Pya)

I` 6|= ∀y(Pxa ∧ Pyx→ ¬Pya)

I 6|= ∀x∀y(Pxa ∧ Pyx→ ¬Pya)

However, it would be easier to see how the interpretation works, infor-
mally. The sentence ∀x∀y(Pxa ∧ Pyx → ¬Pya) would be satisfied under
the interpretation I provided we see that for each possibility for x and y
as elements of the domain D, the sentence holds. Since D = {a′, b′, c′} has
three elements, and there are two variables x, y to be instantiated to these
elements, we would have to consider the following nine sentences:

1. If (a′, a′) ∈ P ′ and (a′, a′) ∈ P ′, then (a′, a′) 6∈ P ′.

2. If (a′, a′),∈ P ′ and (b′, a′) ∈ P ′, then (b′, a′) 6∈ P ′.
...

9. If (c′, a′) ∈ P ′ and (c′, c′) ∈ P ′, then (c′, a′) 6∈ P ′.

Moreover, all the sentences must hold on D. Now, we see that the first
sentence itself does not hold. Therefore, I 6|= A. This is essentially the
semantics which we have defined recursively.

EXAMPLE 2.7 Is ∀x∃yPxy |= ∃y∀xPxy?

Solution Let us try to see whether there is a state I` which is a state-
model of ∀x∃yPxy but not of ∃y∀xPxy.

Let I = (D,P ′), where D = {2, 3}, P ′ = {(2, 3), (3, 2)}. Since there
are only two variables x and y and two objects in the domain D of I, the
relevant valuations are:

`1(x) = 2, `1(y) = 2; `2(x) = 2, `2(y) = 3

`3(x) = 3, `3(y) = 2; `4(x) = 3, `4(y) = 3

Now, I`1 |= ∀x∃yPxy iff for every valuation `1′ equivalent to `1 along x,
we have `1′ |= ∃yPxy. what are the valuations equivalent to `1 along x?
These valuations assign the same value to y but may assign different values
to x. As `1(y) = 2, we have only two such valuations. They are `1 and `3.
Hence,

I`1 |= ∀x∃yPxy iff I`1 |= ∃yPxy and I`3 |= ∃yPxy.

Again, I`1 |= ∃yPxy iff for every valuation m1 equivalent to `1 along y, we
have Im1 |= Pxy. What are such valuations? They would possibly differ in
assigning values to y, but x must be fixed as in `1, to 2 as `1(x) = 2. These
are the valuations `1 and `2 above. Thus,

I`1 |= ∃yPxy iff at least one of I`1 |= Pxy or I`2 |= Pxy holds.
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Similarly, when can we assert that I`3 |= ∃yPxy? First, we see that the
valuations equivalent to `3 along y (keeping x fixed to `3(x) = 3) are `3
and `4. Thus,

I`3 |= ∃yPxy iff at least one of I`3 |= Pxy or I`4 |= Pxy holds.

Continuing, we find that

I`1 |= ∀x∃yPxy
iff [I`1 |= Pxy or I`2 |= Pxy] and [I`3 |= Pxy or I`4 |= Pxy]

iff [(`1(x), `1(y)) ∈ P ′ or (`2(x), `2(y)) ∈ P ′] and

[(`3(x), `3(y)) ∈ P ′ or (`4(x), `4(y)) ∈ P ′]
iff [(2, 3) ∈ P ′ or (2, 3) ∈ P ′] and [(3, 2) ∈ P ′ or (3, 3) ∈ P ′].

This is so, since both (2, 3), (3, 2) ∈ P ′. Therefore, I`1 |= ∀x∃yPxy.
What about the satisfaction I`1 |= ∃y∀xPxy? Now,

I`1 |= ∃y∀xPxy
iff for some valuation m1 equivalent to `1 along y, Im1 |= ∀xPxy
iff I`1 |= ∀xPxy or I`2 |= ∀xPxy (Since m1 is either `1 or `2.)

iff (I`1 |= Pxy and I`3 |= Pxy) or (I`2 |= Pxy and I`4 |= Pxy)

(Since `1 and `3 are the only valuations equivalent to `1 along x,
and `2 and `4 are the only valuations equivalent to `2 along x.)

iff [(`1(x), `1(y)) ∈ P ′ and (`3(x), `3(y)) ∈ P ′] or

[(`2(x), `2(y)) ∈ P ′ and (`4(x), `4(y)) ∈ P ′]
iff [(2, 2) ∈ P ′ and (3, 2) ∈ P ′] or [(2, 3) ∈ P ′ and (3, 3) ∈ P ′]

Since this does not hold, I`1 6|= ∃yPxy, i.e., ∀x∃yPxy 6|= ∃y∀xPxy.
Exercise 2.4 In the solution to Example 2.7, see that I`k |= ∀x∃yPxy,
for k = 2, 3, 4. Further, show that ∃y∀xPxy |= ∀x∃yPxy.

We will once again see Example 2.7 informally. Interpret P as the
‘less than’ relation over the set N of natural numbers. Then, the formula
∀x∃yPxy simply means that “for each natural number, there is a bigger
natural number”. Whereas the formula ∃y∀xPxy means that “there is a
biggest natural number”. Clearly, the first one holds, while the second does
not. Therefore, the consequence ∀x∃yPxy |= ∃y∀xPxy is not valid.

This argument is simple. But there is a minor technical problem. Here,
we have simply stated that there is a model of ∀x∃yPxy which is not a
model of ∃y∀xPxy. However, for showing the invalidity of the consequence,
by definition, we must have a state-model of ∀x∃yPxy which must falsify
∃ y∀xPxy. In general, the two concepts of having a model and having
a state-model are not equivalent. Consider the consequence A |= B. One
critical case is when a formula A has no models but has only a state-model.
In such a case, each model of A is a model of B, but the state-model of A
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need not satisfy B. Thus, the above simpler argument does not show that
∀x∃yPxy 6|= ∃y∀xPxy, is it? However, for a sentence, a closed formula, we
will see that the concepts of a model and a state-model coincide, and then
this argument will indeed be correct.

In fact, for satisfaction of sentences, the interpretation I or the state
I` should not matter since our definition, in a way, gives more importance
to quantifiers than to the particular valuations; quantifiers override the
valuations. To this end, we start with the following: (Why is it so named?)

Theorem 2.1 (Relevance Lemma) Let A be a formula and VA be the
set of all free variables of A. Let I = (D,φ) be an interpretation and `, `′ be
valuations under I such that `(x) = `′(x) for every x ∈ VA. Then I` |= A
iff I ′` |= A.

Proof We prove it by induction on the number of occurrences of connec-
tives and quantifiers in A. As the basis of induction, A may be in one of
the following forms:

(i) >, (ii) ⊥, (iii) a proposition B, (iv) (s ≈ t), (v) P (t1, . . . , tn),

for an n-ary predicate P 6=≈ and terms s, t, t1, . . . , tn.

In case (i), both I` |= > and I`′ |= >. In case (ii), both I` 6|= ⊥ and
I`′ 6|= ⊥. In case (iii), I` |= B iff φ(B) = 1 iff I`′ |= B.

In case (iv), since all variables appearing in (s ≈ t) are free variables,
we have `(x) = `′(x) for all variables occurring in (s ≈ t). Moreover,
`(c) = φ(c) = `′(c) for every constant c occurring in (s ≈ t). It is thus
straightforward (by induction on the number of variables occurring in any
term) that `(s) = `′(s). Similarly, `(t) = `′(t). Hence, I` |= (s ≈ t) iff
`(s) = `(t) iff `′(s) = `′(t) iff I`′ |= (s ≈ t).

In case (v), we use the result that `(s) = `′(s) for every term s, where
`(x) = `′(x) for every variable and constant x occurring in s. (Exercise 2.5.)
Now,

I` |= P (t1, . . . , tn)

iff (`(t1), . . . , `(tn)) ∈ φ(P )

iff (`′(t1), . . . , `′(tn)) ∈ φ(P ) as `(ti) = `′(ti)

iff I`′ |= P (t1, . . . , tn).

For the induction step, lay out the induction hypothesis that for any
formula having number of occurrences of connectives and quantifiers less
than k, the statement holds. Let A be a formula having this number as k.
Then we have the following cases:

(a) A = ¬B for some formula B.
(b) A = (B ∗ C) for some formulas B,C and ∗ ∈ {∧,∨,→,↔}.
(c) A = ∃xB for some formula B and some variable x.
(d) A = ∀xB for some formula B and some variable x.
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In case (a), I` |= ¬B iff I` 6|= B iff I`′ 6|= B (by induction hypothesis) iff
I`′ |= ¬B. Case (b) is similar.

For cases (c) and (d), suppose that m is a valuation equivalent to `
along x, i.e., m(y) = `(y) for all variables y 6= x. Let m′(y) = m(y) for all
free variables of B. With the fact that `′(y) = `(y) for all free variables of
∃xB, what can be said about `′ and m′? Well, these conditions imply that
for all free variables z of A with z 6= x,m′(z) = m(z) = `(z) = `′(z) (as
VA ⊆ VB). That is, m′ is a valuation equivalent to `′ along x.

For case (c), suppose that I` |= ∃xB. Then there is at least one valuation
m equivalent to ` along x such that Im |= B. If m′ is a valuation that agrees
with m on VB, then we have Im′ |= B as well. By induction hypothesis,
there exists such a valuation m′. Using the result that m′ is equivalent to `′

along x, we conclude that there exists a valuation m′ equivalent to `′ along
x such that Im′ |= B. This gives I`′ |= ∃xB. Thus, we have proved that if
I` |= ∃xB then I`′ |= ∃xB. Converse implication is obtained by reversing
the roles of ` and `′. Case (d) is proved similarly.

Exercise 2.5 Show that if ` and `′ are two valuations that agree on
all variables occurring in a term t, then `(t) = `′(t) by induction on the
number of occurrences of variables in t or on the number of occurrences of
function symbols in t. [Hint : Both ` and `′ are valuations under the same
interpretation I.]

Exercise 2.6 Complete (b) and (d) in the proof of Theorem 2.1.

As a consequence of Relevance Lemma, we see that for a sentence, a
valuation does not contribute anything towards its satisfaction. For, when
A is a sentence (a closed formula), VA = ∅ and, vacuously, ` and `′ agree
on all the free variables of A. By definition then, I` |= A iff I`′ |= A. That
is, for a sentence, a state model and a model have the same meaning. Thus
we have the following theorem:

Theorem 2.2 (Relevance Lemma for Sentences) If A is a sentence,
I is an interpretation, and ` is a valuation under I, then I` |= A iff I |= A.

As a corollary, we obtain the following theorem (prove it):

Theorem 2.3 Let A be a sentence and I be an interpretation. Then either
I |= A or I |= ¬A.
Exercise 2.7 Construct formulas X and Y which are not closed, and
interpretations I and J such that

(a) either I |= X or I |= ¬X (b) J 6|= Y and J 6|= ¬Y .

What about constructing a formula Z and an interpretation K such that
K |= Z and K |= ¬Z?

Theorems 2.1−2.3 confirm our intuition that a sentence is satisfiable
iff it has a model. In other words, any interpretation I can either be a
model of a sentence or is a model of its negation. However, for an arbitrary
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formula, this may not hold. Such a dichotomy is possible only for states.
To be explicit, for an arbitrary formula, a state is either a state-model of
it or is a state-model of its negation. Sentences are special in this sense;
and thus allow translation into a ‘fact statement’ in any interpretation. For
example, the sentence ∀x∃yPxy can be translated into the fact statement:
“every object in D is related to some object by the relation φ(P ) ” in the
interpretation (D,φ). Similarly, ∃x∀xPxy can be translated as “every object
in D is related to the same object in D by the relation φ(P ) ”. In so doing,
one may just regard each variable occurring in a sentence as a variable in
the domain D and every predicate as a relation on D, etc.

These considerations quite naturally lead to different presentations of
semantics, while tackling the quantifiers. For example, when we say that
∀xPx is true in natural numbers, we would first prescribe how the unary
predicate is interpreted in N. Once we fix such a relation P ′ ⊆ N, which is
associated with P , the sentence ∀xPx is translated (to within N) as “for ev-
ery natural number x, P ′ holds for x ”, that is, “all of P ′(0), P ′(1), P ′(2), . . .
hold”.

Here we are considering valuations that fix x to 0, to 1, to 2, . . . one
after another, and then the relation P ′ must hold correspondingly for each
of them. We cannot, of course, use substitutions [x/0], [x/1], . . . and then
consider the formulas P (0), P (1), . . . since [x/0], [x/1], . . . are not substitu-
tions at all. Why? Because, 0, 1, 2, . . . are not terms; they are the objects
from the domain of the interpretation. The same effect is produced by
using valuations. If ` is a valuation, we write `[x � a] as a new valuation
obtained from ` which assigns every variable other than x to what ` assigns,
but fixing x to a. That is,

`[x � a](y) = a if y = x, else it equals `(y).

Then ∀xPx would be true under the state, now called an environment,
I` , provided Px holds in all the environments I`[x�a] where a varies over
the set of natural numbers, N.

In general, the difference between the valuations equivalent to ` along
x and `[x � a] is that `[x � a] fixes x to a. Formally then, we would like
to define satisfaction of a formula in an environment I` by modifying only
the quantifier cases (9) and (10) in the definition of satisfaction. These two
cases of satisfaction are replaced by

(9’) If A = ∀xB, then I` |= A iff I`[x�d] |= B for every d ∈ D.
(10’) If A = ∃xB, then I` |= A iff I`[x�d] |= B for some d ∈ D.

Now, the assignment ` is simply a look-up table giving values of the
variables (and also to terms, being faithful to φ). The fact that this change
in semantics is no change is expressed by the following statement:

Theorem 2.4 Let A be any formula and I = (D,φ) be an interpretation.
Let ` be a valuation. Then the state I` |= A iff the environment I` |= A.
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Proof A formal proof is obtained by induction on the number of occur-
rences of quantifiers in A. Since satisfaction in an environment differs from
that in a state only for the quantifiers, the crucial step is to prove the
statement when A is of the form ∀xB or ∃xB assuming that the theorem
holds for the formula B. That is, one shows:

(a) For every valuation m equivalent to ` along x,
Im |= B iff for every d ∈ D, I`[x�d] |= B.

(b) There is at least one valuation m equivalent to ` along x such that
Im |= B iff for some d ∈ D, I`[x�d] |= B.

Assume that for every valuation m equivalent to ` along x, Im |= B.
Now, `[x � d] is one such valuation equivalent to ` along x. Hence,
I`[x�d] |= B. This holds irrespective of whatever d ∈ D we choose. There-
fore, for every d ∈ D, I`[x�d] |= B.

Conversely, assume that for every d ∈ D, I`[x�d] |= B. Let m be a
valuation equivalent to ` along x. Then what is m? It may only differ
from ` at x. But m(x) ∈ D. Hence m = `[x � m(x)]. Then from our
assumption it follows that I`[x�m(x)] |= B, i.e., Im |= B. This is the case
for every valuation m equivalent to ` along x. This proves (a). Similar
argument proves (b).

Exercise 2.8 Show the following:

(a) `[x � d][x � e] = `[x � e].

(b) If x 6= y, then `[x � d][y � e] = `[y � e][x � d].

(c) If x 6= y, then ∀y(B[x/d̄]) = (∀yB)[x/d̄].

Henceforward, we will not distinguish between states, environments,
and structures; we will use whichever we feel is convenient. Before going
further, we will have an alternative semantics.

Note that we have introduced environments to circumvent the difficulty
in substituting objects from a domain for variables. We could not possibly
substitute a variable by an element from the domain since in a substitution
of the form [x/t], t must be a term. If we represent each element from the
domain, by a new constant, then such a replacement would be syntactically
correct. In this alternate view of semantics, we do just this. Corresponding
to each element in the domain, we introduce a new constant extending the
syntax of our language. Then as entities in our extended language, these
new constants can be used in the substitutions. For example, consider
interpreting the formula ∀xPx in N. First, we adjoin to our alphabet (of
FL) new constants, say, n′ corresponding to each n ∈ N. Then, I = (N, P ′)
will be a model of ∀xPx iff I is a model of Pn′ for each n′. This is more
direct than earlier semantics.

However, in our language, we will have at least as many more constants
as the elements in the domain D. That is, if we interpret a formula in a
finite set having m elements, we will have m constants in our language. If
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we interpret a formula in R, of real numbers, we will have an uncountable
number of symbols in our alphabet. Of course, this is no problem since in
any formula, we would have only a finite number of symbols used; proof by
induction will still work. Since new symbols are imported to the language,
we will refer to this semantics by the name, import semantics. A formal
description of import semantics follows.

Given a formula and an interpretation I = (D,φ), the alphabet is
extended by adding new (individual) constants, the symbols in the set
NC = {d̄ : d ∈ D}. The function φ is extended to include in its domain the
new constants by φ(d̄) = d. Any valuation ` under I is similarly extended
by being faithful to φ, i.e., by defining `(d̄) = φ(d̄) = d for each d̄ ∈ NC.
Definitions of states and environments are kept as they were. We will re-
fer to the states or environments as structures in import semantics. For
satisfaction, i.e., I` |= A, of a formula A in a structure I`, the conditions
(1−8) are kept as they were. The conditions (9−10) are replaced by the
following:

(9′′) I` |= ∀xB iff for every d ∈ D, I` |= B[x/d̄],

(10′′) I` |= ∃xB iff for some d ∈ D, I` |= B[x/d̄].

Is the import semantics any different from the earlier semantics of states
and environments in satisfying formulas?

Theorem 2.5 Let x be a variable, t be a term, A be a formula, ` be a
valuation under an interpretation I = (D,φ), and d be an element of D.
Then, (a) `[x � d](t) = `(t[x/d̄ ]), (b) I`[x�d] |= A iff I` |= A[x/d̄ ].
Proof For (a), use induction on the number of occurrences of function
symbols in t. For (b), use induction on the number of occurrences of con-
nectives and quantifiers in A. The crucial steps are when A is in either of
the forms ∀yB or ∃yB. The second case is similar to the first. In the first
case, we have two subcases: (i) x = y, (ii) x 6= y. In case (i),

I`[x�d] |= ∀xB
iff I`[x�d][x�e] |= B for every e ∈ D
iff for every e ∈ D, I`[x�e] |= B (as `[x � d][x � e] = `[x � e])
iff for every e ∈ D, I` |= B[x/ē ] (by induction hypothesis)
iff I` |= ∀xB
iff I` |= (∀xB)[x/d̄ ] (as x is no more a free variable)
iff I` |= A[x/d̄ ].

In case (ii),
I`[x�d] |= ∀yB

iff for every e ∈ D, I`[x�d][y�e] |= B

iff for every e ∈ D, I`[y�e][x�d] |= B

(as x 6= y gives `[x � d][y � e] = `[y � e][x � d])
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iff for every e ∈ D, I`[y � e] |= B[x/d̄ ] (by induction hypothesis)
iff for every e ∈ D, I` |= B[x/d̄ ][y/ē ] (by induction hypothesis)
iff I` |= ∀y(B[x/d̄ ])
iff I` |= (∀yB)[x/d̄ ] (as x 6= y gives ∀y(B[x/d̄ ]) = (∀yB)[x/d̄ ])
iff I` |= A[x/d̄ ].

Use Exercise 2.8 to complete the proof.

Exercise 2.9 Using Theorem 2.5, show that the import semantics is no
different from the earlier semantics, that is, for any formula A, the structure
I` |= A iff the environment or the state I` |= A.

EXAMPLE 2.8 Show that ¬∀xPx ≡ ∃x¬Px in each of the three se-
mantics of states, environments, and structures.
Solution Here, we briefly describe all the three approaches.

State: Let I = (D,φ) be an interpretation where D is a nonempty set
and P ′ ⊆ D, a unary relation corresponding to the predicate P. Take a
valuation ` which assigns `(x) ∈ D to the variable x. The state I` |= ¬∀xPx
iff I` 6|= ∀xPx iff for some valuation m equivalent to ` along x, we have
Im 6|= Px iff for some valuation m (equivalent to ` along x), Im |= ¬Px iff
I` |= ∃x¬Px.
Environment : With the same I, ` as in the case of a state, the environment
I` |= ¬∀xPx iff I` 6|= ∀xPx iff for some d ∈ D, I`[x�d] 6|= Px iff for some
d ∈ D, I`[x�d] |= ¬Px iff I` |= ∃x¬Px.
Structure: Take I and ` as above. The structure I` |= ¬∀xPx iff I` 6|= ∀xPx
iff for some d ∈ D, I` 6|= P d̄ iff for some d ∈ D, I` |= ¬P d̄ iff I` |= ∃x¬Px
as ¬P d̄ = (¬Px)[x/d̄ ].

Henceforth, we will not distinguish between the states, environments,
and structures.

2.5 Some Useful Consequences

You have seen various approaches to the semantics of first order logic. What
then? You must be able to determine valid formulas, valid consequences,
equivalences, and then check whether common intuitions such as deduction
theorem, RAA, etc. hold in this logic. We start with a simple result.

Theorem 2.6 (Monotonicity) Let Σ and Γ be sets of formulas with
Σ ⊆ Γ and A be a formula. If Σ |= A, then Γ |= A.

Proof Let Σ |= A. If I` is a state satisfying Γ, then I` |= X for each X ∈ Γ.
As Σ ⊆ Γ, I` |= X for each X ∈ Σ. Since Σ |= A, I` |= A. We have shown
that each state-model of Γ is also a state-model of A, proving Γ |= A.

Theorem 2.7 (RAA) Let Σ be a set of formulas and A be a formula.
Then Σ |= A iff Σ ∪ {¬A} is unsatisfiable.
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Proof Assume that Σ |= A. Let I` |= Σ ∪{¬A}. Then I` |= Σ and I` |= ¬A.
This says that I` 6|= A, contradicting Σ |= A. Hence there is no state I`
such that I` |= Σ ∪ {¬A}. That is, Σ ∪ {¬A} is unsatisfiable.

Conversely, suppose that Σ∪{¬A} is unsatisfiable. If Σ 6|= A, then there
is a state I` such that I` |= Σ but I` 6|= A. Then I` |= ¬A, consequently,
I` |= Σ ∪ {¬A}, contradicting the fact that Σ ∪ {¬A} is unsatisfiable.

Theorem 2.8 (Deduction) Let Σ be a set of formulas and A,B be for-
mulas. Then, Σ |= A→ B iff Σ ∪ {A} |= B.

Proof Using RAA, we can see that Σ ∪ {¬(A → B)} is unsatisfiable iff
Σ ∪ {A,¬B} is unsatisfiable. Equivalently, Σ ∪ {¬(A→ B)} is satisfiable
iff Σ ∪ {A,¬B} is satisfiable. We show the stronger (Is it?) assertion that
for any state I` , I` |= Σ ∪ {¬(A→ B)} iff I` |= Σ ∪ {A,¬B}.

So, let I` |= Σ ∪ {¬(A → B)}. Then I` |= Σ and I` |= ¬(A → B).
The latter is the same, as asserting that I` |= {A,¬B}. Conversely, if
I` |= Σ ∪{A,¬B}, then I` |= Σ and I` |= {A,¬B}, which then implies that
I` |= Σ ∪ {¬(A→ B)}.
Theorem 2.9 (Equivalence Substitution) Let A,B,C be formulas.
Denote by A[B := C] a formula obtained from A by replacing some (or
no or all) occurrences of B, as a subformula of A, by C. If B ≡ C, then
A ≡ A[B := C].
Proof Here is only an outline; develop a proof from it. If B does not occur
in A, or it has not been replaced by C at all, then A = A[B := C], and
there is nothing to prove. Otherwise, let I` be a state (` being a valuation
under an interpretation I = (D,φ)). Now, to see whether I` |= A, how
do you proceed? Depending upon the form of A, you may write down a
sentence: I` |= A iff . . . S . . . .

Proceeding step by step, the sentence S will involve somewhere I` |= B
or I` 6|= B, as the case demands. And these satisfaction relations will be
coming as many times as B occurs in A. Due to equivalences of B and C,
we have I` |= B iff I` |= C. And then, these satisfactions can be replaced by
I` |= C or I` 6|= C. Replace only those occurrences of I` |= B or of I` 6|= B
which correspond to the replacements of C while you obtained A[B := C].
Clearly, retracing the steps in S, you reach at I` |= A[B := C].

All the above theorems are propositional in nature; their proofs simply
follow the lines of the proofs you have seen in PL. There are, however, some
results which are special to FL. These results basically hold due to the
difference between an interpretation and a state under an interpretation.
For example, consider the formula Px. With this formula, we can associate
two sentences by the use of quantifiers, such as ∀xPx and ∃xPx. Now, if
Px is satisfiable, it would mean that there is a state I` which satisfies it. If
`(x) = a, then it would guarantee that I |= ∃xPx. On the other hand, if Px
is valid, then every state I` satisfies Px. Then every interpretation I would
be a model of ∀xPx. Moreover, for sentences, we need not consider states;
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interpretations suffice due to the Relevance Lemma. This observation can
be generalized to any formula rather than the special one, Px.

Let X be a formula having the only free variables x1, . . . , xm. We will
encapsulate this information by writing X as X[x1, . . . , xm]. The existen-
tial closure of X, denoted by ∃∗X, is the formula obtained from X by
existentially quantifying over all free variables in it, i.e.,

∃∗X = ∃x1∃x2 · · · ∃xmX[x1, x2, . . . , xm]

The universal closure of X, denoted by ∀∗X, is the formula obtained
from X by universally quantifying over all free variables in it, i.e.,

∀∗X = ∀x1∀x2 · · · ∀xmX[x1, x2, . . . , xm]

For m = 0, the formula is a sentence, and by definition, we take, in this
case, X = ∃∗X = ∀∗X. The above observation amounts to the following
statement.

Theorem 2.10 Let X be any formula and ∃∗X, ∀∗X be its existential and
universal closures, respectively. Then

(a) X is satisfiable iff ∃∗X is satisfiable.

(b) X is valid iff ∀∗X is valid.

Proof Use induction on m, the number of free variables of X. In the
basis step, when m = 0, we have X = ∃∗X = ∀∗X and the statement
follows. For induction, assume that for m = k, both the conclusions (a)
and (b) above hold. Let X be a formula having k + 1 free variables, i.e.,
let X = X[x1, . . . , xk+1]. Consider two formulas:

Xe = ∃xk+1X[x1, . . . , xk+1] and Xa = ∀xk+1X[x1, . . . , xk+1]

Let I be an interpretation and ` be a valuation under I. Now, I` |= Xe iff
for some valuation `′ equivalent to ` along xk+1, I`′ |= X. That is, if Xe is
satisfiable, then with I` as one of its state models, we have a state-model
of X showing that X is satisfiable. Conversely, if I` |= X, then take `′ as `
(since ` is equivalent to ` along xk+1), and then we see that I`′ |= X. Hence,
X is satisfiable iff Xe is satisfiable. Using induction hypothesis, we have:
Xe is satisfiable iff ∃x1 · · · ∃xkXe is satisfiable. Now, ∃∗X = ∃x1 · · · ∃xkXe.
This proves (a). For (b), similarly, the statement:

I` |= Xa iff for every valuation `′ equivalent to ` along xk+1, I`′ |= X

does the job.

Exercise 2.10 Complete case (b) in the proof of Theorem 2.10.

Is the formula Px ∨ ¬Px valid? By Theorem 2.10, it would be so
provided ∀x(Px ∨ ¬Px) is valid, which you can show now. Alternatively,
you check directly whether I` |= Px∨¬Px. This is so since one of `(x) ∈ P ′
or `(x) 6∈ P ′ holds. Can you apply the same argument to decide whether
the formula ¬Pxy ∧Qz ↔ ¬(Qz → Pxy) is valid? Well, observe that you
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can get this formula from the proposition ¬q∧p↔ ¬(p→ q), if you replace
p by Qz, q by Pxy. The proposition is a valid one. Thus the same argument
as above is still applicable with a state I`. The next theorem shows that
this can be done in a quite general setting. But we will have to talk about
valid formulas and also valid propositions.

To minimize confusion, let us use the word tautology for the valid
propositions, that is, a tautology is a valid formula where the only symbols
used are propositional constants (>,⊥ and 0-ary predicates), connectives
and, possibly, punctuation marks. As PL is a fragment of FL, all PL-
valid propositions are tautologies. For example, ¬q ∧ p ↔ ¬(p → q) is a
tautology.

We have one more notational problem. We want to replace the propo-
sitional constants by formulas. How to write this replacements? Of course,
you can use the symbol [p := X] for substituting p by X. However, we
had already used this notation in equivalence substitution, where all oc-
currences of p need not be replaced by X. We require here to replace every
occurrence of p by X. We will have to use a different notation.

Let σ : PROP → FORM be a function from the set of propositions,
PROP, to the set of formulas, FORM. For any proposition A, write:

σ′(A) = the proposition obtained from A by replacing all occurrences
of each propositional variable p by the formula σ(p).

For example, if σ(p) = Px, σ(q) = Qxy, A = p ∨ ¬p → q, then, σ′(A)
= Px ∨ ¬Px → Qxy. In contrast to any substitution, we will refer this
substitution as the uniform substitution. Note that, here it does not
matter whatever σ assigns to other propositional variables. Now, if i(p)
= 1, i(q) = 0, for a PL-interpretation i, then correspondingly, for a state
I`, we have I` |= Px and I` 6|= Qxy; consequently, i(A) = 1 and also
I` |= σ′(A). This would happen only when i and I` are so related.

Theorem 2.11 Let A be a proposition, i be any PL-interpretation (i.e.,
either i(A) is 0 or 1) and I` be a state such that for every propositional
variable p, i |= p iff I` |= σ(p). Then i |= A iff I` |= σ′(A).
Proof Use induction on n(A), the number of occurrences of connectives
in A. In the basis step, when n(A) = 0, you have A = >,⊥, or p, for
some propositional variable p. Then σ̄(A) = >,⊥, or σ(p), respectively.
Here, the assumption coincides with the conclusion. Lay out the induction
hypothesis that, if n(A) < m, then i |= A iff I` |= σ′(A).

Let A be a proposition with n(A) = m ≥ 1. Then, A is in one of the
following forms:

(i) ¬B, (ii) (B ∧ C), (iii) (B ∨ C), (iv) (B → C), (v) (B ↔ C).

In case (i), σ′(A) = ¬σ′(B). Since n(B) < m, by induction hypothesis,
i |= B iff I` |= σ′(B). Now, i |= A iff i 6|= B iff I` 6|= σ′(B) iff I` |= σ′(A).
Other cases are proved analogously. (Prove them.)
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Now we can go back to the result that when propositional variables are
substituted by arbitrary formulas uniformly in a valid proposition, a valid
formula results.

Theorem 2.12 (Uniform Substitution in a Tautology) Let A be a
tautology. Let σ be a mapping that associates propositional variables to
formulas. Let σ′(A) be the result of uniformly substituting each occurrence
of each propositional variable p by σ(p) in A. Then |= σ′(A).

Proof Let I be any interpretation and ` be any valuation under I. Let p be
any propositional variable. Then σ(p) is a formula. Now, either I` |= σ(p)
or I` 6|= σ(p). Define a PL-interpretation i such that i(p) = 1 if I` |= σ(p),
and i(p) = 0 if I` 6|= σ(p). Since A is a valid proposition, i |= A. By Theorem
2.11, I` |= σ′(A). We have shown that any arbitrary state satisfies σ′(A).
hence σ′(A) is valid.

Uniform substitution in a tautology allows you to conclude that the
formula Px ∨ ¬Px is valid and that Pxy → (Qxyz → Pxy) is valid, and
so on. You can get many valid formulas from the laws in Theorem 1.8.
In addition, we have some more laws involving quantifiers as given in the
following theorem. They will be helpful in making calculations and showing
some other formulas and consequences to be valid.

Theorem 2.13 The following statements hold for any formulas X,Y, vari-
ables x, y, and terms r, s, t. (Whenever X[x/t] appears, it is assumed that
t is free for x in X; new constant means a constant that has not appeared
in the context, etc.)

(a) law of constants: |=X iff X≡>, |=∀x(⊥ → X), ∃x(⊥∧X)≡⊥.
(b) law of equality: |= (t ≈ t), (s ≈ t) ≡ (t ≈ s),
{r ≈ s, s ≈ t} |= (r ≈ t), {s ≈ t,X[x/s]} |= X[x/t],

If x does not occur in t, then

∀x((x ≈ t)→ X) ≡ X[x/t], ∃x((x ≈ t) ∧X) ≡ X[x/t].

If x does not occur in X, then ∀xX ≡ X, ∃xX ≡ X.
(c) law of commutativity:

∀x∀yX ≡ ∀y∀xX, ∃x∃yX ≡ ∃y∃xX, |= ∃x∀yX → ∀y∃xX.
(d) law of distributivity:

∀x(X ∧ Y ) ≡ ∀xX ∧ ∀xY, ∃x(X ∨ Y ) ≡ ∃xX ∨ ∃xY,
|= ∀xX ∨ ∀xY → ∀x(X ∨ Y ), |= ∃x(X ∧ Y )→ ∃xX ∧ ∃xY.
If x does not occur in X, then

∀x(X ∨ Y ) ≡ X ∨ ∀xY, ∃x(X ∧ Y ) ≡ X ∧ ∃xY,
∀x(X → Y ) ≡ X → ∀xY, ∃x(X → Y ) ≡ X → ∃xY,
∀x(Y → X) ≡ ∃xY → X, ∃x(Y → X) ≡ ∀xY → X.
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(e) law of renaming: ∀xX ≡ ∀yX[x/y], ∃xX ≡ ∃yX[x/y]

(f) law of empty quantification:

If x does not occur in X, then ∀xX ≡ X, ∃xX ≡ X.
(g) law of de morgan:

¬∀xX ≡ ∃x¬X, ¬∃xX ≡ ∀x¬X, ∀xX ≡ ¬∃x¬X, ∃xX ≡ ¬∀x¬X.
(h) law of generalization: If |= X, then |= ∀xX, |= X[x/t]→ ∃xX.
(i) law of specification:

|= ∀xX → X[x/t], |= ∃xX → X[x/c] for a new constant c.

(j) law of uniform substitution: Let σ be a function that associates
positional variables to formulas. Let σ′(X) be the result of uniformly
substituting each occurrence of each propositional variable p by σ(p)
in X. If |= X, then |= σ′(X), where σ(p) is such a formula that no
free variables of it becomes bound in σ′(X).

Exercise 2.11 Check the correctness of the laws in (a) to (i) above.

The laws of constants and equality are straightforward. But the last
two equivalences in the law of equality need some attention; they are:

∀x(x ≈ t→ X) ≡ X[x/t] and ∃x(x ≈ t ∧X) ≡ X[x/t]

Here, you require a condition that x must not occur in t. What happens
if x occurs in t? With t = x, (x ≈ t) ≡ > and (x ≈ t → X) ≡ X, so that
you have ∀xX ≡ X and ∃xX ≡ X, which are obviously wrong. Check this
with the law of empty quantification.

Next, look at the law of commutativity, where you have only an im-
plication, and not an equivalence. This is because ∀y∃xX → ∃x∀yX is
invalid. Why? Let X = Pxy, and revisit Example 2.7. Next, you find
something interesting in the law of distributivity. In general, the formulas
∀(X ∨ Y ) → ∀xX ∨ ∀xY and ∃xX ∧ ∃xY → ∃x(X ∧ Y ) are invalid. For
example, with X = Px and Y = ¬Px, you have ∀x(X ∨ Y ) ≡ > . The
formula ∀xX ∨ ∀xY is, now, ∀xPx ∨ ∀x¬Px. Is this formula valid? Take
an interpretation I = ({2, 3}, P ′) with P ′ = {2}. Then,

I |= ∀xPx ∨ ∀x¬Px iff (2 ∈ P ′ and 3 ∈ P ′) or (2 6∈ P ′ and 3 6∈ P ′) ,

which clearly does not hold. This shows that ∀(X ∨ Y ) → ∀xX ∨ ∀xY is
invalid. Why is ∃xX ∧ ∃xY → ∃x(X ∧ Y ) invalid? You can try to show
it the same way as we did for ∀(X ∨ Y ) → ∀xX ∨ ∀xY. But, consider the
following exercise.

Exercise 2.12 Using the laws of constants and De Morgan show that, if
X = Px and Y = ¬Px, then ∃xX ∧∃xY → ∃x(X ∧Y ) ≡ ∀xPx∨∀x¬Px.

Now you are able to appreciate the condition “x does not occur in X”
in the next two laws of distributivity. Do you? In the laws of specification,
think about the ‘import semantics’ where, for each object in a domain of



Calculations 83

an interpretation, we had introduced a new constant to our language. This
would explain the phrase ‘a new constant c’ appearing in ∃xX → X[x/c].
We may not have, in fact, sufficient terms in our language to name any
arbitrary object; thus new names are invented. Similarly, in the law of
generalization, we have a weird looking expression: ‘if |= X, then |= ∀xX’.
It is not the same as X |= ∀xX (nor as |= X → ∀xX; recollect deduction
theorem). Why? The former says that

“If each state I` satisfies X, then each state I` satisfies ∀xX.”
While the latter says that

“For each state I` , whenever I` satisfies X, I` also satisfies ∀xX.”
The point is that the former can vacuously hold whereas the latter may
not. For example, with X = Px, ‘if |= Px then |= ∀xX’ holds since ∀xPx
is the universal closure of Px. But, Px |= ∀xPx does not hold as there can
be a state I` which satisfies Px and, at the same time, falsifies ∀xPx. To
see this, take the domain of I as the natural numbers and let ` assign x to
2. Suppose that P is interpreted as the set of prime numbers. Then Px
would mean the sentence “2 is a prime number”, which holds; while ∀xPx
would mean, “all natural numbers are prime”, which is clearly wrong.

2.6 Calculations

With the use of the laws listed in Theorem 2.13, you can extend the use of
calculations for first order logic. As in PL, a calculation will look like:

C0 ⊕1 C1 ⊕2 . . .⊕m Cm

where ⊕i ∈ {≡, |=}, and every step Ci−1⊕iCi must be an instance of a law
E1⊕iE2. The calculation is taken as a proof of the metastatement C0�Cm,
where � =≡ if all ⊕i =≡, else, � = |= . Moreover, a proof of |= Z can be a
proof of one of the statements Z ≡ > or > |= Z. A proof of |= Y → Z can
also be any of the proofs of Y |= Z, due to deduction theorem. Similarly, a
proof of |= Y ↔ Z can also be a proof of Y ≡ Z. A proof of the consequence
{A1, . . . , An} |= A is a proof of A1 ∧ · · · ∧An |= A. Another alternative for
a proof of a consequence is to use Ai ≡ > as additional local laws and then
prove |= A. A calculation is justified provided that each step is justified.
Remember that each step is justified in PL due to Leibniz Rule (Theorem
1.10). Here also we give a version of this metastatement for FL.

Theorem 2.14 (Leibniz Rule) Let the propositional variables p1, . . . , pn

occur in the formulas E1, E2, and B1, . . . , Bn be any formulas. Then,

(a) E1 ≡ E2, implies

E1[p1 := B1, . . . , pn := Bn] ≡ E2[p1 := B1, . . . , pn := Bn].

(b) E1 |= E2, implies

E1[p1 := B1, . . . , pn := Bn] |= E2[p1 := B1, . . . , pn := Bn].
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Proof Modify the proof of Theorem 1.10 suitably. Alternatively, you may
use uniform substitution in tautologies to get this.

In defining a step of a calculation, we have used the phrase ‘an instance
of’, which is so in the sense of Leibniz. That is,

E1[p1 := B1, . . . , pn := Bn] ≡ E2[p1 := B1, . . . , pn := Bn]

is an instance of E1 ≡ E2. Similarly,

E1[p1 := B1, . . . , pn := Bn] |= E2[p1 := B1, . . . , pn := Bn]

is also an instance of E1 |= E2. This rule of Leibniz will be used in every
step of a calculation implicitly.

Now, how to use a law such as ‘generalization’ in a calculation? For
example, we have a tautology p→ p. In place of p, you may substitute Px
to get Px → Px. Then, you generalize to conclude that ∀x(Px → Px) is
valid. Can these steps be written as a calculation? Our strategy here is
to start from the special sentence >, which stands for truth and proceed
towards deriving ∀x(Px→ Px). Here is an attempt:

> [Implication]

≡ p→ p [Theorem 2.14]

? Px→ Px [Generalization]

! ∀x(Px→ Px)

What symbol you must use in place of ‘?’ ? Can you use ≡ ? You cannot,
since p → p 6≡ Px → Px. What Theorem 2.14 says is that, “ if |= p → p,
then |= Px → Px. ” The same argument tells you that you cannot use |=
in place of ‘!’. So? The calculation is, after all, correct. Let us write the
symbol ‘⇒’ whenever we use Theorem 2.14. Thus, in our definition of a
calculation, we can have ⊕ = ≡ or |= or ⇒ . The symbol ⇒ will be used
whenever a metastatement is used in the sense that:

X ⇒ Y will abbreviate the statement “ if |= X, then |= Y ”.

Remember that whenever we have a calculation C0 ⊕1 C1 ⊕2 . . . ⊕m Cm,
which uses the new symbol ⇒, and C0 is valid, we would then conclude
that Cm is valid. The above calculation would be written as

> [Implication]

≡ p→ p [Theorem 2.14]

⇒ Px→ Px [Generalization]

⇒ ∀x(Px→ Px)

Since > is valid, the calculation shows that the formula ∀x(Px→ Px) is
valid. However, in such a case, where the symbol⇒ is used in a calculation,
with premises in a set Σ and with a conclusion X, we have a proof of the
metastatement:
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If all the premises in Σ are valid, then the conclusion X is valid.

This is weaker than Σ |= X, as the latter demands that for every state I`,
if I` |= Y for each Y ∈ Σ, then I` |= X. Semantically, we will write such
a consequence as Σ ⇒ X instead of Σ |= X. If all the premises in Σ are
sentences, then, of course, Σ ⇒ X and Σ |= X will coincide. In case of
proving validity of a formula X, a calculation showing > ⇒ X suffices.

At this point, redefine a calculation formally incorporating the new
symbol ⇒ . Let us illustrate this with some more examples. We use abbre-
viations, such as ‘Prop’ for ‘a (propositional) tautology’, ‘Subs Taut’ for
‘Uniform Substitution in a Tautology’, ‘Gene’ for ‘Generalization’, ‘Spec’
for ‘Specification’, ‘Hyp’ for ‘Hypothesis’, ‘Mod Pon’ for Modus Ponens.

EXAMPLE 2.9 Show that |= ∀x((¬Px→ ¬Qx)→ (Qx→ Px)).
Solution

> [Prop]

≡ (¬p→ ¬q)→ (q → p) [Subs Taut]

⇒ (¬Px→ ¬Qx)→ (Qx→ Px) [Gene]

⇒ ∀x((¬Px→ ¬Qx)→ (Qx→ Px))

EXAMPLE 2.10 Show that |= (∀x(Px→ Qx)→ (∃xPx→ ∃xQx)).
Solution It looks easier to apply deduction theorem. So, we show that
{∀x(Px→ Qx),∃xPx} |= ∃xQx.

∃xPx [Spec]

|= Pc [Prop]

≡ Pc ∧ > [Hyp]

≡ Pc ∧ ∀x(Px→ Qx) [Spec]

≡ Pc ∧ (Pc→ Qc) [Mod Pon]

|= Qc [Gene]

|= ∃xQx

EXAMPLE 2.11 Show that {∃xPx,∀x∀y(Px→ Qy)} |= ∀yQy.
Solution

∃xPx [Spec]

|= Pc [Hyp & Const]

|= Pc ∧ ∀x∀y(Px→ Qy) [Spec]

|= Pc ∧ ∀y(Pc→ Qy) [Dist]

|= Pc ∧ (Pc→ ∀yQy) [Mod Pon]

≡ ∀yQy
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EXAMPLE 2.12 Show the validity of the argument:
All lions are animals. Therefore, all heads of lions are heads of animals.

Solution To translate the argument into an FL-consequence, let

Lx : x is a lion, Ax : x is an animal, Hxy : x is a head of y.

Then, “x is a head of a lion” is symbolized as ∃y(Ly ∧Hxy), etc. You get
the consequence as ∀x(Lx→ Ax) |= ∀x(∃y(Ly ∧Hxy)→ ∃y(Ay ∧Hxy)).
Here, it seems easier to use RAA, since the conclusion has predicate H
which is absent in the premise. So we show that the set

{∀x(Lx→ Ax),¬∀x(∃y(Ly ∧Hxy)→ ∃y(Ay ∧Hxy))}
is unsatisfiable. That is, we will have a calculation which uses the premises
in this set and ending at ⊥. We start with one of the premises.

¬∀x(∃y(Ly ∧Hxy)→ ∃y(Ay ∧Hxy)) [De Mor & Prop]

≡ ∃x(∃y(Ly ∧Hxy) ∧ ¬∃y(Ay ∧Hxy)) [Spec, a is new]

|= ∃y(Ly ∧Hay) ∧ ¬∃y(Ay ∧Hay) [Spec, b is new]

|= Lb ∧Hab ∧ ¬∃y(Ay ∧Hay) [De Mor]

≡ Lb ∧Hab ∧ ∀y(¬Ay ∨ ¬Hay [Spec]

|= Lb ∧Hab ∧ (¬Ab ∨ ¬Hab) [Prop]

≡ (Lb ∧Hab ∧ ¬Ab) ∨ (Lb ∧Hab ∧ ¬Hab) [Prop]

≡ (Lb ∧Hab ∧ ¬Ab) ∨ ⊥ [Prop]

≡ (Lb ∧Hab ∧ ¬Ab) [Hyp]

≡ (Lb ∧Hab ∧ ¬Ab) ∧ ∀x(Lx→ Ax) [Spec]

|= (Lb ∧Hab ∧ ¬Ab) ∧ (Lb→ Ab) [Mod Pon]

|= (Hab ∧ ¬Ab ∧Ab) [Prop]

≡ ⊥

EXAMPLE 2.13 The following set of formulas is unsatisfiable:

{∀x∀y∀z((Px ∧Qy ∧Rzy ∧ Syx)→ Rzx),

¬∃x∃y∃z(Px ∧ Py ∧ ¬(x ≈ y) ∧Rzx ∧Rzy),

Qa ∧Rba ∧ Sac ∧ Pc ∧ Pd ∧ ¬(c ≈ d), Red ∧ (e ≈ b)}.
Solution

∀x∀y∀z((Px ∧Qy ∧Rzy ∧ Syx)→ Rzx) [Spec,[x/c, y/a, z/b]]

≡ Pc ∧Qa ∧Rba ∧ Sac→ Rbc [Hyp, Prop]

≡ (Pc ∧Qa ∧Rba ∧ Sac→ Rbc)

∧ ¬∃x∃y∃z(Px ∧ Py ∧ ¬(x ≈ y) ∧Rzx ∧Rzy) [De Mor, Prop]

|= (Pc ∧Qa ∧Rba ∧ Sac→ Rbc)

∧ ∀x∀y∀z(Px ∧ Py ∧Rzx ∧Rzy → (x ≈ y)) [Spec,[x/d, y/c, z/e]]
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≡ (Pc ∧Qa ∧Rba ∧ Sac→ Rbc)

∧ (Pd ∧ Pc ∧Red ∧Rec→ (d ≈ c)) [Hyp]

|= (Pc ∧Qa ∧Rba ∧ Sac→ Rbc)

∧ (Pd ∧ Pc ∧Red ∧Rec→ (d ≈ c)) ∧Qa ∧Rba
∧ Sac ∧ Pc ∧ Pd ∧ ¬(c ≈ d) ∧Red ∧ (e ≈ b) [Mod Pon]

|= Rbc ∧ (Pd ∧ Pc ∧Red ∧Rec→ (d ≈ c)) ∧Qa ∧Rba
∧ Sac ∧ Pc ∧ Pd ∧ ¬(c ≈ d) ∧Red ∧ (e ≈ b) [Equality]

|= Rbc ∧ (Pd ∧ Pc ∧Rbd ∧Rbc→ (d ≈ c)) ∧Qa ∧Rba
∧ Sac ∧ Pc ∧ Pd ∧ ¬(c ≈ d) ∧Rbd ∧ (e ≈ b) [Mod Pon, Prop]

|= (d ≈ c) ∧ ¬(c ≈ d) [Equality]

|= (d ≈ c) ∧ ¬(d ≈ c) [Prop]

|= ⊥

In the last example, the specification choices were very important. Had
you chosen something else instead of the chosen ones, you would not have
ended at ⊥ (but of course, you could use them later). The choices were
motivated by the occurrences of the constants in the predicates. Only expe-
rience will help you make the right choice. Now, you should try Problems
31−33 at the end of the chapter. Next, we proceed towards discovering
possible normal forms in FL as we had cnfs and dnfs in PL.

2.7 Normal Forms

Consider the sentence ∀x(Px → Qx). Since Px → Qx is equivalent to
¬Px ∨Qx, we can have the equivalent sentence ∀x(¬Px ∨Qx). Then, by
specification, this would entail ¬Pa ∨ Qa. Similarly, this also entails the
other specification instances: ¬Pb∨Qb, ¬Pc∨Qc, and so on. Finally, you
can have a conjunction of all these instances, i.e.,

(¬Pa ∨Qa) ∧ (¬Pb ∨Qb) ∧ (¬Pc ∨Qc) ∧ · · ·

But what does this · · · mean? Is it terminating somewhere or is it like “N
has the elements 0, 1, 2, . . .”? If it is like the latter, then it is not a formula.
Then, how to have a normal form for arbitrary formulas? How to get rid of
the quantifiers in a meaningful way? One way is just to drop a quantifier.
But when is it permitted and in what sense?

You know that |= ∀x(Px→ Qx) iff |= (Px→ Qx), though such a thing
does not hold for existential quantifier. In this case, at least when all the
quantifiers are universal, you can drop them, and this will still preserve
validity. Then, what can you do for an existential quantifier, say, for the
formula ∃x(Px∧Qx)? Well, it is simply Pc∧Qc, where c is a new constant.
This seems to be all right. What about the formula ∀x∃y(Pxy → Qxy)?
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This formula, a sentence, says that ‘for each x, there is a y · · · ’, which
means, so to speak, that y may depend in some way on x so that the
relation Pxy → Qxy holds. How to express dependence? Just like new
constants, use a new function symbol! The sentence will be represented as
Pxf(x)→ Qxf(x). What about ∀x∃y(Px∧Qxy → ∀z∃yRyz)? There are
two occurrences of ∃y. The variable y of this first occurrence, which includes
Qxy in its scope, must depend upon x while the second one should depend
upon z, and not on x. In fact, by renaming, you can see that the latter y is
not within the scope of the first ∃y as the formula is equivalent to ∀x∃y(Px∧
Qxy → ∀z∃uRuz). This says that the y in the subformula ∀z∃yRyz is not
a free variable, and hence is not bound by the first occurrence of ∃y. While
going for normal forms, we must take care of all these eventualities.

Moreover, in the formula ∃y∀xPxy, the variable y does not depend upon
x. So, it is not clear as in the renamed formula above whether the variable
u depends upon x or not. We need to express it in the form ∀x∃y∀z∃u(· · · ),
where all the quantifiers should occur only in the beginning. Such a form is
called a prenex form of a formula. For example, ∀xPx→ ∀yQy is not in
prenex form, but it can be put in a prenex form such as ∀x∀y(Px→ Qy) or
as ∀y∀x(Px→ Qy), using the laws of distributivity. Note that the prenex
forms are equivalent to the original formula.

What will be the prenex form of the formula ∀xPx → ∀xQx? You
cannot, of course, write ∀xPx → ∀xQx ≡ ∀x(Px → Qx) as x occurs
in ∀xQx. (The law of distributivity says that ∀x(X → Y ) ≡ ∀xX → Y
if x does not occur in Y .) However, you can use renaming, and then,
equivalence substitution will allow you to write the formula equivalently as
∀xPx→ ∀yQy, consequently, distributivity will give you ∀x(Px→ ∀yQy),
and then, ∀x∃y(Px→ Qy), or ∃y∀x(Px→ Qy). Such renaming of bound
variables which allows you to use the laws towards conversion to a prenex
form is known as rectification. The following definition formalizes these
notions.
Definition 2.5 A formula is called rectified iff no variable in it is both
free and bound, and each occurrence of a quantifier uses a different variable.
A formula is said to be in prenex form iff all occurrences of quantifiers in
it are in the beginning, i.e., if it is in the form Q1x1Q2x2 · · ·QnxnX, where
each Qi ∈ {∀,∃}, and X contains no quantifiers. The string of quantifiers
and variables, Q1x1Q2x2 · · ·Qnxn, is called the prefix and X is called the
matrix of the prenex form.

For example, ∀x(Px→ Qy ∧ ∃xQx) is not a rectified formula as there
are two occurrences of quantifiers using the same variable x. In the formula
∀x(Px → Qy ∧ ∃yQy), different occurrences of quantifiers use different
variables; but this is also not a rectified formula because y is both a free
and bound variable of the formula. (Note that free variables cannot be
renamed if you want to preserve equivalence.) However, the last formula
is equivalent to ∀x(Px → Qy ∧ ∃zQz), which is rectified. Again, this is
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not in prenex form, because there are occurrences of other symbols to the
left of an occurrence of a quantifier, that is, to the left of ∃z. However,
∀x∃z(Px→ Qy ∧Qz) is in prenex form, where the prefix is ∀x∃z and the
matrix is (Px → Qy ∧ Qz). So, what do you expect? Can you bring any
formula to a prenex form, say by a series of equivalences, by a calculation?

Theorem 2.15 (Prenex Form) For any formula X, there is a formula
Y in prenex form such that X ≡ Y.
Proof Use induction on the number of occurrences of quantifiers in X.
You can do it yourself after so many induction proofs!

Exercise 2.13 Prove Theorem 2.15. Can you talk about the prenex form
of a formula?

It will be more useful to have a constructive procedure for prenex form
conversion. The procedure PrenForm below is one such.

PROCEDURE : PrenForm
Input: A formula X
Output: A prenex form formula equivalent to X

1. Eliminate ↔ using the law A↔ B ≡ (A→ B) ∧ (B → A) on all
subformulas of X.

2. Rename the bound variables to rectify X (After this step, X is
assumed to be a rectified formula).

3. Move ¬ to precede the predicates by using the equivalences:

¬¬A ≡ A, ¬(A ∨B) ≡ ¬A ∧ ¬B, ¬(A ∧B) ≡ ¬A ∨ ¬B
¬∃xA ≡ ∀X¬A, ¬∀xA ≡ ∃x¬A, ¬(A→ B) ≡ A ∧ ¬B

4. Pull out the quantifiers using commutativity of ∧ and ∨, and the
equivalences (x does not occur in B as the formula is rectified):

∀xA→ B ≡ ∃x(A→ B), ∃xA→ B ≡ ∀x(A→ B)

B → ∀xA ≡ ∀x(B → A), B → ∃xA ≡ ∃x(B → A)

∀xA ∧B ≡ ∀x(A ∧B), ∃xA ∧B ≡ ∃x(A ∧B)

∀xA ∨B ≡ ∀x(A ∨B), ∃x(A ∨B) ≡ ∃x(A ∨B)

EXAMPLE 2.14 Construct a prenex form formula equivalent to
A = ∃z(Pxy → ¬∀y(Qy ∧Ryz)) ∧ (Qx→ ∀xSx)

Solution The connective ↔ does not occur in A; so, we rectify A by
renaming the bound variables if needed. Both y and x occur free and also
bound in A. Rename the bound variables: y as v and x as u. The formula
so obtained is

B = ∃z(Pxy → ¬∀v(Qv ∧Rvz)) ∧ (Qx→ ∀uSu)

Now, B is rectified. Start moving ¬ near to the predicates, by using the
equivalences in Step 3 in PrenForm. You obtain an equivalent formula
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C = ∃z(Pxy → ∃v(¬Qv ∨ ¬Rvz)) ∧ (Qx→ ∀uSu)

Next, pull the quantifiers to the left using the equivalences in Step 4. You
get the formula

G = ∀u∃z∃v((Pxy → ¬Qv ∨ ¬Rvz) ∧ (Qu→ Su))

This is in prenex form with prefix ∀u∃z∃v and the matrix as

(Pxy → ¬Qv ∨ ¬Rvz) ∧ (Qu→ Su)

Note that you could also have brought C to the formula

H = ∃z∃v∀u((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))

Are they really equivalent? Argue with the semantics of FL.

Exercise 2.14 Can you see why the procedure PrenForm eliminates ↔
before rectifying the formula? Can you write a procedure for prenex form
conversion without first rectifying the formula?

EXAMPLE 2.15 Find a prenex form for the formula

∃x(Px→ ¬∃y(Py → (Qx→ Qy)) ∧ ∀x(Px↔ ∀yQz)).
Solution

∃x(Px→ ¬∃y(Py → (Qx→ Qy)) ∧ ∀x(Px↔ ∀yQz))

≡ ∃x(Px→ ¬∃y(Py → (Qx→ Qy))

∧ ∀x((Px→ ∀yQz) ∧ (∀yQz → Px)))

≡ ∃x(Px→ ∀y(Py ∧Qx ∧ ¬Qy)

∧ ∀u(∀v(Pu→ Qz) ∧ ∃w(Qz → Pu)))

≡ ∃x(∀y(Px→ (Py ∧Qx ∧ ¬Qy))

∧ ∀u∀v∃w((Pu→ Qz) ∧ (Qz → Pu)))

≡ ∃x∀y∀u∀v∃w((Px→ Py∧Qx∧¬Qy)∧(Pu→ Qz)∧(Qz → Pu))

which is in prenex form with prefix ∃x∀y∀u∀v∃w and the matrix as

((Px→ Py ∧Qx ∧ ¬Qy) ∧ (Pu→ Qz) ∧ (Qz → Pu))

Exercise 2.15 Try other ways of bringing to prenex form the formula in
Example 2.15, where the prefix may be having a different order of occur-
rences of ∃ and ∀, proceeding in a different way after the third line in the
solution. Give semantic arguments as to why your answer is equivalent to
the one above.

Look at the matrix of a prenex form. You can further use the proposi-
tional tautologies to convert it into either a conjunction of disjunctions or a
disjunction of conjunctions, just like the conversion of propositions into cnf
or dnf. For this purpose, you have to redefine (or extend to FL) the notions
of literals and clauses. In FL, you have the atomic formulas as proposi-
tional constants > and ⊥, and also the formulas of the form P (t1, . . . , tn)
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for n-ary predicates P and terms t1, . . . , tn. A literal is again either an
atomic formula or negation of an atomic formula. A conjunctive clause
is a conjunction of literals, and a disjunctive clause is a disjunction of
literals. A cnf is a conjunction of disjunctive clauses, and a dnf is a dis-
junction of conjunctive literals. Using propositional tautologies, you can
convert the matrix of a prenex form to both a cnf and a dnf. Then, by
equivalence substitution, the prenex form will be equivalent to one, with
its matrix in cnf or dnf. A formula in prenex form with its matrix as a cnf
is said to be in pcnf or in prenex conjunctive normal form, and one whose
matrix is in dnf is in pdnf or in prenex disjunctive normal form. Both pcnf
and pdnf are commonly called prenex normal forms or pnf . With your
experience with prenex forms and the propositional normal forms, you can
easily prove the following theorem.
Theorem 2.16 (Prenex Normal Form) Every formula is equivalent to
one in pcnf and one in pdnf.

What we want next is to get rid of the quantifiers. That is, of course,
a familiar notion. When you want to prove a statement of the form ∀xPx,
you usually start as “Let x be arbitrary. . . . We see that Px holds. Hence
∀xPx ”. What we want now is to keep only Px so that such a mechanism
would be in-built. What about ∃xPx? In fact, in mathematical proofs, we
produce Pc for an ambiguous name c, and then conclude that ∃xPx. It is
ambiguous in the sense that we might not be giving a constant to satisfy the
relation corresponding to the predicate P. This c might have been produced
ambiguously by another existential quantification. For example, consider
the consequence ∃x(Px∧Qx) |= ∃xPx. Let I = (D,φ) be an interpretation
of ∃x(Px ∧Qx). Then we argue that there is at least one d ∈ D such that
d ∈ P ′ and also that d ∈ Q′. Now, since d ∈ P ′, we have I |= ∃xPx. Here,
is d a definite object in D? Not necessarily. It is ambiguous since there
might be many such d’s in D. The point is that we can use such ambiguous
constants in the case of existential quantifiers.

Agreed that ∃xPx can be written as Pc for some (ambiguous) constant
c, representing an object in the domain, how to rewrite ∃x∃yQxy? Is it
OK to rewrite it as Qcc? Definitely not since Q′ may not hold for the pair
(c′, c′). But it is safe to get rid of ∃x∃y by representing the formula as Qbc,
where b, c are (possibly) different constants. Similarly, ∃x∀yPxy may be
rewritten as Pcy, noting that the free variable in Pcy is, in fact, universally
quantified. Now, what about ∀y∃xPxy? It is different from ∃x∀yPxy since
it seems that x is dependent upon y in order that P may hold for them, and
the same x may not work for every y (“each person has a father” does not
mean the same as “each person has the same father”). This dependence
may be written by using a new function symbol, say, x = f(y). The
function symbol f should not have occurred at all in the context. Then the
formula ∀y∃xPxy may be rewritten as Pf(x)y. One more problem: we are
planning to omit all the universal quantifiers and interpret all free variables
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later as if universally quantified. Then, if there were already free variables
in the formula, they would also become universally quantified later. For
example, ∀xPxy and ∀x∀yPxy will be rewritten as the same formula Pxy.
Is this viable? What is the sense of ‘viability’ here?

In what sense do the meanings of the formulas ∀y∃xPxy and of Pf(y)y
remain the same? Certainly, they are not equivalent. Can we say that
|= ∀y∃xPxy iff |= ∀yPf(y)y? The latter formula contains a new function
symbol f which may be interpreted in any way we like without affecting
the former formula. And for validity, we must see that for every such
interpretation of f the truth of the formula must hold, which is, so to
speak, expecting too much. If we require this statement to hold for some
f , then it may hold. For example, if P is the equality predicate, you require
to see the truth of the statement: |= ∀y∃x(x ≈ y) iff |= ∀y(f(y) ≈ y). It
is all right that |= ∀y∃x(x ≈ y) since |= (x ≈ x). But, |= ∀y(f(y) ≈ y) is
not OK for all f, since in N, with f as the successor function we see that
∀y(f(y) ≈ y) is falsified. So, we switch over to another weaker statement
for giving sense to the rewriting of existential quantifiers by new function
symbols. We try: ∀y∃xPxy is satisfiable iff ∀yPf(y)y is satisfiable.

This trial looks to be successful; for satisfiability, you only require some
function f so that ∀yPf(y)y will hold. Moreover, in this case, as f is a new
function, you can choose its interpretation in such a way that ∀yPf(y)y
may hold. All the more, in ∀y∃xPxy, you had to choose one such x for
the corresponding y! We take this sense and continue with getting rid of
the quantifiers. Again, we start with a sentence since a formula is valid iff
its universal closure is valid. The quantifier elimination process discussed
above is referred to as skolemization after the logician T. Skolem. Since
sentences can be brought to prenex form, we assume that the given for-
mula is already in prenex form. The procedure QuaEli given below uses
skolemization to eliminate quantifiers from a prenex form formula.

QuaEli finds the first occurrence of ∃ in the prefix of the prenex form
formula X. Then it finds out the dependence of the variable say, x, used by
this ∃ by taking those variables which precede this occurrence of ∃ (and are
universally quantified). It does not take all of them, but only chooses those
which are used along with x in some predicate occurring in the formula.
These are the variables on which x may depend. To see why is it so,
consider the formula ∀x∀y∃zPxz. You can see very well that the choice of z
does not depend upon y, but only on x though both y and x are universally
quantified and precede z. Now, if there are k such variables, say, xi1, . . . , xik

on which x depends, then QuaEli introduces a new function symbol f of
arity k and replaces every occurrence of x in the matrix of the formula by
the term f(xi1, . . . , xik). Such new function symbols are referred to as the
indical functions. The procedure then removes the occurrence ∃x from
the prefix. These steps are repeated for all occurrences of ∃ in X. After
the repeated use of these steps, the formula is reduced to one having no
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occurrence of a ∃. Finally, all the universal quantifiers are simply ignored
to output the quantifier free formula X corresponding to X. Note that all
variables in X are now universally quantified. The quantifier-free form X
of the formula X is referred to as the Skolem form of the formula X.

PROCEDURE : QuaEli
Input: A prenex form formula X = Q1y1 · · ·QnynA

Output: A quantifier free formula X

Let the free variables of X be yn+1, . . . , ym

while 1 ≤ j ≤ n
do
if Qi = ∃ then let Si = {y1, . . . , yi−1, yn+1, . . . , ym}

while 1 ≤ j ≤ i− 1 or n+ 1 ≤ j ≤ m
do
if no atomic subformula of X contains both yi and yj then

Si := Si − {yj}
od
let Si := {yi1, . . . , yik}
let fi be a new function symbol of arity k
Y := Q1y1 · · ·Qi−1yi−1Qi+1yi+1 · · ·Qnyn(A[yi/fi(yi1, . . . , yik)])

od
X := matrix of Y

Exercise 2.16 Write QuaEli as we wrote previous procedures in steps.

EXAMPLE 2.16 Find the Skolem form of the prenex form formula

X = ∀y∃z∃v∀u((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))

Solution First, QuaEli concentrates on how ∃z can be eliminated. The
variables preceding it, which are universally quantified, along with the free
variables, are in the set Sz = {x, y}. However, no atomic subformula of X
has both z and x, neither do both z and y occur in any atomic subformula.
Hence, Sz := Sz − {x};Sz := Sz − {y} gives Sz = ∅. That is, z does not
depend upon any other variable; so, z is to be replaced by a new 0-ary
function symbol, a constant. Writing c for this constant (the procedure
uses the symbol f1), we have the updated formula:

A = ∀y∃v∀u((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvc))

The above procedure is repeated for ∃v. You see that v may depend upon
the variable y preceding it and the free variable x; but no atomic subformula
contains both v and y, nor both v and x. Hence, again, a new constant,
say, b, is introduced to replace v. The updated formula so obtained is

∀y∀u((Qx→ Su) ∧ (Pxy → ¬Qb ∨ ¬Rbc))

Finally, drop all ∀’s to obtain the (quantifier free) Skolem form formula
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X = (Qx→ Su) ∧ (Pxy → ¬Qb ∨ ¬Rbc)

What we now expect is that X is satisfiable iff X is satisfiable; show it.

EXAMPLE 2.17 Use QuaEli to get a quantifier free formula for
A = ∃x∀y∀u∀v∃w((Px→ Py∧Qx∧¬Qy)∧ (Pu→ Qz)∧ (Qz → Pu)).

Solution For x,w, we choose the constants a, b respectively. Then,

A = (Pa→ Py ∧Qa ∧ ¬Qy) ∧ (Pu→ Qz) ∧ (Qz → Pu)

Note that b does not occur inA. IsA satisfiable iff A is satisfiable?

Exercise 2.17 What does QuaEli give as output if inputs are
(a) ∃z∃v∀u∀x∀y((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))
(b) ∀x∀y∀u∃v∃z((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))?

The quantifier free formulaA in Example 2.16 can be converted to one
of the normal forms by using the PL-mechanism. For example, a cnf forA
in Example 2.16 is

A1 = (Qx→ Su) ∧ (Pxy → ¬Qb ∨ ¬Rbc)
≡ (¬Qx ∨ Su) ∧ (¬Pxy ∨ ¬Qb ∨ ¬Rbc)

And the dnf ofA in Example 2.17 is

A2 = (Pa→ Py ∧Qa ∧ ¬Qy) ∧ (Pu→ Qz) ∧ (Qz → Pu)

≡ (¬Pa ∧ ¬Pu ∧ ¬Qz) ∨ (¬Pa ∧Qz ∧ Pu)

∨ (Py ∧Qa ∧ ¬Qy ∧ ¬Pu ∧ ¬Qz) ∨ (Py ∧Qa ∧ ¬Qy ∧Qz ∧ Pu)

Such forms are called Skolem normal forms or Skolem standard forms.

Definition 2.6 A formula is in scnf or Skolem conjunctive normal form if
it is quantifier free and is in cnf. A formula is in sdnf or Skolem disjunctive
normal form if it is quantifier free and is in dnf.

As expected, we have the following result.

Theorem 2.17 (Standard Form) For any formula X, there exist an
scnf formula X and an sdnf formula X̂ such that X is satisfiable iff X is
satisfiable iff X̂ is satisfiable.
Proof Let A be any rectified formula in prenex form and A′ be obtained
from A by skolemization. Let I = (D,φ) be any interpretation and ` be
any valuation under I. We show that

(a) if I` |= A′ then I` |= A , and
(b) if I` |= A, then φ can be extended to include the indical functions
in its domain in such a way that the new interpretation J with a new
valuation m will have Im |= A′. (Why is it enough to show these?)

Both (a) and (b) are proved by induction on n(A), the number of oc-
currences of ∃ in A. In the basis case, n(A) = 0 gives A = A′; thus, both (a)
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and (b) hold. Assume that (induction hypothesis) both (a) and (b) hold
for any formula A whenever n(A) < n.

Let A be a formula, with n(A) = n and y1, . . . , yj as the free variables
of A. As A is in prenex form, it looks like A = ∀x1 . . .∀xk∃xB, where n(B)
= n−1. (Look at the first occurrence of ∃ in A; the formula to the right of it
is B.) Then, A′ = ∀x1 . . .∀xk(B[x/t])′, where t = f(x1, . . . , xk, y1, . . . , yj)
for an indical function f.

Assume, without loss of generality (Why?), that each of these variables
x1, . . . , xk occurs along with x in some predicate. We write (B[x/t])′ for
the formula obtained from B[x/t] by skolemization. Let I = (D,φ) be an
interpretation and ` be a valuation under I.

For (a), let I` |= A′. Then for all d1, . . . , dk ∈ D, Im |= (B[x/t])′, where
the valuation m = `[x1 � d1] · · · [xk � dk]. Write m(t) = d. B′ has
been obtained from B by skolemization. Since (B[x/t])′ = B′[x/t], for all
d1, . . . , dk ∈ D, Im[x�d] |= B′. By induction hypothesis, for all d1, . . . , dk

∈ D, Im[x�d] |= B. Then, I` |= ∀x1 . . .∀xk∃xkB, i.e., I` |= A.

For (b), suppose I` |= ∀x1 . . .∀xk∃xB. Then, for every d1, . . . , dk ∈ D,
Im[x�d] |= B. Since f is a new (indical) function symbol, I does not
interpret it. Define φ(f) to be the function from Dk+j to D so that
φ(f)(m(x1, . . . ,m(xk),m(y1), . . . ,m(yj)) = d i.e., m(t) = d. Then, for
every d1, . . . , dk ∈ D, Im[x�d] |= B[x/t]. As m(x) = d = m(t), we have
Im |= B[x/t]. By induction hypothesis, I can be extended to some J such
that Jm |= (B[x/t])′ whenever Im |= B[x/t]. Thus, for every d1, . . . , dk ∈ D,
Jm |= (B[x/t])′. That is, J |= ∀x1 . . .∀xk(B[x/t])′, or that, J |= A′.

Note that we have assumed A to be in prenex form and also it was
rectified. Of course, our procedure PrenForm always rectifies a formula. If
it is not rectified, then the above proof will not work. Why? See where
exactly it goes wrong.

Next, you must also have observed that skolemization treats both free
and universally quantified variables the same way. This says that we always
keep in mind the metastatement, “ |= X iff |= ∀∗X ”. Thus, you can simply
start from a sentence by taking the universal closure of a given formula.
Now, if you start with a sentence, skolemization can be done in a simpler
way. Modify the procedure QuaEli to do it.

You have seen that skolemization helps in transforming a formula into
a quantifier-free form keeping satisfiability invariant. Can you get a similar
formula which is validity invariant? The question is, can you transform
a sentence into a quantifier-free form so that the sentence is valid iff its
quantifier free form is valid? The hint is that satisfiability and validity are
dual concepts just as ∧,∨ and as ∀,∃ are. Let us see an example. If ∀x∃yX
is a sentence, it will be valid iff ¬∀x∃yX is unsatisfiable iff ∃x∀y¬X is
unsatisfiable iff X ′ is unsatisfiable, where X ′ is the Skolem standard form
of ∃x∀y¬X. Now, while getting the Skolem standard form of ∃x∀y¬X, you



96 First Order Logic

remove the first ∃x. Look at the original sentence. This corresponds to
dropping the first ∀x from the original sentence, by introducing an indical
function. And finally, all ∃’s would be dropped without any replacements.

This suggests the following procedure. Let A be a given rectified formula
in prenex form. Take its universal closure, call it B. Now remove all ∀ ’s
from B by using QuaEli−∀, where this is a modified form of QuaEli. The
modification treats ∃ as ∀ and ∀ as ∃ in QuaEli. Then, you get a quantifier
free form of A, called the functional form of A. The corresponding cnf
and dnf forms are named as fcnf or the functional cnf, and fdnf or the
functional dnf, respectively.

EXAMPLE 2.18 Find an fcnf for the formula

A = ∃z∃v∀u((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))

Solution The free variables in A are x and y. First, we take the universal
closure of the formula to get

∀x∀y∃z∃v∀u((Qx→ Su) ∧ (Pxy → ¬Qv ∨ ¬Rvz))
It is a rectified formula in prenex form. We want to eliminate the univer-
sal quantifiers by introducing new indical functions. Since no ∃ precedes
∀x∀y, x, y are replaced by constants, say, a, b, respectively. Note that this
amounts to replacing all the free variables first by some new (different)
constants. We thus get the formula

∃z∃v∀u((Qa→ Su) ∧ (Pab→ ¬Qv ∨ ¬Rvz))
∃z and ∃v precede ∀u, but there is no atomic subformula containing both
z, u or both v, u. Hence, we use a new constant, say, c, to eliminate ∀u.
This gives us the formula

∃z∃v((Qa→ Sc) ∧ (Pab→ ¬Qv ∨ ¬Rvz))
Then we simply drop the existential quantifiers to get the functional form

(Qa→ Sc) ∧ (Pab→ ¬Qv ∨ ¬Rvz)
The fcnf is obtained by replacing → with ¬ and ∨. We have the fcnf as

A′ = (¬Qa ∨ Sc) ∧ (Pab→ ¬Qv ∨ ¬Rvz))
The theorem 2.18 following the example below claims that |= A iff

|= A′. Can you show this for the formula A in Example 2.18 directly from
the semantics?

EXAMPLE 2.19 Construct an fdnf for the formula

∃x∀y∀u∀v∃w∀z((Rux→ Py ∧Qx ∧ ¬Qy) ∧ (Pu→ Qz) ∧ (Qz → Pu))

Solution This is already rectified and in prenex form having no free
variables. We start removing universal quantifiers. The first ∀ from the
left is ∀y, which occurs after ∃x. But both x, y do not occur in any predicate.
Hence y is replaced by a constant, say, a. Next, ∀u occurs after ∃x, and
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both u, x occur in Rux. Thus, a new indical function, say, f of arity 1, is
introduced and f(x) replaces u. Similarly, v is replaced by a constant, say,
b, and z is replaced by a constant c. Thus, we have the functional form

(Rf(x)x→ Pa ∧Qx ∧ ¬Qa) ∧ (Pf(x)→ Qc) ∧ (Qc→ Pf(x))

Now, you can complete the steps to get an fdnf.

Analogous to QuaEli, you can write the procedure QuaEli−∀ for elim-
inating the quantifier ∀ and prove the following theorem.

Theorem 2.18 (Functional Form) For any formula X, there exist an
fcnf formula X̃ and an sdnf formula X ′ such that X is valid iff X̃ is valid
iff X ′ is valid.

Once you get a prenex form of a formula, you can skolemize and then
obtain an scnf and also an sdnf. In the scnf, the variables are all universally
quantified. Moreover, all the universal quantifiers must be in the beginning
of the formula. But then, ∀ distributes over ∧, and thus, you may visualize
an scnf clause by clause, and think that in each of the clauses, the variables
are universally quantified. In an sdnf, however, this will not happen, since
∀ does not distribute over ∨. That is, the conjunctive clauses in an sdnf do
share their variables, and you cannot think of free variables in the individual
clauses as universally quantified; they are universally quantified for the
whole sdnf. This is why scnf goes well with skolemization on the ∃’s and
fdnf goes well with the skolemization applied on ∀’s.

You must remember that in the Skolem normal form, all the free vari-
ables are universally quantified, whereas in the functional form, all the free
variables are existentially quantified. We will refer to both the Skolem form
and the functional form as the sentential forms of a formula. Theorems
2.17 and 2.18 are summarized in the following statement.

Theorem 2.19 (Sentential Form) Let X be any formula. Then there
exist sentences XS = ∀ y1 . . .∀ ymY and XF = ∃ z1 . . .∃ znZ, for some
quantifier-free formulas Y and Z such that

(a) X is satisfiable iff XS is satisfiable.
(b) X is valid iff XF is valid.

The validity of XF can now be tested by searching for closed terms
t1, . . . , tn such that Z = Z[z1/t1] · · · [zn/tn] holds. Similarly, by duality,
satisfiability of XS can be tested. But where to search for these terms
which may make Z hold?

2.8 Herbrand Interpretation

We reiterate the last question. You have a quantifier free formula corre-
sponding to any given formula for determining satisfiability. Since satis-
fiability means that you have a model for the formula, and a model may
start with a nonempty set, the problem is: how to choose such a set from
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among seemingly infinite possibilities? Is there any way to construct a sort
of canonical model taking help from the formula itself?

For simplicity, suppose the quantifier free formula is Pab. It is quite
natural to start with a set having two elements, say, {a′, b′} and take the
relation P ′ = {(a′, b′)}. Let us simplify a bit. Instead of using primes on
the syntactic entities, what happens if we take our domain as {a, b} and
the relation as P itself, asserting that P holds for the ordered pair (a, b)?
That is, why don’t we look at the syntactic entities as the concrete ones?
It would obviously simplify notation.

It looks that it is viable, but we must remember that we are, in fact,
dropping the primes, as a convention. Well, what happens if the formula
has a free variable (which is now universally quantified)? For example,
suppose that the formula is Pxa. Then we can start with a singleton, say,
{a} and assert that Paa holds. What happens for Pf(a)a? The same way
again: start with a singleton {a}. How to tackle the function symbol, now,
a function f? It must be a function from {a} to {a}; so define f(a) = a.
Then, of course, you have a model of Pf(a)a.

However, syntactically, f(a) 6= a and, semantically, f may not represent
an identity function. As a syntactic entity, f is just a function symbol of ar-
ity 1, and it potentially generates a countable setD = {a, f(a), f(f(a)), . . .}.
On this domain D, we may regard f to represent a function

f ′ : {a, f(a), f(f(a)), . . .} → {a, f(a), f(f(a)), . . .}

defined by f ′(a) = f(a), f ′(f(a)) = f(f(a)), . . .. Following this, we rather
write f ′ as f itself. Fine. What about the equality predicate? We cannot,
in fact, regard f(a) as a if we are given with a formula a ≈ f(a). For a
predicate P, if we have the formula Paf(a) to be satisfied, we agree to
assert Paf(a), but if P is the predicate ≈, then we must assert a ≈ f(a),
which would then correspond to asserting a = f(a). However, as syntactic
entities, a and f(a) are distinct; so we cannot possibly assert a = f(a)!

Let us see why this problem does not show up when we do semantics.
Suppose that we start with a domain D. We have φ(a) = d for some d ∈ D.
Then φ(f(a)) can also be the same element d. This creates no ambiguity.
But in the syntactic domain {a, f(a), f(f(a)), . . .}, f(a) is never equal to a.
Then, how to bring this notion of equality (or identity) of a with f(a) to
our syntactic domain? Since this is a problem of identification, naturally,
equivalence relations play a role. If we can define some equivalence rela-
tion on this syntactic domain, where a and f(a) may be equivalent, then
the equivalence classes of that relation would form the domain instead of
the set {a, f(a), f(f(a)), . . .}. Essentially, our domain will consist of rep-
resentatives of each of the equivalence classes. Note that the equivalence
relation need not be (must not be, in general) the equality relation ‘=’.
However, we have to capture as many properties of ‘=’ as possible by this
equivalence relation.



Herbrand Interpretation 99

The properties of ‘=’ that are useful to us are that it is an equiva-
lence relation, and that we can substitute equals for equals keeping mean-
ings intact. The substitutivity property tells (in FL) that if s = t, then
f(. . . , s, . . .) = f(. . . , t, . . .) for any function (symbol) f ; besides, for predi-
cates P, we must have “if P (. . . , s, . . .) holds, then P (. . . , t, . . .) holds”. We
can now have a relation, say, E defined on the set {a, f(a), f(f(a)), . . .}
satisfying these properties, and then interpret the predicate ≈ as this E. A
formal description incorporating these ideas follows.

Let X be a formula in Skolem form; so, all free variables are assumed
to be universally quantified. Let D0 be the set of all constants occurring
in X. If D0 = ∅, then D1 = {η}; else, D1 = D0. Then the domain, DX for
the formula X, called the Herbrand universe, named after the logician
J. Herbrand, is defined recursively:

1. DX ⊇ D1.

2. If f is an n-ary function symbol occurring in X, and
t1, t2, . . . , tn ∈ DX , then f(t1, t2, . . . , tn) ∈ DX .

3. Each element of DX satisfies 1 or 2 or both.

We will write DX as D, whenever the formula X is clear in a context.
Given a formula X, you are supposed to generate the set DX step by step
starting from D0 as the set of all constants occurring in X as shown below:

D0 = {c : c is a constant occurring in X}
D1 = D0 if D0 6= ∅, else, D1 = {η}
D2 = D1∪{f(t1, . . . , tn) : t1, . . . , tn ∈ D1 and f is an n-ary function

symbol occurring in X}
In general,

Di+1 = Di∪{f(t1, . . . , tn) : t1, . . . , tn ∈ Di and f is an n-ary function
symbol occurring in X}

Finally,

D = DX = D0 ∪D1 ∪D2 ∪ · · · = ∪i∈NDi

For example, let X = ¬Pxf(x) ∧ Pya, where a is a constant. Then

D0 = {a}
D1 = D0 = {a}
D2 = {a, f(a)}, . . .

D = DX = {a, f(a), f(f(a)), . . .}

The elements of the Herbrand universe are also called the ground
terms. Note that ground terms are simply the closed terms obtained from
the function symbols occurring in a formula or from the special symbol
η if no constant occurs in it. We want to use the Herbrand universe as
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a domain of an interpretation. For this purpose, we require a function φ
which would be defined for each function symbol and each predicate occur-
ring in X. Moreover, φ must assign function symbols to functions over D
and predicates to relations over D. This is defined as follows:

(a) If f is an n-ary function symbol occurring in X, then φ(f) = f, the
latter f is taken as a function from Dn to D defined by: the functional
value of the n-tuple of terms t1, t2, . . . , tn under f is f(t1, t2 . . . , tn) for
objects t1, t2, . . . , tn ∈ D.
(b) If P 6=≈ is an m-ary predicate, then φ(P ) = P, where the latter P
is an m-ary relation defined on D. (It is any m-ary relation; we are not
fixing it.)

(c) φ(≈) = E, where E is a binary relation defined on D satisfying:

(i) E is an equivalence relation.

(ii) If (s, t) ∈ E, then for every t1, . . . , ti−1, ti+1, . . . tn ∈ D and for
every n-ary function (symbol) f occurring in X,

(f(t1, . . . , ti−1, s, ti+1, . . . tn), f(t1, . . . , ti−1, t, ti+1, . . . tn)) ∈ E.
(iii) If (s, t) ∈ E, then for every t1, . . . , ti−1, ti+1, . . . , tn ∈ D and for
every n-ary predicate P occurring in X, P (t1, . . . , ti−1, s, ti+1, . . . tn)
holds iff P (t1, . . . , ti−1, t, ti+1, . . . tn) holds.

The Herbrand interpretation of X is the pair HI = (D,φ). By
assigning truth values 0 or 1 to the atomic formulas P (t1, . . . , tn), it can be
determined whether a Herbrand interpretation is a model of the formula
or not.

For example, letX = (Qyx→ Px)∧(Py → Rc). The Herbrand universe
is the singleton D = {c}. The Herbrand interpretation asks for satisfying
the formula (Qcc → Pc) ∧ (Pc → Rc), obtained from X by substituting
the variables x, y by c, the only element in D. By assigning truth values to
the atomic formulas Qcc, Pc,Rc we may see whether the Herbrand inter-
pretation is a model of X or not.

Define an assignment i by: i(Qcc) = 0, i(Pc) = 1 = i(R(c)). Then,
we see that i((Qcc → Pc) ∧ (Pc → Rc)) = 1. Hence we have a Herbrand
model of X. On the other hand, with j(Qcc) = 1 = j(Pc), j(Rc) = 0, you
see that j((Qcc → Pc) ∧ (Pc → Rc)) = 0. That is, the same Herbrand
interpretation with j is not a model of X. The Herbrand model with
i as the assignment of truth values can also be written as (see the third
way of propositional semantics): {¬Qcc, Pc,Rc} and the Herbrand inter-
pretation with j as the assignment can be written as {Qcc, Pc,¬Rc}. In
such a formalism of writing out the Herbrand interpretations, the atomic
formulas Qcc, Pc,Rc are called ground atomic formulas, and the liter-
als Qcc,¬Qcc, Pc,¬Pcc,Rc,¬Rcc are termed as ground literals. A Her-
brand interpretation is then a set of ground literals such that both Y and
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¬Y are not its members. Corresponding to each ground atomic formula Z
of X, exactly one of Z or ¬Z is an element of a Herbrand interpretation.

Thus, our definition of a Herbrand interpretation should also have in-
cluded such an assignment i or j. But we have not done so. Why? The
reason is, whatever be the assignment of truth values to the atomic for-
mulas here, the formula X is satisfied in the Herbrand universe provided
the corresponding formula (Qcc→ Pc) ∧ (Pc→ Rc) holds. The latter can
be checked propositionally. Our approach is not to finish the satisfiability
check at a time, but to transfer the responsibility to propositional satisfia-
bility, and then go on checking for satisfiability propositionally. So, instead
of a Herbrand model, we define a Herbrand expansion, which comes from
instantiating the given formula (in Skolem form) by taking the elements of
the Herbrand universe. The Herbrand expansion HE is the set

HE = {X[x1/d1] · · · [xm/dm] : x1, . . . , xm are all the free variables

of X and d1, . . . , dm ∈ D}
The formulas in the Herbrand expansion of a formula X are also called
the ground instances of X. Since φ is syntactic, we would like to go
for computing the Herbrand expansion directly. Note that the Herbrand
expansion for the formula X = (Qyx → Px) ∧ (Py → Rc) is simply the
singleton {(Qcc→ Pc) ∧ (Pc→ Rc)}. In general, existence of a Herbrand
model would simply be equivalent to the satisfiability of the Herbrand
expansion.

EXAMPLE 2.20 Let X = ¬Pxf(x) ∧ Pya, where a is a constant.
Then the Herbrand universe is D = {a, f(a), f(f(a)), . . .}. The Herbrand
expansion is

HE = {¬Paf(a) ∧ Paa,¬Paf(a) ∧ Pf(a)a,¬Paf(a) ∧ Pf(f(a))a, . . . ,

¬Pf(a)f(f(a)) ∧ Paa,¬Pf(f(a))f(f(f(a))) ∧ ¬Pf(a)a, . . .}

The formulas in HE , the ground instances of X, are obtained by the sub-
stitutions on X by choosing all possible ground terms of X.

Now, HI |= X iff HE is propositionally satisfiable, which holds since
we can have a truth assignment which would be a (PL-) model of HE .
For example, i defined by i(Pst) = 0 if s, t ∈ D and t = f(s); otherwise,
i(Pst) = 1 is such a model. The Herbrand model of X written as a set of
literals is {Pst : s, t ∈ D and t 6= f(s)} ∪ {¬Psf(s) : s ∈ D}.

EXAMPLE 2.21 Let X = Pxf(x)∧¬Pay. Then, D = {a, f(a), . . .} as
in Example 2.20, but the Herbrand expansion is

HE = {Paf(a) ∧ ¬Paa, Paf(a) ∧ ¬Paf(a), . . . ,

Pf(a)f(f(a)) ∧ ¬Paa, Pf(a)f(f(a)) ∧ ¬Paf(a), . . .}

This is not propositionally satisfiable since the clause Paf(a) ∧ ¬Paf(a),
a member here, is unsatisfiable.
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EXAMPLE 2.22 Let X = Pxy ∧ (Pxy → Qxy) ∧ ¬Qxz ∧ (y ≈ z).
Then, D = {η} and HE = {Pηη ∧ (Pηη → Qηη) ∧ ¬Qηη ∧ Eηη}. HE is
propositionally unsatisfiable. Is X also unsatisfiable?

EXAMPLE 2.23 Let X = Pxf(x) ∧ ¬Pxx ∧ (x ≈ f(x)). As X has no
constants, D = {η, f(η), f(f(η)), . . . }. The Herbrand expansion is

HE = {Pηf(η) ∧ ¬Pηη ∧ Eηf(η),

Pf(η)f(f(η)) ∧ ¬Pf(η)f(η) ∧ Ef(η)f(f(η)), . . .}

Since Eηf(η), Pηf(η) holds iff Pf(η)f(η) holds. If i(Pf(η)f(η)) = 1, then
i(Pf(η)f(η)) = 1 and i(¬Pf(η)f(η)) = 0. This forces i 6|= HE . Therefore,
HE is unsatisfiable.

In Examples 2.20 and 2.21, satisfiability of HE is propositional, i.e.,
its satisfiability is determined by taking each atomic formula in HE as a
sentence of PL and then assigning them a truth value 0 or 1. It is still
applicable in Example 2.22, though the equality predicate ≈ is involved.
However, in Example 2.23, equality predicate has some nontrivial effect.
Satisfiability of HE is determined in this case by using a property of the
relation E. So, how do we assert that satisfiability is still propositional
here? This should be remedied, as we already have remarked, by taking
the equivalence classes imposed on the domain, and in turn, on HE .

Theorem 2.20 (Syntactic Interpretation) Let X be a formula in Skolem
standard form. Let HI and HE be the Herbrand interpretation and the Her-
brand expansions of X, respectively. Then X is satisfiable iff HI |= X iff
HE is propositionally satisfiable.

Proof It is clear from the construction of HI and HE that HI |= X iff
HE is propositionally satisfiable. Now, suppose that HI |= X. Then X has
a model (this model). That is, X is satisfiable. Conversely, suppose that
X is satisfiable. Let I = (A,ψ) be a model of X. Let HI = (D,φ) be the
Herbrand interpretation of X. We want to show that HI |= X.

Define a function µ : D → A by

(a) If η ∈ D, then µ(η) is some fixed element of A.
(b) For each constant c occurring in X, µ(c) = ψ(c).
(c) For each n-ary function symbol f occurring in X, and for any

t1, . . . , tn ∈ D, µ(f(t1, . . . , tn)) = ψ(f)(µ(t1), . . . , µ(tn)).
(d) For any m-ary predicate P occurring in X, and for any

t1, . . . , tm∈D, P (t1, . . . , tm) holds iff (µ(t1), . . . , µ(tm))∈ψ(P ).

Note that (A,ψ) is an interpretation of X, thus, A 6= ∅, ψ(c) ∈ A, and
ψ(f) : An → A. Hence the function µ is well defined. This function µ, called
an embedding , helps us relate the model I with the Herbrand interpretation
HI . We show that HI |= X by induction on the number of free variables of
X.
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In the basis step, if X has no free variables, then since I |= X, due to
the construction of µ, HI |= X.

Lay out the induction hypothesis that whenever the number of free
variables of X are less than k, we have HI |= X. Let X be a formula (in
Skolem standard form) having, k number of free variables. Since I |= X,
for each t ∈ D (µ(t) ∈ A), we have I |= X[x/µ(t)]. This also implies that
HI |= X[x/t] (Why?) for each t ∈ D. Hence HI |= ∀xX, i.e., HI |= X.

Since Herbrand expansions are countable, we have the following remark-
able result. If X is a satisfiable formula, then its Herbrand expansion is
countable. Moreover, the Herbrand interpretation with the Herbrand do-
main is a model of the formula. Hence, it has a countable model, namely,
the Herbrand interpretation. This observation is easily generalized to a
countable set of formulas since the Herbrand expansion of such a set is
also countable. However, as a caution, you must choose different indical
functions for (even same variables in) different formulas in this countable
set, while skolemization is applied. Can it be done? Moreover, why is it
necessary to choose different indical functions?

Theorem 2.21 (Skolem-Löwenheim) Any countable set of formulas has
a countable model.

Having the dual considerations, you can have, similarly, a Herbrand
universe for the functional form of a formula. You can then show that a
formula in functional form is valid iff it has a Herbrand model. Regarding
the Herbrand (validity) expansion, you could say that some finite disjunc-
tion of all the formulas in the expansion is valid.

Note that the Herbrand expansion is simply a set of formulas which
are obtained from X by replacing the free variables with terms or ele-
ments of the Herbrand universe. If x1, . . . , xn are all the free variables of
X, we may write X as X(x1, . . . , xn). Further, writing x̄ for the n-tuple
(x1, . . . , xn) and t̄ for (t1, . . . , tn), we will abbreviate the series of substitu-
tions [x1/t1][x2/t2] · · · [xn/tn] as [x̄/t̄]. Then, the Herbrand expansion can
be written schematically as

HE = {X[x̄/t̄] : t̄ ∈ Dn}
If X is in functional form, then after constructing its corresponding D,
you find that X is valid iff the set HE = {X[x̄/t̄] : t̄ ∈ Dn} is valid. The
discussion is summarized as in the following theorem.

Theorem 2.22 (Herbrand) For any formula X, there are formulas Y
and Z having free variables ȳ and z̄, and (possibly infinite) sets of terms S
and T such that

(a) X is satisfiable iff {Y [ȳ/s̄] : s̄ ∈ S} is satisfiable.
(b) X is valid iff {Z[z̄/t̄] : t̄ ∈ T} is valid.

Suppose that you have been given a valid formula. To show that it is
indeed valid, you can always have a calculation which uses the quantifier
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laws first, and then only propositional laws to get >. That is, no quantifier
law is required to be used before any propositional laws. This is how you
can interpret the Herbrand’s theorem. Can you see it that way? Another
question of importance: can the sets S and T be chosen to be finite sets?

As in PL, a first order theory starts with a first order language and
then goes for what can be deduced from assuming certain formulas. For
example, the various theories found in mathematics are first order theories,
and some, which do not look like first order theories, can be formulated as
first order theories. In the theory of groups, we have four axioms which are
just some formulas assumed to hold in the theory. Then whatever theorem
you prove in the theory is simply a conclusion of a consequence whose
premises are these four formulas. Similarly, the theory of real numbers R
can be thought of as a first order theory; it is simply a complete ordered
archimedean field. It is of foundational importance to know how set theory
can be presented as a first order theory. Moreover, the Skolem-Löwenheim
theorem would imply that every first order theory, which is known to have
a model (which contains no contradictions), can have a countable model,
namely, its Herbrand model. What about Cantor’s theorem that the set
R is uncountable? This result says that whatever set that satisfies all the
axioms of R is uncountable. Now in light of Skolem-Löwenheim, there is
a set (the Herbrand model) which satisfies all the axioms of R, and yet,
is countable. This phenomenon is called the Skolem paradox . A possible
explanation of this is that the mapping that makes the model countable is
not (cannot be constructed) inside the model, which is essentially Cantor’s
theorem.

SUMMARY

In this chapter, you have learnt that it is not enough to consider proposi-
tions as units. For expressiveness, we require a logic which would provide us
with means to deal with the internal structure of propositions. First order
logic is such a logic which takes its simple units as the constants, variables,
function symbols, predicates, and quantifiers. The function symbols along
with constants and variables express the definite descriptions by way of
terms, and the predicates express the relations between terms. The two
quantifiers (for all, there exists) quantify over the variables so that propo-
sitions or sentences could be constructed. A first order language is defined
by taking some of the nonlogical symbols from among the constants, func-
tion symbols, and predicates. Such a language is defined recursively with
the help of punctuation marks so that unique parsing would hold.

Meanings to the syntactic entities are supplied by taking a nonempty
set, called the domain (or universe of discourse) and then by assigning con-
stants to objects in the domain, function symbols to concrete functions on
the domain, and predicates to relations over the domain. The variables
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are assigned to elements in the domain by valuations or assignment func-
tions. The quantifier ‘for all’ and ‘there exists’ are given meaning through
these valuations. Finally, the semantics enables you to categorize formulas
(and sentences) as valid, invalid, satisfiable or unsatisfiable by looking at
an interpretation which may or may not be a model of the formula. You
have seen three types of semantics, which differ in giving meanings to the
quantifiers; but their actions turned out to be the same as far as models are
concerned. You have also seen how to tackle consequences in a similar way.
The semantics further enforces certain laws analogous to PL and you have
learnt how to use these laws in calculations. The approach of calculations
help categorize further formulas from known formulas. They also provide
a means in showing the validity of consequences. Further, the metaresults
such as Monotonicity, reductio ad absurdum, and Deduction hold in this
logic. The deduction theorem requires care since the two metasentences,
‘X |= Y ’ and ‘if |= X, then |= Y ’ do not convey the same meaning. Ac-
cordingly, we have introduced a new symbol ⇒ for using in calculations,
where X ⇒ Y stands for the weaker metasentence: if |= X, then |= Y.

You have also learnt how to define normal forms using skolemization.
In this connection, you have seen two types of conversion of formulas; one
which preserves satisfiability via universal closure, and the other that pre-
serves validity via existential closure. You have learnt how to check sat-
isfiability of formulas by interpreting it syntactically. This technique of
Herbrand interpretations enables you to convert first order satisfiability to
propositional satisfiability via Herbrand expansions. This has brought forth
a remarkable result by T. Skolem and L. Löwenheim, which says that every
satisfiable first order theory has a countable model. This result is some-
times referred to as the Skolem-Löwenheim downward theorem. For the
Skolem-Löwenheim upward theorem, see Problems 49 and 50 after Sum-
mary. To pursue the topics further, the following bibliographic remarks
will be helpful.

After Aristotle formalized a part of logic in the form of syllogisms, there
was a gap of almost two centuries for another leap in this direction. It was
G. Frege who, in 1879, took the leap [26] and later others followed the
work to give us the first order logic as we know it today. For an account of
such contributions towards the development of the subject, see for example,
[39]. For discussions on theoretical connection of FL to topics such as type
theory, logic programming, algebraic specifications and term rewriting, see
the works [28, 75, 79]. The calculational approach to proofs has been
elaborated in [35]. For automatic theorem proving approaches refer [6, 22,
48]. For problem solving using FL, [43] would provide a good reading.
If you are interested in metamathematical aspects of FL which asks and
tries to answer questions such as representation of theories as first order
theories, completeness of systems, decidability, proof of (in)consistency, and
questions about arithmetic, then refer the works [36, 66, 67]. A proof of
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undecidability of FL through reduction of the post correspondence problem
is exposed in [41]. The same is proved in [47] through reduction of the tiling
problem, and in [67] through a reduction of halting problem of Turing
machines. You must also be able to find resources from the net for your
specific interests related to teaching and research. For example, a recent
work is [4]. Applications of FL are found everywhere in mathematics. We
will also have an application of it to program verification in Chapter 5.
Before doing all these, attempt the following problems.

PROBLEMS

1. Categorize each of the following as a term, a formula, or neither. Draw
the corresponding parse trees. Find the scopes of each occurrence of a quan-
tifier in each of the formulas. Also, mark the free and bound occurrences
of variables.

(a) f4
5 (x1, x3, f

2
6 (x1, x3), f2

4 (f2
5 (x3, x6), x4))

(b) (¬∀x((P 1
4 (x5)→ ¬P 1(c4)) ∧ P 2

3 (x3, f
1
1 (c3))))

(c) f4
1 (x2, x4, f

2
1 (x4, x5), f2

5 (f2
1 (x4, x6), c3))

(d) f((x, y), g(x, y, z), h(f(x, y, z), w))

(e) ∃x1∀x2(P 2
2 (f1

3 (x2, x6, f
2
5 (f1

3 ((x4, x3), c4)), x3)→ P 1
2 (x7)))

(f) ∀x1∀x2(P 2
1 (x1, f

1
2 (x1))→ P 3

2 (f1
6 (x1), x2, f

3
1 (x1, x2, c6)))

(g) ∀x1∀x2(P 3
1 (x1, x2, x3)↔ ∃x2P

3
1 (x1, x2, x3))

(h) ∀x3((∀x2P
3
2 (x1, x2, x3) ∧ P 2

4 (x3, c1))↔ ∃x4P
2
5 (x5, x5))

(i) ∃x1∀x2(P 2
1 (f3

1 (x1, x2, f
2
1 (x3, c1)), x2)→ P 1

2 (f2
1 (x2, x4)))

2. Prove the unique parsing theorem by first proving a prefix theorem that
each substring of a formula is also a formula, then it must be equal to the
formula.

3. Prove that each occurrence of a quantifier has a unique scope and hence
the notion of scope is well defined.

4. Present the syntax of FL in a prefix (Polish) notation and then prove
unique parsing for that language. Define also the notion of scope in that
language.

5. For each of the terms x1, x2, f
1
1 (x1), f2

3 (x2, x3), decide whether or not
it is free for x2 in each of the following formulas:

(a) (P 4
4 (x3, x2, x1)↔ P 3

1 (x1, c3, c2))

(b) ∀x1(P 4
4 (x3, x2, x1)↔ P 3

1 (x1, c3, c2))

(c) ∀x1((P 4
4 (x3, x2, x1)↔ P 3

1 (x1, c3, c2))→ ∃x3P
4
3 (x1, x2, x3, x4))

(d) ∃x3((P 4
4 (x3, x2, x1)↔ P 3

1 (x1, c3, c2)) ∧ P 1
5 (x3))
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6. Show that if x is not a free variable of a formula X, and t is any term,
then X[x/t] = X.

7. Let X be a formula, x, y are distinct variables and a, b are constants.
Show that X[x/a][y/b] = X[y/b][x/a]. What happens if x, y are not dis-
tinct?

8. A substitution [x/t] is admissible in the context of a formula X if t is
free for x in X. Admissible substitutions take terms into terms and formulas
into formulas. How do non-admissible substitutions behave?

9. Let X be a formula, x, y be distinct variables, c be a constant, and
t be a term free for x in X. Show that if y does not occur in t, then
X[x/t][y/c] = X[y/c][x/t]. What happens if y occurs in t?

10. Let X be a formula, x be a free variable of X, y be a variable different
from x, z be a variable not occurring in X, and t be a term free for x in
X. Then show that the term t[x/y] is free for x in X[x/y]. further, show
that X[x/t][y/z] = X[y/z][x/t[y/z]].

11. Symbolize each of the following into FL:

(a) All men are women.
(b) No man is a woman.
(c) Some men are women.
(d) Some men are not women.
(e) Some man is not a son of any woman.
(f) All men are sons of some woman.
(g) Any man is not a husband of any woman.
(h) Some man is not a husband of any woman.
(i) Some man is not a husband of some woman.
(j) If anyone is Susy’s son, then someone is a daughter of Susy’s father’s
nephew.
(k) Anybody’s brother’s sister is that man’s sister.
(l) Sam and Susy have the same maternal grand-father.
(m) No student attends every lecture and no lecture is attended by all
students.
(n) If there are no prizes, then nobody buys a ticket.
(o) Successor of a prime number need not be a prime number.
(p) A number is prime or not can be decided in polynomial time.
(q) A number is composite or not can be decided in polynomial time.
(r) There always are triples of numbers such that one’s fifth power is
the sum of the fifth powers of the other two.
(s) The binary relation R is reflexive.
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(t) The binary relation R is an equivalence relation.
(u) The function f is bijective.
(v) The function f is continuous at a point a.
(w) The function is not continuous on a set A.
(x) The sequence {xn} does not converge.
(y) The series Σ∞

n=1xn is not absolutely convergent.
(z) Every even number bigger than four can be expressed as a sum of
two prime numbers.

12. Let Mxy stand for the membership relation between an object x and a
set y, and Sxy stand for the phrase ‘x is a subset of y. Express the following
as formulas.

(a) For any two sets, there exists a set which is their union.
(b) Each set has a complement. For any two sets there exists a set
which is their intersection.
(c) Any member of a subset is a member of the original set.
(d) There is a set which is a subset of every set, and this set has no
member.
(e) For any set there corresponds another set whose members are the
subsets of the first set.

13. Let P be a unary predicate, Q be a binary predicate, f be a binary
function symbol, and x, y, z be variables. Let I = (N, P ′, Q′, f ′) be an
interpretation where P ′ = {m : M is odd}, Q′ be the ‘less than’ relation,
and f ′(m,n) = m+ n. Let `(x) = 3, `(y) = 4, `(z) = 0. Decide whether the
state I` satisfies the following formulas:

(a) Pf(xf(x(fx(fxy))))

(b) ∀x∀yQxf(xy)→ ∀zQzf(xz)

(c) ∀x∀y(Px ∧ Py → Pf(xy))↔ ∀z(Px ∧ Py → Pf(xy))

(d) ∀y(¬Pf(xy)↔ Pf(yz)) ∨ ∀x(Qxy → ∃y(Qzy ∧Qyz))

14. Which of the following interpretations I = (D,P ′) are models of the
formula ∃x∃y∃z(Pxy ∧ Pyz ∧ (Pzx ∧ ¬Pxz))?

(a) D = N, P ′ = {(m,n) : m > n}
(b) D = N, P ′ = {(m,m+ 1) : m ≥ 4}
(c) D = 2N, P ′ = {(A,B) : A ⊆ B}
(d) D = the set of all strings over {0, 1},

P ′ = {(m,n) : m < n as binary integers}
(e) D = the set of all strings over {0, 1}

P ′ = {(a, b) : a is a substring of b}
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15. Let X be any formula and Y be a formula where the variable x is not
free. Then show the following:

(a) Y → ∀xX ≡ ∀x(Y → X)

(b) Y → ∃xX ≡ ∃x(Y → X)

(c) ∀xX → Y ≡ ∀x(X → Y )

(d) ∃xX → Y ≡ ∃x(X → Y )

(e) if |= Y → X, then |= Y → ∀xX
(f) if |= X → Y , then |= ∃xX → Y

What happens if x is allowed to occur free in Y ?

16. Try to construct state-models and models for each of the following
formulas (or sets of formulas) and determine their satisfiability and validity:

(a) P (f(c), g(c)) ∧ P (f(c), c)→ Q(c, f(c))

(b) ∃xPxf(x)↔ Pf(x)x ∧Qxc ∧ (Pcc→ ¬Qc)
(c) ∃y∀x(Pxy → Pyx) ∧ (Pxf(x)↔ Pcf(c))

(d) ∀x∀y(Pxy → Pyx) ∧ ∃x∃y(Qxyz ↔ Qyxz ∧Qyzx)

(e) ∀x∀y(Pxy ∧ Pyx) ∧ ∀x∀y(Pxy ∨ ¬Pxy)

(f) ∀x∀y(Pxy → (¬Pxy → Qxyf(y)))

(g) ∀x∀y∀z((Pxyz → ¬Qyz) ∧ (Qyz ∨Qxy) ∧ (Qyz → ¬Pxyz))
(h) ∀x∃y∃zPxyz ∧ ∀x∀y(Pxyy → ¬Pxxy)

(i) ∀x∃y∀z((Pxy ↔ Pyz) ∨ (pxy ↔ ¬Pyx))

(j) ((∀x(¬Px↔ Pf(x)) ∨ (¬Qx↔ Qf(f(x)))) ∧ ∃y(Py → Qy))

(k) {∀x¬Pxx,∃xQx,∀x∃yPxy,∀x(Qx→ ∃yPyx)}
(l) {∃xPxx,∀x∀yPxy → (x ≈ y)}
(m) {∀x(Px ∨Qx)→ ∃xRx,∀x(Rx→ Qx),∃y(¬(Py → Qy))}
(n) {∀x¬Pxx,∀x∃yPxy,∀x∀y∀z(Pxy ∧ Pzy → Pzx)}
(o) ∀x∃y(Px→ Qy)→ ∃y∀x(Px→ Qy)

(p) {∀x(Px→ Qx),∀x(Qx→ Rx),¬∃x(Px ∧Qx)}
(q) (∀xPx→ S)→ ∀x(Px→ S), where S is a sentence.

(r) {∃xPx,∃xQx,¬∃x(Px ∧Qx)}

17. Let D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Consider the closed formulas

(i) ∀x(Px ∨Qx ∨Rx ∨ Sx)

(ii) ∃x(Px ∧Qx ∧Rx ∧ Sx)

(iii) ∀x(Px ∨ ∀x(Qx ∨ ∀x(Rx ∨ ∀xSx)))

(iv) ∃x(Px→ ∃xQx).
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(a) Prescribe φ so that all the four formulas are satisfied by the
interpretation (D,φ).
(b) Construct ψ so that all the four formulas are falsified by the
interpretation (D,ψ).
(c) Does there exist an interpretation (D, ξ) where the first and the
fourth are falsified but the second and the third are satisfied? If yes,
construct ξ, else give reasons why it is not possible.

18. Let X be a closed formula and I be an interpretation. Show that either
I |= X or I 6|= X using the import semantics.

19. Let t be a term which contains at least one occurrence of the variable
x. Let s be another term, and `,m be valuations under an interpretation I
such that m is equivalent to ` along x, and m(x) = `(s). Let t′ be a term
obtained from t by substituting each occurrence of x in t by the term s.
Show that m(t) = `(t′).

20. Let A(x) be a formula having at least one free occurrence of the variable
x. Let t be a term free for x in X(x). Let ` and m be two valuations
under an interpretation I such that m is equivalent to ` along x and that
m(x) = `(t). Let X(t) be a formula obtained from X(x) by substituting
each free occurrence of x in X(x) by t. Then show that Im satisfies X(x)
iff I` satisfies X(t).

21. Let X be a formula with free variables x1, . . . , xm. Show that there is
a state Il such that Il |= X iff ∃x1 · · · ∃xmX is satisfiable.

22. Let I be an interpretation of a formula X and `,m be valuations under
I such that m is equivalent to ` along x and that m(x) = `(x). Can you
show that I` satisfies X iff Im satisfies X?

23. Let X,Y be formulas, and I` be a state. Which of the following hold?

(a) If I` |= X → Y , then (I` |= X implies I` |= Y ).

(b) If (I` |= X implies I` |= Y ), then I` |= X → Y.

(c) If X |= Y , then (|= X implies |= Y ).

(d) If (|= X implies |= Y ), then X |= Y.

24. Let X,Y, Z be three sentences. Answer the following:

(a) If X |= Y, does it follow that ¬X 6|= Y ?
(b) If X ∧ Y |= Z, then does it follow that X |= Y and X |= Z?
(c) If X ∧ Y |= Z, then does it follow that X |= Y or X |= Z?
(d) If X |= Y ∨ Z, then does it follow that X |= Y and X |= Z?
(e) If one of X |= Y or Z |= Y holds, then does X ∨ Z |= Y hold?
(f) If X |= (Y → Z), then do X |= Y and/or X |= Z hold?
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25. Prove all the laws in Theorem 2.13 using the import semantics.

26. Let P be a binary predicate, X = ∀xPxx, Y = ∀x∀y(Pxy → Pyx), and
Z = ∀x∀y∀z(Pxy ∧ Pyz → Pxz). Show that {X,Y } 6|= Z, {X,Z} 6|= Y ,
and {Y, Z} 6|= X. [This shows that reflexivity, symmetry and transitivity
are independent properties.]

27. Consider the domains N,Q,R of natural numbers, rational numbers,
and real numbers, respectively.

(a) For each of these sets, construct a sentence which holds in it but
not in the other two.
(b) For each pair of these sets, construct a sentence which holds in both
of them, but not in the other.
(c) Construct an invalid sentence that holds in all the three sets.
(d) Construct a satisfiable sentence that does not hold in any of the
three domains.

28. Show that the sentence

∀x∃yPxy ∧ ∀x¬Pxx ∧ ∀x∀y∀z(Pxy ∧ Pyz → Pxz)

is true in some infinite domain but is false in some finite domain.

29. Show that the sentence

∀xPxx ∧ ∀x∀y∀z(Pxz → Pxy ∨ Pyz)→ ∃x∀yPxy

is true in any finite domain but is false in some infinite domain.

30. Construct a sentence which is true in a domain with no more than m
elements, but false in some domain with more than m elements where m
equals 1, 2, or 3. Can you have a general formula for generating such a
sentence?

31. Translate the following arguments to FL and then check whether they
are valid consequences.

(a) Every computer scientist is a logician and also a programmer. Some
computer scientists are old fashioned. Therefore, there are old fashioned
programmers.
(b) Some computer scientists like all logicians. No computer scientist
likes any old fashioned programmers. Therefore, no logician is an old
fashioned programmer.
(c) All doctors take Hippocratic oath. All spouses of the persons who
take Hippocratic oath cannot be relied upon. Therefore, no spouse of
any doctor can be relied upon.
(d) Everyone who commits a crime receives a jail term. Therefore, if
there are no jail terms, then nobody commits a crime.
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(e) Every businessman likes all his children to study abroad. Therefore,
the eldest child of any businessman is the child of a person who likes
all his children to study abroad.

32. Let x, y be variables and X,Y, Z be formulas such that x is a free
variable of both X,Y , x does not occur in Z, and y is free for x in all of
X,Y, Z. Decide whether each of the following holds:

(a) ∀xX |= X[x/y]

(b) X[x/y] |= ∃xX
(c) If |= Y , then |= ∀xY.
(d) If |= ∃xY , then |= Y [x/y].

(e) If Y → Z, then ∃xY → Z.

(f) If |= Z → Y , then |= Z → ∀xY .

33. Check the following consequences for validity. Check also whether the
set of premises in each case is satisfiable.

(a) ∀x((∃yPxy ∧Qy)→ ∃y(Ry ∧ Uxy)) |= ∃x∃y(Pxy ∧Qy)→ ∃xRx

(b) {∃xPx ∧ ∃xQx→ ∃x(Px ∧Qx),∀x∃yRxy → ∃y∀xRxy}
|= ∀x(Px ∨Qx)→ ∀xPx ∨ ∀xQx

(c) {∃x(Px ∧Qx)→ ∀y(Ry ∧Hy),∃x(Rx ∧ ¬Hx)} |= ∀y(Py → ¬Qy)

(d) {∀x(Px→ Qx),∃xPx,∀x¬Qx} |= ∀x(Px→ Qx)↔ ∃x(Px→ Qx)

(e) {∃x(Px ∧ ∀y(Qy → Rxy)) ∧ ∀x(Px→ ∀y(Uy → ¬Rxy))}
|= ∀x(Qx→ ¬Ux)

34. Suppose that a domain of an interpretation is allowed to be empty.
What will be the change in satisfiability and validity of formulas? Will
there be formulas which are valid, but now they become invalid, or the
converse, etc?

35. Let Σ be a set of formulas and Σ∗ = {X∗ : X ∈ Σ}, where X∗ is the
universal closure of X. Let Y be any formula. Show that if Σ |= Y, then
Σ∗ |= Y. Show also that Σ∗ |= Y does not guarantee that Σ |= Y.

36. Obtain sdnf, scnf, fdnf, fcnf for the following formulas:

(a) ∀xPxf ∧ (∀xQx→ ∃y¬Qx) ∨ ∀x∃yPxy
(b) ∀x∀y(Pxyz ∧ (∀x∀yQyu→ Rx))

(c) ∃x(Px ∧ ∀y(Qy ↔ Rxy)) ∧ ∀x(Px→ ∀y(Uy → ¬Rxy))

(d) ∀x(Px↔ ∀y(Py → ∃x(Qx→ Qy)) ∧ ∃zPz) ∨ ∀x(Px→ ∃yQz)
(e) (¬∀x¬∀y¬∀zPxy → ∃x∃y(¬∃zQxyz ↔ Rxy))

(f) ∀x(∃yPxy ∧Qy)→ (∃y(Ry ∧ Uxy)→ Qy)
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37. Under what circumstances the matrix of a formula is a subformula of
that formula?

38. Suppose that a formula has a finite model. Can you find a procedure
that constructs one such model?

39. Show that every formula is equivalent to one in which no quantifier is
within a ¬ and no ¬ is within another ¬.

40. A negation normal form formula or an nnf is defined by the rules:

(a) For any atomic formula X, both X and ¬X are in nnf.
(b) If X,Y are in nnf, then both (X ∧ Y ) and (X ∨ Y ) are in nnf.
(c) If X is in nnf, then both ∀xX and ∃xX are in nnf.
(d) These are the only way an nnf is generated.

Show that every formula is equivalent to one in nnf.

41. Let X be a sentence in the form ∀x1 · · · ∀xnX having no occurrence of
any function symbol.

(a) Give a procedure to determine whether X is valid.
(b) Give a procedure to determine whether X is satisfiable.
(c) What happens to your procedures if function symbols are allowed
to occur in X?
(d) Can you modify the procedures so that they would work in the pre-
sence of function symbols?

42. Let X be a formula in the form: ∀x1 · · · ∀xm∃xY, and let P be an
(m+ 1)-ary predicate not occurring in Y. Let

Z = ∀x1 · · · ∀xm∃xPx1 . . . xmy ∧ ∀x1 · · · ∀xm∀x(Px1 . . . xmx→ Y ).

Show that X is satisfiable iff Z is satisfiable.

43. Conclude from Problem 42 that there is an algorithm to transform any
formula X to a formula Z with a prefix of the form ∀x1 · · · ∀xm∃y1 · · · ∃yn

such that X is satisfiable iff Z is satisfiable. Can you construct a formula
W similar to Z so that X is valid iff W is valid?

44. Let X be a prenex form formula such that every atomic subformula
contains an existentially quantified variable whose quantifier is in the scope
of each quantifier that uses some other variable occurring in that atomic
subformula. Show that X is satisfiable iff its matrix is satisfiable.

45. Let X be a closed formula having only unary (monadic) predicates and
having no function symbols. (X is a sentence of the monadic first order
logic.) Let I be a model of X. Define an equivalence relation on the domain
of I by: a is equivalent to b iff for each predicate P occurring in X, P ′(a)
holds whenever P ′(b) holds. Show that the set of equivalence classes also
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forms a model of X. Use this to show that if a sentence X of monadic
first order logic is satisfiable, then it has a finite model. Can you have a
procedure to decide whether such a sentence is satisfiable?

46. A sentence in monadic first order logic is said to be in miniscope
form if whenever ∀xY or ∃xY is a subformula, the only free variable in Y
is x. Show that every sentence of monadic first order logic is equivalent to
one in miniscope form.

47. (Craig’s interpolation) Let X,Y be formulas having at least one com-
mon atomic subformula. A formula Z having all its atomic subformulas
among the common ones of X and Y is called an interpolant of X → Y
iff |= X → Z and |= Z → Y. Show that, if |= X → Y, then either X is
unsatisfiable or Y is valid or X → Y has an interpolant. Show also that
whenever an interpolant of X → Y exists, there is, in fact, an interpolant
in which all the constants are among the common constants of X and Y.

48. Construct the Herbrand domain and the Herbrand expansions for the
following formulas. Then decide their satisfiability.

(a) ∀x(Px ∨ ¬∀y∃z(Qyxz ∨ ¬∃uQuxz))
(b) ∀x(Px ∨ ¬∀y∃z(Qyxz ∨ ¬∃uQuxz))
(c) ∀x(¬Pxx ∧ ∃yPxy ∧ ∀y∀z((Pxy ∧ Pyz)→ Pxz))

(d) ∀y∃x(Pyx ∧ (Qy ↔ ¬Qx)) ∧ ∀x∀y∀z((Oxy ∧ Pyz)→ Pxz)

∧ ∀x¬∃y(Qx ∧Qy ∧ Pxy)

49. Show that if a sentence has a model of m elements, then it has models
of n elements for each n > m and also it has an infinite model.

50. Skolem-Löwenheim upward theorem: If a first order theory has a model
of infinite cardinality, then it has models of each higher cardinality. Prove
this statement. [Hint : See [67].]
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Resolution

3.1 Introduction

You have seen how normal forms in PL can be used to decide whether a
proposition is valid, invalid, satisfiable, or unsatisfiable. To repeat, if you
have a pair of complementary literals in every disjunctive clause of a cnf,
then the cnf is valid; otherwise, the cnf is invalid. Similarly, a dnf is un-
satisfiable if each conjunctive clause in it contains a pair of complementary
literals, else it is satisfiable. Suppose that you have a dnf which you know
to be satisfiable. You are further interested in determining its validity.
What do you do? You apply the law of distributivity to convert the dnf
into a cnf, and then decide. For example, using distributivity on the dnf

A = (¬p ∧ r) ∨ (¬q ∧ r) ∨ (¬r ∧ p)

you get an equivalent cnf:

A′ = (¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ p) ∧ (¬p ∨ r ∨ ¬r) ∧ (¬p ∨ r ∨ p)
∧ (r ∨ ¬q ∨ ¬r) ∧ (r ∨ ¬q ∨ p) ∧ (r ∨ r ∨ ¬r) ∧ (r ∨ r ∨ p)

Now, A′ is in cnf, where the fifth (and the last also) clause does not
contain a pair of complementary literals. Hence A is not valid. You also
know how to construct an interpretation from such a clause which would
falsify the proposition.

Exercise 3.1 Construct three interpretations, each of which falsifies the
proposition A above.

Similar is the case of checking satisfiability of a cnf. For example, (com-
pare this with the above dnf), take the cnf:

B = (¬p ∨ r) ∧ (¬q ∨ r) ∧ (¬r ∨ p)

As earlier, distribute ∧ over ∨ to get an equivalent dnf:

B′ = (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ p) ∨ (¬p ∧ r ∧ ¬r) ∨ (¬p ∧ r ∧ p)
∨ (r ∧ ¬q ∧ ¬r) ∨ (r ∧ ¬q ∧ p) ∨ (r ∧ r ∧ ¬r) ∨ (r ∧ r ∧ p)

You see that B is satisfiable since there is a (at least one) clause in B′ which
does not contain a pair of complementary literals. Since the problems are
dual to each other, we will only consider the latter problem of determining
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satisfiability of a cnf. Moreover, the method of distributing ∧ over ∨, and
∨ over ∧ is a costly affair. Can it be made cheaper? The problem is how
to determine in a different way than by crude distribution of ∧ over ∨ that
a cnf is satisfiable? For dnfs, a similar question of validity may be posed.
However, by duality, an answer to the first would give us an answer to the
second.

The aim of this chapter is to develop a mechanical strategy for answering
this question. You will also see how this strategy is extended to FL. We
will consider a simple example first. Instead of B, consider the cnf:

C = (¬p ∨ r) ∧ (q ∨ ¬r)

By distributivity,

C ≡ C ′ = (¬p ∧ q) ∨ (¬p ∧ ¬r) ∨ (r ∧ q) ∨ (r ∧ ¬r)

Now, suppose that i |= C ′. As i 6|= (r ∧ ¬r),

either i |= ¬p, i |= q or i |= ¬p, i |= ¬r or i |= q, i |= r

This means, in any case, i |= ¬p or i |= q, or both. That is, i |= ¬p ∨ q.
Alternatively, if you take C as it is, and look for its model, you can see

that i |= C when i is a model of both ¬p∨r and q∨¬r. But i cannot satisfy
both r and ¬r simultaneously. If i is a model of r, then i is not a model of
¬r and, thus, i has to be a model of q. On the other hand, if i 6|= r, then
since i |= ¬p ∨ r, i has to be a model of ¬p. Hence, i |= q or i |= ¬p.

Now, looking at the form of C, where C = (¬p∨r)∧(q∨¬r), we see that
in one clause there is r, and in the other there is ¬r. If we omit this pair of
complementary literals, we will get ¬p and q. We ∨ them together to get
¬p ∨ q. And then any model of C must be a model of this proposition.

Similarly, look at the rule Modus Ponens. Since, A → B ≡ ¬A ∨ B,
you can rewrite this rule as “from A and ¬A ∨ B, derive B”. Here, omis-
sion of the complementary literals gives you B. Similarly, the hypothetical
syllogism, or transitivity of implication, which says that “from A→ B and
B → C, derive A → C ”, can be rewritten as “from ¬A ∨ B and ¬B ∨ C,
derive ¬A ∨ C ”. Here again, omitting the pair B,¬B from the premises,
you reach at the conclusion ¬A∨C. Does this method of omitting a pair of
complementary literals work in general? We will try to answer this ques-
tion in the next section and then develop our mechanical strategy, to be
called resolution.

3.2 Resolution in PL

Now that all our propositions are in cnfs, we can represent them in a set
notation. For example, the clause p∨ q, can be rewritten as {p, q} and the
cnf (p∨q)∧(r∨s) can be rewritten as {{p, q}, {r, s}}. While writing back to
the original form, there will be no confusion since a set of sets (of literals)
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is a conjunction of sets of literals and a set of literals is a disjunction of
literals. This notation will make the use of the phrase ‘a clause contains a
pair of complementary literals’ a formal one. But there is a hitch. Once
you write a clause as a set of literals, what does an empty set of literals
represent? Well, consider {p} and {p, q} as clauses. {p} represents the
proposition p and {p, q} represents the clause p ∨ q. we see that p |= p ∨ q.
That is, whenever A ⊆ B, we have A |= B.

Exercise 3.2 Let A and B be two sets of literals (remember, disjunctive
clauses), then show that A ⊆ B implies that A |= B.

Now, since the empty set is a subset of every set, the empty clause
entails every clause. So, what is that formula which entails every clause?
A little thought shows that it must be the propositional constant ⊥. (Show
it.) Another way of looking at it is that a disjunctive clause is true under
an interpretation only when one of its literals is true; else, it is false. But
there is no literal in the empty clause to become true, so, it is false.

What about the empty set of clauses? Now, a cnf is a conjunction of
clauses. A conjunction is false under an interpretation only when there is
at least one clause in it which is false. But there is none. Hence, it cannot
be false. That is, an empty set of clauses is always true. Moreover, if A
and B are two sets of clauses (conjunctions of the clauses) with B ⊃ A, we
see that B is A∧X for some cnf X. Thus, B |= A. Since each set of clauses
is a superset of the empty set of clauses, each cnf entails the empty cnf.
Then you can see that the only such cnf which is entailed by every cnf has
to be >.

When p is a propositional variable, we have its negation as ¬p which is
obviously a literal. But then its negation, ¬¬p is not a literal. In this case,
we will write the negation of the literal ¬p as p itself, and generically, we
will accept that ¬q is a literal even when q = ¬p; the literal ¬q being equal
to p. Thus we have the following conventions:

If q = ¬p is a literal, then its negation ¬q is the literal p.
A clause is a set of literals.
A cnf is a set of sets of literals, a set of clauses.
The empty set of literals is ⊥.
The empty set of sets of literals is >.

Our strategy may now be formalized. Let A and B be two clauses (sets
of literals). If there is a literal p such that p ∈ A and ¬p ∈ B, then the
resolvent res(A,B; p) of A and B with respect to the literal p (or ¬p) is
the clause (A−{p})∪ (B−{¬p}). We also say that this resolvent has been
obtained by resolving upon the variable p. In such a case, both the
literals p and ¬p are also termed as biform literals. The variable p (or
¬p) is called a biform variable. If the literal p is clear from the context,
we will simply write res(A,B; p) as res(A,B).
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For example, if A = {¬p, r}, B = {q,¬r}, by resolving upon q, we get
res(A,B) = res(A,B; q) = {¬p, q}. If A = {¬p, q, r}, B = {¬q,¬r}, then
res(A,B) = {¬p, r,¬r} resolving upon the variable q. By resolving upon
r, we also get res(A,B) = {¬p, q,¬q}.

However, here res(A,B) 6= {¬p} as you would have obtained by omit-
ting both the pairs q,¬q and r,¬r. You cannot cancel more than one pair
at a time! Taking resolvents does not allow it. Why is it so? You have
already seen that if i |= {¬p, r}, i |= {q,¬r}, then i |= {¬p, q}.

Similarly, you expect that if i |= {¬p, q, r} and i |= {¬q,¬r}, then
i |= {¬p, r,¬r}. But will it be that i |= ¬p? Not necessarily, since the
interpretation j with j(p) = j(q) = 1, j(r) = 0, is a model of {¬p, q, r}
and also of {¬q,¬r}, but j 6|= ¬p. (Remember {¬p, q, r} is, by definition,
¬p ∨ q ∨ r.) Let us prove what you expect.

Theorem 3.1 (Resolution Principle for PL) Let A and B be two
clauses, and p be a literal such that p ∈ A and ¬p ∈ B. Then {A,B} |=
res(A,B; p). That is, the resolvent of two clauses is their logical conse-
quence.

Proof Let A = l1∨ l2∨· · ·∨ lk∨p and B = m1∨m2∨· · ·∨mn∨¬p, where li
and mj are literals. Then res(A,B; p) = l1∨l2∨· · ·∨lk∨m1∨m2∨· · ·∨mn.
Let v be an interpretation with v |= A and v |= B. Then what can be v(p)?
We have two cases: (a) v(p) = 1, and (b) v(p) = 0.

In case (a), v 6|= ¬p. Hence, v |= B implies that v |= m1∨m2∨ · · ·∨mn.
Thus, v |= res(A,B; p).

In case (b), v 6|= p. But v |= A. So, v |= l1 ∨ l2 ∨ · · · ∨ lk. Therefore,
v |= res(A,B; p). This completes the proof.

Exercise 3.3 If clauses are taken as conjunctive clauses, then show that
the resolution principle does not work.

Now you realize that resolution is a method to work with cnf only. Let
i be an interpretation. For conjunctive clauses you can of course show that
if i 6|= A and i 6|= B, then i 6|= res(A,B; p). However, we have planned to
work with disjunctive clauses only!

EXAMPLE 3.1 Consider the cnf Σ = {¬p ∨ q,¬q ∨ r, p,¬r}. Here,
res(¬p∨ q,¬q ∨ r; q) = ¬p∨ r, res(¬p∨ q, p; p) = q, res(¬q ∨ r,¬r; r) = ¬q.
By the resolution principle, Σ |= ¬p ∨ r, Σ |= q,Σ |= ¬q. Since Σ entails
each of its members, we obtain Σ |= ¬p ∨ q, Σ |= ¬q ∨ r, Σ |= p, Σ |= ¬r.
Taking further resolvents, res(¬p ∨ r,¬r; r) = ¬p, res(q,¬q; q) = ⊥, the
empty clause, and res(q,¬q ∨ r; q) = r. Other resolvents will be repeated
as earlier. In addition to the earlier conclusions, you conclude, by the
resolution principle, that Σ |= ¬p, Σ |= ⊥, Σ |= r.

Of all these conclusions from Σ, the special conclusion ⊥ signifies some-
thing important. It says that if i |= Σ, then i must also be a model of ⊥.
But there cannot be any model of ⊥. Therefore, Σ is unsatisfiable.
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We may write the resolution principle as an inference rule and then
go on extending a deduction towards deriving the empty clause ⊥. Our
inference rule of resolution for PL would look like

(RPL) A B
res(A,B)

where the resolution is taken on some biform literal p.

Remember that in the above rule p is a biform literal means that either
p ∈ A,¬p ∈ B, or ¬p ∈ A, p ∈ B. Using this inference rule, the above
workout in Example 3.1 can be rewritten as a proof for showing that Σ is
unsatisfiable. Formally, let Σ be a set of clauses. A resolution proof of
Σ |= w is a finite sequence of clauses, where each clause is either a clause
in Σ or is obtained (derived) by an application of the rule (RPL) from
two earlier clauses, and the last clause in the sequence is w. A resolution
proof of unsatisfiability of Σ is a resolution proof of the consequence
Σ |= ⊥. A resolution proof of unsatisfiability of Σ is also called a resolution
refutation of Σ. Here is the proof of unsatisfiability of Σ = {¬p ∨ q,¬q ∨
r, p,¬r} as worked out in Example 3.1.

1. ¬p ∨ q H

2. p H

3. q res(1, 2; p)

4. ¬q ∨ r H

5. ¬r H

6. ¬q res(4, 5; r)

7. ⊥ res(3, 6; q)

In this proof, we have added the line numbers and the right-most column
for documentation. They help us to read the proof; the proof is simply
the sequence of clauses in the middle column read from top to bottom.
The abbreviation ‘H’ used in the documentation column refers to the word
‘hypothesis’, meaning that the clause in that line is indeed an element of the
given set Σ of premises. Sometimes, instead of writing the full res(1, 2; p)
as in line 3 above, we will only quote (RPL) to say that the clause in that
line has been derived by an application of the resolution rule from some
two earlier clauses resolving upon some biform variable.

The above refutation can also be depicted as a tree, a directed acyclic
graph (DAG), in general. See Figure 3.1 for such a refutation DAG. The
directed acyclic graph here happens to be a tree; and it is drawn upside
down. It has been generated from its leaves which are the given premises.
In each deeper level a clause (as a node) is added by applying the resolution
rule, i.e., if A,B are the clauses whose resolvent is C, then C appears as the
child of the nodes labelled A and B. The literal upon which the resolvent
is taken is not usually mentioned in such a DAG.
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Figure 3.1 A refutation tree.

Though resolution proofs are defined for consequences Σ |= w, there is a
slight advantage in fixing w for ever. This can be done by using RAA, that
is, for proving Σ |= w, it is enough to show that Σ ∪ {¬w} is unsatisfiable.
In this approach, one does not define a resolution proof as we have done;
rather a resolution refutation is only defined. Then a proof of Σ |= w is
redefined to be a resolution refutation of Σ ∪ {¬w}. The advantage is that
we now have a unique target in each proof, i.e., the empty clause ⊥.

EXAMPLE 3.2 Show by resolution that

{¬p→ q, p→ r ∨ s, r → t ∧ u, u ∧ ¬s→ ¬t} |= ¬s→ q

Solution Using RAA, we only construct a resolution refutation of the set

{¬p→ q, p→ r ∨ s, r → t ∧ u, u ∧ ¬s→ ¬t,¬(¬s→ q)}

First of all, the set has to be converted into a cnf. Since the set of propo-
sitions means the conjunction of all its elements, (Why?) it is enough to
convert each of its elements to cnfs and then take their union. That is, we
can convert each premise and the negation of the conclusion into cnf’s and
then take all the clauses obtained together to form the required set. This
set must have a resolution refutation. To this end, we see that

¬p→ q ≡ p∨q, p→ r∨s ≡ ¬p∨r∨s, r → t∧u ≡ (¬r∨t)∧(¬r∨u),

u ∧ ¬s→ ¬t ≡ ¬u ∨ s ∨ ¬t, ¬(¬s→ q) ≡ (¬s) ∧ (¬q).

Hence, we have the set

Σ = {p ∨ q,¬p ∨ r ∨ s,¬r ∨ t,¬r ∨ u,¬u ∨ s ∨ ¬t,¬s,¬q}

Here is a (resolution) refutation of Σ :

1. p ∨ q H

2. ¬q H

3. p RPL

4. ¬p ∨ r ∨ s H

5. r ∨ s RPL
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6. ¬s H

7. r RPL

8. ¬r ∨ t H

9. t RPL

10. ¬r ∨ u H

11. u res(7, 10; r)

12. ¬u ∨ s ∨ ¬t H

13. s ∨ ¬t RPL

14. ¬t res(6, 13; s)

15. ⊥ res(9, 14; t)

You can also have a refutation DAG, as shown in Figure 3.2.
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Figure 3.2 A refutation DAG.

Exercise 3.4 There is a difference between the resolution refutation
above and the refutation DAG of Figure 3.2. Find it.

Is the resolution refutation mechanical? You had to use your intuition
to derive ⊥ from the premises by selectively choosing the premises one after
another. How can a machine do it? Can you write a procedure to construct
a resolution proof even if the proof is not the shortest one?

A crude method is to generate all possible resolvents of the premises,
add them to the premises, and then generate more resolvents till you get
⊥. Will the procedure work? Yes, provided the resolvents, resolvents of
resolvents, etc. are finite in number. But this is a must since there are



122 Resolution

at the most only a finite number of distinct clauses which might be built
upon a finite number of propositional variables. If the cnf has n number
of propositional variables, then there are 2n number of literals, and then,
since each clause is a subset of literals, there are at the most 22n number of
clauses. Among them, there are trivial clauses of the form l1∨· · ·∨lm∨p∨¬p
which are equivalent to >, and hence, can be omitted. Then you are left
with 3n number of clauses. Thus, quite mechanically, the procedure will
terminate and generate ⊥ somewhere, if at all ⊥ can be generated. On the
other hand, if ⊥ is not generated but the procedure terminates, then of
course, the cnf will be satisfiable.

The first property that ‘if ⊥ is generated, then the given cnf is unsat-
isfiable’ is the soundness of resolution. And its converse that “if the cnf
is satisfiable, then ⊥ is eventually generated” is called the completeness
of resolution. Both the properties are commonly called adequacy of reso-
lution. We must be able to prove adequacy of resolution. However, before
attempting a proof for adequacy it will be helpful to formally describe the
method. Let us do that first.

For any set B of clauses (sets of literals), define

R(B) = B ∪ {C : C = res(C1, C2; p) for some clauses

C1, C2 ∈ B,C1 6= C2, and for some biform literal p}.

Let A be a given set of clauses. Define Rn(A) inductively by

R0(A) = A, Ri+1(A) = R(Ri(A))

Write R∗(A) = ∪n∈NRn(A).

The set R(A) is the set of all clauses of A along with resolvents of all
possible pairs of clauses of A that could be resolved upon some biform
literal. Sets R(R(A)) etc. form an increasing sequence of sets of clauses:

A = R0(A) ⊆ R1(A) ⊆ R2(A) ⊆ · · · ⊆ Rn(A) ⊆ · · ·R∗(A)

The set R∗(A) is called the resolvent closure of the cnf A. Since there
are only finite number of possible clauses which can be generated from A,
we have R∗(A) = Rn(A) = Rn+1(A) for some natural number n. Now,
soundness and completeness of resolution can be restated as

Soundness: If ⊥ ∈ R∗(A), then A is unsatisfiable.

Completeness: If A is unsatisfiable, then ⊥ ∈ R∗(A).

To study these properties, we start with an enumeration of all the propo-
sitional variables. We had them already as p0, p1, p2, . . .

Let Am denote the set of all clauses which can be formed from the first
m propositional variables including the propositional constant ⊥. Note that
we do not need to include > separately since a disjunctive clause p ∨ ¬p is
equivalent to >. For example, A0 = {⊥, p0,¬p0, p0∨¬p0}, etc. Let A be any
cnf and R∗(A) be its resolvent closure. We show the following statement.
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Lemma 3.2 If R∗(A)∩Am is satisfiable, then R∗(A)∩Am+1 is satisfiable.

Proof All propositional variables that occur in R∗(A) ∩ Am are from
{p0, p1, . . . , pm−1}. Suppose that R∗(A) ∩ Am is satisfiable. Then we have
an interpretation i : {p0, . . . , pm−1} → {0, 1} which is a model of all the
clauses in R∗(A) ∩ Am. Construct two more interpretations from i by ex-
tending it to the set {p0, . . . , pm−1, pm} as in the following:

Let j, ̄ : {p0, . . . , pm} → {0, 1} be such that j(pk) = ̄(pk) = i(pk)

for 1 ≤ k ≤ m− 1, and j(pm) = 0, ̄(pm) = 1.

Now suppose that R∗(A) ∩ Am+1 is unsatisfiable. Then neither j nor ̄
satisfies all the clauses in R∗(A) ∩Am+1. Thus, there are clauses C and C̄
in R∗(A) ∩ Am+1 such that j 6|= C and ̄ 6|= C̄. Can it happen that neither
pm nor ¬pm is a member of C? If yes, then all the propositional variables
occurring in C are from {p0, . . . , pm−1} and then C must be in R∗(A)∩Am.
As j agrees with i on the set {p0, . . . , pm−1}, we have j(C) = i(C). Since
i is a model of R∗(A) ∩ Am, i |= C. But then we arrive at a contradiction
that j 6|= C and i |= C. Therefore, at least one of pm or ¬pm is in C.

Now, if ¬pm is in C, then C = D∨¬pm for some clause D. (If C = ¬pm,
then we take D = >.) As j 6|= C, you see that j 6|= ¬pm. But this is not
correct, since j(pm) = 0. Thus, pm ∈ C. Then, C and C̄ can be written as
C = D∨pm, C̄ = D̄∨¬pm for some clauses D, D̄ ∈ R∗(A)∩Am. The clause
B = res(C, C̄; pm) = D∨ D̄ ∈ R∗(A)∩Am. As i is a model of R∗(A)∩Am,
we have i(D ∨ D̄) = 1. We must explore two possibilities: (a) i(D) = 1, or
(b) i(D̄) = 1.

In case (a), since i agrees with j on {p0, . . . , pm−1}, and both D, D̄
contain (possibly) variables from {p0, . . . , pm−1}, we get j(D) = 1. This
contradicts the fact that j 6|= C.

In case (b), i agrees with ̄ and i(D̄) = 1 gives j(D̄) = 1, contradict-
ing the fact that j 6|= C̄. This contradiction shows that R∗(A) ∩ Am+1 is
satisfiable.

Lemma 3.3 For every n ∈ N, if ⊥ 6∈ R∗(A) ∩ An, then R∗(A) ∩ An is
satisfiable.

Proof We use induction on n. For n = 0, An = A0 = {⊥, p0,¬p0, p0∨¬p0}.
Assume that ⊥ 6∈ R∗(A)∩A0. Now, R∗(A)∩A0 cannot contain both p0 and
¬p0, since otherwise, their resolvent which is ⊥, will also be in R∗(A)∩A0. If
both p0 and p0∨¬p0 are in R∗(A)∩A0, then their resolvent ¬p0 will also be
there, and then another resolvent of p0 and ¬p0 will generate ⊥. Similarly,
both ¬p0 and p0 ∨¬p0 cannot be in R∗(A)∩A0. Hence, R∗(A)∩A0 can be
one of the singleton sets {{p0}}, {{¬p0}} or {{p0 ∨ ¬p0}}. In either case,
it is satisfiable. (Alternatively, you could have omitted the trivial clause
p0 ∨ ¬p0 to make the argument shorter.)

Lay out the induction hypothesis that ⊥ 6∈ R∗(A) ∩ Am implies that
R∗(A)∩Am is satisfiable. Suppose that ⊥ 6∈ R∗(A)∩Am+1. Since R∗(A)∩
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Am ⊆ R∗(A) ∩ Am+1, ⊥ 6∈ R∗(A) ∩ Am either. By induction hypothesis,
R∗(A)∩Am is satisfiable. By Lemma 3.2, we conclude that R∗(A)∩Am+1

is satisfiable.

We take help from these lemmas to prove our main result.

Theorem 3.4 (Adequacy of Resolution) Let A be any cnf and R∗(A)
be its resolvent closure. Then A is unsatisfiable iff ⊥ ∈ R∗(A).

Proof If ⊥ ∈ R∗(A), then by resolution principle and induction, it is clear
that A |= ⊥. This shows that A is unsatisfiable.

Conversely, suppose that ⊥ 6∈ R∗(A). Let A have only the propositional
variables from the set {p0, p1, . . . , pm−1}. Then ⊥ 6∈ R∗(A)∩Am. By Lemma
3.3, R∗(A)∩Am is satisfiable. However, A ⊆ R∗(A)∩Am. Hence A is also
satisfiable.

In other words, you have proved that ⊥ ∈ R∗(A) iff R∗(A) is unsatisfi-
able. This is the closure property of the resolvent closure. Look at Example
3.1 again. You will be convinced that it is indeed wasteful to compute the
whole of R∗(A) in case that A is unsatisfiable, as is prescribed by the above
discussion. When solving the examples above you had in fact taken some
choices of clauses in each stage which might be resolved upon. It is better
to develop such strategies so that resolution can be made faster. See the
follow up remarks for such strategies.

We will consider a very general strategy here in cutting down some
wasteful generation of resolvent clauses. One such obvious strategy is that
“once ⊥ has been generated, do not proceed further”. Similarly, trivial
clauses which contain a pair of complementary literals may be omitted at
any stage of taking further resolvents. Another strategy can be developed
by looking at a somewhat simple example.

EXAMPLE 3.3 Use resolution to decide the satisfiability of the cnf

A = (¬p ∨ q) ∧ (p ∨ q) ∧ (¬p ∨ ¬q)

Solution

R0(A) = {{¬p, q}, {p, q}, {¬p,¬q}},

R1(A) = R0(A) ∪ {{q}, {¬p}, {q,¬q}, {p,¬p}}.

For computing R2(A), we have to take further resolvents of clauses in
R1(A). You can verify that further resolvents do not add any new clause.
Therefore, R∗(A) = R2(A) = R1(A). But ⊥ 6∈ R∗(A); hence A is satisfiable.

While computing R2(A), among others, you had to take resolvents of
{p, q} with the possible clauses, namely, {¬p}, {q,¬q}, {p,¬p}. This gives
{q}, {p, q}, {¬p, q}. This is wasteful due to two reasons. First, there is no
need to resolve with the trivial clauses as we have mentioned earlier. This
is because {{¬p}, {q,¬q}, {p,¬p}} is logically equivalent to {{¬p}}. It is
enough to keep only the nontrivial clauses. The nontrivial clauses are also
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called fundamental clauses; these are the clauses which do not contain
a pair of complementary literals. The strategy is

Delete all nonfundamental clauses.

The second source of wasteful generation is to keep all of the clauses
{q}, {p, q}, {¬p, q}. It is because the clause {q} is already a subset of other
clauses. So what? When you write R2(A) as a cnf, it will look like

· · · q ∧ (p ∨ q) ∧ (¬p ∨ q) · · ·

Now, q ∧ (p ∨ q) simplifies to q and q ∧ (¬p ∨ q) also simplifies to q. Thus
it should be enough to keep only q. The strategy is

Keep only a subset and delete all its supersets.

For example, R1(A) above would become modified to {{q}, {¬p}}. You can
check at this point that this new set is logically equivalent to the set R1(A)
obtained earlier.

To express these strategies formally, let C and D be two clauses. C is
said to subsume D if C ⊆ D. If A is a set of clauses, then the residue of
subsumption of A is the set

RS(A) = {C ∈ A : C is not subsumed by any other clause of A

and C is fundamental }

Thus, RS(R1(A)) = {{q}, {¬p}}. You can also verify that A ≡ RS(A) as
cnfs. While generating R∗(A), we can take residue of subsumption on each
resolvent set Rn(A) and then proceed further. That is, for a set of clauses
A, we compute the sequence

A0 := A, B0 := RS(A0); A1 := R(B0), B1 = RS(A1);

A2 = R(B1), B2 = RS(A2); . . . . until An+1 = Bn for some n.

The termination criterion An+1 = Bn is bound to be met because the
totality of all clauses that could be generated from the propositional vari-
ables of A are finite in number. Whenever for some n, we have Bn = An+1,
we denote the set of clauses as RS∗(A), that is, RS∗(A) = Bn = An+1.
Then from the adequacy of resolution it will follow that ⊥ ∈ RS∗(A) iff A
is unsatisfiable.

EXAMPLE 3.4 Show by resolution that the following consequence is
valid: {p ∨ q → r, r → s ∨ t, s→ u,¬(¬t→ u)} |= ¬p.
Solution Here we will not have a refutation by choosing the clauses. We
will rather follow the above strategy literally, and see how a machine might
work on the problem. The clause set corresponding to this consequence is
(include negation of the conclusion and then convert each proposition)

A = {{¬p, r}, {¬q, r}, {¬r, s, t}, {¬s, u}, {¬t}, {¬u}, {p}}

We notice that there is no nonfundamental (tautological or trivial) clause
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in A and no clause is a proper subset of another. Hence,

B0 = RS(A) = A0 = A.

A1 = R(B0) = {{¬p, r}, {¬q, r}, {¬r, t, s}, {¬s, u}, {¬t}, {¬u}, {p}, {r},
{¬p, t, s}, {¬q, t, s}, {¬r, t, u}, {¬r, s}, {¬s}}

since

res({¬p, r}, {p}; p) = {r},
res({¬p, r}, {¬r, t, s}; r) = {¬p, t, s},
res({¬q, r}, {¬r, t, s}; r) = {¬q, t, s},
res({¬r, t, s}, {¬s, u}; s) = {¬r, t, u},
res({¬r, t, s}, {¬t}; t) = {¬r, s},
res({¬s, u}, {¬u};u) = {¬s}.

Then,

B1 = RS(A1) = {{¬t}, {¬u}, {p}, {r}, {¬p, t, s}, {¬q, t, s}, {¬r, t, u},
{¬r, s}, {¬s}}

as {r} subsumes {¬p, r}, {¬q, r}; {¬r, s} subsumes {¬r, t, s}, and {¬s}
subsumes {¬s, u}.

A2 = R(B1) = {{¬t}, {¬u}, {p}, {r}, {¬p, t, s}, {¬q, t, s}, {¬r, t, u},
{¬r, s}, {¬s}, {¬p, s}, {¬q, s}, {¬r, u}, {¬r, t}, {t, s}, {t, u}, {s},
{¬p, t}, {¬q, t}, {¬r}.

B2 = RS(A2) = {{¬t}, {¬u}, {p}, {r}, {¬s}, {t, u}, {s}, {¬p, t}, {¬q, t},
{¬r}}.

A3 = R(B2) = {. . . , {¬s}, . . . , {s}, . . . ,⊥, . . .}.

Thus, A is unsatisfiable and, therefore, the consequence is valid.

Other strategies that are followed to cut down waste in resolution base
on the following two observations. Prove the observations and then employ
them in a resolution algorithm.

Observation 1 : Given a set of clauses A, if there is a literal l that occurs
among the (some) clauses of A, but ¬l never occurs, then the set of clauses
A′ obtained from A by deleting every clause that contains l is satisfiable iff
A itself is satisfiable.

Observation 2 : Given a set of clauses A, if A includes a unit clause (a
clause having a single literal) {l}, then delete from A every clause that
contains l to obtain the set of clauses A′. Next, update each clause of A′ by
deleting the occurrence of ¬l from every clause (wherever ¬l occurs) and
call the new set of clauses as A′′. Then A′′ is satisfiable iff A is satisfiable.
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For the cnf in Example 3.3, resolution along with subsumption gives

A0 = A = {{¬p, q}, {p, q}, {¬p,¬q}}, B0 = RS(A0) = A0,

A1 = A0 ∪ {{q}, {¬p}, {q,¬q}, {p,¬p}}, B1 = RS(A1) = {{q}, {¬p}}.
Further resolvents are not possible; so, RS∗(A) = B1. Of course, A is
satisfiable as you have already concluded in Example 3.3.

Exercise 3.5 Write a procedure for resolution employing subsumption
as described in Example 3.4.

Note that the clauses in RS∗(A) have a specific property, i.e., each one
of them is a logical consequence of A but no one is a logical consequence
of any other. Moreover, A is logically equivalent to RS∗(A). Such clauses
are called the prime implicates of a cnf.

Formally, let A be a cnf and D be a disjunctive clause. D is an impli-
cate of A iff A |= D. D is a prime implicate of A iff D is an implicate
of A and there is no other implicate C of A such that C |= D. That is, no
other implicate comes in between A and D with respect to the consequence
relation.

By way of trying to make resolution efficient, we have landed in com-
puting all prime implicates of a cnf. Prime implicates help in minimizing
Boolean circuits also. For more information on prime implicates, look at
the works mentioned in the summary at the end of the chapter. Denote
by π(A) the set of all prime implicates of A and interpret this set as the
conjunction of all its clauses as usual. Then try the following exercise.

Exercise 3.6 For a cnf A, show that A ≡ π(A) and RS∗(A) = π(A).

3.3 Unification of Clauses

You have seen how the resolution works for deciding satisfiability of a finite
set of clauses. Can the procedure be applied to FL? Take a formula of
FL. In order that resolution be applied, first of all, we require a cnf or
some analogous conversion of the formula. We have, of course, the skolem
conjunctive normal form conversion which says that a formula is satisfiable
iff its scnf is satisfiable. Can we apply the resolution straightforward on
the scnf? For example, consider the scnf

A = {{¬Px,Qxy}, {Px}, {¬Qxy}}

A resolution refutation would look something like the tree in Figure 3.3.
But this may not be enough. For example, take

B = {{¬Hx,Mx}, {Ha}, {¬Ma}}

The scnf B corresponds to the consequence {∀x(Hx → Mx),Ha} |= Ma.
We know that B is unsatisfiable. But how do we proceed in resolution? It
looks as though we should be able to resolve {¬Hx,Mx} and {Ha} to get
{Ma}, and then ⊥ may be derived as in Figure 3.4.
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Figure 3.3

That is, somehow ¬Hx and Ha have to be resolved to get Ma from the
clauses {¬Hx,Mx} and {Ha}. It is clear that when we have {¬Hx,Mx},
we have indeed the formula (as per convention in scnf) ∀x(¬Hx∨Mx). From
this, by specification, we surely have ¬Ha ∨Ma. Hence we should be able
to extend our definition of resolvents in such a way that the substitution
[x/a] can be used to effect the specification. But how do we choose this
particular substitution among many others. Moreover, if more than one
variable are involved (as x above), then we may require a substitution such
as [x/a, y/b, z/c, . . .] for simultaneously substituting the constants in place
of the variables. Again, taking one substitution may work for a single
step and you may require a different substitution for another step in the
process of resolution. When you take stock, you realize the need to define
the composition of all such substitutions. In this section, we will try to
formally describe such notions and mechanize the choice of an appropriate
substitution. Note that this corresponds to choosing the right specification
of a universal quantifier, and serially doing so.

{¬Hx,Mx} {Ha} {¬Ma}
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Figure 3.4

A substitution is a finite set of expressions of the form xi/ti, where
xi is a variable and ti is a term. To distinguish between a substitution and
a set, we will write a substitution by enclosing these expressions within
a matching pair of square brackets instead of the braces. That is, a sub-
stitution is an expression of the form [x1/t1, x2/t2, . . . xn/tn], where each
x1, . . . , xn are variables and t1, . . . , tn are terms, xi 6= xj for i 6= j, and
xi 6= ti. The fractions xi/ti need not be written in the same order always;
both [x1/t1, x11/t11] and [x19/t5, x5/t21] are substitutions as long as x’s
are variables and t’s are terms. But [x/c, x/f(a)] and [x/c, y/y] are not
substitutions.
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If σ = [x1/t1, . . . , xn/tn] is a substitution and t is a term, then the result
tσ, of applying the substitution σ on the term t is a term in which each
occurrence of each of the variables xi in t is replaced by the corresponding
term ti simultaneously. For example,

f(a)[x/b] = f(a)

g(f(a), x)[x/f(b)] = g(f(a), f(b))

g(f(x), y)[x/f(y), y/a] = g(f(f(y)), a)

g(f(x), y)[x/f(y)][y/a] = g(f(f(y)), y)[y/a] = g(f(f(a)), a)

You can also define tσ recursively using the grammar of terms. If X is a
formula and σ = [x1/t1, x2/t2, . . . , xn/tn] is a substitution, then Xσ is the
result of simultaneously replacing each free occurrence of each variable xi

by ti in X. For example, if

X = ∀x(Pxy → Qx) ∧Rxy, σ = [x/a], θ = [x/a, y/b, z/c]

then

Xσ = ∀x(Pxy → Qx) ∧Ray

Xθ = ∀x(Pxb→ Qx) ∧Rab

(Xθ)σ = (∀x(Pxb→ Qx) ∧Rab)σ = ∀x(Pxb→ Qx) ∧Rab

(Xσ)θ = (∀x(Pxy → Qx) ∧Ray)θ = ∀x(Pxb→ Qx) ∧Rab

Let σ = [x1/s1, x2/s2, . . . , xm/sm] and θ = [y1/t1, y2/t2, . . . , yn/tn] be
two substitutions. Their composition σ◦θ is again a substitution obtained
in the following way: Consider the set (written with square brackets here)

[x1/s1θ, x2/s2θ, . . . , xm/smθ, y1/t1, y2/t2, . . . , yn/tn]

Delete all elements of the form yi/ti from this set if yi ∈ {x1, . . . , xm}.
Next, delete all elements of the form xj/sj θ if sj θ = xj . The remaining
set is σ ◦ θ.

For example, to compute the composition [x/f(y)]◦[z/y], we begin with
the set [x/f(y)[z/y], z/y], which is equal to [x/f(y), z/y]. There is nothing
to delete thus, [x/f(y)] ◦ [z/y] = [x/f(y), z/y].

As another example, take

σ = [x/f(y), y/z], θ = [x/a, y/b, z/c]

For σ ◦ θ, we form the set

[x/f(y)θ, y/zθ, x/a, y/b, z/c]

Since f(y)θ = f(b), zθ = c, the set is rewritten as

[x/f(b), y/c, x/a, y/b, z/c]
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Delete x/a, y/b as the variables x, y already appear in other replacements
(due to replacements of the form xj/sj θ). The updated set is

[x/f(b), y/c, z/c]

Now, there is nothing to delete, and hence

σ ◦ θ = [x/f(b), y/c, z/c]

What is θ ◦ σ? Well, we form the set

[x/aσ, y/bσ, z/cσ, x/f(y), y/z] = [x/a, y/b, z/c, x/f(y), y/z]

computing with σ. The last two elements are deleted to obtain

θ ◦ σ = [x/a, y/b, z/c]

Now you see that σ ◦ θ 6= θ ◦ σ; order does matter in taking compositions.
If δ = [x/a, y/b, z/y], then for the composition σ ◦ δ, we form the set

[x/f(b), y/y, x/a, y/b, z/y]. From this we first delete x/a and y/b, then from
the updated set, we delete y/y to get σ ◦ δ = [x/f(b), z/y]. Note that the
deletions have to be done in the specified order, else you may land up at a
different substitution.

Exercise 3.7 Show that the composition of substitutions is associative,
i.e., for any substitutions σ, θ, δ, we have (σ ◦ θ) ◦ δ = σ ◦ (θ ◦ δ).

For X = Pxyz, what are X(σ ◦ δ) and (Xσ)δ? We obtain

Xσ = Pxyz[x/f(y), y/z] = Pf(y)zz

(Xσ)δ = Pf(b)yy, X(σ ◦ δ) = Pxyz[x/f(b), z/y] = Pf(b)yy

They are equal! Can you prove it for any formula or any term, and any
pair of substitutions σ and δ?

Lemma 3.5 Let θ and δ be two substitutions, t be any term, and X be any
formula. Then, t(θ ◦ δ) = (tθ)δ and X(θ ◦ δ) = (Xθ)δ.
Proof Use induction on the structure of terms and formulas. For terms,
use induction on the number of occurrences of function symbols and for
formulas, on the number of occurrences of connectives and quantifiers.

Exercise 3.8 Find σ ◦ θ in each of the following cases:
(a) σ = [y/x, z/f(y)], θ = [x/a, y/x, z/f(a)]

(b) σ = [x/a, y/c, z/x], θ = [y/z, x/a]

(c) σ = [x/a, y/a, z/g(x)], θ = [x/a, y/f(z, a), z/y]

Substitutions are applied on sets of formulas as well. That is, for a set
Σ of formulas, and a substitution θ, we have Σ θ = {Xθ : X ∈ Σ}, i.e., θ is
applied on every formula in Σ and then the formulas are collected together
to have Σ θ.

Renaming of variables in a formula can be seen as an application of a
substitution. These special substitutions are called variants. A variant is
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a substitution of the form [x1/y1, x2/y2, . . . , xm/ym], where xi’s are distinct
and yi’s are distinct, and no yj is an xi. We need to use variants in such
a way that two clauses will have different variables after renaming. If B
and C are two clauses, then two substitutions σ and θ are called a pair of
separating variants iff Bσ and Cθ have no common variables. Renaming
is done in such a way that they do not coalesce on any variable.

Recollect that our plan was to choose substitutions in resolving clauses
mechanically. We should have a procedure to choose the substitution [x/a]
while resolving the clauses {¬Hx,Mx} and {Ha}. This is done by a unifier,
which is a substitution that makes both ¬Hx and ¬Ha the same clause.

Let A = {A1, A2, . . . , Am} be a clause where each Ai is a literal. A
substitution σ is a unifier of A iff A1σ = A2σ = · · · = Amσ. That
is, the set Aσ is a singleton. For example, {¬Hx,¬Ha} has a unifier
[x/a] as {¬Hx,¬Ha}σ = {¬Ha}, a singleton. But {¬Hx,Ha} has no
unifier. We say that a clause is unifiable iff there is a unifier of it.
For example, the clause A = {Pxyf(g(z)), Puf(u)f(v)} is unifiable since
Aσ = {Paf(a)f(g(a))}. Here, σ = [x/a, y/f(a), u/a, z/a, v/g(a)] is the
unifier. We also see that the substitutions θ = [x/u, y/f(u), v/g(z)] and
δ = [x/u, y/f(u), z/a, v/g(a)] also unify A as Aθ = {Puf(u)f(g(z))} and
Aδ = {Puf(u)f(g(a))}. Thus, a unifier is not necessarily unique.

Look at Aσ,Aθ,Aδ closely. It is easy to guess that σ = θ[u/a, z/a] and
δ = θ[z/a]. You can also see separately that these compositions are correct.
The point to note here is that if you take θ as your unifier, then later, you
can still choose another substitution to get back the effect of σ or of δ by a
composition. A substitution such as θ here is called a most general unifier.
A unifier θ of a clause A is called a most general unifier of A if for
every other unifier δ of A, there exists a substitution σ such that δ = θσ.
Similarly, a most general unifier of a set of terms is also defined. We are,
in fact, interested in a most general unifier since we do not want to restrict
our universal specification in such a way that we lose information.

However, a most general unifier of a clause (or of a set of terms) need
not be unique. For example, take A = {Pxyf(g(z)), Puf(u)f(v)}. We have
already a most general unifier θ = [x/a, y/f(a), v/g(z)]. Yet another most
general unifier of A is λ = [u/x, y/f(x), v/g(z)]. You can see, of course,
that θ = λ[x/u] and λ = θ[u/x]. But there is a way out. It looks that the
most general unifiers can be obtained from other most general unifiers by
applying variants. In that case, we will not lose any information by using
any one of the possibly many most general unifiers.
Exercise 3.9 See that the clause {Pxyf(g(z)), Puf(u)f(v)} has most
general unifiers θ = [x/a, y/f(a), v/g(z)] and λ = [u/x, y/f(x), v/g(z)].
Does it have any other most general unifier?

The problem is, how to mechanically construct a most general unifier?
We will try to write a procedure by simulating the way we do unification
manually. To this end, let us see how to unify the clause
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A = {Pxyf(g(z)), Puf(u)f(v)}

Your target is to construct a substitution so that both the literals will
become the same after the substitution is effected. You will naturally be
scanning the clauses, say, from left to right, symbol by symbol. The first
symbol P matches. A discrepancy occurs at the second symbol: one is x
and the other is u. So, start with a substitution [x/u]. Then,

A[x/u] = {Puyf(g(z)), Puf(u)f(v)}

Matching the literals in this clause, you find that there is a discrepancy
at the third symbol. One is y, a variable, and the other is a term f(u). So,
form the substitution [y/f(u)]. Applying this, you get

(A[x/u])[y/f(u)] = {Puf(u)f(g(z)), Puf(u)f(v)}

Next discrepancy suggests the substitution [v/g(z)], applying which you
have the unified clause

((A[x/u])[y/f(u)])[v/g(z)] = {Puf(u)f(g(z))}

Since the compositions of the substitutions are associative, Lemma 3.5
gives you the unifier

σ = [x/u] ◦ [y/f(u)] ◦ [v/g(z)] = [x/u, y/f(u), v/g(z)]

The unification procedure described below does just this. We write the
procedure for a set of literals; it is rewritten for a set of terms without any
discomfort. Do this immediately after you understand the procedure. We
will refer to both the procedures as the unification algorithm. Henceforth,
we write the composition σ ◦ θ simply as σθ.

PROCEDURE : Unification
Input: A clause A (or a set of terms A)
Output: A most general unifier ofA if one exists; else, ‘A is not unifiable’

1. If a literal in A starts with ¬ and another does not, then output
‘A is not unifiable’.

2. If all elements of A do not use the same predicate symbol, then
output ‘A is not unifiable’.

3. A0 := A; σ0 := [ ], the empty substitution; θ0 = σ0, k := 0.

4. If Ak is singleton, then output θk.

5. Scan the first two elements of Ak to find a mismatch.

6. If the mismatch is due to different function symbols, then output
‘A is not unifiable’.

7. If the mismatch is due to a variable x in one and a term t in
the other, then if x occurs in t, then output ‘A is not unifiable’,
else, σk+1 := [x/t], θk+1 := θkσk+1.

8. Ak+1 := Akσk+1; k := k + 1; go to Step 4.
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In Step 7, if t is also a variable, then the variable of the first literal
is taken as x and the variable in the second is taken as t, to break the
nondeterminism in the above procedure. Note that the unified clause is
Aθk+1, where the most general unifier is θk+1 = σ1σ2 · · ·σk+1. To fix the
idea, see the following examples and solve the exercises.

EXAMPLE 3.5 Use Unification on A = {Pxf(y), Pf(y)f(x)}.
Solution The first mismatch is at x in the first literal and f(y) in the
second. Thus,

θ1 = σ1 = [x/f(y)], and A1 = Aσ1 = {Pf(y)f(y), Pf(y)f(f(y))}

The next mismatch is at y in the first literal and f(y) in the second. Since
y occurs in f(y), the clause is not unifiable (Step 7).

Exercise 3.10 Show that θ = [x/a, y/g(f(a)), z/f(a), u/f(f(a))] is a
unifier of A = {Pxyf(z), Pag(z)u}. Find a most general unifier σ of A and
also a nonempty substitution δ such that θ = σδ.

EXAMPLE 3.6 Unify A = {P (x, y, g(x, z, f(y))), P (z, f(x), u)}.
Solution

σ1 = [x/z], θ1 = σ1

A1 = Aσ1 = {P (z, y, g(z, z, f(y))), P (z, f(z), u)}

σ2 = [y/f(z)], θ2 = σ1σ2

A2 = A1σ2 = {P (z, f(z), g(z, z, f(f(z)))), P (z, f(z), u)}

σ3 = [u/g(z, z, f(f(z))], θ3 = θ2σ3

A3 = A2σ3 = {P (z, y, g(z, z, f(y)))}

Since A3 is a singleton, the most general unifier is

θ3 = [x/z][y/f(z)][u/g(z, z, f(f(z))] = [x/z, y/f(z), u/g(z, z, f(f(z))].

Exercise 3.11 Find the most general unifiers, if they exist, for each of
the following clauses:

(a) {Pxf(x)g(f(y)), P cf(g(z))g(y)}
(b) {P (x, f(x, g(x), y), f(x, y, z)), P (c, g(y), g(z))}
(c) {P (f(c), x, y), P (z, f(c), y), P (z, x, f(c))}

Henceforth, we will use the term ‘the most general unifier’ or the acronym
mgu for the one computed by the Unification algorithm whenever a clause
or a term is indeed unifiable.

Exercise 3.12 Show that the procedure Unification computes correctly
a most general unifier, if one such exists.
[Hint : Use induction on the number of loops the procedure executes with
any input clause. Look at k.]
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3.4 Extending Resolution

To see how mgu’s can be used in the resolution method, consider the clause
{¬Hx ∨Mx,Ha,¬Ma}. The first clause is C1 = {¬Hx,Mx}, and the
second is C2 = {Ha}. The mgu of ¬Hx and ¬Ha (note the extra ¬ with
Ha) is [x/a]. Now, C1[x/a] = {¬Ha,Ma}, C2[x/a] = {Ha}. Taking the
resolvent, we get {Ma}. Intentionally, we had taken C2[x/a] to keep gen-
erality. Look at one more example.

Suppose that A = {¬Hxy ∨ Mxy,Hya}. What is the most general
unifier of {¬Hxy,¬Hya}? (Look at the additional ¬ again.) The mgu is
σ = [x/y][y/a] = [x/a, y/a]. Now, Aσ = {¬Haa ∨Maa,Haa} from which
resolution gives Maa. Originally, A represents the formula ∀x∀y(Hxy →
Mxy) ∧ ∀ yHya, which logically implies (entails) ∀ yMya. However, we
have only Maa. What was wrong? Why did we lose information? The
reason is, when the substitution [y/a] was applied after [x/y], the variable
x had to be replaced by a. In general, this is not required. In the formula
∀x∀y(Hxy →Mxy)∧∀yHya, the variable y that occurs in ∀yHya could have
been renamed. Suppose we do that now. Then the formula looks like (is
≡ to): ∀x∀y(Hxy →Mxy) ∧ ∀zHza. The clause set representation of this
formula is B = {¬Hxy ∨ Mxy,Hza}. Now, the mgu of {¬Hxy,¬Hza}
is [x/z] which, when applied on B, gives {¬Hza ∨Mza,Hza}. And the
resolvent of the clauses in B is Mza, which keeps the generality intact.
The lesson is

There should not be common variables in clauses; then only resolution
would work as expected.

So, you find the usefulness of separating variants! If the clauses in a clause
set have common variables, then we use separating variants to have distinct
variables in different clauses. Since this can always be done, we assume,
without loss of generality, that no pair of clauses in a set have any common
variables. The resolvent of clauses can then be defined as follows:
Definition 3.1 Let C1 and C2 be two clauses with no common variables,
and l1 ∈ C1, l2 ∈ C2 be two literals such that σ is the most general unifier
of l1 and ¬l2. Then res(C1, C2; l1) = ((C1 − {l1}) ∪ (C2 − {l2}))σ is the
resolvent of the clauses C1 and C2 with respect to the literal l1 (or l2).
Clauses C1 and C2 are called the parent clauses of the resolvent clause
res(C1, C2; l1).

Sometimes, we will write res(C1, C2; l1) as res(C1, C2; l1, σ) to explicitly
mention the mgu σ in the resolvent. Sometimes, we will omit the literal
and the mgu altogether and write it as res(C1, C2).

EXAMPLE 3.7 Find all possible resolvents of the clauses:
A = {Pxf(y), Qg(y), Rxzb} and B = {¬Pxf(b),¬Qz,Rxab}

Solution The clauses A and B have common variables. We first use sep-
arating variants. When implemented in a machine, the separating variants
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will be something like δ1 = [x/x1, y/x2, z/x3] and δ2 = [x/x4, z/x5] so that
instead of A,B, we will be considering the clauses as Aδ1, Bδ2, respectively.
While doing manually, we will keep one of the clauses as it is and rename
the common variables in the second clause. Here, we take δ = [x/u, z/v]
and rename B to have the clause B1 = Bδ = {¬Puf(b),¬Qv,Ruab}.

Now, with A and B1, we have a literal Pxf(y) in A and ¬Puf(b) in
B. The mgu of first and ¬ of the other is to be computed. Since the
literal ¬¬Puf(b) is taken as Puf(b), we compute the most general unifier
of {Pxf(y), Puf(b)}. It is σ = [x/a, y/b], and the resolvent is

res(A,B1;Pxf(y)) = ((A− {Pxf(y)}) ∪ (B1 − {Puf(b)}))[x/u, y/b]
= {Qg(b), Ruzb,¬Qv,Ruab}.

Similarly, choosing the literals Qg(y) from A and ¬Qv from B1, we have
the mgu [v/g(u)] for the set {Qg(y), Qv}. This gives

res(A,B1, Qg(y)) = {Pxf(y), Rxzb,¬Puf(b), Ruab}

Choosing Rxzb from A, you find that the corresponding literal from B
should be Ruab. But the set {Rxzb,¬Ruab} is not unifiable, and so it
gives no resolvent.

As in PL, we would expect the resolvent to be a logical consequence
of its parent clauses. In the above example, we would have {A,B1} |= C,
where C = {Qg(b), Ruzb,¬Qv,Ruab}. Is it so?

Let I = (D,φ) be an interpretation and m be a valuation under I.
Suppose that the state Im |= A and Im |= B1. That is,

Im |= Pxf(y) ∨Qg(y) ∨Rxzb, Im |= ¬Puf(b) ∨ ¬Qv ∨Ruab

Now, if Im 6|= ¬Puf(b), then Im |= ¬Qv ∨ Ruab. In this case, Im |= C.
On the other hand, if Im |= ¬Puf(b), then as u is universally quantified in
¬Puf(b), Im 6|= Pxf(y). Thus, Im |= Qg(y) ∨Rxzb.

Since x and y are universally quantified, Im |= Qg(b) ∨ Ruzb. Conse-
quently, Im |= C. This shows that in any case, Im |= C.

Theorem 3.6 (Resolution Principle) Let A and B be two first order
clauses having a resolvent as a clause C. Then, {A,B} |= C.

Proof Repeat the argument discussed for a particular case above.

So, you can proceed as in PL, to see whether ⊥ is generated from a
given set of clauses, by way of taking resolvents. If at all ⊥ is generated,
then the set of clauses is unsatisfiable.

EXAMPLE 3.8 Apply the resolution principle to show that the set of
clauses A = {{¬Px,Qx}, {Pa}, {Rba}, {¬Qy,¬Rby}} is unsatisfiable.

Solution We try to take resolvents of clauses from A, their resolvents,
and so on with a goal to get ⊥. Here is one such trial.
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1. {¬Px,Qx} H

2. {Pa} H

3. {Qa} res(1, 2;¬Px, [x/a])

4. {¬Qy,¬Rby} H

5. {¬Rba} res(3, 4;Qa, [y/a])

6. {Rba} H

7.⊥ res(5, 6;¬Rba, [ ])

The refutation can be seen as a DAG also; see Figure 3.5.
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Figure 3.5

EXAMPLE 3.9 Show by resolution that A = {{Px, Py}, {¬Pu,¬Pz}}
is unsatisfiable.
Solution Let us try a resolution deduction of ⊥ from the set of clauses.

1. {Px, Py} H

2. {¬Pu,¬Pz} H

3. {Py,¬Pz} res(1, 2;Px, [x/u])

4. {¬Pz,¬Pv} res(2, 3;¬Pu, [u/y])

Why does {¬Pz,¬Pv} come as the resolvent of clauses 2 and 3; why
not {¬Pz}? Because, resolution is taken only after it is guaranteed that
the clauses have no common variables. Thus, (2) is kept as it is, whereas
(3) is first rewritten as {Py,¬Pv} by using a renaming substitution [z/v]
(in fact, the pair of variants [ ] and [z/v]). In a machine implementation,
lines (2) and (3) will appear as

(2′) {¬Px3,¬Px4}
(3′) {Px5,¬Px6}

whose resolvent {¬Px4,¬Px6} will again be rewritten as

(4′) {¬Px7,¬Px8}
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Do you see? We are in trouble! It is clear now that whenever we apply
resolution, there will be a clause in one of the following forms:

{Pxi, Pxj}, {¬Pxi, Pxj}, {¬Pxi,¬Pxj}
And this process will never give us ⊥.

Well, that is quite possible, the author of this book may be wrong in
asking you to show that the set A in Example 3.9 is unsatisfiable. But is
A really unsatisfiable? As an FL-formula,

A ≡ ∀x∀y(Px ∨ Py) ∧ ∀u∀z(¬Pu ∨ ¬Pz)
Since ∀x∀y(Px∨Py) ≡ ∀xPx and ∀u∀z(¬Pu∨¬Pz) ≡ ∀y(¬Py), we have

A ≡ ∀xPx ∧ ∀y(¬Py)

This is clearly unsatisfiable.
So, what is wrong? The Resolution Principle says that whatever had

been deduced in the above derivation is a consequence of the clauses. But
this does not say that every unsatisfiable set will eventually yield ⊥. Per-
haps, resolution is not a complete method in FL. We require an extra rule.
The above discussion gives us a hint. We need a rule to capture the equiva-
lence ∀x∀y(Px∨Py) ≡ ∀xPx. That is, we must be able to deduce {Pz} from
{Px, Py}. Such a clause {Pz} is called a factor of the clause {Px, Py}. We
give a formal definition.

Definition 3.2 Let C be a clause and D ⊆ C, with D having at least
two literals. Let σ be a (the) most general unifier of D. Then Cσ is called
a factor of C. A factor of C with respect to the clause D and mgu σ is
written as fac(C;D,σ) or as fac(C, σ) if D is obvious from the context.

We have used an mgu σ, because from {Px, Py}, we want to deduce
{Pz}, and not just {Pa}. Along with resolvents we will also use factors.

Example 3.9 Redone :

1. {Px, Py} H

2. {Py} fac(1, [u/z])

3. {¬Pu,¬Pz} H

4. {¬Pz} fac(3, [u/z])

5.⊥ res(2, 4;Py, [y/z])

EXAMPLE 3.10 Show that the set C = {{a ≈ b}, {Px}, {¬Pb}} is
unsatisfiable by using resolvents and factors.
A trial solution C is clearly unsatisfiable. But how to deduce ⊥? There
is no variables at all. So, taking factors is useless since {a ≈ b} and {Pa}
would not give {Pb}. We are stuck. Reason? We do not know yet how to
handle the special predicate ≈. We must be able to deduce Pb given the
literals a ≈ b and Pa. In general, if we have X[x/s] and s ≈ t, then we
must be able to deduce X[x/t]. More generally, from t ≈ u and X[x/s],
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with σ being the mgu of s and t, we must deduce X[x/uσ]. Here we need
unification of terms also. The following definition captures the idea. We
will use the notation X(s) for X[x := s] as a shorthand. Note that X[x/s]
is the formula obtained from X by replacing all free occurrences of the
variable x in X by the term s, whereas X(s) is a formula obtained from
X by replacing some (not necessarily all) free occurrences of x in X by s.
Thus, from X(s) you get X(t) by replacing some of the occurrences of s in
X by t.

Definition 3.3 Let X be a formula, s, t, u be terms. Let A and B be two
clauses such that (t ≈ u) ∈ A,X(s) ∈ B, and that A,B have no common
variables. Let σ be a most general unifier of the terms s and t (s, t have
no common variables). Then the paramodulant of A and B is the clause
((A− {t ≈ u}) ∪ (B − {X(s)}) ∪ {X(u)})σ.

The operation of taking a paramodulant is clear: delete (s ≈ t) from A,
delete X(u) from B, and add X(t) to all the remaining literals; the only
restriction is that apply the mgu σ all the time. Adding a paramodulant
is often referred to as paramodulation. We use factors and paramodulants
in solving Example 3.10.

Solution to Example 3.10 For C = {{a ≈ b}, {Px}, {¬Pb}}, let
A = {a ≈ b}, and B = {Px}. As in Definition 3.3, we have

t = a, u = b, s = x,X(s) = Px,A− {t ≈ u} = B − {X(s)} = ∅

The mgu of s, t (in fact of {s, t}) is σ = [x/b]. Hence the paramodulant is

(∅ ∪ ∅ ∪X(u))σ = Pb[x/b] = Pb

Now, complete the solution.

EXAMPLE 3.11 What is the paramodulant of {a ≈ b}, {Pa}?
Solution With A = {a ≈ b}, B = {Pa}, s = a, t = a, we have σ = [ ] and
u = b. Since X(s) = Pa, the paramodulant is X(u)σ = Pb.

EXAMPLE 3.12 What is the paramodulant of the clauses

{f(f(a, c), h(c)) ≈ f(f(b, c), h(c))} and {f(x, f(y, z)) ≈ f(f(x, y), z)}?
Solution Since two equalities are involved, you can choose one of them
as (t ≈ u) and the other as X(s). Let us take the first as (t ≈ u). Then
t = f(f(a, c), h(c)), u = f(f(b, c), h(c)).

With s = f(x, f(y, z)), we find that s and t are not unifiable. But with
s = f(f(x, y), z), s and t are unifiable and the mgu is σ = [x/a, y/c, z/h(c)].
Then,

X(s) = (f(x, f(y, z)) ≈ s), X(t) = (f(x, f(y, z)) ≈ f(f(b, c), h(c)))

The paramodulant is

X(u)σ = (f(a, f(c, h(c))) ≈ f(f(b, c), h(c)))
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There is one more way of computing a paramodulant here; that is, by
taking the second clause as t ≈ u. In that case, you have

t = f(f(x, y), z), u = f(x, f(y, z)), s = f(f(a, c), h(c))

X(s) = (s ≈ f(f(b, c), h(c)))

And then, σ = [x/a, y/c, z/h(c)], and the paramodulant is

X(u)σ = (u ≈ f(f(b, c), h(c)))σ = (f(a, f(c, h(c))) ≈ f(f(b, c), h(c)))

Something curious happens. Can you justify that {¬(t ≈ t)} is unsat-
isfiable, using all the three rules of resolution, factor and paramodulant?
Definitely not. Each of them requires more than one clause, and we have
only one here. To accommodate this, we have to take an extra rule for
equality, namely,

for any term t, derive (t ≈ t) even when there is no premise.

That is, (t ≈ t) is added anywhere in a deduction. This simple looking
rule supplements the factors also. To see this, consider the derivation of
Pa from Px, which is simply the universal specification. Of course, you
can show by resolution that {{Px}, {¬Pa}} is unsatisfiable. Then this will
show that Px |= Pa. This indirect way can be circumvented by using the
above rule of equality along with the paramodulant. Take the new clause
{a ≈ a}, then compute the paramodulant of this and {Px}. You have
t = a, u = a, s = x,X(s) = Px, and the mgu of s and t as σ = [x/a]. The
paramodulant is

(({a ≈ a}−{a ≈ a})∪ ({Px}−{Px})∪{X(s)})σ = {Px[x/a]} = {Pa}

3.5 Resolution for FL

We rewrite the operations of taking resolution, factor, paramodulant and
adding the equality clauses of the form t ≈ t as rules. All the rules taken to-
gether form the method of resolution. You can define what a resolution
refutation (or deduction) means following the footprints of PL. Summing
up, we have the following four rules for working out a resolution refutation
or a resolution deduction:

(R) From two clauses, deduce their resolvents:

C1 ∨ l1 C2 ∨ l2
(C1 ∨ C2)σ

(σ is the mgu of the literals l1 and ¬l2.)

(F) From a clause derive its factor(s):

C ∨ l1 ∨ · · · ∨ lk
(C ∨ l1)σ

(σ is the mgu of the literals l1 ∨ l2 ∨ · · · ∨ lk.)
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(P) From two clauses, one of them being in the form t ≈ u or u ≈ t,
derive their paramodulants:

X(s) (t ≈ u) ∨D
(X(u) ∨D)σ

X(s) (u ≈ t) ∨D
(X(u) ∨D)σ

(σ is the mgu of the terms s and t.)

(E) For any term t, derive (t ≈ t) from any clause:
.

(t ≈ t)

To show that a set of clauses as unsatisfiable, we only derive ⊥ from it.
Let us work out some examples.

EXAMPLE 3.13 Use resolution to show that the following argument is
valid: No student reads a boring book seriously. This book is read seriously
by at least one student (you). Therefore, this book is not boring.
Solution We fix a vocabulary for translation into FL, say, Sx: x is a
student, b: this book, Rxy: x reads y seriously, and Bx: x is a boring
book. The consequence is

{¬∃x∃y(Sx ∧By ∧Rxy),∃x(Sx ∧Rxb)} |= ¬Bb
By RAA, the consequence is valid iff the set of formulas

{¬∃x∃y(Sx ∧By ∧Rxy),∃x(Sx ∧Rxb), Bb}
is unsatisfiable. To apply (the method of) resolution, we first rewrite this
set as a set of clauses.

By skolemization, ∃x(Sx ∧Rxb) gives Sa ∧Rab. The other formula

¬∃x∃y(Sx ∧By ∧Rxy)

is equivalent to

∀x∀y(¬Sx ∨ ¬By ∨ ¬Rxy)

This gives ¬Sx ∨ ¬By ∨ ¬Rxy. Hence the clause set is

{{¬Sx,¬By,¬Rxy}, {Sa}, {Rab}, {Bb}}
We try a resolution deduction of ⊥ applying possibly all the four rules as
mentioned above.

1. {¬Sx,¬By,¬Rxy} H

2. {Sa} H

3. {¬By,¬Ray} 1,2,R

4. {Bb} H

5. {¬Rab} 3,4,R

6. {Rab} H

7. ⊥ R
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EXAMPLE 3.14 Show that ∃x∀y(Py∨Px∨¬Qyx) |= ∃z(Pz ∨¬Qzz).
Solution We must show that {∃x∀y(Px∨Py∨¬Qyx),¬∃z(Pz∨¬Qzz)}
is unsatisfiable. The corresponding clause set is (verify)

{{Pa, Py,¬Qya}, {¬Pz}, {Qzz}}
The following is a resolution refutation:

1. {Pa, Py,¬Qya} H

2. {Pa,¬Qaa} F:[y/a]

3. {¬Pz} H

4. {¬Qaa} 2,3,R

5. {Qzz} H

6. ⊥ 4,5,R

EXAMPLE 3.15 Show by resolution that

{∀x(x ≈ f(x, a)),∀x∀y∀z(f(f(x, y), z) ≈ f(x, f(y, z))),

∀x(a ≈ f(x, h(x)))} |= ∀x∀y∀z((f(x, y) ≈ f(x, z))→ (y ≈ z)).
If you interpret f(x, y) as x + y, then the first premise says that a

is the identity of addition, the second premise asserts the associativity of
addition, and h(x) becomes the additive inverse of x as the third premise
says. You are then asked to show the cancellation law in a group.

Solution Changing into scnf and adding the negation of the conclusion
to the set of premises, we require a refutation of the clause set

A = {{f(x, a) ≈ x}, {a ≈ f(x, h(x))}, {f(f(x, y), z) ≈ f(x, f(y, z))},
{f(b, c) ≈ f(d, c)}, {¬(b ≈ d)}}

where b, c, d are the skolem (new) constants. Here is a refutation; we will
not write the outer braces in the clauses here for better reading. Enclose
each literal in each line by a pair of matching braces for a formal refutation.

1. a ≈ f(x, h(x)) H
2. c ≈ c E
3. a ≈ f(c, h(c)) 1, 2, P:[x/c]
4. f(b, c) ≈ f(d, c) H
5. f(f(b, c), h(c)) ≈ f(f(b, c), h(c)) E
6. f(f(b, c), h(c)) ≈ f(f(d, c), h(c)) 4, 5, P:[ ]
7. f(f(x, y), z) ≈ f(x, f(y, z)) H
8. f(b, f(c, h(c))) ≈ f(d, f(c, h(c))) 6, 7, P:[x/b, y/c, z/h(c)]
9. f(b, a) ≈ f(d, a) H
10. f(x, a) ≈ x H
11. b ≈ f(d, a) 9, 10, P:[x/b]
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12. b ≈ d 10, 11, P:x/d]
13. ¬(b ≈ d) H
14. ⊥ 13, 14, R

Exercise 3.13 Use resolution to determine whether the following formu-
las are satisfiable:

(a) ∀y∃x(Pyx ∧ (Qy ↔ ¬Qx)) ∧ ∀x∀y∀z((Pxy ∧ Pyz)→ Pxz)

∧ ∀x¬∃z(Qx ∧Qz ∧ Pxz)
(b) ∀x∀y∀z((Px ∧Qy ∧Rzy ∧ Syx)→ Rzx)

∧ ¬∃x∃y∃z(Px ∧ Py ∧ ¬(x ≈ y) ∧Rzx ∧Rzy) ∧Qa
∧Rba ∧ Sac ∧ Pc ∧ Pd ∧ ¬(c ≈ d) ∧Rsd ∧ (s ≈ b)

The soundness and completeness of resolution for FL can be proved as
earlier. Soundness is accomplished by showing that for each rule having a
numerator Σ and denominator w, the corresponding consequence Σ |= w is
valid. Though soundness is straightforward, completeness is quite involved.
The central idea is the observation that due to Rules F, E and P, if X(x)
is in A, then X(t) can be derived for any closed term t. (A closed term is
a term having no variables.) Then by induction you will show that every
finite subset of the Herbrand expansion of A can be derived by resolution.
Then you will use the compactness theorem for PL, which guarantees that
if a set of propositions is unsatisfiable, then a finite subset of it is also
unsatisfiable (we have not proved it yet). Now since every finite set of
the Herbrand expansion is derivable, so is this particular finite subset.
Moreover, this finite subset of the Herbrand expansion is propositionally
unsatisfiable. Due to the completeness of resolution (Rule R is used here)
for PL, we conclude that ⊥ is derivable from this finite subset. This proves
the completeness of resolution for FL.

Again, with compactness for FL (not yet proved), which says that if
a set of (FL-) formulas is unsatisfiable, then a finite subset of this set
is unsatisfiable, we see that Σ ∪ {¬W} is unsatisfiable iff for some finite
subset Σ0 of Σ, Σ0 ∪ {¬W} is unsatisfiable. (Without loss of generality,
we may take Σ0 ∪ ¬W , why?) Writing Σ0 = {X1, · · · , Xm}, we obtain
X1 ∧ · · · ∧ Xm ∧ ¬W is unsatisfiable (why?). By using completeness of
resolution for FL, we then conclude that ⊥ is derivable from Σ0 ∪ {¬W}.
Then it will follow that ⊥ is derivable from Σ ∪ {¬W} (why?). This will
prove the strong completeness of resolution.

3.6 Horn Clauses in FL

The Rules E and P of equality and paramodulant take care of the equality
predicate. The fragment of FL without equality is handled by the other
two Rules R and F of resolution and factor. The two rules of resolution
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and factor are equivalent to a single rule called the rule of ‘full resolution’.
In Rule R, recollect that, from A ∨ C and B ∨ ¬D, you derive (A ∨ B)σ,
where σ is the most general unifier of the literals C and D. Now, instead of
just two literals, if you take an arbitrary number of literals, the resulting
rule is the full resolution. In this context, the Rule R, as stated above, is
often referred to as the rule of binary resolution. The full resolution rule
says that

From A ∨ C1 ∨ · · · ∨ Cm and B ∨ ¬D1 ∨ · · · ∨ ¬Dn, derive (A ∨B)σ,
where σ is the mgu of {C1, · · · , Cm, D1, · · ·Dn} for literals Ci, Dj ,
and clauses A,B.

This is written schematically as

(FR)
{A1, . . . , Al, C1, . . . , Cm} {B1, . . . , Bk,¬D1, . . . ,¬Dn}

{A1σ, . . . , Alσ,B1σ, . . . , Bkσ}
(σ is the mgu of the literals C1, . . . , Cm, D1, . . . , Dn.)

We will not attempt a completeness proof of Rule FR to FL without
equality. This would be achieved by showing that the Rules R and F can
be derived from Rule FR. However, we will rewrite the clauses in a different
form and see how resolution may possibly be implemented.

A clause of the form {C1, C2, . . . , Cm,¬D1,¬D2, . . . ,¬Dn}, where Ci, Dj

are atomic formulas (not just literals) can be rewritten as

D1 ∧D2 ∧ · · · ∧Dn → C1 ∨ C2 ∨ · · · ∨ Cm

due to the equivalences X → Y ≡ ¬X ∨ Y, ¬X ∨ ¬Y ≡ ¬(X ∧ Y ). Tradi-
tionally, it is written with the arrow in reverse direction, i.e., as

C1 ∨ C2 ∨ · · · ∨ Cm ← D1 ∧D2 ∧ · · · ∧Dn

the reverse arrow being read as ‘if’. Moreover, since the connective on the
left of ← is only ∨ and on the right is only ∧, both of them are replaced
by commas to rewrite such a formula as

C1, C2, · · · , Cm ← D1, D2, · · · , Dn

You must however, remember that the commas on the left of ← are ∨’s
and the commas on the right of ← are all ∧’s. A clause in this form is said
to be in Kowalski form. When m = 1, such a clause is called a Horn
clause as in PL.

The reason that a clause is written this way is its associated procedural
meaning of searching for a model. Let us see the case of a Horn clause

C ← D1, . . . , Dn

For example, we may express the grandfather relation as

grandfather(x, y)← father(x, z), father(z, y)

To check whether a is a grand-father of b, you would first find out whether
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there is some c such that a is father of c and also that c is a father of b.
Quantification of the variables in such a clause is seen as

∀x∀y(grandfather(x, y)← ∃z(father(x, z), father(z, y)))

i.e., the extra variables to the right of if are all existentially quantified
whose scope begins just after the symbol ←, and universal quantification
of all the other variables is taken with the whole formula in their scopes.

Suppose that you have already built up a database of facts describing
the relation of father as follows:

father(rajiv, rahul).

father(firoz, rajiv).

father(rajiv,Atul).

father(firoz, sanjay).

father(gandhi, firoz).

father(gandhi, devan).

Along with this, you also have the rule

grandfather(x, y)← father(x, z), father(z, y).

Then you can query such a database, and the resolution is applied for
concluding whether grandfather(gandhi, rahul) holds or not. It is, in fact,
enough just to unify x, y, z with the constants

rajiv, rahul, firoz, sanjay, gandhi, devan

one after another and then try to see whether they hold by matching with
the facts. Let us see how the procedural meaning is given to the clauses
(and quantifiers) here. Suppose you have the query

?− grandfather(firoz, rahul).

First of all, grandfather(., .) is not a fact. So, the given rule (not the
resolution rules) of the database, i.e.,

grandfather(x, y)← father(x, z), father(z, y)

is applied. While doing this, x becomes bound to (is instantiated to) firoz
and y becomes bound to rahul, so that the goal would be satisfied provided
both father(firoz, z) and father(z, rahul) become true for some z. Now,
in our database, we have the first fact to match with father(firoz, z) is
father(firoz, rajiv). Thus, z becomes bound to rajiv as a trial solution.
This would be a solution provided that father(rajiv, rahul) is true. Since
it is a fact, grandfather(firoz, rahul) holds.

This is how the logic programming language PROLOG works for satis-
fying a goal. It looks fine for a Horn clause. But Horn clauses do not cover
the whole of FL. We must work out a similar plan for Kowalski forms. A
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first attempt is whether we can write every formula as a set of (conjunction
of) Horn clauses. Though this is not possible (why?), a subclass of formulas
of Kowalski form can be written as a conjunction of Horn clauses; this is
practically enough for many problem solving tasks. Suppose that you can
write a Kowalski form

C1 ∨ · · · ∨ Cm ← D1 ∧ · · · ∧Dn

(depending on the problem domain) as a conjunction of Horn clauses

C1 ← D11 ∧D12 ∧ · · · ∧D1k1

C2 ← D21 ∧D22 ∧ · · · ∧D2k2

...

Cm ← Dm1 ∧Dm2 ∧ · · · ∧Dmkm

where the literals Dij are from among D1, . . . , Dn. Then, the above pro-
cedural meaning can be extended to the Kowalski form. Thus, PROLOG
works for the fragment of FL, which can be expressed as conjunctions of
Horn clauses. In fact, it works with a slightly bigger fragment. This ex-
tension comes from augmenting negation as failure to it. For example, to
define a subset relationship between two sets x and y, the usual way is to
write x ⊆ y ← ∀z(z ∈ x → z ∈ y). As it is, in a Horn clause, we cannot
allow ∀ on the right side of ← . We must look for alternate ways of writing
this formula. We may express x ⊆ y as “no z in x fails to belong to y”.
That is,

x ⊆ y ← not ∃z(z ∈ x ∧ not (z ∈ y))

Here, the connective not is not quite the same as ¬. The interpretation of
not is procedural, in the sense that not X holds if X cannot be falsified,
basing our reasoning on the given database. You can interpret this not in
defining subsets, as

x is a subset of y if it cannot be shown on the basis of the database
of facts that x is not a subset of y.

So, we must have data for ‘is not a subset of’. In terms of this relation,
‘not a subset of’, the definition will look like

x is not a subset of y if there is some z in x which fails to be in y.

This is OK as long as we are concerned with ‘not a subset of’, but it is
not quite OK to capture the abstract concept of ‘subset of’. However,
this procedural meaning of ¬ as not adds more power to the Horn clauses.
Sometimes, ‘negation as failure’ is referred to as the closed world assump-
tion. That is, if something does not hold in the given database (now all of
our world), then it is false. Clearly, negation as failure with Horn clauses
still do not have the full expressive power of FL. Let us see an example.
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The sentence ¬p→ p semantically entails p. Writing it as a rule, you have

p← q, where q is ¬p→ p.

Taking ¬ as not, the rule is rewritten as

p← q, where q is not p→ p.

Now, to satisfy the goal p, we have to first satisfy the condition not p→ p,
i.e., the new goal p← not p. But this goes on a loop if not is interpreted as
a failure since it says that p succeeds only when p fails. To see it another
way, suppose that p is P (x) for a unary predicate P. Now P (x) succeeds if
not P (x) succeeds. Both the sides of ‘if’ need to satisfy or falsify P (x). In
other words, P (x) to be satisfied, calls the procedure ‘falsification of P (x)’.
Again this happens if “P (x) is falsified” is falsified, calling falsification of
‘falsification of P (x)’. This goes on ad infinitum. Thus, PROLOG fails in
proving P (x) given that P (x) ← ¬P (x). That is, the procedural interpre-
tation along with the Horn clauses would not be sufficient to capture the
whole of FL.

You should not look down upon PROLOG due to its inability in recog-
nizing a situation where a goal is unsolvable. In fact, every theorem prover
will have this inability; it cannot handle all the situations of solving a goal
expressed in FL. This is essentially the undecidability of first order logic.

SUMMARY

In this chapter, you have started with the method of resolution refutation
for checking whether a cnf in PL is satisfiable or not. The method bases on
a simple observation that if a clause contains a literal and another clause
contains the negation of the same literal, then the resolvent of these two
clauses formed by putting together all literals in the clauses except this
pair of complementary literals is a consequence of the two clauses. Then
you have seen how to avoid generating wasteful resolvents by the use of
subsumption. You have also learnt how to extend the resolution method
to FL by introducing the factor rule. The two rules of resolution (called as
binary resolution for FL), and factor are sufficient for FL without equality.
For dealing with the equality predicate, two more rules of paramodulation
and equality have been introduced. You have also seen some hints towards
applications of FL (and of resolution) to problem solving and logic pro-
gramming. The following bibliographic remarks will be helpful to pursue
the approach further.

The resolution method was found by Robinson [61] in 1965, and since
then it had received much attention due to its easy machine implemen-
tation. An earlier method closely related to the resolution was the Davis
Putnam method [9]. An exposition of resolution method basing on differ-
ent formal systems can be found in [62]. For many modifications towards
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making the resolution efficient by choosing various strategies are discussed
in [6, 48]. Its extension to first order logic through paramodulation has
first appeared in [63]. For completeness of the resolution method for first
order logic (using the rules R,F,E,P) refer [48]. There have been many
refinements of the resolution method. Some refinements such as linear res-
olution, model elimination, unit resolution, etc. have been tried keeping in
view a particular class of clauses, on which they become efficient too. For
these refinements, you may consult [43, 48, 62]. The resolution method has
been extended to higher order logics also; see for example, [1]. The resolu-
tion method is extensively used in computing the set of prime implicants
and implicates [77] arising in minimization of Boolean circuits and knowl-
edge compilation. Before exploring the resources, attempt the following
problems.

PROBLEMS

1. Construct clause sets corresponding to the following formulas and con-
sequences:

(a) ∃xX ↔ ¬∀x¬X
(b) ∀x(∃y(Pxy → Qxy) ∧ ∃y(Qxy → Pxy))

(c) ∀x(∃yPxy ∧ ¬Qxy) ∨ ∀y∃z(Qyz ∧ ¬Rxyz)
(d) ¬(∃x∀yPxy → (∀x∃z¬Qzx ∧ ∀y¬∀zRzy))

(e) ∃x∀y∀z∃x(∃u(Pxz ∨Qxy)↔ ¬∃u¬∃w(Qxw ∧ ¬Rxu))

(f) ∃x∃y(Pxy → ∀x(Qx ∧Rxy))

(g) ∀xPx→ ∃x∃y(Qx ∨Rxy)

(h) ∀x∀y(∀zPxyz ∨ (∀yRxy → ∃u(Rxu ∧Quz)))
(i) {p ∨ q → r,¬s ∧ ¬t→ ¬r,¬t ∨ u,¬(¬s→ u)} |= ¬p
(j) {p→ (q → r), r ∧ s→ t,¬s ∨ t→ u} |= p→ (q → r)

(k) {∀x(∃y(Pxy ∧Qy)→ ∃y(Ry ∧Bxy)),∀x¬Rx} |= (Qy → Pxy)

(l) {∀x(Px→ ∀y(Qxy → Ry)),∃y(Py ∧ ∀x(Bx→ Qyx))} |= ∀zBz

2. Construct essentially two different resolution proofs along with the
resolution DAGs of (p↔ q) ∧ (q ↔ r)→ (p↔ r).

3. Show that the composition of substitutions is associative. Is it also
commutative? Justify your answer.

4. Find a pair of separating variants for the following clauses:

(a) {Pxyf(z)}, {Pzyf(y)}
(b) {Pxy, Pyz}, {Qzy,Rf(y)z}
(c) {Pxg(x)y}, {Pxg(x)y}
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5. Find clauses A,B and a substitution σ such that (A − B)σ is not a
subset of Aσ −Bσ.

6. Use Unification algorithm to find the mgu, if it exists, for each of the
following clauses:

(a) {Pxy, Pf(x)y}
(b) {Pxayf(y), P zyg(c)u}
(c) {Pf(x)y, Pzz, Pxf(u)}
(d) {Pxf(y)z, Pcg(u)w,Puvg(w)}

7. Is it true that if σ and θ are two most general unifiers of a clause A,
then θ = σδ for a variant δ? If you think ‘no’, give a counter example. If
‘yes’, give a proof.

8. Find R∗(A) and RS∗(A) for the following clause sets A:

(a) {{p,¬q}, {p, q}, {¬q}}
(b) {{q, r}, {¬p,¬q}, {¬r,¬p}}
(c) {{p}, {q}, {p, q}}
(d) {{¬p}, {¬p, r}, {p, q,¬r}}
(e) {{¬p,¬r}, {¬q,¬r}{p, q, r}}

9. Attempt resolution proofs of the following consequences. Also construct
the resolution DAGs.

(a) {{p,¬q, r}, {q, r}, {¬p, r}, {q,¬r}, {¬q}} |= ⊥
(b) {{p,¬q}, {r, p}, {¬q, r}, {¬p, q}, {q,¬r}, {¬r,¬p}} |= ⊥
(c) {{¬p, q}, {¬q, r}, {p,¬r}, {p, q, r}, {¬p,¬q,¬r}} |= ⊥
(d) (p↔ (q → r)) ∧ (p↔ q) ∧ (p↔ ¬r) |= ⊥
(e) > |= (((p→ q)→ ¬q)→ ¬q)
(f) ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) ∨ (¬p ∧ ¬q) ∨ (¬p ∧ ¬r) ∨ (¬q ∧ ¬r) |= ⊥
(g) A→ (B → A)

(h) (A→ (B → C))→ ((A→ B)→ (A→ C))

(i) (¬B → ¬A)→ (A→ B)

(j) (A ∧B)↔ ¬(A→ ¬B)

(k) (A ∨B)↔ (¬A→ B)

(l) (A↔ B)↔ (A→ B) ∧ (B ∧A)

(m) {{Px,Qx}, {Pa}, {¬Py}, {¬Qz}}
(n) {{Pxy,Qxa}, {Pax,¬Qyx}, {¬Pyy}}
(o) {{¬Px,Qx}, {Pc}, {Rac}, {¬Qz,¬Raz}}
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(p) ∀x(X → Y )→ (X → ∀xY ), if x does not occur free in X

(q) ∃xX ↔ ¬∀x¬X
(r) ∀xX → X[x/t], if t is a term free for x in X

(s) {Pc,∀x(Px→ Qx),∀x(Rx→ ¬Qx), Ra} |= ¬(c ≈ a)

(t) {{Px,Qx,Rxf(x)}, {¬Px,Qx, Sf(x)}, {Ac}, {Pa},
{¬Ray,Ay}, {¬Ax,¬Qx}} |= ∃x(Ax ∧ Sx)

(u) {∀x∀y(fxy ≈ fyx),∀x∀y(fxy ≈ y)∀x∃y¬(x ≈ y)}
|= ∀x∃yQxy ∧ ∃y∀x¬Qyx

(v) ∀x∀y∀z(Pxy ∧ Pyz → ¬Qxz) ∧ ∀x∀y(Pxy ↔ (Qyx ∨Rxy))

∧ ∀x∃yPxy |= ∀xPxx

10. Use resolution to determine the validity of the following arguments.

(a) Some students read logic books seriously. No student ever reads a
boring logic book. All logic books in your library, including this one, is
read by all students seriously. Therefore, none of the logic books in
your library is boring.
(b) Some people love anyone who likes the leader. Everyone loves some-
one who likes the leader. None, who loves someone who likes the leader,
likes the leader. Therefore, the leader does not like himself.
(c) No teacher who likes to write books in logic or who devotes himself
to his students will be in the good books of the administration. No one
who is not in the good books of the administration will be promoted.
Therefore, no teacher who likes to write books in logic will be promoted.
(d) Arjun loves all and only those who love Urvasi. Urvasi loves all and
only those who love Arjun. Arjun loves himself. Therefore, Urvasi loves
herself.

11. A clause A subsumes a clause B iff there is a substitution σ such
that Aσ ⊆ B. Construct an algorithm for determining whether a clause
subsumes another.

12. For every propositional variable p, suppose that you rewrite the literals
p and its negation ¬p as ¬p and p, respectively, then a resolution proof of
a set of clauses when rewritten will remain essentially the same. Show it.

13. Show that deletion of trivial clauses does not affect the adequacy
(soundness and completeness) of resolution.

14. If a clause C subsumes D, then removal of D does not affect the
adequacy of resolution. Show it.

15. Let A be a clause set with each clause in it having at most two literals.
Show that the resolution method determines the satisfiability of A in a time
which is a polynomial in the length of A.
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16. Let B be a clause set, each clause of which has at most three literals.
Give reasons why your solution of Problem 15 may not prove that the reso-
lution method determines satisfiability of such a clause set B in polynomial
time.

17. For a clause set A (in PL), define Sn(A) recursively by

S0(A) = A, Sm+1(A) = {C : C is a resolvent of two clauses in Sm(A)}

and then take S∗(A) = ∪n∈NSn(A). Give an example of a clause set A such
that A is unsatisfiable but ⊥ 6∈ S∗(A).

18. For a clause set A (in PL), define Un(A) recursively by

U0(A) = A,

Um+1(A) = Um(A) ∪ {C : C is a resolvent of two clauses in Um(A)
one of which is a singleton}

and then take U∗(A) = ∪n∈NUn(A). This is called unit resolution. Give an
example of a clause set A such that A is unsatisfiable but ⊥ 6∈ U∗(A).

19. Let A be any clause set in PL. For any set B ⊆ A, write N(A,B)
= A ∪ {C : C is a resolvent of a clause in B and a clause in A}. Define
UNn(A) inductively by:

UN0(A) = A, UNm+1(A) = N(UNm(A), A)

Let UN∗(A) = ∪n∈NUNn(A). Show that ⊥ ∈ U∗(A) iff ⊥ ∈ UN∗(A).

20. Let A be a unifiable clause. Let δ be a substitution computed by the
Unification algorithm. Show that Aδ is unifiable.

21. By using Problem 20, or in some other way, prove the correctness of
the Unification algorithm.

22. Show that if a clause A is unifiable, then there exists a most general
unifier. Can you prove this without using the previous problem?

23. A trivial example to show that an mgu is not unique is to use a variant.
Give a nontrivial example.

24. How many occurrences of the variable x1 are there in the mgu of the
terms f(x2, x3, . . . , xn) and f(g(x1, x1), g(x2, x2), . . . , g(xn−1, xn−1))?

25. Show that the factor rule can be restricted to clauses consisting of a
pair of literals only.

26. Is a factor of two clauses a conclusion of those two clauses? Justify
your answer either with a proof or with a counter example.

27. Show that if a clause is satisfiable, all its factors are also satisfiable.

28. Is a paramodulant of two clauses a conclusion of those two clauses?
Justify your answer either with a proof or with a counter example.
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29. LetD be a domain (a nonempty set of symbols). Then the ground terms
from D are defined by using the definition of terms restricting the basic
terms to the elements of D rather than taking all variables and constants.
The ground literals and ground clauses are defined using the ground terms
instead of any arbitrary term. For any clause, its ground instances are
obtained by replacing a variable in the clause by a ground term. Show that

(a) For ground clauses, whatever that can be derived by full resolution,
can also be derived by binary resolution.
(b) For any pair of clauses A,B, every resolvent of a ground instance of
A and a ground instance of B is a ground instance of some resolvent of
A and B.

(c) For clauses A and B, every ground instance of a resolvent of A and
B contains as a subset some resolvent of a ground instance of A and a
ground instance of B.

30. Use Problem 29 to show that a clause set is unsatisfiable iff ⊥ can be
derived from it by resolution.

31. Let A be a clause set and B ⊆ A is such that A − B is satisfiable. A
clause in R∗(A) has B-support iff it is in B or is a resolvent of two clauses,
of which at least one has B-support. Let R1(A) = A ∪ {C ∈ R(S) : C has
B-support}. Define R∗1(A) in the usual way. Show that A is unsatisfiable
iff ⊥ ∈ R∗1(A).

32. Prove strong adequacy of resolution to FL using the idea described at
the end of Section 3.5. That is, assuming compactness for both PL and
FL, show that for any set Σ of formulas and any formula W, Σ |= W iff
⊥ is derivable from Σ ∪ {¬W} by resolution. [Here you are using all the
Rules R, F, E, and P.]
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Proofs in PL and FL

4.1 Introduction

You have seen many proofs of theorems, and also have proved many theo-
rems yourself. How does a proof look like? Let us see a simple one. With
the axioms of R, the real number system, as you have used in your school
days, can you prove that there is only one 0? What does this statement
mean? Well, we have the axioms of R as “+ is commutative, associative,
having the identity as 0, and corresponding to each x ∈ R, there is a y ∈ R
such that x + y = 0”. Similar axioms for the operation × also holds. We
also have axioms of the relation <, etc. We ask how to use these axioms
or rules to show that the identity element 0 of + is unique, i.e., there does
not exist any (other than 0) element e ∈ R having the property that for
every x ∈ R, x+ e = x. Here is a standard proof:

Let a and b be two such elements. Then, for every x ∈ R,
x+ a = x, x+ b = x. Consequently, a = a+ b = b+ a = b.

Now, why is such a proof important? Because its correctness can be
checked mechanically. All that you have to see is whether the axioms have
been applied in the correct way and whether nothing else has been used.
Can you have a similar proof mechanism for PL and FL? In this chapter,
we will try to answer this question. We will see that not only the proofs in
PL and FL can be mechanically checked, but also the proof systems give
more insight into the logics.

4.2 Axiomatic System PC

What then constitutes a proof? We start with some axioms, the proposi-
tions or formulas which are accepted without any further question. They
are like the postulates of geometry, which should be self-evident. We will
start with valid propositions or formulas, but evident or not,we cannot say
without semantics. Here, in a proof, we are not supposed to use any kind
of truth unless we give meaning to the syntactic entities. Then a proof will
have only some rules telling how to proceed from the axioms towards de-
riving other formulas, which would be termed as theorems in the axiomatic
system. Such rules will be termed as rules of inference.

152
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We start with an axiomatization of PL and then proceed towards one for
FL. In PL, we know that many connectives are redundant, i.e., a subset of
connectives can be chosen to do the job, the so-called adequate sets or truth
functionally complete sets of connectives. Some such sets of connectives
are {↑}, {↓}, {¬,→}, {¬,∨}, and {¬,∧}. We choose the set {¬,→}. Thus
we are planning to work with the fragment of PL which uses the only
connectives as ¬ and →. This does not in any way restrict our method
to this fragment of PL alone since other connectives can be tackled by
way of definitions such as p ∨ q ≡ ¬p → q. Instead of making the system
complicated with these definitions, we assume that we have in PL, the only
connectives as ¬ and →. Similarly, we choose not to use the propositional
constants > and ⊥ in this fragment of PL since they can be introduced or
eliminated by definitions: > ≡ (p → p), and ⊥ ≡ ¬(p → p). Our axioms
are:

(A1) A→ (B → A)

(A2) (A→ (B → C))→ ((A→ B)→ (A→ C))

(A3) (¬A→ ¬B)→ (B → A)

In fact, these are axiom schemes, in the sense that p → (q → p)
is an axiom as it is obtained from A1 by replacing A by p and B by q
throughout. Any such replacement gives an instant of the axiom scheme
A1. The instance is the axiom A1. We thus take A1 to A3 as axiom
schemes and remember that any instance of an axiom scheme is an axiom.
Moreover, an instance of a scheme is obtained by replacing throughout the
letters A,B,C by any propositions p, q, r, respectively. In addition to the
axioms (axiom schemes), we have a rule of inference:

(MP)
A A→ B

B

You can see that this inference rule is the consequence Modus Ponens:
{A,A → B} |= B, written as a fraction. Since in the axiomatic system
there is no truth or falsity, we simply write the consequence as a fraction.
You may read the rule MP as “from A and A → B, derive B ”. This is
again a rule scheme in the sense that any instance of this scheme is a rule.
That is, if you have already (derived) the propositions p and p → q, then
the rule allows you to derive q, whatever the propositions p and q may be.
For example, deriving q → r from p→ q and (p→ q)→ (q → r) is also an
application of the rule MP. Note that we need not explain what the word
‘derive’ means. Informally, it signals deductions, but formally, it may just
turn out to be writing the propositions one after another. An axiom is
considered derived from any proposition. Similarly, when we already have
(derived) propositions p and p → q, we can write q anywhere thereafter,
due to MP. We now give an example of a proof in our axiomatic system.
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EXAMPLE 4.1 Here is a proof:

1. (p→ (q → p))
→ (r → (p→ (q → p))) A1, A := p→ (q → p), B := r

2. p→ (q → p) A1, A := p,B := q

3. r → (p→ (q → p)) MP, A := line 2, A→ B := line 1

The explanation of the above proof is fairly clear. Our documentation
on the right says why the propositions in lines 1 and 2 are axioms. It says
that the lines 1 and 2 are instances of A1. The proposition on the third line
is derived from the propositions in lines 1 and 2 by an application of the
inference rule MP. Note that the line numbers on the left help us annotate a
proof by keeping proper documentation. Neither the line numbers nor the
annotation forms a part of the proof; the proof is in the middle column.
The first and the third columns help us read the proof. Moreover, the
proof proves the proposition r → (p → (q → p)), and this proposition is
a theorem of the axiomatic system. Let us give a name to this axiomatic
system so that we may easily talk about it.

Definition 4.1 The axiomatic system PC has all the propositions having
the only connectives as ¬ and →. PC has axiom schemes A1, A2, A3, and
the inference rule MP. A proof in PC is a finite sequence of propositions,
where each one is either an axiom or is obtained (derived) from earlier two
propositions by an application of MP. The last proposition of a proof is a
theorem of PC; the proof is said to prove the theorem. The fact that “A
is a theorem” is written as ` A. We also read ` A as “A is provable”.

In an axiomatic system such as PC, the notion of a proof is effective,
i.e., if it is claimed that some object is a proof of a theorem, then it can
be checked whether the claim is correct or not in an algorithmic manner.
However, construction of a proof is not effective; there may not be an
algorithm to construct a proof of a given theorem. Of course, proofs can
be generated mechanically by following the rules as given in Definition 4.1;
the problem comes when it is targeted towards proving a given theorem.
We will see by way of examples how to do it; the point is that we may
have to rely on our intuition; it is not mechanical. The examples will, in
a way, train you towards achieving a goal towards generating a particular
theorem at the end of a proof.

EXAMPLE 4.2 Show that ` (p→ p).
Solution It is so simple a theorem to be proved, but what do we start
with, A1, A2, or A3? A1 is A→ (B → A). It does not seem to be helpful.
But we have p→ (p→ p), as one of its instances. If somehow we are able
to eliminate the first p, then we are through. The only way of elimination
is the inference rule MP. It would require p so that from p and p→ (p→ p)
we will arrive at p→ p. But it seems we cannot derive p.
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Let us look at A2. It looks like: (p→ (q → r))→ ((p→ q)→ (p→ r)).
If we plan to apply MP, we may derive p → r, provided we have already
the propositions: p → (q → r) and p → q. But towards reaching p → p,
we have to take r as p. Thus, we must have the two propositions (replace
r by p): p → (q → p) and p → q. Now, the first of these propositions,
i.e., p → (q → p) is simply A1. So, you see, some progress has been
made. At this stage, our plan is to start with A1 as p → (q → p) and
A2 as (p → (q → p)) → ((p → q) → (p → p)), and apply MP to get
(p → q) → (p → p). Fine, but then how to eliminate p → q? We have
again A1 as p → (q → p). Thus, instead of q if we had p → q, then we
would have been through. Well, then replace q by p→ q throughout. That
is, we would start with A2, where we replace r by p and q by p → q, and
start all over again.

Our plan now compels us to start with A2 as (p → ((q → p) → p)) →
((p → (q → p)) → (p → p)), use A1 as p → ((q → p) → p), conclude by
MP that (p → (q → p)) → (p → p). Next, we use A1 as p → (q → p) and
apply MP to conclude p→ p. Fine, you got it! But we must also write the
whole argument as a proof in PC. Here is the proof:

1. p→ ((q → p)→ p) A1: B := q → p

2. (p→ ((q → p)→ p))

→ ((p→ (q → p))→ (p→ p)) A2 : B := q → p, C := p

3. (p→ (q → p))→ (p→ p) 1, 2, MP

4. p→ (q → p) A1 : A := p,B := q

5. p→ p 3, 4, MP

Henceforth, we will make our heavy documentation light by avoiding writ-
ing the replacements of A,B,C by other propositions; you should be able to
find out these replacements by looking at the proof and the axiom scheme
mentioned over there. Further, when MP is applied to two previous lines,
we will not mention the line numbers also. If it is applied to one previous
line and another earlier but remote line, we will simply mention this remote
line number. For example, the rightmost entry in line 1 in the above proof
would be written as A1, omitting the replacement B := q → p, and that in
line 3 would simply be written as MP.

Just like axiom schemes and inference rules, theorems are theorem
schemes. Once you have a proof of p → p, you can have a proof of
(p → q) → (p → q). It is simple; just replace p by p → q throughout
the proof. Thus theorems can be helpful in proving other theorems.

EXAMPLE 4.3 Show that ` q → (p→ p).

Solution Look at Examples 4.1 and 4.2. Do they suggest anything?
In Example 4.2, we have proved p → p; we will continue that proof by
appending an appropriate copy of Example 4.1. Here is the proof:
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1. p→ ((q → p)→ p)
...

5. p→ p Example 4.2

6. (p→ p)→ (q → (p→ p)) A1

7. q → (p→ p) MP

This suggests that we can use (already proved) theorems as theorem
schemes to construct other proofs. Though such a construction is not a
proof, a proof can be constructed by following the intended replacements
in the referred existing proofs. Such proofs which use existing theorems are
called quasi-proofs; but we will not make our vocabulary heavy by more
and more technical words. we will simply accept these as proofs. Whenever
we refer to another existing theorem (may be with suitable replacements),
we document this by mentioning ‘ Th’ on the rightmost column. The proof
(quasi-proof, indeed) in Example 4.3 can be rewritten as

1. p→ p Th

2. (p→ p)→ (q → (p→ p)) A1

3. q → (p→ p) MP

EXAMPLE 4.4 Show that ` ¬q → (q → p).
Solution It seems A3 will be useful since it is the only axiom which
mentions the symbol ¬. A3 looks like:

(¬p→ ¬q)→ (q → p)

But, instead of ¬p→ ¬q, we have only ¬q in our suggested theorem. Well,
¬q can give us ¬p → ¬q due to A1. One second, what does it mean to
say that “¬q can give us ¬p → ¬q”? It means that if we have already ¬q
appearing in a proof, then we can use A1 to have ¬q → (¬p → ¬q) and
apply MP to obtain ¬p→ ¬q. Well then, our plan is to use

¬q → (¬p→ ¬q) and (¬p→ ¬q)→ (q → p)

But how to obtain ¬q → (q → p) from these two? Is there any way to
eliminate ¬p→ ¬q? Right now, it seems not plausible.

For using MP, it would be worthwhile to try

(¬q → (¬p→ ¬q))→ (¬q → (q → p))

since by A1, we already have ¬q → (¬p → ¬q). But how to show this?
This proposition matches with the latter part of A2, i.e., with

(A→ B)→ (A→ C)

The replacements are A := ¬q,B := (¬p → ¬q) and C := (q → p). The
missing part is A → (B → C) which, with the intended replacements,
would look like:

¬q → ((¬p→ ¬q)→ (q → p))
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If this is the target now, then we find that the proposition after ¬q →
is just A3. We have seen in Example 4.3 that if we have a proof of X, then
we can get a proof of Y → X for any Y. Using this heuristic, we now have
the required proof. The analysis till now is backward: “to get the theorem,
we should already have so and so”, etc. We want to write the proof from
axioms to the theorem; not otherwise. This can be done easily once you
have visualized the plan. At this point, close the book and try to construct
the proof yourself; come back to this page after five minutes. Here is the
proof:

1. (¬p→ ¬q)→ (q → p) A3

2. ((¬p→ ¬q)→ (q → p))→ (¬q → ((¬p→ ¬q)→ (q → p))) A1

3. ¬q → ((¬p→ ¬q)→ (q → p)) MP

4. (¬q → ((¬p→ ¬q)→ (q → p)))→
((¬q → (¬p→ ¬q))→ (¬q → (q → p))) A2

5. (¬q → (¬p→ ¬q))→ (¬q → (q → p)) MP

6. ¬q → (¬p→ ¬q) A1

7. ¬q → (q → p) MP

Fine, we have got a proof. But let us look at the rough work above,
where we thought we might get a proof using ¬q → (¬p→ ¬q) and (¬p→
¬q)→ (q → p). That is, if we are allowed to assume ¬q, then first, we can
derive ¬p → ¬q, and then using A3 and MP, we obtain q → p. This will
prove the consequence that “from the sole premise ¬q follows the conclusion
q → p”. Here is a formal definition of the notion of consequences in our
axiomatic system PC.

Definition 4.2 Let Σ be a set of propositions and w be any proposition. A
proof of the consequence Σ ` w is a finite sequence of propositions where
every proposition is either an axiom, a proposition in Σ, or is obtained from
earlier two propositions by an application of MP, and the last proposition in
the sequence is w. Each proposition in Σ is called a premise, and w is called
the conclusion. We simply write Σ ` w to say that there exists a proof
of the consequence Σ ` w; in that case, we also say that the consequence
is provable. When Σ = {A1, . . . , An}, a finite set, we also write Σ ` w as
A1, . . . , An ` w.

We just compare the Definitions 4.1 and 4.2 and observe that when
Σ = ∅, the consequence Σ ` w boils down to ` w. As in the proofs of the-
orems, we will have three columns, the first of which will keep record in
giving serial numbers to the propositions, the third will be used to docu-
ment the proof, and the second one will be the real proof. We will mention
the letter ‘P’ in the documentation to say that the proposition used in that
line of the proof is a premise. We have a ready-made example:
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EXAMPLE 4.5 Show that ¬q ` q → p.
Solution Here is the proof:

1. ¬q P
2. ¬q → (¬p→ ¬q) A1
3. ¬p→ ¬q MP
4. (¬p→ ¬q)→ (q → p) A3
5. q → p MP

Let us recollect that in trying to construct the proof in Example 4.4, we
could not derive ¬q → (q → p) from the two propositions ¬q → (¬p→ ¬q)
and (¬p → ¬q) → (q → p) because we did not know how to eliminate
¬p→ ¬q. Let us remember, such a semantic consequence was a law. What
was it? It says something like: “from the premises A → B and B → C,
derive A → C”, the so-called Hypothetical Syllogism. Can you show that
in PC?

EXAMPLE 4.6 p→ q, q → r ` p→ r.

Solution Of course, we can start from a premise, say, from p→ q. Then,
how to arrive at p → r? If we have (p → q) → (p → r), then we can use
MP to get the conclusion. A look at A2 says that this new proposition
matches with its second part. So, we should have already derived the first
part. The first part of A2, here, would look like: p → (q → r). We have
the other premise as q → r. Then, we can derive this by using A1 as in
Example 4.1. As earlier, try to construct the proof yourself, and return to
this page after making some progress. The proof is:

1. q → r P
2. (q → r)→ (p→ (q → r)) A1
3. p→ (q → r) MP
4. (p→ (q → r))→ ((p→ q)→ (p→ r)) A3
5. (p→ q)→ (p→ r) MP
6. p→ q P
7. p→ r MP

Each axiom is an axiom scheme. Each rule of inference is a rule scheme.
Each theorem is a theorem scheme. Then each consequence is also a conse-
quence scheme. Is it? Of course, yes. If you replace the symbols p, q, r, . . .
by propositions uniformly then the resulting consequence will also have a
proof; the proof is exactly the same proof with the replacements done to
every line of it. But then each such consequence scheme can be used as
an additional inference rule just as already proved theorems are used as
axioms. Why? Because whenever it is used, its proof can be duplicated
there itself to get a real proof. So, we will allow already proved conse-
quences as new inference rules; these are referred to as derived rules of
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inference. To illustrate this point, we give another proof of the theorem
` ¬q → (q → p) (see Example 4.4) in Example 4.7 below using the derived
rule, Hypothetical Syllogism: {p → q, q → r} ` p → r. The inference rule
is rewritten as

(HS)
p→ q q → r

p→ r

In such cases, you must take care that in the proof of Example 4.6, the
consequence in Example 4.4 has not been used. Why?

EXAMPLE 4.7 Here is a proof of ` ¬q → (q → p) that uses HS:

1. ¬q → (¬p→ ¬q) A1

2. (¬p→ ¬q)→ (q → p) A3

3. ¬q → (q → p) HS

Compare the theorem ` ¬q → (q → p) and the consequence ¬q ` q → p.
What does it hint at?

Theorem 4.1 (Deduction Theorem) Let Σ be a set of propositions and
p, q be any propositions. Then, Σ ` p→ q iff Σ ∪ {p} ` q.
Proof Suppose that Σ ` p → q. To show Σ ∪ {p} ` q, take the proof of
Σ ` p→ q, add to it the lines (propositions) p, q. It looks like:

1. . . .

2. . . .
...
n. p→ q Proof of Σ ` p→ q

n+ 1. p P

n+ 2. q MP

This is a proof of Σ ∪ {p} ` q. Conversely, suppose that Σ ∪ {p} ` q.
This means that we have a proof of it. We want to construct a proof of
Σ ` p→ q. This is not so straightforward. We use induction on the number
of propositions (number of lines) used in the proof P of Σ ∪ {p} ` q.

In the basis step, suppose that P has only one proposition. Then this
proposition has to be q. Now, why is this a proof? There are three cases
to consider: (a) q is an axiom; (b) q ∈ Σ; (c) q = p. In each case, we show
that we can get a proof of Σ ` p→ q. In case (a), our proof is:

1. q An axiom

2. q → (p→ q) A1

3. p→ q MP

Is it a proof of Σ ` p→ q? Yes, since it uses no proposition other than an
axiom (as in P) or one in Σ. In case (b), the above proof still works, only
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the first line would be documented as ‘ P’, a premise rather than an axiom.
In case (c), q = p. In Example 4.2, we proved that ` p → p. Thus, with
that proof, we now have a one-line proof of Σ ` p→ p as

1. p→ p Th

We go to the induction step. Lay out the induction hypothesis that “If
there is a proof of Σ∪{p} ` q less than n propositions, then there is a proof
of Σ ` p→ q.” Suppose now that we have a proof of Σ ∪ {p} ` q having n
propositions in it. We will construct a proof of Σ ` p→ q.

Observe that we have three trivial cases to consider: (i) q is an axiom;
(ii) q ∈ Σ; (iii) q = p. In all these cases, we have proofs for Σ ` p→ q as in
the basis case. Dispensing with the trivial cases, we have the only nontrivial
(and more realistic) case that q has been derived by an application of MP
in the proof P of Σ ∪ {p} ` q. How would P look like then?

P : 1. . . .

2. . . .
...
m. r
...
m+ k. r → q

...
n. q m, m+ k,MP

where m < n,m + k < n, and r is some proposition. Note that the proof
segments:

P1 : lines 1 to m

P2 : lines 1 to m+ k

in P are themselves proofs of the consequences:

Σ ∪ {p} ` r
Σ ∪ {p} ` r → q

respectively. Clearly, the proofs P1, P2 have less than n number of propo-
sitions. By induction hypothesis, corresponding to P1, P2, there are proofs
P3, P4 of the consequences:

Σ ` p→ r

Σ ` p→ (r → q)

Suppose that P3 has i number of propositions and P4 has j number of
propositions. We use the two proofs P3, P4 to construct the proof P5 of
Σ ` p→ q. The proof P5 is constructed by adding P4 to P3, and then some
more propositions as illustrated below:
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P5 : P3 : 1. . . .
...
i. p→ r

P4 : i+ 1. . . .
...
i+ j. p→ (r → q)

i+ j + 1. (p→ (r → q))→ ((p→ r)→ (p→ q)) A3

i+ j + 2. (p→ r)→ (p→ q) MP

i+ j + 3. p→ q i, j + j + 2,MP

It is clear that P5 is a proof of Σ ` p→ q as no propositions other than
axioms and premises in Σ are used in it.

Note that the deduction theorem is not a theorem of PC. It speaks
something about the axiomatic system PC. Thus, it is a metatheorem for
the axiomatic system PC. So, do not confuse between a theorem of PC and
the results about PC.

Exercise 4.1 Construct a proof of ` ¬q → (q → p) from the proof of
¬q ` q → p as given in Example 4.5 by following the proof of the deduction
theorem.

The deduction theorem can be used to construct simpler proofs, espe-
cially for propositions involving serial implications.

EXAMPLE 4.8 Show that ` ((¬p→ q)→ ((q → ¬p)→ p))

→ (((¬p→ q)→ (q → ¬p))→ ((¬p→ q)→ p)).
Solution

1. ¬p→ q P

2. (¬p→ q)→ (q → ¬p) P

3. q → ¬p MP

4. (¬p→ q)→ ((q → ¬p)→ p) P

5. (q → ¬p)→ p 1, MP

6. p 3, MP

Because of the deduction theorem, it was enough to prove

(¬p→ q)→ ((q → ¬p)→ p), (¬p→ q)→ (q → ¬p),¬p→ q ` p

Look at line 5. We mention only the line number as 1; this means that we
take line 1 along with the previous line, i.e., line 4 and apply MP to derive
line 5. Similarly, line 6 is obtained by applying MP to lines 3 and 5, and
we have mentioned only line 3 in the justification column.
Exercise 4.2 Try to construct a proof of the theorem in Example 4.8
without using the deduction theorem.
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EXAMPLE 4.9 Show that (a) ` p→ ¬¬p ; (b) ` ¬¬p→ p.

Solution Proof for (a):

1. ¬¬¬p→ (¬¬p→ ¬¬¬¬p) Th (Example 4.7)

2. (¬¬p→ ¬¬¬¬p)→ (¬¬¬p→ ¬p) A3

3. ¬¬¬p→ (¬¬¬p→ ¬p) HS

4. (¬¬¬p→ (¬¬¬p→ ¬p))
→ ((¬¬¬p→ ¬¬¬p)→ (¬¬¬p→ ¬p)) A2

5. (¬¬¬p→ ¬¬¬p)→ (¬¬¬p→ ¬p) MP

6. ¬¬¬p→ ¬¬¬p Th

7. ¬¬¬p→ ¬p MP

8. (¬¬¬p→ ¬p)→ (p→ ¬¬p) A3

9. p→ ¬¬p MP

Proof for (b):

1. ¬p→ ¬¬¬p Th (From (a))

2. (¬p→ ¬¬¬p)→ (¬¬p→ p) A3

3. ¬¬p→ p MP

Exercise 4.3 Construct a proof of ` ¬¬p→ p without using p→ ¬¬p.

EXAMPLE 4.10 Show that ` (p→ q)→ (¬q → ¬p).
Solution We show that (p → q) ` (¬q → ¬p); the rest is taken care of
by the deduction theorem. In the proof below, we omit the line numbers
altogether.

¬¬p→ p Th

p→ q P

¬¬p→ q HS

q → ¬¬q Th

¬¬p→ ¬¬q HS

(¬¬p→ ¬¬q)→ (¬q → ¬p) A3

¬q → ¬p MP

EXAMPLE 4.11 Show that ` p→ (¬q → ¬(p→ q)).

Solution We can directly conclude from MP that

p, p→ q ` q
By the deduction theorem,

` p→ ((p→ q)→ q)

We use this as a theorem in the following proof for p ` ¬q → ¬(p→ q):
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p P

p→ ((p→ q)→ q) Th

(p→ q)→ q MP

((p→ q)→ q)→ (¬q → ¬(p→ q)) Th

¬q → ¬(p→ q) MP

EXAMPLE 4.12 Show that ` (¬q → q)→ q.

Solution Try to construct a proof before reading the one given below.

¬q → (q → ¬(¬q → q)) Th

(¬q → (q → ¬(¬q → q)))→ ((¬q → q)→ (¬q → ¬(¬q → q))) A2

(¬q → q)→ (¬q → ¬(¬q → q)) MP

1. ¬q → q P

¬q → ¬(¬q → q) MP

(¬q → ¬(¬q → q))→ ((¬q → q)→ q) A3

(¬q → q)→ q MP

q 1,MP

This shows that ¬q → q ` q. By the deduction theorem, we conclude that

` (¬q → q)→ q

If you are observant, you would have got another proof of of the same
theorem by employing the theorem proved in Example 4.11. Replacing p
by ¬q there, you obtain ` ¬q → (¬q → ¬(¬q → q)). Using the deduction
theorem thrice, you see that ` ¬q → ¬(¬q → q). Then by A3 and MP, you
get ` (¬q → q)→ q. Now, construct a formal proof using this idea.

EXAMPLE 4.13 Show that {p→ q,¬p→ q} ` q.
Solution This is the familiar ‘argument by cases’. The proof below uses
Example 4.12.

p→ q P

(p→ q)→ (¬q → ¬p) Th

¬q → ¬p MP

¬p→ q P

¬q → q HS

(¬q → q)→ q Th

q MP

So, you have had some experience in constructing proofs in PC. You
must have noticed some generalities while doing proofs. Added to the
deduction theorem, here is another metatheorem.
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Theorem 4.2 (Monotonicity) For sets Σ,Γ of propositions, and a propo-
sition w, let Σ ` w. Then Γ ⊇ Σ implies Γ ` w.
Proof Does it require any proof? Note that PC does not insist on using
all the available premises in a proof of any consequence. So, the very proof
of the consequence Σ ` w is also a proof of the consequence Γ ` w !

We should also have reductio ad absurdum (RAA), if at all we are going
parallel to the semantics of propositions. But RAA involves unsatisfiability,
and PC does not have the concept of truth! We would like to remedy this
by defining a syntactic notion parallel to unsatisfiability.

Definition 4.3 A set Σ of propositions is said to be inconsistent if
for some proposition w, both the consequences Σ ` w and Σ ` ¬w are
provable; otherwise Σ is said to be consistent.

Our hope is that unsatisfiability and inconsistency would match though
we have not yet demonstrated it. With inconsistency in PC, we would like
to have a formulation of RAA.

Theorem 4.3 (RAA) Let Σ be a set of propositions and w be any propo-
sition. Then Σ ` w iff Σ ∪ {¬w} is inconsistent.

Proof Suppose that Σ ` w. By monotonicity, Σ∪{¬w} ` w. Also, trivially,
Σ ∪ {¬w} ` ¬w. Therefore, Σ ∪ {¬w} is inconsistent.

Conversely, suppose that Σ ∪ {¬w} is inconsistent. Then there is a
proposition, say p, such that Σ ∪ {¬w} ` p and Σ ∪ {¬w} ` ¬p. By the
deduction theorem, Σ ` ¬w → p and Σ ` ¬w → ¬p. Then it is enough to
show that

{¬w → p,¬w → ¬p} ` w

Here is a proof of this consequence:

¬w → ¬p P

(¬w → ¬p)→ (p→ w) A3

p→ w MP

¬w → p P

¬w → w HS

(¬w → w)→ w Th

w MP

Do you now see the rationale behind choosing the three axioms? The
deduction theorem requires A1 and A2 while RAA uses A3 explicitly. But
what about other connectives and propositional constants? We had only
remarked that they could be introduced by definitions. For example, the
following definitions would serve our purpose. We use the symbol $ for the
expression ‘equal to by definition’. As already discussed, definitions are, in
fact, definition schemes.
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(D1) p ∧ q $ ¬(p→ ¬q)

(D2) p ∨ q $ ¬p→ q

(D3) p↔ q $ (p→ q) ∧ (q → p)

(D4) > $ p→ p

(D5) ⊥ $ ¬(p→ p)

We also require some inference rules to work with the definitions. They
would provide us with ways of how to use the definitions. We have the two
rules of definition, written as one, as follows:

(RD)
X $ Y Z

Z[X := Y ]
X $ Y Z

Z[Y := X]

The rule(s) RD says that from (p∨q)→ r you can derive (¬p→ q)→ r,
and so on. This allows us to substitute expressions involving connectives
other than ¬ and → with the ones having only these two. The definitions
and the rule RD do the job of eliminating as also introducing the other
connectives. Thus we lose nothing by limiting our logical constants to the
two connectives ¬ and →.

4.3 Axiomatic System FC

We have seen how an axiomatic system works. We now plan to extend PC
to cover first order logic. As you have guessed, we call this system First
Order Calculus (FC). The axioms (axiom schemes) of the system FC are
A1, A2, A3 of PC, two more for the quantifier ∀, and two for the equality
predicate ≈. We also add one more inference rule. The axioms are as
follows:

Axiom schemes of FC: For formulas X,Y, Z, and variable x,

(A1) X → (Y → X)

(A2) (X → (Y → Z))→ ((X → Y )→ (X → Z))

(A3) (¬X → ¬Y )→ (Y → X)

(A4) ∀xX → X[x/t], for any term t free for x in X.

(A5) ∀x(X → Y )→ (X → ∀xY ), where x does not occur free in X.

(A6) (t ≈ t), for every term t.

(A7) (s ≈ t)→ (X[x/s]→ X[x/t]), for any terms s, t free for x in X.

Rules of Inference of FC:

(MP)
X X → Y

Y
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(UG)
X

∀xX
provided x is not free in any premise used thus far.

The alphabet of this system has the alphabet of FL without the propo-
sitional constants >,⊥, and without the connectives ∧,∨,↔. We also
exclude the quantifier ∃. To compensate, we have a definition:

(D6) ∃xX $ ¬∀x¬X

As mentioned earlier, a proof is a finite sequence of formulas, each of
which is either an axiom (an instance of an axiom scheme), or is obtained
(derived) by an application of some inference rule on earlier formulas. Note
that MP is applied on two formulas while UG is applied on a single formula.
The last formula of a proof is a theorem; the proof is said to prove the
theorem. The fact that a formula X is a theorem is written as ` X; in that
case, we also say that the formula X is provable. We should have rather
written this as `FCX to document that X is a theorem in the axiomatic
system FC. But our abbreviated notation ` X will cause no confusion as
all theorems of PC are also theorems of FC. For a set of formulas Σ, and
a formula Y , the proof of the consequence Σ ` Y is again a finite
sequence of formulas, each of which is an axiom, or a premise (a formula)
in Σ, or is derived from earlier formulas by an application of an inference
rule; the last formula of the sequence is Y. The fact that there is a proof
of the consequence Σ ` Y is written simply as Σ ` Y ; in that case, we also
say that the consequence is provable. If Σ = {X1, . . . , Xn}, a finite set,
instead of writing Σ ` Y , we just write X1, . . . , Xn ` Y. It is also clear that
∅ ` Y expresses the same fact as ` Y. A set of formulas Σ is said to be
inconsistent if there exists a formula Y such that Σ ` Y and Σ ` ¬Y , else
Σ is said to be consistent. We also say that a formula X is inconsistent
or consistent according as the set {X} is inconsistent or consistent.

Before constructing proofs in FC, let us quickly go through the axioms
and the inference rules. Axioms A1 to A3 are the same as in PC. A4 is
taken from its semantic counterpart that |= ∀X → X[x/t]. Similarly, A5;
but why is there a condition with it? What unusual thing might happen if
we do not impose the condition on the applicability of A5? For example,
if X = Pxy, Y = Qyx, then A5 would read as

∀x(Pxy → Qyx)→ (Pxy → ∀xQyx)

Take an interpretation in the set of men, where Pxy means “x is a father
of y”, and Qyx means “y is a son of x”. Then ∀x(Pxy → Qyx) means:

if for every man x, x is a father of y, then y is a son of x.

This, of course, holds whatever y may be. Now, Pxy → ∀xQyx means:

if x is a father of y, then for every x, y is a son of x.

which does not hold. Obviously, we cannot choose an invalid formula as an
axiom. This is the reason for the condition imposed on A5.
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The axioms A6 and A7 are self-evident. The condition ‘free for’ is
needed just for admissibility of substitutions. Note that the rule UG of
universal generalization has a condition. It warns us to take care of each
use of UG. We must first check that the variable on which we generalize
must not have been free in any premise used up to that point in a proof. In
a proof of a theorem, this warning becomes vacuous as there would not be
any premise. The reason for this restriction will become clear if we consider
the consequence Px ` ∀xPx. We know that its semantic counterpart, viz.,
Px |= ∀xPx, is not a valid consequence. Now, if the restriction on UG is
removed, then we will be able to derive ∀xPx from Px; this will be wrong.
In fact, we want the relation ` to match with |= somehow. Let us see how
the axiomatic system FC works.

EXAMPLE 4.14 Show that ∀xX ` ∀xX.
Solution This is not a new theorem in the sense that by using the axioms
A1, A2, A3, you had already proved p ` p. Now, the same proof, with p
replaced everywhere by ∀xX gives the required proof. This points towards
a general fact about FC. If you had already a theorem (or a provable
consequence) in PC, by replacing the propositional variables with first order
formulas uniformly, you will always land up in a theorem (or a provable
consequence) in FC. However, you will have another proof of ∀xX ` ∀xX
by using quantifier rules. Here is one:

∀xX P

∀xX → X A4

X MP

∀xX UG
Exercise 4.4 Construct a proof of ` ∀xX → ∀xX different from that of
` p→ p as done in PC.

EXAMPLE 4.15 The following is a proof of ∀x∀yX ` ∀y∀xX :
∀x∀yX P

∀x∀yX → ∀yX A4

∀yX MP

∀yX → X A4

X MP

∀xX UG

∀y∀xX UG

Look at the opening comments in the solution to Example 4.14. You
can use all the PC-theorems as already proved theorems in constructing
proofs in FC. In the following example, we use the PC-theorem

` (p→ q)→ (¬q → ¬p)
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after a suitable uniform replacement of the propositional variables by for-
mulas of FC.

EXAMPLE 4.16 The following is a proof of ∀x¬X ` ¬∀xX:
∀x¬X P

∀x¬X → ¬X A4

1. ¬X MP

∀xX → X A4

(∀xX → X)→ (¬X → ¬∀xX) Th

¬X → ¬∀xX MP

¬∀xX 1, MP

Have you tried Exercise 4.4? If not, try it now. How to use the quantifier
axioms and rules to construct a proof of ` ∀xX → ∀xX? Let us try to
construct a proof by taking help from the proof of ∀xX ` ∀xX as done
in Example 4.14. Now, ∀xX → X is an axiom. This can be universally
generalized (by an application of UG) to get ∀x(∀xX → X). Then, we can
use A5 and MP to complete the proof. Do you see the trick? Since ∀xX
has no free occurrence of the variable x, we could do it. Here is the proof:

∀xX → X A4

∀x(∀xX → X) UG

∀x(∀xX → X)→ (∀xX → ∀xX) A5

∀xX → ∀xX MP

So, you have got a hint that, probably, the deduction theorem would
work, is it? And once you show the truth of this metastatement, most of
the tricks in constructing proofs would become unnecessary. In proving
the deduction theorem, we adhere to the definition of a proof that already
proved theorems have not been used in a (formal) proof.

Theorem 4.4 (Deduction Theorem) Let Σ be a set of formulas and
X,Y be any formulas. Then Σ ` X → Y iff Σ ∪ {X} ` Y.
Proof The proof, quite naturally, resembles that for PC. If Σ ` X → Y,
then there is a proof P whose last formula is A → B. We add some more
formulas to construct a proof of Σ ∪ {A} ` B. It is as follows:

P :
...
A→ B Σ ` A→ B

A Premise in Σ ∪ {A}
B MP

Conversely, suppose that P is a proof of Σ∪{A} ` B. We prove Σ ` A→ B
by induction on the length of P, number of formulas (lines) in P. In the
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basis step, if P has only one formula, then it is B, and B is an axiom, a
premise in Σ, or the formula A itself. If B is an axiom, then as in PC, we
have the following proof of Σ ` A→ B:

B → (A→ B) A1

B An axiom

A→ B MP

If B is a premise in Σ, then also the above proof works; only that we
mention B to be a premise in Σ instead of an axiom. If B is A itself, then
we use the PC-theorem: ` A→ A and proof of that works here as a proof
of Σ ` A→ B.

Lay out the induction hypothesis that if P has less than n formulas,
then there is a proof of Σ ` A→ B. Suppose that Σ∪{A} ` B has a proof
P1 of n formulas. Then the n-th formula is necessarily B. Now what can
this B be? It may be

(i) an axiom,
(ii) a premise in Σ,
(iii) A itself,
(iv) derived from two earlier formulas by MP, or
(v) derived from an earlier formula by UG.

In each case, we construct a proof P4 for Σ ` A → B. Cases (i), (ii), and
(iii) are covered in the basis step. In case (iv), proof P1 looks like:

P1 : 1. . . .
...

n1. C for some formula C
...

n1 + n2. C → B MP
...

n. B n1, n1 + n2,MP

As n1, n2 < n, by the induction hypothesis we have proofs P2, P3 of lengths
m1,m2 for the consequences Σ ` A→ C, Σ ` A→ (C → B), respectively.
We use these proofs to construct a proof P4 for the consequence Σ ` A→ B.
Add P3 to P2, use A2 in the form

(A→ (C → B))→ ((A→ C)→ (A→ B))

Apply MP to conclude (A → C) → (A → B). This formula along with
A → C give, by MP, the required conclusion. Try to construct P4 now
with these hints. It is as follows:
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P4 : P2 : 1.
...
m1. A→ C

P3 : m1 + 1.
...
m1 +m2. A→ (C → B)

m1 +m2 + 1. (A→ (C → B))→ ((A→ C)→ (A→ B)) A2

m1 +m2 + 2. (A→ C)→ (A→ B) MP

m1 +m2 + 3. A→ B m1, MP

In case (v), B = ∀xX for some variable x and some formula X. Then the
proof P1 of Σ ∪ {A} ` B looks like:

P1 : 1. . . .
...

k1. X
...
n. ∀xX Σ ∪ {A} ` ∀xX

If the premise A has not been used in P1, then this proof itself is a proof of
Σ ` B. Then using A1 as in the basis step, we get a proof of Σ ` A→ B.
(Do it.) More realistically, suppose that A has been used somewhere in P1
and that UG has been applied on the k1-th formula X to derive the n-th
formula ∀xX. Then, due to the restriction on the applicability of UG, the
variable x does not occur in any premise (in Σ) used in P1. In particular,
x is not free in A. (We use this in two crucial situations in the proof below
while using UG and A5.) By the induction hypothesis, since k1 < n, there
is a proof P5 of length j for Σ ` A→ X. We use P5 to construct the proof
P4 for Σ ` A→ ∀xX as follows:

P4 : P5 : 1. . . .
...
j. A→ X

j + 1. ∀x(A→ X) UG

j + 2. ∀x(A→ X)→ (A→ ∀xX) A5

j + 3. A→ ∀xX MP

As B = ∀xX, P4 is a proof for Σ ` A→ B. This completes the proof.

It is instructive to take help from the deduction theorem while con-
structing proofs. In particular, it is often advantageous to use the ‘derived
rules’ which may be obtained by applying the deduction theorem on the
axioms. For example, A1, written as a theorem, ` X → (Y → X), by the
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deduction theorem, proves the consequence: {X,Y } ` X and then it gives
the derived rule:

From X and Y derive X.

The derived rule corresponding to A7 will be very helpful. We write it now
as the inference rule of equality:

(EQ)
s ≈ t X[x/s]

X[x/t]

Exercise 4.5 Write all the axioms as rules of inference by using the
deduction theorem.

Let us see some more examples of theorems, consequences, and proofs.

EXAMPLE 4.17 Show that ` ∀x(X → Y )→ (¬∀x¬X → ¬∀x¬Y ).
Solution Due to the deduction theorem, it is enough to show that

{∀x(X → Y ),¬∀x¬X} ` ¬∀x¬Y
How do we proceed to show this? Suppose we start with ∀x(X → Y ). We
would get X → Y . Then how to use ¬∀x¬X? The symbol ¬ blocks further
derivations. But you have seen already that it is easier to prove A→ B than
¬B → ¬A. You can, of course, bring ¬B → ¬A whenever needed by using
a PC-theorem. So we try the consequence: ∀x(X → Y ) ` ∀x¬Y → ∀x¬X.

Hence, direct double application of the deduction theorem would have
misled us! But now, we can again use the deduction theorem to prove the
consequence: ∀x(X → Y ),∀x¬Y ` ∀x¬X. Here is such a proof:

∀x(X → Y ) P

∀x(X → Y )→ (X → Y ) A4

X → Y MP

(X → Y )→ (¬y → ¬X) Th

1. ¬Y → ¬X MP

∀x¬Y P

∀x¬Y → ¬Y A4

2. ¬Y MP

¬X 1,2,MP

∀x¬X UG

Having proved ∀x(X → Y ),∀x¬Y ` ∀x¬X, we argue as follows: By the
deduction theorem,

∀x(X → Y ) ` ∀x¬Y → ∀x¬X

Since ` (∀x¬Y → ∀x¬X)→ (¬∀x¬X → ¬∀x¬Y ), by MP, we have

∀x(X → Y ) ` ¬∀x¬X → ¬∀x¬Y
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Again, by the deduction theorem, we obtain

` ∀x(X → Y )→ (¬∀x¬X → ¬∀x¬Y )

You probably did not like the roundabout way of arguing over the proof
above. This argument can be shortened if you have reductio ad absurdum
at your disposal. With the notion of inconsistency as introduced earlier
(now for formulas and not only for propositions), we formulate RAA.

Theorem 4.5 (RAA) Let Σ be a set of formulas and Y be any formula.
Then Σ ` Y iff Σ ∪ {¬Y } is inconsistent.

Proof Repeat the argument of the proof of RAA in PC (Theorem 4.3) by
taking formulas instead of propositions.

EXAMPLE 4.18 Show that ` ∀x(X → Y )→ (¬∀x¬X → ¬∀x¬Y ).

Solution This is the same formula of Example 4.17; but here we want to
use RAA. Our aim is to show that the set

Σ = {∀x(X → Y ),¬∀x¬X,¬¬∀x¬Y }

is inconsistent. Here is such a proof:

¬∀x¬X P

∀x(X → Y ) P

∀x(X → Y )→ (X → Y ) A4

X → Y MP

(X → Y )→ (¬Y → ¬X) Th

1. ¬Y → ¬X MP

¬¬∀x¬Y P

¬¬∀x¬Y → ∀x¬Y Th

∀x¬Y MP

∀x¬Y → ¬Y A4

2. ¬Y MP

¬X 1,2,MP

∀x¬X UG

The first formula in the above proof is the negation of the last formula.
That is, this proof proves ∀x¬X as well as ¬∀x¬X as consequences of Σ.
Thus Σ is inconsistent.

EXAMPLE 4.19 If x is not a free variable of Y , then show that

` ¬(∀xX → Y )→ ∀x¬(X → Y )

Solution Using the deduction theorem and RAA, we first transfer the
theorem to a convenient consequence in the following manner:
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` ¬(∀xX → Y )→ ∀x¬(X → Y )

iff ¬(∀xX → Y ) ` ∀x¬(X → Y )

iff {¬(∀xX → Y ),¬∀x¬(X → Y )} is inconsistent.

iff ¬∀x¬(X → Y ) ` ∀xX → Y

iff {¬∀x¬(X → Y ),∀xX} ` Y
iff {¬∀x¬(X → Y ),∀xX,¬Y } is inconsistent.

iff {∀xX,¬Y } ` ∀x¬(X → Y )

This consequence has the following proof:

∀xX P

∀xX → X A4

X MP

X → (¬Y → ¬(X → Y )) Th

¬Y → ¬(X → Y ) MP

¬Y P

¬(X → Y ) MP

∀x¬(X → Y ) UG

EXAMPLE 4.20 Show that ` ∀x((x ≈ f(y))→ Qx)→ Qf(y).
Solution We show that ∀x((x ≈ f(y))→ Qx) ` Qf(y).

∀x((x ≈ f(y))→ Qx) P

∀x((x ≈ f(y))→ Qx)→ ((f(y) ≈ f(y))→ Qf(y)) A4

((f(y) ≈ f(y))→ Qf(y) MP

f(y) ≈ f(y) A6

Qf(y)

EXAMPLE 4.21 {Pa,∀x(Px→ Qx),∀x(Rx→ ¬Qx), R} ` ¬(a ≈ b).
Solution It looks easier to use RAA. We add the negation of the con-
clusion to the premises and go for proving inconsistency, i.e., we show that
the set

Σ = {Pa, ∀x(Px→ Qx),∀x(Rx→ ¬Qx), Rb,¬¬(a ≈ b)}

is inconsistent. The proof is as follows:

∀x(Px→ Qx) P

∀x(Px→ Qx)→ (Pa→ Qa) A4

Pa→ Qa MP

Pa P

1. Qa MP
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¬¬(a ≈ b) P

¬¬(a ≈ b)→ (a ≈ b) Th

a ≈ b MP

(a ≈ b)→ (Qa→ Qb) A7

Qa→ Qb MP

2. Qb 1, MP

∀x(Rx→ ¬Qx) P

∀x(Rx→ ¬Qx)→ (Rb→ ¬Qb) A4

Rb→ ¬Qb MP

Rb P

3. ¬Qb MP

Due to formulas numbered 2 and 3 in the above proof, the set Σ is
inconsistent. Such a proof where RAA is used is, in fact, a proof containing
two proofs; one proves a formula X and the other proves the formula ¬X.
You can also construct the two proofs separately if it is convenient. But
then you can also construct a single proof with both X and ¬X occurring
in it without much difficulty.

Exercise 4.6 You can see that the the proof in Example 4.21 could be
shortened using the derived rule EQ. Give such a proof which uses EQ
instead of A7, and without using RAA.

Exercise 4.7 Show the interchange of variables: ` ∀x∀yX → ∀y∀xX.
Complete the two exercises first, then read further. We use the second

one as an already proved theorem in the following example.

EXAMPLE 4.22 Show that the following consequence is provable:

∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y) ` ¬∀x¬∀y(x ≈ y)

Solution There are gaps in the following proof. Read it and rewrite the
complete proof without omission of any step. Look at the lines 12 and 17.
They show that Σ is inconsistent.

1. ∀x∀y(f(x, y) ≈ y) P

2. ∀x∀y(f(x, y) ≈ y)→ ∀y∀x(f(y, x) ≈ x) Th

3. ∀y∀x(f(y, x) ≈ x) MP

4. f(x, y) ≈ y 1, A4, MP

5. f(y, x) ≈ x 3, A4, MP

6. ∀x∀y(f(x, y) ≈ f(y, x)) P

7. f(x, y) ≈ f(y, x) A4, MP

8. y ≈ f(y, x) 4, 7, EQ
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9. y ≈ x 5,8,EQ

10. x ≈ x A6

11. x ≈ y 9, 10, EQ

12. ∀y(x ≈ y) UG

13. ¬¬∀x¬∀y(x ≈ y) P

14. ¬¬∀x¬∀y(x ≈ y)→ ∀x¬∀y(x ≈ y) Th

15. ∀x¬∀y(x ≈ y) MP

16. ∀x¬∀y(x ≈ y)→ ¬∀y(x ≈ y) A4

17. ¬∀y(x ≈ y) MP

Recollect that the restriction on the rule UG does not allow you to show
that Px ` ∀xPx. Semantically also, Px 6|= ∀xPx, as you have already
seen. As far as the deduction theorem is concerned, you have seen that the
semantic consequence relation |= and the provability relation ` go hand in
hand. However, if you drop the restriction on UG, then you can have a
proof of the metastatement Px ` ∀xPx. Then, the concepts of truth and
provability will certainly differ, and the metastatement Px ` ∀xPx has to
be read as “If |= Px, then |= ∀xPx”, and not as “Px |= ∀xPx”. This is all
right for mathematics since all assumptions in mathematics are sentences
or closed formulas. But the unrestricted use of UG will force the deduction
theorem to take a different shape, like

“If there is a proof of Σ ∪ {A} ` B, where UG has not been applied on
a free variable of A, then Σ ` A→ B.”

It then follows that the metastatement “Σ ∪ {A} ` B iff Σ ` A → B”
holds for closed formulas, which would be sufficient for proving theorems in
mathematics. But in computer science, we do require to argue with open
formulas, formulas with free variables. For example, the state of a program
can be described by ‘which variable is bound to what value’, and such a
description will result in a formula with free variables. This is the reason
we have adopted a version of UG with a restriction. You should be able to
read other texts where UG comes with no restrictions. In that case, you
must also look for a restriction on the deduction theorem. Note that the
restriction as mentioned above does not require every proof of Σ∪{A} ` B
to satisfy the free-variable condition. It only requires one such proof.

Exercise 4.8 Show that {Px, ∀xQx} ` ∀x(Px→ ∀xQx).

If you complete Exercise 4.8, you would realize that having a restriction
on UG or not does not affect monotonicity. But, if you restrict UG too
much, e.g., by allowing UG to be applicable only when the variable x is not
free in any premise, then probably, monotonicity will hold no longer. Try
to see the content of this observation with examples and with an attempt
to prove monotonicity when this new restriction is imposed on UG.
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4.4 Adequacy and Compactness

Why have we chosen exactly those axioms and inference rules in PC and
FC? We could have chosen others as well. One answer could be that the
proof of the deduction theorem required these axioms; there could be other
similar reasons too.

Well, what happens if we drop one of them? Then, of course, we cannot
prove many theorems. So what? Anyway, we are not planning to prove
that every formula is a theorem! But something drastic might happen if
you drop an axiom or an inference rule. The fact is that the one you drop
cannot be proved by using others. Your system becomes deficient. Because,
as we know, each of our axioms is a valid formula and each inference rule
represents a valid consequence. Therefore, if you drop one, then at least,
that one is valid but cannot be proved. There will be a clear mismatch
between validity and provability. Note that this argument rests on the fact
that no axiom or a rule of inference in PC and FC can be proved from the
remaining; that there is no redundancy (see Problem 5).

What about adding one more valid proposition or a valid formula as
an axiom? It is also a fact that this will not affect the systems in any
significant way, because every valid proposition has a proof in PC and
every valid formula has a proof in FC. This property of a system is known
as completeness. Conversely, if you find a proof of a proposition or a
formula, then it cannot be invalid. This property of a system is known as
soundness. Thus the systemic (often called syntactic) notion of provability
and the semantic notion of validity match nicely, i.e., both the systems PC
and FC are adequate to the logics PL and FL, respectively. Adequacy
means both soundness and completeness. In this section we try to show
adequacy of PC and FC, and then use it to deduce another property of the
logics PL and FL. The adjective ‘strong’ is used with these notions to mark
that not only theoremhood and validity of formulas match but provability
and validity of consequences also match. We start with strong soundness.
The symbol ` stands for ‘` in PC’ for propositions and for ‘` in FC’ for
formulas; similarly, the symbol |=.

Theorem 4.6 (Strong Soundness of PC and FC) Let Σ be a set of
propositions (formulas) and A be a proposition (formula). If Σ ` A, then
Σ |= A.

Proof All that you have to do is to check that the axioms are valid and
the rules of inference are valid consequences, and then apply induction on
the lengths of proofs.

Let P be a proof of Σ ` A. In the proof P, all the premises in Σ might
not have been used. Let ΣP be the set of premises that have been actually
used in P. Then ΣP is a finite subset of Σ and ΣP ` A. We will prove by
induction on n, the number of propositions or formulas in P that proves
ΣP |= A. By monotonicity in PL (or FL), it will follow that Σ |= A.
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In the basis step, n = 1; A is either an axiom or a premise in ΣP. Clearly,
ΣP |= A. Lay out the induction hypothesis that if ΣP ` A has a proof of less
than m propositions (formulas), then ΣP |= A. Let P1 be a proof of ΣP ` A
having m propositions (formulas). If A is again an axiom or a premise in
ΣP, then clearly ΣP |= A holds. Otherwise, (a) A has been obtained in P1
by an application of MP or (b) A has been obtained by an application of
UG in case A is a formula.

In case (a), there are propositions or formulas B and B → A occurring
earlier to A in P1. By the induction hypothesis, ΣP |= B and ΣP |= B → A.
Since {B,B → A} |= A, we have ΣP |= A. This, in fact, completes the
strong soundness proof of PC.

In case (b), there is a formula C occurring prior to A in P1 such that
A = ∀xC, for some variable x. Further, let ΣC be the subset of ΣP containing
exactly those formulas which have been used in P1 in deriving C. Then the
variable x does not occur free in any formula of ΣC due to the restriction
on applicability of UG. By the induction hypothesis, ΣC |= C. It follows,
by the semantics of FL, that ΣC |= ∀xC (Prove it.), i.e., ΣC |= A. Since
ΣC ⊆ Σ, by monotonicity, Σ |= A.

Exercise 4.9 Let Σ be a finite set of formulas and A be a formula. If
Σ |= A and x is a variable not occurring free in any formula of Σ, then
show that Σ |= ∀xA.

Using RAA, the strong soundness of PC or of FC can be rewritten by
connecting satisfiability and consistency. Due to RAA in PC (FC), Σ ` A
iff Σ ∪ {¬A} is inconsistent. Similarly, due to RAA in PL (FL), Σ |= A iff
Σ∪{¬A} is unsatisfiable. Hence the strong soundness says that if Σ∪{¬A}
is inconsistent, then it is unsatisfiable. Or, by contraposition, if Σ ∪ {¬A}
is satisfiable, then it is consistent. Now, if Γ is any set not necessarily in
the form Σ∪{¬A}, then does the same metastatement hold? The following
theorem gives an affirmative answer to this question. We again name the
result as Strong Soundness since it is simply a restatement of Theorem 4.6.

Theorem 4.7 (Strong Soundness of PC and FC) Let Σ be a nonempty
set of propositions (formulas). If Σ is satisfiable, then Σ is consistent.
Proof Let Σ 6= ∅ be satisfiable. Suppose, on the contrary, that Σ is
inconsistent. As Σ is nonempty, there is a proposition (formula) A ∈ Σ.
Let Σ0 = Σ−{A}. Since ` A→ ¬¬A and ` ¬¬A→ A, the set Σ0∪{¬¬A}
is inconsistent. (Why?) By RAA in PC (FC), Σ0 ` ¬A. Theorem 4.6
gives Σ0 |= ¬A. By RAA in PL (FL), Σ0 ∪ {¬¬A} is unsatisfiable. As
¬¬A ≡ A, Σ0 ∪ {A} is unsatisfiable. This contradicts the assumption that
Σ is satisfiable. Therefore, Σ is consistent.
Exercise 4.10 Show that Σ∪{A} is consistent iff Σ∪{¬¬A} is consistent.

Next, we look at strong completeness of the calculi PC and FC. To
understand the proof better, we will first try PC and then attempt FC.
Similar to strong soundness, we can formulate strong completeness in two



178 Proofs in PL and FL

ways: one, by connecting validity and provability, and two, by connecting
satisfiability and consistency. Let us try the second alternative:

Strong completeness: If Σ is consistent, then Σ is satisfiable.

To feel what is going on, suppose that Σ is a singleton, say, Σ = {p}.
Of course, we can have a truth assignment, say, i such that i(p) = 1 so that
Σ is satisfiable. But something else happens when we think of PC. By A1
and MP, p ` q → p. This says that Σ ` q → p holds. Fine, this is all right,
since when i(p) = 1, we also have i(q → p) = 1. But then, this opens up
infinite possibilities. Just by applying axioms and inference rules of PC, an
infinite number of propositions can be derived from a single premise. We
now show that whatever that can be derived in PC from p is assigned to 1
by i. Can we show this?

One way is to define the set of all conclusions of Σ, call it the deductive
closure of Σ, and then show that the set is, indeed, satisfiable. Clearly,
q → p becomes an element of the deductive closure of {p}. Then ¬(q → p)
cannot be a member of this deductive closure as we think that the deductive
closure is consistent. (We have not proved it yet!) The second approach
comes from this observation that our attempt is directed towards showing
consistency of this deductive closure, so why not extend Σ to a consistent
set, and to one, which can no more be extended? This is what we want to
do next; we define a maximal consistent extension of Σ and then show that
this is satisfiable so that Σ as a subset of it becomes satisfiable.

Since the set of all propositions (now, without ∨,∧,↔,>,⊥) is count-
able, we can have an enumeration of it. That is, let the set of all proposi-
tions be listed member by member, as

q0, q1, q2, . . . , qn, . . .

Let Σ be a consistent set of propositions. Define a sequence of sets of
propositions Σn inductively by

(A) Σ0 = Σ;

(B1) Σn+1 = Σn, if Σn ∪ {qn} is inconsistent;

(B2) Σn+1 = Σn ∪ {qn} if Σn ∪ {qn} is consistent.

Then, let Σ′ = ∪n∈NΣn. The following lemma lists some of the interesting
properties of Σ′.

Lemma 4.8 Let Σ be a consistent set of propositions and Σ′ be the set as
constructed above. Let p, q be any propositions. Then the following hold:

(a) Σ′ is consistent.
(b) Σ′ is maximally consistent.
(c) Either q ∈ Σ′ or ¬q ∈ Σ′.
(d) q ∈ Σ′ iff Σ′ ` q.
(e) If q ∈ Σ′, then p→ q ∈ Σ′.
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(f) If p 6∈ Σ′, then p→ q ∈ Σ′.

(g) If p ∈ Σ and q 6∈ Σ′, then p→ q 6∈ Σ′.

The properties (a) and (b) above are the basic properties of Σ′. These
are used to prove other properties. Properties in (c), (e), (f), and (g)
essentially capture the semantics of the connectives ¬ and →. Property
(d) says that the set Σ′ is its own deductive closure.

Proof (a) By definition, each Σn is consistent. Now, if Σ′ is inconsistent,
then Σ′ ` r and Σ′ ` ¬r for some proposition r. However, the proofs of
both Σ′ ` r and Σ′ ` ¬r contain only finite number of premises from Σ′.
Thus, there is an m ∈ N such that Σm ` r and Σm ` ¬r. This contradicts
the fact that each Σm is consistent, completing the proof of (a).

(b) Σ′ is maximally consistent means that it is consistent, and if
we add any other proposition to it, then the resulting set would become
inconsistent. Since (a) has already been shown, we only show that for any
proposition q, if q 6∈ Σ′ then Σ′ ∪ {q} is inconsistent. For this, suppose
that q is a proposition not in Σ′ and that Σ′ ∪ {q} is consistent. Due to
the enumeration q0, q1, q2, . . . of the set of all propositions, q = qm for some
m ∈ N. Since Σ′ ∪ {q} is consistent and Σm ∪ {q} ⊆ Σ′ ∪ {q}, Σm ∪ {q} is
consistent. This implies that q = qm ∈ Σm+1 ⊆ Σ′, contradicting the fact
that q 6∈ Σ′. Thus Σ′ ∪ {q} is inconsistent.

(c) Let q be any proposition. Suppose that neither q ∈ Σ′ nor ¬q ∈ Σ′.
Since Σ′ is maximally consistent, and q 6∈ Σ′, the set Σ′∪{q} is inconsistent.
Similarly, Σ′ ∪ {¬q} is also inconsistent. By RAA (and Exercise 4.10),
Σ′ ` ¬q and Σ′ ` q. This forces Σ′ to be inconsistent; which is not the case.
Thus, at least one of q or ¬q must be in Σ′. Now, both of them cannot be
in Σ′ since Σ′ is consistent. Hence, only one of q or ¬q is in Σ′.

(d) Suppose that q ∈ Σ′. Then ¬q 6∈ Σ′ by (c). By (b), Σ′ ∪ {¬q} is
inconsistent. By RAA, Σ′ ` q. Conversely, suppose that q 6∈ Σ′. By (b),
Σ′∪{q} is inconsistent. Exercise 4.10 shows that Σ′∪{¬¬q} is inconsistent.
by RAA, Σ′ ` ¬q. Since Σ′ is consistent, Σ′ 6` q.

(e) Let q ∈ Σ′. By (d), Σ′ ` q. With A1 as ` q → (p→ q) and MP, we
see that Σ′ ` p→ q. Again by (d), p→ q ∈ Σ′.

(f) Let p 6∈ Σ′. By (c), ¬p ∈ Σ′. By (d), Σ′ ` ¬p. By (e), Σ′ ` ¬q → ¬p.
With A3 as ` (¬q → ¬p)→ (p→ q) and MP, we obtain: Σ′ ` p→ q.

(g) Let p ∈ Σ′ and q 6∈ Σ′. By (c) and (d), Σ′ ` p and Σ′ ` ¬q. Since
` p → (¬q → ¬(p → q)), (see Example 4.11), using MP twice we see that
Σ′ ` ¬(p→ q). By (c) and (d), p→ q 6∈ Σ′.

Any set having the properties (a) to (g) listed in Lemma 4.8 is called
a Hintikka set after the logician J. Hintikka. By Lemma 4.8, we have
simply shown the existence of a Hintikka set which is an extension of a
given consistent set Σ. The fact that any consistent set can be extended
to a maximally consistent set is referred to as the Lindenbaum lemma.
The following metatheorem shows that every consistent set is satisfiable.
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Theorem 4.9 (Model Existence Theorem for PC) Every consistent
set of propositions has a model.
Proof Let Σ be a consistent set of propositions. Let Σ′ be the maximally
consistent set of Lemma 4.8. Let S be the set of all propositions. Define
a function i : S → {0, 1} by i(p) = 1 if p ∈ Σ′, else, i(p) = 0. This is
well defined due to the property (c) of Σ′. Now, we see that i is indeed a
truth assignment due to the properties (c), (f) and (g) listed in Lemma 4.8.
Obviously, i is a model of Σ′. Since Σ ⊆ Σ′ i is a model of Σ as well.

The model existence theorem says that every consistent set is satisfiable,
or that every unsatisfiable set is inconsistent. By RAA in both PC and PL,
we then obtain the following result.

Theorem 4.10 (Strong Completeness of PC to PL) For any set Σ
of propositions and any proposition w, if Σ |= w then Σ ` w.

Combining the metatheorems of strong soundness (Theorem 4.7) and
strong completeness (Theorem 4.10), we obtain the following theorem.

Theorem 4.11 (Strong Adequacy of PC to PL) For any set Σ of
propositions and any proposition w, Σ ` w iff Σ |= w.

As corollaries (with Σ = ∅) to the strong adequacy of PC with respect
to PL, we obtain the following theorem.

Theorem 4.12 (Adequacy of PC) Let w be any proposition. Then the
following hold:

(a) Soundness of PC: If ` w, then |= w.

(b) Completeness of PC: If |= w, then ` w.
(c) Adequacy of PC: ` w iff |= w.

An important corollary to the completeness theorem is the following.

Theorem 4.13 (Compactness of PL) Let Σ be any nonempty set of
propositions and w be any proposition. Then the following hold:

(a) If Σ |= w, then Σ0 |= w for some finite subset Σ0 of Σ.

(b) If Σ is unsatisfiable, then there is a finite subset Σ0 of Σ such that
Σ0 is unsatisfiable.

(c) If each nonempty finite subset of Σ is satisfiable, then Σ is satisfiable.

Proof (a) Suppose that Σ |= w. By the strong completeness of PC, Σ ` w.
Thus, we have a proof whose last proposition is w and in which some or all
propositions in Σ have been used. However, the proof is a finite sequence
of propositions. Thus, it uses only a finite number of propositions from
Σ. Let Σ0 be the set of all such propositions which are used in the proof.
Then Σ0 is a finite set and the same proof shows that Σ0 ` w. By the
strong soundness of PC, Σ0 |= w. The statements in (b) and (c) are only
restatements of the statement in (a).
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Compactness of PL could have been proved directly by means of models
also; see the summary to this chapter. However, waiting this far paid off;
we could avoid many difficult constructions.

Exercise 4.11 Formulate and prove the compactness theorem for FL by
using the compactness for PL (Theorem 4.13) and the syntactic interpre-
tation theorem (Theorem 2.20).

Now, we turn towards adequacy of FC with respect to FL. We have
already discussed the strong soundness of FC in Theorem 4.7. We can also
restate it as “if Σ is inconsistent, then Σ is unsatisfiable”. We would then
try the completeness of FC with respect to FL. The proof is, of course,
similar to that of PC, but the construction of a maximally consistent set
is a bit complicated. We start with a formula X having a free occurrence
of a variable x.

Let T be the set of all closed terms (terms having no variables), i.e.,
T = {t : t is a closed term }. The set T is sometimes called the free
universe. Let A = Ax = {∀xY : Y is a formula having a free variable x}.

Since we have a countable alphabet, the sets T and A are countable.
Let us then write them as

T = {t0, t1, t2, . . . , }, A = {∀xX0,∀xX1,∀xX2, . . .}
Let Σ be a consistent set of formulas. We define a sequence Σm inductively
by

Σ0 = Σ, Σm+1 = Σm ∪ {Xm[x/tm1]→ ∀xXm}
where tm1 is the first element of T that does not occur in the first m
formulas of A. We show, by induction, that each such set Σm is consistent.

Lemma 4.14 Each Σm is consistent.
Proof (Outline): If Σm+1 is inconsistent, but Σm is consistent, then from
the definition of Σm+1, it follows that (why?)

Σm ` ¬(Xm[x/tm1]→ ∀xXm) (1)

Let y be a new variable which neither occurs in any formula of Σm nor in
∀xXm. Since the term tm1 does not occur in any formula of Σm and not
in ∀xXm, we obtain (why?): Σm ` Xm[x/tm1] → Xm[x/y]. By UG, we
see that Xm[x/y] ` ∀yXm[x/y]. But renaming gives: ∀yXm[x/y] ` ∀xXm.
Hence,

Σm ` Xm[x/tm1 → ∀xXm (2)

Now, (1) and (2) would show that Σm is inconsistent, contradicting the as-
sumption that Σm is consistent. This contradiction shows that consistency
of Σm implies that of Σm+1 completing the outline. [Expand the outline
to a proof.]

However, the construction is not yet over; we have used a very special
kind of formulas in defining Σm’s. We start with the set of all such special
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formulas, i.e., the union of all these Σm’s and extend this set in a manner
analogous to PC. To this end, we use the countability of formulas of FC.

Let Y0, Y1, Y2, . . . be an enumeration of all formulas of FC. Define the
sequence Γ0,Γ1,Γ2, . . . inductively by

(a) Γ0 = ∪n∈NΣn,

(b1) Γn+1 = Γn, if Γn ∪ {Yn} is inconsistent, and

(b2) Γn+1 = Γn ∪ {Yn}, if Γn ∪ {Yn} is consistent.

Finally, take Σ′ = ∪n∈NΓn. This is the required Hintikka set corresponding
to the given set Σ.

Lemma 4.15 Let Σ be a consistent set of formulas and Σ′ be the set
obtained from Σ as constructed above. Let X,Y be any formulas and s, t
be any terms. Then the following hold:

(a) Σ ⊆ Σ′.

(b) Σ′ is maximally consistent.

(c) If Σ′ ` X, then X ∈ Σ′.

(d) Either X ∈ Σ′ or ¬X ∈ Σ′.

(e) If Y ∈ Σ′, then X → Y ∈ Σ′.

(f) If X 6∈ Σ′, then X → Y ∈ Σ′.

(g) If ¬∀xX ∈ Σ′, then ¬X[x/t] ∈ Σ′ for some closed term t.

(h) For every term t, (t ≈ t) ∈ Σ′.

(i) If (s ≈ t) ∈ Σ′, then (X[x/s]→ X[x/t]) ∈ Σ′.

Proof Due to the construction of Σm’s, ∀xX = ∀xXn for some n. Σ0 ⊆ Σ′

says that (Xn[x/tm]→ ∀xX) ∈ Σ′. However,

` ((Xn[x/tn1]→ ∀xXn)→ (¬∀xXn → ¬Xn[x/tn1]))

yields Σ′ ` ¬∀xXn → ¬Xn[x/tn1]. Then the deduction theorem proves (g).
You can prove the other statements yourself.

To give a model of Σ or of Σ′, we now start with a Herbrand-like inter-
pretation. Here, instead of the Herbrand universe, take the free universe of
all closed terms T as the domain. Continue, as in the Herbrand interpre-
tation, to define φ and the equality relation E. Denote the interpretation
(T , φ) as I, where ≈ is to be interpreted as E. (Review Section 2.8 if you
have forgotten the equality relation E.) The necessary definitions follow.

Let C = {a : a is a constant }. Let F be the set of all function symbols.
Then D is defined recursively by:

(a) C ⊆ T .
(b) If t1, . . . , tn ∈ T and f ∈ F −C has arity n, then f(t1, . . . , tn) ∈ T .
(c) Each d ∈ T is generated by (a) and (b).
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The function φ for function symbols is defined by:

φ(f)(t1, . . . , tn) = f(t1, . . . , tn)

We make use of Σ′ for defining φ of predicates. Let P be the set of all
atomic formulas without variables, i.e.,

P = {P (t1, . . . , tn) : P is n-ary and t1, . . . , tn ∈ T } ∪ {s ≈ t : s, t ∈ T }

Define a relation P ′ by P ′ = {(t1, . . . , tn) : Σ′ ` P (t1, . . . , tn)}. Then take
π(P ) = P ′. Also, define π(≈) = E, the equality relation.

Let I be the interpretation I = (T , φ). Since T is countable, write it as
T = {s0, s1, . . .}. We also have the set of all variables as {x0, x1, . . . Define
the variable assignment function (valuation) ` by taking `(xn) = sn for
n = 0, 1, . . . Then the state I` under the interpretation I is ready to connect
the syntax with semantics. Use induction on the number of occurrences of
¬,→ and ∀ to prove the following metastatement.

Lemma 4.16 For each formula X, I` |= X iff Σ′ ` X.
We use it to prove the following Theorem.

Theorem 4.17 (Model Existence Theorem for FC) Let Σ be any
consistent set of formulas. Then Σ has a model.
Proof Let Σ′ and I` be as constructed above. For each formula X ∈ Σ ⊆
Σ′, Σ′ ` X. By Lemma 4.16, I` |= X. Since I` is a model of every formula
X ∈ Σ, the set Σ has the model I`.

As earlier, the statements in the following theorem ensue.

Theorem 4.18 Let Σ be any set of formulas and X be any formula of FC.
Then the following statements hold:

(a) Strong Adequacy of FC to FL : Σ ` X iff Σ |= X.

(b) Adequacy of FC to FL : ` X iff |= X.

(c) Compactness of FL :
(i) Σ is satisfiable iff every finite subset of Σ is satisfiable.
(ii) Σ |= X iff Σ0 |= X for some finite subset Σ0 of Σ.

Exercise 4.12 Fill in all the gaps in the proofs of all the lemmas and
theorems above.
Exercise 4.13 Use the compactness for PL and the adequacy of PC to
derive strong adequacy of PC. Can you prove that FC is strongly adequate
by assuming its adequacy and the compactness of FL?

If the restriction on UG had not been imposed, as is done in many texts,
we would not have obtained adequacy for all formulas. In that case, ade-
quacy could be guaranteed only for sentences. That would not, of course,
result in any loss of generality since validity of any formula can be replaced
by validity of its universal closure, which is a sentence. So, be careful about
the restrictions on UG while reading other texts.
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4.5 Natural Deduction

Though axiomatic systems PC and FC are adequate, they are inconvenient
to use due to the stress on formality. Informal methods can be developed
from them by allowing all the valid propositions or formulas mentioned
earlier as laws (see Chapters 1 and 2) and already proved theorems to be
used as axioms. The valid consequences can also be used as inference rules.
All these propositions or formulas will be referred to as known theorems
and we will document them by writing ‘T’ on the third column of a proof.
We will also refer to the valid consequences by the same letter ‘T’. Similarly,
a premise will simply be pointed out by writing a ‘P’.

Moreover, the deduction theorem can be used inside a proof rather than
as a meta-argument. To prove X → Y , we simply introduce X anywhere in
the proof and mark its introduction by ‘BD’ (for beginning an application
of the deduction theorem). When we deduce Y later in the proof, the next
line will have X → Y, and it will again be marked as ‘ED’ for telling that
here the assumption X has been removed as an assumption, and by the
deduction theorem, the formula X → Y has been obtained. The deduction
theorem can be applied many times in a proof and the pairs of ‘BD-ED’
must be nested like parentheses. In such a case, we may write BD1-ED1,
BD2-ED2, and so on.

Similarly, RAA can be used inside a proof by introducing a formula
¬X anywhere in the proof (Document it as ‘BC’, beginning of a proof by
contradiction) and then by deducing formulas Y and ¬Y later. The next
line to the last of Y or ¬Y would be X and the documentation would
include ‘EC’ for ending the application of ‘BC’. Again, the nesting of many
applications of RAA can be done just like parentheses. Such a proof will
be referred to as an informal proof. Note that a proof can be developed
from an informal proof due to adequacy of the systems PC and FC. Look
at the following example.

EXAMPLE 4.23 Construct an informal proof for the consequence:

{p→ ¬q, r → s.¬t→ q, s→ ¬u, t→ ¬v,¬u→ w} ` p ∧ r → ¬(w → v)

Solution here is an informal proof. Note the nestings for RAA (lines 2
and 17) and the deduction theorem.

1. p ∧ r BD

2. ¬¬(w → v) BC

3. w → v T

4. p 1, T

5. p→ ¬q P

6. ¬q T (Modus Ponens)

7. ¬t→ q P
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8. t T (¬q,¬t→ q |= t)

9. t→ ¬v P

10. ¬v T

11. r 1, T

12. r → s P

13. s T

14. s→ ¬u P

15. ¬u T

16. ¬u→ w P

17. w T

18. v 3, 17, T

19. ¬(w → v) 10, 17, EC

20. p ∧ r → ¬(w → v) 1, 18, ED

Constructing such an informal proof requires you to memorize at least
all those laws mentioned in Chapters 1 and 2 though we know that only the
axioms A1−A5 are sufficient for constructing a proof. We want a system
which would make a balance between a formal and an informal proof. For
this purpose, we present the so-called natural deduction system. In
the system PND (Propositional Natural Deduction system), we have the
following inference rules (read ‘ i ’ for introduction and ‘ e ’ for elimination):

(>i)
>

(>e)
> · · · p
p

>
p ∨ ¬p

(⊥i) p,¬p
⊥

(⊥e) ⊥
p

(¬i)
p · · · ⊥
¬p

p ∧ ¬q
¬(p→ q)

(¬e) ¬⊥
>

¬(p→ q)
p ∧ ¬q

p ∨ ¬q, q
p

(¬¬i) p

¬¬p
(¬¬e)¬¬p

p

(∧i) p, q

p ∧ q
(∧e) p ∧ q

p

p ∧ q
q

(∨i) p

p ∨ q
q

p ∨ q
(∨e)

p · · · r , q · · · r , p ∨ q
r



186 Proofs in PL and FL

(→ i)
p · · · q
p→ q

(→e)
p, p→ q

q

¬q, p→ q

¬p

(↔ i)
p→ q, q → p

p↔ q
(↔e)

p↔ q

(p→ q) ∧ (q → p)

A box written horizontally in the above rules will appear vertical in a
proof. A box indicates the conditionality of the premises. For example,
in the rule (→ i), the proposition p is introduced from nowhere, an extra
assumption, and by following the rules, if you are able to derive q, then
you can close the box there and consider that the proposition p → q has
been derived without the extra assumption p. The extra assumption p is,
of course, introduced in an actual proof by targeting towards a particular
conclusion such as q. But then, all those propositions that are derived with
this extra assumption p do depend upon it, and thus must be written inside
the box. Once you close the box, and write p → q, all it says is that the
propositions outside the box, in particular, p → q does not depend upon
the extra assumption p. Now you see that the rule (→ i) is another form
of the deduction theorem better suited to be used inside a proof; it simply
says that “from p ` q, conclude ` p→ q”.

Similarly, the rule (∨e) means that “if p ` r, q ` r, and ` p ∨ q, then
` r”. The rule (>i) says that > can be derived from nothing, i.e., ‘ ` > ’.
This complies with our earlier convention that axioms can be written as
fractions with empty numerators.

Similar to PC, you can now define theorems and provable consequences.
We assume that the alphabet of PND is the alphabet of PL and the proposi-
tions of PND are exactly the propositions of PL. A derivation is a sequence
of propositions (may be, in boxes), where each is introduced by applying
one of the rules. A proof of the consequence Σ ` p is a derivation
where each proposition not inside a box is a premise in Σ or is obtained
by an application of an inference rule of PND, and the proposition p is the
last proposition of the sequence not inside a box. Any box contains a full
fledged derivation, where some of the propositions may not be premises.
Moreover, a rule can be applied on propositions occurring before the box
and the result can be introduced as a proposition inside a box. We have a
constraint on the derivations that a box can never cross another box; only
nesting of boxes is allowed. A proposition p is a theorem of PND, written
as ` p iff ∅ ` p; the derivation is then called a proof of the theorem. A set
Σ of propositions is called inconsistent iff Σ ` ⊥ else, it is consistent.
Note that Σ is consistent means that there cannot be any derivation show-
ing Σ ` ⊥. We follow the same three-column style of writing a derivation as
in PC, writing ‘P’ for premises and ‘CP’ for an extra or conditional premise.
Note that we are overusing the symbol `. Here, ` means ‘provability in
PND’, and not in PC or FC. See the following examples.
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EXAMPLE 4.24 Construct a PND-proof for ` p→ (q → p).
Solution

1. p CP

2. q CP

3. p 1

4. q → p → i

5. p→ (q → p) → i

EXAMPLE 4.25 ` (p→ (q → r))→ ((p→ q)→ (p→ r)).
Solution

1. p→ (q → r) CP

2. p→ q CP

3. p CP

4. q 2, 3,→e

5. q → r 1, 3,→e

6. r 4, 5,→e

7. p→ r 2, 6,→e

8. (p→ q)→ (p→ r) 1, 7,→e

9. (p→ (q → r))→ (p→ q)→ (p→ r)) 1, 8,→ i

EXAMPLE 4.26 ` (¬q → ¬p)→ (p→ q).
Solution

1. ¬q → ¬p CP

2. p CP

3. ¬¬p ¬¬i
4. ¬¬q 1, 3,→e

5. q ¬¬e

6. p→ q 1, 5,→ i

7. (¬q → ¬p)→ (p→ q) 1, 6,→ i

Here are some more examples of derivations in PND. We will follow the
earlier convention of omitting unnecessary line numbers. Whenever a rule
is applied on one or two propositions immediately preceding the current
one, we will not mention them.

EXAMPLE 4.27 Construct a natural deduction proof for the conse-
quence in Example 4.23.
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Solution
1. p ∧ r P

p ∧e
p→ ¬q P

¬q →e

¬t→ q P

¬¬t →e

t ¬¬e
t→ ¬v P

2. ¬v →e

r 1,∧e
r → s P

s →e

s→ ¬u P

¬u →e

¬u→ w P

3. w →e

¬v ∧ w 2, 3,∧i
In the above derivation, we have not numbered every proposition. While

constructing a derivation, you can find out which previous proposition is
required to derive the current one. And then, you may only number those
relevant ones.

EXAMPLE 4.28 Show that the following set Σ of propositions is in-
consistent by constructing a proof for the consequence Σ ` ⊥ :

Σ = {p ∨ (¬q ∧ r)→ s, (t ∧ ¬u)→ ¬s, v ∨ ¬u,¬(v ∨ ¬r), t, p}
Solution

p P

p ∨ (¬q ∧ r) ∨i
p ∨ (¬q ∧ r)→ s P

1. s →e

t P

¬u CP

t ∧ ¬u ∧ i
t ∧ ¬u→ ¬s P

2. ¬s →e

⊥ 1, 2,⊥i
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¬¬u ¬i
u ¬¬e
v ∨ ¬u P

v ∨e
v ∨ ¬r ∨i
¬(v ∨ ¬r) P

⊥ ⊥i

You can, of course, construct many other proofs to derive ⊥ in the last
example. Try constructing one different from the above proof.

Examples 4.24-4.26 above show that the axioms of PC are, indeed,
theorems of PND. Moreover, the inference rule MP of PC is simply the
rule (→ e) of PND. Hence PND is complete. But not yet, because PND
works with all the five connectives and PC has only two. Well, the other
connectives and the constants > and ⊥ have to be introduced through
definitions into PC. Thus, you have to prove these definitions also. That
is, show that

> ` p→ p, p→ p ` >,
⊥ ` ¬(p→ p), ¬(p→ p) ` ⊥,
p ∨ q ` ¬p→ q, ¬p→ q ` p ∨ q,
p ∧ q ` ¬(p→ ¬q), ¬(p→ ¬q) ` p ∧ q,
p↔ q ` (p→ q) ∧ (q → p), (p→ q) ∧ (q → p) ` p↔ q.

This will complete the proof of completeness of PND. Alternatively, you
can also try proving completeness of PND by constructing a maximally
consistent set, etc. You can also show that all the rules of PND are sound,
i.e., the rules represent valid consequences of PL. Since the proofs in PND
are finite in length, using compactness of PL, you can show the following.

Theorem 4.19 (Strong Adequacy of PND) For any set of propositions
Σ and any proposition w, Σ |= w iff Σ ` w in PND.

Exercise 4.14 Formulate and prove monotonicity and RAA for PND.

Basing on PND, we construct a natural deduction system for FL. Let
us call the system FND, first order natural deduction system. FND has all
the inference rules of PND, where p, q, r are taken as formulas. In addition,
it has the following inference rules for the predicate ≈, and the quantifiers.

For formulas X,Y , variables x, y, terms s, t, and a constant c,

(≈ i) ·
t ≈ t

(≈ e) s ≈ t,X[x/s]
X[x/t]

provided that s, t are free for x in X.
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(∀i)

y

...

X[x/y]

, where y is a new variable.

∀xX

(∀e) ∀xX
X[x/t]

(∃i) X[x/t]
∃xX

∃xX

(∃e)

c

X[x/c]
...

Y

, where c is a new constant not occurring in Y .

Y

Except the boxes, other rules are self-evident. As earlier, we follow the
restriction on boxes that no box will intersect another, though one box can
completely lie inside another. We will explain the use of boxes taking the
appropriate rules in turn. In case of (∀i), the ‘for all introduction’, the box
means that

If starting with a new variable y, you are able to prove some formula
X[x/y], then you have proved ∀xX.

Thus the variable y must not occur anywhere outside the box. The box
is only a check for an important phrase used in mathematics: “Let x be a
fixed but arbitrary number such that . . . ”. This is a formal expression of
the informal statement that if you can prove X(y) for an arbitrary y, then
you can prove ∀xX(x). The restriction allows you to draw the conclusion
∀xX only when you have arrived at X in such a way that none of the
assumptions you have used contains x as a free variable. And that is
exactly the restriction on the rule (UG) in FC, as you have seen earlier.
Before explaining (∃e), let us have an example which uses the rule ∀i.

EXAMPLE 4.29 Show in FND that {∀x(Pxy → Qx),∀zPzy} ` ∀xQx.
Solution

1. ∀x(Pxy → Qx) P

2. ∀zPzy P
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u
Puy → Qu ∀e, [x/u]

Puy 2, ∀e
Qu →e

∀xQx ∀i
The box here controls the scope of the new variable rather than the

scope of a conditional premise. Now, what about the box in (∃e)? Whenever
you have proved that ∃xX, you cannot possibly show your finger at a
particular constant a and say that X holds for this a; you cannot bring in
a particular term, for that matter. All that you can assert is that for some
constant (think in terms of the import semantics) a, the formula X[x/a]
holds. Hence this constant must be a new symbol, a new constant.

Alternatively, you can use this X[x/a] in a still different way. Suppose
that you have got X[x/a] after elimination of ∃ from ∃xX. Then you use
this formula X[x/a] and deduce another formula Y. If Y does not have an
occurrence of this newly introduced constant a, then it does not matter
whatever value the constant a might have taken. In any case, Y has been
proved. This is the way the rule (∃e) is used in FND. But be careful about
the restriction on the rule that the new constant c cannot occur outside
the box.

Thus the formula Y is repeated twice; first time, inside the box, just to
show that this last formula inside the box, though follows from the earlier
formulas, does not have any occurrence of the new constant c, and second
time, outside the box, due to the reason that this last formula does not
have any occurrence of c. The box controls the scope of the fresh constant
c which is also documented at the rightmost corner of the box. See the
following example and the proof therein. In the proof, ∃e is documented
twice: first, in the first line of the box, and second, outside the box. The
first one controls the box, where the new constant c has been introduced.

EXAMPLE 4.30 ∀x(Pxy → Qx),∃zPzy ` ∃xQx.
Solution

1. ∀x(Pxy → Qx) P

2. ∃zPzy P

c
Pcy 2, ∃e
Pcy → Qc 1, ∀e
Qc →e

∃xQx ∃i

∃xQx ∃e
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EXAMPLE 4.31 ` ∀xX → X[x/t] for any term t free for x in X.

Solution

∀xX CP

X[x/t] ∀e

∀xX → X[x/t] → i

EXAMPLE 4.32 ` ∀ x(X → Y )→ (X → ∀ xY ) if x is not free in X.
Solution

1. ∀x(X → Y ) CP

X CP

y
X → Y [x/y] 1,∀e
Y [x/y] →e

∀xY ∀i

X → ∀xY → i

∀x(X → Y )→ (X → ∀xY ) → i

EXAMPLE 4.33 Show that ` (s ≈ t)→ (X[x/s]→ X[x/t]).
Solution

s ≈ t CP

X[x/s] CP

X[x/t] ≈ e

X[x/s]→ X[x/t] → i

(s ≈ t)→ (X[x/s]→ X[x/t]) → i

Since (A6) of FC is simply the rule (≈ i), the above examples and
completeness of PND yield the following result.

Theorem 4.20 (Strong Adequacy of FND) Let Σ be any set of for-
mulas and X be any formula. Then Σ |= w iff Σ ` w in FND.
Proof Use the definition of ∃ in terms of ∀ and complete the proof.

The following examples will make you better acquainted with FND.

EXAMPLE 4.34 Pa,∀x(Px→ Qx),∀x(Rx→ ¬Qx), Rb |= ¬(a ≈ b).
Solution We can use RAA in FL and strong adequacy of FND to show
that {Pa,∀x(Px → Qx),∀x(Rx → ¬Qx), Rb,¬¬(a ≈ b)} ` ⊥, which will
be sufficient for our purpose. However, the system FND has already a form
of RAA built in it. See the following proof:
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1. Pa P
2. Rb P
3. ∀x(Px→ Qx) P
4. ∀x(Rx→ ¬Qx) P
5. Pa→ Qa 3,∀e
6. Qa 1, 5,→e

7. Rb→ ¬Qb 4,∀e
8. ¬Qb 2, 7,→e

9. a ≈ b CP
10. ¬Qa 8, 9,≈ a
11. ⊥ 6, 10,⊥i

12. ¬(a ≈ b) ¬i
EXAMPLE 4.35 All logicians are wise persons. Therefore, all students
of logicians are students of wise persons.

Solution Use the vocabulary:
Lx : x is a logician,
Fx : x is a funny person, and
Sxy : x is a student of y.

You are then asked to prove the consequence:
∀x(Lx→ Fx) ` ∀x(∃y(Ly ∧ Sxy)→ ∃y(Fy ∧ Sxy))

Proof:
1. ∀x(Lx→ Fx) P

2. ∃y(Ly ∧ Sxy) CP

3. Lc ∧ Sxc ∃e
4. Lc ∧e
5. Lc→ Fc 1,∀e
6. F c →e

7. Sxc 3,∧e
8. F c ∧ Sxc ∧i
9. ∃y(Fy ∧ Sxy) ∃i

10. ∃y(Fy ∧ Sxy) ∃e

11. ∃y(Ly ∧ Sxy)→ ∃y(Fy ∧ Sxy) → i

Note that CP and → i serve as opening and closing of a box just like
the two mentions of ∃e on the rightmost column that documents the proof.
Exercise 4.15 Give FND-proofs of all the laws listed in Theorems 1.8
and 2.13. Prove monotonicity, RAA, and the deduction theorem for FND.
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4.6 Gentzen Systems

The natural deduction systems PND and FND were first visualized by the
logician G. Gentzen, though, in a different notation. Gentzen’s notation
used the idea of a sequent. For example, see the following rewriting of the
rule (∧e):

p ∧ q
p

rewritten as
Γ, p ∧ q ` ∆

Γ, p ` ∆

This rewritten form uses the extra symbols Γ and ∆, which are arbitrary
sets of propositions. This means that whatever the sets of propositions
Γ,∆ may be, if the consequence Γ, p ` ∆ holds, then the consequence
Γ, p ∧ q ` ∆ also holds. Look at the reverse way here; we assert the
numerator provided that the denominator holds. This is more convenient
than the usual ‘denominator if numerator’ style of writing a rule. Both the
consequences in the numerator and the denominator are called sequents.
Starting from the consequence to be proved, you go on applying the rules,
now called sequent rules, to get newer sequents. The new sequents may
not necessarily hold or may hold. Thus, we must say which sequents are
the basic ones that can be recognized easily to hold. Then our plan is to
stop at that point and declare that the sequent we have started with also
holds. For example, the derivations

p ∧ q ` p
p ` p

p ∧ q ` r
p ` r

p ∧ q ` p
q ` p

are obtained by applying the above rule. You see that the first derivation
ends at the sequent p ` p, which seems to be correct, while the denomi-
nators in other derivations are not provable consequences. These sequents
which represent valid consequences, when the relation of syntactic entail-
ment ` is interpreted as |=, may be taken as axioms of our system. And
then the derivation may be considered as a proof of the topmost sequent.

Now that you have got some ideas as to how our proof system with
sequents would work, we must try to formalize it. We will have a different
proof system than the natural deduction systems PND and FND. Our aim
is to make the construction of a proof as mechanical as possible. At the
same time, it would not be too indifferent to our intuition. Let me ask you
a question. In PND, how do you construct a proof of a consequence? Well,
you write down all the premises (given that they are finite in number) on a
piece of paper from top to bottom one after another; write the conclusion
on the bottom. Then, try to fill in the gap so that it would look like
a proof. While filling in the gap with propositions, you must obey the
rules of inference. But then some particular choices have to be made. For
example, which premise is to be considered at which stage, which rule to
apply when, and which proposition is to be taken to start a box, and so on.
Usually, experience guides you. In our presentation of the Gentzen system,
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this choice will be mechanical in the case of PL and mostly so in the case
of FL; we will see how. We start with PL.

A sequent is of the form Σ ` Γ, where Σ,Γ are sets of propositions. We
assume, for technical reasons, that > is also a sequent, though the symbol
` does not appear in it. The stand alone symbol > will be regarded as
a sequent; when it occurs in other sequents, it is taken as a proposition,
as usual. We omit the curly brackets around the propositions in Σ and Γ
while writing the sequents. For example, the following are all sequents:

>, p, r ` q, s, t p, r ` q p ` q p ` ` q `

Note that the empty sequent ‘` ’ listed last above represents a consequence
which never holds, and > as a sequent represents a valid consequence. We
plan to overuse the symbols `,> instead of inventing more symbols. We
will make use of these shortly and see the reasons for these conventions.
The sequent > may be thought of as the universal sequent in contrast to
the empty sequent `. A sequent Σ ` Γ is an axiom iff Σ and Γ have a
common proposition. For example,

p ` p p, q ` p, s, r p, q ` s, p, r s, q, r ` p, x, y, q

are axioms while ` p is not an axiom. Neither p ` nor p, q, r ` s, t is
an axiom. We choose to have only inference rules in our system, and
no axioms. These axioms are taken care of by the rule (>) below. The
symbol > terminates a proof. We name our system as GPC, Gentzen’s
Propositional Calculus. The inference rules of GPC are as follows:

Let Σ,Γ,∆ be sets of propositions and p, q be arbitrary propositions.
The rules of GPC are (mnemonic on the right):

(>)
Σ, p,Γ ` ∆, p,Ω

>
p ` p
>

(> `)
Σ,>,Γ ` ∆

Σ,Γ ` ∆
> `

(` >)
Σ ` Γ,>,∆

>
` >
>

(⊥ `)
Σ,⊥,Γ ` ∆

>
⊥ `
>

(` ⊥)
Σ ` Γ,⊥,∆

Σ ` Γ,∆
` ⊥

(¬ `)
Σ,¬p,Γ ` ∆
Σ,Γ ` p,∆

¬p `
` p
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(` ¬)
Σ ` Γ,¬p,∆
p,Σ ` Γ,∆

` ¬p
p `

(∨ `)
Σ, p ∨ q,Γ ` ∆

Σ, p,Γ ` ∆ Σ, q,Γ ` ∆
p ∨ q `
p ` q `

(` ∨)
Σ ` Γ, p ∨ q,∆
Σ ` Γ, p, q,∆

` p ∨ q
` p, q

(∧ `)
Σ, p ∧ q,Γ ` ∆
Σ, p, q,Γ ` ∆

p ∧ q `
p, q `

(` ∧)
Σ ` Γ, p ∧ q,∆

Σ ` Γ, p,∆ Σ ` Γ, q,∆
` p ∧ q

` p ` q

(→`)
Σ, p→ q,Γ ` ∆

Σ,Γ ` p,∆ Σ, q,Γ ` ∆
p→ q `
` p q `

(`→)
Σ ` Γ, p→ q,∆
Σ, p ` Γ, q,∆

` p→ q

p ` q

(↔`)
Σ, p↔ q,Γ ` ∆

Σ, p, q,Γ ` ∆ Σ,Γ ` p, q,∆
p↔ q `

p, q ` ` p, q

(`↔)
Σ ` Γ, p↔ q,∆

Σ, p ` Γ, q,∆ Σ, q ` Γ, p,∆
` p↔ q

p ` q q ` p

The rules look numerous. But the short form of the rules written on
the right-hand side can be used as mnemonics. Once you go through them,
you find that there is nothing to remember at all. You can simply get them
by understanding the mechanism. The rules for ¬ say that you can flip the
sides and while doing so, drop or add a ¬. The rules for ∨ and ∧ say that
whenever ∨ is on the right of the sequent symbol `, just replace it by a
comma; a similar thing happens when ∧ is on the left of `. This suggests
that we interpret a comma on the left of ` as ∧, and one on the right as ∨.
Whenever ∨ is on the left or ∧ is on the right of `, the sequent gives rise
to two sequents. You can then see that the other rules can be obtained by
employing the equivalences: p → q ≡ ¬p ∨ q, p ↔ q ≡ (p → q) ∧ (q → p).
The rules (> `) and (` ⊥) say that > on the left and ⊥ on the right of
` can be omitted. Thus the empty sequent ` may be seen as the sequent
> ` ⊥. Similarly, the universal sequent > may be thought of as the sequent
⊥ ` > or as > ` > or as ⊥ ` ⊥ or as ` > or as ⊥ ` .

Now, what is a proof and what is a theorem? A derivation is a tree
whose root is a sequent and it is generated by applications of rules. A
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proof of a sequent is a derivation with the sequent at its root and > at
all its leaves. We say that the sequent Σ ` Γ is provable if it has a proof,
and in such a case, we write Σ `g Γ. The subscript g reminds us that p is a
theorem in the system GPC. A proposition p is a GPC-theorem (`g p) if
there is a proof of the sequent `p. A set of propositions Σ is inconsistent
in GPC iff the sequent Σ ` is provable.

EXAMPLE 4.36 Show that `g p→ (¬q → ¬(p→ q)).
Solution It is straightforward to construct a proof here. Just use the
rules and go on taking symbols from one side to the other till you reach
at >, or that when you cannot possibly apply any rule. The following is a
proof, a proof tree. We are not drawing the tree, but look at the branching
towards the last line. See the following example for a proof and a theorem.

` p→ (¬q → ¬(p→ q)) `→
p ` ¬q → ¬(p→ q) `→
p,¬q ` ¬(p→ q) ` ¬
p,¬q, p→ q ` ¬ `
p, p→ q ` q →`

p ` p, q p, q ` q >, >
> >

Semantically, the rules claim that the numerator is a valid consequence
if the denominator is a valid consequence. When a branching rule is applied
in a derivation, you would end up at many leaves. Then, the derivation
would claim that whenever all the leaves are valid consequences, the sequent
at the root is also a valid consequence. You can also define p to be a
GPC-theorem if the sequent > ` p is provable, and similarly, a set Σ is
inconsistent if the sequent Σ ` ⊥ is provable. Why?

EXAMPLE 4.37 Check whether the following are GPC-theorems:
(a) p→ (q → p))

(b) (p→ (q → r))→ ((p→ q)→ (p→ r))

(c) (¬p→ ¬q)→ (q → p)

(d) (p ∨ q)↔ (¬p→ q)

Solution (a) With the hope that GPC really captures PL, you may at-
tempt to show that this proposition is a theorem. Then, your aim is to-
wards constructing a proof tree with root as the sequent ` p → (q → p))
and leaves as >. Here is one such proof:

` p→ (q → p) `→
p ` q → p `→
p, q ` p >
>
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(b) The following proof shows that the proposition is a GPC-theorem:

` (p→ (q → r))→ ((p→ q)→ (p→ r)) `→
p→ (q → r) ` (p→ q)→ (p→ r) `→
p→ (q → r), p→ q ` p→ r `→
p→ (q → r), p→ q, p ` r →`

p→ (q → r), p ` p, r p→ (q → r), q, p ` r `, →`
> q, p ` p, r q → r, q, p ` r `, →`

> r, q, p ` q, r r, q, p ` r `, `
> >

At the second line, instead of applying (`→), you could have applied
(→`) to branch from the proposition p → (q → r). Then, the branching
that came at the end would have come on the third line; essentially, you
would have had to repeat the third line on every path. Do it now, and
see what we are talking about. The tree would have become bigger unnec-
essarily. The rules that have a single denominator are called the stacking
rules, and the ones with two denominators are the branching rules. It is
advantageous to apply a stacking rule first and wait for a branching rule
to be applied later. Hence we have the following heuristic.

Delay in applying a branching rule if stacking rules can be applied.

(c) ` (¬p→ ¬q)→ (q → p) `→
¬p→ ¬q ` q → p `→
¬p→ ¬q, q ` p →`

q ` ¬p, p ¬q, q ` p ` ¬, ¬ `
p, q ` p q ` q, p >, >
> >

(d) ` p ∨ q ↔ (¬p→ q) `↔
p ∨ q ` ¬p→ q ¬p→ q ` p ∨ q `→, →`
p ∨ q,¬p ` q ` ¬p, p ∨ q q ` p ∨ q ¬ `, ` ¬, ` ∨
p ∨ q ` p, q p ` p ∨ q q ` p, q ∨ `, ` ∨, >
p ` p, q q ` p, q p ` p, q > >
> > >

Exercise 4.16 Show that the following sequents are provable:
(a) ` p ∧ q ↔ ¬(p→ ¬q) (b) ` (p↔ q)↔ ((p→ q) ∧ (q → p))

(c) > ↔ p ∨ ¬p (d) ⊥ ↔ p ∧ ¬p (e) p, p→ q ` q

After the exercise, you now know that GPC is complete (strongly) with
respect to PC, and hence, with respect to PL. But is it a sound system?
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What is the meaning of soundness here? It means that, if every leaf of a
derivation tree is the universal sequent >, then the consequence obtained
from the root sequent by replacing ` by |= must be a valid consequence.

One simple question. If you replace ` in a sequent by |=, do you always
get a consequence in PL? Well, if the sequent is Σ ` Γ and Γ is a singleton,
then obviously you get a consequence. If Γ is not a singleton, then? Take
the simpler case first. If Γ = ∅, then interpret Σ ` ∅ as Σ |= ⊥. Why is it
so? Because, ⊥ serves as an identity element on the right side of `. Look
at (` ⊥) rule. Due to (` ∨) rule, if Γ = {p1, . . . , pm} we may view the
sequent Σ ` Γ as the consequence Σ |= p1 ∨ · · · ∨ pm. Note that this goes
well with the limiting case Γ = ∅ also since p1∨· · ·∨pm∨⊥ ≡ p1∨· · ·∨pm.
With this view of a sequent, you can now confirm soundness. This asks
you to verify that for each rule of the form

Σ ` Γ
∆ ` Ω

the metastatement: “If ∆ |= Ω, then Σ |= Γ” holds. Then apply induction
on the (depth of) derivation trees to complete the soundness proof. In
the basis case, however, you have to check whether the universal sequent >
corresponds to a valid consequence, which is the case due to our convention.
Thus you have proved the following result.

Theorem 4.21 (Strong Adequacy of GPC) Let Σ be a set of proposi-
tions and w be a proposition. Then, Σ `g w iff Σ |= w.

Note that you have actually proved a somewhat stronger assertion than
the above theorem. Extend the definition of a consequence in PL to Σ |= Γ
for sets of propositions Σ and Γ by: “for any interpretation i, if i is a
model of each proposition in Σ, then i is a model of some proposition in
Γ ”. Then you have proved that Σ ` Γ is a provable sequent iff Σ |= Γ. We
turn towards a Gentzen system for FL. Naturally, we take all the rules of
GPC in toto, remembering that the sets Σ,Γ,∆,Ω are sets of formulas and
p, q are arbitrary formulas instead of propositions. We have the following
additional rules to tackle the quantifiers and the equality predicate:

(∀ `)
Σ,∀xX,Γ ` ∆

Σ, X[x/t],∀xX,Γ ` ∆
∀xX `

X[x/t],∀xX `

(` ∀)
Σ ` Γ,∀xX,∆

Σ ` Γ, X[x/y],∆
` ∀xX
` X[x/y]

provided that y is a new variable, i.e., the variable y does
not occur free in the numerator.

(∃ `)
Σ,∃xX,Γ ` ∆

Σ, X[x/y],Γ ` ∆
∃xX `
X[x/y] `

provided that y is a new variable.
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(` ∃)
Σ ` Γ,∃xX,∆

Σ ` Γ, X[x/t],∃xX,∆
` ∃xX

` X[x/t],∃xX

(≈ r) Σ ` Γ
Σ, (t ≈ t) ` Γ

`
(t ≈ t) `

(≈ c) Σ, (s ≈ t),Γ ` ∆
Σ, (t ≈ s),Γ ` ∆

(s ≈ t) `
(t ≈ s) `

(≈ s) Σ, (s ≈ t), X[x/s],Γ ` ∆
Σ, (s ≈ t), X[x/t],Γ ` ∆

(s ≈ t), X[x/s] `
(s ≈ t), X[x/t] `

Note the eigenvariable condition, the restrictions in the rules (` ∀),
and (∃ `) on the variable y. It is the same condition we used in the FND-
rules (∀ i) and (∃e). The rules (≈ r), (≈ c) and (≈ s) for the equality
predicate are easy to see; (≈ r) is the reflexivity, (≈ c) is the commutativity,
and (≈ s) is the substitutivity property of ≈ . In the case of (≈ r), we can
only add t ≈ t to the left side since t ≈ t is equivalent to > semantically,
and > behaves as the identity on the left side of `. (That is, p, q ` r and
p,>, q ` r represent the same sequent.) We cannot add t ≈ t on the right
side since p ` q,>, r is not the same sequent as p ` q, r. Similarly, in (≈ s),
we cannot have a rule with s ≈ t on the right side. But you can have a
commutativity rule for ≈, where s ≈ t and t ≈ s can both be on the right
side. We call the new system GFC (Gentzen’s First Order Calculus). The
examples below will help you in using the proof system GFC.

EXAMPLE 4.38 The sequent ` ∀xX → X[x/t] is provable.

Solution ` ∀xX → X[x/t] `→
∀xX ` X[x/t] ∀ `

X[x/t],∀xX ` X[x/t] >
>

EXAMPLE 4.39 The sequent ` ∀x(X → Y )→ (X → ∀xY ) is provable
provided that x does not occur free in X.

Solution ` ∀x(X → Y )→ (X → ∀xY ) `→
∀x(X → Y ) ` X → ∀xY `→
∀x(X → Y ), X ` ∀xY ` ∀, [x/x]

∀x(X → Y ), X ` Y ∀ `, [x/x]

X → Y,X ` Y →`
X ` X,Y Y,X ` Y >, >
> >

EXAMPLE 4.40 `g (t ≈ t).
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Solution ` (t ≈ t) ≈ r
(t ≈ t) ` (t ≈ t) >

>

EXAMPLE 4.41 `g (s ≈ t)→ (X[x/s]→ X[x/t])

Solution ` (s ≈ t)→ (X[x/s]→ X[x/t]) `→
s ≈ t ` X[x/s]→ X[x/t] `→
s ≈ t,X[x/s] ` X[x/t] ≈ s
s ≈ t,X[x/t] ` X[x/t] >

>

Exercise 4.17 Show that the following inference rules are not sound:

Rule-1:
Σ ` Γ,∆

Σ ` Γ, (t ≈ t),∆
Rule-2:

Σ ` Γ, (s ≈ t), X[x/s],∆
Σ ` Γ, (s ≈ t), X[x/t],∆

[Hint : A rule with numerator N and denominator D is sound if the metas-
tatement ‘if D, then N ’ holds. Further, a sequent Σ ` Γ holds if every
model of all formulas in Σ is a model of some formula in Γ.]

So, you see that all the axioms and inference rules of FC are theorems
or provable sequents of GFC except one that we have not yet attempted.
It is the rule of universal generalization or

(UG) :
X

∀xX
provided that x is not a free variable of any premise used thus far. How
to take care of the condition in UG and write a corresponding sequent? Is
it X ` ∀xX, provided, of course, x is not free in a premise used thus far?
But the phrase ‘a premise used thus far’ has seemingly no meaning in the
sequent calculus. Moreover, if we interpret this literally, then the condition
would impose the restriction that x is not a free variable of X, as X ` ∀xX
has a premise X. On the other hand, if we disregard X as a premise used
here, then X ` ∀xX will be unsound since Px 6|= ∀xPx. This brings us
back to the question: “Does UG allow one to infer or derive ∀xX from the
premise X”? No. If you attempt at a derivation, you would arrive at a
two-line proof such as

1. X P

2. ∀xX UG

where X has to be used as a premise, and then this is not a proof due to the
restriction on UG. But then, when could we use the rule UG meaningfully?
Well, we had used it (Look at some examples in FC with this fresh outlook.)
on some formulas which were derived in the course of the proof rather than
on a premise. The variables on which it had been applied must have come
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out of universal specification (A4) used somewhere earlier. In that case,
you may have another attempt at proving X ` ∀xX in GFC. Here is such
an attempt:

X ` ∀xX ` ∀, [x/x]

X ` X >
>

But this is not correct since (` ∀) is not applicable as the variable x
could occur free in the first line. So, what is the correct formulation of the
rule (UG) in terms of sequents? Does UG say that “If ` X, then ` ∀xX”?
It does not, because the formula that occurs in a proof before applying UG
may not really be valid whereas ` X means that X is valid semantically.
All that is guaranteed is that X is derived from the premises as used in
that particular proof (when we assume ` X).

Suppose you have got a proof in FC of X by using some (or all) of
the premises, and then you are applying UG. For convenience, let us take
the premises as X1, . . . , Xn which have been used in this proof for deriving
X. Since UG is applied next for deriving ∀xX, we see that x is not free
in any of the formulas X1, . . . , Xn. Now what is the assumption before
the application of UG? It is simply the assertion that the consequence
X1, . . . , Xn ` X is valid in FC. Then, after the application of UG, you have
proved that X1, . . . , Xn ` ∀xX. Thus, the formulation of UG in GFC must
be the metastatement: “If X1, . . . , Xn `g X, then derive X1, . . . , Xn `g

∀xX provided x does not occur free in any ofX1, . . . , Xn. ” This corresponds
to the inference rule (in GFC style):

(GUG)
Σ ` ∀xX

Σ ` X
if x is not free in Σ

You can easily see that GUG is a derived rule of GFC as a single application
of (` ∀) completes the derivation. See to it that the eigenvariable condition
is met since x is not free in the numerator. With this, you have proved the
completeness of GFC. At this point you must write a formal proof of the
following theorem.

Theorem 4.22 (Strong Adequacy of GFC) Let Σ be a set of formulas
and w be a formula. Then, Σ `g w iff Σ |= w.

We give some more examples before closing the section.

EXAMPLE 4.42 Show that the following sequent is provable:

∃x∃y∃z(¬Qx∧¬Qy ∧¬Qz ∧Qf(f(x, y), z) ` ∃x∃y(¬Qx∧¬Qy ∧Qf(x, y))

Solution We use a vertical bar | for indicating the branchings. We apply,
in succession, (∃ `) thrice, (∧ `) thrice, (` ∃) twice, and (` ∧) twice to
obtain the following proof:
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∃x∃y∃z(¬Qx∧¬Qy∧¬Qz∧Qf(f(x, y), z) ` ∃x∃y(¬Qx∧¬Qy∧Qf(x, y))

¬Qu ∧¬Qv ∧¬Qw ∧Qf(f(u, v), w) ` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y))

¬Qu,¬Qv,¬Qw,Qf(f(u, v), w) ` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y))

¬Qu,¬Qv,¬Qw,Qf(f(u, v), w)

` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y)),¬Qu ∧¬Qv ∧Qf(u, v)

¬Qu,¬Qv,¬Qw,Qf(f(u, v), w)

` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y)),¬Qu >
>

| ¬Qu,¬Qv,¬Qw,Qf(f(u, v), w)

` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y)),¬Qv >
>

| ¬Qu,¬Qv,¬Qw,Qf(f(u, v), w)

` ∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y)), Qf(u, v) ` ∃ twice

The third path does not terminate here. We apply (` ∃ ) twice as
indicated with the substitutions [x/f(u, v)] and [y/w]. In the next line we
also suppress the sentence ∃x∃y(¬Qx∧¬Qy ∧Qf(x, y)), which you should
write when rewriting this proof. Notice the branchings of this third path:

¬Qu,¬Qv,¬Qw,Qf(f(u, v), w)

` ¬Qf(u, v) ∧¬Qw ∧Qf(f(u, v), w), Qf(u, v) ` ∧ twice

¬Qu,¬Qv,¬Qw,Qf(f(u, v), w) ` ¬Qf(u, v), Qf(u, v) ` ¬
¬Qu,¬Qv,¬Qw,Qf(f(u, v), w), Qf(u, v) ` Qf(u, v) >

>
| ¬Qu,¬Qv,¬Qw,Qf(f(u, v), w) ` ¬Qw,Qf(u, v) >

>
| ¬Qu,¬Qv,¬Qw,Qf(f(u, v), w) ` Qf(f(u, v), w), Qf(u, v) >

>

Let us see a nice interpretation of the consequence you have just proved.
In the set of real numbers, interpret Qx as x is a rational number, and
f(x, y) as xy. Then the consequence says that “If there are irrational
numbers a, b, c such that (ab)c is rational, then there are irrational numbers
s, t such that st is rational”. The antecedent clearly holds since, with
a = b = c =

√
2, you see that

√
2 is irrational and (

√
2
√

2)
√

2 = (
√

2)2 = 2
is rational. So, you conclude that there are irrational numbers s, t such
that st is rational.

Further, if you interpret Qx as x is rational or not algebraic, then your
conclusion would be: “there are irrational algebraic numbers s, t such that
st is rational”. Look at the above proof. You have proved that either

√
2
√

2
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is rational, in which case, you have s =
√

2, t =
√

2 or else, (
√

2
√

2)
√

2 is
rational, in which case, s =

√
2
√

2, t =
√

2. It does not determine whether√
2
√

2 is rational or not.

EXAMPLE 4.43 Show that the following set Σ is unsatisfiable:

Σ = {∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y),∀x∃y¬(x ≈ y)}
Solution Due to strong adequacy, it is enough to show that Σ is incon-
sistent in GFC (Why?). We construct a proof of the sequent Σ `. For ease
in writing let P = ∀x∀y(f(x, y) ≈ f(y, x)) and Q = ∀x∀y(f(x, y) ≈ y).
Here is the proof:

∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y),∀x∃y¬(x ≈ y) ` ∀ `
∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y),∃y¬(x ≈ y) ` ∃ `
∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y),¬(x ≈ z) ` ¬ `
∀x∀y(f(x, y) ≈ f(y, x)),∀x∀y(f(x, y) ≈ y) ` x ≈ z ∀ `, 4 times

∀x∀y(f(x, y) ≈ f(y, x)), Q, f(x, z) ≈ z, f(z, x) ≈ x ` x ≈ z ∀ `
P,Q, f(x, z) ≈ z, f(z, x) ≈ x, f(x, z) ≈ f(z, x) ` x ≈ z ≈ s twice

P,Q, f(x, z) ≈ z, f(z, x) ≈ x, z ≈ x ` x ≈ z ≈ c
P,Q, f(x, z) ≈ z, f(z, x) ≈ x, x ≈ z ` x ≈ z >

>

What about monotonicity, RAA, and the deduction theorem? Observe
that provability of Σ ` ∆ implies the provability of Σ,Γ ` ∆. This proves
monotonicity. Since provability of Σ ` Γ, X → Y implies the provability of
Σ, X ` Γ, Y for formulas X,Y , the deduction theorem is proved. Similarly,
Σ∪{¬X} is inconsistent iff Σ,¬X ` is provable iff Σ ` X. Hence RAA holds
in GFC. You can see how simple the proofs of the metatheorems are. No
wonder many logicians prefer Gentzen systems for presenting logic. How
will Herbrand’s theorem look like in GFC?

In the next section we present another proof system, the last one of
course, which incorporates the advantages of the tree-like proofs of Gentzen
systems staying closer to the semantics.

4.7 Analytic Tableau

When can you say that a compound proposition such as p ∨ q is true?
Obviously, you consider two cases, one, when p is true, and two, when q is
true. You can illustrate these cases in a tree:

p ∨ q
�

�
�
p

@
@

@
q

or, schematically,
p ∨ q
p q
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Similarly, when can you say that p ∧ q holds? This is so when both p
and q are true. This is depicted in the tree:

p ∧ q

p

q

or, schematically,
p ∧ q
p
q

So, when you branch out, you say that the proposition at the parent node
is true provided that at least one of its children is true, and when you stack,
the parent proposition is true if both its children are true. This type of
semantic trees (E. W. Beth’s) remind you of the sets of model semantics.
If M(A) denotes the sets of models of A, then M(p ∨ q) =M(p) ∪M(q)
and M(p ∧ q) =M(p) ∩M(q).

What would happen if you take a more complicated proposition, say,
(p ∨ q) ∧ r? Well, (p ∨ q) ∧ r is true when both p ∨ q and r are true. Next,
go for p ∨ q to get the semantic tree as

(p ∨ q) ∧ r

p ∨ q

r
�

�
�

@
@

@
p q

or, schematically,
(p ∨ q) ∧ r
p ∨ q
r

p q

A model of (p∨q)∧r is obtained by looking at both the paths, one from
the root (p∨q)∧r to the leaf p, which contains the literals r and p, and the
other from the root to the leaf q containing the literals r and q. The two
models thus obtained are i, j, where i(r) = i(p) = 1, and j(r) = j(q) = 1.

In fact, you are getting a dnf representation of the root proposition by
these models, i.e., (p ∨ q) ∧ r ≡ (r ∧ p) ∨ (r ∧ q). If in a path you get an
atomic proposition and its negation, then what do you conclude about the
root proposition? For example, consider the following semantic tree:

(p ∨ q) ∧ (¬p ∧ ¬q)

p ∨ q

¬p

¬q
�

�
�

@
@

@
p q

or, schematically,

(p ∨ q) ∧ (¬p ∧ ¬q)
p ∨ q
¬p
¬q
p q
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In the leftmost path, we have the literals p,¬q,¬p, and the other path
contains the literals q,¬q,¬p. This means that if you have a model of the
root proposition, then it must satisfy (at least) one of the sets {p,¬q,¬p}
or {q,¬q,¬p}. But none of these sets is satisfiable since they contain com-
plementary literals. Hence the root proposition is unsatisfiable.

We want to formalize this heuristic of semantic trees by formulating
rules to handle the connectives. The resulting system is named as PT,
the propositional analytic tableau. In writing the rules, we adopt
the schematic way of depicting the trees as described above. The stacked
propositions in a path are simply written one below the other. Similarly, the
branchings are separated by some blank spaces. To get the trees, simply
join the numerator to the the denominators appropriately. The rules of
inference of the system PT are given below, where p, q are any propositions:

(¬¬)
¬¬p
p

(¬>)
¬>
⊥

(∨)
p ∨ q
p q

(¬∨)
¬(p ∨ q)
¬p
¬q

(∧)
p ∧ q
p

(¬∧)
¬(p ∧ q)
¬p ¬q

q

(→)
p→ q

¬p q
(¬ →)

¬(p→ q)
p
¬q

(↔)
p↔ q

p ¬p
(¬ ↔)

¬(p↔ q)
p ¬p

q ¬q ¬q q

The rules (¬¬), (¬∨), (∧), (¬ →), (¬>) are the stacking rules and the
others are the branching rules. Accordingly, a proposition which is in
one of the forms ¬¬p,¬(p ∨ q), (p ∧ q),¬(p → q),>,¬>,⊥,¬⊥, is called a
stacking proposition, and others, namely, any proposition in one of the
forms (p ∧ q),¬(p ∧ q), (p → q), (p ↔ q),¬(p ↔ q),>,¬⊥, is termed as a
branching proposition.

A tableau for a proposition p is a tree whose root is p and it is generated
by applying PT-rules. A tableau is generated by first determining in which
form the proposition is, and then applying the corresponding rule. The
children of the node considered are the denominators of the corresponding
rule. A path in a tableau is the path from the root to any leaf. If on a
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path, a rule has been applied on every compound proposition (which are
not literals), then the path is called complete.

A path in a tableau is called a closed path if either contains ⊥, or it
contains p and ¬p for some proposition p. Note that p can also be one of the
propositional constants >,⊥. In fact, we will treat > and ⊥ as literals. By
the rules (¬¬), (¬>), the propositions > and ⊥ are complementary to each
other. In a tableau, we put a cross (×) below a closed path. A path which
is not closed is called an open path. Consequently, a complete path is
closed iff it contains a pair of complementary literals. A completed path
is a path which is either closed or complete (or both). A tableau is called
a closed tableau if each path in the tableau is a closed path. A tableau
is called an open tableau if at least one of its paths is an open path. A
completed tableau is a tableau in which every path is a completed path.

A set of propositions Σ is inconsistent if there is a closed tableau with
all (or some of) the propositions of Σ in the root. If Σ is a finite set, then
it is the same as taking the conjunction of the propositions in Σ as the
root. For a set Σ of propositions and a proposition w, Σ ` w if Σ ∪ {w} is
inconsistent. We read Σ ` w as w follows from Σ, or as Σ entails w in PT,
or even as “the consequence Σ entails w is PT-provable”. Note that RAA
is taken as a definition in this system. Thus a proposition w is a theorem
in PT if {¬w} is inconsistent, i.e., if there is a closed tableau for ¬w. In
what follows, when a tableau is constructed for a set Σ, we refer to the
elements of Σ as premises with respect to that tableau.

As in Gentzen systems, it will be a good heuristic to use the stacking
proposition first for extending a tableau, keeping branching propositions
for later use. This saves space since, when a branching rule is applied on
a proposition, we have to add its children to all those leaves of which the
proposition is an ancestor. This is because a tableau is generated path-
wise. You may generate it either in depth first or in breadth first way, but
while generating it breadth first, you must remember to add children of a
proposition to every such leaf, the path from which to the root contains
the proposition. For example, if there are two propositions, say, p ∨ q and
q ∨ r on the root, then the tableau would look like:

1. p ∨ q
2. q ∨ r
3. p q

4. q r q r

Here, we have used the rule (∨) on p ∨ q to get the tableau up to line 3.
The path from the leaf p to the root contains q∨ r, the same is true for the
leaf q. So, in the next stage, the tableau is extended by adding the children
q and r of q ∨ r to both these leaves.
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EXAMPLE 4.44 Show that Σ = {p→ (¬q → r), p→ ¬q,¬(p→ r)} is
inconsistent.
Solution The root of the tableau contains all the three propositions in Σ.
As this is our first example, we number the propositions as also document
which rule has been applied where. Once you gain experience (not much
is required here), you will find out the suitable rule yourself. However, do
not forget to cross a closed path. Here is the tableau:

1. p→ (¬q → r)

2. p→ ¬q
3. ¬(p→ r)

4. p (On 3.)

5. ¬r
6. ¬p 7. ¬q (On 2.)

8. ¬p 9. ¬q → r 10. ¬p 11. ¬q → r (On 1.)

× 12.¬¬q 13. r × 14.¬¬q 15. r

16. q × 17. q ×
× ×

This is a completed tableau. We check for each path. The leftmost path
comprises the propositions numbered 1, 2, 3, 4, 5, 6, 8. There are p and ¬p
on this path, and thus it is a closed path. The cross below the leaf (¬p) indi-
cates that the path is closed. The next left path has the propositions num-
bered 1, 2, 3, 4, 5, 6, 9, 12, 16. Here also you find both p and ¬p, and hence it
is closed. The next left path consists of the propositions 1, 2, 3, 4, 5, 6, 9, 13.
This is also a closed path as it contains p,¬p. The other three paths
comprise the propositions 1, 2, 3, 4, 5, 7, 10; 1, 2, 3, 4, 5, 7, 11, 14, 17; and
1, 2, 3, 4, 5, 7, 15, containing the complementary literals p,¬p; q,¬q; and
r,¬r, respectively. Therefore, the tableau is a closed tableau showing that
Σ is inconsistent. However, there are repetitions in the above tableau. It
can be shortened as in the following:

p→ (¬q → r)

p→ ¬q
¬(p→ r)

p

¬r
¬p ¬q
× ¬p ¬q → r

× ¬¬q r

× ×
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EXAMPLE 4.45 Show the following by analytic tableau:

(a) ` p→ (q → p)

(b) ` (p→ (q → r))→ ((p→ q)→ (p→ r))

(c) (¬q → ¬p)→ (p→ q)

(d) {p, p→ q} ` q

Solution To show that the proposition p → (q → p) in (a) is a theorem
in PT, we start with the proposition ¬(p→ (q → p)) and then see that the
tableau closes. Similarly, (b)−(d) are also shown. Before reading further,
construct the tableaux for all of them.

(a) ¬(p→ (q → p)

p

¬(q → p)

q

¬p
×

(b) ¬(p→ (q → r)→ ((p→ q)→ (p→ r))

p

p→ (q → r)

¬((p→ q)→ (p→ r))

p→ q

¬(p→ r)

p

¬r
¬p q

× ¬p q → r

× ¬q r

× ×

(c) ¬((¬q → ¬p)→ (p→ q))

¬q → ¬p
¬(p→ q)

p

¬q
¬¬q ¬p
× ×
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(d) p

p→ q

¬q
¬p q

× ×

So, PT is complete with respect to PL, is it? Yes, that is what the
above example shows. You can prove the soundness of PT by induction
on the number of nodes in any tableau. This can easily be extended to
the strong soundness and strong completeness of PT. However, we plan to
prove these results for tableau without using PC.

Recollect that a proposition is inconsistent if every path in a tableau for
the proposition (with the proposition at the root) is closed. But there can
be many tableaux with the proposition at the root, and all the tableaux may
not be closed. For example, start the tableau by taking the proposition at
the root, but do not extend it further; this is clearly a tableau. Even if the
proposition at the root is inconsistent (say, p∧¬p), the tableau is not closed;
inconsistency requires only some tableau to close. Similarly, a proposition
would be called consistent if every tableau for the proposition remains
open, i.e., in every tableau for the proposition, there is an open path.
Alternatively, the business of ‘every tableau’ and ‘some tableau’ is settled
well by considering a completed tableau. A proposition is inconsistent if the
completed tableau for it is closed. Similarly, a proposition is consistent if
the completed tableau is open. And a set Σ of propositions is consistent if
the completed tableau with all the elements of Σ at the root is open.

EXAMPLE 4.46 Consider the following tableau:
(p→ q) ∧ (r → s)

s ∧ (q → t)
¬t

¬(¬p ∨ ¬r)
¬¬p
¬¬r
s

q → t

p→ q

r → s

¬r s

× ¬p q

× ¬q t

× ×
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Since this completed tableau is closed, the set of propositions

Σ = {(p→ q) ∧ (r → s), s ∧ (q → t),¬t,¬(¬p ∨ ¬r)}

is inconsistent. (Why?) Of course, a completed tableau is not a must for
showing inconsistency! For showing consistency, however, we must con-
struct a completed tableau.

EXAMPLE 4.47 Is Σ = {p→ q ∧ r,¬p ∨ s, r → s ∧ t,¬p} consistent?

Solution Here is the completed tableau for Σ:

p→ q ∧ r
r → s ∧ t
¬p ∨ s
¬p

¬p q ∧ r
¬r s ∧ t q

¬p s s r

t ¬r s ∧ t
¬p s × s

t

¬p s

The tableau is completed but is not closed. Hence Σ is consistent.

Exercise 4.18 Let w be a proposition such that every path in the com-
pleted tableau for it is open. Show that w need not be valid.

The generation of a completed tableau can be made systematic by con-
sidering the set Σ of propositions as an ordered set. Since the set of all
propositions is countable, Σ can be at most countable and then, we can
have an enumeration of it, say, its elements are: X1, X2, X3, . . .. A sys-
tematic tableau for Σ is generated by starting with X1 as the root. Apply
the suitable tableau rule to generate its children (or a child), apply tableau
rules on the children, on the children of children, and so on till you get a
completed tableau. This is a completed tableau for the single proposition
X1. Suppose the leaves on the open paths are: X11, X12, . . . , X1m1. Add X2

as a child to each of these leaves X11, X12, . . . , X1m1. Apply tableau rules on
X2 on each of these m1 copies of X2 and generate the completed tableau.
Call the leaves of the open paths of the completed tableau generated so
far as X21, X22, . . . , X2m2. Add X3 to each of these leaves and extend the
tableau by applying tableau rules on each of these copies of X3 to get a still
bigger completed tableau. Continue this process of extending the tableau,
adding in each stage a new proposition from Σ and then completing the
application of rules on them. The tableau so obtained is the systematic
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tableau for Σ. If Σ is a finite set, then the systematic tableau for Σ, now
considered as an ordered set, is a finite binary tree, a completed tableau
which is also finite. If Σ is infinite, then either the tableau closes after a
finite number of propositions from Σ are used, or it continues to grow to
an infinite completed tableau.

EXAMPLE 4.48 Construct a systematic tableau for the set Σ (ordered
as written) in Example 4.47.
Solution Here is the systematic tableau:

1.p→ q ∧ r
¬p q ∧ r

2.¬p ∨ s q

¬p s r

3.r → s ∧ t 3.r → s ∧ t 2.¬p ∨ s
¬r s ∧ t ¬r s ∧ t ¬p s

4.¬p s 4.¬p s 3.r → s ∧ t 3.r → s ∧ t
t t ¬r s ∧ t ¬r s ∧ t

4.¬p 4.¬p 4.¬p s × s

t t

4.¬p 4.¬p
In the above tableau, we have taken the first proposition p → q ∧ r of

Σ as the root. We have also numbered it as 1. After applying the tableau
rules, we end up at a tree with leaves ¬p and r. Then the second element
¬p ∨ s (numbered 2) of Σ is added to the leaves. Again, the tableau rules
are applied to extend the tree. The leaves of the extended tableau are
¬p, s,¬p, s, four in number. To each of them is added the third element
r → s∧ t. Once again the tableau is extended and the eight leaves contain
the propositions ¬r, t,¬r, t,¬r, t,¬r, t, respectively from left to right. One
of them is on a closed path and it is marked ×. To the other leaves, we
add the fourth element ¬p of Σ. Since it is a literal, no tableau rule can be
applied, and the tableau is completed systematically.

We know that Σ in the above example is consistent. Is it also satisfi-
able? It is, since you can construct a model of Σ from an open path in its
systematic tableau. Take, for example, the leftmost path. The literals in
this path are: ¬p,¬r. This set itself is a model of Σ. To be explicit, define
an interpretation i : {p, q, r, s, t} → {0, 1} by taking i(p) = 0 = i(r) and
i(q) = i(s) = i(t) = 0. You can verify that i |= Σ. It does not matter what
you assign to the variables q, s, t here. Take different interpretations by
assigning different values to these variables but keep both of p, r assigned
to 0 and verify that they are indeed models of Σ. Take another open path,
say, the second from the left. This contains the literals ¬p, s, t. Then the
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corresponding model of Σ is any interpretation that assigns p to 0, and s, t
to 1. You can also verify this. Each open path in the systematic tableau
gives rise to a model of Σ. Why?

Look at the leftmost path in the above tableau once again. It contains
the propositions p→ q∧r,¬p,¬p∨s,¬p, r → s∧t,¬r,¬p. The four elements
of Σ are appearing in that order, but in between them come some more
propositions. These extra propositions have come by application of tableau
rules. The first proposition in this path is p→ q ∧ r, from which came the
second proposition ¬p. This means that p → q ∧ r is true (assigned to
1 under an interpretation) whenever ¬p is true. From the second element
¬p∨s of Σ comes the next proposition ¬p in the path. Here again, whenever
¬p is true, ¬p∨ s is also true. From the third element r → s∧ t of Σ comes
the next literal ¬r. Here also, if an interpretation assigns ¬r to 1, then it
must assign 1 to r → s ∧ t. Finally, ¬p, the fourth element of Σ, is itself a
literal, and it would be assigned to 1.

What we observe is that if a literal comes from a proposition by ap-
plications of tableau rules in a path, then the proposition is true provided
that all the literals are true. This fact is easy to prove by induction since
each tableau rule has this property. This means that if you have a tableau
rule with parent proposition X and children Y, Z, (or only Y ) and i is any
interpretation, then the following statements hold:

(S) If it is a stacking rule, then i(X) = 1 iff i(Y ) = i(Z) = 1.

(B) If it is a branching rule, then i(X) = 1 iff i(Y ) = 1 or i(Z) = 1.

Exercise 4.19 Show: each tableau rule has the properties (S) and (B).
Suppose that Σ is a finite set of propositions. Since any path in a

systematic tableau contains all the elements of Σ, any model of the literals
in any path is also a model of the whole path due to properties (S) and
(B). Moreover, if a path in the systematic tableau is open, then it does
not contain a pair of complementary literals, and then, a model can be
constructed by assigning each of these literals to 1. Can you argue the
same way even if Σ is infinite? Let S be the systematic tableau for Σ,
which we assume to be an ordered infinite set. We must answer whether
any open path in S contains all the elements of Σ.

To start with, we note that an open path P in S has to be infinite. For,
if P is finite, then in it must have occurred a finite number of premises,
and this would force us to introduce one more premise since S is generated
systematically. Now, if an element, say, Xm ∈ Σ, does not occur in P, but
Xm−1 occurs, then Xm has not been added to this path while generating
S systematically. Why? The only possibility is that P must have closed
after Xm−1 has been introduced. But this is not possible since P is open.
Therefore, any open path in a systematic tableau for a set Σ must contain
all elements of Σ, even when Σ is infinite. Since such a path is open,
the set of all literals occurring in this path is satisfiable. Then, from the
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properties (S) and (B), it follows that the set of all propositions occurring
in this open path is satisfiable. But all the propositions in Σ occur in
this path. Therefore, Σ is satisfiable. We have thus proved the following
interesting result.

Theorem 4.23 (Strong Completeness of PT) Every (PT-) consistent
set of propositions is satisfiable.

Conversely, if a set Σ of propositions is inconsistent, then the systematic
tableau for Σ is a closed tableau. However, all the propositions in Σ might
not have occurred in the tableau. Denote by Γ the set of all propositions
that occur in the systematic tableau for Σ. Due to the properties (S) and
(B), Γ is unsatisfiable. Since Γ ⊆ Σ, the set Σ is also unsatisfiable. We
thus obtain the following result.

Theorem 4.24 (Strong Soundness of PT) Every satisfiable set of
propositions is (PT-) consistent.

What can be Γ, the set of propositions occurring in the closed system-
atic tableau for Σ? Is it finite or infinite? Since the tableau is generated
systematically, if at no stage of introducing a new proposition from Σ we
get a pair of complementary literals in some path, then that path can never
close. Hence, every closed path in a systematic tableau is finite. Does that
mean that Γ has only a finite number of propositions? Yes, since a tableau
is a binary tree.

In general, if a tree is finitely generated, i.e., if each node has at the
most m number of children, for some m ∈ N, and each path has a finite
number of nodes, then the tree can have only a finite number of nodes.
This result is expressed more elegantly by the following lemma.

Lemma 4.25 (König’s Lemma) Each finitely generated infinite tree has
an infinite path.
Proof Start from the root of the tree τ0. There are finitely many, say, k
(where k ≤ m for some m ∈ N, m fixed for the tree) children. Take out
the root, and you will end up in k different trees, the subtrees of τ0 with
roots as the children of τ0. If all these subtrees are finite, then clearly, τ0 is
also finite, which is not the case. Thus, there is at least one subtree of τ0
which is infinite.

Choose one of these subtrees and call it τ1. Repeat the same procedure
with τ1 as you had done with τ0. You will be able to choose one subtree
τ2 of τ1, and hence of τ0 which is infinite. By induction it follows that
there is a (infinite) sequence of trees τ0, τ1, τ2, . . . such that each tree in
this sequence is an infinite tree and each is a subtree of all of the preceding
trees. Now the sequence of the roots of these trees in the same order is an
infinite path in τ0.

Exercise 4.20 Show that if in a tree each node has at most m children,
and each path consists of at most n nodes, then the tree consists of at most∑n

i=0m
i many nodes. This directly proves the result we want.
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Coming back to what we were doing, we see that due to König’s lemma,
the set of propositions in the systematic closed tableau Γ for Σ is a finite
set. Then, Γ must have used only a finite number of propositions from Σ.
Thus, we have proved the following statement.

Theorem 4.26 (Compactness of PT) A set of propositions is inconsis-
tent iff it has a finite subset which is inconsistent.

We reformulate the above metatheorems in terms of ` and |= instead
of inconsistency and unsatisfiability. Let Σ be a set of propositions and w
be any propositions. Now, by definition of theoremhood in PT, we have
Σ ` w iff Σ∪{¬w} is inconsistent. Due to the strong soundness and strong
completeness of PT, this is equivalent to “Σ ∪ {¬w} is unsatisfiable”. By
RAA (in PL), Σ |= w. We have thus proved the following statement.

Theorem 4.27 (Strong Adequacy of PT) Let Σ be a set of propositions
and w be any proposition. Σ ` w in PT iff Σ |= w.

Similarly, treading between inconsistency and unsatisfiability, due to
the strong soundness and strong completeness of PT, we see that each set
is unsatisfiable iff it has a finite unsatisfiable subset. Using RAA, we get
the usual formulation of compactness for PL.

Theorem 4.28 (Compactness for PT and PL) Let Σ be a set of propo-
sitions and w be any proposition. Then Σ ` w in PT iff Σ0 ` w for some
finite subset Σ0 of Σ. Moreover, Σ |= w iff Σ0 |= w for some finite subset
Σ0 of Σ.

Exercise 4.21 Prove the deduction theorem and monotonicity for PT.

With this experience with PT, we go to construct a tableau system for
FL. We name the tableau system for FL as FT, the first order analytic
tableau. In FT, all the earlier rules for PT are taken in toto. Here, of
course, the symbols p, q in the rules are taken as formulas and not just
propositions. We now give some more rules to handle the quantifiers and
the equality predicate. The following are the additional rules of inference.

For any formula X and for any term t free for the variable x in X,

(∀)
∀xX
X[x/t]

(¬∀)
¬∀xX
¬X[x/t]

∀xX where t is a new term

(∃)
∃xX
X[x/t]

(¬∃)
¬∃xX
¬X[x/t]

where t is a new term ¬∃xX

X[x/s]

(≈ r) ·
t ≈ t

(≈ s) s ≈ t
X[x/t]
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In the rules (∀) and (¬∃), the formula itself is also repeated. This means
that we can use these formulas again if need arises, possibly, instantiating
them with different terms than t. In practice, we do not write the formulas
again, but do remember that we can use these formulas again. Formulas of
these two types are called universal formulas which can be instantiated
again and again. The corresponding rules are the universal rules. In
contrast, the other two types of formulas in the rules of (¬∀) and (∃) are
called existential formulas, and the rules are called existential rules.
In the existential rules, the restriction of ‘t is a new term’ is in parallel with
the restriction on (UG) in FC, the ‘new variable’ in FND, and the eigen
variable condition in GFC. We use the phrase ‘t is a new term’ to mean
that one of the following provisos is met:

Proviso 1 : No term that has occurred in any formula in the path from
the root to the current existential formula (node on which the rule is being
applied) occurs in t.

Proviso 2 : All the the following four conditions are met:
(a) t neither occurs in the current formula nor in any premise.
(b) t has not occurred in any term s that has been introduced by any
existential rule in the path earlier to the current formula.
(c) no other term s which has been introduced earlier to the path by
an existential rule occurs in the current formula.
(d) no term s that has been introduced by an existential rule in the
path earlier to the current formula occurs in t.

For the time being, you may forget the four conditions and remember
that the ‘new term’ means only the first alternative that it is new to the
path. We will clarify the use of the second alternative later. These in-
stantiations must be done with new terms and they can be effected only
once in a path. The notion of theorems, consequences, consistency, etc.
is the same as in PT. It is clear that the rules are sound. We show their
completeness by proving all the quantifier rules and equality rules of FC in
the following examples.

EXAMPLE 4.49 ` ∀xX → X[x/t], for any term t free for x in X.

Solution We start generating a tableau by negating the formula and see
that the tableau closes.

¬(∀xX → X[x/t])

1. ∀xX
¬X[x/t]

X[x/t] 1. ∀
×
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EXAMPLE 4.50 ` ∀x(X → Y )→ (X → ∀xY ), where x not free in X.

Solution ¬(∀x(X → Y )→ (X → ∀xY )

1. ∀x(X → Y )

¬(X → ∀xY )

X

¬Y [x/t] t new

X → Y [x/t] 1. ∀, x not free in X

¬X Y [x/t]

× ×

EXAMPLE 4.51 Show that ` (t ≈ t)
Solution ¬(t ≈ t)

t ≈ t ≈ r
×

EXAMPLE 4.52 Show that ` (s ≈ t)→ (X[x/s]→ X[x/t]), where s, t
are free for x in X.

Solution (s ≈ t)→ (X[x/s]→ X[x/t])

1. s ≈ t
¬(X[x/s]→ X[x/t])

2. X[x/s]

¬X[x/t]

X[x/t] 1, 2,≈ s
×

EXAMPLE 4.53 Let x be a variable not free in any of the formulas
X1, . . . , Xn, X. Show that if {X1, . . . , Xn} ` X then {X1, . . . , Xn} ` ∀xX.
Solution We have to show that if a tableau for {X1, . . . , Xn,¬X} closes,
then there is a tableau for Σ = {X1, . . . , Xn,¬∀xX} which also closes. Let
τ be a closed tableau for {X1, . . . , Xn,¬X}. We construct the following
tableau for Σ:

X1
...
Xn

¬∀xX
1. ¬X ¬∀

τ

×
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Since τ uses the propositions X1, . . . , Xn,¬X and it closes, the above
is a closed tableau. The entry of the proposition numbered 1 is justified
since x is not free in any of X1, . . . , Xn,¬∀xX, and since ¬X[x/x] = ¬X.

The above example shows that the rule (UG) of FC is a derived rule
of FT. We have already seen that all the axioms of FC are also theorems
in FT. Since FT is sound, this completes the proof of adequacy of analytic
tableau. We will give its direct proof shortly. Before that, let us see some
more examples.

EXAMPLE 4.54 Show by the tableau method that the following ar-
gument is correct: “If all logicians are mathematicians and if there is a
logician who is a computer scientist, then there must be a mathematician
who is also a computer scientist”.
Solution A translation into FL asks for the validity of the consequence:

{∀x(Lx→Mx),∃x(Lx ∧ Cx)} |= ∃x(Mx ∧ Cx)

In the tableau method we construct a closed tableau for the set

{∀x(Lx→Mx),∃x(Lx ∧ Cx),¬∃x(Mx ∧ Cx)}

Here we are using the completeness of FT. Recollect that in PT we have
used the heuristic of applying all stacking rules before applying any branch-
ing rule whenever possible. Along with that, we use the following heuristic :

If possible, apply existential rules before applying universal rules.

That is, whenever possible, use the (∃) and (¬∀) rules before applying the
(∀) and (¬∃) rules. This is because an existential rule introduces a new
term which can be chosen as a term in a universal rule for instantiation.
However, once a term is chosen for instantiation in a universal rule, it
cannot be used in an existential rule losing flexibility. See the following
tableau:

∀x(Lx→Mx)

∃x(Lx ∧ Cx)

¬∃x(Mx ∧ Cx)

La ∧ Ca a is a new constant

La

Ca

La→Ma

¬(Ma ∧ Ca)

¬La Ma

× ¬Ma ¬Ca
× ×
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EXAMPLE 4.55 Show by the tableau method that (see Example 4.42):

∃x∃y∃z(¬Qx∧¬Qy ∧¬Qz ∧Qf(f(x, y), z) |= x∃y(¬Qx∧¬Qy ∧Qf(x, y))

Solution Here is a tableau proof:

∃x∃y∃z(¬Qx ∧¬Qy ∧¬Qz ∧Qf(f(x, y), z)

1. ¬∃x∃y(¬Qx ∧¬Qy ∧Qf(x, y))

¬Qa ∧¬Qb ∧¬Qc ∧Qf(f(a, b), c)

¬Qa
¬Qb
¬Qc

Qf(f(a, b), c)

2. ¬(¬Qa ∧¬Qb ∧Qf(a, b))

¬¬Qa ¬(¬Qb ∧ ¬Qf(a, b))

× ¬¬Qb ¬Qf(a, b)

× 3. ¬(¬Qf(a, b) ∧¬Qc ∧Qf(f(a, b), c))

¬¬Qf(a, b) ¬(¬Qc ∧Qf(f(a, b), c))

× ¬¬Qc ¬Qf(f(a, b), c))

× ×

Observe how the formula numbered 1 has been used twice in the tableau
above giving rise to different children. In PT, this is not done (think of a
systematic tableau). Even if it is done, it would simply repeat the same
children. In the presence of quantifiers, reuse of a universal formula with
different substitutions give different children. From ∀xX, we can have
X[x/a] as a child. In fact, we can have infinitely many such formulas as
children of ∀xX, depending upon what substitution we choose. This is
the reason that in the universal rules the parent formulas are repeated,
whereas in existential rules, the parent formulas are not repeated, meaning
that they can be used only once, and that too with a new term.

To clarify the second proviso of satisfying four conditions that go with
a ‘new term’ in an existential rule, consider the following example and its
two solutions.

EXAMPLE 4.56 Show that ` ∃x(∃yPy → Px) in PT.

Solution 1 1. ¬∃x(∃yPy → Px)

2. ¬∃yPy → Pa

3. ∃yPy
4. ¬Pa

5. P b
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6. ¬∃yPy → Pb

7. ∃yPy
8. ¬Pb

9. ×

Let us see how this tableau has been generated. Formula 2 comes from
formula 1 by applying (¬∃ ) and choosing the term t as the constant a.
Formulas 3 and 4 come from formula 2 by (¬ →). Formula 5 comes from
3 by applying ∃ . Formula 6 comes from 1 again by applying (¬∃). And
formulas 7 and 8 come from 6 by (¬ →). Let us see it carefully, there
has been an irritating repetition in the tableau. We had to instantiate
formula 1 with the constant a, and then once again, with b. Why could we
not use a again, say, to instantiate formula 3? Had it been done, we would
have obtained straight Pa, and that would have closed the tableau in six
lines. The reason is that while instantiating Formula 3, we had to choose
a new term, and it must be different from the already appearing a. So, we
had followed the first proviso that has been stated with an existential rule.
If we follow the second proviso instead, then perhaps we would be able to
use the same constant a again. Is it or is it not? Look at the following
alternative solution.

Solution 2 1. ¬∃x(∃yPy → Px)

2. ¬∃yPy → Pa

3. ∃yPy
4. ¬Pa

5. Pa

6. ×

Is the introduction of Pa justified, say applying ∃ on the formula 3? We
must see that all the four conditions in the second proviso of an existential
rule are satisfied by the constant a. Well, first, a does not occur in the
current formula, i.e., formula 3, ∃yPy; also, a does not occur in the premise
∃x(∃yPy → Px). Second, a has not been introduced by an existential rule
in the path earlier to the current formula, i.e., in the formulas 1 and 2.
Third, (and fourth,) no other term s that has been introduced to the path
(1 and 2) by an existential rule occurs in the current formula since there
has been no application of an existential rule yet. Hence the formula 5
is allowed to be introduced after the formula 3 by an application of (∃).
Therefore, the tableau in Solution 2 is, indeed, a proof.

Thus, it is advisable to get familiar with the second proviso. Moreover,
the second proviso, though complicated, is more general than the first.
Informally, the four conditions in the proviso ask us to check that the term
t used for instantiating an existential formula should not have occurred in
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any premise, and it should not have been introduced earlier (in that path)
by another existential instantiation, nor even in parts. The phrase ‘nor even
in parts’ means that if f(a, b) has been used in an existential instantiation
earlier, then a cannot be used now and also f(f(a, b), a) cannot be used.

Similar to the systematic tableau for propositions, how do we generate
a systematic tableau for formulas? In PT, we complete a tableau for a
single proposition, then add to each leaf the second proposition, complete
all the tableaux thereby, add the third proposition, and so on. In FT,
we may not, possibly, be successful in doing that. The reason is that
if a universal formula appears as a premise, then an application of the
tableau rule will introduce an instance of the formula, and along with that
the formula itself is repeated. Hence the tableau for such a proposition
cannot be completed in any path. The key is that we just bear with it,
choose another formula and keep the universal formula for later use. In
FT, a systematic generation of a tableau for a given set Σ of formulas
is described inductively as follows.

Assume that the set Σ = {X1, X2, . . . , Xm . . .} is already ordered. Since
the set T = {t1, t2, . . . , tn . . .} of all terms is enumerable, we take it as an
ordered set. The construction of the systematic tableau for Σ starts with
taking X1 as the root. Here we say that the premise X1 has been introduced
to the tableau. This completes the first step of our construction. Suppose
that the n-th step of our construction has been completed, and we have
obtained a tableau, say, τ. If τ is a closed tableau, then we stop and consider
τ as the tableau systematically generated for Σ. If a tableau rule has been
applied on each compound (not a literal in FL) formula on each open path
of τ, then we add Xn+1 to each open path. If neither happens, then we
choose a formula X up in the tableau on which a rule has not been applied
(X has not yet been used). We choose such a node which is of minimal
level (closest to the root), and if more than one such node exist, then we
choose the one which is on the leftmost. We extend every open path that
contains this node (formula) X, by applying the appropriate tableau rule
on X, depending on what type of formula X is. If X is a stacking formula
with its children (by the stacking rule) as Y, Z, then we add both Y, Z to
every open path. If X is a branching formula with children Y, Z, then we
extend each open path by branching out to two different paths, one with
Y and the other with Z. If X is an existential formula, say X = ∃xY ,
then we take the first term tk from T which does not occur in the whole
tableau, and extend each open path by adding Y [x/tk]. If X = ¬∀xY ,
then ¬Y [x/tk] is added instead. If X is a universal formula, say, X = ∀Y ,
then we take the first tk from T such that Y [x/tj ] does not occur in the
whole tableau, and then add Y [x/tj ] and X to each open path. Similarly,
if X = ¬∃xY , and tj is the first term in T such that Y [x/tj ] does not
occur in the tableau, then we add Y [x/tj ] to each open path. After the
application of a tableau rule in this fashion, we finally add Xn+1 to each
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open path provided there is such an Xn+1 in Σ. Note that if Σ is finite,
this addition may not be effected always. This concludes the (n + 1)-th
step of our construction.

Look at the following example for a systematic generation of a tableau.

EXAMPLE 4.57 Construct a systematic tableau for the set:

Σ = {∃x(Lx ∧ Cx),∀x(Lx→Mx),¬∃x(Mx ∧ Cx)}
Solution Let X1 = ∃x(Lx ∧Cx), X2 = ∀x(Lx→Mx), X3 = ¬∃x(Mx ∧
Cx), and T = {t1, t2, . . .}. Here is the systematically generated tableau:

1. ∃x(Lx ∧ Cx) X1 (Step 1)

2. Lt1 ∧ Ct1 1,∃ (Step 2)

3. ∀x(Lx→Mx) X2 (Step 2)

4. Lt1 2,∧ (Step 3)

5. Ct1 2,∧ (Step 3)

6. ¬∃x(Mx ∧ Cx) X3 (Step 3)

7. Lt1 →Mt1 3,∀ (Step 4)

8. ∀x(Lx→Mx) 3,∀ (Step 4)

9. ¬(Mt1 ∧ Ct1) 6,¬∃ (Step 5)

10. ¬∃x(Mx ∧ Cx) 6,¬∃ (Step 5)

11. ¬Lt1 Mt1 7,→ (Step 6)

12. × Lt2 →Mt2 8,∀ (Step 7)

13. ∀x(Lx→Mx) 8,∀ (Step 7)

14. ¬Mt1 ¬Ct1 9,¬∧ (Step 8)

15. × ×

Compare this tableau with that in Example 4.54. A tableau generated
systematically may run very lengthy, but the method guarantees that all the
premises that can be used in a tableau will eventually be used. Obviously,
the systematic procedure is not a good way of generating a tableau, but it
is a mechanical way with book-keeping. A tableau which is systematically
generated is finite after every step. However, we want to consider the
net product, the infinite tree which is generated this way. This is not
constructive, but is, conceptually, a tableau. Thus, we define a systematic
tableau as one that is systematically generated and either it is infinite, or
if finite, it cannot be further extended by the systematic procedure. Note
that in the former case, the tableau has to be open, while in the latter
case, it may be either closed or open. Moreover, it is clear that for any set
of formulas Σ, there exists a closed tableau for Σ iff there exists a closed
systematic tableau for Σ. This is in sharp contrast to the more creative
way of generating tableaux which may sometimes fail. That is, even if



Analytic Tableau 223

there is a closed tableau for a set of formulas, you may not get it easily
by arbitrarily instantiating the quantified formulas. But the systematic
tableau will eventually close. On the other hand, when the systematic
tableau is unmanageably large, you may be able to construct a short tableau
with ingenuous instantiations.

Suppose that ρ is a path in a systematic tableau of a set of formulas
Σ. Let us call ρ to be a satisfiable path if the set of all formulas in ρ
is satisfiable. Now, if ρ is closed, is it satisfiable? Definitely not. For,
if ρ is satisfiable, then there is a state in which all the formulas in ρ are
assigned 1, including the two formulas of the form Z and ¬Z which occur
in ρ (since ρ is closed); this is impossible. Thus, a satisfiable path has to
be open. A tableau is satisfiable if at least one of its paths is satisfiable.
It follows that if a systematic tableau is satisfiable then it has at least one
open path. But when is a systematic tableau satisfiable? Does satisfiability
of Σ guarantee it?

Let Σ be a satisfiable set of formulas and τ be the systematic tableau
for Σ. Let τn be the tableau generated systematically up to and including
the nodes generated in step n. Since Σ is satisfiable, τ1 is satisfiable as it
contains the first premise from Σ. As for our inductive proof, we first show
that if τn is satisfiable, then τn+1 is also satisfiable. So, we assume that τn
is satisfiable. The uninteresting case is when τn+1 = τn; but then there is
nothing to prove. Otherwise, by the induction hypothesis, τn has an open
path. Let Z ∈ τn be the formula, in such an open path, say, ρ, which has
been chosen in the step n while extending τn to τn+1. You are required to
prove the following:

(a) If Z is a stacking formula with Z1, Z2 as its children (Z2 may be
absent.) then the extended path ρ, Z1, Z2 is satisfiable.
(b) If Z is a branching formula with Z1, Z2 as its children, then at least
one of the extended path ρ, Z1 and ρ, Z2 is satisfiable.
(c) If Z is a universal formula with its children as Z ′[x/t], Z, then the
path ρ, Z ′[x/t], Z is satisfiable. [Notation : If Z = ∀xU , then Z ′ = U.

If Z = ¬∃xU , then Z ′ = ¬U. The quantified variable is denoted by x in
this case as well as in the next case.]
(d) If Z is an existential formula with its child as Z ′[x/t] in τn+1, then
the path ρ, Z ′[x/t] is satisfiable.
(e) An addition of a premise from Σ to ρ does not make the extension
unsatisfiable.

Note that satisfiability of the path implies the satisfiability of the ex-
tended path in each case above. This guarantees the satisfiability of τn+1.
Proofs of the statements in (a)−(c) are straightforward. Since Σ is as-
sumed to be satisfiable, due to the statements (a)−(d), the statement in
(e) follows. For (d), suppose that I` = (D,φ, `) be a state such that I` |= ρ,
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where we write the set of formulas in the path ρ as ρ itself. Due to the
conditions on an existential rule, there is no constraint on defining ` for
this new term t. Extend ` to `′ by defining `′(t) = α, where α 6∈ D, a
new symbol, and keeping the values of `′ as those of ` for all other terms.
Let D′ = D ∪ {α}. Extend the function φ to φ′ by redefining φ(Z ′). Note
that φ(Z ′) might have been already defined in the state I`. However, we
now view φ(Z ′) as a relation on D′ instead of D. The redefinition of this
relation φ(Z ′) is an extension of the old φ(Z ′) as existing on D plus the
assertion that φ(Z ′[x/t]) holds. For example, if Z ′ = Pxa and we have
already φ(P ) = {(a, b), (b, c)}, then Z ′[x/t] = Pta, and the redefinition of
φ(P ) is φ′(P ) = {(a, b), (b, c), (α, a)}, since t is assigned to α by `′.

Now it is clear that the new state I ′` = (D′, φ′, `′) is still a model of all
the formulas in ρ and, in addition, it is a model of the new formula Z ′[x/t].
Thus, the extension of ρ, i.e., the set ρ ∪ {Z ′[x/t]}, is satisfiable.

So we have proved that if Σ is satisfiable, then the systematic tableau τ
for Σ has an open path. This means that any tableau you construct (with
ingenuity, of course), is bound to remain open. Why? Because, if there
is a closed tableau for Σ, then it (or one of its incarnations) would have
occurred in the systematic tableau, and then the systematic tableau would
close. Thus you have proved the following result.

Theorem 4.29 (Strong Soundness of FT) Every satisfiable set of for-
mulas is (FT-) consistent.

In proving the soundness of FT, we have not used the properties of a
systematic tableau in any essential way. We could have argued for any
tableau instead, with slight modifications. But there are interesting prop-
erties of a systematic tableau. Let ρ be an open path (if it exists) in a
systematic tableau for the set Σ of formulas. Let C be the set of constants
and free variable appearing in ρ. Let F be the set of all function symbols
appearing in ρ. Construct the set D inductively as the set of all terms
generated from C by using the function symbols from F. This is the free
universe generated from the sets C and F. Think of the Herbrand universe
we had defined in Chapter 2. Let P be the set of all predicates occurring
in ρ. Then ρ satisfies the following properties:

H0 : No atomic formula and its negation are both in ρ.

H1 : If Z ∈ ρ is a stacking formula with children Z1, Z2, then Z1 ∈ ρ
and Z2 ∈ ρ. Note that Z2 may not exist for some formulas.

H2 : If Z ∈ ρ is a branching formula with children Z1, Z2, then Z1 ∈ ρ
or Z2 ∈ ρ.

H3 : If Z ∈ ρ is a universal formula, then Z ′[x/t] ∈ ρ for every term
t ∈ D, where either Z = ∀xZ ′, or Z = ¬∃xY and Z ′ = ¬Y.

H4 : If Z ∈ ρ is an existential formula, then Z ′[x/t] ∈ ρ for at least one
term t ∈ D, where either Z = ∃xZ ′, or Z = ¬∀xY and Z ′ = ¬Y.
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Using these properties, you can show that ρ is satisfiable. How do
you proceed? You must find a state model of ρ. So, start with a domain.
An obvious choice is D. Choose the assignment function ` as the identity
function, just like constructing a Herbrand interpretation. Then, following
the same idea, we only have to specify which atomic formulas are declared
true and which are declared false. This is accomplished by defining the
function φ from P − {≈} to the set of all relations over D. Define φ by

φ(Q(t1, t2, . . . , tm)) = 1 if Q(t1, t2, . . . , tm) ∈ ρ,

φ(Q(t1, t2, . . . , tm)) = 0 if ¬Q(t1, t2, . . . , tm) ∈ ρ, and

φ(Q(t1, t2, . . . , tm)) = 1 if neither happens.

For the equality predicate, define the equivalence relation E on the domain
D, as was done in Section 2.8 for the construction of the Herbrand inter-
pretation. Now, the function φ must satisfy the condition “φ(s ≈ t) = 1 iff
(s, t) ∈ E”. Due to the properties H0 to H4, it is clear that (D,φ, `) |= ρ.
Thus, we have shown that every open path in a systematic tableau for any
set of formulas is satisfiable. That is, the tableau, in this case, is satisfiable.
We note it down as a theorem below.

Theorem 4.30 (Strong Completeness of FT) Every (tableau-) con-
sistent set of formulas is satisfiable.

The strong soundness and the strong completeness together can be re-
stated in terms of the entailment relation using RAA.

Theorem 4.31 (Strong Adequacy of FT) Let Σ be a set of formulas
and w be a formula. Then Σ |= w iff there is a closed tableau for Σ∪{¬w}.

From the construction of a systematic tableau it also follows that if
every finite subset of a set of formulas is consistent, then the set itself is
consistent, which yields the compactness theorem for tableaux and also for
FL due to the strong adequacy of FT. Similarly, the Skolem−Löwenheim
theorem also follows from the proof of the strong soundness theorem. Can
you see how? Note the way a free universe has been constructed. It also
shows directly that a set of formulas is satisfiable iff the set of all existential
closures of the formulas is satisfiable. Write a formal proof of this result
which you have already proved in Chapter 2.

Exercise 4.22 Formulate and prove the compactness theorem and the
Skolem−Löwenheim theorem using systematic tableaux.

The proofs above also point at another interesting fact. Whenever a
systematic tableau for a set Σ of formulas closes, the set Σ is not only
unsatisfiable, but its completeness says that it is enough to see whether it
is unsatisfiable on a finite domain, because the free universe constructed
from that systematic tableau is finite. If a systematic tableau for Σ is finite
and open, then any open path in it will give rise to a finite model of Σ.
What if a set is neither satisfiable nor unsatisfiable on any finite domain,
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but is satisfiable on an infinite domain? The systematic tableau will then
have an infinite open path. But then, how to determine by the tableau
method that there is an infinite open path? Obviously, the tableau method
will not be able to show it, but some meta-argument might. Look at the
following example.

EXAMPLE 4.58 Is the following set Σ of formulas satisfiable?

Σ = {∀x∃yPxy,∀x∀y∀z(Pxy ∧ Pyz → Pxz),¬∃xPxx}

Solution
∀x∃yPxy

∀x∀y∀z(Pxy ∧ Pyz → Pxz)

¬∃xPxx
∃yPby
¬Pbb

Pbc ∧ Pcd→ Pbd

Pbd

¬Pcc
¬(Pbc ∧ Pcd) Pbd

This is not a systematic tableau; you can construct one anyway. Look at
the tableau carefully. We realize (Do you?) that the tableau will go on for
ever by reusing the universal formulas, and it will never close. This set Σ is
neither satisfiable nor unsatisfiable in any finite domain, but is satisfiable
in an infinite domain. For example, you can interpret P as ‘greater than’
in N and see that Σ has a model there. As a procedure, analytic tableau
fails to determine satisfiability of any arbitrary set of formulas. Does any
other proof method achieve it? It seems the answer is negative. Reason?
Analytic tableau is a complete proof procedure, so nothing better can be
achieved. At this point, you may try with other proof procedures to deter-
mine satisfiability of Σ in Example 4.58. A somewhat convincing argument
is that an algorithm is a finite procedure, and it cannot find out an answer
to such an infinite construction of a model. But it needs a proof, and that
is exactly the undecidability of FL, which we are not going to prove! See
the summary for some references on this important result.

SUMMARY

In this chapter, you have learnt four proof methods for both PL and FL.
The axiomatic system PC, the propositional calculus, has only three axioms
(axiom schemes) and an inference rule, the modus ponens. Since it uses
the connectives ¬ and → only, the other connectives and the propositional
constants are introduced by definitions. The axioms have been constructed



Summary 227

in such a way that the deduction theorem becomes easier to prove. A proof
has been defined as a finite sequence of propositions where each proposition
in it is either an axiom, a premise, or is obtained by an application of the
inference rule on some earlier formulas. Then a conclusion of the premises
is defined as the last proposition in a proof.

You have seen that PC is a strongly adequate system for PL, i.e., it
is both strongly sound and strongly complete. Strong soundness means
that if a proposition is a conclusion of a set of premises in PC, then the
consequence is PL-valid. Strong completeness is the converse of strong
soundness, i.e., every valid consequence has a proof in PC. Since finiteness
of proofs is a matter of definition and the system is adequate, you have
obtained the compactness theorem for PL. Compactness asserts that if a
conclusion follows from an infinite number of premises, then it also follows
from some finite number of those premises.

You have then learnt how to extend the system PC to FC, the first
order calculus so that it becomes adequate to FL. All the metaresults hold
for FC in parallel to PC, including the compactness for FL. The basic idea
is to see that truth and provability are in parlance as long as our world
is described by a first order language. Since the concept of provability is
effective, the notion of truth becomes effective.

Though the concept of a proof is effective, construction of a proof need
not be. This negative feeling is very much evidenced in both the systems
PC and FC. You have seen how difficult it is to construct proofs of triv-
ial looking tautologies. This is remedied by making informal proofs. A
somewhat better choice is the natural deduction system, where there are
certainly more rules of inference, but easier proofs. You have learnt the
natural deduction systems PND and FND which are strongly adequate to
PL and FL, respectively.

As another variation to the proof methods, you have learnt how to
have a proof as a tree by way of Gentzen systems. A Gentzen system uses
a different strategy than the earlier methods. It takes a consequence as
its basic block in a proof rather than taking the propositions or formulas.
The consequences are named as sequents in the system. This renaming
is used to demarcate the line between syntactic manipulation from the
semantic overload. A Gentzen system then goes on arguing with sequents
by transforming them into simpler sequents. If the universal sequent is
eventually generated, then the original sequent is proved, otherwise not.
You have also seen that the Gentzen systems GPC and GFC are strongly
adequate to PL and FL, respectively.

Finally, you came across another tree method of proof, the analytic
tableaux. Though it is a tree method, it works with propositions and for-
mulas instead of consequences. It employs reductio ad absurdum by starting
from the negation of the conclusion as a new premise and later confirming
that it leads to a contradiction. Since the proof methods have to have
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a syntactic way rather than the truth, it does not use the word ‘contra-
diction’, nor the notion of truth. It rather gives some syntactic rules to
determine inconsistency by way of closing a tableau. You have seen that
the idea of tableau-inconsistency and the semantic notion of unsatisfiability
are in parlance, which is nothing but the adequacy of the tableau method.
You have learnt independent (meta-) proofs of strong adequacy of ana-
lytic tableau. These proofs are instructive as they revealed directly many
interesting metaresults on both PL and FL. The following bibliographic
comments will be helpful to pursue the topics in greater detail.

You can find the axiomatic systems PC and FC in almost all texts in
logic, though in different incarnations, see for example, [4, 17, 19, 51, 52].
The ones presented here are taken from [67]. The completeness proof for the
systems follows the ideas of many logicians such as L. Henkin, J. Hintikka,
G. Hasenjaeger, A. Lindenbaum, and K. Gödel; their relevant works can
be found in [80]. The natural deduction systems PND and FND have
been similarly presented. In particular, you may like to see [8, 41, 70] for
some variations on their forms. The Gentzen systems were invented by
G. Gentzen in 1935, though in a very different form. The original form
of the sequents was rather close to the natural deduction systems PND
and FND. The system GPC was formulated by H. Wang in the form of an
algorithm while trying to write a theorem prover for PL using FORTRAN.
Since then, the systems GPC and its natural extension GFC for FL have
been recognized as the Gentzen systems. The texts [28, 50] provide you with
complete references on Gentzen systems. The analytic tableaux had their
origin in E. W. Beth’s semantic trees. Two good texts on Tableaux are [22,
71]. In [71], you will also find other results concerning metamathematics.
There is one more nice and useful result which we have not discussed. It
is Beth’s definability. It says that implicit and explicit definabilities of a
concept in FL are on par. See [22, 67] for this important result; other
references which deal with metamathematics or metalogic also deal with
this result. I would suggest that you go through the references after solving
the following problems.

PROBLEMS

1. Construct PC-proofs for the following:

(a) ` ((¬A→ ¬B)→ B)→ ((¬A→ ¬B)→ A)

(b) ` A→ ((B → (A→ C))→ (B → C))

(c) ` A→ (¬B → ¬¬A)

(d) ` (A→ ¬B)→ ((B → ¬A)→ (A→ ¬B))

(e) ` (A→ (B → C))→ (B → (A→ C))

(f) ` (A→ B)→ (¬B → ¬A)
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(g) ` ¬(A→ B)→ (C → ¬B)

(h) ` (¬A→ B)→ ((¬A→ ¬B)→ A)

(i) ` (A→ B)→ ((¬A→ B)→ B)

(j) ` ¬(¬B → ¬(A→ B))→ ¬A
(k) ` A→ (¬B → ¬(A→ ¬(B → (¬A→ A))))

2. Let Σ be any set of propositions and p, q be any propositions. Show
the following in PC:

(a) if Σ ` p and Σ ` q, then Σ ` p ∧ q.
(b) if at least one of Σ ` p or Σ ` q, then Σ ` p ∨ q.

3. Formulate and prove Craig’s interpolation theorem for PC.
[Hint : See Problem 41 of Chapter 1.]

4. For any set of propositions Σ, show that Σ is (PC-) consistent iff there
is a proposition w such that Σ /̀w.

5. Show that no axiom of PC can be derived from other axioms.
[Note : This is the independence of axioms.]

6. We write Z(u, v) to mean that Z is a formula with free variables u, v.
Construct FC-proofs for the following:

(a) ` ∀x¬X ↔ ¬∃xX
(b) ` ∃x¬X ↔ ¬∀xX
(c) ` (s ≈ t)→ (f(s) ≈ f(t))

(d) ` (s ≈ t)→ ((t ≈ t′)→ (s ≈ t′))
(e) ` ∀x(X → (¬X → Y ))

(f) ` (X → Y )→ (∀xX → ∀xY )

(g) ` (X → Y )→ (∃xX → ∃xY )

(h) ` ∀x∀y(¬(X(x)→ ¬Y (y))→ X(x))

(i) ` ∀x((X → (X → Y ))→ ((X → X)→ (X → Y )))

7. Let x does not occur free in X, y does not occur free in Y, and z does
not occur free in Z. Construct FC-proofs of the following:

(a) ` (X → ∀xZ)→ ∀x(X → Z)

(b) ` (X → ∃xZ)→ ∃x(X → Z)

(c) ` (∃yZ → Y )→ ∀y(Z → Y )

(d) ` (∀yZ → Y )→ ∃y(Z → Y )

(e) ` ∃xZ ↔ ∃zZ[x/z]

(f) ` ∀x(Z → ∀z((x ≈ z)→ Z[x/z]))
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8. Show that a set Σ of formulas is consistent iff there is a formula which
is not a theorem of Σ.

9. Let Σ be a (FC-) consistent set and Σ /̀X. Prove that Σ ∪ {¬X} is
consistent.

10. State and prove Craig’s interpolation theorem for FC.
[Note : See Problem 47 of Chapter 2.]

11. Construct PND-proofs for the following:

(a) ` p→ (q → p ∧ q)
(b) ` (p→ q)→ (q ∧ r → (p→ r))

(c) ` ¬p→ (p→ ⊥)

(d) ` ¬p→ (p→ q)

(e) ` (p ∨ q)→ (¬p ∧ q → q)

(f) ` (p→ q)→ ((q → r)→ ((r → s)→ (p→ s)))

(g) {p ∨ q → r ∧ s, r ∨ u→ ¬v ∧ w, v ∨ x→ p ∧ y} ` ¬v
(h) {p→ ¬q, r → s,¬t→ q, s→ ¬u, t→ ¬v,¬u→ w, p ∧ r} ` ¬v ∧ w
(i) ` ¬(p→ (q → r)) ∨ ((p→ q)→ (p→ r))

(j) {(r → r ∧ s)→ t, t→ (¬u ∨ u→ p ∧ u), p ∨ q → (r → r)} ` p↔ t

12. Construct FND-proofs for the following:

(a) ∀x(Px ∧Qx) ` ∀xPx→ ∀xQx
(b) ∀x(Px ∧Qx) ` ∀xPx ∧ ∀xQx
(c) ∀xPx ∨ ∀xQx ` ∀x(Px ∨Qx)

(d) ∃x(Px ∧Qx) ` ∃xPx ∧ ∃xQx
(e) ∃xPx ∨ ∃xQx ` ∃x(Px ∨Qx)

(f) ∀x∀y(Py → Qx) ` ∃yPy → ∀xQx
(g) ∀xP (x) ` ∀yP (y)

(h) ∀x(Px→ Qx) ` ∀x¬Qx→ ∀x¬Px
(i) ∃x∃yP (x, y) ` ∃z∃uP (z, u)

(j) ∃x∀yP (x, y) ` ∀y∃xP (x, y)

(k) ¬∀x¬Px ` ∃xPx
(l) Pc ` ∀x(x ≈ c→ Px)

(m) {∃x∃y(Pxy ∨ Pyx),¬∃xPxx} ` ∃x∃y¬(x ≈ y)

(n) S → ∀xPx ` ∀x(S → Px), for any sentence S

(o) X → ∀xPx ` ∀x(X → Px), if x is not free in X

(p) {∀xPaxx,∀x∀y∀z(Pxyz → Pf(x)yf(z))} ` Pf(a)af(a)
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(q) {∀xPaxx,∀x∀y∀z(Pxyz → Pf(x)yf(z))} ` ∃zPf(a)zf(f(a))

(r) {∀xPcx,∀x∀y(Pxy → Pf(x)f(y))} ` ∃z(Pcz ∧ Pzf(f(c)))

13. Show that if two boxes are allowed to overlap, then the soundness of
PND and FND may not be retained.

14. Using tableau rules, determine satisfiability of the following sets of
propositions or formulas:

(a) {A ∧B → C,¬A→ D,B ∧ ¬C ∧ ¬D}
(b) {A ∨B,A ∨ (B ∧D), A→ ¬C}
(c) {A→ B, (A ∧B) ∨ ¬C,B → ¬A,C → D,B ↔ ¬D,A ∨ ¬E}
(d) {∃xPx,¬Pc}
(e) {∃xPx ∧ ∃xQx,¬∃x(Px ∧Qx),∀xPx→ Ps}
(f) {∀x(Px→ Qx),∃xPx,∀x¬Qx,∃xPx ∨ ¬Pc}

15. Construct GFC- and FT-proofs of all the formulas in Problems 1, 6, 7,
11, 12, and 14.

16. Are the following arguments valid? Use PND, FND, GPC, GFC, PT,
and/or FT to solve this problem.

(a) Either Logic is elegant or many students like it. If Computer Science
is a difficult discipline, then Logic has to be elegant. Therefore, if many
students like Computer Science, then Logic is elegant.
(b) If tomorrow morning it is chilly and not so clear a sky, then we go
swimming unless you do not have any special liking for boating. It isn’t
always the case that if the sky is not clear, then you don’t go boating.
Therefore, if the weather is not chilly tomorrow morning, then we go
swimming.
(c) Yanka would have been at home, had he been to the club or not to
the theatre while his friend was waiting for him at the college. He had
been to the club premises while it was dusk only if he didn’t come home.
Unless the watchman saw him at the club premises, it is certain that it
was dusk, since the watchman is night blind. Therefore, Yanka did not
go to the theatre.
(d) If anyone is in a guest house, which is located in a city, then he is
in that city. None can be in two different cities at the same time. One
who snatched the necklace away must have been in the guest house at
Chennai. Since Chennai and Mumbai are two different cities and Yanka
was in the Mumbai guest house, he did not snatch the necklace.
(e) If all the politicians praise a bandit, then the bandit must be none
other than Robin Hood. A politician praises a person if the person has
indeed helped him in his career. There is a bandit who has not helped
any politician. Therefore, there is a bandit other than Robin Hood.
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17. Consider the proof systems PC, PND, GPC, and PT. Assume adequacy
of one of them and try proving adequacy of all the others to PL.

18. Consider the proof systems FC, FND, GFC, and FT. Assume adequacy
of one of them and try proving adequacy of all the others to FL.

19. Are the rules of PND (and FND) independent? If yes, show that no
rule can be derived from others taken together. If no, then pick the rule(s)
which can be derived from others. Resolve the problem of independence of
axioms and rules for the other proof systems such as PC, FC, GPC, GFC,
PT, and FT.
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Program Verification

5.1 Introduction

What do you do when you write a program? Of course, before you start
writing a program, you know the job at hand, and the computer language
you would be using to write it. Typically, you would have an idea as
to what are the inputs to your program and what would be the required
outputs. You must also know how the program would perform the job
of getting the outputs from the inputs. For example, you are asked to
write a program for checking whether two strings are equal. Immediately
you think of a shortcut. If the given strings are of different lengths, then
they are not equal. So, a subclass of the problems is solved. Once the
strings are found to be of the same length, you are going to check them
character by character. So, this describes how the job is done. Now, how to
write this procedure as a program? Well, you imagine a Boolean variable,
say, done, which is assigned a value true or false accordingly as the given
strings s1 and s2 are equal or not. Assume that you had already a ready-
made program to compute the length of a string, denoted by length(s).
Suppose that the language in which you are writing your program uses
‘=’ for comparing two natural numbers. That is, the expression ‘5 = 5’ is
equivalent to true and ‘5 = 6’ is equivalent to false. Then you would like
to write a line:

done := (length(s1) = length(s2))

This says that the variable done is assigned the value of the expression
length(s1) = length(s2) which is either true or false depending upon whether
the length of the string s1 is equal to the length of s2 or not.

If length(s1) is not equal to length(s2), then the variable done is as-
signed false, and you have the required result. Otherwise, you conclude
that the strings s1 and s2 require further treatment. In this case, the vari-
able done is assigned the value true and length(s1) = length(s2) = m, say.
Now to match the strings s1 and s2 character by character, suppose that
you already have a program that computes the i-th character of a string;
you can use it by calling the function ch(i, s). That is, ch(i, s) finds out
the i-th character of the string s1. Given inputs i, a positive integer and s,
a string, the output of ch(i, s) is the i-th character of the string s. Again,
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suppose that you can compare the characters by the same relation ‘=’.
That is, the expression ch(i, s1) = ch(j, s2) is computed as true if the i-th
character of the string s1 is the same as the j-th character of the string s2;
else, it is evaluated to false. Then it would be OK to write:

done := (ch(i, s1) = ch(i, s2)) for all i from 1 to m

So, you have the program:

PROGRAM : StringMatching
done := (length(s1) = length(s2))
if done then for i = 1 to length(s1)

do done := (ch(i, s1) = ch(i, s2))

If there is a stake on writing this program correctly, you would not just
leave it here. You would like to test the program on some inputs. As a
student of logic, you start testing the program on strings (a) which are
identical, (b) which have unequal lengths, and then strings (c) which are
unequal but of equal lengths. This phase of program development is usually
called debugging. (Programmers use a face saving word, ‘bug’, instead of
‘mistake’.) As test inputs you run the program on strings:

(a) s1 = mat, s2 = mat; s1 = chalk, s2 = chalk;
s1 = blackboard, s2 = blackboard, etc.

(b) s1 = mat, s2 = chalk; s1 = chalk, s2 = blackboard;
s1 = duster, s2 = blackboard; s1 = pencil, s2 = paper, etc.

(c) s1 = mat, s2 = pad; s1 = chalk, s2 = paper;
s1 = blackboard, s2 = bluepencil, etc.

Now, in all the runs, your program was a success and you have submitted
your program to your instructor on Friday. The following Monday your
instructor announces in the class that you have been awarded with zero
marks as the program is incorrect. To justify himself, he says that your
program evaluates done to true for the inputs s1 := mat, s2 := cat. You
then verify and see that he is correct. You have lost your quiz marks.
Imagine what would happen to a company where they would have invested
in crores on a problem for which you have supplied the software; and that
too, the software uses the string matching program you have written. Once
this happened to the Intel Pentium chips having a flaw in multiplication of
floating point numbers, and they had to bear the loss. The moral:

Debugging is not a foolproof method of program development.

Debugging cannot prove a correct program correct. It is not a reliable
method to prove an incorrect program incorrect. If it finds, mostly by
chance, a mistake in a program, then of course, the program is incorrect.
To encapsulate, E. W. Dijkstra said, “Program testing can be used to show
the presence of bugs, but never to show their absence”.
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This chapter addresses the issue of how to prove that a program does
its intended job. This is referred to as proving correctness of a program or
verifying a program. You will see how logic comes of help in achieving this.

5.2 Issue of Correctness

We have thus deliberated on the disadvantages of debugging a program.
Though it is useful, it is not foolproof. Then how to show that a program
does its intended job; how to prove the correctness of a program? For
example, consider the program StringMatching that we have developed
in Section 5.1 for matching two strings. You see that there is a clear
flaw in it; it finally assigns true to the variable done when two strings s1
and s2 are of equal length having the same last character. You see, the
keyword here is ‘finally’. What happens if a program goes on an infinite
loop? You can instruct a person in a treasure hunt to move to a place
where he finds the instruction for moving back to the original place again.
Unless you want to make a Sysiphus out of a computer, such a program
may not do the intended job. However, in some circumstances you may
want the computer not to come to a halt stage unless it is switched off
manually; for example, a surveillance system. Otherwise, for most jobs,
you may need your program to come to a finishing stage, i.e., it should
terminate and give you the required output. Thus it is worthwhile to
determine whether a program terminates at all with any of the possible
specified inputs. The next important issue is, whether it gives the expected
output after termination. Nevertheless, we are interested in having both
the properties of a program, and more importantly, in proving that both
the properties hold for a program that you may write.

The first issue is called the problem of program termination, and the
second is called the partial or conditional correctness of a program.
Taken together, we have the total correctness of a program. Given a
program P , we now have the problems as:

Termination: whether P terminates for all the specified inputs?

Partial Correctness: Given that P terminates for all specified inputs, does
P ends up in delivering the required output, corresponding to each input?

Total Correctness: For each specified input whether P delivers the corre-
sponding output?

Thus P is totally correct iff P terminates and P is partially correct.
Once the issues are clear, we must proceed to see how to settle them. How
do we prove termination, or partial or total correctness of a program? Note
that we have to take care of the ‘specified inputs’ and the ‘corresponding
outputs’.

Well, what is an input and what is an output of a program P? For
example, take P as the program StringMatching of Section 5.1. What
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are the inputs to this program? A pair of strings. Means? One string
such as mat is assigned to the program variable s1, and another string,
say cat, is assigned to the program variable s2. And what is an expected
output? It is the value true or false assigned to the program variable
done. For the program P , the input may be described as s1 = mat ∧ s2 =
cat, and its output as you know in this case, is done = true. In abstract
terms, the program variables satisfy some property before the execution of
the program. This property, called the precondition of the program, is
described here by the (first order) formula

s1 = mat ∧ s2 = cat

Similarly, some property holds for the program variables after the ex-
ecution of the program. This property, called the postcondition of the
program, is described here by the formula:

done = true

Of course, we are interested in a specified or required postcondition only.
The postcondition done = false is not the required postcondition when
we have the strings as mat and cat. In developing a program, our main
intention is to meet the required postcondition by manipulating the pro-
gram variables. A state of a program is simply described by what values
are assigned to the program variables. A typical state of our program P
is s1 = mat, s2 = cat, done = false. Then a precondition of P is simply a
property satisfied by a state of P . Here the precondition s1 = mat∧s2 = cat
is such a property. Note that all program variables need not be assigned
values in a precondition. That is not a constraint since an unassigned vari-
able can be assigned each possible value in turn and then ∨-ed together.
For example, our precondition for P can be rewritten using the equivalence:

s1 = mat ∧ s2 = cat ≡ s1 = mat ∧ s2 = cat ∧ (done = false ∨ done = true)

What we learn here is that, instead of talking of inputs and outputs,
we may speak of preconditions and postconditions, which are first order
properties satisfied by a state of the program. Moreover, the precondition
is satisfied by all states of the program initially, and the postcondition must
be satisfied by all states finally, in order that the program is (condition-
ally) correct. To argue about programs, we introduce a notation for this
triple of a precondition, a postcondition, and the program itself. Such a
triple is loosely called a specification of a program and is also called a
Hoare triple after the computer scientist C. A. R. Hoare. The triple has
the syntax:

〈Q 〉 S 〈R 〉

where S is a program, a sequence of program statements, Q and R are some
properties of the program variables, the variables used in the program S.
The predicate Q is the precondition and R is the postcondition of the
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program S. The semantics of the Hoare triple is the following:

〈Q 〉S 〈R 〉 means that, if initially the state of the program variables
satisfies the predicate Q and the program S is executed, then on termi-
nation of S, the final state of the program variables will satisfy the pre-
dicate R.

Thus the Hoare triple expresses conditional correctness of the program S.
It says that if you assume the termination of S, then it is guaranteed that
the postcondition R is satisfied after the execution provided that the pre-
condition Q is (has been) satisfied before the execution. However, to argue
about conditional correctness of a program, say, for the string matching
program P , you will not be able to consider all inputs separately. Will you
try proving that all of the following Hoare triples hold?

〈 s1 = mat ∧ s2 = cat 〉 P 〈 done = false 〉

〈 s1 = chalk ∧ s2 = duster 〉 P 〈 done = false 〉

〈 s1 = bottle ∧ s2 = pencil 〉 P 〈 done = false 〉
...

There are certainly an infinite number of such Hoare triples to be veri-
fied to hold. We would rather like to introduce some new variables for the
strings. Suppose we write all possible strings to be assigned to s1 as st1
and those to s2 as st2. Then a typical precondition might look like

s1 = st1 ∧ s2 = st2

where the required postcondition might be

st1 = st2 if and only if done = true

that is,

st1 = st2↔ done = true

Thus the infinite number of Hoare triples would be represented by the
specification

〈 s1 = st1 ∧ s2 = st2 〉 P 〈 st1 = st2↔ done = true 〉

The new variables st1 and st2 are called the ghost variables or logical
variables with respect to the program S. These logical variables simply
relate the final values of the program variables to their initial values. The
logical variables do not occur in the program; they only occur in the logical
representations of the precondition and the postcondition. We repeat:

The above specification for the program P states that if P at all termi-
nates, and if initially, the variables s1, s2 are assigned the values st1, st2,
respectively, (no matter what is assigned to the variable done) then
finally the formula st1 = st2↔ done = true will hold.



238 Program Verification

Our notation of a Hoare triple captures the concept of partial correct-
ness only. We will address the issue of total correctness, but in a latter
section. However, to argue about a program, we must also describe what
a program is. You have already written many programs, may be, in many
languages such as BASIC, FORTRAN, PASCAL, C, and PROLOG. As you
know, syntax and semantics of commands vary from one language to an-
other. How are we going to argue about them all? Our plan is to develop a
methodology for arguing about programs independent of such languages. If
we consider any one of these languages, then our arguments would become
specialized to that language. Further, we would like to consider procedu-
ral languages only, thus excluding languages like PROLOG and LISP. For
procedural languages the core may be thought of as comprising three types
of commands. They are the assignment statements, the conditional state-
ments, and the loop statements. Since Turing machines are accepted as
definitions of algorithms, it is enough if you can simulate a Turing machine
by using these three types of core statements. And this can be done since
a Turing machine requires symbol writing, conditional movement of the
read-write head, and repeating certain required sequence of moves. Thus,
we take up this path of defining a core language comprising these three
types of statements along with the capability of sequential execution, so
that statements in a program are executed one after another for preserv-
ing compositionality of a program. We describe the syntax and semantics
of our core language in the following section. All our programs will be
assumed to be written in this language.

5.3 The Core Language CL

We have decided to keep the four constructs of assignment statement, condi-
tional statement, looping statement, and the sequential control of execution
in our core language. We begin with the assignment statement.

If x is a variable and E is an expression, then an assignment state-
ment looks like

x := E

We use := instead of the already overused symbol = to remember that it
assigns the value of the expression E to the variable x. Variables are simply
memory locations in a computer. Here, in the abstract language CL, you
may regard them as some names, such as x, y, z, . . . , x0, x1, x2, . . . , or even
as string, book, string1, . . . just like identifiers in procedural programming
languages. Further, we limit the expressions E to be integer expressions
only, so that things will become easier without sacrificing much on the
capabilities of CL. In fact, an integer expression is any integer from the
set Z = {. . . ,−2,−1, 0, 1, 2, . . .}, or any variable, or is in any of the forms:
−E1, (E1 +E2), (E1−E2), (E1 ∗E2), or (E1/E2), where E1, E2 are any
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integer expressions. This recursive definition will let us generate integer
expressions such as (5 ∗ (−3 + (x ∗ x))), ((2 ∗ 3) ∗ 4), . . . which are usually
called as the arithmetic expressions in some procedural languages.

For doing logical checks, we also keep Boolean expressions. These are
simply the propositions of PL, but now have a syntax including the integer
expressions. To be definite, a Boolean expression is one of the following:

>,⊥,¬B1, (B1 ∧B2), (B1 ∨B2), (E1 < E2), or (E1 = E2)

where B1, B2 are some Boolean expressions and E1, E2 are integer expres-
sions. Note that there is some redundancy in keeping (E1 = E2) since it
could be defined by using the connective ¬ and the predicate <. However,
allowing ‘=’ will simplify long expressions, and we decide to keep it. The
symbol ‘−’ represents both the unary ‘minus’ and the binary ‘subtraction’
as in −3 and (5−3), respectively; +, ∗ represent the operations of addition,
and multiplication of integers as usual. Similarly, = and < mean the usual
equality and ‘less than’ relations of integers. Note that we are deviating
from our earlier notation for equality. We write (in this chapter,) the usual
= instead of the symbol ≈ . The Boolean connectives ¬,∧,∨ are the usual
negation, conjunction, and disjunction, respectively. The constants >,⊥
represent the truth values ‘true’ and ‘false’, and the elements in Z are the
usual integers. Execution of an assignment statement of the form

x := E

proceeds as follows: the expression E is evaluated and the computed value
is stored in the name (memory location) x. After the execution, the variable
becomes bound to the value of E. Boolean expressions are used to describe
conditional statements just as integer expressions are used to define the
syntax of an assignment statement.

A conditional statement looks like

if C then {S1} else {S2}

where C is a condition, a Boolean expression, and S1, S2 are some state-
ments. The curly brackets are used as punctuation marks as in C and
JAVA. For example,

if (m < n) then {m := n} else {n := m}

is a conditional statement. The execution of the conditional statement

S: if C then {S1} else {S2}

proceeds as follows. First, the Boolean expression C is evaluated. If its
value turns out to be >, i.e., true, then the statement S1 is executed; and
after this execution, the whole statement S is considered executed. On
the other hand, if the value of C turns out to be ⊥, i.e., false, then the
statement S2 is executed instead of S1; and after this execution, execution
of S is considered over. For example, consider the statement S as
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if (m < n) then {m := n} else {n := m}

Suppose that before S is executed the variables m,n have been bound to
2 and 3, respectively. Then the condition (m < n) is evaluated to >, and
consequently, execution of S proceeds in executing the statement m := n.
After the execution of S, m becomes bound to 3, the value of n, and also
n is bound to 3 as before. If m,n have been bound to 10, 5, respectively,
before the execution of S, then after S is executed, both m and n become
bound to 5, the value of m. This is so because, in that case, the condition
(m < n) is evaluated to ⊥; consequently, execution of S forces execution
of n := m, the statement that comes after else.

The sequential control statement or the composition has the fol-
lowing syntax:

S1 ; S2

where S1 and S2 are any statements or programs (program fragments). Its
semantics is obvious. First, S1 is executed. After this execution is over,
S2 is executed. After the execution of S2, the execution of S is considered
over. If S1 does not terminate, then S2 is never executed, and in that case,
the composition program S1 ; S2 does not terminate. Thus, termination
of S1 ; S2 is guaranteed only when both S1 and S2 terminate, and in that
order.

Finally, we describe the looping statement. Among many alternatives,
we choose the ‘while loop format’. A while statement looks like

while C{S}

where C is a condition, a Boolean expression, and S is a statement (a
program or a program fragment). Its execution is done in the following
way. The Boolean expression C is first evaluated. If its value is >, then the
statement S is executed. Upon termination of this execution, the Boolean
expression C is again evaluated. If its value is > this time, then S is once
again executed. The loop of ‘evaluation of C’ followed by ‘execution of S’
is repeated. This repeated execution continues till the value of C becomes
⊥. Thus, in practice, it is often the case that execution of S changes some
program variables occurring in C so that after a finite number of repeated
executions (evaluation of C and then execution of S), C would eventually
become bound to ⊥. If this does not happen, then the while statement
would never terminate. Thus, vacuously, if C and S do not share any
program variables and C is initially bound to >, then the while statement
will not terminate. Moreover, at the termination of the while statement,
the condition C must be bound to ⊥. In a while statement, the condition
C is called the guard, and the statement S is called the body of the while
loop.

The while statement is a looping statement meant for repeated execu-
tion of its body until its guard is falsified. It is like a ‘for command’ found
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in procedural languages. The difference is that in a for command, you know
beforehand how many times S would be repeatedly executed, whereas in a
while statement, this is not known beforehand. A while statement is more
suitable for recursion, whereas a for command is more suitable for itera-
tion. The while statement has more direct connection to a machine scheme
representation of Turing machines. However, it comes with the potential
danger of nontermination. For example, consider the statement:

S: whilem 6= n{m := m+ 1 ; s := s+m}
Suppose that before execution of S, the variable m has been bound to

0, n has been bound to 5, and s has been bound to 0. With this initial
state, execution of S begins. Now, the guard m 6= n is satisfied (evaluated
to >) as 0 6= 5; consequently, the body m := m+1 ; s := s+m is executed.
After this first execution of the body, m is bound to 1, s is bound to s+m,
i.e., to 1. As S is to be executed repeatedly until the guard m 6= n becomes
false, once more execution of S is initiated. Again, the guard m 6= n is
satisfied and consequently, the body is executed. This makes m bound
to 2 and, s bound to 3. After five executions of the body, it turns out
that m is bound to 5 and s is bound to 15. On the sixth execution, the
guard m 6= n is found to be false, as m becomes equal to 5, the value of
n. Then execution of S is stopped; S terminates with the state satisfying
m = 5 ∧ n = 5 ∧ s = 15.

In this detailed trace of execution of S, you must have noticed that
there are some variables whose values have not changed while the values of
some other variables have changed. The ones whose values have changed
are m, s, and the value of n has not changed. As the program computes
the sum of numbers 0, 1, . . . , n, it is this changed (final) value of s which
stores the result. Though s changes, it is unlike the change in m. The
variable m goes successively through the natural numbers. The change in
s can be captured by a formula by looking at its pattern of change at every
successive execution of the body of S. When the body of S is executed once,
s contains the value 1. At the end of the second execution, it contains the
value 1 + 2. In general, at the end of the i-th execution, s contains the
value 1 + 2 + . . . + i. Now you see that though the value of s is changing
through the repeated execution of the body of the loop, the statement that

After the i-th execution of the body of S, s = 1 + 2 + . . .+ i

does not change. This statement holds before the execution of S, it holds
after S terminates, and it even holds throughout the execution of the loop
S. Such a property which holds throughout the execution of a loop is called
an invariant of the loop. It is often the invariant of a loop that signals
towards the real job undertaken by the loop. Getting the invariant(s) of a
loop is not mechanical; it needs some experience, but often it comes from
the requirements or the postcondition. We will see in the following section,
how an invariant is used for proving correctness of programs.
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5.4 Partial Correctness

Before going into proofs of partial correctness of programs, we summarize
the discussions of the last two sections. It will serve as a background
material for the proofs we will study in this section. All our programs will
be written in the language CL. Whenever some new constructs like arrays
or lists are required, we will introduce them informally, without making
any hassle and sacrificing on the precise notions of syntax and semantics.
You will be able to formalize the constructs with your rich experience in
the syntax and semantics of logical languages like PL and FL. Once the
new constructs are understood, we will assume that necessary formalities
can be framed accordingly. Our attention will be focused on the control
structures of CL. For a balanced view of formalism and informals, we have
already introduced the integer and Boolean expressions, which, for the time
being, will be all that we require to understand the control structures.

To recollect, the language CL has two types of expressions: integer and
Boolean. These expressions are used in defining statements, which are of
four types. The syntax of CL is summarized by the following BNF:

E ::= n |x | − E | (E + E) | (E − E) | (E ∗ E) | (E/E)

B ::= > |⊥ |¬B | (B ∧B) | (B ∨B) | (E = E) | (E < E)

S ::= x := E |S ; S | if B then {S} else {S} | while B{S}

We write x 6= y as a shorthand for ¬(x = y). Similarly, we write x→ y
for ¬x∨y and x↔ y for (x→ y)∧(y → x). We assume the usual properties
of the operations +, ∗,−, / and of the connectives ¬,∧,∨, etc. Note that
the m/n is the integral part of the number m ÷ n, and it presumes that
n is not equal to 0. However, in the preconditions and postconditions,
we (sometimes) use the symbol ‘ / ’ for real number division instead of
this integer division. You should be able to interpret it correctly from the
given context. We also assume the usual precedence of operations and
connectives. To argue about programs, which are statements in CL, we
have introduced the Hoare triple, which has the syntax:

〈Q 〉 S 〈R 〉
where Q and R are FL-formulas; the precondition and the postcondition
of the statement (program) S, respectively. To distinguish between the
specification (a Hoare triple) 〈Q 〉S 〈R 〉 and the fact that ‘ 〈Q 〉S 〈R 〉
is partially correct’, we introduce a notation for the latter. We say that
the specification 〈Q 〉S 〈R 〉 is partially correct iff for all states of the
program S, which satisfy the precondition Q, the states resulting from the
execution of S satisfy R, provided that S actually terminates. Whenever
〈Q 〉S 〈R 〉 is partially correct, we write |=p 〈Q 〉S 〈R 〉 . In such a case, we
also say that the triple 〈Q 〉S 〈R 〉 is satisfied under partial correctness.
We reserve the notation 〈Q 〉S 〈R 〉 for the abstract specification of our
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requirement which may be read as:

When the precondition Q is satisfied by all states of the program vari-
ables of S, upon termination of S, the resulting states satisfy the post-
condition R.

Then |=p 〈Q 〉S 〈R 〉 means that 〈Q 〉S 〈R 〉 holds provided S terminates.
Basically, it is the difference between a sentence A and the metasentence
that ‘A holds’. For arguing about correctness of programs, we simply argue
about the specification of the program.

EXAMPLE 5.1 |=p 〈x = x0 〉 y := x 〈 y = x0 〉
Solution Let s be a state of program variables, which satisfies the pre-
condition x = x0. That is, in state s, we have x = x0 and y can be bound
to anything whatsoever. Here x and y are the program variables and x0 is
a logical variable. Now being in state s, the statement y := x is executed.
After its execution, y becomes bound to the value contained in x. That is,
y = x0. Thus, the resulting state s̄ satisfies x = x0 ∧ y = x0. we see that s̄
satisfies the postcondition y = x0. Hence the specification

〈x = x0 〉 y := x 〈 y = x0 〉
is partially correct, i.e., |=p 〈x = x0 〉 y := x 〈 y = x0 〉 .

EXAMPLE 5.2 |=p 〈x = y 〉 x := x+ 1 ; y := y + 1 〈x = y 〉
Solution Let s be a state satisfying the precondition x = y. here x
and y may have been bound to any (integer) value. Once the state s
satisfies x = y, we have in state s, x = x0 and y = x0 for some x0. Now
the statement x := x + 1 ; y := y + 1 is executed. After the execution of
x := x+1, the new state s̄ satisfies x = x0 +1∧y = x0. Then the statement
y := y+ 1 is executed. After this execution, the new state s′ satisfies (with
s̄ as the initial state for y := y+ 1) the formula x = x0 + 1∧y = x0 + 1. We
see that the postcondition x = y is satisfied by the final state s′. Therefore,
|=p 〈x = y 〉 x := x+ 1 ; y := y + 1 〈x = y 〉 .

EXAMPLE 5.3 |=p 〈 (i = j → k = j) ∧ (i 6= j → k = m) 〉
if i = j then {m := k} else {j := k}
〈 j = k ∧ j = m 〉

Solution Let s be a state satisfying the precondition. Using equivalences,
we see that the precondition

(i = j → k = j) ∧ (i 6= j → k = m)

≡ (i 6= j ∨ k = j) ∧ (i = j ∨ k = m)

≡ (i 6= j ∧ k = m) ∨ (k = j ∧ i = j) ∨ (k = j ∧ k = m)

Initially, s satisfies this formula. Now, the statement

S: if i = j then {m := k} else {j := k}
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is executed. The condition i = j may or may not be satisfied by s. Thus
we have two cases to consider.

In case s satisfies i = j, we also see that s satisfies k = j (while k = m
may or may not be satisfied). Execution of S then proceeds to execute
the statement m := k. Here ends the execution of S, resulting in a new
state s̄ satisfying i = j ∧ k = j ∧m = k, i.e., s̄ satisfies the postcondition
j = k ∧ j = m.

On the other hand, when s satisfies i 6= j, we see that s also satisfies
k = m. Now, since the condition i = j of S is evaluated ⊥ (in the state s),
execution of S initiates the execution of the statement j := k (look after
the punctuation ‘else’). This brings in a new and final state s̄ satisfying
k = m ∧ j = k. That is, s̄ satisfies the postcondition j = k ∧ j = m.

Thus the specification is partially correct.

EXAMPLE 5.4 |=p 〈 i = 0 ∧ σ = 0 ∧ n > 0 〉
while i 6= n {i := i+ 1 ; σ := σ + 1}
〈σ =

∑n
i=0 i ∧ i ≤ n 〉

Solution Let s be any state where i = 0, σ = 0, n = n0 with n0 ≥ 0. This
is the only way s might satisfy the precondition. When execution of

S: while i 6= n{i := i+ 1 ; σ := σ + i}
is initiated, the guard i 6= n is first evaluated. If n0 = 0, then this guard
is not satisfied, and consequently, execution of S is terminated. The new
state, in this case, s itself, obviously satisfies the postcondition as σ = 0
and

∑n0
i=0 i =

∑0
i=0 i = 0. If n0 = 0, then the guard i 6= n is satisfied and

the body i := i + 1 ; σ = σ + i is executed to have the resulting state s̄
which satisfies

i = 1, σ = 0 + 1 =
∑n0

i=0 i =
∑n

i=0 i

That is, s̄ satisfies the postcondition. You can repeat this argument for
any n0. But this will not prove the statement. What you require is that for
every natural number n0, the resulting state s̄ will satisfy the postcondition.
So, induction? All right, for n0 = 0, you have already shown the partial
correctness. Now lay out the induction hypothesis that for n0 = m ∈ N,
partial correctness holds. Let n0 = m + 1. Let s be any state satisfying
the precondition. Since n0 ≥ 1 and i = 0, the guard i 6= n is evaluated >,
and the body is then executed. This yields a new state s̃ which satisfies
i = 1∧σ =

∑1
i=0 i. So, how to use the induction hypothesis? We are stuck!

Leaving it here amounts to the hand waving remark: “proceed up to n0 +1
and similarly . . . ” − not a proof!

Exercise 5.1 First show that the number of times the body of the loop
in Example 5.4 is executed is n0. Then use induction on the number of
times the body of the loop is executed to complete the proof of partial
correctness.
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We have not completed the proof of partial correctness in Example 5.4
because you have to slow down a bit. This example shows that we cannot
always argue the way we used to do in the previous examples. It is like
proving the validity of a first order formula using semantics. It is better
to have some proof system. To have one such, we will abstract away the
peculiarities in the above examples and, instead, arrive at a consensus on
how to handle the basic four types of statements of CL.

We take up the assignment statement first. Its specification looks like

〈Q 〉x := E 〈R 〉

where x is a program variable, E is an arithmetic expression and Q,R
are FL-formulas. When can we assert that |=p 〈Q 〉x := E 〈R 〉 ? By
definition, if s is a state which satisfies Q, after x is assigned the value of
E, s must satisfy R. In Example 5.1, you have seen such a specification.
Since the value of x is changed to the value of E, you must see that either
Q[x/E] happens to be R or R[x/E] happens to be Q. Which way should
it happen? Whenever 〈Q 〉x := E 〈R 〉 is partially correct, you see that R
is satisfied for a state s[x � E]. The state s[x � E] is the same as in FL;
it is the environment obtained from s by fixing the variable x to E. Now,
s̄ = s[x � E] satisfies R. That means R[x/E] must have been satisfied by
s. Thus, Q must be equal to R[x/E] or at least that Q must imply R[x/E].
We will break these two alternatives into two rules. The latter case will be
taken care of by a more general rule. The former rule will be taken as the
rule of assignment, or the assignment axiom. The Assignment Axiom is
then expressed as

|=p 〈R[x/E] 〉x := E 〈R 〉

Note that |=p 〈Q 〉x := E 〈Q[x/E] 〉 is not correct. For example, take
Q ≡ x = 5, E = 2, then had it been correct, we would have obtained
the specification 〈x = 5 〉x := 2 〈 (x = 5)[x/2] 〉, which is the same as
〈x = 5 〉x := 2 〈 2 = 5 〉 as a partially correct specification. But this is not
so; why? Suppose that s is a state of the program variables satisfying the
precondition x = 5. If x := 2 is executed, then the resulting state satisfies
x = 2. But it can never satisfy the formula 2 = 5, as (2 = 5) ≡ ⊥. However,
the assignment axiom allows |=p 〈 2 = 2 〉x := 2 〈x = 2 〉, the truth of which
can be seen clearly, since (2 = 2) = (x = 2)[x/2].

The assignment axiom demands backward reasoning, from the postcon-
dition to the precondition. We will see shortly how to use the axiom in
proving partial correctness of programs. To see that it is all right, argue
with the specification 〈x = 5 〉x := 2 〈x = 2 〉 . This is partially correct
since for any state s satisfying x = 5 before the execution of the state-
ment x := 2, the resulting state after the execution will satisfy x = 2. It
does not really matter whether the precondition is x = 5; it could have
been any Q. The reason is: (x = 5) → (2 = 2) is a valid FL-formula.
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This suggests the rule that “if Q |= R[x/E], then |=p 〈Q 〉x := E 〈R 〉
holds”. Similarly, if P is any formula such that R |= P , then also we have
|=p 〈R[x/E] 〉x := E 〈P 〉 . For example, |=p 〈 2 = 2 〉x := 2 〈x2 = 22 〉
since (x = 2) |= (x2 = 22) is a valid consequence in FL. These observations
are true for any type of statements, and not just for assignment. We may
express it as

If P |= Q, |=p 〈Q 〉S 〈R 〉, and R |= U, then |=p 〈P 〉S 〈U 〉 .
We call this rule as the Rule of Implication.

Exercise 5.2 Using the assignment axiom and the rule of implication,
show the partial correctness of the following specifications:

(a) 〈x = y 〉x := x+ 1 〈x = y + 1 〉
(b) 〈x = y + 1 〉 y := y + 1 〈x = y 〉
Next, we consider the composition or the sequential execution. When

can we assert that 〈Q 〉S1 ; S2 〈R 〉 is partially correct? Note that we
are reasoning backward, from the postcondition to the precondition. If
after the execution of S1 ; S2, a state satisfies R, then what would have
happened before the execution? Let us first think about the execution of
S2. Before S2 has been executed, there must have been some state that
satisfies its precondition so that R is satisfied by the resulting state after
the execution of S2. Call the precondition P. That is, we hypothesize the
partial correctness of the specification

〈P 〉S2 〈R 〉
Then, obviously, P must have been satisfied by a resulting state after the
execution of S1, which was initiated by the state s satisfying, say, Q. That
is, the partial correctness of the specification

〈Q 〉S1 〈P 〉
could have been obtained earlier. This argument is encapsulated in the
Rule of Sequential Execution, or the Rule of Composition, which
says that

If |=p 〈Q 〉S1 〈P 〉 , |=p 〈P 〉S2 〈R 〉, then |=p 〈Q 〉S1 ; S2 〈R 〉 .
Note that for proving |=p 〈Q 〉S1 ; S2 〈R 〉 some such P will do pro-

vided that the other two specifications are partially correct. Look back at
Example 5.2 now. There, you have obtained the following:

|=p 〈x = y 〉x := x+ 1 〈x = y+ 1 〉 , |=p 〈x = y+ 1 〉 y := y+ 1 〈x = y 〉
From these two partially correct specifications, we derive, by the rule of
sequential execution, that |=p 〈x = y 〉x := x+ 1 ; y := y + 1 〈x = y 〉 .
Exercise 5.3 By using assignment axiom and the rule of sequential com-
position show that

|=p 〈σ =
∑i

m=0m ∧ i 6= n 〉 i := i+ 1 ; σ := σ + i 〈σ =
∑i

m=0m 〉
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Consider the conditional statement. We want to decide when does

|=p 〈Q 〉 if B then {S1} else {S2} 〈R 〉

hold. Go back to Example 5.3. There, we had to break the proof into two
cases depending on whether the Boolean expression B is evaluated to > or
⊥. If s is a state that satisfies Q and B is evaluated to >, then in this state
S1 is executed. After such an execution the resulting state must satisfy R.
This suggests the partial correctness of the specification 〈Q∧R 〉S1 〈R 〉 .
On the other hand, when B is evaluated to ⊥, i.e., when ¬B holds, the
initial state s satisfies Q∧¬B. In this case, S2 is executed and the resulting
state satisfies R. This suggests, similarly, the partial correctness of the
specification 〈Q ∧ ¬B 〉S2 〈R 〉 . Remember that we are going from the
postcondition to the precondition. Summarizing, we have the Rule of
Conditional statement as

If |=p 〈Q ∧B 〉S1 〈R 〉 and |=p 〈Q ∧ ¬B 〉S2 〈R 〉,
then |=p 〈Q 〉 if B then {S1} else {S2} 〈R 〉.

In Example 5.3, we had, first of all,

|=p 〈 (i = j → k = j)∧(i 6= j → k = m)∧i = j 〉m := k 〈 j = k∧j = m 〉

|=p 〈 (i = j → k = j)∧ (i 6= j → k = m)∧ i 6= j 〉 j := k 〈 j = k∧ j = m 〉

By using the rule of conditional statement, we obtain

|=p 〈 (i = j → k = j) ∧ (i 6= j → k = m) 〉
if i = j then {m = k} else {j := k}
〈 j = k ∧ j = m 〉

Exercise 5.4 By using the assignment axiom and the rule of implication,
show that the following statements hold:

(a) |=p 〈 (i = j → k = j)∧(i 6= j → k = m)∧i = j 〉m := k 〈 j = k∧j = m 〉
(b) |=p 〈 (i = j → k = j)∧(i 6= j → k = m)∧i 6= j 〉 j := k 〈 j = k∧j = m 〉

Finally, we consider the while statement. Here the task is to find out
sufficient conditions (which should be reasonably weak) for determining the
partial correctness of the specification

〈Q 〉 while B{S} 〈R 〉

Look back at Example 5.4. We have seen that there are properties that
change during repeated executions of the loop body, and there are some
which do not change. Recollect that the properties that do not change are
called the invariants of the loop. An invariant remains true (not false,
for convenience) before, during, and after the execution of the loop. The
invariant, in some way, comes out of the job that the loop does. The
invariant in Example 5.4 is the ‘current sum up to i’, where i is the number



248 Program Verification

of times the loop body has been executed (till that instant). That is, the
invariant is the formula: σ =

∑i
j=0 j. Though the value of the variable i

changes, and the value of the variable σ changes, the truth (value) of the
statement σ =

∑i
j=0 j does not change.

Now, suppose that we know what the invariant of a while statement is.
In order that 〈Q 〉 while B{S} 〈R 〉 holds, we know that Q must contain
the invariant, and R must also contain the invariant. Moreover, after the
execution, assuming that the loop terminates, B must become false. Oth-
erwise, the statement S is executed again contrary to the termination of
the loop. That is, R must also contain ¬B. Denoting the loop invariant by
I, we seek the conditions so that the specification

〈 I 〉 while B{S} 〈 I ∧ ¬B 〉

is partially correct. Let us look at its execution once again. Here, s is a state
of the program variables satisfying the invariant I. In such a state, execution
of the while statement while B{S} is initiated. Suppose that s satisfies the
guard B. Then S is executed. After this execution, the invariant is satisfied
by the resulting state. If B is also satisfied by the resulting state, then once
again S is executed, and once again it results in a state that satisfies the
invariant. Hence, in order that 〈 I 〉 while B{S} 〈 I ∧ ¬B 〉 is partially
correct, we would have had the partial correctness of 〈 I ∧ B 〉S 〈 I 〉 . We
thus have the Rule of While as

If |=p 〈 I ∧B 〉S 〈 I 〉, then |=p 〈 I 〉 while B{S} 〈 I ∧ ¬B 〉 .

Here I is an invariant of the while loop. In fact, an invariant may be
defined as any formula so that the above statement holds. Once more, look
at Example 5.4. Pretend that we want to discover an invariant of the loop,
i.e., a formula which would make the above statement hold. We start with
the postcondition. The postcondition is σ =

∑n
i=0 i∧ i ≤ n. Since negation

of the guard will be satisfied after termination, we will have i = n. This
will of course imply the formula i ≤ n. Then, matching with I ∧ ¬B, we
may consider I to be something that would express σ =

∑n
i=0 i =

∑n
m=0m

upon termination. Note that upon termination, we have i = n. Moreover,
the running sum of the i-th execution of the loop is

∑i
m=0; and when i = n,

we would get σ. So, let us start with I ≡ σ =
∑i

m=0m as an invariant.
Due to the identity

σ =
∑i

m=0m ∧ i = m |= σ =
∑n

i=0 i ∧ i ≤ n

and the rule of implication, it is enough to show that

|=p 〈 i = 0 ∧ σ = 0 ∧ n ≥ 0 〉
while i 6= n{i := i+ 1 ; σ := σ + i}
〈σ =

∑i
m=0m ∧ i = n 〉

Look at the postcondition again. It is I ∧ ¬B. Then to apply the while
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rule, we require |=p 〈 I ∧B 〉 i := i+ 1 ; σ := σ + i 〈 I 〉, i.e.,

|=p 〈σ =
∑i

m=0m ∧ i 6= n 〉 i := i+ 1 ; σ := σ + i 〈σ =
∑i

m=0m 〉

To complete the proof, use the rule of implication, the consequence

(i = 0 ∧ σ = 0 ∧ n > 0) |= (σ =
∑i

m=0m ∧ i 6= n)

and Exercise 5.3.
Here is a summary of the rules for arguing about programs in CL; the

names of the rules are self-explanatory: ‘A’ the for the assignment axiom,
‘S’ for the sequential execution, ‘C’ for the conditional statement, ‘W’ for
the while statement, and ‘I’ for implication.

(RA)
·

〈R[x/E] 〉x := E 〈R 〉

(RS)
|=p 〈Q 〉S1 〈P 〉 |=p 〈P 〉S2 〈R 〉

|=p 〈Q 〉S1 ; S2 〈R 〉

(RC)
|=p 〈Q ∧B 〉S1 〈R 〉 |=p 〈Q ∧ ¬B 〉S2 〈R 〉
|=p 〈Q 〉 if B then {S1} else {S2} 〈R 〉

(RW)
|=p 〈 I ∧B 〉S 〈 I 〉

|=p 〈 I 〉 while B{S} 〈 I ∧ ¬B 〉

(RI)
P |= Q |=p 〈Q 〉S 〈R 〉 R |= U

|=p 〈P 〉S 〈U 〉

Remember that R[x/E] is the result of substitution of all free occur-
rences of the variable x by the expression E in R. We assume that the
symbols when used in a context are well defined. For example, R[x/E]
must be well defined, meaning that the types of x and E must match.
Note that in FL, this discussion was unwarranted, since variables there
could only be substituted by terms. Similarly, sequential composition of
programs or statements is left associative, i.e., S1 ; S2 ; S3 is to be read
as (S1 ; S2) ; S3. At this point go back to the rules as stated earlier and
match them with the above written as fractions. These rules say that if
you have already proved the partial correctness of the specification in the
numerator, then the denominator follows. The denominator of RA does
not need the partial correctness of any specification; it is an axiom.

You can use these rules to define and construct proofs in the style of
an axiomatic system or as a tree. In the first style, a proof of partial
correctness of a specification is a finite sequence of specifications, and
possibly some FL-formulas. The formulas must be valid (or provable in
any proof system), each specification is either an axiom (RA), or follows
from earlier specifications/formulas by an application of one of the other
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four rules. Further, RA terminates a path, in the sense that no more
justification is required along that path, just like Gentzen systems. The
logic defined by these rules is obviously an extension of FL. Occasionally
we will have to prove the valid FL-formulas that may be used in a proof.
But we will refrain from doing so here; rather we give more attention to
the proofs of specifications. The proof system so obtained is known as the
Hoare Logic for CL. If you take a different language, say, PASCAL, then
the corresponding Hoare logic will be different. The proofs in any Hoare
logic is called a Hoare proof.

We follow the three-column style of writing a proof; the first column
keeps track of the entries by giving each a serial number, the second column
is the actual proof, and the third column documents the proof by giving
justification. As justifications we will mention the rules by their names
RA, RS, RC, RW, or RI as appropriate, and ‘FL’ for the valid FL-formulas.
Occasionally, we may add a separate proof of the valid formulas. If a rule is
applied on the preceding line(s), then we will not mention the line numbers;
otherwise we will mention the remote line numbers.

EXAMPLE 5.5 Give a Hoare proof of

|=p 〈 1 + a− a2 = 0 ∧ an = b+ c ∗ a 〉
n := n+ 1 ; m := b+ c ; b := c ; c := m

〈 an = b+ c ∗ a 〉
Solution Remember that we have to proceed from the postcondition
to the precondition. In this specification only assignment statements are
sequentially composed. We may only require the rules RA,RS, and RI. The
last statement in the program is c := m with the postcondition an = b+c∗a.
So, what should be the precondition? By RA, it is (an = b+c∗a)[c/m] which
equals an = b + m ∗ a. This is taken as a postcondition for the statement
b := c, preceding the last statement. Again, by RA, the precondition would
be (an = b + m ∗ a)[b/c] which equals an = c + m ∗ a. This is, essentially,
the rule RS. Read the following proof backward first to understand how it
is constructed:

1. 〈 an = b+m ∗ a 〉 c := m 〈 an = b+ c ∗ a 〉 RA

2. 〈 an = c+m ∗ a 〉 b := c 〈 an = b+m ∗ a 〉 RA

3. 〈 an = c+ (b+ c) ∗ a 〉m := b+ c 〈 an = c+ (b+ c) ∗ a 〉 RA

4. 〈 an+1 = c+ (b+ c) ∗ a 〉n := n+ 1 〈 an = c+ (b+ c) ∗ a 〉 RA

5. 〈 an+1 = c+ (b+ c) ∗ a 〉
n := n+ 1 ; m := b+ c 〈 an = c+m ∗ a 〉 RS

6. 〈 an+1 = c+ (b+ c) ∗ a 〉
n := n+ 1 ; m := b+ c ; b := c 〈 an = b+m ∗ a 〉 2, RS

7. 〈 an+1 = c+ (b+ c) ∗ a 〉
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n := n+ 1 ; m := b+ c ; b := c ; c := m 〈 an = b+ c ∗ a 〉 1, RS

8. 1 + a− a2 = 0 ∧ an = b+ c ∗ a→ an+1 = c+ (b+ c) ∗ a FL

9. 〈 1 + a− a2 = 0 ∧ an = b+ c ∗ a 〉
n := n+ 1 ; m := b+ c ; b := c ; c := m 〈 an = b+ c ∗ a 〉 RI

A proof of validity of the formula in line 8 goes as follows:

1 + a− a2 = 0 ∧ an = b+ c ∗ a
⇒ an+1 = a ∗ (b+ c ∗ a) ∧ 1 + a = a2

⇒ an+1 = a ∗ b+ a2 ∗ c ∧ 1 + a = a2

⇒ an+1 = a ∗ b+ (1 + a) ∗ c ∧ 1 + a = a2

⇒ an+1 = a ∗ b+ c+ a ∗ c ∧ 1 + a = a2

⇒ an+1 = c+ (b+ c) ∗ a ∧ 1 + a = a2

⇒ an+1 = c+ (b+ c) ∗ a

A proof tree, called a Hoare proof tree can be defined by using the
rules from denominators to the numerators using branching of the tree for
the rules RS, RC, and RI, and stacking for the rules RA and RW. Note
that unlike Gentzen systems or the analytic tableaux, the rules are written
here upside down. The leaves of a Hoare proof tree must be axioms of the
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Figure 5.1 Hoare proof tree for Example 5.5

Hoare logic for CL, i.e., instances of the assignment axiom or the valid
formulas of FL. The root of the proof tree must be the specification for
which a proof is sought.

The Hoare proof tree for the statement of Example 5.5 is shown in
Figure 5.1. In this tree we use the specifications and formulas used in the
Hoare proof of Example 5.5 by mentioning the line numbers. Rewrite the
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whole tree first by inserting the expression at the right place where only a
line number is given. Look at the tree and try to understand the phrase:
‘from denominator to numerator’.

5.5 Hoare Proof and Proof Summary

Though both the styles are inconvenient, the axiomatic style looks easier
than the tree style, and we follow it here. The only inconvenience in this
style is the application of the assignment axiom. But nothing better is
expected, not even by writing the postcondition on the left and the pre-
condition on the right. We will rather gain experience in working out more
proofs. It is often desirable to omit the small details in a proof and only
sketch the important steps so that a formal proof may be constructed out
of the sketch. To develop such a sketch, called a proof summary, let us
go through the Hoare proof given in Example 5.5. A proof summary is as
follows. We number the lines below for further reference, though they are
not part of the proof summary. Read the proof summary from bottom to
top and compare with the original Hoare proof.

Proof summary for Example 5.5

1. 〈 1 + a− a2 = 0 ∧ an = b+ c ∗ a 〉
2. 〈 an+1 = c+ (b+ c) ∗ a 〉
3. n := n+ 1 ;

4. 〈 an = c+ (b+ c) ∗ a 〉
5. m := b+ c ;

6. 〈 an = b+m ∗ a 〉
7. b := c ;

8. 〈 an = b+m ∗ a 〉
9. c := m

10. 〈 an = b+ c ∗ a 〉

What do you find? The last three lines of the proof summary match
with line 1 of the original Hoare proof. Lines 6, 7 and 8 match with line 2 of
the original. Lines 4, 5 and 6 correspond to line 3, and lines 2, 3 and 4 cor-
respond to line 4 of the Hoare proof. The other lines in the original Hoare
proof have been omitted, where the rule of sequential execution has worked
implicitly in the proof summary. In the proof summary, lines 1 and 2 com-
prise a verification condition which corresponds to the FL-consequence
in line 8 of the (detailed) original proof. In the proof summaries, we will
not mention the line numbers, but sometimes, we will mention the rule
that has been applied at a particular stage to go for the next. Note that
the verification conditions are written as
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〈P 〉 〈Q 〉

written one below the other. This is suggestive as it says that P is the
precondition and Q is the postcondition of the ‘empty code’. A real fun! It
means that the Hoare logic is an extension of FL, where P |= Q is rewritten
as 〈P 〉 〈Q 〉 . Recollect that for a specification for the sequential execution
of the type 〈P 〉S1 〈Q 〉 , 〈Q 〉S2 〈R 〉, the proof summary is written easily
mentioning Q only once instead of repeating it twice in the middle, i.e., as
〈P 〉S1 ; 〈Q 〉S2 〈R 〉 . How should we abbreviate the specification for the
conditional execution? The rule of the conditional (RC) looks like

From 〈Q ∧B 〉S1 〈R 〉 and 〈Q ∧ ¬B 〉S2 〈R 〉,
derive 〈Q 〉 if B then {S1} else {S2} 〈R 〉 .

All the notations of the three specifications occurring in the above must
be true in the abbreviation, and we must be able to read it through. The
proof summary for this fragment would look like

〈Q 〉 if B then { 〈Q∧B 〉S1 〈R 〉 } else { 〈Q∧¬B 〉S2 〈R 〉 } 〈R 〉

This is because, for the partial correctness of the specification

〈Q 〉 if B then {S1} else {S2} 〈R 〉

we require partial correctness of both the specifications 〈Q ∧ B 〉S1 〈R 〉
and 〈Q ∧ ¬B 〉S2 〈R 〉 . Henceforth, we use these abbreviations in con-
structing the proof summaries. Note that there are repetitions of the post-
condition inside the braces following then and else . See the following
example.

EXAMPLE 5.6 Construct a proof summary for showing that

|=p 〈> 〉 if i < j then { if j < k then {m := k} else {m := j}}
else { if i < k then {m := k} else {m := i}} 〈m ≥ i∧m ≥ j ∧m ≥ k 〉 .

Solution For this specification, we start with the proof summary as:

〈> 〉 if i < j then

{ 〈> ∧ i < j 〉 if j < k then {m := k} else {m := j}
〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }

else { 〈> ∧ i ≮ j 〉 if i < k then {m := k} else {m := i}
〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }
〈m ≥ i ∧m ≥ j ∧m ≥ k 〉

But this is not a proof summary because the two conditional state-
ments themselves involve other statements, and necessary preconditions
and postconditions are not yet supplied. We work through them to obtain
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a complete proof summary. In the following proof summary, we use inden-
tations to logically group the conditional statements together. Still there
are repetitions of the postconditions of conditional statements in it. We
will not omit the repetitions for better readability.

〈> 〉 if i < j then

{ 〈> ∧ i < j 〉 if j < k then

{ 〈> ∧ i < j ∧ j < k 〉m := k 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }
else { 〈> ∧ i < j ∧ j ≮ k 〉m := j 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }

〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }
else { 〈> ∧ i ≮ j 〉 if i < k then

{ 〈> ∧ i ≮ j ∧ i < k 〉m := k 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }
else { 〈> ∧ i ≮ j ∧ i ≮ k 〉m := i 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }

〈m ≥ i ∧m ≥ j ∧m ≥ k 〉 }
〈m ≥ i ∧m ≥ j ∧m ≥ k 〉

Read the proof summary from the bottom to the top and see how the rules
are working and how the abbreviations help us for better reading of a Hoare
proof. To complete the proof, however, you must do the following exercise.

Exercise 5.5 Show that the following specifications are partially correct
by constructing Hoare proofs:

(a) 〈> ∧ i ≮ j ∧ i ≮ k 〉m := i 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉
(b) 〈> ∧ i ≮ j ∧ i < k 〉m := k 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉
(c) 〈> ∧ i < j ∧ j ≮ k 〉m := j 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉
(d) 〈> ∧ i < j ∧ j < k 〉m := k 〈m ≥ i ∧m ≥ j ∧m ≥ k 〉
A proof summary shows applications of all the rules except the assign-

ment axiom. Thus, the only thing that remains in a proof summary are the
assignment statements and the verification conditions. Once you verify that
the precondition and postcondition pairs correctly specify the assignments
and the verification conditions (the FL-consequences) hold, you get a com-
plete proof from a proof summary. Now, what about the while statement?
The while rule looks like

From 〈Q ∧B 〉S 〈Q 〉, derive 〈Q 〉 while B{S} 〈Q ∧ ¬B 〉 .

Note that in this notation, Q is the invariant of the while loop. It is in-
structive to keep this special property and mark it as the invariant, for
it requires a lot of ingenuity to discover this. Of course, we keep all in-
formation on the specifications of the premise 〈Q ∧ B 〉S 〈Q 〉 and of the
conclusion 〈Q 〉 while B{S} 〈Q∧¬B 〉 so that we can easily read through
the proof summary. The fragment of the proof summary for the while
statement thus looks like:
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〈 Invariant: Q 〉 while B{ 〈Q ∧B 〉S 〈Q 〉 } 〈Q ∧ ¬B 〉
Mark the movement of the curly brackets ‘{’ and ‘}’ above from {S} to
{ 〈Q ∧ B 〉S 〈Q 〉 }. We take up this movement of the curly brackets in
order that 〈Q 〉 and 〈Q ∧ ¬B 〉 would not come together; for, that would
mean Q |= Q∧¬B, which is completely unwarranted. The word ‘Invariant’
inside the precondition, 〈 Invariant: Q 〉, is a reminder for us that Q is not
only the precondition but also the invariant of the while loop.

An invariant of the while statement while B{S} having guard B and
body S is an FL-formula I such that |=p 〈 I ∧ B 〉S 〈 I 〉 holds, i.e., if I
and B are both satisfied by any state of the program variables (occurring
in S) and S is executed, then upon termination (assumed here) of S, the
resulting state will satisfy the formula I. All that is required of I is that
it holds both before and after execution; it may not be satisfied by some
intermediate state while execution is in progress.

The disturbing fact is that there are always many invariants of a while
loop. This is simple to see since both > and ⊥ are invariants of every while
statement. (Prove it!) But then these might be the useless invariants. The
useful invariants express a relationship between the program variables that
are manipulated in the body of the loop. If we have the specification

〈P 〉 while B{S} 〈R 〉
then in order to be able to prove it (by RW and RI), we must look for an
invariant Q such that all of

|= P → Q, |= Q ∧ ¬B → R, and |=p 〈Q 〉 while B{S} 〈Q ∧ ¬B 〉
hold. It requires ingenuity and knowledge on the intended job the while
statement is supposed to perform. The while statement is unlike any other
statements which are purely mechanical. So, you need some experience in
working with the while statement and this may guide you for discovering
the useful invariants.

EXAMPLE 5.7 Construct a proof summary for the specification

〈 0 ≤ n 〉 y := 1 ; z := x ; k := n ;

while 0 6= k{k := k − 1 ; y := y ∗ z} 〈 y = xn 〉
Solution What is the (useful) invariant of the while loop here? Since the
postcondition of the while statement will be in the form Q ∧ ¬B, we must
look for an invariant Q so that Q ∧ ¬B ≡ y = xn or Q ∧ ¬B |= y = xn,
or even the weaker consequence Q ∧ ¬B ⇒ y = xn, where B is the guard
0 6= k of the loop. We must also have a formula P such that

|=p 〈 0 ≤ n 〉 y := 1 ; z := x ; k := n 〈P 〉 , and P |= Q.

Note also that the knowledge of what the loop does will come of help in
hypothesizing the invariant(s). What does the loop do? Suppose that
k = 2. The guard 0 6= k is satisfied. Now, k := k − 1 is executed, so k = 1.
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Next, y := y ∗ z is executed, thus in place of y, we now have the value
of y ∗ z. Once again, the guard is satisfied, and then k becomes 0, and y
becomes bound to (y ∗ z) ∗ z, i.e., to y ∗ z2. Therefore, finally, y becomes
bound to y ∗ zk. The postcondition is y = xn. Combining these two, we
would obtain an invariant which looks like

y ∗ zk = xn

All these suggestions implicitly assume that 0 ≤ k. To make it explicit, we
start with the invariant Q as

0 ≤ k ∧ y ∗ zk = xn

Then our specification is pushed one step closer to a proof summary, which,
at this stage, appears as

〈 0 ≤ n 〉
y := 1 ; z := x ; k := n ;

〈P 〉 〈Q 〉
while 0 6= k{k := k − 1 ; y := y ∗ z}
〈 0 = k ∧Q 〉 〈 y = xn 〉

We do not know yet what P is. Trying with P = Q (instead of P |= Q),
the specification would be simplified. Further, using the specification of a
proof summary for the while statement, it would look like

〈 0 ≤ n 〉
y := 1 ; z := x ; k := n ;

〈 Invariant: Q 〉
while 0 6= k{ 〈Q ∧ 0 6= k 〉 k := k − 1 ; y := y ∗ z 〈Q 〉 }
〈 0 = k ∧Q 〉 〈 y = xn 〉

We now focus our attention on the first part:

〈 0 ≤ n 〉 y := 1 ; z := x ; k := n 〈Q 〉

Pushing the postcondition towards the precondition through the assign-
ments, we see that a proof summary of this fragment starts with

〈 0 ≤ n 〉 y := 1 ; z := x 〈Q[k/n] 〉 k := n ; 〈Q 〉

And, finally, the fragment will be

〈 0 ≤ n 〉 〈Q[k/n][z/x][y/1] 〉 y := 1 ; 〈Q[k/n][z/x] 〉
z := x ; 〈Q[k/n] 〉 k := n ; 〈Q 〉

Taking Q as the formula 0 ≤ k ∧ y ∗ zk = xn, the substitutions above
will be simplified. With that, use the fragment for the while statement as
done earlier to obtain the required proof summary as:
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〈 0 ≤ n 〉
〈 0 ≤ n ∨ a ∗ xn = xn 〉
y := 1 ;

〈 0 ≤ n ∧ y ∗ xn = xn 〉
z := x ;

〈 0 ≤ n ∧ y ∗ zn = xn 〉
k := n ;

〈 Invariant: 0 ≤ k ∧ y ∗ zk = xn 〉
while 0 6= k{
〈 0 ≤ k ∧ y ∗ zk = xn ∧ 0 6= k 〉
〈 0 ≤ k − 1 ∧ (y ∗ z) ∗ zk−1 = xn 〉
k := k − 1 ;

〈 0 ≤ k ∧ (y ∗ z) ∗ zk = xn 〉
y := y ∗ z
〈 0 ≤ k ∧ y ∗ zk = xn 〉 }
〈 0 ≤ k ∧ y ∗ zk = xn ∧ 0 = k 〉
〈 y = xn 〉

Exercise 5.6 Prove the three verification conditions met in the proof
summary in Example 5.7. They are

(a) 0 ≤ n |= 0 ≤ n ∧ 1 ∗ xn = xn

(b) 0 ≤ k ∧ y ∗ zk = xn ∧ 0 6= k |= 0 ≤ k − 1 ∧ (y ∗ z) ∗ zk−1 = xn

(c) 0 ≤ k ∧ y ∗ zk = xn ∧ 0 = k |= y = xn

Develop a complete Hoare proof from the proof summary.

EXAMPLE 5.8 Let odd(k) be a predicate expressing the fact that k
is odd. Formally, odd(k) ≡ ∃m(m ∈ N ∧ k = 2 ∗ m + 1). Construct a
proof summary with the necessary verification condition(s) for the following
specification:

〈 0 ≤ n 〉 k := n ; y := 1 ; z := x ; while 0 6= k{ if odd(k) then

{k := k− 1 ; y := y ∗ z} else {y := y} ; k := k/2 ; z := z ∗ z} 〈 y = xn 〉
Solution To give a hint, first check that Q(y, z, k) ≡ y∗zk = xn∧0 ≤ k is
an invariant of the while statement. Solve it yourself before reading further.
Prove the verification conditions in the following proof summary.

Writing Q(y, z, k) instead of Q will be helpful, in the sense that it
will allow us to write Q(x, z, k) in place of Q(y, z, k)[y/x]. Introduce the
predicate even(k) ≡ ∃m(m ∈ N ∧ k = 2 ∗m). Clearly, ¬odd(k) ≡ even(k).
The proof summary now looks like
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〈 0 ≤ n 〉

〈 1 ∗ xn = xn ∧ 0 ≤ n 〉

k := n ; y := 1 ; z := x ;

〈 Invariant: Q(y, z, k) 〉

while 0 6= k {

〈 0 6= k ∧Q(y, z, k) 〉

if odd(k) then {

〈 odd(k) ∧ 0 6= k ∧Q(y, z, k) 〉

〈 even(k − 1) ∧Q(y ∗ z, z, k − 1) 〉

k := k − 1 ; y := y ∗ z

〈 even(k) ∧Q(y, z, k) 〉 }

else { 〈¬odd(k) ∧ 0 6= k ∧Q(y, z, k) 〉

〈 even(k) ∧Q(y, z, k) 〉

〈Q(y, y ∗ z, k/2) 〉

k := k/2 ; z := z ∗ z

〈Q(y, z, k) 〉 }

〈Q(y, z, k) 〉 }

〈 y = xn 〉

EXAMPLE 5.9 Construct a proof summary for the specification

〈> 〉 y := 1 ; z := 0 ; while z 6= x {z := z + 1 ; y := y ∗ z} 〈 y = x! 〉

where k! = 1 ∗ 2 ∗ 3 ∗ · · · ∗ k, the ‘k factorial’, with 0! = 1.

Solution The proof summary follows:

〈> 〉

〈 1 = 0! 〉 y := 1 ; 〈 y := 0! 〉 z := 0 ;

〈 Invariant: y = z! 〉

while z 6= x {

〈 y = z! ∧ z 6= x 〉

〈 y ∗ (z+1) = (z+1)! 〉 z := z+1 ; 〈 y ∗z = z! 〉 y := y ∗z 〈 y = z! 〉 }

〈 y = z! ∧ z = x 〉

〈 y = x! 〉

Exercise 5.7 Annotate the proof summaries in Examples 5.7-5.9 with
the names of the rules where they have been applied.
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5.6 Total Correctness

In Section 5.5, you have learnt how to develop a proof of partial correctness
of specifications for programs in CL. The partial correctness is conditional,
the condition being the implicit assumption that the (execution of the) pro-
gram actually terminates. It may happen otherwise, and then the partial
correctness follows trivially, thus its proof becomes useless. Total correct-
ness requires partial correctness and a proof that the program actually
terminates. Formally, given a specification 〈Q 〉S 〈R 〉, we say that it is
totally correct, written as |=t 〈Q 〉S 〈R 〉, iff for any state s of the pro-
gram variables of S, if s satisfies the precondition Q, then S terminates the
resulting state s̄ satisfies the postcondition R.

But what are the cases that a program may not terminate? Surely, not
for those programs which do not have loops. Only in the presence of a
while statement, a program in CL may not terminate. For a proof of total
correctness, our Hoare logic rules remain the same except possibly for the
while rule. Thus, we must focus our attention on the while statement in
order to have an appropriate modification of it.

The proof of termination of a while statement usually has the following
form: We identify an integer expression, obviously related to the program
variables whose value decreases as the body of the while statement is repeat-
edly executed. Further, this expression must have a lower bound, typically
0, so that it cannot be decremented arbitrary number of times. Such an
expression is called a variant of the loop. Once the variant achieves its
lower bound, the loop terminates. For example, consider the loop in Exam-
ple 5.9. The while statement starts with the value bound to the variable x,
and z being bound to 0. When the loop body is executed once, the value
of z is incremented to 1. The guard of the loop holds for all values of z
from 0 to ‘the value of x minus 1’. Once z becomes bound to the value of
x, the loop terminates. We see that the value of the expression x − z is
decremented by 1 each time the loop is executed ‘once more’. Therefore,
the variant of the loop there is x− z.

Suppose that we have identified a variant E for the while statement
while B{S}. This means that the value of the expression E decreases
with each (repeated) execution of S. That is, if the value of E is E0 before
the loop is executed, then after the execution, the value of E is strictly less
than E0. Moreover, to code the fact that E has a lower bound, we will put
a restriction on the value of E such as 0 ≤ E0. Now, we have to incorporate
a variant with these properties into the while rule. Recollect that the while
rule for partial correctness was

|=p 〈Q ∧B 〉S 〈Q 〉
|=p 〈Q 〉 while B{S} 〈Q ∧ ¬B 〉

where Q was the invariant of the while statement. Now, since the value
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of the variant is always non-negative, we have an additional condition that
0 ≤ E. Also, the variant E satisfies E = E0 before the execution, and
after the execution of S, it is decremented, i.e., the property E < E0 is
satisfied. Thus the required additional condition is the correctness of the
specification

〈Q ∧B ∧ 0 ≤ E = E0 〉S 〈Q ∧ − ≤ E < E0 〉 .
Moreover, the new condition 0 ≤ E may be added to the precondition

of the while statement. Though this will also hold after the execution
terminates, it may not be required to add it to the postcondition. It is
because the condition 0 ≤ E is not a part of the goal of the while statement.
The goal, i.e., the postcondition is usually fixed even before the program
is written, whereas we only invented the condition 0 ≤ E for the proof of
correctness. Hence, the rule of total while, written as a fraction, is

(TW)
|=t 〈Q ∧B ∧ 0 ≤ E = E0 〉S 〈Q ∧ 0 ≤ E < E0 〉
|=t 〈Q ∧ 0 ≤ E 〉 while B{S} 〈Q ∧ ¬B 〉

Note that in all the other rules, for total correctness, we have to replace the
symbol |=p by |=t. However, we will refer to them with the same names,
even after this replacement.

In a proof summary, along with the invariant, we will document the
variant E also. The proof summary fragment for total correctness of a
while statement will look like

〈 Invariant: Q ∧Variant: 0 ≤ E 〉
while B { 〈Q ∧B ∧ 0 ≤ E = E0 〉S 〈Q ∧ 0 ≤ E < E0 〉 }
〈Q ∧ ¬B 〉

It is written in such a way that by omitting the strings ‘Invariant:’ and
‘Variant:’, you would get the clear-cut application of the total-while rule.
Let us redo Example 5.9 for proving its total correctness.

EXAMPLE 5.10 Construct a proof summary to show that

|=t 〈x ≥ 0 〉 y := 1 ; z := 0 ; while z 6= x{z := z+ 1 ; y := y ∗ z} 〈 y = x! 〉
Solution We know already that the variant E = z − x. Now, compare
the following proof summary for total correctness with the one for partial
correctness given in Example 5.9.

〈x ≥ 0 〉
〈 1 = 0! ∧ 0 ≤ x− 0 〉 y := 1 ; 〈 y = 0! ∧ 0 ≤ x− 0 〉 z := 0 ;

〈 Invariant: y = z! ∧Variant: 0 ≤ x− z 〉
while x 6= z {
〈 y = z! ∧ x 6= z ∧ 0 ≤ x− z = E0 〉
〈 y ∗ (z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) < E0 〉 z := z + 1 ;
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〈 y ∗ z = z! ∧ 0 ≤ x− z < E0 〉 y := y ∗ z ;

〈 y = z! ∧ 0 ≤ x− z < E0 〉 }
〈 y = z! ∧ x = z 〉
〈 y = x! 〉

Exercise 5.8 Show that the precondition x ≥ 0 cannot be replaced in
the above proof summary by > if total correctness is required. Construct
total correctness proofs for the specifications in Examples 5.7-5.9.

Note that the choice of a variant depends upon the nature of the state-
ments in the while loop. Discovering an appropriate variant requires in-
genuity just like the case of an invariant. As E. W. Dijkstra pointed out,
“understanding a while loop is tantamount to discovering its variants and
invariants”. We will have some more illustrations with a hope that this ex-
perience will help you to discover the variants and invariants appropriately.

EXAMPLE 5.11 [Binary Search] Let a denote an array of n integers
in which the elements are already ordered, say, in ascending order. The
problem is to split the array into two parts such that all the elements in
the first part and none of the numbers in the second part precede a given
integer m.

Solution Any portion of the array can be represented by an ordered pair
of integers, denoting the indices of the first and last numbers minus 1. For
example, the array a which is written as a[0], a[1], · · · , a[n−1] is represented
as the ordered pair (0, n − 1). Similarly, the portion a[i], · · · , a[j − 1] is
represented as the ordered pair (i, j − 1). Note that 0 ≤ i, j ≤ n− 1 and if
i ≥ j, then the portion of the array is empty. Our procedure is as follows.

Throughout our operation on the array, we will maintain three decks
(imagine the array elements written on cards). The left deck contains array
elements that are known to (at a certain instant during execution) precede
m, in an ordered fashion. The right deck contains array elements which
are all known ‘not to precede’ m, again in an ordered fashion, in ascending
order, of course. The middle deck contains array elements, in ascending
order, which are yet unknown whether to precede or not to precede m.
Thus, initially, both the left and the right decks are empty, and the middle
deck contains the full array. In our representation, we need just two integers
to represent the three decks. Call the two integers l and r.

The representation of the three decks is as follows: The left deck is
the array segment a[0], · · · , a[l − 1], the middle deck is the array segment
a[l], · · · , a[r− 1], and the right deck is the array segment a[r], · · · , a[n− 1].
Initially, l = 0 and r = n. This suggests the initial assignments

l := 0 ; r := n

During execution, we may need to move the first i elements from the middle
deck to the left; this will be effected by the assignment
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l := i+ 1

Similarly, when we require to move all array elements a[i], · · · , a[n] to the
right deck, we have to use the assignment

r := i

Then comes the question, as to wherefrom we make the split. Assume
that after some steps, we have the left, middle and the right decks, which
may contain some array elements. The middle deck now has the array
segment a[l], · · · , a[r− 1]. We want to split the middle deck into two parts
by finding the middle element in this segment, say, it is the i-th. Now,
if a[i] < m, then all of a[l], · · · , a[i] will be moved to the left deck. And
if a[i] ≥ m, then all of a[i], · · · , a[r − 1] will be moved to the right deck.
Since we plan to choose this i as the middle element of the middle deck
containing a[l], · · · , a[r − 1], i would be equal to (l + r − 1)/2 or may be
(l + r − 1)/2 + 1. We choose the former. That is, we have the assignment

i := (l + r − 1)/2

Then, with our representation of array segments as ordered pairs, the pro-
gram of Binary Search looks like

l := 0 ; r := n ;

while l < r {
i := (l + r − 1)/2 ;

if a[i] < m then {l := i+ 1} else {r := i}}

What is the precondition and what is the postcondition of this program?
Since we do not want an empty array, we may have the condition n > 0.
The array is given to be in ascending order, which means that if j ≤ k then
a[j] ≤ a[k]. This constitutes the precondition

Q ≡ ∀j∀k(0 ≤ j ≤ k < n→ a[j] ≤ a[k])

Similarly, after the execution of the program, our requirement was that
the left deck would contain all array elements that precede m and the
remaining part of the array would contain all array elements which do not
precede m. Also, both l and r must be within the range 0 to n. Thus the
required postcondition is

R ≡ 0 ≤ l ≤ n ∧ ∀j(0 ≤ j < l→ a[j] < m) ∧ ∀j(l ≤ j < n→ a[j] ≥ m)

Note that we do not need both l and r to formalize our requirement. You
can try to write the postcondition using only r, and then go for a proof of
total correctness of the above program.

For the partial correctness of Binary Search, we must find an invariant
for the while loop. The invariant, in general, relates the program variables.
It looks as though it would be enough to have such a relation between
the variables l and r only, since the decks are completely determined by
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the ordered pair (l, r). The important property of l is that all the array
elements a[0], · · · , a[l − 1] precede m. Similarly, the property of r is that
none of the array elements a[r], · · · , a[n − 1] precedes m. Moreover, l ≤ r.
Thus, we try an invariant in the form

I(l, r) ≡ 0 ≤ l ≤ r ≤ n ∧ ∀j(0 ≤ j < l→ a[j] < m)

∧ ∀j(r ≤ j < n→ a[j] ≥ m)

For total correctness, we also need a variant, whose value may decrease as
the body of the loop is executed ‘once more’. In the beginning, the middle
deck is the full array and after the execution, we expect it to become empty.
Since the number of array elements of the middle deck is r − l, this is a
natural variant. With Q as the precondition, R as the postcondition, I(l, r)
as the invariant of the while loop, and r − l as the variant of the loop, we
have the following proof summary for total correctness:

〈Q 〉
l := 0 ; r := n ;

〈 Invariant: I(l, r) ∧Variant: u− l ≤ E0 〉
while l < r {
〈 I(l, r) ∧ l < u 〉
i := (l + r − 1)/2 ;

〈 I(l, r) ∧ l ≤ i < u 〉
if a[i] < m then {
〈 I(l, r) ∧ l ≤ i < r ∧ a[i] < m 〉
l := i+ 1 〈 I(l, r) 〉 }
else { 〈 I(l, r) ∧ l ≤ i < u ∧ a[i] ≥ m 〉 r := i} 〈 I(l, r) 〉 }

〈 I(l, r) ∧ l ≥ u 〉
〈R 〉

Exercise 5.9 Develop a complete Hoare proof from the above summary
for the binary search.

5.7 The Predicate Transformer wp

The Hoare logics are not the only way a program may be verified for total
correctness. In this section we will describe another way to go for correct-
ness proofs; historically this came prior to Hoare logics. The idea is that
programming is a goal-oriented activity. That is, given inputs, we want
to develop a program which would give us the required output. However,
when we prove a program correct, we go backward. We ask: if we require
certain output, with the given program, what should have been the input?
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We have seen how the assignment axiom works well, when seen this
way. Now we can extend the approach to encompass all types of state-
ments. Think of RI, the rule of implication. Suppose that we want to
prove the correctness of the specification 〈Q 〉S 〈R 〉 . RI states that if we
have a formula P such that both Q |= P and |=t 〈P 〉S 〈R 〉 hold, then
|=t 〈Q 〉S 〈R 〉 holds. Looking at computing a required P for given S and
R poses the problem of finding the weakest P. That means, if we have a
program S and a required postcondition R, the formula P must be such
that the specification 〈P 〉S 〈R 〉 must be totally correct. Moreover, if
Q is any formula such that 〈Q 〉S 〈R 〉 is correct, then Q must entail P.
That is, P is the weakest of all preconditions of the program S with respect
to the postcondition R. Let us use the notation wp (S,R) for the weakest
precondition of a program S with respect to the postcondition R.

EXAMPLE 5.12 What is wp (t := x, t = 2)?
Solution The statement t := x assigns the value of x to t. It is required
that after this execution, the formula t = 2 must be satisfied. This can
only happen provided x has the value 2 before execution. Hence

wp (t := x, t = 2) ≡ (x = 2).

Here is a formal definition of the weakest precondition.

Definition 5.1 Let S be a program (a statement) and R be any FL-
formula. Then the weakest precondition of S with respect to R, denoted
by wp (S,R), is an FL-formula which describes the set of all initial states
such that the execution of S in any one (or more) of the states is guaranteed
to terminate in a state satisfying R.

In this language of ‘a formula describing a set of states’, the formula >
describes the set of all states, as any state satisfies >. Similarly, ⊥ describes
the empty set of states, or no states, as no state satisfies the formula ⊥.

Exercise 5.10 Prove: if Q ≡ R, then wp (S,Q) ≡ wp (S,R).
From the definition of the weakest precondition, it is obvious that wp

satisfies two properties. First, wp (S,Q) is such a precondition that the
specification 〈wp (S,R) 〉S 〈R 〉 is totally correct. Second, if 〈Q 〉S 〈R 〉
is totally correct, then Q must entail wp (S,R). That is,

|=t 〈wp (S,R) 〉S 〈R 〉 (1)

If |=t 〈Q 〉S 〈R 〉, then Q |= wp (S,R). (2)

These two properties are, in fact, the defining properties of wp ; together
they define what a wp is. Further, from the assignment rule (see also
Example 5.12), it is obvious that

wp (x := E,R) ≡ R[x/E] (3)

for any expression E, matching types with x. The rule of implication takes
the form
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If wp (S,R) ≡ Q and P |= Q, then |=t 〈P 〉S 〈R 〉 (4)

Similarly, the rule of sequential execution appears as

wp (S1 ; S2, Q) ≡ wp (S1, wp (S2, Q)) (5)

Imagine pushing the precondition up through the program for obtaining
the required weakest precondition.

Exercise 5.11 Show the following equivalences:

wp (S1 ; S2 ; S3, Q) ≡ wp (S1 ; S2, wp (S3, Q)) ≡ wp (S1, wp (S2 ; S3, Q)).

For the conditional statement if B then {S1} else {S2}, we can iden-
tify two possibilities: (a) executing S1, and (b) executing S2. The require-
ments for (a) is that B must be satisfied. Now, if the postcondition of
the execution of S is R, in this case, it is also the postcondition of S1,
and then wp (S1, R) must have been satisfied before the execution. But we
know that B has been satisfied, i.e., B must guarantee the termination of
S1 in a state that satisfies R. Referring to (4), we see that the requirement
is B |= wp (S1, R).

Similarly, if S2 has been executed, then under the satisfiability of ¬B,
wp (S2, R) is satisfied so that the postcondition R is guaranteed to be
satisfied after the execution. That is, we must have ¬B |= wp (S2, R).

These two observations together give us (see also RC)

wp ( if B then {S1} else {S2}, R)

≡ (B → wp (S1, R)) ∧ (¬B → wp (S2, R)) (6)

Since (X → Y ) ∧ (¬X → Z) ≡ (X ∧ Y ) ∨ (¬X ∧ Z) (Show it.), the
equivalence in (6) can be rewritten as

wp ( if B then {S1} else {S2}, R)

≡ (B ∧ wp (S1, R)) ∨ (¬B ∧ wp (S2, R)) (7)

Alternatively, if you accept the Hoare logic rule for the conditional, RC,
for total correctness, by using the properties of wp , you can derive (6) and
then (7). See the following theorem in that light.

Theorem 5.1 The formula P ≡ (B → wp (S1, R)) ∧ (¬B → wp (S2, R))
satisfies the following properties:

(a) |=t 〈P 〉 if B then {S1} else {S2} 〈R 〉
(b) if |=t 〈Q 〉 if B then {S1} else {S2} 〈R 〉, then Q |= P

Proof Let P,Q, S1, S2, R be as given in the above statement. Then,

P ∧B |= wp (S1, R)

(Prove it!) By the definition of wp , we have |=t 〈P ∧B 〉S1 〈R 〉 . Similarly,
P ∧ ¬B |= wp (S2, R). (Prove it!) Now the rule RC proves (a).

For (b), suppose that |=t 〈Q 〉 if B then {S1} else {S2} 〈R 〉 . Then
|=t 〈Q∧B 〉S1 〈R 〉, and also |=t 〈Q∧¬B 〉S2 〈R 〉, as both S1, S2 always
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terminate. By the definition of wp , we obtain

Q ∧B |= wp (S1, Q) and Q ∧ ¬B |= wp (S2, Q).

But these are respectively equivalent to

Q |= (B → wp (S1, Q)) and Q |= (¬B → wp (S2, Q)).

Therefore, Q |= (B → wp (S1, Q)) ∧ (¬B → wp (S2, Q)).

Since properties (a) and (b) in Theorem 5.1 are the defining properties
of wp , this can be used as an alternative to deriving (6).

Exercise 5.12 We had given an argument to show (6) and then used an
equivalence for deriving (7). Give a direct argument to show (7).

The following theorem states some logical properties of the predicate
transformer wp .

Theorem 5.2 The predicate transformer wp has the following properties :

(a) Excluded Miracle : wp (S,⊥) ≡ ⊥.

(b) Termination : wp (S,>) ≡ ‘S terminates’.

(c) ∧-distributivity : wp (S,Q ∧R) ≡ wp (S,Q) ∧ wp (S,R).

(d) ∨-distributivity : wp (S,Q∧R) ≡ wp (S,Q)∨wp (S,R), provided
that S is a deterministic program.

(e) ¬-distributivity : wp (S,¬Q) |= ¬wp (S,Q).

(f) →-distributivity : wp (S,Q→ R) |= wp (S,Q)→ wp (S,R).

(g) |=-distributivity : If Q |= R, then wp (S,Q) |= wp (S,R).

Proof (a) The postcondition ⊥ describes no states. Thus the precondi-
tion wp (S,⊥) describes the states which guarantee, after S terminates, no
states. If s is a state that satisfies wp (S,⊥), then after termination of S,
the resulting state is a ‘no state’. This is impossible. Hence there cannot
be any such state s satisfying wp (S,⊥), which means that wp (S,⊥) ≡ ⊥.
This is called the law of the excluded miracle, since it would be a miracle
if there is a state which would be satisfied before S is executed, and after
the execution, S would terminate in no states.
(b) wp (s,>) is a formula that describes all states s such that after termi-
nation of S, the resulting state, say s̄, satisfies >. All states s̄ vacuously
satisfy >, provided S terminates. Hence wp (S,>) is simply a formula that
guarantees termination of S. Note that wp (S,>) need not be equivalent to
>; a counter example would be a program S which does not terminate.
(c) wp (S,Q∧R) describes the set of all states s that guarantee the termi-
nation of S in a state satisfying both Q and R. Any such state s guarantees
termination of S in a state satisfying Q. Hence, wp (S,Q∧R) |= wp (S,Q).
Similarly, wp (S,Q ∧R) |= wp (S,R). Together they give

wp (S,Q ∧R) |= wp (S,Q) ∧ wp (S,R).
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Conversely, let s be a state satisfying wp (S,Q)∧wp (S,R). Then s is a
state that guarantees termination of S resulting in a state s̄ that satisfies
Q, and also R. That is,

wp (S,Q) ∧ wp (S,R) |= wp (S,Q ∧R).

(d) Let s be a state that satisfies at least one of wp (S,Q) or wp (S,R).
Then, after S terminates, the resulting state satisfies at least one of Q or
R. That is, wp (S,Q) ∨ wp (S,R) |= wp (S,Q ∨R).

Conversely, suppose that S is a deterministic program. This means
that if s is a state in which execution of S is initiated, then, upon termi-
nation of S, the resulting state is s′ is unique. In contrast, one execution
of a non-deterministic program can lead to one state, and another exe-
cution may drive the same initial state to another state. Now, suppose
that s is a state that satisfies wp (S,Q ∨ R) before S is executed. After
S terminates, let s′ be the resulting state. Then, s′ satisfies Q ∨ R, i.e.,
s′ satisfies Q or s′ satisfies R. If s′ satisfies Q, then by the definition of
wp , s satisfies wp (S,Q). On the other hand, if s′ satisfies R, then s must
satisfy wp (S,R). Hence s satisfies wp (S,Q) ∨ wp (S,R). This shows that
wp (S,Q ∨R) |= wp (S,Q) ∨ wp (S,R).
(e) wp (S,¬Q) ∧ wp (S,Q) ≡ wp (S,¬Q ∧ Q) ≡ wp (S,⊥) ≡ ⊥, using (a)
and (c). Thus, wp (S,¬Q)∧wp (S,Q) |= ⊥. By RAA and double negation,
we have wp (S,¬Q) |= ¬wp (S,Q).

(f) wp (S,Q→ R)→ (wp (S,Q)→ wp (S,R))

≡ (wp (S,Q→ R) ∧ wp (S,Q))→ wp (S,R)

≡ wp (S, (Q→ R) ∧Q)→ wp (S,R), by (c)

≡ wp (S,Q ∧R)→ wp (S,R), as (Q→ R) ∧Q ≡ Q ∧R
≡ wp (S,Q) ∧ wp (S,R)→ wp (S,R), by (c) again

≡ >
Thus, wp (S,Q→ R) |= wp (S,Q)→ wp (S,R).

(g) Let Q |= R. Then Q ∧R ≡ Q. And, wp (S,Q ∧R) ≡ wp (S,Q) or with
(c), wp (S,Q) ∧ wp (S,R) ≡ wp (S,Q). Thus, wp (S,Q) |= wp (S,R).

Note that the three laws mentioned in (e)-(g) in Theorem 5.2 are one
sided distributivity laws.

EXAMPLE 5.13 The converse of the ‘one sided’ laws in Theorem 5.2
are not valid for arbitrary programs and arbitrary postconditions Q. For
this, show that

(a) ¬wp (S,Q) 6|= wp (S,¬Q)

(b) wp (S,Q)→ wp (S,R) 6|= wp (S,Q→ R)

(c) wp (S,Q) |= wp (S,R) does not imply Q |= R.
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Solution (a) Let S be a program that does not terminate. We see that

wp (S,¬Q) ≡ ¬wp (S,>) ≡ ¬> ≡ ⊥, and

wp (S,¬Q) ≡ wp (S,>) ≡ ‘S terminates’.

Now, if ¬wp (S,Q) |= wp (S,¬Q), then we would have > |= ‘S terminates’,
contradicting the assumption that S does not terminate.
(b) We see that

wp (S,Q)→ wp (S,R)

≡ wp (S,⊥)→ wp (S,>)

≡ ⊥ → ‘S terminates’

≡ >

Also, wp (S,Q→ R) ≡ wp (S,⊥ → >) ≡ wp (S,>) ≡ ‘S terminates’.
Now, if wp (S,Q) → wp (S,R) |= wp (S,Q → R), then as in (a),

we would have ‘S always terminates’, which does not hold for a non-
terminating program.
(c) Let S be a non-terminating program and Q ≡ >, R ≡ ⊥. Now,

wp (S,>) ≡ ‘S terminates’.

Since S does not terminate, ‘S terminates’ |= ⊥. But,

wp (S,R) ≡ wp (S,⊥) ≡ ⊥.
Hence, ‘S terminates’ |= wp (S,R). That is, the consequence

wp (S,Q) |= wp (S,R)

is valid. But, Q |= R does not hold since > 6|= ⊥.

Exercise 5.13 Following the lines of proof in Theorem 5.2 (e-g), try
proofs for their converse statements. See where the proofs break down.

The one left out is the while statement. We must see how wp works on
that. Let W be the while statement while B{S}. Let R be a postcondition
for W. We want to compute wp (W,R). We, of course, do not know it
beforehand, nor do we know whether W terminates. We want to guarantee
termination of W, i.e., the loop is executed a finite number of times. Now,
if the body S of the loop is never executed, then, before the execution of W
is initiated, we have a state s that satisfies ¬B. After this execution of W
(by skipping its body), the postcondition R must be satisfied by the same
state s. Thus the required precondition is ¬B ∧R.

Denote by Pm the weakest precondition of W with respect to the post-
condition R, where the body S of W is executed exactly m times. Then,
the above discussion boils down to the equivalence

P0 ≡ ¬B ∧R.
What happens if S is executed exactly once? In that case, S is executed
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once and then the guard B is not satisfied, and the body S is skipped.
That is, the postcondition for the first execution is P0. Moreover, B had
been satisfied for initiating the first execution. Thus, the required weakest
precondition is

P1 ≡ B ∧ wp (S, P0)

In general, you can think of the repeated execution of S, as a sequence of
statements, and then push the postcondition up to the precondition where
the 0-th execution of S is done. Suppose that the k-th execution of S is
over, and then the (k+1)-th execution is initiated. Then B must have been
satisfied by any resulting state of the k-th execution. Further, such a state
must also have satisfied the weakest precondition for the k-th execution.
Hence,

Pk+1 ≡ B ∧ wp (S, Pk)

Since we require W to terminate, the repeated execution must stop some-
where. That is, there must exist a natural number, say, n such that the
body S of W is executed exactly n times. In our notation, it is simple to
express since this means that for some k, Pk holds. This yields, for m ≥ 0,

P0 ≡ ¬B ∧R, Pm+1 ≡ B ∧ wp (S, Pm),

wp ( while B{S}, R) ≡ ∃k(k ∈ N ∧ Pk) (8)

Though this is enough for capturing the weakest precondition, we must
also look at the invariants of a while loop. Recollect that I is an invariant
of W means that if S is executed with the precondition I and S terminates,
then I is also a guaranteed postcondition. Now, with I as a postcondition,
we have wp (S, I) as the weakest precondition. Thus, a state that satisfies
I,B, and ‘termination of S’, must also satisfy wp (S, I). This means that
an invariant I of a while statement: while B{S}, satisfies the property

I ∧B ∧ wp (S,>) |= wp (S, I) (9)

Exercise 5.14 Prove the Fundamental Invariance Theorem : Let I be an
invariant of while B{S}. Then

I ∧ wp ( while B{S},>) |= wp ( while B{S}, I ∧ ¬B).

[Hint : Define predicates P0(Q) ≡ Q ∧ ¬B,Pk(Q) ≡ B ∧ wp (S, Pk−1(Q)).
Prove, by induction, that I ∧ Pk(>) ≡ Pk(I ∧ ¬B).]
Exercise 5.15 Relate the result in Exercise 5.14 to the Hoare logic rule
RW. This will tell you why the result is fundamental.

We use the properties (1)-(9) of the predicate transformer wp for prov-
ing total correctness of programs in CL.

EXAMPLE 5.14 Use wp to show that (compare with Example 5.5)

|=t 〈 1 + a+ a2 = 0 ∧ an = b+ c ∗ a 〉
n := n+ 1 ; m := b+ c ; b := c ; c := m 〈 an = b+ c ∗ a 〉
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Solution We simply compute wp from the postcondition and then see
that the precondition actually entails the wp . Then,

wp (n := n+ 1 ; m := b+ c ; b := c ; c := m,an = b+ c ∗ a)

≡ wp (n := n+1, wp (m := b+c, wp (b := c, wp (c := m,an+b+c∗a)))),
using (5)

≡ wp (n := n+ 1, wp (m := b+ c, wp (b := c, an = b+m ∗ a))), by (3)

≡ wp (n := n+ 1, wp (m := b+ c, an = c+m ∗ a))

≡ wp (n := n+ 1, an = c+ (b+ c) ∗ a)

≡ an+1 = c+ (b+ c) ∗ a
As in Example 5.5, 1 +a−a2 = 0 ∧ an = b+ c∗a |= an+1 = c+ (b+ c)∗a.
By (4), we get the required total correctness.

EXAMPLE 5.15 Show by computing the weakest precondition that

|=t 〈m = i ∗ j + k + 1 〉
if j := k + 1 then {i := i+ 1 ; k := 0} else {k := k + 1}
〈m = i ∗ j + k 〉

Solution Denote the required wp by Q. Then, Q is equivalent to

wp ( if j := k + 1 then {i := i+ 1 ; k := 0} else {k := k + 1},
m = i ∗ j + k)

≡ ((j = k + 1)→ wp (i := i+ 1 ; k := 0,m = i ∗ j + k)

∧ ((j 6= k + 1)→ wp (k := k + 1,m = i ∗ j + k))

But,
wp (i := i+ 1 ; k := 0,m = i ∗ j + k)

≡ wp (i := i+ 1, wp (k := 0,m = i ∗ j + k))

≡ wp (i := i+ 1,m = i ∗ j)
≡ m = (i+ 1) ∗ j

And,

wp (k := k + 1,m = i ∗ j + k) ≡ m = i ∗ j + k + 1

Hence,

Q ≡ ((j = k+1)→ (m = (i+1)∗j))∧((j 6= k+1)→ (m = i∗j+k+1))

≡ ((j = k+ 1)∧ (m = (i+ 1) ∗ j))∨ ((j 6= k+ 1)∧ (m = i ∗ j+ k+ 1))

≡ ((j = k + 1) ∧ (m = i ∗ j + j)) ∨ ((j 6= k + 1) ∧ (m = i ∗ j + k + 1))

≡ ((j = k+1)∧ (m = i∗ j+k+1))∨ ((j 6= k+1)∧ (m = i∗ j+k+1))

≡ ((j = k + 1) ∨ (j 6= k + 1)) ∧ (m = i ∗ j + k + 1)

≡ > ∧ (m = i ∗ j + k + 1) ≡ m = i ∗ j + k + 1

The total correctness now follows from (4).
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EXAMPLE 5.16 By computing wp show that

|=t 〈 ∃k(k ∈ N ∧ i = n− 2 ∗ k ∧ s = 0)

∨ ∃k(k ∈ N ∧ i = n− 2 ∗ k − 1 ∧ s = k) 〉
while i 6= n{k := −k ; s := s+ k ; i := i+ 1} 〈 s = 0 〉 .

Solution Here the guard is B ≡ i 6= n; the postcondition is R ≡ s = 0,
and the body of the while statement S is k := −k ; s := s+ k ; i := i+ 1.
Now,

P0 ≡ ¬B ∧R ≡ i = n ∧ s = 0

P1 ≡ B ∧ wp (S, P0) ≡ i 6= n ∧ wp (S, i = n ∧ s = 0)

≡ i 6= n ∧ wp (S, i = n) ∧ wp (S, s = 0)

But,

wp (S, i = n)

≡ wp (k := −k,wp (s := s+ k′wp (i := i+ 1, i = n)))

≡ wp (k := −k,wp (s := s+ k, i+ 1 = n))

≡ wp (k := −k, i+ 1 = n) ≡ i+ 1 = n

And,

wp (S, s = 0) ≡ wp (k := −k,wp (s := s+ k,wp (i := i+ 1, s = 0)))

≡ wp (k := −k,wp (s := s+ k, s = 0))

≡ wp (k := −k, s+ k = 0) ≡ s− k = 0

Therefore,

P1 ≡ i 6= n ∧ i+ 1 = n ∧ s− k = 0 ≡ i+ 1 = n ∧ s− k = 0,

P2 ≡ i 6= n ∧ wp (S, i+ 1 = n) ∧ wp (S, s− k = 0) ≡ i+ 2 = n ∧ s = 0.

If you look at the job the loop does, the above formulas suggest that

P2k ≡ i = n− 2 ∗ k ∧ s = 0, P2k+1 ≡ i = n− 2 ∗ k − 1 ∧ s = k (10)

Now you see that the responsibility of discovering an invariant for the Hoare
logic proof of a while statement takes the form of discovering a formula for
Pk. Moreover, you will have to use induction to show that your conjecture
on the form of Pk is, indeed, correct. This involves ingenuity, whereas
computation of wp for other statements is quite mechanical. Once you
have discovered Pk, your job is almost over. With Pk as mentioned,

wp ( while i 6= n{k := −k ; s := s+ k ; i := i+ 1}, s = 0)

≡ ∃k(k ∈ N ∧ i = n− 2 ∗ k ∧ s = 0)

∨ ∃k(k ∈ N ∧ i = n− 2 ∗ k − 1 ∧ s = k)

Exercise 5.16 Prove that Pk in Example 5.16 satisfies (10).

Exercise 5.17 Since a while statement W : while B{S} terminates in
a state satisfying ¬B, show that wp (W,>) ≡ wp (W,¬B).
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EXAMPLE 5.17 Compute wp ( while n 6= m{S}R), where

S is i := i+ 2 ; s := s+ n ∗ i+ k ; k := k + i ; n := n+ 1, and

R ≡ s = m3 ∧ i = 2 ∗m ∧ k = m ∗ (m+ 1) + 1.

Solution In the solution below, many steps are omitted, but you should
be able to fill in those so that you construct a full computation of wp .

P0 ≡ n = m ∧ s = m3 ∧ i = 2 ∗m ∧ k = m ∗ (m+ 1) + 1

≡ n = m ∧ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1

And

wp (S, s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1)

≡ wp (i := i+ 2 ; s := s+ n ∗ i+ k ; k := k + i, s = (n+ 1)3

∧ i = 2 ∗ (n+ 1) ∧ k = (n+ 1)8(n+ 2) + 1)

≡ s = n3 ∧ i+ 2 = 2 ∗ (n+ 1) ∧ k = n ∗ (n+ 1) + 1

≡ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1

Can you see that it is an invariant of the while statement? Now,

P1 ≡ n 6= m ∧ wp (S, P0)

≡ n 6= m ∧ n+ 1 = m ∧ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1

By induction, we obtain

Pk ≡ n 6= m ∧ n+ k = m ∧ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1

≡ n = m− k ∧ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1

Thus,

wp (W,R) ≡ n ≤ m ∧ s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1.

Now that you know what program verification is, you can think of some
generalities. You are presented with an informal description D of a problem
in an application domain. Your aim is to develop a program to solve the
problem, and then verify that the program, indeed, does the job. As a
first step, you represent D into a formula XD in some logic. We have
chosen here the first order logic FL. For some problem domains, FL may
not be that appropriate and you may have to use other logics for problem
representation. (You will learn some more logics in Chapter 6.)

The next step is to write a program P which would realize the formula
XD, i.e., it should meet the specifications as declared by XD. This is the
phase we have not discussed at all. We have only given some hints as
to how to program in the core language CL. ‘How to program’ is an art,
and it must be mastered thoroughly. It would be nice if certain principles
are followed, which we have not discussed. You will find some pointers
mentioned in the summary to this chapter. Moreover, programs in CL
may not be acceptable to your customers. So, you must be able to carry
out similar ‘principle following’ activity in any language, which might be
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offered in your company environment, or which might be required by your
customer.

The last step is to prove that the program P meets the requirements; it
satisfies the specification XD. Ideally, total correctness of the specification
must be shown. This last issue has only been dealt with in this chapter,
an that too, only partly. You must see how the art of proving programs
correct helps you to specify and develop programs. This clearly involves
many rounds of discussion with your customer, as the informal description
D might have inaccuracy, which you cannot certainly include in your formal
description XD.

A word of caution: our definitions of |=p and |=t are semantic, in the
sense that for a specification Γ we write |=pΓ or |=tΓ, according as some-
thing happens for the initial state and the final state. However, the proof
rules of Hoare logic or of wp are syntactic. They are syntactic, in the sense
that once you accept to follow the rules, you have no need to go back to
the states for constructing a proof of correctness of Γ. A proof then shows
that the specification Γ is provable (with partial or total correctness). So,
we must have encoded these provabilities by some different symbols, say,
`p or `t accordingly. Then, it is our responsibility to show adequacy, i.e.,
we must show that the metastatements ‘`p iff |=p’ and ‘`t iff |=t’ hold.
This has not been attempted here. Try it!

SUMMARY

In this chapter you have learnt to argue about correctness of programs.
Programs are written to get some job done. In conventional programming
languages such as Basic, Fortran Pascal, or C, you just write how to get
the job done. These programs contain only one part of the whole work of
program development; it is the ‘how’ part. They are silent about what is
required to be done. Neither they say anything about why it is correct to do
the job that way. In this chapter we have tried to use logic for developing a
program including all the three aspects of what, how and why of a program.

For an easy presentation, we have defined the core language CL. It
has all the basic features of a programming language such as assignment
statement, sequential execution, conditional statement, and the while state-
ment. Since our aim has been to integrate all the three aspects of what,
how and why, we have introduced the notion of a program specification. A
specification addresses the what of a program by way of writing the ‘what
is required of a program’ in terms of a precondition and a postcondition.
The program itself is written in between them and it codes ‘how the job is
done’.

In order to show that the program, indeed, does the required job, the
specification is to be proved correct. You have learnt how to prove partial
correctness of a program by developing the Hoare logic for CL. In partial



274 Program Verification

correctness, the crucial assumption was that the program always termi-
nates. You have also learnt how to extend the Hoare logic to include a
proof of termination. This resulted in the rules for total correctness. The
proof summary so developed combines all the three aspects of a program,
where you do not need extra documentation. Finally, you have learnt how
to use the weakest precondition of a program with respect to a given post-
condition in proving the total correctness of programs.

This chapter is only a short note on program verification focussing
rather on a useful application of logic in computer science. The follow-
ing bibliographic hints will be helpful for pursuing your interest in this
area.

The presentation of the topics in this chapter is largely influenced by the
works of C. A. R. Hoare [38], E. W. Dijkstra [10, 11], D. Gries [33, 34], and
R. C. Backhouse [3]. The motivating example of the string matching prob-
lem is taken from [3]. For more details on non-deterministic executions, see
[10]. The ideas developed here can be used for program constructions also;
the details can be found in [3, 33]. You will find plenty of educative and
entertaining examples and exercises in these texts. Other recommended
texts are [2, 24, 37, 42, 60], where you would find a relatively complete ex-
position of program verification including extended features such as writing
to arrays, array cell aliasing, procedure calls and parallelism. For a sys-
tematic extension of the core language to include other advanced features
and then their verification, consult [64, 76]. For verification of functional
programming languages, you may start with [78]. For the freely available
functional programming language ML, [54] is a good text. You can also
explore the web resources for newer presentations of the subject. The jour-
nal Science of Computer Programming is a good source for interesting new
problems and their algorithmic solutions. But, before you go on a hunt for
material, attempt the following problems.

PROBLEMS

1. When does if C then {S1} else {S2} fail to terminate?

2. In many languages a for-loop is used instead of a while loop. For
example, to sum the elements of an array a, whose elements are denoted
by a[i], and having 100 elements, you may write the following program:

s := 0 ; for(i = 0, i ≤ 100, i := i+ 1){s := s+ a[i]}

The program first initializes s to 0, then starts the for-loop. In executing
the for-loop, it first initializes i to 0, then executes its body s := s + a[i],
and then increments i to i + 1. It continues doing this repeatedly till the
guard i ≤ 100 holds, and stops doing it when i becomes greater than 100.
How do you write a program in CL to implement the for-loop? Try for the
more general for-loop: for(S1, S2, S3){S4}.
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3. A repeat until loop looks like: repeat{S1}untilS2. Execution of such
a loop means:

(a) S1 is executed in the current state,
(b) S2 is evaluated in the resulting state,
(c) if S2 is false, the program resumes with (a) and continues, otherwise,
the program terminates.

Define this loop in CL. Can you define this loop through for-loop?

4. Determine the preconditions Q and the postconditions R such that the
following hold:

(a) |=p 〈Q 〉 while>{i := 0} 〈R 〉
(b) |=t 〈Q 〉 while>{i := 0} 〈R 〉

5. Check whether the following specifications are partially and/or totally
correct. What are the programs supposed to compute?

(a) 〈> 〉x := m+ 1 ; if x = 1 then {n := 1} else {n := x}
〈n := m+ 1 〉

(b) 〈m ≥ 0 〉n := 1 ; k := 0 ; while k 6= m{k := k + 1 ; n := n ∗ k}
〈n := m! 〉

(c) 〈> 〉n := 1 ; k := 0 ; while k 6= m{k := k+1 ; n := n∗k} 〈n := m! 〉
(d) 〈m ≥ 0 〉n := 1 ; whilem 6= 0{n := n∗m ; m := m−1} 〈n := m! 〉
(e) 〈m = m0 ∧m ≥ 0 〉n := 1 ;

whilem 6= 0{n := n ∗m ; m := m− 1} 〈n := m0! 〉
(f) 〈m = m0 ∧m ≥ 0 〉 k := 0 ;

whilem > 0{k := k +m ; m := m− 1} 〈 k = m ∗ (m+ 1)/2 〉

6. Which of the following are assignment axioms?

(a) |=p 〈 5 = 5 〉m := 5 〈m = 5 〉
(b) |=t 〈 5 = 6 〉m := 5 〈m = 6 〉
(c) |=p 〈n = 5 〉m := 5 〈m = n 〉
(d) |=t 〈 5 > 3 〉m := 5 〈m > 3 〉
(e) |=t 〈m+ 1 = n 〉m := m+ 1 〈m = n 〉
(f) |=p 〈m+ 1 > 0 ∧ n > 0 〉m := m+ 1 〈m > 0 ∧ n > 0 〉

7. Develop proofs summaries and then the complete Hoare proofs of partial
and total correctness (if possible) for the following specifications:

(a) 〈m > 0 〉n := m+ 1 〈n > 1 〉
(b) 〈> 〉n := m ; n := 2 ∗m+ n 〈n = 3 ∗ x 〉
(c) 〈> 〉 if n < m then {k := n} else {k := m} 〈 k = min (m,n) 〉
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(d) 〈m ≥ 0 〉x := m ; n := 0 ;

while x 6= 0{n := n+ 1 ; x := x− 1} 〈m := n 〉
(e) 〈> 〉x := m ; n := 0 ;

while x 6= 0{n := n+ 1 ; x := x− 1} 〈m := n 〉
(f) 〈n ≥ 0 〉x := 0 ; k := 0 ;

while x 6= n{k := m+ k ; x := x+ 1} 〈 k := m ∗ n 〉
(g) 〈n = n0 ∧ n ≥ 0 〉 k := 0 ;

while n 6= 0{k := m+ k ; n := n− 1} 〈 k := m ∗ n0 〉
(h) 〈m ≥ 0 〉n := 0 ; while n 6= m{n := n+ 1} 〈m = n 〉
(i) 〈n 6= 0 〉 r := m ; d := 0 ;

while r ≥ n{r := r − n ; d := d+ 1} 〈 (m := d ∗ n+ r) ∧ (r < n) 〉
(j) 〈m ≥ 0 〉x := m ; n := 1 ;

while x ≥ 0{n := x ∗ n ; x := x− 1} 〈n = m! 〉

8. Write programs P so that the following specifications are totally correct;
also prove the correctness.

(a) 〈> 〉P 〈n = m+ 6 〉
(b) 〈> 〉P 〈 k < m+ n+ 0.5 ∗ k 〉
(c) 〈> 〉P 〈 k = max (l,m, n) 〉
(d) 〈> 〉P 〈 ((x = 4)→ (y = 3)) ∧ ((x = 7)→ (y = 5)) 〉

9. The minimal sum section [41]: Let a[1], . . . , a[n] be the elements of an
integer array a. A section of a is a continuous piece a[i], a[i + 1], . . . , a[j],
where 1 ≤ i ≤ j ≤ n. A minimal sum section is a section a[i], . . . , a[j] such
that the sum Sij = a[i] + a[i + 1] + · · · + a[j] is minimal over all sections.
Note that a is not necessarily ordered. To write a program which computes
the minimal sum section of a given array, we store two values: the minimal
sum seen so far (s) and the minimal sum seen so far of all the sections
which end at the current element of the array (t). We also assume that
we know how to compute min (x, y). Prove the partial correctness of the
following program that does the job with precondition > and postcondition
∀i∀j(i ≤ j ≤ n→ s ≤ Sij):

k := 2 ; t := a[1] ; s := a[1] ;

while k 6= n+ 1{t := min (t+ a[k], a[k]) ; s := min (s, t) ; k := k + 1}

[Hint : Use the invariant: ∀i∀j(i ≤ j < k → s ≤ Sij) ∧ ∀i(i < k → t ≤ Sij)
and develop a proof summary.]

10. Give Hoare proofs and also wp -proofs of correctness for the following
specifications, prefixing to them one of |=p or |=t as appropriate:
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(a) 〈m = nk 〉 k := k + 1 ; m := m ∗ n 〈m = nk 〉
(b) 〈n = m2 ∧ s = m ∗ (m+ 1) ∗ (2 ∗m+ 1)/6 〉

m := m+ 1 ; n = n+ 2 ∗m− 1 ; s := n+ s

〈n = m2 ∧ s = m ∗ (m+ 1) ∗ (2 ∗m+ 1)/6 〉
(c) 〈 j = mn ∧ s = (mn+1 − 1)/(m− 1) 〉

j := j ∗m ; s := s+ j ; n := n+ 1

〈 j = mn ∧ s = (mn+1 − 1)/(m− 1) 〉
(d) 〈 s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1 〉

i := i+ 2 ; s := s+ n ∗ i+ k ; k := k + i ; n := n+ 1

〈 s = n3 ∧ i = 2 ∗ n ∧ k = n ∗ (n+ 1) + 1 〉
(e) 〈 k2 = k + 1 ∧ km = a ∗ k + b 〉

m := m+ 1 ; t := a+ b ; b := a ; a := t

〈 km = a ∗ k + b 〉
(f) 〈 0 ≤ s < n 〉

q := s/(n− 1) ; p := q + 1 ; t := s+ 1− q ∗ (n− 1)

〈 1 ≤ t ≤ n ∧ q ≥ 0 ∧ p = q + 1 ∧ s = p ∗ (t− 1) + q ∗ (n− t) 〉
(g) Let swap(x, y) be a procedure which interchanges the values of x
and y. Then wp (swap(x, y), R) ≡ R[x/y, y/x]. Recall that the substitu-
tion [x/y, y/x] is not equal to [x/y][y/x]. Develop a Hoare proof for

〈 ((y ≥ z)→ (y ≥ x)) ∧ ((y < z)→ (z ≥ x)) 〉
if y ≥ z then {swap(x, y)} else {swap(x, z)}
〈 (x ≥ y) ∧ (x ≥ z) 〉

(h) 〈> 〉 if i < j then {swap(i, j)} else {i := i} ;

if j < k then {swap(j, k)} else {j := j} ;

if i < j then {swap(i, j)} else {i := i} 〈 i ≥ j ≥ k 〉
(i) With P as (odd(p)→ (x = y = 1)) ∧ (¬odd(p)→ (x = 0 ∨ y = 0)),

〈 p = m ∗ n 〉 if odd(m) then {x := 1} else {x := 0} ;

if odd(n) then {y := 1} else {y := 0} 〈P 〉
(j) With P as in (i),

〈P 〉 if odd(p) then {z := 1} else {z := 0} 〈 z = x ∗ y 〉
(k) Use (i) and (j) to show that

〈 p = m ∗ n 〉 if odd(m) then {x := 1} else {x := 0} ;

if odd(n) then {y := 1} else {y := 0} ;

if odd(p) then {z := 1} else {z := 0} 〈 z = x ∗ y 〉
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(l) 〈 ∃k(k ≥ 0∧i = n−2∗k∧s = 0)∨∃k(k ≥ 0∧i = n−2∗k−1∧s = k) 〉
while i 6= n{k := −k ; s := s+ k ; i := i+ 1} 〈 s = 0 〉

(m) 〈 c = x ∗ y 〉 while ¬odd(x){y := 2 ∗ y ; x := x/2} 〈 c = x ∗ y 〉
(n) 〈x ≥ 0 ∧ c = x ∗ y 〉 while x 6= 0 {

while ¬odd(x){y := 2 ∗ y ; x := x/2} ; c := c− y ; x := x− 1}
〈 c = x ∗ y 〉

11. Let S be the statement if B then {S1} else {S2}. Suppose that
P ∧ B ∧ wp (S1,>) |= wp (S1, Q) and P ∧ ¬B ∧ wp (S2,>) |= wp (S2, Q).
Show that P ∧ wp (S,>) |= wp (S,Q).

12. Construct a proof summary along with the necessary verification con-
ditions for the following specification:

〈 0 ≤ n 〉 k := n ; y := 1 ; z := x ;

〈 Invariant: I(y, z, k) ≡ y ∗ zk = xn ∧ 0 ≤ k 〉 while 0 6= k{
if odd(k) then {k := k − 1 ; y := y ∗ z} else {k := k}
〈 even(k) ∧ I(y, z, k) 〉 k := k/2 ; z := z2 } 〈 y = xn 〉

13. Let a[i] denote the i-th element of an integer array a. Construct proof
summaries for the following programs that sum up the array elements.

(a) 〈 0 ≤ n 〉 s := 0 ; m := 0 ;

〈 Invariant: s :=
∑m−1

i=0 a[i],Variant: n−m 〉
whilem 6= n{s := s+ a[m] ; m := m+ 1} 〈 s =

∑n−1
i=0 a[i] 〉

(b) 〈 0 ≤ n 〉 s := 0 ; m := n ;

〈 Invariant: s =
∑n−1

i=m a[i],Variant: m 〉
whilem 6= 0{m := m− 1 ; s := s+ a[m]} 〈 s =

∑n−1
i=0 a[i] 〉

14. Construct a proof summary for the following program for evaluating
the power xm for given numbers x and m:

〈 0 ≤ m 〉 k := m ; y := 1 ; 〈 Invariant: y ∗ xk = xm,Variant: k 〉
while k 6= 0{k := k − 1 ; y := y ∗ x} 〈 y = xm 〉

15. Suppose that the binary representation of a natural number m is stored
in an array a. Construct a proof summary for the following algorithm that
computes xm:

〈 0 ≤ m =
∑n−1

i=0 a[i] ∗ 2i 〉
y := 1 ; z := x ; j = 0 ;

〈 Invariant: y ∗ zk = xm ∧ k =
∑n−1

j=i a[i] ∗ 2i,Variant: n− j 〉
while j 6= n{ if a[j] = 1 then {y := y ∗ z} else {y := y}
j := j + 1 ; z = z ∗ z} 〈 y = xm 〉
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16. Construct a proof summary for the following algorithm that evaluates
a polynomial with integer coefficients which are stored in an array a:

〈 0 ≤ n 〉 s := 0 ; k := n ;

〈 Invariant: s ∗ xk =
∑n−1

i=k a[i] ∗ xi,Variant: k 〉
while k 6= 0{k := k − 1 ; s+ s ∗ x+ a[k]} 〈 s =

∑n−1
i=0 a[i] ∗ xi 〉

17. Construct a proof summary for the following specification written for
computing the remainder of dividing p by q in binary arithmetic:

〈 0 ≤ p ∧ 0 < q 〉
r := p ; m := q ;

〈 Invariant: ∃i(i ≥ 0 ∧m = 2i ∗ q),Variant: r −m 〉
while r ≥ m{m := 2 ∗m}
〈 Invariant: 0 ≤ r < m ∧ ∃d(p := q ∗ d+ r)

∧ ∃i(i ≥ 0 ∧m = 2i ∗ q),Variant: m 〉
whilem 6= q{m := m/2 ; if r ≤ m then {r := r −m} else {r := r} }
〈 0 ≤ r < q ∧ ∃d(p = q ∗ d+ r) 〉

18. Let a be an array and you are to search for an occurrence of an item, say,
x in the array. You define a predicate is by is(l, p) ≡ ∃i(l ≤ i < p∧a[i] = x).
Then, you write the following algorithm to do the (linear) search:

〈 0 ≤ n 〉 a[n] := x ; k := 0 ;

〈 Invariant: 0 ≤ k ≤ n∧(is(0, n)↔ is(k, n))∧a[n] = x,Variant: n−k 〉
while a[k] 6= x{k := k + 1}
〈 a[k] = x ∧ 0 ≤ k ≤ n ∧ (is(0, n)↔ k < n) 〉

Explain what exactly the algorithm does and then develop a proof sum-
mary.
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Modal Logics

6.1 Introduction

Let p and q be two propositions. Consider the following argument:

p is valid. p→ q is valid. Therefore, q is valid.

Now, how do you symbolize this argument in PL? Here we have three
atomic sentences:

A : p is valid.

B : p→ q is valid.

C : q is valid.

Agreeing that ‘therefore’ means the consequence relation, the argument is
symbolized as

{A,B} |= C

Though we know that the argument is correct, there is no way to prove it
in PL.

What about FL? Here, we can go a bit deeper into analyzing the argu-
ment. Suppose that we denote ‘is valid’ as a unary predicate P (·). Then
the argument would be symbolized as

{P (p), P (p→ q)} |= P (q)

But it is wrong. Why? Because P (p → q) is not a formula; the symbol
→ cannot occur in the argument of a predicate, only a term is allowed
over there. So, symbolization fails. But suppose we write ‘− is valid’ as
an operator, just like the unary connective ¬, and try to construct a new
logic, then? Well, let us write ‘x is valid’ as �x (read as box x). Then, the
symbolization would lead to the consequence:

{�p,�(p→ q)} |= �q

It looks feasible, but we have to do so many things afresh, if we accept
this symbolization. We have to allow such constructions syntactically and
then give meaning to these constructs. Let us see one more example:

Anyone whose parents are dead is an orphan. Yanka believes that his
parents are dead. Therefore, Yanka believes that he is an orphan.

280
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The argument seems to be correct, but how do you symbolize it in FL?
With B(x, z) for ‘x believes z’ and a as the constant ‘Yanka’, you would
get something like

{∀x(D(x)→ O(x)), B(a, p)} |= B(a, o)

OR

{∀x(D(x)→ O(x)), B(a,D(a))} |= B(a,O(a))

Exercise 6.1 What are the constants p, o and what do the predicates D
and O stand for?

In the former case, we cannot show the argument to be valid, and the
latter case is syntactically wrong as the predicates D and O cannot occur as
arguments of another predicate B. Further, the symbols D and O cannot be
taken as functions since D(x)→ O(x) would then be syntactically wrong.

When an old theory is inadequate, we create new theories. Let us try
writing ‘Yanka believes’ as an operator, say, �. Then our symbolization
would look like

{∀x(Dx→ Ox),�Dy} |= �Oy

To take some more examples, consider the following:

Yanka is bold.

Yanka is necessarily bold.

Yanka is possibly bold.

Yanka is made to be bold.

Yanka must not be bold.

Yanka ought to be bold.

Yanka is supposed to be bold.

Yanka is known to be bold.

Yanka is believed to be bold.

Yanka appears to be bold.

Yanka is allowed to be bold.

Yanka is not free not to be bold.

Except the first sentence all the others are modal sentences. They simply
modify the first sentence in some way or the other. This is why the name
‘modal logics’, and we will see later why this name is in plural. Out of
all the above modalities (and possibly many more not written above), we
take up two catch words ‘necessarily’ and ‘possibly’ as our basics. Other
modalities will be treated as different readings of these basic ones. Further,
the different interpretations and readings of these modalities may give rise
to altogether different logics. As you progress through this chapter, you
will understand how this is done.
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6.2 Syntax and Semantics of K

The logic K is an extension of PL in the sense that it has two more connec-
tives � (read as box) for necessity and ♦ (read as diamond) for possibility.
The language of K has the alphabet consisting of all propositional variables,
p0, p1, . . ., also called, atomic modal propositions, or atomic modal
formulas, unary connectives ¬,�,♦, binary connectives ∧,∨,→,↔, the
propositional constants >,⊥, and the punctuation marks ), (. As in PL, you
may choose a shorter list of connectives and propositional constants or a
longer list including all the binary truth functions such as ↑, ↓, etc. Hence-
forth, for convenience, we regard the propositional constants > and ⊥ as
atomic modal propositions, and work with the usual connectives. Modal
propositions or, mp for short, are defined recursively by the following
formulation rules:

1. Each atomic modal proposition is a modal proposition.

2. If p is a modal proposition, then ¬p,�p,♦p are modal propositions.

3. If p, q are modal propositions, then (p ∧ q), (p ∨ q), (p→ q), (p↔ q)
are modal propositions.

4. Each modal proposition is generated by applying one or more of the
formation rules 1 to 3 above.

Using the symbol p ∈ {pi : i ∈ N}, the grammar of modal propositions in
the Bacus−Naur form can be given as

X ::= > |⊥ | p | ¬X |�X | ♦X | (X ∧X) | (X ∨X) | (X → X) | (X ↔ X)

The parse tree of an mp (a modal proposition) is a binary tree with
branch points (non-leaf nodes) as the connectives and leaves as atomic
mps. It is straightforward to see that the unique parsing holds in K.

EXAMPLE 6.1 The parse tree of ♦(�(p ↔ ¬p) ∧ (♦(q → p) ∨ ¬q)) is
given in Figure 6.1.
Theorem 6.1 (Unique Parsing in K) Any modal proposition has a
unique parse tree. That is, if X is a modal proposition, then X is equal
to exactly one among >,⊥, pi,¬Y,�Y,♦Y, (Y ∧Z), (Y ∨Z), (Y → Z), and
(Y ↔ Z), where Y and Z are unique modal propositions.

Exercise 6.2 Prove Theorem 6.1. The proof follows the same line of
argument as in the case of PL.

The expression ♦(�(p↔ ¬p)�(♦(q → p) ∨ ¬q)) is not an mp, because
� is a unary connective. �(p ↔ ¬p) ∧ (♦(q → p) ∨ ¬q) is not an mp,
since outer brackets are missing. However, we now make it a convention
to omit the outer parentheses. We also follow the precedence rules of PL,
giving the unary connectives ¬,�,♦ the same and the highest precedence.
Next in the hierarchy are ∧ and ∨. The connectives →,↔ receive the least
precedence.
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Sometimes we override the precedence rules and use extra parentheses
for easy reading. Further, we will not be rigid about writing the atomic mps
as p0, p1, . . .; we will rather use any other symbol, say p, q, . . ., but mention
that it is an atomic mp. You can define sub-mps just like sub-propositions
in PL or subformulas in FL. They are well defined due to unique parsing.
Once the syntax is clear, we must discuss the semantics.

♦
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�

�
�

@
@

@
� ♦

�
�

�

@
@

@↔ ∨
�

�
�

@
@

@

�
�

�

@
@

@
p ¬ ♦ ¬

p → q
�

�
�

@
@

@
q p

Figure 6.1 A parse tree.

The connectives ¬,∧,∨,→,↔ have the same meanings in K, as in PL,
though the meanings of � and ♦ complicate their use a bit. Notice the
various interpretations of the symbols � and ♦ that we have mentioned in
Section 6.1. Let us start with the reading of the symbols in the metalogic
of PL. That is, we want to read � as ‘it is valid that’ and ♦ as ‘it is
satisfiable that’. A proposition p in PL is valid iff it is evaluated to 1
(true) under each interpretation. Looking at the truth values of the atomic
propositions occurring in p, we know how to check the truth of p. In the
language of modal logic, we would call each of these interpretations a world
(sometimes, a point, a situation, a state, etc.). Now, as we agreed, ‘p is
valid’ is symbolized as �p, and ‘p is valid’ holds, or that �p is true if p is
true under every world. In this reading of � as validity, we take a world as
an interpretation, a function that takes each (atomic) proposition to the set
{0, 1}. While considering other modalities, e.g., read � as “Yanka believes
that”, we may have to define a world differently. A world then would not be
an interpretation. In abstract terms, a world would be taken as any object,
a primary object. Note that this abstraction does not prevent us in taking a
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world as an interpretation; it allows us to consider other structures besides
interpretations. In giving meanings to modal propositions, we would start
with a set of worlds.

In this particular reading of � as validity, it is now clear that �p holds,
when p is true in every world. What about the iterated modalities, say, the
truth of ��p? This is certainly an mp, but the reading of � as validity
would not yield to any good sense. Though we can still make out the mean-
ing of ��p, the truth of ��p would mean that �p is true in every world,
and then finally, it would mean that “it is true in every world that p is true
in every world”. Since a world here is taken as a PL-interpretation, we lose
nothing by asserting that p is true in every world. Suppose that we read
� differently, say, as “Yanka knows that”, then ��p may be read more
meaningfully as “Yanka knows that he knows p”. Clearly, this sentence is
different from “Yanka knows p”, which is the translation of �p. So? The
point is that in some readings of the modal connectives the iterated modal-
ities may not yield anything new, while other readings may still distinguish
between the iterated modalities. And then, we must not only say how to
define ‘�p is true’ but also see how ‘�p is true in a world’.

We answer this problem with a relation defined over the set of worlds.
This relation is, again, a primitive concept; it should come along with the
set of worlds. That is, we require not only a set but a relational structure
for giving meanings to the modal connectives. This relation is called an
accessibility relation, an agreed phrase taken for convenience. With this
relation on the set of worlds, the worlds themselves become accessible from
each other. The accessible relation on a particular set of worlds need not be
symmetric; so we must distinguish between accessible from and accessible
to. Now �p would be true in a world w if p is true in every world accessible
to w. In the case of � as validity, each world (an interpretation) is accessible
to each other world, and also to itself. Thus, ��p will be forcefully read
as �p hinting at self assertion of utterances in natural languages. (Do
you see the hint?) If we do not agree that ��p be read as �p, then, of
course, the accessibility relation must be different. As a starting point
for the semantics of K, we define a relational structure of worlds and the
accessibility relation among them.
Definition 6.1 A frame is an ordered pair (W,R), where W is a set,
called the set of worlds, and R is a binary relation on W (a subset of
W ×W ), called the accessibility relation. For worlds u,w ∈ W , read
wRu as u is accessible from w.

A frame is not sufficient to give meanings (of truth and falsity) to all
modal propositions. We must specify when an mp is true at a world. Thus
each world w may be considered as a mapping from the set of atomic
propositions to the set {0, 1} of truth values. Then we would define p is
true at the world w iff w(p) = 1. We also invent a shorthand. We write
w p whenever p is true at w. Recollect that we had alternate semantics for
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PL, where an interpretation was taken as a set of literals, or of propositional
variables. Similarly, we may regard each world w as a subset of the set of all
atomic propositions which happen to be true at w. That is, we can associate
the world w with the mapping fw : {pi : i ∈ N} → {0, 1}, or with the set
Sw = {pi : i ∈ N and fw(pi) = 1}. This association can be brought in by
another mapping φ, which would take each world to fw or to Sw, depending
upon which way we want to go about. Nonetheless, they are equivalent. In
the former case, we have φ(w) = fw, where φ : W → the set of all functions
from {pi : i ∈ N} to {0, 1}. And in the latter case, we have φ(w) = Sw,
where φ : W → the power set of {pi : i ∈ N}. Alternatively, we can associate
with each pi, the set of worlds where pi is true. One more alternative: φ
can be defined as a map from W×{pi : i ∈ N} to {0, 1} so that φ(w, pi) = 1
means that pi is true in the world w. All these approaches are, any way,
equivalent. Why? We remember these alternatives and choose the second
one for defining a model.

A model here, unlike PL, is simply an interpretation where a modal
proposition may or may not hold. It would have been better to call these as
interpretations rather than as models, or it could have been better to define
a model in PL this way. But current practice uses the word ‘interpretation’
for PL, and a ‘model’ for modal logics. A ‘model’ in PL is taken as a model
of a proposition which is an interpretation where the proposition is true.
Note that in this terminology, a model in modal logics is defined for a logic
(as the concept of an interpretation is defined for PL), and we cannot say
‘model of an mp’. We should constantly remember this abuse of language.
(Which one is an abuse, PL-models or modal models?)

Definition 6.2 A model of K is a triple (W,R, φ), where the pair (W,R)
is a frame, and φ is a mapping from W to the power set of {pi : i ∈ N}
associating each world w ∈W to a subset φ(w) of atomic propositions. The
mapping φ is called the world truth mapping. The model M = (W,R, φ)
is said to be based upon the frame F = (W,R), and the frame F is said
to be an underlying frame of the model M.

Note that the set φ(w) consists of all the atomic propositions which are
true at the world w. Moreover, each world w is propositional, in the sense
that all the laws of PL hold in each world. For example, if p ∈ φ(w), i.e.,
if p is true at the world w, then ¬p cannot be true at w, i.e., ¬p 6∈ φ(w).
The new connectives � and ♦ play roles in navigating across the worlds
via the accessibility relation. Now we must define formally how a modal
proposition becomes true at (in) a world w. We use the notation w p for
satisfaction at a world w, a shorthand for “the modal proposition p is true
in the world w”, or equivalently, for “the world w satisfies (or verifies) the
modal proposition p”. We also read it as “p is true at (in) the world w”,
and also as, “the world w verifies the modal proposition p.” When a world
does not satisfy an mp, we say that it falsifies the mp. The following is a
formal definition of the relation of ‘satisfaction at a world’.
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Definition 6.3 Let M = (W,R, φ) be a model of K. Let x, y denote
arbitrary modal propositions. Let w ∈ W be a world. The relation w x,
read as w satisfies x, is defined recursively:

(a) w >, w 6⊥.
(b) w p iff p ∈ φ(w) for any atomic proposition p.

(c) w ¬x iff w 6x.
(d) w x ∧ y iff w x and w y.

(e) w x ∨ y iff w x or w y.

(f) w x→ y iff w 6x or w y.

(g) w x↔ y iff either w x and w y, or w 6x and w 6y.
(h) w �x iff for each world u ∈W with wRu, u x.

(i) w ♦x iff for some world u ∈W with wRu, u x.

We may read the meaning of the mp �x as “�x is true at (in) a world
w if the mp x is true in every world accessible from w.” Similarly, the mp
♦x is true in the world w if the mp x is true in some world accessible from
w. Since satisfaction or true at a world w depends not only on the world
w, but also on the model M, we should better write w  x as M,w  x.
However, if the model M is clear from a given context, then we would
continue writing w  x. If we feel that confusion might arise in a certain
context due to involvement of many models, we can write the full form
M,w x. Due to unique parsing, the satisfaction relation is well defined.

EXAMPLE 6.2 Let M = (W,R, φ) be a model where W = {w, u},
R = {(w, u), (u, u)}, φ(w) = ∅, and φ(u) = {p}, for an atomic mp p. Are
the mps p,�p,��p,�p→ ��p,��p→ p true at the world w?

Solution Look at the relation R of the model M. It says that the world
w is accessible from u, the world u is accessible from itself, and that is all
about this accessibility relation. Since every binary relation can be depicted
as a graph, we first represent our model as a graph. each node of this graph
is a world. A node corresponding to the world w will be written as w . If
(w, u) ∈ R, i.e., if wRu, then we draw a directed edge (line segment) from
the node w to the node u . That is, ‘u is accessible from w’ is drawn as

w - u

The mapping φ which gives details about which atomic propositions
(mp) are true in which world can be depicted by writing the satisfaction
symbol, the double turnstile () as a superscript to (or just following) the
world and then writing out all those atomic propositions which are true
at that world. For example, since in the world u, the atomic proposition
p is true, this fact can be depicted as u p. With this convention for
drawing a model, the model M can be drawn as
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w - u
	

p

Since φ(w) = ∅, nothing is labelled with the world w. Moreover, u is
accessible from itself; hence the loop. We will often specify a model by
depicting its graph.

Coming back to satisfaction, w 6p. What about �p? w �p iff v p
for every world v accessible from w. Here, u is the only world accessible
from w, and u p. Hence w �p. Does w ��p hold? This would be so
provided u �p as u is the only world accessible from w. Again, u �p if
u p as u is the only world accessible from u. This last satisfaction, u p
holds. Thus, w ��p.

By induction, it follows that w �np, for every positive integer n; we
abbreviate the iterated modality �� · · · (ntimes)�p to �np, for any n ≥ 0,
with the convention that �0p = p. Further, since w 6 p and w  �np,
for any n ≥ 1, we see that w 6 �p → p. What about p → �p? Clearly,
w  p → �p. In general, w  �mp → �np for any m,n ∈ N with n 6= 0,
and w p→ p.

EXAMPLE 6.3 Consider the model M : w - u p. Which of the
following mps are true at the world w?

(a) �p→ �♦p (b) ♦p→ �♦p (c) �p→ ♦�p (d) ♦p→ ♦�p

Solution (a) w  �p → �♦p iff either w 6 �p or w  �♦p (or both).
Now, w 6�p iff for some world accessible from w, p is false at that world.
There is only one world, namely, u which is accessible to w and u  p.
Hence w 6 �p does not hold. For the other alternative, w  �♦p iff
u ♦p. But there is no world accessible from u. Thus, u 6♦p. Summing
up, w 6�p→ �♦p.

(b) w ♦p as u is a world accessible from w and u  p. We have seen
in (a) that w 6�♦p. Hence w 6♦p→ �♦p.

(c) In (a), we have already seen that w �p. What about ♦�p? Since
u is the only world accessible from w, for w  ♦�p, we require u  �p.
This latter satisfaction would hold provided every world accessible from u
satisfies p. As there is no world which is accessible from u, the condition is
satisfied vacuously. So, w ♦�p; consequently, w ♦p→ ♦�p.

EXAMPLE 6.4 Take the same model M of Example 6.3. Which of the
mps in Example 6.3 are true at the world u?
Solution Here, u �p, as every world accessible from u (there is none,
indeed) satisfies p. Similarly, u �♦p. Again, as there is no world accessi-
ble from u, we have u 6♦p. Similarly, u 6♦�p. Therefore, u satisfies the
mps �p→ �♦p, ♦p→ �♦p and ♦p→ ♦�p but it falsifies �p→ ♦�p.

Exercise 6.3 Do Examples 6.2 and 6.3 replacing � by ♦.
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In the examples above you see that both the worlds u,w satisfy the mp
♦p → ♦�p. Moreover, these are the only worlds in the model M. In such
a case, we say that the model M satisfies the mp ♦p→ ♦�p.

Definition 6.4 Let M = (W,R, φ) be a model of K. Let x be a modal
proposition. We say that the model M satisfies or verifies x, and write
it as M |= x, iff for every world w ∈W, w x.

You have already an example at hand, the model M of Example 6.3
satisfies the modal proposition ♦p → ♦�p. Besides, for the same model
M , you see that M 6|= �p → �♦p as w 6�p → �♦p. As w 6♦p → �♦p
and u 6�p → ♦�p, you see that M 6|= ♦p → �♦p and M 6|= �p → ♦�p
hold.

EXAMPLE 6.5 Let M = (W,R, φ), where W = {u, v, w}, R = {(u,w),
(u,w), (v, v), (v, w), (w, v)}, and φ(u) = {q}, φ(v) = {p, q}, φ(w) = {p}.
Which of the following hold?

(a) M |= �(p ∧ q)→ (�p ∧�q) (b) M |= �p ∧�q → �(p ∧ q)
Solution When depicted as a graph, the model looks like:

u q
���������1

PPPPPPPPPq

w p

v p, q
	
?

6

Let us make a table of satisfaction showing which mps are true at which
world. We have three worlds u, v, w in our model M and mps such as
p, q, p ∧ q,�p,�q,�(p ∧ q),�p ∧ �q. We know already that u  q, v 
p, v  q, w  p and u 6 p, w 6 q. Now, is it that u  �p? Well, the worlds
accessible from u are v and w, and both v p, w p hold. Hence, u �p.
But, u 6 �q as the world w is accessible from u but w 6 q. What about
v? All the worlds accessible from v are v and w. Both v  p and w  p
hold. So, v  �p. However, v 6 �q as w is accessible from v but w 6 q.
Similarly, w �p and w �q as the only world accessible from w is v and
v  p, v  q. Write r for �(p ∧ q) and s for �p ∧ �q. u 6�(p ∧ q) as w is
accessible from u but w 6p ∧ q. v 6�(p ∧ q) as w 6p ∧ q. w �(p ∧ q) as
v p ∧ q. Then, as in PL, we have the following table for satisfaction:

p q p ∧ q �p �q r s r → s s→ r

u 6  6  6 6 6  

v     6 6 6  

w  6 6      
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Look at the last two columns in the above table. They show that all
the worlds (in M) satisfy both the mps r → s and s → r, which are,
respectively, �(p ∧ q)→ �p ∧�q and �p ∧�q → �(p ∧ q). Therefore, the
model M satisfies both these mps. That is,

M |= �(p ∧ q)→ �p ∧�q, M |= �p ∧�q → �(p ∧ q)

EXAMPLE 6.6 For the model given below, determine whether it sat-
isfies �(p ∨ q)→ �p ∨�q and �(p ∧ q)→ �p ∧�q.

M : u
���������1

PPPPPPPPPq

w q

v p

Solution Here, u  �(p ∨ q), as both the worlds v, w accessible from u
satisfy p ∨ q. But u 6�p as the world w accessible from u does not satisfy
p. Again, u 6 �q as v 6 q. Therefore, u 6 �p ∨ �q and consequently,
M 6�(p ∨ q)→ �p ∨�q.

What about the second? u 6�p, u 6�q but v �p, v �q vacuously
as there is no world accessible from v. You also see that w  �p and
w �q. Thus, u 6�p∧�q, v �p∧�q, w �p∧�q. As v 6p∧q, a world
accessible from u, you see that u 6�(p∧q). You also have v �(p∧q) and
w �(p ∧ q). So, all the worlds satisfy �(p ∧ q)→ �p ∧�q; consequently,
M |= �(p ∧ q)→ �p ∧�q.

Exercise 6.4 Let M be a model and w be a world in M, i.e., w ∈ W ,
where M = (W,R, φ). Show that

(a) w ♦> iff there is at least one world accessible from w.

(b) w �⊥ iff no world is accessible from w.

Conclude from (a) and (b) that M |= > but M may not satisfy ♦>, and
that each world in M falsifies ⊥, though it may happen that M |= �⊥.

In Example 6.6, you have seen that M 6|= �(p ∨ q) → �p ∨ �q. But
in both the Examples 6.5 and 6.6, the respective models satisfy the mp
v(p∧q)→ �p∧�q. Such an mp which is satisfied by every model (not just
these two) is called a valid modal proposition.

Definition 6.5 Let x be a modal proposition in K. We say that x is valid
(i.e., x is K-valid or valid in K), and write it as |= x (or for precision |=Kx)
iff for every model M, M |= x.

Note that all the above relations of satisfaction such as w x, M |= x,
and |= x should be written as wK x, M |=K x, and |=K x, respectively.
Unless other logics are involved in the same context, we will suppress the
subscript K.
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EXAMPLE 6.7 Show that |=K �(p ∧ q)→ �p ∧�q.

Solution We are not going to draw any model here since we are supposed
to argue with any arbitrary model. So, let M = (W,R, φ) be any model
(any K-model), and let w ∈ W. If w 6 �(p ∧ q), then by the definition of
satisfaction, w �(p∧q)→ �p∧�q. Otherwise, suppose that w �(p∧q).
Our aim is to show that w  �p ∧ �q. For this purpose, let u be a world
accessible from w, i.e., u ∈W and uRw. Since w �(p∧q), each accessible
world (from w) satisfies p ∧ q, i.e., u  p ∧ q. Then u  p and u  q. This
holds for any arbitrary world u that is accessible from w. Hence, w  �p
and w  �q. Therefore, w  �p ∧ �q. Again, w is any arbitrary world in
W ; thus we have shown that each world w (in the model M) satisfies the
mp �(p ∧ q) → �p ∧ �q. That is, M |= �(p ∧ q) → �p ∧ �q. This holds
for any arbitrary model M ; consequently, |= �(p ∧ q)→ �p ∧�q.

Exercise 6.5 Show that |=K �p∧�q → �(p∧q). Is the modal proposition
�p ∨�q → �(p ∨ q) valid in K?

Some of the important K-valid modal propositions are now listed.

Theorem 6.2 (Laws in K) In the modal logic K, the following laws hold:

(a) Law of the constants: |= �> ↔ >, |= ♦⊥ ↔ ⊥
(b) Law of De Morgan: |= ¬�p↔ ♦¬p, |= ¬♦p↔ �¬p
(c) Law of ∧-distributivity: |= �(p ∧ q)↔ (�p ∧�q)

(d) Law of ∨-distributivity: |= ♦(p ∨ q)↔ (♦p ∨ ♦q)
(e) Law of →-distributivity: �(p→ q)→ (�p→ �q)

Exercise 6.6 Prove the laws listed in Theorem 6.2.

Many K-valid modal propositions can be obtained by substituting mps
in place of propositional variables in PL-valid propositions. This is so
because each world in K is propositional and retains validity of PL. See the
following theorem.

Theorem 6.3 (Tautological Substitution) Let p be a propositional
variable and A be a proposition (in PL). Let q be a modal proposition. Let
B be a modal proposition obtained from A by substituting each occurrence
of p by q. If A is valid in PL, then B is valid in K.

Proof Let M = (W,R, φ) be a model and w ∈ W be a world. Suppose
that A is valid in PL. Note that A is also an mp. Since w is propositional,
the world w is a PL-interpretation. Since A is valid, each interpretation
satisfies it. In particular, w A. Further, w A holds whether p ∈ φ(w)
or not, i.e., whether w  p holds or not. (Imagine w  p as w(p) = 1 and
w 6 p as w(p) = 0.) When p is replaced by q in A, the satisfaction of the
resulting formula then would not change whether w q holds or not. Thus,
satisfaction of B would be the same as that of A, i.e., w B. Since w ∈W
is any world, M |= B. Since M is an arbitrary model, B is K-valid.
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Exercise 6.7 Use the tautological substitution theorem to show that
the mps �p ∨ ¬�p, ♦p ∨ ¬♦p, (�p → ♦q) ↔ (�p ↔ (�p ∧ ♦q)) and
�p→ (♦q → ♦p)→ ((�p→ ♦q)→ (�p→ ♦p)) are K-valid.

You now have a scheme to generate infinitely many K-valid mps using
tautologies (of PL). The following result shows that just like PL, equiva-
lence substitution holds in K. To formulate the result, you must, first of all,
say what an equivalence in K means. We say that the modal propositions
A and B are equivalent (in K), and write it as A≡KB iff |=KA ↔ B. If
there is no confusion, we will drop the subscript K and simply write the
equivalence as A ≡ B. We also write Z[A := B] for the mp obtained from
Z by substituting some or all occurrences of A in Z by B.

Theorem 6.4 (Equivalence Substitution) Let A,B,Z be modal propo-
sitions. If A ≡ B, then Z[A := B] ≡ Z.
Proof See the corresponding fact and its proof in PL.

Thus, any instance of a valid modal proposition is again a valid modal
proposition. Moreover, in the calculational style, you can write |= Z as
Z ≡ >, the way you did in PL. There are, of course, many differences
between K and PL, the connection being that K is an extension of PL and
each world in K is an interpretation in PL.

A model has been taken as a triple M = (W,R, φ), where φ prescribes
which atomic mps are true at which worlds. The relation  of satisfaction
between worlds and arbitrary mps is an extension of this φ from the atomic
mps to all mps. The extension must, of course, satisfy the defining proper-
ties of as given in Definition 6.3. For economy in notation, we can rewrite
the model as M = (W,R,), where  is given as a function from W to the
power set of the set of all atomic mps, and then, extended to a relation on
the cartesian product of W with the set of all mps, satisfying the conditions
of Definition 6.3. Henceforth, we use  as such a relation and a model will
be written as (W,R,). However, there is a possible confusion in this nota-
tion and you should be aware of it. The relation changes from one model
to another model. Earlier, the notation φ was keeping record of it. Now
we must write  as M to remind ourselves of this dependence. As usual,
we omit this subscript unless there is any confusion due to involvement of
many models in a given context.

We want to define the notion of consequence in K. Suppose that A and
B are two propositions in PL. We have defined the concept of A |= B by
relating models of A to those for B, i.e., when each model of A is also a
model of B. Later, we have seen that the two metastatements ‘A |= B’ and
‘if |= A, then |= B’ are equivalent. What has happend for FL? Suppose
that A and B are two formulas (in FL). Then A |= B holds whenever
every state that satisfies A also satisfies B. In contrast, the metastatement
‘if |= A, then |= B’ is different from ‘A |= B’. The former statement
means that whenever every state satisfies A, we also see that every state
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satisfies B. Even if this happens for some A,B, there can exist a state that
satisfies A but falsifies B. For example, take the formulas A,B such that
A is invalid but A 6|= B. In such a case, the metastatement ‘if |= A, then
|= B’ holds vacuously, though A 6|= B. However, one side implication can
be established. Whenever A |= B holds, it is clear that ‘if |= A, then |= B’
also holds. Thus, in PL, both the notions are equivalent, but in FL, A |= B
is a stronger notion of consequence than ‘if |= A, then |= B’.

The situation in K is similar to that in FL since truth in a model (in K)
depends on quantification over all possible worlds. We have circumvented
the difficulty in FL by sticking to the notion of consequence as meant by
A |= B. This is so because we had certain application domains in our
mind, for example, the arguments in natural languages, or programming.
In the verification of programs, we have had to argue with open formulas.
We say that the notion of “each state model of A is a state model of B”
is more suitable to tackling open formulas than the notion expressed in
the metastatement “if |= A, then |= B”. This is so since the latter does
not distinguish between open and closed formulas as |= X is equivalent
to |= ∀∗X (the universal closure of X). However, in the modal logic K,
we cannot discard it as such, as there will be situations which are better
represented by the weaker version “if |= A, then |= B” of the notion of
consequence. We define both the notions and modify the phrase ‘valid
consequence’ by putting adjectives such as weak or strong. We also define
another related notion of consequence by mixing the ideas together.
Definition 6.6 Let G,L be sets of modal propositions and A be a modal
proposition. G weakly entails A, written as G |=w A, iff for every model
M, if M satisfies all the mps in G, then M satisfies A. L strongly entails
A, written as L |=s A, iff for every model M = (W,R,), for every world
w ∈ W, if w satisfies all the mps in L, then w satisfies A. Further, A is a
valid consequence with global assumption G and local assumption
L , written as G |= L ⇒ A, iff for every model M = (W,R,) satisfying
all the mps in G, and for every world w ∈ W satisfying all the mps in
L, w A holds.

Let M be a model and w be a world. If Σ is a set of mps, we write
M |= Σ whenever M |= x for every x ∈ Σ. Similarly, if w  x holds for
every x ∈ Σ, we write w Σ. Then, G |= L ⇒ A holds iff for every model
M satisfying M |= G and for every world w in M satisfying w L, one has
w A. If G = ∅, then every model M satisfies every mp in G vacuously; the
same also happens whenG = {>}. In such cases, the validity of consequence
with global assumption G and local assumption L reduces to the stronger
entailment from L. That is, if G = ∅, or G = {>}, then G |= L ⇒ A is
equivalent to L |=s A. If L = ∅, then every world w in M (with M |= G)
satisfies every mp in L vacuously; the same also happens if L = {>}. Now
the consequence becomes equivalent to the weak entailment from G. That
is, both G |= ∅ ⇒ A and G |= {>} ⇒ A are equivalent to G |=w A. It is also
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clear that strong entailment is stronger than the weak entailment as their
names suggest, i.e., if Σ |=s A, then Σ |=w A.

If any of the sets G or L is a singleton, we will not write the braces
around them while writing out the consequence relations. This will save
space as {B} |= {C} ⇒ A will be written as B |= C ⇒ A.

EXAMPLE 6.8 �p→ p |=w ��p→ �p but �p→ p |=s/��p→ �p.
Solution For the first consequence to hold, we consider all the models
which satisfy the mp �p → p, and then show that any world in such a
model also satisfies ��p → �p. So, let M = (W,R,) be a model such
that M |= �p → p. Let w ∈ W be such that w  ��p. Let u ∈ W be a
world accessible from w (uRw). Then u �p. As M |= �p→ p, for every
world v ∈ W, v �p → p. In particular, u �p → p. Using the fact that
u  �p, we conclude that u  p. But u is any arbitrary world accessible
from w. Hence, w  �p. We have shown that if w  ��p, then w  �p.
Therefore, w ��p→ �p.

For showing the non-satisfaction, consider the model: w - u 6 p.
The 6 sign after the world u says that u satisfies all atomic mps except p.
Now, w 6�p since the only world accessible from w is u but u 6p. Thus,
w  �p → p. Again, w  ��p iff u  �p iff every world accessible from
u satisfies p, which holds vacuously. As u 6 p, we have w 6 �p and then
w �p→ p. But w 6��p→ �p; therefore, �p→ p |=s/ ��p→ �p.

EXAMPLE 6.9 Show that �(p→ q) |=s �p→ �q.
Solution Let M = (W,R,) be a model and w ∈ W be a world with
w  �(p → q). If w 6 �p, then w  �p → �q, and we are through.
Otherwise, assume that w  �p. We want to show that w  �q. Let
u be any world accessible from w. Since w  �p, we have u  p. Since
w  �(p → q), we also have u  p → q. Then, u  q and, consequently,
w �q.

EXAMPLE 6.10 Show that �p→ p |= �(¬p→ p)⇒ p ∨ ♦p.
Solution Here, �p→ p is a global assumption and �(¬p→ p) is a local
assumption. So, we consider all the models which satisfy �p→ p, and any
world w in such a model with w �(¬p → p), and then try to show that
w also satisfies p.

Let M = (W,R,) be a model with M |= �p→ p. Let w ∈ W be such
that w  �(¬p → p). Due to →-distributivity, we have w  �¬p → �p.
(You can also see this independently.) Then, either w 6�¬p or w �p. If
w 6�¬p, then w ¬�¬p. But by De Morgan’s law, ¬�¬p ≡ ♦p. Hence,
w  ♦p. On the other hand, if w  �p, then with w  �p → p (since
M |= �p→ p), we have w p. In either case, w p ∨ ♦p.

We start exploring the properties of the consequence relations in K.
Theorem 6.5 (Monotonicity in K) Let A be an mp and G,G′, L, L′ be
sets of mps with G ⊆ G′ and L ⊆ L′. If G |= L⇒ A, then G′ |= L′ ⇒ A.
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Proof Let G |= L⇒ A. Let M = (W,R,) be a model with M |= G′. Let
w ∈ W satisfy L′. Then, M |= G and also w L. Since G |= L ⇒ A, we
have w A. Therefore, G′ |= L′ ⇒ A.

Though the consequence G |= L⇒ A is a generalization of both strong
and weak consequences, it is rarely used except while presenting such gen-
eral results as monotonicity. We will rather use strong and weak conse-
quences separately. Analogous to PL, the logic K is also compact (Formu-
late and prove compactness for K.) and it admits of the deduction theorems.

Theorem 6.6 (Strong Deduction) Let L be a set of mps and A,B be
mps. Then L ∪ {A} |=s B iff L |=s A→ B.

Theorem 6.7 (Weak Deduction) Let G be a set of mps and A,B be
mps. Then G ∪ {A} |=w B iff G |= {A,�A,��A, . . .} ⇒ B.

Exercise 6.8 Prove both the strong and weak deduction theorems.
Due to the strong deduction theorem, |= A→ B iff A |=sB iff |=sA→ B.

To have a better notation, we will write |=s simply as |= retaining the weak
entailment |=w as it is.

Exercise 6.9 What can you say about the following metastatements on
the weak entailment:

(a) If Σ |=w A→ B then Σ ∪ {A} |=w B,
(b) If Σ ∪ {A} |=w B, then Σ |=w A→ B?

6.3 Axiomatic System KC

Historically, axiomatic systems for modal logics precede the semantic char-
acterization. We have taken a back-door approach. Since more modal
logics are to come in succeeding sections, we first see how to characterize
valid mps through proofs. As you know, in an axiomatic system, certain
types of expressions (mps now) are just declared as theorems; these are
the so-called axiom schemes. Axioms are obtained from the axiom schemes
by replacing the letters by arbitrary expressions uniformly. Then certain
rules of inference are prescribed, which are used to derive other theorems
from the existing ones. We will keep the flavour of PC in presenting an
axiomatic system, called KC (K-calculus) for the logic K. Since K is an
extension of PL, the axioms of PL are also the axioms of K. However, we
will make a short cut. Suppose that you want to show that �p → �p is
a theorem in K. Then, you have to essentially repeat the proof of p → p
in PL. We do not want to repeat such proofs, for they can be constructed
using PC. Instead, we accept all the theorems of PC as KC-axioms. This
will help us to avoid unnecessary aberrations so that we may concentrate
on the peculiarity of K. Note that this will not affect the effectiveness of
the axiomatic system KC since we can always go back to the three axioms
of PC and the inference rule MP for deriving the PC-theorems. As in PC,
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we do not take all the connectives as basic symbols in KC. The connectives
∧,∨,↔ and the constants >,⊥ are defined from ¬,→ as in PC. Further,
the modal connective ♦ is defined from ¬,� via De Morgan’s law, namely,
♦A ≡ ¬�¬A. So, the basic symbols of KC are the propositional variables,
and the connectives ¬,→ and �. The following are the axiom schemes and
the inference rules in KC:

Axiom Schemes of KC

(PC) Each theorem of PC.

(K) �(X → Y )→ (�X → �Y )

Rules of Inference of KC

(MP)
X X → Y

Y

(N)
X

�X

The names of the axioms and the inference rules are self-suggestive:
PC stands for axiom-PC, K stands for axiom-K, MP stands for modus
ponens, and N for necessitation. As in FL, ‘from X derive ∀xX’; neces-
sitation says that from X, derive �X.

A proof in K is, again, a finite sequence of mps, each of which is either
an axiom (an instance of an axiom scheme) or is derived from earlier mps
by an application of an inference rule. The last mp in a proof (sequence)
is called a theorem in K. If A is a theorem (in K), we also say that A is
provable (in K) and also that A has a proof; the proof is said to prove A
in K. If no other logic is involved, we will simply omit writing ‘in K’.

Note that the rule N can be viewed through a proof in the following
manner. If you already have a proof for X, then you have a proof for �X
as well, i.e., from “X is provable”, derive “�X is provable”. It does not
assert that X → �X is provable! We will follow the same three-column
way of writing proofs.

Recollect the difficulties you have encountered while constructing proofs
in PC in the absence of metatheorems such as the deduction theorem and
RAA. So, instead of going for proofs straightaway, we will have some results
of this kind. We will not attempt at many such results since our interest is
not in generating more and more theorems in KC, but only to show that
the logic K can be captured effectively by an axiomatic system.

Theorem 6.8 (Regularity) The following rule of inference, called the
rule of regularity, is a derived rule in KC.

(R)
X → Y

�X → �Y

Proof We only have to give a proof (a proof scheme) showing the rule
R, which can be repeated in any proof so that, instead of repeating the
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whole proof, we can simply apply the rule. The proof for a derived rule,
thus, starts with the premise X → Y , and here it ends with the conclusion
�X → �Y . The proof is easy; from X → Y , derive �(X → Y ), then use
(K) and (MP). Here is the proof (P for a premise):

1. X → Y P

2. �(X → Y ) N

3. �(X → Y )→ (�X → �Y ) K

4. �X → �Y MP

Before constructing proofs, we will have one more metatheorem. It is
the substitution of equals by equals. We call it replacement instead of
equivalence substitution.
Theorem 6.9 (Replacement) Let X,X ′, Y, Y ′ be modal propositions such
that Y occurs in X as a sub-modal proposition. Let X ′ be obtained from X
by replacing some (or all or no) occurrences of Y in X by Y ′. If Y ↔ Y ′

is provable, then X ↔ X ′ is also provable.
Proof The proof is by induction on the number of occurrences of connec-
tives in X. See its analogue in PC.

We will use these metatheorems of Regularity (rule R) and Replacement
(rule RP, formulate it!) in showing that certain mps are provable in KC.
The fact that an mp A is a theorem in KC is written as ` A, as a shorthand
to `KCA. We will resort to the full symbolism `KCA whenever we feel
that the shorthand is confusing. Note that we have already accepted all
the connectives of PC, and all the PC-theorems as our axioms in KC. Since
PC is adequate to PL, all the valid propositions can be used as axioms-P
in KC. Then, we may use all the connectives of PL instead of ¬ and → .
We may also use the propositional constants > and ⊥ if need arises.

EXAMPLE 6.11 Show that ` �(X ∧ Y )→ (�X ∧�Y ).
Solution The following is a proof establishing the above:

1. X ∧ Y → X PC

2. �(X ∧ Y )→ �X R

3. X ∧ Y → Y PC

4. �(X ∧ Y )→ �Y R

5. (�(X ∧ Y )→ �X)→
((�(X ∧ Y )→ �Y )→ (�(X ∧ Y )→ (�X ∧�Y ))) PC

6. (�(X ∧ Y )→ �Y )→ (�(X ∧ Y )→ (�X ∧�Y )) 2, MP

7. �(X ∧ Y )→ (�X ∧�Y ) 4, MP

We also use all the derived rules of PC as derived rules of KC in proofs.
In the following example, we use the rule of hypothetical syllogism (HS).
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EXAMPLE 6.12 Show that ` (�X ∧�Y )→ �(X ∧ Y ).
Solution Here is a proof:

1. X → (Y → (X ∧ Y )) PC

2. �(X → (Y → (X ∧ Y )) N

3. �X → �(Y → (X → Y )) R

4. �(Y → (X → Y ))→ (�Y → �(X → Y )) K

5. �X → (�Y → �(X ∧ Y )) HS

6. (�X ∧�Y )→ �(X ∧ Y ) R

Note that the derivation of line 6 from line 5 has been mentioned as
the replacement, since the modal proposition in line 6 is equivalent to that
in line 5. You can also use a PC theorem and then MP for deriving the
same. Further, since each theorem is a theorem scheme, you can use them
in constructing proofs. We use the theorem proved in Example 6.12 in
constructing the proof in the following example.

EXAMPLE 6.13 Show that ` �(p→ q) ∧�(q → r)→ �(p→ r).
Solution

1. �(p→ q) ∧�(q → r)→ �((p→ q) ∧ (q → r)) Ex.6.12

2. (p→ q) ∧ (q → r)→ (p→ r) PC

3. �((p→ q) ∧ (q → r))→ �(p→ r) R

4. �(p→ q) ∧�(q → r)→ �(p→ r) 1, HS

EXAMPLE 6.14 Show that ` ♦♦A↔ ¬��¬A.
Solution

1. ♦♦A↔ ¬�¬♦A Definition of ♦
2. ♦A↔ ¬�¬A Definition of ♦
3. ♦♦A↔ ¬�¬¬�¬A 1, 2, R

4. ¬¬�¬A↔ �¬A PC

5. ♦♦A↔ ¬��¬A 3, 4, R

Is the system KC adequate to the logic K? To show the soundness of
KC, we have to verify that each axiom of KC is valid (K-valid). Further,
we must ensure that by using the inference rules of KC on valid mps, we
get only valid mps.

Exercise 6.10 Show that each axiom of KC is K-valid. In fact, we have
already done it; find out where.

With Exercise 6.10, let us look at the inference rules. The rule MP is
sound; it follows from the soundness of PC. But let us see this in the modal
setting of K. Suppose that M = (W,R,) is a model and w ∈W. If M |= p
and M |= p→ q, then w p and w p→ q. As each world is propositional,
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we have w  q, by MP in the world w. Since w is any arbitrary world, we
conclude that M |= q; thus follows the soundness of MP in K.

What about necessitation? Here, we must also argue with accessible
worlds. Let M = (W,R,) be a model and M |= p. We want to show that
for every world w ∈ W, w  �p. So, let w ∈ W be an arbitrary world.
Let u¬W be such that uRw, a world accessible from w. Since M |= p, for
every world v ∈W, v p. In particular, u p. It follows then that w �p;
consequently, M |= �p. This completes the soundness of necessitation.
Finally, use induction on the length of proofs to conclude that every KC-
provable mp is K-valid as stated in the following metatheorem.

Theorem 6.10 (Soundness of KC) Let X be any modal proposition. If
` X in KC, then |= X in K.

As it happened for PC, completeness involves more work. We will take
the approach of maximally consistent sets of modal propositions and prove
the Lindenbaum Lemma. In order to do that we give some definitions.

Definition 6.7 A finite set of modal propositions {X1, X2, . . . , Xn} is
called KC-consistent, if X1 ∧ X2 ∧ · · · ∧ Xn → ⊥ is not provable in
KC. An infinite set is KC-consistent if every finite subset of it is KC-
consistent. A set Σ of modal propositions is maximally KC-consistent
iff Σ is consistent and, if any superset Σ′ ⊇ Σ is KC-consistent, then Σ′ = Σ.

Lemma 6.11 (Lindenbaum Lemma) For any KC-consistent set Σ of
modal propositions, there exists a maximally consistent set Σ′ of modal
propositions such that Σ ⊆ Σ′.

Proof Since the set of all mps is countable, take the enumeration of it
as X0, X1, X2, . . . . Let Σ be the given KC-consistent set of mps. Define
inductively the sequence of sets by setting Σ0 = Σ and

Σn+1 = Σn∪{Xn+1}, if Σn∪{Xn+1} is KC-consistent; else, Σn+1 = Σn.

As in PC, each Σn is KC-consistent (Show it.). Let Σ′ = ∪n∈NΣn. Now,
Σ ⊆ Σ′. If Σ′ is not KC-consistent, then there is a finite subset, say, Σ∗ ⊆ Σ′

such that Σ∗ is not KC-consistent. Due to the enumeration of all mps,
Σ∗ ⊆ {X0, X1, . . . , Xm} for some m ∈ N. But then, Σ∗ ⊆ Σm (Why?).
This implies that Σm is not KC-consistent, a contradiction. Thus, Σ′ is
KC-consistent.

If Σ′ is not maximally KC-consistent, then there is a proper superset of
Σ′ which is KC-consistent. Due to the enumeration of all mps, we get one
Xk such that Xk 6∈ Σ′ and Σ′ ∪ {Xk} is consistent. Since Σk−1 ⊆ Σ′, Σk ⊆
Σ′ ∪ {Xk}, and Σk−1 ∪ {Xk} is KC-consistent, we have Xk ∈ Σk ⊆ Σ′.
This contradicts the fact that Xk 6∈ Σ′. Thus, Σ′ is the required maximally
KC-consistent set (extension of Σ).

Our next job is to see how to use a maximally KC-consistent extension
of Σ to construct a model that would satisfy it. Note that there can be
many maximally KC-consistent extensions of the same set Σ. However, for
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now, we consider all possible maximally KC-consistent sets of mps. Each
one of them is a maximally KC-consistent extension of some set of mps. We
take W, our set of worlds, as the set of all such maximally KC-consistent
sets. For worlds w, u ∈W, define the relation R (a subset of W ×W ) by

wRu iff for each mp of the form �X ∈W, X ∈ u.
Define the satisfaction () of an atomic modal proposition at a world w by

for every atomic mp p, w p iff p ∈ w.
With such a canonical model obtained from the set of all maximally
KC-consistent extensions of Σ, we have the following result.

Lemma 6.12 (Truth Lemma) Let M = (W,R,) be the canonical model
as defined above. Let X be any modal proposition and w be any world in
W. Then w X iff X ∈ w.
Proof Use induction on the number of occurrences of connectives in X.

We are ready to prove the completeness of KC.

Theorem 6.13 (Completeness of KC) Let X be any modal proposition.
If |= X in K, then ` X in KC.
Proof We show the contrapositive. Suppose that X is not KC-provable.
Since X ↔ (¬X → ⊥) is provable in PC, 6` ¬X → ⊥. That is, the set {¬X}
is consistent. The Lindenbaum lemma says that there is a maximally KC-
consistent extension w of {¬X}. That is, w is a world in the canonical
model M = (W,R,), as in the Truth lemma, such that ¬X ∈ w and w
is maximally KC-consistent. Since w is consistent, X 6∈ w. (Otherwise,
` X ∧ ¬X → ⊥ can be used to show that w is not KC-consistent.) By the
Truth lemma, w 6X. Thus, M 6|= X; consequently, X is not KC-valid.

Theorems 6.10 and 6.13 together show that KC is adequate to the logic
K. What about the strong adequacy? But we have not yet defined the
concept of a consequence in KC! How do we formulate the proof theoretic
versions of Σ |=s X and of Σ |=w X? We will first extend the idea of a
consequence in KC, which seems most natural to us, and then see whether
it is adequate to strong or weak entailment. The following is an example
of a derivation.

EXAMPLE 6.15 Show that {�p→ p,��p} ` �p in KC.
Solution

1. �p→ p P

2. �(�p→ p) N

3. �(�p→ p)→ (��p→ �p) K

4. ��p→ �p MP

5. ��p P

6. �p MP
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This example suggests the following definition of a KC-derivation.

Definition 6.8 Let Σ be a set of mps andX be an mp. A KC-derivation
of X from Σ is a finite sequence of mps such that each mp in the sequence
is either an axiom of KC, or a member of Σ (a premise), or is derived from
earlier mps by an application of modus ponens (MP) or necessitation (N);
further, X must be the last mp of the sequence. If there is a KC-derivation
of X from Σ, we write Σ ` X in KC (for precision, Σ`KCX).

The above definition, in fact, defines the concept of provability of a
KC-consequence. If there is a KC-derivation of X from Σ, we say that
“the consequence Σ ` X is KC-provable” or that “the KC-consequence
Σ`KCX is provable”. We often omit writing the outer braces while writing
a finite set of premises, and use the same three-column style of writing a
derivation. Note that any derived rule of inference, which comes from
earlier derivations, can also be used in a derivation.

EXAMPLE 6.16 Show that {�p→ p, p→ q} ` ��p→ q in KC.
Solution

1. �p→ p P

2. ��p→ �p R

3. ��p→ p HS

4. p→ q P

5. ��p→ q HS

Since the rule of necessitation is used in a derivation, Definition 6.8
captures the notion of the weak entailment. Using adequacy of KC to K,
and the deduction theorem (which one?), you can prove that Σ ` X in KC
iff Σ |=w X. Since X ` �X, 6` X → �X, and |= X → �X is equivalent to
X |=s �X, the notion of KC-consequence of Definition 6.8 does not capture
the strong entailment.

Exercise 6.11 Let Σ be a set of mps and X be any mp. Then show that
Σ ` X in KC iff Σ |=w X.

In general, there is also a notion of axiomatic version of a consequence
with global and local assumption; see the Summary at the end of this chap-
ter. In parallel with the strong entailment relation, we do not have ‘strong
adequacy’ in the case of a consequence with global and local assumptions.
The situation reminds us the inference rule of universal generalization (UG)
in FC. UG states that from X, derive ∀xX. In the case of FC and FL, we
have seen that Σ ` X and Σ |= X coincide provided that in the proof
of Σ ` X, UG has not been used on a free variable of any premise (just
as in the deduction theorem). We have not mentioned this condition in
the strong adequacy theorem of FC because, our formulation of UG in FC
already takes care of this restriction. This restricted version cannot be for-
mulated in KC since in a derivation of �X, we do not have any trace of a
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world. However, in a natural deduction proof, we might succeed by using a
box as a book-keeping device for worlds. Then, how do we take care of the
notion of strong entailment for consequences in an axiomatic system like
KC? Can we replace the necessitation rule? You must look at the strong
deduction theorem for such a modification of KC.

6.4 Other Proof Systems for K

In this section we present two more proof systems: the natural deduction
and the analytic tableau. For a natural deduction system, we keep all the
inference rules of PND, remembering that the propositions are now treated
as mps. We must have some rules for tackling � and ♦. We plan to have
an introduction rule for �, an elimination rule for �, and then regard the
connective ♦ as ¬�¬ as in KC.

The natural deduction system for K is named as KND. The system
KND includes all the rules such as ∧i,∧e,∨i,∨e . . . of Section 4.5. The
extra rules for handling the connective � are:

(�i)

. . . X

�X
(�e)

�X

. . .X . . .

Before an explanation of the dashed boxes, try to make out why the
proof in the following example is, in fact, a proof.

EXAMPLE 6.17 Show, in KND, that ` �(p→ q)→ (�p→ �q).
Solution Here is a proof:

1. �(p→ q) CP

2. �p CP

p−−−−−−−−−−−−−−− q
| 3. p �e |
| 4. p→ q 1,�e |
| 5. q MP |
x−−−−−−−−−−−−−−− y

6. �q �i

7. �p→ �q →e

8. �(p→ q)→ (�p→ �q) → i

Could you make out the purpose of the dashed boxes? These proof
boxes for the connective � are different from the solid boxes used for other
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rules. The contents inside the dashed boxes are written horizontally, but
in a proof, they come vertically. In the rule (�i), the . . . represent many
mps preceding the mp X. Similarly, the . . . before and after X in the rule
(�e) also represent possibly many mps preceding and following X. These
rules are intended to reason in any arbitrary accessible world. Recollect
that going into a solid box means that assuming the first formula in it, and
after it is closed, the conclusion ‘first line→ last line’ is written on the line
immediately below the box.

The dashed boxes serve a similar but different purpose. For the rule
(�i), it means that a dashed box can be created with any opening line,
but that line should have been justified by other rules (unlike an extra
assumption in a solid box). The box begins there, meaning that from that
line onwards, till the box closes, we are reasoning in a fixed but arbitrary
world. Now, when we deduce X in this arbitrary world, we can close the
box, showing that in any arbitrary world, X holds. Therefore, �X must
hold. This is recorded by closing the box and writing �X on the following
line. Similarly, if �X occurs as a line in a proof, then, in any arbitrary
world the mp X is true. and this time the scope for going into this arbitrary
world can be any fragment of the proof. This is the rule (�e). The rules
for �-introduction and �-elimination can be described as

(�i): If X occurs at the end of a dashed box, then �X may be intro-
duced after (closing) the dashed box.

(�e): If �X occurs somewhere in a proof, then X may be introduced
anywhere into a subsequent dashed box.

In general, the dashed boxes are introduced due to an occurrence of
�X. In KND-proofs, both solid and dashed boxes would appear, and
they may be nested in any arbitrary manner. As in PND, we will have a
justification column documenting whether the mp is a premise or it follows
from earlier mps by using some inference rule(s). Again, for the provability
of a consequence with premises in Σ and conclusion X, we write Σ `KND X.
If no confusion arises, we write Σ ` X, for ease. Revisit Example 6.17 and
understand the proof. Here is another example.

EXAMPLE 6.18 Show in KND that ` �(p ∧ q)↔ �p ∧�q.
Solution To show the biconditional, we must show the two implications:

(a) ` �(p ∧ q)→ �p ∧�q (b) ` �p ∧�q → �(p ∧ q)
The proofs of these implications are given in Figures 6.2−6.3.

Now you can try proving adequacy of KND, i.e., Σ`KNDX iff Σ |=w X.
Since KND is an extension of PND, you can abbreviate KND-proofs by
assuming all PND consequences as a single rule just as we have taken all
PC-theorems as a single axiom in KC. The other two rules, of course, are
(�i) and (�e). In doing so, you will obtain shorter proofs (quasi-proofs)
which can be expanded to proofs in PND. See the following example for such
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a shortened proof. We will mention ‘PND’ on the third column whenever
we use a consequence which has a PND-proof. You are supposed to check
whether such consequences have PND-proofs or not.

1. �(p ∧ q) P

p−−−−−−−−−−−−−−− q
| 2. p ∧ q �e |
| 3. p ∧ e|
x−−−−−−−−−−−−−−− y

4. �p �i

p−−−−−−−−−−−−−−− q
| 5. p ∧ q 1,�e |
| 6. q ∧ e |
x−−−−−−−−−−−−−−− y

7. �q �i

8. �p ∧�q 4, 7,∧i

9. �(p ∧ q)→ �p ∧�q → i

Figure 6.2 Proof for Example 6.18(a).

1. �p ∧�q P

2. �p ∧e
3. �q 1,∧e

p−−−−−−−−−−−−−−− q
| 4. p 2,�e |
| 5. q 3,�e |
| 6. p ∧ q ∧ i |
x−−−−−−−−−−−−−−− y

7. �(p ∧ q) �i

8. �p ∧�q → �(p ∧ q) → i

Figure 6.3 Proof for Example 6.18(b).

EXAMPLE 6.19 Show that `KND♦(p→ q)→ (�p→ ♦q).
Solution We plan to have a shortened proof using PND-consequences as
rules. You must expand the step where ‘PND’ is mentioned by supplying
a PND-proof of the quoted or used consequence. The following is a proof
of the above mp.
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1. ♦(p→ q) CP

2. �p CP

3. ¬♦q CP

4. ¬¬�¬q Def of ♦
5. �¬q PND

p−−−−−−−−−−−−−−− q
| 6. p �e |
| 7. ¬q �e |
| 8. ¬(p→ q) 6, 7, PND |
x−−−−−−−−−−−−−−− y

9. �¬(p→ q) �i

10. ¬�¬(p→ q) 1, Def of ♦

11. ♦q 3, 9, 10, PND

12. �p→ ♦q → i

13. ♦(p→ q)→ (�p→ ♦q) → i

With this brief exposure to natural deduction for K, we turn to another
proof method, the method of analytic tableau. Among many ways of ex-
tending tableau method of PL to K, we choose one which is most intuitive.
Keep in mind that somehow we must keep track of the worlds.

In KC, we have had difficulty with the rule “from X derive �X”. It
has led us to choose between the stronger or weaker entailments ( |=s or |=w )
that would be captured by KC. We have seen that this rule does not keep
track of the world in which the mp X might have been satisfied so that we
had to interprete the rule “from X derive �X” metalogically. That is, this
rule has been interpreted as “for every model M , if M satisfies X, then M
satisfies �X”. This problem has been slightly improved in KND by using
the dashed boxes. A dashed box (for the rule �e) says that if an mp X is
satisfied in any arbitrary world, then �X must also be satisfied in every
world. This means that “for every model M , if every world in M satisfies
X, then every world in M also satisfies �X”. You see that it is the same
as in KC; the dashed boxes do not really improve the situation. We need
to improve it to the level where we may assert that “for every model M ,
for every world w in M , if w satisfies X, then w satisfies �X”.

This is similar to the eigenvariable condition in GFC. The idea is that
the variable on which universal generalization is applied is somehow tracked
in the proof. To achieve the same effect here, we must somehow keep
track of the satisfaction of an mp in a world. Suppose that we use the
numbers 1, 2, 3, . . . as names of worlds (instead of w1, w2, w3, . . .). But
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then, we must also have a way to represent the worlds that are accessible
from these worlds. Note that in the semantics of K, the valid mps are
independent of particular accessibility relations (independent of particular
models). Then how are we to represent any accessible relation? That
means, we do not know beforehand whether a world named 2 is accessible
from the world named 1 or not. In the absence of any, we must be able
to invent a naming system, especially when we know that valid mps do
not depend on any such particular naming systems; however, we should
not also lose any world! A simple way is to name all the worlds accessible
from 1 as 1.1, 1.2, 1.3, . . . Similarly, a world accessible from 1.1 would
be named as 1.1.1, 1.1.2, 1.1.3, . . . Though these prefixes are countable in
number, we do not lose any world just as in FL, where it was enough to
have only countable models. A formal proof will involve the completeness
of the tableau method, which we are not planning to discuss. Remember
that these numbers with dots stand for names of worlds, and they are to
be used as prefixes of mps, meaning that the mp is true at the world which
is written as a prefix. Here is a formal definition.

Definition 6.9 A modal prefix is a finite sequence of positive integers,
the integers being separated by a dot in between. If σ is a modal prefix
and X is a modal proposition, then σ X written with a blank in between
is called a prefixed modal proposition.

For example, 1.2.1 �X → X is a prefixed modal proposition, with the
modal prefix 1.2.1. The modal prefix stands for a world accessible from a
world named 1.2, which is again accessible from the world named 1. The
method of analytic tableau uses the prefixed modal propositions. The rules
for expansion of a tableau, called the tableau rules, are the same as those in
PT, each coming with a prefix now. In addition, we also have rules for the
two extra connectives � and ♦. Just like ∧ and ∨ the modal connectives
� and ♦ act dually.

Tableau expansion rules for K : The four types of rules − Stacking rules,
Branching rules, Necessity rules, and the Possibility rules, are now de-
scribed.

(i) Stacking Rules

(¬¬)
σ ¬¬X
σ X

(⊥)
σ ⊥
σ ¬>

(∧)
σ (X ∧ Y )

σ X
(¬∨)

σ ¬(X ∨ Y )
σ ¬X

σ Y σ ¬Y

(¬ →)
σ ¬(X → Y )

σ X
σ ¬Y
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(ii) Branching Rules

(∨)
σ (X ∨ Y )
σ X σ Y

(¬∧)
σ ¬(X ∧ Y )

σ ¬X σ ¬Y

(→)
σ (X → Y )
σ ¬X σ Y

(↔)
σ (X ↔ Y )

σ X σ ¬X
(¬ ↔)

σ ¬(X ↔ Y )
σ X σ ¬X

σ Y σ ¬Y σ ¬Y σ Y

(iii) Necessity Rules

(�)
σ �X
σ.n X

(¬♦)
σ ¬♦X
σ.n ¬X

where n is any positive integer.

(iv) Possibility Rules

(♦)
σ ♦X
σ.n X

(¬�)
σ ¬�X
σ.n ¬X

where the prefix σ.n is new to the branch.

We have seen that in the rules for ∀ and ¬∃ , instead of ‘any term’,
it is enough to take only those terms which already occur in the branch.
Analogously, in the necessity rules it is sufficient to use the prefix σ.n which
have already occurred in the branch. Again, in the same vein, σ.n in the
possibility rules must be new prefixes. The appearance of σ �X in a branch
means that “�X is true in a world named σ”. Then, X must be true in
every world named σ.n accessible from σ. Similar explanation is given for
the possibility rules.

The tableau proof of a modal proposition X starts with the prefixed
modal proposition 1 ¬X. Then the rules are applied to extend the tree.
A path in such a tree (tableau) is called a closed path when it contains
two mps of the form σ Y and σ ¬Y. Note that here the prefix σ can be
any prefix (with dots), but then we must have two prefixed mps with the
same prefix where the mps are negations of each other. A path which is
not closed, is called an open path. A tableau is called a closed tableau
if every path of it is a closed path. A closed tableau for the prefixed modal
proposition 1 ¬X means that there cannot be any world named 1 where
¬X may be true (satisfied). However, the name 1 is an arbitrary name;
thus it means that the mp ¬X cannot be true in any world. This is again
a proof by contradiction showing that the mp X is K-valid. The closed
tableau with 1 ¬X as its root is called a tableau proof of the mp X.
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A theorem in the tableau method is then an mp Z for which there is a
tableau proof. We will write `KTX (or just ` X if no confusion arises)
whenever the mp X is a tableau theorem. The tableau system with the
above rules is named as KT.

EXAMPLE 6.20 Construct a tableau proof for ` �p∧�q → �(p∧ q).
Solution As earlier, you go on applying tableau rules and keep an eye on
the paths. As and when they close, you must not go for further expansions.
You must also try to justify each line in the tableau, which we are not doing
here. The justification means writing the previous line number from which
the current mp is obtained. But you have the added responsibility now of
taking account of the prefix. Here is the tableau:

1 ¬(�p ∧�q → �(p ∧ q)
1 �p ∧�q

1 ¬�(p ∧ q)
1 �p

1 �q

1.1 ¬(p ∧ q)
1.1 ¬p 1.1 ¬q
1.1 p 1.1 q

× ×

Mark the introduction of dots in the prefixes. The prefixed mp 1.1 ¬(p∧
q) is obtained by applying (¬�) on the second line. So, your justification
on the right of line 6 would be a mere mention of ‘(2)’. The prefixed mps
1.1 p and 1.1 q on the last line are obtained from the lines 4 and 5.

EXAMPLE 6.21 Show by tableau method that ` �p∧♦q → ♦(p∧ q).
Solution

1 ¬(�p ∧ ♦q → ♦(p ∧ q))
1 �p

1 ♦q
1 ¬♦(p ∧ q)

1.1 q

1.1 ¬(p ∧ q)
1.1 ¬p 1.1 ¬q
1.1 p ×
×
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Look at the prefixes with dots; 1.1 q comes from ♦q, where 1.1 is also
a new prefix. The next prefixed mp 1.1 ¬(p ∧ q) comes from ¬♦(p ∧ q) by
applying the necessity rule (¬♦); this allows an old prefix. Other prefixed
mps are obtained propositionally (by stacking and branching rules).

EXAMPLE 6.22 Show that `KT �p ∨�q → �(p ∨ q).
Solution

1 ¬(�p ∨�q → �(p ∨ q))
1 �p ∨�q

1 ¬�(p ∨ q)
1.1 ¬(p ∨ q)

1.1 ¬p
1.1 ¬q

1 �p 1 �q

1.1 p 1.1 q

× ×

What about consequences? Since we are able to keep track of the worlds
where an mp may be true, we expect to be able to capture the general
consequence of the type G |= L⇒ X. Recollect that in such a consequence,
G is a set of global assumptions and L is a set of local assumptions. The
consequence G |= L⇒ X holds (or is K-valid) when X is true in a world of
a model at which all the members of L are true and if all the members of G
are true at each world of that model. That is, if a world is named as 1, then
the conclusion X cannot be falsified by 1, whenever the local assumptions
are true in the same world named 1. Hence the prefixes of each member of
L and X must be the same, which we are taking here as 1. Next, a global
assumption is one which is satisfied in every such world. Thus any member
of G may be prefixed in any way we like. We will then have two additional
tableau rules for handling the local and global assumptions.

Let G and L be sets of modal propositions. Let X ∈ L and Y ∈ G be
two modal propositions. The rules are given as

(LA)
·

1 X
(GA)

σ · · ·
σ Y

The rules of local assumption (LA) says that

if X ∈ L, then add 1 X to any open path of the tableau.

The rule of global assumption (GA) says that

if Y ∈ G and σ is any prefix occurring in an open path of the tableau,
then add σ Y to that path.
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We start the tableau with 1 ¬X on the root and expand it using all
the tableau rules including LA and GA. If the tableau closes, then it is
called a derivation of the consequence G |= L⇒ X. Keep it in mind that
∅ |= L⇒ X is the strong consequence (entailment) L |=sX, and G |= ∅ ⇒ X
is the weak consequence G |=w X.

EXAMPLE 6.23 Attempt tableau derivations of the following:
(a) �p→ p |=w ��p→ �p (b) �p→ p |=s ��p→ �p.

Solution The difference between (a) and (b) is that the mp �p → p is
taken as a global assumption in (a), while in (b), it is taken as a local
assumption. Check the terminology once again; when something is as-
sumed globally, the assumption is stronger, consequently, the consequence
becomes weaker. While, if the same mp is assumed locally, the assump-
tion is a weaker assumption, and if the consequence holds, it is a stronger
consequence. Here are the tableaux:

Tableau for (a):
1 ¬(��p→ �p)

1 ��p

1 ¬�p

1.1 ¬p
1.1 �p

1.1 �p→ p

1.1 ¬��p 1.1 p

× ×

The sixth line is the global assumption and the prefix 1.1 is used with
this according to the rule (GA). Give justifications to the other lines. Since
the tableau closes, it is a derivation establishing the consequence in (a).

Tableau for (b):
1 ¬(��p→ �p)

1 �p→ p

1 ��p

1 ¬�p

1 ¬�p 1 p

1.1 ¬p 1.1 ¬p
1.1 �p

1.1.1 p

Neither the left path nor the right path closes since the prefixes of the
complementary propositions do not match. Hence this tableau is not a
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derivation of the consequence in (b). It is no surprise, for we have seen
already that �p→ p 6|=s ��p→ �p.

EXAMPLE 6.24 Construct a tableau derivation for the consequence:

♦(p→ q) |=s �p→ ♦q
Solution Below is a tableau derivation. In this tableau, the fourth line
is introduced due to the rule (LA). Annotate the tableau with appropriate
justifications. Mention when a premise is used by writing the corresponding
rule (LA) or (GA).

1 ¬(�p→ ♦q)
1 �p

1 ¬♦q
1 ♦(p→ q)

1.1 p→ q

1.1 ¬p 1.1 q

1.1 p 1.1 ¬q
× ×

EXAMPLE 6.25 Construct a tableau derivation for the consequence:

{p→ �p, q → �q} |= �p ∧�q ⇒ �(�p ∧�q)

Solution In the following derivation, LA has been applied for introducing
the first line and GA, for the ninth line.

1 �p ∧�q

1 ¬�(�p ∧�q)

1.1 ¬(�p ∧�q)

1 �p

1 �q

1.1 p

1.1 q

1.1 ¬�p 1.1 ¬�q

1.1 p→ �p 1.1 q → �q

1.1 ¬p 1.1 �p 1.1 ¬q 1.1 �q

× × × ×

Exercise 6.12 Attempt tableau derivations for the following consequences
and then determine whether each is K-valid or not:

(a) �p ∧�q |= ∅ ⇒ �(�p ∧�q) (b) ∅ |= �p ∧�q ⇒ �(�p ∧�q)
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The problem is, if you fail to construct a derivation (see Example 6.23),
then can you guarantee that the consequence does not hold? Definitely
not; for, there may be another way of constructing a derivation. Let us see
one more failed attempt.

EXAMPLE 6.26 Construct a tableau for p→ �p |=w q → �q.
Solution

1 ¬(q → �q)

1 q

1 ¬�q

1 p→ �p

1 ¬p 1 �p

1.1 ¬q 1.1 ¬q
1.1 p

1.1 p→ �p

1.1 ¬p 1.1 �p
...

...

What do you see? The tableau does not close. Whatever way you
expand it by reusing the global assumption (one such is done on the fourth
line, and again on the eighth line), the tableau does not close. However,
this does not guarantee that “the consequence does not hold”. Even after
the adequacy of tableau method (Prove it.) is proved, this cannot be
guaranteed since we do not know how to ensure that no tableau will ever
close in such a case. Do you see the difficulty?

Whenever you want to show the validity of a consequence, you can
simply give a tableau derivation; it is conclusive. Of course, you must first
prove that if there is a derivation for a consequence, then the consequence
is K-valid; it is the soundness of the tableau method. On the other hand,
if a consequence is K-valid, you can have a tableau derivation for it; this is
the completeness of the tableau method. Now, suppose that a consequence
is invalid, then how do you show its invalidity? Of course, by constructing
a model which satisfies all the premises (global or local) and falsifies the
conclusion. But a tableau can never show it. In such a case, whatever
way you try to expand the tableau (with premises and the negation of the
conclusion at the root), it will never close. At the same time, the tableau
method does not show, in any way, that no tableau will close; it is of no use.
In such a situation, you can exploit an open path of the tableau to construct
a model that would satisfy the premises and falsify the conclusion. See, it
is not a waste to attempt a derivation!

It is very much similar to the tableaux in PL. We want to construct a
model that would satisfy all the mps in an open path. Take an open path
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in Example 6.26, say, the leftmost path of the tableau. The path is open
and it contains the prefixed mps (from leaf to root):

1.1 ¬q, 1 ¬p, 1 p→ �p, 1 ¬�q, 1 q, 1 ¬(q → �q)

Looking at the prefixes, it is enough to consider only two worlds named
1 and 1.1. As our motivation for prefixes says, the world 1.1 is accessible
from the world 1. Since 1 q occurs in this path, we start asserting that
1  q. Again, 1 ¬p occurs in the path; so 1 6 p. What about the other

world, namely, 1.1? Since 1.1 ¬q occurs in the path, we have 1.1 6 q.
These are the only literals occurring in the path. The literal p does not
occur with prefix 1.1; though ¬p occurs with prefix 1. Thus, we may fix
either 1.1  p or 1.1 6 p. Let us take the first alternative. We have the
following model:

M : 1
q−−−−−−−−→ 1.1

p

In this model, obviously, p → �p is satisfied, as 1  p → �p and
1.1 p→ �p. Note that the last satisfaction relation holds since there is

no world accessible from 1.1 . Now, 1 q but 1 6�q as the world 1.1
is accessible from 1 though it does not satisfy q. Therefore, 1 6q → �q.
Consequently, p→ �p 6|=w q → �q.

So, a model can be constructed from a failed attempt at proving a
consequence, by taking hint from an open path. But any open path would
not serve this purpose. This is so because, before sufficient expansion of
the tableau (say, in the beginning), a path is always open. Recollect what
you have done in the case of PT. You may need the notion of a finished
tableau. Try it!

Exercise 6.13 Construct a model from an open path in the tableau for
Example 6.23(b).

6.5 Other Modal Logics

Recall that in a scenario of a generalized modal consequence, the global
assumptions restrict the view of models. The models to be considered must
satisfy all the global assumptions. Then, we think about the worlds in each
of these models and look for satisfying the local assumptions, restricting
the worlds further. For the consequence to hold, these worlds must satisfy
the conclusion. It does not really matter in whatever way you read the
connectives. What happens if you read the connectives in a certain way?
Say, you read � as the modality, ‘it is known that. . .is true’. Then certainly,
we would admit that in such a world, where ‘X is known to be true’ the
statement that ‘X is true’ holds. Essentially, we are admitting the truth of
�X → X in all such worlds. In other words, if we read the connective �
as ‘it is known that’, then the mp �X → X becomes a global assumption.
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It is rather an assumption scheme for, in such a case, �Y → Y is also
one of the global assumptions. What does it mean semantically? If in a
world w, the mp �X is true, then in the same world w, the mp X is also
true. Thus, the world w must be accessible from itself. So, what do you
see? Such assumption schemes impose conditions on the accessibility
relation. The class of frames, in turn, becomes restricted. We will have to
consider various types of frames then. But remember that various types
of frames correspond to various ways of reading the modal connectives of
necessity (�) and possibility (♦).

Since properties of frames come from the properties of the binary rela-
tion on the worlds, you must recollect the usual types of binary relations.
If you have forgotten them (you are supposed not to), here is a small list.
Let R be a binary relation on a set W, the set of worlds, for us. The relation
R is called

reflexive : if for every w ∈W, wRw
symmetric : if for every u, v ∈W, uRv implies vru

transitive : if for every u, v, w ∈W, uRv and vRw implies uRw

an equivalence
relation : if R is reflexive, symmetric, and transitive

functional : if for every u ∈W, there is a unique v ∈W such
that uRv

linear : if for every u, v, w ∈W, uRv and uRw implies either
vRw or v = w or wRv

serial : if for every u ∈W, there is v ∈W such that uRv

euclidian : if for every u, v, w ∈W, uRv and uRw implies vRw

total : if for every u, v ∈W, either uRv or vRu or both

Let W be any set (of worlds), and R be a binary relation on W having
one or more of the above properties. Then, we say that the frame (W,R)
has that property. Thus, a reflexive frame is a frame (W,R), where R
is a reflexive relation. We want to know what kind of frames give rise to
which assumption schemes. You have had an example already; reflexive
frames give rise to the assumption scheme �X → X.

Our plan is to restrict our frames to satisfy certain properties so that we
will have different assumption schemes which can be used as axiom schemes
(along with KC), thereby giving rise to different modal logics. Let us
start with reflexivity. To be able to study this so-called correspondence
theory of modal logics with ease, we will have a definition. Note that if
you restrict all your frames to satisfy certain property, you may think of a
sub-collection of frames (satisfying that property). That is, properties and
collections of frames can be taken as one and the same.
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Definition 6.10 Let L be a collection of frames and X be a modal propo-
sition. If (W,R) is a frame in L and  is a satisfaction relation specifying
whether a modal proposition is satisfied (true) at a world, then the model
(W,R,) is called a model based on the frame (W,R). The modal
proposition X is called valid in the frame (W,R) if each model based on
the frame (W,R) satisfies X. The modal proposition X is called L-valid
and written as |=LX iff X is valid in each frame in L.

When L is a collection of all frames (without any particular restriction
or property), |=LX coincides with |=KX. Due to this coincidence, we will
use the symbol K for the logic K and also for the collection of all frames.

Now, what about the reflexive frames? Denote by T , the set of all
reflexive frames. As you have seen, we must add another axiom scheme,
namely, �X → X to KC for capturing |=T . Conversely, suppose that the
mp �X → X is C-valid for a collection C of frames (W,R,). Then, in
each world w ∈ W, we have w  �X → X. This means that if w  �X,
then we must also have w X. But w �X means that in every world u
with wRu, u X. Thus, if in every world u with wRu, u X, then w X.
This holds for every world w ∈W. Hence R must be reflexive, i.e., C = T.

The following theorem (Prove it.) summarizes some important prop-
erties of frames in terms of additional axiom schemes to KC. Our naming
system keeps the collection of frames and the name of the axiom as the
same. For example, the modal logic with reflexive frames is denoted as T,
the collection of all reflexive frames is also denoted as T. This is the way
you must read the table as given in the following theorem.

Theorem 6.14 (Correspondence Theorem) The following table sum-
marizes the correspondence between a frame property and the axiom scheme
to be added to KC.

Name Axiom scheme Frame property

K none none

T �X → X reflexivity

B X → �♦X symmetry

D �X → ♦X serial

4 �X → ��X transitivity

5 ♦X → �♦X euclidian

6 �X ↔ ♦X functional

7 �(X ∧�X → Y )

∨�(Y ∧�Y → X) linearity



Other Modal Logics 315

You may read the axioms T, B, D, L as 1, 2, 3, 8, respectively to go
with other axioms. But these names are historical and we refer to them
this way. Further, we will name other the logics by combining the axioms.
For example, the logic KT4 is one with all the axioms and inference rules
of KC along with the extra axiom schemes as Axiom T and Axiom 4. Then
semantically it is the modal logic of all reflexive and transitive frames. To
make a shorthand, you may also omit the K from KT4; that applies to all
modal logics considered here. This is so because all the modal logics here
are extensions of K. However, we will continue writing this K as a prefix
with the names of other logics.

The logic KT is a sublogic of KT4 as each reflexive and transitive frame
is vacuously reflexive. Notice the use of the word ‘sublogic’. When we say
KT is a sublogic of KT4 what we mean is, if a modal proposition X is
KT-valid, then it is also KT4-valid, and every proof in KT is also a proof
in KT4.

The logic KT4 is also written as S4, and the logic KT45 is written as S5.
There is one more important modal logic which has not been considered in
this naming scheme; it is the Gödel logic G. The logic G has the extra
axiom (with KC):

(L) �(�A→ A)→ �A

In our notation the logic G is simply the logic KL. Figure 6.4 shows
which modal logic is a sublogic of another; only some important logics are
covered here.

Exercise 6.14 Show that K4 is a sublogic of G.
[Hint : Decide whether you require the axiom 4 to have a proof in G or the
axiom L to have a proof in K4.]

Exercise 6.15 What is the frame property corresponding to the axiom
L of the Gödel logic G?

Exercise 6.16 Can you find how the logics K6 and K7 are related to
other logics by the relation of ‘sublogic’?

Various modal logics constructed in this section play, in an abstract way,
with the axioms and the frame properties. Theorem 6.14 is the soundness
and completeness of the various axiomatic systems obtained as extensions
of KC. Do you see this? You can then have other proof procedures such
as the natural deductions, Gentzen systems, and analytic tableau for these
logics as well. The natural deduction system can be extended in a very
natural way by adding a corresponding rule to the extra axioms to the
system KND. Table 6.1 shows additional inference rules for various logics.
Alternatively, you can get an inference rule corresponding to an axiom by
keeping the axiom in the denominator with an empty numerator.

The notions of proof and theorem are kept as they were except that we
admit the new inference rules in proofs. Similarly, theorems are not only
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KND-theorems but to be prefixed with the respective logics. The same
applies to the axiomatic systems also. See the following examples.
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Figure 6.4 Modal logics.

Table 6.1 Natural Deduction: Additional Rules

System Rule of Inference System Rule of Inference

KND No extra rule TND
�X
X

BND
X

�♦X
DND

�X
♦X

4ND
�X

��X
5ND

♦X
�♦X

6ND
�X
♦X

,
♦X
�X

7ND
¬�(X ∧�X → Y )
�(Y ∧�Y → X

EXAMPLE 6.27 Construct (a) K4ND and (b) K4C proofs to show that

` �p ∧�q → ��p ∧��q

Solution (a) Here is a proof of `K4ND �p ∧�q → ��p ∧��q :
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1. �p ∧�q CP

2. �(�p ∧�q) 4ND

p−−−−−−−−−−−−−−− q
| 3. �p ∧�q �e |
| 4. �p ∧ e |
x−−−−−−−−−−−−−−− y

5. ��p �i

p−−−−−−−−−−−−−−− q
| 6. �p ∧�q 1, �e |
| 7. �q ∧ e |
x−−−−−−−−−−−−−−− y

8. ��q �i

9. ��p ∧��q 5, 8, ∧i

10. (�p ∧�q)→ ��p ∧��q → i

(b) The following is a proof of `K4C �p ∧�q → ��p ∧��q :

1. �p ∧�q → �(�p→ �q) Axiom-4

2. �p ∧�q → �p PC

3. �(�p ∧�q)→ ��p R

4. �p ∧�q → �q PC

5. �(�p ∧�q)→ ��q R

6. �(�p ∧�q)→ ��p ∧��q 3, 5, PC

7. �p ∧�q → ��p ∧��q 1, 6, HS

EXAMPLE 6.28 Show that in K45ND, ` p→ �♦p.
Solution

1. p CP

2. �¬p CP

3. ¬p TND

4. ⊥ 1, 3, ¬e

5. ¬�¬p ¬i
6. �¬�¬p 5ND

7. p→ �¬�¬p → i

8. p→ �♦p Def. of ♦

EXAMPLE 6.29 Construct a KT5ND proof for ` ♦p→ ♦�♦p.
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Solution

1. ♦p CP

2. ¬♦�♦p CP

3. ¬¬�¬�♦p Def. of ♦
4. �¬�♦p ¬¬e
5. ¬�♦p TND

6. �♦p 1, 5ND

7. ⊥ ¬e

8. ♦�♦p ¬e

9. ♦p→ ♦�♦p Def. of ♦

Similarly, analytic tableau for the logic K is extended for other logics.
The additional rules for expanding any path of a tableau are given below:

K : No Additional Rules

T :
σ �X
σ X

σ ¬♦X
σ ¬X

B :
σ.n �X
σ X

σ.n ¬♦X
σ ¬X

D :
σ �X
σ ♦X

σ ¬♦X
σ ¬�X

4 :
σ �X
σ.n �X

σ ¬♦X
σ.n ¬♦X

5 :
σ �X
σ.n �X

σ ¬♦X
σ.n ¬♦X

σ.n �X
σ �X

σ.n ¬♦X
σ ¬♦X

6 :
σ �X
σ ♦X

σ ¬♦X
σ ¬�X

σ ♦X
σ �X

σ ¬�X
σ ¬♦X

7 :
σ ¬�(X ∧�X → Y )
σ �(Y ∧�Y → X)

σ ♦(X ∧�X ∧ ¬Y )
σ ¬♦(Y ∧�Y ∧ ¬X)

Try to solve the following examples yourself before reading the solutions.

EXAMPLE 6.30 Show by analytic tableau that `B ♦�X → X.

Solution In the following tableau, the rule B is applied on the last line.
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1 ¬(♦�X → X)

1 ♦�X

1 ¬X
1.1 �X

1 X

×

EXAMPLE 6.31 Show that `T (�(X ∨ Y ) ∧ ¬X)→ Y .
Solution In the proof below, where is the rule T applied?

1 ¬(�(X ∨ Y ) ∧ ¬X)→ Y

1 �(X ∨ Y ) ∧ ¬X
1 ¬Y

1 �(X ∨ Y )

1 ¬X
1 X 1 Y

× ×

EXAMPLE 6.32 Show �♦(�X → �♦Y ) |=w (�X → �♦Y ), using the
analytic tableau in KT4.
Solution In the proof below, where is the rule KT4 used and why does
the proof show the weak entailment?

1 �♦(�X → �♦Y )

1 ¬(�X → �♦Y )

1 �X

1 ¬�♦Y
1.1 ¬♦Y
1.1 �X

1.1 ♦(�X → �♦Y )

1.1.1 �X → �♦Y
1.1.1 ¬�X 1.1.1 �♦Y

1.1.1 �X 1.1.1 ♦Y
× 1.1.1 ¬♦Y

×

EXAMPLE 6.33 In KT45, show by analytic tableau that ♦�X |=w �X.
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Solution Find out where the rule KT45 is used. See why the prefix ‘1.2’
is introduced. Can you close the tableau somewhere before the last line?

1 ♦�X

1 ¬�X

1.1 �X

1.2 ¬X
1 �X

1.2 X

×

We have not proved the adequacy of analytic tableau or the natural
deduction method. In the above examples, the adequacy results have been
implicitly used. Try to prove them. Moreover, the strong adequacy of
the tableau method follows when you have a generalized consequence with
global and local assumptions; prove this result.

6.6 Various Modalities

The modal logics, as constructed in Section 6.5, are an interplay of axioms
and frame properties. Do they actually play a role in representing various
modalities? In this section, we will discuss some of the practical issues in
representing modalities such as knowledge and belief. You have already
seen some of these in Section 6.1. Modalities may express the necessity
or the possibility of truth, convenience, lawfulness, certainty, agreement,
acceptance, quotations, temporality, belief, contingency, knowledge, exe-
cution of programs, etc. Look at the emphasized phrases that express
modalities in the following sentences:

It is necessarily true that moon is made of cheese.

It is possible that the morning star is the evening star.

It is convenient to have your residence near your workplace.

It is unlawful for Indians to smoke in a public place.

It is certain that Plato was a student of Socrates.

It is doubtful whether Descartes had doubt over everything.

It is allowed by the authorities to park your vehicles here.

It is said by the ancients that if you cannot decide now, then you can
never decide.

Yesterday he was in a jolly mood.

Today morning he is depressed.

Sun will rise in the east for all time to come.
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I believe that you will certainly like this book.

It is a belief that each algorithm is a Turing machine.

It is a fact that Turing was happier towards the end of his life.

I know it very well that Hausdorff committed suicide.

It is common knowledge that Bertrand Russell married thrice.

After the execution of the program P, the hard disk will burn.

All the emphasized phrases in the above sentences are modalities of some
sort. Some of them are modalities of truth (alethic), some are temporal
modalities, some are obligatory (deontic) modalities, some are modalities
of knowledge and belief (doxastic), etc. Our plan is to symbolize such
modalities by the two symbols � and ♦. For example, we may translate
the phrase ‘it is necessarily true that p’ as �p. Then, ‘it is possibly true
that’ will be translated to ♦p. Similarly, we may translate ‘I believe that
p’ to �p. But then we assume implicitly that both the modalities ‘it is
necessarily true that’ and ‘I believe that’ do not occur in the same context.
If they do occur in some context, then we may have to invent new symbols
for representing them.

Note that different modalities may follow different logics; and on de-
ciding which logic would be more suitable for arguing about a particular
modality is always debatable. However, certain modalities are well under-
stood and their governing principles are more or less clear.

In case we represent the modality ‘it is necessarily true that p’ as �p, we
accept the mp �p→ p to hold since it represents the acceptable assertion:
“If p is necessarily true, then p is true”. Thus, in the problem domain
of necessarily true and possibly true, we will be translating our informal
sentences to the modal propositions in the formal language of the logic
K. But there can be various views. Suppose that the necessity here is
interpreted as logical necessity. Then, if p is necessarily true, so is �p. This
would force us to assume that in our problem domain, the mp �p→ ��p
must hold. But if we read �p as the physical necessity, then �p → ��p
would no more be valid since physical laws of the universe need not be
physically necessary.

Further, if we read �p as ‘I believe that’ then, �p → p need not be
valid. This happens because, for example, even if I believe that P 6= NP,
it need not be so. I may believe that ghosts exist, but they may not. Thus
the logic of beliefs cannot have �p → p as a valid mp. Depending upon
the problem domain, the meaning of the modal connectives � and ♦ would
change, and then you have to choose the appropriate logic. If none of the
standard logics seem to be appropriate for some reason or the other, you
may have to create new logics.

Exercise 6.17 For this exercise, use the following abbreviations for read-
ing the table given below. If � is interpreted as given in the leftmost column
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of the table, see that the corresponding modal propositions in the corre-
sponding columns having entry 1 hold. Give reasons why the mps having
corresponding entry 0 do not hold.

A : �p→ p B : �p→ ��p

C : ♦p→ �♦p D : ♦>
E : �p→ ♦p F : �p ∨�¬p
G : �(p→ q) ∧�p→ �q H : ♦p ∧ ♦q → ♦(p ∧ q)

�X A B C D E F G H

It is necessarily true that X 1 1 1 1 1 0 1 0

It shall be the case that X 0 1 0 0 0 0 1 0

It should be the case that X 0 0 0 1 1 0 1 0

You believe that X 0 1 1 1 1 0 1 0

You know that X 1 1 1 1 1 0 1 0

After execution of the 0 0 0 0 0 0 1 0
program P, X holds

In the following, you will see some of the modalities of Exercise 6.17
and their formalizations. Note that we may end up at a multimodal logic
if various modalities do occur in the same context. But the new modal
connectives will necessarily be similar to our basic ones, may be, with
different names.

A Logic of Knowledge

Suppose that we want to build up a logic for handling knowledge of an
agent A. We would translate the phrase ‘A knows that p’ to �p. Then,
the dual modal operator ♦ is read as “it is possible for all that A knows
that . . .” If there is more than one agent, then we have to invent more
symbols. The multimodal logic would then have at least two modal oper-
ators corresponding to each agent. In such cases, we use the small letter
corresponding to an agent’s name as the subscript of the modal operator.
The scheme of symbolization is

�xp : ‘X knows that p’, and

♦xp : ‘it is possible for all that X knows that p’.

Then, �a and �b will be treated as two different symbols, one for the
knowledge of the agent A, and the other for the knowledge of the agent B.
Note that you can interpret �a also as “it follows from whatever A knows
that” or as “A is entitled to know that”, etc. What about the axioms of
such a logic? The axioms of this logic will include all the tautologies of PC
and three more:
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(LK1) �x(p→ q)→ (�xp→ �xq)

(LK2) �xp→ p

(LK3) �xp→ �x�xp

The rules of inference of the logic of knowledge are the modus pones
and the rule of necessitation as in K.

If you read �x as �, then LK1 is simply the axiom K, LK2 is the axiom
T, and LK3 is the axiom 4. Hence the logic you get is simply KT4 for each
agent. In this multimodal logic of knowledge, the knower (the agent) is
assumed to be logically omniscient, for, once he knows p, he also knows all
the consequences of p. The axiom LK3 says that one cannot know p and
yet fail to know that he knows it. This is why LK3 is called the axiom or
the principle of positive introspection.

We may take another stand by replacing LK3 by LK4, as:

(LK4) ¬�xp→ �x¬�xp

This says that if one (the agent X) does not know p, then he knows that he
does not know p, the principle of negative introspection. So you see, nothing
is conclusive here; it all depends upon what you want to symbolize, and
which properties you want to keep and which to discard. Suppose that you
want to interpret the modal operators as in the following:

�x : ‘the agent X believes that p’, and

♦x : ‘it is compatible with whatever X believes that’.

Then, the same logic KT4 (for each agent) might work. However, beliefs are
more problematic than knowledge. An agent is not required to be entirely
consistent on the set of his beliefs. Try making a better logic than KT4 for
understanding the beliefs!

A Temporal Logic

When there is a reference to time, we think of it as a linear extent, just as
the real line, but with a varying reference point unlike a fixed origin. For
example, when you tell me, “Yesterday, Sam was in a jolly mood”, your
reference is a time interval called ‘today’. The sentence ‘Sam is in a jolly
mood’ may be devoid of any temporal concern. To make temporality more
effective you might fill the blank-modality with a time index. Thus you
may consider the sentence:

Sam is in a jolly mood at time t.

In so doing, the sentence “Sam is in a jolly mood” is viewed no longer
as a whole sentence, but just as a property of some time point, say, of t.
You may universally or existentially quantify over this variable t to get a
(whole) sentence:
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For all time t, Sam is in a jolly mood.

For some time t, Sam is in a jolly mood.

Interpreting the temporality as a modal operator, the sentences above can
be rewritten, respectively, as

� (Sam is in a jolly mood)

♦ (Sam is in a jolly mood)

This reading of � and ♦ would naturally give way to the logic K, as you can
see that the formulas p → ♦p, �p → p are true in any situation, whereas
♦p→ p, p→ �p are not.

If you want to operate with past and present as two connectives, instead
of ‘for all time’ or ‘for some time’, then you would have to introduce two
modal operators for past and future separately. Here is one such scheme:

Fp : It will sometime be the case that p.

Pp : It was sometimes the case that p.

Gp : It will always be the case that p.

Hp : It was always the case that p.

Here, Gp corresponds to the �-future, Hp to �-past, Fp to ♦-future, and
Pp corresponds to ♦-past. This symbolization brings in a bimodal logic
with two types of �’s and two types of ♦’s. However, there is a marked
difference between this logic and the logic K. For example,

G(Sam is in a jolly mood)

is read as

Sam will always be in a jolly mood.

whereas the sentence “Sam is in a jolly mood” is interpreted as “Sam is in
a jolly mood now”. So that the mp

G(Sam is in a jolly mood)→ (Sam is in a jolly mood)

is no longer valid. That is, in this logic, we cannot assert that �p → p
holds. On the other hand, Gp → Fp (i.e., �p → ♦p) holds. It says that
if p will always be true then at some time p will be true. Similarly, since
temporal order is transitive, Gp→ GGp is also valid.

As another variant, if you take �p ≡ p ∧ Gp and ♦p ≡ p ∨ Fp, then
�p → p holds. However, ♦p → �♦p does not hold. For example, take
p as the sentence “Scientists are able to discover a cure for cancer”. You
can imagine a world where, in some future time, p will hold, i.e., ♦p holds
(now). But, in no future time to that time the cure can again be discovered
since it would have been discovered by then. That is, �♦p does not hold.

In the next section, we will describe another temporal logic which helps
in verifying the properties of a real system.
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6.7 Computation Tree Logic

Consider an elevator operating in a multistorey building. We want to
develop a formal language to express various states and functionality of
the elevator. For example, consider representing, in our language:

An upward going elevator at the third floor keeps on going upward when
it has some passengers who wish to go to the fourth floor.

Of course, you can simply take the whole sentence as an atomic proposition
in PL. Or, you may symbolize in FL by identifying the predicates. But that
would not help much if you want to verify this property of the elevator after
designing its switching circuit.

As a preliminary to symbolization, let us have the integer variables
floor and direction. Now, floor = 2 means that the elevator is on the
second floor, and direction = 1 means that it is going upward. Similarly,
direction = −1 tells that its movement is downward, and direction = 0
shows that it is idle. The phrase ‘it has a passenger wishing to go to fifth
floor’ would mean that someone has pressed the No. 5 button. That is,
we introduce another integer variable, buttonpressed so that this state is
represented as buttonpressed = 5. Then, our sentence (quoted above) will
be translated as

for all possible states of the elevator starting from any state,
((floor = 2 ∧ direction = 1 ∧ buttonpressed = 5) →
(for all possible start states, (direction = 1 until floor = 4)))

The temporality in the above ‘until’ cannot be omitted here. In FL, you
would have translated ‘until’ to the connective ∨; in this case, it is insuffi-
cient. So, we must have a way in working with time. Here, it is enough to
think of time as a discrete linearly ordered set just as the set of integers or
natural numbers. (Will a finite segment of natural numbers suffice?)

Sometimes, we need to consider branching time. For example, consider
a computing system where many processors are run in parallel and they
might request to use certain other processes time to time. Here, once a
job is submitted, it is distributed by a scheduler; the fragments, so to say,
are to be worked out by many processes. Process 1 is doing its part and
for it, time goes linearly in a discrete way. For Process 2, again, time goes
linearly in a discrete way. For the scheduler, time goes in a branching way,
looking at the different processes and their requests. In such a situation,
suppose that a process has started but it is not yet ready. Then, we have
a property to be verified, namely,

It is possible to get a state where started holds but ready does not.

Assume that started and ready are the propositions with their obvious
meanings. Then the above sentence will be formalized as

It is possible for a state that (started ∧ ¬ready)
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The sentence “for each state, if a request occurs, then it will eventually
be acknowledged” will similarly be translated to “for all possible states
starting with any state, (requested→ for any starting state there will be a
future state where (acknowledged))”. To have a symbolic way of writing
such sentences, we devise a scheme. We will use the mnemonics:

A : for all possible states E : for some possible states
F : for some future state G : for all future states
X : for the next state U : for expressing ‘until’

Then our connectives are:

AX, EX, AF, EF, AG, EG, A[ ·U · ], E[ ·U · ]

Exercise 6.18 Plugging in the meanings of the individual letters, write
in words what the above connectives mean.

For propositions p, q, these connectives are used as follows:

AXp, EXp, AFp, EFp, AGp, EGp, A[p U q], E[p U q]

We use the square brackets in the last two connectives, only as a con-
vention. It has been followed in a tool called SMV model checker, which
uses this logic for verifying the real systems.

Formally, the language of computation tree logic, or CTL, for short,
has the (well formed) formulas defined by the following grammar:

w ::= > |⊥ | p | ¬w | (w∧w) | (w∨w) | (w → w) |AXw |EXw |AGw |
EGw |AFw |EFw |E[wU w] |A[wU w]

where p is any atomic formula (atomic proposition in PL). As you have
sufficient experience in tackling syntax, we will not go to parse trees and
their uniqueness; you can prove it as well. Here are some examples of
CTL-formulas:

¬EFA[p U q], AF (p→ EGq), E[p U A[q U r]],

(EF (E[p U ((p ∧ q) ∧A[q U ¬p ])]→ AG(p ∨ q))
whereas the following are not CTL-formulas (Why?):

AF (p U q), A¬G(p ∧ q), EG[(p U q)→ (p U r)]

So, be careful with brackets larking around U. You can define subformulas
etc., as usual. Now, what is the semantics of CTL? As is done for any modal
logic, CTL, a temporal logic will also have a possible world semantics.

A model for CTL is a triple M = (W,R,), where W is a set of worlds,
a set of possible states of computation, R is the accessible relation over
W , and  is the satisfaction relation giving details of which world satis-
fies which atomic formulas. A model is represented as a directed graph
with nodes as the states annotated with the propositions (atomic formu-
las) which are satisfied there, and the accessibility relation is represented
as the set of edges between the states. Whenever uRv holds, the graph has
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an edge u - v , as earlier. This edge may be interpreted as “during
computation, there might be a transition from the state u to the state v”.
That is, v is the next immediate state to u. Given a CTL formula p, we
write M p whenever s p holds for any state s ∈ W. The relation s p
(shorthand for M, s p) extends the definition of the given relation  from
atomic formulas or propositions to all formulas by the following rules:

1. s >, s 6⊥, for all s ∈W.
2. for any s ∈W, s p, for atomic propositions p as it has been

mentioned in the model.
3. s ¬q iff s 6q, for any s ∈W.
4. s q ∧ r iff s q and s r, for any s ∈W.
5. s q ∨ r iff s q or s r, for any s ∈W.
6. s q → r iff s 6q or s r, for any s ∈W.
7. s AXq iff for all states s′ with s−→s′, s′ q.

(AX stands for ‘in every next state’)
8. s EXq iff for some state s′ with s−→s′, s′ q.

(EX stands for ‘in some next state’)
9. s AFq iff for all paths of the form s1−→s2−→s3−→ . . . , with

s1 = s, there is an si such that si q.
(AF stands for “ for all computation paths, beginning with s, there
will be some future state such that”)

10. s EFq iff for some path of the form s1−→s2−→s3−→ . . . , with
s1 = s, there is an si such that si q.
(EF stands for “for some computation path, beginning with s, there
will be some future state such that”)

11. s AGq iff for all paths of the form s1−→s2−→s3−→ . . . with
s1 = s, and all si along the path, si q.

(AG stands for “for all computation paths, beginning with s, and for
all future states”)

12. s EGq iff for some path of the form s1−→s2−→s3−→ . . . , with
s1 = s, and all si along such a path, si q.
(EG stands for “for all computation paths, beginning with s, there
will be some future state along such a path such that”)

13. s A[q U r] iff for all paths of the form s1−→s2−→s3−→ . . . , with
s1 = s, there is an si along the path such that si r, and for each
j < i, sj q. (A[·U ·] stands for “all computation paths, beginning
with s, satisfy q until r”)

14. s E[q U r] iff for some path of the form s1−→s2−→s3−→ . . . ,
with s1 = s, there is an si along the path such that si r, and for
each j < i, sj q. (E[·U ·] stands for “some computation path,
beginning with s, satisfies q until r”)



328 Modal Logics

Note that in this semantics, the future of a state includes the state itself.
The computation paths referred to above is obtained from the (transition)
graph of a model by unwinding the graph into infinite trees. For example,
if a model has the graph (omitting  relation):

s1 s3

s2

�
�

�
��� @

@
@

@@R
-

	
Here, a computation path beginning with s1 is

s1−→s2−→s3−→s3−→s3−→ . . .

Another computation path beginning with s1 is

s1−→s3−→s3−→s3−→s3−→ . . .

To check whether in a model, a state s satisfies a CTL formula, the
computation tree is constructed. Since this tree contains all computation
paths beginning with s, one has to check whether  for the formula holds
on these paths. The tree of all computation paths beginning with s1 is
given in Figure 6.5.

s1

s2 s3

s3 s3

s3 s3

�
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@
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Figure 6.5 Computation tree.

EXAMPLE 6.34 Let M be the model as given by the following graph.
Let Y be the CTL formula [EG(r ∨ q)U AFt]→ AXr. Determine whether
s1 Y and/or s3 Y.

s1
p, q

s2
q, r

s3
r

s4
p, t

-

-

�

?

6M :

Solution The computation tree beginning with s1 is given in Figure 6.6.
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Figure 6.6 Computation tree for s1.
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Figure 6.7 Computation tree for s3.

[In Figure 6.7, τ4 means the tree of s4 repeated thereafter. Similarly, τ1 is
the tree for s1 to be appended there. ]
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For Y to be true at the state s1, we see that

s1  [EG(r ∨ q)U AFt]→ AXr iff s1 6 [EG(r ∨ q)U AFt] or s1 AXr

We take the simpler case first. s1  AXr iff for every next state s to
s1, s  r. The ‘next states’ of s1 are s2 and s3. As s2  r and s3  r, we
conclude that s1 AXr. Therefore, s1  [EG(r ∨ q)U AFt]→ AXr.

For s3 Y, we consider the next states of s3; they are s4 and s3. The
computation tree with all paths beginning with s3 is given in Figure 6.7.
We see that s3  r but s4 6 r. Hence s3 6AXr. We must check the other
alternative, i.e., whether s3 6 [EG(r∨ q)U AFt]. This happens if there is a
computation path beginning with s3 which falsifies “EG(r∨q) until AFt ”.

Let us take the leftmost path in the computation tree of Figure 6.7;
which is s3−→s3−→· · · . We want to check whether this path falsifies the
sentence “EG(r ∨ q) until AFt ”. This means that either s3 6EG(r ∨ q)
or s3 6 AFt. (Why?) Check the simpler one first. s3  AFt iff for all
computation paths beginning with s3, there is a future state satisfying t.
From the computation tree of s3, we see that s1 is a future state and s1 6 t.
Therefore, s3 6AFt. Consequently, s3 6A[EG(r∨q)U AFt]. Thus, s3 Y.

Exercise 6.19 Check the following with the model M as given below.

(a) s1 EX(q ∧ r) (b) s1 ¬AX(q ∧ r) (c) s1 EF (p ∧ r)
(d) s2 EGr ∧AGr (e) s1 AFr ∨A[p U r] (f) s1 E[(p ∧ q)U r]

s1 s3

s2

�
�

�
��� @

@
@

@@R
-

�
�

�
�

��	

p, q

q, r

r

M :

Exercise 6.20 Define equivalence of two CTL formulas by q ≡ r iff any
state in any model which satisfies q also satisfies r and vice versa. Then
show that

(a)AF¬t ≡ ¬EGt (b)EF¬t ≡ ¬AGt (c) AX¬t ≡ ¬EXt
(d)AFt ≡ A[>U t] (e) EFt ≡ E[>U t] (f) Equivalences of PL.

In fact, any model of CTL is an abstraction of any transition system
such as concurrent and reactive systems, networks, etc. We assume that
you know how to represent such a system with a graph. Your aim is to
verify whether such a system satisfies certain properties. These properties
are now represented as CTL formulas, by looking at the satisfaction (truth)
at each state (world) of the model. You have seen in Example 6.19 how
cumbersome and lengthy it is to check this satisfaction relation. Once we
have a finite model, programs can be written to do this repetitive job.
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These programs are called model checkers. SMV is one such model
checker. There are also other model checkers using specification language
as CTL. Note that it all depends upon how you visualize time and the
reactions of the system components. In such a scenario of model checking,
you have a real system for which some properties are to be verified. Then,
with the model checker, you will be doing the following:

• Model the real system using the description language (such as SMV)
of the model checker arriving at an abstract model M .

• Translate the properties of the real system which are to be verified,
to the specification language (such as CTL) of the model checker and
arrive at a formula p.

• Run the model checker with inputs M and p to determine whether
M |= p.

It is of much practical importance to develop model checkers which use
very general specification languages so that interesting properties of real
systems can be checked efficiently.

SUMMARY

In this chapter, you have learnt how to handle various modalities. The
modalities might be pertaining to truth, knowledge, belief, or even beha-
viour of real systems. We have taken a simplistic approach of introducing
new modal connectives (of necessity, �, and possibility, ♦) and arguing
about the minimum requirements they should satisfy. This approach has
led us to the logic K, the basic modal logic.

The semantics of K has taken us to the relational structures called
frames. A frame consists of a set, called the set of worlds, and a relation
on this set, called the accessibility relation. Each world is assumed to be
propositional in the sense that it is an interpretation of PL. A world thus
comes with a satisfaction relation; it is loaded with the information as to
which propositions are true in it and which are false. For a unified notation,
we have denoted the satisfaction relations of all the worlds with a single
symbol,  . The frame with this satisfaction relation (or truth) prescribed
for each world (possibly differently) is called a model. The models serve
the same job as interpretations in PL. The truth in each world is taken into
consideration in defining satisfaction of modal propositions in models, and
consequently, the notion of validity is introduced.

Trying for an axiomatization of the basic logic K has led us to consid-
ering various properties and other logical extensions. We have proved that
the axiomatic system KC is adequate to the logic K. The extensions of KC
obtained by addition of different axiom schemes have resulted in restrict-
ing frames to satisfy certain properties. Studying the interplay of addition
of axioms and frame properties, you have discovered the correspondence
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theorem and thereby many different modal logics. The modal logics so
obtained as modifications of the basic logic K have been found to be inter-
esting on their own right, addressing different problem domains. You have
also seen how natural deduction and the method of analytic tableau could
be extended to these logics.

As an application to real systems, you have learnt the computation
tree logic which uses the idea of branching time. To understand various
phenomena in computer science, you will naturally use logical models which
would differ quite a bit from the ones discussed here, though this will form
a basis for your future work. The following remarks about resources will
be of some help.

Modal logic is bread and butter for a computer scientist. Once it mixes
into the blood stream, it is impossible to find the source. However, one
must start somewhere, and this text is meant for that. This is a mere
introduction; so pointers must be given for pursuing the topics further. The
first text to discuss modal logic was by C. I. Lewis [45, 46]. You may start
with the texts [18, 55, 74]. In [74], you will also get another proof procedure,
called cancellation technique, a shortened form of Gentzen systems. For a
comprehensive introduction to modal logics, you may like the incomplete
Lemmon notes [44]. The semantics, called the possible world semantics
was invented by S. Kripke; thus the name K for the basic modal logic.
Some good texts exclusively meant for modal logics are [7, 32, 40]. These
books discuss adequacy of calculi and decidability of the modal logics via
finite models property in great detail. You will also find the references there
to be very resourceful. The natural deduction system and the tableau, as
presented here, have their origin in [21, 23]. Whatever discussed here is only
an introduction to the propositional modal logic. For a modal extension of
the first order logic, see [23]. For applications of modal logics for reasoning
about knowledge (originated by J. Hintikka) two good sources are [20, 53].
The computation tree logic as presented here is based on the chapter on
Verification by Model Checking in [41]. You will also find discussions of
two nice puzzles, the wise men puzzle and the muddy children puzzle in
[41]. This text has more information on the SMV (symbolic model verifier)
than given here. You may go on a search for materials after trying the
following problems.

PROBLEMS

1. Determine whether the following are valid in K. If one is not valid, then
in which modal logic is it valid?

(a) A→ �A (b) �A→ A (c) A→ ♦A (d) ♦A→ A

(e) �A→ ♦A (f) ♦A→ �A (g) �♦A→ ♦A (h) ♦A→ �♦A
(i) ��A→ �A (j) ♦♦A→ ♦A (k) ♦(A ∧B)→ ♦A ∧ ♦B
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2. Suppose that in a model, no world is accessible from the world u and
the world v is not accessible from any world. Let A be any proposition
(not an mp) and B be any mp. Use the symbol  for the satisfaction at a
world. What about the truth of the following?

(a) u A (b) u �A (c) u ♦A (d) u B

(e) u �B (f) u ♦B (g) v A (h) v �A

(i) v ♦A (j) v B (k) v �B (l) v ♦B
3. Consider the following models Mi = (Wi, Ri,) given in (a)−(e) and
the mps in (f)−(k). Determine which models satisfy which mps.

(a) W1 = {u1, u2, u3}, R1 = {(u1, u2), (u1, u3)}, u2 p, u3 q

(b) W2 = {v1, v2, v3}, R2 = {(v1, v2), (v2, v3)}, v2 p

(c) W3 = {w1, w2}, R3 = {(w1, w2)}, w2 p

(d) W4 = {x1, x2}, R4 = {(x1, x2), (x2, x2)}, x2 p

(e) W5 = {y1, y2, y3, y4, y5}, R5 = {(y1, y2), (y1, y3), (y2, y4), (y3, y5)},
y4 p, y5 q.

(f) �(p ∨ q)→ (�p ∨�q)

(g) �p→ ��p

(h) ♦p→ �♦p
(i) (♦�p ∧ ♦�q)→ ♦�(p ∧ q)
(j) �� · · ·�p→ p ; consider 1, 2, 3, . . . times � in succession.

(k) (♦p ∧ ♦q)→ ♦(p ∧ q)

4. Determine whether the following metastatements about K hold:

(a) |= �(A→ B)→ (�A→ �B) (b) |= �(A ∧B)↔ �A ∧�B

(c) |= (�A→ �B)→ �(A→ B) (d) �(A→ B) ≡ (♦A→ ♦B)

(e) �(A ∧B) ≡ (�A ∧�B) (f) �(A ∨B) ≡ (�A ∨�B)

(g) ♦(A ∧B) ≡ (♦A ∧ ♦B) (h) ♦(A ∨B) ≡ (♦A ∨ ♦B)

(i) ♦(A→ B)→ (♦A→ ♦B) (j) (♦A→ ♦B)→ ♦(A→ B)

(k) If |= A↔ B, then |= �A↔ �B.

5. Let M = (W,R,) be a model and w ∈ W be a world. Define the
connective � by “w  (A � B) iff for all z ∈ W, with wRz, z A → B.”
Is it true that (A � B) ≡ �(A → B)? Determine whether the following
hold in K:

(a) �A ≡ ¬A � A (b) �A ≡ (A � A) � A

(c) ♦A ≡ ¬(A→ ¬A) (d) |= B � (A � B)

(e) |= A � (B � B) (f) |= (A ∧ ¬A) � B

(g) |= ¬¬A � A (h) |= ((A � B) � A) � A
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(i) |= (¬A � A)→ A (j) |= (A � B)→ (¬B � ¬A)

(k) ((A � A) � A) ≡ (¬A � A)

6. Prove Theorem 6.14.

7. Prove that the modal proposition �A→ ♦A is valid in all serial models
(frames). What about the converse?

8. Prove that a frame is transitive iff every mp of the form �p→ ��p is
valid in it.

9. The modal logic S4.3 is characterized by the reflexive transitive and
linear frames. Show the following in the logic S4.3:

(a) �(�A→ �B) ∨�(�B → �A) is valid.

(b) A→ �♦A is invalid. [Construct such a frame to falsify it.]

(c) ♦�(A→ B)→ (♦�A→ ♦�B) is valid.

10. Prove the deduction theorems in the logics KT4 and KT45: Σ∪{A}|=wB
iff Σ |=w �A→ �B. What about other modal logics?

11. How do you formulate the a syntactic counterpart of the the metas-
tatement “If M |= Σ, then M |= A” in KC?

12. Consider the modal logics K, D, T, B, K4, KT4, and KT5. Denote the
phrase “L1 is a sublogic of L2” by L1 ⊂l L2. You know from Figure 6.4
that K⊂l D⊂l T⊂l B⊂l KT45, K⊂l K4⊂l KT4⊂l KT45, and T⊂l KT4.
Assuming transitivity of the relation ⊂l implicitly, show that these are the
only way ⊂l relation works on these logics.

13. Show in K that the consequence �A→ A |= ∅ ⇒ ��A→ A holds but
∅ |= �A→ A⇒ ��A→ A does not hold.

14. In the temporal logic of Section 6.6, consider the readings 1, 2, 3 of the
necessity (�) and possibility (♦) and then determine the validity status of
the mps (a)−(l) in the different readings.

Reading 1 : �A as GA and ♦A as FA

Reading 2 : �A as HA and ♦A as PA

Reading 3 : �A as A ∧ FA and ♦A as A ∨GA

(a) A→ ♦A (b) ♦A→ A (c) �A→ A (d) A→ �A

(e) �A→ ♦A (f) ♦A→ �A (g) A→ ��A (h) A→ �♦A
(i) A→ ♦�A (j) A→ ♦♦A (k) �A→ ��A (l) �A→ �♦A

15. Show that in the temporal logic of Section 6.6, with the Reading 3
(Problem 13 above) the assumptions PA→ �PA, ¬A ∧ ¬FA with a new
rule of inference: “From A → B derive ♦A → ♦B”, it follows that ¬♦A.
Further, with discrete time, see that this is simply the Diodorian argument :
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“Everything that is past and true is necessary. The impossible does not
follow from the possible. Therefore, nothing is possible which neither is
nor will be true.”

16. In the logic D, show that �A→ A is not valid. The reading of � here
is of obligation. It says that even if an action is obligatory, it does not mean
that it is performed. Thus, D stands for deontic logic, the logic of action.
Show that in D, |= �A→ ♦A but 6|= �A→ A.

17. Show in T that |= �(A ∨ ¬A. However, if �A ∨ ¬�A is assumed for
every A, then �A ≡ A. What if the logic K is used instead of T?

18. Show in K that an mp A is valid iff �A is valid.
[Hint : Use the tableau method.]

19. Discuss the differences (in any modal logic) between the following:

(a) A→ �A (b) A ≡ �A (c) |= A↔ �A

(d) |= A iff |= �A (e) If |= A, then |= �A

20. Give KND and tableau proofs (in K) of the following mps:

(a) (�A ∧�B)→ �(A ∧B) (b) �(A→ B)→ �A ∧�B

(c) (�A ∨�B)→ �(A ∧B) (d) (�A ∧ ♦B)→ ♦(A ∧B)

(e) (��A ∧�♦B)→ �♦(A ∧B)

21. Attempt a tableau proof of �(A ∨B)→ �A ∨�B, in K. Explain why
it fails. Why do you think this mp should not be valid?

22. Show by using analytic tableaux in K that “if ` �A, then ` A”.

23. Attempt analytic tableau proofs and natural deduction proofs of the
following mps in the logics K, T, B, D, K4, KT4, KT45 and determine
where you succeed.

(a) ♦�A→ A (b) �(A ∨B) ∧ ¬X → B

(c) ♦�A→ �A (d) �♦(�A→ �♦B)→ (�A→ �♦B)

(e) �A ∨�¬�A (g) (�A ∧�B)→ �(�A ∧�B)

(f) ♦(A→ �A) (h) (�♦A ∧�♦B)→ �♦(�♦A ∧�♦B)

(i) �A ∨�(�A→ B) (j) �(♦A→ A)→ �(♦¬A→ ¬A)

24. Construct appropriate models from the failed attempts of tableau
proofs of mps in Problem 22 which falsifies the corresponding mp.

25. Prove soundness of analytic tableau for the logics K, T, B, D, K4, KT4,
and KT45. What about the completeness?
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Some Other Logics

7.1 Introduction

Towards the end of Chapter 6, you exposed to the basics of logic engineer-
ing. The issue was: with a problem domain in view, what would be the most
appropriate logic to use? There are still some situations where an earlier
logic would naturally fit in; some other logic would be more appropriate. In
such a case, you may attempt at modifying an existing logic. This activity
of modification of an existing logic can broadly be of two kinds. One ap-
proach is to extend the vocabulary and then give an appropriate semantics.
These new logics talk about things that the earlier logics could not. An
example was FL as a modification of PL. The same way, modal logics have
also been obtained as extensions of PL. The other direction in creating new
logics is not by extension, but by restriction on validity. Logics obtained
this way have almost the same vocabulary as those of the earlier ones. They
differ from the earlier ones by way of a different or restricted semantics,
and having a different set of valid formulas. These logics are also obtained
by asserting different axioms rather than by prescribing a semantics. If
you follow this direction, you have then two options: the syntactic way of
proof theory where a different axiomatic system would result in a different
logic or the semantic way of giving different meanings to the symbols. The
logics so obtained are called deviant logics.

The new logics obtained either way may or may not keep the meta-
logical properties of the earlier ones. By picking out different properties
and then looking at various logics through the properties is another way
of classification. One of the many such properties, namely, monotonicity,
has attracted considerable attention. Recall the definition of Σ |= w in PL
or Σ ` w in PC, GSC, PND, PT, or in resolution. All these definitions
attempt at defining the consequence relation which we visualize to hold
between a set of propositions Σ and a proposition w. This notion can be
thought of as a relation and, then the semantic (model theoretic) consider-
ations or the syntactic derivations (proof theoretic) are simply mechanisms
to determine whether the pair (Σ, w) is an element of this relation or not.
Here, a logic is viewed as a mechanism to define the consequence relation.

Thus, defining a consequence relation (any relation between a set of

336
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formulas and a formula) arbitrarily leads to different logics. If the relations
coincide with the ones corresponding to the consequence relations of exist-
ing logics, then nothing has been achieved. However, the relation might
be different from the existing ones, and in such cases, you would get logics
very different from the existing ones. For example, suppose that you have a
mechanism to convert every proposition to an integer. (You can have many
such mechanisms since the set of propositions, in PL, is countable.) Define
the consequence relation C by (Σ, w) ∈ C iff the integer corresponding to w
divides the product of the integer representations of some of the elements
of Σ. Taking this as the consequence relation, you can get a deviant logic
of propositions.

But, do you really want any arbitrary relation between a set of propo-
sitions and a proposition to serve as a consequence relation? For ease in
reading, let us write (Σ, w) ∈ C as Σ � w. A suggestion was put forth by
A. Tarski and D. Scott to regard any such relation as a consequence relation
provided it possesses the following properties:

Reflexivity : If w ∈ Σ, then Σ � w.

Transitivity : If Σ � X and Σ ∪ {X} � w, then Σ � w.

Monotonicity : If Σ ⊆ Γ and Σ � w, then Γ � w.

Such are the monotonic logics. Both PL and FL are monotonic logics,
in the sense that their consequence relations satisfy all the above properties.
There are other logics which do not satisfy the monotonicity condition.
These logics are known as nonmonotonic logics. A nonmonotonic logic
can be an extended logic, or a deviant logic, depending upon whether it
involves a nontrivial extension of vocabulary or a reinterpretation of the
same vocabulary.

In this chapter, we plan to discuss logics keeping in mind both the
classes. The treatment is very brief, and it aims to show you how so
many varieties of logics have been invented out of necessity. You will, most
probably, create your own logic which may fit a new situation more tightly
than any of the logics known as of today.

7.2 Intuitionistic Logic

You have seen a proof (in FL) of existence of two algebraic irrational num-
bers a and b such that ab is rational. Specifically, the proof uses the idea
that either

√
2
√

2 is rational, or else, (
√

2
√

2)
√

2 does the job. However,
it does not exhibit, in particular, which of the two pairs, (

√
2,
√

2) or
(
√

2
√

2,
√

2), serves the purpose of (a, b).
Some mathematicians, now called intuitionists, object to accepting such

a proof. The objection is that we do not know whether
√

2
√

2 is rational
or irrational. Therefore, we do not yet have, at our disposal, a pair of
irrationals (a, b) with the required property.
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According to this school of thought, a proposition p∨q can be true only
when at least one of them has been demonstrated to be true. This implies
that the law of excluded middle cannot be regarded as a law at all. We
know of many twin primes (a pair of positive integers (m,m+ 2) is a twin
prime if both m,m + 2 are primes), but we do not know whether there
is a twin prime bigger than (both m,m + 2 bigger than) 101010

. We also
do not know whether there is no twin prime bigger than 101010

. Hence, we
cannot, at this stage, accept the truth of the sentence: “Either there is twin
prime bigger than 101010

or there is no twin prime bigger than 101010
.” This

is the basic insight of L. E. J. Brower who says that if the law of excluded
middle is accepted, then we are assuming that every mathematical problem
is solvable, and this is certainly objectionable.

Look at the consequences of rejecting the law of excluded middle. In
its absence, we cannot assert the law of double negation in PL. Though
A → ¬¬A would still remain valid, its converse ¬¬A → A will no more
hold. So, in the intuitionistic logic, Int, negation must have a different
meaning.

Exercise 7.1 Why is it that rejection of the law of excluded middle leads
to the rejection of the validity of ¬¬A → A? Why does the conditional
A→ ¬¬A still hold? [Hint : Use PC instead of PL.]
Exercise 7.2 Show that the rejection of the law of excluded middle leads
to the invalidity of ¬(A ∧B)→ (¬A ∨ ¬B).

Similarly, a contradiction in Int cannot be understood as any statement
of the form A ∧ ¬A, rather an instance of it such as 0 = 1 or 3 × 5 = 16.
Note that Int is the intuitionistic propositional logic; so it has the
same vocabulary as that of PL. We do not take ↔ into its vocabulary
right now since this can be expressed in terms of → and ∧ as in PC. Int
assigns different meanings to the connectives; a variant logic, indeed. We
follow the reverse process here to the one taken historically. An earlier
axiomatization of Int was by A. Heyting, in which axioms and the law of
uniform substitution had been used. From among many axiomatizations,
we choose one by M. Dummett, which uses axiom schemes. It is as follows:

Axiom Schemes of Int:

(I1) A→ (B → A)

(I2) A→ (B → (A ∧B))

(I3) (A ∧B)→ A

(I4) (A ∧B)→ B

(I5) A→ (A ∨B)

(I6) B → (A ∨B)

(I7) (A ∨B)→ ((A→ C)→ ((B → C)→ C))
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(I8) (A→ B)→ ((A→ (B → C))→ (A→ C))

(I9) (A→ B)→ ((A→ ¬B)→ ¬A)

(I10) A→ (¬A→ B)

Rules of Inference of Int:

(MP)
A A→ B

B

A possible world semantics of Int uses the same idea of a frame and a
model as in the modal logics, except that all our frames are now reflexive
and transitive. That is, a model is a triple M = (W,R,), where W is a
nonempty set of worlds, R is a reflexive and transitive relation on W, and
 is a relation from W to the power set of all atomic propositions. The
relation  is extended to include all propositions in its domain, as

w ¬p iff for all z ∈W with wRz, z 6p
w  p ∧ q iff w p and w q.

w  p ∨ q iff w p or w q.

w  p→ q iff for all z ∈W with wRz, z 6p or z q.

Finally,

M |= p iff for all w ∈W, w p.

As assumed earlier, the completeness and the soundness of the ax-
iomatic system Int can be proved with respect to the above semantics.
However, since we use a possible world semantics for Int, it must have
some connection with modal logics. It can be verified that the following
translation (due to K. Gödel) of the logic S4 (KT4) holds. Writing the
translation by the map ∗, we have

p∗ = p

(¬p)∗ = ¬�p∗

(p ∨ q)∗ = �p∗ ∨�q∗

(p ∧ q)∗ = �p∗ ∧�q∗

(p→ q)∗ = �p∗ → �q∗

You can interpret � as ‘it is demonstrated that’. Now, rethink along
the lines of the two introducing illustrations above (that of ab and of the
twin primes).

What is the relation between PL-validity and Int-validity? Note that
all axioms of Int are PL-valid, and the inference rule is MP, which is also
a valid consequence of PL. It follows (By induction? Induction on what?)
that every Int-valid proposition is PL-valid. The converse must not hold;
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otherwise, Int will be the same as PL! The relation is best understood by
noting that whenever p is PL-valid, its double negation ¬¬p is also PL-
valid. But this does not happen in Int. The following result (We will
not prove it, see [31]) explains the connection between PL and Int. We
write `PL for PL-validity (or PC-provability, consequences) and `Int for
Int-validity or Int-provability or Int-consequences.

Theorem 7.1 For a set of propositions Σ, let ¬¬Σ = {¬¬p : p ∈ Σ}. Let
A be any proposition. Then,

(a) Σ `PL A iff ¬¬Σ `Int ¬¬A (b) `PL ¬A iff `Int ¬A
Note that in part (b) of Theorem 7.1, ¬A cannot be replaced by A.

What is the difference between the statement in (b) and ‘`PL A iff `Int A’?
If A is a proposition that uses only ¬ and ∧, then `PL iff `Int . Prove it.
Again, the consequence relation does not have this property even in the
restricted language, with the only connective as ¬ and ∧. For example,
¬¬p `PL p but ¬¬p 6`Int p.

Theorem 7.1 suggests that all PL-theorems can have a translation into
Int since each theorem of PL is a theorem of Int, and some of Int-
theorems might be missing in PL. The following is such a translation of
PL-theorems to Int-theorems via the map † :

p† = ¬¬p
(p ∧ q)† = p† ∧ q†

(p ∨ q)† = ¬(¬p† ∧ ¬q†)
(p→ q)† = ¬(p† ∧ ¬q†)

This translation preserves consequences. However, if p† = ¬¬p is re-
placed by p† = p, then only theoremhood will be preserved, (see [30, 49]).
There is also one more semantics, called the set assignment semantics for
Int due to [16]. Other proof procedures for Int have also been developed.
Instead of PL, if you consider FL, you can get the intuitionistic first order
logic. See the summary to this chapter for suggested references.

7.3  Lukasiewicz Logics

Consider the sentence: “There will be an Indo-Pak war tomorrow”. Is it
true? Is it false? Since nothing about its truth or falsity is known today,
it is neither true nor false. But it is quite possible that tomorrow such
a war might break out. Its truth is beyond the classical bivalence. It is
something like an amoral action, which is neither moral nor immoral; it is
beyond morality. To take into account such propositions, which do come up
in abundance in day-to-day life, the bivalent logics like PL or FL would not
suffice. What about assigning a new truth value, with the understanding
that this new truth value does not say that ‘it is this much true’; but that,
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it is beyond the truth values of 0 and 1, representing ‘false’ and ‘true’. It
admits of another choice to the seemingly exhaustive dichotomy: “I can
accept it” or “I cannot accept it”.

Suppose that we agree to have one more truth value, say, 1
2 , in addition

to 0 and 1. As in PL, we start with >,⊥, and the propositional variables
as atoms and use the connectives ¬,∧, r,→ (we suppress ↔ for the time
being) to build up a formal language of propositions. The semantics of
the logic is, of course, different; we have to take three truth values into
consideration. Table 7.1 fixes the meanings of the connectives.

Table 7.1 Truth Table with Three Truth Values

p q ¬p p ∧ q p ∨ q p→ q

0 0 1 0 0 1
1
2 0 1

2 0 1
2

1
2

1 0 0 0 1 0

0 1
2 0 1

2 1
1
2

1
2

1
2

1
2 1

1 1
2

1
2 1 1

2

0 1 0 1 1
1
2 1 1

2 1 1

1 1 1 1 1

Exercise 7.3 Construct the truth table for↔, where p↔ q is defined as
(p→ q) ∧ (q → p).

Writing the truth value of a proposition p as t(p), a mapping, the table
above can be abbreviated to

t(>) = 1, t(⊥) = 0

t(¬p) = 1− t(p)
t(p ∧ q) = min {t(p), t(q)}
t(p ∨ q) = max {t(p), t(q)}
t(p→ q) = 1, if t(p) = t(q) = 1, else, t(p→ q) = max {1− t(p), t(q)}

Exercise 7.4 Verify the above properties of t(p).

Thus, the PC-tautology that p→ q is equivalent to ¬p∨q holds no more
in this three-valued logic. But now, what does it mean by equivalence?
Well, p ≡ q iff they have the same truth table. Formally, you can define
an interpretation as a map from all propositions to the set of truth values
{0, 1

2 , 1}, obeying the conditions given in the truth table. Alternatively,
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you can show that the map t(·) is well defined on the set of all propositions
(due to unique parsing), starting from a preliminary definition on the set
of atomic propositions. That defines the concept of an interpretation; each
such map is an interpretation. Then you can define equivalence by

p ≡ q iff t(p) = t(q) for any interpretation t.

We call this three-valued logic, L3 after  Lukasiewicz.

Exercise 7.5 Show that in L3, p ∨ ¬p 6≡ >.
The law of trivalence (like excluded middle), however, holds in L3. To

formulate this law, we introduce the indeterminate proposition in L3. Let
p be any propositional variable. Define a proposition ιp by

ιp $ p↔ ¬p
The proposition ιp is called an indeterminate proposition. The

truth table of ιp can be given as

p 0 1
2 1

ιp 0 1 0

Any proposition A equivalent to > is called an L3-tautology or an
L3-valid proposition, and is written as |=L3 A.

Exercise 7.6 Show that |=L3 p ∨ ¬p ∨ ιp. What are ι> and ι⊥?

The law of trivalence is the statement in Exercise 7.6:

p ∨ ¬p ∨ ιp ≡ > in L3 for any proposition p.

You can also check the following for any interpretation t in L3:

t(p→ q) = 1 iff t(p) ≤ t(q)
t(p↔ q) = 1 iff t(p) = t(q)

Let Σ be a set of propositions (in L3 now) and w be any proposition.
Define the validity of an L3-consequence by

Σ |=L3 w iff for every interpretation t, if t(A) = 1 for every A ∈ Σ,
then t(w) = 1.

You can check that the following consequences hold:

Modus Ponens : {p, p→ q} |=L3 q

Equivalence Substitution : p↔ q |=L3 A↔ A[p := q]

Uniform Substitution : If |=L3 B(p), then |=L3 B(q)

where A[p := q] is obtained from A by substituting some or all or no
occurrence of p in A by q, and B(q) is obtained from B(p) by substituting
every occurrence of p in B by q.

Moreover, J.  Lukasiewicz constructed L3 for arguing about ‘possibility’
and ‘necessity’ by using the following truth table:
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p �p ♦p

0 0 0
1
2 0 1

1 1 1

From the above data, it is clear that ♦p ≡ ¬p → p and �p ≡ ¬♦¬p.
(Verify.) Though A → �A is not L3-valid, we have |=L3 A → (A → �A).
This suggests a deduction theorem.

Theorem 7.2 (Deduction in L3) For any set Σ of propositions and any
propositions A,B, Σ ∪ {A} |=L3 B iff Σ |=L3 A→ (A→ B).

Exercise 7.7 Construct a truth table for p → (p → q) and show that
p→ (p→ q) ≡ ♦¬p ∨ q. Then, prove Theorem 7.2.

Further, we can have a translation of PL (or PC) into L3, which pre-
serves consequences. This is achieved via the translation map ∗ from PL
to L3 by

p∗ = p, for atomic propositions p

(¬p)∗ = p∗ → (p∗ → ¬(p∗ → p∗))

Σ∗ = {p∗ : p ∈ Σ}, for any set Σ of propositions.

Exercise 7.8 With ∗ as above, show that Σ |=PL A iff Σ∗ |=L3 A
∗. Also,

show in L3 that p ∨ q ≡ (p→ q)→ q and p ∧ q ≡ ¬(¬p ∨ ¬q).
Note that a translation such as the above identifies PL in L3. A simplis-

tic way of identifying both 1 and 1
2 with ‘true’, i.e., 1 in Pl would not do.

Similarly, identifying both 0 and 1
2 with 0 will also fail. (Why?) However,

any L3-tautology is vacuously a PL-tautology since the truth tables of con-
nectives in L3 restricted to the values of 0 and 1 are simply the PL-truth
tables.

The truth function σp defined by σp is 1
2 , for every value of p is not

definable from the connectives ¬,∧,∨, and →. This is so because, if it
were, then ¬σp and σp would be equivalent, forcing |=L3 ¬σp → σp to
hold. Since each L3-tautology is a PL-tautology, ¬σp → σp would also
be PL-valid. But this is obviously wrong as ¬A → A is not PL-valid.
This truth function σ is called the S lupecki operator . Consideration of the
S lupecki operator shows that for the truth functional completeness, the
connectives ¬,∧,∨ are not enough.

An adequate axiomatic system (see [82]) for L3 which uses ¬ and → as
in PC, has the following axiom schemes and the rule of inference:

Axiom Schemes for L3

(L1) A→ (B → A)

(L2) (A→ B)→ ((B → C)→ (A→ C))
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(L3) (¬A→ ¬B)→ (B → A)

(L4) ((A→ ¬A)→ A)→ A

Rule of Inference

(MP)
A A→ B

B

A generalization of  Lukasiewicz three-valued logic L3 has been obtained
by him and A. Tarski. We briefly mention its peculiarity here. The idea is
to view the truth values as any real number between 0 and 1, instead of
the three values 0, 1

2 , 1. An interpretation is taken as a map from the set
of atoms to the interval [0, 1]. This map is extended to all propositions by

t(¬p) = 1− t(p)
t(p→ q) = 1, if t(p) ≤ t(q), else, t(p→ q) = 1− t(p) + t(q)

t(p ∨ q) = max {t(p), t(q)}
t(p ∧ q) = min {t(p), t(q)}

Exercise 7.9 Look at t(p → q) above. Show that it is the same as the
one mentioned in L3 if the range of t is restricted to {0, 1

2 , 1}. Also, find
how t(p↔ q) is to be defined in the above.

Many logics can be defined using this scheme t of truth values, de-
pending upon what subset of the interval [0, 1] is fixed as the co-domain of
the interpretation t. The logics and their corresponding co-domain of the
interpretations are given as follows:

Logic Co-domain of interpretations

Ln { m
n−1 : 0 ≤ m ≤ n− 1}

Lℵ0 {m
n : 0 < m ≤ n, m, n ∈ N}

Lℵ [0, 1]

In all the cases, a valid proposition is defined as the one in which t(p) = 1
for all interpretations. For example, Lℵ has the valid propositions as all
p for which t(p) = 1 for every interpretation t with the co-domain as the
interval [0, 1]. In this scheme, we get many logics such as

L2, L3, L4, L5, . . . , Lℵ0 , Lℵ

Note that L2 is simply the propositional logic PL. Further, Ln 6= Ln+1,
and each valid proposition of Lm is also Ln-valid provided that n divides
m. Again, Lℵ0 is the same as Lℵ in the sense that their valid propositions
coincide. This is a nontrivial result (see [18]).

Exercise 7.10 Show that Lℵ can be axiomatized with the axiom schemes
L1, L2, L3, (A→ B) ∨ (B → A), and the inference rule MP.

Now, in view of these many-valued logics, what do you think of Int?
For a proposition p, you have ¬p,¬¬p, and ¬¬¬p is equivalent to ¬p in Int.
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So, is Int a three-valued logic? Is it L3, say, in the sense that Int-valid
propositions coincide with L3-valid propositions? Or, is the converse true?
It is again not so trivial a result. Gödel proved in 1932 that Int cannot be
characterized as any finite valued logic Ln (for n = 2, 3, 4, . . .).

Still there are other varieties of many-valued logics. An example is
Kleene’s three-valued logic which has also the same three truth values
0, 1

2 , 1. The difference between L3 and this logic is that here, when both
A,B are 1

2 , the formula A→ B is evaluated to 1 (Compare with L3, where
t(1

2 →
1
2) = 1

2). Similarly, you can define any other many-valued logic by
playing with the truth values and the connectives. However, Gödel’s result
that Int cannot be characterized by any such finite-valued logics still holds.
See the summary at the end of the chapter for sources if you are interested
in this (non)characterization result.

7.4 Probabilistic Logic

A doctor wants to decide whether a patient has the disease D after listening
to and examining the patient for symptoms. He only knows that certain
symptoms and certain diseases occur with so and so probabilities. (In this
section, we write p(·) for probabilities and not for denoting propositions.)
Let us write S → D to mean that the symptom S implies the infliction of
the disease D. To be specific, suppose that the doctor knows the following:

A1: A→ D holds with probability p1

A2: ¬A→ D holds with probability p2

A3: B → D holds with probability p3

When the patient exhibits the symptoms ¬A and B, the doctor wants to
determine whether the patient has the disease D. Note that the probabili-
ties assigned to the above statements are the doctor’s knowledge, i.e., they
are subjective. So, the diagnosis will also be subjective; it is his rational
opinion. It is rational in the sense that the final decision uses an objec-
tive procedure even on the subjective probabilities. He uses his subjective
probabilities to compute the probability of the patient suffering from the
disease D given that the patient exhibits the symptoms ¬A and B. The
doctor’s interest is in determining the conditional probability

p(D|¬A ∧B) =
p(D ∧ ¬A ∧B)
p(¬A ∧B)

However, such computations become all right when we have a probability
space of propositions and then a predefined probability measure (may be
subjective) on such a space, i.e., a probability distribution of propositions.
A probabilistic logic assumes all these. In the diagnosis problem, we may
consider the set of relevant propositions to be in the set

U = {A,B,A∧D,¬A,¬A∧D,B∧D,D,A∧B,¬A∧B,D∧¬A∧B}
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Then, we go for constructing the set of elementary propositions (not nec-
essarily atomic) so that a probability measure can be defined. In general,
the set E = {E1, E2, . . . , En} of elementary propositions will satisfy the
following properties:

1. Each of the relevant propositions is a disjunction of some elementary
propositions.

2. The elementary propositions are exhaustive: E1 ∨ . . . ∨ En ≡ >.
3. The elementary propositions are mutually exclusive, i.e., Ei∧Ej ≡ ⊥

for i 6= j.

Thus, in our diagnostic problem, we take the set E = {A,B,D,¬A,¬B,¬D}
assuming that A,B,D are atomic. Next, a probability measure is defined
on the set

E = E ∪ {>,⊥}

A probability measure is a function p : E → [0, 1] satisfying the following
properties:

1. For any X,Y ∈ E , p(X) ≥ 0.

2. p(>) = 1, p(⊥) = 0.

3. If X ∧ Y ≡ ⊥, then p(X ∨ Y ) = p(X) + p(Y ).

The probabilities are used to compute the required conditional proba-
bility. Note that the restrictions of a probability measure are imposed on
the subjective probabilities of a decision-maker here, the doctor. This is
the reason that a decision-maker who uses probabilistic logic is assumed
to be a rational agent. As you have guessed, probabilistic logic is rather a
logical methodology for decision making than a logic. One can go further
in deciding upon a consensus by taking opinions from experts for fixing the
subjective probabilities of elementary propositions. One may also resort to
statistical methods while arriving at a consensus. Look at the summary at
the end of this chapter for materials on this topic.

7.5 Possibilistic and Fuzzy Logic

In a probabilistic framework, it is not possible to assign a probability to
ignorance; we only assign a probability to what is known. On the contrary,
possibilistic logic is a logic of partial ignorance. And fuzzy logic is a logic
of vagueness. In this section, we will have a rough outline of the two types
of logics that deal with uncertainty and vagueness.

Consider the sentence s: Sam is tall. By introducing a variable h for
the height of Sam, you can translate the sentence to h = tall. If h takes
values from the set { tall, medium, short }, then the truth predicate Ph can
be evaluated to one value, depending upon whether h is tall, medium or
short. Say, Ph is either 1, 1

2 or 0 according as h is tall, medium, or short.
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Then the predicate Ph is called a crisp predicate, as it has definite values.
If height is allocated a value, say, between 100 cm and 250 cm, then Ph will
not have one of the many finite values; it is now referred to as a vague
predicate. The range of values, the closed interval U = [100 cm, 250 cm],
is our universe for height h, and Ph is a vague predicate defined on this
universe U. Since here the predicate Ph is unary, when it is crisp, it is just
a subset of U. What would happen if Ph is a vague predicate? It is clearly
not a subset, for we do not know or we cannot know for certainty which
elements of U are in Ph and which are not. In such a case, we say that Ph

is a fuzzy subset of the universe U.
A subset of a set U is characterized by its characteristic or indical

function χA : U → {0, 1}, by the rule that for any u ∈ U, u ∈ A iff
χA(u) = 1. In case A is a fuzzy subset of U, we identify this fuzzy subset
with the membership function µA : U → [0, 1]. Thus, any element u ∈ U
is a fuzzy member of the fuzzy subset A of U determined by its degree of
membership µA(u). (Imagine membership to admit of degrees rather than
being either 0 or 1.) If µA(u) = 1, then u ∈ A as in crisp subset case. If
µA(u) = 0, then u 6∈ A again as in the crisp subset case. If µA(u) = α
for 0 < α < 1, then the degree of membership of u in A is α. When Ph is
taken as fuzzy subset of U (as a vague predicate), we have a membership
function µPh

. For curtailing subscripts, write Ph as B. Then µB gives the
idea as to how much tall Sam is, or rather, “what is the degree of tallness
of Sam when his height is so and so”. Obviously, the following cases occur.

1. Crisp Sentences and Precise Information

Suppose that B = {150 cm }, i.e., we now know that Sam is 150 cm tall.
Here, B ⊆ U is a crisp subset of U. Depending upon whether we consider
150 cm as a height to be termed as tall or not, µB(s) will take a value in
{0, 1}. That is, the truth of the sentence s is either 0 (s is false) or 1 (s is
true): t(s) = µB(s) ∈ {0, 1}. Here, we know for precision, that Sam has so
and so height. We also have a crisp sentence since we have the information
whether this height is termed as tall or short. Thus the case is compared
to PL, where the truth of every sentence is either 0 or 1.

2. Crisp Sentences and Imprecise Information

Suppose that we know that Sam’s height is within 150 cm to 200 cm, i.e.,
we do not have precise information here. Suppose also that the meaning of
tall is crisp, i.e., if the height of a person is within a range, say, a to b in
centimetres, then he is called tall. Symbolically, the predicate ‘tallness’ is
identified with the crisp subset [a, b] ⊆ U. Then, the following cases are to
be considered:

(a) If B = [150, 200] ⊆ A = [a, b], then clearly, t(B) = 1; Sam is tall.

(b) If A ∩ [a, b] = ∅, then t(B) = 0; Sam is not tall.
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(c) If A∩ [a, b] 6= ∅ but A 6⊆ [a, b], then t(B) cannot be fixed to either 0
or 1. The sentence “Sam is tall” is possibly true or possibly false.

These situations are tackled by introducing a possibility measure π as

for any subset E ⊆ U π(E) = 1, if E ∩A 6= ∅, else, π(E) = 0.

Then the above cases correspond to:

(a) π(s) = 1, π(¬s) = 0.

(b) π(s) = 0, π(¬s) = 1.

(c) π(s) = 1, π(¬s) = 1.

The case π(s) = 0, π(¬s) = 0 leads to inconsistency; hence, it cannot occur.

3. Crisp Sentences and Fuzzy Information

Suppose that the meaning of tallness is crisp, i.e., we have a range of values
for tallness, say, if the height of anyone is in [a, b] ⊆ U, then he is called
tall. Assume also that our information on Sam’s height is fuzzy. That
is, B = Ph is now a fuzzy subset of U which, of course, is given by a
membership function µB. Then, our answer to the query ‘whether Sam is
tall’ will have a fuzzy answer, i.e., tallness of Sam will have the degree of
truth as µB(s).

4. Vague Sentences and Fuzzy Information

Here, both the sets representing tallness and Sam’s height are fuzzy subsets
of U. Suppose that S represents Sam’s height, i.e., S is a fuzzy subset of U
given by its membership function µS , and tallness is also a fuzzy subset B
of U given by its membership function µB. Then the answer to the query
‘whether Sam is tall’ will also be fuzzy. That is, the truth of the sentence
“Sam is tall” will take a fuzzy truth value in the interval [0, 1], depending
upon the values of µB and µS . For example, “Sam’s height is about 170 cm”
is a fuzzy sentence. Such a sentence is translated to a membership function
µS : [0, 1]→ [0, 1] defined as

µS(v) = sup {π(u) : µB(u) = v, u ∈ U}

Note that whenever µ−1
B (v) = ∅, µS(v) = 0 since the supremum over

an empty set is taken as 0. The values µS(v) is the grade of possibility
that the degree of truth of S is v. Then the truth value t(s) of the sentence
“Sam is tall” is approximated by the numbers N(s) and Π(s) given by

N(s) ≤ t(s) ≤ Π(s)

Π(s) = sup min {µB(u), π(u) : u ∈ U}

N(s) = 1−Π(¬s) = inf max {µB(u), 1− π(u) : u ∈ U}

This is the most general case, as all the earlier cases will fall into place by
regarding the fuzzy subsets as crisp. The function Π is called the possibility



Default Logic 349

measure and N is called the necessity measure so that the uncertainty or
fuzzy measure t(s) lies between the possibility and necessity.

The high rate at which work in fuzzy logic and fuzzy mathematics is
growing at present prevents a nonspecialist to catch up. However, it is wise
to brush up some basic literature so that it will be easy for you later when
some application domain demands fuzzy logic ideas. The summary at the
end of this chapter will help you make a good start.

7.6 Default Logic

In this section, we will briefly look at another way of dealing with vague-
ness. The vagueness here is associated to limitations of knowledge or in
its representation. For example, when we say that ‘birds fly’, we do not
mean that all birds fly without exception, nor do we assert that only some
birds fly. It is almost a general rule that birds fly; however, there might be
exceptions, as we know that penguins do not fly and that a wounded bird
may not fly. It is this kind of vagueness in knowledge or in the representa-
tion of knowledge that we want to look at. Such facts can be represented
by first order consequences such as

P (x) ∧ ¬ exception1(x) ∧ · · · ∧ ¬ exceptionm(x) |= Q(x)

In so doing, we are treating exceptions as general facts defeating the in-
tention of a ‘general rule’. We are also assuming that these are all possible
exceptions. Tomorrow, we may discover another species of birds which
might not fly! To tackle such cases, we introduce a type of rule, called
default.

If we know that tweety is a penguin, all penguins are birds, birds fly,
and penguins do not fly, then we should be able to conclude that tweety
does not fly. We would not just dispense with the facts by telling that the
facts are inconsistent. (Where is the inconsistency?) Here, we may take
the following as facts:

Each penguin is a bird.

Tweety is a bird.

Tweety is a penguin.

The sentence ‘birds fly’ will be taken not as a fact, but as a default rule
since this is the one that may admit of exceptions. The default rule is:

If x is a bird and it cannot be proved that x is a penguin, then deduce
that x flies.

Or, as a fraction:

x is a bird : x is not a penguin
x flies

.

Thus ,“ : x is not a penguin” would now mean
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“if it cannot be proved that x is not a penguin”

This can also be written as

“if it is consistent to assume that x is not a penguin”

Formally, a default (a default rule) looks like

u(x) : v1(x), . . . , vm(x)
w(x)

where u(x), v1(x), . . . , vm(x) and w(x) are well-formed formulas (of FL,
in general) whose free variables are among x1, . . . , xn, written here as a
single symbol x. The formula u(x) is called the prerequisite of the default.
The formulas v1(x) . . . , vm(x) are the justifications and w(x) is called the
consequent of the default. The meaning of the default is

If v1(x), . . . , vm(x) are consistent with what is already known, then
w(x) is inferred.

A default theory is a pair of sets ∆ = (D,W ), where D is a set of default
rules and W is a set of FL-sentences.

Default logic is a nonmonotonic logic in the sense that addition of new
facts may invalidate earlier established consequences. For example, with
the default theory ∆ = (D,W ), where W = {bird(tweety)} and D having
the single rule:

bird(x) : ¬ penguin(x)
flies(x)

we have a consequent flies(tweety).Now, withW ′ = W∪{penguin(tweety)},
we cannot deduce the consequent flies(tweety).

EXAMPLE 7.1 Suppose that we have a universe (constants) having
two members, say a and b. Assume that an object in this universe is not
an elf unless it is required to be. Moreover, at least one of a or b is an elf.
Then its default theory is

∆ = (D,W ) with W = {elf(a) ∨ elf(b)}, D =
{

: ¬ elf(x)
¬ elf(x)

}
.

The default rule in D says that “if it is consistent to assume that x is not
an elf, then deduce that x is not an elf”. Then, you see that neither elf(a)
nor elf(b) can be inferred from the single fact elf(a) ∨ elf(b). It suggests
that (as in PL or in FL) ¬ elf(a) ∧ ¬ elf(b) should be provable.However,
this sentence is inconsistent with the fact elf(a) ∨ elf(b).

In order to avoid this inconsistency, default reasoning admits of many
extensions. In the above example, we have an extension (an extended
theory of ∆), where we can infer ¬ elf(a)∧ elf(b), and in another extension
of ∆, we can infer elf(a) ∧ ¬ elf(b).

Formally, let ∆ = (D,W ) be a given default theory. Let S be a set of
FL-sentences. For any set A of FL-sentences, denote by Th(A), the theory
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of A, i.e., the set of all FL-sentences which can be inferred from the set of
premises as A. Define Γ(S) as the smallest set satisfying the properties:

1. W ⊆ Γ(S)

2. Γ(S) = Th(Γ(S))

3. For u ∈ Γ(S),¬v1, . . . ,¬vm 6∈ S if
u : v1, . . . , vm

w
∈ D, then w ∈ Γ(S).

A set E is an extension for ∆ iff Γ(E) = E.

You can interpret Γ(S) as the minimal set of beliefs that one can have in
view of S, where S indicates which justification for beliefs is to be admitted.
E is a fixed point of the operator Γ, just as Th(A) is a fixed point of the
operator Th in FL (Th(Th(A)) = Th(A)).

Alternatively, extensions of default theories can be defined starting from
within. Let ∆ = (D,W ) be a default theory. An extension for ∆ is any set

E = ∪i∈NEi

where the sets Ei are defined recursively by

E0 = W

Ei+1 = Th(Ei)∪{w :
u : v1, . . . , vm

w
∈ D,u ∈ Ei,¬v1 . . . ,¬vm 6∈ Ei}

Note that this is not a constructive definition of an extension E. It can be
proved that whenever W is consistent, every extension of the corresponding
theory is consistent. The following examples will show you that a proper
translation of facts and rules to a default theory leads to a desired inference
possible.

EXAMPLE 7.2 (From [15]) Consider the following facts:

(a) Generally, if Mary attends a meeting, Peter does not.
(b) Generally, if Peter attends a meeting, Mary does not.
(c) At least, one of Peter or Mary attends the meeting.

To have a default theory, let us use the following symbolization:

M : Mary attends the meeting. P : Peter attends the meeting.
Here,

∆1 = (D1,W1), W1 = {M ∨ P}, D1 =
{
M : ¬P
¬P

,
P : ¬M
¬M

}
This default theory has the unique extension E1 = Th({M ∨P}). However,
it is awkward since we cannot infer from this extension that “both do
not attend the same meeting”. However, this sentence ought to be worth
concluding. We will have another translation below, where this is possible.

This time, we take ∆2 = (D2,W2), where W2 = W1, as earlier, but

D2 =
{

: M
¬P

,
: P
¬M

}
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Here, the default translation is done by following the scheme:

‘Generally, if x attends a meeting, then y does not’
as

“if it is consistent to assume that x attends a meeting, then infer that
y does not attend it”

Then, ∆2 has two extensions (Verify!):

E2 = Th({M,¬P}) and E′
2 = Th({P,¬M})

You see that ¬(M ∧ P ) ∈ E2 and ¬(M ∧ P ) ∈ E′
2.

A still better translation would be:

∆3 = (D3,W3), W3 = W1, D3 =
{

: M ∧ ¬P
¬P

,
: P ∧ ¬M
¬M

}
This theory has two extensions E2, E

′
2, as earlier so that ¬(M ∧ P ) holds

in both of them. Further, suppose that we have additional facts:

(d) If Bill attends the meeting, then Peter attends.

(e) Bill attends the meeting.

Then, we can infer that Peter attends the meeting.

Exercise 7.11 In the first translation above, add (d) and (e), and see
that ‘Peter attends’ is not provable in that default theory.
[Adding means having two more elements as B, B → P in W1.]

7.7 Autoepistemic Logic

Can there be a knowledge base which has information about the scope and
limits of its own knowledge? There can be. For example, in a database
system, we often use the so-called closed world assumption, where ‘not’ is
interpreted as “not in the database”. It is a built-in metaknowledge about
the database. More flexible knowledge bases should have the ability to
determine explicitly whether the knowledge of the base about a particular
object in the base is in some sense complete or not. In such a scenario,
we do not have to think about many agents and their knowledge or belief
about facts stored in the base. We would rather have a formalization of
the phrases such as ‘it is known that’, or ‘it is believed that’ as operators.

Writing �p for ‘it is believed (known) that p’, the logic K45 would be
an appropriate logic. This is so because the K45 axioms

�(p→ q)→ (�p→ �q), �p→ ��p, ¬�p→ �(¬�p)

capture the functionality of the operator � here. However, we require a
nonmonotonic logic which is capable of dealing with this operator since
new beliefs do change the earlier concluded propositions. In this section,
we briefly discuss such a nonmonotonic logic of knowledge and belief. The
requirement of nonmonotonicity is made clearer in the following example.
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EXAMPLE 7.3 Let p be the proposition: “Sam has died in the ongoing
war”. First, if p holds, then I also believe it, i.e., p → �p. Next, suppose
that I do not believe in a statement if I do not have any basis for such a
belief. Hence I have the sole premise p → �p. And, due to the absence
of any information regarding Sam’s death, I do not believe that Sam has
died in the ongoing war, i.e., I have ¬�p,. Since p → �p is equivalent to
¬�p→ ¬p, I conclude that ¬p. That is, Sam has not died in the ongoing
war. However, if I have the information that Sam has, indeed, died, then
I have two premises, p and p → �p, from which I conclude �p. Note that
I have p instead of ¬p, which was inferred earlier in the absence of any
information in the knowledge base.

This is the kind of nonmonotonicity involved in a logic of belief or
knowledge. Such a logic is called an autoepistemic logic. Syntactically,
the formulas of an autoepistemic logic are the modal propositions of
K; the semantics differs. Let us denote by L, the mps of K, which are
now our building blocks for an autoepistemic logic. For simplicity, omit
the symbols ↔ and ♦; they can be introduced with the help of definitions
such as p ↔ q as (p → q) ∧ (q → p) and ♦p as ¬�¬p. A subset T ⊆ L is
called an autoepistemic theory. An autoepistemic interpretation of
an autoepistemic theory T is a function I : L→ {0, 1} satisfying

(a) I conforms with a PL-interpretation,
(b) I(�p) = 1 iff p ∈ T.

An autoepistemic interpretation I is an autoepistemic model of T if
I(p) = 1 for every p ∈ T. In such a case, we also say that p is true in
I. As usual, an autoepistemic theory T is called semantically complete
if T contains every formula that is true in every model of T. Similarly, T
is sound with respect to a set of premises A ⊆ L if every autoepistemic
interpretation of T , which is a model of A is also a model of T.

Due to the absence of monotonicity, it is not easy to define the notion
of a consequence. However, as in default logic, extensions would give rise
to some closure conditions which can be used to define the set of all conse-
quences of a theory. Instead of defining a ‘closure of a theory’, we will give
a name to a theory which is equal to its closure. A stable theory is an
autoepistemic theory satisfying the following conditions:

(a) If q1, . . . , qn ∈ T and {q1, . . . , qn |=PL q, then q ∈ T.
(b) If q ∈ T, then �q ∈ T.
(c) If q 6∈ T, then ¬�q ∈ T.
It can be proved that an autoepistemic theory is semantically complete

iff it is stable. However, stability is silent about what is not believed; hence,
soundness with respect to a set of premises cannot be achieved under mere
stability. The initial premises must be included somewhere. Suppose that
A is a set of premises (formulas). A theory T is grounded in A if
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T ⊆ {q : A ∪ {�p : p ∈ T} ∪ {¬�p : p 6∈ T} |=PL q}

That is, T is grounded in A if T is stable and it does not contain any
formula which is not a PL-consequence of a stable extension of A.

It can be shown that a theory T is sound with respect to A iff T is
grounded in A. Now, using both soundness and completeness, we arrive at
the notion of a stable expansion of a theory. An autoepistemic theory T is
a stable expansion of a set of premises A iff T is a superset of A that is
stable and grounded in A, i.e.,

T = {q : A ∪ {�p : p ∈ T} ∪ {¬�p : p 6∈ T} |=PL q}

The notion of a stable expansion is, in fact, the set of all autoepistemic
consequents of the premises in A. That is, whatever that can be believed
when all the formulas in A are believed are in the stable expansion. Does
there exist always a stable expansion? Is it unique?

EXAMPLE 7.4 Let A = {¬�p → p : p is any formula } and T be a
stable autoepistemic theory that contains the formula ¬�p→ p. If p 6∈ T,
then due to stability, ¬�p ∈ T. Since ¬�p→ p ∈ T, we have p ∈ T. Hence,
p ∈ T. If T is grounded in A, then T contains no more formulas than the
PL-consequences of

{¬�p→ p : p is any formula } ∪ {�p : p ∈ T} ∪ {¬�p : p 6∈ T}

Since p ∈ T, �p ∈ T, we have ¬�p 6∈ T ; otherwise, we would have p 6∈ T,
resulting in a contradiction. However, ¬�p 6∈ T implies that ¬�¬�p ∈ T.
Again, ¬�¬�p→ ¬�p ∈ A implies ¬�p ∈ T as a PL-consequence. Thus,
we arrive at a contradiction that ¬�p ∈ T and ¬�p 6∈ T. Hence T cannot
be grounded in A. That is, there is no stable expansion of T in A.

EXAMPLE 7.5 Let A = {¬�p → q,¬�q → p}. Let T be any stable
expansion in A. The first element of A says that if p is not believed then
q holds, and the second one asserts that if q is not believed then p holds.
Now, if p 6∈ T , then q ∈ T and if q 6∈ T, then p ∈ T. Thus, T contains either
p or q. Then there can be two stable expansions of T in A, one containing
p and not q, and the other containing q and not p.

These examples show that stable expansions may not exist, and even
if one exists, it need not be the only stable expansion. Note that a stable
expansion in A formalizes the notion of all consequences of the premises in
A. Thus, even if a theory is consistent, there may not be any consequence,
and even if there are consequences, the set of all consequences need not be
unique. The status of theoremhood with axioms in A is doubtful. However,
this is pragmatic since belief in some statements need not conclusively
guarantee other beliefs. An alternative is to regard the intersection of
all stable expansions as the set of all beliefs one may have. That is, any
statement which is in every stable expansion of a theory in a set of premises
A can be regarded as theorems of A. This will be the view of an external
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observer about the agent. Also, in such a case, an empty intersection will
lead to a definition of an inconsistent autoepistemic theory grounded in a
set of premises.

SUMMARY

In this chapter you have been exposed to some logics which have not yet
come into the mainstream, hence the name, Nonstandard Logics. There
are monographs and also textbooks, though very few in number, which
deal with one or more of these logics. However, each of them has received
considerable attention by AI researchers. You will find more logics of this
sort in AI applications. You can start from the edited text [69] to get an
overall picture of nonstandard logics having some general frameworks and
then go through the topics that interest you in [27]. Many more logics
have been constructed for understanding specific problem domains. To get
a comprehensive source of materials, the best way is to search the web. This
chapter gives you a summary of some of those logics; so it does not really
require another summary. However, this is also the concluding chapter of
this book; so we would rather say, your study of logic begins now. To get
the summary of this book, solve the following problems.

PROBLEMS

1. Read Sections 1.7, 2.9, 3.7, 4.8, 5.8, 6.8, and 7.8 and write a summary.

2. How do you answer a layman’s question: “What is logic all about?”

3. How to make teaching and learning of logic more interesting?

4. What is your plan for deeper study of logic and logic engineering?
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∧-distributivity, 266
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¬-distributivity, 266
∨-distributivity, 266
L3, 342
L3-consequence, 342
L3-tautology, 342
wp , 264
L-valid, 314
Reductio ad absurdum, 77
FORM, 80
PROP, 3
3-SAT, 39

Accessibility relation, 284
Adequacy, 176

of FC, 183
of PC, 180
of resolution, 122, 124
strong, of FND, 192
strong, of FT, 225
strong, of GFC, 202
strong, of GPC, 199
strong, of PC, 180
strong, of PND, 189
strong, of PT, 215

Adequate
proof procedure, 35
set, 28

Alphabet, 2
Arity, 54
Assignment

axiom, 245
function, 63
statement, 238

Assumption schemes, 313
Axiom, 153

-K, 295
-PC, 295
schemes (FC), 165
schemes (KC), 295
schemes (PC), 153

Bacus-Naur form, 5
Biform

literal, 117
variable, 117

Binary search, 261, 262
Body, 240
Boolean valuation, 14
Bound, 239

by a quantifier, 59
occurrence, 59
variable, 59

Branching
proposition, 206
rules, 198, 206, 306

Calculation, 25, 83, 85
Clause

conjunctive, 30, 91
disjunctive, 30, 91
factor of a, 137
fundamental, 125
Horn, 39, 143
parent, 134
trivial, 124
unifiable, 131
unit, 126

Closed
formula, 59
term, 61
world assumption, 145, 352
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cnf, 30, 91
Compactness

for PT, PL, 215
of FL, 183
of PL, 180
of PT, 215

Complete
semantically, 353
truth functionally, 29

Completeness, 176
of calculations, 35
of KC, 299
of PC, 180
of resolution, 122, 142
strong, of FT, 225
strong, of PC, 180
strong, of PT, 214
strong, of resolution, 142

Composition, 240
Conclusion, 157
Conditional statement, 239
Connectives, 2, 54
Consequence, 19, 66

in KC, 300
Consistent, 186

in KC, 298
maximally, 179
maximally, in KC, 298
set, 164, 166
set in PT, 210

Constants
individual, 54
logical, 15, 66
nonlogical, 15, 66

Contingent, 18
Contradiction, 18
Convention for drawing a model,

286
Correctness

conditional, 235
partial, 235
total, 235

Correspondence theory, 313
CTL, 326

Debugging, 234
Default

consequent, 350
extension, 350
justifications, 350
prerequisite, 350
rule, 349
theory, 350

Denial, 49
Depth, 48
Derivation, 186

in KC, 300
dnf, 30, 91
Domain, 65
Dual, 49

Embedding, 102
Empty string, 9
Entails

in PT, 207
semantically, 18, 66
strongly, 292
weakly, 292

Environment, 74
Equality, 55
Equivalence

along a variable, 64
in K, 291
of formulas, 66
of states, 65
substitution, 78

Equivalent, 18
Excluded Miracle, 266
Exclusive or, 49
Existential

closure, 79
formulas, 216
rules, 216

Expression, 2, 55

Falsifies, 68, 285
FC, 165
fcnf, 96
fdnf, 96
Finitely generated, 214



364 Index

FND, 189
Follows from, 19
Formula

Horn, 39
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of an autoepistemic logic,
353

prenex form, 88
provable, 166
rectified, 88
well formed (PL), 4

Frame, 284
reflexive, 313
underlying, 285

Frame properties, 314
Free

occurrence, 59
variable, 59

Free for, 61
FT, 215
Function

characteristic, 347
indical, 92, 347
membership, 347

Function symbol, 54
Functional form, 96
Fuzzy subset, 347

G, 315
GFC, 200
Ghost variables, 237
GPC, 195
Ground

atomic formulas, 100
instances, 101, 151
literals, 100
terms, 99, 151

Guard, 240

Herbrand
expansion, 101
interpretation, 100
model, 100
universe, 99

Hintikka set, 179

Hoare
logic, 250
proof, 250
proof tree, 251
triple, 236

Hypothesis, 19

Identity, 55
Immediate

subformula, 11
subproposition, 11

Import semantics, 76
Inconsistent, 186

set in PT, 207
set in FC, 166
set in GPC, 197
set in PC, 164

Independent set, 49
Instance, 25
Interpolant, 50, 114
Interpretation, 15, 65

autoepistemic, 353
Invalid, 18, 68
Invariant, 241, 247

K-calculus, 294
k-SAT, 39
KC, 294
KND, 301
Knowledge compilation, 41
Kowalski form, 143
KT, 307

Language
first order, 66
propositional, 41

Law of trivalence, 342
Laws

in FL, 81
in K, 290
in PL, 22
local, 83

Lemma
König’s, 214
Lindenbaum, 179
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Truth, 299

Literal, 17, 30, 91
biform, 117
complementary, 30

Logic
Int, 338
autoepistemic, 353
computation tree, 326
deviant, 336
fuzzy, 346
Gödel, 315
intuitionistic, 338
monotonic, 337
of knowledge, 322
possibilistic, 346
probabilistic, 345
S4.3, 334
temporal, 323

Logic gates, 37
Logical variables, 237
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Material implication, 42
mgu, 133
Minimal sum section, 276
Miniscope form, 114
Modal

formula, atomic, 282
prefix, 305
proposition, 282
proposition, atomic, 282
proposition, prefixed, 305

Modality
alethic, 321
deontic, 321
doxastic, 321
temporal, 321

Model, 16, 66
autoepistemic, 353
based on a frame, 314
canonical, 299
checkers, 331
finite, 66

infinite, 66
of K, 285

Monotonicity
for FL, 77
for K, 293
for PC, 164
for PL, 22

Names, 54
NAND, 29
Natural deduction system, 185
Necessitation, 295
Negation as failure, 145
New variable, 199
nnf, 50, 113
NOR, 29
Normal form

conjunctive, 30
disjunctive, 30
exclusive or, 49
negation, 50, 113
Skolem, 94

Paramodulant, 138
Parse tree, 5
Partially correct, 242
Path

closed, 207
closed, for K, 306
complete, 207
completed, 207
in a tableau, 206
open, 207
open, for K, 306
satisfiable, 223

PC, 154
pcnf, 91
pdnf, 91
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Place, 15
PND, 185
Polish notation, 46
Postcondition, 236
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prefix of, 88
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implicant, 41
implicate, 127

Procedure
HornSat, 40
NorFor, 31
PrenForm, 89
PropDet, 9
QuaEli, 93
Unification, 132

Program
deterministic, 267
partial correctness, 235
specification, 236
state, 236
StringMatching, 234
termination, 235
total correctness, 235
variable, 236

Proof
in FC, 166
in K, 295
in PC, 154
informal, 184
of a consequence, 166, 186
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of a theorem, 186
of consequence, 157
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summary, 252
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consequence, 166
consequence (PC), 157
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RA, 249
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RC, 249
Refutation DAG, 119
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method of, 139
principle, 118, 135
proof, 119
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Resolvent, 117, 134
closure, 122

Resolving upon, 117
RI, 249
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Rule

of binary resolution, 143
of full resolution, 143
of local assumption, 308
default, 349
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GA, 308
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of composition, 246
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of inference (FC), 165
of inference (KC), 295
of inference (PC), 153
of sequential execution, 246
of total while, 260
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R, 295
Resolution (PL), 119
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formation, 4
necessity, 306
of sequents, 194
possibility, 306
precedence, 11
production, 4
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S4, 315
S5, 315
Satifies, 288
Satisfiable, 18, 66
Satisfied, 242
Satisfies, 66, 286
scnf, 94
Scope, 59
sdnf, 94
Semantic tree, 205
Semantics, 12
Sentence, 59
Sentential form, 97
Sequent, 194, 195

empty, 195
universal, 195

Sequential control, 240
Situation, 15
Skolem

cnf, 94
dnf, 94

form, 93
normal form, 94
paradox, 104
standard form, 94

Skolemization, 92
Soundness, 176, 353

strong, of PC and FC, 176,
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of calculations, 35
of KC, 298
of PC, 180
of resolution, 122, 142
strong, of FT, 224
strong, of PT, 214

Specification, 242
Stable expansion, 354
Stacking

proposition, 206
rules, 198, 206, 305

State, 15, 65
State-model, 66
Strong Adequacy, 183
Structure, 76
Subformula, 11, 59
Subproposition, 11
Substitution, 128

admissible, 61
composition of, 129
equivalence, in K, 291
equivalence, in PL, 24
in a tautology, 81
tautological, in K, 290
uniform, 80
variable capturing, 61

Subsumes, 149
Subsumption, 125

residue of, 125
syntax, 42
S lupecki operator, 343

Tableau, 206
closed, 207
closed for K, 306
completed, 207
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open, 207
proof for K, 306
propositional, 206
rules for K, 305
satisfiable, 223
systematic, 211, 222
systematic generation, 221
theorem, for K, 307

Tautology, 18, 80
Term, 55
Termination, 266
Theorem

Correspondence, 314
Craig’s interpolation, 50,
114

deduction, 21, 78
deduction (FC), 168
deduction (PC), 159
deduction, strong, in K, 294
deduction, weak, in K, 294
functional form, 97
fundamental invariance, 269
Herbrand’s, 103
in K, 295
Leibniz Rule, 25
model existence, 180, 183
normal form, 30
of FC, 166
of GPC, 197
of PC, 154
of PND, 186
of PT, 207
prenex form, 89
prenex normal form, 91
regularity, 295
sentential form, 97
Skolem-Löwenheim, 103
Skolem-Löwenheim upward,
114

standard form, 94
syntactic interpretation, 102

Theory
autoepistemic, 353
default, 350
first order, 104
grounded, 353
stable, 353

Totally correct, 259
Truth

assignment, 14
at a world, 284, 285
functions, 16
tables, 12
valuation, 14

TW, 260

Unifier, 131
most general, 131

Unique
formation, 9
parsing, 10
readability, 9

Universal
closure, 79
formulas, 216
rules, 216

Universe, 65
Unsatisfiable, 18, 68

Valid, 18, 66
consequence in K, 292
in L3, 342
in a frame, 314
in K, 289

Valuation, 63, 65
equivalent, 65

Variables, 54
Variant, 130, 259

separating, 131
Verification condition, 252
Verifies, 66, 285, 288

World, 283
possible, 332
truth mapping, 285
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