

Logics for Computer Science
Second Edition

Arindama Singh
Department of Mathematics

Indian Institute of Technology Madras

Delhi-110092
2018

Contents

Preface ...vii
Preface to the First Edition ...ix

 1. Propositional Logic ..1

1.1 Introduction ...1
1.2 Syntax of PL ... 3
1.3 Is It a Proposition? .. 6
1.4 Interpretations ..11
1.5 Models .. 17
1.6 Equivalences and Consequences .. 20
1.7 More About Consequence .. 25
1.8 Summary and Problems ... 27

 2. A Propositional Calculus ...35

2.1 Axiomatic System PC ...35
2.2 Five Theorems about PC .. 41
2.3 Using the Metatheorems ... 45
2.4 Adequacy of PC to PL ...50
2.5 Compactness of PL ... 55
2.6 Replacement Laws ... 60
2.7 Quasi-proofs In PL ... 64
2.8 Summary and Problems ... 66

 3. Normal Forms and Resolution ..70

3.1 Truth Functions ...70
3.2 CNF and DNF ...72
3.3 Logic Gates .. 77
3.4 Satisfiability Problem ..81
3.5 2SAT and Horn-SAT ... 83
3.6 Resolution in PL ... 86
3.7 Adequacy of resolution in PL ... 91
3.8 Resolution Strategies ...94
3.9 Summary and Problems ... 97

 4. Other Proof Systems for PL ..103

4.1 Calculation ... 103
4.2 Natural Deduction .. 106

iii

iv CONTENTS

4.3 Gentzen Sequent Calculus .. 110
4.4 Analytic Tableaux .. 116
4.5 Adequacy of PT to PL ...122
4.6 Summary and Problems ... 127

 5. First Order Logic ...131

5.1 Syntax of FL ... 131
5.2 Scope and Binding ... 135
5.3 Substitutions ... 139
5.4 Semantics of FL ..141
5.5 Translating into FL ..146
5.6 Satisfiability and Validity ... 149
5.7 Some Metatheorems ... 152
5.8 Equality Sentences ... 157
5.9 Summary and Problems ... 163

 6. A First Order Calculus ..168

6.1 Axiomatic System FC ...168
6.2 Six Theorems about FC .. 171
6.3 Adequacy of FC to FL ...177
6.4 Compactness of FL ... 184
6.5 Laws in FL ... 190
6.6 Quasi-proofs in FL ... 195
6.7 Summary and Problems ... 198

 7. Clausal Forms and Resolution ..201

7.1 Prenex Form ... 201
7.2 Quantifier-free forms ...204
7.3 Clauses ... 211
7.4 Unification of Clauses ...213
7.5 Extending Resolution ..220
7.6 Factors and Pramodulants .. 223
7.7 Resolution for FL ... 226
7.8 Horn Clauses in FL .. 229
7.9 Summary and Problems ... 232

 8. Other Proof Systems for FL ..236

8.1 Calculation ... 236
8.2 Natural Deduction .. 240
8.3 Gentzen Sequent Calculus .. 245
8.4 Analytic Tableaux .. 250
8.5 Adequacy of FT to FL ...255
8.6 Summary and Problems ... 260

CONTENTS v

 9. Program Verification ...263

9.1 Debugging a Program ..263
9.2 Issue of Correctness ... 265
9.3 The Core Language CL .. 268
9.4 Partial Correctness .. 272
9.5 Axioms And Rules ... 275
9.6 Hoare Proof .. 279
9.7 Proof Summary ...282
9.8 Total Correctness .. 288
9.9 A Predicate Transformer .. 292
9.10 Summary and Problems ... 300

 10. First Order Theories ..305

10.1 Structures and Axioms ... 305
10.2 Set Theory .. 310
10.3 Arithmetic ... 313
10.4 Herbrand Interpretation .. 316
10.5 Herbrand Expansion ... 318
10.6 Skolem-Löwenheim Theorems .. 322
10.7 Decidability .. 324
10.8 Expressibility .. 328
10.9 Provability Predicate ...332
10.10 Summary and Problems ... 336

 11. Modal Logic K ..341

11.1 Introduction .. 341
11.2 Syntax and Semantics of K ...343
11.3 Validity and Consequence in K .. 350
11.4 Axiomatic System KC ...354
11.5 Adequacy of KC to K ..357
11.6 Natural Deduction in K .. 359
11.7 Analytic Tableau for K... 362
11.8 Other Modal Logics ... 368
11.9 Various Modalities ... 375
11.10 Computation Tree Logic .. 379
11.11 Summary and Problems ... 384

 12. Some Other Logics ...387

12.1 Introduction .. 387
12.2 Intuitionistic Logic ... 388
12.3	 Łukasiewicz	Logics .. 391
12.4 Probabilistic Logics .. 395
12.5 Possibilistic and Fuzzy Logic ... 396

12.5.1 Crisp sentences and precise information 397

vi CONTENTS

12.5.2 Crisp sentences and imprecise information 397
12.5.3 Crisp sentences and fuzzy information398
12.5.4 Vague sentences and fuzzy information 398

12.6 Default Logic .. 398
12.7 Autoepistemic Logics ..402
12.8 Summary ...404

References ..405

Index ..411

Preface

The first edition of this book was used by many academicians; and their comments
and suggestions had to be implemented sooner or later. For instance, Prof. Norman
Foo of University of New South Wales (UNSW) said:

“This is the best book available in the market that suits my course on logic
for CS masters students.”

However, one of his colleagues reported that he had to refer to other books for
applications of compactness. Now, it becomes somewhat obligatory on my part to
discuss applications of compactness in this edition.

In this revised version, the circularity in presenting logic via formal semantics
is brought to the fore in a very elementary manner. Instead of developing everything
from semantics, we now use an axiomatic system to model reasoning. Other proof
methods are introduced and worked out later as alternative models.

Elimination of the equality predicate via equality sentences is dealt with
semantically even before the axiomatic system for first order logic is presented.
The replacement laws and the quantifier laws are now explicitly discussed along
with the necessary motivation of using them in constructing proofs in mathematics.
Adequacy of the axiomatic system is now proved in detail. An elementary proof of
adequacy of Analytic Tableaux is now included.

Special attention is paid to the foundational questions such as decidability,
expressibility, and incompleteness. These important and difficult topics are dealt
with briefly and in an elementary manner.

The material on Program Verification, Modal Logics, and Other Logics in
Chapters 9, 11 and 12 have undergone minimal change. Attempt has been made to
correct all typographical errors pointed out by the readers. However, rearrangement
of the old material and the additional topics might have brought in new errors.
Numerous relevant results, examples, exercises and problems have been added.
The correspondence of topics to chapters and sections have changed considerably,
compared to the first edition. A glance through the table of contents will give you a
comprehensive idea.

The book now contains enough material to keep students busy for two semesters.
However, by carefully choosing the topics, the essential portion of the book can be
covered in a single semester. The core topics are discussed in Chapters 1, 2, 5, 6, 10,
and Sections 3.1–3.5 and 7.1–7.2. As an alternative to the axiomatic system, one may
replace Chapters 2 and 6 with Sections 4.4–4.5, 8.4–8.5, 2.5 and 6.4. Topics from
other chapters may be discussed depending on the requirement of the students.

I cheerfully thank all those whose suggestions were the driving force in
bringing out this edition. I thank all those students who wanted me to relate to
them the rigorous foundation of mathematics. I acknowledge the trouble taken by

vii

viii PREFACE

Norman Foo of UNSW, S. H. Kulkarni, Sounaka Mishra, Kalpana Mahalingam of
IIT Madras, Balasubramaniam Jayaram of IIT Hyderabad, and my long-time friend
Biswa R. Patnaik of Toronto, in carefully reading the earlier drafts, finding mistakes,
and suggesting improvements.

Most part of this edition was drafted during my three months stay at Fayetteville,
Arkansas with my family. The pleasure of working on the book was doubled due to
frequent get together arranged by Brajendra Panda of University of Arkansas, and
his wife Rashmi; I thank them profusely. I thank the administrators of IIT Madras
for granting me sabbatical so that I could devote full time on the book. I also thank
the publisher, PHI Learning, Delhi and their production team for timely help in
typesetting.

Arindama Singh

Preface to the First Edition

Each chapter in this book has an introduction, the first section. But there is no
introduction to the book itself. So, let me use the mask of the Preface for this purpose.
Of course, a plain introduction to the book is just to place the book in your hand; but
while you are reading it, you yourself have already done that. Well done!

This is the way I will be talking to you throughout. I will ask you to do exercises
on the spot, often waiting for you up to some point, and then give you a hint to
proceed. It is something like the following commercial for the book:

I would like to ask you three questions, would you answer them with a
plain ‘Yes’ or ‘No’?

Good, you have answered ‘Yes’, whatever be the reason. But see, that
was my first question. Would you answer the same to the second as to
the third?

Very good, you have answered ‘Yes’ again; of course, it does not
matter. If you have not bought a copy of this book, are you going to
buy it soon?

Look, if you have answered ‘Yes’ to the second question, you are
also answering ‘Yes’ to the third, and if you have answered ‘No’ to
the second, you are not answering ‘No’ to the third, i.e., your answer
to the third is undoubtedly, ‘Yes’. Excellent. That is the end of the
commercial.

You have participated well in the commercial; I hope you will be with me
throughout. It is easy to learn logic and easier to teach it; that is the spirit of this
book. I would not reveal what is logic; you will discover it eventually. My aim is to
equip you with the logical methods so that when you take up computer science as
your profession, you will feel like a fish in water. A warning: though the book is ideal
for self-learning, it would not replace a teacher. At least on one count: you can ask a
question to your teacher and, hopefully, he1 will give you an answer, or you will be
inspired by him for finding your own answer; the book cannot do that always.

If you are a teacher, you may not need to learn all the topics, for you had probably
learnt them. But you can really teach logic better by helping your students in the
exercises. You can supplement the book with more computer science applications

1The masculine gender is used throughout the book not because of some chauvinistic
reasons, as it is easy to do that. It is easy to write ‘he’ rather than ‘she’ or ‘one’ or ‘a person’
or ‘a human being’ etc. You need not be offended by it.

ix

x PREFACE TO THE FIRST EDITION

which I had to omit, for it is already a somewhat lengthy book. It is ideal for a two-
semester course for not so advanced students. But you can cover it in one semester2
by omitting certain proof procedures.

In Chapter 1, you will find the logic of statements. The approach is semantic. The
semantic considerations give rise to the calculational method of proof quite naturally.
Calculations have been used very informally for proving valid formulas just as you
solve problems in school algebra. All the metaresults have been discussed except
compactness. That is done via proof theory, again, for ease. In Chapter 2, a similar
approach is taken for the logic of predicates or relations, more commonly known
as the first order logic. The first order logic discussed here includes the equality
relation, and no preference is given to one without equality, because applications
demand it. This chapter also deals with the Herbrand’s theorems without waiting for
the resolution method. The resolution method is the topic of Chapter 3. Chapter 4 is
exclusively meant for various proof techniques. In a one-semester course, you may
go for only one proof method. Or, you may do one of the proof methods formally in
detail and present others in one lecture each.

In Chapter 5, you come across a fundamental area of computer science, the
program verification. It is also one of the most useful applications of first order logic.
You should not stop just after that; you must hunt for some more materials and pursue
the topic a bit further. You must have a similar approach to the model checking
algorithms that have been introduced in Chapter 6 as an application of modal logics.
This chapter gives a very comprehensive account of modal logics used in computer
science. It does cover the essential ingredients leaving one: decidability issues, for
which you may look through the References. Similarly, Chapter 7 introduces the so-
called nonstandard logics which are upcoming, but not entirely new. We discuss only
those nonstandard logics that have general frameworks yet; the list is not exhaustive.
You are led through the chapters towards logic engineering, an activity that is
becoming increasingly important in current research in computer science.

The approach of the book is mathematical, in the sense that it involves a continual
interplay between the abstract and the concrete. The yearning for understanding
the concrete phenomena gives rise to abstractions and to understand the abstract,
concrete phenomena are a necessity. The typical feeling in any concrete problem
is that when you abstract it, an existence of a solution is an opaque mystery. The
concrete problems do not come with a label that such and such method would be
applicable. It is you who may think of applying an existing method to solve it. Often,
patient and continuous involvement with the problems help you to gradually gain
insight, leading to a solution. So, be patient and persistent, rely on yourself as far as
possible; start the journey now.

I have to pause here for a second. I would like to thank all those who have made
this happy journey of yours possible. Though the book has taken shape now, there
has been a continual effort throughout. There must be many good reasons for this, the

2It takes around 60 lectures to complete the book. In fact, it is developed from my notes
for a logic course offered to Engineering undergraduates at IIT Madras taking theoretical
computer science as their minor subject. Some of the postgraduate students in Mathematics
also credit the course as an elective.

PREFACE TO THE FIRST EDITION xi

most basic of all these being my interest in higher studies. I thank my parents and my
school teacher Mr. Rupakar Sarangi who nourished me physically and mentally by
keeping me fit for higher studies. I thank my wife Archana for continuing in a similar
vein after our marriage. She, along with my children, Anindya Ambuj and Ananya
Asmita, did suffer a lot due to my post-marriage engagement with this book. I thank
them for their patience and encouragement. I am indebted to my friend and logic
tutor Professor Chinmoy Goswami of the University of Hyderabad. My students
helped me considerably to learn logic; in a way, this book is a reward for that. I
thank my colleague Dr. M. Thamban Nair of IIT Madras for encouraging me to
bring out the book from some scratches on a note book. I also thank the Publishers,
Prentice Hall of India, particularly, Mr. K. C. Devasia for his expert guidance and the
production team for their assistance.

Any constructive suggestions for improving the contents would be most
welcome. These may be emailed to me at asingh@iitm.ac.in.

Arindama Singh

Chapter 1

Propositional Logic

1.1 INTRODUCTION
Our goal is to model reasoning as it is used in Mathematics and Computer science,
taking cue from that found in day to day communication. We start with the simplest
kind of reasoning, called the reasoning with propositions and connectives. Here are
some propositions:

Bapuji was a Mahatma.
No bachelor is married.
Some unmarried men get married.
Five men cannot have eleven eyes.
Buddha’s original name was Arindama.
Alexander the great did not set foot in India.
The title of a book on logic could be misspelt.
The woman who committed the crime did not have three legs.

Propositions are declarative sentences which may be asserted to be true or false. It is
quite possible that you may not be able to say for certain whether a given proposition
is true or false, without going to its meanings or external factors. The conjectures or
open problems are propositions, the truth of which we do not know yet. For example,

Goldbach : Every even number bigger than 2 is a sum of two prime numbers.
P �= NP : There is at least one non-deterministic polynomial time solvable prob-

lem which is not deterministic polynomial time solvable.

As of now, we do not have any way of showing the truth or falsity of these proposi-
tions. However, each of them is either true or false.

We are not defining here what a proposition is. We are only getting familiarized
with the kind of objects in question. A safer way to describe a proposition is to see
whether the question “Is it true that X?” is meaningful or not. If it is, then X is a
proposition, else, X is not a proposition.

The sentences which are not propositions include questions, orders, exclama-
tions, etc., for which we may not like to associate a truth value. We do not know how

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

to say whether “Is the night sky beautiful?” is true or false. Similarly, we may not
assert that “How beautiful is the morning sky!” is true or false.

Our building blocks here are propositions; we will not try to go beyond them.
It is not our concern to determine whether really “each bachelor is married”, for we
pretend not knowing the meanings of the words uttered in the proposition. Our units
here are propositions, nothing less and nothing more. However, we seem to know
that two propositions such as “I know logic” and “You know logic” can be composed
to get another proposition such as “I and you know logic”.

We are only interested in propositions and how they are composed to yield other
propositions. This is what we mean when we say that propositions are our building
blocks. Thus we are interested in the forms rather than the meanings of propositions.
Since propositions can be true or false, we must know how to assign truth values to
the compound propositions.

If indeed I like logic and you like logic, then we must agree that the proposition
“I and you like logic” is true. But what about the proposition

I like logic and you like logic or you do not like logic?

This is problematic, for we do not know exactly how this compound proposition has
been composed of or formed. Which of the following ways we must parse it?

(I like logic and you like logic) or (you do not like logic)
(I like logic) and (you like logic or you do not like logic)

We will use parentheses for disambiguating compound propositions. Moreover, we
will start with some commonly used connectives; and if need arises, we will enrich
our formalization by adding new ones. Of course, we will explain what ‘follows
from’ means.

In the sequel, we will shorten the phrase ‘if and only if’ to ‘iff’, and denote the
set of natural numbers {0,1,2,3, . . .} by N.

Exercises for § 1.1
1. Do the following pairs of sentences mean the same thing? Explain.

(a) Healthy diet is expensive. Expensive diet is healthy.
(b) Children and senior citizens get concession.

Children or senior citizens get concession.

2. In Smullyan’s island, there are two types of people; knights, who tell the truth,
and knaves, who always lie. A person there asserts: “This is not the first time
I have said what I am now saying”. The person is a knight or a knave?

3. In Smullyan’s island, a person says A and B where A and B are two separate
sentences. (For instance, A is ‘I have a brother’ and B is ‘I have a sister’.) The
same person later asserts A, and then after a minute, asserts B. Did he convey
the same as earlier?

4. Is the sentence “This sentence is true” a proposition?
5. Is the sentence “This sentence is false” a proposition?

1.2. SYNTAX OF PL 3

1.2 SYNTAX OF PL
For any simple proposition, called a propositional variable, we will use any of the
symbols p0, p1, . . . For connectives ‘not’, ‘and’, ‘or’, ‘if . . . then . . .’, ‘. . . if and only
if . . .’, we use the symbols ¬,∧,∨,→,↔, respectively; their names are negation,
conjunction, disjunction, conditional, biconditional. We use the parentheses ‘)’ and
‘(’ as punctuation marks. We also have the special propositions � and ⊥, called
propositional constants; they stand for propositions which are ‘true’ and ‘false’,
respectively. Read� as top, and⊥ as bottom or falsum. Both propositional variables
and propositional constants are commonly called atomic propositions or atoms. So,
the alphabet of Propositional Logic, PL, is the set

{), (, ¬, ∧, ∨, →, ↔, �, ⊥, p0, p1, p2, . . .}.
Any expression over this alphabet is a string of symbols such as

(¬p0 → ()∧ p1∨, ¬p100)(→∨, (¬p0 → p1).

(Do not read the commas and dots.) Only the last one of these is a propositional
formula or a proposition. In fact, we are interested only in such expressions. The
propositions (in PL) are defined by the following grammar:

w ::=� | ⊥ | p | ¬w | (w∧w) | (w∨w) | (w→ w) | (w↔ w)

Here p stands for any generic propositional variable, and w stands for any generic
proposition. The symbol ::= is read as ‘can be’; and the vertical bar ‘ | ’ describes
alternate possibilities (read it as ‘or’). The same symbol w may be replaced by dif-
ferent propositions; that is what the word “generic” means. This way of writing the
grammatical rules is called the Bacus-Naur form or BNF, for short. The grammar
can be written in terms of the following formation rules of propositions:

1. � and ⊥ are propositions.
2. Each pi is a proposition, where i ∈ N.
3. If x is a proposition, then ¬x is a proposition.
4. If x,y are propositions, then (x∧ y),(x∨ y),(x→ y),(x↔ y) are propositions.
5. Nothing is a proposition unless it satisfies some or all of the rules (1)-(4).

The set of all propositions is written as PROP. The formation rule (5) is called the
closure rule. It states that “PROP is the smallest set that satisfies (1)-(4)”. The
‘smallest’ is in the sense that “A is smaller than B iff A⊆ B”.

Propositions are also called PL-formulas and well-formed formulas, wff for
short. The non-atomic propositions are also called compound propositions.

EXAMPLE 1.1. The following are propositions:

p0,(p5 →�), ((p100 ↔⊥)∧¬p7), (p8 → ((¬p4∨ p9)↔ (p2∧ (�→⊥)))).
Whereas the following are not propositions:

p0∧ p1, p0 →⊥), (¬¬(p0∨ p1)), (p8 → ((¬p4∨ p9)↔ (p2∧ (�→⊥))).
In p0∧ p1, a surrounding pair of parentheses is required; in (¬¬(p0∨ p1)) there

is an extra pair of parentheses; etc.

4 CHAPTER 1. PROPOSITIONAL LOGIC

The key fact is that any object that has been formed (generated) by this grammar
can also be parsed. That is, you can always find out the last rule that has been
applied to form a proposition and then proceed backward. Such an unfolding of the
formation of a proposition can be depicted as a tree, called a parse tree.

EXAMPLE 1.2. Construct a parse tree for the proposition

¬((p0∧¬p1)→ (p2∨ (p3 ↔ ¬p4))).

For the given proposition, the last rule applied was w ::= ¬w. This means that
it is a proposition if the expression ((p0 ∧¬p1)→ (p2 ∨ (p3 ↔ ¬p4))) is also a
proposition. Look at the root and its child in the left tree of Figure 1.1.

¬((p0∧¬p1)→ (p2∨ (p3 ↔ ¬p4)))

((p0∧¬p1)→ (p2∨ (p3 ↔ ¬p4)))

(p2∨ (p3 ↔ ¬p4))

(p3 ↔ ¬p4)

¬p4

p4

p3

p2

(p0∧¬p1)

¬p1

p1

p0

¬

→

∨

↔

¬

p4

p3

p2

∧

¬

p1

p0

Figure 1.1: Parse tree for Example 1.2 and its abbreviation

Further, ((p0 ∧¬p1)→ (p2 ∨ (p3 ↔ ¬p4))) is a proposition if both the expres-
sions (p0∧¬p1) and (p2∨ (p3 ↔ ¬p4)) are propositions (the rule w ::= (w→ w)).
If you proceed further, you would arrive at the left parse tree in Figure 1.1. The
corresponding abbreviated tree is on the right.

EXAMPLE 1.3. Consider the string (∨(p1∧ p2)→ (¬p1 ↔ p2)). We cannot apply
the rule for ∨, since to its left is just a parenthesis. But we find that by taking x as
∨(p1∧ p2) and y as (¬p1 ↔ p2), the string appears as (x→ y), which can be parsed.
Look at the left tree in Figure 1.2. We cannot parse ∨(p1∧ p2) any further.

Similarly, the string (∨→ ¬p1 ↔ p2) can be parsed in two ways; first with →,
and next with ↔ . Look at the middle and the right trees in Figure 1.2. Neither can
we parse ∨, ¬p1 ↔ p2 nor ∨→ ¬p1.

Notice that the leaves of the trees of Figure 1.1 are atomic propositions, while the
leaves of the trees in Figure 1.2 are not. The corresponding expressions in the latter
cases are not propositions.

1.2. SYNTAX OF PL 5

→

↔

p2¬

p1

∨(p1∧ p2)

→

¬p1 ↔ p2∨

↔

p2∨→ ¬p1

Figure 1.2: Parse trees for Example 1.3

The first task by a parser will be to determine whether the string is in one of
the forms ¬x or (x ∗ y). Then it parses x in the former case, and both x and y in the
latter case. It continues the process until it is not able to parse further. If a parser
starts with a proposition, it would end with an atom. Thus, the leaves of a parse tree
of a proposition will be atomic propositions from which the proposition has been
built. On the other hand, If the given string is not a proposition, there is confusion in
parsing; and the parser will stop with leaves as non-atomic expressions.

Remark 1.1. There are other ways of defining the set PROP. In the declarative ver-
sion, we say that PROP, the set of all propositions, is the smallest set of expressions
satisfying the following conditions

1. {�, ⊥, p0, p1, . . .}⊆ PROP.
2. If x, y ∈ PROP, then ¬x, (x∧ y), (x∨ y), (x→ y), (x↔ y) ∈ PROP.

The second alternative employs an inductive construction of PROP. It is as follows.

1. PROP(0) = {�, ⊥}∪{p0, p1, . . .}.
2. PROP(i+1) = {¬x, (x◦ y), : x, y ∈ PROP(k), ◦ ∈ {∧,∨,→,↔}, 0≤ k ≤ i}.
3. PROP = ∪i∈N PROP(i).

You may prove that each of these two alternatives define the same set PROP.

Exercises for § 1.2
1. Which of the following strings are in PROP and which are not? Why?

(a) p0∨ (p1 → ¬p2)
(b) ((p3 ↔ p4)∧¬p1)
(c) ((p5)→ (p2 ↔ p3))
(d) ((p3 ↔ p4)∧¬p1)
(e) (((p0∧¬(p1∨ p2))→ (p3 ↔ ¬p4))∨ (¬(p5 → p4)→ ¬p1)∧ p2)
(f) ((p1∧¬p1)∨ (p0 → p1))∧ (¬(p0∧¬¬p1)→ ((¬p3∨¬p1)↔ p2))

2. Construct parse trees for the following propositions:

(a) (¬((p0∧¬p1)→ (p0 → p1))↔ ¬(p1∨ p2))
(b) ((p3∨ (p4 ↔ ¬(p3∧ p1)))∧¬(p2 → p5))
(c) (¬(¬(p1 → p2)∧¬(p3∨ p4))↔ (p5 ↔ ¬p6))

6 CHAPTER 1. PROPOSITIONAL LOGIC

3. Construct parse trees for the following strings, and then determine which of
them are propositions.

(a) (¬((p0∧¬p1)→ (p0 → p1)))↔ ¬(p1∨ p2)
(b) (¬(((p0∧¬p1)→ (p0 → p1))↔ ¬p1∨ p2))
(c) (¬((p0∧¬p1)→ p0)→ p1)↔ (¬(p1∨ p2))
(d) ((p0 → p1)∨ (p2 → (¬p1∧ (p0 ↔ ¬p2))))
(e) ((p0 → p1)∨ (p2 → (¬p1∧ (p0 ↔ ¬p2)))↔ (p3 → p5)))
(f) (((p5 → (p6∨ p8))↔ (p3∧¬p2))∨ (¬(p1 ↔ p3)→ p10))
(g) (((p5 → p6∨ p8)↔ (p3∧¬p2))∨ (¬(p1 ↔ p3 → p10)))

4. List all propositions in PROP that can be built using one propositional variable
p0, two occurrences of connectives, and no propositional constant.

5. List all propositions in PROP that can be built from two propositional variables
p1, p2 using only the connective ∧, and using no propositional constant.

1.3 IS IT A PROPOSITION?
Given a proposition, can we determine in which way it has been formed? If the
proposition is of the form ¬x, then obviously the x here is uniquely determined from
the proposition. If it is in the form (x∨ y) for propositions x and y, can it also be in
the form (z∧u) for some (other) propositions z and u? Consider the proposition

w = ((p1 → p2)∧ (p1∨ (p0 ↔ ¬p2))).

We see that w = (x∧ y), where x = (p1 → p2) and y = (p1 ∨ (p0 ↔ ¬p2)). If we
write it in the form (z∨u), then z = (p1 → p2)∧ (p1 and u = (p0 ↔ ¬p2)). Here, z
and u are not propositions. You can try to break at the connectives→ or↔ similarly
and see that the obtained substrings are not propositions.

Recall that prefix of a string means reading the string symbol by symbol from left
to right and stopping somewhere. The prefixes of w above are

(, ((, ((p1, ((p1 →, ((p1 → p2, ((p1 → p2), ((p1 → p2)∧, . . .

We see that none of these is a proposition except w itself, since the condition of
matching parentheses is not met. Similar situation occurs when a proposition starts
with one or more occurrences of ¬. That is, a proper prefix of a proposition is never
a proposition. We express this fact in a bit different way, which may be proved by
using induction on the number of occurrences of connectives in a proposition.

Observation 1.1. Let u and v be propositions. If u is a prefix of v, then u = v.

Theorem 1.1 (Unique parsing). Let w be a proposition. Then exactly one of the
following happens:

(1) w ∈ {�, ⊥, p0, p1, . . .}.
(2) w = ¬x for a unique x ∈ PROP.
(3) w = (x◦ y) for a unique ◦ ∈ {∧, ∨,→,↔} and unique x, y ∈ PROP.

1.3. IS IT A PROPOSITION? 7

Proof. Due to the formation rules of a proposition, either w is atomic, or it is in one
of the forms ¬x or (x◦y). We must show that in the two latter cases, the propositions
x and y are unique.

In the first case, suppose that w = ¬x. The first symbol of w is ¬. So, w is neither
atomic nor is in the form (y ∗ z). However, w can be equal to ¬z for some z. In that
case, ¬x = ¬z forces x = z. That is, x is a unique proposition determined from w.

In the second case, suppose w = (x ◦ y) for some ◦ ∈ {∧,∨,→,↔} and some
propositions x and y. The first symbol of w is the left parenthesis (. Hence w is
neither atomic nor in the form ¬z. So, suppose that w = (u∗v) for some propositions
u,v and connective ∗ ∈ {∧,∨,→,↔}. Then x◦ y) = u∗ v). Now, x is a prefix of u or
u is a prefix of x. Observation 1.1 implies that x = u. Then ◦y) = ∗v). It gives ◦= ∗
and then y = v. �

The theorem is so named because it asserts that each proposition has a unique
parse tree, which demonstrates how it has been formed by applying the rules of the
grammar. Of course, unique parsing does not give any clue as to how to determine
whether a given string over the alphabet of PROP is a proposition or not.

For example, p1 → p2 is not a proposition; you need a pair of parentheses. Sim-
ilarly, (p0 ∧ p1 → p2) is also not a proposition. But that is not the question. The
question is: Can you give a procedure to do this for all possible expressions?

Observe that the unique parse tree for a proposition has only atomic propositions
on its leaves. Whereas if an expression is not a proposition, in any parse tree for the
expression some leaf will contain an expression other than an atomic proposition.

Look at the second leaf from the left in the the abbreviated parse tree of Fig-
ure 1.1; it is a node labelled p1. There is a subtree with parent node ¬ whose only
child is this p1. It corresponds to the proposition ¬p1. You can replace this subtree,
say, by p1. You thus obtain the tree T1 in Figure 1.3.

Do not be confused while replacing ¬p1 by p1; we have not yet assigned any
meaning to the symbol ¬. We are only playing with symbols.

In T1, there is again a subtree with parent node ∧, whose children are p0 and p1.
This corresponds to the proposition (p0 ∧ p1). You can replace this subtree, say by
p0. In the new tree T2, you have a leaf p4 which is the sole child of the node ¬.
So, first replace ¬p4 by p4, then replace the subtree corresponding to the proposition
(p3 ↔ p4), by p3. As you continue this replacements, you get the sequence of trees
T0, . . . ,T7, in Figure 1.3, where the tree T0 is the left tree of Figure 1.1.

The expressions corresponding to the sequence of parse trees T0, . . . ,T7 are:

T0 : ¬((p0∧¬p1)→ (p2∨ (p3 ↔ ¬p4)))

T1 : ¬((p0∧ p1)→ (p2∨ (p3 ↔ ¬p4)))

T2 : ¬(p0 → (p2∨ (p3 ↔ ¬p4)))

T3 : ¬(p0 → (p2∨ (p3 ↔ p4)))

T4 : ¬(p0 → (p2∨ p3))

T5 : ¬(p0 → p2)

T6 : ¬p0

T7 : p0

8 CHAPTER 1. PROPOSITIONAL LOGIC

T1 : ¬

→

∨

↔

¬

p4

p3

p2

∧

p1p0

T2 : ¬

→

∨

↔

¬

p4

p3

p2

p0

T3 : ¬

→

∨

↔

p4p3

p2

p0

T4 : ¬

→

∨

p3p2

p0

T5 : ¬

→

p2p0

T6 : ¬

p0

T7 : p0

Figure 1.3: Sequence of parse trees for the tree in Figure 1.1

To obtain the second expression from the first, you simply had to replace the
proposition ¬p1 by p1. In the second expression, replace the proposition (p0 ∧ p1)
by p0 to get the third, and so on. The construction can be written as a procedure to
determine whether a given expression is a proposition or not.

PROCEDURE PropDet
Input: Any string x over the alphabet of PL.
Output: ‘yes’, if x is a proposition, else, ‘no’.

1. If x is a (single) symbol and x �∈ {), (, ¬, ∧, ∨, →, ↔ }, then report ‘yes’;
else, report ‘no’; and stop.

2. Otherwise, scan x from left to right to get a substring w in one of the forms
¬p, (p∧q), (p∨q), (p→ q), (p↔ q);

where p,q are symbols not in the set {), (, ¬, ∧, ∨, →, ↔}.
3. If not found, then report ‘no’; and stop.
4. If found, then replace w by p0; go to Step 1.

EXAMPLE 1.4. We apply PropDet on the strings (∨(p1∧ p2)→ (¬p1 ↔ p2)) and
(∨→ ¬p1 ↔ p2).

1.3. IS IT A PROPOSITION? 9

In (∨(p1∧ p2)→ (¬p1↔ p2)) the substring (p1∧ p2) is replaced by p0 resulting
in the string (∨p0 → (¬p1 ↔ p2)).

Next, the substring ¬p1 is replaced by p0; and then (p0 ↔ p2) is replaced by p0.
We obtain (∨p0 → p0).

The algorithm stops here reporting ‘no’. It means (∨(p1 ∧ p2)→ (¬p1 ↔ p2))
is not a proposition.

Similarly, in (∨ → ¬p1 ↔ p2), the proposition ¬p1 is replaced by p0 resulting
in (∨→ p0 ↔ p2). No more replacements can be done.

Since (∨→ p1 ↔ p2) is not a symbol, the original string (∨→ ¬p1 ↔ p2) is not
a proposition.

PropDet works by identifying a substring of the given string as a proposition, and
then replacing the substring by a propositional variable, p0. Thus, if it starts from a
proposition it must end with one. The invariance of the loop executed by PropDet
is the proposition-hood of the string. Moreover, by any such replacement, PropDet
reduces the length of the string. Thus, the given string is a proposition iff the final
string of length 1, is p0, which is also a proposition. This criterion is checked in
Step 1. This completes the correctness proof of PropDet. You can construct a formal
proof of correctness of PropDet using induction on the height of the parse tree.

Due to unique parsing, we define the main connective and the immediate sub-
propositions of a non-atomic proposition w as follows:

1. The main connective of ¬x is ¬, and
the immediate sub-proposition of ¬x is x.

2. For any ◦ ∈ {∧,∨,→,↔}, the main connective of (x◦ y) is ◦, and
the immediate sub-propositions of (x◦ y) are x and y.

A sub-proposition of a proposition w is any substring of w which is itself a propo-
sition. It turns out that a sub-proposition of w is either w or one of its immediate
sub-propositions, or a sub-proposition of an immediate sub-proposition of w.

EXAMPLE 1.5. The immediate sub-proposition of the proposition

¬¬(�∨ ((p2 → (p3 ↔ p4))→ (⊥∧ (p2∧¬p3))))

is the proposition ¬(�∨ ((p2 → (p3 ↔ p4))→ (⊥∧ (p2∧¬p3)))).
The immediate sub-propositions of ((p2 → (p3 ↔ p4))→ (⊥∧ (p2∧¬p3))) are

(p2 → (p3 ↔ p4)) and (⊥∧ (p2∧¬p3)).
The sub-propositions of (⊥∧ (p2∧¬p3)) are ⊥, (p2∧¬p3), p2, ¬p3, and p3.
The sub-propositions of (p2 → (p3 ↔ p4)) are p2, (p3 ↔ p4), p3 and p4.

Using the notion of the main connective, we see that any proposition can be
in one of the following forms: (Here, pi is a propositional variable, and x,y are
propositions.)

�, ¬�, ⊥, ¬⊥, pi, ¬pi, ¬¬x, (x∧ y), ¬(x∧ y),

(x∨ y), ¬(x∨ y), (x→ y), ¬(x→ y), (x↔ y), ¬(x↔ y).

After understanding what parsing is all about, we put some conventions so that writ-
ing propositions will become easier.

10 CHAPTER 1. PROPOSITIONAL LOGIC

Convention 1.1. Instead of writing p0, p1, p2, . . . we write propositional variables
as p,q,r,s, t, We write u,v,w,x, . . . for propositions. Sometimes we may write
p,q,r,s, t, . . . for propositions also provided no confusion arises.

To write less, we put down some precedence rules and omit the outer paren-
theses. Recall the precedence rule that multiplication has higher precedence than
addition. It means that the expression x×y+ z is to be rewritten as ((x×y)+ z), and
not as ((x× (y+ z)).

Convention 1.2. Our precedence rules are the following:
¬ has the highest precedence.
∧,∨ have the next precedence, their precedence being equal.
→,↔ have the lowest precedence, their precedence being equal.

Using precedence rules, the proposition ((p1∨ (p3∧ p6))→ (p100 ↔ ¬p1)) can
be abbreviated to p1 ∨ (p3 ∧ p6)→ (p100 ↔ ¬p1). Using abbreviations p,q,r,s for
p1, p3, p6, p100, respectively, the abbreviated proposition is p∨ (q∧ r)→ (s↔ ¬p).

However, you must not stretch too much the notion of abbreviated propositions.
For instance p0 → p1 is not a sub-proposition of (p0 → (p1 ∧ p2)). Reason: the
abbreviated proposition in full form looks like (p0 → (p1 ∧ p2)). The propositions
p0 → p1 and (p0 → p1) are not even substrings of (p0 → (p1∧ p2)).

Exercises for § 1.3
1. Parentheses in a string can be matched in the following way:

(a) Pick any occurrence of (. Start a counter with 1.
(b) While proceeding to the right, increase the counter by 1 if (is met; and

decrease the counter by 1 if) is met.
(c) At any time, if the counter is 0, then that instance of) is the right paren-

thesis corresponding to the left parenthesis picked.
Using this algorithm, find the corresponding occurrence of) to each occur-
rence of (in the following strings:

(i) ((p→ (¬q∨ r))↔ (¬p∨ r))
(ii) ((¬p↔ (¬q∧ r))→ (¬p→ (r→ s)))

(iii) (((¬p↔ (¬q∧ r)))→ (¬p→ ((r→ s)↔ ¬q)))
2. Apply PropDet on the strings given in Exercise 1:(i)-(iii).
3. Find all sub-propositions of the following propositions:

(a) (¬¬¬p3∧ (¬p2∨¬(p1∨ p3)))
(b) ¬(p1∨ (p2∧ (p3∨ p4)∧ (p2∧ (p1∧ (p3 → ¬p2)∨ (p3 ↔ p1)))))
(c) (((¬p5∨ (¬p3∧¬p2))→ (r5 → p2))∧¬(p1 ↔ ¬(p3∧¬p4)))
(d) (((p3 → (p2∨ p6))↔ (p6∧¬q3))∨ (¬(p6 ↔ r5)→ p))

4. Insert parentheses at appropriate places using the precedence rules so that the
following strings become propositions. Also find their sub-propositions.

(a) (p→ q)∧¬(r∨q↔ p)↔ (¬p∨q→ r)
(b) (p→ q)↔ (r→ t ∨ p)∧ (p∨q→ ¬p∧ t)
(c) p∨ (¬q↔ r∧ p)↔ (p∨ p→ ¬q)
(d) ¬(p∨ (q→ r∨ s)↔ (q↔ (p∧ r∧¬q)∨ (r∨ p)))

1.4. INTERPRETATIONS 11

1.4 INTERPRETATION
The meaning associated with any proposition is of two kinds, called true and false,
for convenience. In what follows we write 0 for false, and 1 for true. These two
tokens, true and false, or 0 and 1, are called the truth values. Propositions are built
from the atomic propositions with the help of connectives. The propositional con-
stants are special; � always receives the truth value true, and ⊥ always receives the
truth value false. Depending on situations, the propositional variables may receive
either of the truth values. We must then prescribe how to deal with connectives.

The common sense meaning of the connectives ¬,∧,∨,→ and ↔ are respec-
tively, not, and, or, implies, and if and only if. It means, ¬ reverses the truth values.
That is, if x is true, then ¬x is false; and if x is false, then ¬x is true. When both x
and y are true, x∧ y is true; and when at least one of x or y is false, x∧ y is false. If
at least one of x or y is true, then x∨ y is true; and if both x and y are false, x∨ y is
false. Similarly, x ↔ y is true when x and y are true together, or when x and y are
false together; x↔ y is false if one of x,y is true and the other is false. The problem-
atic case is x→ y. We will consider some examples to see what do we mean by this
phrase ‘implies’, or as is commonly written ‘if . . ., then

The sentence if x then y is called a conditional sentence with antecedent as x and
consequent as y. In main stream mathematics, the meaning of a conditional sentence
is fixed by accepting it as false only when its antecedent is true but its consequent
is false. It is problematic in the sense that normally people think of a conditional
statement expressing causal connections; but this view does not quite go with that.
However, this meaning of the conditional statement is not so counter intuitive as is
projected by the philosophers. Let us take some examples.

Your friend asks you whether you have got an umbrella, and you answer, “If I
have got an umbrella, then I would not have been wet”. Suppose, you do not have
an umbrella. Then is your statement true or false? Certainly it is not false if you
had been really wet. It is also not false even if you had not been wet since it did not
rain at all. That is, the statement is not false whenever its antecedent “I have got an
umbrella” is false.

Since it is tricky, we consider one more example. At the bank, you asked me for
a pen to fill up a form. Before searching I just replied “If I have a pen, I will oblige
you.” I searched my pockets and bag, but could not find a pen. Looking around I
spotted a friend, and borrowed a pen from him for you. Did I contradict my own
statement? Certainly not. I would have done so had I got a pen and I did not lend
it to you. Even if I did not have a pen, I obliged you; and that did not make my
statement false. That is, the sentence “if x then y” is true, if its antecedent x is false.

Let us consider another statement, which is assumed to be true:
To receive the merit scholarship, one must secure at least eighty percent
of marks in at least five subjects.

Suppose that Rahul has received the merit scholarship. Then it follows that he has
secured at least eighty percent of marks in at least five subjects. The sentence is
equivalent to

If one receives the merit scholarship, then s/he has secured at least eighty
percent of marks in at least five subjects.

12 CHAPTER 1. PROPOSITIONAL LOGIC

It does not mean that securing at least eighty percent of marks in at least five subjects
is the only requirement for receiving the merit scholarship.

One more situation: your friend promises to buy you the book Logics for Com-
puter Science provided you help him in solving some problems. Certainly he had not
broken his promise, when he bought you the book in spite of the fact that you did not
actually help him solve those problems. That is, the statement is not false, when the
consequent “I will buy you the book” is true.

Thus we accept this meaning of the conditional statement. The proposition x→ y
is false only when x is true and y is false; in all other cases, x→ y is true. The true
cases of x→ y are when x is false, or when y is true. The former case, that is, when x
is false, the conditional statement x→ y looks vacuous; consequently, philosophers
call the connective→ as material implication. A rose is a rose, with whatever name
you call it!

Formally, the assumed association of truth values to the propositional variables
is called a truth assignment. That is, a truth assignment is any function from
{p0, p1, . . .} to {0,1}. An extension of a truth assignment to the set of all propo-
sitions that evaluates the connectives in the above manner is called an interpretation.
That is, An interpretation is any function i : PROP→ {0,1} satisfying the following
properties for all x,y ∈ PROP:

1. i(�) = 1.
2. i(⊥) = 0.
3. i(¬x) = 1 if i(x) = 0, else, i(¬x) = 0.
4. i(x∧ y) = 1 if i(x) = i(y) = 1, else, i(x∧ y) = 0.
5. i(x∨ y) = 0 if i(x) = i(y) = 0, else, i(x∨ y) = 1.
6. i(x→ y) = 0 if i(x) = 1, i(y) = 0, else, i(x→ y) = 1.
7. i(x↔ y) = 1 if i(x) = i(y), else, i(x↔ y) = 0.

The same conditions are also exhibited in Table 1.1, where the symbols u,x,y
stand for propositions. The conditions are called boolean conditions; and such a
table is called a truth table. You must verify that these conditions and the truth table
convey the same thing.

Table 1.1: Truth table for connectives
� ⊥ u ¬u x y x∧ y x∨ y x→ y x↔ y
1 0 1 0 1 1 1 1 1 1

0 1 1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

Alternatively, the boolean conditions can be specified in the following way. Ver-
ify that it is indeed the case.

1. i(�) = 1.
2. i(⊥) = 0.
3. i(¬x) = 1− i(x).

1.4. INTERPRETATIONS 13

4. i(x∧ y) = min{i(x), i(y)}.
5. i(x∨ y) = max{i(x), i(y)}.
6. i(x→ y) = max{1− i(x), i(y)}.
7. i(x↔ y) = 1− |i(x)− i(y)|.
An interpretation is also called a valuation, a boolean valuation, a state, a situa-

tion, a world, or a place.
We view an interpretation the bottom-up way. We start with any function

i : {p0, p1, . . .}→ {0,1}. Then following the above rules, we extend this i to a func-
tion from PROP to {0,1}. Is the bottom-up way of extending a function from propo-
sitional variables to all propositions well defined by the required properties? Can
there be two different interpretations that agree on all propositional variables?

Theorem 1.2. Let f : {p0, p1, . . . ,}→ {0,1} be any function. There exists a unique
interpretation g such that g(p j) = f (p j) for each j ∈ N.

Proof. Let n(x) denote the number of occurrences of connectives in a proposition
x. We define g(x) by induction on n(x). If n(x) = 0, then x is an atom. So, x = �,
x =⊥, or x = p j for some j ∈ N. In this case, we define

g(�) = 1, g(⊥) = 0, g(p j) = f (p j) for each j ∈ N

For the inductive definition, assume that for all propositions w, if n(w) < m, then
g(w) has been defined. For a proposition x with n(x) = m, we see that either x = ¬u
or x=(u◦v) for ◦∈ {∧,∨,→,↔}, u,v are propositions with n(u)<m, and n(v)<m.
Then we define g(x) as follows:

1. For x = ¬u, g(x) = 1−g(u).
2. For x = (u∧ v), g(x) = min{g(u),g(v)}.
3. For x = (u∨ v), g(x) = max{g(u),g(v)}.
4. For x = (u→ v), g(x) = max{1−g(u), g(v)}.
5. For x = (u↔ v), g(x) = 1− |g(u)−g(v)|.

This proves the existence of an interpretation g that agrees with f on all pi.
For uniqueness, suppose h is another interpretation that agrees with f on the

propositional variables. Let x ∈ PROP. In the basis case, when n(x) = 0, we see that
h(x) = g(x). Let m ≥ 1. Assume the induction hypothesis that whenever n(x) < m,
h(x) = g(x). If n(x) = m, then by the Unique parsing theorem, either x = ¬u or x =
(u◦ v) for unique u,v ∈ PROP and unique connective ◦ ∈ {∧,∨,→,↔}. Notice that
n(u) < m and n(v) < m. By the induction hypothesis, h(u) = g(u) and h(v) = g(v).
Now, both g and h satisfy the boolean conditions.

If x = ¬u, then g(x) = g(¬u) = 1−g(u) = 1−h(u) = h(¬u) = h(x). Similarly,
other connectives are tackled to show that g(x) = h(x). �

Convention 1.3. Due to Theorem 1.2, we write the interpretation that agrees with a
truth assignment i as i itself.

The following result implies that if a propositional variable does not occur in
a proposition, then changing the truth value of that propositional variable does not
change the truth value of that proposition.

14 CHAPTER 1. PROPOSITIONAL LOGIC

Theorem 1.3 (Relevance Lemma). Let w be a proposition. Let i and j be two in-
terpretations. If i(p) = j(p) for each propositional variable p occurring in w, then
i(w) = j(w).

Proof. Suppose i(p) = j(p) for each propositional variable p occurring in w. We use
induction on n(w), the number of occurrences of connectives in w. In the basis case,
suppose n(w) = 0. Then w is either�, ⊥, or a propositional variable. If w =�, then
i(w) = 1 = j(w). If w = ⊥, then i(⊥) = 0 = j(⊥). If w is a propositional variable,
then of course, i(w) = j(w). In all cases, i(w) = j(w).

Lay out the induction hypothesis that for all propositions z with n(z) < m, the
statement holds. If w is a proposition with n(w)=m, then either w=¬x or w=(x◦y)
for unique propositions x,y and a unique connective ◦ ∈ {∧,∨,→,↔} with n(x)< m
and n(y) < m. By the induction hypothesis, i(x) = j(x) and i(y) = j(y). Due to the
boolean conditions that both i and j satisfy, it follows that i(w) = j(w). For instance,
if w = (x∧ y), then

i(w) = i(x∧ y) = min{i(x), i(y)}= min{ j(x), j(y)}= j(x∧ y) = j(w).

Similarly, other cases are tackled. �

The relevance lemma shows that in order to assign a truth value to a proposition it
is enough to know how an interpretation assigns the truth values to the propositional
variables occurring in it. We do not need to assign truth values to the propositional
variables which do not occur in the proposition.

Given any proposition w, and the truth values of the propositional variables oc-
curring in it, Table 1.1 can be used to compute the truth value of w. If no specific
truth values for the propositional variables are known, then all possible truth values
of the proposition may be generated.

If a proposition w is built up from n number of propositional variables, say,
q1, . . . ,qn, then due to the relevance lemma, an interpretation of w will be depending
only on the truth values assigned to q1, . . . ,qn. Since each qi may be assigned 0 or 1,
there are 2n possible (relevant) interpretations of w in total. A truth table for w will
thus have 2n rows, where each row represents an interpretation.

EXAMPLE 1.6. The truth table for (p→ (¬p→ p))→ (p→ (p→ ¬p)) is shown
in Table 1.2, where we write u = p→ (¬p→ p), v = p→ (p→ ¬p), and the given
proposition as u→ v.

Table 1.2: Truth Table for Example 1.6

p ¬p p→ ¬p ¬p→ p u v u→ v
0 1 1 0 1 1 1
1 0 0 1 1 0 0

The first row is the interpretation that extends the truth assignment i with i(p) =
0 to the propositions ¬p, p → ¬p, ¬p → p, u, v, u → v. The second row is the
interpretation j with j(p) = 1. We see that i(u→ v) = 1 while j(u→ v) = 0.

1.4. INTERPRETATIONS 15

EXAMPLE 1.7. The truth table for u = ¬(p∧ q) → (p∨ (r ↔ ¬q)) is given in
Table 1.3. The first row is the assignment i with i(p) = i(q) = i(r) = 0. This is
extended to the interpretation i where i(¬q) = 1, i(p∧q) = 0, i(¬(p∧q)) = 1, i(r↔
¬q) = 0, i(p∨ (r↔ ¬q)) = 0, and i(u) = 0. Similarly, other rows are constructed.

Table 1.3: Truth Table for u = ¬(p∧q)→ (p∨ (r↔ ¬q))

p q r ¬q p∧q ¬(p∧q) r↔ ¬q p∨ (r↔ ¬q) u
0 0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 1 1
0 1 0 0 0 1 1 1 1
1 1 0 0 1 0 1 1 1
0 0 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1 1
0 1 1 0 0 1 0 0 0
1 1 1 0 1 0 0 1 1

Boolean valuations can also be computed using parse trees.

EXAMPLE 1.8. The parse tree for u = ¬(p∧ q)→ (p∨ (r ↔ ¬q)) is the left tree
in Figure 1.4.

→

∨

↔

¬

q

r

p

¬

∧

qp

→,1

∨,1

↔,1

¬,0

q,1

r,0

p,0

¬,1

∧,0

q,1p,0

Figure 1.4: Interpretation in a parse tree for Example 1.8

The truth assignment j with j(p) = 0, j(q) = 1, j(r) = 0 is shown by mentioning
the truth values to the right of the corresponding leaves. Then we travel upwards in
the tree for evaluating the connectives following the truth table rules. The interpre-
tation is given on the right hand tree in Figure 1.4. Work it out. Compare it with the
third row in Table 1.3.

Suppose that you have a truth table for a proposition u = (p∨ q) and you have
another for the proposition w= (q∨r). How do you talk about a truth table for u∧w?
The rows in the truth table for u may not assign any truth value to r, and similarly, the
rows in a truth table for w may not assign a truth value to p. You must extend the truth
tables by adding corresponding rows to the truth tables. In case of interpretations,

16 CHAPTER 1. PROPOSITIONAL LOGIC

our assumption is that already some truth value has been assigned to all variables.
We only show the relevant ones in a truth table.

Formally, such a context with only the appropriate propositional variables is cap-
tured by a propositional language. A propositional language has an alphabet which
is a subset of the alphabet of PL including all the connectives, the punctuation marks
and the constants � and ⊥. In such a case, the suitable connectives, the punctuation
marks, and the symbols �,⊥ are called the logical constants and the propositional
variables are called the nonlogical constants. The set of appropriate nonlogical con-
stants is called the signature of the propositional language.

A propositional language is characterized by its signature. Then an interpretation
is said to be an interpretation of the propositional language. When we have another
language containing all the nonlogical constants of a given language, then any in-
terpretation of the bigger language is again considered as an interpretation of the
smaller one. We do not use this terminology here, but you must be able to read and
understand this terminology if used elsewhere.

Exercises for § 1.4
1. For the interpretation i with i(p) = 1, i(q) = 0, i(r) = 0, i(s) = 1, compute

(a) i(r↔ p∨q) (b) i(p∨q)→ (r∧¬s) (c) i(r→ p∨ s)

(d) i(¬s∨q)↔ (r∨ p) (e) i(p∨¬q∨ s↔ s∨¬s) (f) i(r↔ (p→ ¬r))

2. Construct truth tables for the following propositions:

(a) p→ (q→ (p→ q)) (b) ¬p∨q→ (q→ p) (c) ¬(p↔ q)
(d) (p↔ q)↔ (p→ q) (e) p→ (p→ q) (f) (p→⊥)↔ ¬p

3. Let i(p) = i(q) = 1, i(r) = 0. Draw parse trees of the following propositions,
and then use the trees to evaluate the propositions under i.

(a) ¬(p∨¬(p∨¬(q↔ r))) (b) (p↔ ¬q)→ (r→ p∧q)

(c) (¬p∨¬q)↔ (¬r∨ (p→ q)) (d) (p∧ (q∨¬p))∨ (p∧ (q∨ p))

4. Construct the truth tables and draw the parse trees for the propositions v =
¬(p∧ q)∨ r → ¬p∨ (¬q∨ r) and w = (p∧ q→ r)↔ p∧ (q∧¬r). See how
a row in the truth table evaluates the proposition v (and also w) via the corre-
sponding parse tree.

5. For an interpretation i, we know that i(p) = 1. Then which of the following
can be determined uniquely by i with this information only?

(a) (p→ q)↔ (r→ ¬p) (b) (q→ r)→ (q→ ¬p)
(c) p→ (q↔ (r→ p)) (d) p↔ (q→ (r↔ p))

6. Using the vocabulary − p : It is normal, q : It is cold, r : It is hot, and s : It is
small, translate the following into acceptable English.

(a) p∨q∧ s (b) p↔ q (c) p→ ¬(q∨ r)
(d) p∨ (s→ q) (e) p→ ¬(q∧ r) (f) p↔ ((q∧¬r)∨ s)

1.5. MODELS 17

1.5 MODELS
The proposition p∨¬p is always evaluated to 1 and p∧¬p always to 0. Whereas the
proposition u in Table 1.3 is evaluated to 0 in some interpretations and to 1 in some
other interpretations. It is one of the aims of semantics to categorize propositions
according to their truth values under all or some interpretations.

Let w be a proposition. A model of w is an interpretation i with i(w) = 1. The
fact that i is a model of w is written as i � w. It is also read as i verifies w; and i
satisfies w. The fact that i is not a model of w is written as i � w; and is also read as,
i does not satisfy w, i does not verify w, and i falsifies w.

EXAMPLE 1.9. In Table 1.3, let i be the interpretation as given in the first row.
That is, i(p) = i(q) = i(r) = 0. The table says that i � u. Check that

i � ¬(p∧q)∨ r→ ¬p∨ (¬q∨ r), i � (p∧q→ r)↔ p∧ (q∧¬r).

The interpretation j with j(p) = 1, j(q) = j(r) = 0 is a model of u. Which line in
Table 1.3 is the interpretation j?

A proposition w is called

valid, written as � w, iff each interpretation of w is its model;

invalid iff it is not valid, and we write � w;

satisfiable iff it has a model;

unsatisfiable iff it is not satisfiable;

contingent iff it is both invalid and satisfiable;

the proposition � is defined to be satisfiable;

the proposition ⊥ is defined to be invalid.

Valid propositions are also called tautologies, and unsatisfiable propositions are called
contradictions.

Notice that � is both valid and satisfiable whereas ⊥ is both unsatisfiable and
invalid; each propositional variable is contingent.

EXAMPLE 1.10. The proposition p∨¬p is valid, i.e., � p∨¬p, since each inter-
pretation evaluates it to 1. Each of its interpretations is its model.

The proposition p∧¬p is unsatisfiable since each interpretation evaluates it to 0.
No interpretation is its model.

Let u = ¬(p∧q)→ (p∨ (r↔ ¬q)). Look at Table 1.3. Let i, j be interpretations
of u with i(p) = 1, i(q) = i(r) = 0 and j(p) = j(q) = j(r) = 0. it is clear that i � u
whereas j � u. Therefore, u is contingent.

EXAMPLE 1.11. Categorize the following propositions into valid, invalid, satisfi-
able, and unsatisfiable:

(a) (p→ (q→ r))→ ((p→ q)→ (p→ r))

(b) ((p→ q)→ (p→ r))∧¬(p→ (q→ r))

18 CHAPTER 1. PROPOSITIONAL LOGIC

You can construct a truth table to answer both (a)-(b). Here is an approach that
avoids the construction of a truth table.

(a) Suppose i((p→ (q→ r))→ ((p→ q)→ (p→ r))) = 0, for an interpretation i.
Then, i((p→ (q→ r)) = 1 and i((p→ q)→ (p→ r)) = 0. The last one says that
i(p → q) = 1 and i(p → r) = 0. Again, i(p → r) = 0 gives i(p) = 1 and i(r) = 0.
Now, i(p) = 1 = i(p→ q) implies that i(q) = 1. Then i(p) = 1, i(q→ r) = 0 gives
i((p→ (q→ r)) = 0. It contradicts i((p→ (q→ r)) = 1.

Hence, i((p→ (q→ r))→ ((p→ q)→ (p→ r))) = 1, whatever be the interpre-
tation i. Thus, � (p→ (q→ r))→ ((p→ q)→ (p→ r)). It is also satisfiable, since
it has a model, e.g., the interpretation that assigns each of p,q,r to 0.

(b) Suppose i(((p → q)→ (p → r))∧¬(p → (q → r))) = 1, for an interpretation
i. Then, i((p → q)→ (p → r)) = 1 = i(¬(p → (q → r))). The last one says that
i(p) = 1, i(q) = 1, and i(r) = 0. Then, i(p → q) = 1, i(p → r) = 0; consequently,
i((p→ q)→ (p→ r)) = 0, which is not possible.

Therefore, i(((p→ q)→ (p→ r))∧¬(p→ (q→ r))) = 0 for each interpretation
i. That is, the proposition is unsatisfiable. It is also invalid, e.g., the interpretation
that assigns each of p,q,r to 0 falsifies the proposition.

In general, each valid proposition is satisfiable and each unsatisfiable proposition
is invalid. Validity and unsatisfiability are dual concepts. Further, if i is an interpre-
tation, then i(w) = 1 iff i(¬w) = 0. This proves the following statement.

Theorem 1.4. A proposition is valid iff its negation is unsatisfiable. A proposition is
unsatisfiable iff its negation is valid.

Remark 1.2. The concepts of interpretations and models can be presented in at least
three ways other than the one we adopt.

In the first alternative view, a truth assignment is considered as a mapping of
voltages on a wire, either high or low; the wires represent propositional variables.
Any proposition is thought of as a function, a circuit or a gate as is called by electrical
engineers, that maps a truth assignment to {0,1}. For example, if i assigns p to 0 and
q to 1, then the proposition p∧¬q takes i to 0. A formalization of this view would
use the notation p(i) instead of i(p), ¬x(i) instead of i(¬x), and (x ◦ y)(i) instead
of i(x ◦ y), etc. Thus connectives are taken as truth functions, i.e., functions that
map 0’s and 1’s to 0’s and 1’s. In this view, ¬ is the function ¬ : {0,1}→ {0,1} with
¬(0) = 1 and ¬(1) = 0. Similarly, ∧ : {0,1}×{0,1}→ {0,1} with ∧(0,0) =∧(0,1)
= ∧(1,0) = 0 and ∧(1,1) = 1.

There are 22 functions from {0,1} to {0,1}. These functions are called unary
truth functions. Among these, � and ⊥ are the constant unary truth functions. Simi-
larly, there are 24 functions from {0,1}×{0,1} to {0,1}. These functions are called
binary truth functions. Out of the sixteen binary truth functions, we have considered
only seven; the three unary and the four binary. In general, there are 2n elements in
the set {0,1}n. Thus, there are 22n

number of n-ary truth functions. We will discuss
truth functions later in a different context.

In the second alternative view of semantics, a proposition is seen as a set of truth
assignments. Writing M(x) for the set of models of a proposition x, the driving
idea is to define M(x) in an alternate way. Due to compositionality, the whole idea

1.5. MODELS 19

rests on the sets of models of propositional variables. Denote by T the set of all
possible truth assignments, by i any truth assignment in T, by p any propositional
variable, and by x,y any propositions. Then the sets of models are defined to satisfy
the following properties:

M(�) = T, M(⊥) =∅, M(p) = {i : i(p) = 1}, M(¬x) = T\M(x),

M(x∧ y) =M(x)∩M(y), M(x∨ y) =M(x)∪M(y),

M(x→ y) = (T\M(x))∪M(y),

M(x↔ y) = (M(x)∩M(y))∪ ((T\M(x))∪ (T\M(y))).

In the third alternative view, one tries to see each model as a set of literals, i.e.,
propositional variables or their negations. For example, all models of the proposition
p∨ q are the truth assignments i, j,k, where i(p) = 1, i(q) = 1; j(p) = 0, j(q) = 1;
and k(p) = 1,k(q) = 0. Then the models i, j,k, in this view, correspond to the sets
{p,q},{¬p,q},{p,¬q}, respectively. Any set of literals is a model of �; and the set
of all models of ⊥ is ∅. In general, this view rests on the observation that each truth
assignment i is associated to the set Mi the following way:

i(p) =

�
1 iff p ∈Mi

0 iff ¬p ∈Mi

There is also a slight variation on this theme, which assigns each interpretation i of
a proposition to a subset of propositional variables only, negations of them being
removed. It rests on the convention that whichever propositional variable is absent
in such a set is in fact negated. For example, let u be a proposition built up from the
propositional variables p and q. If Mi = {p,¬q}, then abbreviate Mi to {p}. The
truth assignment is constructed from such a subset of propositional variables by its
characteristic function.

For instance, let w = (p→ q)∨ (r ↔ s∨ t). Write Vw = {p,q,r,s, t}, the set of
propositional variables occurring in w. The interpretation i with i(p) = i(r) = i(s) =
1, i(q) = i(t) = 0 is represented by the set {p,r,s}. Note that the characteristic
function of the set {p,r,s} as a subset of Vw is the interpretation i.

Exercises for § 1.5
1. Categorize the following propositions into valid, invalid, satisfiable, and un-

satisfiable:

(a) p→ (q→ p) (b) (p→ (q→ r))→ ((p→ q)→ (p→ r))

(c) p∧ (p→ q)→ q (d) (¬p→ ¬q)→ ((¬p→ q)→ p)

(e) p∨q↔ ((p→ q)→ q) (f) p∧q↔ ((q→ p)→ q)

(g) (¬p∨q)→ ((p∨ r)↔ r) (h) (p∧q↔ p)→ (p∨q↔ q)

(i) (p∨q→ p)→ (q→ p∧q) (j) (¬p→ ¬q)↔ (¬p∨q→ q)

(k) (q→ p)→ p (l) ((p↔ q)↔ r)↔ ((p↔ q)∧ (q↔ r))

(m) ((p∧q)↔ p)→ q (n) ¬((¬(p∧q)∧ (p↔⊥))↔ (q↔⊥))

20 CHAPTER 1. PROPOSITIONAL LOGIC

(o) (p∧q→ r)∧ (p∧¬q→ r) (p) (p↔ ¬(q↔ r))↔ (¬(p↔ q)↔ r)

(q) (p→ q)∨ (q→ p) (r) ((p→ q)→ p)→ p
2. For n ∈ N, define An by A0 = p→ q, and Am+1 = Am → p. For which values

of n, is An valid?
3. Why have we defined � to be satisfiable and ⊥ to be invalid?
4. Draw a Venn diagram depicting the sets of valid, invalid, satisfiable, and un-

satisfiable propositions in the set of all propositions.

1.6 EQUIVALENCES AND CONSEQUENCES
In the context of reasoning, it is important to determine whether saying this is same
as saying that. It is the notion of equivalence. Along with this we must also specify
the meaning of follows from.

Propositions u and v are called equivalent, written as u≡ v, iff each model of u
is a model of v, and each model of v is also a model of u. We write u �≡ v when u is
not equivalent to v.

EXAMPLE 1.12. To determine whether p∨q≡ (p→ q)→ q, let i be an interpre-
tation. If i(p∨q) = 0, then i(p) = i(q) = 0; thus i((p→ q)→ q) = 0.

Conversely, if i((p→ q)→ q) = 0, then i(p→ q) = 1 and i(q) = 0. So, i(p) =
i(q) = 0. Hence i(p∨q) = 0.

That is, i(p∨ q) = 0 iff i((p→ q)→ q) = 0. So, i � p∨ q iff i � (p→ q)→ q.
Therefore, p∨q≡ (p→ q)→ q.

To show that p → (q → r) �≡ (p → q)→ r, consider the interpretation i with
i(p) = 0, i(q) = 1, and i(r) = 0. Now, i(q→ r) = 0 and i(p→ q) = 1. Consequently,
i(p→ (q→ r)) = 1 and i((p→ q)→ r) = 0. Therefore, p→ (q→ r) �≡ (p→ q)→ r.

A consequence is a formalization of an argument found in ordinary discourse. A
typical argument goes as follows:

w1,w2, . . . ,wn. Therefore, w.

The propositions wi may not be valid. The argument compels us to imagine a
world where all of w1,w2, . . . ,wn become true. In any such world, it is to be checked
whether w is also true. In order that the argument is declared correct, all those in-
terpretations which are simultaneously satisfying all the propositions w1,w2, . . . ,wn
must also satisfy w.

Let Σ be a set of propositions, and w a proposition. An interpretation i is called a
model of Σ, written i � Σ, iff i is a model of each proposition in Σ. Every interpreta-
tion is taken as a model of the empty set ∅, as a convention.

The set Σ is called satisfiable iff Σ has a model. Σ semantically entails w,
written as Σ � w, iff each model of Σ is a model of w. Σ � w is also read as “w
follows from Σ” and also as “the consequence Σ !�w is valid”. For a consequence
Σ !�w, the propositions in Σ are called the premises or hypotheses, and w is called
the conclusion.

The abstract notion of a consequence Σ !�w refers to an argument which may or
may not be valid. Once Σ !�w is valid, we write Σ � w. For a finite set of premises

1.6. EQUIVALENCES AND CONSEQUENCES 21

Σ = {w1, . . . ,wn}, we write the consequence Σ !�w as w1, . . . ,wn !�w, and Σ � w as
w1, . . . ,wn � w, without the braces.

Thus, Σ � w iff for each interpretation i, if i falsifies w then i falsifies some
proposition from Σ. Moreover, {w1, . . . ,wn} � w iff w1∧ · · ·∧wn � w. It also follows
that x≡ y iff x � y and y � x.

EXAMPLE 1.13. Is the consequence p→ q, ¬q !�¬p valid?

We try out each model of the set of premises and check whether it is also a
model of the conclusion. So, let i � p→ q and i � ¬q. We see that i(q) = 0. Since
i(p→ q) = 1, we have i(p) = 0. The only model of all premises is the interpretation
i with i(p) = i(q) = 0. Now, this i is also a model of ¬p. Therefore, the consequence
is valid. So, we write p→ q, ¬q � ¬p.

Translation of natural language arguments into PL-consequences involves iden-
tifying simple declarative sentences as propositional variables. This identification
sometimes requires to determine the connectives, or the words which look like con-
nectives. A brief guideline for identifying connectives follows.

1. The proposition ¬p:

Not p. It is not the case that p.
p does not hold. p is false. p is not true.

2. The proposition p∧q:

Both p and q. Not only p but also q. p although q.
p yet q. p while q. p despite q.

3. The proposition p∨q:

p or q or both. p and/or q. Either p or q.
p unless q. p except when q. p otherwise q.

4. The proposition p→ q:

If p then q. q if p p only if q.
q when p. When p, q. p only when q.
In case p, q. q in case p. p only in case q.
p is sufficient for q. q is necessary for p. p implies q.
q provided that p. From p we get q. p gives q.
p yields q. p produces q. From p we obtain q.

5. The proposition p↔ q:

p iff q. p if and only if q.
p and q are equivalent. p implies q, and q implies p.
If p, then q; and conversely. p is necessary and sufficient for q.
p exactly when q. p if q, and q if p.
p just in case q. p gives q and q gives p.

22 CHAPTER 1. PROPOSITIONAL LOGIC

The last three reading of ¬p in (1) do mess up with truth, which is not the intent
of the connective ¬. However, sometimes a translation of these three is also done as
¬p, depending on context. This comment applies to other connectives also; these are
no strict rules, but only guidelines!

The connective “Either− or” is sometimes used in the sense of ‘inclusive or’, and
sometimes in the sense of ‘exclusive or’; it depends on the context. The ‘exclusive
or’ sense of the connective ‘either − or’ is translated as as (p∨ q)∧¬(p∧ q) or as
¬(p↔ q). This is also read in English as “p or else q”, and also as “p or q but not
both”.

Similarly, “neither p nor q” is translated as ¬(p∨q).

EXAMPLE 1.14. Show that the following argument is correct (Stoll (1963)):
If the band performs, then the hall will be full provided that the tickets
are not too costly. However, if the band performs, the tickets will not be
too costly. Therefore, if the band performs, then the hall will be full.

We identify the simple declarative sentences in the above argument and build a vo-
cabulary for translation:

p : the band performs
q : the hall is (will be) full
r : tickets are not too costly

Then the hypotheses are the propositions p→ (r→ q), p→ r, and the conclusion is
p→ q. We check the following consequence for validity:

p→ (r→ q), p→ r !� p→ q.

Since there are only three propositional variables, by the Relevance Lemma, there
are 23 = 8 interpretations. These are given in second, third, and fourth columns of
Table 1.4.

Table 1.4: Truth Table for Example 1.14

Row No. p q r p→ r r→ q p→ (r→ q) p→ q
1 0 0 0 1 1 1 1
2 1 0 0 0 1 1 0
3 0 1 0 1 1 1 1
4 1 1 0 0 1 1 1
5 0 0 1 1 0 1 1
6 1 0 1 1 0 0 0
7 0 1 1 1 1 1 1
8 1 1 1 1 1 1 1

For the time being do not read the column for p→ q in Table 1.4. You must find
out all (common) models of both p→ (r→ q) and p→ r. They are in rows 1, 3, 5,
7, and 8. In order that the argument is correct, you must check whether p→ q is true
(evaluated to 1) in all these rows. This is the case.

Therefore, p→ (r→ q), p→ r � p→ q; the argument is correct.

1.6. EQUIVALENCES AND CONSEQUENCES 23

In Example 1.14, you need not evaluate p→ q in the rows 2, 4, 6 since it does
not matter whether p→ q receives the truth value 0 or 1 in these cases. But if one of
the rows 1, 3, 5, 7, 8 had 0 for p→ q, then the consequence would not be valid.

Thus, the alternative way to show Σ � w is to search for an interpretation i with
i(w) = 0, and i(x) = 1 for each x ∈ Σ. If the search fails, then Σ � w. If the search
succeeds in finding one such interpretation, then Σ � w.

To apply this method on Example 1.14, look at Table 1.4. The interpretations
which assign 0 to p→ q are in rows 2 and 6. Row 2 assigns 0 to p→ r and row 6
assigns 0 to p→ (r→ q), that is, whenever the conclusion is falsified, at least one of
the premises is also falsified. Hence the consequence is valid. Another instance of
this procedure is employed in Example 1.11, though in a different context.

Further, employing this method prempts construction of a truth table. For, sup-
pose i(p→ q) = 0. Then i(p) = 1 and i(q) = 0. Now, if i(r) = 0, then i(p→ r) = 0.
And, if i(r) = 1, then i(r → q) = 0 yielding i(p→ (q→ r)) = 0. That is, falsity of
the conclusion ensures falsity of at least one premise.

EXAMPLE 1.15. Let Σ be a set of propositions; x∈ Σ; and y a proposition. Assume
that � x and Σ � y. Show that Σ\{x} � y.

Let i be a model of Σ\{x}. As � x, i � x. So, i � Σ. Since Σ � y, i � y. Therefore,
Σ\{x} � y.

Example 1.15 says that valid propositions have no information content. Valid
propositions have to be asserted and unsatisfiable propositions have to be negated,
whatever be the context. Whereas, declaring a contingent proposition to be true (or
false) in a context really supplies some information.

EXAMPLE 1.16. We show that for all propositions x and y, {x, x→ y} � y.
Of course, we should use the definition of � . So, let i be a model of x and also of

x→ y. If i is not a model of y, then i(x) = 1 and i(y) = 0. Consequently, i(x→ y) = 0,
which is not possible. Therefore, i is a model of y. Hence, {x, x→ y} � y.

Remark 1.3. We have used the symbol � in three different ways. They are
i � w : i is a model of w
� w : w is valid
Σ � w : the consequence Σ !�w is valid.

As in the third view of semantics, where a model is identified with the set of literals
that are true under the model, we see that the first use is same as the third. Next, the
second one is a particular case of the third, namely, when Σ =∅.

Equivalences are useful in obtaining other equivalences, and also they can be
used in consequences, as the following theorem shows.

Exercises for § 1.6
1. Show the following equivalences:

(a) p∨q≡ ¬p→ q (b) p∧q≡ ¬(p→ ¬q)
(c) p↔ q≡ (p→ q)∧ (q→ p) (d) p∧ (p→ q)≡ p∧q
(e) ¬(p∧q)≡ ¬p∨¬q (f) ¬p→ ¬q≡ q→ p
(g) ¬(p↔ q)≡ (¬p↔ q) (h) p↔ (q↔ r)≡ (p↔ q)↔ r)

24 CHAPTER 1. PROPOSITIONAL LOGIC

2. Simplify the following propositions using equivalences:
(Of course, ‘to simplify’ here is subjective.)

(a) (p∨�)→ q (b) p∧ (¬p→ p)
(c) ¬q→ ¬(q→ ¬p) (d) ¬p∧q∧ (p→ (q∨¬r))
(e) ((p∨ (p∧q))→ (p∧ (p∨q))) (f) (p∧ (q∨¬p))∨q∨ (p∧ (q∨ p))
(g) ((p↔ q)↔ r)↔ ((p↔ q)∧ (q↔ r))
(h) ((�→ p)∧ (q∨⊥))→ (q→⊥)∨ (r∧�))

3. Are the following sets of propositions satisfiable?

(a) {p→ (p→ q), p∨q, p→⊥}
(b) {¬p∨¬(q∧ r), s∨ t → u, u→ ¬(v∨w), r∧ v}
(c) {p∨q→ r∧ s, s∨ t → u, p∨¬u, p→ (q→ r)}
(d) {p→ q∧ r, q→ s, d → t ∧u, q→ p∧¬t, q→ t}
(e) {p→ q∧ r, q→ s, d → t ∧u, q→ p∧¬t, ¬q→ t}
(f) {p→ q, r→ s, q→ s, ¬r→ p, t → u, u→ ¬s, ¬t → t}
(g) {p→ q∧ r, s→ q∧ t, u→ ¬p, (v→ w)→ u∧ s, ¬(¬r→ t)}

4. Determine whether the following consequences are valid:

(a) p∨q→ r, q∧ r !� p→ r
(b) p∨ (q∧¬q), p !�¬(p∧¬p)
(c) p∧q→ r !� (p→ r)∨ (q→ r)
(d) p→ (q∨ r), q∧ r→ ¬p !�¬p
(e) p∨q→ p∧q, ¬p→ q !� p∧q
(f) p∨q∨ (p∧q), ¬(p→ q) !� p∨q
(g) p∨q→ p∧q, ¬p→ q !�¬(p∨q)
(h) p∨q→ p∧q, ¬p∧¬q !�¬(p∧q)
(i) p↔ q !�¬((p→ q)→ ¬(q→ p))
(j) p∨q→ r, r→ p∧q !� p∧q→ p∨q
(k) ¬((p→ q)→ ¬(q→ p)) !� (¬p∨q)∧ (p∨¬q)
(l) (p↔ (q↔ r)) !� ((p∧q)∧ r)∨ (¬p∧ (¬q∧¬r))

(m) ((p∧q)∧ r)∨ (¬p∧ (¬q∧¬r)) !� (p↔ (q↔ r))
5. Translate the following into PL consequences; and check their validity:

(a) If he is innocent, then he will be hurt unless appreciated. He is not ap-
preciated. Therefore, he is not innocent.

(b) He cannot come to office unless he sleeps well the previous night. If he
sleeps well the previous night, then he cannot come to office. Therefore,
he cannot come to office.

(c) If he knows magic then he can create a rock that he cannot lift. If he can-
not lift the rock he has made, then he does not know magic. Therefore,
he does not know magic.

(d) Labour is stubborn but management is not. The strike will be settled;
the government obtains an injunction; and troops are sent into the mills.
Therefore, If either management or labour is stubborn, then the strike
will be settled if and only if the government obtains an injunction, but
troops are not sent into the mills.

1.7. MORE ABOUT CONSEQUENCE 25

1.7 MORE ABOUT CONSEQUENCES
In the following, we prove some facts which are used in almost every mathematical
argument, without mention.

Since ∅ contains no propositions; no interpretation can succeed in falsifying
some proposition from ∅. That is, every interpretation is a model of ∅. Vacuously,
each interpretation verifies each premise here (there is none). This justifies (2) in the
following theorem; others are easier to prove.

Theorem 1.5. Let u and v be propositions. Then the following are true:

(1) u≡ v iff � u↔ v iff (u � v and v � u).
(2) � u iff u≡� iff � � u iff ∅ � u iff ¬u≡⊥.
(3) u is unsatisfiable iff u≡⊥ iff u �⊥ iff ¬u≡�.

The following limiting case implies that from a contradiction everything follows.

Theorem 1.6 (Paradox of Material Implication). A set of propositions Σ is unsat-
isfiable iff Σ � w for each proposition w.

Proof. Suppose Σ has no model. Then it is not the case that there exists an inter-
pretation, which satisfies the propositions in Σ and falsifies any given proposition w.
Thus, Σ � w never holds; which means Σ � w.

Conversely, if Σ � w for each proposition w, then in particular, Σ �⊥. Then Σ is
unsatisfiable. �

EXAMPLE 1.17. The hatter says that if he has eaten the cake, then he cannot eat it.
Therefore, he has not eaten the cake. Is the hatter’s argument correct, in PL?

In PL, ‘has not’ and ‘cannot’ are same as ‘not’. Writing p for the statement
“The hatter has eaten the cake”, his first statement is symbolized as p → ¬p. His
conclusion is ¬p. Thus the consequence to be checked for validity is

p→ ¬p !�¬p.

Let i be any interpretation, which is a model of p → ¬p. Now, if i(¬p) = 0 then
i(p→ ¬p) = 0. This is not possible. So, i(¬p) = 1. Therefore, p→ ¬p � ¬p.

However, if we consider “the hatter has eaten the cake” as the proposition p and
“the hatter cannot eat the cake” as the proposition q, different from p and ¬p, then
the consequence would be symbolized as p, q !�¬p. This consequence is invalid.
For instance, the interpretation i with i(p) = 1, i(q) = 1 satisfies the premises but
falsifies the conclusion.

Theorem 1.7 (M: Monotonicity). Let Σ and Γ be sets of propositions, Σ ⊆ Γ, and
let w be a proposition.

(1) If Σ is unsatisfiable, then Γ is unsatisfiable.
(2) If Σ � w, then Γ � w.

26 CHAPTER 1. PROPOSITIONAL LOGIC

Proof. Let i � Γ. This means i satisfies each proposition in Γ. If y ∈ Σ, then y ∈ Γ;
so i � y. Hence, i � Σ. Thus, each model of Γ is also a model of Σ.
(1) If Σ has no model, then Γ has no model.

(2) Suppose Σ � w. Let i � Γ. Then i � Σ. Since Σ � w, i � w. So, Γ � w. �

In day to day life, you will have many situations where the consequence relation
is not monotonic; especially when there are hidden common knowledge as premises.
The nonmonotonic logics tackle such situations. However, when all premises are
spelled out explicitly, as in mathematics, monotonicity holds.

Along with monotonicity, the consequence relation in PL allows a very com-
monly used proof method: proof by contradiction. Informally, it is stated as

If from ¬S follows a contradiction, then S must be true.

It says that along with some given assumptions, if we use the extra assumption ¬S
and are able to conclude a contradiction, then the given assumptions must imply S.
Notice its connection with the paradox of material implication.

Theorem 1.8 (RA: Reductio ad Absurdum). Let Σ be a set of propositions, and let
w be a proposition.

(1) Σ � w iff Σ∪{¬w} is unsatisfiable.
(2) Σ � ¬w iff Σ∪{w} is unsatisfiable.

Proof. (1) Let Σ � w. Let i be any interpretation. If i � Σ, then i � w. So, i � ¬w.
Thus, i � Σ∪{¬w}. If i � Σ, then i � x for some x ∈ Σ; hence i � Σ∪{¬w}. In any
case, i � Σ∪{¬w}. That is, Σ∪{¬w} is unsatisfiable.

Conversely, let Σ∪{¬w} be unsatisfiable. Let i � Σ. Then i � ¬w; that is, i � w.
Therefore, Σ � w.

(2) Take w instead of ¬w, and ¬w instead of w in the proof of (1). �

Another important principle, found in almost every mathematical proof, says that
to prove p→ q, it is enough to assume the truth of p and then conclude the truth of
q. In our notation, � p→ q iff p � q. A generalized version of this principle follows.

Theorem 1.9 (DT: Deduction Theorem). Let Σ be a set of propositions, and let x,y
be propositions. Then, Σ � x→ y iff Σ∪{x} � y.

Proof. Suppose Σ � x → y. Let i � Σ∪ {x}. Then i � Σ, and i � x. If i � y, then
i(x) = 1 and i(y) = 0. That is, i(x→ y) = 0; so i � x→ y. This contradicts Σ � x→ y.
Thus, i � y. Therefore, Σ∪{x} � y.

Conversely, suppose Σ∪ {x} � y. Let i � Σ. If i � x → y, then i(x) = 1 and
i(y) = 0. That is, i � Σ∪{x} and i � y; this contradicts Σ∪{x} � y. So, i � x→ y.
Therefore, Σ � x→ y. �

EXAMPLE 1.18. We use Monotonicity, Reductio ad Absurdum and/or Deduction
Theorem to justify the argument in Example 1.14.

Solution 1. Due to DT, {p → (r → q), p → r} � p → q iff {p → r, p → (r →
q), p} � q. We show the latter.

1.8. SUMMARY AND PROBLEMS 27

Let i be an interpretation such that i(p→ r)= 1, i(p→ (r→ q))= 1 and i(p)= 1.
If i(r) = 0, then it will contradict i(p→ r) = 1. So, i(r) = 1. Similarly, from second
and third, we have i(r→ q) = 1. Then i(q) = 1. Therefore, the consequence is valid.

Solution 2. Due to RA, we show that {p→ r, p→ (r→ q), p, ¬q} is unsatisfiable.
If the set is satisfiable, then there is an interpretation i such that

i(p→ r) = i(p→ (r→ q)) = i(p) = i(¬q) = 1.

Now, i(p) = 1 and i(p→ r) = 1 force i(r) = 1. Then i(q) = 0 gives i(q→ r) = 0. It
follows that i(p→ (r → q)) = 0 contradicting i(p→ (r → q)) = 1. So, there exists
no such i. That is, {p→ r, p→ (r→ q), p, ¬q} is unsatisfiable.

Solution 3. Due to Example 1.16, {p→ r, p} � r and {p→ (r → q), p} � r → q.
Again, {r, r→ q} � q. Using monotonicity, we have {p→ r, p→ (r→ q), p} � q.
Is this solution complete?

Exercises for § 1.7
1. Determine whether the following consequences are valid:

(a) ¬(r∧¬¬q) !� (¬q∨¬r)
(b) p∨¬q, p→ ¬r !�q→ ¬r
(c) p∨q→ r∧ s, t ∧ s→ u !� p→ u
(d) p∨q→ r∧ s, s∨ t → u, p∨¬u !� p→ (q→ r)
(e) p→ q∧ r, q→ s, d → t ∧u, q→ p∧¬t !�q→ t
(f) p, ¬r→ ¬p, (p→ q)∧ (r→ s), (s→ u)∧ (q→ t), s→ ¬t !�⊥

2. Translate to PL and then decide the validity of the following argument:
The Indian economy will decline unless cashless transaction is accepted
by the public. If the Indian economy declines, then Nepal will be more
dependent on China. The public will not accept cashless transaction. So,
Nepal will be more dependent on China.

1.8 SUMMARY AND PROBLEMS
Logic is concerned with methods of reasoning involving issues such as validity of
arguments and formal aspects of truth and falsehood. Propositional Logic addresses
these issues by starting with atomic propositions and gradually building up more
propositions using the connectives such as ¬ (not), ∧ (and), ∨ (or), → (implies),
and ↔ (if and only if). The meanings of these connectives are defined by means of
truth tables. The meanings are unambiguous because the compound propositions are
formed from the basic ones in an unambiguous manner by a formal construction of
the language of PL. Such a formal construction, where no concept of truth is attached
to the constructs is termed as the syntax of PL. Giving meanings to the propositions
by way of truth values is termed as the semantics of PL.

In semantics, we attach truth values to the propositions by way of interpreta-
tions. A model is defined as an interpretation that evaluates a proposition to 1 (true).

28 CHAPTER 1. PROPOSITIONAL LOGIC

Propositions of which each interpretation is a model are called valid propositions
(also tautologies). A satisfiable proposition is one which has a model. The concept
of models has been used to define a valid consequence which formalizes the notion
of a correct argument. A consequence is valid if it is never the case that the premises
are true and the conclusion is false.

Though propositional logic has a long history of more than 2000 years, the truth
value semantics as discussed here was invented by Boole (1951) in the form of an
algebra, now called boolean algebra. The truth table had been used by Frege (1934)
in a somewhat awkward fashion. The modern form of the truth table semantics was
popularized by Post (1921) and Wittgenstein (1922). There had been debates about
how well the material implication as given through the semantics of→ represents the
implication as found in natural languages. See Epstein (2001) and Mates (1972) for
such discussions and other philosophical issues related to propositional logic. Some
of the story problems below are taken from Backhouse (1986), Smullyan (1968,
1978), and Smullyan (1983).

Problems for Chapter 1
1. Construct propositions x,y and strings u,v such that (x↔ y) = (u↔ v), where

x �= u.
2. Show that n(w), the number of occurrences of connectives in a proposition w

can be defined the following way:

If w is a propositional variable, or �, or ⊥, then n(w) = 0.
If w = ¬x, then n(w) = n(x)+1.
If w = (x◦ y), for ◦ ∈ {∧,∨,→,↔}, then n(w) = n(x)+n(y)+1.

3. Prove by induction that the number of occurrences of binary connectives in a
proposition is equal to the number of left parentheses, and is also equal to the
number of right parentheses.

4. Prove that the three alternative ways of defining PROP such as the grammar, the
declarative version, and the inductive construction, define the same set PROP.

5. Show that no proposition can be a string of negation symbols.
6. Show that a proper prefix of a proposition is either a string of negation symbols

or has more left than right parentheses.
7. Show that the set PROP(i) consists of all propositions whose parse trees have

height at most k.
8. Let x,y,z be nonempty strings over the alphabet of PROP such that y and z are

prefixes of x. Prove that y is a prefix of z or z is a prefix of y.
9. Is it true that in a proposition the number of left parentheses plus the number

of occurrences of the symbol ¬ is equal to the height of the parse tree of the
proposition?

10. Let A be a proposition where ¬ does not appear. Show that the number of
occurrences of atomic propositions in A is at least a quarter of the length of
A; and the length of A is odd. [Hint: Length of A is 4k+1 and the number of
occurrences of atomic propositions is k+1.]

1.8. SUMMARY AND PROBLEMS 29

11. Let x,y,z be any three nonempty strings over the alphabet of PROP. Show that
at most one of xy and yz is a proposition.

12. Let us say that a statement is obtained from a proposition by omitting all left
parentheses. Show that unique parsing holds for statements.

13. Define the main connective of a proposition without using parse trees. Write a
procedure to get the main connective of a proposition.

14. Our algorithm of PropDet starts by identifying a leftmost innermost propo-
sition. Describe another procedure that may start by identifying a possible
outermost proposition.

15. Show that PROP is a denumerable set.
16. Write a procedure to determine in which of the forms�, ¬�, ⊥, ¬⊥, pi, ¬pi,

¬¬x,(x∧y),¬(x∧y),(x∨y),¬(x∨y),(x→ y),¬(x→ y), (x↔ y), or ¬(x↔ y)
a given proposition is.

17. Prove Observation 1.1 by induction on the number of occurrences of connec-
tives in the given proposition.

18. Suppose that we replace both (and) with |. Will the unique parsing still hold?
19. Replace the formation rules of propositions by: if u,v are propositions, then

¬(u), (u)∧ (v), (u)∨ (v), (u)→ (v), (u)↔ (v) are propositions. Show that
the unique parsing theorem holds with such a definition.

20. Show that unique parsing holds for the following grammar of propositions:
w ::=� | ⊥ | p | (¬w) | (w∧w) | (w∨w) | (w→ w) | (w↔ w)

21. In outfix notation, we write (p∨ q) as ∨(p,q). Similarly, we write the propo-
sition (¬p → (q∨ (r∧ s))) as → (¬p,∨(q,∧(r,s)). If you omit the commas
and parentheses, the latter will look like → ¬p∨ q∧ rs. Can you see how to
put commas and parentheses into this expression and then rewrite so that you
obtain the usual infix notation? Taking clues from this, define a language of
propositional logic without parentheses. Show that unique parsing still holds.
(This is the Polish notation.)

22. Sometimes, Polish notation uses writing connectives on the right, instead of
writing on the left. Using this, the proposition ((p→ q)↔ (¬p∧¬q)) is writ-
ten as q¬p¬∧qp→↔ . Give a formal definition of the set of all propositions
using this notation and then prove unique parsing.

23. Give two parse trees that do not correspond to propositions, such that

(a) one of them could be extended, by adding subtrees at the leaves, to a
parse tree which would correspond to a proposition.

(b) whatever way you extend the other, by adding subtrees at the leaves, it
cannot correspond to a proposition; it is inherently ill formed.

24. Prove by induction on the length of a string that the procedure PropDet works
correctly.

25. Give a formal proof of correctness of PropDet by using induction on the height
of a parse tree.

26. The procedure PropDet is a recursive procedure. Give an iterative procedure
for determining whether an arbitrary string over the alphabet of PL is a propo-
sition or not.

30 CHAPTER 1. PROPOSITIONAL LOGIC

27. Write another algorithm for determining whether a given string over the alpha-
bet of PROP is a proposition or not, by using the procedure for computing the
main connective.

28. Identify the set sp(w) for a proposition w, where

sp(p) = {p}, for any atomic proposition p.
sp(¬w) = sp(w)∪{¬w}, for any proposition w.
sp(u◦v) = sp(u)∪ sp(v)∪{(u◦ v)}, for any propositions u,v, and
any binary connective ◦ ∈ {∧,∨,→,↔}.

29. Define the degree of a proposition d(w) recursively by:

d(p) = 0, for any atomic proposition p.
d(¬w) = 1+d(w), for any proposition w.
d((u◦v)) = 1+max{d(u),d(v)}, for any propositions u,v, and any
binary connective ◦ ∈ {∧,∨,→,↔}.

Does d(w) coincide with the height of the parse tree for w?
30. Recall that any proposition is in one of the forms�, ¬�, ⊥, ¬⊥, pi,¬pi,¬¬x,

(x∧y), ¬(x∧y), (x∨y), ¬(x∨y), (x→ y), ¬(x→ y), (x↔ y), or ¬(x↔ y).
Using this, we define the rank of a proposition r(w) as follows.

r(w) = 0 if w is one of �, ¬�, ⊥, ¬⊥, pi, ¬pi.
r(¬¬x) = r(x)+1.
r(w) = r(x)+ r(y)+1, otherwise.

To connect the rank with the degree defined in the previous problem, show the
following:

(a) For any proposition w, r(w)+1≤ 2d(w).
(b) For any positive integer n, there exists a proposition w such that d(w) = n

and r(w)+1 = 2n.

31. Let w be any proposition. View it as a truth function; that is, a function from
{0,1}n to {0,1} for some n. Show by induction on the number of occurrences
of connectives in w that for any truth assignment i, i � w iff w(i) = 1.

32. Let w be any proposition. For any interpretation i, show by induction on the
number of occurrences of connectives in w, that i � w iff i ∈ M(w). (See
Remark 1.2.)

33. For any truth assignment i, let Mi = {p : i(p) = 1}∪ {¬p : i(p) = 0}. Show
that corresponding to each interpretation i of a proposition w, the set Mi is
unique.

34. In continuation of the previous problem, let Aw be the set of all propositional
variables occurring in w, and let M be any subset of Aw∪{¬p : p ∈ Aw} such
that for each p ∈ Aw, either p ∈ M or ¬p ∈ M. Show that there is a unique
interpretation i of w such that M = Mi.

35. Define an interpretation of any proposition w starting from a truth assignment
given as a subset of the set of propositional variables occurring in w and then
define valid and satisfiable propositions.

1.8. SUMMARY AND PROBLEMS 31

36. The semantics of PL can be defined in another way via the satisfaction relation
� . Let p stand for any propositional variable, and x,y for any proposition(s).
An interpretation is a symbol i that satisfies the following properties:

Either i � p or i � p.
i ��.
i �⊥.
i � (x∧ y) iff both i � x and i � y hold.
i � (x∨ y) iff at least one of i � x or i � y holds.
i � (x→ y) iff at least one of i � x or i � y holds.
i � (x↔ y) iff both i � x and i � y hold, or both i � x and i � y hold.

Show that this definition is equivalent to one we have adopted.
37. Instead of using truth tables, an arithmetic procedure can be used. The basis

for this is the following representation of the connectives: ¬w is represented as
1+w, u∧v as u+v+uv, u∨v as uv, u→ v as (1+u)v and u↔ v as u+v. The
constants � and ⊥ are taken as 0 and 1, respectively. In this representation,
each propositional variable is treated as a variable over the set {0,1}. The
arithmetic operations of addition and multiplication are taken as usual with
one exception, that is, 1+1= 0. Thus tautologies are those propositions which
are identically 0 and contradictions become identically equal to 1. See that in
this algebra, you have 2x = 0 and x2 = x. Justify the procedure. [This is the
starting point for boolean algebra.]

38. See Problem 37. Give another arithmetic representation of the connectives
where � is represented as 1 and ⊥ as 0.

39. Let w be a proposition having the only connective as↔; and having no occur-
rence of � or ⊥. Show that � w iff each propositional variable occurring in w
occurs an even number of times. What happens if � or ⊥ occurs in w?

40. An advertisement on a sports magazine reads: “If I am not playing cricket,
then I am watching it; if I am not watching it, then I am talking about it.” If
the speaker does not do more than one of these activities at a time, then what
is he doing?

41. Assume that any politician is either honest or dishonest. An honest politician,
by definition, always tells the truth, and a dishonest politician always lies. In a
campaign rally, politician A declares “I am honest iff my opponent is honest”.
Let p be “A is honest”, and q be “The opponent of A is honest”.

(a) Explain why p↔ (p↔ q) holds.
(b) Is A honest?
(c) Is the opponent of A honest?
(d) Later the opponent of A declares, “If I am honest, so is my opponent”.

What new propositions now become true?
(e) Using the statements of both the politicians, answer (b) and (c).

42. Explain why you are trapped in the commercial for this book mentioned at the
beginning of Preface to First Edition.

43. In Smullyan’s island, there are two types of people: knights, who always tell
the truth, and knaves, who always lie. We write A,B,C for three inhabitants of
the island. Answer the following questions.

32 CHAPTER 1. PROPOSITIONAL LOGIC

(a) Assume that if A is a knight, then B is a knight; and if C is a knave, then
B is a knight. Is it true that if A is a knight or C is a knave, then B is a
knight?

(b) Suppose that if A is a knave, then B is a knave; and if C is a knight, then
B is a knave. Does it mean that if A is a knave and C is a knight, then B
is a knave?

(c) You find A,B,C standing together. You asked A, “Are you a knight or a
knave?” You could not hear the low voice of A. You asked B, “What did
A say?” B replied, “A said that he was a knave.” Then C said, “Do not
believe B, he is lying.” Then what are they, knights or knaves?

(d) While A,B,C are nearby, you asked A, “How many knights are among
you?” Again you could not listen to A. You asked B, “What did A say?”
B replied, “A said, there was only one knight among us.” C said, “Do not
believe B, he is lying.” Then what are they, knights or knaves?

(e) A,B,C were the suspects for a crime. Each of them told he did not com-
mit the crime. It is known that two of them told truth and the third one
lied. Besides they told something else. A said “The victim was a friend
of B, and an enemy of C.” B said, “I did not know the victim; and I was
out of town throughout the day.” C said, “I saw A and B with the victim
in the town that day; one of them must have done it.” Who committed
the crime?

44. In Merchant of Venice, Portia takes three caskets: gold, silver, and lead. Inside
one of the caskets, she puts her portrait, and on each of the locked caskets, she
writes an inscription. She explains to her suitors that each inscription could be
either true or false. But on the basis of the inscriptions, one has to choose the
casket containing the portrait. We will have two variations of the puzzle here.

(a) Suppose that Portia writes the inscriptions as
Gold: The portrait is in here.
Silver: The portrait is in here.
Lead: At least two caskets bear false inscriptions.

Which casket should the suitor choose? Find the answer by trying to
see which of the facts such as the portrait is in the Gold, Silver, or Lead
casket goes well with the situation.

(b) This time Portia says that one has to choose a casket not containing the
portrait, basing on the following inscriptions:

Gold: The portrait is in here.
Silver: The portrait is not in here.
Lead: At most one casket bears a true inscription.

Find an answer. Prove that your answer is correct.
45. Prove or give a counter example:

(a) If x∧ y is satisfiable, then x is satisfiable and y is satisfiable.
(b) If x∨ y is satisfiable, then x is satisfiable or y is satisfiable.
(c) If x→ y is valid and x is valid, then y is valid.
(d) If x→ y is satisfiable, and x is satisfiable, then y is satisfiable.
(e) If x∧ y is valid, and x is satisfiable then y is satisfiable.

1.8. SUMMARY AND PROBLEMS 33

(f) If � x , then x must have at least two atomic propositions.
(g) If � x, and x has an occurrence of a propositional variable, then x has at

least two occurrences of a propositional variable.
(h) If x is a contradiction, then the main connective of x must be ¬ or ∧.

46. Give models for each of the following sets of propositions:

(a) {pi∨ pi+1,¬(pi∧ pi+1) : i ∈ N}
(b) {(pi∨ pi+1),(pi → ¬(pi+1∧ pi+2)),(pi ↔ pi+3) : i ∈ N}
(c) {¬p1, p2}∪{(pi∧ p j ↔ pi. j) : 1 < i, j}

47. Let w be any proposition that uses the connectives ∧ and ∨ only. Let i and j
be two interpretations such that for each propositional variable p, we have “if
i(p) = 1, then j(p) = 1.” Show that if i(w) = 1, then j(w) = 1. Is it true that
if j(w) = 1, then i(w) = 1?

48. Show that on the set of all propositions, ≡ is an equivalence relation.
49. An equivalence relation on a set decomposes the set into equivalence classes.

What are the equivalence classes of ≡ on the set of all propositions built up
from two propositional variables p and q?

50. Transitivity : Let Σ and Γ be sets of propositions, and let w be a proposition.
Let Σ � x for each x ∈ Γ. Show that if Γ � w, then Σ � w.

51. Show that a set Σ of propositions is satisfiable iff there exists no contradiction
C such that Σ �C iff Σ �⊥.

52. Let Σ be a set of propositions, and let p,q be propositions. Prove or refute the
following:

(a) If Σ � p∨q, then Σ � p or Σ � q.
(b) If Σ � p or Σ � q, then Σ � p∨q.

53. For each i ∈ N, let xi be a proposition; and let Σ = {xi → xi+1 : i ∈ N}. Show
that Σ � x0 → xn for each n ∈ N.

54. Let A be a proposition built from propositional variables p1, . . . , pn, and ↔,
but nothing else. Show the following:

(a) If pk occurs in A, then an interpretation i satisfies A iff i(pk) = 0 for an
even number of ks.

(b) If A is not equivalent to �, then A is equivalent to some proposition B,
where if pk occurs at all, then pk occurs an odd number of times.

(c) There exists a proposition B equivalent to A where any pk occurs at most
once.

55. Let Σ be an unsatisfiable set of propositions. Give examples of Σ meeting the
following condition:

(a) Each set {x} is satisfiable for x ∈ Σ.
(b) Each set {x,y} is satisfiable for x,y ∈ Σ, x �= y.
(c) Each set {x,y,z} is satisfiable for x,y,z ∈ Σ and x �= y, y �= z, z �= x.

56. Give a proof of Deduction Theorem by using RA.
57. Give a proof of RA by using Deduction Theorem. [Hint: ¬w≡ (w→⊥).]
58. Let Σ and Γ be sets of propositions, and let w be a proposition. Show that if

Σ∪{w} and Γ∪{¬w} are unsatisfiable, then Σ∪Γ is unsatisfiable.

34 CHAPTER 1. PROPOSITIONAL LOGIC

59. Let Σ be a set of propositions, and let w be a proposition. Prove or refute the
following:

(a) Σ∪{w} is satisfiable or Σ∪{¬w} is satisfiable.
(b) Σ∪{w} is unsatisfiable or Σ∪{¬w} is unsatisfiable.
(c) if Σ∪{w} and Σ∪{¬w} are unsatisfiable, then Σ is unsatisfiable.

60. A set of propositions Σ1 is called equivalent to a set of propositions Σ2 iff
for each proposition x, Σ1 � x iff Σ2 � x. A set of propositions Σ is called
independent iff for each x ∈ Σ, Σ\{x} � x. Prove or refute the following:

(a) Each finite set of propositions has an independent subset equivalent to
the set.

(b) An infinite set of propositions need not have an independent subset equiv-
alent to the set.

(c) Corresponding to each set of propositions Σ, there exists an independent
set equivalent to Σ.

Chapter 2

A Propositional Calculus

2.1 AXIOMATIC SYSTEM PC
We give meaning to the connective ∧ by saying that the proposition p∧q is assigned
to 1 when both p,q are assigned to 1. Here, we assume that we know the meaning
of both p,q are assigned to 1. Look at the italicized phrase. It presupposes the
meaning of and. To understand and we have created the symbol ∧, and then we are
interpreting ∧ as and!

Of course, we may use the alternate definition, where i(x∧ y) = min{i(x), i(y)}.
It involves the implicit meaning of taking minimum. That looks better. But it assumes
that min{1,1}= 1, min{0,1}= 0, min{1,0}= 0, and min{0,0}= 0. It is same thing
as the truth table for ∧. In the truth table for ∧, consider a row, where p is assigned
1 and q is assigned 1. Here, we say p∧q is assigned 1, when both p,q are assigned
1. We are again back to where we have started.

In general, we wish to introduce and model the process of reasoning; and our
way of doing it involves reasoning itself. How can we meaningfully analyse logical
patterns when the analysis itself uses some such pattern as a method? For instance,
look at the proof of Theorem 1.8. We use some sort of reasoning in the proof. How
can one accept the proof if he doubts (does not know) the reasoning process itself?
Is it not circular to use reasoning to explain reasoning?

The basic questions are the following. How can we analyse truth and falsity by
using the notion of truth and falsity? How can we analyse meaningfully the logical
patterns using the same logical patterns?

A solution was proposed by D. Hilbert. Imagine, the language PL as a language
of some computer. Suppose that executing a computer program one may determine
whether the symbols are joined together in a permissible way. In fact, such a program
is the grammar of PL. Again, in which way these constructs of PL give rise to correct
logical arguments is also governed by some computer program. To talk about these
programs and to determine whether a program does its job correctly or not, we need
another language. The mathematical English serves as the metalanguage for PL.
We assume that we know the meanings of the words ‘not’ and ‘and’, etc. in this
metalanguage. This hierarchy of languages prevents circularity.

35

36 CHAPTER 2. A PROPOSITIONAL CALCULUS

However, it raises another question: why does one need to create such a com-
puter language if we already know the meanings of the connectives? It looks that
the meanings of connectives are carried over to the language of PL from the meta-
language. Moreover, these meanings presuppose our knowledge of what is true and
what is false. Can we have an alternative for truth and falsity? Can we have a me-
chanical process instead of the assumed validity or truth? In this chapter, our goal is
to demonstrate that the notion of validity which involves meaning or which presup-
poses the knowledge of truth and falsity can be replaced by a completely mechanical
process called provability.

A proof starts with some well known facts and proceeds towards the result using
the allowed inferences. The accepted facts are called axioms. The allowed inferences
are called the rules of inference, which link one or more propositions to another. A
proof is then a sketch of how we reach the final proposition from the axioms by
means of the inference rules. Notice that anything which is proved this way has
nothing to do with truth or falsity. The trick is to select the axioms and inference
rules in such a way that validity and provability may be on par.

To keep the matter simple, we plan to work with a subset of connectives. We
choose the subset {¬,→}. We may introduce other connectives by way of defini-
tions later. We thus choose our language for propositional calculus (PC, for short)
as the fragment of PROP having all propositional variables and the connectives ¬
and → . In PC, right now, we do not have the propositional constants � and ⊥;
and we do not have the connectives ∧,∨ and ↔ . Again, we use the grammar of
PROP appropriate for this fragment. We also use the precedence rules to abbreviate
our PC-propositions with usual conventions of omitting brackets and subscripts in
the propositional variables. Moreover, we use capital letters A,B,C, . . . as generic
symbols for propositions.

The axiom schemes of PC are:

(A1) A→ (B→ A)

(A2) (A→ (B→C))→ ((A→ B)→ (A→C))

(A3) (¬A→ ¬B)→ ((¬A→ B)→ A)

An axiom is any instance of an axiom scheme, obtained by replacing throughout
the letters A,B,C by propositions. For example, p → (q → p) is an axiom as it is
obtained from A1 by replacing A by p and B by q throughout. We thus refer to
p→ (q→ p) as A1. Similarly, (p→ q)→ ((q→ p)→ (p→ q)) is also A1.

In addition to the axioms, PC has a rule of inference; it is as follows:

(MP)
A A→ B

B

The inference rule MP is an incarnation of the valid consequence Modus Ponens:
{A, A→ B} � B. Since in an axiomatic system there is no truth or falsity, we simply
write the consequence as a fraction. You may read the rule MP as

From A and A→ B, derive B.
This is again a rule scheme in the sense that any instance of this scheme is a

rule. That is, if you have already (derived) the propositions p and p→ q, then the

2.1. AXIOMATIC SYSTEM PC 37

rule allows you to derive q. Deriving q → r from p → q and (p → q)→ (q → r)
is an application of the rule MP. Informally, the word ‘derive’ signals deductions;
formally, it just allows to write the propositions one after another.

The axiomatic system PC has all the propositions having the only connectives as
¬ and →. PC has axiom schemes A1, A2, A3, and the inference rule MP. A proof
in PC is defined to be a finite sequence of propositions, where each one is either an
axiom or is obtained (derived) from earlier two propositions by an application of MP.
The last proposition of a proof is called a theorem of PC; the proof is said to prove
the theorem. The fact that “A is a theorem in PC” is written as �PC A. We also read
�PC A as “A is provable in PC”. If no other axiomatic system is in sight, we may
abbreviate �PC to � without the subscript PC. In that case, the phrases ‘proof in PC’,
‘PC-proof’, and ‘proof’ mean the same thing.

The symbol � will have the least precedence. For example, � p→ p is a short-
hand for writing � (p→ p); and � ¬p→ (p→ q) abbreviates � (¬p→ (p→ q)).

EXAMPLE 2.1. The following is a proof of �PC r→ (p→ (q→ p)).

1. (p→ (q→ p))→ (r→ (p→ (q→ p))) A1, A := p→ (q→ p),B := r
2. p→ (q→ p) A1, A := p,B := q
3. r→ (p→ (q→ p)) 1, 2, MP

The documentation on the right says why the propositions in lines 1 and 2 are
axioms, instances of A1. The proposition on the third line is derived from the propo-
sitions in lines 1 and 2 by an application of the inference rule MP. In this application
of MP, we have taken

A = p→ (q→ p), B = (r→ (p→ (q→ p))).

The line numbers on the first column help us in book keeping. The third column
shows why a particular proposition is entered in that line. The actual proof is in the
middle column.

EXAMPLE 2.2. Show that � p→ p.
It is a ridiculously simple theorem to be proved; but which axiom do we start

with, A1, A2, or A3?
A1 is A→ (B→ A). We have p→ (p→ p), as one of its instances. If somehow

we are able to eliminate the first p, then we are through. The only way of elimination
is the inference rule MP. It would require p so that from p and p→ (p→ p) we will
arrive at p→ p. But it seems we cannot derive p.

An instance of A2 looks like: (p → (q → r))→ ((p → q)→ (p → r)). If we
plan to apply MP, we may derive p→ r, provided we have already the propositions:
p→ (q→ r) and p→ q. But towards reaching p→ p, we have to take r as p. Thus,
we must have the two propositions (replace r by p): p→ (q→ p) and p→ q. Now,
the first of these propositions, i.e., p→ (q→ p) is simply A1. Some progress has
been made.

At this stage, we plan to have A2 as (p→ (q→ p))→ ((p→ q)→ (p→ p)),
A1 as p→ (q→ p), and apply MP to get (p→ q)→ (p→ p). Fine, but then how to
eliminate p→ q? We have again A1 as p→ (q→ p). Thus, instead of q if we had

38 CHAPTER 2. A PROPOSITIONAL CALCULUS

p→ q, then we would have been through. Well, then replace q by p→ q throughout.
That is, we would start with A2, where we replace r by p and q by p→ q, and start
all over again.

We take A2 as (p → ((q → p)→ p))→ ((p → (q → p))→ (p → p)), A1 as
p → ((q → p)→ p), and conclude by MP that (p → (q → p))→ (p → p). Next,
we use A1 as p → (q → p) and apply MP to conclude p → p. Find appropriate
replacements in the proof given below.

1. p→ ((q→ p)→ p) A1
2. (p→ ((q→ p)→ p))→ ((p→ (q→ p))→ (p→ p)) A2
3. (p→ (q→ p))→ (p→ p) 1, 2, MP
4. p→ (q→ p) A1
5. p→ p 3, 4, MP

Can you construct a proof of � p→ p without using q?
In an axiomatic system such as PC, the notion of a proof is effective, i.e., if it is

claimed that some object is a proof of a theorem, then it can be checked whether the
claim is correct or not in an algorithmic manner. However, construction of a proof
may not be effective; there may or may not be an algorithm to construct a proof of a
given theorem.

Of course, proofs can be generated mechanically by following the specified rules.
The problem comes when a proof is targeted towards proving a given theorem. We
will see by way of examples how to do it. We may have to rely on our intuition in
constructing proofs.

EXAMPLE 2.3. Show that � q→ (p→ p).
Look at Examples 2.1 and 2.2. Do they suggest anything? In Example 2.2, we

have proved p → p. We will append an appropriate copy of Example 2.1 to that
proof. Here it is:

1. p→ ((q→ p)→ p)
...

5. p→ p Example 2.2
6. (p→ p)→ (q→ (p→ p)) A1
7. q→ (p→ p) 5, 6, MP

Just like axiom schemes and inference rules, theorems are theorem schemes.
Once you have a proof of p → p, you can have a proof of (p → q)→ (p → q).
It is simple; just replace p by p→ q throughout the proof. Thus known theorems can
be used in proving new theorems. We will mention ‘ Th’ on the rightmost column of
a proof, when we use an already proved theorem. The proof in Example 2.3 can be
rewritten as

1. p→ p Th
2. (p→ p)→ (q→ (p→ p)) A1
3. q→ (p→ p) 1, 2, MP

EXAMPLE 2.4. Show that � (¬q→ q)→ q.
The following proof uses � p→ p as a theorem scheme.

2.1. AXIOMATIC SYSTEM PC 39

1. ¬q→ ¬q Th
2. (¬q→ ¬q)→ ((¬q→ q)→ q) A3
3. (¬q→ q)→ q 1, 2, MP

We extend our definition of proofs and theorems to take care of consequences. If
a proof uses premises as axioms, and derives the conclusion, then the consequence
is proved.

Let Σ be a set of propositions, and let w be any proposition. A proof of the
consequence Σ !�w in PC is defined to be a finite sequence of propositions where
each proposition is either an axiom, a proposition in Σ, or is obtained from earlier
two propositions by an application of MP; and the last proposition in the sequence is
w. In the consequence Σ !�w, each proposition from Σ is called a premise, and w is
called the conclusion.

We write Σ �PC w to say that there exists a proof of the consequence Σ !�w in PC.
This fact is also expressed as “the consequence Σ !�w is provable in PC.” Informally,
a proof of Σ !�w is also called a proof of Σ �PC w. When Σ = {w1, . . . ,wn}, a finite
set, we write Σ �PC w as w1, . . . ,wn �PC w. As earlier we will write Σ � w if no
confusion arises.

We observe that when Σ = ∅, Σ � w boils down to � w. Moreover, it is not
mandatory that a proof uses all axioms; similarly, a proof of a consequence need not
use all given premises.

Proofs of consequences are written in three columns, like proofs of theorems.
We mention the letter ‘P’ in the documentation to say that the proposition used in
that line of the proof is a premise.

EXAMPLE 2.5. Construct a proof to show that ¬p, p � q.
Look at A3. If we can have ¬q→ ¬p and ¬q→ p, then with two applications

of MP, we can conclude q. Again, due to A1 as ¬p → (¬q → ¬p), we can derive
¬q→ ¬p from ¬p, as in Example 2.1. Similarly, from p, we can derive ¬q→ p.

Here is the proof:

1. p P
2. p→ (¬q→ p) A1
3. ¬q→ p 1, 2, MP
4. ¬p P
5. ¬p→ (¬q→ ¬p) A1
6. ¬q→ ¬p 4, 5, MP
7. (¬q→ ¬p)→ ((¬q→ p)→ q) A3
8. (¬q→ p)→ q 6, 7, MP
9. q 3, 8, MP

EXAMPLE 2.6. Show that p→ q, q→ r � p→ r.
We can start from a premise, say, p → q. To arrive at p → r, we should have

(p → q)→ (p → r). A look at A2 says that this new proposition matches with its
second part. The first part p→ (q→ r) should have been derived. Well, this can be
derived from the other premise q→ r by using A1.

Here is the proof:

40 CHAPTER 2. A PROPOSITIONAL CALCULUS

1. q→ r P
2. (q→ r)→ (p→ (q→ r)) A1
3. p→ (q→ r) 1, 2, MP
4. (p→ (q→ r))→ ((p→ q)→ (p→ r)) A2
5. (p→ q)→ (p→ r) 3, 4, MP
6. p→ q P
7. p→ r 6, 5, MP
Theorems can be used as new axioms. The same way, already derived conse-

quences can be used as new inferences rules. The reason: proof of such a conse-
quence can be duplicated with necessary replacements. Such new inference rules are
referred to as derived rules of inference.

The consequence {p → q, q → r} � p → r in Example 2.6 is rewritten as the
derived rule of Hypothetical Syllogism:

(HS)
A→ B B→C

A→C

EXAMPLE 2.7. Show that ¬q→ ¬p � p→ q.
We use the derived rule HS in the following proof.
1. ¬q→ ¬p P
2. (¬q→ ¬p)→ ((¬q→ p)→ q) A3
3. (¬q→ p)→ q 1, 2, MP
4. p→ (¬q→ p) A1
5. p→ q 4, 3, HS

EXAMPLE 2.8. Show that � ¬¬p→ p.
1. ¬¬p→ (¬p→ ¬¬p) A1
2. (¬p→ ¬¬p)→ ((¬p→ ¬p)→ p) A3
3. ¬¬p→ ((¬p→ ¬p)→ p) 1, 2, HS
4. (¬¬p→ ((¬p→ ¬p)→ p))→

((¬¬p→ (¬p→ ¬p))→ (¬¬p→ p)) A3
5. (¬¬p→ (¬p→ ¬p))→ (¬¬p→ p) 3, 4, MP
6. ¬p→ ¬p Th
7. (¬p→ ¬p)→ (¬¬p→ (¬p→ ¬p)) A1
8. (¬¬p→ (¬p→ ¬p)) 6, 7, MP
9. ¬¬p→ p 8, 5, MP

Exercises for § 2.1
Try to construct PC-proofs of the following consequences:
1. p→ q, q→ r, p � r 2. ¬q→ ¬p, p � q
3. p→ q, ¬q � ¬p 4. p � ¬¬p
5. {p,¬q} � ¬(p→ q) 6. ¬(p→ q) � p
7. ¬(p→ q) � ¬q 8. p→ (q→ r), q � p→ r
9. � (p→ q)→ (¬q→ ¬p) 10. � ¬q→ ((p→ q)→ ¬p)

2.2. FIVE THEOREMS ABOUT PC 41

2.2 FOUR THEOREMS ABOUT PC
To prove “if x then y” we assume x and derive y. It is accepted in each branch of
mathematics. Since we are questioning the process of reasoning itself, can we accept
it in PC? We should rather prove this principle.

Theorem 2.1 (DT: Deduction Theorem). Let Σ be a set of propositions, and let p,q
be propositions. Then, Σ � p→ q iff Σ∪{p} � q.

Proof. Suppose that Σ � p→ q. To show Σ∪{p} � q, take the proof of Σ � p→ q,
adjoin to it the lines (propositions) p,q. It looks like:

1. · · ·
2. · · ·

...
n. p→ q Proof of Σ � p→ q
n+1. p P
n+2. q n+1, n,MP

This is a proof of Σ∪{p} � q.
Conversely, suppose that Σ∪{p} � q; we have a proof of it. We construct a proof

of Σ � p→ q by induction on the number of propositions (number of lines) used in
the proof of Σ∪{p} � q.

In the basis step, suppose that the proof of Σ∪{p} � q has only one proposition.
Then this proposition has to be q. Now, why is this a proof of Σ∪ {p} � q? There
are three possibilities:

(a) q is an axiom (b) q ∈ Σ (c) q = p

In each case, we show how to get a proof of Σ � p→ q.

(a) In this case, our proof is:
1. q An axiom
2. q→ (p→ q) A1
3. p→ q 1, 2, MP

It is a proof of Σ � p→ q since it uses no proposition other than axioms.

(b) In this case the above proof still works, only the first line would be documented
as ‘ P’, a premise in Σ, rather than an axiom.

(c) Here, q = p. We just repeat the proof given in Example 2.2:
1. · · ·

...
5. p→ p MP

For the induction step, lay out the induction hypothesis:
If there exists a proof of Σ∪{p} � q having less than n propositions in
it (in the proof), then there exists a proof of Σ � p→ q.

Suppose now that we have a proof P of Σ∪ {p} � q having n propositions in it.
Observe that we have four cases to consider basing on what q is. They are

42 CHAPTER 2. A PROPOSITIONAL CALCULUS

(i) q is an axiom (ii) q ∈ Σ (iii) q = p
(iv) q has been derived by an application of MP in the proof P

We will construct a proof of Σ � p→ q in all the four cases. The cases (i)-(iii) are
similar to the basis case. In the case (iv), the proof P looks like:

P : 1. · · ·
2 · · ·

...
m. r

...
m+ k. r→ q

...
n. q m, m+ k,MP

where m < n, m+ k < n, and r is some proposition. The proof segment

P1 : lines 1 through m proves Σ∪{p} � r
P2 : lines 1 through m+ k proves Σ∪{p} � r→ q

The proofs P1, P2 have less than n number of propositions. By induction hypothesis,
corresponding to P1, P2, there exist proofs P3, P4 such that

P3 proves Σ � p→ r
P2 proves Σ � p→ (r→ q)

Suppose that P3 has i number of propositions and P4 has j number of propositions.
We use the two proofs P3, P4 to construct a proof P5 of Σ � p→ q. The proof P5 is
constructed by adjoining P4 to P3, and then some more propositions:

P5: 1. · · · P3 begins
...

i. p→ r P3 ends
i+1. · · · P4 begins

...
i+ j. p→ (r→ q) P4 ends
i+ j+1. (p→ (r→ q))→ ((p→ r)→ (p→ q)) A2
i+ j+2. (p→ r)→ (p→ q) i+ j, i+ j+1,MP
i+ j+3. p→ q i, i+ j+2,MP

Now, P5 is a proof of Σ � p→ q since the premises used in it are either axioms
or propositions from Σ. �

We introduce a notion parallel to unsatisfiability. Let Σ be a set of propositions.
We say that Σ is inconsistent iff there exists a proposition w such that Σ � w and
Σ�¬w. That is, Σ is inconsistent iff there exists a proof, possibly using premises from
Σ, where some proposition and its negation both occur. We say that Σ is consistent
iff Σ is not inconsistent.

In case of consequences, each premise is also a conclusion since it has a one line
proof, with the justification that it is a premise. Similarly, any conclusion that has

2.2. FIVE THEOREMS ABOUT PC 43

been derived from a set of premises can still be derived if some more premises are
added. This is monotonicity.

Theorem 2.2 (M: Monotonicity). Let Σ and Γ be sets of propositions, Σ ⊆ Γ, and
let w be a proposition.

(1) If Σ � w, then Γ � w.
(2) If Σ is inconsistent, then Γ is inconsistent.

Proof. (1) Let Σ � w. We then have a proof where some (or all) of the premises from
Σ are used to have its last line as w. The same proof shows that Γ � w.

(2) If Σ is inconsistent, then there exists a proposition p such that Σ � p and Σ � ¬p.
By (1), Γ � p and Γ � ¬p. Therefore, Γ is inconsistent. �

Theorem 2.3 (RA: Reductio ad Absurdum). Let Σ be a set of propositions, and let
w be a proposition.

(1) Σ � w iff Σ∪{¬w} is inconsistent.
(2) Σ � ¬w iff Σ∪{w} is inconsistent.

Proof. (1) Suppose that Σ � w. By monotonicity, Σ∪ {¬w} � w. With a one-line
proof, Σ∪{¬w} � ¬w. Therefore, Σ∪{¬w} is inconsistent.

Conversely, suppose that Σ∪ {¬w} is inconsistent. Then there is a proposition,
say p, such that Σ∪ {¬w} � p and Σ∪ {¬w} � ¬p. By the deduction theorem,
Σ � ¬w→ p and Σ � ¬w→ ¬p. Suppose P1 is a proof of Σ � ¬w→ ¬p containing
m propositions and P2 is a proof of Σ �¬w→ p containing n propositions. Construct
a proof P of Σ � w as follows:
P: 1. · · · P1 begins

...
m. ¬w→ ¬p P1 ends
m+1. · · · P2 begins

...
m+n. ¬w→ p P2 ends
m+n+1. (¬w→ ¬p)→ ((¬w→ p)→ w) A3
m+n+2. (¬w→ p)→ w m, m+n+1,MP
m+n+3. w m+n, m+n+2,MP

(2) If Σ � ¬w, then by monotonicity, Σ∪ {w} � ¬w. Also, Σ∪ {w} � w, trivially.
Hence, Σ∪{w} is inconsistent.

Conversely, suppose that Σ∪{w} is inconsistent. We show that Σ∪{¬¬w} is also
inconsistent. Now, inconsistency of Σ∪{w} implies that there exists a proposition p
such that Σ∪{w} � p and Σ∪{w} � ¬p. So, there exist proofs P1 and P2 such that

P1 proves Σ∪{w} � p
P2 proves Σ∪{w} � ¬p

Observe that Σ∪{¬¬w,¬w}�¬¬w and Σ∪{¬¬w,¬w}�¬w. That is, Σ∪{¬¬w,¬w}
is inconsistent. By (1), we obtain Σ∪{¬¬w} � w. Then there exists a proof P3 such
that

44 CHAPTER 2. A PROPOSITIONAL CALCULUS

P3 proves Σ∪{¬¬w} � w

Now, construct a proof P4 by taking P3 followed by P1. Further, if w is actually used
in P1, then it is mentioned as ‘P’ in it. In P4, mention it as ‘Th’. It is justified, since
in the P3 portion, w has been proved. The proof P4 is a proof of Σ∪{¬¬w} � p. If
w is not used in P1, then as it is P4 is a proof of Σ∪{¬¬w} � p.

Similarly, construct the proof P5 by taking P3 followed by P2, and change the
justification corresponding to the line ¬w in the P2 portion to ‘Th’, if necessary.
Now, P5 is a proof of Σ∪{¬¬w} � ¬p.

Therefore, Σ∪{¬¬w} is inconsistent. By (1), we conclude that Σ � ¬w. �

Do you now see the rationale behind choosing the three axioms? The proof of
DT uses A1 and A2 while that of RA uses A3 explicitly. Notice that DT, M, and
RA are not theorems of PC; they speak something about PC, and as such, are called
metatheorems for PC.

The next metatheorem for PC follows from the definition of a PC-proof.

Theorem 2.4 (Finiteness). Let Σ be a set of propositions, and let w be a proposition.
Then the following are true:

(1) If Σ � w, then there exists a finite subset Γ of Σ such that Γ � w.

(2) If Σ is inconsistent, then there exists a finite inconsistent subset of Σ.

Proof. (1) Suppose Σ � w. Then there exists a proof P with its last proposition as w.
Let Γ be the set of all propositions from Σ that occur in P. Since P contains finitely
many propositions, Γ is a finite subset of Σ. The same P is a proof of Γ � w.

(2) Suppose that Σ is inconsistent. There exists a proposition w such that Σ � w and
Σ � ¬w. By (1), there exist finite subsets Γ1,Γ2 of Σ such that Γ1 � w and Γ2 � ¬w.
Take Γ = Γ1∪Γ2. Then Γ is a finite subset of Σ. By Monotonicity, Γ �w and Γ �¬w.
That is, Γ is inconsistent. �

Inconsistency yields everything, and hence vacuousness.

Theorem 2.5 (Paradox of material Implication). Let Σ be a set of propositions.
Then, Σ is inconsistent iff Σ � x for each proposition x.

Proof. If Σ � x for each proposition x, then Σ � p and also Σ � ¬p for some (each)
propositional variable p. Thus Σ is inconsistent.

Conversely, if Σ is inconsistent, then by Monotonicity, Σ∪{¬x} is inconsistent.
By RA, Σ � x. �

Logic is used to derive information about the real world from simple assumptions
in a scientific model. According to Theorem 2.5, if our model is inconsistent, then it
would lead to a situation where every sentence about the world relevant to the model
can be derived. However, every such sentence cannot be true in the world. Thus
there will be a mismatch between our formal method of derivation and the truth in
the world. This will render our model useless.

2.3. USING THE METATHEOREMS 45

Exercises for § 2.2
1. Assume that � ¬x→ (x→ y). Prove Deduction Theorem by using RAA.
2. Let Σ be a set of propositions. Show that Σ is consistent iff there is a proposi-

tion w such that Σ � w.
3. Construct a set of propositions Σ and propositions p,q to show that Σ� p, Σ� q

but Σ � p∨q.
4. Transitivity : Let Σ be a set of propositions, and let x,y be propositions. Show

that if Σ � x and x � y, then Σ � y.
5. Let Σ and Γ be sets of propositions, and let w be a proposition. Let Σ � x for

each x ∈ Γ. Show that if Σ∪Γ � w, then Σ � w.
6. Let Σ be a set of propositions, and let x,y,z be propositions. Show that if

Σ∪{x} � z and Σ∪{y} � z, then Σ∪{x∨ y} � z.
7. Here is an application of deduction theorem:

Let A be the sentence There is no life on earth.
Let B be the sentence If B, then A.
Assume B. Then we have B and B→ A.
By Modus Ponens, we obtain A.
Notice that by assuming A, we have obtained B.
Therefore, by deduction theorem, B→ A has been proved.
Since B is simply B→ A, we have proved both B and B→ A.
Again, by Modus Ponens, we get A.
Therefore, There is no life on earth.

In this proof of There is no life on earth, what is wrong?

2.3 USING THE METATHEOREMS
The metatheorems can be used for showing the existence of a proof rather than con-
structing an actual proof. As expected, it will ease our work. For example, in the
proof of RA(2), you have already used RA(1) showing ¬¬p � p. This avoided using
Example 2.8. As in PL, the deduction theorem is especially useful for propositions
involving serial implications. See the following examples.

EXAMPLE 2.9. Show that Σ∪{A} is consistent iff Σ∪{¬¬A} is consistent.
In the proof of RA(2), we proved one part; now using RA, we prove both:

Σ∪{A} is inconsistent iff Σ � ¬A iff Σ∪{¬¬A} is inconsistent.

EXAMPLE 2.10. Show that � ¬¬p→ p and � p→ ¬¬p.
Due to the deduction theorem and RA(1),

� ¬¬p→ p iff ¬¬p � p iff {¬¬p,¬p} is inconsistent.

The last one holds as {¬¬p,¬p} � ¬p and {¬¬p,¬p} � ¬¬p.
Similarly, by the deduction theorem and RA(2),

� p→ ¬¬p iff p � ¬¬p iff {p,¬p} is inconsistent.

46 CHAPTER 2. A PROPOSITIONAL CALCULUS

Example 2.10 gives following theorems and the derived rules of double negation:

(DN) � A→ ¬¬A � ¬¬A→ A
¬¬A

A
A

¬¬A

EXAMPLE 2.11. (¬p→ q)→ ((q→¬p)→ p),(¬p→ q)→ (q→¬p),¬p→ q � p.
1. ¬p→ q P
2. (¬p→ q)→ (q→ ¬p) P
3. q→ ¬p 1, 2, MP
4. (¬p→ q)→ ((q→ ¬p)→ p) P
5. (q→ ¬p)→ p 1, 4, MP
6. p 3, 5, MP

EXAMPLE 2.12. Show that � ¬q→ ((p→ q)→ ¬p).
By the deduction theorem and RA, we see that

� ¬q→ ((p→ q)→ ¬p) iff ¬q � ((p→ q)→ ¬p) iff {¬q, p→ q} � ¬p
iff {¬q, p→ q, p} is inconsistent iff {p→ q, p} � q.

The last one is proved by an application of MP.
Example 2.12 brings up another familiar rule. We write it as the derived rule of

Modus Tolens:

(MT)
¬B A→ B

¬A

EXAMPLE 2.13. Show that � (p→ q)→ (¬q→ ¬p).
By the deduction theorem,

� (p→ q)→ (¬q→ ¬p) iff {p→ q, ¬q} � ¬p.

An application of MT does the job.
Due to Examples 2.7 and 2.13, we have the following theorems and the derived

rules of contraposition:

(CN) � (¬B→ ¬A)→ (A→ B) � (A→ B)(¬B→ ¬A)

(CN)
¬B→ ¬A

A→ B
A→ B

¬B→ ¬A

EXAMPLE 2.14. Show that � ¬p→ (p→ q).
By the deduction theorem, � ¬p→ (p→ q) iff {¬p, p} � q. Now, {¬p, p} is

inconsistent. By monotonicity, {¬p, p, ¬q} is inconsistent. By RA, {¬p, p} � q.
Below is another alternative proof of the theorem:

1. ¬p P
2. ¬p→ (¬q→ ¬p) A1
3. ¬q→ ¬p 1, 2, MP
4. p→ q 3, CN

2.3. USING THE METATHEOREMS 47

EXAMPLE 2.15. Show that � p→ (¬q→ ¬(p→ q)).

� p→ (¬q→ ¬(p→ q)) iff {p,¬q} � ¬(p→ q) iff {p,¬q, p→ q} is incon-
sistent iff {p, p→ q} � q, which is MP.

Notice that the deduction theorem on MP proves � p→ ((p→ q)→ q). We use
this as a theorem in the following alternative proof of p � ¬q→ ¬(p→ q):

1. p P
2. p→ ((p→ q)→ q) Th (From MP)
3. (p→ q)→ q 1, 2, MP
4. ¬q→ ¬(p→ q) 3, CN

EXAMPLE 2.16. Show that � (¬q→ q)→ q.

� (¬q→ q)→ q iff ¬q→ q � q iff {¬q→ q,¬q} is inconsistent. Look at lines
1 and 3 in the following proof:

1. ¬q P
2. ¬q→ q P
3. q 1, 2, MP

Compare this proof with that in Example 2.4.

EXAMPLE 2.17. Show that p→ q, ¬p→ q � q.
1. p→ q P
2. ¬q P
3. ¬p 1, 2, MT
4. ¬p→ q P
5. q 3, 4, MP

The consequence in Example 2.17 is the familiar ‘argument by cases’. Try con-
structing another proof using Examples 2.13 and 2.16 instead of MT.

To keep the axiomatic system simple, we have used only two connectives. The
other connectives can be introduced with definitions. Remember that the definitions
are, in fact, definition schemes. In the following, we use the symbol � for the ex-
pression “equal to by definition”.

(D1) p∧q � ¬(p→ ¬q)

(D2) p∨q � ¬p→ q

(D3) p↔ q � ¬((p→ q)→ ¬(q→ p))

(D4) � � p→ p

(D5) ⊥ � ¬(p→ p)

We also require some inference rules to work with the definitions. They would pro-
vide us with ways of how to use the definitions. We have the two rules of definition,
written as one, as follows:

(RD)
X � Y Z

Z[X := Y]
X � Y Z

Z[Y := X]

48 CHAPTER 2. A PROPOSITIONAL CALCULUS

The notation Z[Y := X] is the uniform replacement of Y by X in Z. The proposition
Z[Y := X] is obtained from the proposition Z by replacing each occurrence of the
proposition Y by the proposition X . The rule RD says that if X and Y are equal by
definition, then one can be replaced by the other wherever we wish. For instance,
from (p∨ q)→ r we can derive (¬p → q)→ r, and from (¬p → q)→ r, we may
derive (p∨q)→ r. In fact, given any consequence, we may apply this rule recursively
replacing expressions involving connectives other than ¬ and→with the ones having
only these two. Then the axiomatic system PC takes care of the consequence. Of
course, the definitions and the rule RD do the job of eliminating as also introducing
the other connectives.

EXAMPLE 2.18. (a) � p∧q→ p (b) � p∧q→ q (c) � (p→ (q→ (p∧q)))

(a) 1. ¬p→ (p→ q) Th, Example 2.14
2. ¬(p→ q)→ ¬¬p 1, CN
3. ¬¬p→ p DN
4. ¬(p→ q)→ p 2, 3, HS
5. p∧q→ p 4, RD

(b) 1. ¬q→ (p→ ¬q) A1
2. ¬(p→ ¬q)→ ¬¬q 1, CN
3. ¬¬q→ q DN
4. ¬(p→ ¬q)→ q 2, 3, HS
5. p∧q→ q 4, RD

(c) 1. p P
2. q P
3. p→ ¬q P
4. ¬q 1, 3, MP

Thus {p, q, p→ ¬q} is inconsistent. By RA, p, q � ¬(p→ ¬q). Due to D1 and RD,
p, q � (p∧q). By DT, � (p→ (q→ (p∧q))).

EXAMPLE 2.19. Show that � (p→ q)→ ((p∨ r)→ (q∨ r)).

1. p→ q P
2. ¬q P
3. ¬p 1, 2, MT
4. ¬p→ r P
5. r MP

Hence p→ q, ¬p→ r, ¬q � r. By DT, � (p→ q)→ ((¬p→ r)→ (¬q→ r)). By
D1 and RD, we conclude that � (p→ q)→ ((p∨ r)→ (q∨ r)).

EXAMPLE 2.20. (a) � p→ (p∨q) (b) � q→ (p∨q)

(a) 1. p→ ¬¬p DN
2. ¬¬p→ (¬p→ q) Th
3. p→ (¬p→ q) 1, 2, HS
4. p→ (p∨q) 3, RD

2.3. USING THE METATHEOREMS 49

(b) 1. q→ (¬p→ q) A1
2. q→ (p∨q) 1, RD

EXAMPLE 2.21. p→ r, q→ r � p∨q→ r.

1. p→ r P
2. q→ r P
3. p∨q P
4. ¬r P
5. ¬r→ ¬p 1, CN
6. ¬p 4, 5, MP
7. ¬p→ q 3, RD
8. q 6, 7, MP
9. r 8, 2, MP

Lines 4 and 9 show that {p→ r, q→ r, p∨q, ¬r} is inconsistent. By RA and DT it
follows that p→ r, q→ r � p∨q→ r.

EXAMPLE 2.22. Show that � ¬(p∧q)→ (¬p∨¬q).

1. ¬(p∧q) P
2. ¬¬(p→ ¬q) RD
3. p→ ¬q DN
4. ¬¬p→ p DN
5. ¬¬p→ ¬q 4, 3, HS
6. ¬p∨¬q RD

Thus ¬(p∧q) � (¬p∨¬q). An application of DT completes the proof.

EXAMPLE 2.23. Prove: Σ is inconsistent iff Σ � ⊥, for any set of propositions Σ.
Let Σ be inconsistent. Then Σ � p and Σ � ¬p for some proposition p. Now,

construct a proof by adjoining the proofs of Σ � p, of Σ � ¬p, and of {p,¬p} �
¬(p→ p) (See Example 2.5.), in that order. Next, use D5 with RD to derive ⊥.

Conversely, suppose Σ � ⊥. By D5 and RD, Σ � ¬(p→ p). Adjoin to its proof
the proof � p → p. The new proof proves both p → p and ¬(p → p). Thus, Σ is
inconsistent.

The result of Example 2.23 can be summarized as a derived inference rule, called
the rule of Inconsistency.

(IC):
A ¬A

⊥

Then the second part of Monotonicity can be restated as

If Σ⊆ Γ and Σ � ⊥, then Γ � ⊥.
And, RA can be restated as follows:

(1) Σ � w iff Σ∪{¬w} � ⊥.
(2) Σ � ¬w iff Σ∪{w} � ⊥.

50 CHAPTER 2. A PROPOSITIONAL CALCULUS

Sometimes using Σ�⊥ instead of writing “Σ is inconsistent” improves elegance. For
instance, in the proof of Example 2.18, instead of asking you to look at the lines 2
and 4, I could have added the fifth line having⊥ in it; giving justification as “2,4,IC”.

EXAMPLE 2.24. Let Σ be a set of propositions, and let p,q be propositions. Show
that Σ � ¬(p→ q) iff Σ � p and Σ � ¬q.

We show that (a) ¬(p→ q) � p, (b) ¬(p→ q) � ¬q, (c) p,¬q � ¬(p→ q).

(a) By RA and DT, ¬(p → q) � p iff {¬(p → q), ¬p} � ⊥ iff ¬p � p → q iff
{¬p, p} � q, which holds due to the paradox of material implication.

(b) Similarly, ¬(p → q) � ¬q iff {¬(p → q), q} � ⊥ iff q � p → q iff {q, p} � q,
which holds.

(c) Again, by DT and RA, p,¬q � ¬(p→ q) iff {p,¬q, p→ q} � ⊥, which holds
since p, p→ q � q by MP.

Now if Σ � ¬(p→ q), then using (a) and (b), we have Σ � p and Σ � q. Similarly,
using (c), we conclude that if Σ � p and Σ � q, then Σ � ¬(p→ ¬q).

Exercises for § 2.3
1. Show the following.

(a) � p→ ¬¬p (b) � (p→ q)→ (¬q→ ¬p)
(c) � (p∨q)→ (p→ q)→ q (d) � ((p→ q)→ q)→ (p∨q)
(e) � (p→ ¬q)→ (q→ ¬p) (f) � (¬p→ q)→ (¬q→ p)
(g) � (p→ ¬q)→ ((p→ q)→ ¬p) (h) � (q→ ¬p)→ ((p→ q)→ ¬p)
(i) � (p→ r)→ ((q→ r)→ (p∨q→ r))
(j) � (p→ q)→ ((p→ r)→ (p→ q∧ r))

2. For each i ∈ N, let xi be a proposition; and let Σ = {xi → xi+1 : i ∈ N}. Show
that Σ � x0 → xn for each n ∈ N.

2.4 ADEQUACY OF PC TO PL
We must see that the syntactic notion of proof matches with the semantic notion of
validity. This is called the adequacy of PC to PL. Similarly, we would like to see
that provability of consequences matches with the validity of consequences. This is
called the Strong adequacy of PC to PL.

The matching is two way: each valid consequence has a proof and each provable
consequence is valid. The former property is called the strong completeness of PC
and the latter property is called the strong soundness of PC with respect to PL. The
adjective strong is used to say that the property holds for consequences and not only
for theorems.

Observe that strong soundness of PC implies its soundness; strong completeness
implies completeness; and strong adequacy implies adequacy. We thus prove strong
soundness and strong completeness.

Notice that the axioms and the rules of inference of PC uses only ¬ and → .
The other connectives are introduced to PC by way of definitions. For convenience,

2.4. ADEQUACY OF PC TO PL 51

we will restrict PL to the fragment of PROP where we do not have the symbols
�,⊥,∧,∨, and ↔ . Later, you will be able to see that strong adequacy holds for the
full PL as well.

Theorem 2.6 (Strong Soundness of PC to PL). Let Σ be a set of propositions, and
let w be a proposition.

(1) If Σ � w in PC, then Σ � w.
(2) If Σ is satisfiable, then Σ is PC-consistent.

Proof. (1) We apply induction on the lengths of proofs. In the basis step, if a proof
of Σ � w has only one proposition, then it must be w. Now, w is either an axiom or a
premise in Σ. Since the axioms are valid propositions (Check it.), Σ � w.

Lay out the induction hypothesis that for every proposition v, if Σ � v has a proof
of less than m propositions, then Σ � v. Let P be a proof of Σ � w having m proposi-
tions. If w is again an axiom or a premise in Σ, then clearly Σ � w holds. Otherwise,

w has been obtained in P by an application of MP.

Then, there are propositions v and v→w occurring earlier to w in P. By the induction
hypothesis, Σ � v and Σ � v→ w. Since {v,v→ w} � w, Σ � w.

(2) Let Σ be inconsistent, then Σ � u and Σ �¬u for some proposition u. By (1), Σ � u
and Σ � ¬u. Hence, any model of Σ is a model of both u and ¬u. This is impossible
since the same interpretation cannot be a model of both u and ¬u. Therefore, Σ does
not have a model; Σ is unsatisfiable. �

Notice that when Σ =∅, soundness implies that the axioms taken together form
a consistent set.

Similar to strong soundness, we can formulate strong completeness in two ways:
by connecting validity and provability, or by connecting satisfiability and consis-
tency. Let us try the second alternative:

Every consistent set is satisfiable.

For a consistent set Σ and a propositional variable p, if it so happens that Σ � p, then
clearly Σ � ¬p. Therefore, while constructing a model of Σ, we may safely assign p
to 1. Similarly, for a propositional variable q, if Σ � ¬q, then we assign q to 0 in our
intended model. Difficulty arises when for a propositional variable r, neither Σ � r
nor Σ � ¬r happens. In this case, both Σ∪{r} and Σ∪{¬r} are consistent. We may
consider one of them and continue to build our model.

In the following, we use this heuristic in a formal way. In fact, instead of consid-
ering only propositional variables, p,q,r etc, we consider all propositions directly.
Moreover, we use the notion of maximal consistency. A set of propositions is called
a maximally consistent set iff it is consistent and each proper superset of it is incon-
sistent.

The set of all propositions (now, without ∨,∧,↔,�,⊥) is countable. Suppose
the following is an enumeration of it:

w0, w1, w2, . . . , wn, . . .

52 CHAPTER 2. A PROPOSITIONAL CALCULUS

Let Σ be a consistent set of propositions. Define a sequence of sets of propositions
Σm inductively by

Σ0 = Σ ; Σn+1 =

�
Σn if Σn∪{wn} is inconsistent
Σn∪{wn} if Σn∪{wn} is consistent

We see that each Σi is consistent and that if i < j, then Σi ⊆ Σ j. Next, take

Σ� = ∪m∈NΣm = Σ0∪Σ1∪Σ2∪ · · · .

The following lemma lists some interesting properties of Σ�.

Lemma 2.1. Let Σ be a consistent set of propositions. Let Σ� be the set as con-
structed earlier; and let p,q be propositions.

(1) If Σ� � p, then there exists m ∈ N such that Σm � p.
(2) Σ� is consistent.
(3) Σ� is maximally consistent.
(4) q ∈ Σ� iff Σ� � q.
(5) Either q ∈ Σ� or ¬q ∈ Σ�.
(6) If q ∈ Σ�, then p→ q ∈ Σ�.
(7) If p �∈ Σ�, then p→ q ∈ Σ�.
(8) If p ∈ Σ� and q �∈ Σ�, then p→ q �∈ Σ�.

Proof. (1) Suppose Σ� � p. By finiteness (Theorem 2.4), there exists a finite subset
Γ of Σ� such that Γ � p. If Γ has � number of propositions, then we may write Γ =
{wi1 , . . . ,wik}, where i1 < i2 < · · ·< i�. Observe that Σi1 ⊆ Σi2 ⊆ · · · . Hence

wi1 ∈ Σi1 ; wi1 ,wi2 ∈ Σi2 ; . . . ; wi1 , . . . ,wi� ∈ Σi� .

Write i� = m. Then Γ⊆ Σm. By monotonicity it follows that Σm � p.

(2) If Σ� is inconsistent, then Σ� � u and Σ� �¬u for some proposition u. By (1), Σi � u
and Σ j � ¬u for some i, j ∈ N. Take k = max{i, j}. Then, Σi ⊆ Σk and Σ j ⊆ Σk. By
monotonicity, Σk � u and Σk �¬u. This contradicts the fact that each Σk is consistent.
Hence Σ� is consistent.

(3) In (2), we have already shown that Σ� is consistent. Let r be a proposition such
that r �∈ Σ�. Suppose Σ� ∪{r} is consistent. Due to the enumeration w0, w1, w2, . . .
of the set of all propositions, r = wn for some n ∈ N. Since Σ� ∪ {r} is consistent,
by monotonicity, Σn ∪ {r} is consistent. It then follows that q = wn ∈ Σn+1 ⊆ Σ�,
contradicting the fact that r �∈ Σ�. Thus Σ� ∪{r} is inconsistent. This proves that Σ� is
maximally consistent.

(4) If q ∈ Σ�, then clearly Σ� � q. Conversely, if q �∈ Σ�, then by (3), Σ� ∪ {q} is
inconsistent. By RA, Σ� � ¬q. Since Σ� is consistent, Σ� � q.

(5) Since Σ� is consistent, if q ∈ Σ�, then ¬q �∈ Σ�. On the other hand, if q �∈ Σ�, then
due to (3), Σ� ∪{q} is inconsistent. By RA, Σ� � ¬q. By (4), ¬q ∈ Σ�.

2.4. ADEQUACY OF PC TO PL 53

(6) Let q∈ Σ�. By monotonicity, Σ� ∪{p} � q. By the deduction theorem, Σ� � p→ q.
Due to (4), p→ q ∈ Σ�.
(7) Let p �∈ Σ�. By (3), Σ� ∪ {p} is inconsistent. By monotonicity, Σ� ∪ {p,¬q} is
inconsistent. By RA, Σ� ∪ {p} � q. By the deduction theorem, Σ� � p→ q. Due to
(4), p→ q ∈ Σ�.
(8) Suppose p ∈ Σ� and q �∈ Σ�. If p→ q ∈ Σ�, then by MP, Σ� � q. By (4), q ∈ Σ�, a
contradiction. Hence, p→ q �∈ Σ�. �

Properties (1)-(3) are the basic properties of Σ�; these have been used to prove the
others. Property (4) says that the set Σ� is its own deductive closure. Properties (5)-
(8) capture the meanings of the connectives ¬ and→.

Any set having Properties (2)-(8) listed in Lemma 2.1 is called a Hintikka set
after the logician J. Hintikka. By Lemma 2.1, we have simply shown the existence
of a Hintikka set. The fact that any consistent set can be extended to a maximally
consistent set is referred to as Lindenbaum Lemma, which is captured in Property (3).

Remark 2.1. In fact, Lindenbaum Lemma can be proved even for propositional lan-
guages having uncountable number of propositional variables, using Zorn’s lemma.
In the following, we give such a proof with the disclaimer that in your first reading,
you can safely ignore it.

Lemma 2.2 (Lindenbaum). Each consistent set of propositions has a maximally
consistent extension.

Proof. Let Σ be a consistent set of propositions. Consider C as the set of all consis-
tent supersets of Σ. Notice that C �=∅ since Σ ∈ C . This nonempty set C is partially
ordered by the relation ⊆ . Let H be any chain in this partially ordered set. That is,
for any A,B ∈H, at least one of A⊆ B or B⊆ A is true. Write K = ∪{X : X ∈H}. Is
K consistent?

If K is inconsistent, then K � p and K � ¬p for some proposition p. Due to
Theorem 2.4, we have finite subsets K1,K2 of K such that K1 � p and K2 � ¬p. Then
we have a finite subset of K, namely, K0 = K1 ∪K2 such that K0 � p and K0 � ¬p.
That is, K0 is inconsistent.

Suppose, K0 = {x1, . . . ,xn} for propositions xi, 1 ≤ i ≤ n. Now, each xi ∈ K.
Therefore, each xi is in some set Yi, which is a member of the chain H. Let Y be the
biggest of the sets Y1, . . . ,Yn. It means that Yi ⊆Y for each i. Also, since H is a chain,
Y is one of Y1, . . . ,Yn. Then K0 ⊆Y and Y ∈H. By monotonicity, it follows that Y � p
and Y � ¬p. This is a contradiction since each set in H is consistent. Therefore, we
conclude that K is consistent.

It then follows that each chain in C has an upper bound. Then Zorn’s lemma
implies that C has a maximal element. Call it Σ�. This Σ� is a maximally consistent
set containing Σ. �

Now that Lindenbaum lemma holds for all types of propositional languages, the
countability of the set of propositional variables is no more needed. For this, we
require Zorn’s lemma which is equivalent to the axiom of choice. We resort to this
approach only when our propositional language contains an uncountable number of
propositional variables. Otherwise, we continue with the constructive Lemma 2.1.

54 CHAPTER 2. A PROPOSITIONAL CALCULUS

Theorem 2.7 (Model Existence Theorem for PC). Every PC-consistent set of pro-
positions has a model.

Proof. Let Σ be a consistent set of propositions. Let Σ� be the maximally consistent
set of Lemma 2.1 (or as in Lemma 2.2). Define a function i from the set of all
propositions to {0,1} by i(p) = 1 if p∈ Σ�, else, i(p) = 0. The function i is a boolean
valuation due to Lemma 2.1(5)-(8). Obviously, i is a model of Σ�. Since Σ⊆ Σ�, i is
a model of Σ as well. �

Model existence theorem says that every consistent set is satisfiable, or that every
unsatisfiable set is inconsistent. Then, RA (in PC and in PL) gives the following
result.

Theorem 2.8 (Strong Completeness of PC to PL). Let Σ be a set of propositions,
and let w be any proposition. If Σ � w then Σ �PC w.

With this we have proved the Strong Adequacy of PC to PL. Thus the inher-
ent circularity in the semantic method is eliminated. We may, then, approach any
problem in PL through semantics or through the PC-proofs.

If a proposition is a theorem, we may be able to show it by supplying a PC-proof
of it. If it is not a theorem, then the mechanism of PC fails to convince us. Reason:
I am not able to construct a proof does not mean there exists no proof! In a such a
case, we may resort to the truth tables and try to supply a falsifying interpretation.
That would succeed, at least theoretically, if the given proposition is not a theorem.

From adequacy of PC and Theorem 2.5 it follows that the set of all axioms of PC
is consistent. For otherwise, each proposition would be a theorem of PC. And then
each proposition would be satisfiable. But this is not the case; for instance, ¬(p→ p)
is unsatisfiable.

Exercises for § 2.4
1. Let Σ be a set of propositions, and let x,y,z be propositions. Show that if

Σ � y→ z, then Σ � ((x→ y)→ (x→ z)).

2. A set Σ of propositions is called negation complete iff for each proposition
w, either Σ � w or Σ � ¬w. Show that each consistent set of propositions is a
subset of a negation complete set.

3. Show that a consistent set of propositions is maximally consistent iff it is nega-
tion complete.

4. Lindenbaum Lemma tells that a consistent set of propositions can always be
extended to a maximally consistent set. Is such a maximally consistent set
unique? Give an example to illustrate your point.

5. Call a set of propositions finitely satisfiable iff every finite subset of it is sat-
isfiable. Without using compactness, prove that if Σ is a finitely satisfiable
set of propositions, and A is any proposition, then one of the sets Σ∪ {A} or
Σ∪{¬A} is finitely satisfiable.

2.5. COMPACTNESS OF PL 55

2.5 COMPACTNESS OF PL
Each finite subset of the set of natural numbers N has a minimum. Also, N itself has
a minimum. However, each finite subset of N has a maximum but N does not have a
maximum. The properties of the first type, which holds for an infinite set whenever it
holds for all finite subsets of the infinite set, are called compact properties. For exam-
ple, in a vectors space, if all finite subsets of a set of vectors are linearly independent,
then the set of vectors itself is linearly independent. Thus linear independence is a
compact property. In PC, consistency is a compact property due to Theorem 2.4. We
use this to show that satisfiability in PL is also a compact property.

Theorem 2.9 (Compactness of PL). Let Σ be an infinite set of propositions, and let
w be a proposition.

(1) Σ � w iff Σ has a finite subset Γ such that Γ � w.
(2) Σ is unsatisfiable iff Σ has a finite unsatisfiable subset.
(3) Σ is satisfiable iff each nonempty finite subset of Σ is satisfiable.

Proof. (1) Let Σ � w. By the strong completeness of PC, Σ �PC w. By finiteness,
there exists a finite subset Γ of Σ such that Γ � w. By the strong soundness of PC,
Γ � w. Conversely, if there exists a finite subset Γ of Σ such that Γ � w, then by
Monotonicity, Σ � w.

(2) In (1), take w = p0 and then take w = ¬p0. We have finite subsets Γ1 and Γ2 of
Σ such that Γ1 � p0 and Γ2 � ¬p0. By monotonicity, Γ � p0 and Γ � ¬p0, where
Γ = Γ1∪Γ2 is a finite subset of Σ. Now, Γ is inconsistent.

(3) This a is a re-statement of (2). �

Compactness, in its full generality, is a consequence of axiom of choice as our
proof of Lindenbaum’s lemma shows. It is known that the axiom of choice is equiv-
alent to the well ordering principle that every set can be well ordered. In turn, com-
pactness implies that each set can be totally ordered; see the following example.

EXAMPLE 2.25. Let S be any nonempty set. For each ordered pair (a,b) ∈ S×S,
introduce a propositional variable, say, pa,b. Define the set Σ as the union of the
following three sets:

{¬pa,a : a ∈ S}, {pa,b∧ pb,c → pa,c : a,b,c ∈ S}, {pa,b∨ pb,a : a,b ∈ S, a �= b.}.

Let S0 ⊆ S be a finite set. Write S0 = {x1, . . . ,xn}. Define the ordering < on S0 by

xi < x j iff i < j.

This ordering is a total order on S0. Let Σ0 be the union of three sets written above,
where a,b,c ∈ S0 instead of S. Define an interpretation i of Σ0 by

i(pa,b) = 1 iff a < b for a,b ∈ S0.

Such an interpretation is a model of Σ0 since < is a total order on S0.

56 CHAPTER 2. A PROPOSITIONAL CALCULUS

We conclude that each finite subset of Σ is satisfiable. By the compactness theo-
rem, it follows that Σ is satisfiable. Then let j be a model of Σ. We define a relation
on S×S as in the above; that is,

a < b iff j(pa,b) = 1 for a,b ∈ S.

Since Σ is satisfiable, the order < is a total order on S.
Using the four colour theorem and compactness theorem, it can be shown that

every infinite simple planar graph is four colourable. A general form of the coloura-
bility theorem for infinite graphs is illustrated in the following example.

EXAMPLE 2.26. (Erdös-Rado) Let G = (V,E) be a simple graph. This means
that E ⊆ V ×V is an irreflexive and symmetric relation. Thus, instead of ordered
pairs, we may write the elements of E as two-elements sets. We say that G is k-
colourable iff there exists an onto function V → {1,2, . . . ,k} such that if {a,b} ∈ E,
then f (a) �= f (b). We show that if each finite subgraph of a simple graph with de-
numerable number of vertices is k-colourable, then G = (V,E) itself is k-colourable.
The technique is the same as in the previous example.

For each a ∈ V and i ∈ {1,2, . . . ,k}, we introduce a propositional variable pa,i
and define the set Σ as the union of the three sets

{pa,1∨ · · ·∨ pa,k : a ∈V}, {¬(pa,i∧ pa, j) : a ∈V, 1≤ i < j ≤ n},
{¬(pa,i∧ pb,i) : {a,b} ∈ E, 1≤ i≤ n}.

We associate a model v of Σ to the function f : V → {1,2, . . . ,k} the following way:

v(pa,i) = 1 iff f (a) = i.

Assume that each finite subgraph G0 of G is k-colourable. Then a corresponding set
Σ0 of propositions is satisfiable. (Work out the details.) By the compactness theorem,
we conclude that Σ itself is satisfiable. And then we see that G is k-colourable.

In a directed rooted tree, if the number of children of any node is some natural
number, then the tree is called a finitely generated tree. Notice that this number may
vary when nodes vary. A path in a directed rooted tree is any sequence of nodes
x1, . . . ,xn, . . . such that the first node x1 is the root, and xi+1 is a child of xi for each
i ≥ 1. König’s lemma asserts that in any finitely generated infinite tree, there exists
an infinite path. It is usually proved by induction; and we will do that later while
discussing Analytic Tableaux. For now, we will derive König’s lemma from the
compactness theorem.

EXAMPLE 2.27. (König) Let T be a finitely generated rooted infinite tree. We take
the level of the root as 0 and level of a child is one plus the level of its parent. Each
level of T has only a finite number of nodes; and T has countably infinite number of
nodes. Corresponding to each node n in T we introduce a propositional variable pn.
The set of all nodes of T can be written as a disjoint union of nodes in each level. If
m1, . . . ,mn are the nodes in level � of the tree, then corresponding to this level, we
define a proposition w� and a set of propositions S� as follows:

w� = pm1 ∨ · · ·∨ pmn , S� = {¬(pmi ∧ pm j) : 1≤ i < j ≤ n}.

2.5. COMPACTNESS OF PL 57

Next, we construct the set of propositions Σ as follows:

Σ = ∪�∈N ({w�}∪S�)∪{pb → pa : a is the parent of b}.

The intention behind the above construction is as follows. Any model v of w� must
satisfy one of the propositions that correspond to the nodes in level �. If such a model
v is also a model of S�, then it makes only one of those propositional variables true.
So, suppose b is such a node in level � of which v is a model. Since pb → pa is true,
v is also a model of a. According to the construction of Σ, this a is the parent node
of b. That is, a model of Σ would pin-point a path starting from the root and passing
through all levels.

Let Γ be a finite subset of Σ. Let k be the maximum index such that pk occurs in
a proposition of Γ. Let Σ0 be constructed as Σ except that we restrict � to 0≤ �≤ m.
Then Γ ⊆ Σ0, and Σ0 is a finite subset of Σ. Choose any node from level k; call it
α. Look at the path joining the root to this node α. Define an interpretation v by
assigning each propositional variable corresponding to the node that occurs in this
path to 1. Since the propositional variables are all distinct, v is an interpretation.
Further, this v is a model of Σ0. Hence, v is a model of Γ.

Since each finite subset Γ of Σ is satisfiable, by the compactness theorem, Σ is
satisfiable. Now, a model that satisfies Σ gives rise to a path that starts at the root and
passes through a vertex in each level. Such a path is an infinite path.

Compactness helps in treating an infinite set provided all its finite subsets can be
treated for satisfying a certain property. For another application, consider the word-
meaning pairing. A word may have several meanings. Thus given a set of words and
given that each word has only a finite number of meanings, can an assignment be
made so that each word gets its meaning? It has an affirmative answer provided that
for each k, meanings of each subset of k words form a subset of at least k elements.

The same problem is formulated in terms of bipartite graphs. Suppose G is a
bipartite graph with partition of its vertices as A and B. We assume that each vertex
in A is adjacent to finitely many vertices in B, and that for any k-elements subset of
A, the set of all vertices from B which are adjacent to vertices from the subset has at
least k elements. Then the problem is to determine whether there is a matching from
A to a subset of B.

We would like to formulate the problem in terms of relations and functions. Sup-
pose R is a relation from a nonempty set A to a nonempty set B. For any subset X of
A, write

R(X) = {y ∈ B : (x,y) ∈ R for some x ∈ X}.
We write |B| for the cardinality or the number of elements in a set B. Assume that
for each a ∈ A, R({a}) is a nonempty finite set. Further, assume that R satisfies the
marriage condition, that is,

|X |≤ |R(X)| for each X ⊆ A.

Then the problem is to determine whether the relation R contains a one-one function.
If A is a nonempty finite set, then the answer is affirmative. We show it by

induction on the cardinality of A. If A is a singleton, say, A = {a}, then choose one
b ∈ R({a}). The set {(a,b)} is the required one-one function from A to B.

58 CHAPTER 2. A PROPOSITIONAL CALCULUS

Lay out the induction hypothesis that the statement is true for all sets A with
|A|≤ n. Let A be a set of cardinality n+1. We break our argument into two cases.

Case 1: Suppose that for each subset S of A, |S| < |R(S)|. In this case, choose an
a ∈ A and b ∈ R({a}). If S ⊆ A \ {a} has k elements, then R(S) \ {b} has at least
k+1−1 = k elements. Thus the restricted relation R from A\{a} to B\{b} satisfies
the marriage condition. By the induction hypothesis, this restricted relation contains
a one-one function. We combine with this function the ordered pair (a,b) to obtain
the required one-one function from A to B.

Case 2: Suppose that A has a subset S such that |S| = |R(S)| = k, where 1 ≤ k ≤ n.
Then the restriction of R from S to R(S) satisfies the marriage condition. By the
induction hypothesis, this restricted relation contains a one-one function. Call this
function f : S→ R(S).

Consider the remaining subset A \ S; it has n+ 1− k ≤ n number of elements.
We want to apply the induction hypothesis on this set. So, we must verify that the
relation R restricted to A \ S and B \R(S) satisfies the marriage condition. Towards
this, let E ⊂ A\S. Let

G = {y : x ∈ E, (x,y) ∈ R(A\S), y �∈ R(S)}.

Notice that R(E ∪ S) = G∪R(S). Also, E ∩ S = ∅ = G∩R(S). Now, the marriage
condition implies that

|E|+ |S|= |E ∪S|≤ |R(E ∪S)|= |G∪R(S)|= |G|+ |R(S)|.

Since |S|= |R(S)|, we conclude that |E|≤ |G|. As G⊆ R(E), we see that

|E|≤ |R(E)|.

That is, the restriction of R to A \ S and R(A \ S) satisfies the marriage condition.
By the induction hypothesis, this restriction of R contains a one-one function; call
this function g : A\S→ R(A\S). Combining the two functions f and g, we obtain a
one-one function from A to R(A)⊆ B, which is contained in the relation R.

The result we have just proved is termed as Hall’s marriage theorem; and it is
stated as follows:

Let R be any relation from a nonempty finite set A to a nonempty set B
such that each element of A is related by R to at least one element in B.
If R satisfies the marriage condition, then R contains a one-one function
from A to B.

In the following example, we extend Hall’s marriage theorem to infinite sets.

EXAMPLE 2.28. Let A and B be any infinite sets and et R ⊆ A×B be such that
R({x}) is a finite set for each x ∈ A. Suppose that for each finite subset X of A,
|X |≤ |R(X)|.

Corresponding to each ordered pair (a,b)∈ A×B, introduce a propositional vari-
able pa,b. For each a ∈ A, construct sets of propositions Sa and Na by

Sa = {pa,b1 ∨ · · ·∨ pa,bk : R({a}) = {b1, . . . ,bk}⊆ B},
Na = {¬(pa,b∧ pa,c) : b,c ∈ B, b �= c}.

2.5. COMPACTNESS OF PL 59

Let Σ = ∪a∈A(Sa∪Na). Now, Sa has a model means that a is related to b1, . . . ,bk. If
the same model is also a model of Na, then it would imply that a is related to exactly
one element from B.

Let Γ ⊆ Σ be a finite set. Consider all propositional variables occurring in Γ.
From this we construct the set A0 = {a : pa,b occurs in Γ}. Construct Σ0 from A0 as
we have constructed Σ from A above, by restricting a ∈ A0. Now, Γ ⊆ Σ0. By the
discussion we had prior to this example, there exists a one-one function contained
in the relation R restricted to A0 ×B. Hence, Σ0 is satisfiable. By monotonicity, Γ is
satisfiable.

That is, each finite subset of Σ is satisfiable. By the compactness theorem, Σ
itself is satisfiable. Then it follows that the relation R from A to B contains a one-one
function from A to B.

We discuss another application of compactness. Let C be a nonempty collection
of subsets of a nonempty set A. We say that C is an ultrafilter on A if the following
conditions are satisfied for all subsets X ,Y of A:

(X ∈ C and Y ∈ C) iff X ∩Y ∈ C , A\X ∈ C iff X �∈ C .

Using the compactness theorem we show that every nonempty collection of subsets
of a nonempty set can be extended to an ultrafilter on the set. This is referred to as
the ultrafilter theorem.

EXAMPLE 2.29. Let A be a nonempty set. Let C be a nonempty collection of
subsets of A. Corresponding to each X ⊆ A, introduce propositional variables PX and
PX̄ . Also corresponding to each ordered pair (X ,Y) of subsets X ,Y ⊆ A, introduce
a propositional variable PX ,Y . (We write capital P so that capital letter as subscripts
become visible.) Then construct the set of propositions

Σ = {PX ,Y ↔ (PX ∩PY) : X ,Y ⊆ A}∪{PX̄ ↔ ¬PX : X ⊆ A}∪{PX : X ∈ C }.

Observe that if i is a model of Σ, then the conditions of the ultrafilter are satisfied for
the collection F = {X ⊆ A : i � PX}; and F becomes an ultrafilter containing C .

Let Γ be a finite subset of Σ. Let A0 be the set of all propositional variables
appearing in Γ. The set of all those subsets X of A such that PX ∈ A0 form a finite
collection, say C0. If C0 = {B1, . . . ,Bn}, then construct

F = {X ⊆ A : X ⊇ B1∩ · · ·∩Bn}.

That is, if we write I = B1 ∩ · · ·∩Bn; then F is the collection of all supersets of I.
Obviously, it contains each of B1, . . . ,Bn. Moreover, if X ,Y ∈F , then X∩Y ⊇ I; thus
X ∩Y ∈F . And, if Z �∈F , then there exists z ∈ I such that z �∈ Z. Then each such
z ∈ I is in A \Z. That is, I ⊆ A \Z. Thus, A \Z ∈F . Therefore, F is an ultrafilter
containing C0.

It then follows that Σ0 is satisfiable; by monotonicity, Γ is satisfiable. That is,
each finite subset of Σ is satisfiable. By the compactness theorem, Σ itself is satisfi-
able. Therefore, there exists an ultrafilter containing C .

60 CHAPTER 2. A PROPOSITIONAL CALCULUS

Exercises for § 2.5
1. Let Σ = {w1,w2,w3, . . .} be a denumerable set of propositions. Prove that for

each n≥ 1, {w1, . . . ,wn} is satisfiable iff each finite subset of Σ is satisfiable.
2. Let Σ be a set of propositions, and let X be a proposition. Show that if some

finite subset of Σ∪{X} is unsatisfiable, and some finite subset of Σ∪{¬X} is
unsatisfiable, then some finite subset of Σ is unsatisfiable.

3. Let Σ be such a set of propositions that given any interpretation i, there exists
a proposition w ∈ Σ such that i � w. Prove that there are propositions x1, . . . ,xn
in Σ such that x1∨ · · ·∨ xn is valid, for some n ∈ N.

4. Let Σ and Γ be sets of propositions such that Γ �=∅, and Σ∪{¬X : X ∈ Γ} is
inconsistent. Show that there exist x1, . . . ,xn ∈ Γ for some natural number n
such that Σ � x1∨ · · ·∨ xn.

2.6 REPLACEMENT LAWS
Now that our trust in the semantic method is restored, we go back to discussing
consequences and their proofs. In this context, we will develop some meta-laws
like replacements laws, though we will call them laws as usual. And, we will also
mention (you can prove) some laws which will be of help in tackling consequences.

We know that the proposition p↔ p is valid. Does it imply that the proposition
(p → q)↔ (p → q) is also valid? Alternatively, in our axiomatic system PC, we
would ask whether the knowledge of � p↔ p guarantees � (p→ q)↔ (p→ q)?
To answer this question, we use uniform replacement.

Let p be a propositional variable, x any proposition having at least one occurrence
of p, and y any proposition. Recall that x[p := y] denotes the proposition obtained
from x by replacing each and every occurrence of p with y. If p does not occur in x,
then we take x[p := y] = x. Read the symbol := as uniformly replaced with. For
instance, if x = (p→ q)∧ (¬p∨ (p↔ p∨q)) and y = p→ ¬q, then

x[p := y] = ((p→ ¬q)→ q)∧ (¬(p→ ¬q)∨ ((p→ ¬q)↔ (p→ ¬q)∨q)).

In fact any finite number of propositional variables can be replaced with that many
number of propositions simultaneously. For instance, suppose p,q are propositional
variables, and x = ¬p∨ (p↔ p∨q), y = p→ ¬q, z = p→ q are propositions. Then

x[p := y,q := z] = ¬(p→ ¬q)∨ ((p→ ¬q)↔ (p→ ¬q)∨ (p→ q)).

Theorem 2.10 (Uniform Replacement). Let p1, . . . , pn be propositional variables;
y1, . . . , yn propositions. Let w[p1 := y1, . . . , pn := yn] denote the proposition obtained
from a proposition w by replacing each occurrence of pi with yi for i ∈ {1, . . . ,n},
simultaneously. Then, for all propositions u,v, the following are true:

(1) If � u, then � u[p1 := y1, . . . , pn := yn].

(2) If u≡ v, then u[p1 := y1, . . . , pn := yn]≡ v[p1 := y1, . . . , pn := yn].

(3) If u � v, then u[p1 := y1, . . . , pn := yn] � v[p1 := y1, . . . , pn := yn].

2.6. REPLACEMENT LAWS 61

Proof. (1) In the truth table for w[p1 := y1, . . . , pn := yn], there is a column for each
yi. The individual entries in this column may be 0 or 1. These truth values are used to
evaluate w[p1 := y1, . . . , pn := yn], whereas w is evaluated by using the truth values
of pi, which are either 0 or 1. Since all the entries in the column for w are 1, so are
the entries in the column for w[p1 := y1, . . . , pn := yn].

Alternatively, we may use PC to show the following:

if � u, then � u[pi := y1, . . . , pn := yn].

For this, suppose P is a proof of u. In P, replace each occurrence of pi with yi for
1 ≤ i ≤ n. It is easy to see that the new sequence of propositions is again a proof;
and, it is a proof of u[pi := y1, . . . , pn := yn].

The statement (2) follows from (1), since u ≡ v iff � (u ↔ v). Similarly, (3)
follows from (1) as u � v iff � (u→ v). �

Since PC is adequate to PL, we treat � and � on par. Similarly, A ≡ B may be
seen as A � B and B � A. We illustrated both PL and PC machinery in the proof of
Theorem 2.10, while any one of them is enough.

We may require another kind of replacement. For instance, ¬(p→ q)≡ (p∧¬q).
To show that (p→ q)∨ (p∧¬q)≡�, you may proceed as follows:

(p→ q)∨ (p∧¬q) ≡ (p→ q)∨ (¬(p→ q)) ≡ �.

In so doing, you have substituted ¬(p→ q) in place of p∧¬q and you have appar-
ently claimed that this replacement preserves equivalence.

Let x, y and w be propositions. The expression w[x :=e y] denotes any proposition
obtained from w by replacing some (or all or no) occurrences of x with y. Read the
symbol :=e as equivalently replaced with.

For example, if w= p∧q∧¬r→¬p∨q, then w[p :=e p] =w, and w[s :=e p] =w.
Whereas w[p :=e q] can be any one of the following propositions

w, q∧q∧¬r→ ¬p∨q, p∧q∧¬r→ ¬q∨q, q∧q∧¬r→ ¬q∨q.

The following theorem approves the use of the Euclidean principle of substituting
equals by equals.

Theorem 2.11 (Equivalence Replacement). Let u,v,x and y be propositions. For
any proposition w, let w[x :=e y] denote a proposition obtained from w by replacing
some or all or no occurrences of x with y. If x≡ y, then the following are true:

(1) u≡ u[x :=e y].
(2) If u≡ v, then u[x :=e y]≡ v[x :=e y].
(3) If u � v, then u[x :=e y] � v[x :=e y].

Proof. Since the relation of equivalence is involved, it is convenient to use the se-
mantic method. Let i be an interpretation. (Imagine a truth table for u and u[x :=e y],
where i is simply a row.) Since x≡ y, i(x) = i(y). For computing i(u), what matters is
i(x) and/or i(y), but not the particular sub-propositions x,y. So, i(u) = i(u[x :=e y]).
This completes the proof of (1). Both (2) and (3) follow from (1). �

62 CHAPTER 2. A PROPOSITIONAL CALCULUS

Notice that if x does not occur in u, then u[x :=e y] = u, and then Theorem 2.11
is obvious. If x occurs in u, and u is atomic, then u = x, x is atomic, and then
either u[x :=e y] = u or u[x :=e y] = y. In any case, Theorem 2.11 is clear. Taking
this observation as the basis step, you can give an induction proof of Theorem 2.11.
Moreover, you can use PC-proofs instead of PL-models.

Observe the difference between w[x := y] and w[x :=e y]. In obtaining w[x := y]
from w, you must substitute each occurrence of x by y in w, while in obtaining
w[x :=e y] you may substitute some of the occurrences of x by y in w, according to
your convenience. Moreover, x in w[x := y] must be a propositional variable; while
in w[x :=e y], x can be any proposition. The law of uniform replacement cannot
be generalized to include the case that x can be any proposition; see the following
example.

EXAMPLE 2.30. Consider u = (¬p→ p)→ p, where p is a propositional variable.
Take x = ¬p and y = p. Then

u[x := y] = ((¬p→ p)→ p)[¬p := p] = (p→ p)→ p≡ p.

Notice that u is valid but u[x := y] is invalid.
We will refer to both the uniform replacement of Theorem 2.10 and equivalence

replacement of Theorem 2.11 as the rule of Leibniz. The usage of these replacement
theorems require some other equivalences and consequences. Some of the most used
laws are given in the following theorem. Sometimes a law is written as x≡� instead
of the equivalent expression � x. Similarly, x � y is written as x→ y ≡ �. There is
no need to put effort in memorizing them; they should be internalized by their use.

Theorem 2.12 (Laws of PL). Let x,y and z be propositions. Then the following
laws hold in PL.

(1) ABSORPTION x∧ (x∨ y)≡ x, x∨ (x∧ y)≡ x.

(2) ASSOCIATIVITY x∧ (y∧ z)≡ (x∧ y)∧ z, x∨ (y∨ z)≡ (x∨ y)∨ z,
x↔ (y↔ z)≡ (x↔ y)↔ z.

(3) BICONDITIONAL x↔ y≡ (x→ y)∧ (y→ x),
x↔ y≡ (x∨¬y)∧ (¬x∨ y), x↔ y≡ (x∧ y)∨ (¬x∧¬y),
¬(x↔ y)≡ ¬x↔ y, ¬(x↔ y)≡ x↔ ¬y,
¬(x↔ y)≡ (x∧¬y)∨ (¬x∧ y), ¬(x↔ y)≡ (x∨ y)∧ (¬x∨¬y).

(4) CASES If x � z and y � z, then x∨ y � z.

(5) CLAVIUS ¬x→ x≡ x.

(6) COMMUTATIVITY x∧ y≡ y∧ x, x∨ y≡ y∨ x, x↔ y≡ y↔ x.

(7) CONSTANTS ¬�≡⊥, ¬⊥≡�, x∧�≡ x, x∧⊥≡⊥,
x∨�≡�, x∨⊥≡ x, x→�≡�, x→⊥≡ ¬x,
�→ x≡ x, ⊥→ x≡�, x↔�≡ x, x↔⊥≡ ¬x.

2.6. REPLACEMENT LAWS 63

(8) CONTRADICTION x∧¬x≡⊥, x↔ ¬x≡⊥,
(¬x→ ¬y)→ ((¬x→ y)→ x)≡�.

(9) CONTRAPOSITION x→ y≡ ¬y→ ¬x, ¬x→ y≡ ¬y→ x,
x→ ¬y≡ y→ ¬x.

(10) DE MORGAN ¬(x∧ y)≡ ¬x∨¬y, ¬(x∨ y)≡ ¬x∧¬y.

(11) DISJUNCTIVE SYLLOGISM {x∨ y ¬x} � y.

(12) DISTRIBUTIVITY
x∧ (y∨ z)≡ (x∧ y)∨ (x∧ z), x∨ (y∧ z)≡ (x∨ y)∧ (x∨ z),
x∨ (y→z)≡ (x∨ y)→(x∨ z), x∨ (y↔z)≡ (x∨ y)↔(x∨ z),
x→(y∧ z)≡ (x→y)∧ (x→z), x→(y∨ z)≡ (x→y)∨ (x→z),
x→(y→z)≡ (x→y)→(x→z), x→(y↔z)≡ (x→y)↔(x→z).

(13) DOUBLE NEGATION ¬¬x≡ x.

(14) ELIMINATION x∧ y � x, x∧ y � y.

(15) EXCLUDED MIDDLE x∨¬x≡�.

(16) EXPORTATION x→ (y→ z)≡ (x∧ y)→ z,
x→ (y→ z)≡ y→ (x→ z).

(17) GOLDEN RULE x↔ y↔ (x∧ y)↔ (x∨ y)≡�.

(18) HYPOTHESIS INVARIANCE x→ (y→ x)≡�.

(19) HYPOTHETICAL SYLLOGISM {x→ y y→ z} � x→ z.

(20) IDEMPOTENCY x∧ x≡ x, x∨ x≡ x.

(21) IDENTITY x≡ x, x↔ x≡�, x→ x≡�.

(22) IMPLICATION x→ y≡ ¬x∨ y, ¬(x→ y)≡ x∧¬y,
x→ y≡ x↔ x∧ y, x→ y≡ x∨ y↔ y.

(23) INTRODUCTION {x, y} � x∧ y, x � x∨ y, y � x∨ y.

(24) MODUS PONENS {x, x→ y} � y, x∧ (x→ y)≡ x∧ y.

(25) MODUS TOLLENS {x→ y, ¬y} � ¬x, (x→ y)∧¬y≡ ¬x∧¬y.

(26) PIERCE (x→ y)→ x≡ x, (x→ y)→ y≡ x∨ y.

You can prove the laws in Theorem 2.12 either using PL, or using PC. If you use
PC, then each equivalence of the form x≡ y will require proofs of x � y and y � x.

With the help of replacement laws, you can now prove the strong adequacy of
PC to PL, in its totality. This is left to you as an exercise.

64 CHAPTER 2. A PROPOSITIONAL CALCULUS

Exercises for § 2.6
1. Using associativity and commutativity of ↔, write all possible forms of the

Golden Rule.
2. Prove some of the laws in Theorem 2.12 by using truth tables, and then derive

others from those already proved.
3. Formulate simultaneous equivalence replacement theorem where more than

one sub-proposition are replaced by the corresponding equivalent proposi-
tions.

4. Prove Theorem 2.11 by using PC instead of PL.
5. Show that each proposition is equivalent to either�, or⊥, or to one having no

occurrence of � or ⊥.
6. Let p1, . . . , pn be propositional variables; y1, . . . ,yn propositions; and Σ a set

of propositions. Define

Σ[p1 := y1, . . . , pn := yn] = {w[p1 := y1, . . . , pn := yn] : w ∈ Σ}.

Prove the law of uniform replacement: For any proposition x, if Σ � x, then
Σ[p1 := y1, . . . , pn := yn] � x[p1 := y1, . . . , pn := yn].

7. For 1 ≤ i ≤ n, let xi, yi be propositions with xi ≡ yi. Let z be a proposi-
tion; and Σ a set of propositions. For any proposition w, denote by w[x1 :=e
y1, . . . ,xn :=e yn] as any proposition obtained from w by replacing some (or all
or no) occurrences of xi by yi for 1≤ i≤ n. Define

Σ[x1 :=e y1, . . . ,xn :=e yn] = {w[x1 :=e y1, . . . ,xn :=e yn] : w ∈ Σ}.

Prove the law of Equivalence replacement: For any proposition z, if Σ � z,
then Σ[x1 :=e y1, . . . ,xn :=e yn] � z[x1 :=e y1, . . . ,xn :=e yn].

8. Prove that PC is strongly adequate to PL.

2.7 QUASI-PROOFS IN PL
The laws mentioned in Theorem 2.12 give rise to derived rules with the help of the re-
placement laws. Using these we may create quasi-proofs. Like proofs, quasi-proofs
are finite sequences of propositions which are either valid propositions mentioned
in the laws, or are derived from earlier propositions by using some laws. From a
quasi-proof a formal PC-proof can always be developed.

We write a quasi-proof in three columns; the first column contains the line num-
bers, the third column is the justification column documenting the laws that have
been used to derive the proposition in that line, and the second column is the actual
quasi-proof. In the third column, we will write ‘P’ for a premise, and sometimes ‘T’
for a law, for hiding details.

Moreover, the deduction theorem can be used inside a quasi-proof rather than
outside. To prove X → Y , we simply introduce X anywhere in the quasi-proof and
mark its introduction by DTB abbreviating

2.7. QUASI-PROOFS IN PL 65

an application of the deduction theorem begins here.

When we deduce Y latter in the quasi-proof, the next line will have X → Y, and it
will be marked as DTE abbreviating

the application of the deduction theorem ends here.

It says that the extra assumption X has been removed as an assumption, and by the
deduction theorem, the formula X → Y has been obtained.

The deduction theorem can be applied many times in a quasi-proof and the pairs
of DTB-DTE must be nested like parentheses. In such a case, we may write DTB1-
DTE1, DTB2-DTE2, and so on.

Similarly, reductio ad absurdum can be used inside a quasi-proof by introducing
a formula ¬X anywhere in the quasi-proof. We document it as RAB abbreviating

an application of a proof by reductio ad absurdum begins here,

and then by deducing ⊥ later. The next line to the ⊥ would be X and the documen-
tation would include RAE abbreviating

the application of the proof by reductio ad absurdum ends here.

Thereby the conditionality of the extra premise ¬X is considered over. Again, many
applications of reductio ad absurdum are nested like parentheses. We will mark the
pairs as RAB1-RAE1, RAB2-RAE2, etc.

When both the deduction theorem and reductio ad absurdum are used in a quasi-
proof, the pairs DTBm-DTEm and RABn-RAEn will be used as parentheses of dif-
ferent types. They can nest but the nesting must not intersect.

If a quasi-proof employs premises from a set of propositions Σ and its last propo-
sition is w, then we say that it is a quasi-proof of Σ � w. When Σ = ∅, the quasi-
proof does not use any premise; thus its last proposition is valid. The validity of such
a proposition follows from the adequacy of PC. Also, a quasi-proof for� � w proves
the validity of w.

EXAMPLE 2.31. Construct a quasi-proof to show that

{p→ ¬q, r→ s, ¬t → q, s→ ¬u, t → ¬v, ¬u→ w} � p∧ r→ ¬(w→ v).

In the quasi-proof below, note the nesting for RA in Lines 17 and 21, and that of
DT in Lines 1 and 22. We also mention the line number of RAB while writing its
corresponding RAE, and that of DTB while writing DTE, for better readability.

1. p∧ r DTB
2. p 1, T
3. p→ ¬q P
4. ¬q 2, 3, T
5. ¬t → q P
6. ¬¬t 4, 5, T
7. t 6, T
8. t → ¬v P
9. ¬v 7, 8, T
10. r 1, T

66 CHAPTER 2. A PROPOSITIONAL CALCULUS

11. r→ s P
12. s 10, 11, T
13. s→ ¬u P
14. ¬u 12, 13, T
15. ¬u→ w P
16. w 14, 15, T
17. ¬¬(w→ v) RAB
18. w→ v 17, T
19. v 16, 18, T
20. ⊥ 9, 19, T
21. ¬(w→ v) 17, 20, RAE
22. p∧ r→ ¬(w→ v) 1, 21, DTE

Document all instances of ‘T’ in the above quasi-proof by writing the exact law.
For instance, the ‘T’ in Line 6 is Modus Ponens.

In a quasi-proof the replacement laws work implicitly. They give rise to the
instances of other laws mentioned as ‘T’. Since a PC-proof can be constructed from
a quasi-proof, we regard quasi-proofs as intermediary steps towards construction of
a formal PC-proof.

Exercises for § 2.7

Give quasi-proofs of the following valid propositions:

1. ((p↔ q)↔ (q↔ p)) 2. ((p→ q)↔ (p↔ (p∧q)))
3. ((p→ q)↔ (q↔ (p∨q))) 4. (((p↔ q)↔ (p∨q))↔ (p↔ q))
5. (((p↔ q)↔ r)↔ (p↔ (q↔ r))) 6. ((p→ r)∧ (q→ r)→ (p∨q→ r))
7. ((p→ q)∧ (p→ r)→ (p→ q∧ r)) 8. ((p∧q→r)∧(p→q∨r)→(p→r))
9. (((p→ q)→ (p→ r))→ (p→ (q→ r)))

2.8 SUMMARY AND PROBLEMS
The axiomatic system PC, the propositional calculus, has three axiom schemes and
one inference rule. It uses the connectives ¬ and → . Other connectives are intro-
duced through definitions. The axiom schemes have been constructed in such a way
that the deduction theorem and reductio ad absurdum become easier to prove. A
proof has been defined as a finite sequence of propositions where each proposition
in it is either an axiom, a premise, or is obtained by an application of the inference
rule on some earlier formulas. Then a conclusion of the premises is defined as the
last proposition in a proof.

PC is strongly adequate to PL. The method of deduction used in PC truly captures
the notion of entailment in PL. Since finiteness of proofs is a matter of definition and
the system is adequate, the compactness theorem for PL follows from the adequacy
of PC. It says that if a conclusion follows from an infinite number of premises, then
it also follows from some finite number of those premises.

2.8. SUMMARY AND PROBLEMS 67

Since the concept of provability is effective, the notion of truth becomes effective.
However, construction of a proof need not be effective. This negative feeling is very
much evidenced in PC. You have seen how difficult it is to construct proofs of trivial
looking valid propositions. This is remedied by quasi-proofs which use many derived
rules as laws. Formal proofs can be developed from the quasi-proofs.

You can find the axiomatic system PC in almost all texts on logic, though in
different incarnations; see for example, Barwise & Etchemendy (1999), Enderton
(1972), Ershov & Palyutin (1984), Mates (1972), Mendelson (1979), and Singh &
Goswami (1998). The one presented here is taken from Bilaniuk (1999). The com-
pleteness proof for PC as presented here follows the ideas of J. Hintikka and A.
Lindenbaum. The relevant works can be found in van Heijenoort (1967). For a
topological proof of compactness, you may see Rasiowa & Sikorski (1970).

Problems for Chapter 2
1. Formulate a definition of the substitution w[x := y], where x is a sub-proposition

of w. Show that it is not very useful by constructing propositions w,y and iden-
tifying a sub-proposition x of w for each of the following cases.

(a) w is valid but w[x := y] is invalid.
(b) w is invalid but w[x := y] is valid.
(c) w is satisfiable but w[x := y] is unsatisfiable.
(d) w is unsatisfiable but w[x := y] is satisfiable.

2. Without using the deduction theorem, construct a proof of

�((¬p→q)→((q→¬p)→ p))→(((¬p→q)→(q→¬p))→((¬p→q)→ p))

3. Given a set of propositions Σ and a proposition w, how do you prove that
Σ � w?

4. Recall that a set of propositions is called finitely satisfiable iff every finite sub-
set of it is satisfiable. Using compactness, prove that if Σ is a finitely satisfiable
set of propositions, and A is any proposition, then one of the sets Σ∪ {A} or
Σ∪{¬A} is finitely satisfiable.

5. Using the previous exercise, prove that if Σ is finitely satisfiable, then there
exists a superset Γ of Σ such that (a) Γ is finitely satisfiable, and (b) every
proper superset of Γ fails to be finitely satisfiable. [You may have to extend Σ
as in the proof of completeness of PC.]

6. Given a finitely satisfiable set Σ of propositions, use the previous exercise
to define a function f on all propositions by f (w) = 1 if w ∈ Γ; otherwise,
f (w) = 0. Show that such a function is a boolean valuation. Conclude that Σ
is satisfiable. [This is a direct proof of compactness.]

7. In a proposition w, replace each occurrence of a propositional variable p by
¬p to obtain the proposition w̄. Show that w is valid iff w̄ is valid.

8. The axioms of PC do not say that they must be interpreted in the set {0,1}.
We fix the following conditions for interpreting→ in the set {0,1/2,1}.

68 CHAPTER 2. A PROPOSITIONAL CALCULUS

If x is a propositional variable, then i(x) ∈ {0,1/2,1}.
If i(x) �= 0 and i(y) = 0, then i(x→ y) = 0.
If i(x) = 1 and i(y) = 1/2, then i(x→ y) = 1/2.
In all other cases, i(x→ y) = 1.

For a set Σ of propositions, take i(Σ) = min{i(X) : X ∈ Σ} with i(∅) = 1. In
this semantic system, we say that Σ entails w, and write Σ � w, iff for each in-
terpretation i, i(Σ)≤ i(w). Here, we say that the propositions in Σ are premises
and w is a conclusion.

Prove that by taking all instances of Axiom schemes A1 and A2 as premises,
we would never obtain ((x→ y)→ x)→ x) as a conclusion. Conclude that A3
is independent of A1 and A2.

9. Interpret the connective ¬ in the set {0,1/2,1} in such a way that taking all
instances of Axiom schemes A1 and A2 as premises, we would never have
conclusion as all instances of A3.

10. To show that Axiom A3 does not follow from A1 and A2, interpret → the
usual way, but use ¬0 = ¬1 = 1; see that for some choice of values of A,B,C,
first two axioms (schemes) become 1 whereas third becomes 0.

11. The previous three exercises show that Axiom A3 cannot be derived from A1
and A2. Similarly, prove that A1 cannot be derived from A2 and A3; and
A2 cannot be derived from A1 and A3. [Thus we say that axioms of PC are
independent.]

12. Instead of choosing our basic connectives as ¬ and→, suppose we choose→
and ⊥. We replace A3 with ((A→⊥)→⊥)→ A. Show that this new system
is also complete. [Hint: Give a derivation of A3 in the new system.]

13. In PC, if we replace A3 by ¬¬A→ A, will the new system be complete?
14. Let Σ be a set of propositions, and let w be a proposition. Show that if Σ∪{w}

and Σ∪{¬w} are inconsistent, then Σ is inconsistent.
15. Let Σ and Γ be sets of propositions, and let w be a proposition. Show that if

Σ∪{w} and Γ∪{¬w} are inconsistent, then Σ∪Γ is inconsistent.
16. For a set of propositions Σ, define its deductive closure as Σ̄ = {w : Σ � w}.

Prove that if Σ is consistent, then so is Σ̄.
17. A set Γ of propositions is called deductively closed iff “ for each proposition

w, Γ � w iff w ∈ Γ ”. Show the following:

(a) The set of all propositions is deductively closed.
(b) The set of all theorems is deductively closed.
(c) Intersection of two deductively closed sets is deductively closed.
(d) For any set of propositions Σ, the intersection of all deductively closed

supersets of Σ is deductively closed.
(e) For any set of propositions Σ, the minimal deductively closed set con-

taining Σ is deductively closed.
(f) The deductive closure of Σ, i.e., the set {w : Σ�w}, is deductively closed.
(g) Any maximally consistent extension of Σ is deductively closed.
(h) There exists a deductively closed set which is not maximally consistent.

2.8. SUMMARY AND PROBLEMS 69

(i) (Tarski) A consistent deductively closed set is the intersection of all its
consistent supersets which are negation complete. (See Exercise 2 in
§ 2.4 for negation completeness.)

18. Attempt proofs of all statements in Lemma 2.1 by using the deductive closure
Σ̄ instead of Σ∗.

19. Translate the following arguments into PL-consequences; and then determine
whether they are valid. For valid ones, construct quasi-proofs.

(a) Either the program does not terminate or m is eventually 0. If n is even-
tually 0, then m also becomes eventually 0. The program is known not to
terminate. Hence m is eventually 0.

(b) All of x,y,z cannot be negative. If they were, then x would be less than
both y and z. Hence x is not less than one of y or z.

(c) If the initialization is correct and the loop terminates, then the required
output is obtained. The output has been obtained. Therefore, if the ini-
tialization is correct, the loop must terminate.

(d) If 2 is a prime, then it is the least prime. If 1 is a prime, then 2 is not the
least prime. The number 1 is not a prime. Therefore, 2 is the least prime.

20. Let w be a PC-proposition. Let p1, . . . , pk be all distinct propositional variables
that occur in w. Let i be an interpretation of w. Define propositions q1, . . . ,qk,x
by the following:

If i(p j) = 1, then q j = p j; else, q j = ¬p j for 1≤ j ≤ k.
If i(w) = 1, then x = w; else, x = ¬w.

Show that {q1, . . . ,qk} �PC x.

Chapter 3

Normal Forms and Resolution

3.1 TRUTH FUNCTIONS

There exist exactly two propositions having no propositional variables; � and ⊥,
up to equivalence. What about propositions that use a single propositional variable?
Suppose x is a proposition built from the only propositional variable p. There are
only two (relevant) interpretations of x, namely, when p is 0, and when p is 1. In
these two interpretations, x can take any of the two values 0 or 1. Table 3.1 shows all
possibilities for x.

Table 3.1: Propositions with one variable

p x x x x
0 0 0 1 1
1 0 1 0 1

The second column shows that x ≡ ⊥. The third column: x ≡ p, the fourth col-
umn: x≡ ¬p, and the fifth column shows that x≡�. Thus all propositions that can
be built from a single propositional variable p, up to equivalence, are

⊥, �, p, ¬p.

We accept ⊥ and � as propositions built from p since ⊥≡ p∧¬p and �≡ p∨¬p.
In fact, when we say that a proposition y is built from the propositional variables
p1, . . . , pk, it means that the set of propositional variables occurring in y is a subset
of {p1, . . . , pn}.

Any function f : {0,1}m → {0,1} is called an m-ary truth function. Such a truth
function having the m variables q1, . . . ,qm may be written as f (q1, . . . ,qm). The in-
dependent variables q1, . . . ,qm are called the boolean variables on which the truth
function f depends. For instance, Table 3.1 shows four unary (1-ary) truth functions.

It is obvious that any truth function f (q1,q2, . . . ,qm) can be represented by a truth
table by specifying explicitly its value for the corresponding values of the arguments

70

3.1. TRUTH FUNCTIONS 71

q1,q2, . . . ,qm. Such a truth table will have 2m rows, where each row is such an as-
signment of values to the arguments. Corresponding to each such row, f may be
assigned one of the values 0 or 1. Therefore, there exist 22m

number of m-ary truth
functions.

For m = 1, we have seen that each truth function (each possibility for x in Ta-
ble 3.1) is represented as a proposition. What about the case m = 2? There are 16
truth functions with two propositional variables p and q. They are given in Table 3.2.

Table 3.2: Binary truth functions

p q x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

Observe that the unary truth functions p, q, ¬p and ¬q are also listed as binary
truth functions. You may read the unary truth function x7, which is p, as

p regardless of q.

Similarly, the unary truth function x16, which is �, is read as

� regardless of p and q.

Other unary and 0-ary truth functions can now be read as binary truth functions in an
analogous way. The sixteen truth functions x1 to x16 can be represented as follows:

x1 ≡⊥ x2 ≡ p∧q x3 ≡ ¬(q→ p) x4 ≡ ¬(p→ q)
x5 ≡ ¬(p∨q) x6 ≡ q x7 ≡ p x8 ≡ p↔ q
x9 ≡ ¬(p↔ q) x10 ≡ ¬p x11 ≡ ¬q x12 ≡ p∨q
x13 ≡ p→ q x14 ≡ q→ p x15 ≡ ¬(p∧q) x16 ≡�

Observe that m-ary truth functions include (m−1)-ary truth functions also. Can
all m-ary truth functions be represented by propositions in PROP?

Exercises for § 3.1
1. For the proposition w = (((p∧ q)∨ (p∨ r∨ q))∧ (¬p∧¬r∧ q)), show that

¬w≡ (((¬p∨¬q)∧ (¬p∧¬r∧¬q))∨ (p∨ r∨¬q)). Generalize this exercise
for computing negation of a proposition having no occurrence of→ and↔ .

2. The equivalence (p∨q) ≡ (¬p→ q) says that ∨ can be expressed through ¬
and→ . Show the following equivalences and read them that way.

(a) (p∧q)≡ (p↔ (p→ q)) (b) (p∧q)≡ ((p∨q)↔ (p↔ q))
(c) (p∨q)≡ (q↔ (p→ q)) (d) (p∨q)≡ ((p∧q)↔ (p↔ q))
(e) (p∨q)≡ ((p→ q)→ q) (f) (p→ q)≡ (p↔ (p∧q))
(g) (p→ q)≡ (q↔ (p∨q)) (h) (p↔ q)≡ ((p∧q)∨ (¬p∧¬q))
(i) (p↔ q)≡ ((p∨¬q)∧ (¬p∨q))

72 CHAPTER 3. NORMAL FORMS AND RESOLUTION

3.2 CNF AND DNF
To see that any m-ary truth function can be represented by a proposition in PROP, we
start with some terminology.

A literal is either a propositional variable, negation of a propositional variable,
�, or ⊥. For any propositional variable p, the literals p and ¬p are called comple-
mentary literals (complementary to each other). Also, � and ⊥ are complemen-
tary to each other. A conjunctive clause is a conjunction of literals; a disjunctive
clause is a disjunction of literals. A conjunctive normal form proposition (cnf) is a
conjunction of disjunctive clauses; a disjunctive normal form proposition (dnf) is a
disjunction of conjunctive clauses.

For example, let p and q be propositional variables. Then

�, ⊥, p, ¬p, q, ¬q are literals;
�, ⊥, p, ¬q, p∧q, p∧¬p, q∧ p, p∧¬q, are conjunctive clauses;
�, ⊥, p, ¬p, p∨q, ¬q∨q, ¬q∨ p, q∨¬q, are disjunctive clauses;
�, ⊥, p, q, ¬p, p∧q, p∨q, (p∧q)∨ (p∧¬q) are dnfs; and
�, ⊥, p, ¬q, p∧q, ¬p∨q, (p∧q)∨ (¬q∧ p)∨ (¬p∧¬q) are cnfs.

Of course, the lists above are not complete. For instance, q∧¬p is also a conjunctive
clause not listed above.

Theorem 3.1 (Normal Form). Each truth function is equivalent to a proposition in
dnf, and also to one in cnf.

Proof. Observe that � and ⊥ are already in cnf as well as in dnf. Let w be an m-ary
truth function, say w= f (q1, . . . ,qm) for m≥ 1. Specify w in a tabular form; the table
now has 2m rows, each row specifies values 0 or 1 to each of the variables q1, . . . ,qm
and a value to w, again from {0,1}. If w receives the value 0 in each row, then its dnf
representation is⊥. Otherwise, suppose w receives the value 1 in the rows numbered
r1,r2, . . . ,rn, n≥ 1, and it receives the value 0 at other rows. Corresponding to each
such row numbered r j, we construct a conjunctive clause Cj, and then the dnf w� as
in the following:

If qk has the value 1 in the r jth row, then take � jk = qk; else, take � jk = ¬qk.
Take Cj = � j1∧ � j2∧ · · ·∧ � jm.
Finally, take w� =C1∨C2∨ · · ·∨Cn.

We show that w� represents w, which means that in each row of the table, both w and
w� receive the same value. Notice that the table is a truth table for w� also. Consider
any row R in the table.

Suppose w is evaluated to 1 in R. Then R is one of the rows numbered r1, . . . ,rn.
If R is the r jth row, then all the literals � j1, � j2, · · · , � jm are assigned the value 1.
Thus Cj is evaluated to 1. It follows that w� is evaluated to 1 in the row R.

Conversely, suppose w� has the value 1 in R. Then at least one of the clauses
C1, . . . ,Cn is assigned 1 in R. Suppose Cj has value 1 in R. Then all the literals
� j1, � j2, · · · , � jm are assigned the value 1 in R. Then R is the r jth row in the truth
table. It follows that R evaluates w to 1.

Since w� is in dnf, use distributivity on w� to get an equivalent cnf w��. �

3.2. CNF AND DNF 73

When a truth function is already given as a proposition w, the construction in
the proof of Theorem 3.1 amounts to considering all models of w. Each such model
is then represented as a conjunctive clause. Finally, the conjunctive clauses are ∨-
ed together to form the required equivalent dnf. The proof also shows that a dnf
explicitly exhibits all the models of a proposition.

Similarly, you can see that a cnf displays all non-models of a proposition. In
fact, corresponding to each non-model, a row that evaluates w to 0, we look at the
assignments of variables. A variable which is assigned 0 is taken as it is; and a
variable assigned to 1 is negated. Then all the resulting literals are ∨-ed together to
form a disjunctive clause. Finally, all such disjunctive clauses (formed from each
row) are ∧-ed together to represent w by a cnf.

EXAMPLE 3.1. Construct a dnf and a cnf equivalent to the proposition ¬(p↔ q).
Let w = ¬(p ↔ q). We find all possible models of w. From the truth table for

w (construct it), you see that the models are i and j, where i(p) = 1, i(q) = 0 and
j(p) = 0, j(q) = 1. The conjunctive clause corresponding to i is p∧¬q, and one that
corresponds to j is ¬p∧q. So, the dnf representation of w is

(p∧¬q)∨ (¬p∧q).

By distributing ∨ over ∧, the cnf is (p∨¬p)∧ (p∨ q)∧ (¬q∨¬p)∧ (¬q∨ q). Due
to the laws of constants, the later proposition is equivalent to the cnf

(p∨q)∧ (¬q∨¬p).

To construct the cnf directly from the truth table, we look at the non-models of
w. They are �(p) = 1, �(q) = 1; and k(p) = 0, k(q) = 0. The disjunctive clause
corresponding to � is ¬p∨¬q; and the one that corresponds to k is p∨ q. Thus the
cnf is (¬p∨¬q)∧ (p∨q), as earlier.

The construction in the proof of Theorem 3.1 demands a truth table with 2m rows
if there are m propositional variables in w. It is inefficient, and becomes unmanage-
able once m exceeds five. The following procedure, called NorFor uses equivalences
instead of truth tables.

PROCEDURE NorFor
Input: Any proposition w of PL
Output: A dnf and a cnf equivalent to w

1. Eliminate the connectives →,↔ by using the laws of Implication and Bicon-
ditional.

2. Use De Morgan to take ¬ close to the atomic propositions.
3. Use Double Negation to have at most one ¬ with any atomic proposition.
4. Replace ¬� with ⊥, and ¬⊥ with �.
5. Use the laws of Commutativity, Associativity and Distributivity to get the re-

quired dnf or cnf.

You can use the laws of absorption and constants for simplifying the normal forms
further.

74 CHAPTER 3. NORMAL FORMS AND RESOLUTION

EXAMPLE 3.2. Represent (p→ q)→ (p∨ r→ q∧ s) by a dnf.

(p→ q)→ (p∨ r→ q∧ s)

≡ ¬(p→ q)∨ (p∨ r→ q∧ s)

≡ (p∧¬q)∨ (¬(p∨ r)∨ (q∧ s))

≡ (p∧¬q)∨ ((¬p∧¬r)∨ (q∧ s))

≡ (p∧¬q)∨ (¬p∧¬r)∨ (q∧ s).

EXAMPLE 3.3. Convert (p→ (¬q→ r))∧ (p→ ¬q) to a cnf and also to a dnf.

(p→ (¬q→ r))∧ (p→ ¬q)

≡ (¬p∨ (¬q→ r))∧ (¬p∨¬q)

≡ (¬p∨ (¬¬q∨ r))∧ (¬p∨¬q)

≡ (¬p∨q∨ r)∧ (¬p∨¬q)

The last proposition is in cnf. Using distributivity and simplifying we obtain:

(¬p∨q∨ r)∧ (¬p∨¬q)

≡ (¬p∧¬p)∨ (¬p∧¬q)∨ (q∧¬p)∨ (q∧¬q)∨ (r∧¬p)∨ (r∧¬q)

≡ ¬p∨ (¬p∧¬q)∨ (q∧¬p)∨ (r∧¬p)∨ (r∧¬q), a dnf.
The normal forms can be used to decide whether a proposition is valid, invalid,

satisfiable, or unsatisfiable, relatively easily. For example, the proposition

(p∨¬p∨q)∧ (q∨¬q∨ r).

is valid. But the proposition (p∨q)∧ (¬p∨ p∨ r) is invalid since the interpretation
i, with i(p) = i(q) = i(r) = 0, falsifies it. Similarly, (p∧¬p∧ q)∨ (q∧¬q∧ r) is
unsatisfiable while (p∧q)∨ (¬p∧ p∧ r) is satisfiable.

Theorem 3.2. A dnf is unsatisfiable iff each conjunctive clause in it contains⊥, or a
pair of complementary literals. A cnf is valid iff each disjunctive clause in it contains
�, or a pair of complementary literals.

Proof. Let w=C1∨ · · ·∨Cn be a proposition in dnf. Suppose each conjunctive clause
Cj contains⊥, or a pair of complementary literals. Then each clause Cj is equivalent
to ⊥. Hence, w is unsatisfiable.

Conversely, suppose w = C1 ∨ · · ·∨Cn is in dnf and a conjunctive clause, say,
Cj contains neither ⊥ nor a pair of complementary literals. Write Cj = � j1∧ · · ·� jm.
Define a map t by taking t(� j1)= · · ·= t(� jm)= 1. Since for no literal � jk, its negation
is in Cj, the (boolean extension of the) map t is indeed an interpretation. Now,
t(Cj) = 1; hence w is satisfiable.

Similarly, validity of a cnf is proved. �

It is sometimes advantageous to simplify the normal forms whenever possible
using the laws of constants. In such a case, a valid proposition would be simplified
to �, and an unsatisfiable proposition will be simplified to ⊥.

3.2. CNF AND DNF 75

EXAMPLE 3.4. Categorize the following propositions into valid, invalid, satisfi-
able, or unsatisfiable by converting into a suitable normal form:

(a) (p→ q)∨ (q→ ¬r)∨ (r→ q)→ ¬(¬(q→ p)→ (q↔ r))
(b) ¬((p→ q)∧ (q→ r)→ (q→ r))
(c) (p→ (¬q→ r))∧ (p→ ¬q)→ (p→ r)

(a) (p→ q)∨ (q→ ¬r)∨ (r→ q)→ ¬(¬(q→ p)→ (q↔ r))
≡ (p→ q)∨ (q→ ¬r)∨ (r→ q)→ (¬(q→ p)∧¬(q↔ r))
≡ (p→ q)∨ (q→ ¬r)∨ (r→ q)→ (q∧¬p∧ ((q∧¬r)∨ (¬q∧ r)))
≡ (¬p∨q∨¬q∨¬r∨¬r∨q)→ ((q∧¬p∧q∧¬r)∨ (q∧¬p∧¬q∧ r))
≡ ¬(¬p∨q∨¬q∨¬r∨¬r∨q)∨ (q∧¬p∧q∧¬r)∨ (q∧¬p∧¬q∧ r)
≡ (p∧¬q∧q∧ r∧ r∧¬q)∨ (q∧¬p∧q∧¬r)∨ (q∧¬p∧¬q∧ r)
≡ (p∧¬q∧q∧ r)∨ (¬p∧q∧¬r)∨ (¬p∧q∧¬q∧ r)

In the first and third clauses, q and ¬q occur; while in the second, ¬p occurs but not
p; q occurs but not ¬q; and ¬r occurs but not r. This is in dnf, having at least one
conjunctive clause which does not have a pair of complementary literals. Thus it is
satisfiable.

For validity, you have to convert it to a cnf, say, by distributing the ∨’s over ∧’s
in the dnf. However, there is a shorter approach here. Since both the first and the
third clauses have a pair of complementary literals, they are each equivalent to ⊥.
Moreover, ⊥∨ x ≡ x. Therefore, the above dnf is equivalent to the second clause
only, i.e., it is equivalent to:

¬p∧q∧¬r

which is in both cnf and dnf. The cnf has now three clauses, namely, ¬p,q,¬r.
Neither contains a pair of complementary literals. Thus the proposition is invalid.

(b) ¬((p→ q)∧ (q→ r)→ (q→ r))
≡ (p→ q)∧ (q→ r)∧¬(q→ r)
≡ (¬p∨q)∧ (¬q∨ r)∧q∧¬r

This is in cnf, and you may conclude that it is invalid. Is it satisfiable? We need a
dnf. Distribute to get

(¬p∧¬q∧q∧¬r)∨ (¬p∧ r∧q∧¬r)∨ (q∧¬q∧q∧¬r)∨ (q∧ r∧q∧¬r).

Each clause in this dnf contains a pair of complementary literals; thus the proposition
is unsatisfiable.

Alternatively, x∧ y → y ≡ �. So, (p → q)∧ (q → r)→ (q → r) ≡ �. Hence,
¬((p→ q)∧ (q→ r)→ (q→ r))≡ ¬�≡⊥.
(c) (p→ (¬q→ r))∧ (p→ ¬q)→ (p→ r)
≡ ¬((p→ (¬q→ r))∧ (p→ ¬q))∨ (p→ r)
≡ ¬(p→ (¬q→ r))∨¬(p→ ¬q)∨ (p→ r)
≡ (p∧¬(¬q→ r))∨ (p∧¬¬q)∨ (¬p∨ r)
≡ (p∧¬q∧¬r)∨ (p∧q)∨¬p∨ r

This is in dnf having at least one clause, say, the last one, r, which does not have a
pair of complementary literals. Hence the proposition is satisfiable. But is it valid?
By distributing and simplifying, you find that

76 CHAPTER 3. NORMAL FORMS AND RESOLUTION

(p∧¬q∧¬r)∨ (p∧q)∨¬p∨ r
≡ (p∧¬q∧¬r)∨ ((p∨¬p∨ r)∧ (q∨¬p∨ r))
≡ (p∧¬q∧¬r)∨ (�∧ (q∨¬p∨ r))
≡ (p∧¬q∧¬r)∨ (q∨¬p∨ r)
≡ (p∨q∨¬p∨ r)∧ (¬q∨q∨¬p∨ r)∧ (¬r∨q∨¬p∨ r)

Each clause in the cnf has a pair of complementary literals. Therefore, the original
proposition is valid.

Normal forms are used for storing and arguing with knowledge. For example, in
diagnosing a disease from the symptoms, we can have a data base, where informa-
tion regarding a disease is stored as propositions. The task is to determine whether
a particular set of symptoms points to a certain disease. In such cases, the data base
is called a knowledge base, a propositional knowledge base, and the set of all con-
clusions that can be drawn from the base is called a propositional theory.

When a case is presented to the theory, it is required to ascertain whether a par-
ticular proposition follows from the knowledge base. It may take a considerable
amount of time to see whether such a consequence is valid. Thus the knowledge
base, instead of just being stored, is first transformed to a better form so that partic-
ular consequences will be easier to decide. Such a transformation is done off-line,
that is, before any conclusion is suggested. Such an off-line transformation of the
knowledge base is called knowledge compilation.

Methods of knowledge compilation depend upon the nature of the theory and
the requirement of on-line inference procedure. For example, a common approach
to the knowledge compilation is to transform a set of propositions (the knowledge
base) to the set of its prime implicants. A prime implicant of a proposition is a
conjunctive clause that implies the proposition with the property that no subclause
of the clause implies the proposition. It can be proved that the set (disjunction) of all
prime implicants of a proposition is equivalent to the proposition.

Analogously, and dually, a prime implicate of a proposition is defined as a dis-
junctive clause that is implied by the proposition, and no subclause of which is im-
plied by the proposition. It can also be proved that the set (conjunction) of prime
implicates of a proposition is equivalent to the proposition.

Once the prime implicants of a propositional theory is obtained, any conclusion
that can be drawn from the theory can equivalently be drawn from the set of prime
implicants. However, drawing a conclusion from the set of prime implicants is easy,
in the sense that a conclusion as a clause must have a subclause which is an element
of the set of prime implicants. This activity of drawing an inference from a compiled
knowledge base is an on-line activity. If we have to use some other on-line methods
instead of checking for subclauses, then some other way of knowledge compilation
or an off-line activity should be chosen, for efficiency.

Exercises for § 3.2
Categorize the following propositions into valid, invalid, satisfiable, or unsatisfiable,
by converting to cnf and dnf.

(a) ((p→ q)→ p)→ p (b) ¬(¬(p↔ q)↔ ¬(q↔ p))

3.3. LOGIC GATES 77

(c) (p→�)∧ (q→ p)→ (q→�) (d) (p→⊥)∧ (q→ p)→ (q→⊥)
(e) ¬(¬(p↔ q)↔ r)↔ ¬(p↔ ¬(q↔ r))
(f) ((p→ q)∨ (q→ r))∧ ((r→ q)∨ (q→ p))

3.3 LOGIC GATES
From Theorem 3.1 it follows that every truth function (also every proposition) can
be expressed as a proposition using the only connectives ¬,∧,∨. This fact is often
expressed by saying that the set {¬,∧,∨} is an adequate set of connectives or that
the set {¬,∧,∨} is truth functionally complete. Due to De Morgan’s laws, ∨ can
be expressed through ¬ and ∧. So, {¬,∧} is a truth functionally complete set of
connectives.

Can we further reduce the sizes of truth functionally complete sets? Is {¬} truth
functionally complete? That is, can you define ∧ in terms of ¬ alone? In PL, we
have the propositional variables p0, p1, If ¬ is the only connective to be used, we
would generate the formulas:

p0, p1, p2, · · · , ¬p0,¬p1,¬p2, . . . , ¬¬p0,¬¬p1,¬¬p2, . . .

Up to equivalence, the propositions reduce to

p0, p1, p2, p3, · · · , ¬p0,¬p1,¬p2,¬p3, . . . , . . .

Now, is any of these propositions equivalent to p0∧ p1? Due to relevance lemma, it
is enough to consider the following propositions from the above list:

p0, p1, ¬p0, ¬p1

Definitely p0∧ p1 is not equivalent to any of the four. For instance, the interpretation
i with i(p0) = 1, i(p1) = 0 is a model of p0, but not a model of p0 ∧ p1. Thus
p0∧ p1 �≡ p0. Similarly, other three non-equivalences can be shown,

The connective ∧ does not form a truth functionally complete set since ¬p is not
equivalent to any of p, p∧ p, p∧ p∧ p, etc.

Since p∧ q ≡ ¬(¬p∨¬q), the set {¬,∨} is truth functionally complete. We
already know that {¬,→} is truth functionally complete. Since

¬p≡ p→⊥, p∨q≡ ¬p→ q

we conclude that {⊥,→} is truth functionally complete. It is a matter of which truth
functions can be expressed by what. Both ∧ and ∨ can be expressed by→ and↔ as
follows:

(p∧q)≡ (p↔ (p→ q)), (p∨q)≡ (q↔ (p→ q))

Of course, due to Pierce law, ∨ can be expressed through → alone. In fact, each
binary truth function can be expressed through x5 alone; see Table 3.2. Similar is
the case for x15. We give special symbols to these truth functions and reproduce their
truth tables in Table 3.3. Here, x5 is written as ↓ and x15 is written as ↑ .

78 CHAPTER 3. NORMAL FORMS AND RESOLUTION

Table 3.3: NOR and NAND
p q p ↓ q p ↑ q
0 0 1 1
1 0 0 1
0 1 0 1
1 1 0 0

Since p ↓ q≡ ¬(p∨q) and p ↑ q≡ ¬(p∧q), we call ↓ as NOR, and ↑ as NAND.
Observe that

¬p≡ p ↓ p, p∨q≡ ¬¬(p∨q)≡ ¬(p ↓ q)≡ (p ↓ q) ↓ (p ↓ q).

Since {¬,∨} is a truth functionally complete set, so is {↓}. Similarly,

¬p≡ p ↑ p, p∧q≡ (p ↑ q) ↑ (p ↑ q).

Therefore, {↑} is also a truth functionally complete set.
It means that any binary truth function, that is, any function from {0,1}×{0,1}

to {0,1}, can be expressed as a (serial) composition of ↑ alone. Curiously enough,
out of the 16 truth functions, ↑ and ↓ are the only truth functions, each of which
forms a truth functionally complete set. That is how they are special.

In another terminology, the set {0,1} is named as BOOL. A boolean variable is
a variable taking values in {0,1}. A boolean function is any function from {0,1}n

to {0,1}; the positive integer n is the arity of the boolean function. Thus boolean
variables are the propositional variables, and boolean functions are truth functions.
The unary boolean function complement (), the binary boolean functions sum
(+), product (·), and exclusive sum (⊕) are defined as follows:

0 = 1, 1 = 0;
x+ y = 0 if x = 0 = y, else x+ y = 1;
x · y = 1 if x = 1 = y, else x · y = 0.
x⊕ y = 1 if x �= y, else x⊕ y = 0.

Usually, boolean variables are denoted by x,y,z, . . . ,x1,x2,x3, . . . and boolean func-
tions by f ,g,h, . . . , f1, f2, f3, To show the arguments of a boolean function ex-
plicitly we write a boolean function f of arity n as f (x1,x2, · · · ,xn), or sometimes as
f (v), where v is a list of n boolean variables.

Obviously, the connective ¬ is the complement, ∨ is the sum, and ∧ is the prod-
uct. The boolean function ⊕ is also called XOR, exclusive or; it is same as the
negation of the biconditional, the truth function x9 in Table 3.2.

Normal Form Theorem (Theorem 3.1) says that any boolean function can be
expressed as a sum of products and also as a product of sums of boolean variables.
For example, (x⊕ y) = (x · y)+(x · y). We can even eliminate one of sum or product
due to De Morgan’s law, which may now be expressed as

(x+ y) = x · y, x · y = x+ y.

3.3. LOGIC GATES 79

Truth functions are also written as logic gates, another alternative symbolism.
The gates for the corresponding basic truth functions ¬,∧,∨,↑,↓ as symbolized by
hardware engineers are depicted in Figure 3.1.

NOT

p ¬p

AND

p
q p∧q

OR

p
q p∨q

NAND

p

q
p ↑ q

NOR

p

q
p ↓ q

Figure 3.1: Basic logic gates

The NOT-gate means that if a wire carries a large amount of voltage, then the
gate outputs a small amount, and vice versa. Similarly, the AND-gate means that
if two wires carry some voltage p,q, then the gate outputs min(p,q). Similarly, the
OR-gate outputs max(p,q). The voltage p,q represent either a ‘small’ or a ‘large’
amount of voltage, and are modelled by the truth values 0 and 1, respectively. Similar
explanations go for the NAND and NOR gates.

These gates are combined to form bigger circuits which can perform many com-
plicated jobs such as doing arithmetic and taking control jobs. See Figure 3.2.

p

q

p↔ q

Figure 3.2: Circuit for↔

The circuit in Figure 3.2 employs the dnf representation

p↔ q≡ (p∧q)∨ (¬p∧¬q).

Normal Form Theorem implies that every logic gate can be represented as a combi-
nation of the basic gates for ¬,∧,∨. For example, consider the truth function w as
given in Table 3.4.

80 CHAPTER 3. NORMAL FORMS AND RESOLUTION

Table 3.4: A truth function
p q r w(p,q,r)
0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 0

The construction used in the proof of the normal form theorem gives:

w≡ (p∧¬q∧¬r)∨ (¬p∧q∧¬r)∨ (p∧q∧¬r)∨ (¬p∧¬q∧ r)∨
(p∧¬q∧ r)∨ (¬p∧q∧ r).

This dnf representation can be used for drawing the circuit diagram of w. But you
can have a smaller circuit to do the same job as w. Grouping together the first and
third clauses, second and sixth, and fourth and fifth, and using the laws, you get

w≡ (p∨q∨ r)∧ (¬p∨¬q∨¬r).

Since circuits are implemented by metallic prints, it is preferable to have a circuit
of smaller size which might do the same work than a crude one. This gives rise to
the problem of minimization of boolean circuits. There are many methods to do it;
we will point out some bibliographic materials later.

For now, we know that there are at least three ways of representing truth func-
tions: by truth tables, by boolean functions, and by propositions in PL. Also, truth
functions can be represented as sum of products (dnf) and product of sums (cnf).

Exercises for § 3.3
1. Using the equivalence p↔ q≡ (p∨¬q)∧ (¬p∨q) draw a circuit for p↔ q.
2. Construct cnf and dnf for the truth functions u,v given by the following truth

table. Simplify the normal forms and then draw circuits representing u and v.

p q r u v
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3.4. SATISFIABILITY PROBLEM 81

3. A boolean circuit with n inputs is called monotone iff changing the value of
any of the inputs from 0 to 1 may change the output of the circuit from 0 to 1,
but never from 1 to 0.

(a) Give an example of a truth table representing a monotone circuit with
three inputs.

(b) Show that your truth table can be represented by a monotone circuit.
(c) Prove that a circuit made of AND and OR-gates is monotone.
(d) Prove: any monotone circuit can be built using only AND and OR-gates.

3.4 SATISFIABILITY PROBLEM
Suppose after converting a proposition to cnf, you find that the cnf is invalid. It may
quite well happen that the proposition is, in fact, unsatisfiable. To determine whether
it is so, you may have to get a dnf conversion. Similarly, from a dnf conversion
you conclude that a proposition is satisfiable, whereas it could be valid. And now,
you may need a cnf conversion. Instead of a fresh conversion, you may like to use
distributivity of ∧ over ∨, and of ∨ over ∧.

But, distribution of ∧ over ∨ (or of ∨ over ∧) is costly. Suppose that we have a
cnf with m clauses, and there are �i number of literals in the ith clause. An application
of distributivity leads to writing out the n = �1 ×·· ·× �m conjunctive clauses where
each clause has m literals. Then, you check for the presence of pair of complementary
literals in each of these n clauses. In the worst case, it would require an exponential
number (with respect to the number of propositional variables in the cnf) of checks
to determine satisfiability. So, it is no better than the truth table method.

The problem of determining whether a given cnf is satisfiable is denoted by SAT.
Many smart ways have been devised to tackle SAT. Though they work better than
exponential in most cases, the worst cases still require an exponential amount of
labour, like the truth table method. We do not yet have an algorithm which would
take a polynomial (in the length of the cnf) time for solving SAT. The collection of
problems for which there is an algorithm to solve any instance in a polynomial time
is denoted by P. And we do not yet know whether SAT is in P.

In contrast, if you are given an interpretation and it is claimed that the interpreta-
tion is a model of the given cnf, you can check the claim in a polynomial time. You
just have to evaluate the cnf under the interpretation. This class of problems, called
NP , includes all those problems for which a suggested solution can be verified in a
polynomial time.

Intuitively, P consists of problems that can be solved in polynomial time, whereas
for a problem in NP, a suggested solution can be checked for its correctness in
polynomial time. It is clear that SAT is in NP , but it is not yet clear whether SAT is
in P. Moreover, a fundamental fact with SAT is that if it is found to be in P , then
both P and NP will coincide. Such problems, like SAT, are called NP-complete
problems.

There is a related problem, called kSAT. A kcnf is a cnf in which each disjunctive
clause has no more than k literals. The problem kSAT is the following:

Given a kcnf, determine whether it is satisfiable.

82 CHAPTER 3. NORMAL FORMS AND RESOLUTION

It can be shown that corresponding to each cnf X , there exists a 3cnf Y such that
X is satisfiable iff Y is satisfiable. (Sometimes we use capital letters for propositions
for ease in reading.)

EXAMPLE 3.5. The proposition X = (p∨q∨ r∨ s) is true when (p∨q∨ x) is true
and x↔ r∨ s is true. That means, by extending a model i of X with i(x) = i(r∨ s),
we obtain a model of Z = (p∨q∨x)∧(x↔ r∨ s). Conversely, any model j of Z will
assign the same truth value to both x and r∨ s, and consequently, is a model of X .
Since (x↔ r∨ s)≡ (¬x∨ r∨ s)∧ (x∨¬r)∧ (x∨¬s), we have

Z ≡ (p∨q∨ x)∧ (¬x∨ r∨ s)∧ (x∨¬r)∧ (x∨¬s).

This is a 3cnf. Thus X is satisfiable iff this 3cnf is satisfiable.
We observe that by neglecting the last two disjunctive clauses in the 3cnf, we

loose nothing. For, suppose i(X) = 1. We extend i to x by taking i(x) = i(r∨s). Then
i is a model of Y , where Y = (p∨q∨ x)∧ (¬x∨ r∨ s). Conversely, if j is a model of
Y then j is also a model of X .

Example 3.5 suggests a method to construct a 3cnf corresponding to each cnf
preserving satisfiability. Moreover, the length of the 3cnf is a constant times that
of the original cnf. Here, length of a proposition is the number of occurrences of
symbols in it.

Theorem 3.3. For each cnf X, there exists a 3cnf Y such that length of Y is a
constant times the length of X , and that X is satisfiable iff Y is satisfiable.

Proof. For C = p1 ∨ p2 ∨ p3 ∨ p4, take C� = (p1 ∨ p2 ∨ z1)∧ (p3 ∨ p4 ∨¬z1). For
C = p1∨ p2∨ · · ·∨ pm, where m≥ 5, construct

C� = (p1∨ p2∨ z1)∧ (p3∨¬z1∨ z2)∧ (p4∨¬z2∨ z3)

∧ · · ·∧ (pm−2∨¬zm−4∨ zm−3)∧ (pm−1∨ pm∨¬zm−3).

by introducing new propositional variables z1, . . . ,zm−3. We first show that C is sat-
isfiable iff the cnf C� is satisfiable. To show this, take an interpretation i such that
i(C�) = 1. If i(C) = 0, then i(p j) = 0 for each j with 1≤ j ≤ m. Looking at individ-
ual clauses of C�, we find that if i(z1) = 1, then i(z2) = 1. Continuing further, we see
that i(z3) = i(z4) = · · · = i(zm−3) = 1. Then i of the last clause (pm−1∨ pm∨¬zm−3)
in C� is 0. This contradicts i(C�) = 1. Therefore, i(C) = 1.

Conversely, suppose that i(C) = 1. Since C� contains new literals (the z’s), we
construct an extension of i, which we write as i again taking care of these zs where
i(p j)s remain the same. Since i(C) = 1, not all p js are 0 under i. Let k be the smallest
index such that i(pk) = 1. Then, we set

i(z1) = i(z2) = · · · = i(zk−1) = 1, i(zk) = i(zk+1) = · · · = i(zm−3) = 0.

It is easy to verify that under this (extended) interpretation i, each of the clauses in
C� is evaluated to 1. Therefore, i(C�) = 1 as desired.

The reduction of SAT to 3SAT first replaces each clause C having more than 3
literals in the cnf X by the corresponding 3cnf C� thus obtaining a 3cnf Y. Clearly X

3.5. 2SAT AND HORN-SAT 83

is satisfiable iff Y is satisfiable. Notice that if C has m occurrences of literals, then C�

has at the most 3m occurrences of literals. (Exactly how many?) Hence the length of
the corresponding 3SAT instance Y is at the most a constant times the length of the
original cnf X . �

With this result, we would then have: SAT is in P iff 3SAT is in P. Moreover,
3SAT is also NP-complete. Thus for deciding whether P = NP , it is enough to
concentrate on 3SAT.

Exercises for § 3.4
1. In Example 3.5, are the propositions X and Z equivalent?
2. For the cnf X = (p∨q∨¬r∨ s)∧ (¬p∨q∨ r∨ t), construct a 3cnf Z following

the proof of Theorem 3.3 so that X is satisfiable iff Z is satisfiable.

3.5 2SAT AND HORN-SAT
There are many subclasses of propositions for which polynomial time algorithms
exist for checking satisfiability. We review two such subclasses of SAT.

Unlike 3SAT, the class of problems 2SAT is in P; the following algorithm for
“determining whether a given 2SAT instance is satisfiable” shows it.

PROCEDURE TwoSat
Input: Any 2cnf x
Output: “x is satisfiable” when it is; otherwise, “x is unsatisfiable”

Stage 1 : Scan the clauses in x for a single-literal clause. If x contains no single-literal
clause, then perform Stage 2. Otherwise, let p be a single-literal clause of x. Scan
further for the single-literal clause ¬p. If ¬p is also a clause of x, then report that
x is unsatisfiable. If ¬p is not a clause of x, then scan x from the beginning. Drop
each clause that contains p and drop ¬p from each clause that contains ¬p. That is,
update x by deleting all clauses of the form p∨y and by replacing each clause of the
form ¬p∨ y by y.

Repeat Stage 1 as long as possible. If the result is empty, i.e., every clause has
been deleted in the process, then report that x is satisfiable. Otherwise, the result is a
2cnf A, each clause of which has exactly two literals. Then perform Stage 2.

Stage 2 : Take the first literal in the first clause of A; say p, in the first clause p∨q of
A. Scan A from the beginning. Drop the literal p from each clause that contains p,
and drop each clause that contains ¬p, from A. That is, update A by replacing each
clause of the form p∨ q by q, and by deleting each clause of the form ¬p∨ q. Call
the updated 2cnf as B. Execute Stage 1 repeatedly on the updated 2cnf. This will
result in one of the following three cases:

(a) reporting that B is unsatisfiable
(b) an empty cnf
(c) a cnf C having only two-literals clauses

84 CHAPTER 3. NORMAL FORMS AND RESOLUTION

In the case (a), execute Stage 3 on A as given below. In the case (b), report that x is
satisfiable. In the case (c), repeat Stage 2 on C.

Stage 3 : Go back to the 2cnf A. Let p∨q be the first clause of A. Scan each clause of
A. Update A to D by dropping each clause of the form p∨r. Scan D for an occurrence
of the literal ¬p. If ¬p does not occur in D, then execute Stage 2 on D. Otherwise,
update D to E by dropping the literal ¬p from each clause of the form ¬p∨ r. Now,
E has at least one single-literal clause. Execute Stage 1 on E repeatedly. This will
halt resulting in one of the following cases:

(a) reporting that E is unsatisfiable
(b) an empty cnf
(c) a cnf F having only two-literals clauses

In the case (a), report that x is unsatisfiable. In the case (b), report that x is satisfiable.
In the case (c), execute Stage 2 on F .

Stage 1 of the procedure eliminates at least one atomic proposition, and Stages 2
and 3 together eliminate one. Moreover, unsatisfiability of the 2cnf x is reported
while executing Stage 1. The worst case scenario corresponds to the case, when all
atomic propositions are eliminated one by one in Stage 2 followed by an execution
of Stage 3, and when finally, x is found to be satisfiable. Initially, the 2cnf is scanned
for checking for a possible application of Stage 1, anyway.

Suppose n is the length of the 2cnf. Initial scanning of the 2cnf for a single
literal clause takes an O(n) time. Repeated execution of Stage 1 can take, at the
most, an O(n2) time. Thus, executing Stage 3 for a literal, which turns out to be an
unsuccessful attempt, takes an O(n2) time. It is followed by an execution of Stage 2,
which again takes an O(n2) time. So, finally a literal is eliminated in O(n2) time. At
the worst, each literal is eliminated; thus the maximum time amounts to an O(n3).
This proves that

2SAT ∈P.

An alternative procedure to solve 2SAT is based on the observation that each
clause p∨q is equivalent to both ¬p→ q and ¬q→ p; see Problem 34.

Another important subclass of SAT comprises the Horn clauses, so called after
the logician A. Horn. An arbitrary disjunctive clause in a cnf may have some literals
with ¬, and others without ¬. While in a Horn clause, there is at most one literal
which is un-negated.

For example, ¬p∨¬q, r, ¬p∨¬q∨r are Horn clauses, while ¬p∨¬q∨r∨s and
r∨s are not Horn clauses. Conventionally, Horn clauses are not written as disjunctive
clauses since they can be written in another more suggestive way. For example, we
use the equivalences ¬p∨¬q≡ p∧q→⊥, ¬p∨¬q∨ r ≡ p∧q→ r and r ≡�→ r
to rewrite these Horn clauses.

A Horn clause is a proposition of the form q1∧q2∧ · · ·∧qm→ q, where q1, . . . ,qm
and q are atomic propositions. A Horn formula is a conjunction of Horn clauses,
written often as a set of Horn clauses.

EXAMPLE 3.6. Is the following Horn formula satisfiable?

w = {�→ q, �→ u, �→ t, t → p, u→ v, p∧q∧ r→⊥}

3.5. 2SAT AND HORN-SAT 85

Let us try to construct a model i of w. Since�→ q,�→ u and�→ t are clauses,
we must have i(q) = i(u) = i(t) = 1. Next, we have the clauses t → p and u→ v. If i
is a model of these clauses, we must have i(p) = i(v) = 1. The clause p∧q∧ r→⊥
is satisfied by taking i(r) = 0. Hence the interpretation i with i(p) = i(q) = i(t) =
i(u) = i(v) = 1 and i(r) = 0 satisfies w.

While we try constructing a model by assigning truth values to some of the propo-
sitional variables present in a given Horn formula x, we observe the following.

1. If �→ q is a clause in x, then in any model of x, q is true.
2. If q1∧ · · ·∧qm →⊥ is a clause in x, and each of q1, . . . ,qm has been assigned

to 1, then the clause cannot have a model. Thus x is unsatisfiable.
3. If there is a clause q1∧ · · ·∧qm → q in x, with q �=⊥, and q1, . . . ,qm have been

assigned to 1, then q must be assigned to 1.

If our interest is in determining satisfiability, then we simplify the above model
construction, and use only a marking scheme.

For instance, in Example 3.6, looking at the first three clauses, we just mark the
propositional variables q,u, t. Marking a variable here means that we assign it to
1, though explicitly, we do not need to do it. Since, t has been marked, using the
fourth clause, we mark p. Finally, we find that the last clause having consequence ⊥
contains an unmarked propositional variable. Then, we declare that w is satisfiable.
The following procedure, HornSat, does just this.

PROCEDURE HornSat
Input: A Horn formula w
Output: w is satisfiable or w is not satisfiable

mark all propositional variables p where �→ p is a clause in w
while there is a clause p1∧ p2∧ · · ·∧ pk → q in w such that all of p1, p2, . . . pk
have been marked but q is not, do:

if q =⊥, then report that w is unsatisfiable,
else, mark q for all such clauses in w

report w is satisfiable

Exercises for § 3.5
1. Which of the following are Horn clauses and why? Which of the Horn clauses

are satisfiable?

(a) (�→ p∧q)∧ (⊥→�)
(b) {p∧q∧ r→ ¬s, s→⊥}
(c) {p∧q→ s, p∧ r→ p, r→ p∧ t}
(d) (p∧q∧ r→�)∧ (p∧ r→ s)∧ (s→⊥)
(e) (p∧q∧ r→ s)∧ (�→ s)∧ (p∧q→⊥)
(f) (p∧q∧ r→⊥)∧ (¬p∧q→ r)∧ (⊥→ s)

2. Apply HornSat to the following Horn formulas:

(a) {p→ q, r∧ s∧ t → u, �→ t, t ∧q→⊥}
(b) {p∧q∧ s→ p, q∧ r→ p, p∧ s→ s, s∧ r→ t}
(c) {p∧q∧ r→⊥, s→ p, t →⊥, �→ s, �→ q, u→ v, �→ u}

86 CHAPTER 3. NORMAL FORMS AND RESOLUTION

3. Write the procedure HornSat in a step-by-step fashion. Apply HornSat on
each Horn clause in Exercise 1, and determine their satisfiability.

3.6 RESOLUTION IN PL
Recall that dnfs can be used to determine satisfiability and cnfs can be used to de-
termine validity. Determining validity of a dnf or satisfiability of a cnf are dual to
each other, and are equally difficult. We consider the latter problem. Our goal is to
develop a mechanical strategy for checking satisfiability of a cnf that possibly avoids
distribution of ∧ over ∨, and that of ∨ over ∧.

Consider the cnf C = (¬p∨ r)∧ (q∨¬r). Using distributivity, we have

C = (¬p∨ r)∧ (q∨¬r)≡ (¬p∧q)∨ (¬p∧¬r)∨ (r∧q)∨ (r∧¬r) =C�.

Now, suppose that i �C�. As i � (r∧¬r), we see that

either i � ¬p, i � q or i � ¬p, i � ¬r or i � q, i � r.

This means that i � ¬p or i � q, or both. That is, i � ¬p∨q.
Alternatively, you can also conclude directly from C that each model of C has to

be a model of ¬p∨q.
Now, looking at the form of C, where C = (¬p∨ r)∧ (q∨¬r), we see that in one

clause there is r, and in the other there is ¬r. If we omit this pair of complementary
literals, we get ¬p and we get q. We ∨ them together to get ¬p∨ q. And then any
model of C must be a model of this proposition.

The omission of a pair of complementary literals has connection with the laws of
Modus Ponens (MP) and Hypothetical Syllogism (HS) as given below.

MP: Form A and A→ B, derive B.
HS: From A→ B and B→C, derive A→C.

Due to the equivalence A→ B≡ ¬A∨B, you can rewrite these laws as follows.

MP: From A and ¬A∨B, derive B.
HS: From ¬A∨B and ¬B∨C, derive ¬A∨C.

In the first case, omitting the pair A,¬A from the premises, you reach at the conclu-
sion B and in the second case, omitting the pair B,¬B gives the conclusion ¬A∨C.
Does this method of omitting a pair of complementary literals work in general?

Now that all our propositions are in cnfs, we can represent them in a set notation.
For example, the clause p∨q, can be rewritten as {p,q} and the cnf (p∨q)∧ (r∨ s)
can be rewritten as {{p,q},{r,s}}. While writing back to the original form, there
will be no confusion since a set of literals is a disjunction of literals; and a set of sets
(of literals) is a conjunction of disjunctions of literals.

In this notation, what does an empty set of literals represent? And, what does an
empty set of clauses (sets of literals) represent?

Let p and q be propositional variables. Consider {p} and {p,q} as clauses. {p}
represents the clause p and {p,q} represents the clause p∨q. we see that p � p∨q.
In general, when A⊆ B, we may write B = A∨X for some clause X . Then, A � B.

3.6. RESOLUTION IN PL 87

Since the empty set is a subset of every set, the empty clause entails every clause.
So, what is that formula which entails every clause? A little thought shows that it
must be the propositional constant ⊥; show it.

Another way of looking at it is that a disjunctive clause is true under an interpre-
tation only when one of its literals is true; else, it is false. But there is no literal in
the empty clause to become true; so, it is false.

What about the empty set of clauses? Now, a cnf is a conjunction of clauses. A
conjunction is false under an interpretation only when there is at least one clause in
which it is false. But there is none. Hence, it cannot be false. That is, an empty set
of clauses is always true.

Moreover, if A and B are two sets of clauses (conjunctions of those clauses) with
B⊇ A, we see that B is either A or A∧X for some cnf X . Thus, B � A. Since each set
of clauses is a superset of the empty set of clauses, each cnf entails the empty cnf.
Then you can see that the only such cnf which is entailed by each cnf has to be �.

When p is a propositional variable, we have its negation as ¬p which is obviously
a literal. But then its negation, ¬¬p is not a literal. In this case, we will write the
negation of the literal ¬p as p itself, and generically, we will accept that ¬q is a literal
even when q = ¬p; the literal ¬q being equal to p. Thus we put forth the following
convention.

Convention 3.1.
If q = ¬p is a literal, then its negation ¬q is the literal p.
A clause is a disjunctive clause; a set of literals.
A clause is written as �1∨ · · ·∨�k and also as {�1, . . . ,�k}, where �1, . . . ,�k
are literals.
A cnf is a set of clauses, a set of sets of literals.
A cnf is written as D1∧ · · ·∧Dm and also as {D1, . . . ,Dm}, where D1, . . . ,Dm
are clauses.
The empty clause is ⊥.
The empty cnf is �.

Our strategy may now be formalized. Let A and B be two clauses (sets of literals).
If there is a literal p such that p ∈ A and ¬p ∈ B, then the resolvent res(A,B; p) of A
and B with respect to the literal p (or ¬p) is the clause (A\{p})∪ (B\{¬p}).

In such a case, both the literals p and ¬p are called biform literals. We say that
the resolvent has been obtained by resolving upon the literal p. We also say that
the resolvent has been obtained by resolving upon the variable p. The variable p is
called a biform variable, whereas both p and ¬p are biform literals. If the literal or
variable p is clear from the context, we will simply write res(A,B; p) as res(A,B).

EXAMPLE 3.7. Let A = {¬p,r} and B = {q,¬r}. By resolving upon r, we get

res(A,B) = res(A,B;r) = {¬p,q}.
If A = {¬p,q,r} and B = {¬q,¬r}, then by resolving upon the biform variable q,
we obtain

res(A,B;q) = {¬p, r, ¬r}.
Whereas res(A,B;r) = {¬p, q, ¬q} is obtained by resolving upon r.

88 CHAPTER 3. NORMAL FORMS AND RESOLUTION

However, res({¬p,q,r}, {¬q,¬r}) �= {¬p} as you would have obtained by omit-
ting both the pairs q,¬q and r,¬r. You cannot cancel more than one pair at a time!
Resolution does not allow it. Why is it so?

You have already seen that if i � {¬p,r} and i � {q,¬r}, then i � {¬p,q}.
Similarly, you expect that if i � {¬p,q,r} and i � {¬q,¬r}, then i � {¬p,r,¬r}. But
will it be that i � ¬p? Not necessarily. The interpretation j with j(p) = j(q) = 1,
j(r) = 0, is a model of {¬p,q,r} and also of {¬q,¬r}, but j � ¬p. (Remember
{¬p,q,r} is, by definition, ¬p∨q∨ r.)

For convenience, we write clauses as disjunctions of literals and cnfs as sets of
clauses. We prove that the resolvent of two clauses is their logical consequence.

Theorem 3.4 (Resolution Principle for PL). Let A and B be two clauses. Let p be
a literal such that p ∈ A and ¬p ∈ B. Then {A,B} � res(A,B; p).

Proof. Let A = �1∨ �2∨ · · ·∨ �k ∨ p and B = m1∨m2∨ · · ·∨mn∨¬p, where �’s and
m’s are literals. Then

res(A,B; p) = �1∨ �2∨ · · ·∨ �k ∨m1∨m2∨ · · ·∨mn.

Let i be an interpretation with i � A and i � B. If i � res(A,B; p), then

i(�1) = · · ·= i(�k) = i(m1) = · · ·= i(mn) = 0.

Looking at A and B, we find that i(p) = 1 = i(¬p), a contradiction. �

EXAMPLE 3.8. Consider the cnf Σ = {¬p∨q, ¬q∨ r, p, ¬r}. Here,

res(¬p∨q, ¬q∨ r; q) = ¬p∨ r, res(¬p∨q, p; p) = q, res(¬q∨ r, ¬r; r) = ¬q

By the resolution principle, Σ � ¬p∨ r, Σ � q, Σ � ¬q. Since Σ entails each of its
members, we also have

Σ � ¬p∨q, Σ � ¬q∨ r, Σ � p, Σ � ¬r.

Taking further resolvents, we obtain

res(¬p∨ r, ¬r; r) = ¬p, res(q, ¬q; q) =⊥, res(q, ¬q∨ r; q) = r.

Other resolvents do not produce new clauses. In addition to the earlier conclusions,
we find that Σ � ¬p, Σ �⊥, Σ � r.

Of all these conclusions from Σ, the special conclusion ⊥ signifies something
important. It says that if i � Σ, then i must also be a model of ⊥. But there cannot be
any model of ⊥. Therefore, Σ is unsatisfiable.

We write the resolution principle as the inference rule of resolution for PL:

(RPL)
A B
res(A,B)

the resolution is taken on a biform literal p.

We use the notation cnf (u) for a cnf representation of a proposition u, which is
also regarded as a set of clauses.

3.6. RESOLUTION IN PL 89

Let Σ be a set of clauses. A resolution refutation of Σ is a finite sequence of
clauses, where each clause is either from Σ or is obtained (derived) by an application
of the rule RPL from two earlier clauses, and the last clause in the sequence is⊥. For
a set Γ of propositions and a proposition w, a resolution proof of the consequence
Γ !�w is a resolution refutation of the set

Σ = {cnf (u) : u ∈ Γ}∪{cnf (¬w)}.

If a consequence Γ !�w has a resolution proof, we write Γ �R w.
Notice that a resolution proof of Σ !�w can be defined as a finite sequence of

clauses, where each clause is either a clause in Σ or is obtained (derived) by an appli-
cation of the rule RPL from two earlier clauses, and the last clause in the sequence
is w. We prefer to go with the conventional resolution refutations, where reductio ad
absurdum is inbuilt.

EXAMPLE 3.9. Here is the resolution refutation of Σ = {¬p∨q, ¬q∨ r, p, ¬r} as
worked out in Example 3.8. We also add the line numbers and the right-most column
for documentation. They help in reading the refutation. The refutation is simply the
sequence of clauses in the middle column read from top to bottom. An element of
the set of premises Σ is documented by ‘P’. Sometimes, instead of writing the full
res(1,2; p) as in line 3 above, we only quote the line numbers, like 1,2.

1. ¬p∨q P
2. p P
3. q res(1,2; p)
4. ¬q∨ r P
5. ¬r P
6. ¬q res(4,5;r)
7. ⊥ res(3,6;q)

¬p∨q p ¬q∨ r ¬r

q ¬q

⊥

On the right, we depict the resolution refutation as a directed acyclic graph
(DAG). To construct such a resolution DAG, we start with all premises as nodes
of Level 1. Their resolvents are added as new nodes in Level 2, and so on. Resol-
vents of nodes of levels up to n are added as new nodes in Level (n+1). The biform
literal upon which the resolvent is taken is not usually mentioned in the DAG.

EXAMPLE 3.10. Show that {¬p→ q, p→ r∨ s,r→ t∧u,u∧¬s→ ¬t} � ¬s→ q
by using resolution.

The cnf of the premises, and the cnf of the negation of the conclusion are

¬p→ q≡ p∨q, p→ r∨ s≡ ¬p∨ r∨ s, r→ t ∧u≡ (¬r∨ t)∧ (¬r∨u),
u∧¬s→ ¬t ≡ ¬u∨ s∨¬t, ¬(¬s→ q)≡ ¬s∧¬q.

Thus the set of premises is

Σ = {p∨q, ¬p∨ r∨ s, ¬r∨ t, ¬r∨u, ¬u∨ s∨¬t, ¬s, ¬q}.

A resolution refutation of Σ is as follows.

90 CHAPTER 3. NORMAL FORMS AND RESOLUTION

1. p∨q P
2. ¬q P
3. p 1,2
4. ¬p∨ r∨ s P
5. r∨ s 3,4
6. ¬s P
7. r 5,6
8. ¬r∨ t P
9. t 7,8
10. ¬r∨u P
11. u 7,10
12. ¬u∨ s∨¬t P
13. s∨¬t 11,12
14. ¬t 6,13
15. ⊥ 9,14

The proposition p on the third line is the resolution of those in lines 1 and 2;
thus in the justification column, we write “1, 2”. Similarly, read the line numbers
mentioned in lines 5, 7, 9, 11, 13, 14 and 15. In all these cases find the biform
variable on which the resolvents have been taken.

A resolution DAG of Σ is shown in Figure 3.3. Observe that the resolution refu-
tation does not correspond to the DAG exactly. Where do they differ?

p∨q ¬p∨ r∨ s ¬r∨ t ¬r∨u ¬u∨ s∨¬t ¬s ¬q

q∨ r∨ s ¬r∨ s∨¬t

¬r∨¬t

¬r

q∨ s

q

⊥
Figure 3.3: Resolution DAG for Example 3.10

Exercises for § 3.6
1. In Example 3.10, construct the resolution DAG corresponding to the resolu-

tion refutation; and construct the resolution refutation corresponding to the
resolution DAG of Figure 3.3.

3.7. ADEQUACY OF RESOLUTION IN PL 91

2. Attempt resolution proofs of the following consequences. Whenever possible,
construct the resolution DAGs.

(a) � � p→ (q→ p)
(b) � � (p∨q)↔ (¬p→ q)
(c) � � (p∧q)↔ ¬(p→ ¬q)
(d) � � (¬q→ ¬p)→ (p→ q)
(e) � � (((p→ q)→ ¬q)→ ¬q)
(f) (p↔ (q→ r))∧ (p↔ q)∧ (p↔ ¬r) �⊥
(g) � � (p→ (q→ r))→ ((p→ q)→ (p→ r))
(h) {{p,¬q,r},{q,r},{¬p,r},{q,¬r},{¬q}} �⊥
(i) {{¬p,q},{¬q,r},{p,¬r},{p,q,r},{¬p,¬q,¬r}} �⊥
(j) {{p,¬q},{r, p},{¬q,r},{¬p,q},{q,¬r},{¬r,¬p}} �⊥
(k) ((p∧q)∨ (p∧ r)∨ (q∧ r))∨ (¬p∧¬q)∨ (¬p∧¬r)∨ (¬q∧¬r) �⊥

3. Construct essentially two different resolution proofs along with the resolution
DAGs of (p↔ q)∧ (q↔ r) � (p↔ r).

4. The truth function ⊕ is defined by the equivalence x⊕ y ≡ ¬(x ↔ y). Give
resolution proofs of the facts that ⊕ is commutative and associative.

3.7 ADEQUACY OF RESOLUTION IN PL

While constructing a resolution refutation, you had to select premises one after an-
other in order that ⊥ is derived. How can a machine do it?

A crude method is to generate all possible resolvents of the premises, add them to
the premises, and then generate more resolvents until you get ⊥. Will the procedure
work? Yes, provided the original set of clauses is finite. For, in that case, resolvents,
resolvents of resolvents, etc. are finite in number.

If a cnf has n number of propositional variables, then there are 2n number of
literals, and then, since each clause is a subset of literals, there are at the most 22n

number of clauses. Among them, there are trivial clauses of the form �1∨ · · ·∨ �m∨
p∨¬p which are equivalent to �, and hence, can be omitted. Then you are left with
3n number of clauses. (Either p appears, or ¬p appears, or none appears.)

Then, quite mechanically, the procedure will terminate in a set of resolvents,
resolvents of resolvents, etc. where no more new clauses can be obtained by using
RPL. A formal description of the method follows.

For any set B of clauses (sets of literals), define

R(B) = B∪{res(C1,C2; p) : C1,C2 ∈ B, C1 �=C2, are clauses in B

and p is a biform literal }.

Let A be a given set of clauses. Define R∗(A) by

R0(A) = A, Ri+1(A) = R(Ri(A)), R∗(A) = ∪n∈NRn(A).

92 CHAPTER 3. NORMAL FORMS AND RESOLUTION

The set R(A) is the set of all clauses of A along with resolvents of all possible pairs
of clauses of A that could be resolved upon some biform literal. Sets R(R(A)) etc.
form an increasing sequence of sets of clauses:

A = R0(A)⊆ R1(A)⊆ R2(A)⊆ · · ·⊆ Rn(A)⊆ · · ·R∗(A).

The set R∗(A) is called the resolvent closure of the cnf A. Since there are only
a finite number of possible clauses which can be generated from A, there exists a
natural number n such that

R∗(A) = Rn(A) = Rn+1(A).

Therefore, by monitoring the condition that whether new clauses are generated at a
stage or not, the resolvent closure can be computed. A resolution refutation of A
would then mean that ⊥ ∈ R∗(A).

EXAMPLE 3.11. Let A = (¬p∨q)∧(p∨q)∧(¬p∨¬q). To compute the resolvent
closure of the cnf A we proceed as follows.

R0(A) = {{¬p,q},{p,q},{¬p,¬q}}
R1(A) = R0(A)∪{{q},{¬p},{q,¬q},{p,¬p}}
R2(A) = R1(A)

Therefore, R∗(A) = R2(A) = R1(A).
The property that “if ⊥ is generated, then the given cnf is unsatisfiable” is the

soundness of resolution. And its converse that “if the cnf is unsatisfiable, then ⊥ is
eventually generated” is the completeness of resolution. To study these properties,
we start with the enumeration of all propositional variables:

p0, p1, p2, . . .

Let A0 = {⊥, ¬⊥}. Let Am denote the set of all clauses which can be formed from the
first m propositional variables including the propositional constant ⊥, up to equiva-
lence. For instance,

A1 = {⊥, p0, ¬p0, p0∨¬p0}.

Lemma 3.1. For m≥ 1, if R∗(A)∩Am is satisfiable, then R∗(A)∩Am+1 is also sat-
isfiable.

Proof. Let R∗(A)∩Am be satisfiable. All propositional variables that occur in this
set are from {p0, p1, . . . , pm−1}. So, let i : {p0, . . . , pm−1}→ {0,1} be a model of all
clauses in R∗(A)∩Am. Construct two more interpretations f and g by extending i to
the set {p0, . . . , pm−1, pm} in the following way:

f , g : {p0, . . . , pm}→ {0,1} with f (pk) = g(pk) = i(pk) for 1 ≤ k ≤ m− 1;
and f (pm) = 0, g(pm) = 1.

Now suppose that R∗(A)∩Am+1 is unsatisfiable. Then neither f nor g satisfies all the
clauses in R∗(A)∩Am+1. Thus, there are clauses C and C in R∗(A)∩Am+1 such that
f �C and g �C.

3.7. ADEQUACY OF RESOLUTION IN PL 93

Can it happen that neither pm nor ¬pm is a member of C? If yes, then all the
propositional variables occurring in C are from {p0, . . . , pm−1} and then C must be
in R∗(A)∩Am. As f agrees with i on the set {p0, . . . , pm−1}, we have f (C) = i(C).
Since i is a model of R∗(A)∩Am, i �C. That is, f �C contradicting f �C. Therefore,
at least one of pm or ¬pm is in C. Similarly, C contains at least one of pm or ¬pm.

If pm �∈ C, then ¬pm ∈ C. Since f � C, we have f (¬pm) = 0. This contradicts
f (pm) = 0. Thus, pm ∈C. Similarly, ¬pm ∈C.

If C = pm and C = ¬pm, then their resolvent ⊥ ∈ R∗(A)∩Am. This contradicts
the satisfiability of R∗(A)∩Am.

Then, C and C can be written as C = D∨ pm, C = D∨¬pm for some clauses
D,D ∈ R∗(A)∩Am, where at least one of D or D is a nonempty clause. The clause
res(C,C; pm) = D∨D ∈ Am. Moreover, D∨D is nonempty and D∨D ∈ R∗(A)∩Am.
As i is a model of R∗(A)∩Am, we have i(D∨D) = 1. Then i(D) = 1 or i(D) = 1.
(Notice that the case i(D) = 1 covers the case that D is empty, and the case i(D) = 1
similarly covers the case that D is empty.)

The propositional variables that occur in D and D are from {p0, . . . , pm−1}. Also i
agrees with f and g on {p0, . . . , pm−1}. Thus, if i(D)= 1, then f (C)= f (D∨ pm)= 1.
This contradicts f � C. Similarly, if i(D) = 1, then g(D) = 1. This again leads to a
contradiction since g �C.

Therefore, unsatisfiability of R∗(A)∩Am+1 is impossible. �

Lemma 3.2. For each n≥ 1, if ⊥ �∈ R∗(A)∩An then R∗(A)∩An is satisfiable.

Proof. We use induction on n. For n = 1, A1 = {⊥, p0,¬p0, p0∨¬p0}. Assume that
⊥ �∈ R∗(A)∩A1. Now, R∗(A)∩A1 cannot contain both p0 and ¬p0, since otherwise
their resolvent, ⊥, would also be in R∗(A)∩A1. That is, R∗(A)∩A1 can be one of

∅, {p0}, {¬p0}, {p0, p0∨¬p0}, or {¬p0, p0∨¬p0}.

In either case, R∗(A)∩A1 is satisfiable.
Lay out the induction hypothesis: ⊥ �∈ R∗(A)∩Am implies that R∗(A)∩Am is

satisfiable. Suppose that ⊥ �∈ R∗(A)∩ Am+1. Since R∗(A)∩ Am ⊆ R∗(A)∩ Am+1,
⊥ �∈ R∗(A)∩Am either. By the induction hypothesis, R∗(A)∩Am is satisfiable. By
Lemma 3.1, R∗(A)∩Am+1 is satisfiable. �

We take help from these lemmas to prove our main results.

Theorem 3.5 (Closure Property of Resolution). Let R∗(A) be the resolvent closure
of a cnf A. Then A is unsatisfiable iff ⊥ ∈ R∗(A).

Proof. If ⊥ ∈ R∗(A), then by the resolution principle and induction, it is clear that
A �⊥. Thus A is unsatisfiable.

Conversely, suppose that ⊥ �∈ R∗(A). Suppose the propositional variables that
occur in A are from the set {p0, p1, . . . , pm−1}. Then⊥ �∈R∗(A)∩Am. By Lemma 3.2,
R∗(A)∩Am is satisfiable. A⊆ R∗(A)∩Am. By monotonicity, A is satisfiable. �

Let us write Σ �R w for the phrase “Σ entails w by resolution.” It means that there
exists a resolution refutation of Σ∪ {¬w} which uses the only rule of inference as

94 CHAPTER 3. NORMAL FORMS AND RESOLUTION

RPL. In case, Σ = {X1, . . . ,Xn}, writing

A = cnf (X1)∧ · · ·∧ cnf (Xn)∧ cnf (¬w),

we see that Σ �R w iff ⊥ ∈ R∗(A).

Theorem 3.6 (Strong Adequacy of Resolution). Let Σ be a set of propositions, and
let w be a proposition. Σ � w iff Σ �R w.

Proof. First, consider the case that Σ is finite. Write Σ = {X1, . . . ,Xn}, and A =
cnf (X1)∧ cnf (X2)∧ · · ·∧ cnf (Xn)∧ cnf (¬w). Using RA, normal form theorem, and
the closure property of resolution, we see that Σ � w iff Σ∪{¬w} is unsatisfiable iff
A is unsatisfiable iff ⊥ ∈ R∗(A) iff Σ �R w.

If Σ is infinite, then by the compactness theorem, there exists a finite subset Γ of
Σ such that Σ � w iff Γ � w. By what we have just proved, this happens if and only if
Γ �R w. Moreover, Γ �R w iff Σ �R w due to the finiteness of a resolution proof. �

Exercises for § 3.7
1. Let A ⊆ B be sets of propositions. Show that Rm(A) ⊆ Rm(B) for any m ∈ N.

Conclude that R∗(A)⊆ R∗(B).
2. Give resolution proofs of all axiom schemes, the rule of inference, and the

definitions (as biconditionals) of PC. Does it prove adequacy of resolution?
3. Show that the resolution rule RPL is a derived rule of PC.

3.8 RESOLUTION STRATEGIES
In search of a mechanical procedure implementing resolution, we landed up at the
resolvent closure. However, we require to check whether ⊥ is ever generated by
resolution or not; the whole lot of clauses in R∗(A) seem wasteful. One obvious
strategy to cut down wasteful generation of clauses is the following:

Once ⊥ has been generated, do not proceed further.
For another strategy, look at Example 3.11. There, we had

A = (¬p∨q)∧ (p∨q)∧ (¬p∨¬q)

R0(A) = {{¬p,q},{p,q},{¬p,¬q}}
R1(A) = {{¬p,q},{p,q},{¬p,¬q},{q},{¬p},{q,¬q},{p,¬p}}

While computing R2(A), we had to take resolvents of {p,q} with the possible clauses,
namely, {¬p},{q,¬q},{p,¬p}. This gave {q},{p,q},{¬p,q}. This was wasteful
due to two reasons.

First, there is no need to resolve with the clauses {q,¬q} and with {p,¬p}. This
is because {{¬p},{q,¬q},{p,¬p}} is logically equivalent to {{¬p}}.

A clause is called a fundamental clause (also called a nontrivial clause) if it
does not contain a pair of complementary literals. A clause containing a pair of com-
plementary literals is called nonfundamental (also called trivial or tautological).
The strategy is as follows:

3.8. RESOLUTION STRATEGIES 95

Delete all nonfundamental clauses.

The second source of wasteful generation emanates from keeping all the clauses
{q},{p,q},{¬p,q}. Notice that the clause {q} is already a subset of other clauses.
When you write R2(A) as a cnf, it will look like

· · ·q∧ (p∨q)∧ (¬p∨q) · · ·

Now, q∧ (p∨q) simplifies to q and q∧ (¬p∨q) also simplifies to q, due to the laws
of Absorption. Thus it should be enough to keep only q. The strategy is

Keep only a subset (a clause) and delete all its supersets.

In Example 3.11, R1(A) would become modified to {{q},{¬p}}. You can check at
this point that this new set is logically equivalent to the set R1(A) obtained earlier.

To express these strategies formally, let C and D be two clauses. C is said to
subsume D if C ⊆ D. If A is a set of clauses, then the residue of subsumption of A
is the set

RS(A)= {C∈A :C is fundamental and C is not subsumed by any other clause of A}.

Thus, RS(R1(A)) = {{q},{¬p}}. You can also verify that A≡ RS(A) as cnfs. While
generating R∗(A), we can take residue of subsumption on each resolvent set Rn(A)
and proceed further. That is, for a set of clauses A, we compute the sequence:

A0 = A, B0 = RS(A0);
A1 = R(B0), B1 = RS(A1);
A2 = R(B1), B2 = RS(A2);

...
...

until one of ⊥ ∈ An+1 or Bn+1 = Bn happens.
The termination criterion Bn+1 = Bn is bound to be met because the totality of

all clauses that could be generated from the propositional variables of A are finite in
number. Whenever for some n, we have Bn = Bn+1, we denote this set of clauses as
RS∗(A), that is,

RS∗(A) = Bn when Bn = Bn+1.

It is easy to see that the conjunction of all clauses in RS∗(A) is equivalent to the
conjunction of all clauses in R∗(A). Then from the adequacy of resolution it follows
that ⊥ ∈ RS∗(A) iff A is unsatisfiable. Moreover, ⊥ ∈ An+1 iff ⊥ ∈ Bn+1. Thus, in
the first case of the termination criterion, A is unsatisfiable, and if the first does not
happen but the second termination criterion is met, then A is satisfiable.

EXAMPLE 3.12. Using resolution with subsumption in Example 3.11, we obtain
A0 = A = {{¬p,q},{p,q},{¬p,¬q}} B0 = RS(A0) = A0

A1=R(B0)=A0∪{{q},{¬p},{q,¬q},{p,¬p}} B1 = RS(A1) = {{q},{¬p}}
A2 = R(B1) = {{q},{¬p}} B2 = RS(A2) = {{q},{¬p}}= B1

So, RS∗(A) = B1. Since ⊥ �∈ B1, A is satisfiable

96 CHAPTER 3. NORMAL FORMS AND RESOLUTION

EXAMPLE 3.13. Use resolution with subsumption to show that

{p∨q→ r, r→ s∨ t, s→ u, ¬(¬t → u)} � ¬p.

Take negation of the conclusion and then convert each proposition to cnf. The
clause set corresponding to this consequence is

A = {{¬p,r}, {¬q,r}, {¬r,s, t}, {¬s,u}, {¬t}, {¬u}, {p}}.

We notice that there is no nonfundamental clause in A and no clause subsumes an-
other. Hence, A0 = A, B0 = RS(A) = A. Since

res({¬p,r}, {p}; p) = {r} res({¬p,r}, {¬r, t,s}; r) = {¬p, t,s}
res({¬q,r}, {¬r, t,s}; r) = {¬q, t,s} res({¬r, t,s}, {¬s,u}; s) = {¬r, t,u}
res({¬r, t,s}, {¬t}; t) = {¬r,s} res({¬s,u}, {¬u}; u) = {¬s}

we have

A1 = R(B0) = {{¬p,r},{¬q,r},{¬r, t,s},{¬s,u},{¬t},{¬u},{p},{r},{¬p, t,s},
{¬q, t,s},{¬r, t,u},{¬r,s},{¬s}}

Since {r} subsumes {¬p,r} and {¬q,r}, {¬r,s} subsumes {¬r, t,s}, and {¬s} sub-
sumes {¬s,u}, we obtain

B1 = RS(A1) = {{¬t},{¬u},{p},{r},{¬p, t,s},{¬q, t,s},{¬r, t,u},{¬r,s},{¬s}}
A2 = R(B1) = {{¬t},{¬u},{p},{r},{¬p, t,s},{¬q, t,s},{¬r, t,u},{¬r,s},{¬s},

{¬p,s},{¬q,s},{¬r,u},{¬r, t},{t,s},{t,u},{s},{¬p, t},{¬q, t},{¬r}
B2 = RS(A2) = {{¬t},{¬u},{p},{r},{¬s},{t,u},{s},{¬p, t},{¬q, t},{¬r}}
A3 = R(B2) = {. . . ,{¬s}, . . . ,{s}, . . . ,⊥, . . .}

Therefore, A is unsatisfiable; and the consequence is valid.
Observe that each clause in RS∗(A) is a logical consequence of A but no clause is

a logical consequence of any other. Also, A is logically equivalent to RS∗(A). That
is, RS∗(A) is the set of all prime implicates of A.

To repeat, let A be a cnf and let D be a disjunctive clause. D is an implicate of A
iff A � D. D is a prime implicate of A iff D is an implicate of A and there is no other
implicate C of A such that C � D. That is, no other implicate comes in between A
and D with respect to the consequence relation. By way of trying to make resolution
efficient, we have landed in computing all prime implicates of a cnf.

Other strategies for cutting down waste in resolution are based on the so called
pure literal and unit clauses. In the context of a set A of clauses, a literal p is called a
pure literal if p occurs in some clause of A and ¬p dos not occur in any clause of A.
Similarly, a unit clause of A is a clause that occurs in A and which contains a single
literal. A unit clause looks like {p} or {¬p} for any propositional variable p.

1. Pure literal heuristic: Let p be a pure literal occurring in a cnf A. Delete
from A each clause that contains p to obtain A�. Then A is satisfiable iff A� is
satisfiable.

3.9. SUMMARY AND PROBLEMS 97

2. Unit clause heuristic: Let {p} be a unit clause contained in a cnf A. Delete
from A every clause that contains the literal p to obtain the set of clauses A�.
Next, update each clause of A� by deleting the occurrence of ¬p from it, and
call the new set of clauses as A��. Then A is satisfiable iff A�� is satisfiable.

The DPLL algorithm for checking satisfiability of cnfs uses these two heuristics re-
cursively. Notice that these two heuristics cannot decide on their own whether a
given cnf is satisfiable. DPLL algorithm first simplifies the cnf using these heuris-
tics. When these heuristics are no more applicable, the algorithm arbitrarily selects
a literal and assigns it the truth value 1 and then tries to apply the heuristics. If later,
it finds that satisfiability cannot be established, the algorithm backtracks and assigns
0 to the selected literal and starts all over again.

There are also heuristics in selecting such a literal in the process leading to many
refinements of the algorithm.

Exercises for § 3.8
1. Find R∗(A) and RS∗(A) for the following clause sets A:

(a) {{p},{q},{p,q}} (b) {{p,q,¬r},{¬p,¬q,r}}
(c) {{p,¬q},{p,q},{¬q}} (d) {{¬p},{¬p,r},{p,q,¬r}}
(e) {{¬p,¬r},{¬q,¬r}{p,q,r}} (f) {{q,r},{¬p,¬q},{¬r,¬p}}

2. Write a detailed procedure for resolution employing subsumption.
3. Show that deletion of trivial clauses does not affect the adequacy (soundness

and completeness) of resolution.
4. If a clause C subsumes D, then removal of D does not affect the adequacy of

resolution. Show it.

3.9 SUMMARY AND PROBLEMS
The semantics of PL led us to consider the truth functions, which map n-tuples of
truth values to true or false. Each truth function could be represented by a proposi-
tion, especially by a dnf and also by a cnf. A dnf is satisfiable iff each conjunctive
clause in it contains a pair of complementary literals. Similarly, a cnf is valid iff each
disjunctive clause in it contains a pair of complementary literals.

In the worst case, the satisfiability of a cnf, and its dual problem of determining
validity of a dnf are exponential processes. The method of resolution helps in many
cases reducing the complexity. We found that the resolution method is adequate to
PL. Strategies have been developed for improving the performance of resolution.
Briefly, we have described the DPLL algorithm, which is an improvement over the
Davis-Putnum proof procedure.

Davis-Putnum proof procedure is an earlier method closely related to resolution;
see Davis & Putnam (1960). The resolution method was found by Robinson (1996).
Since then it had received much attention due to its easy machine implementation.
An exposition of the resolution method basing on different formal systems can be
found in Robinson (1979).

98 CHAPTER 3. NORMAL FORMS AND RESOLUTION

The resolution method is extensively used in computing the set of prime im-
plicants and implicates arising in minimization of boolean circuits and knowledge
compilation. For knowledge compilation and its application to various reasoning ac-
tivities and minimization of boolean circuits, many algorithms have been devised.
The method of Karnaugh maps is one among them. The Karnaugh maps become
quite involved when the number of propositional variables and the number of clauses
become large. In our terminology this amounts to computing the prime implicants
or prime implicates of a knowledge base. One of the oldest methods of computing
prime implicants is discussed in Quine (1959). For more information on the knowl-
edge compilation techniques, see Doyle et al. (1994), Reiter & de Kleer (1987),
Selman & Kautz (1991), Singh (1999), and Tison (1967).

In the worst case, resolution takes an exponential time; see Fitting (1996). Ac-
cordingly, many refinements of resolution have been attempted. Some refinements
such as linear resolution, model elimination, unit resolution, etc. have been tried
keeping in view a particular class of clauses, on which they become efficient too. For
these refinements, you may consult Chang & Lee (1973), Kowalski (1979), Loveland
(1979), and Robinson (1979).

A linear time algorithm for checking satisfiability of Horn formulas is given in
Dowling & Gallier (1984). Consult Garey & Johnson (1979) for more information
on NP-completeness and many problems including 3-SAT. As general references
on these topics, see the texts Chang & Lee (1973), Du et al. (1997), Gallier (1987),
Huth & Ryan (2000), and Singh & Goswami (1998).

Problems for Chapter 3
1. Prove that the construction of a cnf equivalent to a proposition by looking at

the non-models works correctly.
2. Look at the laws used in the procedure NorFor. Do you feel that using only

these laws, all the other laws in Theorem 2.12 can be derived by equivalences?
If so, why? If not, what else do you require?

3. Prove that the procedure NorFor works as intended.
4. Construct a proposition w involving three atomic propositions p,q,r such that

for any interpretation, changing any one of the truth values of p,q, or r changes
the truth value of w.

5. Let n ≥ 1. Let f : {0,1}n → {0,1} be any truth function. Prove that f can be
expressed as a composition of (a) ↑ only; (b) ↓ only.

6. Prove that except ↑ and ↓, no other binary truth function alone can express all
truth functions.

7. Which pair of connectives form a truth functionally complete set? Justify your
answer.

8. Let w be a proposition built from propositional variables p1, . . . , pn, and con-
nectives ∧,∨ and → . Let i be an interpretation with i(p1) = · · · = i(pn) = 1.
Show that i(w) = 1. Deduce that the set {∧,∨,→} of connectives is not truth
functionally complete.

9. Is {∧,�,⊥} truth functionally complete?

3.9. SUMMARY AND PROBLEMS 99

10. Show that {∧,↔,⊕} is a truth functionally complete set, but none of its proper
subsets is truth functionally complete.

11. Show that each function from {0,1}n to {0,1} can be generated using the func-
tion f : {0,1}2 → {0,1}, where f (x,y) = (1+x)(1+y). Can you find another
function from {0,1}2 to {0,1} which behaves like f ? [See Problems 37-38 of
Chapter 1.]

12. Show that each function from {0,1}n to {0,1} can be generated using the
function g : {0,1}3 → {0,1} given by g(x,y,z) = 1+ x+ y+ xyz.

13. A set S of connectives is called maximally inadequate iff there exists a truth
function f which is not expressible by using connectives from S, and for any
such f , the set S∪ { f} is adequate (truth functionally complete). Show that
each of the sets {∧,∨,�,⊥}, {∧,→}, and {¬,↔} is maximally inadequate.

14. Suppose that all our propositions are defined in terms of the connectives ¬,∧,∨,
without using the constants � and ⊥. Let p stand for atomic propositions, and
u,v,w for propositions.

(a) Define the dual of a proposition, dl(·), recursively by dl(p) = p, and
dl(¬w)=¬dl(w),dl(u∧v)= (dl(u)∨dl(v)),dl(u∨v)= (dl(u)∧dl(v)).
Show that x≡ y iff dl(x)≡ dl(y) for all propositions x and y.

(b) Is the dual of (p1∧ p2)∨ (p2∧ p3)∨ (p3∧ p1) itself?
(c) Let ◦ and � be two binary truth functions. We say that ◦ is the dual of �

iff ¬(x�y)≡ (¬x◦¬y) for all propositions x and y. For example, ∧ is the
dual of ∨, and ∨ is the dual of ∧. Show that if ◦ is the dual of �, then �
is the dual of ◦. For the 16 binary truth functions, determine which is the
dual of which.

(d) Define the denial of a proposition, d(·), recursively by d(p) = ¬p, and
d(¬w) = ¬d(w), d(u∧ v) = (d(u)∨ d(v)), d(u∨ v) = (d(u)∧ d(v)).
Show that d(z)≡ ¬z for any proposition z.

15. The negation normal form (nnf) is defined recursively by:

If p is a propositional variable, then both p and ¬p are in nnf.
If u and v are in nnf, then (u∧ v) and (u∨ v) are in nnf.

Construct a grammar for nnf. Show that each proposition is equivalent to one
in nnf. Give a procedure to obtain an nnf equivalent to a proposition, without
using cnf or dnf conversion.

16. Write programs in any language you know to convert a proposition to a cnf
and to a dnf.

17. The grammar in BNF for the set of literals can be written as l ::= p | ¬p,
where p stands for atomic propositions. Give grammars in BNF for conjunc-
tive clauses, disjunctive clauses, cnf, and dnf.

18. Recall the notation ⊕ for XOR, the exclusive or. Attempt to show that

(a) ⊕ is both commutative and associative.
(b) w⊕⊥≡ w, w⊕�≡ ¬w, w⊕w≡⊥.
(c) u∨ (v⊕w)≡ (u∨ v)⊕ (u∨w), u∧ (v⊕w)≡ (u∧ v)⊕ (u∧w).
(d) {⊕,∧,�} is truth functionally complete.

100 CHAPTER 3. NORMAL FORMS AND RESOLUTION

(e) Any of ⊕,∧,� can be expressed through the other two.
(f) {⊕,∨,�} is truth functionally complete.

19. Show that any proposition A that uses the connectives ∧, ⊕, �, ⊥, and propo-
sitional variables p1, . . . , pn can be written uniquely in the form

A≡ a0⊕ (a1∧ p1)⊕ (a2∧ p2)⊕ · · ·⊕ (an∧ pn)

where ai ∈ {�,⊥} for 0≤ i≤ n.
20. Do the previous exercise if A is a proposition that uses the connectives

(a) ⊕, � (b) ↔, ⊥ (c) ↔, ¬
21. See Problem 18. Prove that each proposition is equivalent to either ⊥ or �

or C1⊕ · · ·⊕Cm, where each Ci is either � or a conjunction of propositional
variables. This is called the exclusive or normal form (enf). What are the enf
of valid propositions?

22. Let x =C1∧C2∧ · · ·∧Cm and y = D1∧D2∧ · · ·∧Dn, where Ci,D j are disjunc-
tive clauses. Define dist(x,y)=∧i, j(Ci∨D j). Using this, a cnf of a proposition
can be defined recursively as follows:

If w is a disjunctive clause, then cnf (w) = w.
If w is x∧ y, then cnf (w) = cnf (x)∧ cnf (y).
If w is x∨ y, then cnf (w) = dist(cnf (x),cnf (y)).

This recursive definition of a cnf can easily be implemented in a functional
programming language. Show that the definition correctly defines a cnf of a
proposition which uses the connectives ¬, ∧ and ∨.

23. Define dnf recursively, analogous to the recursive definition of cnf.
24. For each proposition x, and each propositional variable p occurring in x, let xp

be the proposition obtained from x by replacing each occurrence of p by �.
Similarly, let xp be the proposition obtained from x by replacing each occur-
rence of p by ⊥. Let x̄ be the proposition xp∨ xp.Prove the following:

(a) x � x̄.
(b) for any proposition y, if x � y and p does not occur in y, then x̄ � y.
(c) x is satisfiable iff x̄ is satisfiable.

25. Let x,y be propositions having no common propositional variables. Show that
if � x→ y, then x is unsatisfiable or y is valid.

26. Craig’s interpolation theorem: Let x,y be propositions having at least one
propositional variable in common. A proposition z is called an interpolant of
x → y iff � x → z, and � z → y, where all propositional variables occurring
in z are from among the common propositional variables of x,y. Show that if
� x→ y, then x is unsatisfiable or y is valid or x→ y has an interpolant.

27. For each i ∈ N, let xi be a proposition; and let Σ = {xi → xi+1 : i ∈ N}. Using
resolution, show that Σ � x0 → xn for each n ∈ N.

28. Let f : {q1, . . . ,qm}→ {0,1} be a function, where q1, . . . ,qm are distinct propo-
sitional variables. Show that there is a proposition w such that for any function
g : {q1, . . . ,qm}→ {0,1}, g � w iff f = g.

3.9. SUMMARY AND PROBLEMS 101

29. Let Σ be a set of propositions. Let w be a proposition. Show that if Σ∪{w} and
Σ∪{¬w} have resolution refutations, then Σ also has a resolution refutation.

30. Let Σ and Γ be sets of propositions, and let w be a proposition. Show that if
Σ∪{w} and Γ∪{¬w} have resolution refutations, then Σ∪Γ has a resolution
refutation.

31. In a set of clauses, replace simultaneously, each occurrence of p by ¬p, and
each occurrence of ¬p by p, for each propositional variable p. Show that a
resolution refutation of the new set of clauses will remain essentially the same.

32. Define formally 3SAT and 2SAT.
33. Show that Procedure TwoSat correctly solves 2SAT. The catch is to see that in

Stage 2, the 2cnf A is satisfiable if the 2cnf C is satisfiable.
34. Given a 2cnf x having n propositional variables p1, · · · , pn, construct a directed

graph Gx by taking 2n vertices p1,¬p1, · · · , pn,¬pn. Corresponding to each
clause of the form p∨q, join an edge from the vertex ¬p to q, and join another
edge from the vertex ¬q to p. First, show that x is unsatisfiable iff there is a
vertex p in Gx such that there is a path from p to ¬p, and also there is a path
from ¬p to p. Next, show that determining whether such a vertex p exists in
Gx takes polynomial time.

35. Try to show that the procedure HornSat correctly checks whether a given Horn
formula is satisfiable. [Hint: You may have to use induction on the number of
times the while loop is executed in running the procedure.]

36. Redefine a Horn clause as q1∧q2∧ · · ·∧qm→ q admitting qi’s to be any literal.
Explain why the procedure HornSat fails.

37. Can you specify a syntactic criterion on cnfs so that they will be equivalent to
Horn formulas? If you answer ‘no’, why? If you answer ‘yes’, can you write
a procedure to convert such special cnfs to Horn formulas?

38. Can you use grammars in BNF to define Horn formulas? Do you require any
intermediate definitions so that this can be done?

39. Let C be a collection of interpretations. Define the intersection (call it I) of
all interpretations in C by I(p) = 1 iff i(p) = 1 for each i ∈ C . Show that if a
Horn clause p1∧ · · ·∧ pn → q receives the value 1 under each interpretation in
C then it receives the value 1 under I.

40. Justify both pure literal heuristic and unit clause heuristic.
41. Let A and B be conjunctive clauses. Define Re(A,B) by omitting a literal p

from A and ¬p from B, and then taking their conjunction. Let i be an interpre-
tation.

(a) Show that if i � A and i � B, then i � Re(A,B).
(b) Give examples of A,B and i to show that i � A, i � B, but i � Re(A,B).

42. Denote by π(A) the set of all prime implicates of A and interpret this set as the
conjunction of all its clauses as usual. For a cnf A, show the following:

(a) A≡ π(A) (b) RS∗(A) = π(A) (c) RS∗(A)≡ R∗(A)

43. Write a procedure for the DPLL algorithm as described in the text. Prove that
it correctly determines whether a given proposition is satisfiable or not.

102 CHAPTER 3. NORMAL FORMS AND RESOLUTION

44. For a clause set A, define S0(A) = A, Sm+1(A) = {C : C is a resolvent of two
clauses in Sm(A)}; and then take S∗(A) = ∪n∈NSn(A). Give an example of a
clause set A such that A is unsatisfiable but ⊥ �∈ S∗(A).

45. For a clause set A, define U∗(A) = ∪n∈NUn(A), where U0(A) = A, Um+1(A) =
Um(A) ∪ {C : C is a resolvent of two clauses in Um(A) one of which is a
singleton}. This is called unit resolution. Give an example of a clause set
A such that A is unsatisfiable but ⊥ �∈U∗(A).

46. Let A be any clause set. For any set B ⊆ A, write N(A,B) = A∪ {C : C is a
resolvent of a clause in B and a clause in A}. Define UNn(A) inductively by:
UN0(A) = A, UNm+1(A) = N(UNm(A),A). Let UN∗(A) = ∪n∈NUNn(A). Show
that ⊥ ∈U∗(A) iff ⊥ ∈UN∗(A).

47. Let A be a clause set and B ⊆ A is such that A \B is satisfiable. A clause in
R∗(A) has B-support iff it is in B or is a resolvent of two clauses, of which at
least one has B-support. Let R1(A) = A∪{C ∈ R(S) : C has B-support}. Define
R∗1(A) in the usual way. Show that A is unsatisfiable iff ⊥ ∈ R∗1(A).

48. Let A be a clause set with each clause in it having at most two literals. Show
that the resolution method determines the satisfiability of A in a time which is
a polynomial in the length of A.

49. Let B be a clause set, each clause of which has at most three literals. Give
reasons why your solution of Problem 48 may not prove that the resolution
method determines satisfiability of such a clause set B in polynomial time.

50. Let pi j be propositional variables for i, j ∈ {1, . . . ,n+1}. For n ≥ 1, define a
proposition Hn as follows:

Hn =
n+1�

i=1

n�

j=1

pi j →
n�

k=1

n+1�

i=1

n+1�

j=i+1

(pik ∧ p jk)

Prove that Hn is valid for each n. Convince yourself that a resolution proof of
validity of Hn has length as an exponential in n. [Hint: You may have to use
and encode the Pigeon Hole Principle; see Haken (1985).]

Chapter 4

Other Proof Systems for PL

4.1 CALCULATION
From among many available proof systems for PL, we choose four for their different
approaches. Calculations, as advocated by D. Gries, use equivalences to construct a
proof. We will use equivalences as well as other laws in calculations. Both natural
deduction system and the sequent calculus were advocated by G. Gentzen. And
he preferred the sequent calculus due to its generality and symmetry. The other
system, called the Analytic Tableau, was advocated by R. M. Smullyan. It has certain
advantages over the other systems so much so that in many books, you will find this
system as the major one instead of the Hilbert style axiomatic system PC. compared
to other proof systems, it is easier to construct analytic tableaux.

To have a feel of calculations, consider proving x∧ y ≡ (x ↔ (x∨ y ↔ y)). By
Theorem 1.5, it is enough to show that � (x∧ y ↔ (x ↔ (x∨ y ↔ y))). Here is an
attempt:

x∧ y↔ (x↔ (x∨ y↔ y)) [Associativity]
≡ (x∧ y↔ x)↔ (x∨ y↔ y) [Implication, Commutativity]
≡ (x→ y)↔ (x→ y) [Identity]
≡ �

Again, the use of Theorem 1.5 completes the job. Moreover, the serial equivalences
are permitted since ≡ is transitive, i.e., if x≡ y and y≡ z, then x≡ z.

Look at the above series of equivalences closely. How is the first equivalence
justified? In the Law of Associativity: x ↔ (y ↔ z) ≡ (x ↔ y)↔ z, we take x,y,z
as propositional variables. Then we uniformly substitute x as x∧ y, y as x, and z as
x∨y↔ y. Similarly, other equivalences hold. We can use our theorems, laws and the
replacement laws for devising a proof system, where equivalences and consequences
can be proved by calculations.

A calculation will be written as a sequence of propositions where successive
propositions are linked by the symbol ≡ or �. Each step of the calculation which
appears as A≡ B or as A � B must be justified by a law listed in Theorem 2.12, im-
plicitly using the replacement laws. A calculation looks like: C0 �C1 � · · ·�Cm, where

103

104 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

an instance of � can be one of ≡ or �; and each step Ci−1 �Ci must be an instance of
a law E1 �E2. The calculation justifies the metastatement C0⊗Cm, where ⊗ is ≡ if
all instances of � are ≡, and ⊗ is � if at least one instance of � is �. A calculation
that justifies a consequence or an equivalence is also called a calculational proof of
that consequence or equivalence.

A calculation for � u can be any calculation justifying u≡� or � � u.
A calculation for � u→ v can be any calculation justifying u � v or� � u→ v.
A calculation for � u↔ v can be any calculation justifying� � u↔ v or u≡ v.
A justification for the unsatisfiability of a set Σ = {w1, . . . ,wn} can be any cal-
culation justifying w1∧ · · ·∧wn ≡⊥ or w1∧ · · ·∧wn �⊥; due to Theorem 1.5.

To justify {w1, . . . ,wn} � w, we may construct a calculation for w1∧ · · ·∧wn � w
or for � w1∧ · · ·∧wn → w or for � w1 → ((· · ·w2 → · · ·(wn → w) · · ·). By RA, we
may alternatively construct a calculation for w1∧ · · ·∧wn∧¬w �⊥.

EXAMPLE 4.1. Show by calculation that {p∧ (q∧ r),s∧ t} � q∧ s.

p∧ (q∧ r)∧ (s∧ t) [Associativity, Commutativity]
≡ p∧ (r∧ t)∧ (q∧ s) [Elimination]
� q∧ s.

If the premises are many, we may not write down the conjunction of all the
premises at a time. We rather start with a premise, and go on introducing more
and more premises as we please, by using a conjunction. However, we document it
writing ‘P’ as a shorthand for ‘introducing a premise’ in the documentation column.

EXAMPLE 4.2. Show that p→ (q→ r), ¬r, p � ¬q.

(p→ (q→ r))∧ p [Mod Pon, P]
� (q→ r)∧¬r [Mod Tol]
� ¬q

The premise ¬r has been introduced in the second line of the calculation; it is docu-
mented by mentioning ‘P’.

EXAMPLE 4.3. Show that (p→ q)∧ (¬p→ r)≡ (p∧q)∨ (¬p∧ r)

(p→ q)∧ (¬p→ r) [Imp]
≡ (¬p∨q)∧ (¬¬p∨ r) [Doub Neg, Dist]
≡ (¬p∧ p)∨ (¬p∧ r)∨ (q∧ p)∨ (q∧ r) [Const]
≡ (¬p∧ r)∨ (q∧ p)∨ (q∧ r) [Const]
≡ (¬p∧ r)∨ (q∧ p)∨ ((p∨¬p)∧ (q∧ r)) [Dist]
≡ (¬p∧ r)∨ (q∧ p)∨ (p∧q∧ r)∨ (¬p∧q∧ r) [Comm, Absr]
≡ (¬p∧ r)∨ (q∧ p)

EXAMPLE 4.4. Show that � (p→ r)→ ((¬p→ ¬q)→ (q→ r)).

(¬p→ ¬q)∧q [Mod Tol]
� ¬¬p [Doub Neg, P]
� p∧ (p→ r) [Mod Pon]
� r

4.1. CALCULATION 105

Using the deduction theorem, we have shown that p→ r,¬p→ ¬q,q � r. In the
following, we give a proof without using the deduction theorem.

(p→ r)→ ((¬p→ ¬q)→ (q→ r)) [Contra]
≡ (p→ r)→ ((q→ p)→ (q→ r)) [Dist]
≡ (p→ r)→ (q→ (p→ r)) [Hyp Inv]
≡ �

EXAMPLE 4.5. Show that (¬x∨ y)∧ (x∨ z)≡ (x∧ y)∨ (¬x∧ z).

(¬x∨ y)∧ (x∨ z)
≡ (¬x∧ x)∨ (¬x∧ z)∨ (y∧ x)∨ (y∧ z)
≡ (¬x∧ z)∨ (y∧ x)∨ (y∧ z)
≡ (¬x∧ z)∨ (y∧ x)∨ (y∧ z∧ (x∨¬x))
≡ (¬x∧ z)∨ (y∧ x)∨ (y∧ z∧ x)∨ (y∧ z∧¬x)
≡ ((¬x∧ z)∨ (y∧ z∧¬x))∨ ((y∧ x)∨ (y∧ z∧ x))
≡ (¬x∧ z)∨ (y∧ x)
≡ (x∧ y)∨ (¬x∧ z)

Document the above calculation.
Strong adequacy of calculations follows from the compactness theorem and the

normal form theorem.

Exercises for § 4.1
Construct calculations for the valid ones among the following propositions and con-
sequences. For others, construct a falsifying interpretation.
1. (q→ p)→ p 2. p→ (q→ p)
3. ¬p→ (p→ q) 4. ¬p→ (p→⊥)
5. p→ (q→ p∧q) 6. (((p∧q)↔ p)→ q)
7. (¬p→ ¬q)→ (q→ p) 8. (p∨q)→ (¬p∧q→ q)
9. (p→ q)→ (q∧ r→ (p→ r)) 10. ((p∨ (p∧q))→ (p∧ (p∨q)))
11. (((p∨q)∧ (¬q∨ r))→ (p∨ r)) 12. (((p∧q)∧ (¬q∨ r))→ (p∧ r))
13. ((p↔ q)↔ r)↔ ((p↔ q)∧ (q↔ r))
14. (p→ (q→ r))→ ((p→ q)→ (q→ r))
15. ¬(p→ (q→ r))∨ ((p→ q)→ (p→ r))
16. (p→ q)→ ((q→ r)→ ((r→ s)→ (p→ s)))
17. ((p∧q→ r)∧ (p∧¬q→ r))↔ (p→ (q↔ r))
18. ¬(r∧¬¬q) !� (¬q∨¬r)
19. p∨¬q, p→ ¬r !�q→ ¬r
20. p∨q→ r∧ s, t ∧ s→ u !� p→ u
21. p∨q→ r∧ s, s∨ t → u, p∨¬u !� p→ (q→ r)
22. p→ q∧ r, q→ s, d → t ∧u, q→ p∧¬t !�q→ t
23. p∨q→ r∧ s, r∨u→ ¬v∧w, v∨ x→ p∧ y !�¬v
24. (r→ r∧ s)→ t, t → (¬u∨u→ p∧u), p∨q→ (r→ r) !� p↔ t
25. p, ¬r→ ¬p, (p→ q)∧ (r→ s), (s→ u)∧ (q→ t), s→ ¬t !�⊥
26. p→ ¬q, r→ s, ¬t → q, s→ ¬u, t → ¬v, ¬u→ w, p∧ r !�¬v∧w

106 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

4.2 NATURAL DEDUCTION
In PC, substitutions in axiom schemes were tricky. In quasi-proofs and calculations,
an appropriate law is required to be chosen at each stage. To minimize such choices,
we plan to have two kinds of inference rules for each connective. The proof system
differs slightly from the one advocated by G. Gentzen. It is customary to call such a
system a natural deduction system.

In the system PND (Propositional Natural Deduction system), the propositions
are all PL-propositions. This system has only one axiom, which is �; however, this
is now written as an inference rule. PND has the following inference rules (read ‘ i ’
for introduction and ‘e ’ for elimination):

(�i)
·
� (�e)

� · · · p

p
�

p∨¬p

(⊥i)
p, ¬p
⊥ (⊥e)

⊥
p

(¬i)
p · · ·⊥
¬p

p∧¬q
¬(p→ q)

(¬e)
¬⊥
�

¬(p→ q)
p∧¬q

p∨¬q, q
p

(¬¬i)
p

¬¬p
(¬¬e)

¬¬p
p

(∧i)
p, q
p∧q

(∧e)
p∧q

p
p∧q

q

(∨i)
p

p∨q
q

p∨q
(∨e)

p · · ·r q · · ·r , p∨q

r

(→ i)
p · · ·q
p→ q

(→e)
p, p→ q

q
¬q, p→ q

¬p

(↔ i)
p→ q, q→ p

p↔ q
(↔e)

p↔ q
(p→ q)∧ (q→ p)

Propositions separated by a comma on the numerators of rules will appear verti-
cally in separate lines, in a proof. A box written horizontally in the above rules will
also appear vertical in a proof. A box indicates the conditionality of the premises.

For example, in the rule (→ i), the proposition p is introduced from nowhere,
an extra assumption. The extra assumption p is, of course, introduced in an actual
proof by targeting towards a particular conclusion such as q. But then, all those
propositions that are derived with this extra assumption p do depend upon it, and
thus must be written inside the box.

Once you close the box, and write p → q, all it says is that the propositions
outside the box, in particular, p→ q does not depend upon the extra assumption p.

4.2. NATURAL DEDUCTION 107

Notice that a proposition that does not depend upon p (e.g., a premise) may also be
written inside this box.

The rule (→ i) is simply another form of the deduction theorem better suited to
be used inside a proof. In this form, the deduction theorem applies on a block of
propositions, those contained in the box. The box corresponds to the block within
the DTB-DTE in a quasi-proof. (See § 2.7).

Similarly, the rule (∨e) is the law of the cases expressed differently. The rule (�i)
says that � may be derived without any specific requirement, i.e., � can be derived
from any proposition; even in the absence of any proposition � can be introduced.
This puts forth the convention that axioms can be written as fractions with empty
numerators.

A PND-deduction is a sequence of propositions (may be, in boxes), where each
one is obtained by applying one of the rules of PND. A PND-proof of the conse-
quence Σ !�A is a PND-deduction, where each proposition, except the first proposi-
tion inside a box, is a premise in Σ or is obtained by an application of an inference
rule of PND on earlier propositions, and the proposition A is the last proposition of
the sequence not inside a box.

A consequence Σ !�A is said to be PND-provable, written, Σ �PND A iff there
exists a proof of the consequence Σ !�A in PND. In this section, we write Σ �PND A
as Σ � A; and abbreviate ‘PND-deduction’ to ‘deduction’.

Any box contains a full fledged deduction, except that propositions outside the
box but occurring prior to it can also be used for deductions inside the box. That
is, a rule can be applied on propositions occurring before the box and the result can
be written as a proposition inside a box. A proposition inside the box may not be
a premise; typically, the first proposition inside a box is not a premise. We have a
constraint on the boxes:

A box can never cross another box; only nesting of boxes is allowed.

A proposition p is a theorem of PND iff ∅ � p; the deduction is then called a PND-
proof of the theorem. We write �PND p, and abbreviate it to � p, to say that p is a
theorem. A set Σ of propositions is called inconsistent iff Σ�⊥ else, it is consistent.

Σ is consistent means that there cannot be any deduction showing Σ � ⊥. We
follow the same three-columns style of writing a deduction as in PC, writing ‘P’ for
premises and ‘CP’ for an extra or conditional premise. The ‘CP’ is justified by the
deduction theorem. See the following examples.

EXAMPLE 4.6. A proof for � p→ (q→ p) is as follows:

1. p CP

2. q CP

3. p 1

4. q→ p → i

5. p→ (q→ p) → i

108 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

To write the proofs with ease, we will dispense with the boxes. We will rather
use the pair CPB and CPE with or without a number. CPB1 will close with CPE1,
CPB2 will close with CPE2, etc. When we mention CPE on the line numbered n+1,
it would mean that the conditionality of the premise introduced by the corresponding
CPB has ended by the line numbered n. Take care of the nesting of the boxes. The
proof in Example 4.6 is rewritten in the following, using this four-columns style.

1. p CPB1
2. q CPB2
3. p 1
4. q→ p → i CPE2
5. p→ (q→ p) → i CPE1

EXAMPLE 4.7. Show that � (p→ (q→ r))→ ((p→ q)→ (p→ r)).
1. p→ (q→ r) CPB1
2. p→ q CPB2
3. p CPB3
4. q 2, 3,→e
5. q→ r 1, 3,→e
6. r 4, 5,→e
7. p→ r 2, 6,→e CPE3
8. (p→ q)→ (p→ r) 1, 7,→e CPE2
9. (p→ (q→ r))→ (p→ q)→ (p→ r)) 1, 8,→ i CPE1

EXAMPLE 4.8. Show that � (¬q→ ¬p)→ ((¬q→ p)→ q).

1. ¬q→ ¬p CPB1
2. ¬q→ p CPB2
3. ¬q CPB3
4. ¬p 1, 3,→e
5. p 2, 3,→e
6. ⊥ 4, 5,⊥i
7. ¬¬q 3, 6,¬i CPE3
8. q 7,¬¬e
9. (¬q→ p)→ q 2, 8 ,→ i CPE2
10. (¬q→ ¬p)→ ((¬q→ p)→ q) 1, 9,→ i CPE1

EXAMPLE 4.9. Show that � (¬q→ ¬p)→ (p→ q).
1. ¬q→ ¬p CPB1
2. p CPB2
3. ¬¬p ¬¬i
4. ¬¬q 1, 3,→e
5. q ¬¬e
6. p→ q 1, 5,→ i CPE2
7. (¬q→ ¬p)→ (p→ q) 1, 6,→ i CPE1

Sometimes, in a deduction, we number only those lines which may be mentioned
latter in the documentation column. See the following example.

4.2. NATURAL DEDUCTION 109

EXAMPLE 4.10. p→¬q,r→ s,¬t→ q,s→¬u, t→¬v,¬u→w� p∧r→¬v∧w.

1. p∧ r CPB
p ∧e
p→ ¬q P
¬q →e
¬t → q P
¬¬t →e
t ¬¬e
t → ¬v P

2. ¬v →e
r 1,∧e
r→ s P
s →e
s→ ¬u P
¬u →e
¬u→ w P

3. w →e
4. ¬v∧w 2, 3,∧i

p∧ r→ ¬v∧w 1, 4,→ i CPE

EXAMPLE 4.11. p∨ (¬q∧ r)→ s, (t ∧¬u)→ ¬s, v∨¬u, ¬(v∨¬r), t, p � ⊥.
p P
p∨ (¬q∧ r) ∨i
p∨ (¬q∧ r)→ s P

1. s →e
t P
¬u CPB
t ∧¬u ∧i
t ∧¬u→ ¬s P

2. ¬s →e
⊥ 1, 2,⊥i
¬¬u ¬i CPE
u ¬¬e
v∨¬u P
v ¬e
v∨¬r ∨i
¬(v∨¬r) P
⊥ ⊥i

As you see, PND proofs are very much similar to the quasi-proofs. The quasi-
proofs use any of the laws and also earlier proved consequences, whereas a PND
proof uses strictly the prescribed rules.

Examples 4.6-4.8 show that the axioms of PC are, indeed, theorems of PND.
Moreover, the inference rule MP of PC is simply the rule (→e) of PND. Hence PND
is complete. But not yet, because PND works with all the five connectives and PC

110 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

has only two. The other connectives and the constants� and⊥ have been introduced
through definitions into PC. To prove completeness, show the following using PND:

� � p→ p, p→ p � �,
⊥ � ¬(p→ p), ¬(p→ p) � ⊥,

p∨q � ¬p→ q, ¬p→ q � p∨q,

p∧q � ¬(p→ ¬q), ¬(p→ ¬q) � p∧q,

p↔ q � (p→ q)∧ (q→ p), (p→ q)∧ (q→ p) � p↔ q.

Alternatively, you may prove completeness of PND by constructing a maximally
consistent set, etc. You can also show that all the rules of PND are sound; that is,
the rules represent valid consequences of PL. Since the proofs in PND are finite in
length, strong adequacy of PND to PL follows naturally.

Theorem 4.1 (Strong Adequacy of PND). Let Σ be a set of propositions, and let w
be any proposition. Σ � w iff Σ �PND w.

Exercises for § 4.2
1. For all the tautologies among the following propositions give a natural deduc-

tion proof.

(a) p→ (q→ p) (b) (q→ p)→ p
(c) (((p∧q)↔ p)→ q) (d) (¬p→ ¬q)→ (q→ p)
(e) ((p∨ (p∧q))→ (p∧ (p∨q))) (f) (((p∨q)∧ (¬q∨ r))→ (p∨ r))
(g) (((p∧q)∧ (¬q∨ r))→ (p∧ r))
(h) ((p↔q)↔r)↔((p↔q)∧ (q↔r))
(i) ((p∧q→ r)∧ (p∧¬q→ r))↔ (p→ (q↔ r))

2. Are the following consequences valid? Justify with a PND-deduction or give
a non-model.

(a) ¬(r∧¬¬q) !� (¬q∨¬r)
(b) p∨¬q, p→ ¬r !�q→ ¬r
(c) p∨q→ r∧ s, t ∧ s→ u !� p→ u
(d) p∨q→ r∧ s, s∨ t → u, p∨¬u !� p→ (q→ r)
(e) p→ q∧ r, q→ s, d → t ∧u, q→ p∧¬t !�q→ t
(f) p, ¬r→ ¬p, (p→ q)∧ (r→ s), (s→ u)∧ (q→ t), s→ ¬t !�⊥

3. Construct another PND-derivation for the consequence in Example 4.11.

4.3 GENTZEN SEQUENT CALCULUS
Our treatment of natural deduction system follows closely the style of quasi-proofs.
Instead of supplying a proof we may shift our attention to provability. For exam-
ple, the deduction theorem in PC implies that if x � y then � x → y. Reading � as
provability of a consequence, we may think of deduction theorem as

if x !� y is provable, then !� x→ y is provable.

4.3. GENTZEN SEQUENT CALCULUS 111

Thus instead of constructing proofs, we will be interested in proving that certain
consequences are provable. This idea gives rise to the notion of a sequent and the
formal system is then called a sequent calculus. Due to its mechanical nature, it is
often used in automated theorem proving.

In a sequent calculus, one starts from a given sequent (consequence) and goes
on applying sequent rules to get newer sequents. If all the new sequents can be
considered to be correct, then the initial one is also considered correct. Thus Gentzen
system identifies some of the sequents as correct or self-evident and tries to reduce
everything to the self-evident ones, which terminate a proof.

Gentzen’s original sequent calculus is almost a translation of PND rules into se-
quents. We will present a modified version of it, which is sometimes called Gentzen’s
symmetric sequents.

A sequent is of the form Σ � Γ, where Σ and Γ are sets of propositions. We
assume, for technical reasons, that � is also a sequent, though the symbol � does
not appear in it. When � occurs in other sequents, it is taken as a proposition, as
usual. We omit the curly brackets around the propositions in Σ and Γ while writing
the sequents. For example, the following are all sequents:

� p,r � q,s, t p,r � q p � q p � � q �

Informally, a sequent “Σ � Γ is provable” means that “for any interpretation i, if i
satisfies all propositions in Σ, then i satisfies some proposition in Γ”. An inference
rule of the form

Σ � Γ
Δ1 �Ω1 Δ2 �Ω2

means that the sequent Σ � Γ is provable if both the sequents Δ1 � Ω1 and Δ2 � Ω2
are provable. Mark the direction of implication here:

if the denominator, then the numerator.

The empty sequent ‘� ’ represents a consequence which never holds; and the univer-
sal sequent� represents a valid consequence, which is used to terminate a proof. We
name our system as GPC, Gentzen’s Propositional Calculus.

Let Σ, Γ, Δ, Ω be generic sets of propositions, and let x, y be generic propositions.
The inference rules or the sequent rules of GPC, along with their mnemonics, are
as follows:

(�) Σ, x, Γ � Δ, x, Ω
�

x � x
�

(�L)
Σ,�, Γ � Δ

Σ, Γ � Δ
� �
·

(�R)
Σ � Γ,�, Δ

�
� �
�

(⊥L)
Σ,⊥, Γ � Δ

�
⊥ �
�

112 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

(⊥R)
Σ � Γ,⊥, Δ

Σ � Γ, Δ
� ⊥
·

(¬L)
Σ, ¬x, Γ � Δ
Σ, Γ � x, Δ

¬x �
� x

(¬R)
Σ � Γ, ¬x, Δ
x, Σ � Γ, Δ

� ¬x
x �

(∨L)
Σ, x∨ y, Γ � Δ

Σ, x, Γ � Δ Σ, y, Γ � Δ
x∨ y �

x � y �

(∨R)
Σ � Γ, x∨ y, Δ
Σ � Γ, x, y, Δ

� x∨ y
� x, y

(∧L)
Σ, x∧ y, Γ � Δ
Σ, x, y, Γ � Δ

x∧ y �
x, y �

(∧R)
Σ � Γ, x∧ y, Δ

Σ � Γ, x, Δ Σ � Γ, y, Δ
� x∧ y

� x � y

(→L)
Σ, x→ y, Γ � Δ

Σ, Γ � x, Δ Σ, y, Γ � Δ
x→ y �
� x y �

(→R)
Σ � Γ, x→ y, Δ
Σ, x � Γ, y, Δ

� x→ y
x � y

(↔L)
Σ, x↔ y, Γ � Δ

Σ, x, y, Γ � Δ Σ, Γ � x, y, Δ
x↔ y �

x, y � � x, y

(↔R)
Σ � Γ, x↔ y, Δ

Σ, x � Γ, y, Δ Σ, y � Γ, x, Δ
� x↔ y

x � y y � x

The rules look numerous. But once you go through the mnemonics of the rules
written on the right-hand side, you find that there is nothing to remember. The rules
(�L) and (⊥R) say that � on the left and ⊥ on the right of � can be omitted. Thus
the empty sequent � may be seen as the sequent � � ⊥. Similarly, the universal
sequent � may be thought of as any of the following sequents:

⊥ � �, � � �, ⊥ � ⊥, � �, ⊥ � .

The rules for ¬ say that you can flip the sides and while so doing, drop or add a ¬.
The rules for ∨ and ∧ say that whenever ∨ is on the right of the sequent symbol �,
just replace it by a comma; a similar thing happens when ∧ is on the left of �. This
suggests that we interpret a comma on the left of � as ∧, and one on the right as

4.3. GENTZEN SEQUENT CALCULUS 113

∨. Whenever ∨ is on the left or ∧ is on the right of �, the sequent gives rise to two
sequents. The other rules are obtained by employing the equivalences:

x→ y≡ ¬x∨ y, x↔ y≡ (¬x∨ y)∧ (¬y∨ x).

A derivation (GPC-derivation) is a tree whose root is a sequent, and it is gener-
ated by applications of sequent rules on the leaves recursively. The new sequents are
added as children of the original (leaf) node.

Rules that have a single denominator are called stacking rules, and the ones with
two denominators are called branching rules. Sequents arising out of an application
of a stacking rule are written one after another from top to bottom, while those arising
out of branching rules are written with the help of slanted lines.

EXAMPLE 4.12. In the following derivation, we use the rules (→R), (→R), (¬R),
(¬L), (→L), (�), (�) in that order.

� p→ (¬q→ ¬(p→ q))
p � ¬q→ ¬(p→ q)
p, ¬q � ¬(p→ q)

p, ¬q, p→ q �
p, p→ q � q

p, q � q
�

p � p, q
�

A proof of a sequent (GPC-proof) is a derivation with the sequent at its root and
� at all its leaves. We say that the sequent Σ � Γ is provable iff there exists a proof
of the sequent, and in such a case, we write Σ � Γ. A proposition x is a theorem,
written � x, (GPC-theorem) if the sequent � x is provable. A set of propositions Σ is
inconsistent in GPC iff Σ �⊥.

Since it is customary to write sequents with the symbol �, we use � for provable
(GPC-provable) sequents. Example 4.12 shows that � p→ (¬q→ ¬(p→ q)).

Construction of proofs in GPC is straightforward; just use the rules and go on
taking symbols from one side to the other till you reach at �, or that when you
cannot possibly apply any rule.

However, following a simple heuristic will shorten the proofs. For instance, con-
sider the two proofs of the sequent p∧¬p � p∧¬p given below.

p∧¬p � p∧¬p

p∧¬p � ¬p
p,¬p � ¬p

�

p∧¬p � p
p,¬p � p
�

p∧¬p � p∧¬p
p,¬p � p∧¬p

p,¬p � ¬p
�

p,¬p � p
�

Both the rules (∧L), (∧R) are applicable on the sequent p∧¬p � p∧¬p. The
rule (∧R) is a branching rule. By choosing to apply this first, we have generated the

114 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

proof on the left, above. On the other hand, the proof on the right is generated by
choosing the stacking rule (∧L) first. Clearly, there is less writing when we apply a
stacking rule before applying a branching rule. We follow the heuristic:

Postpone applying a branching rule if a stacking rule can be applied.

EXAMPLE 4.13. We show that � p→ (q→ p)).

� p→ (q→ p)
p � q→ p
p, q � p
�

EXAMPLE 4.14. A proof of � (p→ (q→ r))→ ((p→ q)→ (p→ r)) follows.

� (p→ (q→ r))→ ((p→ q)→ (p→ r))
p→ (q→ r) � (p→ q)→ (p→ r)

p→ (q→ r), p→ q � p→ r
p→ (q→ r), p→ q, p � r

p→ (q→ r), q, p � r

q→ r, q, p � r

r, q, p � r
�

r, q, p � q, r
�

q, p � p, r
�

p→ (q→ r), p � p, r
�

EXAMPLE 4.15. We construct a GPC proof of � (¬q→ ¬p)→ ((¬q→ p)→ q).

� (¬q→ ¬p)→ ((¬q→ p)→ q)
¬q→ ¬p � (¬q→ p)→ q
¬q→ ¬p, ¬q→ p � q

¬p, ¬q→ p � q

¬p, p � q
p � p,q
�

¬p � ¬q, q
¬p, q � q
�

¬q→ p � ¬q, q
¬q→ p, q � q

�

4.3. GENTZEN SEQUENT CALCULUS 115

EXAMPLE 4.16. A GPC proof of � (¬p→ ¬q)→ (q→ p) is as follows.

� (¬p→ ¬q)→ (q→ p)
¬p→ ¬q � q→ p
¬p→ ¬q, q � p

¬q, q � p
q � q, p
�

q � ¬p, p
p, q � p
�

EXAMPLE 4.17. The following proof shows that � (p∨q)↔ (¬p→ q).

� p∨q↔ (¬p→ q)

¬p→ q � p∨q

q � p∨q
q � p, q
�

� ¬p, p∨q
p � p∨q
p � p, q
�

p∨q � ¬p→ q
p∨q, ¬p � q
p∨q � p, q

q � p, q
�

p � p, q
�

Notice that Σ � Γ is a sequent for sets of propositions Σ and Γ. However, Σ � Γ
is not a valid consequence in PL, in general. Σ � Γ may become a valid consequence
when Γ is a singleton. To bring both the symbols � and � on par, we generalize the
meaning of � a bit.

We say that Σ � Γ, that is, the consequence Σ !�Γ is valid, iff any model
of all the propositions in Σ is a model of some proposition in Γ.

If Γ = ∅, then a model of Σ cannot be a model of ‘some proposition in Γ’, for
there is none in Γ. We thus interpret Σ � ∅ as Σ � ⊥. This extension of the notion
of consequence is called generalized consequence. Notice that this generalization
means that in a sequent, the propositions on the left side of � are ∧-ed whereas
those on the right are ∨-ed. You can now confirm adequacy of GPC to PL in this
generalized sense of a consequence.

Observe that GPC proofs are trees, where the theorem that is proved, is at the
root, and the leaves are all �. Thus a proof is also called a proof tree.

Soundness here means that, if every leaf of a proof tree is the universal sequent
�, then the consequence obtained from the root sequent by replacing � by � must
be a valid consequence. This asks you to verify that for each rule of the form

116 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

Σ � Γ
Δ �Ω

the metastatement: “If Δ � Ω, then Σ � Γ” holds. Then apply induction on the height
of a proof tree to complete the soundness proof. In the basis case, however, you have
to check whether the universal sequent� corresponds to a valid consequence, which
is the case due to our assumption.

Similarly, completeness may first be proved when Σ and Γ are finite. Using
König’s lemma one can prove that each proof tree is necessarily finite. Then finite-
ness of proofs will imply compactness. Finally, using compactness, the completeness
results can be lifted to infinite sets Σ and Γ. This would imply the following result.

Theorem 4.2 (Strong Adequacy of GPC). Let Σ be a set of propositions, and let w
be a proposition. Then, Σ � w iff Σ � w.

Due to the adequacy of GPC to PL, we informally say that a proof tree of
the sequent Σ � w is a GPC-proof of the consequence Σ !�w; and with a misuse
of language, we also say that the proof tree is a proof of, or, proves that Σ � w.
For instance, the proof tree in Example 4.17 is a GPC-proof of the consequence
!� (p∨q)↔ (¬p→ q); and also is a GPC-proof of � (p∨q)↔ (¬p→ q).

Exercises for § 4.3
Construct GPC-proofs of the following consequences:
(a) p, p→ q !�q (b) p, p→ q !�q
(c) !��↔ p∨¬p (d) !�⊥↔ p∧¬p
(e) !� ((¬p→ p)→ p) (f) !� p∧q↔ ¬(p→ ¬q)
(g) !� (((p→ q)→ p)→ p) (h) (p∧ (q∨ r)) !� ((p∧q)∨ (p∧ r))
(i) (p→ q) !� (¬(q∨ r)→ ¬(p∨ r)) (j) !� (p↔ q)↔ ((p→ q)∧ (q→ p))

4.4 ANALYTIC TABLEAUX
In this section we present the proof system advocated by R. M. Smullyan improving
E. W. Beth’s semantic trees. This will be our last proof method for PL.

Consider the proposition p∧ q; it is true when both p and q are true. Similarly,
for p∨q to be true, you consider two cases: one, when p is true; and two, when q is
true. We reach at the following diagram:

p∧q

p
q

p∨q

qp

In the first case, the parent proposition has two children in the same branch; they
are stacked. In the second case, the children are in different branches. When stacked,

4.4. ANALYTIC TABLEAUX 117

the parent proposition is true if both its children are true; and when branched out, the
parent proposition is true provided that at least one of its children is true. This type
of semantic trees remind you of the sets of models semantics. If M(A) denotes the
sets of all models of A, then

M(p∨q) =M(p)∪M(q) and M(p∧q) =M(p)∩M(q).

What would happen if you take a more complicated proposition, say, (p∨q)∧ r?
Well, (p∨q)∧r is true when both p∨q and r are true. Next, go for p∨q. Continuing
this way, we obtain the following semantic trees for (p∨q)∧r and (p∨q)∧¬p∧¬q.

(p∨q)∧ r

p∨q
r

qp

(p∨q)∧¬p∧¬q

p∨q
¬p
¬q

qp

A model of (p∨ q)∧ r is obtained by looking at both the paths, one from the
root (p∨q)∧ r to the leaf p, which contains the literals r and p, and the other from
the root to the leaf q containing the literals r and q. The two models thus obtained
are i, j, where i(r) = i(p) = 1, and j(r) = j(q) = 1. Moreover, the tree gives a dnf
representation of the root proposition, i.e., (p∨q)∧ r ≡ (r∧ p)∨ (r∧q).

Consider the second tree. In the leftmost path, we have the literals p,¬q,¬p, and
the other path contains the literals q,¬q,¬p. This means that if you have a model
of the root proposition, then it must satisfy (at least) one of the sets {p,¬q,¬p} or
{q,¬q,¬p}. But none of these sets is satisfiable since they contain complementary
literals. Hence the root proposition is unsatisfiable. That means, if a path contains
an atomic proposition and its negation, then the proposition at the root must be un-
satisfiable We want to formalize this heuristic of semantic trees by formulating rules
to tackle the connectives.

The resulting system is named as PT, the propositional analytic tableau. The
stacked propositions in a path are simply written one below the other. The branching
propositions are joined to the parent proposition by slanted lines, or separated by
some blank spaces as in the rule (∨) below. The rules of inference of the system
PT are, in fact, the tableau expansion rules, and are given as follows (x,y are generic
propositions).

(¬¬) ¬¬x
x

(¬�) ¬�
⊥

(∨) x∨ y
x y

(¬∨) ¬(x∨ y)
¬x
¬y

118 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

(∧) x∧ y
x

(¬∧) ¬(x∧ y)
¬x ¬y

y

(→)
x→ y

¬x y
(¬→)

¬(x→ y)
x
¬y

(↔)
x↔ y

x ¬x
(¬↔)

¬(x↔ y)
x ¬x

y ¬y ¬y y

Rules (¬¬), (¬�), (¬∨), (∧), (¬→) are the stacking rules and propositions
in the forms ¬¬x, ¬�, ¬(x∨y), (x∧y), ¬(x→ y) are called stacking propositions.
Whereas the rules (∨), (¬∧), (→), (↔), (¬↔) are branching rules and proposi-
tions in the forms (x∨ y), ¬(x∧ y), (x→ y), (x↔ y), ¬(x↔ y) are the branching
propositions. Stacking and branching propositions together are called compound
propositions.

A tableau for a proposition w is a tree whose root is w, and it is generated by
applying PT-rules. A tableau is generated by first determining in which form the
proposition is, and then applying the corresponding rule. The children of the node
considered are the denominators of the corresponding rule.

Similarly, a tableau for a set of propositions Σ is a tableau whose root node
contains all propositions from Σ, and which is generated by applying the PT-rules.
We often write the propositions in Σ one below the other.

A path in a tableau is the sequence of propositions at the nodes which one
encounters while travelling from the root to any leaf. If on a path, a rule has been
applied on each compound proposition, then the path is called complete.

A path in a tableau is called a closed path if it contains ⊥, or it contains p and
¬p for some proposition p. In a tableau, we put a cross (×) below a closed path. A
path which is not closed is called an open path. Consequently, a complete path is
closed if it contains a pair of complementary literals or it contains ⊥. A completed
path is a path which is either closed, or complete, or both closed and complete.

A tableau is called a closed tableau if each path in the tableau is a closed path.
A tableau is called an open tableau if at least one of its paths is an open path. A
completed tableau is a tableau in which each path is a completed path.

A set of propositions Σ is inconsistent (in fact, PT-inconsistent) iff there exists
a closed tableau for Σ; otherwise, Σ is called consistent. That is, Σ is consistent iff
each tableau for Σ contains an open path. By default, we take ∅ as a consistent set.

Let Σ be a set of propositions, and let w be a proposition. Then, Σ �PT w iff
Σ∪{¬w} is inconsistent. We read Σ �PT w as “w follows from Σ”, or as “Σ entails
w in PT”, or even as “the consequence Σ !�w is PT-provable”. We also abbreviate
Σ�PT w to Σ�w, in this section. Thus a proposition w is a theorem in PT iff {¬w} is
inconsistent iff there exists a closed tableau for ¬w. In what follows, when a tableau
is constructed for a set Σ, we refer to the elements of Σ as premises with respect to
that tableau.

4.4. ANALYTIC TABLEAUX 119

You may generate a tableau either in depth-first or in breadth-first way. While
generating it breadth-first, you must remember to add children of a proposition to
each of the leaves on the (open) paths where the proposition occurs. Further, when
a branching rule is applied on a proposition, we have to add its children to all those
leaves of which the proposition is an ancestor. Look at the following tableaux for
{p∨q, q∧ r}.

p∨q
q∧ r

q
q
r

p
q
r

p∨q
q∧ r

q
r

qp

In the tableau on the left, we have used the rule (∨) on p∨q to get the tableau up
to the third line. The path from the root to the leaf p contains q∧ r, the same is true
for the path ending in leaf q. So, in the next stage, the tableau is extended by adding
the children q and r of q∧ r to both these leaves.

In the tableau on the right, we first use the proposition q∧ r, and then use p∨q.
This requires less writing than the other. Similar to GPC, we use the heuristic:

If possible, apply all stacking rules before applying a branching rule.

EXAMPLE 4.18. For Σ = {p→ (¬q→ r), p→ ¬q, ¬(p→ r)}, we have the fol-
lowing tableau.

p→ (¬q→ r)
p→ ¬q
¬(p→ r)

p
¬r

¬q

¬q→ r

r
×

¬¬q
×

¬p
×

¬p
×

The root of the tableau contains all the three propositions from Σ, written one
below the other. The fourth and fifth propositions come from the third proposition
¬(p→ r). The first branching comes from the second proposition p→ ¬q; the sec-
ond branching from the first proposition p → (¬q → r), and the third comes from
the proposition ¬q→ r. We then check for complementary literals in each path.

120 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

The first (leftmost) path comprises all the premises and the propositions ¬p,¬r, p.
Since both p and ¬p are on this path, it is a closed path and is thus crossed. Sim-
ilarly, the second path contains the propositions ¬p,¬q,¬r, p, the third contains
¬¬q,¬q→ r,¬q,¬r, p, and the the last contains the propositions r,¬q→ r,¬q,¬r, p,
along with the premises. All of them are closed paths. Therefore, the tableau is a
closed tableau, showing that Σ is inconsistent.

EXAMPLE 4.19. The tableaux for the following sets are shown as under.

(a) {p, p→ q} � q (c) � (p→ (q→ r))→ ((p→ q)→ (p→ r))
(b) � p→ (q→ p) (d) � (¬q→ ¬p)→ ((¬q→ p)→ q)

p
p→ q
¬q

q
×

¬p
×

¬(p→ (q→ p))
p

¬(q→ p)
q
¬p
×

(a) (b)

¬((p→ (q→ r))→ ((p→ q)→ (p→ r)))
p→ (q→ r)

¬((p→ q)→ (p→ r))
p→ q

¬(p→ r)
p
¬r

q

q→ r

r
×

¬q
×

¬p
×

¬p
×

¬((¬q→ ¬p)→ ((¬q→ p)→ q)
¬q→ ¬p

¬((¬q→ p)→ q)
¬q→ p

¬q

p

¬p
×

¬¬q
×

¬¬q
×

(c) (d)

Example 4.19 says something about completeness of PT via PC. Before dis-
cussing completeness of PT, we look at completed tableaux.

EXAMPLE 4.20. The completed tableaux for the following sets are given below.

(a) Σ = {(p→ q)∧ (r→ s), s∧ (q→ t), ¬t, ¬(¬p∨¬r)}
(b) Γ = {p→ q∧ r, ¬p∨ s, r→ s∧ t, ¬u}

4.4. ANALYTIC TABLEAUX 121

(p→ q)∧ (r→ s)
s∧ (q→ t)

¬t
¬(¬p∨¬r)

¬¬p
¬¬r

s
q→ t
p→ q
r→ s

s

q

t
×

¬q
×

¬p
×

¬r
×

p→ q∧ r
¬p∨ s

r→ s∧ t
¬u

q∧ r
q
r

s∧ t
s
t

s¬p

¬r
×

¬p

s∧ t
s
t

s¬p

¬r

s¬p

(a) (b)

We find that the completed tableau for Σ is closed. Thus Σ is inconsistent. Whereas
the completed tableau for Γ remains open. Is Γ consistent?

If some tableau for a proposition closes, then the proposition is a contradiction.
Similarly, if some tableau for a set of propositions closes, then the set is inconsistent.
Hence, in order to be consistent, all tableau for a set must remain open. However,
copies of all tableau are found in a completed tableau. Also, a completed tableau
cannot be expanded further (essentially). Thus, we observe the following:

Observation 4.1.
A set of propositions is inconsistent iff some (completed) tableau for it is closed.
A set of propositions is consistent iff some completed tableau for it is open.

Hence the set Γ in Example 4.20 is consistent. For showing consistency, we
must construct a completed tableau, though a completed tableau is not required for
showing inconsistency!

Exercises for § 4.4
1. Try to construct tableau proofs for the following:

(a) � p→ (¬q→ ¬¬p) (b) � ¬(p→ q)→ (r→ ¬q)
(c) � (p→ q)→ (¬q→ ¬p) (d) � ¬(¬q→ ¬(p→ q))→ ¬p
(e) � (p→ q)→ ((¬p→ q)→ q) (f) � (¬p→q)→((¬p→¬q)→ p)
(g) � p→((q→(p→r))→(q→r)) (h) � (p→(q→r))→(q→(p→r))

122 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

(i) � (p→ ¬q)→ ((q→ ¬p)→ (p→ ¬q))
(j) � ((¬p→ ¬q)→ q)→ ((¬p→ ¬q)→ p)
(k) � p→ (¬q→ ¬(p→ ¬(q→ (¬p→ p))))
(l) (¬p→q)→((q→¬p)→ p) � ((¬p→q)→(q→¬p))→((¬p→q)→ p)

2. Determine whether the following sets of propositions are PT-consistent.

(a) {p∨q, p∨ (q∧ t), p→ ¬r}
(b) {p∧q→ r,¬p→ t,q∧¬r∧¬t}
(c) {p→ q,(p∧q)∨¬r,q→ ¬p,r→ s,q↔ ¬s, p∨¬t}

3. The truth function ⊕ is defined by the equivalence x⊕ y ≡ ¬(x ↔ y). Give
tableau proofs of the facts that ⊕ is commutative and associative.

4. From the tableau for the proposition in Example 4.20(b), construct the dnf
equivalent to the proposition.

5. Describe a general procedure that constructs a dnf equivalent to a proposition
from its tableau.

4.5 ADEQUACY OF PT TO PL
A completed tableau can be generated systematically. Let Σ be a set of propositions.
Since the set of all propositions is countable, Σ is also countable. So, let X1,X2,X3, . . .
be an enumeration of Σ. The systematic tableau for Σ is generated in stages. An
inductive construction follows.

Stage 1: Start the tableau with X1 as the root.

Stage n+1: Suppose a tableau has already been generated up to Stage n. If any path
of the tableau contains ⊥ or a pair of complementary literals, then close the path. If
all paths are closed, stop; else, expand each open path ρ as follows:

1. Add Xn+1 to ρ provided Σ has more than n propositions.
2. Scan ρ from root to leaf for a compound proposition on which a tableau rule

has not yet been applied. If no such compound proposition is found, then stop
expanding ρ. Else, call the first compound proposition found as A.

3. Apply the suitable tableau rule on A and add the necessary proposition(s) to
the path as new leaf (leaves).

Generation of the systematic tableau stops when for some n both Stage n and
Stage n+1 produce the same result; that is, when a rule has already been applied on
each compound proposition in each path. Thus the systematic tableau is necessarily
a completed tableau. In the systematic tableau, we sacrifice the short-cut of closing a
branch when a proposition and its negation is found; we go up to the level of literals.
If Σ is a finite set, then the systematic tableau for Σ is a finite binary tree. If Σ is
infinite, then either the tableau is closed after a finite number of propositions from Σ
are used, or it continues to grow to an infinite completed tableau.

EXAMPLE 4.21. Let Σ= {p→ q∧r, ¬p∨s, r→ s∧t, ¬u}. We consider the order-
ing on Σ as its elements are written. Using this ordering, we construct the systematic
tableau for Σ as follows.

4.5. ADEQUACY OF PT TO PL 123

1. p→ q∧ r
2. ¬p∨ s

2. q∧ r
3. r→ s∧ t

3. s
4. ¬u
4. q
4. r

5. s∧ t
6. s
6. t

5. ¬r
×

3. ¬p
4. ¬u
4. q
4. r

5. s∧ t
6. s
6. t

5. ¬r
×

2. ¬p
3. r→ s∧ t

3. s
4. ¬u

4. s∧ t
5. s
5. t

4. ¬r

3. ¬p
4. ¬u

4. s∧ t
5. s
5. t

4. ¬r

The numbers in front of the propositions in the tableau are the stage numbers.
In the first stage, we just introduce the first proposition. In the second stage, we
introduce the second proposition and then expand each path in the tableau. Compare
the systematic tableau with the tableau in Example 4.20(b).

In an ordered set, we follow the ordering to enumerate its elements. Thus, there
is a unique systematic tableau for an ordered set.

Lemma 4.1. Let Σ be an ordered nonempty set of propositions. Let τ be the system-
atic tableau for Σ, and let ρ be a path in τ.

(1) If ρ is closed, then it is finite.
(2) If ρ is open, then it contains all propositions from Σ.
(3) If Σ is infinite and ρ is open, then ρ is infinite.

Proof. (1) Once ρ is found closed at Stage n, it is no more expanded. Thus, it is
finite.

(2) The first proposition X1 of Σ occurs in ρ. If some proposition in Σ does not
occur in ρ, then there exist propositions Xm and Xm+1 of Σ such that Xm occurs in ρ
but Xm+1 does not. Then Xm+1 has not been added to this path while generating τ
systematically. This is possible only when ρ has been found to be closed in Stage m.
But ρ is open. Therefore, ρ contains all propositions from Σ.
(3) By (2), ρ contains all propositions of Σ. Since Σ is infinite, so is ρ. �

Suppose the systematic tableau for an ordered infinite set Σ of propositions is
closed. Obviously, each path in the tableau is finite. Is the tableau finite or infinite?

We say that a tree is finitely generated, if each node in it has a finite number of
children. Recall that König’s lemma asserts that a finitely generated tree in which

124 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

each path has only a finite number of nodes must have only a finite number of nodes.
We had derived König’s lemma from the compactness of PL. Here, we intend to
prove finiteness theorem for PT, and then compactness, using König’s lemma. We
give a proof of König’s lemma without using compactness of PL.

Lemma 4.2 (König). Each finitely generated infinite tree has an infinite path.

Proof. Let τ0 be a finitely generated infinite tree. There are finitely many, say, k0
children of the root of τ0. Deleting the root, we end up with k0 different trees; these
are the subtrees of τ0 whose roots are the children of τ0. If all these subtrees are
finite, then as a finite union of finite sets is finite, τ0 is also finite. But this is not the
case. Thus, there exists at least one subtree of τ0 which is infinite. Choose one such
subtree and call it τ1. Repeat the same procedure with τ1 as you had done with τ0.
There exists at least one infinite subtree τ2 of τ1, and hence of τ0.

By induction it follows that there exists an infinite sequence of finitely generated
infinite trees τ0,τ1,τ2, . . . such that each is a subtree of all preceding trees. The
sequence of the roots of these trees taken in the same order is a required infinite path
in τ0. �

At this point, do Exercise 6 taken from Smullyan (1968) to convince yourself
that König’s lemma is not so trivial.

Theorem 4.3 (Finiteness in PT). Let Σ be any set of propositions, and let w be any
proposition.

(1) If Σ is infinite and inconsistent, then it has a finite inconsistent subset.
(2) If Σ �PT w, then Σ has a finite subset Γ such that Γ �PT w.

Proof. (1) Let Σ be infinite and inconsistent. Let τ be a closed systematic tableau for
Σ. Each path in τ is closed, and therefore, finite. Let Γ be the set of all propositions
from Σ occurring in τ. Since a tableau is finitely generated (binary), due to König’s
Lemma, τ has a finite number of nodes. Then Γ is a finite set. Moreover, τ is a closed
tableau for Γ. Thus Γ is inconsistent.

(2) By the definition of Σ �PT w, Σ∪{¬w} is inconsistent. By (1), we have a finite
subset Σ0 of Σ∪ {¬w} which is inconsistent. Let τ be a closed tableau for Σ0. If
¬w �∈ Σ0, then add ¬w to the root of τ, else leave τ as it is. The new tableau is
a closed tableau for Σ0 ∪ {¬w}. This shows that Σ0 ∪ {¬w} is inconsistent. Take
Γ = Σ0 \ {¬w}. Γ is finite. Since ¬w �∈ Γ, Γ ⊆ Σ. Also, Γ∪ {¬w} = Σ0 ∪ {¬w} is
inconsistent. Therefore, Γ �PT w. �

We know that Σ in Example 4.21 is consistent. Is it also satisfiable? It is, since
you can construct a model of Σ from an open path in its systematic tableau. For in-
stance, take the leftmost path. The literals in this path are: ¬p,¬r. The set {¬p,¬r}
is a model of Σ. Explicitly, define an interpretation i : {p,q,r,s, t}→ {0,1} by taking
i(p) = 0 = i(r) and i(q) = i(s) = i(t) = 1. You can verify that i � Σ. It does not
matter what you assign to the variables q,s, t here. Take different interpretations by
assigning different values to these variables but keep both of p,r assigned to 0; and
verify that they are indeed models of Σ.

4.5. ADEQUACY OF PT TO PL 125

Further, the left most path in the tableau of Example 4.21 contains the proposi-
tions p→ q∧ r, ¬p∨ s, ¬p, r→ s∧ t, ¬p, ¬u, ¬r. The first proposition in this path is
p→ q∧ r, from which came the second proposition ¬p. This means that p→ q∧ r
is true (assigned to 1 under an interpretation) whenever ¬p is true. From the second
element ¬p∨ s of Σ comes the next proposition ¬p in the path. Here also, whenever
¬p is true, ¬p∨ s is true. From the third element r→ s∧ t of Σ comes the next literal
¬r. Here again, if an interpretation assigns ¬r to 1, then it must assign 1 to r→ s∧ t.
Finally, ¬u, the fourth element of Σ, is itself a literal, and it would be assigned to 1.

As you have rightly observed, the propositions in a path of a tableau are implicitly
∧-ed together. In addition, we observe the following.

Observation 4.2. Let i be any interpretation. Any tableau rule with parent proposi-
tion x and children y,z (or only y), satisfies the following properties:

(S) If it is a stacking rule, then i(x) = 1 iff i(y) = i(z) = 1.
(B) If it is a branching rule, then i(x) = 1 iff i(y) = 1 or i(z) = 1.

EXAMPLE 4.22. Consider the tableau rule (¬∧). It says that a node with ¬(x∧ y)
when expanded gives rise to the propositions ¬x and ¬y as children. Now, suppose
i(¬(x∧ y)) = 1. Then, i(x∧ y) = 0 which implies that i(x) = 0 or i(y) = 0. Clearly,
i(¬x) = 1 or i(¬y) = 1. Conversely, if i(¬x) = 1 holds or i(¬y) = 1 holds, then
i(¬(x∧ y)) = 1 also holds. That means, the tableau rule (¬∧) satisfies the property
(B). Since ¬(x∧ y) is a branching proposition, (S) is satisfied vacuously.

In fact, all tableau rules satisfy both the properties (S) and (B); one of these
correctly holds whereas the other is vacuously true.

Lemma 4.3. Let τ be the systematic tableau for a nonempty finite set Γ of proposi-
tions. Then, any model of Γ is also a model of some path in τ.

Proof. Note that a model of a path ρ is simply a model of the set of propositions
occurring in ρ.

Consider a simpler case first: when Σ = {w}, a singleton. We prove the lemma in
this case by induction on the length of a longest path in the systematic tableau τ for
w. In the basis step, suppose a longest path in τ has length one. This means that in τ,
the root containing w is a stacking proposition having only one child (the rules (¬¬)
or (¬⊥)) or w is a branching proposition having two children. By the properties (S)
and (B), any model i of w is also a model of at least one of its children, say, of x.
Now, i is a model of {w,x}, proving the result.

Lay out the induction hypothesis that if the systematic tableau for any proposition
w has a longest path with length less than n, then any model of w is also a model of at
least one path in the tableau. Suppose x is a proposition of which τ is the systematic
tableau having a longest path with length n. Let i be a model of x. Suppose the
children of the root x in τ are y and z (or only y). Now, by the properties (S) and (B),
as in the basis step, i is a model of at least one of y or z. Without loss of generality,
suppose i is a model of y.

Let τ � be the subtree of τ with y as the root. Now, a longest path in τ � has length
less than n, since such a path is obtained from one longest path in τ by removing x.
By the induction hypothesis, i is a model of at least one path in τ �. Call such a path

126 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

as ρ �. Consider the path ρ in τ with x, followed by y, and then other nodes in ρ �.
Since i is a model of x, y and also of ρ �, we see that i is a model of ρ. This proves
the induction step.

When Γ is finite, write Γ = {w1,w2, . . . ,wk}. Take x = w1 ∧w2 ∧ · · ·∧wk. The
systematic tableau for Γ coincides with that of x with the additional proposition x at
the root. Then the statement in the lemma follows for Γ from that for x. �

Lemma 4.3 is, essentially, the completeness of the tableau method. Can you
argue the same way even if Σ is infinite? Note that an open path in the tableau for Σ
is now infinite.

Theorem 4.4 (Strong Adequacy of PT to PL). Let Σ be a set of propositions, and
let w be any proposition.

(1) Σ is PT-consistent iff Σ is satisfiable.
(2) Σ �PT w iff Σ � w.

Proof. (1) The empty set is both consistent and satisfiable. So, suppose that Σ is a
nonempty consistent set. Let τ be the systematic tableau for Σ. Let ρ be an open
path in τ. Let L be the set of all literals occurring in ρ. Define a function i mapping
each literal in L to 1. Since ρ is not closed, L does not have a pair of complementary
literals; also ⊥ does not occur in ρ. Thus, i is a boolean valuation.

Now, if w is a proposition occurring in ρ, then w occurs in ρ at level n, for some
n; i.e., along the path ρ, if the root node is the first node, then w is the (n+1)th node.
By induction on n and due to the properties (S) and (B), it follows that i(w) = 1.
Therefore, i is a model of each proposition occurring in ρ. By Lemma 4.1, ρ contains
all propositions of Σ. Therefore, Σ is satisfiable.

Conversely, assume that Σ is satisfiable. Let Γ be any finite subset of Σ. Then Γ
is also satisfiable. Let i be a model of Γ. Let τ be the systematic tableau for Γ. By
Lemma 4.3, i is a model of at least one path of τ. Then, such a path in τ contains
neither ⊥ nor a pair of complementary literals. That is, such a path is necessarily
open, and hence, Γ is consistent. Since every finite subset Γ of Σ is consistent, by the
finiteness theorem, Σ is consistent.

(2) We observe that Σ �PT w iff Σ∪{¬w} is inconsistent iff Σ∪{¬w} is unsatisfiable
(by (1)) iff Σ � w (by RA in PL). �

Notice that compactness of PL now follows from the finiteness of tableaux.

Exercises for § 4.5
1. Construct two systematic tableaux for the following consequence by choosing

different ordering of the premises:

{(¬p→ q)→ ((q→ ¬p)→ p),(p→ r)→ (q→ ¬p), p→ r,¬p→ q} � p.

2. Verify that each tableau rule satisfies the properties (S) and (B).
3. Give an example of a proposition which is not a theorem, but every path in

every completed tableau for it is open.

4.6. SUMMARY AND PROBLEMS 127

4. Let Σ be any set of propositions. Show the following in PT.

(a) Σ is inconsistent if some completed tableau for it is closed.
(b) Σ is inconsistent if every completed tableau for it is closed.
(c) Σ is consistent if every completed tableau for it is open.
(d) Σ is consistent if some completed tableau for it is open.

5. In a tree, if each node has at most m children, and each path consists of at most
n nodes, then show that the total number of nodes is at most ∑n

i=0 mi. Does it
prove König’s lemma for binary trees?

6. Assume that corresponding to each positive integer we have infinite supply of
balls labelled with that positive integer. There is a box having a finite number
of labelled balls. We remove a ball from the box, read its label. Suppose the
label is m. Then we choose two numbers � and n, where � < m. Next, we put
into the box n number of balls all labelled with �. Obviously, if the removed
ball has label 1, then nothing can be put into the box. Using König’s lemma,
prove that eventually all balls will be removed from the box. [Hint: Create
a tree with the box as the root, and the balls it contains as its children; next,
children of a ball are the ones that replace the ball.]

4.6 SUMMARY AND PROBLEMS
In this chapter, you have come across four types of proof techniques. The method
of calculations were used mainly for showing equivalences. It was formally used in
Gries & Schneider (1993) as a proof procedure. We have extended the formalism to
include one-sided entailments in calculations.

As another alternative, you have learnt the natural deduction system, which is
more like quasi-proofs. Almost all texts on logic include this proof technique. For
instance, You may see Huth & Ryan (2000). Though there are more rules of inference
in PND, construction of a proof is easier. For a history of natural deduction, see
Pelletier (1999).

As another variation to the proof methods, you have learnt how a proof may
be seen as a tree by way of Gentzen systems. A Gentzen system uses a different
strategy than the earlier methods. It takes a consequence as its basic block in a proof
rather than taking the propositions. The consequences are named as sequents in the
system. This renaming is used to demarcate the line between syntactic manipulation
from the semantic overload. A Gentzen system then goes on arguing with sequents
by transforming them into simpler sequents. If the universal sequent is eventually
generated, then the original sequent is proved, otherwise not.

The Gentzen systems were invented by G. Gentzen in 1935, though in a very
different form. The original form of the sequents was rather close to the natural de-
duction system PND. The system GPC was formulated by H. Wang in the form of
an algorithm while trying to write a theorem prover for PL using FORTRAN. Since
then, the system has been recognized as Gentzen’s sequent calculus. The texts Gal-
lier (1987) and Manaster (1978) provide you with complete references on Gentzen
systems.

128 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

Finally, you came across another tree method of proof, the analytic tableaux. It
employs reductio ad absurdum by starting from the negation of the conclusion as a
new premise and later confirming that it leads to inconsistency. Here, inconsistency
is defined by closing of a tableau. We also proved adequacy of the tableau method
without using that of PC. The analytic tableaux had their origin in E. W. Beth’s se-
mantic trees. Three good texts on Tableaux are Fitting (1996), Smullyan (1968), and
Smullyan (2014).

Problems for Chapter 4
1. Formalize the stories and your answers in Problem 44 of Chapter 1 as conse-

quences. You may use the following abbreviations:

G: The portrait is in the gold casket.
g: The inscription on the gold casket is true.

Similarly, use the abbreviations S,s,L,�. Justify the consequences using a
quasi-proof, a calculation, PND, GPC, and Tableau. [Hint: See that G ↔ g,
S↔ s, ¬�→ g∧ s, ¬(G∧S), ¬G∧¬S→ L are premises in (a).]

2. For each of the following arguments, either construct a quasi-proof, a calcu-
lation, a PND-proof, a GPC-proof, and an Analytic tableau; or, construct an
interpretation to show that the argument is invalid.

(a) If Sam was at the fair, then his father was negligent or his mother was not
at home. If his mother was not at home, then his father was not negligent.
His mother was at home. Therefore, Sam was at the fair.

(b) Either Logic is elegant or many students like it. If Computer Science is
a difficult discipline, then Logic has to be elegant. Therefore, if many
students like Computer Science, then Logic is elegant.

(c) If tomorrow morning, it is chilly and not so clear a sky, then we go swim-
ming unless you do not have any special liking for boating. It isn’t always
the case that if the sky is not clear, then you don’t go boating. Therefore,
if the weather is not chilly tomorrow morning, then we go swimming.

(d) Yanka would have been at home, had he been to the club or not to the
theatre while his friend was waiting for him at the college. He had been
to the club premises while it was dusk only if he didn’t come home.
Unless the watchman saw him at the club premises, it is certain that it
was dusk, since the watchman is night-blind. Therefore, Yanka did not
go to the theatre.

(e) If anyone is in a guest house, which is located in a city, then he is in
that city. None can be in two different cities at the same time. One
who snatched the necklace away must have been in the guest house at
Chennai. Since Chennai and Mumbai are two different cities and Yanka
was in the Mumbai guest house, he did not snatch the necklace.

(f) If all the politicians praise a bandit, then the bandit must be none other
than Robin Hood. A politician praises a person if the person has indeed
helped him in his career. There is a bandit who has not helped any politi-
cian. Therefore, there is a bandit other than Robin Hood.

4.6. SUMMARY AND PROBLEMS 129

(g) If Shaktiman were able and wiling to eradicate evil, he would do so.
If Shaktiman were not able to eradicate evil, he would be transformed
into a donkey. If Shaktiman were unwilling to eradicate evil, he would
be joining the evil. As a matter of fact, Shaktiman does not eradicate
evil. Therefore, if Shaktiman exists, then he is neither transformed into a
donkey nor does he join the evil.

3. Formulate and prove monotonicity, deduction theorem, and reductio ad absur-
dum for PND.

4. Show that if two boxes are allowed to overlap, then the soundness of PND may
not be retained.

5. Formulate and prove the deduction theorem and monotonicity for PT without
using those for PL.

6. Let Σ be any set of propositions, and let p,q be any propositions. Show the
following in GPC and in PT:

(a) Σ � p and Σ � q iff Σ � p∧q.
(b) If at least one of Σ � p or Σ � q, then Σ � p∨q.

7. Try to construct proofs in PND, GPC, and PT, for the following:

(a) � ¬p→ (p→ q)
(b) � ¬p→ (p→⊥)
(c) � p→ (q→ p∧q)
(d) � (p∨q)→ (¬p∧q→ q)
(e) � (p→ q)→ (q∧ r→ (p→ r))
(f) � ¬(p→ (q→ r))∨¬(p→ q)∨¬p∨ r
(g) � (p→ q)→ ((q→ r)→ ((r→ s)→ (p→ s)))
(h) {p∨q→ r∧ s,r∨u→ ¬v∧w,v∨ x→ p∧ y} � ¬v
(i) {(r→ r∧ s)→ t, t → (¬u∨u→ p∧u), p∨q→ (r→ r)} � p↔ t
(j) {p→ ¬q,r→ s,¬t → q,s→ ¬u, t → ¬v,¬u→ w, p∧ r} � ¬v∧w

8. Solve the following by using Calculation, PND, GPC, and PT.

(a) For each i ∈ N, let xi be a proposition; and let Σ = {xi → xi+1 : i ∈ N}.
Show that Σ � x0 → xn for each n ∈ N.

(b) Let Σ be a set of propositions, and let w be a proposition. Show that if
Σ∪{w} � ⊥ and Σ∪{¬w} � ⊥, then Σ � ⊥.

(c) Let Σ and Γ be sets of propositions, and let w be a proposition. Show that
if Σ∪{w} � ⊥ and Γ∪{¬w} � ⊥, then Σ∪Γ � ⊥.

9. For finite sets of propositions Σ and Γ, prove that Σ � Γ iff Σ � Γ.
10. Formulate finiteness theorem for GPC and use König’s lemma to prove it.

11. Using finiteness theorem prove strong adequacy of GPC to PL.

12. Let Σ = {w1,w2,w3, . . .} be a denumerable set of propositions. Show that for
each n≥ 1, {w1, . . . ,wn} is PT-consistent iff Σ is PT-consistent.

13. Formulate tableau rules for the connectives ↑ and ↓ .

130 CHAPTER 4. OTHER PROOF SYSTEMS FOR PL

14. In PC, the metatheorems are used outside a proof. The metatheorems can be
used inside a proof provided a proof can use the (meta)symbol � in its body,
as in GPC. A proof would then be a finite sequence of consequences of the
form Σ � w, where each consequence is either a meta-axiom or is derived from
earlier consequences by an application of a rule. One such meta-system for
PC, called MPC goes as follows.

Let Σ,Γ be any generic sets of PC-propositions; A,B generic propositions. The
meta-system MPC has the following inference rules (meta-rules):

(P)
·

Σ∪{A} � A
(M)

Σ � A
Σ∪Γ � A

(MP)
Σ � A Σ � A→ B

Σ � B
(DT)

Σ∪{A} � B
Σ � A→ B

(RA)
Σ∪{¬A} � B Σ∪{¬A} � ¬B

Σ � A
Σ∪{A} � B Σ∪{A} � ¬B

Σ � ¬A

An MPC-proof is a finite sequence of consequences of the form Σ � X , where
each of them is obtained by an application of the rules of P, M, DT, MP, RA on
consequence(s) occurring somewhere prior to it. Notice that an application of
P does not require an earlier consequence; all others need one or two.The last
consequence of a proof is considered proved by the proof. Here is an example
of an MPC-proof:

1. p, q � p P
2. p � q→ p DT
3. � p→ (q→ p) DT

Show the following in MPC:

(a) � p→ (¬q→ ¬(p→ q))
(b) If p � q, then ¬q � ¬p
(c) Σ∪{¬¬p} � p, for any set Σ of propositions.
(d) ¬p→ q, p→ q � q
(e) � ¬(p∧q)→ (¬p∨¬q)
(f) For any set of propositions Σ, and propositions p and q, if Σ � p and

Σ � q, then Σ � p∧q.
(g) Formulate an inference rule from (e), call it Rule (A). Using Rule (A),

formulate an inference rule for the biconditional and call it Rule (B).
(h) Using Rule (B), construct an MPC-proof for � ¬(p∧q)↔ (¬p∨¬q).
(i) Formulate an inference rule for the connective ∧.

15. What about Lemma 2.1 for MPC? Prove that MPC is adequate to PL.

Chapter 5

First Order Logic

5.1 SYNTAX OF FL
Propositional logic is not enough for carrying out simple mathematical reasoning.
The argument “Each natural number is rational; and each rational number is real.
Therefore, each natural number is real.” cannot be justified in PL. The three sen-
tences will be symbolized with three distinct propositional variables, showing no
connection between them. Why justifying an argument, even a simple mathematical
sentence cannot be truly translated to PL. Consider the sentence

If a positive integer is a perfect square and less than four, then it must be
equal to one.

We may rewrite it as

For each x, if x is a positive integer less than four, and if there exists a
positive integer y such that x is equal to the square of y, then x is equal
to one.

For symbolizing this sentence we require quantifiers ‘for each’, and ‘there exists’;
predicates ‘· · · is a positive integer’, ‘· · · is less than · · · ’, and ‘· · · is equal to · · · ’;
function symbol ‘square of · · · ’; constants ‘four’ and ‘one’, and the variables x,y.
The logic obtained by extending PL and including these types of symbols is called
first order logic.

Notice that the variables range over some objects but they are not objects. Vari-
ables are different from the propositional variables; the latter can be either true or
false, whereas the former are simply named gaps. To make them distinct, variables
are also termed as individual variables. They behave like English pronouns. For
instance, the following two sentences mean the same thing:

All natural numbers are integers.
For whatever an object may be, if it is a natural number, then it is an
integer.

Individual variables give an infinite supply of it in the form it1, it2, In this sense,
they are named gaps.

131

132 CHAPTER 5. FIRST ORDER LOGIC

The alphabet of FL, first order logic, is the union of the following sets:

{�,⊥}, the set of propositional constants,

{ f j
i : i, j ∈ N}, the set of function symbols,

{P j
i : i, j ∈ N}∪{≈}, the set of predicates,

{x0,x1,x2, . . .}, the set of variables,

{¬,∧,∨,→,↔}, the set of connectives,

{∀,∃}, the set of quantifiers, and

{), (, , }, the set of punctuation marks.

Look at the subscripts and superscripts in the function symbols and predicates. The
symbol f j

i is a function symbol which could have been written as fi ; the superscript
j says that the function symbol f j

i has j arguments.
The superscript j in the function symbol f j

i is referred to as its arity. The 0-
ary function symbols do not require any variable or names to give us definite de-
scriptions, that is, they themselves are definite descriptions. Thus the 0-ary function
symbols are also termed as the names, or individual constants, or just constants.

The intention is to translate the definite descriptions that depend on j parameters.
For example, the definite description ‘author of Anna Karenina’ will be written as
f 1
0 (f 0

0), where f 0
0 , a constant, stands for Anna Karenina; and f 1

1 stands for ‘author
of’. The superscript 1 in f 1

0 cannot be any other number, whereas the subscript could
be different from 0.

Similarly, the superscripts in the predicates also refer to the arity of those. The
relation ‘brother of’ is a binary predicate and is denoted by a predicate P2

i ; the sub-
script i may be one of 0,1,2,3,4, The 0-ary predicates do not have any gaps to
be filled in so that they would become sentences; they are sentences already. Thus,
0-ary predicates P0

i s are simply the propositional variables which, in some contexts,
may not be analysed any deeper. This way, we really extend the syntax of PL to FL.
The symbol ≈ denotes the equality or identity predicate, assumed to be binary.

The symbol ∀ is called the universal quantifier and the symbol ∃ is called the
existential quantifier.

Any string over the alphabet of FL is an expression (an FL-expression). The
function symbols allow you to express very complex definite descriptions such as
‘the left leg of mother of the eldest brother of father of the youngest sister of Gargi’,
by using composition of functions. All these definite descriptions, along with some
others arising out of the use of variables are taken as terms. These are special types
of expressions. The following is an inductive definition of terms.

Write t for a generic term. The grammar for terms is

t ::= xi | f 0
i | f j

i (t, . . . , t)

In the expression f j
i (t, . . . , t), the symbol t occurs j times. The grammar says that the

variables, and the constants or 0-ary function symbols are terms, and if t1, . . . , t j are
terms with f j

i , a j-ary function symbol, then the expression f j
i (t1, . . . , t j) is a term.

5.1. SYNTAX OF FL 133

Moreover, terms are obtained only this way. A term is called closed iff no variable
occurs in it.

EXAMPLE 5.1. f 0
5 is a term; it requires no arguments as its superscript is 0. Sim-

ilarly, f 1
0 (f 0

0) and f 1
5 (f 2

3 (f 0
0 , f 0

1)) are terms. Both of them are closed terms. f 1
5 is

not a term; there is a vacant place as its superscript 1 shows. f 1
5 (f 0

1) is a closed
term. Similarly, f 1

5 (f 2
3 (x7, f 0

1)) is also a term; it is not a closed term since a variable,
namely, x7 occurs in it.

The level of a term is defined as follows. The variables and the constants are
called as terms of level 0. For n ≥ 1, terms of level n are of the form f (t1, . . . , tm),
where each of t1, . . . , tm are terms of level less than n, out of which at least one is of
level n−1. For instance, the term f 1

5 (f 2
3 (f 0

0 , f 0
1)) is of level 2.

In our formal language, the names such as ‘Bapuji’ and ‘Tolstoy’ are constants
and as such they should be symbolized as 0-ary function symbols. Similarly, other
definite descriptions are symbolized via function symbols of suitable arity. For ex-
ample, ‘Bapuji’ may be symbolized as f 0

0 and ‘father of’ as f 1
0 , then the definite

description ‘father of Bapuji’ is symbolized as f 1
0 (f 0

0). The use of variables as argu-
ments of function symbols will be clarified shortly. We will use terms for defining
the (well-formed) formulas, which would represent sentences or rather sentence-like
phrases.

Writing X for a generic formula, x for a generic variable, and t for a generic term,
the grammar for formulas is:

X ::= � | ⊥ | P0
i | (t ≈ t) | Pm

i (t, . . . , t) | ¬X | (X ∧X) |(X ∨X) |
(X → X) |(X ↔ X) | ∀xX | ∃xX

In the expression Pm
i (t, . . . , t), the symbol t occurs m times. The grammar says that

the special symbols �,⊥, and the 0-ary predicates are (FL-) formulas. If P is any
m-ary predicate, then for m terms t1, . . . , tm, the expression P(t1, . . . , tm) is a formula.
The equality predicate is written in infix notation; it allows (s ≈ t) as a formula for
terms s and t. The formulas might be obtained by using connectives as in PL or by
prefixing a quantifier followed by a variable, to any other formula. Notice that all
propositions of PL (generated from P0

i s and connectives) are now treated as formulas
(in FL).

The formulas in the forms �, ⊥, P0
i , (s ≈ t), and Pm

i (t1, t2, . . . , tm) are called
atomic formulas; and other formulas are called compound formulas.

EXAMPLE 5.2. The following expressions are formulas:

�, (⊥→�), (f 0
1 ≈ f 0

5), (f 2
1 (f 0

1 , f 1
2 (f 0

1))≈ f 0
11), P1

2 (f 1
1 (x5)),

¬∀x3(P2
5 (f 1

1 (x5), f 0
1)→ P0

3), ∀x2∃x5(P2
5 (x0, f 1

1 (x1))↔ P3
1 (x1,x5,x6)).

Whereas the following expressions are not formulas:

�(x0), P1
1 (f 0

1 (f 0
0)), f 0

1 ≈ f 0
5 , (f 2

1 (f 0
1 , f 0

2 (f 0
1))≈ f 2

11(f 1
12, f 0

1)),

P1
2 (f 1

4 (x7), f 0
1), ¬∀x1(P2

5 (f 0
1 (x2),x3)), ∀x2∃x5(P2

5 (x0, f 0
1 (x1)),

∀x2∃x5(P1
5 (f 0

1 (x1))↔ P1
1 (x6)).

134 CHAPTER 5. FIRST ORDER LOGIC

The first expression is not a formula since after �, a variable is not allowed to occur
in parentheses. The second expression is not a formula since f 0

1 (f 0
0) is not a term,

as f 0
1 is a 0-ary function symbol and as such it cannot take an argument. The third

expression is not a formula since≈ needs a pair of parentheses. In the fourth expres-
sion, f 1

12 needs a term as an argument. Similarly, in the fifth expression the predicate
P1

2 can have only one argument, and in the sixth and seventh, f 0
1 cannot take any term

as an argument.
Can we retrieve the rules that have been applied for obtaining a formula? If a for-

mula X starts with ¬, then it is the rule X ::=¬X that has been applied last. Similarly,
if it starts with (, then it is one of the binary connective rules or the equality predi-
cate rule that had been applied last. If it starts with a P0

i , then the last rule applied
was X ::= P0

i , etc. These observations (and some more) will show that formulas are
uniquely parsed. Of course, for the proof of unique parsing of formulas, you need to
first show that every term is uniquely parsed.

Theorem 5.1 (Unique Parsing). Any formula X is in exactly one of the following
forms:

(1) X =�.
(2) X =⊥.
(3) X = P0

i for a unique predicate P0
i .

(4) X = (s≈ t) for unique terms s, t.

(5) X = P j
i (t1, . . . , t j) for unique predicate P j

i and unique terms t1, . . . , t j.

(6) X = ¬Y for a unique formula Y.
(7) X = (Y ◦Z) for a unique connective ◦ ∈ {∧,∨,→,↔}, and unique formulas

Y and Z.
(8) X = ∀xY for a unique variable x and a unique formula Y.
(9) X = ∃xY for a unique variable x and a unique formula Y.

Exercises for § 5.1
Categorize each of the following as a term, a formula, or neither. Draw the corre-
sponding parse trees.

1. f 4
5 (x1,x3, f 2

6 (x1,x3), f 2
4 (f 2

5 (x3,x6),x4))

2. (¬∀x((P1
4 (x5)→ ¬P1(c4))∧P2

3 (x3, f 1
1 (c3))))

3. f 4
1 (x2,x4, f 2

1 (x4,x5), f 2
5 (f 2

1 (x4,x6),c3))

4. f ((x,y),g(x,y,z),h(f (x,y,z),w))
5. ∃x1∀x2(P2

2 (f 1
3 (x2,x6, f 2

5 (f 1
3 ((x4,x3),c4)),x3)→ P1

2 (x7)))

6. ∀x1∀x2(P2
1 (x1, f 1

2 (x1))→ P3
2 (f 1

6 (x1),x2, f 3
1 (x1,x2,c6)))

7. ∀x1∀x2(P3
1 (x1,x2,x3)↔∃x2P3

1 (x1,x2,x3))

8. ∃x1∀x2(P2
1 (f 3

1 (x1,x2, f 2
1 (x3,c1)),x2)→ P1

2 (f 2
1 (x2,x4)))

9. ∀x1((∀x2P3
0 (x1,x2,x3)∧∀x4P1

1 (x3))↔∃x1∀x2P3
0 (x2,x2,x2))

10. ∀x1(∃x2∀x3(∀x2P3
0 (x1,x2,x3)∧∀x3P1

1 (x3))→∃x1∀x2P2
2 (x1,x2))

5.2. SCOPE AND BINDING 135

5.2 SCOPE AND BINDING
There are differences between any arbitrary formula and a sentence. Intuitively, a
formula such as (∀x1P1

1 (x1)→ P1
2 (x2)) would tell:

If P1
1 holds for every object, then P1

2 holds for x2.

Since x2 is a variable, a named gap, it does not refer to a definite object, unlike
constants, names, or closed terms. Thus (∀x1P1

1 (x)→ P1
2 (y)) is not a (first order)

sentence. We must filter out sentences from all formulas.
We consider another example. Suppose, x1 and x2 are viewed as variables over

positive integers. The formula (x2 ≈ 2× x1) may be true, or may not; it depends on
what the values of x1 and x2 are. (You may think 2× (·) as a unary function, and ≈
as ‘equal to’.) Whereas the formula ∃x1(x2 ≈ 2× x1) is true when x2 is even; it does
not depend on the value of x1. In the first case, we say that both x1 and x2 are free
variables, whereas in the second case, we say that x1 is a bound variable, and x2 is
a free variable. In the formula (∃x1(x2 ≈ 2× x1)∧∀x2∃x1¬(x2 ≈ 2× x1)) there is a
confusion; there are both free and bound occurrences of the variable x2. We introduce
some more concepts so that things will be clearer and easier.

Let Y be a formula. A sub-string Z of Y is called a subformula of Y iff Z is a
formula on its own. The scope of an occurrence of a quantifier occurring in Y is the
subformula of Y starting with that occurrence. (From that place to the right.)

EXAMPLE 5.3. The subformulas of ∀x1∃x2((P1
1 (x3)∧P1

1 (x1))→ P1
1 (x2)) are

P1
1 (x3), P1

1 (x1), P1
1 (x2), (P1

1 (x3)∧P1
1 (x1)),

((P1
1 (x3)∧P1

1 (x1))→ P1
1 (x2)), ∃x2((P1

1 (x3)∧P1
1 (x1))→ P1

1 (x2)),

∀x1∃x2((P1
1 (x3)∧P1

1 (x1))→ P1
1 (x2)).

The original formula has a single occurrence of ∀ and a single occurrence of ∃. The
scope of the occurrence of ∀ is the whole formula; and the scope of the occurrence
of ∃ is ∃x2((P1

1 (x3)∧P1
1 (x1))→ P1

1 (x2)).

An occurrence of a variable x in Y is a bound occurrence iff this occurrence is
within the scope of an occurrence of ∀x or ∃x (a quantifier that uses it). If a vari-
able occurs within the scopes of more than one occurrence of quantifiers using that
variable, then this occurrence of the variable is said to be bound by the rightmost
among all these occurrences of quantifiers.

An occurrence of a variable in a formula is called a free occurrence iff it is not
bound. If there is a free occurrence of a variable x in a formula Y , we say that x
occurs free in Y, and also, we say that x is a free variable of Y. A variable x is a
bound variable of Y iff there is at least one bound occurrence of x in Y.

EXAMPLE 5.4. In the formula ∃x2(P2
1 (x2,x1)∧∀x1P1

3 (x1)), the scope of ∃ is the
whole formula; the scope of ∀ is the formula ∀x1P1

3 (x1). Here, all the occurrences
of the variable x2 are bound; the first occurrence of x1 is free while the last two
occurrences of x1 are bound occurrences. The variable x2 is a bound variable of the
formula while x1 is both a free and a bound variable.

136 CHAPTER 5. FIRST ORDER LOGIC

A formula having no free variables is called a closed formula or a sentence.
Thus, in a sentence, each occurrence of each variable is a bound occurrence. A
formula that is not closed is called an open formula.

EXAMPLE 5.5. In ∀x1(∀x2(P3
1 (x1,x2, f 0

1)∧∀x1P1
2 (x1))→ ∃x3P3

1 (x3,x1,x3)), all
occurrences of x1 are bound. All occurrences of x1 are within the scope of the first
∀. The third and the fourth occurrences are also within the scope of the third ∀.
However, these occurrences of x1 are bound by the third occurrence of ∀, and not by
the first ∀. The fifth occurrence of x1 is bound by the first ∀. In binding a variable,
the scope of the innermost quantifier that uses the variable becomes relevant. The
second occurrence of ∀ uses the variable x2. All occurrences of variables x1,x2,x3
are bound occurrences. The formula is a sentence.

EXAMPLE 5.6. In each of the following formulas, find out the scopes of each oc-
currence of each quantifier, free and bound variables, and mark which quantifier
binds which occurrences of variables. Also, determine which of these are sentences.

(a) ∃x1((P1
1 (x1)∧P1

2 (x1))→ (¬P1
1 (x1)∨P1

2 (x2)))

(b) ∀x1(∃x2P2
1 (x1,x2)∧∀x2(¬P2

2 (x1,x2)∨P2
1 (x2,x1)))

(c) (¬∃x1(∀x2P3
1 (x1,x2,x3)∧∃x1P3

2 (x1,x2,x3))→�)
(d) (∀x1∃x2(P1

1 (x1)↔ P1
2 (x2))∧∀x3∃x2(P1

1 (x1)→ (P1
1 (x3)∨P1

2 (x2))))

We will use underlines to show the scope. The scopes also show the bound
occurrences of a variable by the quantifier that uses it.

(a) The scope of the only quantifier in this formula is the whole formula:

∃x1((P1
1 (x1)∧P1

2 (x1))→ (¬P1
1 (x1)∨P1

2 (x2)))

All occurrences of x1 are bound by this ∃x1, while the only occurrence of x2 is free.
Here, x1 is a bound variable and x2 is a free variable. The formula is not a sentence;
it is an open formula.

(b) The scopes of the quantifiers are as follows:

∀x1(∃x2P2
1 (x1,x2) ∧∀x2(¬P2

2 (x1,x2)∨P2
1 (x2,x1)))

∀x1(∃x2P2
1 (x1,x2)∧ ∀x2(¬P2

2 (x1,x2)∨P2
1 (x2,x1)))

∀x1(∃x2P2
1 (x1,x2)∧∀x2(¬P2

2 (x1,x2)∨P2
1 (x2,x1)))

First two occurrences of x2 are bound by ∃x2; third, fourth, and fifth occurrences of
x2 are bound by ∀x2. All occurrences of x1 are bound by ∀x1. All occurrences of all
variables are bound. The formula is a sentence.

(c) The scopes of the quantifiers are as follows:

(¬∃x1(∀x2P3
1 (x1,x2,x3) ∧∃x1P3

2 (x1,x2,x3))→�)

(¬∃x1(∀x2P3
1 (x1,x2,x3)∧ ∃x1P3

2 (x1,x2,x3))→�)

(¬ ∃x1(∀x2P3
1 (x1,x2,x3)∧∃x1P3

2 (x1,x2,x3)) →�)

5.2. SCOPE AND BINDING 137

All occurrences of x1 are bound; first and second occurrences are bound by the first
∃x1; while the third and fourth occurrences of x1 are bound by the second ∃x1. First
occurrence of x2 is bound but the second occurrence of x2 is free. Both the occur-
rences of x3 are free occurrences. So, x1 is a bound variable and not a free variable,
x2 is both a bound and a free variable, and x3 is a free variable, but not a bound vari-
able. The formula is not a sentence.

(d) The scopes of the quantifiers are as follows:

(∀x1 ∃x2(P1
1 (x1)↔ P1

2 (x2)) ∧∀x3∃x2(P1
1 (x1)→ (P1

1 (x3)∨P1
2 (x2))))

(∀x1∃x2(P1
1 (x1)↔ P1

2 (x2)) ∧∀x3∃x2(P1
1 (x1)→ (P1

1 (x3)∨P1
2 (x2))))

(∀x1∃x2(P1
1 (x1)↔ P1

2 (x2))∧∀x3 ∃x2(P1
1 (x1)→ (P1

1 (x3)∨P1
2 (x2))))

(∀x1∃x2(P1
1 (x1)↔ P1

2 (x2))∧ ∀x3∃x2(P1
1 (x1)→ (P1

1 (x3)∨P1
2 (x2))))

All occurrences of variables except the third occurrence of x1 are bound. The formula
is not a sentence.

Once you are sure that unique parsing holds, and you are confident of scope and
binding, we will follow some conventions for using less number of parentheses and
commas. If in occasions where exact sequence of symbols become important, we
must revert back to our original expanded version of formulas.

Convention 5.1. We will drop the outer parentheses from formulas.

Convention 5.2. We will drop the superscripts from the predicates and function
symbols; the arguments will show their arity. However, we must not use the same
symbol with different number of arguments in any particular context.

For example, in the same formula, we must not use P5(x,y) and P5(f2) since the
first one says that P5 is a binary predicate, and the second would require P5 to be
unary. In the formula

∀x2 ∃x5(P4(x0, f1(x1))↔ P1(x2,x5,x1)),

P4 is a binary predicate, f1 is a unary function symbol; and P1 is a ternary predicate.
The following expression would not be considered a formula:

∀x2 ∃x5(P4(x0, f1(x1))↔ P4(x2,x5,x1)).

Reason: P4 has been used once as a binary and once as a ternary predicate.

Convention 5.3. We will drop writing subscripts with variables, function symbols
and predicates, whenever possible. Instead, we will use x,y,z, . . . for variables,
f ,g,h, . . . for function symbols, and P,Q,R, . . . for predicates. The 0-ary predicates
or the propositional variables will be denoted by A,B,C, Whenever we feel short
of symbols, we may go back to writing them with subscripts. Moreover, the 0-ary
function symbols (which stand for names) will be written as a,b,c, . . ., from the first
few small letters of the Roman alphabet.

138 CHAPTER 5. FIRST ORDER LOGIC

Following this convention, the formula ∀x2∃x5(P4(x0, f1(x1))↔ P1(x2,x5,x1))
may be rewritten as ∀x∃y(P(z, f (u))↔ Q(x,y,u)).

Take care to see that each occurrence of x2 has been replaced by x, each occur-
rence of P4 has been replaced by P, etc.

Convention 5.4. We will omit the parentheses and commas in writing the arguments
of function symbols and predicates provided no confusion arises. If, however, some
formula written this way is not easily readable, we will retain some of them.

For example, the formula ∀x∃y(P(z, f (u)) ↔ Q(x,y,u)) may be rewritten as
∀x∃y(Pz f (u)↔ Qxyu).

Similarly, the term f (t1, . . . , tn) will sometimes be written as f (t1 . . . tn) or as
f t1 . . . tn. And, ∀x∃y(Pz f (u)↔ Qxyu) may be rewritten as ∀x∃y(Pz f u↔ Qxyu).

Convention 5.5. We will have precedence rules for the connectives and quantifiers
to reduce parentheses. We will preserve the precedence of connectives as in PL and
give the same precedence to the quantifiers and the connective ¬. That is,

¬,∀x,∃x will have the highest precedence.
∧,∨ will have the next precedence.
→,↔ will have the lowest precedence.

For example, the formula

∀x1¬(∃x2((P1
1 (f 2

1 (f 0
0 , f 0

1))∧P0
1)→P2

2 (x2, f 0
1)↔∀x3((P1

1 (f 0
5)∧P1

2 (x1))→P0
3))

is rewritten as ∀x¬(∃y(P f (a,b)∧A → Qyb)↔ ∀z(Pc∧Rx → B)), where the vari-
ables x1,x2,x3 are rewritten as x,y,z; the function symbols f 0

0 , f 0
1 , f 0

5 , f 2
1 are rewritten

as a,b,c, f ; and the predicates P1
1 ,P

0
1 ,P

2
2 ,P

1
2 ,P

0
3 are rewritten as P,A,Q,R,B, respec-

tively.

Caution: When considering the subformulas, scopes, and binding in a formula, we
must take the formula in its original form, not in its abbreviated form. For instance,
Px → Py is not a subformula of ∀x∃y(Pz∧Px → Py). The given formula with ad-
equate parentheses looks like ∀x∃y((Pz∧ Px)→ Py), of which Px → Py is not a
subformula.

The rewritten forms of formulas are, strictly speaking, not formulas. They are
called abbreviated formulas. But we will regard them as formulas since they can be
written back as formulas by following our conventions.

Exercises for § 5.2
1. For all formulas in the exercise of § 5.1, find the scopes of each occurrence of

a quantifier. Also, mark the free and bound occurrences of variables.
2. Mark the free and bound occurrences of variables in the following formulas:

(a) (P3
4 (x3,x2,x1)↔ P3

1 (x1,c3,c2))
(b) ∀x1(P3

4 (x3,x2,x1)↔ P3
1 (x1,c3,c2))

(c) ∃x3((P3
4 (x3,x2,x1)↔ P3

1 (x1,c3,c2))∧P1
5 (x3))

(d) ∀x1((P4
4 (x3,x2,x1,a)↔ P3

1 (x1,c3,c2))→∃x3P4
3 (x1,x2,x3,x4))

3. Define the notions of subformula, free variable, and bound variable induc-
tively.

5.3. SUBSTITUTIONS 139

5.3 SUBSTITUTIONS
In what follows, we will require to substitute free variables by constants, other vari-
ables, or terms, in general. We fix a notation for such substitutions and discuss what
kind of substitutions are allowed.

We write [x/t] for the substitution of the variable x by the term t, and then
(X)[x/t] for the formula obtained by replacing all free occurrences of the variable x
with the term t in the formula X . For example,

(Px→ Qx)[x/t] = Pt → Qt

(∀xPxy)[x/t] = ∀xPxy

∀x(Pxy[x/t]) = ∀xPty

∀x∃y((Px∧Qyx)→ Rzy[y/t]) = ∀x∃y(Px∧Qyx)→ Rzt

(∀x∃y(Px∧Qyx)→ Rxy)[x/t] = ∀x∃y(Px∧Qyx)→ Rty

We may abbreviate (X)[x/t] to X [x/t] if no confusion arises. Note that in effect-
ing a substitution, all and only free occurrences of a variable are replaced, and not
every occurrence.

Consider the formula: ∀x∃y(Hx→Fxy), which you might have obtained by sym-
bolizing the English sentence, “Each human being has a father”. To verify its truth,
you are going to see whether for every object x, the formula ∃y(Hx→ Fxy) is satis-
fied or not. Now this ‘every object x’ can also stand for terms (definite descriptions,
etc). For example, f (a), the mother of a, is an object anyway. After replacement,
the formula

(∃y(Hx→ Fxy))[x/ f (a)] = ∃y(H f (a)→ F f (a)y)

says that “if the mother of a is a human being, then s/he has a father”. Instead of
f (a), suppose you substitute f (y), then you would obtain

(∃y(Hx→ Fxy))[x/ f (y)] = ∃y(H f (y)→ F f (y)y).

This formula says that “there exists a human being such that if s/he has a mother then
the mother is her own father”. This is absurd, whereas the original sentence with our
common understanding sounds plausible. So, what went wrong?

Before the substitution, the occurrences of x were free in ∃y(Hx → Fxy). By
substituting x as f (y), all these new occurrences of y become bound. This is not a
faithful substitution. Such a substitution is said to capture the variable. Our substi-
tution should not capture a variable; it should not make a free occurrence bound. We
formalize this notion.

Let Z be a formula; and x,y variables. The variable y is free for x in Z iff x does
not occur free within the scope of any ∀y or ∃y in Z. We observe that y is free for x
in the formula Z is equivalent to the following condition:

After replacing each free occurrence of x by y in Z, the new occurrences
of y remain free in the new formula.

We say that a term t is free for the variable x in the formula Z iff each variable that
occurs in t is free for x in the formula Z.

140 CHAPTER 5. FIRST ORDER LOGIC

Informally, it means that no variable of t is captured by replacing all free occur-
rences of x with t in Z. Thus t is free for x means that t is allowed to be substituted
in place of a free x, in some sense.

The formula Z[x/t] is obtained from Z by replacing each free occurrence of the
variable x by t, provided t is free for x in Z. The term f [x/t] is obtained from f (·)
by replacing each occurrence of x by t, in f (·).

Unless otherwise stated, whenever we use Z[x/t], we assume that the term t is
free for variable x in the formula Z. Such substitutions are sometimes called admis-
sible substitutions. In our notation, all substitutions are assumed to be admissible.

EXAMPLE 5.7. In the formula ∃y(Hx → Fxy), y is not free for x since x occurs
free within the scope of ∃y. This is the reason that after replacing this occurrence
of x by f (y), the new occurrence of y becomes bound; y is getting captured by the
substitution.

The variable x is free for x in ∃y(Hx → Fxy). Similarly, z is free for x in the
formula ∃y(Hx → Fxy) as z does not at all occur in this formula. If t is a closed
term, that is, no variable occurs in it, then vacuously, each variable of t is free for
each variable in each formula; t is free for each variable in each formula.

If no variable of t is bound in a formula Y , then t is free for each variable oc-
curring in Y. In the formula ∃z(Pxy ↔ Qyz), the term t = f (x,y, f (a,b,c)) is free
for each of the variables x,y,z. However, z is neither free for x nor free for y in this
formula.

Only free occurrences of a variable can be substituted by a term, and that to, when
the substitution is admissible: (∀xPx)[x/t] = ∀xPx. For replacing a variable by a term
in a term, there is no such restriction: f (x)[x/t] = f (t), and f (x,y,z,g(a))[x/ f (x)] =
f (f (x),y,z,g(a)).

Exercises for § 5.3
1. Let X be a formula; x,y distinct variables; and a,b constants. Show that

X [x/a][y/b] = X [y/b][x/a]. What happens if x,y are not distinct?
2. Suppose, X is a formula, x,y are distinct variables, c is a constant, and t is a

term free for x in X . Show that if y does not occur in t, then X [x/t][y/c] =
X [y/c][x/t]. What happens if y occurs in t?

3. Decide whether the terms x,y, f (x),g(y,z) are free for y in each of the follow-
ing formulas:

(a) P(z,y,x)↔ P(x,a,b)
(b) ∀z(P(x,y,z)↔ Q(x,a,b))
(c) ∃z((P(z,y,x)↔ Q(x,a,b))∧R(z))
(d) ∀x((P(x,y,z)↔ Q(x,a,b))→∃zR(x,y,z,u))

4. Let X be a formula. Suppose x is a free variable of X , y is a variable different
from x, z is a variable not occurring in X , and t is a term free for x in X . Show
the following:

(a) X [x/t][y/z] = X [y/z][x/t[y/z]]
(b) The term t[x/y] is free for x in the formula X [x/y].

5.4. SEMANTICS OF FL 141

5.4 SEMANTICS OF FL
Interpretation of first order formulas starts with fixing a nonempty set as the domain
or universe of that interpretation. All constants are interpreted as certain elements in
the domain. All function symbols are interpreted as partial functions on the domain.
All predicates are interpreted as relations over the domain. This is how first order
sentences are interpreted as sentences that talk about relations, functions, and ele-
ments of a domain. Here are three different interpretations of the sentence ∀xPx f (x):

Everyone is younger than his father.
Every number is less than its square.
Every integer is divisible by half of it.

Proceeding similarly, we would interpret the formula Px f (x) as follows.

x is younger than his father.
The number x is less than its square.
The integer x is divisible by half of it.

All these are unfinished sentences because variables are just gaps. Only after substi-
tution of a constant or a name there, you can get a sentence from it; or else, you may
use a quantifier. You cannot possibly assume this sentence to be read as ∀xPx f (x)
nor as ∃xPx f (x). Moreover, which one is to be taken and why?

One way is to think of a state where x is assigned to an object. Then the formula
becomes a sentence, which speaks about that object in that state. If in a state, x has
been assigned to a, then in that state, Px f (x) can be read as

a and f (a) are related by P.

When we interpret Px f (x) in the set of human beings, with f as ‘father of’, P as
‘younger than’, and if x is assigned to Soumya, then in this state, the formula Px f (x)
would be interpreted as the sentence:

Soumya is younger than her father.

Such an assignment �, which associates variables to elements of the universe or do-
main of an interpretation is called a valuation (or a variable assignment function).
Do not confuse this with the boolean valuation of propositions.

While assigning x to ‘Soumya’, you had taken

�(x) = Soumya, �(f (x)) = Soumya’s father.

In so doing, you have taken � as a function that associates not only variables but
also terms, to elements of the domain. If � is extended to terms, we must see that it
agrees with the function that associates predicates to relations and function symbols
to actual functions over the domain.

Writing as φ , the function that associates predicates and function symbols to
relations and functions over the domain, we have here

φ(f) = ‘father of’, �(f (x)) = φ(f)(�(x)).

That is how a valuation must agree with the function φ of the interpretation.

142 CHAPTER 5. FIRST ORDER LOGIC

Suppose in a state, we fix �(x) = a and �(y) = b. Now, the reading of ∀xPxy
uses b instead of y. But also it requires x to take each element in the domain of our
interpretation as a value, and not only this a. While varying the values of x over the
domain, we must keep the value b assigned to y as it is. One way is to use the notation
�[x �→ a]; it denotes a valuation that is equal to the valuation � in all respects, except
fixing x to a. Then we would require the following for any arbitrary object a in the
domain:

∀xPxy is true in a state with the valuation � if Pxy is true in each state
with the valuation �[x �→ a].

Suppose we interpret a binary predicate P as ‘less than or equal to’ in N, and a
constant c as 0. Then the formula ∀xPcx is interpreted as the sentence

0 is less than or equal to every natural number.

To know whether ∀xPcx is satisfied by this interpretation, we must ascertain whether
the interpreted sentence is true in N or not. So, we assume the following:

Every interpretation has an inbuilt mechanism of truth that determines
whether objects in the domain are related in a certain way or not.

Along with the usual interpretation of the connectives, our formalism must capture
the following ideas:

Interpret the predicate P as the property or relation φ(P) on a domain.
Interpret the predicate ≈ as = .
For the open formula Px, first assign x to an element of the domain via
a valuation. If the assigned element has the property φ(P), then Px is
satisfied.
If at least one object in the domain has the property φ(P), then the for-
mula ∃xPx is satisfied.
If every object in the domain has the property φ(P), then the formula
∀xPx is satisfied.

We implement these ideas and present the formal semantics of FL.
An interpretation is a pair I = (D,φ), where D is a nonempty set, called the

domain or universe of I, and φ is a function associating function symbols with
partial functions on D and predicates with relations on D. Further, φ preserves arity,
that is,

(a) If P is a 0-ary predicate (a propositional variable), then φ(P) is a sentence in
D, which is either true or false.

(b) If P is ≈, then φ(P) is the equality relation on D, expressing “same as”, that
is, φ(P) = {(d,d) : d ∈ D}.

(c) If P is an n-ary predicate for n≥ 1, other than≈, then φ(P) is an n-ary relation
on D, a subset of Dn.

(d) If f is a 0-ary function symbol (a constant, a name), then φ(f) is an object in
D; that is, φ(f) ∈ D.

(e) If f is an n-ary function symbol, n≥ 1, then φ(f) : Dn→D is a partial function
of n arguments on D.

5.4. SEMANTICS OF FL 143

Sometimes, the domain of an interpretation I = (D,φ) is written as DI and the map
φ as φ I .

A valuation under the interpretation I = (D,φ) is a function � that assigns terms
to elements of D, which is first defined for variables, with �(x) ∈ D for any variable
x, and then extended to terms satisfying:

(i) If f is a 0-ary function symbol, then �(f) = φ(f).
(ii) If f is an n-ary function symbol, n≥ 1, and t1, . . . , tn are terms, then

�(f (t1, . . . , tn)) = φ(f)(�(t1), . . . ,�(tn)).

For a valuation �, a variable x, and an object a ∈ D, we write �[x �→ a] (also �x
a) as a

new valuation obtained from � which fixes x to a, but assigns every other variable to
what � assigns. That is,

�[x �→ a](x) = a , �[x �→ a](y) = �(y) for y �= x.

A state I� is a triple (D,φ ,�), where I = (D,φ) is an interpretation and � is a valuation
under I.

Let X ,Y,Z be formulas and let I� = (D,φ ,�) be a state. Satisfaction of a formula in
the state I� is defined inductively by the following. We read I� � X as I� satisfies X
or as I� verifies X or as I� is a state-model of X . Similarly, I� � X is read as I� does
not satisfy X , or I� does not verify X , or I� is not a state-model of X , or I� falsifies X .

1. I� ��.
2. I� �⊥.
3. For a 0-ary predicate P, I� � P iff φ(P) is a true sentence in D.

4. For terms s, t, I� � (s≈ t) iff �(s) = �(t) as elements of D.

5. For an n-ary predicate P other than ≈, n≥ 1, and terms t1, . . . , tn,
I� � P(t1, . . . , tn) iff (�(t1), . . . ,�(tn)) ∈ φ(P).
(when the objects �(t1), . . . ,�(tn) are related by the relation φ(P).)

6. I� � ¬X iff I� � X .

7. I� � X ∧Y iff both I� � X and I� � Y hold.
8. I� � X ∨Y iff at least one of I� � X or I� � Y holds.
9. I� � X → Y iff at least one of I� � X or I� � Y holds.

10. I� � X ↔ Y iff either I� � X and I� � Y hold, or I� � X and I� � Y hold.
11. I� � ∀xY iff for each d ∈ D, I�[x �→d] � Y.
12. I� � ∃xY iff for at least one (some) d ∈ D, I�[x �→d] � Y.

If the domain of a state-model has m elements, we say that the state-model has
m elements. Finite or infinite state-models are the state-models whose domains are
finite or infinite nonempty sets, respectively. We say that a formula has a finite (infi-
nite) state-model iff there exists a state whose domain is a nonempty finite (infinite)
set and the state is a state-model of the formula.

Observe that we have not yet defined when an interpretation satisfies a formula.
We have only defined when a state under a given interpretation would satisfy a for-
mula.

144 CHAPTER 5. FIRST ORDER LOGIC

EXAMPLE 5.8. Consider the formulas Pxy and Pc f (c) along with the following
interpretations I, J and valuations �, m :

I = (N,φ), where J = (H,ψ), where
N is the set of all natural numbers, H is the set of all human beings,
φ(P) = ‘is less than’, ψ(P) = ‘is a brother of’,
φ(c) = 0, ψ(c) = Rajiv,
φ(f) = ‘successor function’, ψ(f) = ‘mother of’,
�(x) = 0, �(y) = 1. m(x) = Rajiv, m(y) = Sanjay.

As we know, Rajiv and Sanjay are the grand sons of Pandit Jawaharlal Nehru.
Determine whether

(a) I� � Pxy (b) I� � Pc f (c) (c) Jm � Pxy (d) Jm � Pc f (c).

Observe that f is a unary function symbol, and it is associated with the functions
‘successor of’ and ‘mother of’, which take only one argument. Similarly, P is a
binary predicate, and it is associated with binary relations ‘less than’ and ‘is a brother
of’.

(a) To check whether the state I� = (N,φ ,�) is a state-model of Pxy, we see that I�
� Pxy iff (�(x),�(y))∈ φ(P) iff (0,1) is a member of the relation ‘less than’ iff 0 < 1.
This is true in N. Therefore, I� � Pxy.

(b) I� � Pc f (c) iff (�(c),�(f (c))) ∈ φ(P) iff (φ(c),φ(f)(φ(c))) ∈ φ(P) iff (0, suc-
cessor of 0) ∈ φ(P) iff 0 < 1. Since this is true in N, I� � Pc f (c).

(c) Jm � Pxy iff (m(x),m(y)) ∈ ψ(P) iff (Rajiv, Sanjay) ∈ ‘is a brother of’ iff Rajiv
is a brother of Sanjay. This latter sentence is true. Hence Jm � Pxy.

(d) Jm �Pc f (c) iff (m(c),m(f (c)))∈ψ(P) iff (ψ(c),ψ(f)(ψ(c)))∈ψ(P) iff (Rajiv,
mother of Rajiv) ∈ ‘is a brother of’ iff Rajiv is a brother of his own mother, which is
not true. Thus, Jm � Pc f (c).

We end this section with an important technical result, which will be used at
many places without mention. Roughly, it says that substitution of a free variable by
a term can be done either at the formula, or at the valuation; so that when interpreted,
they have the same effect.

Lemma 5.1 (Substitution Lemma). Let t be a term free for a variable x in a for-
mula Y. Let s be any term. Let I� = (D,φ ,�) be a state. Then

(1) �[x �→ �(t)](s) = �(s[x/t]);
(2) I�[x �→�(t)] � X iff I� � X [x/t].

Proof. Let us write the valuation �[x �→ �(t)] as m. Then m(x) = �(t); and m(y) = �(y)
for all variables y �= x.

(1) We use induction on the level of a term s. If s = c, a constant, then m(c) = φ(c) =
�(c[x/t]). If s = x, the given variable, then m(x) = �(t) = �(x[x/t]). If s = y �= x, then
m(y) = �(y) = �(y[x/t]). So, suppose s = f (t1, . . . , tn), where

m(ti) = �(ti[x/t]) for 1≤ i≤ n.

5.4. SEMANTICS OF FL 145

Then we have

m(s) = m(f (t1, . . . , tn)) = φ(f)(m(t1), . . . ,m(tn))

= φ(f)(�(t1[x/t]), . . . ,�(tn[x/t])) = �(f (t1[x/t], . . . , tn[x/t]))

= �(f (t1, . . . , tn)[x/t]) = �(s[x/t]).

(2) We use induction on the number of connectives and quantifiers occurring in X .
If X is �, then both I� and Im satisfy X . If X is ⊥, then both I� and Im falsify it. If
X = P(t1, . . . , tn), then using (1), we have

Im � X iff Im � P(t1, . . . , tn) iff (m(t1), . . . ,m(tn)) ∈ φ(P)
iff (�(t1[x/t]), . . . ,�(tn[x/t])) ∈ φ(P) iff I� � P(t1, . . . , tn)[x/t]

iff I� � X [x/t].

In the inductive step, suppose X = ¬Y, or X = (Y ◦ Z) for ◦ ∈ {∧,∨,→,↔}, or
X = ∀yZ, or X = ∃yZ. Lay out the induction hypothesis that

Im � Y iff I� � Y [x/t], Im � Z iff I� � Z[x/t].

When X =¬Y, we see that Im � X iff Im �Y iff I� �Y [x/t] iff I� � X [x/t]. The cases
of other connective are similar. When X = ∀yZ, there are two cases,

(i) x does not occur free in Z.
(ii) x occurs free in Z.

(i) In this case, the valuations � and m agree on all variables that are free in Z; and
also Z[x/t] = Z. Thus the conclusion follows.
(ii) Here, X = ∀yZ and x occurs free in Z. Since t is free for x in X , we know that y
does not occur in t. Also, t is free for x in Z. Hence for each d ∈ D, we obtain

�[y �→ d](t) = �(t), �[y �→ d][x �→ �(t)] = �[x �→ �(t)][y �→ d] = m[y �→ d].

Since x occurs free in X , x �= y; consequently, X [x/t] = ∀y(Z[x/t]). Now,

I� � X [x/t] iff I� � ∀y(Z[x/t]) iff for each d ∈ D, I�[y�→d] � Z[x/t]. (5.1)

To apply the induction hypothesis, we must know what is the corresponding m for
the valuation �[y �→ d]. Let us write that as µ. Then

µ = �[y �→ d][x �→ (�[y �→ d])(t)] = �[y �→ d][x �→ �(t)] = m[y �→ d].

Using the induction hypothesis on the last statement of (5.1), we have

I� � X [x/t] iff for each d ∈ D, Iµ � Z

iff for each d ∈ D, Im[y�→d] � Z iff Im � ∀yZ iff Im � X .

The other quantifier case is similar to this. �

146 CHAPTER 5. FIRST ORDER LOGIC

Exercises for § 5.4
1. Let B be a formula, c a constant, x,y distinct variables, D a domain, and let

d,e ∈ D. Show the following:

(a) �[x �→ d][x �→ e] = �[x �→ e]
(b) �[x �→ d][y �→ e] = �[y �→ e][x �→ d]
(c) ∀y(B[x/c]) = (∀yB)[x/c]
(d) ∃y(B[x/c]) = (∃yB)[x/c]

2. Let I = (D,φ ,�) be a state, and let the variable y be free for x in a formula X .
Show that I�[x �→y][y�→d] � X iff I�[y�→d][x �→d] � X .

3. Suppose that I�=(D,φ ,�) is a state; x1, . . . ,xn are variables; t1, . . . , tn are terms;
f ia an n-ary function symbol; and Y is a formula. Then show the following:

(a) φ(f (x1, . . . ,xn)[x1/t1, . . . ,xn/tn]) = φ(f)(φ(t1), . . . ,φ(tn))
(b) I� � Y [x1/t1, . . . ,xn/tn] iff I�[x1 �→t1,...,xn �→tn] � Y

4. Let f be a binary function symbol, and let P be a unary predicate. For each of
the following formulas, find a state-model, and a falsifying state.
(a) ∀x(f (x,y)≈ y) (b) ∃y∀x(f (x,y)≈ y) (c) ∃x(Px∧∀yP f (x,y))

5. Determine whether the state I� = (D,φ ,�) satisfies the following formulas,
where D = {1,2}, φ(c) = 1, φ(P) = {1}, φ(Q) = {(1,1),(1,2)}, and � is
some valuation.

(a) ∀x(Pc∨Qxx)→ Pc∨∀xQxx (b) ∀x(Pc∧Qxx)→ Pc∨∀xQxx
(c) ∀x(Pc∨Qxx)→ Pc∧∀xQxx (d) ∀x(Pc∧Qxx)→ Pc∧∀xQxx

6. Let I� be a state, and let X be a formula. If I� � X , is it necessary that I� � ¬X?
Conversely, if I� � ¬X , does it imply that I� � X?

5.5 Translating into FL
We will consider some examples of symbolizing English sentences into FL.

EXAMPLE 5.9. With the vocabulary Hx : x is a human being, Mx : x is mortal, the
Aristotelian sentences are translated as follows:

All human beings are mortal : ∀x(Hx→Mx)
Some human beings are mortal : ∃x(Hx∧Mx)
No human being is mortal : ∀x(Hx→ ¬Mx)
Some human beings are not mortal : ∃x(Hx∧¬Mx)
All human beings are not mortal : ¬∀x(Hx→Mx)

The last two sentences mean the same thing. Though the last sentence starts with
an ‘all’, the quantifier is really ‘some’. This usually (not always) happens in the
presence of a ‘not’.

Notice that the quantifier ∃ goes with the connective ∧, and ∀ goes with→ . This
is again usual for sentences in natural languages.

5.5. TRANSLATING INTO FL 147

EXAMPLE 5.10. Each one is older than his younger sisters.
We start with identifying the names, definite descriptions, and predicates. We do

not have any names here. We cannot take ‘his younger sister’ as a definite descrip-
tion. The sentence says that

For each x, x is older than y if y is a younger sister of x.
In ‘y is a younger sister of x’ the article ‘a’ refers to ‘any’ as per the original sentence.
Our semi-formal sentence looks as follows:

For each x, for each y, if y is a younger sister of x, then x is older than y.
With the vocabulary as

Oxy : x is older than y, Sxy : y is a younger sister of x.

we have the symbolization: ∀x∀y(Sxy→ Oxy).

EXAMPLE 5.11. Translate: If there is a man on Mars, then he has fifteen fingers.
In this sentence there is an ambiguity in the scope of the quantifier ‘there is’. The

sentence means the following:
Suppose there exists a man on Mars. Call that man x. Then x has fifteen
fingers.
Take any man on Mars; he has fifteen fingers.

With suitable vocabulary, the sentence is translated as ∀x(M(x)→ F(x))

EXAMPLE 5.12. To translate the sentence “If two persons fight over third one’s
property, then the third one gains”, we use the vocabulary:

Fxyz : x and y fight over z, Gx : x gains, h(x) : property of x.

The sentence may be symbolized as ∀x∀y∀z(Fxyh(z)→ Gz).
Notice that this symbolization allows a person to fight with himself and also gain

his own property. To convey the fact that there are exactly three distinct persons
involved here, you can use the equality predicate and symbolize the sentence as
∀x∀y∀z(¬(x≈ y)∧¬(y≈ z)∧¬(z≈ x)∧Fxyh(z)→ Gz).

EXAMPLE 5.13. For each pair of primes differing by 2, there exists a pair of
greater primes differing by 2.

∀x∀y(Px∧Py∧Dxy→∃z∃w(Gzx∧Gwy∧Pz∧Pw∧Dzw)).

What do the predicates P,G,D stand for?

EXAMPLE 5.14. Translate the following argument into an FL-consequence:
A politician praises a person if the person has helped him. Some bandit
helped no politicians. If all politicians praise a bandit, then the bandit
must be none other than Robin Hood. Therefore, there exists a bandit
other than Robin Hood.

We use the following vocabulary:
Px: x is a politician, Qx: x is a person, Bx: x is a bandit,
Rxy: x praises y, Hxy: x has helped y, r : Robin Hood.

As in PL, the symbol !� stands for ‘therefore’. And we have the consequence as

{∀x∀y(Px∧Qy→ (Hyx→ Rxy)), ∃x(Bx∧∀y(Py→ ¬Hxy)),
∀x(Bx∧∀y(Py∧Ryx→ (x≈ r))} !�∃x(Bx∧¬(x≈ r)).

148 CHAPTER 5. FIRST ORDER LOGIC

Exercises for § 5.5
1. Translate the following into FL using suggested vocabulary:

(a) All men are women. [Mx, Wx]
(b) No man is a woman. [Mx, Wx]
(c) Some men are women. [Mx, Wx]
(d) Some men are not women. [Mx, Wx]
(e) All men are sons of some woman. [Mx, Wx, Sxy]
(f) Some man is not a son of any woman. [Mx, Wx, Sxy]
(g) Any man is not a husband of any woman. [Mx, Wx, Hxy]
(h) Some man is not a husband of any woman. [Mx, Wx, Hxy]
(i) Some man is not a husband of some woman. [Mx, Wx, Hxy]
(j) Anybody’s brother’s sister is that person’s sister. [Bxy, Sxy, Px]
(k) Ali and Susy have the same maternal grand-father. [f (x), a, s]
(l) If anyone is Susy’s son, then someone is a daughter of Susy’s father’s

nephew. [s, Sxy, Dxy, f (x)]
(m) No student attends every lecture and no lecture is attended by all students.

[Sx, Ax]
(n) If there are no jobs, then nobody would study in an IIT. [Jx, Ix, Sxy]
(o) Successor of a prime number need not be a prime number. [Px, s(x)]
(p) A number is prime or not can be decided in polynomial time. [Px, Dx]
(q) A number is composite or not can be decided in polynomial time. [Cx, Dx]
(r) There always are triples of numbers such that one’s fifth power is the sum

of the fifth powers of the other two. [f (x), Sxy]
(s) The binary relation R is reflexive. [Use Rxy when x is related to y by R.

From this question onwards, you require a different type of translation.]
(t) The binary relation R is an equivalence relation. [Rxy]
(u) The function f is bijective. [Use the notation y≈ f (x)]
(v) The function f is continuous at a point a. [y≈ f (x), a]
(w) The function is not continuous on a set A. [y≈ f (x), ∈, A]
(x) The sequence {xn} does not converge. [| · |, <]
(y) The series ∑∞

n=1 xn is not absolutely convergent. [| · |, <, ∑∞
n=1 xn]

(z) Every even number bigger than four can be expressed as a sum of two
prime numbers. [×, >, +,4]

2. Let Mxy stand for the phrase ‘x is a member of y’, and let Sxy stand for x is a
subset of y’. Express the following as formulas.

(a) Each set has a complement.
(b) For any two sets, there exists a set which is their union.
(c) Any member of a subset is a member of the original set.
(d) For any two sets there exists a set which is their intersection.
(e) There is a set which is a subset of every set, and this set has no member.
(f) For any set there corresponds another set whose members are the subsets

of the first.
3. Symbolize: There is a unique person who authored the book named Logics for

Computer Science. [Hint: Use the equality predicate ≈.]

5.6. SATISFIABILITY AND VALIDITY 149

4. Taking ‘France’ as a name, symbolize the sentence: The present king of France
is bald.

5. Translate the following into FL:

(a) There are more Muslims in India than Pakistan.
(b) There is more water in milk than beans.
(c) There is more water in milk than fat.
(d) There are more Muslims in India than Christians.

6. Explain whether the following sentences mean the same thing or not.

(a) If a mathematician finds a mistake in a proof, then it must be discarded.
(b) If some mathematician finds some mistake in some proof, then it must

be discarded.
(c) For all mathematicians, if one of them finds a mistake in a proof, then it

must be discarded.
7. Translate ∀x(Px∧Qx) and ∃x(Px→Qx) into English by reading P,Q suitably.

5.6 SATISFIABILITY AND VALIDITY
Let A be a formula. We say that A is satisfiable iff some state satisfies it; A is
unsatisfiable iff each state falsifies it; A is valid iff each state satisfies it; and A is
invalid iff some state falsifies it.

EXAMPLE 5.15. Revisit Example 5.8. The formula Pxy is satisfiable since it has
a state-model I�. The formula Pc f (c) is satisfiable since it too has a state-model I�.
The formula Pxy is invalid as the state Im falsifies Pxy. Similarly, since Jm � Pc f (c),
the formula Pc f (c) is also invalid.

For a predicate P, its corresponding relation φ(P) is informally written as P�. For
example, to interpret the formula Px f (yz), we write the interpretation I = (N,φ),
with φ(P) = ‘ <’, φ(f) = ‘sum of so and so’, as I = (N,P�, f �), where P� is ‘<’ and
f � is ‘sum of so and so’. We follow this convention of writing interpretations in the
next example.

EXAMPLE 5.16. Is the formula A = ∀xPx f (x) satisfiable? Is it valid?
Take an interpretation I = (N,P�, f �), where P� is the ‘less than’ relation and f �

is the function ‘plus 5’, i.e., f �(n) = n+5. Let � be a valuation with �(x) = 2.
The state I� � ∀xPx f (x) iff for each n ∈ N, I�[x �→n] � Px f (x). Suppose we want

to verify for n = 3. Now, �[x �→ n] = �[x �→ 3] maps x to 3, and every other variable
y to �(y). However, it does not matter what this �(y) is since y does not occur in the
formula. We see that I�[x �→3] � Px f (x) iff 3 < f �(3) iff 3 < 3+5. Since 3 < 3+5 is
true in N, I�[x �→3] � Px f (x).

Thus the formula ∀xPx f (x) is satisfiable as it has a state-model such as I�. More-
over, where have you used the information �(x) = 2? It seems that had you taken any
other � (e.g., �(x) = 10), then also I� would have satisfied the formula. In fact, for
each n ∈ N, I�[x �→n] � Px f (x) iff n < f �(n) iff n < n+ 5. That is, I� � ∀xPx f (x) for
each � under I. Informally, each state I� interprets the formula as the sentence:

150 CHAPTER 5. FIRST ORDER LOGIC

Each natural number n is less than n+5.

Since N is an infinite set, we have infinite state-models for the formula.
Is the formula also valid? It does not seem likely since there is too much of

arbitrariness in this formula. To see that it is invalid, you must find a state that may
falsify it. For instance, consider the interpretation J = (N, P̄, f �), where P̄ is the
‘greater than’ relation. Take f � as the same ‘plus 5’ as above.

Now, J� � Px f (x) iff for each n ∈ N, �[x �→ n] � Px f (x). For n = 3, we see that
�[x �→ 3] � Px f (x) iff 3 > 3+ 5. As 3 ≯ 3+ 5, J� � Px f (x). That is, the formula
∀xPx f (x) is invalid. Notice that J interprets the formula as the sentence:

Each natural number n is greater than n+5.

We define the notions of consequence and equivalence in FL as follows.
Let Σ be a set of formulas, I an interpretation, and � a valuation under I. The state

I� is a state-model of (or satisfies, or verifies) the set Σ, written as I� � Σ, iff for each
X ∈ Σ, I� � X .

The set Σ is called satisfiable iff Σ has a state-model, i.e., iff for some interpre-
tation I and for some valuation � under I, the state I� is a state-model of Σ.

For a formula B, Σ semantically entails B, written as Σ � B, iff each state-
model of Σ is a state-model of B. For Σ = {X1, . . . ,Xn}, we also write Σ � B as
X1, . . . ,Xn � B. We read Σ � B as “Σ entails B”, “B is a semantic consequence of Σ”,
and also as “the consequence Σ !�B is valid”.

Two formulas A,B are called equivalent, written as A ≡ B, iff each state-model
of A is a state-model of B, and also each state-model of B is a state-model of A. That
is, A≡ B if and only if “for each interpretation I and for each valuation � under I, we
have I� � A iff I� � B.”

EXAMPLE 5.17. Show that ∃y∀xPxy � ∀x∃yPxy.
Informally, the first sentence says that the same y works for each x in such a way

that Pxy holds, while the second sentence asks for existence of a y corresponding to
each given x so that Pxy may hold. Clearly, the first sentence implies the second.

To see it formally, let I = (D,φ) be an interpretation and � a valuation under I.
Assume that I� � ∃y∀xPxy. This means φ(P) is some subset of D×D, and for some
d ∈ D, for each d� ∈ D, we have (d�,d) ∈ φ(P). It demands that

(d�1,d) ∈ φ(P), (d�2,d) ∈ φ(P), (d�3,d) ∈ φ(P), . . .

Then for each d� ∈ D, we have a corresponding element of D, here it is d ∈ D, such
that (d�,d) ∈ φ(P). Thus, I� � ∀x∃yPxy.

EXAMPLE 5.18. Show that ∀x∃yPxy � ∃y∀xPxy.
We try with an interpretation. Let I = (D,P�), where D = {2,3} and P� =

{(2,3),(3,2)}. Suppose �(x) = 2, �(y) = 3. To check I� � ∀x∃yPxy, we must check
whether both of

I�[x �→2] � ∃yPxy and I�[x �→3] � ∃yPxy (5.2)

hold. The first entailment in (5.2) holds when at least one of

I�[x �→2][y�→2] � Pxy or I�[x �→2][y�→3] � Pxy (5.3)

5.6. SATISFIABILITY AND VALIDITY 151

holds. The first entailment in (5.3) does not hold since (2,2) �∈ P�. The second one
in (5.3) holds since (2,3) ∈ P�. Therefore, I�[x �→2] � ∃yPxy in (5.2) holds.

We must check whether the second entailment I�[x �→3] � ∃yPxy in (5.2) holds. For
this, at least one of the following must hold:

I�[x �→3][y�→2] � Pxy or I�[x �→3][y�→3] � Pxy. (5.4)

The first entailment in (5.4) holds since (3,2) ∈ P�. Consequently, I�[x �→3] � ∃yPxy
holds. The conditions in (5.2) are satisfied; thus I� � ∀x∃yPxy.

For I� � ∃y∀xPxy, we must have

I�[y�→2] � ∀xPxy or I�[y�→3] � ∀xPxy. (5.5)

The first entailment in (5.5) demands

I�[y�→2][x �→2] � Pxy and I�[y�→2][x �→3] � Pxy. (5.6)

As (2,2) �∈ P�, the first one in (5.6) does not hold. Consequently, the first one in (5.5)
does not hold. But the second one might. The second entailment in (5.5) demands

I�[y�→3][x �→2] � Pxy and I�[y�→3][x �→3] � Pxy. (5.7)

As (3,3) �∈ P�, the second one in (5.7) does not hold. Consequently, the second one
in (5.6) does not hold.

That is, the demands of (5.5) are not met. Thus, I� � ∃y∀xPxy.
Since I� � ∀x∃yPxy but I� � ∃y∀xPxy, we conclude that ∀x∃yPxy � ∃y∀xPxy.

Again, to see that ∀x∃yPxy � ∃y∀xPxy informally, take the domain as N and P as
the relation of ‘less than’. Then, ∀x∃yPxy says that

For each natural number, there is a larger natural number.

The sentence ∃y∀xPxy says that

There is a largest natural number.

We see that the first one is true, whereas the second is false, in N. Therefore, the
consequence ∀x∃yPxy !�∃y∀xPxy is not valid.

EXAMPLE 5.19. Let t be a term free for a variable x in a formula X . We show that
∀xX → X [x/t].

Let I� = (D,φ ,�) be a state. If I� � ∀xX , then I� � ∀xX → X [x/t]. So, suppose
that I� � ∀xX . Then for each d ∈D, I�[x �→d] � X . In particular, I�[x �→�(t)] � X . However,
this is same as I� � X [x/t]. Therefore, I� � ∀xX → X [x/t].

EXAMPLE 5.20. We show that ∃x¬X ≡ ¬∀xX .
Let I� = (D,φ ,�) be a state. Now, I� � ∃x¬X iff for some d ∈D, I�[x �→d] � ¬X iff

for some d ∈ D, I�[x �→d] � X iff it is not the case that for each d ∈ D, I�[x �→d] � X iff
I� � ¬∀xX .

152 CHAPTER 5. FIRST ORDER LOGIC

Exercises for § 5.6
1. Let P be a unary predicate, Q a binary predicate, f a binary function symbol,

and let x,y,z be variables. Let I =(N,P�,Q�, f �) be an interpretation where P�=
{m ∈ N : m is odd}, Q� be the ‘less than’ relation, and f �(m,n) = m+ n. Let
�(x) = 3,�(y) = 4,�(z) = 0. Decide whether the state I� satisfies the following
formulas:

(a) P f x f x f x f xy
(b) ∀x∀yQx f (xy)→∀zQz f (xz)
(c) ∀x∀y(Px∧Py→ P f (xy))↔∀z(Px∧Py→ P f (xy))
(d) ∀y(¬P f (xy)↔ P f (yz))∨∀x(Qxy→∃y(Qzy∧Qyz))

2. Try to construct state-models for each of the following (sets of) formulas, and
determine their satisfiability and validity:

(a) ∀x∀y∀z(Pxyz→ ¬Qyz)
(b) ∀x∀y(Pxy→ (¬Pxy→ Qxy f (y)))
(c) ∀x∃y(Px→ Qy)→∃y∀x(Px→ Qy)
(d) ∀x∃y∃zPxyz∧∀x∀y(Pxyy→ ¬Pxxy)
(e) ∀x∃y∀z((Pxy↔ Pyz)∨ (pxy↔ ¬Pyx))
(f) ∃y∀x(Pxy→ Pyx)∧ (Px f (x)↔ Pc f (c))
(g) ∃xPx f (x)↔ P f (x)x∧Qxc∧ (Pcc→ ¬Qc)
(h) ∀x∀y(Pxy→ Pyx)∧∃x∃y(Qxyz↔ Qyxz∧Qyzx)
(i) ∀x∀y∀z((Pxyz→ ¬Qyz)∧ (Qyz∨Qxy)∧ (Qyz→ ¬Pxyz))
(j) {∀x¬Pxx,∃xQx,∀x∃yPxy,∀x(Qx→∃yPyx)}
(k) {∀x(Px→ Qx),∀x(Qx→ Rx),¬∃x(Px∧Qx)}
(l) {∀x¬Pxx,∀x∃yPxy,∀x∀y∀z(Pxy∧Pzy→ Pzx)}

(m) {∀x(Px∨Qx)→∃xRx,∀x(Rx→ Qx),∃y(¬(Py→ Qy))}
3. Determine whether the following consequences are valid.

(a) {P(f (c),g(c)),P(f (c),c)} !�Q(c, f (c))
(b) ∀x∀y(Pxy∧Pyx) !�∃x∃y(¬Pxy∧Pxy)
(c) {∃xPxx,∀x∀yPxy} !� (x≈ y)}
(d) {∃xPx,∃xQx} !�∃x(Px∧Qx)
(e) ∀xPx→ S !�∀x(Px→ S), where S is a sentence.
(f) ((∀x(¬Px↔ P f (x))∨ (¬Qx↔ Q f (f (x))))∧∃y(Py→ Qy)) !�⊥

4. Let X be a formula. Prove that ∅ � X iff Σ � X for each set of formulas Σ.

5.7 SOME METATHEOREMS
In Examples 5.8-5.17, we only considered how the predicates and function symbols
appearing in the formulas were interpreted. There was no need of considering how
the other predicates or function symbols of FL would be interpreted for checking the
satisfiability or validity of the formulas concerned.

Theorem 5.2 (Relevance Lemma). Let X be a formula, and let I� = (D,φ ,�) and
Jm = (D,ψ,m) be states. Assume that for each predicate P occurring in X , φ(P) =
ψ(P); for each function symbol occurring in X , φ(f) = ψ(f); and for each variable
x occurring free in X , �(x) = m(x). Then I� � X iff Jm � X .

5.7. SOME METATHEOREMS 153

Proof. We use induction on the total number of occurrences of connectives and quan-
tifiers in X . In the basis step, we observe that X is in one of the following forms:

(i) � (ii) ⊥ (iii) a 0-ary predicate A (iv) (s≈ t) for terms s, t
(v) P(t1, . . . , tn), for an n-ary predicate P �=≈ and terms t1, . . . , tn.

We consider these cases separately.

(i) Both I� �� and Jm ��.
(ii) Both I� �⊥ and Jm �⊥.
(iii) I� � B iff φ(A) is true in D iff ψ(Y) is true in D iff Jm � A.

(iv) Since all variables appearing in (s ≈ t) are free variables, we have �(x) = m(x)
for each variable occurring in (s ≈ t). It follows that �(s) = m(s) and �(t) = m(t).
Hence, I� � (s≈ t) iff �(s) = �(t) iff m(s) = m(t) iff Jm � (s≈ t).

(v) Under the given conditions, �(t) = m(t) for any term t. Now,

I� � P(t1, . . . , tn) iff (�(t1), . . . ,�(tn)) ∈ φ(P)
iff (m(t1), . . . ,m(tn)) ∈ φ(P) since �(ti) = m(ti)

iff (m(t1), . . . ,m(tn)) ∈ ψ(P) iff Jm � P(t1, . . . , tn).

Lay out the induction hypothesis that for any formula having total number of
occurrences of connectives and quantifiers less than k, the statement holds. Let A be
a formula having this number as k. Then we have the following cases:

(a) A = ¬B for some formula B.
(b) A = (B∗C) for some formulas B,C and ∗ ∈ {∧,∨,→,↔}.
(c) A = ∃xB for some formula B and some variable x.
(d) A = ∀xB for some formula B and some variable x.

The cases (b) and (d) are similar to the cases (a) and (c), respectively.

(a) I� � ¬B iff I� � B iff Jm � B (induction hypothesis) iff Jm � ¬B.

(c) Suppose that I� � ∃xB. Then for some d ∈ D, I�[x �→d] � B. Now, VB ⊆ VA ∪ {x}.
For each y ∈ VA, y �= x, we have �[x �→ d](y) = �(y) = m(y) = m[x �→ d](y), and
�[x �→ d](x) = d = m[x �→ d](x). That is,

�[x �→ d](z) = m[x �→ d](z) for each z ∈VB.

By the induction hypothesis, Jm[x �→d] � B. It follows that Jm � ∃xB. Similarly, Jm �
∃xB implies I� � ∃xB. �

If for each element x in the domain of the definition D of two functions f and
g, we have f (x) = g(x), we say that the functions agree on D. Informally speaking,
the Relevance lemma asserts that if two states agree on all free variables, predicates,
and function symbols occurring in a formula, then either both satisfy the formula, or
both falsify the formula.

A sentence A does not have any free variables. Let � and m be two valuations
under an interpretation I. Vacuously, � and m agree on all free variables of A. By the

154 CHAPTER 5. FIRST ORDER LOGIC

Relevance Lemma, I� � A iff Im � A. Thus satisfiability of sentences is independent
of the valuations; an interpretation interprets a sentence. We may generalize a bit by
specifying how an interpretation may satisfy a formula.

An interpretation I satisfies a formula A, written as I � A, iff for each valuation
� under I, the state I� � A. We also read I � A as I verifies A or as I is a model of A.
Analogously, we read I � A as I does not satisfy A, or I does not verify A, or I is not
a model of A, or as I falsifies A. The interpretation I is a model of a set of formulas Σ
(also read as I satisfies Σ or as I verifies Σ), written as I � Σ, iff I � A for each A ∈ Σ.
A model is called finite or infinite according as its domain is finite or infinite.

EXAMPLE 5.21. Let A = ∀x∀y(Pxa∧Pyx → ¬Pya). Take I = (D,P�,a�), where
D = {a�,b�,c�} and P� = {(a�,a�),(b�,a�),(c�,a�)}. Here, we are implicitly writing
φ(P) = P�, and φ(a) = a�. Now, does the interpretation I satisfy A?

We start with a valuation � mapping the relevant variables to D. Let �(x) = a� and
�(y) = b�. We must first decide whether the state I� satisfies A or not.

I� � A iff for each d ∈ D, I�[x �→d] � ∀y(Pxa∧Pyx→ ¬Pya)

iff I�[x �→a�] � ∀y(Pxa∧Pyx→ ¬Pya), I�[x �→b�] � ∀y(Pxa∧Pyx→ ¬Pya),

and I�[x �→c�] � ∀y(Pxa∧Pyx→ ¬Pya).

For the first out of the three above, we see that

I�[x �→a�] � ∀y(Pxa∧Pyx→ ¬Pya)

iff I�[x �→a�][y�→a�] � (Pxa∧Pyx→ ¬Pya), I�[x �→a�][y�→b�] � (Pxa∧Pyx→ ¬Pya),

and I�[x �→a�][y�→c�] � (Pxa∧Pyx→ ¬Pya).

As φ(a) = a�, the first of the above holds iff whenever both (a�,a�) ∈ P� and
(a�,a�) ∈ P�, we have (a�,a�) �∈ P�. This is false since (a�,a�) ∈ P�. Hence,

I�[x �→a�][y�→a�] � (Pxa∧Pyx→ ¬Pya).

Then, I�[x �→a�] � ∀y(Pxa∧Pyx→ ¬Pya), I� � ∀x∀y(Pxa∧Pyx→ ¬Pya); and conse-
quently,

I � ∀x∀y(Pxa∧Pyx→ ¬Pya).

It would be easier to see informally how the interpretation works. The sentence
∀x∀y(Pxa∧Pyx→ ¬Pya) would be satisfied under the interpretation I provided that
for each possibility for x and y as elements of the domain D, the sentence holds. Since
D = {a�,b�,c�} has three elements, and there are two variables x,y to be instantiated
to these elements, we would have to consider the following nine sentences:

1. If (a�,a�) ∈ P� and (a�,a�) ∈ P�, then (a�,a�) �∈ P�.
2. If (a�,a�) ∈ P� and (b�,a�) ∈ P�, then (b�,a�) �∈ P�.

...
9. If (c�,a�) ∈ P� and (c�,c�) ∈ P�, then (c�,a�) �∈ P�.

5.7. SOME METATHEOREMS 155

All these sentences must hold on D. But the very first sentence does not hold. There-
fore, I � A.

Theorem 5.3 (Relevance Lemma for Sentences). Let A be a sentence, and let I be
an interpretation.

(1) I � A iff I� � A for some valuation � under I.
(2) Either I � A or I � ¬A.

Proof. Since sentences have no free variables, Theorem 5.2 implies that if some
state satisfies a sentence, then every state under the same interpretation satisfies the
sentence. This proves (1). Since any state is either a state-model of A or of ¬A, (2)
follows from (1). �

An interpretation may neither satisfy an open formula nor satisfy its negation.

EXAMPLE 5.22. Let I = (N,P�) be an interpretation of the formula Px, where P� ⊆
N is the set of all prime numbers. Let � and m be valuations under I such that �(x) = 4
and m(x) = 5. Now, I� � Px iff 4 is a prime number; and Im �¬Px iff 5 is not a prime
number. We see that I� � Px and Im � ¬Px. Therefore, I � Px and I � ¬Px.

In fact, one may start with defining satisfiability and validity of sentences; and
then using these, define satisfiability and validity of formulas. To see this, we require
to define two sentences corresponding to each open formula. Let X be a formula
with the only (and all) free variables x1, . . . ,xn. Write X as X [x1, . . . ,xn]. The exis-
tential closure of X , denoted by ∃∗X , is the formula obtained from X by existentially
quantifying over all free variables in it, that is,

∃∗X = ∃x1∃x2 · · ·∃xnX [x1,x2, . . . ,xn].

The universal closure of X , denoted by ∀∗X , is the formula obtained from X by
universally quantifying over all free variables in it, that is,

∀∗X = ∀x1∀x2 · · ·∀xnX [x1,x2, . . . ,xn].

If n = 0, then the formula X is a sentence; consequently, X = ∃∗X = ∀∗X .

Theorem 5.4. Let X be any formula. Let ∃∗X and ∀∗X be the existential and uni-
versal closures of X, respectively.

(1) X is satisfiable iff ∃∗X is satisfiable.
(2) X is valid iff ∀∗X is valid.

Proof. (1) Use induction on n(X), the number of free variables of X . In the basis
step, when n(X) = 0, we have X = ∃∗X and the statement follows. Assume that for
n(X) < k, the statement in (1) holds. Let X be a formula having k free variables;
write X as X [x1, . . . ,xk]. Take Xe = ∃xkX [x1, . . . ,xk]. Then Xe has k−1 free variables;
and the induction hypothesis applies to Xe. Further, ∃∗X = ∃∗Xe.

Suppose X is satisfiable. Let I� � X , where I = (D,φ) is an interpretation and
� is a valuation under I. Suppose �(xk) = d ∈ D. Then � = �[xk �→ d]. And, for this

156 CHAPTER 5. FIRST ORDER LOGIC

d ∈D, I�[xk �→d] � X . That is, I� � Xe, and therefore, Xe is satisfiable. By the induction
hypothesis, ∃∗Xe is satisfiable. As ∃∗X = ∃∗Xe, ∃∗X is satisfiable.

Conversely, suppose ∃∗X is satisfiable. Since ∃∗X = ∃∗Xe, the formula ∃∗Xe is
satisfiable. By the induction hypothesis, Xe is satisfiable. Suppose I� � Xe, where
I = (D,φ) is an interpretation and � is a valuation under I. Now, I� � Xe iff for some
d ∈ D, the state I�[xk �→d] � X . Thus, X is satisfiable.

Proof of (2) is similar to that of (1). �

A state in FL works the same way on a formula as an interpretation (of PL) on a
proposition. Proofs of the following results can be constructed using this analogy.

Theorem 5.5. Let X and Y be formulas.

(1) X ≡ Y iff � X ↔ Y iff (X � Y and Y � X).

(2) � X iff X ≡� iff � � X iff ∅ � X iff ¬X ≡⊥ iff ¬X �⊥.
(3) X is unsatisfiable iff X ≡⊥ iff X �⊥ iff ¬X ≡� iff � ¬X .

Theorem 5.6 (Paradox of Material Implication). A set of formulas Σ is unsatisfi-
able iff Σ � X for each formula X .

Theorem 5.7 (M: Monotonicity). Let Σ ⊆ Γ be sets of formulas, and let X be a
formula.

(1) If Γ is satisfiable, then Σ is satisfiable.
(2) If Σ � X , then Γ � X .

Theorem 5.8 (RA: Reductio ad absurdum). Let Σ be a set of formulas, and let X
be a formula.

(1) Σ � X iff Σ ∪{¬X} is unsatisfiable.
(2) Σ � ¬X iff Σ ∪{X} is unsatisfiable.

Theorem 5.9 (DT: Deduction Theorem). Let Σ be a set of formulas. Let X and Y
be formulas. Σ � X → Y iff Σ ∪{X} � Y.

Exercises for § 5.7
1. Which of the following interpretations I = (D,P�) are models of the formula
∃x∃y∃z(Pxy∧Pyz∧Pzx∧¬Pxz)?

(a) D = N, P� = {(m,n) : m > n}
(b) D = N, P� = {(m,m+1) : m≥ 4}
(c) D = 2N, P� = {(A,B) : A⊆ B}
(d) D = the set of all strings over {0,1}, P� = {(a,b) : a is a substring of b}
(e) D = the set of all strings over {0,1}, P� = {(m,n) : m < n as binary

integers}
2. Let t be a term, and let (D,φ ,�), (D,ψ,m) be states. Suppose that for each

function symbol occurring in t, φ(f)=ψ(f), and for each variable x occurring
in t, �(x)=m(x). Show by induction on the number of occurrences of constants
and variables that �(t) = m(t).

5.8. EQUALITY SENTENCES 157

3. Let D = {0,1,2,3,4,5,6,7,8,9}. Consider the closed formulas

W = ∃x(Px→∃xQx) X = ∀x(Px∨Qx∨Rx∨Sx)
Y = ∃x(Px∧Qx∧Rx∧Sx) Z = ∀x(Px∨∀x(Qx∨∀x(Rx∨∀xSx)))

(a) Construct φ so that (D,φ) satisfies all the four formulas.
(b) Construct ψ so that (D,ψ) falsifies all the four formulas.
(c) Does there exist an interpretation (D,ξ) that satisfies Y ∧Z but falsifies

X ∧W ? If yes, construct ξ , else give reasons why it is not possible.

4. Let X be any formula, and let Y be a formula where the variable x is not free.
Then prove or give counter examples for the following:

(a) Y →∀xX ≡ ∀x(Y → X) (b) Y →∃xX ≡ ∃x(Y → X)
(c) ∀xX → Y ≡ ∀x(X → Y) (d) ∃xX → Y ≡ ∃x(X → Y)
(e) If � Y → X , then � Y →∀xX . (f) If � X → Y , then � ∃xX → Y.
(g) If � Y →∀xX , then � Y → X . (h) If � ∃xX → Y, then � X → Y.

What happens if x is allowed to occur free in Y ?
5. Show the following equivalences:

(a) ∀x∃y(Px→ Qy)≡ ∃y∀x(Px→ Qy)
(b) ∀x∃y(Px→ Qy)≡ ∃xPx→∃yQy
(c) ∃xPx∧∃x¬Px→∃x(Px∧¬Px)≡ ∀x(Px∨¬Px)→∀xPx∨∀x¬Px

5.8 EQUALITY SENTENCES
We have interpreted the special predicate ≈ as the particular relation = on any do-
main. For instance, consider the formula a ≈ b, where a and b are constants. The
only way this formula can be satisfied by an interpretation is that both a and b must
be mapped to the same element in the domain. Instead of ≈, suppose it is a different
predicate, say E. Now, the formula is Eab. There are many ways this formula can
be satisfied. Is it possible to add some restrictions and interpret E as any other pred-
icate, and essentially achieve what = achieves on the domain? Can we capture the
essential properties of the equality predicate and use them as additional premises?

The equality relation is an equivalence relation having the substitutive property.
That is, for any function g, any relation R, and elements a,b,c in the domain of
interpretation, = satisfies the following properties:

a = a.
If a = b, then b = a.
If a = b and b = c, then a = c.
If a = b, then g(. . . ,a, . . .) = g(. . . ,b, . . .).
If a = b, then (. . . ,a, . . .) ∈ R implies (. . . ,b, . . .) ∈ R.

The first three properties above say that = is an equivalence relation and the next two
properties assert that = has the substitutive property. We want to interpret ≈ as any
other predicate and enforce these properties.

158 CHAPTER 5. FIRST ORDER LOGIC

With this understanding, let X be a given formula. Let E be a binary predicate,
which does not occur in X . We replace each occurrence of ≈ with E in X ; and call
the resulting formula X̄ . Let D be a nonempty set. Let φ be a function that associates
all function symbols to partial functions on D, and all predicates to relations on D,
preserving arity. We take φ(E) = Ē, which is a binary relation on D satisfying the
following properties:

(a) Ē is an equivalence relation.
(b) If (s, t)∈Ē, then for all d1, . . . ,di−1,di+1, . . .dn∈D and for each n-ary function

g :Dn→D, (g(d1, . . . ,di−1,s,di+1, . . .dn),g(d1, . . . ,di−1, t,di+1, . . .dn))∈ Ē.
(c) If (s, t)∈Ē then for all d1, . . . ,di−1, di+1, . . . ,dn∈D, for each n-ary relation R⊆

Dn, (d1, . . . ,di−1,s,di+1, . . . tn) ∈ R implies (d1, . . . ,di−1, t,di+1, . . .dn) ∈ R.

Due to the relevance lemma, we need only to prescribe the properties that Ē must
satisfy with regard to the function symbols and the predicates occurring in X .

Our aim is to characterize these special properties of Ē by some first order for-
mulas. For example, the reflexivity property of Ē can be captured by requiring that
∀xExx is always satisfied. The symmetry requirement may be satisfied by imposing
the truth of the sentence ∀x∀y(Exy→ Eyx). Notice that the corresponding sentence
∀x(x≈ x) and ∀x∀y((x≈ y)→ (y≈ x)) are valid in FL since ≈ is interpreted as = .
We thus formulate the equality axioms as follows.

E1. ∀xExx
E2. ∀x∀y(Exy→ Eyx)
E3. ∀x∀y∀z(Exy∧Eyz→ Exz)
E4. For any n-ary function symbol f ,

∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → E f (x1, . . . ,xn) f (y1, . . . ,yn)).

E5. For any n-ary predicate P,
∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → (Px1, . . . ,xn → Py1, . . . ,yn)).

The sentences E1-E3 say that E is an equivalence relation; E4-E5 say that all
function symbols and all predicates respect the equivalence classes of E. Instead of
terms we have used variables in E4-E5. This is enough since from ∀xX , we can
obtain X [x/t] for any term t. These are called equality axioms because when E is
replaced by ≈, all of them are valid sentences.

Our plan is to replace ≈ by E, adjoin E1-E3, instances of E4-E5 for all function
symbols and all predicates used in the context; and then interpret E as an ordinary
binary predicate. Of course, one of the interpretations of E can be the equality rela-
tion = . But E can also be interpreted as any other binary relation. Will satisfiability
or validity remain intact?

EXAMPLE 5.23. Consider the set of formulas A = {∀x(Pxa → Qx), f (a) ≈ b}.
Following our proposal, we form the set

A� ={∀x(Pxa→ Qx),E f (a)b, ∀xExx,∀x∀y(Exy→ Eyx),

∀x∀y∀z(Exy∧Eyz→ Exz), ∀x∀y(Exy→ E f (x) f (y)),

∀x∀y∀u∀v(Exu∧Eyz→ (Pxy→ Puz)), ∀x∀u(Exu→ (Qx→ Qu))}.

5.8. EQUALITY SENTENCES 159

If A has a model, extend this model (since E is new to A) by interpreting the predicate
E as = . The extended model is a model of A�. Similarly, if A is valid, so is the
conjunction of all sentences in A�. The reason is that the equality axioms are valid
when E is replaced by ≈ .

Conversely, suppose A� has a model. Here, E is interpreted as any binary predi-
cate and not as the equality relation = . Thus, the elements of the domain related by
E are not necessarily equal. Since E is an equivalence relation, we take its equiva-
lence classes and then all elements related by this E become a single element, so to
say. In the new domain of the equivalence classes, E behaves as ‘=’.

Example 5.23 gives an idea for generating models if we replace ≈ with E so that
satisfiability and/or validity may be preserved.

Let Σ be a set of formulas in at least one of which ≈ occurs. Assume that E is
never used in any formula. Construct the sets Σ� and ΣE as follows:

Σ� ={Y : Y is obtained by replacing each occurrence of (s≈ t) by Est in X , for
X ∈ Σ and for terms s, t}.

ΣE ={∀xExx, ∀x∀y(Exy→ Eyx), ∀x∀y∀z(Exy∧Eyz→ Exz)}
∪{∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → E f (x1, . . . ,xn) f (y1, . . . ,yn)) :

f is an n-ary function symbol occurring in Σ}
∪{∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → (Px1, . . . ,xn → Py1, . . . ,yn)) :

P is an n-ary predicate occurring in Σ}.

When Σ = {X}, we write Σ� as X �, and ΣE as XE . We call the sentences in ΣE as the
equality sentences appropriate to Σ.

Let � be a valuation under an interpretation I = (D,φ) of the set Σ� ∪ΣE . Notice
that E is interpreted as φ(E). Suppose I� � Σ� ∪ΣE . Since the first three sentences
in ΣE are true in I�, E is an equivalence relation on D. For each d ∈ D, write the
equivalence class to which d belongs, as [d]. Let [D] be the set of all equivalence
classes of E. That is,

[d] = {s ∈ D : (d,s) ∈ φ(E)} and [D] = {[d] : d ∈ D}.

The equivalence classes in [D] satisfy the following properties:

(d,d�) ∈ φ(E) iff [d] = [d�], (d,d�) �∈ φ(E) iff [d]∩ [d�] =∅.

Define the interpretation J = ([D],ψ), where the map ψ assigns function symbols
and predicates to functions and relations over [D] as in the following:

1. For any n-ary function symbol f , ψ(f) is a partial function from [D]n to [D]
with ψ(f)([d1], . . . , [dn]) = [φ(f)(d1, . . . ,dn)]

2. For any n-ary predicate P, ψ(P)⊆ [D]n with ([d1], . . . , [dn]) ∈ ψ(P) iff
(d1, . . . ,dn) ∈ φ(P).

For 0-ary predicates, i.e., propositions P, we declare it as a convention that I � P iff
J � P. This is possible since they are not affected by the equivalence class construc-
tion. We define a valuation �� under J corresponding to the valuation � under I as in
the following:

160 CHAPTER 5. FIRST ORDER LOGIC

(a) ��(x) = [�(x)], for any variable x;
(b) ��(c) = [�(c)], for any constant c; and
(c) ��(f (t1, . . . , tn)) = ψ(f)(��(t1), . . . ,��(tn)), for any n-ary function symbol f and

terms t1, . . . , tn.

The following lemma shows the relation between the states I� and J�� .

Lemma 5.2. Let X be a formula. Let d ∈ D, x a variable, and let t be a term.
Construct X � and XE corresponding to the formula X , as explained earlier. Then

(1) ��[x→ [d]] = (�[x→ d])�;
(2) ��(t) = [�(t)];
(3) if I� � {X �}∪XE , then J�� � X .

Proof. (1) Now, ��[x→ [d]](x) = [d] = [�[x→ d](x)] = (�[x→ d])�(x). And, for y �= x,
��[x→ [d]](y) = ��(y) = [�(y)] = [�[x→ d](y)] = (�[x→ d])�(y).

(2) The proof is by induction on the level of the term t. In the basis step, when t is a
constant c or a variable x, we have ��(c) = [�(c)], and ��(x) = [�(x)], by construction.

Assume the induction hypothesis that for all terms s of level less than m, (2)
holds. Let t be a term of level m. That is, t = f (t1, . . . , tn), where all of t1, . . . , tn are
terms of level less than m. Now,

��(t) = ψ(f)(��(t1), . . . ,��(tn))

= ψ(f)([�(t1)], . . . , [�(tn)]), by the induction hypothesis
= [φ(f)(�(t1), . . . ,�(tn))], by construction
= [�(f (t1, . . . , tn))] = [�(t)].

(3) The proof employs induction on n(X), the number of occurrences of connectives
and quantifiers in X . If n(X) = 0, then X is a proposition or Pt1 . . . tn, or s≈ t. When
X is a proposition, by our convention, J�� � X iff I� � X .

If X is Pt1 . . . tn, then X � = X and XE =∅. In this case,

J�� � X iff J�� � Pt1 . . . tn iff (��(t1), . . . ,��(tn)) ∈ ψ(P)

iff ([�(t1)], . . . , [�(tn)]) ∈ ψ(P) (by (2)) iff (�(t1), . . . ,�(tn)) ∈ φ(P)
iff I� � Pt1 . . . tn iff I� � X iff I� � {X �}∪XE .

If X is (s≈ t), then

J�� � X iff J�� � (s≈ t) iff ��(s) = ��(t) iff [�(s)] = [�(t)] (by (2))
iff (�(s),�(t)) ∈ E iff I� � Est iff I� � {X �}∪XE .

Assume the induction hypothesis that whenever the number of occurrences of
connectives and quantifiers is less than m, the statement (3) holds. Let n(X) = m.
Then X is in one of the following forms:

¬Y, (Y ∧Z), (Y ∨Z), (Y → Z), (Y ↔ Z), ∀xY, ∃xY.

5.8. EQUALITY SENTENCES 161

When X = ¬Y, J�� � X iff J�� �= Y iff I� �= Y � ∪YE (due to induction hypothesis) iff
I� � ¬Y � ∪YE iff I� � {X �}∪XE , since ¬Y � = (¬Y)� and YE = XE . Similarly other
connectives are tackled.

When X = ∀xY, J�� � ∀xY iff for each d ∈ D, J��[x→[d]] � Y iff for each d ∈ D,
J(�[x→d])� � Y (due to (1)) iff for each d ∈ D, I�[x→d] � Y iff I� � X if I� � {X �}∪XE .
The case of X = ∃xY is tackled similarly. �

Theorem 5.10 (Equality Theorem). Let Σ be a set of formulas. Let Σ� be the set of
all formulas obtained from those of Σ by replacing ≈ with E. Let ΣE be the set of
equality sentences appropriate to Σ. Then Σ is satisfiable iff Σ� ∪ΣE is satisfiable.

Proof. Let I� � Σ. The predicate E is new to Σ. For interpreting Σ�, we extend I� by
interpreting E as the equality relation =. The equality sentences in ΣE are satisfied by
the extended I�. Moreover, I� also satisfies all the formulas in Σ�. Hence the extended
I� is a model of Σ� ∪ΣE .

Conversely, suppose I� � Σ� ∪ΣE . Construct the equivalence classes and the inter-
pretation J�� as is done for Lemma 5.2 by adding the equality sentences appropriate
to Σ. Since I� � X for each X ∈ Σ, by Lemma 5.2, J�� � {X �}∪XE for each X ∈ Σ.
Since Σ� ∪ΣE = {X � : X ∈ Σ}∪{XE : X ∈ Σ}, we have J�� � Σ� ∪ΣE . �

The following corollary shows that even validity of formulas and of consequences
can be tackled by interpreting ≈ as E.

Theorem 5.11. Let Σ be a set of formulas, and let X be a formula. Let Σ� be the set of
all formulas obtained from those of Σ by replacing ≈ with E. Let Δ = (Σ∪{X})E be
the set of all equality sentences appropriate to Σ∪{X}. Then, Σ � X iff Σ� ∪Δ � X �.

Proof. Σ � X iff Σ∪ {¬X} is unsatisfiable (by RA) iff (Σ∪ {¬X})� ∪Δ is unsat-
isfiable, by Theorem 5.10. However, (Σ∪ {¬X})� ∪Δ = Σ� ∪Δ∪ {¬X �}. Another
application of RA completes the proof. �

Theorems 5.10-5.11 provide a way to eliminate the equality predicate without
derailing satisfiability and validity. However, the predicate E along with the appro-
priate equality sentences (in ΣE) do not quite account for the equality relation = .
The reason is that the equivalence classes identify a bunch of elements as the same
element but do not make them the same element. The semantic equality is thus never
captured in its entirety by a set of first order sentences without equality. Look at the
following examples.

EXAMPLE 5.24. Does there exist a sentence all of whose models have exactly m
elements?

For k = 1, the sentence A1 = ∀x∀y(x≈ y) does the job.
For k = 2, the sentence A2 is ∀x1∀x2∀x3(((x3 ≈ x1)∨ (x3 ≈ x2))∧¬(x1 ≈ x2)).
In general, take Am as follows:

∀x1∀x2 · · ·∀xm+1(((xm+1 ≈ x1)∨ · · ·(xm+1 ≈ xm))∧¬(x1 ≈ x2)∧ · · ·
∧¬(x1 ≈ xm)∧¬(x2 ≈ x3)∧ · · ·∧¬(x2 ≈ xm)∧ · · ·∧¬(xm−1 ≈ xm)).

162 CHAPTER 5. FIRST ORDER LOGIC

EXAMPLE 5.25. Let Σ = {∀x∀y(x≈ y)}. All models of Σ are singleton sets. Now,

Σ� ∪ΣE = {∀xExx, ∀x∀yExy, ∀x∀y(Exy→ Eyx), ∀x∀y∀z(Exy∧Eyz→ Exz)}.

Consider any nonempty set D and the interpretation I = (D,φ), with φ(E) = D×D.
We see that I is a model of Σ� ∪ΣE . This shows that Σ� ∪ΣE has models of every
cardinality.

EXAMPLE 5.26. Consider the sentence ∀xPx. It has models of all cardinalities.
For instance, with D = {1} and φ(P) = {(1,1)} we have I = (D,φ) � ∀xPx. Also,
J = (N,ψ) with ψ(P) = N×N is a model of ∀xPx. In fact, this happens for all
satisfiable sentences where ≈ does not occur.

Let X be a satisfiable sentence, where ≈ does not occur. Let I = (D,φ) be its
model, and let d ∈ D. Write

D̄ = D∪{di : i ∈ N}, where di �∈ D for any i.

The dis are simply some symbols. For each function symbol f occurring in X , let
ψ(f) treat each of these di along with d the same way as φ(f) treats d. Similarly,
each relation ψ(P) treats each di along with d the same way as φ(P) does to d. Then,
(D̄,ψ) is also a model of X .

This shows that in the absence of ≈, a satisfiable sentence can have models of
arbitrary cardinalities.

Example 5.25 shows that every model of Σ = {∀x∀y(x ≈ y)} has only one ele-
ment, whereas Σ� ∪ΣE = {∀x∀yExy}∪ΣE has models of arbitrary cardinalities. The
technique of inflating a point as is done in Example 5.26 in a model can always be
done in the absence of the equality predicate ≈ . This cannot be done if ≈ is present
as Example 5.24 shows. However, if we are concerned with the issues of satisfiabil-
ity, validity, and consequences, then the equality predicate can be replaced with E by
adding the appropriate equality sentences.

Elimination of the equality predicate will come of help at many places later. It has
two note worthy applications; one in proving completeness of an axiomatic system
for FL, and two, in constructing a model in an abstract fashion. We will come back
to these issues at appropriate places.

Exercises for § 5.8
1. The quantifier ‘there exists exactly one’, written as ∃! may be defined by
∃!xY ≡ ∃x(Y ∧∀z(Y [x/z]→ (x ≈ z)). For n > 1, give similar definitions of
the following new quantifiers:

(a) there exists at most n number of
(b) there exists at least n number of
(c) there exists exactly n number of

2. Let x1, . . . ,xn be variables not occurring in the terms t1, . . . , tn. Show that for
any formula Y, Y [x1/t1, . . . ,xn/tn]≡ ∀x1 · · ·∀xn((x1 ≈ t1) · · ·(xn ≈ tn)→ Y).

3. Complete the proof of Lemma 5.2 by proving the left out cases.

5.9. SUMMARY AND PROBLEMS 163

5.9 SUMMARY AND PROBLEMS

Since PL is not expressive enough, we took up breaking a sentence into parts. Using
the token such as constants, variables, function symbols, predicates, and quantifiers,
the first order logic (FL) has been constructed. The function symbols along with
constants and variables express the definite descriptions by way of terms, and the
predicates express the relations between terms. The two quantifiers (for all, there
exists) quantify over the variables so that propositions or sentences could be formed.

Meanings to the syntactic entities are supplied by taking a nonempty set, called
the domain (or universe of discourse) and then by assigning constants to objects
in the domain, function symbols to concrete partial functions on the domain, and
predicates to relations over the domain. The variables are assigned to elements in
the domain by valuations or assignment functions. The quantifier ‘for all’ and ‘there
exists’ are given meaning through these valuations. Finally, the semantics enables
you to categorize formulas and sentences into four classes such as valid, invalid,
satisfiable or unsatisfiable. The consequences are tackled in a similar manner.

The metaresults such as Monotonicity, reductio ad absurdum, and Deduction
hold FL. We have seen that an open formula is valid iff its universal closure is valid;
and it is satisfiable iff its existential closure is satisfiable. Though the meaning of the
equality predicate is fixed, we tried to replace it with another usual binary predicate.
This could be done by enforcing the equality sentences to be true along with existing
premises.

The modern form of FL is recent compared to the study of PL. After Aristotle
formalized a part of FL in the form of syllogisms, there was a gap of almost two
centuries. The next big leap was taken by Frege (1934, 1984). Later, others followed
the work to give us the first order logic as we know of it today. For an account of
such contributions towards the development of the subject, see Gabbay & Guenthner
(2002). For discussions on theoretical connection of FL to topics such as type theory,
logic programming, algebraic specifications and term rewriting, see the works such
as van Dalen (1989), Gallier (1987), and Sperchneider & Antoniou (1991). The
formal semantics was developed by Tarski in 1933 in a Polish journal. It was later
exposed in Tarski (1944). You may refer Ebbinghaus et al. (1994), Manaster (1978),
Manin (1977), Rautenberg (2010), Shoenfield (1967), and Smullyan (1968) for the
material covered in this chapter.

Problems for Chapter 5
1. Give formal proofs of unique parsing for terms.

2. Prove the unique parsing theorem by first proving a prefix theorem that if a
substring of a formula is also a formula, then it must be equal to the formula.

3. Show that given any expression of FL, it can be determined whether the ex-
pression is a formula or not. Write procedures for determining and parsing
formulas.

4. Prove that each occurrence of a quantifier has a unique scope and hence the
notion of scope is well defined.

164 CHAPTER 5. FIRST ORDER LOGIC

5. Show that free occurrences of a variable in a formula can be defined induc-
tively the following way:

(a) In an atomic formula, each occurrence of a variable is free.
(b) The free occurrences of a variable x in ¬X are the same as those in X .
(c) The free occurrences of a variable x in X ◦Y, for ◦ ∈ {∧,∨,→,↔}, are

the free occurrences of x in X and also the free occurrences of x in Y.
(d) All occurrences of the variable x in ∀xX and also in ∃xX are bound (non-

free) occurrences. If y is a variable different from x, then all free occur-
rences of x in X are the free occurrences of x in ∀yX and in ∃yX .

6. Suppose X is a formula having at least one free occurrence of the variable x,
and t is a term free for x in X . Define X [x/t] inductively.

7. Present the syntax of FL in a prefix (Polish) notation and then prove unique
parsing for that language. Define also the notion of scope in that language.

8. If ‘existence’ is a predicate, then so is ‘non-existence’. Can the predicate of
‘non-existence’ be truthfully interpreted?

9. Show that a formula which does not involve the connectives ¬,→,↔ is satis-
fiable.

10. Let X be a formula having at least one free occurrence of x in it. Let t be
a term free for x in X . Let I = (D,φ) be an interpretation. Suppose � is a
valuation under I such that �(t) = d ∈D. Prove by induction on the number of
occurrences of function symbols in t that I�[x �→d] � X iff I� � X [x/t].

11. Let Σ be a satisfiable set of formulas, and let X be a formula. Show:

(a) If X is valid, then Σ∪{X} is satisfiable.
(b) If Σ∪{X} is unsatisfiable, then for any sentence Y, the set Σ∪{X → Y}

is satisfiable.
12. Let X and Y be formulas. Which of the following hold(s) for a state I�?

(a) If I� � X → Y , then (I� � X implies I� � Y).
(b) If (I� � X implies I� � Y), then I� � X → Y.
(c) If X � Y , then (� X implies � Y).
(d) If (� X implies � Y), then X � Y.

13. Let X ,Y and Z be three sentences. Answer the following:

(a) If X � Y, does it follow that ¬X �� Y ?
(b) If X ∧Y � Z, then does it follow that X � Y and X � Z?
(c) If X ∧Y � Z, then does it follow that X � Y or X � Z?
(d) If X � Y ∨Z, then does it follow that X � Y and X � Z?
(e) If one of X � Y or Z � Y holds, then does X ∨Z � Y hold?
(f) If X � (Y → Z), then do X � Y and/or X � Z hold?

14. Let X be a formula with free variables x1, . . . ,xm. Show that there exists a
state-model of X iff there exists a model of ∃x1 · · ·∃xmX .

15. Let y1, . . . ,yn be all the free variables of a formula X . Let � be any state
under an interpretation I = (D,φ). Show that I � ∀y1 · · ·∀ynX iff for each
(d1, . . . ,dn) ∈ Dn, I�[y1 �→d1]···[yn �→dn] � X .

5.9. SUMMARY AND PROBLEMS 165

16. Let ∀∗X be the universal closure of a formula X . For a set of formulas Σ, let
Σ∗ = {∀∗X : X ∈ Σ}. Let Y be any formula. Show that if Σ � Y, then Σ∗ � Y.
Show also that Σ∗ � Y does not guarantee that Σ � Y.

17. Show that ∃xPx � Pc and ∃xQ(x,c) � Q(c,c), in general.
18. Consider the domains N,Q,R of natural numbers, rational numbers, and real

numbers, respectively.

(a) For each of these domains, construct a sentence which is true in it but
false in the other two.

(b) For each pair of these domains, construct a sentence that is true in both
of them, but false in the other.

(c) Construct an invalid sentence that is true in all the three domains.
(d) Construct a satisfiable sentence that is false in all the three domains.

19. Show that the sentence ∀x∃yPxy∧∀x¬Pxx∧∀x∀y∀z(Pxy∧Pyz→ Pxz) is true
in some infinite domain and is false in some finite domain.

20. Show that the sentence ∀xPxx∧∀x∀y∀z(Pxz→ Pxy∨Pyz)→∃x∀yPxy is true
in any finite domain but is false in some infinite domain.

21. Construct a sentence which is true in a domain with no more than m elements,
but false in some domain with more than m elements where m equals 1, 2, or
3. Can you have a general formula for generating such a sentence?

22. Suppose that a domain of an interpretation is allowed to be empty. What will
be the change in satisfiability and validity of formulas? Will there be formulas
which are valid, but now they become invalid, or the converse?

23. For a set Σ of formulas and a formula X , we say Σ weakly entails X , and write
Σ �w X if and only if for each interpretation I, if I � Σ, then I � X . Show the
following:

(a) If Σ � X , then Σ �w X .
(b) It is not true, in general, that if Σ �w X , then Σ � X .
(c) Suppose no free variable of X occurs free in any formula of Σ. Then,

Σ �w X implies Σ � X .
(d) If Σ is a set of sentences, then Σ �w X implies Σ � X .
(e) If Σ =∅, then Σ �w X implies Σ � X .
(f) The deduction theorem fails for the weak entailment.

24. Translate the following arguments to FL and then check whether they are valid
consequences.

(a) Every computer scientist is a logician and also a programmer. Some
computer scientists are old fashioned. Therefore, there are old fashioned
programmers.

(b) Some computer scientists like all logicians. No computer scientist likes
any old fashioned programmer. Therefore, no logician is an old fash-
ioned programmer.

(c) All doctors take Hippocratic oath. All spouses of the persons who take
Hippocratic oath cannot be relied upon. Therefore, no spouse of any
doctor can be relied upon.

166 CHAPTER 5. FIRST ORDER LOGIC

(d) Everyone who commits a crime receives a jail term. Anyone who re-
ceives a jail term goes to jail. Therefore, if there are no jails, then nobody
commits a crime.

(e) Every businessman likes all his children to study abroad. Therefore, the
eldest child of any businessman is the child of a person who likes all his
children to study abroad.

(f) All children of surgeons are children of doctors. Therefore, if there exists
a child of a surgeon, then there exists a doctor.

25. Two valuations � and �� are said to be equivalent along the variable x iff �(y) =
��(y) for all variables y �= x. Also, two states I� and I�� are said to be equivalent
along the variable x iff the valuations � and �� are equivalent along the variable
x. Prove that satisfaction of formulas can be defined alternatively by modifying
only the quantifier cases as in the following:

I� � ∀xB iff for each valuation �� equivalent to � along x, I�� � B.
I� � ∃xB iff for some valuation �� equivalent to � along x, I�� � B.

26. Let I be an interpretation of a formula X , and �,m be valuations under I such
that m is equivalent to � along x and that m(x) = �(x). Is it true that I� satisfies
X iff Im satisfies X?

27. Let t be a term which contains at least one occurrence of the variable x. Let
s be another term, and �,m be valuations under an interpretation I equivalent
along the variable x such that m(x) = �(s). Let t � be a term obtained from t by
substituting each occurrence of x in t by the term s. Show that m(t) = �(t �).

28. Let X(x) be a formula having at least one free occurrence of the variable x. Let
t be free for x in X(x). Let � and m be two valuations under an interpretation
I such that m is equivalent to � along x and that m(x) = �(t). Let X(t) be a
formula obtained from X(x) by substituting each free occurrence of x in X(x)
by t. Then show that Im satisfies X(x) iff I� satisfies X(t).

29. Let x be a variable, t a closed term, X a formula, I = (D,φ ,�) a state, and let
m be a valuation equivalent to � along x. Prove that Im � X [x/t] iff I� � X .

30. Given a formula and an interpretation I = (D,φ), the alphabet is extended by
adding new (individual) constants as the symbols in the set NC = {d̄ : d ∈
D}. The function φ is extended to include in its domain the new constants by
φ(d̄) = d. Any valuation � under I is similarly extended by being faithful to
φ , i.e., by defining �(d̄) = φ(d̄) = d for each d̄ ∈ NC. The quantifier cases are
tackled in the following manner:

I� � ∀xB iff for each d ∈ D, I� � B[x/d̄].
I� � ∃xB iff for some d ∈ D, I� � B[x/d̄].

Let x be a variable, t a term, A a formula, � a valuation under an interpretation
I = (D,φ), and let d be an element of D. Show the following.

(a) �[x �→ d](t) = �(t[x/d̄]) (b) I�[x �→d] � A iff I� � A[x/d̄]

Conclude that this provides another alternative definition of a formula being
true in a state.

31. Let X = ∀x∃yPxy → ∃y∀xPxy, Y = ∀x∀y(Pxy ∧ Pyx → (x ≈ y)), and Z =
∀x∀y∀z(Pxy∧Pyz→ Pxz). Show that {X ,Y} � Z, {Y,Z} � X , and {Z,X} �Y.

5.9. SUMMARY AND PROBLEMS 167

32. Let P be a binary predicate. Let I = (D,φ) be an interpretation with φ(P) = R,
a binary relation on D. Construct formulas X ,Y,Z involving P so that

(a) I � X iff R is reflexive.
(b) I � Y iff R is symmetric.
(c) I � Z iff R is transitive.

Further, show that {X ,Y} �� Z, {X ,Z} ��Y , and {Y,Z} �� X . [This would show
reflexivity, symmetry and transitivity are independent properties.]

33. Recall Smullyan’s island, where an islander is either a knight, who always
tells the truth, or is a knave, who always lies. You asked a person, whether
he has seen the moon yesterday evening. He answered “All knights here have
seen the moon yesterday evening.” In fact, everyone on the island answers the
same. What do you conclude about the islanders sighting the moon yesterday
evening?

34. Determine which of the following consequences is/are valid:

(a) ∀x∃y(Pxy∧Qz) � ∃y∀x(Pxy∧Qz)
(b) ∀x∃y(Px∧Qy) � ∃y∀x(Px∧Qy)

What do you observe about the consequence ∀x∃yZ � ∃y∀xZ?
35. Explain the following situations:

(a) Let ε > 0 be fixed but arbitrary. We see that P(ε) is true. Therefore,
∀x((x > 0)→ P(x)) is true. However, (x > 0)→ P(x) does not entail
∀x((x > 0)→ P(x)).

(b) We know that there exists a point x between 1 and 2 such that x2−2 = 0.
Call that point α. Now, α2− 2 = 0. However, ∃xP(x) does not entail
P(α) for any constant α .

Chapter 6

A First Order Calculus

6.1 AXIOMATIC SYSTEM FC
First order logic is an extension of propositional logic. The inherent circularity
present in PL extends to FL also. For proving an argument, we translate it to a
consequence in FL. Next, for justifying the consequence, we consider all possible
interpretations, and require that in all these interpretations, the consequence must be
true. Notice that one of the interpretations is the argument we began with!

We wish to break this circularity by modelling FL as an axiomatic system, where
there would be no concern for truth or falsity. It should be a mere rule following
activity like PC. In fact, we extend PC to an adequate axiomatic system for first
order logic. We call this system for FL as First Order Calculus (FC).

The axiom schemes of FC are A1, A2, A3 of PC, two for the quantifier ∀, and two
for the equality predicate ≈. The propositional constants � and ⊥, the connectives
∧,∨ and↔, and the quantifier ∃ will be defined in terms of ¬,→ and ∀. Besides MP,
we also include one more inference rule to tackle the quantifier ∀. The details are as
follows.

The Axiom schemes of FC:

For formulas X ,Y,Z, variable x, and terms s, t,

(A1) X → (Y → X)

(A2) (X → (Y → Z))→ ((X → Y)→ (X → Z))

(A3) (¬X → ¬Y)→ ((¬X → Y)→ X)

(A4) ∀xY → Y [x/t], provided t is free for x in Y.

(A5) ∀x(Y → Z)→ (Y →∀xZ), provided x does not occur free in Y.

(A6) (t ≈ t)

(A7) (s≈ t)→ (X [x/s]→ X [x/t]), provided s, t are free for x in X .

168

6.1. AXIOMATIC SYSTEM FC 169

The Rules of Inference of FC:

(MP)
X X → Y

Y

(UG)
X
∀xX

provided x is not free in any premise used thus far.

The rule UG is the rule of universal generalization. The phrase “premise used thus
far” will be made clear in a short while. To compensate for the missing connectives
and quantifiers, we include the definitions (D1)-(D6) and the rule (RD) as in the
following.

(D1) p∧q � ¬(p→ ¬q)

(D2) p∨q � ¬p→ q

(D3) p↔ q � ¬((p→ q)→ ¬(q→ p))

(D4) � � p→ p

(D5) ⊥ � ¬(p→ p)

(D6) ∃xX � ¬∀x¬X

(RD)
X � Y Z
Z[X := Y]

X � Y Z
Z[Y := X]

As in PC, a proof is a finite sequence of formulas, each of which is either an
axiom (an instance of an axiom scheme), or is obtained (derived) by an application
of some inference rule on earlier formulas. Note that MP is applied on two formulas
while UG is applied on a single formula. The condition in UG means that

in order to apply UG on a formula, say X(x) in Line n, we must make
sure that the variable x is not free in any premise used in the proof up to
and including Line n.

The last formula of a proof is a theorem; the proof is said to prove the theorem.
The fact that a formula X is a theorem of FC is written as �FC X ; in that case, we
also say that the formula X is provable. We read �FCX as X is an FC-theorem, and
also as X is FC-provable. If there is no confusion about the axiomatic systems in a
context, we write �FCX as � X .

For a set of formulas Σ and a formula Y , a proof of the consequence Σ !�Y
is again a finite sequence of formulas, each of which is an axiom, or a premise (a
formula) in Σ, or is derived from earlier formulas by an application of an inference
rule; the last formula of the sequence is Y. The fact that there is a proof of the conse-
quence Σ !�Y is written simply as Σ �FC Y ; Σ � Y. In this case, we also say that the
consequence Σ !�Y is provable, or FC-provable.

We also write {X1, . . . ,Xn} �Y as X1, . . . ,Xn �Y. Notice that ∅ �Y expresses the
same fact as � Y.

170 CHAPTER 6. A FIRST ORDER CALCULUS

Axiom schemes A1 to A3 are the same as in PC; A4 is taken from its semantic
counterpart: � ∀xX → X [x/t]. The axiom scheme A5 comes with a condition. To
see the reason behind it, take X = Y = Px in A5. The formula in A5 now reads

∀x(Px→ Px)→ (Px→∀xPx).

Since ∀x(Px→ Px) is valid, it follows that Px→ ∀xPx is valid. But this formula is
invalid. And we would not like to have an invalid formula as an axiom!

The condition in UG warns us to first check that the variable on which we gen-
eralize does not occur free in any premise used up to that point in a proof. In a proof
of a theorem, this warning becomes vacuous as there would not be any premise. If
the restriction on UG is removed, then we will be able to derive ∀xPx from Px; and
this will be wrong! In fact, we want the relation � to match with � somehow. In this
sense, the axiom schemes A6 and A7 are self-evident.

In documenting a proof, when MP is applied on the preceding two lines, we will
not mention those line numbers. Similarly, when MP is applied on the preceding line
and a remote line, we will mention only the remote line number.

EXAMPLE 6.1. If x does not occur in Z, then show that ∀yZ � ∀xZ[y/x].

∀yZ P
∀yZ → Z[y/x] A4, since x is free for y in Z.
Z[y/x] MP
∀xZ[y/x] UG, since x is not free in ∀yZ.

EXAMPLE 6.2. The following is a proof of ∀x∀yZ � ∀y∀xZ

∀x∀yZ P
∀x∀yZ →∀yZ A4
∀yZ MP
∀yZ → Z A4
Z MP
∀xZ UG
∀y∀xZ UG

EXAMPLE 6.3. In proving � ∀xY → ∀xY, you can imitate the proof of p → p in
PC. However, the same can be proved using the quantifier axioms.

∀xY → Y A4
∀x(∀xY → Y) UG
∀x(∀xY → Y)→ (∀xY →∀xY) A5
∀xY →∀xY MP

Since ∀xY has no free occurrence of the variable x, the third line is indeed A5.
In the following example, we use the PC-theorem � (p→ q)→ (¬q→ ¬p) after

a suitable uniform replacement of the propositional variables by formulas of FC. In
fact, we do not formulate any such principle of replacement; it is implicitly assumed
due to the nature of axiom schemes, rule schemes, theorem schemes, and the fact
that PC is a subsystem of FC. It means that a proof of � (p→ q)→ (¬q→ ¬p) can
simply be duplicated with p,q substituted with suitable formulas from FC.

6.2. SIX THEOREMS ABOUT FC 171

EXAMPLE 6.4. The following is a proof of ∀x¬Y � ¬∀xY :

∀x¬y P
∀x¬y→ ¬Y A4

1. ¬Y MP
∀xY → Y A4
(∀xY → Y)→ (¬Y → ¬∀xY) Th
¬Y → ¬∀xY MP
¬∀xY 1, MP

EXAMPLE 6.5. The following proof shows that (s≈ t) � (t ≈ s).

(s≈ t) P
(s≈ t)→ ((s≈ s)→ (t ≈ s)) A7, X = (x≈ s)
(s≈ s)→ (t ≈ s) MP
(s≈ s) A6
(t ≈ s) MP

Exercises for § 6.1
1. Try proving � (s≈ t)→ (t ≈ s) in FC.
2. Suppose x does not occur free in X , y does not occur free in Y, and z does not

occur free in Z. Try to construct FC-proofs for the following:

(a) � (X →∀xZ)→∀x(X → Z)
(b) � (X →∃xZ)→∃x(X → Z)
(c) � (∃yZ → Y)→∀y(Z → Y)
(d) � (∀yZ → Y)→∃y(Z → Y)
(e) � ∃xZ ↔∃zZ[x/z]
(f) � ∀x(Z →∀z((x≈ z)→ Z[x/z]))
(g) � ∀x(∀z((x≈ z)→ Z[x/z])→ Z)

3. Give FC-proofs of the following using PC-theorems as theorems in FC.

(a) � Z → ¬∀x¬Z
(b) � ∀xZ →∀yZ[x/y] if y does not occur in Z.
(c) � ¬∀y¬Z → Z if y does not occur free in Z.
(d) If � (Y → Z), then � (∀xY →∀xZ).
(e) � ∀xY → ¬∀x¬Y
(f) � ¬∀x¬Y →∀xY if x does not occur free in Y.

6.2 SIX THEOREMS ABOUT FC
Along with the monotonicity, deduction, RA, and Finiteness, we have strong gener-
alization, peculiar to FC. The proofs of monotonicity, RA, and Finiteness are similar
to those in PC. We will prove the new cases in the deduction theorem that come up
due to the universal quantifier, while quickly mentioning the cases similar to PC.
Then, we will discuss some applications of these metatheorems in proving some
more formulas and consequences.

172 CHAPTER 6. A FIRST ORDER CALCULUS

A set of formulas Σ is said to be inconsistent (in FC) iff there exists a formula Y
such that Σ � Y and Σ � ¬Y , else Σ is said to be consistent (in FC). We also say that
a formula X is inconsistent or consistent according as the set {X} is inconsistent or
consistent.

Theorem 6.1 (M: Monotonicity). Let Σ ⊆ Γ be sets of formulas, and let w be any
formula.

(1) If Σ � w, then Γ � w.
(2) If Σ is inconsistent, then Γ is inconsistent.

Theorem 6.2 (DT: Deduction Theorem). Let Σ be a set of formulas. Let X and Y
be any formulas. Then

Σ � X → Y iff Σ∪{X} � Y.

Proof. The proof, quite naturally, resembles that for PC. If Σ � X → Y, then there is
a proof P whose last formula is X → Y. We add to P, the premise X from Σ∪ {X},
and then use MP to conclude Y.

Conversely, suppose that P is a proof of Σ∪ {X} � Y. We prove Σ � X → Y by
induction on the length of P, i.e., the number of formulas (lines) in P. In the basis
step, if P has only one formula, then it is Y ; and Y is an axiom, a premise in Σ, or
the formula X itself. If Y is an axiom, then as in PC, we have the following proof of
Σ � X → Y :

Y → (X → Y) A1
Y An axiom
X → Y MP

If Y is a premise in Σ, then also the above proof works; only that we mention Y to be
a premise in Σ instead of an axiom.

If Y is X itself, then we use the PC-theorem: � X → X and monotonicity to
conclude Σ � X → X . This completes the basis step.

Lay out the induction hypothesis that if the number of formulas in P is less than
n, then there is a proof of Σ � X → Y. Suppose that Σ∪{X} � Y has a proof P1 of n
formulas. Then the nth formula is necessarily Y ; and Y can be

(a) an axiom, a premise in Σ, or X itself,
(b) derived from two earlier formulas by MP, or
(c) derived from an earlier formula by UG.

In each case, we construct a proof P5 for Σ � X → Y.

(a) These cases are covered in the basis step.

(b) This case is similar to that in PC. In the proof P1, we have formulas Z, Z →Y, Y
in lines numbered, n1,n2,n3, respectively, where 1≤ n1,n2 < n3 < n, and Z is some
formula. By the induction hypothesis, Σ � X → Z, Σ � X → (Z → Y) have proofs,
say, P2, P3, respectively. We use these proofs to construct a proof P5 for Σ � X →Y.
To obtain P5, we adjoin P3 to P2, and use A2 in the form

(X → (Z → Y))→ ((X → Z)→ (X → Y)).

6.2. SIX THEOREMS ABOUT FC 173

We then apply MP to conclude (X → Z)→ (X →Y). This formula along with X → Z
give, by MP, the required conclusion.

(c) Here, Y = ∀xA for a variable x and a formula A. The proof P1 of Σ∪ {X} � Y
looks like:

P1: 1. · · ·
...

m. A for some formula A
...

n. ∀xA m,UG
If the premise X has not been used in P1, then P1 itself is a proof of Σ �Y . Using A1
as in the basis step, we get a proof of Σ � X →Y. (Do it.) More realistically, suppose
that X has been used somewhere in P1. Due to the restriction on the applicability of
UG, the variable x does not occur in any premise (from Σ) used in P1. In particular,
x is not free in X . (It is used in two crucial situations in the proof below while using
UG and A5.) By the induction hypothesis, since m < n, there is a proof P4 of length
j for Σ � X → A. We use P4 to construct the proof P5 for Σ � X →∀xA as follows:

P5: 1. · · · P4 begins
...

j. X → A P4 ends
j+1. ∀x(X → A) UG
j+2. ∀x(X → A)→ (X →∀xA) A5
j+3. X →∀xA j+1, j+2,MP

As Y = ∀xA, P5 is a proof of Σ � X → Y. �

The following theorems are proved the same way as in PC.

Theorem 6.3 (RA: Reductio ad Absurdum). Let Σ be a set of formulas, and let Y
be any formula.

(1) Σ � Y iff Σ∪{¬Y} is inconsistent.
(2) Σ � ¬Y iff Σ∪{Y} is inconsistent.

Theorem 6.4 (Finiteness). Let Σ be a set of formulas, and let w be any formula.

(1) If Σ � w, then there exists a finite subset Γ of Σ such that Γ � w.
(2) If Σ is inconsistent, then there exists a finite inconsistent subset of Σ.

Theorem 6.5 (Paradox of material Implication). Let Σ be an inconsistent set of
formulas, and let X be any formula. Then Σ � X .

Using the paradox of material implication, we can have an alternate proof of RA.
If Σ∪{¬Y} is inconsistent, then by Theorem 6.5, Σ∪{¬Y} �Y. By DT, Σ �¬Y →Y.
However, ¬Y → Y � Y. Therefore, Σ � Y.

Below are some examples of theorems, consequences and proofs that use the
metatheorems RA and DT.

174 CHAPTER 6. A FIRST ORDER CALCULUS

EXAMPLE 6.6. Show that � ∀x(X → Y)→ (∀x¬Y →∀x¬X).
Due to DT, we only show that {∀x(X → Y), ∀x¬Y} � ∀x¬X .

∀x(X → Y) P
∀x(X → Y)→ (X → Y) A4
X → Y MP
(X → Y)→ (¬Y → ¬X) Th

1. ¬Y → ¬X MP
∀x¬Y P
∀x¬Y → ¬Y A4
¬Y MP
¬X 1, MP
∀x¬X UG

EXAMPLE 6.7. Show that � ∀x(X → Y)→ (¬∀x¬X → ¬∀x¬Y).

� ∀x(X → Y)→ (¬∀x¬X → ¬∀x¬Y)
iff ∀x(X → Y),¬∀x¬X � ¬∀x¬Y, by DT
iff {∀x(X → Y),¬∀x¬X ,∀x¬Y} is inconsistent, by RA
iff ∀x(X → Y),∀x¬Y � ∀x¬X , again by RA.

The proof of the last consequence is in Example 6.6.

EXAMPLE 6.8. If x is not free in Y , then � ¬(∀xX → Y)→∀x¬(X → Y).
Using DT and RA, we first transfer the theorem to a convenient consequence in

the following manner:

� ¬(∀xX → Y)→∀x¬(X → Y)
iff ¬(∀xX → Y) � ∀x¬(X → Y)
iff {¬(∀xX → Y),¬∀x¬(X → Y)} is inconsistent.
iff ¬∀x¬(X → Y) � ∀xX → Y
iff ¬∀x¬(X → Y),∀xX � Y
iff {¬∀x¬(X → Y),∀xX ,¬Y} is inconsistent.
iff ∀xX ,¬Y � ∀x¬(X → Y).

The last consequence has the following proof:

∀xX P
∀xX → X A4
X MP
X → (¬Y → ¬(X → Y)) Th
¬Y → ¬(X → Y) MP
¬Y P
¬(X → Y) MP
∀x¬(X → Y) UG

EXAMPLE 6.9. Show that � ∀x((x≈ f (y))→ Qx)→ Q f (y).
Due to DT, we give a proof of ∀x((x≈ f (y))→ Qx) � Q f (y).

6.2. SIX THEOREMS ABOUT FC 175

∀x((x≈ f (y))→ Qx) P
∀x((x≈ f (y))→ Qx)→ ((f (y)≈ f (y))→ Q f (y)) A4
((f (y)≈ f (y))→ Q f (y) MP
f (y)≈ f (y) A6
Q f (y) MP

EXAMPLE 6.10. {Pa,∀x(Px→ Qx), ∀x(Rx→ ¬Qx), Rb} � ¬(a≈ b).

∀x(Px→ Qx) P
∀x(Px→ Qx)→ (Pa→ Qa) A4
Pa→ Qa MP
Pa P

1. Qa MP
a≈ b P
(a≈ b)→ (Qa→ Qb) A7
Qa→ Qb MP

2. Qb 1, MP
∀x(Rx→ ¬Qx) P
∀x(Rx→ ¬Qx)→ (Rb→ ¬Qb) A4
Rb→ ¬Qb MP
Rb P

3. ¬Qb MP

The set {Pa,∀x(Px→Qx), ∀x(Rx→ ¬Qx), Rb, a≈ b} is inconsistent due to formu-
las numbered 2 and 3. Then RA takes care.

EXAMPLE 6.11. ∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y) � ¬∀x¬∀y(x≈ y)
Read the following proof and rewrite it without omission of any step. Look at

the lines 9 and 12. They show that Σ is inconsistent; what is Σ here?

1. ∀x∀y(f (x,y)≈ y) P
∀x∀y(f (x,y)≈ y)→∀y∀x(f (y,x)≈ x) Th

2. ∀y∀x(f (y,x)≈ x) MP
3. f (x,y)≈ y 1, A4, MP
4. f (y,x)≈ x 2, A4, MP

∀x∀y(f (x,y)≈ f (y,x)) P
5. f (x,y)≈ f (y,x) A4, MP

x≈ y 3, 4, 5, A7, MP
6. ∀y(x≈ y) UG

∀x¬∀y(x≈ y) P
∀x¬∀y(x≈ y)→ ¬∀y(x≈ y) A4

7. ¬∀y(x≈ y) MP

Remark 6.1. If you drop the restriction on UG, then you can have a proof of Px �
∀xPx. It will not be correct if � is to be kept on par with � . In that case, the metas-
tatement Px � ∀xPx will be on par with the metastatement “If � Px, then � ∀xPx”,
and not with “Px � ∀xPx”. Such an unrestricted use of UG will force the deduction
theorem to take a different shape, such as

176 CHAPTER 6. A FIRST ORDER CALCULUS

If there is a proof of Σ∪{X} � Y , where UG has not been applied on a
free variable of X , then Σ � X → Y .

And, the metastatement “Σ∪{X} �Y iff Σ � X →Y ” would hold only for sentences.
Of course, this is sufficient for proving theorems in mathematics. But in computer
science, we require to argue with open formulas, formulas with free variables! And
for this purpose, our version of UG with a restriction is more appropriate.

You should be able to read other texts where UG comes with no restrictions. In
that case, you must also look for a restriction on the deduction theorem. Note that
the restriction as mentioned above does not require every proof of Σ∪ {X} � Y to
satisfy the free-variable condition. It only requires one such proof.

If you restrict UG too much, e.g., by allowing UG to be applicable only when
the variable x is not free in any premise, then probably, monotonicity will hold no
longer. Try to construct an example to see this.

Another result related to UG says that FC allows generalizing on a constant. In
the scenario of a consequence, the constant must be a new constant, not occurring
in any premise. If a constant does not occur in premises but it occurs in the proof
of the consequence, then it must have been introduced by a universal specification.
Now, instead of instantiating with a constant, one could have instantiated with a
new variable. And then universal generalization could be applied on that variable.
Therefore, it is reasonable to expect that on such a constant, we will be able to apply
universal generalization.

Theorem 6.6 (Strong Generalization). Let Σ be a set of formulas, X a formula, x
a variable, and let c be a constant. Suppose, in any formula of Σ∪{X}, x does not
occur free, and c does not occur at all. If Σ � X [y/c], then Σ � ∀xX [y/x]. Moreover,
there exists a proof of Σ � ∀xX [y/x] in which c does not occur at all.

Proof. Write X(c) for X [y/c] and ∀xX(x) for ∀xX [y/x]. Assume that there is an FC-
proof of Σ � X(c). We show, by induction on the length of a proof of Σ � X(c), i.e.,
on the number of formulas occurring in a proof of Σ � X(c), that Σ � ∀xX(x).

In the basis step, if Σ � X(c) has a proof consisting of just one formula, then X(c)
must be an axiom. We observe that if X(c) is an axiom, then so is X(x). For instance,
if X(c) is A4, then X(c) = ∀yA(y)→ A(c). Now, ∀yA(y)→ A(x) is also A4, where
x is not free in any formula of Σ∪{∀yA(y)}. Now that X(x) is an axiom, by UG we
obtain ∀xX(x). Observe that in this two-lines proof, the constant c does not occur.

Lay out the induction hypothesis that for any proof of length less than n of the
consequence Σ � X(c), there is a proof of Σ � ∀xX(x) in which c does not occur.
Suppose P is a proof of Σ � X(c) having length n. In P the nth formula is X(c). If
X(c) is an axiom, then we get a proof of ∀xX(x) as in the basis step. So, assume that
X(c) has been obtained, in P, by an application of either (a) MP, or (b) UG.

(a) The formula X(c) has been obtained by an application of MP. Thus, earlier to
X(c) occur the formulas Y (c) and Y (c)→ X(c). Here Y (c) is some formula where
the constant c may or may not occur. By the induction hypothesis, proofs P1 for
Σ � Y (x) and P2 for Σ � Y (x)→ X(x) exist. Moreover, c neither occurs in P1 nor in
P2. Then construct the proof P3 by taking first P1, then P2, and then the formulas
X(x), ∀xX(x) in that order. The formula X(x) follows by an application of MP on the

6.3. ADEQUACY OF FC TO FL 177

last lines of P1 and of P2, and then by using UG on X(x), the last formula ∀xX(x) is
obtained. Then P3 is a proof of Σ � ∀xX(x) in which c does not occur. Notice that if
c does not occur in Y, then instead of Y (x) we work with Y, and the above argument
is still justified.

(b) The formula X(c) has been obtained by an application of UG. Then X(c) occurs
on the nth line, and X(c) is in the form X(c) = ∀yA(c), where A(c) is some formula
occurring in P earlier to the nth line. Due to the occurrence of A(c), by the induction
hypothesis, ∀xA(x) has a proof, say, P4, where c does not occur. Extend P4 adding
the formula ∀y∀xA(x) using UG. Next, write the formula ∀x∀yA(x), using an already
proved theorem in Example 6.2. Now, ∀xX(x) = ∀x∀yA(x). Therefore, the extended
proof is a proof of Σ � ∀xX(x), where c does not occur. �

Our proof of strong generalization indirectly shows that in a proof of X [y/c] if
we replace each occurrence of c by x; then the result is a proof of X [y/x]. Next, using
the inference rule UG the formula ∀xX [y/x] is derived.

Exercises for § 6.2
1. Write all axiom schemes as rules of inference by using the deduction theorem.
2. Should we use the deduction theorem to prove A5 and � A→ A?
3. Show the following:

(a) {Px, ∀xQx} � ∀x(Px→∀xQx)
(b) If S any sentence, then S→∀xPx � ∀x(S→ Px).
(c) If x is not free in X , then X →∀xPx � ∀x(X → Px).

4. Prove the consequences in Exercise 2 of § 6.1, using the metatheorems.

6.3 ADEQUACY OF FC TO FL
Recall that a proof system is called sound with respect to a logic if each provable
formula in the system is also valid in the logic. The proof system is called com-
plete with respect to the logic if each valid formula in the logic is provable in the
proof system. And, the adjective strong is used for similar notions with regard to
consequences.

We start with strong soundness. The symbol � stands for ‘� in FC’ for formulas
and consequences. Similarly, the symbol � will denote ‘� in FL’. Moreover, we
consider only the fragment of FC and FL, where the symbols ∧,∨,↔,∃ are not
used; the definitions of these symbols take care of the rest.

Theorem 6.7 (Strong Soundness of FC). Let Σ be a set of formulas, and let A be a
formula.

(1) If Σ � A, then Σ � A.
(2) If Σ is satisfiable, then Σ is consistent.

178 CHAPTER 6. A FIRST ORDER CALCULUS

Proof. We check that the axioms are valid; the rules of inference are valid conse-
quences; and then apply induction on the lengths of proofs.

Let P be a proof of Σ�A. In the proof P, all the premises in Σ might not have been
used. Let ΣP be the set of premises that have been actually used in P. Then ΣP is a
finite subset of Σ and ΣP � A. We use induction on n, the number of (occurrences of)
formulas in P that proves ΣP � A. By monotonicity in FL, it will follow that Σ � A.

In the basis step, n = 1; A is either an axiom or a premise in ΣP. Clearly, ΣP � A.
Lay out the induction hypothesis that if ΣP � A has a proof of less than m formulas,
then ΣP � A. Let P1 be a proof of ΣP � A having m formulas. If A is again an axiom
or a premise in ΣP, then clearly ΣP � A holds. Otherwise, A has been obtained in P1

by an application of (a) MP or (b) UG.

(a) There are formulas B and B→ A occurring earlier to A in P1. By the induction
hypothesis, ΣP � B and ΣP � B→ A. Since {B,B→ A} � A, we have ΣP � A.

(b) There is a formula C occurring prior to A in P1 such that A = ∀xC, for some
variable x. Further, let ΣC be the subset of ΣP containing exactly those formulas
which have been used in P1 in deriving C. Then the variable x does not occur free
in any formula of ΣC due to the restriction on applicability of UG. By the induction
hypothesis, ΣC � C. By Theorem 6.20, ΣC � ∀xC i.e., ΣC � A. Since ΣC ⊆ Σ, by
monotonicity, Σ � A.

For (2), let i be a model of Σ. If Σ is inconsistent, then Σ � B and Σ �¬B for some
formula B. By (1), Σ � B and Σ � ¬B. Then i is a model of B as well as of ¬B. This
is impossible. Therefore, Σ is consistent. �

For the completeness of FC with respect to FL, we prove that every consistent
set of formulas is satisfiable. Though similar to PC, construction of a maximally
consistent set in FC is a bit involved.

Let Σ be a consistent set of formulas. First we wish to make an infinite list of new
constants available. We also require a spare binary predicate. To do this, we rewrite
the formulas in Σ. For each formula X ∈ Σ, denote by X̄ , the formula obtained from
X by replacing each constant ci by c2i for i ∈ N; and replacing each binary predicate
P2

n by P2
n+1 for each n ∈ N. Construct the set

Σ1 = {X̄ : X ∈ Σ}.

Observe that the constants c2n+1 for n ∈ N, and the binary predicate P2
0 do not occur

in any formula of Σ1. We show that this construction does not affect consistency.

Lemma 6.1. The set Σ is consistent iff Σ1 is consistent.

Proof. Assume that Σ1 is inconsistent. Then we have a formula A and proofs P1

proving Σ1 � A, and P2 proving Σ1 � ¬A. Construct proofs P3 and P4 by replacing
each occurrence of each constant c2i with ci; and each binary predicate P2

i+1 with P2
i .

Now, A = B̄ and ¬A = ¬B̄ for some formula B. Then P3 and P4 prove Σ � B and
Σ � ¬B, respectively. That is, Σ is inconsistent.

Similarly, if Σ is inconsistent, it follows that Σ1 is inconsistent. �

6.3. ADEQUACY OF FC TO FL 179

Next, we wish to eliminate the equality predicate in the lines of § 5.8. To simplify
notation, let us write P2

0 as E. Now, the binary predicate E (that is, P2
0) is never used

in any formula of Σ1. For each formula X ∈ Σ1, let X̃ be the formula obtained from
X by replacing each occurrence of the subformula (s≈ t) of X with Est, for terms s
and t. Construct the set Σ2 as follows:

Σ2 = {X̃ : X ∈ Σ1, and s, t are terms}
∪ {∀xExx, ∀x∀y(Exy→ Eyx), ∀x∀y∀z(Exy∧Eyz→ Exz)}
∪ {∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → E f (x1, . . . ,xn) f (y1, . . . ,yn)) :

f is an n-ary function symbol occurring in Σ1}
∪ {∀x1 · · ·∀xn∀y1 · · ·∀yn(Ex1y1∧ · · ·∧Exnyn → (Px1, . . . ,xn → Py1, . . . ,yn)) :

P is an n-ary predicate occurring in Σ1}.

The equality theorem (Theorem 5.10) says that the above construction preserves sat-
isfiability. We now show that consistency is also not affected by this construction.

Lemma 6.2. The set Σ1 is consistent iff Σ2 is consistent.

Proof. Let Σ1 be inconsistent. There exists a formula A such that Σ1 �A and Σ1 �¬A.
Let P be a proof of Σ1 � A. In P, replace an axiom (A6) of the form

(t ≈ t) by ∀xExx, ∀xExx→ Ett, Ett;

and replace an axiom (A7) of the form

(s≈ t)→ (X [x/s]→ X [x/t]) by Est → (X̄ [x/s]→ X̄ [x/t]).

Finally, replace all formulas of the form (s≈ t) by Est in the updated P. Let P1 be the
sequence of formula obtained from P after all these replacements have taken place.
Let B be obtained from A by replacing all subformulas of the form (s≈ t) with Est.
We claim that P1 is a proof of Σ2 � B.

Observe that the replacements do not affect applications of inference rules. Also,
the replacements do not affect axioms (A1) - (A5). The replacement for (A6) is
provable:

∀xExx, ∀xExx→ Ett, Ett.

Here, the formula ∀xExx ∈ Σ2; the formula ∀xExx→ Ett is (A5); and Ett is obtained
from these two formulas by MP. To show that the replacement of (A7) is provable,
we use the deduction theorem and prove that for terms s, t and any formula X ,

Σ2∪{Est} � X̄ [x/s]→ X̄ [x/t]

where X̄ is obtained from X by replacing each occurrence of a subformula of the
form (t1 ≈ t2) by Et1t2. Notice that ≈ does not occur in X̄ . For instance if X = Px,
then a proof is given as follows:

Est →∀x∀y(Px→ Py) Premise in Σ2
Est Premise

180 CHAPTER 6. A FIRST ORDER CALCULUS

∀x∀y(Px→ Py) MP
∀x∀y(Px→ Py)→∀y(Ps→ Py) A4
∀y(Ps→ Py) MP
∀y(Ps→ Py)→ (Ps→ Pt) A4
Ps→ Pt MP
The proof of Σ2∪{Est} � X̄ [x/s]→ X̄ [x/t] uses induction on the total number of

occurrences of connectives and quantifiers appearing in X̄ . (Work it out.)
So, we have shown that P1 is a proof of Σ2 � B. Similarly, it follows that Σ2 �¬B.

Therefore, Σ2 is inconsistent.
On the other hand, if Σ2 is inconsistent then there exist proofs of Σ2 � C and

Σ2 �¬C for some formula C. Replace all occurrences of formulas of the form Est by
(s≈ t) in the proofs of Σ2 �C and Σ2 � ¬C to obtain proofs of Σ1 � Ĉ and Σ2 � ¬Ĉ,
where Ĉ is obtained from C after the replacement has been effected. This shows that
Σ1 is inconsistent. �

We will extend Σ2 further so that generalization on the constants would not pro-
duce a formula outside this extension. For this purpose, we use an enumeration of
formulas and variables. Since the set of all formulas and the set of all variables are
countable, their Cartesian product

S = {(X ,x) : X is a formula, and x is a variable}

is countable. So, fix an enumeration of S. In this enumeration, the first n formulas
possibly have occurrences of a finite number of constants of the form c2i+1. Suppose
that ck(n) is the constant of minimum odd index which does not occur in the first
n pairs in this enumeration, and which is different from earlier chosen constants
ck(1), . . . ,ck(n−1). (We write k(n) instead of kn for avoiding subscripts of subscripts.)
Corresponding to the nth pair (Y,z), we construct the formula Xn as follows:

Xn = Y [z/ck(n)]→∀zY for n≥ 1.

Then we extend the set Σ2 to

Σ3 = Σ2∪{X1, . . . ,Xn, . . .}.

Observe that the constant symbol ck(n) occurs exactly in one formula of Σ3, which is
Xn. We show that consistency is still preserved.

Lemma 6.3. The set Σ2 is consistent iff Σ3 is consistent.

Proof. If Σ3 is consistent, by monotonicity it follows that its subset Σ2 is consistent.
For the converse, suppose that Σ2 is consistent. If Σ3 is inconsistent, then there exists
a formula B such that Σ3 � B and Σ3 � ¬B. Since proofs are finite sequences of
formulas, there are only finite number of such formulas used in the proofs of Σ3 � B
and Σ3 � ¬B. Let m be the maximum index of such finite number of formulas. Using
monotonicity, we see that

Σ2∪{X1, . . . ,Xm} � B, Σ2∪{X1, . . . ,Xm} � ¬B.

6.3. ADEQUACY OF FC TO FL 181

So, Σ2∪{X1, . . . ,Xm} is inconsistent. We wish to eliminate Xm. By RA,

Σ2∪{X1, . . . ,Xm−1} � ¬Xm.

Here, for m = 1 we take {X1, . . . ,Xm−1} = ∅. Now, ¬Xm = ¬(Z[x/ck(m)]→ ∀xZ),
for some formula Z and some variable x. By Example 2.24,

Σ2∪{X1, . . . ,Xm−1} � Z[x/ck(m)], Σ2∪{X1, . . . ,Xm−1} � ¬∀xZ.

Form the first formula, using Strong generalization (Theorem 6.6), we obtain

Σ2∪{X1, . . . ,Xm−1} � ∀xZ.

Hence Σ2∪{X1, . . . ,Xm−1} is inconsistent.
Continuing this way, we eliminate Xm−1, . . . ,X1 to conclude that Σ2 is inconsis-

tent. This is not possible. Therefore, Σ3 is consistent. �

Our construction is not yet over. We have used a very special kind of formulas
in defining Σ3. We now extend this set in a manner analogous to PC. To this end, we
use the countability of formulas of FC.

Let Y0,Y1,Y2, . . . be an enumeration of all formulas of FC. Define the sequence of
sets of formulas Γ0, Γ1, Γ2, . . . inductively by

Γ0 = Σ3, Γn+1 =

�
Γn if Γn∪{Yn} is inconsistent
Γn∪{Yn} if Γn∪{Yn} is consistent

Finally, take Σ� = ∪n∈NΓn. This is the required Hintikka set for the set Σ. Unlike
PC, this Hintikka set is not a superset of Σ.

Lemma 6.4. The Hintikka set Σ� is a maximally consistent extension of Σ3.

Proof. Clearly, Σ3 ⊆ Σ�. If Σ� is inconsistent, then Σ� � Z and Σ� � ¬Z for some
formula Z. There exist i, j ∈ N such that Γi � Z and Γ j � ¬Z. Take k = max{i, j}.
Then, Γi ⊆ Γk and Γ j ⊆ Γk. By monotonicity, Γk � Z and Γk � ¬Z. This contradicts
the fact that each Γk is consistent. Hence Σ� is consistent.

We next show that Σ� ∪{Z} is inconsistent for any formula Z �∈Σ�. Assume, on the
contrary, that Σ� ∪{Z} is consistent for some formula Z �∈ Σ�. Due to the enumeration
Y0, Y1, Y2, . . . of all formulas, Z = Ym for some m ∈ N. Since Σ� ∪{Z} is consistent,
by monotonicity, Γm ∪ {Z} is consistent. It then follows that Z = Ym ∈ Γm+1 ⊆ Σ�,
contradicting the fact that Z �∈ Σ�.

Therefore, Σ� ∪{Z} is inconsistent for any formula Z �∈ Σ�. �

Lemma 6.5. Let Σ be a consistent set of formulas. Let Σ� be the Hintikka set for Σ,
and let X ,Y be any formulas.

(1) Σ� � X iff X ∈ Σ�.
(2) Either X ∈ Σ� or ¬X ∈ Σ�.
(3) If Y ∈ Σ�, then X → Y ∈ Σ�.
(4) If X �∈ Σ�, then X → Y ∈ Σ�.

182 CHAPTER 6. A FIRST ORDER CALCULUS

(5) If X ∈ Σ� and Y �∈ Σ�, then X → Y �∈ Σ�.
(6) For each term t, X [x/t] ∈ Σ� iff ∀xX ∈ Σ�.

Proof. (1) If X ∈ Σ�, then clearly Σ� � X . Conversely, if X �∈ Σ�, then Σ� ∪ {X} is
inconsistent. By RA, Σ� � ¬X . Since Σ� is consistent, Σ� � X .

(2) Since Σ� is consistent, if X ∈ Σ�, then ¬X �∈ Σ�. On the other hand, if X �∈ Σ�, then
Σ� ∪{X} is inconsistent. By RA, Σ� � ¬X . By (1), ¬X ∈ Σ�.
(3) Let Y ∈ Σ�. By monotonicity, Σ� ∪ {X} � Y. Then Σ� � X → Y, by the deduction
theorem. Due to (1), X → Y ∈ Σ�.
(4) Let X �∈ Σ�. Then Σ� ∪ {X} is inconsistent. By monotonicity, Σ� ∪ {X ,¬Y} is
inconsistent. By RA, Σ� ∪ {X} � Y. By the deduction theorem, Σ� � X → Y. Due to
(1), X → Y ∈ Σ�.
(5) Let X ∈ Σ� and let Y �∈ Σ�. If X → Y ∈ Σ�, then by MP, Σ� � Y. By (1), Y ∈ Σ�, a
contradiction. Hence, X → Y �∈ Σ�.
(6) Suppose ∀xX ∈ Σ�. Due to A4 and MP, Σ� � X [x/t] for any term t. Then by (1),
X [x/t]∈ Σ�. Conversely, suppose that X [x/t]∈ Σ� for all terms t. Suppose that the pair
(X ,x) is the nth pair in the enumeration used in the construction of Σ3. Since Σ3 ⊆ Σ�
we have (X [x/ck(n)]→∀xX) ∈ Σ�. Also X [x/ck(n)] ∈ Σ�. So, by MP, Σ� � ∀xX . Then
by (1), ∀xX ∈ Σ�. �

Theorem 6.8 (Model Existence). Each consistent set of formulas has a state-model.

Proof. Let Σ be a consistent set of formulas. Let Σ� be the Hintikka set as constructed
earlier. We first show that Σ� has a model. Observe that the equality predicate≈ does
not occur in any formula of Σ�. Let D be the set of all terms generated from the
constants, variables, and function symbols occurring in the formulas of Σ�. Define
φ(c) = c for any constant, φ(f) = f for each function symbol, and �(x) = x for each
variable x. Extend � to all terms, using φ as usual. For any proposition P0

i , define

φ(P0
i) = 1 if P0

i ∈ Σ�; else φ(P0
i) = 0.

For any n-ary relation P, n≥ 1, define φ(P)⊆ Dn as follows:

(t1, . . . , tn) ∈ φ(P) iff P(t1, t2, . . . , tn) ∈ Σ�.

We show that the state I�, with I = (D,φ), is a state-model of Σ�. That is, for each
formula X ∈ Σ�, we must show that I� � X .

For this, we use induction on n(X), the total number of occurrences of ¬,→ and
∀ in X . In the basis step, when ν(X) = 0, X is either a proposition, or in the form
P(s1,s2, . . . ,sn) for terms s1,s2, . . . ,sn.

If X is a proposition then by the very definition of φ in the state I�, we have
I�(X) = 1 iff X ∈ Σ�.

If X = P(s1,s2, . . . ,sn), where s1, . . . ,sn are terms, then I� � X iff (s1, . . . ,sn) ∈
φ(P) iff X ∈ Σ�, which holds.

In the induction step, assume that for any formula Y with ν(Y) < k, I� � Y iff
Y ∈ Σ�. Let X ∈ Σ� be a formula with ν(X) = k. Then X is in one of the forms:

6.3. ADEQUACY OF FC TO FL 183

(a) ¬A (b) A→ B (c) ∀xA

(a) X = ¬A, ν(A) < k. Now, X ∈ Σ� iff ¬A ∈ Σ� iff A �∈ Σ� (by Lemma 6.4(2)) iff
I� �� A (induction hypothesis) iff I� � X .

(b) X = A→ B, ν(A)< k, ν(B)< k. Here, X ∈ Σ� iff A→ B∈ Σ� iff A �∈ Σ� or B∈ Σ�
(Lemma 6.4(3)-(5)) iff I� �� A or I� � B (induction hypothesis) iff I� � X .

(c) X = ∀xA, ν(A)< k. We have X ∈ Σ� iff ∀xA ∈ Σ� iff for each t ∈ D, A[x/t] ∈ Σ�
(Lemma 6.4(6)) iff for each t ∈ D, I� � A[x/t] (by induction hypothesis) iff for each
t ∈ D, I�[x �→t] � A iff I� � ∀xA iff I� � X .

Now that Σ� is satisfiable, by monotonicity in FL, its subsets Σ3 and Σ2 are also
satisfiable. The set Σ2 has been obtained from Σ1 by replacing ≈ with the binary
predicate E and adjoining to the updated set the equality axioms. By the equality
theorem, we conclude that Σ1 is satisfiable.

Recall that the formulas in Σ1 are obtained from those of Σ by replacing each
predicate P j

i with P j
i+1, and replacing each constant ci with c2i. Thus the constants

c2i+1 and the predicate P2
0 do not occur in any formula of Σ1. Let Jm = (S,ψ,m) be

a state-model of Σ1. Due to the relevance lemma, we assume that ψ is left undefined
for constants c2i+1 and for the predicate P2

0 . Construct another state J�m = (S,ψ �,m)

with ψ �(P j
i) =ψ(P j

i) for j �= 2, ψ �(f) =ψ(f) for all non-constant function symbols;
and

ψ �(P2
i) = ψ(P2

i+1), ψ �(ci) = ψ(c2i) for i ∈ N.

Then, clearly J�m is a state-model of Σ. �

The model existence theorem implies that every consistent set of formulas is
satisfiable. Due to RA in both FL and FC, we conclude the completeness of FC to FL.
It states that for any formula X , if � X , then �FC X . Combining the strong soundness
and the model existence theorems, we obtain the following stronger version.

Theorem 6.9 (Strong Adequacy of FC to FL). Let Σ be a set of formulas, and let
X be any formula.

(1) Σ � A iff Σ �FC A.
(2) Σ is satisfiable iff Σ is consistent.

If the restriction on UG had not been imposed, as is done in many texts, we would
have obtained soundness and completeness for sentences only.

Since the formula Px→∀xPx is invalid (in FL), the adequacy of FC implies that
Px→ ∀xPx is not a theorem of FC. Then an application of the paradox of material
implication shows that the set of all axioms of FC is consistent.

Exercises for § 6.3
1. Let Σ be a consistent set. Assume that Σ � X for some formula X . Prove that

Σ∪{¬X} is consistent.
2. Prove that a set Σ of formulas is inconsistent iff Σ � ¬(X → X) for some for-

mula X iff Σ � ¬(X → X) for each formula X .

184 CHAPTER 6. A FIRST ORDER CALCULUS

3. Let Σ be a set of formulas, and let X be a formula. Show that if Σ∪ {X} and
Σ∪{¬X} are inconsistent, then Σ is inconsistent.

4. Let Σ and Γ be sets of formulas, and let X be a formula. Show that if Σ∪{X}
and Γ∪{¬X} are inconsistent, then Σ∪Γ is inconsistent.

5. Recall that the deductive closure of a set of formulas Γ is the set of all formulas
X such that Γ � X . Let Σ be a set of formulas.

(a) Does a Hintikka set for Σ coincide with its deductive closure?
(b) Does the deductive closure of Σ coincide with a Hintikka set for it?

6.4 COMPACTNESS OF FL
Analogous to PL, consequences with infinite number of premises can be reduced to
those with finite number of premises. Our technique is also similar to that in PL; we
use a proof system and its completeness.

Theorem 6.10 (Compactness of FL). Let Σ be any nonempty set of formulas, and
let X be any formula.

(1) If Σ � X , then Σ has a finite subset Γ such that Γ � X .

(2) If Σ is unsatisfiable, then Σ has a finite subset Γ which is unsatisfiable.

(3) If all finite nonempty subsets of Σ are satisfiable, then Σ is satisfiable.

The proof of compactness of FL is similar to that of Theorem 2.9; where we use
FC, FL in place of PC, PL. A purely semantic proof can be given via Herbrand’s
expansions and the compactness of PL. However, tracking the premises that really
contribute to the consequences may be difficult due to the equality predicate E.

A noteworthy application of the compactness theorem of FL is the existence of
Ramsey numbers. In a simple graph, a clique is a subgraph where each vertex is
joined to every other vertex; and an independent set is a subset of vertices, where no
vertex is joined to any other. Ramsey’s theorem implies that

For each n≥ 1, there exists an Rn ≥ 1 such that any simple graph with at
least Rn vertices has a clique with n vertices or an independent set with
n vertices.

Trivially, R1 = 1 and R2 = 2. It may be proved that if G is any simple graph with six
vertices, then it has a clique with three vertices or an independent set of three ver-
tices. Further, a simple graph with five vertices can be constructed where neither any
subgraph with three vertices is a clique, nor any three vertices form an independent
set. Thus, R3 = 6. Ramsey number Rn grows very rapidly as a function of n.

Ramsey’s theorem as stated above is really hard to prove. However, its infinite
version is relatively straight forward. It looks as follows.

In any simple infinite graph, there exists an infinite clique or an infinite
independent set of vertices.

6.4. COMPACTNESS OF FL 185

Then an application of the compactness theorem proves Ramsey’s theorem. We ex-
ecute this plan using the notion of colouring.

Let n,k ∈ N. Let X be any nonempty set. Denote by X (n) the set of all subsets of
X of size n. That is,

X (n) = {Y ⊆ X : |Y |= n}.
A colouring of X (n) with k colours is a function f : X (n) → {1, . . . ,k}. A subset A
of X is called monochromatic for f if there exists a j ∈ {1, . . . ,k} such that for all
S ∈ A(n), f (S) = j. For a subset A ∈ X (n) if f (A) = j for some j ∈ {1, . . . ,k}, we say
that the subset A has colour j.

EXAMPLE 6.12. Let X = {1,2,3,4,5,6}. Using k = 2 colours, a particular colour-
ing of X (2) is as follows:

f ({1,2}) = f ({1,3}) = f ({2,5}) = f ({3,6}) = f ({4,5}) = f ({4,6}) = 1;
f of any other 2 elements-subset of X is 2.

In this colouring, the subset {4,5,6} is monochromatic.
In fact, R3 = 6 asserts that if X is any set of size 6 or greater and the collection

of all unordered pairs of X are coloured with two colours, then there is a subset A of
X of size 3 such that all unordered pairs of A are having the same colour.

The question is what happens if we take n-elements subsets of X instead of un-
ordered pairs? And, what happens if we require that A should have k elements? That
is, does there exist a natural number b so that if X is a set of size at least r and X (n)

is coloured with k colours, then it is guaranteed that there exists a subset A of X of
size a having the same colour?

Consider X =N. If N(n) is coloured with k colours, does there exist a monochro-
matic infinite subset of N? We first answer a particular case; n = 2. It may be stated
as follows:

In any colouring of N(2), there is an infinite monochromatic subset of N.
To see why this is the case, suppose N(2) is coloured with k colours. Pick m1 ∈ N.
There are infinitely many two-elements subsets from N(2) of which m1 is an element.
So, there is an infinite set A1 ⊆ N \ {m1} such that the two-elements subsets from
N(2) of the form {m1,�} with � ∈ A1 have the same colour. Let the colour of all these
two-elements subsets be C1.

Choose m2 ∈ A1. There are infinitely many two-elements subsets in N(2) of the
form {m2,�}, where � ∈ A1 \ {m2}. So, there is an infinite set A2 ⊆ A1 \ {m1} such
that the two-elements subsets of the form {m2,�} with � ∈ A2 have the same colour,
say C2.

Continue inductively to obtain a sequence of distinct numbers m1,m2, . . . and
a sequence of colours C1,C2, Notice that if i < j, then the two-elements set
{mi,m j} is coloured Ci. By the Pigeon Hole Principle, there are indices r1 < r2 < · · ·
such that Cr1 =Cr2 = · · · . Then {mr1 ,mr2 , . . .} is an infinite monochromatic set.

The same scheme of construction proves the general case.

Theorem 6.11 (Infinite Ramsey). Let n,k ∈ N. If N(n) is coloured with k colours,
then there exists an infinite monochromatic subset of N.

186 CHAPTER 6. A FIRST ORDER CALCULUS

Proof. We use induction on n. For n = 1, N(1) = N. If N is coloured with k colours,
then by the Pigeon Hole Principle, it has an infinite monochromatic subset. Lay out
the induction hypothesis that if N(n) is coloured with k colours, then there exists an
infinite monochromatic subset of N. Let f : N(n+1) → {1,2, . . . ,k} be any function.
We define a sequence of infinite subsets (Xn) as follows.

Write X−1 = N. Suppose Xj−1 has already been defined. Then pick x j ∈ Xj−1.

Let Yj−1 = Xj−1 \{x j}. Construct f j : Y (n)
j−1 → {1,2, . . . ,k} by

f j
�
{y1, . . . ,yn}

�
= f

�
{x j,y1, . . . ,yn}

�
for {y1, . . . ,yn} ∈ Y (n)

j−1.

Using the induction hypothesis, let Xj be an infinite monochromatic subset of Yj−1
for the colouring f j. Suppose the colour of Xj is c(x j).

It means that Xj is an infinite subset of Xj−1 all n-element subset of which join
with x j to form (n+ 1)-elements subsets of colour c(x j). Then N = X−1 ⊇ X0 ⊇
X1 ⊇ · · · and for j < �, we have x� ∈ Xj ⊇ X�−1. Suppose {x j,xr(1), . . . ,xr(n)} is
an (n + 1)-element subset of Xj−1 ordered so that j < r(1) < · · · < r(n). Since
{x j,xr(1), . . . ,xr(n)}⊆ Xj, by our choice of x j, we have

f
�
{x j,xr(1), . . . ,xr(n)}

�
= c(x j).

That is, if A is any n-elements subset of Xj−1, then f (A) = c(x j). Since Xj−1 is
infinite, by the Pigeon Hole Principle, there exists a colour i ∈ {1, . . . ,k} such that
the set B = {x j ∈ Xj−1 : c(x j) = i} is an infinite set. Any n-elements subset D of B
where j is the smallest index such that x j ∈ D satisfies f (D) = i. That is, B is the
required infinite monochromatic subset of N. �

Theorem 6.12 (Ramsey). For all positive integers n,k,a, there exists a positive in-
teger b such that if X is any set of size at least b, then for every colouring of X (n)

with k colours, there exists a monochromatic subset Y ⊆ X of size a.

Proof. On the contrary, assume that there exist positive integers n,k,a such that for
all positive integers b, there is a set X of size b and there is a colouring of X (n) in
k colours so that no subset Y ⊆ X of size a is monochromatic. Define the n-ary
predicates P1, . . . ,Pk by

Pi(x1, . . . ,xn) to mean “the set {x1, . . . ,xn} has colour i.”

Let Ai = ∀x1 · · ·∀xn
�
Pi(x1, . . . ,xn)→

�

1≤i< j≤n

(xi �≈ x j)
�
∧

�

σ∈Sn

�
Pi(x1, . . . ,xn)↔ Pi(xσ(1), . . . ,xσ(n))

�
.

where Sn is the set of all permutations of {1, . . . ,n} leaving out the identity permuta-
tion. The sentence Ai means that

the truth of Pi(x1, . . . ,xn) does not depend on the ordering of x1, . . . ,xn.

For 1≤ i≤ n, let

Bi = ∀x1 · · ·∀xn

�
Pi(x1, . . . ,xn)→

�

1≤ j≤n,i�= j

�
¬Pj(x1, . . . ,xn)

��
.

6.4. COMPACTNESS OF FL 187

Thus, Bi means that if a set is coloured i then it cannot be coloured with a colour
other than i. Next, let

C = ∀x1 · · ·∀xn

� �

1≤�< j≤n

(x� �≈ x j)→
�

1≤i≤k

Pi(x1, . . . ,xn)
�
.

It means that each n-elements subset is coloured with some colour.
It follows that the conjunction of these sentences, that is,

D =
�

1≤i≤n

(Ai∧Bi)∧C.

means that Pis define the colouring of an n-elements subset. In any model of D, the
colouring is determined by the unique colour of the subset {m1, . . . ,mn}, where the
model satisfies the formula Pi(x1, . . . ,xn) by assigning the variable x j to m j.

Next, for 1≤ i≤ k, let define the formula

Qi(x1, . . . ,xa) =
�

1≤σ(1)<σ(2)<···<σ(n)≤a

Pi(xσ(1), . . . ,xσ(n)).

For instance, if n = 2 and a = 3, then

Qi(x1,x2,x3) = Pi(x1,x2)∨Pi(x1,x3)∨Pi(x2,x3).

The formula Qi(x1, . . . ,xa) says that at least one n-elements subset of {x1, . . . ,xa}
has the colour i. Using these formulas, we define the sentence E as follows:

E = ∀x1 · · ·∀xa

� �

1≤�< j≤a

(x� �= x j)→
�

1≤r<i≤k

�
Qr(x1, . . . ,xa)∧Qi(x1, . . . ,xk)

��
.

It means each a-elements subset has at least two subsets having different colours.
That is, E asserts that there exists no monochromatic a-elements subset. Therefore,
a model of both D and E is a set whose n-elements subsets are coloured with k
colours and no a-elements subset is monochromatic.

Finally, for each integer b≥ 2, let

Rb = ∃x1 · · ·∃xb
�

1≤i< j≤b

(xi �≈ x j).

Clearly, any model of Rb has at least b elements. Therefore, any model of all sen-
tences Rb is an infinite set.

Putting these sentences together, we see that any model of the set

Sb = {D, E, R2, R3, . . . , Rb}.
has at least b elements, such that the set of each n-elements subset of the model is
coloured with k colours, and no a-elements subset is monochromatic. Our assump-
tion says that each Sb is satisfiable. By the compactness theorem, the infinite set

S = S2∪S3∪ · · ·
is satisfiable. It means that S has a model, which is an infinite set X with X (n)

coloured using k colours and having no monochromatic subset of size a. This con-
tradicts Theorem 6.11. �

188 CHAPTER 6. A FIRST ORDER CALCULUS

Another application of compactness is the creation of non-standard analysis. It
shows an infinitesimal can be added to the system of real numbers so that the re-
sulting system is still consistent. Using such infinitesimals analysis can be done
following the schemes of Leibniz and Newton. In fact, most of the arguments in-
volving δ and ε in analysis can now be omitted altogether. We illustrate the creation
of nonstandard large and small numbers by way of some examples.

Recall that a first order language starts with a set of symbols that include con-
stants, function symbols, and predicates, along with all connectives and quantifiers.
A first order language is like a consequence, where we require only some function
symbols and some predicates out of the infinite supply of them. Next, we may have
some sentences which are assumed to hold so that a particular theory is defined in a
given first order language.

EXAMPLE 6.13. Consider a first order language L which has two constants a and
b, two binary function symbols f and g, and a binary predicate P. Interpret the lan-
guage L in the system of natural numbers N with a as 0, b as 1, f as addition, g as
multiplication, and P as the relation of ‘less than’. Let c be a new constant. Let Σ be
the set of all true sentences of N. Define a set of formula Γ by

Γ = {P(n,c) : n ∈ N}= {P(0,c), P(1,c), P(2,c), . . .}.

If S ⊆ Σ∪ Γ is a finite set, then it contains a finite number of sentences from Γ.
Clearly, the same interpretation with domain as N is a model of S.

That is, every finite subset of Σ∪Γ is satisfiable. By the compactness theorem,
the set Σ∪Γ is also satisfiable. In such a model all true sentences of N are true; and
also there exists an element which is bigger than all natural numbers. We may think
of such an element in this model as an infinity.

It follows that if N is characterized by a set of axioms (See § 10.3.), then the
same set of axioms have a nonstandard model, where there exists an element which
is bigger than every natural number.

EXAMPLE 6.14. Consider a first order language with constants a,b; binary func-
tion symbols f ,g; and a binary predicate P. Interpret the language in the system of
real numbers R with a as 0, b as 1, f as addition, g as multiplication, and P as the
relation of ‘less than’. Let c be a new constant. Let Σ be the set of all true sentences
of R. Define the set Γ of sentences as follows:

Γ = {P(0,c)∧P(g(n,c),1) : n ∈ N}.

Now, each finite subset of Σ∪Γ has the same model R. By the compactness theo-
rem, the set Σ∪Γ is satisfiable. In this new model of axioms of R there exists an
element (that corresponds to c) which is smaller than all positive real numbers and
is also greater than 0. We do not say that such a number is positive, for, ‘positive’
is applicable only to real numbers, and this number is not a real number. Such an
element in this nonstandard model of the axioms of R is called an infinitesimal.

We say that a formula X has arbitrarily large models iff for each n ∈ N, there
exists a model of X having at least n elements in its domain. A typical application of
compactness is to extend a property from arbitrarily large to infinite.

6.4. COMPACTNESS OF FL 189

Theorem 6.13 (Skolem). If a set of first order sentences has arbitrarily large mod-
els, then it has an infinite model.

Proof. Let Σ be a set of sentences. Assume that Σ has arbitrarily large models. For
each positive integer n, let

Yn = ∃x0 · · ·∃xn
� �

0≤i< j≤n

¬(xi ≈ x j)
�
.

For instance, Y2 = ∃x0∃x1∃x2(¬(x0 ≈ x1)∧¬(x0 ≈ x2)∧¬(x1 ≈ x2)). Next, let

S = {Yn : n is a positive integer}.

If A is any finite subset of Σ∪ S, then it contains a finite number of Yns. If m is the
maximum of all those n, then A has a model whose domain has at least m elements.
The fact that A has a model is enough for us. By the compactness theorem, Σ∪S has
a model, say, I = (D,φ). If D is a finite set, say, with r elements, then it does not
satisfy Yr+1. As Yr+1 ∈ S, it contradicts the fact that I is a model of Σ∪S. Therefore,
I must be an infinite model of Σ∪S. �

This trick of extending a model gives rise to the Skolem-Löwenheim upward the-
orem which states that if a set of sentences having cardinality α has a model with
a domain of an infinite cardinality β , and γ ≥ max{α,β}, then the set of sentences
also has a model with domain of cardinality γ. The proof of this remarkable theorem
requires first order languages allowing the set of constants to have cardinality γ.

Suppose Σ is a set of cardinality α which has a model with a domain of cardinal-
ity β . We start with a set S of cardinality γ ; and introduce γ number of constants ca
to our language for each a ∈ S. Next, we define the set of sentences

Γ = Σ∪{¬(ca ↔ cb) : a,b ∈ S, a �= b}.

Then using compactness we show that Γ has a model.
In a similar vein, we obtain fascinating results in other branches of mathematics;

for example, see Ebbinghaus et al. (1994), Hodges (1993) and Rautenberg (2010).

Exercises for § 6.4
1. Show that ¬(∀x(Px∨Qx)→∀xPx∨∀xQx) is satisfiable in a domain with two

elements.
2. Write a sentence X involving a binary predicate P so that if I = (D,φ) is any

interpretation, then I � X iff D has at least two elements.
3. Write a sentence which is true in any domain with two elements, but is false

in any domain with a single element.
4. Given an integer n ≥ 1, write a sentence X involving a binary predicate P so

that if I = (D,φ) is any interpretation, then I � X iff D has at least n elements.
5. Write a formula X involving a binary predicate P so that if I = (D,φ) is any

interpretation, then I � X iff D is an infinite set.

190 CHAPTER 6. A FIRST ORDER CALCULUS

6. Show that a first order sentence X cannot be found so that for any interpretation
(D,φ), we have I � X iff D is a finite set.

7. Find a sentence which is true in a denumerable domain, but false in each finite
domain.

6.5 LAWS IN FL
Now that FC is found to be adequate to FC, we may prove any law about either
of them using the machinery of the other. We start with the law that pertains to
equivalence replacement.

Theorem 6.14 (Equivalence Replacement). Let A,B,X and Y be formulas with
A ≡ B. For any formula W, let W [A :=e B] denote a formula obtained from W by
replacing some or no or all occurrences of A by B. Then the following are true:

(1) X ≡ X [A :=e B].
(2) If X ≡ Y, then X [A :=e B]≡ Y [A :=e B].
(3) If X � Y, then X [A :=e B] � Y [A :=e B].

Proof. (1) A formal proof requires induction on the number of occurrences of con-
nectives and quantifiers in X . Here, we give an outline. If A has not been replaced
by B at all, then X = X [A :=e B], and there is nothing to prove. Otherwise, let I� be a
state. Now, to check whether I� � X [A :=e B], we proceed as follows.

Depending upon the form of X [A :=e B], we may write down expressions after
expressions involving predicates explicitly:

I� � X [A :=e B] iff · · ·S · · · .

Proceeding step by step, the expression S will involve somewhere I� � B or I� �� B, as
the case demands. And these satisfaction relations will be coming exactly where A
has been replaced by B in X . Due to equivalence of A and B, we have I� � B iff I� � A.
And then, some of these satisfactions can be replaced by I� � A or I� �� A. Replace
only those occurrences of I� � B or of I� �� B which correspond to the replacements
of A while you obtained X [A :=e B]. Retracing the steps in S, you reach at I� � X .

Proofs of (2)-(3) are similar to that of (1). �

In the proposition ¬q∧ p↔ ¬(p→ q), replace p with Qz, and q with Pxy. You
obtain the formula ¬Pxy∧Qz↔ ¬(Qz→ Pxy). Now that the proposition ¬q∧ p↔
¬(p→ q) is valid, we argue that the formula ¬Pxy∧Qz↔ ¬(Qz→ Pxy) must also
be valid. We generalize this observation.

To avoid conflict in terminology, each PL-valid proposition is called a tautology,
while considering PL as a fragment of FL. That is, a tautology is a valid formula
where the only symbols used are atomic propositions (�,⊥ and/or 0-ary predicates),
connectives and, possibly, the left and right parentheses. For example, ¬q∧ p ↔
¬(p→ q) is a tautology.

If X is a formula, p is a propositional variable, and A is a proposition (in PL), then
write A[p := X] for the formula obtained from A by substituting all occurrences of p

6.5. LAWS IN FL 191

in A by X . This is uniform replacement of propositional variables by formulas. We
require here to replace every occurrence of p by X . Contrast this with the equivalence
replacement A[p :=e X] introduced in Theorem 6.14.

It is easy to see that A[p := X][q := Y] = A[q := Y][p := X], provided p does not
occur in Y and q does not occur in X . In fact, more than one or two propositional
variables can be substituted in A simultaneously. We will write such a simultaneous
uniform replacement as A[p1 := X1, . . . , pn := Xn] or as A[p := Xp]. Notice that the
notation A[p := Xp] says that all occurrences of each propositional variable p in A
has been substituted by the corresponding formula Xp.

Theorem 6.15 (Tautological Replacement). Let A be a proposition. For each pro-
positional variable p occurring in A, identify a formula Xp. Let A[p := Xp] denote
the formula obtained from A by substituting all occurrences of each such p by the
corresponding Xp. If A is a tautology, then A[p := Xp] is valid.

Proof. Assume that A is a tautology. Then it has a proof in FC using only the axioms
A1, A2, A3, and the inference rule MP. In such a proof, replace all occurrences of
p with the corresponding Xp; and do this for all propositional variables occurring in
A. The result is an FC-proof of A[p := Xp]. By the adequacy of FC, A[p := Xp] is
valid. �

Notice that tautological replacement is uniform replacement in a tautology. More-
over, you can formulate and prove statements analogous to those in Theorems 2.10(2)-
(3). The tautological replacement allows you to get valid formulas from the laws in
Theorem 2.12. This can be generalized to replacements in valid formulas (in FL),
but with a proviso.

Theorem 6.16 (Uniform Replacement). Let Z be a formula. For each proposi-
tional variable p occurring in Z, identify a formula Xp. Let Z[p := Xp] denote the
formula obtained by replacing all occurrences of each such p by the corresponding
Xp in the formula Z. Assume that no free variable of Xp becomes bound in Z[p :=Xp].
If � Z, then � Z[p := Xp].

Proof. In a proof of Z, replace all occurrences of each propositional variable p by
the corresponding Xp. The result is a proof of Z[p := Xp]. The restriction of ‘no
variable capture’ allows any application of UG in Z to be a correct application after
the replacement. A formal proof is readily constructed by using induction on the
length of a proof of Z, as usual. �

The restriction of ‘no variable capture’ cannot be ignored. For instance p→∀xp
is valid for a propositional variable p. Replacing p by Px yields an invalid formula
Px→∀xPx due to variable capturing.

Since X1,X2, . . . ,Xn �X iff �X1∧X2∧ · · ·∧Xn→X , and since X ≡Y iff �X ↔Y,
uniform replacement can be used on equivalences and consequences. The laws in
Theorem 2.12 can be used as they are, but being valid for formulas, instead of just
propositions. For instance, the distributive law

x∧ (y∨ z)≡ (x∧ y)∨ (x∧ z)

192 CHAPTER 6. A FIRST ORDER CALCULUS

in Theorem 2.12 now reads as

X ∧ (Y ∨Z)≡ (X ∧Y)∨ (X ∧Z).

Here, X ,Y and Z are any formulas in FL. In addition to the laws obtained from PL,
we have some more laws involving quantifiers as given in the following theorem;
check their correctness. Note the same names in some cases. Further, remember that
whenever X [x/t] appears, it is assumed that t is free for x in X .

Theorem 6.17 (Laws). The following laws hold for any formulas X ,Y,Z, variables
x,y, and terms r,s, t.

(1) COMMUTATIVITY ∀x∀yX ≡ ∀y∀xX , ∃x∃yX ≡ ∃y∃xX , ∃x∀yX � ∀y∃xX .

If both x and y do not occur in any atomic subformula
of Z, then ∀y∃xZ � ∃x∀yZ.

(2) CONSTANTS ∀x(⊥→ X)≡�, ∃x(⊥∧X)≡⊥.
(3) DE MORGAN ¬∀xX≡∃x¬X , ¬∃xX≡∀x¬X , ∀xX≡¬∃x¬X , ∃xX≡¬∀x¬X .

(4) DISTRIBUTIVITY ∀x(X ∧Y)≡ ∀xX ∧∀xY, ∃x(X ∨Y)≡ ∃xX ∨∃xY,
∀xX ∨∀xY � ∀x(X ∨Y), ∃x(X ∧Y) � ∃xX ∧∃xY.
If x does not occur free in Z, then
∀x(Z∨Y)≡ Z∨∀xY, ∃x(Z∧Y)≡ Z∧∃xY,
∀x(Z → Y)≡ Z →∀xY, ∃x(Z → Y)≡ Z →∃xY,
∀x(Y → Z)≡ ∃xY → Z, ∃x(Y → Z)≡ ∀xY → Z.

(5) EMPTY QUANTIFICATION If x does not occur free in Z, then
∀xZ ≡ Z and ∃xZ ≡ Z.

(6) EQUALITY (t ≈ t)≡�, (s≈ t)≡ (t ≈ s),
{r ≈ s, s≈ t} � (r ≈ t), {s≈ t, X [x/s]} � X [x/t].

(7) ONE-POINT RULE If x does not occur in t, then
∀x((x≈ t)→X)≡X [x/t], ∃x((x≈ t)∧X)≡X [x/t].

(8) RENAMING If x does not occur free in Z, then
∀yZ ≡ ∀x(Z[y/x]), ∃yZ ≡ ∃x(Z[y/x]).

What happens to the One-Point Rule if x occurs in t? With t = x and X = Px,
the rule is reduced to ∀xPx≡ Px and ∃xPx≡ Px, which are not correct. Contrast this
with the law of empty quantification.

In the law of commutativity, ∀y∃xX � � ∃x∀yX , in general; see Example 5.18.
Similarly, in the law of distributivity the following happens in general:

∀x(X ∨Y) �� ∀xX ∨∀xY ∃xX ∧∃xY �� ∃x(X ∧Y)

For example, with X = Px and Y = ¬Px, you have ∀x(X ∨Y) ≡ �. Whereas the
formula ∀xX ∨∀xY = ∀xPx∨∀x¬Px is invalid. To see this, take an interpretation
I = ({2,3},P�) with P� = {2}. Then,

I � ∀xPx∨∀x¬Px iff (2 ∈ P� and 3 ∈ P�) or (2 �∈ P� and 3 �∈ P�)

6.5. LAWS IN FL 193

which clearly does not hold. Similarly, you can show that

∃xX ∧∃xY �� ∃x(X ∧Y).

See why the condition ‘x does not occur free in X ’ is imposed on the other laws of
distributivity and on the law of renaming.

In FL, you may assert that from ∀xPx follows Pc for each constant c. This is so
because each constant c is interpreted as an element of the domain of the interpreta-
tion. Similarly, from Pc follows ∃xPx. Also, the rule UG of FC specifies conditions
on deriving ∀xPx from Px. We formulate these three laws as follows, whose proofs
are easily obtained using FC.

Theorem 6.18 (US: Universal Specification). Let t be a term free for a variable x
in a formula X . Then ∀xX � X [x/t].

Theorem 6.19 (EG: Existential Generalization). Let t be a term free for a vari-
able x in a formula X . Then X [x/t] � ∃xX .

Theorem 6.20 (UG: Universal Generalization). Let Σ be a set of formulas. Let x
be a variable that is not free in any formula of Σ. If Σ � X , then Σ � ∀xX .

In particular, when Σ =∅, UG says that “if � X , then � ∀xX”. It states that

if each state I� satisfies X , then each state I� satisfies ∀xX .

It is different from X � ∀xX , which means that

for each state I� , if I� satisfies X , then I� satisfies ∀xX .

The former can be vacuously true whereas the latter may be false. For instance, with
X = Px, “if � Px then � ∀xPx” holds since ∀xPx is the universal closure of Px.
For that matter, since Px is not valid, the statement “if � Px, then � Qx” also holds
whatever Qx may be. But, Px � ∀xPx does not hold.

Similar is the case for the existential quantifier. In mathematical proofs we de-
duce Pc from ∃xPx, using an ambiguous name c. For example, the intermediate value
theorem implies the following:

Let f : [α,β]→R be a continuous function. If f (α)=−1 and f (β)= 1,
then there exists γ ∈ (α,β) such that f (γ) = 0.

To see how this result is applied, suppose g : [−1,1]→ R is a continuous function
with g(−1) =−1 and g(1) = 1. Using the intermediate value theorem, we take such
a γ as c. We have g(c) = 0. Later, we use this c in our argument freely and conclude
something finally where this c does not appear. And we take for granted such a
conclusion. It is important that c must not occur in our final conclusion. Though
g(c) = 0 does not follow from “there exists γ with g(γ) = 0”, our final conclusion
where this c does not occur is considered a valid conclusion.

A formulation of the existential specification is given in the following.

Theorem 6.21 (ES: Existential Specification). Let Σ be a set of formulas, and let
X ,Y be formulas. Let α be a constant or a variable that does not occur in any
formula of Σ∪{X ,Y}. If Σ∪{X [x/α]} � Y , then Σ∪{∃xX} � Y.

194 CHAPTER 6. A FIRST ORDER CALCULUS

Proof. We use RA serially. Σ∪{X [x/α]} � Y implies Σ∪{X [x/α],¬Y} is unsatis-
fiable. Then Σ∪{¬Y} � ¬X [x/α]. By Strong generalization (Theorem 6.6) and the
adequacy of FC to FL, Σ∪{¬Y} � ∀x¬X . As ∀x¬X ≡¬∃xX , we have Σ∪{¬Y,∃xX}
is unsatisfiable. Then Σ∪{∃xX} � Y. �

The conclusion of Existential Specification is written equivalently as follows:
If Σ � ∃xX and Σ∪{X [x/α]} � Y , then Σ � Y.

In this scenario, the constant or variable α is called a new constant. In a quasi-proof
or a calculation (to be discussed soon), due to the presence of ∃xX , we introduce
an extra premise X [x/α] provisionally. Once a formula Y having no occurrence of
this new constant α is derived, we consider that Y has been derived from Σ in the
presence of ∃xX , thereby ending the provisionality of the extra premise X [x/α]. It
appears that a new constant α is introduced to conclude X [x/α] from ∃xX ; thus the
name existential specification. However, the new constant must never figure out in
the final conclusion.

EXAMPLE 6.15. Use the quantifier laws to conclude ∃x∀yPxy � ∀y∃xPxy.
Take Σ = {∃x∀yPxy}, X = ∀yPxy. Let c be a new constant that does not occur in

Σ∪ {X}. Here, X [x/c] = ∀yPcy. By universal specification, ∀yPcy � Pcy. By exis-
tential generalization, Pcy � ∃xPxy. That is, Σ∪{X [x/c]} � ∃xPxy. Since c does not
occur in Y = ∃xPxy, we conclude with existential specification that Σ � ∃xPxy, i.e.,
∃x∀yPxy � ∃xPxy. Use of universal generalization yields ∃x∀yPxy � ∀y∃xPxy.

A wrong use of other quantifier laws along with existential specification can lead
to paradoxical situations; see the following example.

EXAMPLE 6.16. (An Incorrect Argument) Take Σ= {∀x∃yPxy}. By universal spec-
ification, we have Σ � ∃yPxy. For applying existential specification, we consider
X = Pxc for a new constant c. Next, we universally generalize on x to obtain ∀xPxc.
By existential generalization, we have ∃y∀xPxy. Since c does not occur in the last
formula, we conclude that Σ � ∃y∀xPxy. Therefore, ∀y∃xPxy � ∃x∀yPxy. What is
wrong?

Consider Σ= {∀x∃yPxy}. Now, Σ � ∃yPxy. If we introduce Pxc due to Existential
specification, then the next step of deducing ∀xPxc is not allowed since in the premise
(new) Pxc, the variable x is free. On the other hand, if this Pxc is not a premise, then
it must have been inferred from an existing premise, which is not so, since ∃yPxy
does not entail Pxc.

Exercises for § 6.5
Prove the following.

1. Theorem 6.14 by using FC.
2. Theorems 6.15-6.16 by using FL.
3. All laws in Theorem 6.17.
4. Theorems 6.18-6.20.
5. For a set of formulas Σ, and formulas A,B write Σ[A :=e B] = {Y [A :=e B] :

Y ∈ Σ}. If Σ � X for a formula X , then Σ[A :=e B] � X [A :=e B].

6.6. QUASI-PROOFS IN FL 195

6. Let Σ be a set of formulas, and let Y be any formula. For each propositional
variable p occurring in Σ∪ {Y}, identify a formula Xp. Write Σ[p := Xp] =
{A[p := Xp] : A ∈ Σ}. If Σ � Y, then Σ[p := Xp] � Y [p := Xp].

7. Let Σ be a set of formulas, X ,Y formulas, and let α be a constant or a vari-
able that does not occur in any formula of Σ∪ {X ,Y}. If Σ � ∃xX and Σ∪
{X [x/α]} � Y , then Σ � Y.

6.6 QUASI-PROOFS IN FL
Analogous to PL, quasi-proofs can be adopted to FL. However, you have to be a bit
careful in tackling closed and open formulas. When open formulas are introduced
as conditional hypotheses, we must remember the free variables introduced by them.
On these free variables, we cannot apply Universal Generalization before the ap-
plication of the deduction theorem is over. This amounts to asserting that all those
formulas inside this block of DTB-DTE possibly depend on these free variables; we
record it by writing the pair as DTBx-DTEx. The restriction on the use of Universal
Generalization is at work!

Similarly, for applications of the law of existential specification we use blocks
ESB-ESE. We also document the line number of the existential premise used to start
and close this block. Also, remember that the formula introduced at the line docu-
mented ESB is an extra premise; its conditionality remains until its corresponding
ESE is met. We cannot thus use the rule UG inside this block of ESB-ESE on all
those variables (including the new constant) that occur free in the formula introduced
by ESB. If the new constant is α and the variables occurring free in the formula in-
troduced by BSB are x,y,z, . . . , then we write the pair ESB-ESE as ESBα,x,y,z, . . .-
ESEα,x,y,z,

EXAMPLE 6.17. We use the idea explained in Example 6.15 to develop a quasi-
proof of ∃x∀yPxy � ∀y∃xPxy.

1. ∃x∀yPxy P
2. ∀yPcy 1, ESBc
3. Pcy 2,US
4. ∃xPxy 3, EG
5. ∃xPxy 2, 4, ESEc
6. ∀x∃yPxy 5, UG

The following incorrect quasi-proof tries to justify ∀x∃yPxy � ∃y∀xPxy.

1. ∀x∃yPxy P
2. ∃yPxy 1, US
3. Pxc 2, ESBc,x
4. ∀xPxc 3, UG
5. ∃y∀xPxy 4, EG
6. ∃x∀yPxy 3, 5, ESEc,x

This is a faulty quasi-proof since in Line 4, we cannot generalize on x that occurs
free in the (extra) premise of Line 3.

196 CHAPTER 6. A FIRST ORDER CALCULUS

EXAMPLE 6.18. Construct a quasi-proof of ∀x∀yPxy � ∀yPyy.

1. ∀x∀yPxy P
2. ∀yPyy 1, US[x/y]

The variable y is not free for x in the formula ∀yPxy. Thus the substitution [x/y]
is not admissible; therefore, the attempted quasi-proof is a faulty one. A correct
quasi-proof for ∀x∀yPxy � ∀yPyy first instantiates and then generalizes.

1. ∀x∀yPxy P
2. ∀yPxy 1, US
3. Pxx 2, US
4. ∀xPxx 3, UG
5. ∀yPyy 4, Renaming

EXAMPLE 6.19. Construct a quasi-proof for showing that the following argument
is correct:

Some mathematicians like all logicians. No mathematician likes any
fashion designer. Therefore, no logician is a fashion designer.

Use the vocabulary − Mx : x is a mathematician, Lx,: x is a logician, Fx : x is a
fashion designer, and Pxy : x likes y. The argument is translated to the following
FL-consequence:

∃x(Mx∧∀y(Ly→ Pxy)), ∀x(Mx→∀y(Fy→ ¬Pxy)) !� ∀x(Lx→ ¬Fx).

A quasi-proof of validity of the consequence goes as follows:
1. ∃x(Mx∧∀y(Ly→ Pxy)) P
2. Mc∧∀y(Ly→ Pcy) 1, ESBc
3. ∀y(Ly→ Pcy) 2, T
4. Lx→ Pcx 3, US ([y/x])
5. ∀x(Mx→∀y(Fy→ ¬Pxy)) P
6. Mc→∀y(Fy→ ¬Pcy) 5, US ([x/c])
7. Mc 2, T
8. ∀y(Fy→ ¬Pcy) 6, 7, T
9. Fx→ ¬Pcx 8, US ([y/x])
10. Lx DTBx
11. Pcx 4, 10, T
12. ¬Fx 9, 11, T
13. Lx→ ¬Fx 10, 12, DTEx
14. Lx→ ¬Fx 1, 13, ESEc
15. ∀x(Lx→ ¬Fx) 13, UG
In the quasi-proof, the conditional hypothesis Lx is introduced in Line 10 while

marking the free variable x on the right of DTB on the documentation column. It
says that we are not allowed to universally quantify on this flagged variable x until
the conditionality of Lx is over. In Lines 10 to 12, we are not allowed to generalize on
the variable x, since, possibly those formulas use a premise (namely, that on Line 10)
where x is a free variable. Since on Line 13, the block of DTB-DTE is over; we mark
x on the right of DTE. Then after, We are allowed to use UG with the variable x.

6.6. QUASI-PROOFS IN FL 197

Since the formula on Line 13 has no occurrence of the new constant c introduced
in Line 2, we repeat it in Line 14 and document it by 1, 13, ESEc. Here, the for-
mula on Line 1 is the existential premise used outside the block. Finally, universal
generalization is applied to obtain the required conclusion.

Form a quasi-proof, an actual FC-proof can always be constructed. Compared to
an FC-proof a quasi-proof is intuitive.

EXAMPLE 6.20. Justify the following argument (Stoll (1963)) by a quasi-proof:

Everyone who buys a ticket receives a prize. Therefore, if there are no
prizes, then nobody buys a ticket.

Notice that the phrase ‘buys a ticket’ is used as it is, whereas ’receives a prize’ needs
to be broken down since in the conclusion we require to symbolize ‘there are no
prizes’. With Bx: x buys a ticket, Px: x is a prize, Rxy: x receives y, we have the
FL-consequence:

∀x(Bx→∃y(Py∧Rxy)) !�¬∃yPy→ ¬∃xBx.

The following quasi-proof shows that the consequence is valid.

1. ∀x(Bx→∃y(Py∧Rxy)) P
2. ∃xBx DTB
3. Bc 2, ESBc
4. Bc→∃y(Py∧Rcy) 1, US
5. ∃y(Py∧Rcy) 3, 4, MP
6. Pd∧Rcd 5, ESBd
7. Pd 6, Elimination
8. ∃yPy 7, EG
9. ∃yPy 5, 8, ESEd
10. ∃yPy 3, 9, ESEc
11. ∃xBx→∃yPy 2, 10, DTE
12. ¬∃yPy→ ¬∃xBx 11, Contraposition

If we decide to break down the phrase ‘buys a ticket’ as we treated the phrase
‘receives a prize’, then instead of the unary predicate B we use T x: x is a ticket, Bxy:
x buys y. The corresponding consequence is

∀x(∃z(T z∧Bxz)→∃y(Py∧Rxy)) !�¬∃yPy→ ¬∃xBx.

A quasi-proof can be constructed to show that this consequence is valid.

EXAMPLE 6.21. We show that � ¬∃y∀x(Pxy↔ ¬Pxx).

1. ∃y∀x(Pxy↔ ¬Pxx) RAB
2. ∀x(Pxc↔ ¬Pxx) ESBc
3. Pcc↔ ¬Pcc US
4. ⊥ PL
5. ⊥ ESEc
6. ¬∃y∀x(Pxy↔ ¬Pxx) RAE

198 CHAPTER 6. A FIRST ORDER CALCULUS

In Example 6.21, interpreting Pxy as x ∈ y for sets x,y, it follows that there exists
no set of all sets.

The same restriction using flagged variables in DTB-DTE applies to RAB-RAE
pair. You can formulate them and use in solving the exercises given below. In addi-
tion, you must also restrict the nesting of these pairs as in PC; that is, the nestings
should not overlap, though one completely lying inside another is allowed.

Exercises for § 6.6
1. For each of the following consequences, construct a quasi-proof, or a falsifying

interpretation.

(a) ∀xP(x) !�∀yP(y) (b) Pc !�∀x(x≈ c→ Px)
(c) ∀x∀yPxy !�∀x∀yPyx (d) ∅ !�∃x(Px→∀xPx)
(e) ∃x∃yP(x,y) !�∃z∃uP(z,u) (f) ∃x∀yP(x,y) !�∀y∃xP(x,y)
(g) ∃xPx∨∃xQx !�∃x(Px∨Qx) (h) ∀x∀yP(x,y) !�∀z∀uP(z,u)
(i) ∀xPx∨∀xQx !�∀x(Px∨Qx) (j) ∃x(Px∧Qx) !�∃xPx∧∃xQx
(k) ∀x(Px∧Qx) !�∀xPx→∀xQx (l) ∀x(Px∧Qx) !�∀xPx∧∀xQx
(m) ∀x∀y(Py→ Qx) !�∃yPy→∀xQx (n) ∀x(Px→Qx) !�∀x¬Qx→∀x¬Px
(o) ∀x(Px→ ¬Qx) !�¬(∃x(Px∧Qx))
(p) {∃x∃y(Pxy∨Pyx),¬∃xPxx} !�∃x∃y¬(x≈ y)
(q) S→∀xPx !�∀x(S→ Px), for any sentence S.
(r) X →∀xPx !�∀x(X → Px), if x is not free in X
(s) {∀xPaxx,∀x∀y∀z(Pxyz→ P f (x)y f (z))} !�P f (a)a f (a)
(t) {∀xPaxx,∀x∀y∀z(Pxyz→ P f (x)y f (z))} !�∃zP f (a)z f (f (a))
(u) {∀xPcx,∀x∀y(Pxy→ P f (x) f (y))} !�∃z(Pcz∧Pz f (f (c)))

2. Let X and Y be formulas. Construct quasi-proofs for the following:

(a) � ∀x(X ∧Y)↔∀xX ∧∀Y (b) � ∃x(X ∨Y)↔∃xX ∨∃xY
(c) � ∀xX ∨∀xY →∀x(X ∨Y) (d) � ∃x(X ∧Y)→∃xX ∧∃xY

3. Symbolize and try to construct a quasi-proof of the following argument given
by Lewis Carroll:

Babies are illogical. Nobody is despised who can manage a crocodile.
Illogical persons are despised. Therefore, babies cannot manage crocodiles.

6.7 SUMMARY AND PROBLEMS
To avoid circularity in the semantical method, we have tried to model reasoning
axiomatically. For first order logic, we have constructed the axiomatic system FC
as an extension of PC. All tautologies of PC could be imported to FC as theorems
via tautological replacements. In addition to other replacement laws, we have also
proved monotonicity, deduction theorem, and reductio ad absurdum. FC has been
shown to be adequate to FL; that is, the set of valid FL-consequences coincide with
the set of FC-provable consequences.

6.7. SUMMARY AND PROBLEMS 199

The finiteness of a proof in FC is translated to compactness of FL, as in PC and
PL. Though compactness is straight forward, its applications to construction of non-
standard models is surprising. We have shown that nonstandard models of arithmetic
implies the existence of infinite numbers. Similarly, existence of infinitesimals could
be shown by way of constructing nonstandard models of the real number system.

You can find the axiomatic systems PC and FC in almost all texts in logic,
though in different incarnations; see for example, Barwise & Etchemendy (1999),
Ebbinghaus et al. (1994), Enderton (1972), Ershov & Palyutin (1984), Mates (1972),
Mendelson (1979), Rautenberg (2010), Shoenfield (1967), Singh & Goswami (1998),
Smullyan (2014), and Srivastava (2013). The one presented here is made up from
the axiomatic systems considered in Bilaniuk (1999), and Singh & Goswami (1998).
The completeness proof for the systems follows the ideas of many logicians such as
L. Henkin, J. Hintikka, G. Hasenjaeger, A. Lindenbaum, and K. Gödel; their relevant
works can be found in van Heijenoort (1967). For nonstandard analysis, see Robin-
son (1996), a book by its creator. The quasi-proofs, which are in fact pre-proofs or
abbreviated proofs, follow the ideas presented in Copi (1979), Mates (1972), Stoll
(1963), and Suppes (1957).

Problems for Chapter 6
1. Let X and Y be formulas. Show the following:

(a) If � X → Y, then � ∀xX →∀xY.
(b) In general, it is not true that X → Y � ∀xX →∀xY.

Do (a)-(b) contradict the Deduction theorem? Why or why not?
2. Show that there does not exist a formula X such that � X and � ¬X .

3. Show that Σ∪{A} is consistent iff Σ∪{¬¬A} is consistent, without using RA
and DT.

4. Let Σ be a consistent set of formulas, and let X be a formula such that Σ � X .
Show that Σ∪{∀∗X} is consistent. [∀∗ denotes the universal closure.]

5. Uniform replacement can be introduced structurally. Let σ be a function from
the set of all atomic propositions to the set of all formulas, FORM. Extend σ
to a function from the set of all propositions PROP to FORM by:

σ(�) =�, σ(⊥) =⊥, σ(¬A) = ¬σ(A), and
σ(A�B) = (σ(A)�σ(B)) for � ∈ {∧,∨,→,↔}.

Let X be any formula. Show that σ(X) = X [p := σ(p)], for each propositional
variable p occurring in X .

6. A set Σ of sentences is called finitely satisfiable iff every finite subset of Σ is
satisfiable. Show that if S is any set of sentences and X is any sentence, then
at least one of the sets S∪{X} or S∪{¬X} is finitely satisfiable.

7. Show that a set Σ of formulas is maximally consistent iff for each formula Y,
either Y ∈ Σ or ¬Y ∈ Σ. Conclude that a maximally consistent set Γ contains
all consequences of Γ.

8. A set Σ of formulas is called negation complete iff for each formula w, either
Σ � w or Σ � ¬w. Show that each consistent set of formulas is a subset of a
negation complete set.

200 CHAPTER 6. A FIRST ORDER CALCULUS

9. For an interpretation I, the theory of an interpretation is defined as the set of
all sentences true in I, i.e., T h(I) = {S : I � S and S is a sentence}. Show that
for any interpretation I, T h(I) is maximally consistent.

10. Assume compactness of FL and that the set of all FC-theorems coincide with
the set of all valid formulas. Let Σ be any set of formulas, and let X be any
formula. Prove that if Σ � X then Σ � X .

11. Can you find a formula which is true in some non-denumerable domain but
not satisfiable in any denumerable domain?

12. Prove that if Σ � X , then there exists a proof of Σ � X in which if a predicate
occurs, then it must have occurred in Σ∪{X}.

13. Let P be a unary predicate. Is the set {∃x0¬Px0, Px1, Px2, . . .} consistent?
14. Prove Skolem-Löwenheim Theorem: If a first order formula has a model, then

it has a countable model.
15. Let e be a constant, and let ◦ be a 2-place function symbol, which is written in

infix notation. Let G be the set of sentences

∀x(x◦e≈ x), ∀x∃y(x◦y≈ e), ∀x∀y(x◦y≈ y◦x), ∀x∀y∀z((x◦y)◦z≈ x◦(y◦z)),

∀x(x◦ x≈ e), ∃x1 · · ·∃xn
� �

1≤i< j≤n

¬(xi ≈ x j)
�

for each n≥ 2.

Any model of G is an abelian group with at least n elements, where each
element is of order 2. In fact abelian groups with 2k elements exist where each
element is of order 2. Deduce that there exists an infinite abelian group where
each element is of order 2.

16. Can you give an infinite abelian group where each element is of order 2?
17. Show that there exists an infinite bipartite graph.
18. Show that if the nesting of DT and/or RA are allowed to overlap, then an

invalid consequence can have a quasi-proof of validity.
19. Construct a quasi-proof to show that {∀x(Px∧Qx → Rx)→ ∃x(Px∧¬Qx),

∀x(Px→ Qx)∨∀x(Px→ Rx)} � ∀x(Px∧Rx→ Qx)→∃x(Px∧Qx∧¬Rx).
20. Analogous to MPC, you can construct a proof system MFC adding the fol-

lowing axiom and rules to MPC [See Problem 14 in Chapter 4]:

(US)
Σ � ∀xX

Σ � X [x/t]
provided t is free for x in X .

(UG)
Σ � X

Σ � ∀xX
provided x is not free in Σ.

(EA) Σ � (t ≈ t) for each term t.

(EQ)
Σ � s≈ t Σ � X [x/s]

Σ � X [x/t]
provided s, t are free for x in X .

(a) In MFC, show that � ¬(∀xX → Y)→∀x¬(X → Y) if x is not free in Y.
(b) Give MFC-proofs of all consequences in Examples 6.1-6.11.
(c) Prove adequacy of the proof system MFC to FL.

Chapter 7

Clausal Forms and Resolution

7.1 PRENEX FORM

Theorem 5.4 asserts that if we require only satisfiability of a formula, then it is
enough to consider its existential closure. Similarly, validity of a formula can be
decided by the validity of its universal closure. Looking from a different perspective,
if a formula has all its quantifiers in the beginning, and all of them are universal quan-
tifiers, then we may omit all those quantifiers to obtain another formula. Now, both
these formulas are either valid together or invalid together. Similarly, if all quanti-
fiers are existential, and if all of them occur in the beginning, then their omission
preserves satisfiability.

It is quite possible that we may not be able to express every sentence in the form
where all quantifiers are in the beginning, and all of those are of the same type.
For instance, ∀x∃yPxy is not equivalent to either ∀x∀yPxy or ∃x∃yPxy. But can we
express each formula in a form where all quantifiers are in the beginning?

Can we bring all the quantifiers of ∀xPx → ∀xQx to the beginning, preserving
equivalence? We may not write ∀xPx→∀xQx ≡ ∀x(Px→Qx) as x occurs in ∀xQx.
The law of distributivity says that ∀xX → Y ≡ ∃x(X → Y) if x does not occur in Y .
Renaming the variable x in the subformula ∀xQx as y, we can write the formula as
∀xPx → ∀yQy. Consequently, distributivity will give us ∃x(Px → ∀yQy), and then,
∀y∃x(Px→Qy), or ∃x∀y(Px→Qy). The renaming of bound variables here is called
rectification.

A formula is called rectified if no variable in it is both free and bound, and each
occurrence of a quantifier uses a different variable. A formula is said to be in prenex
form if all occurrences of quantifiers in it are in the beginning, i.e., if it is in the form
Q1x1Q2x2 · · ·QnxnX with Qi ∈ {∀,∃}, for each i, and X contains neither ∀ nor ∃. The
string of quantifiers Q1x1Q2x2 · · ·Qnxn is called the prefix and the quantifier-free
sub-formula X is called the matrix of the prenex form Q1x1Q2x2 · · ·QnxnX .

Observe that a formula can always be rectified by using the law of renaming. In
fact, it becomes a prerequisite for bringing a formula to its prenex form in certain
cases.

201

202 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

EXAMPLE 7.1. The formula ∀x(Px → Qy∧ ∃xQx) is not a rectified formula as
there are two occurrences of quantifiers using the same variable x.

In the formula ∀x(Px → Qy∧ ∃yQy), different occurrences of quantifiers use
different variables; but y is both free and bound. So, this is not a rectified formula.
Note that free variables cannot be renamed if you want to preserve equivalence.

The formula ∀x(Px→ Qy∧∃zQz) is rectified, but there are occurrences of other
symbols to the left of an occurrence of a quantifier. So, it is not in prenex form.

The formula ∀x∃z(Px→Qy∧Qz) is in prenex form, where the prefix is ∀x∃z and
the matrix is (Px→ Qy∧Qz).

EXAMPLE 7.2. Consider the formula ∀xPx↔∀xQx. Renaming the x in ∀xQx as y,
we have ∀xPx↔∀yQy. For using distributivity, we eliminate ↔ to obtain (∀xPx→
∀yQy)∧ (∀yQy → ∀xPx). But the formula is not rectified; we need renaming once
more. Renaming y to u, and x to v in (∀yQy→∀xPx), we get

(∀xPx→∀yQy)∧ (∀uQu→∀vPv).

Notice that had we chosen to eliminate↔ before renaming the bound variables, then
the second use of renaming could have been avoided. In this case, from ∀xPx ↔
∀xQx we obtain (∀xPx → ∀xQx) ∧ (∀xQx → ∀xPx). Then renaming would give
(∀xPx→∀yQy)∧ (∀uQu→∀vPv) as earlier. Next, we use the laws of distributivity
to obtain the prenex form

∃x∀y∃u∀v((Px→ Qy)∧ (Qu→ Pv)).

It has the prefix ∃x∀y∃u∀v and matrix ((Px→ Qy)∧ (Qu→ Pv)).
The following result shows that every formula has a prenex form.

Theorem 7.1 (Prenex Form). For each formula X , a formula Y in prenex form can
be constructed so that the set of free variables of X is sme as that of Y, and X ≡ Y.

Proof. We describe a procedure for converting a formula to prenex form. The pro-
cedure first eliminates ↔ . Next, it rectifies the formula using renaming of bound
variables. Finally, the quantifiers are pulled to the beginning by using various laws.
(We use the symbol := in procedures for assigning a new value to a variable, as in
programming languages.)

PROCEDURE PrenForm
Input: A formula X
Output: A prenex form formula equivalent to X

1. Eliminate↔ using A↔ B≡ (A→ B)∧ (B→ A) on all subformulas of X .

2. Rename the bound variables to rectify X (After this step, X is assumed to be a
rectified formula).

3. Move ¬ to precede the predicates by using the laws of implication, double
negation, and De Morgan, that is, the equivalences:

¬(A→ B)≡ A∧¬B, ¬(A∨B)≡ ¬A∧¬B, ¬(A∧B)≡ ¬A∨¬B,
¬¬A ≡ A, ¬∃xA ≡ ∀x¬A, ¬∀xA ≡ ∃x¬A.

7.1. PRENEX FORM 203

4. Pull out the quantifiers using the laws of distributivity, that is, the equivalences
(x does not occur in B as the formula is rectified):

∀xA→ B ≡ ∃x(A→ B), ∃xA→ B ≡ ∀x(A→ B),
B→∀xA ≡ ∀x(B→ A), B→∃xA ≡ ∃x(B→ A),
∀xA∧B ≡ ∀x(A∧B), ∃xA∧B ≡ ∃x(A∧B),
∀xA∨B ≡ ∀x(A∨B), ∃x(A∨B) ≡ ∃xA∨B.

Use induction on the number of occurrences of connectives and quantifiers in X
to show that the procedure PrenForm converts a formula into a prenex form, pre-
serving equivalence. Clearly, prenex form conversion does not change the set of free
variables. �

EXAMPLE 7.3. Construct a prenex form formula equivalent to

A = ∃z(Pxy→ ¬∀y(Qy∧Ryz))∧ (Qx→∀xSx).

The connective ↔ does not occur in A; so, we rectify A by renaming the bound
variables if needed. Both y and x occur free and also bound in A. Rename the bound
variables: y as v, and x as u. The formula so obtained is

B = ∃z(Pxy→ ¬∀v(Qv∧Rvz))∧ (Qx→∀uSu).

Now, B is rectified. Start moving ¬ closer to the predicates, by using the equivalences
in Step 3 in PrenForm. You obtain an equivalent formula

C = ∃z(Pxy→∃v(¬Qv∨¬Rvz))∧ (Qx→∀uSu)

Next, pull the quantifiers to the left using the equivalences in Step 4. You get the
formula

G = ∀u∃z∃v((Pxy→ ¬Qv∨¬Rvz)∧ (Qx→ Su)).

This is in prenex form with prefix ∀u∃z∃v and matrix

(Pxy→ ¬Qv∨¬Rvz)∧ (Qx→ Su).

Note that you could also have brought C to the formula

H = ∃z∃v∀u((Qx→ Su)∧ (Pxy→ ¬Qv∨¬Rvz)).

Are the formulas G and H really equivalent?

EXAMPLE 7.4. Find a prenex form for the formula

∃x(Px→ ¬∃y(Py→ (Qx→ Qy))∧∀x(Px↔∀yQz)).

We use equivalences to obtain:

∃x(Px→ ¬∃y(Py→ (Qx→ Qy))∧∀x(Px↔∀yQz))

≡ ∃x(Px→ ¬∃y(Py→ (Qx→ Qy)))∧∀x((Px→∀yQz)∧ (∀yQz→ Px))

≡ ∃x(Px→∀y(Py∧Qx∧¬Qy))∧∀u(∀v(Pu→ Qz)∧∃w(Qz→ Pu))

≡ ∃x(∀y(Px→ (Py∧Qx∧¬Qy))∧∀u∀v∃w((Pu→ Qz)∧ (Qz→ Pu)))

≡ ∃x∀y∀u∀v∃w((Px→ Py∧Qx∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

204 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

It is in prenex form with prefix ∃x∀y∀u∀v∃w and matrix

((Px→ Py∧Qx∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

Point out the suitable law applied at each line, and identify the appropriate step of
the procedure PrenForm in the above equivalences.

Exercises for § 7.1
1. Try other ways of bringing to prenex form the formula in Example 7.4, where

the prefix may be having a different order of occurrences of ∃ and ∀, pro-
ceeding in a different way after the third line in the solution. Give semantic
arguments as to why your answer is equivalent to the one obtained in the text.

2. Complete the proof of Theorem 7.1.
3. Convert the following formulas into prenex form:

(a) ∀Px↔∃xQx
(b) ∃xPx∧∃xQx→ Rx
(c) ∀x∀y(Pxyz∧ (∀x∀yQyu→ Rx))
(d) ∀xPx f ∧ (∀xQx→∃y¬Qx)∨∀x∃yPxy
(e) ∀x(∃yPxy∧Qy)→ (∃y(Ry∧Uxy)→ Qy)
(f) (¬∀x¬∀y¬∀zPxy→∃x∃y(¬∃zQxyz↔ Rxy))
(g) ∃x(Px∧∀y(Qy↔ Rxy))∧∀x(Px→∀y(Uy→ ¬Rxy))
(h) ∀x(Px↔∀y(Py→∃x(Qx→ Qy))∧∃zPz)∨∀x(Px→∃yQz)

7.2 QUANTIFIER-FREE FORMS
Next, we wish to get rid of the quantifiers. Write X(x) for recording the fact that
the variable x occurs free in the formula X . From ∀xX(x), we can simply drop ∀x
resulting in X(x) only. Of course, dropping the universal quantifier here means that
∀xX(x) is valid iff X(x) is valid. Alternatively, we may drop ∃x from ∃xX(x), since
∃xX(x) is satisfiable iff X(x) is satisfiable. Look at the following example.

EXAMPLE 7.5. Let c be a constant that does not occur in the formula X(x). Write
X(c) for the formula X(x)[x/c]. Show the following:

(1) X(x) is valid iff X(c) is valid.
(2) X(x) is satisfiable iff X(c) is satisfiable.
(3) ∃xX(x) is satisfiable iff X(x) is satisfiable iff X(c) is satisfiable.
(4) ∀xX(x) is valid iff X(x) is valid iff X(c) is valid.
(5) If ∀xX(x) is satisfiable, then both X(x) and X(c) are satisfiable.
(6) If one of X(x) or X(c) is satisfiable, then ∃xX(x) is satisfiable.
(7) X(c) is satisfiable does not imply that ∀xX(x) is satisfiable.
(8) X(x) is satisfiable does not imply that ∀xX(x) is satisfiable.
(9) ∃xX(x) is valid does not imply that X(c) is valid.

(10) ∃xX(x) is valid does not imply that X(x) is valid.

7.2. QUANTIFIER-FREE FORMS 205

We use the substitution lemma without mentioning explicitly.

(1) Suppose X(x) is valid. Let I� = (D,φ ,�) be a state. Let �(c) = d ∈ D. Then
I� � X(c) iff I�[x �→d] � X(x). Since X(x) is valid, I�[x �→d] � X(x). So, I� � X(c). Since
any such I� � X(c), X(c) is valid.

Conversely, let X(c) be valid. Let I� = (D,φ ,�) be a state. Let �(x) = d ∈ D.
Consider an assignment function �� that agrees with � except at c and ��(c) = d.
Since X(c) is valid, the state (D,φ ,��) satisfies X(c). As �(x) = ��(c) = d, the state
I� satisfies X(x). That is, each state satisfies X(x). Therefore, X(x) is valid.

(2) Similar to the proof of (1).

(3)-(4) The proofs of the first ‘iff’ are shown in the proof of Theorem 5.4. The second
‘iff’ parts follow from (1)-(2).

(5) ∀xX(x) � X(c). Therefore, satisfiability of ∀xX(x) implies that of X(c). Similar
is the case for X(x).

(6) Similar to the proof of (5).

(7) Take X(x) = Px∧¬∀yPy, I� = (N,φ ,�), where φ(P) is the set of all prime num-
bers, and �(c) = φ(c) = 2. Since 2 ∈ φ(P), and all natural numbers are not prime,
I� � X(c). However, ∀xX(x)≡ ∀xPx∧¬∀yPy, which is unsatisfiable.

(8) Similar to the proof of (7). Also, it follows from (1) and (7).

(9) Let X(x) = Qx∨¬∃yQy. Then ∃xX(x) ≡ ∃xQx∨¬∃yQy, which is valid. Take
J� = (N,ψ,��), with ψ(Q) as the set of all composite numbers. Let ��(c) = ψ(c) = 2.
Since 2 is not a composite number and there are composite numbers, J� � X(x). That
is, X(x) is invalid.

(10) It follows from (2) and (9).
Example 7.5(3) says that for preserving satisfiability, we may eliminate all exis-

tential quantifiers from the beginning of the formula by replacing the occurrences of
those variables with suitable constants (or terms, in general). Similarly, Part (4) im-
plies that to preserve validity, we may eliminate the universal quantifiers. We discuss
both the cases, in turn.

Suppose we want satisfiability to be preserved. Due to Theorem 5.4, we consider
the existential closure of the given formula to reach at a sentence X , which we assume
to be in prenex form.

We find out the first occurrence of ∃ in the prefix of the prenex form sentence
X . Suppose this ∃ uses the variable x. We determine the dependence of x on other
variables by considering all those variables used by the universal quantifiers to the
left of it. From among those we choose a variable only when it is used along with x in
some predicate occurring in the formula. If there are k such variables, say, xi1, . . . ,xik
on which x depends, then we introduce a new k-ary function symbol g and replace
every occurrence of x in the matrix of the formula by the term g(xi1, . . . ,xik). We then
remove the occurrence ∃x from the prefix.

This step is repeated until all occurrences of ∃ are eliminated from X . Finally, all
occurrences of the universal quantifiers are simply ignored to output the quantifier-
free formula Xs. Note that all variables in Xs are now universally quantified. Since
the free variables are first existentially quantified, no universal quantifier precedes

206 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

these existential quantifiers. Therefore, in the process of elimination of existential
quantifiers, these variables will be replaced by new constants. The procedure QuaEli
takes care of this observation by replacing the free variables directly by new constants
and then proceeds to eliminate other existential quantifiers.

In QuaEli given below, we use X [x/a,y/b] for abbreviating X [x/a][y/b]; and use
the symbol := for updating the value of a variable as in programming languages.

PROCEDURE QuaEli
Input: A prenex form formula X .
Output: A quantifier-free formula Xs

Let the set of free variables of X be {y1,y2 . . . ,ym}.
Create 0-ary function symbols f1, f2, . . . , fm that do not occur in X .
Y := X [y1/ f1,y2/ f2, . . . ,ym/ fm]
Let Y = Q1x1Q2x2 · · ·QnxnZ, where Z is quantifier-free.
while 1≤ i≤ n do:

if Q1 = Q2 = · · ·= Qi−1 = ∀ and Qi = ∃ then let Si = {x1, . . . ,xi−1}
while 1≤ j ≤ i−1 do:

if no atomic subformula of Y contains both xi, and x j ∈ Si, then
Si := Si \{x j}

Let Si := {xi1, . . . ,xik}.
Create a new k-ary function symbol gi.
Y := Q1x1 · · ·Qi−1xi−1Qi+1xi+1 · · ·QnxnZ[xi/gi(xi1, . . . ,xik)]

Xs := matrix of Y

The process of elimination of the existential quantifiers in the procedure QuaEli
is called Skolemization. The quantifier-free form X̄ of the formula X computed
by QuaEli is referred to as the Skolem form of the formula X , after the logician
T. Skolem, The new function symbols gi are called indical functions or Skolem
functions, and the terms gi(xk1,xk2, . . . ,xk j) are called Skolem terms.

When a machine creates a Skolem term, it simply chooses a function symbol
looking at the indices of other function symbols used in the context. For example, if
f1, f2, f5 are all the function symbols used in a context, a machine would use f6 for
a Skolem term. In this sense, sometimes, we speak of the Skolem term.

We must remember that in arriving at the Skolem form, the free variables in the
given formula are treated as if existentially quantified, and finally the free variables
that remain in the Skolem form are assumed to be universally quantified.

EXAMPLE 7.6. Find the Skolem form of the prenex form formula

X = ∀y∃z∃v∀u((Qx→ Su)∧ (Pxy→ ¬Qv∨¬Rvz)).

QuaEli creates a 0-ary function symbol f1 for replacing the only free variable x. The
formula obtained after the replacement is

X1 = ∀y∃z∃v∀u((Q f1 → Su)∧ (P f1y→ ¬Qv∨¬Rvz)).

Next, it finds the first existential quantifier ∃z. The set of variables preceding it,
which are universally quantified is Sz = {y}. However, no atomic subformula of X

7.2. QUANTIFIER-FREE FORMS 207

has both z and y. Hence, Sz := Sz \ {y} = ∅. That is, z does not depend upon any
other variable; so, z is to be replaced by a new 0-ary function symbol, say, f2. We
update the formula to:

X2 = ∀y∃v∀u((Q f1 → Su)∧ (P f1y→ ¬Qv∨¬Rv f2)).

The above procedure is repeated for ∃v. You see that v may depend upon the variable
y preceding it; but no atomic subformula contains both v and y. Hence, again, a new
constant, say, f3, is introduced to replace v. The updated formula is

X3 = ∀y∀u((Q f1 → Su)∧ (P f1y→ ¬Q f3∨¬Rv f2)).

No existential quantifier occurs in the updated formula; we thus drop all ∀’s to obtain
the (quantifier-free) Skolem form formula

Xs = (Q f1 → Su)∧ (P f1y→ ¬Q f3∨¬R f3 f2).

EXAMPLE 7.7. Use QuaEli to get a quantifier-free formula for

Y = ∃x∀y∀u∀v∃w((Px→ Py∧Qx∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

For the free variable z, we choose c; and for the existentially quantified variables
x,w, we choose the constants a,b, respectively, since there is no predicate having
occurrences of w along with any one of y,u,v. Then,

Ys = (Pa→ Py∧Qa∧¬Qy)∧ (Pu→ Qc)∧ (Qc→ Pu).

Notice that b does not occur in Ys, since ∃w is a vacuous quantification.

EXAMPLE 7.8. Find Skolem forms of the following sentences:
(a) ∃z∃v∀u∀x∀y((Qxv→ Szu)∧ (Pxy→ ¬Qzv∨¬Rvz))
(b) ∀x∀y∀u∃v∃z((Qxv→ Szu)∧ (Pxy→ ¬Qzv∨¬Rvz))

(a) No ∀ precedes any ∃. Thus, existentially quantified variables z,v are replaced by
constants b,c, respectively. The Skolem form of the sentence is

(Qxc→ Sbu)∧ (Pxy→ ¬Qbc∨¬Rcb).

(b) Out of x,y,u, only x occurs along with v in a predicate. Thus, v is replaced by the
Skolem term f (x). Similarly, z is replaced by g(u). The Skolem form is

(Qx f (x)→ Sg(u)u)∧ (Pxy→ ¬Qg(u) f (x)∨¬R f (x)g(u)).
We show that satisfiability is preserved by Skolemization.

Theorem 7.2 (Skolem Form). A formula is satisfiable if and only if its Skolem form
is satisfiable.

Proof. Given a formula X , use Theorem 7.1 to construct a prenex form formula Xp
equivalent to X . Let Xe be the existential closure of Xp. Now, Xp is satisfiable iff Xe
is satisfiable. Use Skolemization on Xe to construct the formula Xs. Our aim is to
show that Xe is satisfiable iff Xs is satisfiable. Let I� = (D,φ ,�) be a state. We use
induction on ν(Xe), the number of occurrences of ∃ in Xe, to show the following:

208 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

(a) If I� � Xs then I� � Xe.

(b) If I� � Xe, then there exist extensions ψ of φ , and m of � such that the state
Jm = (D,ψ ,m) satisfies Xs.

In the basis case, ν(Xe) = 0 gives Xe = Xs; thus, both (a) and (b) hold trivially.
Assume that (induction hypothesis) (a)-(b) hold for any formula A in prenex form
whenever ν(A)< n. Let Xe be a formula with ν(Xe) = n. Scan Xe from left to right;
find out the first occurrence of ∃. Then Xe = ∀x1 . . .∀xk∃xB for suitable variables
x1, . . . ,xk, and x. It is possible that x1, . . . ,xk are absent altogether; this corresponds
to the case k = 0. Now, B is a formula in prenex form with ν(B) = n−1. And Xs =
∀x1 . . .∀xk(B[x/t])s, where t is a Skolem term. We use the subscript s for denoting
Skolemization.

Assume, for simplicity in notation, that each of the variables x1, . . . ,xk, occurs
along with x in some predicate in B. This implies that t = f (x1, . . . ,xk) and (B[x/t])s =
Bs[x/t]. Assume also that the variable x occurs free in B, ignoring the otherwise triv-
ial case of the vacuous quantifier ∃x.

(a) Let I� � Xs. Then for each d1, . . . ,dk ∈ D, Im � (B[x/t])s, where the valuation
m = �[x1 �→ d1] · · · [xk �→ dk]. Write m(t) = d. Since (B[x/t])s = Bs[x/t] for each
d1, . . . ,dk ∈ D, Im[x �→d] � Bs. By the induction hypothesis, Im[x �→d] � B for each
d1, . . . ,dk ∈ D. Then, I� � ∀x1 . . .∀xk∃xB, i.e., I� � Xe.

(b) Suppose I� � Xe. Then, for each d1, . . . ,dk ∈ D, there exists d ∈ D such that
I�[x1 �→d1]···[xk �→dk][x �→d] � B. By the induction hypothesis, there are extensions ψ of φ ,
and m of � such that Jm[x1 �→d1]···[xk �→dk][x �→d] � Bs. For interpreting the new function
symbol f , extend ψ to ψ �, and m to m� by defining

ψ �(f)(m(x1), . . . ,m(xk)) = d = m�(t).

Write J�m� = (D,ψ �,m�). Then, for each d1, . . . ,dk ∈D, J�m�[x1 �→d1]···[xk �→dk] � Bs[x/t].
Therefore, J�m� � Bs. The required extension of I� is J�m� . �

Notice that we started with a prenex form formula which is already rectified.
Had it not been rectified, then the proof of Theorem 7.2 would not have worked. See
where exactly it goes wrong. We also assumed, during the proof, that the variables
x1, . . . ,xk occur along with x in some predicate in B. See that no generality is lost due
to this assumption.

The procedure QuaEli eliminates all those variables y from the list of universally
quantified ones preceding the existentially quantified variable x which do not occur
along with x in any predicate in the formula. This brings in a canonical Skolem form.
See the following example.

EXAMPLE 7.9. Construct a Skolem form for the sentence ∀xPx∧∃yQy.

∀xPx∧∃yQy≡ ∃yQy∧∀xPx≡ ∃y(Qy∧∀xPx)≡ ∃y∀x(Qy∧Px).

There is no universal quantifier preceding the ∃y in ∃y∀x(Qy∧Px). Hence y is re-
placed by a constant, say, c. The Skolem form of the sentence is Qc∧Px.

Alternatively,

∀xPx∧∃yQy≡ ∀x(Px∧∃yQy)≡ ∀x∃y(Px∧Qy).

7.2. QUANTIFIER-FREE FORMS 209

In this formula, the variable y possibly depends on x; but there is no predicate having
the occurrences of both x and y. Thus, a constant c is chosen as the Skolem term for
y and the Skolem formula is Px∧Qc.

Had this condition of ‘occurrence of both the variables in a predicate’ not been
used in QuaEli, the Skolem form of ∀x∃y(Px∧Qy) would have been taken as Px∧
Q f (x). Notice that satisfiability would still have been preserved but unnecessary
dependence of y on x would also have been proclaimed. This is unnecessary since in
the process of prenex form conversion, ordering of quantifiers is not canonical. We
will see later that absence of an extra function symbol will ease the process of model
construction.

For conversion of a formula to a quantifier-free formula preserving validity a
similar procedure may be adopted. Look at Example 7.5 once again. In view of
QuaEli, it suggests the following:

Let A be a rectified formula in prenex form. Take the universal closure
of the resulting formula. Change all occurrences of ∀ to ∃ and of ∃ to ∀
simultaneously. Apply QuaEli.

Alternatively, you can modify QuaEli by treating all ∃ as ∀ and all ∀ as ∃. Call
the new procedure as QuaEli-∀. Like QuaEli, the free variables are replaced by
constants also. Notice that for the validity form, the free variables are universally
quantified in the beginning and after the procedure QuaEli-∀ has been performed,
the remaining free variables are existentially quantified.

The quantifier-free form of a formula X thus obtained is called the functional
form of X . The functional form is unique, just like the Skolem form, up to the choice
of the function symbols. The function symbols are created in a machine sequentially
with unique subscripts; so we talk of the functional form of a formula.

EXAMPLE 7.10. Let A = ∃z∃v∀u((Qx → Su)∧ (Pxy → ¬Qv∨¬Rvz)). Find the
functional form of A, and the Skolem form of ¬A.

QuaEli−∀ replaces the free variables x,y by constants a,b, respectively, to obtain

∃z∃v∀u((Qa→ Su)∧ (Pab→ ¬Qv∨¬Rvz)).

Next, ∃z and ∃v precede ∀u, but there is no atomic subformula containing both z,u
or both v,u. Hence, we use a new constant c to eliminate ∀u, giving

∃z∃v((Qa→ Sc)∧ (Pab→ ¬Qv∨¬Rvz)).

Finally, we simply drop the existential quantifiers to get the functional form

A f = (Qa→ Sc)∧ (Pab→ ¬Qv∨¬Rvz).

For the Skolem form of ¬A, we first use the law of De Morgan. It gives

¬A≡ ∀z∀v∃u¬((Qx→ Su)∧ (Pxy→ ¬Qv∨¬Rvz)).

We then choose new constants a,b for replacing the free variables x,y. Since there is
no predicate in this formula having occurrences either of u,z or of u,v, we choose a

210 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

new constant c for replacing the existentially quantified variable u. Finally, we drop
all the universal quantifiers to obtain the Skolem form

(¬A)s = ¬((Qa→ Sc)∧ (Pab→ ¬Qv∨¬Rvz)).
Compare the functional form A f of A and the Skolem form (¬A)s of ¬A in Ex-

ample 7.10. It suggests the following result.

Theorem 7.3 (Functional Form). A formula is valid if and only if its functional
form is valid.

Proof. Let X be a formula, Xp its prenex form, Xm the matrix of Xp, and let Xf be
the functional form of X . Denote by (¬X)p the prenex form of ¬X , by (¬X)m the
matrix of (¬X)p, and by (¬X)s the Skolem form of ¬X .

Due to the law of De Morgan, (¬X)m ≡ ¬Xm. Comparing the prefix of (¬X)p
with that of Xp, we see that each quantifier has been changed: each ∀ is now ∃ and
each ∃ is now ∀, appearing in the same order as per the variables they use. Thus, use
of QuaEli on (¬X)p results in the same formula as using QuaEli-∀ on Xp except that
an extra ¬ is in the beginning. That is, (¬X)s = ¬Xf .

Now, X is valid iff ¬X is unsatisfiable iff (¬X)s is unsatisfiable (by Theorem 7.2)
iff ¬Xf is unsatisfiable iff Xf is valid. �

We write the universal closure of the Skolem form as XS; it is called the satisfi-
ability form of X . Similarly, the existential closure of the functional form is written
as XV ; and it is called the validity form of X . The formulas XS and XV are computed
by QuaEli and QuaEli-∀, respectively, before finally ignoring the block of quanti-
fiers. Both the forms are commonly referred to as the sentential forms of the given
formula.

We summarize our results as in the following.

Theorem 7.4 (Sentential Form). Let X be any formula. Then quantifier-free for-
mulas Y, Z, and sentences XS = ∀∗Y, XV = ∃∗Z can be constructed so that

(1) X is satisfiable iff XS is satisfiable;
(2) X is valid iff XV is valid.

Exercises for § 7.2
1. Show that ∀y∃x(Px→Qy) � ∃x∀y(Px→Qy). Contrast this consequence with
∀y∃x(Ax→ Bxy) � ∃x∀y(Ax→ Bxy).

2. Obtain Skolem form and functional form of the following formulas:

(a) ∀x∀y(Pxyz∧ (∀x∀yQyu→ Rx))
(b) ∀xPx f ∧ (∀xQx→∃y¬Qx)∨∀x∃yPxy
(c) ∀x(∃yPxy∧Qy)→ (∃y(Ry∧Uxy)→ Qy)
(d) ¬∀x¬∀y¬∀zPxy→∃x∃y(¬∃zQxyz↔ Rxy)
(e) ∃x(Px∧∀y(Qy↔ Rxy))∧∀x(Px→∀y(Uy→ ¬Rxy))
(f) ∀x(Px↔∀y(Py→∃x(Qx→ Qy))∧∃zPz)∨∀x(Px→∃yQz)

3. Let the formula X have a prenex form with matrix as Y. When is Y a subfor-
mula of X?

7.3. CLAUSES 211

4. Show that, in Example 7.6, X is satisfiable iff X̄ is satisfiable.
5. Find the Skolem form and the functional form of the formula ∃y∀x(Px→ Py),

and then decide whether it is valid. [Hint: ∃z(P f (z)→ Pz) is valid or not?]

7.3 CLAUSES
Look at the matrix of a prenex form. You can further use the replacement in tautolo-
gies to convert it into either a conjunction of disjunctions or a disjunction of con-
junctions, just like the conversion of propositions into cnf or dnf. For this purpose,
you have to redefine (or extend to FL) the notions of literals and clauses. Recall that
in FL, you have the atomic formulas as �, ⊥, and P(t1, . . . , tn) for n-ary predicates
P and terms t1, . . . , tn.

A literal is either an atomic formula or negation of an atomic formula. A con-
junctive clause is a conjunction of literals, and a disjunctive clause is a disjunction
of literals. A cnf is a conjunction of disjunctive clauses, and a dnf is a disjunction of
conjunctive clauses. A formula in prenex form with its matrix as a cnf is said to be
in pcnf or in prenex conjunctive normal form, and one whose matrix is in dnf is in
pdnf or in prenex disjunctive normal form. Both pcnf and pdnf are commonly called
prenex normal forms or pnf.

Your experience with prenex forms and the propositional normal forms will en-
able you to prove the following theorem easily.

Theorem 7.5 (Prenex Normal Form). For each formula X , a pcnf formula Y and
a pdnf formula Z can be constructed so that X ≡ Y and X ≡ Z.

Let X be a formula. An scnf or Skolem conjunctive normal form of X is a cnf
equivalent to the Skolem form of X . An sdnf or Skolem disjunctive normal form
of X is a dnf equivalent to the Skolem form of X . Both scnf and sdnf of X are
called Skolem normal forms or Skolem standard forms of X . An fcnf or functional
conjunctive normal form of X is a cnf equivalent to the functional form of X . An fdnf
or functional disjunctive normal form of X is a dnf equivalent to the functional form
of X . Both fcnf and fdnf of X are called functional normal forms or functional
standard forms of X . It is now obvious that any formula can be converted to a
standard form preserving satisfiability or validity as appropriate.

Theorem 7.6 (Standard Form). For each formula X , formulas X1 in scnf, X2 in
sdnf, X3 in fcnf, and X4 in fdnf can be constructed so that the following are true:

(1) X is satisfiable iff X1 is satisfiable iff X2 is satisfiable.
(2) X is valid iff X3 is valid iff X4 is valid.

EXAMPLE 7.11. Convert the following formula to scnf, sdnf, fcnf, and fdnf:

X = ∃x∀y∀u∀v∃w∀z((Rux→ Py∧Qx∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

It is a sentence in prenex form. No universal quantifier occurs to the left of ∃x.
To the left of ∃w, the universally quantified variables are y,u and v. But none of

212 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

these variables occurs in a predicate along with w. Moreover, w does not occur in the
matrix at all. Thus, we replace x by constants, say, a, and we need not replace w by
anything. The satisfiability form of X is

XS = ∀y∀u∀v∀z((Rua→ Py∧Qa∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

The Skolem form of the formula is the matrix of XS, that is,

Xs = (Rua→ Py∧Qa∧¬Qy)∧ (Pu→ Qz)∧ (Qz→ Pu)).

Converting the Skolem form to cnf and dnf, we have the following scnf and sdnf:

X1 = (¬Rua∨Py)∧ (¬Rua∨Qa)∧ (¬Rua∨¬Qy)∧ (¬Pu∨Qz)∧ (¬Qz∨Pa).

X2 = (¬Rua∧¬Pu∧¬Qz)∨ (¬Rua∧¬Qz∧Pu)∨ (Py∧Qa∧¬Qy∧¬Pu∧¬Qz)

∨ (Py∧Qa∧¬Qy∧Qz∧Pu).

For the validity form, we similarly eliminate the universal quantifiers. The first
∀ from the left is ∀y, which occurs after ∃x. But x,y do not occur in any predicate
simultaneously. Hence y is replaced by a constant, say, c. Next, ∀u occurs after
∃x, and both u,x occur in Rux. Thus, a new indical function, say, f of arity 1, is
introduced and f (x) replaces u. Similarly, v is replaced by a constant, say, d, and z is
replaced by a constant e. Thus, we have the validity form

XV = ∃x∃w((R f (x)x→ Pc∧Qx∧¬Qc)∧ (P f (x)→ Qe)∧ (Qe→ P f (x))).

The functional form is the matrix of XV :

Xf = (R f (x)x→ Pc∧Qx∧¬Qc)∧ (P f (x)→ Qe)∧ (Qe→ P f (x)).

We eliminate→ and use distributivity to obtain the required fcnf and fdnf:

X3 = (¬R f (x)x∨Pc)∧ (¬R f (x)x∨Qx)∧ (¬R f (x)x∨¬Qc)

∧ (¬P f (x)∨Qe)∧ (¬Qe∨P f (x)).

X4 = (¬R f (x)x∧¬P f (x)∧¬Qe)∨ (¬R f (x)x∧¬Qe∧P f (x))

∨ (Pc∧Qx∧¬Qc∧¬P f (x)∧¬Qe)∨ (Pc∧Qx∧¬Qc∧Qe∧P f (x)).

We must stress that in scnf and sdnf, all free variables are universally quantified,
while in fcnf and fdnf, all free variables are existentially quantified. In an scnf, since
∀ distributes over ∧, you may regard the scnf as a conjunction of sentences obtained
by universally quantifying over the free variables of individual clauses. But in an
sdnf, ∀ do not distribute over ∨; the conjunctive clauses do share their variables.
Similarly, in an fdnf, each clause may be regarded as a sentence where the free
variables are existentially quantified; but the free variables in an fcnf are shared by
individual clauses. This is why conversion of a formula to scnf and fdnf is more
natural than conversion to sdnf or fcnf.

7.4. UNIFICATION OF CLAUSES 213

Exercises for § 7.3
Construct clause sets corresponding to the following formulas and consequences.
[The clause sets for a consequence Σ !�X are the clause sets for the set Σ∪{¬X}.]

1. ∃xX ↔ ¬∀x¬X
2. ∀xPx→∃x∃y(Qx∨Rxy)
3. ∃x∃y(Pxy→∀x(Qx∧Rxy))
4. ∀x(∃y(Pxy→ Qxy)∧∃y(Qxy→ Pxy))
5. ∀x(∃yPxy∧¬Qxy)∨∀y∃z(Qyz∧¬Rxyz)
6. ¬(∃x∀yPxy→ (∀x∃z¬Qzx∧∀y¬∀zRzy))
7. ∀x∀y(∀zPxyz∨ (∀yRxy→∃u(Rxu∧Quz)))
8. ∃x∀y∀z∃x(∃u(Pxz∨Qxy)↔ ¬∃u¬∃w(Qxw∧¬Rxu))
9. {∀x(∃y(Pxy∧Qy)→∃y(Ry∧Bxy)),∀x¬Rx} !� (Qy→ Pxy)

10. {∀x(Px→∀y(Qxy→ Ry)),∃y(Py∧∀x(Bx→ Qyx))} !�∀zBz

7.4 UNIFICATION OF CLAUSES
You have seen how resolution works for deciding satisfiability of a cnf, or a finite set
of clauses in PL. Since scnf conversion preserves satisfiability, resolution is a viable
option for FL. But, can we apply resolution straightforward on an scnf? For example,
consider the scnf A = (¬Px∨Qxy)∧Px∧¬Qxy, or in set notation,

A = {{¬Px,Qxy},{Px},{¬Qxy}}.

A resolution refutation may proceed as follows.

{¬Px,Qxy} {Px} {¬Qxy}

{Qxy}

⊥
Let us take another example. Consider the clause set

B = {{¬Hx,Mx},{Ha},{¬Ma}}.

The scnf B corresponds to the consequence {∀x(Hx → Mx),Ha} � Ma. We know
that B is a valid consequence. But how do we proceed in resolution? It should be
possible to resolve {¬Hx,Mx} and {Ha} to get {Ma}; and then ⊥ may be derived
as in Figure 7.1.

Since free variables in an scnf are universally quantified, the clause {¬Hx,Mx},
is indeed the formula ∀x(¬Hx∨Mx). By universal specification, we have ¬Ha∨Ma.

214 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

{¬Hx,Mx} {Ha} {¬Ma}

{Ma}

⊥
Figure 7.1: Suggested refutation of B

Hence we should be able to extend our definition of resolvents in such a way that the
substitution [x/a] can be used to effect the specification. But how do we choose this
particular substitution among many others? Moreover, if more than one variable are
involved (as x above), then we may require a substitution such as [x/a,y/b,z/c, . . .]
for simultaneously substituting the constants in place of the variables.

A substitution is an expression of the form [x1/t1,x2/t2, . . .xn/tn], where xi is
a variable, ti is a term, xi �= ti, and xi �= x j, for 1 ≤ i �= j ≤ n. We consider such a
substitution as an ordered set, a list of individual elements x1/t1, x2/t2, . . . , xn/tn.
We also allow the empty substitution [], which when applied on a term yields the
same term; and applied on a formula returns the same formula.

Both [x1/t1] and [x19/t5,x5/t21] are substitutions, but neither [x/c,x/ f (a)] nor
[x/c,y/y] is a substitution.

If σ = [x1/t1, . . . ,xn/tn] is a substitution and t is a term, then the result of apply-
ing the substitution σ on the term t, denoted by tσ , is the term obtained from t by
replacing each occurrence of xi by the corresponding term ti simultaneously for all i.
For instance,

f (a)[x/b] = f (a)

g(f (a),x)[x/ f (b)] = g(f (a), f (b))

g(f (x),y)[x/ f (y),y/a] = g(f (f (y)),a)

g(f (x),y)[x/ f (y)][y/a] = g(f (f (y)),y)[y/a] = g(f (f (a)),a)

Clearly, t[] = t for any term t. You can also define tσ recursively using the grammar
of terms.

If X is a formula and σ = [x1/t1,x2/t2, . . . ,xn/tn] is a substitution, then the result
of applying the substitution σ on X , denoted by Xσ , is the formula obtained from
X by replacing each free occurrence of the variable xi by ti in X simultaneously for
all i. Obviously, if X is any formula, then X [] = X . For

X = ∀x(Pxy→ Qx)∧Rxy, σ = [x/a], θ = [x/a,y/b,z/c],

Xσ = ∀x(Pxy→ Qx)∧Ray ;
Xθ = ∀x(Pxb→ Qx)∧Rab ;

(Xθ)σ = (∀x(Pxb→ Qx)∧Rab)σ = ∀x(Pxb→ Qx)∧Rab ;
(Xσ)θ = (∀x(Pxy→ Qx)∧Ray)θ = ∀x(Pxb→ Qx)∧Rab.

7.4. UNIFICATION OF CLAUSES 215

The union of two lists L1 = [x1/s1, . . . ,xm/sm] and L2 = [y1/t1, . . . ,yn/tn] is taken
as the list L1 ∪L2 = [x1/s1, . . . ,xm/sm,y1/t1, . . . ,yn/tn]. In computing the union, we
list out all elements of the first, and then list out all the elements of the second,
preserving their order. For instance, if L1 = [x1/s1,x2/s2] and L2 = [x4/t4,x3/t3],
then L1∪L2 = [x1/s1,x2/s2,x4/t4,x3/t3], and L2∪L1 = [x4/t4,x3/t3,x1/s1,x2/s2].

The composition of two substitutions σ and θ , denoted by σ ◦θ , is the substitu-
tion computed by using the following procedure.

PROCEDURE CompSub
Input: Substitutions σ = [x1/s1,x2/s2, . . . ,xm/sm], θ = [y1/t1,y2/t2, . . . ,yn/tn].
Output: The substitution σ ◦θ .
1. Compute L1 := [x1/s1θ , x2/s2θ , . . . ,xm/smθ].
2. Compute the list L2 by deleting all expressions yi/ti from θ if yi ∈ {x1, . . . ,xm}.
3. Compute L3 by deleting from L1 all elements of the form x j/s jθ if x j = s jθ .
4. Compute σ ◦θ := L3∪L2.

EXAMPLE 7.12. To compute [x/ f (y)]◦ [z/y], we take σ = [x/ f (y)] and θ = [z/y].
Next, we begin with the list L1 = [x/ f (y)θ] = [x/ f (y)[z/y]] = [x/ f (y)]. In θ the
numerator of the only expressions z/y is z, which is assumed to be different from the
numerator x of the only expression x/ f (y) in L1. So, L2 = [z/y]. Next, L3 = L1 as
x �= f (y). Thus, [x/ f (y)]◦ [z/y] = L3∪L2 = [x/ f (y),z/y].

EXAMPLE 7.13. Let σ = [x/ f (y),y/z] and θ = [x/a,y/b,z/c].
To compute σ ◦θ , we start with the list [x/ f (y)θ ,y/zθ]. Since f (y)θ = f (b) and

zθ = c, we have L1 = [x/ f (b),y/c]. We look at θ . Since the variables x,y already
appear as numerators of elements in L1, we have L2 = [z/c]. Notice that no numerator
equals its denominator in L1. So, L3 = L1. Then

σ ◦θ = L3∪L2 = [x/ f (b),y/c,z/c].

For θ ◦σ , we start with the list L1 = [x/aσ ,y/bσ ,z/cσ] = [x/a,y/b,z/c]. The
variables x,y in the numerators of the elements of σ already occur as numerators in
L1. Thus L2 = []. All elements in L1 have numerators different from the respective
denominators; so L3 = L1.

θ ◦σ = L3∪L2 = L3 = L1 = [x/a,y/b,z/c].

You see that σ ◦θ �= θ ◦σ ; order does matter in compositions.

EXAMPLE 7.14. Let X = Pxyz, σ = [x/ f (y),y/z], and let θ = [y/b,z/y]. Check
whether X(σ ◦θ) = (Xσ)θ .

For computing the composition σ ◦θ , we start with the list

L1 = [x/ f (y)θ ,y/zθ] = [x/ f (b),y/y].

From θ the element y/b is deleted to obtain L2 = [z/y]. Next, from L1, the element
y/y is deleted to get L3 = [x/ f (b)]. Then

σ ◦θ = L3∪L2 = [x/ f (b),z/y].

216 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

Applying the substitutions on the formula X , we obtain

(Xσ)θ = (Pxyz[x/ f (y),y/z])θ = (P f (y)zz)θ = P f (b)yy ;
X(σ ◦θ) = Pxyz[x/ f (b),z/y] = P f (b)yy.

That is, X(σ ◦θ) = (Xσ)θ .
To see why composition of substitutions is defined in such a way, consider a term

t = f (x), and substitutions σ = [x/y] and θ = [y/z]. Now,

(tσ)θ = f (y)θ = f (z).

The net effect is the application of the substitution [x/yθ] on t. This justifies our
starting point of the list as

[x1/s1θ , x2/s2θ , . . . ,xm/smθ].

Consider the same σ ,θ but the term s = f (y). Here,

(sσ)θ = sθ = f (y)θ = f (z).

This justifies adding to the previous list the elements from θ whose numerators are
not appearing as numerators of elements in our list. Finally the updated list is not
a substitution since there can be vacuous substitutions of the form z/z in it; these
are deleted to form the composition. Is it not obvious that a composition results in a
repeated application of the individual substitutions?

Lemma 7.1. Let σ and θ be two substitutions. Let t be any term, and let X be any
formula. Then, t(σ ◦θ) = (tσ)θ and X(σ ◦θ) = (Xσ)θ .

Proof. We plan to use induction on the level of terms for proving the result for terms.
In the basis step, the term t is equal to a constant c or a variable x. When t = c, we
see that t(σ ◦θ) = c = (tσ)θ . When t = x, the following cases are possible: (Write
s,u,v for generic terms, and x,y for variables.)

(a) x/s does not occur in σ but x/u occurs in θ .
(b) x/s does not occur in σ and x/u does not occur in θ .
(c) x/s occurs in σ and y/u does not occur in θ for any y occurring in s.
(d) x/s occurs in σ and y/u occurs in θ for some y occurring in s.

We tackle each of the cases as follows.
(a) In this case, x/u occurs in σ ◦θ . Thus

t(σ ◦θ) = x(σ ◦θ) = x[x/u] = u = xθ = (xσ)θ = (tσ)θ .

(b) In this case, x/v never occurs in σ ◦θ for any term v. Hence

t(σ ◦θ) = x(σ ◦θ) = x = xσ = (xσ)θ = (tσ)θ .

(c) In this case, sθ = s; and consequently, x/s is in L1. Then x/u is not an element of
L2 for any term u. Since x/s occurs in σ , x �= s. Thus, x/s is an element of L3. That
is, x/s is an element of σ ◦θ . Therefore,

7.4. UNIFICATION OF CLAUSES 217

t(σ ◦θ) = x(σ ◦θ) = x[x/s] = s = xσ = (xσ)θ = (tσ)θ .
(d) A special subcase is s = y. Here, sθ = u; and x/u is in L2. Thus x/u occurs in
σ ◦θ . Whether u = x or not, we have

t(σ ◦θ) = x(σ ◦θ) = x[x/u] = u = sθ = (xσ)θ = (tσ)θ .
The other subcase is s �= y. Write s = f (· · ·y · · ·), schematically. Notice that there
can be more than one occurrence of y in s; it is only a suggestive way of showing
that y occurs in s. Here, sθ = f (· · ·u · · ·) �= x. Hence, x/ f (· · ·u · · ·) is an element of
σ ◦θ . (If y = x, then y/u = x/u is deleted from the list.) Therefore,

t(σ ◦θ) = x[x/ f (· · ·u · · ·)] = f (· · ·u · · ·) = f (· · ·y · · ·)θ = sθ = (xσ)θ = (tσ)θ .

For formulas, we use induction on the number of free variables; it is similar to
the proof for terms. �

Observe that the composition of substitutions is associative, but not commutative,
in general. We write the composition σ ◦θ of substitutions σ and θ as σθ .

Substitutions are applied on sets of formulas as well. For a set Σ of formulas, and
a substitution θ , we define

Σθ = {Xθ : X ∈ Σ}.
That is, the substitution θ is applied on every formula in Σ, and then the formulas
are collected together to have Σθ .

Renaming of variables in a formula can be seen as an application of a substitu-
tion. These special substitutions are called variants. A variant is a substitution of
the form [x1/y1,x2/y2, . . . ,xm/ym], where xi’s are distinct variables, yi’s are distinct
variables, and no y j is an xi.

We need to use variants in such a way that two clauses will have different vari-
ables after renaming. If B and C are two clauses, then two variants σ and θ are called
a pair of separating variants iff Bσ and Cθ have no common variables.

We plan to choose substitutions in resolving clauses mechanically. For instance,
we should choose the substitution [x/a] while resolving the clauses {¬Hx,Mx} and
{Ha}. The substitution [x/a] is that one which makes both the literals ¬Hx and ¬Ha
equal. So to say, it unifies the literals ¬Hx and ¬Ha.

Let A = {A1,A2, . . . ,Am} be a set of literals. A substitution σ is a unifier of A
iff A1σ = A2σ = · · · = Amσ . That is, the set Aσ is a singleton. We say that A is
unifiable iff there is a unifier of it.

For example, {¬Hx,¬Ha} has a unifier [x/a] as {¬Hx,¬Ha}σ = {¬Ha}, a
singleton. Thus {¬Hx,¬Ha} is unifiable whereas {¬Hx,Ha} is not unifiable.

As in PL, a set of literals will be referred to as a clause.

EXAMPLE 7.15. Is A = {Pxy f (g(z)),Pu f (u) f (v)} unifiable?
With σ = [x/a,y/ f (a),u/a,z/a,v/g(a)], Aσ = {Pa f (a) f (g(a))}. Hence σ is a

unifier of A; and A is unifiable.
Moreover, with δ = [x/u,y/ f (u),v/g(z)] and θ = [x/u,y/ f (u),z/a,v/g(a)], we

find that Aδ = {Pu f (u) f (g(z))} and Aθ = {Pu f (u) f (g(a))}. That is, δ and θ are
also unifiers of A. A unifier need not be unique.

218 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

In Example 7.15, σ = δ [u/a,z/a] and θ = δ [z/a]. If you choose δ as the unifier,
then later, you can still choose other substitutions to get back the effect of σ or of
θ using composition. A unifier such as δ here is called a most general unifier. We
are interested in a most general unifier since we do not want to restrict our universal
specification in such a way that we lose information.

A unifier δ of a set of literals A is called a most general unifier of A if for each
(other) unifier θ of A, there exists a substitution σ such that θ = δσ . Similarly, a
most general unifier of a set of terms is also defined.

Like a unifier, a most general unifier of a set of literals (or terms) need not be
unique. In Example 7.15, for A = {Pxy f (g(z)),Pu f (u) f (v)}, two most general uni-
fiers are

δ = [x/a,y/ f (a),v/g(z)], λ = [u/x,y/ f (x),v/g(z)].

Here, δ = λ [x/u], and λ = δ [u/x]. Of course, any most general unifier can be ob-
tained from another by applying a suitable variant.

EXAMPLE 7.16. Unify A = {Pxy f (g(z)),Pu f (u) f (v)}.
Our target is to finally match all the literals by applying a suitable substitution.

Naturally, we scan the literals symbol by symbol, say, from left to right. The first
symbol P matches. A discrepancy occurs at the second symbol: one is x and the
other is u. So, we start with a substitution [x/u]. Then,

A[x/u] = {Puy f (g(z)),Pu f (u) f (v)}.

Matching the literals in this new set, we find a discrepancy at the third symbol. One is
y, a variable, and the other is a term f (u). So, we construct the substitution [y/ f (u)].
Applying this, we obtain

(A[x/u])[y/ f (u)] = {Pu f (u) f (g(z)),Pu f (u) f (v)}.

Next discrepancy suggests the substitution [v/g(z)]; its application yields the clause

((A[x/u])[y/ f (u)])[v/g(z)] = {Pu f (u) f (g(z))}.

Therefore, by Lemma 7.1, we have the unifier

σ = ([x/u]◦ [y/ f (u)])◦ [v/g(z)] = [x/u,y/ f (u),v/g(z)].

The unification procedure given below mimics this manual construction.

PROCEDURE Unify
Input: A set A of literals.
Output: A most general unifier of A if one exists; else, ‘A is not unifiable’

1. If some literal in A starts with ¬ and another does not, then output ‘A is not
unifiable’.

2. If two elements of A use different predicates, then output ‘A is not unifiable’.
3. Set A0 := A; σ0 := [], the empty substitution; θ0 := σ0, k := 0.
4. If Ak has only one element, then output θk.

7.4. UNIFICATION OF CLAUSES 219

5. Else, scan the first two elements of Ak to find a mismatch.
6. If the mismatch is due to different function symbols, then output ‘A is not

unifiable’.
7. If the mismatch is due to a variable x in one and a term t in the other, then

(a) if x occurs in t, output ‘A is not unifiable’,
(b) else, set σk+1 := [x/t]; θk+1 := θkσk+1.

8. Set Ak+1 := Akσk+1; k := k+1; go to Step 4.

In Step 7, if t is also a variable, then the variable of the first literal is taken as x and
the variable in the second is taken as t. In general, the unified clause is Aθk+1, where
the most general unifier is θk+1 = σ1σ2 · · ·σk+1. Unification can also be applied on
a set of terms the same way.

EXAMPLE 7.17. Use Unify on A = {Px f (y),P f (y) f (x)}.
The first mismatch is at x in the first literal and f (y) in the second. Thus,

θ1 = σ1 = [x/ f (y)] ; and A1 = Aσ1 = {P f (y) f (y),P f (y) f (f (y))}.

The next mismatch is at y in the first literal and f (y) in the second. Since y occurs in
f (y), the clause is not unifiable (Step 7).

EXAMPLE 7.18. Unify A = {P(x,y,g(x,z, f (y))),P(z, f (x),u)}.

σ1 = [x/z], θ1 = σ1,

A1 = Aσ1 = {P(z,y,g(z,z, f (y))),P(z, f (z),u)} ;
σ2 = [y/ f (z)], θ2 = σ1σ2,

A2 = A1σ2 = {P(z, f (z),g(z,z, f (f (z)))),P(z, f (z),u)} ;
σ3 = [u/g(z,z, f (f (z))], θ3 = θ2σ3,

A3 = A2σ3 = {P(z, f (z),g(z,z, f (f (z))))}, a singleton.

Thus, θ3 = θ2σ3 = [x/z][y/ f (z)][u/g(z,z, f (f (z))] = [x/z,y/ f (z),u/g(z,z, f (f (z))]
is the most general unifier.

Convention 7.1. Henceforth, we will use the term the most general unifier or the
acronym mgu for the one computed by the procedure Unify. If the set of literals
{A,B} is (not) unifiable, we say that “A and B are (not) unifiable”.

Exercises for § 7.4
1. Find a pair of separating variants for each of the following pairs of clauses:

(a) {Pxy f (z)}, {Pzy f (y)} (b) {Pxy,Pyz}, {Qzy,R f (y)z}
(c) {Pxg(x)y}, {Pyg(x)x} (d) {Pxg(x)y}, {Pxg(x)y}

2. Show that the composition of substitutions is associative, i.e., for any substi-
tutions σ ,θ ,τ, we have (σ ◦θ)◦ τ = σ ◦ (θ ◦ τ).

3. Find clauses A,B and a substitution σ such that (A \B)σ is not a subset of
Aσ \Bσ .

220 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

4. Compute the compositions σ ◦ τ and τ ◦σ in each of the following cases:

(a) σ = [x/a,y/c,z/x], θ = [y/z,x/a]
(b) σ = [y/x,z/ f (y)], θ = [x/a,y/x,z/ f (a)]
(c) σ = [x/a,y/a,z/g(x)], θ = [x/a,y/ f (z,a),z/y]

5. See that λ = [u/x,y/ f (x),v/g(z)] is a most general unifier of the set of liter-
als {Pxy f (g(z)), Pu f (u) f (v)}. Does this set of literals have any other most
general unifier?

6. Show that θ = [x/a,y/g(f (a)),z/ f (a),u/ f (f (a))] is a unifier of the clause
A= {Pxy f (z),Pag(z)u}. Find a most general unifier σ of A and also a nonempty
substitution δ such that θ = σδ .

7. Use Unify to find the mgu, if it exists, for each of the following clauses:

(a) {Pxy,P f (x)y} (b) {Pxay f (y),Pzyg(c)u}
(c) {P f (x)y,Pzz,Px f (u)} (d) {Px f (y)z,Pcg(u)w,Puvg(w)}
(e) {Px f (x)g(f (y)), Pc f (g(z))g(y)} (f) {Pxug(f (y)), Pc f (g(z))g(u)}
(g) {P(f (c),x,y), P(z, f (c),y), P(z,x, f (c))}
(h) {P(x, f (x,g(x),y), f (x,y,z)), P(c,g(y),g(z))}

8. How many occurrences of the variable x1 are there in the mgu of the terms
f (x2,x3, . . . ,xn) and f (g(x1,x1),g(x2,x2), . . . ,g(xn−1,xn−1))?

7.5 EXTENDING RESOLUTION
Recall that in PL, we considered resolution of disjunctive clauses. As a prelude to
resolution in FL, we consider the scnf of a formula. Then, the scnf is expressed as
a set of clauses; each clause being disjunctive. Further, each such clause may be
viewed as a set of literals, as earlier. Thus, we use both disjunction notation and set
notation for clauses. For example, we may write the clause Pxy∨Qz as {Pxy,Qz}
also. Due to the set notation, that mgu of a clause is meaningful.

To see how mgu is helpful in taking resolution, consider the set of clauses {C1,C2},
where C1 = {¬Hx,Mx} and C2 = {Ha}. The mgu of ¬Hx and ¬Ha (note the ex-
tra ¬ with Ha) is [x/a]. Now, C1[x/a] = {¬Ha,Ma},C2[x/a] = {Ha}. Taking the
resolvent, we get {Ma}. Intentionally, we had taken C2[x/a] to keep generality.

Consider another clause set, say, A= {¬Hxy∨Mxy,Hya}. The mgu of the clause
{¬Hxy,¬Hya} is σ = [x/y][y/a] = [x/a,y/a]. Then Aσ = {¬Haa ∨Maa,Haa},
from which resolution gives Maa.

Notice that during Skolemization, the universal quantifiers are simply dropped.
Thus the clause ¬Hxy∨Mxy represents the formula ∀x∀y(Hxy→ Mxy). Similarly,
the clause Hya represents the formula ∀yHya. Hence A represents the formula

B = ∀x∀y(Hxy→Mxy)∧∀yHya.

Obviously, B � ∀yMya. By resolution, we have obtained the weaker sentence Maa.
Why did we lose information?

7.5. EXTENDING RESOLUTION 221

When the substitution [y/a] was applied after [x/y], the variable x got replaced
by a. In general, this is not required. In the formula ∀x∀y(Hxy→Mxy)∧∀yHya, the
variable y that occurs in ∀yHya could have been renamed. Renaming y as z, we have

B≡ ∀x∀y(Hxy→Mxy)∧∀zHza.

The clause set representation of this formula is C = {¬Hxy∨Mxy,Hza}. Now, the
mgu of {¬Hxy,¬Hza} is [x/z]. Thus C[x/z] = {¬Hza∨Mza,Hza}. And the resol-
vent of the clauses in C[x/z] is Mza. It keeps the generality intact. We observe:

For resolution to work, clauses should not have common variables.

So, you find the usefulness of separating variants! If the clauses in a clause set
have common variables, then we use separating variants to have distinct variables in
different clauses.

Let C1 and C2 be two clauses with no common variables, and let �1 ∈C1, �2 ∈C2
be two literals such that σ is the most general unifier of {�1,¬�2}. Then the clause

�
(C1 \{�1})∪ (C2 \{�2})

�
σ

is the resolvent of the clauses C1 and C2 with respect to the literal �1 (or �2). We
denote the resolvent of C1 and C2 with respect to �1 as res(C1,C2; �1,σ). Clauses C1
and C2 are called the parent clauses of the resolvent clause res(C1,C2; �1,σ).

We may write res(C1,C2; �1,σ) as res(C1,C2; �1) and also as res(C1,C2) pro-
vided no confusion arises.

EXAMPLE 7.19. Find all resolvents of the clauses A = {Px f (y),Qg(y), Rxzb} and
B = {¬Px f (b),¬Qz,Rxab}.

Notice that A and B have common variables. We first use separating variants.
When implemented in a machine, the separating variants will be something like

δ1 = [x/x1,y/x2,z/x3], δ2 = [x/x4,z/x5]

so that instead of A,B, the clauses considered are Aδ1,Bδ2, respectively. While doing
manually, we keep one of the clauses as it is and rename the common variables in
the second clause. With δ = [x/u,z/v] we rename B to have

B1 = Bδ = {¬Pu f (b),¬Qv,Ruab}.
Now, with A and B1, we have a literal Px f (y) in A and ¬Pu f (b) in B. The mgu of
first and ¬ of the other is to be computed. Since the literal ¬¬Pu f (b) is taken as
Pu f (b), we compute the mgu of {Px f (y),Pu f (b)}. It is σ = [x/a,y/b]. Then

res(A,B1; Px f (y)) = ((A\{Px f (y)})∪ (B1 \{Pu f (b)}))[x/u,y/b]

= {Qg(b),Ruzb,¬Qv,Ruab}.
Similarly, choosing the literals Qg(y) from A and ¬Qv from B1, we have the mgu
[v/g(u)] for the set {Qg(y),Qv}. This gives

res(A,B1,Qg(y)) = {Px f (y),Rxzb,¬Pu f (b),Ruab}.
For the literal Rxzb from A, the corresponding literal from B1 is Ruab. But the set
{Rxzb,¬Ruab} is not unifiable; it gives no resolvent.

222 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

As in PL, we would expect the resolvent to be a logical consequence of its parent
clauses. In Example 7.19, we would have {A,B1} �C, where

C = {Qg(b),Ruzb,¬Qv,Ruab}.

Is it really so? Let I = (D,φ) be an interpretation and m be a valuation under I.
Suppose the state Im satisfies both A and B1. That is,

Im � Px f (y)∨Qg(y)∨Rxzb, Im � ¬Pu f (b)∨¬Qv∨Ruab.

If Im � ¬Pu f (b), then Im � ¬Qv∨Ruab. In this case, Im �C. On the other hand, if
Im �¬Pu f (b), then Im � Px f (y), since u is universally quantified in ¬Pu f (b). Thus,
Im � Qg(y)∨ Rxzb. Since x and y are universally quantified, Im � Qg(b)∨ Ruzb.
Consequently, Im �C. In any case, Im �C.

If we repeat the same argument in general, we obtain the following result.

Theorem 7.7 (Resolution Principle). Let A and B be two first order clauses. Let C
be a resolvent of A and B with respect to some literal. Then, {A,B} �C.

As in PL, we proceed towards taking resolvents, resolvents of resolvents with the
goal of generating ⊥. If at all ⊥ is generated, then the set of clauses is unsatisfiable.

EXAMPLE 7.20. Let A = {{¬Px,Qx},{Pa},{Rba},{¬Qy,¬Rby}}. We apply the
resolution principle to construct the refutation DAG as follows:

{¬Px,Qx} {Pa} {¬Qy,¬Rby} {Rba}

{Qa}

{¬Rba}

⊥

We may write the refutation in three column style. It shows that A is unsatisfiable.

1. {¬Px,Qx} P
2. {Pa} P
3. {Qa} res(1,2; ¬Px, [x/a])
4. {¬Qy,¬Rby} P
5. {¬Rba} res(3,4; Qa, [y/a])
6. {Rba} P
7. ⊥ res(5,6; ¬Rba, [])

7.6. FACTORS AND PRAMODULANTS 223

Exercises for § 7.5
1. Prove Theorem 7.7.
2. Determine whether the following sets of clauses entail ⊥ by resolution.

(a) {{Px,Qx},{Pa},{¬Py},{¬Qz}}
(b) {{Pxy,Qxa},{Pax,¬Qyx},{¬Pyy}}
(c) {{¬Px,Qx},{Pc},{Rac},{¬Qz,¬Raz}}
(d) {{Px,Qx,Rx f (x)},{¬Px,Qx,S f (x)},{Ac},{Pa},{¬Ray,Ay},

{¬Ax,¬Qx}, {¬Az,¬Sz}}

7.6 FACTORS AND PARAMODULANTS
Consider the formula A = ∀x∀y(Px∨Py)∧∀u∀z(¬Pu∨¬Pz). Simplifying the con-
juncts, we see that ∀x∀y(Px∨Py)≡∀xPx and ∀u∀z(¬Pu∨¬Pz)≡∀y¬Py. Therefore,
A≡ ∀xPx∧∀y¬Py≡⊥.

The formula A is represented by the clause set {{Px,Py},{¬Pu,¬Pz}}. We wish
to apply resolution on this clause set towards deriving ⊥. Here is a trial:

1. {Px,Py} P
2. {¬Pu,¬Pz} P
3. {Py,¬Pz} res(1,2; Px, [x/u])
4. {¬Pz,¬Pv} res(2,3; ¬Pu, [u/y])

Why does {¬Pz,¬Pv} come as the resolvent of clauses 2 and 3; why not {¬Pz}?
Because, resolution is taken only after it is guaranteed that the clauses have no com-
mon variables. Thus, (2) is kept as it is, whereas (3) is first rewritten as {Py,¬Pv}
by using a renaming substitution [z/v] (in fact, the pair of variants [] and [z/v]). In a
machine implementation, lines (2) and (3) will appear as

2�. {¬Px3,¬Px4}
3�. {Px5,¬Px6}

The resolvent of (2�) and (3�) is {¬Px4,¬Px6}. It is again rewritten as

4�. {¬Px7,¬Px8}
In this case, resolution will bring forth a clause in one of the following forms:

{Pxi,Px j},{¬Pxi,Px j},{¬Pxi,¬Px j}.
And this will never give us ⊥. The resolution principle says that a derived clause
is a consequence of the given clauses. It does not say that every unsatisfiable set
will eventually yield⊥. Perhaps, resolution, as formulated till now, is not a complete
method in FL!

We require an extra rule to capture the equivalence ∀x∀y(Px∨Py)≡ ∀xPx. That
is, we must be able to deduce {Pz} from {Px,Py}.

Let C be a clause. Let D ⊆ C have at least two literals. Let σ be a (the) most
general unifier of D. Then Cσ is called a factor of C. A factor of C with respect to
the clause D and the mgu σ is written as f ac(C; D,σ) or as f ac(C,σ) if D is obvious
from the context. We will use the factor as we use a resolvent.

224 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

EXAMPLE 7.21. Using resolvents and factors show that {{Px,Py},{¬Pu,¬Pz}}
is unsatisfiable.

1. {Px,Py} P
2. {Py} f ac(1, [x/y])
3. {¬Pu,¬Pz} P
4. {¬Pz} f ac(3, [u/z])
5. ⊥ res(2,4; Py, [y/z])

EXAMPLE 7.22. Using resolvents and factors show that C = {{a≈ b},{Pa},{¬Pb}}
is unsatisfiable.
A Trial Solution: C is clearly unsatisfiable. But how to deduce ⊥? There is no
variables at all. So, taking factors is useless since {a ≈ b} and {Pa} would not
give {Pb}. We are stuck. Reason? We do not know yet how to handle the special
predicate ≈. We must be able to deduce Pb given the literals a≈ b and Pa.

In general, if we have X [x/s] and s ≈ t, then we must be able to deduce X [x/t].
More generally, from t ≈ u and X [x/s], with σ being the mgu of s and t, we must
deduce X [x/uσ]. Here we need unification of terms also.

Convention 7.2. We write X(s) for a formula X , where there are occurrences of a
term s. When we substitute some or all occurrences of s in X(s) by t, we obtain
another formula. All those formulas are written generically as X(t).

Let X be a formula, and let s, t,u be terms with s, t having no common variables.
Let A and B be two clauses such that (t ≈ u) ∈ A, X(s) ∈ B, and that A,B have no
common variables. Let σ be a most general unifier of the terms s and t. Then the
paramodulant of A and B is the clause

�
(A\{t ≈ u})∪ (B\{X(s)})∪{X(u)}

�
σ .

Adding a paramodulant is often referred to as paramodulation.

EXAMPLE 7.23. What is the paramodulant of {a≈ b} and {Pa}?
With A = {a≈ b}, B = {Pa}, s = a, t = a, we have σ = [], the empty substitu-

tion, and u = b. Since X(s) = Pa, the paramodulant is X(u)σ = Pb.

EXAMPLE 7.24. What is the paramodulant of { f (f (a,c),h(c))≈ f (f (b,c),h(c))}
and { f (x, f (y,z))≈ f (f (x,y),z)}?

Since two equalities are involved, you can choose one of them as (t ≈ u) and
the other as X(s). Let us take the first as (t ≈ u). Then t = f (f (a,c),h(c)), and
u = f (f (b,c),h(c)).

With s = f (x, f (y,z)), we find that s and t are not unifiable. However, with
s = f (f (x,y),z), s and t are unifiable and the mgu is σ = [x/a,y/c,z/h(c)]. Then,

X(s) = (f (x, f (y,z))≈ s), X(u) = (f (x, f (y,z))≈ f (f (b,c),h(c))).

The paramodulant is

X(u)σ = (f (a, f (c,h(c)))≈ f (f (b,c),h(c))).

7.6. FACTORS AND PRAMODULANTS 225

There is one more way of computing a paramodulant here; that is, by taking the
second clause as t ≈ u. In that case, you have

t = f (f (x,y),z),u = f (x, f (y,z)),s = f (f (a,c),h(c)),X(s) = (s≈ f (f (b,c),h(c))).

And then, σ = [x/a,y/c,z/h(c)], and the paramodulant is

X(u)σ = (u≈ f (f (b,c),h(c)))σ = (f (a, f (c,h(c)))≈ f (f (b,c),h(c)))

which, incidentally, is the same as earlier.

EXAMPLE 7.25. We redo Example 7.22 using paramodulants.
For C = {{a≈ b}, {Pa}, {¬Pb}}, let A = {a≈ b}, and B = {Pa}. We have

t = a, u = b, s = x, X(s) = Px, A\{t ≈ u}= B\{X(s)}=∅.

The mgu of s and t (in fact of {s, t}) is σ = [x/a]. Hence the paramodulant is

(∅∪∅∪X(u))σ = (Pb)[x/a] = Pb.

Then C is unsatisfiable as ⊥ is a resolvent of Pb and ¬Pb.
Each of the three rules, such as resolution, factor, and paramodulant, requires

more than one clause. Thus we cannot justify that {¬(t ≈ t)} is unsatisfiable. To
accommodate this, we take an extra rule for equality, namely,

For any term t, derive (t ≈ t) even when there is no premise.
Like an axiom, the literal (t ≈ t) is added anywhere in a deduction. This simple
looking rule supplements the factors also. For instance, consider the accepted clause
{a≈ a}; then compute the paramodulant of this and {Px}. You obtain t = a, u = a,
s = x, X(s) = Px, and the mgu of s and t as σ = [x/a]. The paramodulant is

(({a≈ a}\{a≈ a})∪ ({Px}\{Px})∪{X(s)})σ = {(Px)[x/a]}= {Pa}.

This shows how Px may entail Pa using paramodulation.

Exercises for § 7.6
1. Show that if a clause is satisfiable, each of its factors is also satisfiable.
2. In each of the following cases, explain how C is a paramodulant of A and B.

(a) A = f (x,h(x))≈ a, B = c≈ c, C = f (c,h(c))≈ a
(b) A = f (c,h(c))≈ a, B = f (b, f (c,h(c)))≈ f (d, f (c,h(c))),

C = f (b,a)≈ f (d, f (c,h(c)))
(c) A = f (b,c)≈ f (d,c), B = f (f (b,c),h(c))≈ f (f (b,c),h(c)),

C = f (f (b,c),h(c))≈ f (f (d,c),h(c))
(d) A = f (f (b,c),h(c))≈ f (f (d,c),h(c)), B = f (f (x,y),z)≈ f (x, f (y,z)),

C = f (f (d,c),h(c))≈ f (b, f (c,h(c)))
(e) A = f (f (d,c),h(c))≈ f (b, f (c,h(c))), B = f (f (x,y),z)≈ f (x, f (y,z)),

C = f (b, f (c,h(c)))≈ f (d, f (c,h(c)))
3. Let C be a paramodulant of two clauses A and B. Show that if {A,B} is satis-

fiable, then so is {A,B,C}.

226 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

7.7 RESOLUTION FOR FL
We rewrite the operations of taking resolution, factor, paramodulant and adding the
equality clauses of the form t ≈ t as rules. All the rules taken together form the
method of resolution. Summing up, we have the following four rules for working
out a resolution refutation or a resolution deduction:

(R) From two clauses, deduce their resolvents:

C1∨ �1 C2∨ �2

(C1∨C2)σ
(σ is the mgu of the literals �1 and ¬�2.)

(F) From a clause derive its factor(s):

C∨ �1∨ · · ·∨ �k

(C∨ �1)σ
(σ is the mgu of the literals �1, �2, · · · �k.)

(M) From two clauses, one of them being in the form t ≈ u or u≈ t, derive
their paramodulant:

C(s) (t ≈ u)∨D
(C(u)∨D)σ

C(s) (u≈ t)∨D
(C(u)∨D)σ

Here, σ is the mgu of terms s, t; and at least one s is replaced by u in C(s).

(E) For any term t, derive (t ≈ t) from any clause:
.

(t ≈ t)

To show that a set of clauses is unsatisfiable, we only derive ⊥ from it; and call
the derivation as a resolution refutation. Using RA, we define a resolution proof
of a consequence Σ � w as a (resolution) refutation of a clause set equivalent of
Σ∪{¬w}. Let us work out some examples.

EXAMPLE 7.26. Use resolution to show that the following argument is valid:
No student reads a boring book seriously. This book is read seriously by
at least one student (you). Therefore, this book is not boring.

Let us fix our vocabulary − Sx: x is a student, b: this book, Rxy: x reads y seriously,
and Bx: x is a boring book. The consequence is

{¬∃x∃y(Sx∧By∧Rxy), ∃x(Sx∧Rxb)} !�¬Bb.

By RA, the consequence is valid iff the set of formulas

{¬∃x∃y(Sx∧By∧Rxy), ∃x(Sx∧Rxb), Bb}

is unsatisfiable. We first rewrite this set as a set of clauses. Now,

¬∃x∃y(Sx∧By∧Rxy)≡ ∀x∀y(¬Sx∨¬By∨¬Rxy).

7.7. RESOLUTION FOR FL 227

It gives the clause ¬Sx∨¬By∨¬Rxy. The second formula ∃x(Sx∧Rxb) gives Sa∧
Rab after Skolemization. Hence the clause set is

{¬Sx∨¬By∨¬Rxy, Sa, Rab, Bb}.

We try a resolution refutation by using the rules R, F, M and E.

1. ¬Sx∨¬By∨¬Rxy P
2. Sa P
3. ¬By∨¬Ray 1, 2, R
4. Bb P
5. ¬Rab 3, 4, R
6. Rab P
7. ⊥ R

EXAMPLE 7.27. Show that ∃x∀y(Py∨Px∨¬Qyx) � ∃z(Pz∨¬Qzz).
We must show that {∃x∀y(Px∨Py∨¬Qyx), ¬∃z(Pz∨¬Qzz)} is unsatisfiable.

The corresponding clause set is {{Pa,Py,¬Qya}, {¬Pz}, {Qzz}}. The following is
a resolution refutation:

1. {Pa,Py,¬Qya} P
2. {Pa,¬Qaa} F:[y/a]
3. {¬Pz} P
4. {¬Qaa} 2, 3, R
5. {Qzz} P
6. ⊥ 4, 5, R

EXAMPLE 7.28. Show by resolution that

{∀x(f (x,a)≈ x), ∀x∀y∀z(f (f (x,y),z)≈ f (x, f (y,z))), ∀x(f (x,h(x))≈ a)}
� ∀x∀y∀z((f (y,x)≈ f (z,x))→ (y≈ z)).

Adding the negation of the conclusion to the set of premises, and changing into
scnf, we have the clause set

A = {{ f (x,a)≈ x}, { f (x,h(x))≈ a}, { f (f (x,y),z)≈ f (x, f (y,z))},
{ f (b,c)≈ f (d,c)}, {¬(b≈ d)}}

where b,c,d are Skolem constants. A resolution refutation of A is as follows.

1. f (b,c)≈ f (d,c) P
2. f (f (b,c),h(c))≈ f (f (b,c),h(c)) E
3. f (f (b,c),h(c))≈ f (f (d,c),h(c)) 1, 2, M:[]
4. f (f (x,y),z)≈ f (x, f (y,z)) P
5. f (f (d,c),h(c))≈ f (b, f (c,h(c))) 3, 4, M:[x/b,y/c,z/h(c)]
6. f (b, f (c,h(c)))≈ f (d, f (c,h(c))) 5, 4, M:[x/d,y/c,z/h(c)]
7. f (x,h(x))≈ a P
8. c≈ c E
9. f (c,h(c))≈ a 7, 8, M:[x/c]

228 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

10. f (b,a)≈ f (d, f (c,h(c))) 9, 6, M:[]
11. f (b,a)≈ f (d,a) 9, 10, M:[]
12. f (x,a)≈ x P
13. f (d,a)≈ b 11, 12, M:[x/b]
14. b≈ d 13, 12, M:[x/d]
15. ¬(b≈ d) P
16. ⊥ 14, 15, R:[]

If you interpret f (x,y) as x+y, then the first premise says that a is the identity of
addition, the second premise asserts the associativity of addition, and the third one
says that h(x) is the additive inverse of x. Thus, we have proved the cancellation law
in a group, by resolution.

The soundness and completeness of resolution for FL can be proved as earlier.
Soundness is accomplished by showing that for each rule having a numerator Σ and
denominator w, the corresponding consequence Σ !�w is valid.

Though soundness is straightforward, completeness is quite involved. The cen-
tral idea is the observation that due to Rules F, E and P, if X(x) is in A, then for any
closed term t, the formula X(t) can be derived. Then by induction you will show that
every finite subset of the Herbrand expansion (See Chapter 10.) of A can be derived
by resolution.

Next, you will use the compactness theorem for PL, which guarantees that if a
set of propositions is unsatisfiable, then there exists a finite subset of it, which is
also unsatisfiable. Since every finite set of the Herbrand expansion is derived from
A by resolution, so is this particular finite subset. Moreover, this finite subset of
the Herbrand expansion is propositionally unsatisfiable. Due to the completeness of
resolution (Rule R is used here) for PL, we conclude that ⊥ is derivable from this
finite subset. This would prove the completeness of resolution for FL.

With compactness of FL, we see that Σ∪{¬W} is unsatisfiable iff for some finite
subset Σ0 of Σ, Σ0 ∪ {¬W} is unsatisfiable. Writing Σ0 = {X1, · · · ,Xm}, we obtain
X1∧ · · ·∧Xm∧¬W is unsatisfiable. By using completeness of resolution for FL, we
then conclude that⊥ is derived from Σ0∪{¬W}. Then it will follow that⊥ is derived
from Σ∪{¬W}. This will prove the strong completeness of resolution.

Another alternative to extending resolution to FL is to use Herbrand expansions
directly. For a given set of formulas, we can have its Herbrand expansion, which is
countable. Then, we can use propositional resolution in trying to see whether the
Herbrand expansion is satisfiable or not. When, the Herbrand expansion is unsatis-
fiable, eventually the propositional resolution will determine it by deducing ⊥. But,
when the Herbrand expansion is satisfiable and also infinite, resolution will run for
ever. This phenomenon is the so-called semi-decidability of FL. We will discuss this
issue in Chapter 10.

Exercises for § 7.7
1. Attempt resolution proofs of the following consequences. Also construct the

resolution DAGs.

(a) ∃xX ↔ ¬∀x¬X

7.8. HORN CLAUSES IN FL 229

(b) ∀x(Px∨Qx)→∃xPx∨∀xQx
(c) ∀xX → X [x/t], if t is a free for x in X .
(d) ∀x(X → Y)→ (X →∀xY), if x does not occur free in X .
(e) {Pc,∀x(Px→ Qx),∀x(Rx→ ¬Qx),Ra} � ¬(c≈ a)
(f) ∀x∀y(f xy≈ f yx),∀x∀y(f xy≈ y)∀x∃y¬(x≈ y) � ∀x∃yQxy∧∃y∀x¬Qyx
(g) ∀x∀y∀z(Pxy∧Pyz → ¬Qxz)∧∀x∀y(Pxy ↔ (Qyx∨Rxy))∧∀x∃yPxy �

∀xPxx
2. Use resolution to determine whether the following formulas are satisfiable:

(a) ∀y∃x(Pyx∧ (Qy↔ ¬Qx))∧∀x∀y∀z((Pxy∧Pyz)→ Pxz)
∧∀x¬∃z(Qx∧Qz∧Pxz)

(b) ∀x∀y∀z((Px∧Qy∧Rzy∧Syx)→ Rzx)∧Qa∧Rba∧Sac∧Pc∧Pd∧Rsd
∧¬(c≈ d)∧ (s≈ b)∧¬∃x∃y∃z(Px∧Py∧¬(x≈ y)∧Rzx∧Rzy)

7.8 HORN CLAUSES IN FL
The Rules E and P of equality and paramodulant take care of the equality predicate.
The fragment of FL without equality is handled by the other two Rules R and F of
resolution and factor. In Rule R, recall that, from A∨C and B∨¬D, you derive
(A∨B)σ , where σ is the most general unifier of the literals C and D. Instead of just
two literals (such as C and D), if you take an arbitrary number of literals, the resulting
rule is the full resolution. In this context, the Rule R, as stated in Section 7.7, is often
referred to as the rule of binary resolution. The full resolution rule says that

From A∨C1∨ · · ·∨Cm and B∨¬D1∨ · · ·∨¬Dn, derive (A∨B)σ ,
where σ is the mgu of {C1, · · · ,Cm,D1, · · ·Dn} for literals Ci,D j,
and clauses A,B.

This is written schematically as the following rule:

(FR)
{A1, . . . ,Al ,C1, . . . ,Cm} {B1, . . . ,Bk,¬D1, . . . ,¬Dn}

{A1σ , . . . ,Alσ ,B1σ , . . . ,Bkσ}
where σ is the mgu of the literals C1, . . . ,Cm,D1, . . . ,Dn.

The two rules of (binary) resolution and factor together are equivalent to the
single rule of ‘full resolution’. We will rewrite the clauses in a different form and see
how resolution may possibly be implemented. A clause of the form

{C1, C2, . . . , Cm, ¬D1, ¬D2, . . . , ¬Dn}

where Ci,D j are atomic formulas can be rewritten as

D1∧D2∧ · · ·∧Dn →C1∨C2∨ · · ·∨Cm

due to the equivalences X → Y ≡ ¬X ∨Y and ¬X ∨¬Y ≡ ¬(X ∧Y). Traditionally,
the clause is written with the arrow in reverse direction, that is, as

C1∨C2∨ · · ·∨Cm ← D1∧D2∧ · · ·∧Dn

230 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

the reverse arrow being read as ‘if’. Since the connective on the left of ← is only
∨ and on the right is only ∧, both of them are replaced by commas to rewrite the
formula as

C1,C2, · · · ,Cm ← D1,D2, · · · ,Dn.

A clause in this form is said to be in Kowalski form. When m = 1, such a clause is
called a Horn clause as in PL.

A clause is written this way due to its associated procedural meaning, while
searching for a model. Let us see the case of a Horn clause

C← D1, . . . ,Dn.

For example, we may express the grandfather relation as

grandfather(x,y)← father(x,z), father(z,y).

To check whether a is a grand father of b, you would first find out whether there is
some c such that a is father of c and also that c is a father of b. Quantification of the
variables in such a clause is seen as

∀x∀y(grandfather(x,y)←∃z(father(x,z), father(z,y))).

That is, the extra variables to the right of if are all existentially quantified whose
scope begins just after the symbol ←, and universal quantification of all the other
variables is taken with the whole formula in their scopes.

Suppose that you have already built up a database of facts describing the relation
of father as follows:

father(rajiv,rahul)

father(f iroz,rajiv)

father(f iroz,sanjay)

father(jehangir, f iroz)

father(jehangir,banu)

Along with this, you also have the rule

grandfather(x,y)← father(x,z), father(z,y).

Then you can query such a database, and the resolution is applied for concluding
whether grandfather(jehangir,rahul) holds or not. As you see, It is enough to in-
stantiate x,y,z with the constants

rajiv, rahul, f iroz, sanjay, jehangir, banu

one after another and then try to see whether they hold by matching with the facts.
Let us see how the procedural meaning is given to the clauses (and quantifiers) here.
Suppose you have the query

?−grandfather(f iroz,rahul).

7.8. HORN CLAUSES IN FL 231

Since grandfather(., .) is not a fact, but a rule of the database, it is applied first.
While doing this, x becomes bound to (is instantiated to) f iroz and y becomes bound
to rahul, so that the goal would be satisfied provided both father(f iroz,z) and
father(z,rahul) become true for some z.

In our database, the first fact to match with father(f iroz,z) is father(f iroz,rajiv).
Thus, z becomes bound to rajiv as a trial solution. This would be a solution provided
that father(rajiv,rahul) is true. Since it is a fact, grandfather(f iroz,rahul) holds.

This is how the logic programming language PROLOG works for satisfying a
goal. It looks fine for a Horn clause. But Horn clauses do not cover the whole of
FL. Nonetheless, the method can be extended to a bigger fragment such as Kowalski
forms; these form the subclass of formulas that can be written as a conjunction of
Horn clauses. This is practically enough for many problem solving tasks.

In fact, it works with a slightly bigger fragment. This extension comes from
augmenting negation as failure to it. For example, to define a subset relationship
between two sets x and y, the usual way is to write x⊆ y←∀z(z ∈ x→ z ∈ y). As it
is, in a Horn clause, we cannot allow ∀ on the right side of← .

We must look for alternate ways of writing this formula. We may express x ⊆ y
as “no z in x fails to belong to y”. That is,

x⊆ y← not ∃z(z ∈ x∧not (z ∈ y)).

Here, the connective not is not quite the same as ¬. The interpretation of not is
procedural, in the sense that not X holds if X cannot be falsified, basing our reasoning
on the given database. You can interpret this not in defining subsets, as

x is a subset of y if it cannot be shown on the basis of the database of
facts that x is not a subset of y.

Since we have data only in terms of “a subset of”, the definition of “not a subset of”
looks like

x is not a subset of y if there is some z in x which fails to be in y.
This is all right as long as we are concerned with “not a subset of”, but it is not quite
all right to capture the abstract concept of “subset of”. However, this procedural
meaning of ¬ as not adds more power to the Horn clauses. Sometimes, “negation as
failure” is referred to as the closed world assumption. That is, if something does not
hold in the given database (now all of our world), then it is false.

Again, negation as failure with Horn clauses still do not have the full expressive
power of FL. Let us see an example. The sentence ¬p→ p semantically entails p.
Writing it as a rule, you have

p← q, where q is ¬p→ p.

Taking ¬ as not, the rule is rewritten as

p← q, where q is not p→ p.

Now, to satisfy the goal p, we have to first satisfy the condition not p→ p. We have
the new goal p← not p. But this goes on a loop if not is interpreted as a failure since
it says that p succeeds if p fails.

232 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

To see it another way, suppose that p is P(x) for a unary predicate P. Now P(x)
succeeds if not P(x) fails. In other words, for deciding satisfaction of P(x), a call
is made for the ‘falsification of not P(x)’. Again this happens if “P(x) is falsified”
is falsified, calling falsification of ‘falsification of P(x)’. This goes on ad infinitum.
Thus, PROLOG fails in proving P(x) given that P(x)← ¬P(x).

This shows that the procedural interpretation along with the Horn clauses would
not be sufficient to capture the whole of FL.

You should not look down upon PROLOG due to its inability in recognizing a
situation where a goal is unsolvable. In fact, every theorem prover will have this
inability; it cannot handle all the situations of solving a goal expressed in FL. This is
essentially the undecidability of first order logic, which we will discuss later.

Exercises for § 7.8
1. Apply full resolution, in all possible ways, on the following pairs of clauses:

(In three ways you can apply FR on the last pair.)

(a) {P(x),Q(f (x))}, {¬R(y),¬P(f (y))}
(b) {P(x),¬P(f (c))}, {P(x),¬P(f (c))}
(c) {P(x),¬P(f (c)),Q(x)}, {P(x),¬P(f (c)),Q(x)}
(d) {P(x,c),P(f (c),y),Q(x,y)}, {¬P(f (z),z),R(z)}

2. Use resolution to prove correctness of the following argument:

Everyone who gets admission into an IIT gets a job.
Therefore, if there are no jobs, then nobody gets admission into an IIT.

3. Transform the formula ∀xPx→∃y∀z(Pu∨Qxy→∀uRxu) to Kowalski form.
4. Explain how a sentence can be converted to Kowalski form.

7.9 SUMMARY AND PROBLEMS
We wanted to explore whether there exists some sort of normal form analogous to PL.
This has taken us to prenex form, and then quantifier-free forms. We have discussed
two kinds of quantifier-free forms, one preserves validity and the other preserves
satisfiability. We pursued the satisfiability preserving form leading to extension of
the resolution method.

The resolution method required binary resolution and factors for equality-free
fragment of FL. In the presence of equality, we have discussed the use of paramod-
ulants in addition to the reflexive property of the equality predicate. We have given
some hints as to how the completeness of resolution method could be proved. In the
lines of Horn clauses, we have introduced Kowalski form.

The extension of resolution method to first order logic through paramodulation
has first appeared in Robinson & Wos (1969). For completeness of the resolution
method for first order logic (using the rules R,F,E,P) refer Loveland (1979). The
resolution method has been extended to higher order logics also; see for example,
Andrews (1970).

7.9. SUMMARY AND PROBLEMS 233

Problems for Chapter 7
1. Show that there exists an algorithm to transform any formula X to a formula Z

with a prefix of the form ∀x1 · · ·∀xm∃y1 · · ·∃yn such that X is satisfiable iff Z is
satisfiable. Can you construct a formula W similar to Z so that X is valid iff W
is valid?

2. Write QuaEli in steps.
3. Give a proof of Theorem 7.3 without using Theorem 7.2.
4. Let X be a formula in the form: ∀x1 · · ·∀xm∃xY, and let P be an (m+ 1)-ary

predicate not occurring in Y. Let

Z = ∀x1 · · ·∀xm∃xPx1 . . .xmx∧∀x1 · · ·∀xm∀x(Px1 . . .xmx→ Y).

Show that X is satisfiable iff Z is satisfiable.
5. Let X be a prenex form formula such that each atomic subformula contains

an existentially quantified variable whose quantifier is in the scope of each
quantifier that uses some other variable occurring in that atomic subformula.
Show that X is satisfiable iff its matrix is satisfiable.

6. Existential specification as given in Theorem 6.21 does not capture the idea in
its totality. The naming of y in ∀x∃yPxy by a constant c hides the dependence
of y on the universally quantified variable x. The remedy is to use a Skolem
term instead of the constant. However, in the scenario of a quasi-proof, you
may have derived the formula ∃yPxy from ∀x∃yPxy and now the Skolem term
must treat the free variable x as a universally quantified variable. It suggests
the following procedure to name the entities introduced by an existential quan-
tifier:

Let Σ be a set of formulas, X a formula, and let x be a variable not
occurring free in any formula of Σ. Let {x1,x2, . . . ,xn} be the set of
all variables occurring free in the formulas of Σ∪{∃xX}. If there is
no predicate in Σ∪ {X} with the occurrence of both xi and x, then
delete xi from the set {x1,x2, . . . ,xn}. Do this for each xi. Suppose
the updated set of variables is {xk1,xk2, . . . ,xk j}. Let f be a j-ary
function symbol not occurring in any formula of Σ∪{∃xX}. Then
construct the Skolem term t = f (xk1,xk2, . . . ,xk j). We say that t is a
Skolem term for x in the consequence Σ !�∃xX .

Prove the following:

(a) Let Σ be a set of formulas having no free occurrence of the variable
x, and let I� = (D,φ ,�) be a state-model of Σ. Suppose Σ � ∃xX , and
that t = f (xk1,xk2, . . . ,xk j) is a Skolem term for x in the consequence
Σ !�∃xX . Then there exist extensions φ � of φ and �� of � such that the
state J�� = (D,φ �,��) satisfies X [x/t].

(b) Let Σ be a set of formulas, X ,Y formulas, x a variable having no free oc-
currence in any formula of Σ, and let t = f (xk1,xk2, . . . ,xk j) be a Skolem
term for x in the consequence Σ !�∃xX . If Σ � ∃xX and Σ∪{X [x/t]} �Y
for a formula Y having no occurrence of f , then Σ � Y.

234 CHAPTER 7. CLAUSAL FORMS AND RESOLUTION

7. Skolem form Theorem : Let X be a formula with the set of free variables as F.
Prove that there exits a formula Z in the form Z = ∀x1 · · ·∀xnY such that the set
of free variables of Y is F, no quantifier occurs in Y, Z � X , and Z is satisfiable
iff X is satisfiable. Here, Y may have more functions symbols than X .

8. Show that each formula is equivalent to one in which none of ∀,∃,¬ occurs
within the scope of any ¬.

9. A negation normal form formula or an nnf is defined as follows.

(i) For any atomic formula X , both X and ¬X are in nnf.
(ii) If X ,Y are in nnf, then both (X ∧Y) and (X ∨Y) are in nnf.

(iii) If X is in nnf, then both ∀xX and ∃xX are in nnf.
(iv) These are the only way an nnf is generated.

Show that each formula is equivalent to one in nnf.
10. The unification procedure is written for a set of literals. Write a procedure for

a set of terms. Also, prove by induction on the number of loops Unify executes
on an input, that it correctly unifies a set of literals or terms.

11. Is it true that if σ and θ are two most general unifiers of a clause A, then
θ = σδ for a variant δ? If you think ‘no’, give a counter example. If ‘yes’,
give a proof.

12. Let A be a unifiable clause. Let δ be a substitution computed by the procedure
Unify. Show that Aδ is unifiable.

13. By using Problem 12, or in some other way, prove the correctness of the pro-
cedure Unify.

14. Show that if a clause A is unifiable, then there exists a most general unifier.
Can you prove this without using the correctness of the procedure Unify?

15. A trivial example to show that an mgu is not unique is to use a variant. Give a
nontrivial example.

16. Show that the factor rule can be restricted to clauses consisting of a pair of
literals only; and still we do not loose generality.

17. If C is a factor of a clause A, then does A �C? Justify your answer either with
a proof or with a counter example.

18. If C is a paramodulant of two clauses A and B, then does {A,B} �C? Justify
your answer either with a proof or with a counter example.

19. Use resolution to determine the validity of the following arguments.

(a) Some students read logic books seriously. No student ever reads a boring
logic book. All logic books in your library, including this one, is read by
all students seriously. Therefore, none of the logic books in your library
is boring.

(b) Some people love anyone who likes the leader. Everyone loves someone
who likes the leader. None, who loves someone who likes the leader,
likes the leader. Therefore, the leader does not like himself.

(c) No teacher who likes to write logic books or who devotes himself to his
students will be in the good books of the administration. No one who is
not in the good books of the administration will be promoted. Therefore,
no teacher who likes to write logic books will be promoted.

7.9. SUMMARY AND PROBLEMS 235

(d) Arjun loves all and only those who love Urvasi. Urvasi loves all and
only those who love Arjun. Arjun loves himself. Therefore, Urvasi loves
herself.

(e) (Lewis Carroll) The only animals in this house are cats. Every animal
that loves to gaze at the moon is suitable for a pet. When I detest an
animal, I avoid it. No animals are carnivorous unless they prowl at night.
No cat fails to kill mice. No animals ever like me, except those that are
in this house. Kangaroos are not suitable for pets. None but carnivorous
animals kill mice. I detest animals that do not like me. Animals that
prowl at night always love to gaze at the moon. Therefore, I always
avoid a kangaroo.

20. Let D be a nonempty set of constants. The ground terms over D are terms
that use variables, and the elements of D as constants. The ground literals
and ground clauses are defined using the ground terms instead of any arbitrary
term. For any clause, its ground instances are obtained by replacing a variable
in the clause by a ground term. Show the following:

(a) For ground clauses, whatever that can be derived by full resolution, can
also be derived by binary resolution.

(b) For any two clauses A,B, each resolvent of a ground instance of A and a
ground instance of B is a ground instance of some resolvent of A and B.

(c) Let A and B be clauses. Then each ground instance of a resolvent of A
and B contains some resolvent of a ground instance of A and a ground
instance of B.

21. (Adequacy of Resolution) Use Problem 20 to show that a clause set is unsatis-
fiable iff ⊥ can be derived from it by resolution.

22. Prove strong adequacy of resolution assuming compactness for both PL and
FL. That is, show that for any set Σ of formulas and any formula W, Σ �W iff
⊥ is derivable from Σ∪{¬W} by resolution. [Here you are using all the Rules
R, F, E, and P.]

23. Construct a resolution proof of

{∀x(Px∧Qx→ Rx)→∃x(Px∧¬Qx), ∀x(Px→ Qx)∨∀x(Px→ Rx)}
� ∀x(Px∧Rx→ Qx)→∃x(Px∧Qx∧¬Rx).

24. How can we apply binary resolution on two clauses in Kowalski form?
25. Determine, if possible, from the Kowalski form of the following knowledge

base whether (a) the unicorn is mythical, (b) the unicorn has a horn:

If the unicorn is mythical, then it is immortal. If it is not mythical,
then it is a mortal mammal. If the unicorn is immortal or a mammal,
then it has a horn. The unicorn is mythical if it has a horn.

Chapter 8

Other Proof Systems for FL

8.1 CALCULATION
Calculations can be extended to first order logic with the help of the laws listed in
Theorem 6.17 and also the laws that result from PL as listed in Theorem 2.12. In
addition to these, we have the four quantifier laws. To have a feel, see the following
calculation:

∀x(Px→ Qx) [Hyp, Universal Specification]

� Px→ Qx [Tautology]

≡ ¬Px∨Qx [Universal Generalization]

⇒ ∀x(¬Px∨Qx)

The symbol ⇒ (Read it as implies.) in the above calculation does not connect
the last line with the previous one quite the same way as the symbols ≡ and �. In
a calculation if X ⇒ Y appears, it does not mean that Y follows from X ; it says that
if from all the premises used thus far the formula X follows, then from all those
premises the formula Y also follows. See Theorem 6.20. The symbol ⇒ thus con-
nects Y with all the premises used till the derivation of X . It is used as a shorthand
for the meta-statement “if Σ � X , then Σ �Y,” where Σ is the set of formulas used in
the calculation (so far).

In existential specification, once we have ∃xX , we introduce X [x/c] and then go
onto deriving Y, where c does not occur. See Theorem 6.21. This can be tackled by
writing ∃xX ⇒ X [x/c] documenting the line as “ESBc”, a shortcut for

Existential specification begins with the new constant c.

When we obtain a formula Y having no occurrence of the constant c, we will docu-
ment it by writing “ESEc” signalling the fact that

Existential specification ends with the new constant c.

The block of the calculation with the pair of ESBc and ESEc is a sub-calculation,
proof of a lemma with the extra assumption X [x/c]. Thus the symbol ⇒ used here
has a slightly different meaning than that in the context of Universal Generalization.

236

8.1. CALCULATION 237

Existential specification needs a block, which we show up in a calculation by proper
indentation, in addition to using the symbol⇒ . The blocks are nested as usual; one
block may lie inside another, but they are prohibited to intersect. For instance, we
cannot have ESBc, ESBd, ESBc, and ESEd in that order. But we can have ESBc,
ESBd, ESEd, and ESEc.

We continue using the deduction theorem and RA outside a calculation for better
readability. Though the corresponding sub-calculations for these theorems can be
made just like existential specification, we refrain from doing so.

A calculation in FL looks like C0 �C1 � · · · �Cm, where an instance of � is one
of the symbols ≡, �, or ⇒; each step Ci−1 �Ci must be an instance of a law E1 �E2
when � is ≡ or � . The case � as ⇒ is used for the laws of universal generalization
and of existential specification, as explained earlier. The calculation is taken as a
proof of the metastatement C0�Cm, where

� equals

�
≡ if each � equals ≡
� if at least one instance of � equals �, or ⇒

In fact, we can have � as � even if each instance of � equals ≡ . Similarly, a law
such as X ≡ Y can be used both the ways: X � Y and Y � X . A calculational proof
of Σ � X typically begins with one premise from Σ and uses other premises as and
when necessary. If Σ is empty, we may begin a calculation with �.

We continue using the abbreviated names of the laws such as Const, Mod Pon,
De Mor, Dist, etc. in calculations. Sometimes we just mention PL when the law
is obtained by taking formulas in place of propositions in Theorem 2.12. We write
‘Hyp’ when a premise is introduced in the succeeding step. In addition, we use the
following abbreviations:

UG: Universal Generalization
US: Universal Specification
EG: Existential Generalization
ES: Existential Specification, with the new constant and block marking
Eq: Equality; See Theorem 6.17.
Whenever the symbol⇒ is used, the provisos in the laws of universal generaliza-

tion and existential specification are in vogue. We also use a little indentation with
the use of⇒ with existential specification since we enter a sub-calculation. The con-
clusion in such a sub-calculation is not our main conclusion. In the case of universal
generalization, a conclusion of such a sub-calculation is a conclusion of the main
calculation, and we do not use any indentation. Thus, the last line must be without
any indentation.

EXAMPLE 8.1. Show by calculation that � ∀x((¬Px→ ¬Qx)→ (Qx→ Px)).

� [PL]

≡ (¬Px→ ¬Qx)→ (Qx→ Px) [UG]

⇒ ∀x((¬Px→ ¬Qx)→ (Qx→ Px))

Since x is not free in the premise �, use of universal generalization is allowed.

238 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

EXAMPLE 8.2. Show that � ∀x(Px→ Qx)→ (∃xPx→∃xQx).
Due to DT, we show that ∀x(Px→ Qx)∧∃xPx � ∃xQx.

∀x(Px→ Qx)∧∃xPx [ESBc]

⇒ ∀x(Px→ Qx)∧Pc [US]

� (Pc→ Qc)∧Pc [Mod Pon]

� Qc [EG]

� ∃xQx [ESEc]

� ∃xQx

The repetition of the formula ∃xQx at the end of the calculation signals the fact that
the use of the new constant c is over and the formula thus obtained is independent of
this c. It also shows clearly the preceding sub-calculation.

EXAMPLE 8.3. Show that ∃xPx, ∀x∀y(Px→ Qy) � ∀yQy.

∃xPx [ESBc, Hyp]

⇒ Pc∧∀x∀y(Px→ Qy) [US [x/c]]

� Pc∧∀y(Pc→ Qy) [Dist]

� Pc∧ (Pc→∀yQy) [Mod Pon]

� ∀yQy [ESEc]

� ∀yQy

Sometimes, we mention the substitution used in an application of US.

EXAMPLE 8.4. Show the validity of the argument:

All horses are animals. Therefore, all legs of horses are legs of animals.

To translate the argument into FL, we use the following vocabulary:

Hx : x is a horse, Ax : x is an animal, Lxy : x is a leg of y.

Then, “x is a leg of a horse” is symbolized as ∃y(Hy∧Lxy), etc. You get the conse-
quence

∀x(Hx→ Ax) !�∀x(∃y(Hy∧Lxy)→∃y(Ay∧Lxy)).

Here, it seems easier to use RA, since the conclusion has the predicate L which is
absent in the premise. So, we show that

∀x(Hx→ Ax),¬∀x(∃y(Hy∧Lxy)→∃y(Ay∧Lxy)) �⊥.

We start with one of the premises, introduce the other when needed, and intend to
end with ⊥.

¬∀x(∃y(Hy∧Lxy)→∃y(Ay∧Lxy)) [De Mor, PL]

� ∃x(∃y(Hy∧Lxy)∧¬∃y(Ay∧Lxy)) [ESBc]

⇒ ∃y(Hy∧Lcy)∧¬∃y(Ay∧Lcy) [ESBb]

⇒ Hb∧Lcb∧¬∃y(Ay∧Lcy) [De Mor]

8.1. CALCULATION 239

� Hb∧Lcb∧∀y(¬(Ay∧Lcy)) [US [y/b]]

� Hb∧Lcb∧¬(Ab∧Lcb) [PL]

� Hb∧Lcb∧ (Lcb→ ¬Ab) [Mod Pon, Hyp]

� Hb∧¬Ab ∧∀x(Hx→ Ax) [US [x/b]]

� Hb∧¬Ab∧ (Hb→ Ab) [Mod Pon]

� Ab∧¬Ab [PL]

� ⊥ [ESEb]

� ⊥ [ESEc]

� ⊥
Example 8.4 was the one given by De Morgan (with heads instead of legs) to

point out that Aristotle’s syllogisms lack expressive power. In our terminology, Aris-
totle’s syllogisms are captured by the first order logic restricted to unary (monadic)
predicates, and without function symbols. This example requires a binary predicate.

EXAMPLE 8.5. Show the validity of the argument

Since all horses are animals, all heads of horses are heads of animals.

Writing Hx : x is a horse; Ax : x is an animal; and f (x) : the head of x, the argument
is translated to the consequence

∀x(Hx→ Ax) !�∀x(∃y(Hy∧ (x≈ f (y)))→∃y(Ay∧ (x≈ f (y)))).

Comparing this consequence with that is Example 8.4, we replace Lxy with (x ≈
f (y)) everywhere to obtain a calculation showing the validity of the consequence.
Verify that this is indeed the case.

EXAMPLE 8.6. Show by calculation that the following set is unsatisfiable:

{∀x∀y∀z((Px∧Qy∧Rzy∧Syx)→Rzx),¬∃x∃y∃z(Px∧Py∧¬(x≈ y)∧Rzx∧Rzy),

Qa∧Rba∧Sac∧Pc∧Pd∧¬(c≈ d),Red∧ (e≈ b)}.

∀x∀y∀z((Px∧Qy∧Rzy∧Syx)→ Rzx) [US [x/c,y/a,z/b]]

� (Pc∧Qa∧Rba∧Sac→ Rbc) [Hyp]

� (Pc∧Qa∧Rba∧Sac→ Rbc)∧
¬∃x∃y∃z(Px∧Py∧¬(x≈ y)∧Rzx∧Rzy) [De Mor, PL]

� (Pc∧Qa∧Rba∧Sac→ Rbc)∧
∀x∀y∀z(Px∧Py∧Rzx∧Rzy→ (x≈ y)) [US [x/d,y/c,z/e]]

� (Pc∧Qa∧Rba∧Sac→ Rbc)∧ (Pd∧Pc∧Red∧Rec→ (d ≈ c)) [Hyp]

� (Pc∧Qa∧Rba∧Sac→ Rbc)∧ (Pd∧Pc∧Red∧Rec→ (d ≈ c))
∧Qa∧Rba∧Sac∧Pc∧Pd∧¬(c≈ d)∧Red∧ (e≈ b) [Mod Pon]

� Rbc∧ (Pd∧Pc∧Red∧Rec→ (d ≈ c))
∧Qa∧Rba∧Sac∧Pc∧Pd∧¬(c≈ d)∧Red∧ (e≈ b) [Eq]

240 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

� Rbc∧ (Pd∧Pc∧Rbd∧Rbc→ (d ≈ c))∧Qa∧Rba∧Sac
∧Pc∧Pd∧¬(c≈ d)∧Rbd∧ (e≈ b) [Mod Pon, PL]

� (d ≈ c)∧¬(c≈ d) [Eq]

� (d ≈ c)∧¬(d ≈ c) [PL]

�⊥

In the last example, the specification choices were very important. Had you
chosen something else instead of the chosen ones, you would not have ended at
⊥ (but of course, you could use them later). The choices were motivated by the
occurrences of the constants in the predicates. Experience only guides you to make
the right choice!

Exercises for § 8.1
Check the following consequences for validity. Check also whether the set of premises
in each case is satisfiable. For valid consequences, supply a calculational proof.

1. ∀x((∃yPxy∧Qy)→∃y(Ry∧Uxy)) !�∃x∃y(Pxy∧Qy)→∃xRx
2. {∃x(Px∧Qx)→∀y(Ry∧Hy),∃x(Rx∧¬Hx)} !�∀y(Py→ ¬Qy)
3. {∀x(Px→ Qx),∃xPx,∀x¬Qx} !�∀x(Px→ Qx)↔∃x(Px→ Qx)
4. {∃x(Px∧∀y(Qy→ Rxy))∧∀x(Px→∀y(Uy→ ¬Rxy))} !�∀x(Qx→ ¬Ux)
5. {∃xPx∧∃xQx→∃x(Px∧Qx),∀x∃yRxy→∃y∀xRxy}

!�∀x(Px∨Qx)→∀xPx∨∀xQx
6. Spouses of surgeons are teachers. Surgeons are doctors. Therefore, spouses of

doctors are teachers.
7. Everyone who gets admission into an IIT gets a job. If there are no jobs, then

nobody gets admission into IIT Madras. [Hint: There is a hidden premise.]

8.2 NATURAL DEDUCTION
Basing on PND, we construct a natural deduction system for FL. Let us call the
system FND, first order natural deduction system. FND has all the inference rules
of PND, (See § 4.2.) where p,q,r are taken as formulas. In addition, it has the
following inference rules for the the quantifiers and the equality predicate. Recall
that in an inference rule, we read e as elimination and i as introduction.

For formulas X ,Y , variables x,y, terms s, t, and constant c,

(∀e)
∀xX

X [x/t]
(∀i)

y
...

X [x/y]

∀xX
where y is a new variable.

8.2. NATURAL DEDUCTION 241

∃xX

(∃e)

c
X [x/c]

...
Y

(∃i)
X [x/t]
∃xX

Y

where c is a new constant not occurring in Y .

(≈ e)
s≈ t, X [x/s]

X [x/t]
(≈ i)

·
t ≈ t

In the above rules, whenever X [x/u] occurs, we assume that the term u is free for
x in X . The ‘new constant c’ means that c should not have been used in the proof
up to that stage where it is introduced. As earlier, we follow the restriction on boxes
that no box will intersect another, though one box can completely lie inside another.
We will explain the use of boxes taking the appropriate rules in turn. In case of (∀i),
the “for all introduction”, the box means the following:

If starting with a new variable y, a formula X [x/y] is proved, then the
formula ∀xX is considered proved.

The box is only a check for an important phrase used in mathematics: “Let x be a
fixed but arbitrary number such that . . . ”. This is a formal expression of the informal
statement that if you can prove X(y) for an arbitrary y, then you can prove ∀xX(x).
The restriction allows you to draw the conclusion ∀xX only when you have arrived
at X in such a way that none of the assumptions you have used contains x as a free
variable. It is exactly the restriction on the rule (UG) in FC. It now takes the form:

The new variable y must not occur anywhere outside the box; and it
cannot occur free in any premise.

In case of (∃e), we notice that ∃xX � X [x/c] for any constant c. In mathematics,
we say “Suppose that the element for which X holds is c.” This constant c is an
ambiguous name with the property X(·). We thus take this c as a new constant. In
this case, the box means the following:

If starting with a new constant c, a formula Y having no occurrence of c
is proved, then Y is considered proved.

Thus the formula Y is repeated twice; first time, inside the box, just to show that this
last formula inside the box follows from the earlier formulas, possibly depending on
the extra assumption X [x/c]. It is mentioned second time outside the box to say that
this last formula does not have any occurrence of c; and therefore, it does not depend
on the special assumption X [x/c] but possibly on the existential formula ∃xX , which
is outside and on the top of the box. The restriction thus looks like:

The new constant c cannot occur anywhere in the proof outside the box;
and it cannot occur in any premise.

242 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

The box controls the scope of the fresh constant c which is also documented at the
rightmost corner of the box. Note that the earlier boxes for conditional premises and
the current boxes for quantifiers together obey the nesting rules:

Only a complete box can be inside another; no intersection of boxes is
allowed.

In this section, we use the symbol � for “� in FND”. See the following examples.

EXAMPLE 8.7. � ∀xX → X [x/t] if t is free for x in X .

1. ∀xX CPB
2. X [x/t] ∀e
3. ∀xX → X [x/t] → i CPE

Here, we use the nesting due to a conditional premise.

EXAMPLE 8.8. Construct an FND-proof of {∀x(Pxy→ Qx),∀zPzy} � ∀xQx.

1. ∀x(Pxy→ Qx) P

2. ∀zPzy P

u
3. Puy→ Qu ∀e, [x/u]

4. Puy 2, ∀e

5. Qu e

6. ∀xQx ∀i

We can dispense with drawing the boxes by writing the scopes of the newly
introduced variable or constant. For example, in the above proof, the new variable is
u and we mention it by writing “u new var”. When the scope ends, we write “Sc of
u ends” as an acronym for “scope of u ends here”. See the following rewriting of the
above proof.

Proof in Example 8.8 rewritten :

1. ∀x(Pxy→ Qx) P
2. ∀zPzy P
3. Puy→ Qu ∀e, [x/u] u new var
4. Puy 2, ∀e
5. Qu →e Sc of u ends
6. ∀xQx ∀i

Similarly, we dispense with boxes for ∃e rule, by mentioning when the new con-
stant is introduced and what is its scope. We write “c new con” to say that c is a new
constant and its scope, the box, starts here. Similarly, when its scope ends, we again
mention the rule ∃e and “Sc of c ends”. See the following example.

EXAMPLE 8.9. Construct an FND-proof of ∀x(Pxy→ Qx),∃zPzy � ∃xQx.

8.2. NATURAL DEDUCTION 243

1. ∀x(Pxy→ Qx) P
2. ∃zPzy P
3. Pcy 2, ∃e c new con
4. Pcy→ Qc 1, ∀e
5. Qc →e
6. ∃xQx ∃i Sc of c ends
7. ∃xQx ∃e

EXAMPLE 8.10. � ∀x(X → Y)→ (X →∀xY) if x does not occur free in X .

1. ∀x(X → Y) CPB1
2. X CPB2
3. X → Y [x/y] 1,∀e y new var
4. Y [x/y] →e Sc of y ends
5. ∀xY ∀i
6. X →∀xY → i CPE2
7. ∀x(X → Y)→ (X →∀xY) → i CPE1

Since x does not occur free in X , we see that (X → Y)[x/y] = X → Y [x/y]. This
has been used in the above proof.

EXAMPLE 8.11. Show that � (s≈ t)→ (X [x/s]→ X [x/t]).

1. s≈ t CPB1
2. X [x/s] CPB2
3. X [x/t] ≈ e
4. X [x/s]→ X [x/t] → i CPE2
5. (s≈ t)→ (X [x/s]→ X [x/t]) → i CPE1

Axiom A6 of FC is simply the rule (≈ i). Therefore, the above examples, com-
pleteness of PND to PL, and completeness of FC to FL yield the following result.

Theorem 8.1 (Strong Adequacy of FND). Let Σ be a set of formulas, and let X be
a formula. Then, Σ � X iff Σ � X in FND.

The following examples will make you better acquainted with FND.

EXAMPLE 8.12. Pa,∀x(Px→ Qx),∀x(Rx→ ¬Qx),Rb � ¬(a≈ b)
Due to RA in FL, and strong adequacy of FND, it is enough to show that

{Pa,∀x(Px→ Qx),∀x(Rx→ ¬Qx),Rb,¬¬(a≈ b)} � ⊥.

However, the system FND (as an extension of PND) has already a form of RA built
in it. See the following proof:

1. Pa P
2. Rb P
3. ∀x(Px→ Qx) P
4. ∀x(Rx→ ¬Qx) P
5. Pa→ Qa 3, ∀e
6. Qa 1, 5,→e

244 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

7. Rb→ ¬Qb 4, ∀e
8. ¬Qb 2, 7,→e
9. a≈ b CPB
10. ¬Qa 8, 9,≈ a
11. ⊥ 6, 10,⊥i
12. ¬(a≈ b) ¬i CPE

EXAMPLE 8.13. All logicians are wise persons. Therefore, all students of logi-
cians are students of wise persons.

Using the vocabulary: Lx : x is a logician, Fx : x is a wise person, and Pxy : x is
a student of y, we prove the consequence:

∀x(Lx→ Fx) !�∀x(∃y(Ly∧Pxy)→∃y(Fy∧Pxy)).

1. ∀x(Lx→ Fx) P
2. ∃y(Ly∧Pzy) z new var, CPB
3. Lc∧Pzc ∃e c new con
4. Lc ∧e
5. Lc→ Fc 1, ∀e
6. Fc →e
7. Pzc 3,∧e
8. Fc∧Pzc ∧i
9. ∃y(Fy∧Pzy) ∃i Sc of c ends
10. ∃y(Fy∧Pzy) ∃e
11. ∃y(Ly∧Pzy)→∃y(Fy∧Pzy) → i CPE, Sc of z ends
12. ∀x(∃y(Ly∧Pxy)→∃y(Fy∧Pxy)) ∀i

Exercises for § 8.2
1. Try to construct FND-proofs in place of FC-proofs in Exercise 2 of § 6.1 and

Exercise 3 of § 6.2.
2. Are the following arguments valid? Formalize into FL-consequences. Try

proving each of them using FND.

(a) Either Logic is elegant or many students like it. If Computer Science is
a difficult discipline, then Logic has to be elegant. Therefore, if many
students like Computer Science, then Logic is elegant.

(b) If tomorrow morning it is chilly and not so clear a sky, then we go swim-
ming unless you do not have any special liking for boating. It isn’t always
the case that if the sky is not clear, then you don’t go boating. Therefore,
if the weather is not chilly tomorrow morning, then we go swimming.

(c) Yanka would have been at home, had he been to the club or not to the
theatre while his friend was waiting for him at the college. He had been
to the club premises while it was dusk only if he didn’t come home.
Unless the watchman saw him at the club premises, it is certain that it
was dusk, since the watchman is night blind. Therefore, Yanka did not
go to the theatre.

8.3. GENTZEN SEQUENT CALCULUS 245

(d) If anyone is in a guest house, which is located in a city, then he is in
that city. None can be in two different cities at the same time. One
who snatched the necklace away must have been in the guest house at
Chennai. Since Chennai and Mumbai are two different cities and Yanka
was in the Mumbai guest house, he did not snatch the necklace.

(e) If all the politicians praise a bandit, then the bandit must be none other
than Robin Hood. A politician praises a person if the person has indeed
helped him in his career. There is a bandit who has not helped any politi-
cian. Therefore, there is a bandit other than Robin Hood.

8.3 GENTZEN SEQUENT CALCULUS

We turn towards a Gentzen system for FL. We call our system GFC, Gentzen’s First
Order Calculus. In GFC, we take all the rules of GPC as they are, remembering
that the sets Σ,Γ,Δ,Ω are sets of formulas, and p,q are arbitrary formulas instead of
propositions. In this section, we use the symbol � as an abbreviation for “� in GFC”.
In addition to the rules of GPC (See § 4.3.), we have the following rules to tackle the
quantifiers and the equality predicate:

(∀L)
Σ,∀xX ,Γ � Δ

Σ,X [x/t],∀xX ,Γ � Δ
∀xX �

X [x/t],∀xX �

(∀R)
Σ � Γ,∀xX ,Δ

Σ � Γ,X [x/y],Δ
∀RxX
� X [x/y]

provided that y is a new variable.

(∃L)
Σ,∃xX ,Γ � Δ

Σ,X [x/y],Γ � Δ
∃xX �

X [x/y] �
provided that y is a new variable.

(∃R)
Σ � Γ,∃xX ,Δ

Σ � Γ,X [x/t],∃xX ,Δ
∃RxX

� X [x/t],∃xX

(≈ r)
Σ � Γ

Σ,(t ≈ t) � Γ
�

(t ≈ t) �

(≈ c)
Σ,(s≈ t),Γ � Δ
Σ,(t ≈ s),Γ � Δ

(s≈ t) �
(t ≈ s) �

(≈ s)
Σ,(s≈ t),X [x/s],Γ � Δ
Σ,(s≈ t),X [x/t],Γ � Δ

(s≈ t),X [x/s] �
(s≈ t),X [x/t] �

Here, y is a new variable means that the variable y does not occur free in the
numerator. This restriction in the rules (∀R) and (∃L) on the variable y is called the
eigenvariable condition. It is the same condition used in the FND-rules (∀i) and

246 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

(∃e). Compare the rule (∀R) with the universal generalization (Theorem 6.20) and
the strong generalization (Theorem 6.6).

The rule (≈ r) is the reflexivity, (≈ c) is the commutativity, and (≈ s) is the sub-
stitutivity property of≈ . Notice that t ≈ t is equivalent to� semantically. Moreover,
� behaves as the identity on the left side of �; that is, p,q � r and p,�,q � r repre-
sent the same sequent. Thus t ≈ t is added on the left side of �, in the rule (≈ r). We
cannot add t ≈ t on the right hand side of � since p � q,�,r is not the same sequent
as p � q,r. Similarly, in (≈ s), we cannot have a rule with s ≈ t on the right of � .
But we can have a commutativity rule for ≈, where s ≈ t and t ≈ s can both be on
the right of � .

The derivations and proofs are defined as for GPC. Recall that in a proof (tree), a
sequent at the root is considered proved when each branch of it ends with�. Further,
� is derived when some formula occurs on both the sides of � . We write Σ � Γ
when the sequent Σ � Γ is provable in GFC.

EXAMPLE 8.14. The following proof shows that the sequent � ∀RxX → X [x/t] is
GFC-provable. The rules applied in the derivation are (�→), (∀L), and (�).

� ∀xX → X [x/t]
∀xX � X [x/t]

X [x/t],∀xX � X [x/t]
�

EXAMPLE 8.15. If x does not occur free in X , then � ∀x(X →Y)→ (X →∀xY) is
GFC-provable

� ∀x(X → Y)→ (X →∀xY)
∀x(X → Y) � X →∀xY
∀x(X → Y),X∀RxY
∀x(X → Y),X � Y

X → Y,X � Y

Y,X � Y
�

X � X ,Y
�

Find out the rules that have been applied at each stage in the derivation. Where
exactly the condition “x does not occur free in X” is used?

EXAMPLE 8.16. The following proof shows that � (t ≈ t).

� (t ≈ t)
(t ≈ t) � (t ≈ t)

�

8.3. GENTZEN SEQUENT CALCULUS 247

EXAMPLE 8.17. The following proof shows that � (s≈ t)→ (X [x/s]→ X [x/t]).

� (s≈ t)→ (X [x/s]→ X [x/t])
s≈ t � X [x/s]→ X [x/t]

s≈ t,X [x/s] � X [x/t]
s≈ t,X [x/t] � X [x/t]

�
So, you see that all the axioms and inference rules of FC are theorems or provable

sequents of GFC except one that we have not yet attempted. It is the rule of universal
generalization or

(UG) :
X
∀xX

provided x is not free in any premise used thus far.

We must fix the correct meaning of the phrase “a premise used thus far”. Suppose
you have got a proof in FC of X by using some (or all) of the premises, and then you
are applying UG. For convenience, let us take the premises as X1, . . . ,Xn which have
been used in this proof for deriving X . Since UG is applied next for deriving ∀xX ,
we see that x is not free in any of the formulas X1, . . . ,Xn.

Before the application of UG, we assume that the consequence X1, . . . ,Xn � X
is valid in FC. After the application of UG, we have proved that X1, . . . ,Xn � ∀xX .
Thus, the formulation of UG in GFC must be the metastatement:

If X1, . . . ,Xn �X , then derive X1, . . . ,Xn � ∀xX provided x does not occur
free in any of X1, . . . ,Xn.

This corresponds to the inference rule (in GFC style):

(GUG):
Σ � Γ, ∀xX , Δ

Σ � Γ, X , Δ
if x is not free in Σ∪Γ∪Δ.

You can easily see that GUG is a derived rule of GFC as a single application of (∀R)
completes the derivation. With this, you have proved the completeness of GFC. At
this point you must write a formal proof of the following theorem.

Theorem 8.2 (Strong Adequacy of GFC). Let Σ be a set of formulas. Let X be a
formula. Then, Σ � X iff Σ � X .

Notice that a set of formulas Σ is inconsistent iff the sequent Σ � is provable. We
discuss some more examples before closing this section.

EXAMPLE 8.18. Show that the following set Σ of formulas is unsatisfiable:

Σ = {∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y),∀x∃y¬(x≈ y)}.
Due to strong adequacy, it is enough to show that Σ is inconsistent in GFC. We

construct a proof of the sequent Σ �. For ease in writing let

P = ∀x∀y(f (x,y)≈ f (y,x)) and Q = ∀x∀y(f (x,y)≈ y).

In the following proof, we use the rules (∀L), (∃L), (¬ �), (∀L) four times, the
rules (∀L), (≈ s) twice, and (≈ c), (�) once each. Find out the substitutions used
in the applications of the quantifier rules.

248 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y),∀x∃y¬(x≈ y) �
∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y),∃y¬(x≈ y) �
∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y),¬(x≈ z) �
∀x∀y(f (x,y)≈ f (y,x)),∀x∀y(f (x,y)≈ y) � x≈ z

∀x∀y(f (x,y)≈ f (y,x)),Q, f (x,z)≈ z, f (z,x)≈ x � x≈ z
P,Q, f (x,z)≈ z, f (z,x)≈ x, f (x,z)≈ f (z,x) � x≈ z

P,Q, f (x,z)≈ z, f (z,x)≈ x,z≈ x � x≈ z
P,Q, f (x,z)≈ z, f (z,x)≈ x,x≈ z � x≈ z

�

EXAMPLE 8.19. Construct a GFC proof to show that

∃x∃y∃z(¬Qx∧¬Qy∧¬Qz∧Q f (f (x,y),z)) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)).

We apply (∃L) thrice, (∧ �) thrice, (∃R) twice, and (� ∧) twice, in succession,
to obtain the following GFC proof:

∃x∃y∃z(¬Qx∧¬Qy∧¬Qz∧Q f (f (x,y),z)) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y))
¬Qu∧¬Qv∧¬Qw∧Q f (f (u,v),w) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y))
¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y))

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w)
� ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)),¬Qu∧¬Qv∧Q f (u,v)

On the right hand side of the � on the last sequent, we have

¬Qu∧¬Qv∧Q f (u,v).

It gives rise to three branches. The first branch is as follows:

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)),¬Qu
�

The second branch is:

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)),¬Qv
�

Applying rule (∃R) twice, with the substitutions [x/ f (u,v)] and [y/w], the third
branch is expanded as follows:

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)),Q f (u,v)
¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ¬Q f (u,v)∧¬Qw∧Q f (f (u,v),w),Q f (u,v)

As earlier, this gives rise to three branches again. We suppress repeating the existen-
tial formula ∃x∃y(¬Qx∧¬Qy∧Q f (x,y)), which you should write when rewriting
this proof. The first branch here is:

8.3. GENTZEN SEQUENT CALCULUS 249

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ¬Q f (u,v),Q f (u,v)
¬Qu,¬Qv,¬Qw,Q f (f (u,v),w),Q f (u,v) � Q f (u,v)

�

The second branch is:

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � ¬Qw,Q f (u,v)
�

And the third branch is:

¬Qu,¬Qv,¬Qw,Q f (f (u,v),w) � Q f (f (u,v),w),Q f (u,v)
�

Write the derivation on a large sheet of paper.
Here is a nice interpretation of the consequence you have just proved. In the set of

real numbers, interpret Qx as x is a rational number, and f (x,y) as xy. Then the conse-
quence says that “If there are irrational numbers a,b,c such that (ab)c is rational, then
there are irrational numbers s, t such that st is rational”. The antecedent clearly holds

since, with a= b= c=
√

2, you see that
√

2 is irrational and (
√

2
√

2
)
√

2 = (
√

2)2 = 2
is rational. So, you conclude that there are irrational numbers s, t such that st is ra-
tional.

Further, if you interpret Qx as x is rational or not algebraic, then your conclusion
would be: “there are irrational algebraic numbers s, t such that st is rational”. Look

at the above proof. Essentially, the proof shows that either
√

2
√

2
is rational, in

which case, you have s =
√

2, t =
√

2; or else, (
√

2
√

2
)
√

2 is rational, in which case,

s =
√

2
√

2
, t =

√
2. However, it does not determine whether

√
2
√

2
is rational or not.

Observe that provability of Σ � Δ implies the provability of Σ,Γ � Δ. This proves
monotonicity. Since provability of Σ � Γ,X → Y implies the provability of Σ,X �
Γ,Y for formulas X ,Y , the deduction theorem is proved. Similarly, Σ∪ {¬X} is
inconsistent iff Σ,¬X � is provable iff Σ � X . Hence reductio ad absurdum holds
in GFC. The metatheorems are easy to prove. No wonder many logicians prefer
Gentzen systems.

Exercises for § 8.3
1. Try to construct GFC-proofs in place of FC-proofs in Exercise 2 of § 6.1 and

Exercise 3 of § 6.2.
2. Decide validity of consequences in Exercise 2 of § 8.2 using GFC.
3. Give GFC-proofs of all the laws listed in Theorem 6.17.
4. Let X and Y be formulas. Construct GFC proofs for the following:

(a) � ∀x(X ∧Y)↔∀xX ∧∀Y (b) � ∃x(X ∨Y)↔∃xX ∨∃xY
(c) � ∀xX ∨∀xY →∀x(X ∨Y) (d) � ∃x(X ∧Y)→∃xX ∧∃xY

250 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

8.4 ANALYTIC TABLEAUX
In this section, we extend the analytic tableau to FL. We name the tableau system
for FL as FT, the first order analytic tableau. As earlier, in a tableau for a set of
formulas Σ, each formula of Σ is called a premise. In FT, all the earlier rules for PT
are taken in toto by considering the symbols p,q as formulas; see § 4.4. We add more
rules for the quantifiers and the equality predicate. The additional rules of inference
are as follows.

Let t be a term free for a variable x in a formula X .

(∀) ∀xX
X [x/t]

(¬∀) ¬∀xX
¬X [x/t]

∀xX where t is a new term

(∃) ∃xX
X [x/t]

(¬∃) ¬∃xX
¬X [x/t]

where t is a new term ¬∃xX

s≈ t

(≈ r)
·

t ≈ t
(≈ c)

s≈ t
t ≈ s

(≈ s)
X [x/s]
X [x/t]

The last three rules such as (≈ r), (≈ c) and (≈ s) are the equality rules of
reflexivity, commutativity, and substitutivity. Notice that in the rules (∀) and (¬∃),
the formula itself is also repeated. This means that we can use these formulas again
if need arises, possibly, instantiating them with terms other than t. In practice, we do
not repeat the formulas, but remember that we can reuse these formulas. Formulas of
these two types are called universal formulas which can be instantiated again and
again. The corresponding rules are the universal rules.

In contrast, the other two types of formulas in the rules of (¬∀) and (∃) are
called existential formulas, and the rules are called existential rules. An existential
formula can be used only once in a path and with a new term. The restriction of ‘t is
a new term’ is in consonance with the restriction on (UG) in FC, the ‘new variable’
in FND, and the eigenvariable condition in GFC. We use the phrase ‘t is a new term’
to mean the following:

If s is any term that occurs in t or in which t occurs, then

1. s does not occur in the current formula,
2. s does not occur in any premise used so far in the path, and
3. s has not been introduced to the path by an existential rule.

Notice that t must also satisfy all the above conditions, in particular. Moreover, if we
take a constant c as a new term, then any term where c occurs is such an s. In that
case, the conditions above mean that

the constant c neither occurs in the current formula, nor in any premise
used so far in the path, nor in any term that has been introduced to the
path by an existential rule.

8.4. ANALYTIC TABLEAUX 251

Further, if c is a constant that never occurs in the path prior to the current formula,
then all the conditions are met vacuously. Thus we have the simplified version of the
new term as follows. We refer to it by ‘c is a new constant’, or even abbreviate it to

new cons c : a constant that has not occurred earlier in the path.
Recall that in PT we have used the heuristic of applying all stacking rules be-

fore applying any branching rule if possible. Along with that, we use the following
heuristic in FT :

If possible, apply existential rules before applying universal rules.
That is, whenever possible, use the (∃) and (¬∀) rules before applying the (∀)

and (¬∃) rules. This is because any constant (in the simplified version) can be used
for instantiating a universal formula, while a constant introduced by a universal rule
cannot be used by an existential rule.

The notions of theorems, consequences, consistency, etc. are the same as in PT.
In this section, we use the symbol � as an abbreviation to “a theorem in FT”. See the
following examples.

EXAMPLE 8.20. � ∀xX → X [x/t], where t is a term free for x in X .
We take the negation of the given formula as the root and generate a tableau.

¬(∀xX → X [x/t])
1. ∀xX
¬X [x/t]

X [x/t] 1, (∀)
×

EXAMPLE 8.21. � ∀x(X → Y)→ (X →∀xY), where x is not free in X .

¬(∀x(X → Y)→ (X →∀xY)
1. ∀x(X → Y)
¬(X →∀xY)

X
¬∀xY
¬Y [x/c] new cons c

X → Y [x/c] 1, x not free in X

Y [x/c]
×

¬X
×

EXAMPLE 8.22. The following tableau shows that � (t ≈ t).

¬(t ≈ t)
t ≈ t (≈ r)
×

252 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

EXAMPLE 8.23. Show that � (s≈ t)→ (X [x/s]→ X [x/t]), where s and t are terms
free for x in X .

¬((s≈ t)→ (X [x/s]→ X [x/t]))
1. s≈ t

¬(X [x/s]→ X [x/t])
2. X [x/s]
¬X [x/t]

X [x/t] 1,2,(≈ s)
×

EXAMPLE 8.24. The following is a tableau proof of � ∃x(∃yPy→ Px):

1. ¬∃x(∃yPy→ Px)
2. ¬(∃yPy→ Pa)

3. ∃yPy
¬Pa
Pb 3, new cons b

4. ¬(∃yPy→ Pb) reusing (1)
∃yPy
¬Pb
×

The repeated use of Formula 1 is required due to the simplified version of the
new term; it is a constant that should not have occurred in the path. Look at the
following alternative solution.

¬∃x(∃yPy→ Px)
¬(∃yPy→ Pa)

1. ∃yPy
¬Pa

2. Pa 1, new term a
×

Here, we are using the new term in its generality while introducing Formula 2
after Formula 1. First, a does not occur in the current formula ∃yPy. Second, a
does not occur in the premise ∃x(∃yPy→ Px). Third, a has not been introduced by
an existential rule in the path earlier to the current formula. Thus the constant a is
indeed a new term and the second tableau is a proof.

EXAMPLE 8.25. Determine the correctness of the following argument:
If all logicians are mathematicians and if there is a logician who is a
computer scientist, then there must be a mathematician who is also a
computer scientist.

8.4. ANALYTIC TABLEAUX 253

We check whether {∀x(Lx→Mx),∃x(Lx∧Cx)} � ∃x(Mx∧Cx).

∀x(Lx→Mx)
∃x(Lx∧Cx)
¬∃x(Mx∧Cx)

La∧Ca new cons a
La
Ca

La→Ma

Ma
¬(Ma∧Ca)

¬Ca
×

¬Ma
×

¬La
×

EXAMPLE 8.26. The tableau proof of the consequence

∃x∃y∃z(¬Qx∧¬Qy∧¬Qz∧Q f (f (x,y),z)) !�∃x∃y(¬Qx∧¬Qy∧Q f (x,y))

of Example 8.19 is as follows.

∃x∃y∃z(¬Qx∧¬Qy∧¬Qz∧Q f (f (x,y),z))
1. ¬∃x∃y(¬Qx∧¬Qy∧Q f (x,y))
¬Qa∧¬Qb∧¬Qc∧Q f (f (a,b),c)

¬Qa
¬Qb
¬Qc

Q f (f (a,b),c)
2. ¬(¬Qa∧¬Qb∧Q f (a,b))

¬(¬Qb∧¬Q f (a,b))

¬Q f (a,b)
3. ¬(¬Q f (a,b)∧¬Qc∧Q f (f (a,b),c))

¬(¬Qc∧Q f (f (a,b),c))

¬Q f (f (a,b),c))
×

¬¬Qc
×

¬¬Q f (a,b)
×

¬¬Qb
×

¬¬Qa
×

254 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

EXAMPLE 8.27. Let x be a variable not free in any of the formulas X1, . . . ,Xn. If
{X1, . . . ,Xn} � X then show that {X1, . . . ,Xn} � ∀xX .

We show that if a tableau for {X1, . . . ,Xn,¬X} is closed, then there is a tableau
for Σ = {X1, . . . ,Xn,¬∀xX} which is also closed. We have a closed tableau τ for
{X1, . . . ,Xn,¬X}. In τ, either ¬X occurs or it does not. If ¬X does not occur in it,
then τ itself is a closed tableau for Σ.

On the other hand, suppose that ¬X occurs in τ. Construct the tableau τ � from τ
by replacing all occurrences of ¬X with ¬∀xX followed by ¬X as the sole child of
¬∀xX . Now, τ � is a tableau for Σ since x is not free in any of X1, . . . ,Xn,¬∀xX , and
since ¬X [x/x] = ¬X . Notice that in τ � we have an extra entry corresponding to each
occurrence of the formula ¬∀xX ; but each formula of τ occurs in τ �. Since τ was
closed, so is τ �.

Example 8.27 shows that the rule (UG) of FC is a derived rule of FT. We have
already seen that all the axioms of FC are also theorems in FT. Since FT is sound,
this completes the proof of adequacy of analytic tableau. We will give a direct proof
of completeness of FT shortly.

Exercises for § 8.4
1. Using tableau rules, determine satisfiability of the following sets of formulas:

(a) {∃xPx,¬Pc}
(b) {∃xPx∧∃xQx,¬∃x(Px∧Qx),∀xPx→ Ps}
(c) {∀x(Px→ Qx),∃xPx,∀x¬Qx,∃xPx∨¬Pc}

2. Let X and Y be formulas. Construct tableau proofs for the following:

(a) � ∀x(X ∧Y)↔∀xX ∧∀Y (b) � ∃x(X ∨Y)↔∃xX ∨∃xY
(c) � ∀xX ∨∀xY →∀x(X ∨Y) (d) � ∃x(X ∧Y)→∃xX ∧∃xY

3. Construct tableau proofs of the following:

(a) ∀x∃y(Px→Qy) � ∃y∀x(Px→Qy) (b) ∃y∀xPxy � ∀x∃yPxy
4. Using FT, show the correctness of the following arguments:

(a) Everyone who buys a ticket receives a prize. Therefore, if there are no
prizes, then nobody buys a ticket.

(b) Horses are animals; therefore, heads of horses are heads of animals.
(c) None of Aristotle’s followers like any materialist. Any of Aristotle’s

followers likes at least one of Kant’s followers. Moreover, Aristotle does
have followers. Therefore, some of Kant’s followers are not materialists.

(d) For every x,y if x succeeds y then it is not the case that y succeeds x.
For every x,y,z, if x succeeds y and y succeeds z then x succeeds z. For
every x,y, if x succeeds y then x is not equal to y. For every x,y,z, if y is
between x and z, then either x succeeds y and y succeeds z, or z succeeds
y and y succeeds x. For every x,z, if x is not equal to z, then there is a y
such that y is between x and z. Therefore, for every x,z, if x succeeds z
then there is a y such that x succeeds y and y succeeds z.

5. Give FT-proofs of all the laws listed in Theorem 6.17, and the replacement
laws discussed in § 6.5.

8.5. ADEQUACY OF FT TO FL 255

8.5 ADEQUACY OF FT TO FL
There is nondeterminism in generating a tableau. We are free to choose a formula
from a given set for expanding the currently generated tableau. To minimize non-
determinism, we may fix an ordering of the formulas in a given set and generate a
tableau systematically.

Let Σ be a set of formulas. We will require terms for instantiating formulas and
thus choose the so called free universe for this purpose. The free universe D(Σ) for
a given set of formulas Σ is the set of all terms generated from the constants and free
variables occurring in (the formulas of) Σ. If there is no constant or free variable in
Σ, then we start with an extra symbol, say, η .

For instance, if there are no constants, no variables, and no function symbols
appearing in Σ, then the free universe is {η}. If a unary function symbol f occurs
in Σ, but neither constants nor free variables occur in it, then the free universe is
{η , f (η), f (f (η)), . . .}.

We generate all possible terms starting with the set of all constants and free vari-
ables (else, η) and using all function symbols occurring in Σ. The set of all terms so
generated is the free universe for Σ.

Since the free universe D(Σ) = {t1, t2, . . . , tn . . .} is enumerable, we take it as an
ordered set. We also consider Σ = {X1,X2, . . . ,Xm . . .} as an ordered set. In FT, a
systematic tableau for Σ is constructed inductively as follows.

In Stage 1, start the tableau with X1 as the root. Suppose a tableau has already
been generated up to Stage n. In Stage n+1, check whether any path of the tableau
gets closed. If open paths exist, extend each open path ρ as follows:

1. Add Xn+1 to ρ , if Σ has more than n propositions.
2. Scan the path ρ from root to leaf for a compound formula (not a literal) on

which a tableau rule has not yet been applied; call the first compound formula
as X .

3. Apply the suitable tableau rule on X to add the necessary formulas to the path:

(a) If X is a stacking or a branching formula, then extend ρ by adding its
children, as in PT. (See § 4.4.)

(b) If X = ∃xY , then take the first ‘new term’ tk from D(Σ), and extend ρ by
adding Y [x/tk].

(c) If X = ¬∀xY , then take the first ‘new term’ tk from D(Σ), and extend ρ
by adding ¬Y [x/tk].

(d) If X = ∀xY, and tk is the first term in D(Σ) such that Y [x/tk] does not
occur in ρ , then add Y [x/tk] and also X to ρ.

(e) If X = ¬∃xY , and tk is the first term in D(Σ) such that ¬Y [x/tk] does not
occur in ρ, then add ¬Y [x/tk] and also X to ρ.

The systematic tableau is finite when the tableau in Stage n+ 1 coincides with that
in Stage n. This includes the case of the tableau getting closed at Stage n. Look at
the following example for a systematic tableau.

EXAMPLE 8.28. Let X1 = ∃x(Lx∧Cx), X2 = ∀x(Lx→Mx), X3 = ¬∃x(Mx∧Cx);
and let Σ = {X1, X2, X3}. Since there is no constant, no free variable and no function
symbol in the formulas, D(Σ) = {η}. Here is the systematic tableau:

256 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

1. ∃x(Lx∧Cx) X1 (Stage 1)
2. ∀x(Lx→Mx) X2 (Stage 2)
3. Lη ∧Cη 1,(∃) (Stage 2)
4. ¬∃x(Mx∧Cx) X3 (Stage 3)
5. Lη →Mη 2,(∀) (Stage 3)
6. ∀x(Lx→Mx) 2,(∀) (Stage 3)
7. Lη 3,(∧) (Stage 4)
8. Cη 3,(∧) (Stage 4)
9. ¬(Mη ∧Cη) 4,(¬∃) (Stage 5)

10. ¬∃x(Mx∧Cx) 4,(¬∃) (Stage 5)

11. ¬Lη Mη

¬Cη¬Mη

5,(→) (Stage 6)

12. × 9,(¬∧) (Stage 7)
13. × × (Stage 8)

Notice that in Stage 7, the formula in Line 6 is not used since the instantiation
produces an already generated formula (i.e., in Line 5). Compare this tableau with
that in Example 8.25. A systematic tableau may run very lengthy, but the method
guarantees that all the premises that can be used in a tableau will eventually be used.
Obviously, the systematic procedure is not a good way of generating a tableau, but it
is a mechanical way with book-keeping.

This is in sharp contrast to the more creative way of generating tableaux which
may sometimes fail. That is, even if there is a closed tableau for a set of formulas,
you may not get it easily by arbitrarily instantiating the quantified formulas, not to
mention repeated trials. In contrast, the systematic tableau will close on a single trial.
On the other hand, when the systematic tableau is unmanageably large, you may be
able to construct a short tableau with ingenuous instantiations.

Once an ordering of a set of formulas is chosen, there exists a unique system-
atic tableau for the set. In this sense, we speak of the systematic tableau for a given
(ordered) set of formulas. The systematic tableau is finite after each step, but it can
eventually be an infinite tree. If the systematic tableau is infinite, then it remains
open; and if it is finite, then it may be either closed or open. However, all possi-
ble instantiations of variables to terms are eventually taken in an open path of the
systematic tableau. Therefore, we observe the following.

Observation 8.1. Let Σ be any set of formulas. Then the following are true:
(1) There exists a closed tableau for Σ iff the systematic tableau for Σ is closed.
(2) Each tableau for Σ contains an open path iff there exists an open path in the

systematic tableau for Σ.

We say that a set of formulas Σ is inconsistent (in fact, FT-inconsistent) iff there
exists a closed tableau for Σ. A set of formulas is called consistent if it is not incon-
sistent. That is, a set of formulas Σ is called consistent iff each tableau for Σ contains
an open path. Our observations above amount to the following.

8.5. ADEQUACY OF FT TO FL 257

Lemma 8.1. Let Σ be an ordered set of formulas. Then

(1) Σ is consistent iff the systematic tableau for Σ has an open path.
(2) Σ is inconsistent iff the systematic tableau for Σ is closed.

Our aim is to connect the proof theoretic notion of consistency to the semantic
notion of satisfiability. Let ρ be a path in a tableau for a set of formulas Σ. We
visualize the path ρ as a set of formulas. Call ρ a satisfiable path if the set of all
formulas in ρ is satisfiable. Notice that a closed path is necessarily unsatisfiable;
thus, a satisfiable path must be open. Along with this, we have the following result
for systematic tableaux.

Lemma 8.2. Let Σ be an ordered set of formulas. Let τn be the systematic tableau
for Σ generated in Stage n. If Σ is satisfiable, then for each n ≥ 1, τn contains a
satisfiable path.

Proof. Assume that Σ is satisfiable. Since τ1 contains only the first premise from
Σ, τ1 is satisfiable. This proves the basis step of our inductive proof.

For the induction step, assume that τm contains a satisfiable path. We will show
that τm+1 has a satisfiable path. If τm+1 = τm, then there is nothing to prove. Oth-
erwise, Let Z ∈ τm be the formula in such a satisfiable path ρ , which has been used
in Stage m for extending τm to τm+1. All possible extensions of ρ are tackled by
considering the following cases:

(a) If Z is a stacking formula with Z1,Z2 as its children (Z2 may be absent.) then
the extended path ρ,Z1,Z2 is satisfiable.

(b) If Z is a branching formula with Z1,Z2 as its children, then at least one of the
extended paths ρ,Z1 or ρ,Z2 is satisfiable.

(c) If Z is an existential formula with its child as Z�[x/t], then the path ρ, Z�[x/t] is
satisfiable. [Notation: If Z = ∃xU , then Z� =U. If Z = ¬∀xU , then Z� = ¬U.]

(d) If Z is a universal formula with its children as Z�[x/t], Z, then the path
ρ, Z�[x/t], Z is satisfiable. [Notation: If Z = ∀xU , then Z� =U. If Z = ¬∃xU ,
then Z� = ¬U.]

(e) If Z� has been obtained by using the equality rules (≈ r), (≈ c), or (≈ s),
then the path ρ, Z� is satisfiable.

(f) An addition of a premise from Σ to ρ keeps the extended path satisfiable.

Proofs of (a)-(b) are propositional. In (a), Z ≡ Z1 ∧Z2; thus satisfiability of ρ,
which contains Z, implies the satisfiability of ρ,Z1,Z2. In (b), Z ≡ Z1 ∨Z2. If both
ρ,Z1 and ρ,Z2 are unsatisfiable, then ρ itself becomes unsatisfiable. Therefore, at
least one of the paths ρ,Z1 or ρ,Z2 is satisfiable.

For (c), suppose that I� = (D,φ ,�) is a state such that I� � ρ. (This D need not be
the free universe.) The new term t either does not occur in ρ at all or it has occurred
in ρ already satisfying the constraints of a new term.

In the former case, extend � to �� by defining ��(t) = α , where α �∈ D, a new
symbol, and keeping the values of �� as those of � for all other terms. Let D� =
D∪ {α}. Extend the function φ to φ � by redefining φ(Z�). Note that φ(Z�) might
have been already defined in the state I�. However, we now view φ(Z�) as a relation

258 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

on D� instead of D. The redefinition of this relation φ(Z�) is an extension of the old
φ(Z�) as existing on D plus the assertion that φ(Z�[x/t]) holds.

For instance, if Z� = Pxa and we have already φ(P) = {(a,b),(b,c)}, then
Z�[x/t] = Pta; and the redefinition of φ(P) is φ �(P) = {(a,b),(b,c),(α,a)}, since
t is assigned to α by ��.

In the latter case, when the new term t has already occurred in ρ, the existential
formula, say ∃xU, is satisfied by I�. So, we have an element d ∈D such that I�[x �→d] �
U(x). Now, modify � to �� by reassigning t to this d but keeping all other assignments
as in �. The reassignment does not affect satisfiability due to constraints on the new
term t. Notice that had t been brought forth by an existential rule, it would not have
been possible to reassign it.

Now it is clear that the new state I�� = (D�,φ �,��) is still a state-model of all the
formulas in ρ and, in addition, it is a state-model of the new formula Z�[x/t]. Thus,
the extension of ρ , i.e., the set ρ ∪{Z�[x/t]}, is satisfiable.

The case (d) is similar to (c); and (e) follows due to the Laws of Equality. The
statement in (f) follows from the satisfiability of Σ, and (a)-(e). �

Theorem 8.3 (Strong Soundness of FT). If a set of formulas Σ is satisfiable, then
it is consistent.

Proof. Use some ordering in Σ, and let τ be the systematic tableau for Σ. If Σ is
inconsistent, then by Lemma 8.1, τ is a closed tableau. Each path in τ is closed
and finite. By König’s Lemma (Theorem 4.2), τ is finite. Therefore, τ has been
generated in Stage n, for some n. Moreover, τ does not contain any satisfiable path.
By Lemma 8.2, Σ is unsatisfiable. �

Theorem 8.4 (Strong Completeness of FT). If a set of formulas Σ is consistent,
then it is satisfiable.

Proof. Let Σ be consistent. We then have an open path ρ in the systematic tableau
for Σ. Further, ρ satisfies the following properties:

1. No atomic formula and its negation are both in ρ.
2. If Z ∈ ρ is a stacking formula with children Z1,Z2, then Z1 ∈ ρ and Z2 ∈ ρ.

Note that Z2 may not exist for some formulas.

3. If Z ∈ ρ is a branching formula with children Z1,Z2, then Z1 ∈ ρ or Z2 ∈ ρ .

4. If Z ∈ ρ is a universal formula, then Z�[x/t] ∈ ρ for each term t ∈ D, where
either Z = ∀xZ�, or Z = ¬∃xY and Z� = ¬Y.

5. If Z ∈ ρ is an existential formula, then Z�[x/t] ∈ ρ for at least one term t ∈ D,
where either Z = ∃xZ�, or Z = ¬∀xY and Z� = ¬Y.

To see that ρ is satisfiable, we start with a domain. An obvious choice is the free
universe D := D(Σ). Choose the assignment function � as the identity function. We
then need to declare suitable atomic formulas as true and others as false. For this, we
define the function φ from the set of all predicates occurring in Σ except the equality
predicate ≈, to the set of all relations over D the following way:

8.5. ADEQUACY OF FT TO FL 259

If Q(t1, t2, . . . , tm) ∈ ρ, then (t1, t2, . . . , tm) ∈ φ(Q).

If ¬Q(t1, t2, . . . , tm) ∈ ρ, then (t1, t2, . . . , tm) �∈ φ(Q).

If neither of the above two happens, then (t1, t2, . . . , tm) ∈ φ(Q).

For the equality predicate, define the equality relation E on the domain D, as was
done in § 5.8. Now, the function φ satisfies the condition “(s ≈ t) is satisfied by
this interpretation iff (s, t) ∈ E”. Formally, one formulates and proves a statement
like Lemma 6.2 using FT. Due to (a)-(e), (D,φ ,�) � ρ. Thus, ρ is satisfiable. Since
Σ⊆ ρ, Σ is also satisfiable. �

We have thus proved the following result.

Theorem 8.5 (Strong Adequacy of FT). Let Σ be a set of formulas, and let X be a
formula. Then the following are true:

(1) Σ � X iff there is a closed tableau for Σ∪{¬X}.
(2) Σ is unsatisfiable iff Σ is FT-inconsistent.

Notice that whenever a systematic tableau for a set Σ of formulas is closed, the
free universe restricted to those terms occurring in the tableau is finite. Hence, Σ is
unsatisfiable on a finite domain. On the other hand, if a systematic tableau for Σ is
finite and open, then any open path in it will give rise to a finite model of Σ.

What if a set is neither satisfiable nor unsatisfiable on any finite domain, but is
satisfiable on an infinite domain? The systematic tableau will then have an infinite
open path. But then, how to obtain such an infinite open path by the tableau method?
Obviously, the tableau method will not be able to give it; but some meta-argument
might prove its existence. Look at the following example.

EXAMPLE 8.29. Is Σ = {∀x∃yPxy, ¬∃xPxx, ∀x∀y∀z(Pxy∧Pyz→ Pxz)} a satisfi-
able set of formulas?

∀x∃yPxy
¬∃xPxx

∀x∀y∀z(Pxy∧Pyz→ Pxz)
∃yPby
¬Pbb

Pbd
Pbc∧Pcd → Pbd

Pbd
¬Pcc

¬(Pbc∧Pcd)
¬Pcc

This is not a systematic tableau; you can construct one anyway. Look at the
tableau carefully. It will go on for ever by reusing the universal formulas; and it will
never close. This set Σ is neither satisfiable nor unsatisfiable in any finite domain,
but is satisfiable in an infinite domain. For instance, you can interpret P as ‘less than’
in N and see that Σ has a model there.

260 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

As a procedure, analytic tableau fails to determine satisfiability of any arbitrary
set of formulas. However, analytic tableau is a complete proof procedure, so nothing
better can be achieved. At this point, you may try with other proof procedures to
determine satisfiability of Σ in Example 8.29. A somewhat convincing argument is
that an algorithm is a finite procedure, and it cannot find out an answer to such an
infinite construction of a model. That is exactly the undecidability of FL, which we
plan to tackle later.

Exercises for § 8.5
1. Use König’s Lemma to show that a closed tableau contains only a finite num-

ber of formulas.
2. Using the construction of a systematic tableau, prove that if every finite subset

of a set of formulas is FT-consistent, then the set itself is FT-consistent.
3. Construct an infinite tree where for each n≥ 1, there exists a path of length n,

but there exists no infinite path.
4. Construct a tableau for X = A∧B∧C, where A = ∀x∃yPxy, B = ∀x¬Pxx, and

C = ∀x∀y∀z(Pxy∧Pyz→Pxz). Show that X is satisfiable but it is not satisfiable
in any finite domain.

8.6 SUMMARY AND PROBLEMS
The four types of proof procedures such as calculation, natural deduction, Gentzen
sequents, and analytic tableaux for PL could be extended successfully to FL. In each
extension, some axioms or rules of inference have been added to tackle the quanti-
fiers and the equality predicate.

Calculation is used in every text book on logic informally. It has been popularized
by Gries & Schneider (1993) as a proof procedure, where calculations have been
taken as sequences of FL-sentences chained together by the relation of equivalence
(≡). In this system, each implication is converted to an equivalence by using the
Golden rule. We have extended the calculations to tackle implications directly by
allowing entailment along with equivalence. Also, we have allowed formulas in a
calculation instead of restricting to sentences.

For an exposition of natural deductions, see Huth & Ryan (2000) and Rautenberg
(2010). The latter text deals with Gentzen style natural deduction. Our treatment is
closer to the former text. It is also closer to quasi-proofs and the informal deductions
treated in Copi et al. (2010), Lewis & Langford (1938), Mates (1972), Suppes (1957),
and Stoll (1963).

The Gentzen sequents for FL has been extensively used in Ebbinghaus et al.
(1994), Fitting (1996), Gallier (1987), and Rautenberg (2010). The present sym-
metric system has been considered by Manaster (1978) and Smullyan (2014). Some
logicians advocate Gentzen systems for automated theorem proving due to its me-
chanical nature.

The method of analytic tableau has been made popular by Smullyan (1968). It
may be found in almost all modern texts on logic. We have also proved its adequacy

8.6. SUMMARY AND PROBLEMS 261

to FL independent of FC. See Fitting (1996) for its implementation using Prolog
language. Many computer scientists advocate analytic tableau due to its transparency
in model constructions.

Problems for Chapter 8
1. Show that each of the following consequences is valid by using Calculation,

FND, GFC, and FT:

(a) ∀x∀y(Pxy→ Pyx), ∀x∀y∀z(Pxy∧Pyz→ Pxz), ∀x∃yPxy !�∀xPxx
(b) {∀xPxx, ∀x∀y(Pxy→ Pyx), ∀x∀y∀z(Pxy∧Pyz→ Pxz)}

!�∀x∀y(∃z(Pxz∧Pyz)→∀z(Pxz↔ Pyz))
(c) ∀x(Px∧Qx→ Rx)→∃x(Px∧¬Qx), ∀x(Px→ Qx)∨∀x(Px→ Rx)

!�∀x(Px∧Rx→ Qx)→∃x(Px∧Qx∧¬Rx)

In (b), the premises say that P is an equivalence relation. Then, what does the
conclusion say?

2. Are the following arguments valid? Formalize each into FL; and try a proof
using calculation, FND, GFC, and FT.

(a) Either Logic is elegant or many students like it. If Computer Science is
a difficult discipline, then Logic has to be elegant. Therefore, if many
students like Computer Science, then Logic is elegant.

(b) If tomorrow morning it is chilly and not so clear a sky, then we go swim-
ming unless you do not have any special liking for boating. It isn’t always
the case that if the sky is not clear, then you don’t go boating. Therefore,
if the weather is not chilly tomorrow morning, then we go swimming.

(c) Yanka would have been at home, had he been to the club or not to the
theatre while his friend was waiting for him at the college. He had been
to the club premises while it was dusk only if he didn’t come home.
Unless the watchman saw him at the club premises, it is certain that it
was dusk, since the watchman is night blind. Therefore, Yanka did not
go to the theatre.

(d) If anyone is in a guest house, which is located in a city, then he is in
that city. None can be in two different cities at the same time. One
who snatched the necklace away must have been in the guest house at
Chennai. Since Chennai and Mumbai are two different cities and Yanka
was in the Mumbai guest house, he did not snatch the necklace.

(e) If all the politicians praise a bandit, then the bandit must be none other
than Robin Hood. A politician praises a person if the person has indeed
helped him in his career. There is a bandit who has not helped any politi-
cian. Therefore, there is a bandit other than Robin Hood.

3. Show by constructing an example that if two boxes are allowed to overlap,
then the soundness of FND may not be retained.

4. Prove monotonicity, RA, and the deduction theorem for FND.
5. Are the rules of FND independent? If yes, show that no rule can be derived

from others taken together. If no, then pick the rule(s) which can be derived
from others.

262 CHAPTER 8. OTHER PROOF SYSTEMS FOR FL

6. Show that the following inference rules (in GFC) are not sound:

Rule 1:
Σ � Γ,Δ

Σ � Γ,(t ≈ t),Δ
Rule 2:

Σ � Γ,(s≈ t),X [x/s],Δ
Σ � Γ,(s≈ t),X [x/t],Δ

[Hint: A rule with numerator Σ � Γ and denominator Δ � Ω is sound if the
metastatement “ if Δ � Ω then Σ � Γ” holds.]

7. Are the rules of GFC independent? If yes, show that no rule can be derived
from others taken together. If no, then pick the rule(s) which can be derived
from others.

8. Formulate and prove a statement like Lemma 6.2 using FT.
9. Assume compactness of FL and that each valid formula has an FT-proof. Prove

that if Σ � X , then it has an FT-proof, where Σ is a set of formulas, and X is a
formula.

10. Let Σ be a set of formulas, and let X be a formula. Show that if Σ∪{X} � ⊥
and Σ∪{¬X} �⊥ have proofs by calculation, then Σ �⊥ also has a proof by
calculation.

11. Let Σ and Γ be sets of formulas, and let X be a formula. Show that if Σ∪{w}
and Γ∪{¬w} have proofs by calculation, then Σ∪Γ has a proof by calculation.

12. Repeat the previous two problems with FND, GFC, and FT instead of calcula-
tion.

Chapter 9

Program Verification

9.1 DEBUGGING OF A PROGRAM
Before you start writing a program, you must know the job at hand, and the computer
language you would be using to write it. Typically, you would have an idea as to
what are the inputs to your program and what are the expected outputs. You must
also know how the program would transform the inputs to the outputs.

For example, you are asked to write a program for checking whether two strings
are equal. Immediately you think of a shortcut. If the given strings are of different
lengths, then they are not equal. So, a subclass of the problems is solved. Once the
strings are found to be of the same length, you are going to check them character by
character. So, this describes how the job is done. Now, how to write this procedure
as a program?

Well, you imagine a Boolean variable, say, matched, which is assigned a value
true when the given strings s1 and s2 are equal, and false when they are not equal.
Assume that you had already a ready-made program to compute the length of a string
s, denoted by length(s). Suppose that the language in which you are writing your
program uses ‘=’ for comparing two natural numbers. That is, the expression ‘5= 5’
is evaluated true and ‘5 = 6’ is evaluated false. Then you would like to write a line:

matched := (length(s1) = length(s2))

It says that the variable matched is assigned the value of the expression length(s1) =
length(s2) which is either true or false depending upon whether the length of the
string s1 is equal to the length of s2 or not.

Convention 9.1. In this chapter, the symbol := is used for assigning a value to a
variable; it is not the same as the substitution used earlier. We also use the equality
symbol = instead of ≈, for ease in reading.

If length(s1) is not equal to length(s2), then the variable matched is assigned
false, and you have the required result. Otherwise, you conclude that the strings s1
and s2 require further treatment. In that case, the variable matched is assigned the

263

264 CHAPTER 9. PROGRAM VERIFICATION

value true and length(s1) = length(s2) = m, say. Now to match the strings s1 and s2
character by character, assume that you already have a function ch(i,s) which, given
a string s, and a positive integer i, outputs the ith character of s. You can call this
function if required.

Suppose that you can compare the characters by the same relation ‘=’. That is,
the expression ch(i,s1) = ch(j,s2) is evaluated true if the ith character of the string
s1 is same as the jth character of the string s2; else, it is evaluated false. Then you
would like to write:

matched := (ch(i,s1) = ch(i,s2)) for each i from 1 to m

And finally, you have the program:

PROGRAM : StringMatching

matched := (length(s1) = length(s2))
if matched then for i = 1 to length(s1)

do matched := (ch(i,s1) = ch(i,s2)) od

If there is a stake on writing this program correctly, you would not just leave it
here. You would like to test the program on some inputs. As a student of logic, you
start testing the program on strings

(a) which are identical,

(b) which have unequal lengths, and

(c) which are of equal lengths but unequal.

This phase of program development is usually called debugging. As test inputs you
run the program on the following strings:

(a) s1 = pen,s2 = pen; s1 = chalk,s2 = chalk; s1 = pencil,s2 = pencil; etc.

(b) s1 = pen,s2 = chalk; s1 = pen,s2 = pencil; s1 = chalk,s2 = pen;
s1 = pencil,s2 = paper, etc.

(c) s1 = pen,s2 = ink; s1 = chalk,s2 = paper; s1 = pencil,s2 = redink;
s1 = blackboard,s2 = bluepencil, etc.

Now, in all runs, your program was a success and you have submitted your pro-
gram to your instructor on Friday. The following Monday your instructor announces
in the class that you have been awarded with zero marks as the program is incorrect.
To justify himself, he says that your program evaluates matched to true for the inputs
s1 := pen,s2 := ten. You then verify and see that he is correct. You have lost your
quiz marks.

Imagine what would happen to a company where they would have invested in
millions on a problem for which you have supplied the software; and that too, the
software uses the string matching program you have written. Once this happened to
the Intel Pentium chips having a flaw in multiplication of floating point numbers, and
they had to bear the loss. The moral:

Debugging is not a foolproof method of program development.

9.2. ISSUE OF CORRECTNESS 265

Debugging cannot prove a correct program correct. It is not a reliable method
to prove an incorrect program incorrect. If it finds, mostly by chance, a mistake in
a program, then of course, the program is incorrect. To encapsulate, E. W. Dijkstra
said,

Program testing can be used to show the presence of bugs, but never to
show their absence.

Programmers use a face saving word ‘bug’, instead of ‘mistake’. However, they
are afraid of bugs as is evident in the principle they follow:

A program must not deliver what it is not supposed to even though it
fails in delivering what it is supposed to.

This chapter addresses the issue of how to prove that a program does its intended
job. This is referred to as proving correctness of a program or verifying a program.
You will see how logic comes of help in achieving this.

Exercises for § 9.1
1. In debugging the StringMatching program, were the cases not exhaustive?

Then why did it fail?
2. Modify StringMatching so that the intended job is correctly done.
3. If the output of StringMatching is true, then what could be the input?
4. If the output of StringMatching is false, then what could be the input?

9.2 ISSUE OF CORRECTNESS
What happens if a program goes on an infinite loop? You can instruct a person in
a treasure hunt to move to a place where he finds the instruction for moving back
to the original place again. You would not write such a program unless you want
to make a Sisyphus out of a computer. However, in some circumstances you may
want the computer not to come to a halt stage unless it is switched off manually; for
example, a surveillance system, or an operating system. Otherwise, for most jobs,
you may need your program to come to a finishing stage. It is worthwhile to examine
termination of a program.

The next important issue is, whether it gives the expected output after termi-
nation. For example, StringMatching of § 9.1 does not give the expected result; it
finally assigns true to the variable matched when two strings s1 and s2 are of equal
length, and having the same last character.

The issues with a program P are the following:

Termination: Does P terminate for all specified inputs?

Partial Correctness: Given that P terminates for all specified inputs, does P end up
in delivering the required output, corresponding to each input?

Total Correctness: For each specified input whether P terminates and delivers the
corresponding output?

266 CHAPTER 9. PROGRAM VERIFICATION

For proving termination, partial correctness, or total correctness of a program,
we have to take care of the “specified inputs” and the “corresponding outputs”. For
example, an input to StringMatching is a pair of strings (s1,s2); and an expected
output is the value true or false assigned to the program variable matched. One
string such as mat is assigned to the program variable s1, and another string, say
cat, is assigned to the program variable s2. In this case, an expected output is false.
This particular input may be described as (s1 = mat)∧ (s2 = cat), and its output, as
you know, is matched = true.

In abstract terms, the program variables satisfy some property before the exe-
cution of the program. This property, called the precondition of the program, is
described in this particular case by the (first order) formula

(s1 = mat)∧ (s2 = cat)

Similarly, some property holds for the program variables after the execution of
the program. Of course, we are interested in a specified or required property to be
satisfied after the program is executed. Such a property is called a postcondition of
the program. The property

matched = false

is the required postcondition when we have the input strings as mat and cat. Here,
as you see the required postcondition is not satisfied by the program; hence, the
program is not correct.

In fact, the precondition of StringMatching is not completely expressed by the
above formula. It only expresses a particular input. Soon, we will discuss how to
correctly express the precondition and postcondition.

In developing a program, our main intention is to meet the required postcondition
by manipulating the program variables.

A state of a program is described by what values are assigned to the program
variables, at some instant of time. A typical state of our program StringMatching is

s1 = mat, s2 = cat, matched = false

Then a precondition of a program is a property satisfied by the program states; it may
just describe the inputs. Here the precondition (s1 =mat)∧(s2 = cat) is such a prop-
erty. Note that all program variables need not be assigned values in a precondition.
An unassigned variable can be assigned each possible value in turn and then ∨-ed to-
gether. For example, our particular precondition for StringMatching can be rewritten
using the equivalence (Hear, read (s1 = mat)∧ (s2 = cat) etc, with brackets.):

s1 = mat ∧ s2 = cat ≡ s1 = mat ∧ s2 = cat ∧matched = false∨matched = true

Thus, instead of talking of inputs and outputs, we may speak of preconditions and
postconditions, which are first order properties satisfied by program states.

Suppose the predicate Q is the precondition, and the predicate R is the postcon-
dition of the program S. Then the triple

�Q� S �R�

9.2. ISSUE OF CORRECTNESS 267

is called a specification of the program S. A specification is also called a Hoare
triple after the computer scientist C. A. R. Hoare. The predicates Q and R are prop-
erties of the program variables. The semantics of the Hoare triple is as follows:

�Q�S �R� is partially correct (also called conditionally correct) iff
“if initially any state of the program variables satisfies the predicate Q
and the program S is executed, then on termination of S, any resulting
final state of the program variables will satisfy the predicate R.”

The Hoare triple expresses partial correctness of the program S. To argue about par-
tial correctness of a program we need some abstraction. For instance, consider the
StringMatching program. Will you try proving that all of the following Hoare triples
hold?

�s1 = mat ∧ s2 = cat � StringMatching �matched = false�
�s1 = chalk∧ s2 = duster � StringMatching �matched = false�
�s1 = pen∧ s2 = pen� StringMatching �matched = true� and so on.

There are certainly an infinite number of such Hoare triples which must be veri-
fied. We would rather like to introduce some new variables for the strings. Suppose
we write all possible strings to be assigned to s1 as st1, and those to s2 as st2. Then
a typical precondition is “s1 = st1 and s2 = st2,” where the required postcondition is
“st1 = st2 if and only if matched = true.” Thus the infinite number of Hoare triples
would be represented by the specification

�s1 = st1∧ s2 = st2� StringMatching �st1 = st2↔ matched = true�

The new variables st1 and st2 are called the logical variables or ghost variables
with respect to the program. The logical variables do not occur in the program; they
only occur in the logical representations of the precondition and the postcondition.
They relate the final values of the program variables to their initial values.

The correctness of the StringMatching program means that the afore-mentioned
specification holds. That is,

If StringMatching terminates, and if initially, the variables s1,s2 are as-
signed the values (strings) st1,st2, respectively, then finally no matter
what is assigned to matched, the formula (st1 = st2↔matched = true)
will hold.

Notice that the notation of a Hoare triple captures the concept of partial correctness
only. We will address the issue of total correctness a bit later.

Exercises for § 9.2
1. Given a program and its supposed input, is it possible to find all required prop-

erties of the output?
2. Given a program and its supposed output, is it possible to compute the neces-

sary input?
3. Find out all possible inputs corresponding to output as true or false, for String-

Matching.

268 CHAPTER 9. PROGRAM VERIFICATION

4. Repeat the previous exercise for your corrected program for matching two
strings.

5. Suppose a program does not terminate on all inputs. Then what is the use of
partial correctness?

9.3 THE CORE LANGUAGE CL
To argue about a program, we must also describe what a program is. You have al-
ready written programs in many languages. As you know, syntax and semantics of
commands vary from one language to another. To argue about them all, we develop a
methodology independent of any particular language. Further, we would like to con-
sider procedural languages only, thus excluding languages like PROLOG and LISP.

For procedural languages the core may be thought of as comprising three types of
commands. They are the assignment statements, the conditional statements, and the
loop statements. These statements are enough to simulate a Turing machine, which
is an accepted definition of an algorithm. Notice that these three types of statements
correspond to the three basic types of operations a Turing machine uses, such as
symbol writing, conditional movement of the read-write head, and repeating certain
required sequence of moves. Moreover, we assume the capability of sequential exe-
cution, so that statements in a program are executed one after another. The sequential
execution corresponds to building complex Turing machines from simple ones using
compositionality. We describe the syntax and semantics of our core language CL.
All our programs will be assumed to be written in this language.

In CL, variables are some names, such as x,y,z, . . . ,x0,x1,x2, . . . , or even as
string, book, string1, . . . just like identifiers in procedural programming languages.
You may also think of variables as names for memory locations.

CL has two types of expressions: integer expressions and Boolean expressions.
An integer expression is any integer from the set Z = {. . . ,−2,−1,0,1,2, . . .}, or
any variable, or is in any of the forms: −E1, (E1+E2), (E1−E2),(E1×E2), or
(E1/E2), where E1,E2 are any integer expressions. This recursive definition will
let us generate integer expressions such as (5× (−3+(x× x))), ((2× 3)× 4),
These are the arithmetic expressions in many procedural languages.

The symbol ‘−’ represents both the unary ‘minus’ and the binary ‘subtraction’
as in −3 and (5− 3), respectively; +,× represent the operations of addition, and
multiplication of integers as usual. The symbol ‘/’ represents integer division; for
instance, 8/3 = 2. Similarly, = and < mean the usual equality and ‘less than’ rela-
tions of integers. Note that there is some redundancy in keeping (E1 = E2) since it
could be defined by using the connective ¬ and the predicate <. However, allowing
‘=’ will simplify long expressions, and we decide to keep it. Recall that for ease in
reading, we are using = instead of the formal ≈ in this chapter.

For doing logical checks, we also keep Boolean expressions. These are simply
the propositions of PL, but now have a syntax including the integer expressions. To
be definite, a Boolean expression is in one of the following forms:

�, ⊥, ¬B1, (B1∧B2), (B1∨B2), (E1 < E2), or (E1 = E2)

9.3. THE CORE LANGUAGE CL 269

where B1,B2 are some Boolean expressions and E1,E2 are integer expressions. The
value of a Boolean expression can be either 0 or 1, i.e., false or true.

Of the four types of statements in CL, we first describe the assignment statement.
If x is a variable and E is an integer expression, then an assignment statement looks
like

x := E

Execution of the assignment statement proceeds as follows:

the expression E is evaluated and the computed value is stored in the
name (memory location) x. Thus, we say that after the execution of the
assignment statement, the variable x becomes bound to this computed
value of E.

Boolean expressions are used to describe conditional statements just as integer
expressions are used in an assignment statement. A conditional statement looks
like

if C then {S1} else {S2}
where C is a condition, a Boolean expression, and S1,S2 are some statements. The
curly brackets are used as punctuation marks.

For instance, if (m < n) then {m := n} else {n := m} is a conditional
statement. The execution of the conditional statement

S : if C then {S1} else {S2}

proceeds as follows:

The Boolean expression C is evaluated. If its value turns out to be 1,
i.e., true, then the statement S1 is executed; and after this execution,
the whole statement S is considered executed. On the other hand, if the
value of C turns out to be 0, i.e., false, then the statement S2 is executed
instead of S1; and after this execution, execution of S is considered over.

For example, consider the statement S as

if (m < n) then {m := n} else {n := m}

Suppose that before S is executed the variables m and n have been bound to 2 and
3, respectively. Then the condition (m < n) is evaluated to 1, and consequently,
execution of S proceeds in executing the statement m := n. After the execution of S,
m becomes bound to 3, the value of n, and also n is bound to 3 as before.

Before the execution of S if m,n have been bound to 10, 5, respectively, then the
condition (m < n) is evaluated to 0. Thus, execution of S forces execution of n := m,
the statement that comes after else. Consequently, after S is executed, both m and n
become bound to 10, the value of m.

The sequential control statement or the composition has the following syntax:

S1; S2

where S1 and S2 are any statements or programs (program fragments). Its semantics
is described as follows.

270 CHAPTER 9. PROGRAM VERIFICATION

First, S1 is executed. After this execution is over, S2 is executed. After
the execution of S2, the execution of S1; S2 is considered over. If S1
does not terminate, then S2 is never executed, and in that case, the com-
position program S1; S2 does not terminate. Similarly, if S2 does not
terminate, then also S1; S2 does not terminate.

Thus, termination of S1; S2 is guaranteed only when both S1 and S2 terminate, and
in that order. The sequential composition is assumed to be left associative; we do not
need parentheses. The program S1; S2; S3 is interpreted as (S1; S2) ; S3, i.e., first
S1 is executed, next S2, and then S3.

Finally, we describe the looping statement. Among many alternatives, we choose
the ‘while loop format’. A while statement looks like

while C {S}

where C is a condition, a Boolean expression, and S is a statement (a program or a
program fragment). In a while statement, the condition C is called the guard, and the
statement S is called the body of the while loop. Its execution means the following:

The Boolean expression C is first evaluated. If its value is 1 (true),
then the statement S is executed. Upon termination of this execution,
the Boolean expression C is again evaluated. If its value is 1 this time,
then S is once again executed. The loop of ‘evaluation of C’ followed
by ‘execution of S’ is repeated. This repeated execution stops when the
value of C becomes 0 (false).

It is often the case that execution of S changes values of some program variables
occurring in C so that after a finite number of repeated executions (evaluation of C
and then execution of S), C would eventually become bound to 0. If this does not
happen, then the while statement would never terminate. Thus, vacuously, if C and
S do not share any program variables and C is initially bound to 1, then the while
statement will not terminate. We emphasize,

at the termination of the while statement, the condition C must be bound to 0.
The while statement is a looping statement meant for repeated execution of its

body until its guard is falsified. It is like a ‘for command’ found in procedural
languages. The difference is that in a for command, you know beforehand how
many times S would be repeatedly executed, whereas in a while statement, this is not
known beforehand.

A while statement is more suitable for recursion, whereas a for command is more
suitable for iteration. The while statement has more direct connection to a machine
scheme representation of Turing machines. However, it comes with the potential
danger of non-termination.

EXAMPLE 9.1. Trace the execution of S : while m �= n {m :=m+1; s := s+m}.
Suppose that before execution of S, the variable m has been bound to 0, n has

been bound to 5, and s has been bound to 0. With this initial state, execution of S
begins.

Now, the guard m �= n is satisfied (evaluated to 1) as 0 �= 5; consequently, the
body m := m+1; s := s+m is executed. After this first execution of the body, m is

9.3. THE CORE LANGUAGE CL 271

bound to 1, s is bound to s+m, i.e., to 1. As S is to be executed repeatedly until the
guard m �= n becomes false, execution of S is initiated once more. Again, the guard
m �= n is satisfied and consequently, the body is executed. This makes m bound to 2,
and s bound to 3.

After five executions of the body, it turns out that m is bound to 5 and s is bound
to 15. On the sixth execution, the guard m �= n is found to be false, as m becomes
equal to 5, the value of n. Then execution of S is stopped; S terminates with the
resulting state satisfying m = 5∧n = 5∧ s = 15.

If, initially, m is bound to 5 and n is bound to 0, then the guard m �= n is satisfied;
the body is executed once increasing the value of m to 6, and of s to the earlier value
of s plus 6. Again, the guard is satisfied and execution of the body is initiated. You
realize that the guard will always be satisfied in each such successive execution, and
consequently, the loop never terminates.

In the detailed trace of execution of S in Example 9.1, there are some vari-
ables whose values have not changed while the values of some other variables have
changed. The ones whose values have changed are m,s, and the value of n has not
changed. In case, the program is terminated, the (changed) value of s stores the sum
of numbers 0,1, . . . ,n.

Though s changes, it is unlike the change in m. The variable m goes successively
through the natural numbers. The change in s can be captured by a formula by
looking at its pattern of change at each successive execution of the body of S. When
the body of S is executed once, s contains the value 1. At the end of the second
execution, it contains the value 1+ 2. In general, at the end of the ith execution, s
contains the value 1+2+ . . .+ i. Now you see that though the value of s is changing
through the repeated execution of the body of the loop, the statement

after the ith execution of the body of S, s = 0+1+2+ . . .+ i

does not change. This statement holds before the execution of S, it holds after S
terminates, and it even holds throughout the execution of the loop S. Such a property
which holds throughout the execution of a loop is called an invariant of the loop. It
is often the invariant of a loop that signals towards the real job undertaken by the
loop. Getting the invariant(s) of a loop is not mechanical; it needs some experience,
but often it comes from the requirements or the postcondition. We will see in the
following section, how an invariant is used for proving correctness of programs.

Exercises for § 9.3
1. The language CL does not have arrays. But arrays can be manipulated in CL

by restricting operations to array elements directly. Using this, write programs
in CL to perform the following operations on arrays of numbers A and B each
of length n. We write the ith entry of an array A as A[i].

(a) Add A and B to get an array C where C[i] = A[i]+B[i].
(b) Reverse the entries of A. For instance the program working on [1,2, . . . ,9]

will output [9,8, . . . ,1].
(c) Determine whether more than half of the corresponding entries of A and

B match.

272 CHAPTER 9. PROGRAM VERIFICATION

2. When does if C then {S1} else {S2} fail to terminate?
3. In an urn there are a certain number of black marbles and a certain number of

white marbles. Outside the urn we have unlimited supply of black and white
marbles. We take out two marbles randomly out of the urn; read their colours
and keep them outside. If both are of the same colour, then we put one white
marble back into the urn; else, we put a black marble back into the urn. After
certain finite number of such moves, only one marble will remain in the urn.
This game executes a while loop. What is the invariant of this while loop? Use
the invariant to find out the colour of the marble remaining in the urn.

4. Can you describe how to implement a Turing machine in CL? [If you have not
yet worked with Turing machines, ignore this exercise.]

9.4 PARTIAL CORRECTNESS
All our programs will be written in the language CL. Whenever some new constructs
like arrays or lists are required, we will introduce them informally, without making
any hassle and without sacrificing on the precise notions of syntax and semantics.
You will be able to formalize the constructs with your rich experience in the syntax
and semantics of logical languages like PL and FL.

To recollect, the language CL has two types of expressions: integer and Boolean.
These expressions are used in defining statements, which are of four types. The
syntax of CL is summarized by the following BNF:

E ::= n | x | −E | (E +E) | (E−E) | (E ×E) | (E/E)

B ::= � | ⊥ | ¬B | (B∧B) | (B∨B) | (E = E) | (E < E)

S ::= x := E | S ; S | if B then {S} else {S} | while B {S}

We write x �= y as a shorthand for ¬(x = y). We assume the usual properties of
the operations +,×,−,/ and of the connectives ¬,∧,∨, etc. Note that m/n is the
greatest integer less than or equal to the rational number m

n , and it presumes that n is
not equal to 0. For example, 5/3 = 1 and−5/3 =−2. However, in the preconditions
and postconditions, we (sometimes) use the symbol ‘ / ’ for real number division
instead of this integer division. You should be able to interpret it correctly from the
given context. We also assume the usual precedence of operations and connectives.

To argue about programs, which are statements in CL, we have introduced the
Hoare triple, which has the syntax:

�Q� S �R�

where Q and R are FL-formulas; the precondition and the postcondition of the state-
ment (program) S, respectively. Recall that the specification �Q�S �R� represents
our job expectation from the program. It means:

When the precondition Q is satisfied by the states of the program vari-
ables of S, upon termination of S, the resulting states are required to
satisfy the postcondition R.

9.4. PARTIAL CORRECTNESS 273

Next, we say that the specification �Q�S �R� is partially correct iff

for each state of the program S, which satisfies the precondition Q, the
states resulting from the execution of S satisfy R, provided that S actually
terminates.

Whenever �Q�S �R� is partially correct, we write |= �Q�S �R� . In such a case, we
also say that the (Hoare) triple �Q�S �R� is satisfied under partial correctness. Intu-
itively, |= �Q�S �R� means that our job expectation from S is actually met provided
its execution is completed. The difference between �Q�S �R� and |= �Q�S �R� is
analogous to the difference between !� and � in PL and FL.

EXAMPLE 9.2. Determine whether |= �x = x0 � y := x�y = x0 � .
Here x and y are the program variables and x0 is a logical variable. Let s be a

state of program variables, which satisfies the precondition x = x0. That is, in state
s, we have x = x0, and y can be bound to anything whatsoever. Being in state s,
the statement y := x is executed. After its execution, y becomes bound to x0. Thus,
the resulting state s̄ satisfies x = x0∧ y = x0. we see that s̄ satisfies the postcondition
y = x0. Hence the specification �x = x0 � y := x�y = x0 � is partially correct. That is,
|= �x = x0 � y := x�y = x0 � .

EXAMPLE 9.3. Is it true that |= �x = y� x := x+1; y := y+1�x = y�?
Let s be a state satisfying the precondition x = y. Here x and y may have been

bound to any (integer) values. Once the state s satisfies x = y, we have in state s,
x = x0 and y = x0 for some x0. Now the statement x := x+1; y := y+1 is executed.
After the execution of x := x+1, the new state s̄ satisfies x = x0 +1∧ y = x0. Then
the statement y := y+ 1 is executed. After this execution, the new state s� satisfies
(with s̄ as the initial state for y := y+1) the formula x = x0 +1∧ y = x0 +1.

Therefore, the postcondition x = y is satisfied by the final state s�. We conclude
that |= �x = y� x := x+1; y := y+1�x = y� .

EXAMPLE 9.4. Is the following specification partially correct?
�(i = j→ k = j)∧ (i �= j→ k = m)�
if i = j then {m := k} else { j := k}
� j = k∧ j = m�

Let s be a state satisfying the precondition (i = j → k = j)∧ (i �= j → k = m).
The statement

S : if i = j then {m := k} else { j := k}

is executed. The condition i = j may or may not be satisfied by s. Thus we have two
cases to consider.

When s satisfies i = j, due to the precondition, s satisfies k = j. Execution of S
then proceeds to execute the statement m := k. Here ends the execution of S, resulting
in a new state s̄ satisfying i = j∧ k = j∧m = k, i.e., s̄ satisfies the postcondition
j = k∧ j = m.

On the other hand, when s satisfies i �= j, we see that s satisfies k = m. Since
the condition i = j of S is evaluated to 0 (in the state s), execution of S initiates the

274 CHAPTER 9. PROGRAM VERIFICATION

execution of the statement j := k (look after the punctuation ‘else’). This brings in
a new and final state s̄ satisfying k = m∧ j = k. That is, s̄ satisfies the postcondition
j = k∧ j = m.

This proves the partial correctness of the specification.

EXAMPLE 9.5. Is |=� i = 0∧σ = 0∧n≥ 0�
while i �= n {i := i+1; σ := σ + i}
�σ = ∑n

i=0 i∧ i≤ n�?
Let s be any state where i = 0,σ = 0, and n = n0 ≥ 0. This is the only way s

might satisfy the precondition. When execution of

S : while i �= n {i := i+1; σ := σ + i}

is initiated, the guard i �= n is first evaluated.
If n0 = 0, then this guard is not satisfied, and consequently, execution of S is

terminated. The new state, in this case, s itself, obviously satisfies the postcondition,
as σ = 0 and ∑n0

i=0 i = ∑0
i=0 i = 0.

If n0 = 1, then the guard i �= n is satisfied and the body i := i+ 1; σ = σ + i is
executed to have the resulting state s̄, which satisfies

i = 1 = n, σ = 0+1 =
n0

∑
i=0

i =
n

∑
i=0

i

That is, s̄ satisfies the postcondition. You can repeat this argument for any n0. But
this will not prove the statement. What you require is that for each natural number
n0, the resulting state s̄ will satisfy the postcondition. So, induction?

All right, for n0 = 0, you have already shown the partial correctness. Now lay
out the induction hypothesis that for n0 = m ∈ N, partial correctness holds. Let
n0 = m+ 1. Let s be any state satisfying the precondition. Since n0 ≥ 1 and i = 0,
the guard i �= n is satisfied, and the body is then executed. This yields a new state s̃
which satisfies i = 1∧σ = ∑1

i=0 i.
So, how to use the induction hypothesis? Leaving it here amounts to the hand

waving remark: “proceed up to n0 +1 and similarly . . . ” − not a proof!

Exercises for § 9.4
1. Determine partial correctness of the following specifications:

(a) �m = nk �k := k+1; m := m×n�m = nk �
(b) � j = mn∧ s = (mn+1−1)/(m−1)�

j := j×m ; s := s+ j ; n := n+1
� j = mn∧ s = (mn+1−1)/(m−1)�

(c) �k2 = k+1∧ km = a× k+b�
m := m+1; t := a+b ; b := a ; a := t
�km = a× k+b�

2. In Example 9.5, first show that the number of times the body of the loop is
executed is n0. Then use induction on the number of times the body of the
loop is executed to complete the proof of partial correctness.

9.5. AXIOMS AND RULES 275

3. Determine the preconditions Q and the postconditions R such that the follow-
ing hold:
(a) |= �Q� while � {i := 0}�R� (b) ||=�Q� while � {i := 0}�R�
(The symbol ||= means ‘totally correct’, that is, along with partial correctness,
the program also terminates.)

9.5 AXIOMS AND RULES
Our attempt in Example 9.5 may be compared to proving the validity of a very com-
plicated first order formula using semantics directly. It is better to have some proof
system. We take up the assignment statement first. Its specification looks like

�Q�x := E �R�

where x is a program variable, E is an arithmetic expression, and Q,R are FL-
formulas. We may assert |= �Q�x := E �R� in the following scenario:

if a state s satisfies Q, then after x is assigned the value of E, s is expected
to satisfy R.

In Example 9.2, you have seen such a specification. Since the value of x is changed
to the value of E, you see that R is satisfied for a state s[x �→ E]. The state s[x �→ E]
is the same as that in FL; it is the state obtained from s by fixing the variable x to
E. Now, the resulting state s̄, which equals s[x �→ E] satisfies R. That means R[x/E]
must have been satisfied by s, due to the substitution lemma. Thus, Q must be equal
to R[x/E] or at least that Q must imply R[x/E].

We break the last two alternatives into two rules. The latter case will be taken
care by a more general rule. The former rule will be taken as the rule of assignment,
or the assignment axiom. The Assignment Axiom is then expressed as

|= �R[x/E]�x := E �R�

Notice that |= �Q�x := E �Q[x/E]� is not correct, in general. For instance, take
Q ≡ x = 5, and E = 2. Had it been correct, we would have obtained the partially
correct specification �x= 5�x := 2�(x= 5)[x/2]� . Or that |= �x= 5�x := 2�2= 5� .
But this is not possible as no state can satisfy the postcondition 2 = 5.

On the other hand, the assignment axiom allows partial correctness of the speci-
fication �2 = 2�x := 2�x = 2� , which is true, since (2 = 2) = (x = 2)[x/2].

The assignment axiom demands backward reasoning, from the postcondition
to the precondition. We will see shortly how to use the axiom in proving partial
correctness of programs. To see that it is all right, argue with the specification
�x = 5�x := 2�x = 2� . This is partially correct since for any state s satisfying x = 5
before the execution of the statement x := 2, the resulting state after the execution
will satisfy x = 2. It does not really matter whether the precondition is x = 5; it could
have been any Q. The reason is: Q→ (2 = 2) is a valid FL-formula.

This suggests the rule that “if Q � R[x/E], then |= �Q�x := E �R� holds”. Sim-
ilarly, if P is any formula such that R � P, then also |= �R[x/E]�x := E �P� . For

276 CHAPTER 9. PROGRAM VERIFICATION

example, |= �2 = 2�x := 2�x2 = 22 � since (x = 2) � (x2 = 22) is a valid conse-
quence in FL. These observations are true for any type of statements, and not just for
assignment. We may express it as

If P � Q, |= �Q�S �R�, and R �U, then |= �P�S �U � .
We call this rule as the Rule of Implication.

Next, we consider the composition or the sequential execution. When can we
assert that �Q�S1; S2�R� is partially correct? Note that we are reasoning backward,
from the postcondition to the precondition. If after the execution of S1; S2, a state
satisfies R, then what would have happened before the execution? Let us first think
about the execution of S2. Before S2 has been executed, there must have been some
state that satisfies its precondition so that R is satisfied by the resulting state after
the execution of S2. Call the precondition P. That is, we hypothesize the partial
correctness of the specification

�P�S2�R�
Then, obviously, P must have been satisfied by a resulting state after the execution
of S1, which was initiated by the state s satisfying Q. That is, the partial correctness
of the specification

�Q�S1�P�
should have been obtained earlier. This argument is encapsulated in the Rule of
Sequential Execution, or the Rule of Composition, which says that

If |= �Q�S1�P� and |= �P�S2�R�, then |= �Q�S1; S2�R� .
Note that for proving |= �Q�S1; S2�R� some such P will do provided that the other
two specifications are partially correct. Look back at Example 9.3 now. There, you
have obtained the following:

|= �x = y�x := x+1�x = y+1� and |= �x = y+1�y := y+1�x = y�
From these two partially correct specifications, we derive, by the rule of sequential
execution, that |= �x = y�x := x+1; y := y+1�x = y� .

Next, consider the conditional statement. When can we guarantee the partial
correctness of

�Q� if B then {S1} else {S2}�R�?
Go back to Example 9.4. There, we had to break the proof into two cases depending
on whether the Boolean expression B is evaluated to 1 or 0. If s is a state that
satisfies Q, and B is evaluated to 1, then in this state S1 is executed. After such an
execution the resulting state must satisfy R. This suggests the partial correctness of
the specification �Q∧B�S1�R� . On the other hand, when B is evaluated to 0, i.e.,
when ¬B holds, the initial state s satisfies Q∧¬B. In this case, S2 is executed and
the resulting state satisfies R. This suggests, similarly, the partial correctness of the
specification �Q∧¬B�S2�R� . Remember that we are going from the postcondition
to the precondition. Summarizing, we have the Rule of Conditional statement as

If |= �Q∧B�S1�R� and |= �Q∧¬B�S2�R� ,
then |= �Q� if B then {S1} else {S2}�R� .

9.5. AXIOMS AND RULES 277

In Example 9.4, we had

|= �(i = j→ k = j)∧ (i �= j→ k = m)∧ i = j �m := k � j = k∧ j = m�
|= �(i = j→ k = j)∧ (i �= j→ k = m)∧ i �= j � j := k � j = k∧ j = m�

By using the rule of conditional statement, we obtain

|= �(i = j→ k = j)∧ (i �= j→ k = m)�
if i = j then {m = k} else { j := k}
� j = k∧ j = m�

Finally, we consider the while statement. Here the task is to find out sufficient
conditions (which should be reasonably weak) for determining the partial correctness
of the specification

�Q� while B {S}�R�

Look back at Example 9.5. We have seen that there are properties that change during
repeated executions of the loop body, and there are some which do not change. The
properties that do not change are called the invariants of the loop.

An invariant remains true (not false, for convenience) before, during, and after
the execution of the loop. The invariant in Example 9.5 is the “current sum up to
i ”, where i is the number of times the loop body has been executed (till that instant).
That is, the invariant is the formula: σ = ∑i

j=0 j. Though the value of the variable i
changes, and the value of the variable σ changes, the truth (value) of the statement
σ = ∑i

j=0 j does not change.
Suppose, the invariant of a while statement is already known. In order that

�Q� while B {S}�R� is partially correct, we know that Q must contain the invari-
ant, and R must also contain the invariant. Moreover, after the execution, assuming
that the loop terminates, B must become false. Otherwise, the statement S is exe-
cuted again contrary to the termination of the loop. That is, R must also contain ¬B.
Denoting the loop invariant by I, we seek the conditions so that the specification

� I � while B {S}� I∧¬B�

is partially correct. Let us look at its execution once again. Here, s is a state of
the program variables satisfying the invariant I. In such a state, execution of the
while statement while B {S} is initiated. Suppose that s satisfies the guard B.
Then S is executed. After this execution, the invariant is satisfied by the resulting
state. If B is also satisfied by the resulting state, then once again S is executed,
and once again it results in a state that satisfies the invariant. Hence, in order that
� I � while B {S}� I ∧¬B� is partially correct, we would have had the partial cor-
rectness of � I∧B�S � I � . Thus the Rule of While is

If |= � I∧B�S � I � , then |= � I � while B {S}� I∧¬B�

Here I is an invariant of the while loop. In fact, an invariant may be defined as
any formula I so that the above statement holds.

278 CHAPTER 9. PROGRAM VERIFICATION

EXAMPLE 9.6. Look at the specification in Example 9.5. Our goal is to show that

|= � i = 0∧σ = 0∧n≥ 0�
while i �= n {i := i+1; σ := σ + i}
�σ = ∑n

i=0 i∧ i≤ n�
Pretend that we want to discover an invariant of the loop, i.e., a formula I which

would make the rule of while true. We start with the postcondition.
The postcondition is σ = ∑n

i=0 i∧ i ≤ n. Since negation of the guard will be sat-
isfied after termination, we will have i = n. This will of course imply the formula
i ≤ n. Then, matching with I ∧¬B, we may consider I to be something that would
express σ = ∑n

i=0 i = ∑n
m=0 m, upon termination. Note that upon termination, we

have i = n. Moreover, the running sum of the ith execution of the loop is ∑i
m=0 and

when i = n, we would get σ . So, let us start with I ≡ σ = ∑i
m=0 m as an invariant.

Due to the identity

σ =
i

∑
m=0

m∧ i = n � σ =
n

∑
i=0

i∧ i≤ n

and the rule of implication, it is enough to show that

|= � i = 0∧σ = 0∧n≥ 0�
while i �= n {i := i+1; σ := σ + i}
�σ = ∑i

m=0 m∧ i = n�
Look at the postcondition again. It is I∧¬B. Then to apply the while rule, we require
|= � I∧B� i := i+1; σ := σ + i � I � . That is,

|=
�
σ =

i

∑
m=0

m∧ i �= n
�

i := i+1; σ := σ + i
�

σ =
i

∑
m=0

m
�

To complete the proof, first show that

|=
�

σ =
i

∑
m=0

m∧ i �= n
�

i := i+1;σ := σ + i
�

σ =
i

∑
m=0

m
�

Next, use the rule of implication, and the consequence

(i = 0∧σ = 0∧n > 0) �
�
σ =

i

∑
m=0

m∧ i �= n
�

These are left as exercises for you. In the following exercises, ||= S means that
the program S is totally correct, that is, S terminates and also it is partially correct.

Exercises for § 9.5
1. Which of the following are assignment axioms?

(a) |= �5 = 5�m := 5�m = 5�
(b) ||=�5 = 6�m := 5�m = 6�

9.6. HOARE PROOF 279

(c) |= �n = 5�m := 5�m = n�
(d) ||=�5 > 3�m := 5�m > 3�
(e) |= �m+1 = 5�m := m+1�m = 5�
(f) ||=�m+1 = n�m := m+1�m = n�
(g) |= �m+1 > 0∧n > 0�m := m+1�m > 0∧n > 0�

2. Using the assignment axiom and the rule of implication, show that the follow-
ing specifications are partially correct:

(a) �x = y�x := x+1�x = y+1�
(b) �x−1 = y�y := y+1�x = y�
(c) �(i = j→ k = j)∧ (i �= j→ k = m)∧ i = j �m := k � j = k∧ j = m�
(d) �(i = j→ k = j)∧ (i �= j→ k = m)∧ i �= j � j := k � j = k∧ j = m�

3. By using the assignment axiom and the rule of sequential composition show
that |= �σ = ∑i

m=0 m∧ i �= n� i := i+1; σ := σ + i�σ = ∑i
m=0 m�

9.6 HOARE PROOF
A summary of the rules for arguing about programs in CL follows. The names of the
rules are self-explanatory: ‘A’ stands for the assignment axiom, ‘S’ for the sequential
execution, ‘C’ for the conditional statement, ‘W’ for the while statement, and ‘I’ for
implication.

(RA)
·

�R[x/E]�x := E �R�

(RS)
|= �Q�S1�P� |= �P�S2�R�

|= �Q�S1; S2�R�

(RC)
|= �Q∧B�S1�R� |= �Q∧¬B�S2�R�
|= �Q� if B then {S1} else {S2}�R�

(RW)
|= � I∧B�S � I �

|= � I � while B {S}� I∧¬B�

(RI)
P � Q |= �Q�S �R� R �U

|= �P�S �U �

Remember that R[x/E] is obtained from R by replacing all free occurrences of the
variable x by the expression E. We assume that the symbols when used in a context
are well defined. For example, R[x/E] must be well defined, meaning that the types
of x and E must match. Note that in FL, this discussion was unwarranted, since
variables there could only be substituted by terms. Further, RA here is the rule of
assignment, not reductio ad absurdum.

At this point go back to the rules as stated earlier and match them with rules
written above as fractions. These rules say that if you have already proved the partial

280 CHAPTER 9. PROGRAM VERIFICATION

correctness of the specification in the numerator, then the denominator follows. The
denominator of RA does not need the partial correctness of any other specification;
it is an axiom.

You can use these rules to define and construct proofs. A proof of partial cor-
rectness of a specification is a finite sequence of specifications, and possibly some
FL-formulas. The formulas must be valid (or provable in a proof system), each
specification is either an axiom (RA), or follows from earlier specifications by an
application of one of the other four rules. Further, RA terminates a path.

The logic defined by these rules is obviously an extension of FL. Occasionally
we will have to prove the valid FL-formulas that may be used in a proof. But we will
refrain from doing so here; rather we give more attention to the proofs of specifica-
tions. The proof system so obtained is known as the Hoare Logic for CL. If you take
a different language, say, C, then the corresponding Hoare logic will be different.
The proofs in any Hoare logic is called a Hoare proof.

We follow the three-column style of writing a proof; the first column keeps track
of the entries by giving each a serial number, the second column is the actual proof,
and the third column documents the proof by giving justification. As justifications
we will mention the rules by their names RA, RS, RC, RW, or RI as appropriate, and
‘FL’ for the valid FL-formulas. Occasionally, we may add a separate proof of the
valid formulas. If a rule is applied on the preceding line(s), then we will not mention
the line numbers; we will mention the remote line numbers.

EXAMPLE 9.7. Give a Hoare proof of

|= �1+a−a2 = 0∧an = b+ c×a�
n := n+1; m := b+ c ; b := c ; c := m
�an = b+ c×a�

In this specification only assignment statements are sequentially composed. We
may only require the rules RA, RS, and RI. We proceed from the postcondition to
the precondition. The last statement is c := m with the postcondition an = b+ c×a.
So, what should be the precondition?

By RA, it is (an = b+c×a)[c/m], which equals an = b+m×a. This is taken as
a postcondition for the statement b := c, preceding the last statement. Again, by RA,
the precondition would be (an = b+m×a)[b/c] which equals an = c+m×a. This
is, essentially, the rule RS. Read the following proof from lines 9 back to 1, from
postcondition to precondition; and then from lines 1 through 9.

1. �an = b+m×a�c := m�an = b+ c×a� RA

2. �an = c+m×a�b := c�an = b+m×a� RA

3. �an = c+(b+ c)×a�m := b+ c�an = c+m×a� RA

4. �an+1 = c+(b+ c)×a�n := n+1�an = c+(b+ c)×a� RA

5. �an+1 = c+(b+ c)×a�
n := n+1; m := b+ c�an = c+m×a� RS

6. �an+1 = c+(b+ c)×a�
n := n+1; m := b+ c ; b := c�an = b+m×a� 2, RS

9.6. HOARE PROOF 281

7. �an+1 = c+(b+ c)×a�
n := n+1; m := b+ c ; b := c ; c := m�an = b+ c×a� 1, RS

8. 1+a−a2 = 0∧an = b+ c×a � an+1 = c+(b+ c)×a FL

9. �1+a−a2 = 0∧an = b+ c×a�
n := n+1; m := b+ c ; b := c ; c := m�an = b+ c×a� RI

A proof of validity of the consequence in line 8 goes as follows:

1+a−a2 = 0∧an = b+ c×a

� an+1 = a× (b+ c×a)∧1+a = a2

� an+1 = a×b+a2 × c∧1+a = a2

� an+1 = a×b+(1+a)× c

� an+1 = a×b+ c+a× c

� an+1 = c+(b+ c)×a

A Hoare proof tree can be defined by using the rules from denominators to the
numerators using branching of the tree for the rules RS, RC, and RI, and stacking
for the rules RA and RW. The leaves of a Hoare proof tree must be axioms of the
Hoare logic for CL, i.e., instances of the assignment axiom or the valid formulas of
FL. The root of the proof tree must be the specification for which a proof is sought.
The Hoare proof tree for the specification of Example 9.7 is as follows.

Line 9

Line 7

Line 1
RA

Line 6

Line 2
RA

Line 5

Line 3
RA

Line 4
RA

Line 8
FL

The line numbers in the Hoare tree refer to those in the Hoare proof given in the
solution to Example 9.7. Look at the tree and try to understand the phrase: “from
denominator to numerator”.

282 CHAPTER 9. PROGRAM VERIFICATION

Exercises for § 9.6

Check whether the following specifications are partially and/or totally correct. For
partially correct specifications, construct a Hoare proof. What are the programs sup-
posed to compute?

1. �n = m2∧ s = m× (m+1)× (2×m+1)/6�
m := m+1; n = n+2×m−1; s := n+ s
�n = m2∧ s = m× (m+1)× (2×m+1)/6�

2. ���x := m+1; if x = 1 then {n := 1} else {n := x}�n := m+1�
3. �m≥ 0�n := 1; k := 0; while k �= m {k := k+1; n := n× k}�n := m!�
4. ���n := 1; k := 0; while k �= m {k := k+1; n := n× k}�n := m!�
5. �m≥ 0�n := 1; while m �= 0 {n := n×m ; m := m−1}�n := m!�
6. �m=m0∧m≥ 0�n := 1; while m �= 0 {n := n×m ; m :=m−1}�n :=m0!�
7. �m = m0∧m≥ 0�k := 0; while m > 0 {k := k+m ; m := m−1}
�k = m× (m+1)/2�

9.7 PROOF SUMMARY

It is often desirable to omit the small details in a proof and only sketch the important
steps so that a formal proof may be constructed out of the sketch. To develop such
a sketch, called a proof summary, let us go through the Hoare proof given in Ex-
ample 9.7. A proof summary is as follows. We number the lines below for further
reference, though they are not part of the proof summary. Read the proof summary
from bottom to top and compare with the original Hoare proof.

Proof summary for Example 9.7 with line numbers:

1. �1+a−a2 = 0∧an = b+ c×a�
2. �an+1 = c+(b+ c)×a�
3. n := n+1;
4. �an = c+(b+ c)×a�
5. m := b+ c ;
6. �an = c+m×a�
7. b := c ;
8. �an = b+m×a�
9. c := m
10. �an = b+ c×a�
The last three lines of the proof summary match with Line 1 of the original Hoare

proof. Lines 6, 7, 8 match with Line 2 of the original. Lines 4, 5, 6 correspond to
Line 3, and Lines 2, 3, 4 correspond to Line 4 of the Hoare proof. The other lines in
the original Hoare proof have been omitted, where the rule of sequential execution
has worked implicitly in the proof summary.

9.7. PROOF SUMMARY 283

In the proof summary, Lines 1 and 2 comprise a verification condition which
corresponds to the FL-consequence in Line 8 of the detailed proof given in Exam-
ple 9.7. Notice that a verification condition �P� �Q� is written as

�P�
�Q�

one below the other. This is suggestive as it says that P is the precondition and Q is
the postcondition of the “empty code”; a real fun! It means that the Hoare logic is an
extension of FL, where P � Q is rewritten as �P� �Q� .

Specification for the sequential execution is written by repeating the condition Q
as follows.

�P�S1�Q� ; �Q�S2�R�
In a proof summary, it is written easily mentioning Q only once:

�P�S1; �Q�S2�R�

How should we abbreviate the specification for the conditional execution? The
rule of the conditional (RC) looks like

From �Q∧B�S1�R� and �Q∧¬B�S2�R� , derive
�Q� if B then {S1} else {S2}�R� .

All the notations of the three specifications occurring in the above must be true in
the abbreviation, and we must be able to read it through. The proof summary for this
fragment would look like

�Q� if B then {�Q∧B�S1�R�} else {�Q∧¬B�S2�R�}�R�

Our next aim would be to prove partial correctness of both the specifications

�Q∧B�S1�R� and �Q∧¬B�S2�R�

Note that there are repetitions of the postcondition inside the braces following then

and else. We also use indentation for improving readability, though unnecessary.
See the following example.

EXAMPLE 9.8. Construct a proof summary for showing that

|= ��� if i < j then { if j < k then {m := k} else {m := j}}
else { if i < k then {m := k} else {m := i}}
�m≥ i∧m≥ j∧m≥ k �

We start with expanding the specification towards constructing a proof summary.

��� if i < j then

{��∧ i < j � if j < k then {m := k} else {m := j}
�m≥ i∧m≥ j∧m≥ k �}

else {��∧ i ≮ j � if i < k then {m := k} else {m := i}

284 CHAPTER 9. PROGRAM VERIFICATION

�m≥ i∧m≥ j∧m≥ k �}
�m≥ i∧m≥ j∧m≥ k �

But this is not a proof summary because the two conditional statements them-
selves involve other statements. We supply the necessary preconditions and post-
conditions. We also use indentations to logically group the conditional statements
together.

��� if i < j then

{��∧ i < j � if j < k then

{��∧ i < j∧ j < k �m := k �m≥ i∧m≥ j∧m≥ k �}
else {��∧ i < j∧ j ≮ k �m := j �m≥ i∧m≥ j∧m≥ k �}

�m≥ i∧m≥ j∧m≥ k �}
else {��∧ i ≮ j � if i < k then

{��∧ i ≮ j∧ i < k �m := k �m≥ i∧m≥ j∧m≥ k �}
else {��∧ i ≮ j∧ i ≮ k �m := i�m≥ i∧m≥ j∧m≥ k �}

�m≥ i∧m≥ j∧m≥ k �}
�m≥ i∧m≥ j∧m≥ k �

The proof summary requires the Hoare proofs of the following specifications:

(a) ��∧ i ≮ j∧ i ≮ k �m := i�m≥ i∧m≥ j∧m≥ k �
(b) ��∧ i ≮ j∧ i < k �m := k �m≥ i∧m≥ j∧m≥ k �
(c) ��∧ i < j∧ j ≮ k �m := j �m≥ i∧m≥ j∧m≥ k �
(d) ��∧ i < j∧ j < k �m := k �m≥ i∧m≥ j∧m≥ k �

Read the proof summary from bottom to top and see how the rules are working,
and how the abbreviations help us to read a Hoare proof.

A proof summary shows applications of all the rules except the assignment axiom
and possibly, verification conditions. These are to be seen separately. Now, what
about the while statement? The while rule looks like

From �Q∧B�S �Q�, derive �Q� while B {S}�Q∧¬B�

Notice that in this notation, Q is the invariant of the while loop. It is instructive
to keep this special property and mark it as the invariant, for it requires a lot of
ingenuity to discover this. Moreover, it improves readability. The fragment of the
proof summary for the while statement thus looks like:

� Invariant: Q� while B {�Q∧B�S �Q�}�Q∧¬B�

Mark the movement of the curly brackets above from {S} to {�Q∧B�S �Q�}. We
take up this movement of the curly brackets in order that �Q� and �Q∧¬B� would
not come together; for, that would mean Q � Q∧¬B, which is completely unwar-
ranted.

Recall that an invariant of the while statement while B {S} having guard B and
body S is an FL-formula I such that |= � I ∧B�S � I � holds, i.e., if I and B are both
satisfied by any state of the program variables (occurring in S) and S is executed, then
upon termination (assumed here) of S, the resulting state will satisfy the formula I.

9.7. PROOF SUMMARY 285

The disturbing fact is that there are always many invariants of a while loop. This
is simple to see since both � and ⊥ are invariants of every while statement. (Prove
it!) But then these might be the useless invariants, in general. The useful invariants
express a relationship between the program variables that are manipulated in the
body of the loop. If we have the specification

�P� while B {S}�R�

then in order to be able to prove it (by RW and RI), we must look for an invariant Q
such that all of

P � Q, Q∧¬B � R, and |= �Q� while B {S}�Q∧¬B�

hold. Discovering an invariant requires the knowledge of what job the while state-
ment is supposed to perform, and some ingenuity.

EXAMPLE 9.9. Construct a proof summary for the following specification:

�0≤ n∧0< x�y := 1; z := x ; k := n ; while 0 �= k {k := k−1; y := y×z}�y= xn �

Since the postcondition of the while statement will be in the form Q∧¬B, we
must look for an invariant Q so that Q∧¬B ≡ y = xn or Q∧¬B � y = xn, or even
the weaker consequence ∀∗(Q∧¬B) � ∀∗(y = xn), where B is the guard 0 �= k of the
loop. We must also have a formula P such that

|= �0≤ n∧0 < x�y := 1; z := x ; k := n�P� , and P � Q

Well, what does the loop do? Suppose that k = 2. The guard 0 �= k is satisfied. Now,
k := k− 1 is executed, so k = 1. Next, y := y× z is executed, thus in place of y, we
now have the value of y× z. Once again, the guard is satisfied, and then k becomes 0,
and y becomes bound to (y×z)×z, i.e., to y×z2. Finally, y becomes bound to y×zk.
The postcondition is y = xn. Combining these two, we would obtain an invariant
which looks like

y× zk = xn

All these suggestions implicitly assume that 0≤ k. To make it explicit, we start with
the invariant Q as

0≤ k∧ y× zk = xn

Then our specification is pushed one step closer to a proof summary, which, at this
stage, appears as

�0≤ n∧0 < x�
y := 1; z := x ; k := n ;
�P� �Q�
while 0 �= k{k := k−1; y := y× z}
�0 = k∧Q� �y = xn �

We do not know yet what P is. Trying with P=Q (instead of P �Q), the specification
would be simplified. Further, using the specification of a proof summary for the
while statement, it would look like

286 CHAPTER 9. PROGRAM VERIFICATION

�0≤ n∧0 < x�
y := 1; z := x ; k := n ;
� Invariant: Q�
while 0 �= k{�Q∧0 �= k �k := k−1; y := y× z�Q�}
�0 = k∧Q� �y = xn �

We now focus our attention on the first part:

�0≤ n∧0 < x�y := 1; z := x ; k := n�Q�
Pushing the postcondition towards the precondition through the assignments, we see
that a proof summary of this fragment starts with

�0≤ n∧0 < x�y := 1; z := x�Q[k/n]�k := n�Q�
And, finally, the fragment will be

�0≤ n∧0 < x� �Q[k/n][z/x][y/1]�y := 1�Q[k/n][z/x]�z := x ; �Q[k/n]�k := n�Q�
Taking Q as the formula 0 ≤ k ∧ y × zk = xn, the substitutions above will be

simplified. We then use the fragment for the while statement as done earlier to obtain
the required proof summary as:

�0≤ n∧0 < x�
�0≤ n∧1× xn = xn �
y := 1;
�0≤ n∧ y× xn = xn �
z := x ;
�0≤ n∧ y× zn = xn �
k := n ;
� Invariant: 0≤ k∧ y× zk = xn �
while 0 �= k
{�0≤ k∧ y× zk = xn∧0 �= k �
�0≤ k−1∧ (y× z)× zk−1 = xn �
k := k−1;
�0≤ k∧ (y× z)× zk = xn �
y := y× z
�0≤ k∧ y× zk = xn �}
�0≤ k∧ y× zk = xn∧0 = k �
�y = xn �

EXAMPLE 9.10. Let odd(k) = ∃m(m ∈ N∧ k = 2×m+ 1). We consider odd(k)
to be a predicate which expresses the fact that k is odd. Construct a proof summary
with the necessary verification condition(s) for the following specification:

�0≤ n�k := n ; y := 1; z := x ; while 0 �= k {
if odd(k) then {k := k−1; y := y× z} else {y := y} ;
k := k/2; z := z× z }�y = xn �

9.7. PROOF SUMMARY 287

Convince yourself that Q(y,z,k)≡ y× zk = xn∧0≤ k is an invariant of the while
statement. Notice that writing Q(y,z,k) instead of Q will make further substitutions
visible. We write even(k) for ¬odd(k). The proof summary now looks like

�0≤ n�
�1× xn = xn∧0≤ n�
k := n ; y := 1; z := x ;
� Invariant: Q(y,z,k)�
while 0 �= k

{�0 �= k∧Q(y,z,k)�
if odd(k) then

{�odd(k)∧0 �= k∧Q(y,z,k)�
�even(k−1)∧Q(y× z,z,k−1)�
k := k−1; y := y× z
�even(k)∧Q(y,z,k)�}

else {�¬odd(k)∧0 �= k∧Q(y,z,k)�
�even(k)∧Q(y,z,k)�
�Q(y,z× z,k/2)�
k := k/2; z := z× z
�Q(y,z,k)�}

�Q(y,z,k)�}
�y = xn �

Prove the verification conditions in the proof summary.

EXAMPLE 9.11. Let k! = 1×2×3×·· ·×k, the “k factorial”, with 0! = 1. For the
partial correctness of the specification

���y := 1; z := 0; while z �= x {z := z+1; y := y× z}�y = x!�
the proof summary is as follows:

���
�1 = 0!�y := 1; �y := 0!�z := 0;
� Invariant: y = z!�
while z �= x

{�y = z!∧ z �= x�
�y× (z+1) = (z+1)!�z := z+1; �y× z = z!�y := y× z�y = z!�}

�y = z!∧ z = x�
�y = x!�

Exercises for § 9.7
1. Give Hoare proofs of partial correctness of the specifications (a)-(d) mentioned

in the solution to Example 9.8.

288 CHAPTER 9. PROGRAM VERIFICATION

2. Prove the following three verification conditions met in the proof summary in
Example 9.9:

(a) 0≤ n∧0 < x � 0≤ n∧1× xn = xn

(b) 0≤ k∧ y× zk = xn∧0 �= k � 0≤ k−1∧ (y× z)× zk−1 = xn

(c) 0≤ k∧ y× zk = xn∧0 = k � y = xn

Develop a complete Hoare proof from the proof summary.
3. Annotate the proof summaries in Examples 9.9-9.11 with the names of the

rules where they have been applied.
4. Develop proof summaries and then the complete Hoare proofs of partial and

total correctness (if possible) for the following specifications:

(a) �m > 0�n := m+1�n > 1�
(b) ���n := m ; n := 2×m+n�n = 3×m�
(c) ��� if n < m then {k := n} else {k := m}�k = min(m,n)�
(d) �m≥ 0�x := m ; n := 0; while x �= 0{n := n+1; x := x−1}�m := n�
(e) ���x := m ; n := 0; while x �= 0{n := n+1; x := x−1}�m := n�
(f) �n≥ 0�x := 0; k := 0; while x �= n{k := m+ k ; x := x+1}
�k := m×n�

(g) �n = n0∧n≥ 0�k := 0; while n �= 0{k := m+ k ; n := n−1}
�k := m×n0 �

(h) �m≥ 0�n := 0; while n �= m{n := n+1}�m = n�
(i) �m≥ 0�x := m ; n := 1; while x≥ 0{n := x×n ; x := x−1}�n = m!�
(j) �n �= 0�r := m ; d := 0; while r ≥ n{r := r−n ; d := d +1}
�(m := d ×n+ r)∧ (r < n)�

9.8 TOTAL CORRECTNESS
Partial correctness of a program is conditional; it assumes that the (execution of
the) program actually terminates. If the program does not terminate, then the Hoare
proof of its partial correctness becomes vacuous. Total correctness requires partial
correctness and that the program actually terminates.

A specification �Q�S �R� is totally correct, written as ||=�Q�S �R� ,
iff for any state s of the program variables of S, if s satisfies the precon-
dition Q, then S terminates and the resulting state s̄ satisfies the postcon-
dition R.

Notice that non-termination of a program might result due to the presence of a while
loop. A typical proof of termination of a while statement proceeds as follows. We
identify an integer expression, related to the program variables, whose value de-
creases as the body of the while statement is repeatedly executed. Further, this ex-
pression must have a lower bound, typically 0, so that it cannot be decremented
arbitrary number of times. Such an expression is called a variant of the loop. Once
the variant achieves its lower bound, the loop terminates.

For instance, consider the loop in Example 9.11 The while statement starts with
an initial value bound to the variable x, and z being bound to 0. When the loop body

9.8. TOTAL CORRECTNESS 289

is executed once, the value of z is incremented to 1. The guard of the loop holds for
all values of z from 0 to “the value of x minus 1”. Once z becomes bound to the value
of x, the loop terminates. We see that the value of the expression x−z is decremented
by 1 each time the loop is executed “once more”. Therefore, a variant of the loop is
x− z.

Suppose E is a variant for the while statement while B {S}, whose value de-
creases with each (repeated) execution of S. That is, if the value of E is E0 before
the loop is executed, then after the execution, the value of E is strictly less than E0.
Moreover, to note that E has a lower bound, we will put a restriction on the value of
E such as 0≤ E0. We thus incorporate a variant with these properties into the while
rule. The while rule for partial correctness was (Write Q in place of I.)

|= �Q∧B�S �Q�
|= �Q� while B {S}�Q∧¬B�

where Q was the invariant of the while statement. Now, since the value of the variant
is taken non-negative, we have an additional condition that 0 ≤ E. Notice that a
variant with a lower bound can always be modified to have the new lower bound
as 0. The variant E satisfies E = E0 before execution of S, for some E0, and after
execution E < E0. Thus the required additional condition is the correctness of the
specification

�Q∧B∧0≤ E = E0 � S �Q∧0≤ E < E0 �
That is, we add the new condition 0≤ E to the precondition of the while statement.
Since the condition 0 ≤ E is not a part of the goal of the while statement, we need
not add it to the postcondition. The goal or the postcondition is usually fixed even
before the program is written, whereas we only invented the condition 0≤ E for the
proof of correctness. Hence, the rule of total while, written as a fraction, is

(TW)
||=�Q∧B∧0≤ E = E0 � S �Q∧0≤ E < E0 �

||=�Q∧0≤ E � while B {S}�Q∧¬B�

In all other rules of partial correctness, we simply replace the symbol |= by ||= .
However, we will refer to them with the same names, even after this replacement.

In a proof summary, along with the invariant, we will document the variant E
also. The proof summary fragment for total correctness of a while statement, corre-
sponding to the rule TW, will look like

� Invariant: Q∧Variant: 0≤ E �
while B{ �Q∧B∧0≤ E = E0 �S �Q∧0≤ E < E0 � }
�Q∧¬B�

It is written in such a way that by omitting the strings “Invariant:” and “Variant:”, you
would get the clear-cut application of the total-while rule. Let us redo Example 9.11
for proving its total correctness.

EXAMPLE 9.12. Construct a proof summary to show that

||=�x≥ 0�y := 1; z := 0; while z �= x {z := z+1; y := y× z}�y = x!�

290 CHAPTER 9. PROGRAM VERIFICATION

The variant is E = z− x. Compare the following proof summary for total cor-
rectness with the one for partial correctness given in Example 9.11.

�x≥ 0�
�1 = 0!∧0≤ x−0�y := 1; �y = 0!∧0≤ x−0�z := 0;
� Invariant: y = z!∧Variant: 0≤ x− z�
while x �= z

{�y = z!∧ x �= z∧0≤ x− z = E0 �
�y× (z+1) = (z+1)!∧0≤ x− (z+1)< E0 �z := z+1;
�y× z = z!∧0≤ x− z < E0 �y := y× z ;
�y = z!∧0≤ x− z < E0 �}

�y = z!∧ x = z�
�y = x!�

The choice of a variant depends upon the nature of the statements in the while
loop. Discovering an appropriate variant requires ingenuity just like the case of an
invariant. As E. W. Dijkstra pointed out

understanding a while loop is tantamount to discovering its variants and
invariants.

EXAMPLE 9.13. (Binary Search) Let a denote an array of n integers in which the
elements are already ordered, say, in ascending order. Using binary search, split the
array into two parts such that all the elements in the first part and none of the numbers
in the second part precede a given integer m.

In binary search, you choose the middle element of the array. Compare it with m.
Decide whether the new array of focus is the left part or the right part of the original
array. Continue the same way with the new array.

Here we follow another version of it. Throughout our operation on the array, we
will maintain three decks (imagine the array elements written on cards). The left
deck contains array elements that are known to (at a certain instant during execution)
precede m, in an ordered fashion. The right deck contains array elements which are
all known “not to precede” m, again in an ordered fashion, in ascending order, of
course. The middle deck contains array elements, in ascending order, which are yet
unknown whether to precede or not to precede m. Thus, initially, both the left and
the right decks are empty, and the middle deck contains the full array.

In our representation, we use two integers � and r to represent the three decks, as
in the following:

The left deck is the array segment a[0], · · · ,a[�−1],
the middle deck is the segment a[�], · · · ,a[r−1], and
the right deck is the segment a[r], · · · ,a[n−1].

Initially, � = 0 and r = n. This suggests the initial assignments � := 0; r := n.
During execution, we may need to move the segment a[�], . . . ,a[i] to the left deck.
This is accomplished by executing the assignment � := i+ 1. Similarly, movement
of the segment a[i+ 1], . . . ,a[r− 1] to the right deck is effected by the assignment
r := i.

9.8. TOTAL CORRECTNESS 291

Then comes the question, as to where from we make the split. Assume that after
some steps, we have the left, middle and the right decks; the middle deck is the array
segment a[�], · · · ,a[r−1]. We want to split the middle deck into two parts by finding
the middle element in this segment, say, it is the ith. In binary search, this i would be
equal to ��+ r− 1)/2� or �(�+ r− 1)/2�. We choose the former. That is, we have
the assignment i := (�+ r− 1)/2. Now, if a[i] < m, then all of a[�], · · · ,a[i] will be
moved to the left deck. And if a[i]≥m, then all of a[i], · · · ,a[r−1] will be moved to
the right deck. The program of Binary Search then looks like

� := 0; r := n ;
while �< r

{i := (�+ r−1)/2;
if a[i]< m then {� := i+1} else {r := i}}

What is the precondition and what is the postcondition of this program? Since
we do not want an empty array, we may have the condition n > 0. The array is in
ascending order, which means that if j ≤ k then a[j] ≤ a[k]. This constitutes the
precondition

Q≡ ∀j∀k(0≤ j ≤ k < n→ a[j]≤ a[k])

Similarly, after the execution of the program, our requirement is that the left deck
would contain all array elements that precede m and the remaining part of the array
would contain all array elements which do not precede m. Also, both � and r must be
within the range 0 to n. Thus, the required postcondition is

R≡ 0≤ �≤ n∧∀j(0≤ j < �→ a[j]< m)∧∀j(�≤ j < n→ a[j]≥ m)

For the partial correctness of Binary Search, we must find an invariant for the
while loop. The invariant, in general, relates the program variables. Since the decks
are completely determined by the ordered pair (�,r), it would be enough to have such
a relation between the variables � and r. The important property of � is that all the
array elements a[0], · · · ,a[�−1] precede m. Similarly, the property of r is that none
of the array elements a[r], · · · ,a[n−1] precedes m. Moreover, �≤ r. Thus, we try an
invariant in the form

I(�,r)≡ 0≤ �≤ r ≤ n∧∀j(0≤ j < �→ a[j]< m)∧∀j(r ≤ j < n→ a[j]≥ m)

For total correctness, we also need a variant, whose value may decrease as the body
of the loop is executed “once more”. In the beginning, the middle deck is the full
array and after execution, we expect it to become empty. Since the number of array
elements of the middle deck is r− �, this is a natural variant. With Q as the precon-
dition, R as the postcondition, I(�,r) as the invariant of the while loop, and r− � as
the variant of the loop, we have the following proof summary for total correctness:

�∀j∀k(0≤ j ≤ k < n→ a[j]≤ a[k])�
� := 0; r := n ;
� Invariant: I(�,r)∧Variant: r− �≤ n�
while �< r

292 CHAPTER 9. PROGRAM VERIFICATION

{� I(�,r)∧ �< r �
i := (�+ r−1)/2;
� I(�,r)∧ �≤ i < r �
if a[i]< m then

{� I(�,r)∧ �≤ i < r∧a[i]< m�
� := i+1� I(�,r)�}

else {� I(�,r)∧ �≤ i < r∧a[i]≥ m�r := i}� I(�,r)�}
� I(�,r)∧ �≥ r �
�0≤ �≤ n∧∀ j(0≤ j < �→ a[j]< m)∧∀ j(�≤ j < n→ a[j]≥ m)�

Exercises for § 9.8
1. Both � and r are not required for the formalization in the Binary search. Write

the postcondition using only r, and then prove total correctness.
2. Show that the precondition x≥ 0 cannot be replaced in the proof summary of

Example 9.12 by � if total correctness is required. Construct total correctness
proofs for the specifications in Examples 9.9-9.11.

3. Write programs P so that the following specifications are totally correct; also
prove total correctness.

(a) ���P�n = m+6�
(b) ���P�k < m+n+0.5× k �
(c) ���P�k = max(�,m,n)�
(d) ���P�((x = 4)→ (y = 3))∧ ((x = 7)→ (y = 5))�

9.9 A PREDICATE TRANSFORMER
The Hoare logics are not the only way a program may be verified for total correct-
ness. In this section we will describe another way to go for correctness proofs;
historically this came prior to Hoare logics.

As we know, programming is a goal-oriented activity. Given inputs, we want
to develop a program which would give us the required output. However, when we
prove a program correct, we go backward. We ask: if we require certain output, with
the given program, what should have been the input?

For instance, consider the rule of implication in proving the correctness of the
specification �Q�S �R� . We know Q, S, and R. The rule of implication states that
�Q�S �R� is correct provided that P is a precondition for the program S with the
postcondition R; and Q � P. The condition Q � P will be easier to satisfy provided P
is the weakest of all preconditions of the program S with respect to the postcondition
R. We thus define the weakest precondition as follows.

Let S be a program (a statement) and R be any FL-formula. Then the weakest
precondition of S with respect to R, denoted by wp(S,R), is an FL-formula which
describes the set of all initial states such that the execution of S in any one (or more)
of the states is guaranteed to terminate in a state satisfying R.

9.9. A PREDICATE TRANSFORMER 293

In this language of “a formula describing a set of states”, the formula� describes
the set of all states; and ⊥ describes the empty set of states.

EXAMPLE 9.14. The statement t := x assigns the value of x to t. It is required
that after this execution, the formula t = 2 must be satisfied. This can only happen
provided x has the value 2 before execution. Hence wp(t := x, t = 2)≡ (x = 2).

It is obvious that wp satisfies two properties. First, it is a precondition, which
means that the specification �wp(S,R)�S �R� is totally correct. Second, it must be
the weakest of such preconditions; that is, if �Q�S �R� is totally correct, then Q
must entail wp(S,R). Our requirements may be stated as follows:

||=�wp(S,R)�S �R� (9.1)

If ||=�Q�S �R�, then Q � wp(S,R). (9.2)

These two properties together define what wp(S,R) is.
From the assignment rule (see also Example 9.14), it follows that

wp(x := E,R)≡ R[x/E] (9.3)

for any expression E, matching types with x. The rule of implication takes the form

If P � wp(S,R), then ||=�P�S �R� . (9.4)

Similarly, the rule of sequential execution appears as

wp(S1; S2,Q)≡ wp(S1,wp(S2,Q)) (9.5)

Imagine pushing the postcondition up through the program for obtaining the required
weakest precondition.

For the conditional statement if B then {S1} else {S2}, let R be the post-
condition. We identify two possibilities: (a) executing S1, and (b) executing S2.

The case (a) happens when B is satisfied. Further, R is the postcondition for S1.
Then wp(S1,R) must have been satisfied before the execution. But we know that B
has been satisfied. That is, B is a precondition for S1 with postcondition R. Referring
to (9.1)-(9.2), we conclude that B � wp(S1,R).

Similarly the case (b) happens when ¬B is a precondition for S2 with postcondi-
tion R. It follows that ¬B � wp(S2,R).

Thus the rule of conditional (RC) and the equivalence in Example 4.5 imply:

wp(if B then {S1} else {S2},R)≡ (B→ wp(S1,R))∧ (¬B→ wp(S2,R))
≡ (B∧wp(S1,R))∨ (¬B∧wp(S2,R)) (9.6)

From the properties (9.1)-(9.2) of wp and (9.6) we obtain the following result.

Theorem 9.1. The formula P≡ (B→ wp(S1,R))∧ (¬B→ wp(S2,R)) satisfies

(1) ||=�P� if B then {S1} else {S2}�R�
(2) If ||=�Q� if B then {S1} else {S2}�R�, then Q � P.

294 CHAPTER 9. PROGRAM VERIFICATION

In addition, we have some nice properties of the predicate transformer wp .

Theorem 9.2. The predicate transformer wp satisfies the following properties:

(1) Excluded Miracle: wp(S,⊥)≡⊥.
(2) Termination: wp(S,�)≡ “S terminates”.
(3) ∧ distributivity: wp(S,Q∧R)≡ wp(S,Q)∧wp(S,R).
(4) ∨ distributivity: wp(S,Q∨R)≡ wp(S,Q)∨wp(S,R)

for a deterministic program S.
(5) ¬ distributivity: wp(S,¬Q) � ¬wp(S,Q).
(6) � distributivity: If Q � R, then wp(S,Q) � wp(S,R).
(7) → distributivity: wp(S,Q→ R) � wp(S,Q)→ wp(S,R).

Proof. (1) If s is a state that satisfies wp(S,⊥), then the resulting state would satisfy
⊥. However, no (resulting) state can satisfy ⊥. Therefore, no such state s exists that
satisfies wp(S,⊥). That is, wp(S,⊥)≡⊥.
(2) wp(S,�) is a formula that describes all states s such that after termination of S,
the resulting state s̄ satisfies �. Since all states s̄ satisfy �, provided S terminates,
wp(S,�) is simply a formula that guarantees termination of S.

(3) wp(S,Q∧R) describes the set of all states s that guarantee the termination of S in
a state satisfying both Q and R. Any such state s guarantees termination of S in a state
satisfying Q. Hence, wp(S,Q∧R) � wp(S,Q). Similarly, wp(S,Q∧R) � wp(S,R).
Together they give

wp(S,Q∧R) � wp(S,Q)∧wp(S,R).

Conversely, let s be a state satisfying wp(S,Q)∧wp(S,R). Then s is a state that
guarantees termination of S resulting in a state s̄ that satisfies Q, and also R. So,

wp(S,Q)∧wp(S,R) � wp(S,Q∧R).

(4) Let s be a state that satisfies at least one of wp(S,Q) or wp(S,R). Then, after S
terminates, the resulting state satisfies at least one of Q or R. So,

wp(S,Q)∨wp(S,R) � wp(S,Q∨R).

Conversely, suppose that S is a deterministic program. This means that if s is a
state in which execution of S is initiated, then, upon termination of S, the resulting
state s� is unique. In contrast, one execution of a non-deterministic program can lead
to one state, and another execution may drive the same initial state to another state.

Suppose that s is a state that satisfies wp(S,Q∨R) before S is executed. After S
terminates, let s� be the resulting state. Then, s� satisfies Q∨R, i.e., s� satisfies Q or
s� satisfies R. In the first case, if s� satisfies Q, then by the definition of wp , s satisfies
wp(S,Q). In the second case, if s� satisfies R, then s must satisfy wp(S,R). In any
case, s satisfies wp(S,Q)∨wp(S,R). This shows that

wp(S,Q∨R) � wp(S,Q)∨wp(S,R).

9.9. A PREDICATE TRANSFORMER 295

(5) Due to (1) and (3), wp(S,¬Q)∧wp(S,Q) ≡ wp(S,¬Q∧Q) ≡ wp(S,⊥) ≡ ⊥.
Thus, wp(S,¬Q)∧wp(S,Q) �⊥. By RA, wp(S,¬Q) � ¬wp(S,Q).

(6) Suppose Q � R. Then, Q≡ Q∧R. Using (3) we have

wp(S,Q)≡ wp(S,Q∧R) � wp(S,Q)∧wp(S,R) � wp(S,R).

(7) Notice that (Q→ R)∧Q � R. Using (3) and (6), we obtain

wp(S,Q→ R)∧wp(S,Q)≡ wp(S,(Q→ R)∧Q) � wp(S,R).

By the deduction theorem, wp(S,Q→ R) � wp(S,Q)→ wp(S,R). �

In Theorem 9.2, Property (1) is called the law of the excluded miracle, since it
would be a miracle if there is a state which would be satisfied before S is executed,
and after the execution, S would terminate in no states.

In Property (2), wp(S,�) need not be equivalent to �; a counter example would
be a program S which does not terminate.

The distributivity laws in Properties (3)-(4) hold for all deterministic programs.
One part of the ∨−distributivity, namely, wp(S,Q∨R) � wp(S,Q)∨wp(S,R) is not
satisfied for nondeterministic programs, in general.

The three laws mentioned in the Properties (5)-(7) are one sided distributivity
laws, whose converse statements do not hold, in general; see the following example.

EXAMPLE 9.15. Let Q ≡ ⊥, and let R ≡ �. Suppose that S is a non-terminating
program; for instance, take S as while (n≥ 0){n := n+1}.
(a) Now, ¬wp(S,Q) ≡ ¬wp(S,⊥) ≡ ¬⊥ ≡ �. Next, since S does not terminate,
we have wp(S,¬Q) ≡ wp(S,�) ≡ “S terminates” ≡ ⊥. Therefore, ¬wp(S,Q) �
wp(S,¬Q).

(b) Here, wp(S,Q)→wp(S,R)≡wp(S,⊥)→wp(S,�)≡⊥→ “S terminates”≡ �.
And, wp(S,Q→ R)≡ wp(S,⊥→�)≡ wp(S,�)≡ “S terminates” ≡⊥. Therefore,
wp(S,Q)→ wp(S,R) � wp(S,Q→ R).

(c) Now, wp(S,Q)≡wp(S,⊥)≡⊥; and wp(S,R)≡wp(S,�)≡ “S terminates”≡⊥.
As⊥ �⊥, we have wp(S,R) �wp(S,Q). On the other hand, R≡� and Q≡⊥ imply
that R � Q.

To see how wp works on a while statement, consider

W : while B {S}

Let R be a postcondition for W. We want to compute wp(W,R) with the guarantee
that W terminates, that is, the loop is executed a finite number of times. Denote by Pm
the weakest precondition of W with respect to the postcondition R, where the body S
of W is executed exactly m times.

If the body S of the loop is never executed (m = 0) then, before the execution
of W is initiated, we have a state s that satisfies ¬B. After this execution of W (by
skipping its body), the postcondition R must be satisfied by the same state s. Thus
the required precondition is ¬B∧R. That is,

P0 ≡ ¬B∧R.

296 CHAPTER 9. PROGRAM VERIFICATION

If S is executed exactly once, then after this execution the guard B is falsified, and the
body S is skipped. That is, the postcondition for the first execution is P0; so precon-
dition is wp(S,P0). Moreover, B had been satisfied for initiating the first execution.
Thus, the required weakest precondition is

P1 ≡ B∧wp(S,P0).

In general, suppose that the kth execution of S is over, and then the (k+ 1)th exe-
cution is initiated. Then B must have been satisfied by any resulting state of the kth
execution. Further, such a state must also have satisfied the weakest precondition for
the kth execution. Hence,

Pk+1 ≡ B∧wp(S,Pk).

Since we require W to terminate, the repeated execution must stop somewhere. That
is, there must exist a natural number k such that the body S of W is executed exactly
k times. It means that for some k, Pk holds. Thus,

P0 ≡ ¬B∧R, Pm+1 ≡ B∧wp(S,Pm),

wp(while B {S},R)≡ ∃k(k ∈ N∧Pk). (9.7)

Though this is enough for capturing the weakest precondition of a while statement,
we must also look at the invariants. Recall that I is an invariant of W means that if
S is executed with the precondition I and S terminates, then I is also a guaranteed
postcondition. Now, with I as a postcondition, we have wp(S, I) as the weakest
precondition. Thus, a state that satisfies I,B, and “termination of S”, must also satisfy
wp(S, I). This means that an invariant I of a while statement while B {S} satisfies
the property

I∧B∧wp(S,�) � wp(S, I). (9.8)

We use the properties in Equations (9.1)-(9.8) and those in Theorem 9.2 (1)-(7)
of the predicate transformer wp for proving total correctness of programs in CL.

EXAMPLE 9.16. Using wp show that (compare with Example 9.7)

||=�1+a+a2 = 0∧an = b+ c×a�
n := n+1; m := b+ c ; b := c ; c := m
�an = b+ c×a�

We simply compute wp from the postcondition and then see that the precondition
actually entails the wp . Using Equations (2.5), (2.3), etc.,

wp(n := n+1; m := b+ c ; b := c ; c := m,an = b+ c×a)
≡ wp(n := n+1,wp(m := b+ c,wp(b := c,wp(c := m,an +b+ c×a))))
≡ wp(n := n+1,wp(m := b+ c,wp(b := c,an = b+m×a)))
≡ wp(n := n+1,wp(m := b+ c,an = c+m×a))
≡ wp(n := n+1,an = c+(b+ c)×a)
≡ an+1 = c+(b+ c)×a.

As in Example 9.7, 1+ a− a2 = 0 ∧ an = b+ c× a � an+1 = c+(b+ c)× a. By
(9.4), we get the required total correctness.

9.9. A PREDICATE TRANSFORMER 297

EXAMPLE 9.17. Show by computing the weakest precondition that

||=�m = i× j+ k+1�
if j = k+1 then {i := i+1; k := 0} else {k := k+1}
�m = i× j+ k �

Denote the required wp by Q. Then,

Q≡ wp(if j := k+1 then {i := i+1; k := 0}
else {k := k+1}, m = i× j+ k)

≡ ((j = k+1)→ wp(i := i+1; k := 0,m = i× j+ k))
∧((j �= k+1)→ wp(k := k+1,m = i× j+ k)).

wp(i := i+1; k := 0,m = i× j+ k)
≡ wp(i := i+1,wp(k := 0,m = i× j+ k))
≡ wp(i := i+1,m = i× j)
≡ m = (i+1)× j.

Also, wp(k := k+1,m = i× j+ k)≡ m = i× j+ k+1. Hence

Q≡ ((j = k+1)→ (m = (i+1)× j))∧ ((j �= k+1)→ (m = i× j+ k+1))
≡ ((j = k+1)∧ (m = (i+1)× j))∨ ((j �= k+1)∧ (m = i× j+ k+1))
≡ ((j = k+1)∧ (m = i× j+ j))∨ ((j �= k+1)∧ (m = i× j+ k+1))
≡ ((j = k+1)∧ (m = i× j+ k+1))∨ ((j �= k+1)∧ (m = i× j+ k+1))
≡ ((j = k+1)∨ (j �= k+1))∧ (m = i× j+ k+1)
≡�∧ (m = i× j+ k+1)
≡ m = i× j+ k+1.

The total correctness of the specification now follows.

EXAMPLE 9.18. By computing wp show that

||=�∃k(k ∈N∧ i = n−2×k∧ s = 0)∨∃k(k ∈N∧ i = n−2×k−1∧ s = k)�
while i �= n {k :=−k ; s := s+ k ; i := i+1}
�s = 0�

Here the guard is B≡ i �= n; the postcondition is R≡ s = 0, and the body of the
while statement S is k :=−k ; s := s+ k ; i := i+1. Now,

P0 ≡ ¬B∧R≡ i = n∧ s = 0.

P1 ≡ B∧wp(S,P0)≡ i �= n∧wp(S, i = n∧ s = 0)
≡ i �= n∧wp(S, i = n)∧wp(S,s = 0).

wp(S, i = n)≡ wp(k :=−k,wp(s := s+ k,wp(i := i+1, i = n)))
≡wp(k :=−k,wp(s := s+k, i+1= n))≡wp(k :=−k, i+1= n)≡ i+1= n.

wp(S,s = 0)
≡ wp(k :=−k,wp(s := s+ k,wp(i := i+1,s = 0)))
≡ wp(k :=−k,wp(s := s+ k,s = 0))≡ wp(k :=−k,s+ k = 0)≡ s− k = 0.

298 CHAPTER 9. PROGRAM VERIFICATION

Therefore,

P1 ≡ i �= n∧ i+1 = n∧ s− k = 0≡ i+1 = n∧ s− k = 0.

P2 ≡ i �= n∧wp(S, i+1 = n)∧wp(S,s− k = 0)≡ i+2 = n∧ s = 0.

These formulas suggest that

P2k ≡ i = n−2× k∧ s = 0, P2k+1 ≡ i = n−2× k−1∧ s = k. (9.9)

With this Pk, we have

wp(while i �= n {k :=−k ; s := s+ k ; i := i+1},s = 0)
≡ ∃k(k ∈ N∧ i = n−2× k∧ s = 0)∨∃k(k ∈ N∧ i = n−2× k−1∧ s = k).

Notice that discovering an invariant for the Hoare proof of a while statement
amounts to discovering a formula for Pk. Moreover, you will have to show that your
conjecture on the form of Pk is, indeed, correct. This involves ingenuity, whereas
computation of wp for other statements is quite mechanical.

EXAMPLE 9.19. Compute wp(while n �= m {S},R), where

S is i := i+2; s := s+n× i+ k ; k := k+ i ; n := n+1
R is s = m3∧ i = 2×m∧ k = m× (m+1)+1

Fill in the missing steps in the following computation of wp :

P0 ≡ n = m∧ s = m3∧ i = 2×m∧ k = m× (m+1)+1
≡ n = m∧ s = n3∧ i = 2×n∧ k = n× (n+1)+1.

wp(S,s = n3∧ i = 2×n∧ k = n× (n+1)+1)
≡ wp(i := i+2; s := s+n× i+ k ; k := k+ i,

s = (n+1)3∧ i = 2× (n+1)∧ k = (n+1)× (n+2)+1)
≡ s = n3∧ i+2 = 2× (n+1)∧ k = n× (n+1)+1
≡ s = n3∧ i = 2×n∧ k = n× (n+1)+1.

Can you see that it is an invariant of the while statement? Now,

P1 ≡ n �= m∧wp(S,P0)

≡ n �= m∧n+1 = m∧ s = n3∧ i = 2×n∧ k = n∗ (n+1)+1.

By induction, we obtain

Pk ≡ n �= m∧n+ k = m∧ s = n3∧ i = 2×n∧ k = n× (n+1)+1
≡ n = m− k∧ s = n3∧ i = 2×n∧ k = n× (n+1)+1.

Thus, wp(while n �=m {S},R)≡ n≤m∧s= n3∧ i= 2×n∧k = n×(n+1)+1.

Remark 9.1. Our definitions of |= and ||= are semantic, in the sense that for a
specification Σ we write |= Σ or ||=Σ, according as something happens for the initial
and final states. However, the proof rules of Hoare logic or of wp are syntactic, in
the sense that once you accept to follow the rules, you have no need to go back
to the states for constructing a proof of correctness of Σ. A proof then shows that
the specification Σ is provable (with partial or total correctness). So, we must have
encoded these provabilities by some different symbols, say, �p or �t accordingly.

9.9. A PREDICATE TRANSFORMER 299

Then, we must show adequacy, such as �p iff |= and �t iff ||=. This has not been
attempted here. Try it!

You are presented with an informal description D of a problem in an application
domain. Your aim is to develop a program to solve the problem, and then verify
that the program completes the job correctly. As a first step, you represent D into a
formula XD in some logic. We have chosen here the first order logic FL. For some
problem domains, FL may not be that appropriate and you may have to use other
logics for problem representation. You will learn some more logics later.

The next step is to write a program P which would realize the formula XD, i.e.,
it should meet the specifications as declared by XD. This is the phase we have not
discussed at all. We have only given some hints as to how to program in the core
language CL. “How to program” is an art, and it must be mastered thoroughly. It
would be nice if certain principles are followed; see the summary to this chapter for
some references.

Moreover, programs in CL may not be acceptable to your customers. So, you
must be able to carry out similar “principle following” activity in any language,
which might be offered in your company environment, or which might be required
by your customer.

The last step is to prove that the program P meets the requirements; it satisfies
the specification XD. Ideally, total correctness of the specification must be shown.
This last issue has only been dealt with in this chapter, and that too, only partly. You
must see how the art of proving programs correct helps you to specify and develop
programs.

Exercises for § 9.9
1. If Q � R, then is it true that wp(S,R) � wp(S,Q)?
2. If wp(S,Q)≡ wp(S,R), then is it true that Q≡ R?
3. Show: wp(S1; S2; S3,Q)≡wp(S1; S2,wp(S3,Q))≡wp(S1,wp(S2; S3,Q)).

4. Give a direct argument to show (9.6), instead of taking the intermediary step.
5. Following the lines of proof in Theorem 9.2.(5)-(7), try proofs for their con-

verse statements. See where the proofs break down.
6. Using wp prove the total correctness of specifications in Exercise 3 of § 9.8.
7. Using wp , determine if the following specifications are totally correct:

(a) �m > 0�n := m+1�n > 1�
(b) ���n := m ; n := 2×m+n�n = 3×m�
(c) ��� if n < m then {k := n} else {k := m}�k = min(m,n)�
(d) �m≥ 0�x := m ; n := 0; while x �= 0{n := n+1; x := x−1}�m := n�
(e) ���x := m ; n := 0; while x �= 0{n := n+1; x := x−1}�m := n�
(f) �n≥ 0�x := 0; k := 0; while x �= n{k := m+ k ; x := x+1}
�k := m×n�

8. Show that wp(while B {S},�)≡ wp(while B {S},¬B).
[Hint: W terminates in a state satisfying ¬B.]

9. Prove that Pk in Example 9.18 satisfies (9.9).

300 CHAPTER 9. PROGRAM VERIFICATION

9.10 SUMMARY AND PROBLEMS
Computer programming as is taught today concerns only the ‘what’ part of the bigger
activity of program development. It is essential to address the ‘why’ part, namely,
why the program does the intended job correctly. In this chapter we have tried to
use logic for developing a program giving hints to all the three aspects of what,
how and why of a program development. We have not dealt with the ‘how’ part in
detail, which concerns the art of programming. It also requires the knowledge of the
concerned problem domain.

For an easy presentation, we have defined the core language CL. It has all the
basic features of a programming language such as assignment statement, sequential
execution, conditional statement, and the while statement. A specification of a pro-
gram explicitly mentions ‘what is required of a program’ in terms of a precondition
and a postcondition. The program itself is written in between them and it codes ‘how
the job is done’.

In order to show that the program, indeed, does the required job, the specification
is to be proved correct. Assuming that the program terminates, when it does its
intended job correctly, we say that its given specification is partially correct. You
have learnt how to prove partial correctness of a program by developing the Hoare
logic for CL. In addition, if the termination condition is also proved, we say that the
specification is totally correct. You have also learnt how to extend the Hoare logic to
prove total correctness.

The proof summary so developed combines all the three aspects of a program,
where you do not need extra documentation. Finally, you have learnt how to use the
weakest precondition of a program with respect to a given postcondition in proving
the total correctness of programs.

This chapter is only a short note on program verification focusing rather on a
useful application of logic in computer science. The presentation is largely influ-
enced by Backhouse (1986), Hoare (1969), Dijkstra (1976, 1982), Gries (1981), and
Gries (1982). The motivating example of the string matching problem is taken from
Backhouse (1986). For more details on non-deterministic executions, see Dijkstra
(1976).

The ideas developed here can be used for program constructions also; the details
can be found in Backhouse (1986) and Gries (1981). These texts include a plethora
of educative and entertaining examples and exercises.

Other recommended texts are Apt & Olderog (1991), Francez (1992), Hehner
(1984), Jones (1980), and Reynolds (1981), where you would find a relatively com-
plete exposition of program verification including extended features such as writing
to arrays, array cell aliasing, procedure calls, and parallelism. For a systematic ex-
tension of the core language to include other advanced features and then their verifi-
cation, consult Schmidt (1994) and Tennent (1991).

For verification of functional programming languages, you may start with Turner
(1991). For the freely available functional programming language ML, Paulson
(1991) is a good text. You can also explore the web resources for newer presen-
tations of the subject. The journal Science of Computer Programming is a good
source for interesting new problems and their algorithmic solutions.

9.10. SUMMARY AND PROBLEMS 301

Problems for Chapter 9
1. Give Hoare proofs and also wp -proofs of correctness for the following speci-

fications, prefixing to them one of |=or ||= as appropriate:

(a) �m = nk �k := k+1; m := m×n�m = nk �
(b) �n = m2∧ s = m× (m+1)× (2×m+1)/6�

m := m+1; n = n+2×m−1; s := n+ s
�n = m2∧ s = m× (m+1)× (2×m+1)/6�

(c) � j = mn∧ s = (mn+1−1)/(m−1)�
j := j×m ; s := s+ j ; n := n+1
� j = mn∧ s = (mn+1−1)/(m−1)�

(d) �s = n3∧ i = 2×n∧ k = n× (n+1)+1�
i := i+2; s := s+n× i+ k ; k := k+ i ; n := n+1
�s = n3∧ i = 2×n∧ k = n× (n+1)+1�

(e) �k2 = k+1∧ km = a× k+b�
m := m+1; t := a+b ; b := a ; a := t
�km = a× k+b�

(f) �0≤ s < n�
q := s/(n−1) ; p := q+1; t := s+1−q× (n−1)
�1≤ t ≤ n∧q≥ 0∧ p = q+1∧ s = p× (t−1)+q× (n− t)�

(g) Let swap(x,y) be a procedure which interchanges the values of x and y.
Then wp(swap(x,y),R) ≡ R[x/y,y/x]. Recall: the substitution [x/y,y/x]
is not equal to [x/y][y/x]. Develop a Hoare proof for
�((y≥ z)→ (y≥ x))∧ ((y < z)→ (z≥ x))�
if y≥ z then {swap(x,y)} else {swap(x,z)}
�(x≥ y)∧ (x≥ z)�

(h) ���
if i < j then {swap(i, j)} else {i := i} ;
if j < k then {swap(j,k)} else { j := j} ;
if i < j then {swap(i, j)} else {i := i}
� i≥ j ≥ k �

(i) � p = m×n�
if odd(m) then {x := 1} else {x := 0} ;
if odd(n) then {y := 1} else {y := 0}
�(odd(p)→ (x = y = 1))∧ (¬odd(p)→ (x = 0∨ y = 0))�

(j) �(odd(p)→ (x = y = 1))∧ (¬odd(p)→ (x = 0∨ y = 0))�
if odd(p) then {z := 1} else {z := 0}
�z = x× y�

(k) � p = m×n�
if odd(m) then {x := 1} else {x := 0} ;
if odd(n) then {y := 1} else {y := 0} ;
if odd(p) then {z := 1} else {z := 0}
�z = x× y� [Hint: Use (i)-(j).]

(l) �∃k(k≥ 0∧ i = n−2×k∧s = 0)∨∃k(k≥ 0∧ i = n−2×k−1∧s = k)�
while i �= n{k :=−k ; s := s+ k ; i := i+1}
�s = 0�

302 CHAPTER 9. PROGRAM VERIFICATION

(m) �c = x× y� while ¬odd(x){y := 2× y ; x := x/2}�c = x× y�
(n) �x≥ 0∧ c = x× y�

while x �= 0{ while ¬odd(x){y := 2× y ; x := x/2} ;
c := c− y ; x := x−1}�c = x∗ y�

2. Construct a proof summary for the following specification for evaluating the
power xm for given numbers x and m:
�0≤ m�k := m ; y := 1;
� Invariant: y× xk = xm,Variant: k �
while k �= 0{k := k−1; y := y× x}
�y = xm �

3. Construct a proof summary along with the necessary verification conditions
for the following specifications:
�0≤ n�
k := n ; y := 1; z := x ;
� Invariant: I(y,z,k)≡ y× zk = xn∧0≤ k �
while 0 �= k{ if odd(k) then {k := k−1; y := y× z} else {k := k}
�even(k)∧ I(y,z,k)�
k := k/2; z := z2 }
�y = xn �

4. Suppose that the binary representation of a natural number m is stored in an
array a. Construct a proof summary for the following specification:
�0≤ m = ∑n−1

i=0 a[i]×2i �
y := 1; z := x ; j = 0;
� Invariant: y× zk = xm∧ k = ∑n−1

j=i a[i]×2i,Variant: n− j �
while j �= n{ if a[j] = 1 then {y := y× z} else {y := y}
j := j+1; z = z× z}
�y = xm �

5. Construct a proof summary for the following specification written for comput-
ing the remainder of dividing p by q in binary arithmetic:
�0≤ p∧0 < q�
r := p ; m := q ;
� Invariant: ∃i(i≥ 0∧m = 2i ×q),Variant: r−m�
while r ≥ m{m := 2×m}
� Invariant: 0≤ r <m∧∃d(p := q×d+r)∧∃i(i≥ 0∧m= 2i×q),Variant: m�
while m �= q{m := m/2; if r ≤ m then {r := r−m} else {r := r}}
�0≤ r < q∧∃d(p = q×d + r)�

6. Let a be an array and you are to search for an occurrence of an item, say, x in
the array. You define a predicate is by is(l, p)≡ ∃i(l ≤ i < p∧a[i] = x). Then,
you write the following algorithm to do the (linear) search:
�0≤ n�a[n] := x ; k := 0;
� Invariant: 0≤ k ≤ n∧ (is(0,n)↔ is(k,n))∧a[n] = x,Variant: n− k �
while a[k] �= x{k := k+1}
�a[k] = x∧0≤ k ≤ n∧ (is(0,n)↔ k < n)�
Explain what exactly the algorithm does and then develop a proof summary.

9.10. SUMMARY AND PROBLEMS 303

7. Let a[i] denote the ith element of an integer array a. Construct proof summaries
for the following programs that sum up the array elements.

(a) �0≤ n�s := 0; m := 0;
� Invariant: s := ∑m−1

i=0 a[i],Variant: n−m�
while m �= n{s := s+a[m] ; m := m+1}
�s = ∑n−1

i=0 a[i]�
(b) �0≤ n�s := 0; m := n ;

� Invariant: s = ∑n−1
i=m a[i],Variant: m�

while m �= 0{m := m−1; s := s+a[m]}
�s = ∑n−1

i=0 a[i]�
8. Construct a proof summary for the following algorithm that evaluates a poly-

nomial with integer coefficients which are stored in an array a:
�0≤ n�s := 0; k := n ;
� Invariant: s× xk = ∑n−1

i=k a[i]× xi,Variant: k �
while k �= 0{k := k−1; s+ s× x+a[k]}
�s = ∑n−1

i=0 a[i]∗ xi �
9. The minimal sum section: Let a[1], . . . ,a[n] be the elements of an integer array

a. A section of a is a continuous piece a[i],a[i+1], . . . ,a[j] for 1≤ i≤ j ≤ n.
A minimal sum section is a section a[i], . . . ,a[j] such that the sum Si j = a[i]+
a[i+1]+ · · ·+a[j] is minimal over all sections. Note that the elements in the
array a are not necessarily ordered. To write a program which computes the
minimal sum section of a given array, we store two values: the minimal sum
seen so far (s) and the minimal sum seen so far of all the sections which end
at the current element of the array (t). We also assume that we know how to
compute min(x,y). Prove that
|= ��� k := 2; t := a[1] ; s := a[1] ;
while k �= n+1{t := min(t +a[k],a[k]) ; s := min(s, t) ; k := k+1}
�∀i∀j(i≤ j ≤ n→ s≤ Si j)�
[Hint: Use the invariant: ∀i∀j(i≤ j < k→ s≤ Si j)∧∀i(i < k→ t ≤ Si (k−1)).
See Huth & Ryan (2000).]

10. Let S be the statement if B then {S1} else {S2}. Assume that

P∧B∧wp(S1,�) � wp(S1,Q) and P∧¬B∧wp(S2,�) � wp(S2,Q).

Show that P∧wp(S,�) � wp(S,Q).

11. Prove the Fundamental Invariance Theorem :
Let I be an invariant of the while loop while B {S}. Then
I∧wp(while B {S},�) � wp(while B {S}, I∧¬B).

Relate this result to the Hoare logic rule RW. This will tell you why the result
is fundamental. [Hint: With P0(Q) ≡ Q∧¬B, Pk(Q) ≡ B∧wp(S,Pk−1(Q)),
show that I∧Pk(�)≡ Pk(I∧¬B).]

12. In many languages a for-loop is used instead of a while loop. For example,
to sum the elements of an array a, whose elements are denoted by a[i], and
having 100 elements, you may write the following program:

s := 0; for(i = 0, i := i+1, i≤ 100){s := s+a[i]}

304 CHAPTER 9. PROGRAM VERIFICATION

It first initializes s to 0, then starts the for-loop. In executing the for-loop, it
initializes i to 0, then executes its body s := s+ a[i], and then increments i
to i+ 1. It continues doing this repeatedly till the guard i ≤ 100 holds, and
stops doing it when i becomes greater than 100. How do you write a pro-
gram in CL to implement the for-loop? Try for the more general for-loop:
for(S1,S2,S3){S4}.

13. A repeat until loop looks like: repeat{S1}until{S2}. Execution of such a
loop means:

(a) S1 is executed in the current state,
(b) S2 is evaluated in the resulting state,
(c) if S2 is false, the program resumes with (a) and continues, otherwise the

program terminates.

Define this loop in CL. Can you define this loop through for-loop?

Chapter 10

First Order Theories

10.1 STRUCTURES AND AXIOMS
An FL-consequence has a set of formulas as premises and another formula as its
conclusion. Sometimes it becomes important to determine what could be possible
conclusions of a set of premises. In such a case, the set of premises defines a theory,
and models of the set of premises receive names. For instance, the dyadic group in
group theory is a model of some FL-sentences.

When the set of premises is finite, the number of predicates and function symbols
that occur in the formulas are also finite in number. We become concerned with
the fragment of FL restricted to formulas built upon these symbols. We fix some
terminology so that we may be able to talk about these theories with ease.

The individual variables, connectives, quantifiers, the propositional constants �
and ⊥, and the punctuation marks are called the logical symbols. The constants,
function symbols, propositional variables, and predicates are called the non-logical
symbols. A first order language has an alphabet that includes all logical symbols
and some of the non-logical symbols. The set of non-logical symbols used in the
alphabet is called the signature of the language. By following the grammar of FL,
the formulas of the language are generated using the logical symbols and symbols
from its signature.

For example, consider the set S = { f ,P} as a signature of a first order language
L, where f is a unary function symbol, and P is a binary predicate. The non-logical
symbols of L are f and P; and the alphabet of L is

{ f , P,�,⊥, ¬, ∧, ∨,→,↔, ∀, ∃, x0, x1, . . .}∪{), (, ,}.

Some of the formulas that can be generated using these symbols are

�, ⊥, P(x0,x1), P(f (x5),x3), ∀x2P(f (f (x1)),x2), P(x1,x2)↔ P(x3,x3).

The first order language L cannot use symbols other than those in its alphabet. Since
the logical symbols are used by each first order language, we often say that L depends
upon its signature.

305

306 CHAPTER 10. FIRST ORDER THEORIES

In fact, all mathematical theories are restricted to the set of sentences rather than
general formulas. Sentences of a first order language are given meaning through
interpretations. To bring in flexibility, we consider a structure as a nonempty set
along with some relations and functions defined over the set. The nonempty set is
called the domain of the structure. For instance,

M1 = (D1,R1), where D1 = {0,1,2} and R1 = {(0,0),(1,1),(2,2)} (10.1)

is a structure with domain as {0,1,2}. The only relation that comes with the structure
is the binary relation of equality, written here as R1. Similarly,

(N,+,<)

is a structure with the domain as the set N of all natural number, the binary function
of addition, + : N×N→ N, and the binary relation of less than, < .

An interpretation interprets sentences of a language in a structure, via variable
assignment functions and states, by associating predicates to relations and function
symbols to functions preserving arity. To simplify the matter we consider interpret-
ing function symbols as functions rather than the more general partial functions. It
may happen that a language has a function symbol of arity k but a given structure
does not come with a function of arity k. In such a situation, the language cannot be
interpreted; the structure is inappropriate to the language. To circumvent this, we
assume that in the context of interpreting a language, we consider only appropriate
structures without explicitly mentioning it. Sometimes we write a structure just like
an interpretation (D,φ), where φ is a list of relations and functions over D.

A sentence of the language is interpreted as a sentence in the structure. It is
assumed that a structure comes with a notion of truth and falsity. If the interpreted
sentence is true in the structure, the interpretation is called a model of the sentence.
We also say that the structure is a model of the sentence. The word model is used for
the interpretation as well as for the structure.

Suppose a sentence A in a first order language L is interpreted as the sentence AM
in a structure M. If AM is a true sentence in the structure M, we say that A is true
in M, and write it as M � A. In such a case, we also say that M is a model of A, M
satisfies A, and that M verifies A. For instance, let A = ∀xP(x,x). The structure M1
in (10.1) is a model of A. In general, if D is any nonempty set, and R is any binary
relation such that

{(d,d) : d ∈ D}⊆ R⊆ D×D,

then the structure (D,R) is a model of A. As earlier, if Σ is a set of sentences, then
we say that M is a model of Σ, and write M � Σ, iff M � X for each X ∈ Σ.

Suppose that an interpretation of all non-logical symbols of L in the structure M
has already been specified. The set of all sentences A in the first order language L
that are true in the structure M is called the theory of M. That is,

T h(M,L) = {A : A is a sentence of L with M � A}.

If no confusion is expected, we write T h(M,L) as T h(M).

10.1. STRUCTURES AND AXIOMS 307

For instance, suppose L is a first order language with the sole non-logical symbol
as a binary predicate P, and that it is interpreted in the structure M1 of (10.1) as
the relation R1. Then M1 � ∀xP(x,x). If M1 � B for a formula B using possibly the
predicate P, then clearly A � B. Therefore,

T h(M1) = {B : ∀xP(x,x) � B}.
In ∀xP(x,x) � B, the symbol � stands for the entailment (consequence) relation,

as used earlier. That is, for a set of formulas Γ and a formula X , Γ � X means that
all models of Γ are also models of X .

Let Σ be a set of sentences from L. Let S be a set of structures. We say that Σ is
a set of Axioms for the set of structures S iff

for each structure M, M ∈ S iff M � Σ.
This is how a set of structures is characterized by a set of sentences in L. If A is

any sentence in L, then all structures in S satisfy A iff Σ � A. Therefore, the set of all
sentences in L that follow as conclusions from Σ constitutes the theory of the set of
all structures in S.

In fact, the set S of structures is not chosen arbitrarily, but is found out looking
at a suitable set of axioms Σ. In parallel to the semantic theories coming up from
structures, axiomatic theories can be built. Given a first order language a first order
theory is built over it by identifying certain sentences of the language as axioms or
axiom schemes. In fact, the theory consists of the body of conclusions that follow
from the axiom schemes by using the entailment relation. Since the entailment rela-
tion is fixed, we often identify the theory with its axiom schemes. Thus a first order
theory is a pair (L,Σ), where L is a first order language, and Σ is a set of sentences
from L, called axioms or axiom schemes of the theory.

Convention 10.1. We will write formulas and sentences in abbreviated form using
the conventions laid out in Chapter 5. Unless otherwise stated, a language will mean
a first order language; and a theory will mean a first order theory.

EXAMPLE 10.1. Let L be a language with one non-logical symbol as a binary pred-
icate P. The models of the sentence

∀x¬Pxx

are the directed graphs without self-loops. The models of

{∀x¬Pxx, ∀x∀y(Pxy↔ Pyx)}
are the (undirected) graphs without self-loops.

EXAMPLE 10.2. Let L1 be the language with no non-logical symbol. Let A be the
sentence

∃x∃y((∀z(z≈ x)∨ (z≈ y))∧¬(x≈ y)).

If a structure M with domain D is a model of A, then D has exactly two elements.
Thus the set S of all structures having two elements in the domains has axiom A.
And the theory of all two-elements sets is characterized by the axiom A. That is, this
theory is the set {X : X is a sentence with A � X}.

308 CHAPTER 10. FIRST ORDER THEORIES

EXAMPLE 10.3. Let L1 be the language with empty signature (of Example 10.2).
For each natural number n≥ 2, let An be the sentence

∃x1∃x2 · · ·∃xn(∧1≤i< j≤n¬(xi ≈ x j)).

Let Σ = {An : n ≥ 2}. If M with domain D is a model of An, then D must have at
least n elements. Thus, any model of Σ must have an infinite number of elements.
Conversely, if M is a structure with an infinite set as its domain, then M � An for each
n≥ 2. That is, M � Σ. Therefore, the theory of infinite sets has the set of axioms Σ.

EXAMPLE 10.4. Let L2 be the language with non-logical symbols as a constant
0, and a binary function symbol +. Using infix notation we write (x+ y) instead of
+(x,y). Let Σ be the set of the following sentences from L2:

1. ∀x∀y∀z(((x+ y)+ z)≈ (x+(y+ z)))
2. ∀x(((x+0)≈ x)∧ ((0+ x)≈ x))
3. ∀x∃y(((x+ y)≈ 0)∧ ((y+ x)≈ 0))

Any structure M that satisfies Σ is called a group. The function + is called the group
operation. The theory of groups is the set of all structures that satisfy the above three
sentences. That is, the theory of groups has the axioms as (1)-(3).

The theory of Abelian groups bases on the language L2 and has the axioms as
(1)-(4) where the fourth axiom is the commutativity property given by:

4. ∀x∀y((x+ y)≈ (y+ x))

Thus we say that a group is Abelian iff the group operation is commutative.

EXAMPLE 10.5. Let L3 be the extension of L2 with additional non-logical symbols
as a constant 1 different from 0, and a binary function symbol · different from +.
Again, we write (x · y) instead of ·(x,y). Along with the axioms (1)-(4), consider the
following:

5. ∀x∀y∀z(((x · y) · z)≈ (x · (y · z)))
6. ∀x(((x ·1)≈ x)∧ ((1 · x)≈ x))
7. ∀x∀y∀z((x · (y+ z))≈ ((x · y)+(x · z)))
8. ∀x∀y∀z(((x+ y) · z)≈ ((x · z)+(y · z)))

Any structure that satisfies the axioms (1)-(8) is called a ring with unity. Thus the
theory of rings with unity has the axioms (1)-(8). The theory of commutative rings
with unity has the following additional axiom:

9. ∀x∀y((x · y)≈ (y · x))
A field is a commutative ring with unity where each nonzero element has also a

multiplicative inverse. That is, the theory of fields is a theory over the language L3
having the axioms (1)-(10), where the tenth axiom is

10. ∀x(¬(x≈ 0)→∃y((x · y)≈ 1))

In the theory of fields, the field operations + and · are called addition and multi-
plication, respectively.

10.1. STRUCTURES AND AXIOMS 309

EXAMPLE 10.6. Let L4 be an extension of the language L3 with the additional
binary predicate < . Once again, we use the infix notation. That is, < (x,y) is written
as x < y. Over L4 we build a theory with its axioms as (1)-(15), where the additional
axioms are as follows:

11. ∀x¬(x < x)
12. ∀x∀y((x < y)∨ (x≈ y)∨ (y < x))
13. ∀x∀y∀z((x < y)∧ (y < z)→ (x < z))
14. ∀x∀y((x < y)→∀z((x+ z)< (y+ z)))
15. ∀x∀y((0 < x)∧ (0 < y)→ (0 < (x · y)))

The resulting theory is called the theory of ordered fields.
Observe that any sentence that is true in every group, that is, which is satisfied

by each such structure, called a group now, is a consequence of the axioms of group
theory. Due to the adequacy of FC, such a sentence has a proof in FC which possibly
uses the axioms (1)-(3) as additional premises. Similar comments go for all first
order theories.

As a last example, we will consider the completeness property of real numbers.
It says that every nonempty subset of the set of real numbers which is bounded above
has a least upper bound. If A �=∅ is a subset of the set of real numbers, we say that it
is bounded above iff there exists a real number x such that each element of A is less
than or equal to x. Motivated by this, we abbreviate the following formula as x≤ y:

(x < y)∨ (x≈ y).

Then the (order) completeness axiom scheme is formulated as follows.

16. Axiom Scheme of Completeness : For any formula Y [·] having exactly one free
variable, the following is an axiom:

∃xY (x)∧∃y∀z(Y (z)→ (z≤ y))→
∃u(∀v(Y (v)→ (v≤ u))∧∀w(∀x(Y (x)→ (x≤ w))→ (u≤ w)))

Notice that if Y (·) is a formula with a single free variable, then its interpretation
is a subset of the domain. Any model of axioms (1)-(16) is a complete ordered field.
Of course, the underlying first order language is L4.

Exercises for § 10.1
1. Translate the following sentences to the language of real numbers using the

symbolism developed in the text for complete ordered fields.

(a) Every non-negative real number has a unique non-negative square root.
(b) If a function f is uniformly continuous on an interval (a,b), then it is

continuous on that interval.
(c) If a function f is continuous on a closed and bounded interval [a,b], then

it is uniformly continuous on that interval.
(d) If a function f on an interval (a,b) is differentiable at any point x, then it

is continuous at x.

310 CHAPTER 10. FIRST ORDER THEORIES

2. Let L be a language with a finite signature. Let D be a finite nonempty set.
Show that there are only finitely many structures with domain as D.

3. Let S be a sentence such that any model of ¬S is infinite. Does it follow that S
is true in each finite structure?

4. Let L be a language with one non-logical symbol as a binary predicate P. Trans-
late the following:

(a) P is an equivalence relation with exactly two equivalence classes.
(b) P is an equivalence relation with at least one equivalence class that con-

tains more than one element.
5. Show that the following sentences are true in each finite structure.

(a) ∃x∃y∃z((Pxy∧Pyz→ Pxz)→ (Px f (x)→ Pxx))
(b) ∃x∀y∃z(Pxy∧ (Pzx→ Pzy)→ Pxx)

10.2 SET THEORY
This section is devoted to a single example of an axiomatic theory, called the set
theory. As you see our very definition of semantics uses sets. Thus set theory has
foundational importance. We wish to present the theory ZFC, the Zermelo-Fraenkel
set theory. It has ten axioms given in detail in the following. We also say in words
what the axioms mean.

ZFC has only one non-logical symbol, a binary predicate, called the membership
predicate. We write this symbol as ∈, read it as belongs to, and use it via infix
notation: (x ∈ y). The individual variables of the language vary over sets. The word
‘set’ is left undefined for informal use. In fact, the axiom schemes taken together
define the notion of a set.

1. Axiom of Extensionality : ∀x∀y(∀z((z ∈ x)↔ (z ∈ y))→ (x≈ y))

It says that two sets x and y are equal iff they have exactly the same elements.
Moreover, in the universe of ZFC, sets have elements as sets only; for, all variables
range over sets. This is not a restriction, since every entity may be regarded as a set.
Only inconvenience is that there is no stopping criterion as to when the elements of
elements of elements of · · · of a set comes to an end. But that is not a problem since
one can build a model of the theory by starting form the empty set, which exists due
to some other axiom(s). We will discuss that in due course.

For the next axiom, we use the following notation. If a formula X has free
variables from among the distinct symbols z,x1, . . . ,xn, we write the formula as
X(z,x1, . . . ,xn).

2. Axiom Scheme of Separation : For each formula X(z,x1, . . . ,xn),

∀x1 · · ·∀xn∀x(∃y∀z((z ∈ y)↔ (z ∈ x)∧X(z,x1, . . . ,xn)))

This axiom scheme is also called the axiom scheme of comprehension, and the
axiom scheme of subsets. It says that given a set x, any subset y of it can be defined by

10.2. SET THEORY 311

collecting all elements of x that satisfy certain property. The axiom of extensionality
implies that such a subset y of x is unique. We, generally, write the subset y as

y = {z ∈ x : X(z,x1, . . . ,xn)}.

This allows defining a subset of a given set by specifying a property. In a way it puts
restrictions on building sets. For instance, there is no way to create the set of all sets,
which is known to lead to Russell’s paradox.

With x = x1, n = 1, and X(z,x1, . . . ,xn) = ¬(z ∈ x), we have

∀x∃y∀z((z ∈ y)↔ (z ∈ x)∧¬(z ∈ x)).

It says that every set x has a subset y which does not contain anything. Such a subset
y can be shown to be unique, and we denote this set by ∅, the empty set. We may
also define ∅ by

∀x((x≈∅)↔∀y¬(y ∈ x)).

Notice that the symbol ∅ is a defined constant in the language of set theory.
Further, the axiom of subsets allows to define a binary predicate that represents

the relation of ‘subset’. We say that x is a subset of y, written x⊆ y, iff for each z, if
z ∈ x, then z ∈ y. Formally,

∀x∀y((x⊆ y)↔∀z(z ∈ x→ z ∈ y)).

The next axiom allows to take union of two sets.

3. Axiom of Union : ∀x∃y∀z∀u((u ∈ x)∧ (z ∈ u)→ (z ∈ y))

It says that given a set x (of sets) there exists a set y which contains all elements
of all sets in x. That is, the union of all sets in x is also a set. As earlier, we may
define a binary function symbol in the language of set theory that represents union
of two sets. For two sets x and y their union x∪ y is defined as follows:

∀x∀y∀z((z≈ x∪ y)↔∀u((u ∈ z)↔ (u ∈ x)∨ (u ∈ y))).

Analogously, the binary function symbol of intersection is defined as follows:

∀x∀y∀z((z≈ x∩ y)↔∀u((u ∈ z)↔ (u ∈ x)∧ (u ∈ y))).

4. Axiom of Pairing : ∀x∀y∃z((x ∈ z)∧ (y ∈ z))

This axiom allows to build sets of the form {a}, {a,b}, {a,b,c}, etc provided
a,b,c, . . . are known to be sets. It helps in building sets from given elements, so to
say. Using this we define a binary function symbol for pairing, and denote it by { , }.
That is,

∀x∀y∀z((z≈ {x,y})↔∀u((u ∈ z)↔ ((u≈ x)∨ (u≈ y)))).

Thus given two sets, we may build the set of those two sets and write it as {x,y}. The
set {x,x} is abbreviated to {x}.

312 CHAPTER 10. FIRST ORDER THEORIES

5. Axiom of Power Set : ∀x∃y∀z((z ∈ y)↔∀u((u ∈ z)→ (u ∈ x)))

The formula ∀u((u ∈ z)→ (u ∈ x)) says that z is a subset of x. Therefore, the ax-
iom asserts that corresponding to each set x there exists a set which contains exactly
all the subsets of x. That is, the power set of a set exists.

Formally, we may introduce a unary function symbol P for taking the power set
of a set. It is defined as follows:

∀x∀y((y≈ Px)↔∀z((z ∈ y)↔∀u((u ∈ z)→ (u ∈ x)))).

Now that the ∅ can be constructed, we may also build {∅}. Going a bit further,
we can build the sets

∅, {∅}, {∅,{∅}}, {∅,{∅},{∅,{∅}}}, . . .

However, we need an axiom to construct the set of all these sets. We plan to use the
defined constant ∅ and the binary function symbol ∪.

6. Axiom of Infinity : ∃x((∅ ∈ x)∧∀y((y ∈ x)→ (y∪{y} ∈ x)))

Notice that a finite set can be constructed using axiom of pairing and union,
whereas building infinite sets requires the axiom of infinity.

7. Axiom of Foundation : ∀x(∃y(y ∈ x)→∃z((z ∈ x)∧∀u((u ∈ z)→ ¬(u ∈ x))))

It says that every nonempty set has an element which is not a subset of the set. It
prevents constructing a set in the following forms:

· · ·{{· · ·{ } · · ·}} · · · OR {· · ·{· · ·{· · · · · ·} · · ·} · · ·}

It implies that a set cannot be a member of itself. Its name comes from the informal
statement ‘the membership predicate is well-founded’.

Let Y [x] denote a formula having at least one free variable, namely, x. We write
∃!xY [x] as an abbreviation for the formula

∃xY [x]∧∀u∀z(Y [u]∧Y [z]→ (u≈ z))

We may read ∃!xY as “there exists a unique x such that Y [x]”. In our next axiom
scheme, we use this defined quantifier for shortening the expression. We also use the
notation X(x1, , . . . ,xn,x,y,z,u) for a formula having free variables from among the
variables x1, . . . ,xn,x,y,z,u, which are assumed to be distinct.

8. Axiom of Replacement : For each formula Z(x1, . . . ,xn,x,y) and distinct vari-
ables u,v not occurring free in Z,

∀x1 · · ·∀xn(∀x∃!yZ →∀u∃v∀y((y ∈ v)↔∃x((x ∈ u)∧Z)))

It asserts that if for the parameters x1, . . . ,xn, the formula Z(x1, . . . ,xn,x,y) de-
fines the function that maps x to y, then the range of such a function is a set.

9. Axiom of Choice : ∀x((¬(∅ ∈ x)∧∀u∀v((u ∈ x)∧ (v ∈ x)∧¬(u≈ v))→
((u∩ v)≈∅))→∃y∀w((w ∈ x)→∃!z(z ∈ (w∩ y))))

10.3. ARITHMETIC 313

It asserts that given a set x of pairwise disjoint nonempty sets there exists a set
that contains exactly one element from each set in x. It is known to be equivalent
to (in first order logic) many interesting statements. The most useful ones are the
following:

(a) The Cartesian product of a nonempty collection of nonempty sets is nonempty.
(b) Zorn’s Lemma : If a partially ordered (nonempty) set P has the property that

every totally ordered (nonempty) subset of P has an upper bound in P, then P
contains at least one maximal element.

(c) Well Ordering Principle : Every set can be well-ordered.

It is known that all mathematical objects can be constructed in ZFC. However,
ZFC does not give rise to a unique set theory. That is, ZFC does not have a unique
model. In fact, the results of K. Gödel and P. Cohen show that ZFC is consistent with
Cantor’s continuum hypothesis and also with its negation.

Exercises for § 10.2
1. Define the quantifier ∃!x which is read as ‘there exists exactly one x such that’

in a different way than the one defined in the text.
2. Prove that the axiom of choice is equivalent to both Zorn’s lemma and Well

ordering principle.
3. Is ∀x¬(x ∈ x) a theorem of ZFC?
4. How do you justify defining intersection of sets in ZFC?
5. Given a set S of sets, how do you construct a set that does not intersect with

any element of S?

10.3 ARITHMETIC
In this section we briefly present the theory of natural numbers. This theory bases
on the set of natural numbers N, with a successor function that maps a number to
its next one, the operations of addition, multiplication and exponentiation, and their
properties. There can be many structures satisfying these minimal requirements.
Among these, the standard structure is the one with N = {0,1,2, . . .}, known as the
system of natural numbers.

The axiomatic theory of natural number system is called as arithmetic. The first
order language of arithmetic has a constant 0, a unary function symbol s, three binary
function symbols +, ·, ^ and a binary predicate < . We agree to use infix notation
for the function symbols and the predicate. For instance, instead of +(a,b), we write
(a+b). Here, x^y stands for the exponentiation xy. The theory A, Peano’s Arithmetic,
also called Arithmetic for short, has the following axioms.

1. ∀x(¬(0≈ s(x))
2. ∀x(¬(x≈ 0)→∃y(x≈ s(y))
3. ∀x∀y((x≈ y)↔ (s(x)≈ s(y)))
4. ∀x((x+0)≈ x)

314 CHAPTER 10. FIRST ORDER THEORIES

5. ∀x∀y((x+ s(y))≈ s(x+ y))
6. ∀x((x ·0)≈ 0)
7. ∀x∀y((x · s(y))≈ ((x · y)+ x))
8. ∀x¬(x < 0)
9. ∀x∀y((x < s(y))↔ (x < y)∨ (x≈ y))

10. ∀x∀y((x < y)∨ (x≈ y)∨ (y < x))
11. ∀x((x^0)≈ s(0))
12. ∀x∀y((x^s(y))≈ ((x^y) · x))
13. Induction Scheme : For each formula Y (·) having exactly one free variable, the

sentence Y (0)∧∀x(Y (x)→ Y (s(x)))→∀xY (x) is an axiom.

We have not tried to be economic in formulating the theory A. In fact, it is enough
just to have axioms (1)-(3) and the axiom scheme (13). It is known that the operations
+, ·, ^ and the predicate < can be defined inductively so that they satisfy the other
axioms. However, without the induction axiom, these operations and the less than
relation cannot be defined. Thus, if need arises, one may create different theories of
arithmetic by deleting the induction axiom and choosing some of the axioms out of
the first twelve. For ease in use, we will stick to the above formulation.

The standard model of A will be denoted by N. Its domain is the set of natural
numbers {0,1,2, . . . ,}, successor function is that which maps each n to n+ 1, and
+, ·, and ^ are the the usual addition, multiplication, and exponentiation of natural
numbers. The terms 0,s(0),s(s(0)), . . . ,sn(0), . . . in A are called numerals, and they
are interpreted in N as the numbers 0,1,2, . . . ,n, . . . , respectively. To keep the nota-
tion simple, we will write the numeral sn(0) as n; so that the numeral n will refer to
sn(0), whereas the number n will refer to the natural number n in N.

We remark that N is not the only model of A. Another model is the nonstan-
dard model of Example 6.13. As an application of compactness, we had shown that
there exists a number bigger than every natural number. If the order properties are
extended to such a model, then there will be ordering among those numbers. The
number ω comes after all the (standard) natural numbers. Next comes ω + 1, the
successor of ω, next, ω +2, etc. After the numbers ω +n are listed, for each n ∈ N,
comes 2ω. Next comes 2ω +1, 2ω +2, etc. The nonstandard model is completely
different from the standard model N since the former contains infinitely large num-
bers, whereas the latter does not.

Non-uniqueness of models of a first order theory is not an exception. However, a
theory for natural numbers can be constructed which has essentially a single model.
This is done by replacing the induction axiom scheme by the following axiom:

Induction Axiom: ∀P(P(0)∧∀x(P(x)→ P(s(x)))→∀xP(x)

Here, it is assumed that P is any unary predicate variable. Observe that this
sentence quantifies over unary predicates, also called monadic predicates. Therefore,
Induction axiom is not a sentence of first order logic. It is a sentence of monadic
second order logic.

In first order logic, the quantifiers use variables which could only be assigned to
elements in the domain by any state. In second order logic, quantification is allowed

10.3. ARITHMETIC 315

on the predicates (or relations) also. The induction axiom does that. It says the
following:

For each property P of natural numbers, if P is true for 0, and that P
is true for any n implies that it is true for n+ 1, then P is true for each
natural number.

There is a difference in using the induction axiom in second order logic and the
first order axiom scheme. For example, consider translating the sentence

Each nonempty set of natural numbers has a least element.
We cannot translate this sentence to the first order theory of arithmetic where we use
the induction axiom scheme. The reason is, we do not have any way of expressing
‘the set of · · · ’. However, in the second order induction axiom, each such set of
natural numbers is a unary predicate, and we can quantify over them. Thus the
sentence can be translated to the monadic second order theory of arithmetic.

Of course, we do not claim that no sentence involving expressions of the type
‘the set of · · · ’ cannot be translated to the first order theory of arithmetic. Statements
about particular subsets of natural numbers can be translated. For instance, we can
translate the sentence

The set of primes has a least element.
We convert this sentence to

There exists a smallest prime.
And then this equivalent statement can easily be translated to the first order theory
of arithmetic.

Similarly, Graph Theory uses statements concerning all graphs with certain prop-
erties, where each graph is a binary relation over a domain. Thus theorems in Graph
Theory truly belong to second order logic.

There are different semantics of second order logic, where one considers the
predicates to denote any relation on the domain or one may restrict them to only first
order definable relations. In the former case, as K. Gödel had shown, there cannot be
an adequate proof theory, whereas the latter is equivalent to the first order set theory.

These concerns bring in many questions. Is there a way to construct a model
for a first order theory? In first order theories, what can be proved, what can be
expressed, what can be defined, and what can be solved by following step-by-step
procedures? In the following section, we will consider answering these questions in
an elementary manner.

Exercises for § 10.3
Let X ,Y,Z be formulas of Peano’s arithmetic A, and let u be a variable. Suppose, y
is a variable not occurring in X ,Y, and the variable z does not occur in Z. Show that
the following are theorems in A.

1. ∀x((∀y(y < x)→ X [x/y])→ X)→∀xX
2. ∃xY → (∃xY ∧∀y((y < x)→ ¬Y [x/y]))
3. ∀x(((x < u)→∃yZ)→∃z(∀x((x < u)→∃y((y < z)∧Z))))

316 CHAPTER 10. FIRST ORDER THEORIES

10.4 HERBRAND INTERPRETATION
Once consistency of a theory is established, due to Model existence theorem, we
know that there exists a model of the theory. Recall that such a model is constructed
by extending the theory to a maximally consistent set. Here, we wish to have a more
direct construction. Further, this approach will yield a bonus by connecting a first
order theory to a propositional theory.

Due to Theorem 7.2 on Skolem form, satisfiability of a formula X can be tested
by searching for closed terms t1, . . . , tn such that the sentence Xs[x1/t1] · · · [xn/tn] is
true in a domain. Similarly, by duality, validity of X can be tested by confirming the
validity of the sentence Xf [x1/t1] · · · [xn/tn]; see Theorem 7.3. We take up the issue
of satisfiability. To make the matter simple, we start with a single formula and later
discuss how to tackle a set of formulas.

Let X be a formula in Skolem form; so, all free variables are assumed to be
universally quantified. Let D0 be the set of all constants occurring in X . If D0 = ∅,
then take D1 = {α}, else, take D1 =D0. Here, α is a new symbol. Define the domain
DX for the formula X recursively:

1. D1 ⊆ DX .

2. If f is an n-ary function symbol occurring in X , and t1, t2, . . . , tn ∈ DX , then
f (t1, t2, . . . , tn) ∈ DX .

3. DX is the minimal set satisfying both (1) and (2).

The minimal is in the sense of the subset relation. The domain DX is called the
Herbrand universe for the formula X , named after the logician J. Herbrand. Given
a formula X , you are supposed to generate the set DX step by step starting from D0
as the set of all constants occurring in X , as shown below:

D0 = {c : c is a constant occurring in X}.
D1 = D0 if D0 �=∅, else, D1 = {α} for a new symbol α.

...
Di+1 = Di∪{ f (t1, . . . , tn) : t1, . . . , tn ∈ Di and f is an n-ary function

symbol occurring in X} for i≥ 1.
D = DX = D0∪D1∪D2∪ · · · = ∪i∈NDi.

We write DX as D, whenever the formula X is clear in a context.

EXAMPLE 10.7. Let X = ¬Px f (x)∧Pya, where a is a constant. Then

D0 = {a}, D1 = D0 = {a}, D2 = {a, f (a)}, . . .

Consequently, D = DX = {a, f (a), f (f (a)), . . .} is the Herbrand universe of X .

The elements of the Herbrand universe are also called the ground terms. Note
that ground terms are simply the closed terms obtained from the function symbols
occurring in a formula used recursively on the constants, or on the special symbol α
if no constant occurs in the formula.

10.4. HERBRAND INTERPRETATION 317

To define the Herbrand interpretation with its domain as the Herbrand universe
D, we require a function φ which would assign each function symbol occurring in X
to functions over D, and each predicate occurring in X to relations over D, preserving
arity. This is defined as follows:

(a) If f is an n-ary function symbol occurring in X , then φ(f) = f , the latter f is
taken as a function from Dn to D defined by: the functional value of the n-tuple
of terms t1, t2, . . . , tn under f is f (t1, t2 . . . , tn) for objects t1, t2, . . . , tn ∈ D.

(b) If P is an m-ary predicate, then φ(P) =P, where the latter P is an m-ary relation
defined on D. (It is any m-ary relation; we are not fixing it.)

The Herbrand interpretation of X is the pair (DX ,φ) = (D,φ). Notice that we do
not require a valuation as all our formulas are now sentences. A Herbrand model
of X is a Herbrand interpretation that satisfies X , i.e., which makes X true, which
assigns X to 1.

Any map φ associated with a Herbrand interpretation that assigns predicates to
relations and function symbols to functions over D, must satisfy the above properties.
φ also assigns truth values 1 or 0 to the atomic formulas P(t1, . . . , tn). Such maps may
only differ from each other in how they assign values of 0 or 1 to the atomic formulas
P(t1, . . . , tn). Thus, for any particular Herbrand interpretation (D,φ), we need only
specify how φ assigns the ground atomic formulas to 0 or 1. Such a map φ is called
a Herbrand map.

EXAMPLE 10.8. Let X = (Qyx → Px)∧ (Py → Rc) be a Skolem form formula.
The Herbrand universe is the singleton D = {c}. By substituting the variables x,y
with c in X , we obtain the formula

Y = (Qcc→ Pc)∧ (Pc→ Rc).

By assigning truth values to the atomic formulas Qcc, Pc, Rc we would like to see
whether the Herbrand interpretation is a model of X or not.

The Herbrand map φ with φ(Qcc) = 0, φ(Pc) = 1 = φ(Rc) evaluates Y to 1.
Hence (D,φ) is a Herbrand model of X .

On the other hand, ψ with ψ(Qcc) = 1 = ψ(Pc), ψ(Rc) = 0 evaluates Y to 0.
That is, the Herbrand interpretation (D,ψ) is not a (Herbrand) model of X .

Recall that a propositional interpretation could be specified as a set of literals.
In Example 10.8, the Herbrand model (D,φ) can also be written as {¬Qcc,Pc,Rc}.
In this Herbrand model, we declare the atomic formulas Pc,Rc as true and Qcc as
false. The Herbrand interpretation (D,ψ) can be written as {Qcc,Pc,¬Rc}, which
again means that we take, in this interpretation, the atomic formulas Qcc,Pc as true
and Rc as false. In such a formalism of writing out the Herbrand interpretations,
the atomic formulas Qcc,Pc,Rc are called ground atomic formulas, and the literals
Qcc,¬Qcc,Pc,¬Pc,Rc,¬Rc are called ground literals. The set of ground atomic
formulas is called a Herbrand base.

A Herbrand interpretation is, essentially, a set of ground literals such that for
each Y in the Herbrand base, either Y or ¬Y is an element of this set.

We will be using the ground literals as the domain of our interpretation of a
formula. However, there is certain difficulty when the equality predicate is involved.

318 CHAPTER 10. FIRST ORDER THEORIES

For instance, consider the formula ∀x(P f (x)a∧¬(f (x) ≈ x)). You can, of course,
take a and f (a) to be distinct, f (f (a)) = a, and φ(P) = {(f (a),a), (a, f (a))}. But
this fails for the formula ∀x(P f (x)a∧¬(f (x)≈ x)∧¬(f (f (x))≈ x)).

In general, f is just a function symbol of arity 1; f (a) and a are distinct. Starting
from a, it potentially generates the infinite set

D = {a, f (a), f (f (a)), . . .}.

If a model is required for f (x)≈ x on this domain D, we need to identify f n(a) with
a for any n≥ 1.

Since this is a problem of identification, naturally, equivalence relations play a
role. If we can define some equivalence relation on this syntactic domain, where
a and f (a) may be equivalent, then the equivalence classes of that relation would
form the domain instead of the set {a, f (a), f (f (a)), . . .}. Essentially, our domain
will consist of representatives of each of the equivalence classes.

In fact, we suggest to replace the equality predicate with E as in § 5.8, and then
add the necessary equality sentences as premises. From Theorem 5.10 we know that
a set will be satisfiable iff another set with≈ replaced by E along with the appropriate
equality sentence is satisfiable.

We thus assume that our formulas do not have occurrences of ≈ . If originally,
≈ occurs in any formula, then it has been replaced by E and the equality sentences
appropriate to the formulas have already been added. In general, We would have a
set of formulas having possible occurrences of E. Our plan is to construct a model
for this new set, where equality predicate is absent.

Exercises for § 10.4
Construct two Herbrand interpretations of each of the following formulas after doing
Skolemization; one should satisfy the formula, and the other should falsify it.

1. ∀x∃yPxy→∃y∀xPxy
2. ∀x∃yPxy∧¬∃xPxx∧∀x∀y∀z(Pxy∧Pyz→ Pxz)
3. ∀x∀y(Pxy→ Pyx) ∧ ∀x∀y∀z(Pxy∧Pyz→ Pxz)→∀xPxx

10.5 HERBRAND EXPANSION
Let X be a formula in Skolem form, and let D be its Herbrand universe. The Her-
brand interpretation of X is associated with the set of its instantiations obtained by
taking the elements of the Herbrand universe one by one. We define the Herbrand
expansion of a formula X as the set H given below.

H(X) = {X [x1/d1 · · ·xm/dm] : x1, . . . ,xm are the free variables of X ,

and d1, . . . ,dm ∈ D}.

Sometimes we write the Herbrand expansion H(X) of X as H. The formulas in H(X)
are called the ground instances of X . The ground instances are obtained by substi-
tuting the variables with all possible ground terms.

10.5. HERBRAND EXPANSION 319

In the following examples we assume that the given formula X is already in
Skolem form; thus the free variables are universally quantified. Try to see how
closely Herbrand expansions and Herbrand interpretations are related.

EXAMPLE 10.9. Let X = ¬Pxa∧Pxb. Its Herbrand universe is D = {a,b}. The
instantiations of X , where the free variable x takes values from D are ¬Paa∧Pab
and ¬Pba∧Pbb. Therefore, the Herbrand expansion is

H(X) = {¬Paa∧Pab, ¬Pba∧Pbb}.

Notice that to construct a Herbrand interpretation, we would assign truth values to
the literals Paa, Pab, Pba and Pbb. For instance, the Herbrand interpretation i with

i(Paa) = 1 = i(Pab), i(Pba) = 0 = i(Pbb)

evaluates the first clause ¬Paa∧Pab to 0. Therefore, i � H(X).

Herbrand interpretations have no variable assignments. They interpret only sen-
tences. The formula in Example 10.9 as a sentence is ∀∗X = ∀x(¬Pxa∧Pxb). To see
i as an FL-interpretation, take φ(P) = {(a,a),(a,b)}; just find out which ones have
been taken to 1 by i. This interpretation is not a model of ∀∗X .

EXAMPLE 10.10. Let X = Px f (x)∧¬Pby. Then, D = {b, f (b), f (f (b)), . . .}. The
Herbrand expansion is given by

H(X) = {Pb f (b)∧¬Pbb, Pb f (b)∧¬Pb f (b), . . . ,

P f (b) f (f (b))∧¬Pbb, P f (b) f (f (b))∧¬Pb f (b), . . .}.

This is not propositionally satisfiable since the ground instance Pb f (b)∧¬Pb f (b),
a member of H(X), is unsatisfiable.

EXAMPLE 10.11. Let X = ¬Px f (x)∧Pya, where a is a constant. Then the Her-
brand universe is D = {a, f (a), f (f (a)), . . .}. The Herbrand expansion is

H(X) = {¬Pa f (a)∧Paa, ¬Pa f (a)∧P f (a)a, ¬Pa f (a)∧P f (f (a))a, . . . ,

¬P f (a) f (f (a))∧Paa, ¬P f (f (a)) f (f (f (a)))∧P f (a)a, . . .}.

Now, the Herbrand interpretation (D,φ) satisfies X iff φ is a propositional model of
H(X). For example, φ defined by

φ(Pst) =

�
1 if t = a
0 otherwise

for s, t ∈ D

is such a propositional model of H(X). This Herbrand model of X written as a set of
ground literals is

{Psa : s ∈ D}∪{¬Pst : s, t ∈ D, t �= a}.

320 CHAPTER 10. FIRST ORDER THEORIES

EXAMPLE 10.12. Let X = Pxy∧ (Pxy→ Qxy)∧¬Qxz∧ (y ≈ z). Since ≈ occurs
in X , we replace it with E, and add the equality sentences (in quantifier-free form)
appropriate to it. That is, we have the set of formulas

{Pxy∧ (Pxy→ Qxy)∧¬Qxz∧Eyz,

Eu1u1, Eu2u3 → Eu3u2, Eu4u5∧Eu5u6 → Eu4u6,

Ex1y1∧Ex2y2∧Px1x2 → Py1y2, Ex3y3∧Ex4y4∧Qx3x4 → Qy3y4}.

Then, D = {α} and

H(X) = {Pαα ∧ (Pαα → Qαα)∧¬Qαα ∧Eαα,

Eαα, Eαα → Eαα, Eαα ∧Eαα → Eαα,

Eαα ∧Eαα ∧Pαα → Pαα, Eαα ∧Eαα ∧Qαα → Qαα}.

Truth of Pαα∧(Pαα→Qαα) implies the truth of Qαα, which contradicts the truth
of ¬Qαα. Hence, the Herbrand expansion H(X) is propositionally unsatisfiable. Is
X also unsatisfiable?

EXAMPLE 10.13. In the formula Px f (x)∧¬Pxx∧ (x ≈ f (x)) no constant occurs.
So, D = {α, f (α), f (f (α)), . . .}. The Herbrand expansion is

H = {Pα f (α)∧¬Pαα ∧Eα f (α), P f (α) f (f (α))∧¬P f (α) f (α)

∧E f (α) f (f (α)), . . . , Eαα, E f (α) f (α), E f (f (α)) f (f (α)), . . .

Eαα → Eαα, Eαα ∧Eαα → Eαα, E f (α) f (α), Eα f (α)→ Eα f (α),

Eαα ∧Eα f (α)→ Eα f (α), . . . , Eαα → E f (α) f (α),

Eα f (α)∧E f (α) f (f (α))→ Eα f (f (α)), . . . ,

Eαα ∧Eαα ∧Pαα → Pαα, Eαα ∧Eα f (α)∧Pαα → Pα f (α), . . .}.

It is not easy to see what are or are not in H(X) as written here. Notice that in
H(X), we have Pα f (α),¬Pαα, and Eα f (α). Due to the presence of Eα f (α), we
have Pα f (α)→ P f (α) f (α). Secondly, we also have P f (α) f (α)→ Pαα. Now,
in order that H(X) is satisfiable, all of Pα f (α),¬Pαα,Pα f (α)→ P f (α) f (α) and
P f (α) f (α)→ Pαα must be true. However, this compels both Pαα and ¬Pαα to
be true simultaneously, which is impossible. Therefore, H is unsatisfiable.

In Examples 10.10 and 10.11, satisfiability of H is propositional, i.e., its satisfia-
bility is determined by taking each atomic formula in H as a sentence of PL and then
assigning them a truth value 0 or 1. It is still applicable in Example 10.12, though
the equality predicate ≈ is involved. However, in Example 10.13, equality predicate
has some nontrivial effect. In this case, satisfiability of H is determined by using a
property of the relation E. We can use the equivalence classes of the equality predi-
cate E instead, as is done in the proof of Lemma 5.2. Look at Example 10.13 redone
as in the following.

EXAMPLE 10.14. For X = Px f (x)∧¬Pxx∧ (x≈ f (x)) in Example 10.13, we see
that one of the conjuncts is (x≈ f (x)). Corresponding to this, we have the formulas

10.5. HERBRAND EXPANSION 321

Eα f (α),E f (α) f (f (α)), . . . occurring as conjuncts in the Herbrand expansion H.
The equivalence classes induced by E on the Herbrand universe D will identify α
with f (α), f (α) with f (f (α)), etc. This means that all the elements in D are in the
same equivalence class; D thus collapses into the singleton {α}. Correspondingly,
H collapses into {Pαα ∧¬Pαα ∧Eαα}, which is propositionally unsatisfiable.

The propositional satisfiability of H may be understood as the propositional satis-
fiability of the new collapsed Herbrand expansion. However, the collapsed expansion
may not always be that simple as in Example 10.14. We rather choose to work with
the Herbrand expansion H itself. We will see that existence of a Herbrand model is
equivalent to the satisfiability of the Herbrand expansion.

Theorem 10.1 (Syntactic Interpretation). Let X be a formula in Skolem form. Let
H be the Herbrand expansion of X . Then X is satisfiable iff X has a Herbrand model
iff H is propositionally satisfiable.

Proof. Let X be a formula in Skolem form. Due to the equality theorem (Theo-
rem 5.10), assume that the equality predicate ≈ does not occur in X . The variables
in X are assumed to be universally quantified; X is a sentence. Let J = (A,ψ) be an
interpretation of X . Let D be the Herbrand universe for X . D contains all closed terms
generated from the constants (from α if no constant occurs in X) and the function
symbols appearing in X . Define the Herbrand interpretation (D,φ) by taking

φ(Pt1 . . . tn) = 1 iff J � Pt1 . . . tn .

for each n-ary predicate P occurring in X , and for each term t1, . . . , tn occurring in D.
Notice that J � Pt1 . . . tn iff (ψ(t1), . . . ,ψ(tn)) ∈ ψ(P). In fact, ψ maps D into A. In
particular, if X has no occurrence of a constant, then ψ(α) ∈ A. To see that if J � X ,
then (D,φ) is a Herbrand model of X , we use induction on ν(X), the number of free
variables of X .

In the basis step, if ν(X) = 0, then X is a proposition, and there is nothing to
prove. For the induction step, suppose (D,φ) � W whenever J � W and W is a
formula in Skolem form with ν(W) < k. Let X be a Skolem form formula with
ν(X) = k. As all free variables in X are universally quantified, if J � X then for each
a∈ A, J[x �→a] � X . For each t ∈D, ψ(t)∈ A. Thus for each t ∈D, J � X [x/t]. We see
that ν(X [x/t])< k, and the Herbrand interpretation for the formula X [x/t] is same as
the Herbrand interpretation (D,φ) for the formula X . By the induction hypothesis,
for each t ∈D, the Herbrand interpretation (D,φ) is a Herbrand model of X [x/t]; and
this happens for each t ∈ D. Then, (D,φ) is a model of ∀xX , i.e., of X .

We have thus proved that if X is satisfiable, then it has a Herbrand model. Con-
versely, each Herbrand model is a model; this proves the first ‘iff’ statement in the
theorem. The second ‘iff’ statement is obvious since Herbrand expansion is simply
another way of writing the Herbrand model. �

The Herbrand expansion H(X) is a set of formulas obtained from X by replacing
the free variables with ground terms, which are elements of the Herbrand universe.
If x1, . . . ,xn are all the free variables of X , we may write X as X(x1, . . . ,xn). Further,
writing x̄ for the n-tuple (x1, . . . ,xn) and t̄ for the n-tuple of closed terms (t1, . . . , tn),

322 CHAPTER 10. FIRST ORDER THEORIES

we abbreviate the series of substitutions [x1/t1][x2/t2] · · · [xn/tn] to [x̄/t̄]. Then, the
Herbrand expansion can be written schematically as

H = {X [x̄/t̄] : t̄ ∈ Dn}.

If X is in functional form, then after constructing its corresponding D, you find that
X is valid iff the set H = {X [x̄/t̄] : t̄ ∈ Dn} is valid. Note that validity of a set here
means that the disjunction of some finite number of formulas in it is valid. (See
compactness of FL, Theorem 6.10.) In view of Theorem 10.1, the discussion may be
summarized as follows.

Theorem 10.2 (Herbrand). Let X be a formula. Then, a formula Y with free vari-
ables ȳ, a formula Z with free variables z̄, and possibly infinite sets of tuples of closed
terms S̄ and T̄ can be constructed so that the following are true:

(1) X is satisfiable iff {Y [ȳ/s̄] : s̄ ∈ S̄} is propositionally satisfiable.
(2) X is valid iff {Z[z̄/t̄] : t̄ ∈ T̄} is propositionally valid.

Exercises for § 10.5
1. Construct the Herbrand expansions for the following formulas. Then decide

their satisfiability.

(a) ∀x(Px∨¬∀y∃z(Qyxz∨¬∃uQuxz))
(b) ∀x(Px∨¬∀y∃z(Qyxz∨¬∃uQuxz))
(c) ∀x(¬Pxx∧∃yPxy∧∀y∀z((Pxy∧Pyz)→ Pxz))
(d) ∀y∃x(Pyx∧ (Qy↔ ¬Qx))∧∀x∀y∀z((Oxy∧Pyz)→ Pxz)∧

∀x¬∃y(Qx∧Qy∧Pxy)
2. Using Herbrand expansions prove the completeness of FL-calculations; that

is, if Σ �⊥, then there is a calculation that proves it.
3. Show that the distributive laws used in the conversion of a formula to prenex

form can be proved in FC. Then follow the construction of Herbrand interpre-
tation and prove that FC is complete.

4. Repeat the approach outlined in the previous problem to prove completeness
of FND, GFC, and FT.

5. Herbrand’s theorem implies that if X is a valid formula, then there is a quasi-
proof of it where first we go on applying quantifier laws, and then use only
connective laws. What are those possible quantifier laws?

10.6 SKOLEM-LÖWENHEIM THEOREMS
Suppose that you have been given a valid formula. To show that it is indeed valid,
you can always have a derivation which uses the quantifier laws first, and then only
propositional laws to get �. This is how you can interpret Herbrand’s theorem. The-
orem 10.2 raises another important question. When can S̄ and T̄ be chosen to be
finite sets?

10.6. SKOLEM-LÖWENHEIM THEOREMS 323

Suppose X is a satisfiable formula. Its Herbrand expansion is countable. The
Herbrand interpretation with the Herbrand domain is a model of the formula. Hence,
it has a countable model, namely, the Herbrand interpretation. This observation is
easily generalized to a countable set of formulas since the Herbrand expansion of
such a set is also countable. However, as a caution, you must choose different indical
functions for (even same variables in) different formulas in this countable set, while
Skolemization is applied. Due to the axiom of choice, this can be done. With these
observations, you have the following remarkable result:

Theorem 10.3 (Skolem-Löwenheim). Any satisfiable countable set of formulas has
a countable model.

This theorem is called the Downward Skolem-Löwenheim Theorem. Among
other thongs, it implies that any first order theory, which is assumed to posses a
model, has a countable model. For instance, the theory A has a countable model.
Of course the standard model N is one such countable model. The theory of the
real number system, which is a complete ordered field containing the natural num-
bers, also has a countable model. However, Cantor’s theorem says that the set of
real numbers R is uncountable. This is no contradiction since the theory can have
an uncountable model also, such as R. But Cantor’s proof uses nothing more than
the axioms of a complete ordered field. Which means, any model of the first order
theory of complete ordered field containing N is uncountable. This has conflict with
Theorem 10.3.

The conflict is usually resolved by allowing the possibility that the map that
makes the countable model in one-one correspondence with N cannot be constructed
inside the model. This is, essentially, Cantor’s theorem about the uncountability of
a model of the first order theory of complete ordered fields. However, looking from
outside, we may have such a map. This explanation allows the notion of countability,
or even cardinality of sets, to be system dependent.

It is also known that the second order theory of real number system does have
essentially a unique model. Therefore, Skolem-Löwenheim Theorem shows that no
first order axiomatization of R will be able to capture the real number system in it
entirety. Indeed, the completeness axiom of the real number system truly belongs to
the second order logic.

In second order logic, along with variables, we also have predicate variables; and
thus we may quantify over the predicates. A second order valuation assigns variables
to elements of the domain, and predicate variables to relations over the domain. The
Peano arithmetic with second order sentence as the induction axiom is categorical;
in the sense that any two (second order) models of this arithmetic are isomorphic
(Dedekind’s theorem).

In second order logic, neither compactness nor Skolem-Löwenheim theorems
hold. Moreover, there does not exist an adequate axiomatic system for the second
order logic. The set of valid sentences of first order logic can be enumerated, say, as
output of an axiomatic system; but the valid sentences of second order logic is not
enumerable. These drawbacks discourage mathematicians to work in second order
logic even if it has immense expressive power.

324 CHAPTER 10. FIRST ORDER THEORIES

There is also an upward Skolem-Löwenheim theorem. It asserts that if a first
order theory has an infinite model, then it has models of every larger cardinalities.
Thus theories admitting of infinite models cannot characterize any single semantic
theory, categorically. We are not going into details of its ramifications.

Moreover, Lindström’s theorems assert that there exists no logical system more
expressive than first order logic where both compactness and Skolem-Löwenheim
theorems hold; and there exists no logical system more expressive than first order
logic, where Skolem-Löwenheim theorems hold, and for which the valid sentences
are enumerable. This is another reason why mathematicians stick to first order logic.
You may refer Ebbinghaus et al. (1994) for Lindström’s theorems.

Exercises for § 10.6
In the following we state some refinements and improvements of Skolem-Löwenheim
theorem. Try to prove them; see Enderton (1972).

1. Let Σ be a set of formulas in a language of cardinality β . Suppose Σ has an
infinite model. If κ is an infinite cardinal no less than β , then Σ has a model
of cardinality κ.

2. Prove Skolem-Löwenheim upward theorem: If a first order theory has a model
of infinite cardinality, then it has models of each higher cardinality.

3. Suppose a sentences S is true in all infinite models of a first order theory T.
Show that there exists k ∈ N such that S is true in all models of T having
cardinality more than k.

10.7 DECIDABILITY
Given any proposition in PL we can be sure whether it is valid or not. To take such
a decision, one constructs its truth table. Even if the method is lengthy, it is not
impossible, because the truth table of any proposition has finite size. We thus raise
the issue of decidability in FL. It is as follows.

Does there exist an algorithm which, given any FL-formula, determines
whether it is valid or not?

We apply the proof techniques since each valid formula has a proof. However, we
are bound to fail; for instance, see Example 8.29. We could not do anything with
such a set of formulas by using Analytic tableau. We thus think, perhaps this is an
impossible task. But how do we show that there exists no algorithm to do a job?

Any attempt to answer this question will lead us to formally define an algorithm.
Any formal definition, again, poses the question whether the formal definition of
an algorithm captures our intuition regarding an algorithm. First of all, the formal
definition must satisfy the properties of an intuitive description. Second, the for-
mal definition must be so general that any object which may be called an algorithm
intuitively can be shown to be so in the formal sense.

Many such formalizations have been invented. And till date, all these definitions
have been found to be equivalent. This belief that we have reached at a correct

10.7. DECIDABILITY 325

formal definition of an algorithm is referred to as the Church-Turing thesis. The
thesis specifically says that an algorithm is a total Turing machine.

The thesis thus entails that a generic question regarding the existence of an algo-
rithm for a class of problems can be settled if we can construct a total Turing machine
for answering all instances of the question correctly. It has been shown that there are
certain problems which cannot be settled by Turing machines. For example, the
Halting Problem of Turing machines cannot be solved by any algorithm. This means
that there exists no Turing machine which, given any Turing machine and an input
to it, can answer correctly whether the given Turing machine halts on the given in-
put. This result is quoted as “Halting Problem is undecidable.” Similarly, the Post
Correspondence Problem (PCP), which we formulate below, has been shown to be
undecidable.

Let S be an alphabet having at least two symbols. A PCS (Post Correspon-
dence System) P over S, is a finite ordered set of ordered pairs of nonempty strings
(u1,v1), . . . ,(un,vn), where the strings ui,vi use only symbols from S. A match in P
is a sequence of indices i1, i2, . . . , ik, not necessarily distinct, such that

ui1ui2 · · ·uik = vi1vi2 · · ·vik .

PCP is the problem of determining whether an arbitrary PCS has a match. An in-
stance of PCP is a particular PCS where we seek a match. It can be shown that if
there exists an algorithm to solve any given PCP, then the halting problem for Turing
machines would be decidable. Therefore, PCP is not decidable.

We connect the validity problem to Post correspondence problem. Let

P = {(u1,v1),(u2,v2), . . . , (un,vn)}

be a PCS over {0,1}. Then each ui, and each vi, is a binary string. We choose
an individual constant c, two unary function symbols f0, f1, and a binary predicate
R. We may think of c as the empty string, f0 as the function that concatenates its
argument with a 0, f1 as the function that concatenates its argument with a 1. Then
we can write any binary string as compositions of f0, f1 evaluated on c.

For example, the binary string 0 is thought of as the empty string concatenated
with 0, which then is written as f0(c). Similarly, f1(f0(c)) represents the binary
string (read the composition backward) 01. In general, the binary string b1b2 · · ·bm is
represented by the term fbm(fbm−1(· · · (fb2(fb1(c))) · · ·)), which we again abbreviate
to fb1b2···bm(c) for better readability.

This nomenclature is like translating a given argument in English to a first order
language by building an appropriate vocabulary. Here, we are translating the PCS P
into a first order language. The predicate R below represents intuitively the initially
available ordered pairs, and how the game of concatenating the strings ui and vi is
played, through successive moves.

We first express the fact that (ui,vi) are the available ordered pairs. Next, we say
that if we have an ordered pair (x,y) and the ordered pair (ui,vi), then we can have
an extended ordered pair (xui,yvi). A match in this game is then an extended ordered
pair with the same first and second components. We write these available ordered
pairs along with the extended ordered pairs by using the binary predicate R. That is,

326 CHAPTER 10. FIRST ORDER THEORIES

R(x,y) would mean that the ordered pair (x,y) is available as it is, or it is obtained
by extending available ordered pairs. Given a PCS P, we then construct the related
sentence X as in the following:

X1 = R(fu1(c), fv1(c))∧ · · · ∧R(fun(c), fvn(c)).

X2 = ∀x1∀x2(R(x1,x2)→ R(fu1(x1), fv1(x2))∧ · · · ∧R(fun(x1), fvn(x2))).

X = (X1∧X2 →∃x3R(x3,x3)).

Our goal is to show that the sentence X is valid iff P has a match. We break up the
proof into two parts.

Lemma 10.1. If X is valid, then P has a match.

Proof. This part is a bit trivial. If you have translated an English sentence to first
order, and the first order sentence is valid, then in particular, the English sentence
should be true. We give a similar argument.

Since X is valid, each of its interpretations is a model. We construct an interpre-
tation I = (D,φ) using the intended meanings of the symbols. We take the domain
D = {0,1}∗, and φ(c) = ε; hereby interpreting c as the empty string. We define the
functions

φ(f0) : {0,1}∗ → {0,1}∗ by φ(f0)(x) = x0

φ(f1) : {0,1}∗ → {0,1}∗ by φ(f1)(x) = x1

and take φ(R) as the binary relation on {0,1}∗ defined by

φ(R) = {(x,y) ∈ {0,1}∗×{0,1}∗ : there is a sequence of indices i1, . . . , ik
with x = ui1ui2 · · ·uik and y = vi1vi2 · · ·vik , where (ui j ,vi j) ∈ P}.

In the interpretation I, the sentence X1 corresponds to the sentence

The pair (ui,vi) ∈ φ(R) for each i with 1≤ i≤ n.

This is true since the sequence of indices here has only one term, namely, i.
In I, the sentence X2 is read as follows:

If the pair (x,y) ∈ φ(R), then (xui,yvi) ∈ φ(R) for each i with 1≤ i≤ n.

This sentence is also true in I as the sequence of indices i1, . . . , ik for the pair (x,y)
can be extended to the sequence i1, . . . , ik, i.

Thus, I is a model of X1 ∧X2. Since X is valid, I is a model of ∃x3R(x3,x3).
This means, the corresponding sentence in the interpretation I is true. That is, there
exists (w,w) ∈ φ(R) for some w ∈ {0,1}∗. By the very definition of φ(R), we have
got a sequence i1, . . . , ik such that w = ui1ui2 · · ·uik = vi1vi2 · · ·vik . Therefore, P has a
match. �

Lemma 10.2. If P has a match, then any interpretation of X is a model of X .

Proof. Assume that P has a match. We have a sequence of indices i1, . . . , ik such
that ui1 · · ·uik = vi1 · · ·vik = w, say. Let J = (D,ψ) be any interpretation of X . Then
ψ(c)∈D, ψ(f0),ψ(f1) : D→D, and ψ(R)⊆D×D. Since P has only binary strings

10.7. DECIDABILITY 327

in its ordered pairs, we must assign these binary strings to elements of D. To this end,
define a map φ : {0,1}∗ → D recursively by

φ(ε) = ψ(c), φ(x0) = ψ(f0)(φ(x)), and φ(x1) = ψ(f1)(φ(x)).

Here, ε is the empty string, and x is any string from {0,1}∗.
It follows that if b1b2 · · ·b j is a binary string with bi ∈ {0,1}, then

φ(b1 · · ·b j) = ψ(fb j)(ψ(fb j−1) (· · · ψ(fb2)(ψ(fb1)(ψ(c)) · · ·))).

The last expression is again abbreviated to fb1b2···b j(ψ(c)). Thus, with the abbre-
viation at work, we have fs(ψ(c)) = φ(s) for any binary string s. For instance,
φ(011) = ψ(f1)(ψ(f1)(ψ(f0)(ψ(c)))). We are simply coding backward the ele-
ments of D, so to speak.

To show that J is a model of X , we assume that J is a model of X1, J is a model
of X2, and then prove that J is a model of ∃x3R(x3,x3). Since J is a model of X1, for
each i, 1≤ i≤ n, (ψ(fui)(ψ(c)),ψ(fvi)(ψ(c))) ∈ ψ(R). That is,

(φ(ui),φ(vi)) ∈ ψ(R) for each i, 1≤ i≤ n.

Similarly, J is a model of X2 implies that

If (φ(s),φ(t)) ∈ ψ(R), then (φ(sui),φ(tvi)) ∈ ψ(R).

Starting with (φ(u1),φ(v1)) ∈ ψ(R), and repeatedly using the above statement, we
obtain:

(φ(ui1ui2 · · ·uik),φ(vi1vi2 · · ·vik)) ∈ ψ(R).

That is, φ(w,w) ∈ ψ(R). Therefore, J is a model of ∃x3R(x3,x3). �

Suppose we have an algorithm A such that given any sentence Y , A decides
whether Y is valid or not. Let P be any given PCS over the alphabet {0,1}. Construct
the sentence X as in Lemma 10.1. Due to Lemmas 10.1-10.2, A decides whether P
has a match or not. However, PCP is not decidable. Therefore, there cannot exist
such an algorithm A. You have thus proved the following statement:

Theorem 10.4 (Turing’s Undecidability). The validity problem for first order lan-
guages is not decidable.

The proof of Theorem 10.4 says that in any first order language with at least one
individual constant, two unary function symbols, and one binary predicate, the valid-
ity problem is undecidable. In fact, presence of a single binary predicate makes a first
order language undecidable. We do not prove this stronger version of Theorem 10.4
here.

However, we note that validity of monadic first order logic is decidable; this is in
correspondence with the fact that the PCP with a single alphabet letter is decidable.
It says that if we have a first order language with only a finite number of unary
predicates, and a finite number of individual constants only, the validity problem
there would be solvable. This logic is the so-called Aristotelian logic, and Aristotle

328 CHAPTER 10. FIRST ORDER THEORIES

had already given us an algorithm to determine the validity of an arbitrary sentence
in his logic. It is worthwhile to prove this fact without using Aristotle’s method of
syllogisms.

Theorem 10.4 asserts that there exists no algorithm which given any arbitrary
formula (or sentence) of first order logic, can report truthfully whether the formula
ia valid or not. Observe that this does not contradict the completeness of the proof
systems we discussed earlier. For instance, the axioms and the rules of inference of
FC can be implemented into a computer program so that it goes on printing theorems
after theorems. If the given formula is valid, the program would eventually print it.
This property of the set of valid formulas is expressed as follows:

The valid formulas of any first order language is enumerable.
On the other hand, if the given formula is not valid, then it will never be printed by
the program. That is, we will never come to know whether it is invalid or not. In this
sense, we say that the validity problem for first order logic is semi-decidable.

Exercises for § 10.7
1. Let Y be a formula in the form ∃x1 · · ·∃xm∀y1 · · ·∀ynX , where X is quantifier-

free, and it does not involve any function symbols. Show that there exists an
algorithm to decide whether such a formula Y is satisfiable or not.

2. Let Y be a formula in the form ∀x1 · · ·∀xm∃y1 · · ·∃ynX , where X is quantifier-
free, and it does not involve any function symbols. Show that there exists an
algorithm to decide whether such a formula Y is valid or not.

3. Let Σ be a set of sentences over a finite language. Suppose that for each X ∈ Σ,
if X has a model, then X has a finite model. Show that there exists an algorithm
that decides whether any given X ∈ Σ is satisfiable or not. (Such a Σ is said to
have finite model property.)

10.8 EXPRESSIBILITY
Recall that A denotes the first order theory of arithmetic with the non-logical sym-
bols as 0, s, +, · , ^ and <, defined by the axioms (1)-(13) in §10.3. The standard
interpretation of A is the intuitive (semantic) theory N of natural numbers. In this
interpretation, the constant 0 is interpreted as the number 0, the unary function s is
interpreted as the successor function mapping n to n+ 1, + as addition, · as multi-
plication, ^ as exponentiation, and < as the relation of less than. We will use the
following assumptions about A and N.

Assumptions:
1. Each sentence of N can be written down as a sentence in A; and it can be either

true or false.
2. The theory A is sound with respect to N. That is, each provable formula in A

is true in N.
3. The theory A is consistent. That is, for any formula X of A, both X and ¬X

are not provable in A.

10.8. EXPRESSIBILITY 329

The assumptions are reasonable since the theory A is believed to be an axiomatiza-
tion of N. Moreover, with so many years of work we have not succeeded in finding a
contradiction in A. We will see later whether such an assumption on the consistency
of A can be eliminated or not.

Recall that the terms 0,s(0),s(s(0)), . . . in A are called numerals, which we have
agreed to write as 0,1,2, . . . , respectively. The symbols, strings of symbols, and
strings of strings of symbols of A are commonly referred to as expressions. The set of
all expressions of A are countable; thus they can be encoded as numerals. However,
we wish to have an encoding where the numeral associated with an expression of A
can be computed by an algorithm. Such an encoding is called Gödel numbering
following K. Gödel. We will use a simplified numbering scheme.

We start with the symbols used in the theory A. Since a comma is also a symbol,
we use blank space to separate the symbols in the list below. The following are the
symbols of A:

,) (x | ¬ ∧ ∨ → ↔ ∀ ∃ ≈ 0 s + · ^ <

Instead of using infinite number of variables, x0,x1,x2, . . . , we will use the symbols
x and | to generate them. That is, x followed by n number of |s will be abbreviated to
xn. We abbreviate β written n times to β n, where β is any of the digits (numerals) 1
or 2. For instance 222222 will be written as 26; you should not confuse 26 here with
64. We write the encoding as g(·), and start with the symbols:

g(,) = 1, g()) = 11, g(() = 111, g(x) = 14, . . . , g(^) = 118, g(<) = 119.

Next, a string of symbols σ1 · · ·σk is encoded as

g(σ1 · · ·σk) = 2g(σ1)2 · · · 2g(σk)2.

We keep the digit 2 as a separator; it will help us in decoding the symbols. Notice that
each string of symbols begins with a 2 and also ends with a 2. Next, if s1,s2, . . . ,sm
are strings of symbols from the language of A, then we define

g(s1,s2, . . . ,sm) = 2g(s1)2g(s2)2 · · · 2g(sm)2.

In fact, we will read g(w) as a numeral. If g(w) is akak−1 · · ·a1a0, where each ai
is either 1 or 2, we read g(w) as the value of the following expression in A:

g(w) = ak3k +ak−13k−1 + · · ·+a131 +a0.

Here ends our encoding. Of course, for a small formula, its Gödel number may
become very large. But that is not a problem for us. We assume that we have a lot
of paper and ink to write it out as a sequence of ones and twos; and then we have
sufficient computing resources to evaluate it as a polynomial in powers of three.

Clearly two different expressions have different encodings. That is, g is a one-one
function from the set of expressions of A to the set of numerals. We will call any nu-
meral n a Gödel number iff there exists an expression w such that n = g(w). Further,
we see that there exists an algorithm specified in the language of A that computes

330 CHAPTER 10. FIRST ORDER THEORIES

the numeral g(w) corresponding to each expression w of A; and also there exists
an algorithm specified in the language of A that computes the expression g−1(n)
corresponding to each Gödel number n.

The encoding of expressions of A as numerals in A makes self-reference possi-
ble. This is reflected in the following result.

Theorem 10.5 (Diagonalization Lemma). Corresponding to each formula B(·) of
A with a single free variable, there exists a sentence S in A such that S↔ B(g(S)) is
provable in A.

Proof. Let x1 be the Gödel number of a formula with a single free variable x. Then
such a formula is given by g−1(x1). The Gödel numbering provides an algorithm for
computing g−1(x1), and also an algorithm for computing g(w) for any expression w
of A. These algorithms are specified by formulas of A. Thus we have an algorithm
specified by formulas of A that takes x1 as its input and gives the numeral g(g−1(x1))
as its output.

The specification of the algorithm has occurrences of x corresponding to the free
occurrences of x in g−1(x1). By changing x to x2 everywhere in the specification
we obtain a new algorithm which takes x2 as its input and gives an output, which
we write as g((g−1(x1)) [x/x2]). Notice that x may not occur explicitly in the nu-
meral g((g−1(x1)). However, the substitution in the expression g((g−1(x1)) [x/x2])
is meaningful in the above sense.

In particular, for x2 = x1, the expression g((g−1(x1)) [x/x1]) evaluates to a nu-
meral. Let B(x) be a formula of A with the only free variable x. Then the expression
B(g((g−1(x1)) [x/x1])) is a well defined formula of A with the only free variable x1.

For each Gödel number x1 of a formula with a single free variable x, we take
H(x1) as the formula B(g((g−1(x1)) [x/x1])); and for each x2 which is not the Gödel
number of a formula with the free variable x, we take H(x2) as false. We take here
the truth value false, since g−1(x2) for such a numeral x2 may become meaningless.
This is how we obtain a formula H(x) in A such that for each Gödel number x1 of a
formula with the only free variable x,

H(x1)↔ B
�
g
�
(g−1(x1)) [x/x1]

��
is provable in A.

In particular, with x1 as k = g(H(x)), we have

H(k)↔ B
�
g
�
(g−1(k)) [x/k]

��
is provable in A.

Now, k = g(H(x)) implies that H(k) = H(x)[x/k] = (g−1(k)) [x/k]. Therefore,

H(k)↔ B
�
g
�
H(k)

��
is provable in A.

This sentence H(k) serves the purpose of S as required. �

Given a formula B(·) with a single free variable, the sentence “My Gödel number
satisfies the formula B(·)” is such a sentence provided by the Diagonalization lemma.
It shows that the Arithmetic is such a rich axiomatic theory that a self-referring sen-
tence as this one could be written down as a formula in it; further, such a formula
could also be proved in it.

10.8. EXPRESSIBILITY 331

Recall that a unary predicate of A is interpreted in the standard interpretation
N as its subset. In general, a formula with a single free variable is also interpreted
as a subset of N. We formalize this intuitive connection between subsets of N and
formulas of A with one free variable as follows.

Let C ⊆ N. We say that C is expressed by a formula F(x) in A iff F(x) is a
formula of A with the only free variable as x, and in the standard interpretation of A
in N, the following holds:

for each n ∈ N, n ∈C iff F(n) is true in N.

Also, we say that C is expressible in A iff C is expressed by some formula F(x) in A.
For example, the set of perfect squares is expressed in A by the formula ∃y(x = y ·y);
the set of composite numbers is expressed by the formula

∃y∃z((s(0)< y)∧ (s(0)< z)(x≈ y · z)).

As we know, there exist an uncountable number of subsets of N. On the other
hand, the formulas of A with one free variable are countable in number. Thus there
exist an uncountable number of subsets of N which are not expressible in A. How-
ever, giving an example has certain difficulties. For, how to demonstrate (express)
an object which is not expressible? We use the Diagonalization lemma to show that
it is possible.

Theorem 10.6 (Tarski). The set of Gödel numbers of all true sentences of N is not
expressible in A.

Proof. By our assumptions, any sentence of N can be written down as a sentence in
A. Thus the Gödel number of a true sentence of N is well defined. So, let

T= {g(X) : X is a true sentence of N}.

Suppose that T as a subset of N is expressed by the formula B(x) of A. Then
the subset N \T of N is expressed by the formula ¬B(x). By the Diagonalization
lemma (Theorem 10.5), corresponding to the formula ¬B(·), there exists a sentence
S in A such that S↔ ¬B(g(S)) is provable in A. Since A is assumed to be sound,
the sentence S↔ ¬B(g(S)) is true in N. Thus, we have

S is true in N iff ¬B(g(S)) is true in N.

Now that the set N \T is expressed by the formula ¬B(x), we see that for each
n ∈ N, ¬B(n) is true in N iff n ∈ N\T. In particular,

¬B(g(S)) is true in N iff g(S) ∈ N\T.

Since T is the set of Gödel numbers of true sentences, we have

S is true in N iff g(S) ∈ T.

We thus arrive at the contradiction that g(S) ∈N\T iff g(S) ∈ T. Therefore, T is
not expressible in A. �

332 CHAPTER 10. FIRST ORDER THEORIES

Exercises for § 10.8

Let S be a structure with domain D. We write S[x1 �→d1,...,xn �→dn] for the state in the
structure S where the variable xi is assigned to the element di ∈ D for 1≤ i≤ n. We
say that a formula X with free variables among x1, . . . ,xn defines an n-ary relation R
on D iff for all elements d1, . . . ,dn ∈ D,

(d1, . . . ,dn) ∈ R iff S[x1 �→d1,...,xn �→dn] � X .

Informally, this happens when the sentence obtained from X by interpreting x1 as
d1, . . . , and xn as dn, is true in the structure S. An n-ary relation on D is said to be
definable when some formula defines it. For example, in any structure, substitution is
definable; in the sense that if X is a formula, and x is a variable free for a term t in X ,
then X [x/t]≡ ∀x((x≈ t)→ X). Alternatively, you can use X [x/t]≡ ∃x((x≈ t)∧X),
by the one-point rule. Show the following:

1. Consider the structure (R,0,1,+, ·) of the field of real numbers. Since the
square of a real number is non-negative, show that the ordering relation < is
definable in this structure.

2. For any natural number n, the singleton set {n} is definable in A.
3. The set of primes is definable in A.
4. Exponentiation is definable in A. That is, the relation {(m,n,k) : k ≈ mn} is

definable in A. [Hint: See § 3.8 in Enderton (1972).]

5. The interval [1,∞) is definable in the structure (R,0,1,+, ·).
6. The singleton {5} is definable in (R,0,1,+, ·).
7. A finite union of intervals whose end-points are algebraic numbers is definable

in (R,0,1,+, ·). [Its converse is also true.]

10.9 PROVABILITY PREDICATE

Each expression of A has a Gödel number. In particular, each formula has a Gödel
number, and each proof has a Gödel number. Further, a numeral is or is not the
Gödel number of some expression of A can be written as a formula of A. Also, from
the Gödel number of a proof of a formula, the Gödel number of the formula can be
computed. Therefore, the following formula with its meaning as given, is a formula
of A with two free variables x and x1 :

Proof (x,x1) : x is the Gödel number of a formula of A and x1 is the Gödel number
of a proof of that formula.

That is, Proof (x,x1) is true if x1 is the Gödel number of a proof of a formula
F whose Gödel number is x. Such a formula F in the definition of Proof (x,x1) is
g−1(x). Next, we construct the formula Pr(x) as follows:

Pr(x) : ∃x1Proof (x,x1)

10.9. PROVABILITY PREDICATE 333

As a formula of A, we see that Pr(x) is true in N iff there exits a numeral n which
is the Gödel number of a proof of g−1(x) iff the formula g−1(x) is provable in A.
Therefore, the set

P= {g(X) : X is a provable sentence of A}
is expressed by the formula Pr(x) which has only one free variable, namely x. Since
A is assumed to be sound, each provable sentence of A is true in N. Therefore, P⊆T,
where T is the set of all true sentences of N. Due to Theorem 10.6, we conclude that
P is a proper subset of T. It follows that there exists a true sentence in N which is not
provable in A.

It is easier to guess that there exists gaps between truth and povability. Consider
a universally quantified sentence such as ∀xP(x), where P is a unary predicate. By
definition this sentence is true when for each x, “P(x) is true”. Whereas if for each x,
“P(x) is provable”, then it does not follow that ∀xPx is provable. To see this, suppose
the variable x here ranges over N. In this case, for each x, “Px is provable” means,
we have proofs for P(0), for P(1), for P(2), and so on. Now, how do we combine all
these to get a proof for ∀xP(x)?

The liar’s sentence (in the Liar’s paradox) may be formulated as “This sentence
is not true”. Replacing truth with provability we obtain the sentence “This sentence
is not provable”. Notice that the liar’s sentence is not a proposition, since we cannot
meaningfully assign a truth value to it. Whereas the other sentence about provability
is a sentence which is true but cannot be proved. However, it looks ridiculous that
such a self-referring sentence is a sentence of arithmetic. In fact, using the Diago-
nalization lemma, we can have an incarnation of this self-referring sentence in the
theory A; see the proof of the following theorem.

Theorem 10.7 (Gödel’s First Incompleteness). There exists a sentence S in A such
that S is true in N, but neither S nor ¬S is provable in A.

Proof. The set P of all Gödel numbers of provable sentences of A is expressed by
Pr(x). So, its complement N \ P is expressed by ¬Pr(x). By the Diagonalization
lemma, there exists a sentence S such that S↔ ¬Pr(g(S)) is provable in A. By the
soundness of A, it follows that S↔ ¬Pr(g(S)) is true in N. Thus, S is true in N iff
¬Pr(g(S)) is true in N.

Since N \ P is expressed by ¬Pr(x), for each n ∈ N, ¬Pr(n) is true in N iff
n ∈ N\P. In particular, ¬Pr(g(S)) is true in N iff g(S) ∈ N\P. The definition of P
implies that g(S) ∈ N\P iff S is not provable in A.

We thus conclude that S is true in N iff S is not provable in A.
Now, if S is not provable in A, then S is true in N. Also, soundness of A implies

that if S is provable in A, then it is true in N. In any case, S is true in N. And then, S
is not provable in A.

Further, if ¬S is provable in A, then ¬S is true in N. This is not possible as S is
true in N. Therefore, S is true in N, and neither S nor ¬S is provable in A. �

Abbreviate Pr(g(X)) to P(X) for any sentence X of A. Now, P(X) is true in N
iff g(X) ∈ P iff X is a provable sentence of A. That is,

X is provable in A iff P(X) is true in N.

334 CHAPTER 10. FIRST ORDER THEORIES

Informally, P(X) is a formula of the theory A which expresses the fact that ‘the sen-
tence X of A is provable in A. Thus P(·) is called a provability predicate. Observe
that P(·) is not a predicate. You should not read the notation as ‘the formula X is an
argument of the predicate P’. It is just an abbreviation. For all sentences X and Y,
the provability predicate satisfies the following properties:

If X is provable in A then P(X) is provable in A. (10.2)

P(X → Y)→ (P(X)→ P(Y)) is provable in A. (10.3)

P(X)→ P(P(X)) is provable in A. (10.4)

The sentence in (10.2) says that if X is provable, then ‘X is provable’ is provable;
in fact, the proof of X demonstrates that. Next, (10.3) follows from Modus Ponens
in A; and (10.4) combines (10.2) and a form of Deduction Theorem in A. These
statements imply the following:

If X → (P(X)→ Y) is provable in A, then P(X)→ P(Y) is provable in A. (10.5)

To see this, assume that X → (P(X)→ Y) is provable. We need to give a proof
of P(X)→ P(Y). Due to the deduction theorem, it is enough to assume P(X) to be
provable and derive that P(Y) is provable. So, assume P(X) to be provable. We
use Modus Ponens repeatedly. By (10.2), P(X → (P(X)→ Y)) is provable. By
(10.3), P(X)→ P(P(X)→ Y) is provable. Since P(X) is provable, it follows that
P(P(X)→ Y) is provable. By (10.3), P(P(X))→ P(Y) is provable. Since P(X) is
provable, by (10.2), P(P(X)) is provable. Thus follows P(Y). This very proof of
P(Y) shows that P(Y) is provable.

We use (10.5) in the proof of the following theorem.

Theorem 10.8 (Gödel’s Second Incompleteness). If A is consistent then the for-
mula ¬P(0≈ 1) is not provable in A.

Proof. Using the Diagonalization lemma on the formula ¬Pr(x), we obtain a sen-
tence S such that S↔ ¬Pr(g(S)) is provable in A. Since, Pr(g(S)) is abbreviated to
P(S), we have

S↔ ¬P(S) is provable in A. (10.6)

Thus, S → ¬P(S) is provable in A. As ¬P(S) ≡ P(S)→ (0 ≈ 1), it follows that
S→ (P(S)→ (0≈ 1)) is provable in A. Taking X = S and Y = (0≈ 1) in (10.5), we
obtain the following:

If S→ (P(S)→ (0≈ 1)) is provable in A, then P(S)→ P(0≈ 1) is provable in A.

Hence P(S)→ P(0≈ 1) is provable in A. By contraposition, ¬P(0≈ 1)→ ¬P(S) is
provable in A.

If ¬P(0≈ 1) is provable in A, then ¬P(S) is provable in A. By (10.6), S is prov-
able in A. By (10.2), P(S) is provable in A. So, both ¬P(S) and P(S) are provable
in A. This is not possible since A is assumed to be consistent. Therefore, ¬P(0≈ 1)
is not provable in A. �

10.9. PROVABILITY PREDICATE 335

Since any contradiction in A is equivalent to (0≈ 1), the sentence ¬P(0≈ 1) says
that no contradiction is provable in A. This expresses consistency of A. Theorem 10.8
thus asserts that if A is consistent, then its consistency cannot be proved by using the
proof mechanism of A. Indeed, what sort of a system it would be if it proclaims and
proves its own consistency!

As the proof of Theorem 10.8 revealed the sentences ¬P(S) and ¬P(0≈ 1) serve
the purpose of the sentence S in Theorem 10.7; they are true in N but neither they
nor their negations can be proved in A.

The incompleteness theorems of Gödel shattered Hilbert’s program for proving
the consistency of Arithmetic using the mechanism of Arithmetic. Herman Wyel
thus commented:

God exists because mathematics is undoubtedly consistent,
and the devil exists because we cannot prove the consistency.

We may like to add the consistency of A as an extra axiom to those of A. Then
Gödel goes further in showing that the resulting system, say A1 will be unable to
prove its own consistency. Once more adding the consistency of A1 to itself we land
at a system A2 which again will not be able to prove its consistency. This process is
unending; and there exists no finitely axiomatizable system of arithmetic which can
prove its own consistency.

Of course, G. Gentzen had proved the consistency of A by using a different proof
mechanism such as transfinite induction.

Exercises for § 10.9
1. Let S be a sentence as stipulated in (10.6). Show that ¬P(S) is true in N, but

neither P(S) nor ¬P(S) is provable in A.
2. A printer prints strings using four symbols: N,P,A,O. A string of these sym-

bols is called a sentence if it is in one of the following four forms:

POXO, NPOXO, PAOXO, NPAOXO for any string X

We define true sentences as follows.

POXO is true iff X is printed sooner or later.
NPOXO is true iff X is not printed sooner or later.
PAOXO is true iff XOXO is printed sooner or later.
NPAOXO is true iff XOXO is not printed sooner or later.

Assume that if the printer prints a sentence, then it is true. For instance, if the
printer prints POXO, then POXO is true; thus X is printed sooner or later. It
implies that X is also true. Exhibit a true sentence that is never printed. [This
is a Gödelian puzzle invented by R. M. Smullyan.]

3. Consider the sentence S in (10.6). Write the formula ¬Proof (g(S),x1) as
Q(x1). Show the following:

(a) S≡ ∀x1Q(x1).
(b) ∀x1Q(x1) is not provable in A.
(c) For each n ∈ N, Q(n) is provable in A.

It shows that A is an ω-incomplete theory.

336 CHAPTER 10. FIRST ORDER THEORIES

4. Let R(x) be the formula Q(x)→ ∀x1Q(x1), where Q(x1) is as given in the
previous exercise. Show the following:

(a) The formula ∃xR(x) is provable in A.
(b) For each n ∈ N, R(n) is not provable in A.

[R. M. Smullyan thus says that A is ∃-incomplete. P. R. Halmos compares it
with a mother telling the child that it is there; but it is not this, go on find out;
again, she says, no, it is not this, go on find out, and so on.]

10.10 SUMMARY AND PROBLEMS
First order logic is considered as the foundation of mathematics. The whole edifice
of mathematics can be built on the first order theory of sets. In this chapter we
have discussed some of the foundational problems that involved the most talented
mathematicians of the twentieth century.

In nutshell, we have shown that all mathematical problems cannot be solved by
computers. There exists a gap between what is assumed to be true about the natural
numbers, and what could be proved in the first order theory of natural numbers. If the
theory of natural numbers is really consistent, then we cannot prove its consistency
by using the proof mechanism of natural numbers.

Our proofs of these important foundational results are neither complete nor self-
contained. We have only touched the tip of the iceberg. The presentation here is
based upon similar approach found in Boolos et al. (2007), Ebbinghaus et al. (1994),
Enderton (1972), Rautenberg (2010), Singh & Goswami (1998), Singh (2009), and
Smullyan (2014). We have not discussed many important issues such as definability,
categoricity, and arithmetical hierarchy. To have a feel of the problems and their
solutions, you are most invited to the works of E. W. Beth, K. Gödel, A. M. Turing,
A. Tarski, T. A. Skolem, L. Löwenheim, J. Herbrand, J. B. Rosser, and P. Lindström.
You can start with van Heijenoort (1967) to have a comprehensive view of these
works.

Problems for Chapter 10
1. For n ∈ N, let Ln be a language with signature Sn where S0 ⊆ S1 ⊆ S2 ⊆ · · · .

Let Σn be a consistent set of formulas of Ln with Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · . Take
S = ∪n∈NSn and Σ = ∪n∈NΣn. Show that Σ is a consistent set of formulas of a
language with signature S.

2. Let L be a language with signature S. Let T be the set of all terms from L. Let
Σ be a consistent set of formulas of L. Define a relation ∼ on T by s ∼ t iff
Σ � (s≈ t). Show the following:

(a) ∼ is an equivalence relation.
(b) ∼ is compatible with S. That is, if si, ti are terms with s1 ∼ t1, . . . ,sn ∼ tn,

then for any n-ary function symbol f in S, f (s1, . . . ,sn) ∼ f (t1, . . . , tn),
and for any n-ary predicate P, Σ � P(s1, . . . ,sn) iff Σ � P(t1, . . . , tn).

10.10. SUMMARY AND PROBLEMS 337

3. A substructure of a structure (D,φ) is (A,ψ), where A⊆D, ψ(P) = φ(P)∩An

for each n-ary predicate P, ψ(f) is the restriction of the function φ(f) to A for
any function symbol f , and ψ(c) = φ(c) for every constant c. These conditions
hold for the non-logical symbols of the underlying language L. Let I be a
substructure of J. Prove the following:

(a) For each quantifier-free formula X of L, I � X iff J � X .

(b) Let X be a universal formula; that is, X = ∀x1 · · ·∀xnY for some quantifier-
free formula Y. Then for each valuation � under I, J� � X implies that
I� � X . [You should first show that J� is a state.]

(c) If X is a universal sentence, then J � X implies I � X .

(d) Let X be an existential formula; that is, X = ∃x1 · · ·∃xnY for some quantifier-
free formula Y. Then for each valuation � under I, I� � X implies that
J� � X .

(e) If X is an existential sentence, then I � X implies J � X .

4. Let X = ∃x1 · · ·∃xm∀y1 · · ·∀ynY, where Y is quantifier-free. Show that every
model of X contains a substructure with a domain at most n+ 1 elements,
which is also a model of X . Conclude from this that a sentence of the form
∀y∃xPxy is never equivalent to one in the form X .

5. Let I = (A,φ) and J = (B,ψ) be structures for a first order language L. Define
the product structure I × J = (A×B,θ) by the following:

(i) For an n-ary predicate P, ((a1,b1), . . . ,(an,bn)) ∈ θ(P) iff (a1, . . . ,an) ∈
φ(P) and (b1, . . . ,bn) ∈ ψ(P).

(ii) For an n-ary function symbol f ,
θ(f)((a1,b1), . . . ,(an,bn)) = (φ(f)(a1, . . . ,an),ψ(f)(b1, . . . ,bn)).

(iii) For a constant in L, θ(c) = (φ(c),ψ(c)).

Show the following:

(a) The product structure K is indeed a structure.
(b) If L is such that both I and J are groups, then K is also a group.
(c) If L is such that both I and J are fields, then K need not be a field.

6. Let X be a sentence in the form ∀x1 · · ·∀xnY, where the quantifier-free formula
Y has no occurrence of any function symbol.

(a) Give a procedure to determine whether X is valid.
(b) Give a procedure to determine whether X is satisfiable.
(c) What happens to your procedures if function symbols are allowed to

occur in X?
(d) Can you modify the procedures so that they would work in the presence

of function symbols?

7. Given that a formula has a finite model, can you describe a procedure that
constructs one such model?

8. Show that if a sentence has a model of m elements, then it has models of n
elements for each n > m and also it has an infinite model.

338 CHAPTER 10. FIRST ORDER THEORIES

9. Let X be a closed formula having only unary (monadic) predicates and having
no function symbols. (X is a sentence of the monadic first order logic.) Let I
be a model of X . Define an equivalence relation on the domain of I by: a is
equivalent to b iff for each predicate P occurring in X , P�(a) holds whenever
P�(b) holds. Show that the set of equivalence classes also forms a model of X .
Use this to show that if a sentence X of monadic first order logic is satisfiable,
then it has a finite model. Can you have a procedure to decide whether such a
sentence is satisfiable?

10. A sentence in monadic first order logic is said to be in miniscope form if
whenever ∀xY or ∃xY is a subformula, the only free variable in Y is x. Show
that each sentence of monadic first order logic is equivalent to one in miniscope
form.

11. Formulate and prove the compactness theorem and the Skolem-Löwenheim
theorem using systematic tableaux.

12. Consider the proof systems FC, FND, GFC, and FT. Assume adequacy of one
of them and try proving adequacy of all the others to FL.

13. Assume compactness for PL. Using Herbrand’s theorem, prove compactness
of FL.

14. Let Σ be a set of formulas, where each predicate is monadic and where no
function symbols are used. Prove that if Σ is satisfiable, then there exists a
finite state-model of Σ. [Hint: What could be the Herbrand model of Σ?]

15. Prove that the satisfiability problem for FL is not decidable, but
16. Prove that the satisfiability problem for monadic first order logic is decidable.
17. Craig’s interpolation: Let X ,Y be formulas having at least one common atomic

subformula. A formula Z having all its predicates among the common ones of
X and Y is called an interpolant of X → Y iff � X → Z and � Z → Y. Show
that, if � X → Y, then either X is unsatisfiable or Y is valid or X → Y has an
interpolant. Show also that whenever an interpolant of X → Y exists, there
is, in fact, an interpolant in which all the constants are among the common
constants of X and Y.

18. Beth’s Definability Theorem: Let Σ be a set of sentences, and let P be an n-ary
predicate. Let P� be an n-ary predicate different from P such that P� does not
occur in any sentence of Σ. Let Σ� be the set of sentences obtained from those
of Σ by replacing each occurrence of P by P�. Prove that if

Σ∪Σ� � ∀x1 · · ·∀xn(P(x1, . . . ,xn)↔ P�(x1, . . . ,xn)),

then there exists a formula X(x1, . . . ,xn) with free variables from x1, . . . ,xn
such that

S � ∀x1 · · ·∀xn(P(x1, . . . ,xn)↔ X(x1, . . . ,xn)).

Informally, we thus say: “if an n-ary predicate is defined implicitly by a set of
sentences Σ, then it is also defined explicitly by Σ.” [See Fitting (1996).]

19. Let I and J be two structures with domain as D and E, respectively for a first
order language L. Let (D,φ) and (E,ψ) be the interpretations that interpret L
in I and J, respectively. The structures I and J are called isomorphic, iff there
exists a one-one onto function F : D→ E that satisfies the following:

10.10. SUMMARY AND PROBLEMS 339

(i) F(φ(c)) = ψ(c) for each constant of L.
(ii) F(φ(g)(d1, . . . ,dn)) = ψ(g)(F(d1), . . . ,F(dn)) for each n-ary function

symbol g.
(iii) (a1, . . . ,am) ∈ φ(P) iff (F(a1), . . . ,F(an)) ∈ ψ(P) for each m-ary

predicate P of L.
(iv) I � S iff J � S for each sentence S of L.

The structures I and J are called elementarily equivalent iff “for each sentence
S of L, S is true in I iff S is true in J”. Show the following:

(a) Two isomorphic structures are necessarily elementarily equivalent.
(b) Two elementarily equivalent structures need not be isomorphic. [Hint:

What about the nonstandard model of arithmetic?]
20. Let M be a model of arithmetic non-isomorphic to the standard model N. prove

the following:

(a) M contains an isomorphic copy of N.
(b) M has an infinite number, i.e., an element which is larger than all num-

bers in N.
(c) M contains a decreasing infinite sequence.

21. Let L be a language, and let I be a structure for L. Prove that the theory of I,
which is the set of all sentences of L true in I, is maximally consistent.

22. For a set of sentences S, let M(S) denote the set of all models of S. Let Σ and
Γ be sets of sentences such that Σ∪Γ is inconsistent. Show that there exists a
sentence X such that M(Σ) ⊆M({X}) and M(Γ) ⊆M({¬X}). [Hint: Apply
compactness.]

23. Does there exist an equation in Group theory which is true in all finite groups,
and false in all infinite groups? Why or why not?

24. Let Σ be a set of sentences of a first order language L. The set Σ is called
negation complete iff for each sentence S of L, either Σ � S or Σ � ¬S. We also
define the theory of Σ as Th(Σ) = {S : S is a sentence of L and Σ � S}. Prove
that a consistent set Σ of sentences is negation complete iff Th(Σ) is maximally
consistent.

25. Let Σ be a decidable set of sentences of a first order language L. Prove the
following:

(a) An algorithm exists, which outputs all sentences of Th(Σ).
(b) Th(Σ) is decidable iff Σ is negation complete.

26. Let T1 be a sub-theory of a theory T2, over the same first order language L.
Show that if T1 is negation complete and T2 is satisfiable, then T1 = T2.

27. A first order axiomatic theory with infinitely many constants c0,c1,c2, . . . , is
called ω-inconsistent iff there exists a unary predicate P in the theory such that
when interpreted in N, all the sentences

∃x¬P(x), P(c0), P(c1), P(c2), . . .

are provable in the theory. When the constant ci is interpreted as the natural
number i, and P as a subset of N, we see that at least one of the above sentences
must be false. Does it mean that each ω-inconsistent system is inconsistent?

340 CHAPTER 10. FIRST ORDER THEORIES

28. A first order axiomatic theory with infinitely many constants c0,c1,c2, . . . is
called ω-incomplete iff there exists a unary predicate P in the theory such
that P(c0),P(c1),P(c2), . . . are all provable but ∀xP(x) is not provable. Is it
possible to interpret an ω-incomplete theory in N where each ci is interpreted
as the natural number i?

29. (Rosser): Abbreviate the formula ∃y(Proof (y,x)∧∀z((z< y)→¬Proof (z,w))
to Prf (x), where w is the Gödel number of the negation of the formula whose
Gödel number is x. Show that a formula R(x) of A with a single free variable
x is provable in A iff Prf (g(R(x))) is provable in A. [While Gödel’s sentence
says that “I am not provable”, Rosser’s sentence says that “For any witness that
I am provable, there is a smaller number that is a witness that I am refutable.”]

30. Formalize the sentence “If ZFC is consistent, then consistency of ZFC cannot
be proved by using its own proof machinery”. Try a proof of this statement
mimicking the proof of unprovability of consistency of arithmetic.

Chapter 11

Modal Logic K

11.1 INTRODUCTION

Let p and q be two propositions. Consider the following argument:

p is valid. p→ q is valid. Therefore, q is valid.

Now, how do you symbolize this argument in PL? Here we have three atomic sen-
tences:

A : p is valid. B : p→ q is valid. C : q is valid.

The argument is symbolized as

{A, B} !�C.

Though we know that the argument is correct, there is no way to prove it in PL.
What about FL? Here, we can go a bit deeper into analysing the argument. Sup-

pose that we denote ‘is valid’ as a unary predicate P(·). The argument would be
symbolized as

{P(p), P(p→ q)} !�P(q).

But a proposition cannot occur in the argument of a predicate, only a term is allowed
over there. So, symbolization fails. But suppose we write “· · · is valid” as an opera-
tor, just like the unary connective ¬, and try to construct a new logic, then? We may
take � x for “x is valid”. But it will possibly confuse with the “entailment relation”.
Well, let us write “x is valid” as �x (Read it as box x.). Then, the symbolization
would lead to the consequence:

{�p, �(p→ q)} !��q.

It looks feasible, but we have to do so many things afresh, if we accept this sym-
bolization. We have to allow such constructions syntactically and then give formal
meaning to these constructs.

341

342 CHAPTER 11. MODAL LOGIC K

EXAMPLE 11.1. Symbolize: Anyone whose parents are dead is an orphan. Yanka
believes that his parents are dead. Therefore, Yanka believes that he is an orphan.

With D(x) for “x is dead”, O(x) for “x is orphan”, B(x,z) for “x believes z” and a
for the constant “Yanka”, you would symbolize the argument as

{∀x(D(x)→ O(x)),B(a,D(a))} !�B(a,O(a)).

But this is syntactically wrong since the predicates D and O cannot occur as
arguments of another predicate B. Further, the symbols D and O cannot be taken as
functions since D(x)→ O(x) would then be syntactically wrong.

The argument seems to be all right, but we are not able to symbolize it into FL.
When an old theory is inappropriate, we create new theories. Let us try writing
“Yanka believes” as an operator, say, �. Then our symbolization would look like

{∀x(D(x)→ O(x)), �D(a)} !��O(a).

To take some more examples, consider the following:

Yanka is bold.
Yanka is possibly bold.
Yanka ought to be bold.
Yanka must not be bold.
Yanka appears to be bold.
Yanka is necessarily bold.
Yanka is known to be bold.
Yanka is believed to be bold.
Yanka is supposed to be bold.
Yanka is obliged to be bold.
Yanka is permitted to be bold.
Yanka is not free not to be bold.
Yanka cannot afford to to be bold.

Except the first sentence all the others are modal sentences; they modify the first sen-
tence in some way or the other. This is why the name “modal logics”, and we will see
later why this name is in plural. Out of all the above modalities (and possibly many
more not written above), we take up two catch words “necessarily” and “possibly” as
our basics. Other modalities will be treated as different readings of these basic ones.
Different readings of these modalities may give rise to altogether different logics. As
you progress through this chapter, you will understand how this is done.

Exercises for § 11.1
Let �X mean ‘It is necessary that X’ and let ♦X mean ‘It is possible that X . Which
of �X or ♦X or their negations, is closer to the modality described below?

1. It is known that X . 2. It was the case that X .
3. It will be the case that X . 4. It is sometimes the case that X .
5. It is always the case that X . 6. It is irrelevant to the case at hand that X .

11.2. SYNTAX AND SEMANTICS OF K 343

11.2 SYNTAX AND SEMANTICS OF K
The logic K is an extension of PL; it has two more connectives � (read as box) for
necessity, and ♦ (read as diamond) for possibility. The alphabet of the language of
K consists of all propositional variables p0, p1, . . ., unary connectives ¬,�,♦, binary
connectives ∧,∨,→,↔, propositional constants�,⊥, and), (as punctuation marks.

The propositional constants �,⊥ and the propositional variables together are
called atomic modal propositions, or atomic modal formulas.

As in PL, you may choose a shorter list of connectives and propositional con-
stants or a longer list including all the binary truth functions such as ↑,↓, etc. Modal
propositions are defined recursively by the following formation rules:

1. Each atomic modal proposition is a modal proposition.
2. If x is a modal proposition, then ¬x,�x,♦x are modal propositions.
3. If x,y are modal propositions, then so are (x∧ y),(x∨ y),(x→ y),(x↔ y).
4. Each modal proposition is generated by applying recursively one or more of

the rules (1)-(3).
Using the symbol p as a variable ranging over {pi : i∈N}, the grammar of modal

propositions (written generically as z below) in the Bacus-Naur form can be given as

z ::=� |⊥ | p |¬z |�z |♦z |(z∧ z) |(z∨ z) |(z→ z) |(z↔ z)

We use the abbreviation mp for a modal proposition. The parse tree of an mp is
a binary tree with branch points (non-leaf nodes) as the connectives and leaves as
atomic mps.

For instance, the parse tree for the mp ♦(�(p↔ ¬p)∧♦(♦(q→ p)∨¬q)) is
given in Figure 11.1. Analogous to PL, unique parsing holds in K.

♦

∧

♦

∨

¬

q

♦

→

pq

�

↔

¬

p

p

Figure 11.1: Parse tree for ♦(�(p↔ ¬p)∧♦(♦(q→ p)∨¬q))

344 CHAPTER 11. MODAL LOGIC K

Theorem 11.1 (Unique Parsing in K). If z is a modal proposition, then z is in ex-
actly one of the following forms:

�, ⊥, p, ¬x, �x, ♦x, (x∧ y), (x∨ y), (x→ y), (x↔ y)

for unique propositional variable p, and unique modal propositions x and y.

The expression ♦(�(p↔ ¬p)�(♦(q→ p)∨¬q)) is not an mp, because ♦ is a
unary connective. �(p↔ ¬p)∧ (♦(q→ p)∨¬q) is not an mp, since outer brackets
are missing. However, we now make it a convention to omit the outer parentheses.
We also extend the precedence rules of PL, giving the unary connectives ¬,�,♦ the
same and the highest precedence. Next in the hierarchy are ∧ and ∨. The connectives
→,↔ receive the least precedence.

Sometimes we override the precedence rules and use extra parentheses for easy
reading. Further, we will not be rigid about writing the atomic mps as p0, p1, . . .; we
will rather use any other symbol, say p,q, . . ., but mention that it is an atomic mp.
You can define sub-mps just like sub-propositions in PL or subformulas in FL. They
are well defined due to unique parsing.

Once the syntax is clear, we must discuss the semantics. The connectives ¬,∧,∨,
→,↔ have the same meanings in K, as in PL, though the meanings of � and ♦
complicate their use a bit. The symbols � and ♦ may be interpreted in various ways
as mentioned in § 11.1.

In the metalogic of PL, we may read the modalities as in the following:

�: it is valid that ♦: it is satisfiable that

Recall that a proposition z in PL is valid iff it is evaluated to 1 (true) under each
interpretation. We now consider each such interpretation as a world. A world is
sometimes referred to as a point, a situation, a place, a state, etc.

Reading �p as “p is valid”, we see that

�p is true iff p is valid iff p is true in each world.

What about the iterated modalities, say, the truth of ��p?

��p is true iff �p is true in each world iff it is true that p is true in each
world iff p is true in each world iff �p is true.

While considering other modalities, e.g., read � as “Yanka knows that”, we may
have to define a world differently. Here, a world may be a set of all propositions
that Yanka knows, etc. In abstract terms, a world would be taken as any object, a
primary object. In giving meanings to modal propositions, we would start with a set
of worlds.

When we read � as “Yanka knows that”, the iterated modality ��p may be read
more meaningfully as “Yanka knows that he knows p”. Clearly, this sentence is
different from “Yanka knows p”, which is the translation of �p.

The point is that in some readings of the modal connectives the iterated modali-
ties may not yield anything new, while other readings may still distinguish between
the iterated modalities. We thus need to give meaning to “�p is true” as well as to
“�p is true in a world”.

11.2. SYNTAX AND SEMANTICS OF K 345

We answer this problem with a relation defined over the set of worlds. This rela-
tion is, again, a primitive concept; it should come along with the set of worlds. This
relation is called an accessibility relation, an agreed phrase taken for convenience.
With this relation on the set of worlds, the worlds themselves become accessible
from each other. The accessible relation on a particular set of worlds need not be
symmetric; so we must distinguish between “x is accessible from y” and “y accessi-
ble from x”. Notice that we require not only a set but a relational structure for giving
meanings to the modal connectives.

Now �p would be true in a world w if p is true in each world accessible from w.
In the case of � as validity, each world (an interpretation) is accessible from every
other world, and also from itself. Thus, ��p will be forcefully read as �p hinting
at self assertion of utterances in natural languages. (Do you see the hint?) If we do
not agree that ��p be read as �p, then, of course, the accessibility relation must be
different. As a starting point for the semantics of K, we define a relational structure
of worlds and the accessibility relation among them, as in the following.

A frame is an ordered pair (W,R), where W is a set, called the set of worlds,
and R is a binary relation on W (R ⊆W ×W), called the accessibility relation. For
worlds u,w ∈W , read wRu as u is accessible from w.

A frame is not sufficient to give meanings (of truth and falsity) to all modal
propositions. We must specify when an mp is true at a world. Analogous to PL-
interpretations, each world w may be considered as a mapping from the set of atomic
propositions to the set {0,1} of truth values. Then we would define p is true at the
world w iff w(p) = 1. We write w � p whenever p is true at w. We also read w � p
as w makes p true.

Recall that we had alternate semantics for PL, where an interpretation was taken
as a set of literals, or of propositional variables. Similarly, we may regard each world
w as a subset of the set of all atomic propositions which happen to be true at w. That
is, we can associate the world w with the mapping fw : {pi : i ∈N}→ {0,1}, or with
the set Sw = {pi : i ∈ N and fw(pi) = 1}.

This association can be brought in by another mapping φ , which would take each
world to fw or to Sw, depending upon which way we want to go about. Nonetheless,
they are equivalent. In the former case, we have φ(w) = fw, where

φ : W → the set of all functions from {pi : i ∈ N} to {0,1}.

And in the latter case, we have φ(w) = Sw, where

φ : W → the power set of {pi : i ∈ N}.

Alternatively, we can associate with each pi, the set of worlds where pi is true. One
more alternative: φ can be defined as a map from W ×{pi : i ∈ N} to {0,1} so that
φ(w, pi) = 1 means that pi is true in the world w. All these approaches are, any way,
equivalent. Why? We remember these alternatives and choose the second one for
defining a model.

A model here, unlike PL, is simply an interpretation where a modal proposition
may or may not hold. It would have been better to call these as interpretations rather
than as models. But current practice uses the word “interpretation” for PL, and a

346 CHAPTER 11. MODAL LOGIC K

“model” for modal logics. Also, a model in modal logics is defined for a logic (as
the concept of an interpretation is defined for PL), and we do not say “model of an
mp”.

A model of K is a triple (W,R,φ), where the pair (W,R) is a frame, and φ is
a mapping from W to the power set of {pi : i ∈ N} associating each world w ∈W
to a subset φ(w) of atomic propositions. The mapping φ is called the world truth
mapping. The model M = (W,R,φ) is said to be based upon the frame F = (W,R),
and the frame F is said to be an underlying frame of the model M.

The set φ(w) consists of all atomic propositions which are true at the world w.
Moreover, each world w is propositional, in the sense that all the laws of PL hold
in each world. For example, if p ∈ φ(w), i.e., if p is true at the world w, then ¬p
cannot be true at w, i.e., ¬p �∈ φ(w). The new connectives � and ♦ play roles in
navigating across the worlds via the accessibility relation. We define formally how a
modal proposition becomes true at (in) a world w.

Let M = (W,R,φ) be a model of K. Let x,y denote arbitrary modal propositions.
Let w ∈W be a world. The relation w �x (w satisfies x) is defined recursively:

(1) w ��, and w �⊥.
(2) w � p iff p ∈ φ(w), for any atomic proposition p.
(3) w �¬x iff w �x.
(4) w �x∧ y iff w �x and w �y.
(5) w �x∨ y iff w �x or w �y.
(6) w �x→ y iff w �x or w �y.
(7) w �x↔ y iff either w �x and w �y, or w �x and w �y.
(8) w ��x iff for each world u ∈W with wRu, u �x.
(9) w �♦x iff for some world u ∈W with wRu, u �x.

Due to unique parsing, the satisfaction relation is well defined. We may read the
meaning of the mp �x and ♦x as follows:

�x is true at the world w iff x is true in each world accessible from w.
♦x is true at the world w iff x is true in some world accessible from w.

Since satisfaction or truth at a world w depends not only on the world w, but also on
the model M, we should better write w � x as M,w � x. However, when the model
M is clear from a given context, we would continue writing w �x. It is read in many
ways such as:

the world w satisfies the modal proposition x,
the world w verifies the modal proposition x,
the world w makes the modal proposition x true, or as
the modal proposition x is true at (in) the world w.

When a world w does not satisfy an mp x, we say that w falsifies x, and write w �x.

EXAMPLE 11.2. Let M = (W,R,φ) be the model with

W = {w,u}, R = {(w,u),(u,u)}, φ(w) =∅, and φ(u) = {p} for atomic p.

Are the mps p,�p,��p, �p→��p,��p→ p true at the world w?

11.2. SYNTAX AND SEMANTICS OF K 347

Look at the relation R of the model M. It says that the world w is accessible from
u, and the world u is accessible from itself; nothing else. Since each binary relation
can be depicted as a graph, we first represent our model as a graph. Each node of
this graph is a world. A node corresponding to the world w will be written as w .
If (w,u) ∈ R, that is, if wRu, then we draw a directed edge (line segment) from the
node w to the node u. That is, “u is accessible from w” is depicted by

w ✲ u

The mapping φ specifies which atomic propositions (mp) are true at which world.
We show it in a graph by writing the satisfaction symbol, the double turnstile (�) as
a superscript to the world (or as a subscript or just following the world) and then
writing out all those atomic propositions which are true at that world. For instance,

u � p means p is true in the world u.

In our case, φ(w) =∅; so nothing is labelled with the world w. Since u is acces-
sible from itself; there is a loop around u. Thus the model M is depicted as

w ✲ u�
� p

We see that w � p. What about �p? w ��p iff x � p for each world x accessible
from w. Here, u is the only world accessible from w, and u � p. Hence w ��p.

Since u is the only world accessible from w, and u is the only world accessible
from u itself, w���p iff u��p iff u�p. We know that u�p. Therefore, w���p.

We abbreviate the iterated modality �� · · ·�(n times) p to �n p, for any n ≥ 0,
with the convention that �0 p = p.

By induction, it follows that w ��n p, for each positive integer n. Since w � p
and w ��n p, for any n≥ 1, we see that w ��p→ p.

What about p→ �p? Clearly, w � p→ �p. In the model M, w ��m p→ �n p
for any m,n ∈ N with n �= 0, and w � p→ p.

EXAMPLE 11.3. Which of the following mps are true at the world w in M?

(a) �p→�♦p (b) ♦p→�♦p (c) �p→♦�p (d) ♦p→♦�p

M : w ✲ u � p

(a) w ��p → �♦p iff (w ��p or w ��♦p). Now, w ��p iff for some world
accessible from w, p is false at that world. There is only one world, namely, u which
is accessible from w and u � p. Hence w ��p. On the other hand, w ��♦p iff u �
♦p. But there is no world accessible from u. Thus, u �♦p; consequently, w ��♦p.
Summing up, w ��p→�♦p.

(b) w �♦p as u is a world accessible from w and u � p. We have seen in (a) that
w ��♦p. Hence w �♦p→�♦p.

348 CHAPTER 11. MODAL LOGIC K

(c) Since u is the only world accessible from w, for w �♦�p, we require u ��p.
This is so provided each world accessible from u satisfies p. As there is no world
which is accessible from u, the condition is satisfied vacuously. So, w �♦�p.

(d) Using (c), we conclude that w �♦p→♦�p.

EXAMPLE 11.4. In Example 11.3, which mps in (a)-(d) are true at the world u?
Since each world accessible from u (there is none) satisfies p, u ��p. Similarly,

u ��♦p. Again, as there is no world accessible from u, we have u �♦p. Similarly,
u�♦�p. Therefore, u satisfies �p→�♦p, ♦p→�♦p, ♦p→♦�p but it falsifies
�p→♦�p.

Comparing with first order semantics, a world is like a state, and a model is like
an interpretation. In K, the model M = (W,R,φ) satisfies or verifies an mp x, written
as M � x, iff for each world w ∈W, w �x.

For instance, in Example 11.3, M �♦p→♦�p. Besides, M ��p→�♦p since
w ��p→�♦p. Also, w �♦p→�♦p and u ��p→♦�p imply M �♦p→�♦p
and M � �p→♦�p.

EXAMPLE 11.5. Let M = ({u,v,w},{(u,v),(u,w),(v,v),(v,w),(w,v)},φ) be the
model with φ(u) = {q}, φ(v) = {p,q} and φ(w) = {p}. Determine whether
M � �(p∧q)→ (�p∧�q) and M � �p∧�q→�(p∧q).

The model M is depicted by the graph in Figure 11.2. We have three worlds
u,v,w in our model M, and mps p, q, p∧q, �p, �q, �(p∧q), �p∧�q. We know
already that u �q, v � p, v �q, w � p, u � p, and w �q.

M : u
�q✏✏✏✏✏✏✏✏✏✶

����������

w � p

v � p,q

�
❄

✻

Figure 11.2: Model of Example 11.5

The worlds accessible from u are v and w, and both v � p, w � p hold. Hence,
u ��p. But, u ��q as the world w is accessible from u but w �q.

The worlds accessible from v are v and w. Both v � p and w � p hold. So, v ��p.
However, v ��q as w is accessible from v but w �q.

Similarly, w ��p and w ��q as the only world accessible from w is v, and v � p,
v �q. Since w is accessible from u, u ��(p∧q). But w � p∧q. Further, v ��(p∧q)
since w�p∧q; and w��(p∧q) as v�p∧q. We thus have a summary in Table 11.1;
where we write r for �(p∧q) and s for �p∧�q.

The last two columns in Table 11.1 show that all the worlds (in M) satisfy both
the mps r→ s and s→ r. Therefore,

M � �(p∧q)→�p∧�q, M � �p∧�q→�(p∧q).

11.2. SYNTAX AND SEMANTICS OF K 349

Table 11.1: Table for Example 11.5, r = �(p∧q), s = �p∧�q

p q p∧q �p �q r s r→ s s→ r
u � � � � � � � � �
v � � � � � � � � �
w � � � � � � � � �

EXAMPLE 11.6. Determine whether the following model M satisfies the mps

(a) �(p∨q)→�p∨�q (b) �(p∧q)→�p∧�q

M : u ✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③

w �q

v � p

(a) Here, u ��(p∨ q), as both the worlds v,w accessible from u satisfy p∨ q.
But u ��p as the world w accessible from u does not satisfy p. Again, u ��q as
v �q. Therefore, u ��p∨�q and consequently, M ��(p∨q)→�p∨�q.

(b) u��p, u��q but v��p, v��q vacuously as there is no world accessible from
v. Also w ��p and w ��q. Thus, u ��p∧�q, v ��p∧�q, and w ��p∧�q.
Since v is a world accessible from u, and v � p∧q, u ��(p∧q). Again vacuously,
v ��(p∧ q) and w ��(p∧ q). So, all the worlds satisfy �(p∧ q)→ �p∧�q;
consequently, M � �(p∧q)→�p∧�q.

Exercises for § 11.2
1. A says to C about B: “At least I knew he thought I thought he thought I slept.”

Who knew what?
2. Which of the given mps are true at the world w of the model M of the corre-

sponding Example?

Example 11.2: p, �p, ♦♦p, ♦p→♦♦p, ♦♦p→ p
Example 11.3: ♦p→♦�p, �p→♦�p, ♦p→�♦p, �p→�♦p

3. Determine whether the model M of Example 11.5 satisfies the following mps:

�(p∨q)→ (�p∨�q), �p∨�q→�(p∨q)

4. Let w be a world in a model M = (W,R,φ). Show that

(a) w �♦� iff there is at least one world accessible from w.
(b) w ��⊥ iff no world is accessible from w.

Conclude that M � � but M may not satisfy ♦�; and that each world in M
falsifies ⊥, though it may happen that M � �⊥.

350 CHAPTER 11. MODAL LOGIC K

11.3 VALIDITY AND CONSEQUENCE IN K
A model has been taken as a triple (W,R,φ), where φ prescribes which atomic mps
are true at which worlds. The relation �of satisfaction between worlds and arbitrary
mps is an extension of this φ from the atomic mps to all mps. The extension must, of
course, satisfy the defining properties of � as discussed earlier. Therefore, we write
a model as the triple (W,R,�) also.

There is a possible confusion in this notation and you should be aware of it.
The relation � changes from one model to another model. Earlier, the notation φ
was keeping record of it. Now we must write � as �M to remind ourselves of this
dependence. As usual, we omit this subscript unless there is any confusion due to
involvement of many models in a given context.

A modal proposition x in K is said to be K-valid or valid in K, and written as
�K x iff for each model M, M � x. For simplicity, a K-valid mp x is also called as
valid and written as � x. We write � x when the mp x is not valid.

EXAMPLE 11.7. Show that � �(p∧q)→�p∧�q.
We are not going to draw any model here since we are supposed to argue with any

arbitrary model. So, let M = (W,R,�) be any model (any K-model), and let w∈W. If
w ��(p∧q), then w ��(p∧q)→�p∧�q. Otherwise, suppose that w ��(p∧q).
To show that w ��p∧�q, let u be a world accessible from w, i.e., u ∈W and wRu.
Since w ��(p∧q), each world accessible from w satisfies p∧q, i.e., u � p∧q. Then
u � p and u �q. This holds for any arbitrary world u that is accessible from w. Hence,
w ��p and w ��q. Therefore, w ��p∧�q.

Since w is any arbitrary world in W , M � �(p∧ q)→ �p∧�q. Since M is an
arbitrary model, � �(p∧q)→�p∧�q.

In contrast, Example 11.6 shows that � �(p∨q)→�p∨�q.
Some of the important K-valid modal propositions are listed below.

Theorem 11.2 (Laws in K). In the modal logic K, the following laws hold:
(1) CONSTANTS � ��↔�, �♦⊥↔⊥.
(2) DE MORGAN � ¬�p↔♦¬p, � ¬♦p↔�¬p.
(3) ∧-DISTRIBUTIVITY � �(p∧q)↔ (�p∧�q).
(4) ∨-DISTRIBUTIVITY �♦(p∨q)↔ (♦p∨♦q).
(5) →-DISTRIBUTIVITY � �(p→ q)→ (�p→�q).

Many K-valid modal propositions can be obtained by substituting mps in place
of propositional variables in PL-valid propositions. This is so because each world in
K is propositional and retains validity of PL. See the following theorem.

Theorem 11.3 (Tautological Replacement). Let p be a propositional variable; A
be a proposition (in PL); and let q be a modal proposition. Denote by A[p := q] the
modal proposition obtained by substituting each occurrence of p by q in A. If A is
valid in PL, then A[p := q] is valid in K.

Proof. Let M = (W,R,�) be a model, and let w ∈W be a world. Suppose that A is
valid in PL. Note that A is also an mp. Since w is propositional, the world w is a
PL-interpretation. Since A is valid, w �A.

11.3. VALIDITY AND CONSEQUENCE IN K 351

Further, w �A holds whether w � p holds or not. (Imagine w � p as w(p) = 1 and
w � p as w(p) = 0.) When p is replaced by q in A, the satisfaction of the resulting
formula A[p := q] would not change whether w �q holds or not. Thus, satisfaction
of A[p := q] would be the same as that of A. That is, w �A[p := q]. Since w ∈W is
any world, M � A[p := q]. Since M is an arbitrary model, A[p := q] is K-valid. �

Notice that you can substitute many propositional variables by the correspond-
ing mps simultaneously as in Theorem 2.10. You now have a scheme to generate
infinitely many K-valid mps using tautologies (of PL). Stretching similarity with PL
a bit, we ask: does equivalence replacement hold in K?

We say that the modal propositions A and B are equivalent (in K), and write it
as A≡KB iff �KA ↔ B. If there is no confusion, we will drop the subscript K and
simply write the equivalence as A≡ B. We also write Z[A :=e B] for the mp obtained
from Z by substituting some or all or no occurrences of A in Z by B, when A ≡ B.
See Theorem 2.11 and its proof for proving the statement below.

Theorem 11.4 (Equivalence Replacement). Let A,B and Z be modal propositions.
Denote by Z[A :=e B] the modal proposition obtained from Z by substituting some
(or all or no) occurrences of A by B. If A≡ B, then Z[A :=e B]≡ Z.

Thus, any instance of a valid modal proposition is again a valid modal proposi-
tion. Moreover, in the calculational style, you can write � Z as Z ≡�, the way you
did in PL. There are, of course, many differences between K and PL, the connection
being that K is an extension of PL and each world in K is an interpretation in PL.

We want to define the notion of consequence in K. For two propositions (In PL)
A and B, we say that A � B when each model of A is also a model of B. For two
FL-formulas A and B, the entailment A � B holds whenever each state-model of A
is a state-model of B. If A and B are sentences, then A � B holds whenever each
model of A is a model of B. The first type of entailment supersedes the second type.
The situation in K is similar to that in FL, albeit, we need to keep both the types of
entailments.

Let G and L be sets of modal propositions. Let A be a modal proposition. We say
that G weakly entails A, and write as G⇒ A, iff for each model M, if M satisfies all
the mps in G, then M satisfies A. You may read⇒ as ‘implies’ also.

We say that L strongly entails A, written as L � A, iff for each model M =
(W,R,�) and for each world w ∈W, if w satisfies all the mps in L, then w satisfies A.
You may read � as ‘entails’.

Further, A is said to be a valid consequence with global assumption G and local
assumption L , written as G⇒ L � A, iff for each model M = (W,R,�) satisfying
all the mps in G and for each world w ∈W satisfying all the mps in L, w �A holds.

Let M be a model, and let w be a world. If Σ is a set of mps, we write M � Σ
whenever M � x for each x ∈ Σ. Similarly, if w � x holds for each x ∈ Σ, we write
w �Σ. Then, G⇒ L � A holds iff for each model M with M � G and for each world
w in M with w �L, one has w �A.

If G = ∅, then each model M satisfies each mp in G vacuously; the same also
happens when G = {�}. Then, the validity of the consequence with global assump-
tion G and local assumption L reduces to the stronger entailment from L. That is,

352 CHAPTER 11. MODAL LOGIC K

both ∅⇒ L � A and �⇒ L � A are same as L � A.

If L = ∅, then each world w in M (with M � G) satisfies each mp in L vacuously;
the same also happens if L = {�}. Now the consequence becomes equivalent to the
weak entailment from G. That is,

both G⇒∅ � A and G⇒ {�} � A are same as G⇒ A.

It is also clear that strong entailment is stronger than the weak entailment as their
names suggest. That is,

if Σ � A, then Σ⇒ A.

The converse does not hold, in general; see Example 11.8 below.
Moreover, if any of the sets G or L is a singleton, we will not write the braces

around them while writing out the consequence relations, to save space. That is,

{B}⇒ {C} � A will be written as B⇒C � A.

EXAMPLE 11.8. Show: (a) �p→ p⇒��p→�p (b) �p→ p � ��p→�p

(a) We consider all models that satisfy the mp �p→ p, and then show that any world
in such a model also satisfies ��p→�p.

So, let M = (W,R,�) be a model such that M ��p→ p. Let w ∈W be such that
w ���p. Let u ∈W be a world accessible from w (i.e., wRu). Then u ��p. As
M � �p→ p, for each world v ∈W, v ��p→ p. In particular, u ��p→ p. Using
the fact that u ��p, we conclude that u � p. But u is any arbitrary world accessible
from w. Hence, w ��p. We have shown that if w ���p, then w ��p. Therefore,
w ���p→�p. This proves that �p→ p⇒��p→�p.

(b) To show that �p→ p � ��p→�p, consider the model

M : w ✲ u
� p

In this model, u satisfies all atomic mps except p. The only world accessible from w
is u, and u � p; so w ��p. Vacuously, w ��p→ p. Further, w ���p iff u ��p iff
each world accessible from u satisfies p, which again holds vacuously. But w ��p.
Hence w ���p→�p. Consequently, �p→ p � ��p→�p.

EXAMPLE 11.9. Show that �(p→ q) � �p→�q.
Let M = (W,R,�) be a model, and let w ∈W be a world with w ��(p→ q). If

w ��p, then w ��p→ �q, and we are through. Otherwise, assume that w ��p.
We want to show that w ��q. Let u be any world accessible from w. Since w ��p,
we have u � p. Since w ��(p→ q), we also have u � p→ q. Then, u �q. In this
case also, w ��q.

Therefore, we conclude that �(p→ q) � �p→�q.

11.3. VALIDITY AND CONSEQUENCE IN K 353

EXAMPLE 11.10. Show that �p→ p⇒�(¬p→ p) � p∨♦p.
Here, �p → p is a global assumption and �(¬p → p) is a local assumption.

So, we consider all models with �p → p, and any world w in such a model with
w ��(¬p→ p), and then try to show that w also satisfies p.

Let M = (W,R,�) be a model, and let M � �p→ p. Suppose w ∈W is a world
such that w ��(¬p→ p). Due to→-distributivity, we have w ��¬p→ �p. Then,
either w ��¬p or w ��p. If w ��¬p, then w �¬�¬p. By the law of De Morgan,
¬�¬p≡♦p. Hence, w �♦p. On the other hand, if w ��p, then with w ��p→ p
(since M � �p→ p), we have w � p. In either case, w � p∨♦p.

We start exploring the properties of the consequence relation in K.

Theorem 11.5 (Monotonicity in K). Let A be an mp. Let G,G�,L,L� be sets of mps
such that G⊆ G� and L⊆ L�. If G⇒ L � A, then G� ⇒ L� � A.

Proof. Let G ⇒ L � A. Let M = (W,R,�) be a model with M � G�. Let w ∈W
satisfy L�. Then, M � G and also w � L. As G ⇒ L � A, we have w �A. Thus,
G� ⇒ L� � A. �

Theorem 11.6 (Deduction Theorem). Let G and L be sets of mps. Let X and Y be
mps. Then the following are true:

(1) (LD: Local) G⇒ L∪{X} � Y iff G⇒ L � X → Y.

(2) (GD: Global) G∪{X}⇒ L � Y iff G⇒ L∪{X ,�X ,��X , . . .} � Y.

Unlike a single form for PL, the deduction theorem has two forms in K. One,
where the antecedent of the conclusion comes to the local premises; and another,
where it comes to the global premises in some form. The proof of the Deduction
theorem is left as an exercise. Analogous to PL, compactness holds in K; see Exer-
cise 5.

Exercises for § 11.3
1. Prove the laws listed in Theorem 11.2.
2. Using Tautological Replacement show that the following mps are K-valid:

(a) �p∨¬�p
(b) ♦p∨¬♦p
(c) (�p→♦q)↔ (�p↔ (�p∧♦q))
(d) (�p→ (♦q→♦p))→ ((�p→♦q)→ (�p→♦p))

3. Consider the cases G ⊆ G� but L �⊆ L�; and G �⊆ G� but L ⊆ L�. Will still the
metastatement “If G � L⇒ A, then G� � L� ⇒ A” hold in these cases?

4. Prove Theorem 11.6.
5. (Compactness of K) Let G and L be infinite sets of modal propositions, and

let A be a modal proposition such that G⇒ L � A. Prove that there exist finite
subsets G� of G and L� of L such that G� ⇒ L� � A.

354 CHAPTER 11. MODAL LOGIC K

11.4 AXIOMATIC SYSTEM KC
Historically, axiomatic systems for modal logics precede the semantic characteriza-
tion. Since we have discussed semantics first, we now wish to characterize valid mps
through proofs. We will keep the flavour of PC in presenting an axiomatic system,
called KC (K-calculus) for the logic K. In fact, KC is an extension of PC.

As in PC, the connectives ∧,∨,↔ and the constants �,⊥ are defined from the
basic ones such as ¬ and→. Further, the modal connective ♦ is defined from ¬ and
� via De Morgan’s law: ♦A ≡ ¬�¬A, now, to be adapted as a definition. So, the
basic symbols of KC are the propositional variables, the connectives ¬,→, and the
modal operator �. The following are the axiom schemes, and the rules of inference
of KC:

Axiom Schemes of KC

(A1) A→ (B→ A)

(A2) (A→ (B→C))→ ((A→ B)→ (A→C))

(A3) (¬A→ ¬B)→ ((¬A→ B)→ A)

(K) �(X → Y)→ (�X →�Y)

Rules of Inference of KC

(MP)
X X → Y

Y

(N)
X

�X

The rule of inference N stands for necessitation. It allows deriving �X from
X . It means that if X is provable, then �X is also provable. It does not assert that
X →�X is provable!

See § 2.3 for the definitions (D1)-(D5) of ∧,∨,↔,�, and ⊥. Along with those,
we have the following definition of the modal operator ♦:

(D) ♦A � ¬�¬A

Such a definition is used in a proof via the rule of inference (RD), which we
repeat below:

(RD)
X � Y Z

Z[X := Y]
X � Y Z

Z[Y := X]

A proof in KC is, a finite sequence of mps, each of which is either an axiom (an
instance of an axiom scheme) or is derived from earlier mps by an application of an
inference rule. The last mp in a proof (sequence) is called a theorem in KC. If A is a
theorem (in KC), we also say that A is provable (in KC) and also that A has a proof;
the proof is said to prove A in KC. If no other logic is involved, we will simply omit

11.4. AXIOMATIC SYSTEM KC 355

writing “in KC”. The fact that an mp A is a theorem in KC is written as � A, as a
shorthand for �KCA.

We will follow the same three-column way of writing proofs. The third column
shows the rule or axiom that has been used in the same line. We write ‘P’ when a
premise is used. However, we will make a short cut.

Suppose that you want to show that �p → �p is a theorem in KC. Then, you
essentially repeat the PC-proof of p→ p. Instead of repeating such PC-proofs, we
will concentrate on the peculiarity of KC. We thus agree to use all PC theorems as
axioms, documenting it as PC. Note that this will not affect the effectiveness of the
axiomatic system KC since we can always go back to the three axioms of PC and the
inference rule MP for deriving the PC-theorems.

Recall the difficulties you have encountered while constructing proofs in PC in
the absence of metatheorems such as the deduction theorem and RA. So, instead of
going for proofs straight away, we will have some results of this kind. We will not
attempt at many such results since our interest is not in generating more and more
theorems in KC, but only to show that the logic K can be captured effectively by an
axiomatic system.

Theorem 11.7 (Regularity). The following rule of inference, called regularity, is a
derived rule in KC.

(R)
X → Y

�X →�Y

Proof. The following is a proof of this rule:
1. X → Y P
2. �(X → Y) N
3. �(X → Y)→ (�X →�Y) K
4. �X →�Y MP �

Theorem 11.8 (Biconditional Replacement). Let X ,X �,Y and Y � be modal propo-
sitions such that Y is a substring of X . Let X � be obtained from X by replacing some
(or all or no) occurrences of Y by Y �. If Y ↔ Y � is provable, then X ↔ X � is also
provable.

Proof. Use induction on the number of occurrences of ¬,→, � in X . �

You may formulate the rule BP corresponding to the Biconditional Replacement.
As noted earlier, we use all derived rules of PC as derived rules (e.g., HS) of KC in
proofs. We may also use all the connectives of PL along with � and⊥ instead of the
only connectives ¬ and→ .

EXAMPLE 11.11. Show that ��(p∧q)→ (�p∧�q).

1. p∧q→ p PC

2. �(p∧q)→�p R

3. p∧q→ q PC

4. �(p∧q)→�q R

356 CHAPTER 11. MODAL LOGIC K

5. (�(p∧q)→�p)→
((�(p∧q)→�q)→ (�(p∧q)→ (�p∧�q))) PC

6. (�(p∧q)→�q)→ (�(p∧q)→ (�p∧�q)) 2, MP

7. �(p∧q)→ (�p∧�q) 4, MP

EXAMPLE 11.12. Show that � (�p∧�q)→�(p∧q).

1. p→ (q→ (p∧q)) PC

2. �p→�(q→ (p→ q)) R

3. �(q→ (p→ q))→ (�q→�(p→ q)) K

4. �p→ (�q→�(p∧q)) HS

5. (�p∧�q)→�(p∧q) PC

EXAMPLE 11.13. Show that ��(p→ q)∧�(q→ r)→�(p→ r).

1. �(p→ q)∧�(q→ r)→�((p→ q)∧ (q→ r)) Ex.11.12

2. (p→ q)∧ (q→ r)→ (p→ r) PC

3. �((p→ q)∧ (q→ r))→�(p→ r) R

4. �(p→ q)∧�(q→ r)→�(p→ r) 1, HS

EXAMPLE 11.14. Show that � ♦♦p↔ ¬��¬p.

1. ♦♦p↔ ¬�¬♦p RD

2. ♦p↔ ¬�¬p RD

3. ♦♦p↔ ¬�¬¬�¬p 1, 2, BP

4. ¬¬�¬p↔�¬p PC

5. ♦♦p↔ ¬��¬p 3, 4, BP

Exercises for § 11.4

Show the following in KC:

1. ��(p→ q)→ (♦p→♦q)

2. � ♦(p→ q)→ (�p→♦q)

3. ��p→�(q→ p)

4. � ¬♦p→�(p→ q)

5. � ♦(p∨q)→♦p∨♦q

6. � (♦p∨♦q)→♦(p∨q)

11.5. ADEQUACY OF KC TO K 357

11.5 ADEQUACY OF KC TO K
Is the system KC adequate to the logic K? To show that KC is sound, we simply
verify that each axiom of KC is valid (K-valid). Further, we must ensure that by
using the inference rules of KC on valid mps, we get only valid mps.

It is easy to show that each axiom of KC is K-valid. In fact, we have already
done it; find out where. Let us look at the inference rules. The rule MP is sound; it
follows from the soundness of PC. But we must see this in the modal setting of K.

Suppose that M = (W,R,�) is a model and w ∈W. If M � p and M � p → q,
then w � p and w � p→ q. As each world is propositional, we have w �q, by MP in
the world w. Since w is any arbitrary world, we conclude that M � q. Thus follows
the soundness of MP in K.

What about necessitation? We argue with accessible worlds. Let M = (W,R,�)
be a model and M � p. We want to show that for each world w ∈W, w ��p. So,
let w ∈W be an arbitrary world. Let u ∈W be a world accessible from w. Since
M � p, for each world v ∈W, v � p. In particular, u � p. It follows that w ��p;
consequently, M � �p. This completes the soundness of necessitation.

Finally, use induction on the length of proofs to conclude that each KC-provable
mp is K-valid to complete the proof of the following metatheorem.

Theorem 11.9 (Soundness of KC). Let X be any modal proposition. If � X in KC,
then � X in K.

As it happened for PC, completeness involves more work. We will take the ap-
proach of maximally consistent sets of modal propositions and prove the Linden-
baum Lemma.

A finite set of modal propositions {X1,X2, . . . ,Xn} is said to be KC-consistent,
iff X1∧X2∧ · · ·∧Xn →⊥ is not provable in KC. An infinite set is KC-consistent iff
each finite subset of it is KC-consistent. A set Γ of modal propositions is maximally
KC-consistent iff (a) Γ is consistent, and (b) if any superset Δ⊇ Γ is KC-consistent,
then Δ = Γ.

Lemma 11.1 (Lindenbaum Lemma). For any KC-consistent set Σ of modal propo-
sitions, there exists a maximally consistent set Σ� ⊇ Σ of modal propositions.

Proof. The set of all mps is countable. Let X0,X1,X2, . . . be an enumeration of all
mps. Let Σ be the given KC-consistent set of mps. Define inductively the sets Σm by

Σ0 = Σ; Σn+1 =

�
Σn∪{Xn+1} if Σn∪{Xn+1} is KC-consistent
Σn otherwise.

As in PC, each Σn is KC-consistent (Show it.). Let Σ� = ∪n∈NΣn. Now, Σ ⊆ Σ�. If
Σ� is not KC-consistent, then there is a finite subset, say, Σ∗ ⊆ Σ� such that Σ∗ is not
KC-consistent. Due to the enumeration of all mps, Σ∗ ⊆ {X0,X1, . . . ,Xm} for some
m ∈ N. But then, Σ∗ ⊆ Σm (Why?). This implies that Σm is not KC-consistent, a
contradiction. Thus, Σ� is KC-consistent.

If Σ� is not maximally KC-consistent, then there is a proper superset of Σ� which
is KC-consistent. Due to the enumeration of all mps, we get one Xk such that Xk �∈ Σ�

358 CHAPTER 11. MODAL LOGIC K

and Σ� ∪{Xk} is KC-consistent. Since Σk−1 ⊆ Σ�, Σk ⊆ Σ� ∪{Xk}, and Σk−1∪{Xk} is
KC-consistent, we have Xk ∈ Σk ⊆ Σ�. This contradicts the fact that Xk �∈ Σ�. Thus, Σ�
is the required maximally KC-consistent extension of Σ. �

Remark 11.1. In the proof of Lindenbaum lemma, we have used the countability
of the set of all mps. When a modal logic is constructed basing on an uncountable
alphabet, we may require to use Zorn’s lemma as in the proof of Theorem 2.2. Notice
that the finiteness property is included in the definition of an infinite consistent set.

Our next job is to see how to use a maximally KC-consistent extension of Σ to
construct a model that would satisfy it. There can be many maximally KC-consistent
extensions of the same set Σ. Generalizing a bit, we consider all possible maximally
KC-consistent sets of mps. Each one of them is a maximally KC-consistent extension
of some set(s). In fact, we take each such maximally KC-consistent set as a world.
Let the set of worlds W be the set of all such maximally KC-consistent sets. For
worlds w,u ∈W, define the relation R (a subset of W ×W) by

wRu iff for each mp of the form �X in w, X ∈ u.

Define the satisfaction (�) of an atomic modal proposition at a world w by

for each atomic mp p, w � p iff p ∈ w.

The model (W,R,�) so constructed, is called a canonical model. Truth or satisfac-
tion of an atomic mp can be extended for all mps by induction. We then have the
following result.

Lemma 11.2 (Truth Lemma). Let M = (W,R,�) be the canonical model. Let X be
any modal proposition, and let w be any world in W. Then w �X iff X ∈ w.

We are ready to prove the completeness of KC.

Theorem 11.10 (Completeness of KC). For any modal proposition X , if � X in K,
then �KC X .

Proof. We show the contrapositive. Suppose that X is not KC-provable. Then, {¬X}
is KC-consistent. Lindenbaum lemma says that there is a maximally KC-consistent
extension w of {¬X}. That is, w is a world in the canonical model M = (W,R,�) such
that ¬X ∈ w and w is maximally KC-consistent. Since w is KC-consistent, X �∈ w.
By the Truth lemma, w �X . Then, M � X ; and X is not K-valid. �

Theorems 11.9 and 11.10 together show that KC is adequate to the logic K. For
discussing the strong adequacy, we require to formulate the proof theoretic versions
of Σ � X and of Σ⇒ X . We will first extend the idea of a consequence in KC, via
derivations, and then see whether it is adequate to strong or weak entailment.

Let Σ be a set of mps, and let X be an mp. A KC-derivation of X from Σ is a
finite sequence of mps such that each mp in the sequence is either an axiom of KC, or
a member of Σ (a premise), or is derived from earlier mps by an application of modus
ponens (MP) or necessitation (N); further, X must be the last mp of the sequence. If
there is a KC-derivation of X from Σ, we write Σ � X in KC (for precision, Σ�KCX).

In fact, KC-derivations define the notion of provability of a KC-consequence.
If there is a KC-derivation of X from Σ, we say that “the consequence Σ !�X is

11.6. NATURAL DEDUCTION IN K 359

KC-provable”. We often omit writing the outer braces while writing a finite set of
premises, and use the same three-column style of writing a derivation. Of course,
any derived rule of inference, which comes from earlier derivations, can also be used
in a derivation.

EXAMPLE 11.15. Show that {�p→ p, ��p} ��p in KC.

1. �p→ p P

2. �(�p→ p) N

3. �(�p→ p)→ (��p→�p) K

4. ��p→�p MP

5. ��p P

6. �p MP

EXAMPLE 11.16. Show that {�p→ p, p→ q} ���p→ q in KC.

1. �p→ p P

2. ��p→�p R

3. ��p→ p HS

4. p→ q P

5. ��p→ q HS

Since the rule of necessitation is used in a derivation, a KC-consequence cap-
tures the notion of weak entailment. Using adequacy of KC to K, and the deduc-
tion theorem, you can prove that Σ � X in KC iff Σ⇒ X . Notice that X � �X , but
� X → �X ; further, � X → �X is equivalent to X � �X . Therefore, the notion of
KC-consequence does not capture the strong entailment.

In general, there is also a notion of axiomatic version of a consequence with
global and local assumption. However, we do not have “strong adequacy” in the
case of a consequence with global and local assumptions.

Exercises for § 11.5
1. Prove Theorem 11.9 and Lemma 11.2.
2. Use the deduction theorem and the completeness of KC to prove that Σ⇒ w

in K iff Σ � w in KC.
3. Formulate and prove compactness theorem for K in terms of satisfiability.

11.6 NATURAL DEDUCTION IN K
The situation reminds us the inference rule of universal generalization (UG) in FC.
UG states that from X , derive ∀xX . In the case of FC and FL, we have seen that
Σ � X and Σ � X coincide provided that in the proof of Σ � X , UG has not been
used on a free variable of any premise (just as in the deduction theorem). We have

360 CHAPTER 11. MODAL LOGIC K

not mentioned this condition in the strong adequacy theorem of FC because, our
formulation of UG in FC already takes care of this restriction. This restricted version
cannot be formulated in KC since in a derivation of �X , we do not have any trace
of a world. You must look at the strong deduction theorem for a modification of KC
that might take care of the notion of strong entailment.

However, in a natural deduction proof, we might succeed by using a box as a
book-keeping device for worlds. For a natural deduction system, we keep all the
inference rules of PND, remembering that the propositions are now treated as mps.
We must have some rules for � and ♦. We plan to have an introduction rule for �,
an elimination rule for �, and then regard the connective ♦ as ¬�¬, as in KC.

The natural deduction system for K is named as KND. The system KND includes
all the rules such as∧i,∧e,∨i,∨e, . . . of Section 4.2. The additional rules for handling
the modal connective � are:

(�i)
· · ·X

�X
(�e)

�X

· · ·X · · ·

The dashed boxes for the connective � are different from the solid boxes used for
other rules. The contents inside the dashed boxes are written horizontally in the rules,
but in an actual proof, they come vertically. In the rule (�i), the · · · represent many
mps preceding the mp X . Similarly, the · · · before and after X in the rule (�e) also
represent possibly many mps preceding and following X . These rules are intended to
reason in any arbitrary accessible world.

Remember that going into a solid box means assuming the first formula in it.
And after it is closed, the conclusion “first line → last line” is written on the line
immediately below the box.

A dashed box serves a similar but different purpose. For the rule (�i), a dashed
box can be created with any opening line, but that line should have been justified
by other rules (unlike an extra assumption in a solid box). The box begins there,
meaning that from that line onwards, until the box closes, we are reasoning in a fixed
but arbitrary world. Now, when we deduce X in this arbitrary world, we can close
the box, showing that in any arbitrary world, X holds. Therefore, �X must hold. We
record it by closing the box and writing �X on the next line.

Similarly, if �X occurs as a line in a proof, then, in any arbitrary world the mp X
is true. and this time the scope for going into this arbitrary world can be any fragment
of the proof. This is the rule (�e).

Read the rules for �-introduction and �-elimination as in the following:

(�i): If X occurs at the end of a dashed box, then �X may be introduced after
(closing) the dashed box.

(�e): If �X occurs somewhere in a proof, then X may be introduced anywhere
into a subsequent dashed box.

In general, the dashed boxes are introduced due to an occurrence of �X . In KND-
proofs, both solid and dashed boxes would appear, and they may be nested without

11.6. NATURAL DEDUCTION IN K 361

crossing, as usual. Again, for the provability of a consequence with premises in Σ
and conclusion X , we write Σ �KND X .

EXAMPLE 11.17. The following is a proof of �KND �(p→ q)→ (�p→�q).

1. �(p→ q) CP

2. �p CP

3. p �e

4. p→ q 1,�e

5. q MP

6. �q �i

7. �p→�q →e

8. �(p→ q)→ (�p→�q) →e

In the above KND-proof, we have quoted the rule (→e) from PND. Analogous
to KC, we may also abbreviate KND-proofs by assuming all PND consequences as
a single rule, and mention only PND. In the following example, write the exact PND
rule that has been applied at each mention of PND.

EXAMPLE 11.18. The KND theorem �KND �(p∧ q)↔ �p∧�q is shown by
proving �KND �(p∧q)→�p∧�q and �KND �p∧�q→�(p∧q) separately.

1. �(p∧q) P

2. p∧q �e

3. p PND

4. �p �i

5. p∧q 1,�e

6. q PND

7. �q �i

8. �p∧�q 4,7,PND

9. �(p∧q)→�p∧�q PND

1. �p∧�q P
2. �p ∧e

3. �q 1,∧e

4. p 2,�e

5. q 3,�e

6. p∧q PND

7. �(p∧q) �i

8. �p∧�q→�(p∧q) PND

EXAMPLE 11.19. A proof of �KND♦(p→ q)→ (�p→♦q) is as follows.

362 CHAPTER 11. MODAL LOGIC K

1. ♦(p→ q) CP

2. �p CP

3. ¬♦q CP
4. ¬¬�¬q Def of ♦
5. �¬q PND

6. p �e

7. ¬q �e

8. ¬(p→ q) 6, 7, PND

9. �¬(p→ q) �i

10. ¬�¬(p→ q) 1, Def of ♦

11. ♦q 3, 9, 10, PND

12. �p→♦q → i

13. ♦(p→ q)→ (�p→♦q) → i

You may also dispense with the boxes and make nesting as is done in PND.

Exercises for § 11.6
Construct KND-proofs to show the following:
1. �KND �(p→ q)→ (♦p→♦q) 2. �KND ♦♦p↔ ¬��¬p
3. �KND �p→�(q→ p) 4. �KND ¬♦p→�(p→ q)
5. �KND ♦(p∨q)→♦p∨♦q 6. �KND (♦p∨♦q)→♦(p∨q)

11.7 ANALYTIC TABLEAU FOR K
In KC, we have had difficulty with the rule “from X derive �X”. It has led us to
choose between the stronger or weaker entailments � or ⇒ . We have seen that this
rule does not keep track of the world in which the mp X might have been satisfied so
that we had to interpret the rule “from X derive �X” on the meta-level. That is, this
rule has been interpreted as

for each model M, if M satisfies X , then M satisfies �X .

A dashed box (for the rule �e) in KND says that if an mp X is satisfied in any
arbitrary world, then �X must also be satisfied in each world. This means

for each model M, if each world in M satisfies X , then each world in M
satisfies �X .

It is the same as in KC; the dashed boxes do not really improve the situation. We
need to improve it to the level where we may assert the following:

11.7. ANALYTIC TABLEAU FOR K 363

For each model M, for each world w in M, if w satisfies X , then w
satisfies �X .

This is similar to the eigenvariable condition in GFC. The idea is that the vari-
able on which universal generalization is applied is somehow tracked in the proof.
Analogously, we must have a way to represent the worlds that are accessible from
these worlds; and at the same time, we should not also lose any world!

A simple way is to name all the worlds accessible from 1 as 1.1, 1.2, 1.3, . . .
Similarly, a world accessible from 1.1 would be named as 1.1.1, 1.1.2, 1.1.3, . . .
Remember that these numbers with dots stand for names of worlds. We plan to use
these as prefixes of mps, meaning that the mp is true at the world.

A modal prefix is a finite sequence of positive integers, the integers being sep-
arated by dots (a single dot at a time) in between. If m is a modal prefix and X is
a modal proposition, then m X written with a blank in between is called a prefixed
modal proposition.

For example, 1.2.1 �X → X is a prefixed modal proposition, with the modal
prefix 1.2.1. The modal prefix 1.2.1 stands for a world accessible from a world named
1.2, which is again accessible from the world named 1. The method of analytic
tableau uses the prefixed mps.

The rules for expansion of a tableau, called the tableau rules, are the same as
those in PT, each coming with a prefix now. In addition, we have rules for the two
modal connectives � and♦. Like ∧ and ∨ the modal connectives � and♦ act dually.

Tableau expansion rules for K: The four types of rules, namely, Stacking rules,
Branching rules, Necessity rules, and Possibility rules, are as follows.

1. Stacking Rules

(¬¬) m ¬¬X
m X

(¬�) m ¬�
m ⊥

(∧) m (X ∧Y)
m X

(¬∨) m ¬(X ∨Y)
m ¬X

m Y m ¬Y

(¬→)
m ¬(X → Y)

m X
m ¬Y

2. Branching Rules

(∨) m (X ∨Y)
m X m Y

(¬∧) m ¬(X ∧Y)
m ¬X m ¬Y

(→)
m (X → Y)

m ¬X m Y

(↔)
m (X ↔ Y)

m X m ¬X
(¬↔)

m ¬(X ↔ Y)
m X m ¬X

m Y m ¬Y m ¬Y m Y

364 CHAPTER 11. MODAL LOGIC K

3. Necessity Rules

(�)
m �X
m.n X

(¬♦) m ¬♦X
m.n ¬X

4. Possibility Rules

(♦) m ♦X
m.n X

(¬�)
m ¬�X
m.n ¬X

where the prefix m.n is new to the branch.
In the rule for (�) the prefix m.n can have any n; however, as a heuristic, we take

the prefix m.n as one which has already occurred in the path. This goes in parallel to
the rules ∀ and ¬∃, where instead of ‘any term’, it is enough to take only those terms
which already occur in the path. The appearance of m �X in a branch means that
“�X is true at a world named m”. Then, X must be true at each world named m.n
accessible from m. Also, the prefix m.n in the possibility rules must be new prefixes.

The tableau proof of a modal proposition X starts with the prefixed modal propo-
sition 1 ¬X . Then the rules are applied to extend the tree. A path in such a tree
(tableau) is called a closed path when it contains either m ⊥ or two mps of the form
m Y and m ¬Y. Note that both Y and ¬Y should have the same prefix m. A path which
is not closed, is called an open path.

A tableau is called a closed tableau if each path of it is a closed path. A closed
tableau for the prefixed modal proposition 1 ¬X means that there cannot be any world
named 1 where ¬X may be true (satisfied). However, the name 1 is an arbitrary
name; thus it means that the mp ¬X cannot be true at any world. Of course, we
assume implicitly that there are at most a countable number of worlds. The closed
tableau with 1 ¬X as its root is called a tableau proof of the mp X . This is again a
proof by contradiction showing that the mp X is K-valid. A tableau theorem is an
mp for which there is a tableau proof. We will write �KT Z, or just � Z if no confusion
arises, whenever the mp Z is a tableau theorem.

The tableau system with the above rules is named as KT.

EXAMPLE 11.20. The tableau proofs of the following are shown below.
(a) �KT �p∧�q→�(p∧q) (b) �KT �p∧♦q→♦(p∧q)

1 ¬(�p∧�q→�(p∧q))
1 �p∧�q

1 ¬�(p∧q)
1 �p
1 �q

1.1 ¬(p∧q)

1.1 ¬q
1.1 q
×

1.1 ¬p
1.1 p
×

1 ¬(�p∧♦q→♦(p∧q))
1 �p
1 ♦q

1 ¬♦(p∧q)
1.1 q

1.1 ¬(p∧q)

1.1 ¬q
×

1.1 ¬p
1.1 p
×

(a) (b)

11.7. ANALYTIC TABLEAU FOR K 365

Notice that in (a), the prefixed mp 1.1 ¬(p∧q) is obtained by applying (¬�) on
the third line and the prefixed mps 1.1 p and 1.1 q on the last line are obtained from
the fourth and the fifth lines, respectively.

Similarly, in (b), look at the prefixes with dots; 1.1 q comes from ♦q, where
1.1 is a new prefix. The next prefixed mp 1.1 ¬(p∧ q) comes from ¬♦(p∧ q) by
applying the necessity rule (¬♦); this allows an old prefix. Other prefixed mps are
obtained propositionally, i.e., by stacking and branching rules.

EXAMPLE 11.21. The tableau proof of ��p∨�q→�(p∨q) is as follows.

1 ¬(�p∨�q→�(p∨q))
1 �p∨�q

1 ¬�(p∨q)
1.1 ¬(p∨q)

1.1 ¬p
1.1 ¬q

1 �q
1.1 q
×

1 �p
1.1 p
×

Since we are able to keep track of the worlds where an mp may be true, we expect
to capture the general consequence of the type G ⇒ L � X . Recall that in such a
consequence, G is a set of global assumptions and L is a set of local assumptions.
The consequence G ⇒ L � X holds (or is K-valid) when X is true at a world of a
model at which all the members of G are true, and if all the members of L are true at
each world of that model.

Tableau method is a refutation method, where the negation of the conclusion is
taken as an assumption, and then confirming that there is no way of constructing a
world. Since the negation of a conclusion needs to concern about world and not only
a model, it is required to be added as a local assumption. Therefore, the prefixes of
all local assumptions and the conclusion must be same. We make it a convention to
start the tableau with such a world being named as 1. That is, all members of L and
¬X will have the same prefix 1 to start a tableau.

However, any member of G may be prefixed in any way we like. We will then
have two additional tableau rules for handling the local and global assumptions.

Let G and L be sets of modal propositions. Let X ∈ L and Y ∈ G be two modal
propositions. The rules are given in the following:

(LA)
·

1 X
(GA)

·
m Y

The rules of local assumption (LA) says that if X ∈ L, then add 1 X to any open
path of the tableau. Similarly, the rule of global assumption (GA) says that if Y ∈G
then add m Y to any open path of the tableau, for any prefix m.

366 CHAPTER 11. MODAL LOGIC K

In fact, the prefix m in the rule (GA) is usually taken as one which has already
occurred in the path. We start the tableau with 1 ¬X on the root and expand it using
all the tableau rules including LA and GA. If the tableau closes, then it is called a
derivation of the consequence G⇒ L � X . Keep it in mind that ∅⇒ L � X is the
strong consequence L � X , and G⇒∅ � X is the weak consequence G⇒ X .

EXAMPLE 11.22. The tableau derivations of the following are given below.

(a) �p→ p⇒��p→�p (b) �p→ p � ��p→�p

1 ¬(��p→�p)
1 ��p
1 ¬�p
1.1 ¬p
1.1 �p

1.1 �p→ p

1.1 p
×

1.1 ¬��p
×

1 ¬(��p→�p)
1 �p→ p

1 ��p
1 ¬�p

1 p
1.1 ¬p

1 ¬�p
1.1 ¬p
1.1 �p
1.1.1 p

(a) (b)

The sixth line in the tableau for (a) is the global assumption and the prefix 1.1 is
used with this according to the rule (GA). Give justifications to the other lines. Since
the tableau closes, it is a derivation establishing the consequence in (a).

In the tableau for (b), neither the left path nor the right path closes since the
prefixes of the complementary propositions do not match. Hence the attempt fails. It
is no surprise since �p→ p � ��p→�p.

The difference between the consequences in (a) and (b) in Example 11.22 is that
the mp �p→ p is taken as a global assumption in (a), while in (b), it is taken as a
local assumption. Check the terminology once again; when something is assumed
globally, the assumption is stronger, consequently, the consequence becomes weaker.
While, if the same mp is assumed locally, the assumption is a weaker assumption,
and if the consequence holds, it is a stronger consequence.

EXAMPLE 11.23. The tableau in Figure 11.3(a) proves♦(p→ q) � �p→♦q. In
this tableau, the fourth line is introduced due to the rule (LA).

The tableau in Figure 11.3(b) shows that

{p→�p, q→�q}⇒ �p∧�q � �(�p∧�q).

In this tableau, LA has been applied for introducing the first line and GA, for the
ninth line.

Annotate the tableaux with appropriate justifications. Mention the suitable rule
(LA) or (GA) when a premise is used.

11.7. ANALYTIC TABLEAU FOR K 367

1 ¬(�p→♦q)
1 �p

1 ¬♦q
1 ♦(p→ q)
1.1 p→ q

1.1 q
1.1 ¬q
×

1.1 ¬p
1.1 p
×

1 �p∧�q
1 ¬�(�p∧�q)
1.1 ¬(�p∧�q)

1 �p
1 �q
1.1 p
1.1 q

1.1 ¬�q
1.1 q→�q

1.1 �q
×

1.1 ¬q
×

1.1 ¬�p
1.1 p→�p

1.1 �p
×

1.1 ¬p
×

(a) (b)

Figure 11.3: Tableau for Example 11.23

EXAMPLE 11.24. The tableau for p → �p ⇒ q → �q is given below. Can you
find the reason for the vertical dots there?

1 ¬(q→�q)
1 q

1 ¬�q
1 p→�p

1 �p
1.1 ¬q
1.1 p

1.1 p→�p

1.1 �p
...

1.1 ¬p
...

1 ¬p
1.1 ¬q

The tableau in Example 11.24 does not close. Whatever way you expand it by
reusing the global assumption (one such is done on the fourth line, and again on
the eighth line), the tableau does not close. In general, the tableau method is not
successful in showing that a given consequence is invalid. It is very much similar to
the tableaux in FL. We want to construct a model that would satisfy all the mps in an

368 CHAPTER 11. MODAL LOGIC K

open path. Take an open path in the tableau, say, the leftmost path. The open path
contains the prefixed mps (from leaf to root):

1.1 ¬q, 1 ¬p, 1 p→�p, 1 ¬�q, 1 q, 1 ¬(q→�q).

The prefixes show that we may consider only two worlds, namely, 1 and 1.1. The
world 1.1 is accessible from the world 1. Since 1 q occurs in this path, the world
1 satisfies q. Again, 1 ¬p implies that the world 1 does not satisfy p. Since 1.1 ¬q
occurs in the path, the world 1.1 does not satisfy q. Though ¬p occurs with prefix 1,
the literal p does not occur with prefix 1.1. Thus, 1.1 may or may not satisfy p. With
the first alternative, we have the model

M : 1
�q ✲ 1.1

� p

In the model M, p→ �p is satisfied since 1 � p→ �p and 1.1 � p→ �p. Note
that the last satisfaction relation holds vacuously since there is no world accessible
from 1.1. Now, 1 �q but 1 ��q as the world 1.1, which is accessible from 1, does
not satisfy q. Therefore, 1 �q→�q. Consequently, p→�p �⇒ q→�q.

So, a model can be constructed from a failed attempt at proving a consequence,
by taking hint from an open path. In general, any open path would not serve this
purpose. This is so because, before sufficient expansion of the tableau (say, in the
beginning), a path is always open. You may need the notion of a completed system-
atic tableau. Try it!

Exercises for § 11.7
1. Attempt tableau derivations for the following consequences and then deter-

mine whether each is K-valid or not:
(a) �p∧�q �∅⇒�(�p∧�q) (b) ∅ � �p∧�q⇒�(�p∧�q)

2. Construct a model from an open path in the tableau for Example 11.22(b).

11.8 OTHER MODAL LOGICS
Recall that in a scenario of a generalized modal consequence, the global assumptions
restrict the view of models. The models to be considered must satisfy all the global
assumptions. Then, we think about the worlds in each of these models and look for
satisfying the local assumptions, restricting the worlds further. For the consequence
to hold, these worlds must satisfy the conclusion.

What happens if you read the modal connectives in a certain way? Say, you read
�X as the modality, ‘it is known that X is true’. Then certainly, we would admit that
in such a world, where ‘X is known to be true’ the statement that ‘X is true’ holds.
Essentially, we are admitting the truth of �X → X in all such worlds. Notice that
�X → X is not as such valid in K.

In other words, if we read the connective � as ‘it is known that’, then the mp
�X → X becomes a global assumption. It is rather an assumption scheme and not

11.8. OTHER MODAL LOGICS 369

just an assumption. What does it mean semantically? If in a world w, the mp �X
is true, then in the same world w, the mp X is also true. Thus, the world w must be
accessible from itself.

That means, the assumption schemes may impose conditions on the accessi-
bility relation. The class of frames, in turn, becomes restricted. We will have to
consider various types of frames then. But remember that various types of frames
correspond to various ways of reading the modal connectives of necessity (�) and
possibility (♦).

Properties of frames come from the properties of the binary relation on the worlds.
Let R be a binary relation on a set W, the set of worlds, for us. The relation R is called

reflexive : iff for each w ∈W, wRw
symmetric : iff for each u,v ∈W, uRv implies vRu
transitive : iff for each u,v,w ∈W, uRv and vRw imply uRw
an equivalence
relation : iff R is reflexive, symmetric, and transitive
serial : iff for each u ∈W, there is v ∈W such that uRv
euclidian : iff for each u,v,w ∈W, uRv and uRw imply vRw
single valued : iff for each u ∈W, there is a unique v ∈W such that uRv
linear : iff for each u,v,w ∈W, uRv and uRw imply

either vRw or wRv or v = w
total : iff for each u,v ∈W, either uRv or vRu or both.

Let W be any set of worlds, and let R be a binary relation on W having one or
more of the above properties. Then, we say that the frame (W,R) has that property.
Thus, a reflexive frame is a frame (W,R), where R is a reflexive relation, etc. Which
kind of frames give rise to which assumption schemes. For instance, reflexive frames
give rise to the assumption scheme �X → X .

Our plan is to restrict our frames to satisfy certain properties so that we will have
different assumption schemes. These assumption schemes can be used as axiom
schemes along with those of KC, thereby giving rise to different modal logics. When
we restrict all our frames to satisfy certain property, we may think of a sub-collection
of frames satisfying that property. That is, properties and collections of frames can
be taken as one and the same. Thus we are led to the so-called correspondence
theory of modal logics.

Let F be a collection of frames, and let X be a modal proposition. If (W,R) is
a frame in F and � is a satisfaction relation specifying whether a modal proposition
is satisfied (true) at a world, then the model (W,R,�) is called a model based on
the frame (W,R). The modal proposition X is valid in the frame (W,R) iff each
model based on the frame (W,R) satisfies X . The modal proposition X is F-valid
and written as �F X iff X is valid in each frame in F.

Convention 11.1. When F is a collection of all frames (without any particular re-
striction or property), �F X coincides with �KX . Due to this coincidence, we will
use the symbol K for the collection of all frames.

The following theorem summarizes the correspondence of some important prop-
erties of frames in terms of axiom schemes to be added to KC. Our naming system

370 CHAPTER 11. MODAL LOGIC K

keeps the collection of frames and the name of the axiom scheme as the same. For
instance, the modal logic with reflexive frames is denoted as T ; the collection of all
reflexive frames is also denoted as T.

Theorem 11.11 (Correspondence). Table 11.4 summarizes the correspondence be-
tween a frame property and the axiom scheme to be added to KC.

Table 11.2: Correspondence Theorem

Name Axiom scheme Frame property
K none none
T �X → X reflexivity
B X →�♦X symmetry
D �X →♦X serial
4 �X →��X transitivity
5 ♦X →�♦X euclidean
6 �X ↔♦X single valued
7 �(X ∧�X → Y)

∨�(Y ∧�Y → X) linearity

Proof. Denote by T , the set of all reflexive frames. As you have seen, we must add
another axiom scheme, namely, �X → X to KC for capturing �T .

Conversely, suppose that the mp �X → X is C-valid for a collection C of frames
(W,R,�). Then, in each world w ∈W, we have w ��X → X . This means that if
w ��X , then we must also have w �X . But w ��X means that in each world u with
wRu, u �X . Thus, if in each world u with wRu, u �X , then w �X . This holds for
each world w ∈W. Hence R must be reflexive, i.e., C = T.

This proves the theorem for T. Similarly, give proofs for other logics. �

There is one more important modal logic which has not been considered in this
naming scheme; it is the Gödel logic G. In addition to the axiom schemes of KC, the
logic G has the following axiom scheme:

(L) �(�A→ A)→�A

We also write T as KT emphasizing the fact that the axiom scheme T has been
added to those of KC; KT4 has axioms of KC, Axiom T, and Axiom 4; similarly
others. Semantically, KT4 is the modal logic of all reflexive and transitive frames.
In our notation the logic G is simply the logic KL. Sometimes the axiom scheme L
is also written as G.

You may read the axioms T, B, D, L as 1, 2, 3, 8, respectively to go with other
axioms. But these names are historical and we refer to them this way.

Figure 11.4 shows which modal logic is a sublogic of another. A directed arrow
from the node A to the node B means that A is a sublogic of B. It means that if an mp
X is valid in A then it is also valid in B. The figure covers only some of the important
logics; there are others!

11.8. OTHER MODAL LOGICS 371

K

KD KB K4 K5

KT KDB KD4 KD5 K45 KL

KTB KT4 KD45 KB4

KT45

Figure 11.4: Modal logics and sublogics

The logic KT is a sublogic of KT4 as each reflexive and transitive frame is vac-
uously reflexive. This means that if a modal proposition X is KT-valid, then it is
also KT4-valid, and each proof in KT is also a proof in KT4. The logic KT4 is also
written as S4, and the logic KT45 is written as S5.

The following example illustrates how the axiomatic systems work.

EXAMPLE 11.25. Here is a proof that shows �K4 �p∧�q→��p∧��q.

1. �p∧�q→�(�p→�q) Axiom 4

2. �p∧�q→�p PC

3. �(�p∧�q)→��p R

4. �p∧�q→�q PC

5. �(�p∧�q)→��q R

6. �(�p∧�q)→��p∧��q 3, 5, PC

7. �p∧�q→��p∧��q 1, 6, HS

The natural deduction system can be extended in a very natural way by adding
a corresponding rule that stems from an extra axiom to the system KND. Table 11.3
shows additional inference rules for various logics. The following examples illustrate
KND-proofs.

372 CHAPTER 11. MODAL LOGIC K

Table 11.3: Natural Deduction:Additional Rules
System Rule of Inference System Rule of Inference

KND No extra rule TND
�X
X

BND
X

�♦X
DND

�X
♦X

4ND
�X

��X
5ND

♦X
�♦X

6ND
�X
♦X

,
♦X
�X

7ND
¬�(X ∧�X → Y)
�(Y ∧�Y → X

EXAMPLE 11.26. We give natural deduction proofs of some theorems as follows.

(a) �K4ND �p∧�q→��p∧��q.

1. �p∧�q CP

2. �(�p∧�q) 4ND

3. �p∧�q �e

4. �p ∧e

5. ��p �i

6. �p∧�q 1, �e

7. �q ∧e

8. ��q �i

9. ��p∧��q 5, 8, ∧i

10. (�p∧�q)→��p∧��q → i

(b) �K45ND p→�♦p.

1. p CP

2. �¬p CP

3. ¬p TND

4. ⊥ 1, 3, ¬e

5. ¬�¬p ¬i

6. �¬�¬p 5ND

7. p→�¬�¬p → i

8. p→�♦p Def. of ♦

11.8. OTHER MODAL LOGICS 373

(c) �KT 45ND ♦p→♦�♦p.

1. ♦p CP

2. ¬♦�♦p CP

3. ¬¬�¬�♦p Def. of ♦
4. �¬�♦p ¬¬e

5. ¬�♦p TND

6. �♦p 1, 5ND

7. ⊥ ¬e

8. ♦�♦p ¬e

9. ♦p→♦�♦p Def. of ♦
The method of analytic tableau for the logic K is also extended to other logics.

The additional rules for expanding any path of a tableau are as follows.

K : No Additional Rules

T :
m �X
m X

m ¬♦X
m ¬X

B :
m.n �X

m X
m.n ¬♦X

m ¬X

D :
m �X
m ♦X

m ¬♦X
m ¬�X

4 :
m �X

m.n �X
m ¬♦X

m.n ¬♦X

5 :
m �X

m.n �X
m ¬♦X

m.n ¬♦X
m.n �X
m �X

m.n ¬♦X
m ¬♦X

6 :
m �X
m ♦X

m ¬♦X
m ¬�X

m ♦X
m �X

m ¬�X
m ¬♦X

7 :
m ¬�(X ∧�X → Y)
m �(Y ∧�Y → X)

m ♦(X ∧�X ∧¬Y)
m ¬♦(Y ∧�Y ∧¬X)

We use the same symbol � with subscripts (for different logics) for theorems
proved by tableau method.

EXAMPLE 11.27. The tableaux for the following are shown in Figure 11.5.
(a) �KB ♦�X → X (b) �KT (�(X ∨Y)∧¬X)→ Y

In (a), the rule B is applied on the last line. In which line of (b) the rule T is
applied?

374 CHAPTER 11. MODAL LOGIC K

1 ¬(♦�X → X)

1 ♦�X
1 ¬X

1.1 �X
1 X
×

1 ¬(�(X ∨Y)∧¬X)→ Y
1 �(X ∨Y)∧¬X

1 ¬Y
1 �(X ∨Y)

1 ¬X

1 Y
×

1 X
×

(a) (b)

Figure 11.5: Tableaux for Example 11.27

EXAMPLE 11.28. The tableaux for the following are given below.
(a) ♦�X ⇒�X in KT45
(b) �♦(�X →�♦Y)⇒ (�X →�♦Y) in KT4

In the first tableau, determine where the rule of KT45 is used, and see why the
prefix ‘1.2’ is introduced. Can you close the tableau somewhere before the last line?
Similarly, in the second tableau, find out where the rule of KT4 is used; and why
does the tableau prove weak entailment?

1 ♦�X
1 ¬�X
1.1 �X
1.2 ¬X
1 �X
1.2 X
×

1 �♦(�X →�♦Y)
1 ¬(�X →�♦Y)

1 �X
1 ¬�♦Y
1.1 ¬♦Y
1.1 �X

1.1 ♦(�X →�♦Y)
1.1.1 �X →�♦Y

1.1.1 �♦Y
1.1.1 ♦Y

1.1.1 ¬♦Y
×

1.1.1 ¬�X
1.1.1 �X

×

Theorem 11.11 is the soundness and completeness of various axiomatic systems
appropriate to the logics. We have not proved the adequacy of analytic tableau or
that of the natural deduction. In the above examples, the adequacy results have been
implicitly assumed. Moreover, the strong adequacy of the tableau method follows
when you have a generalized consequence with global and local assumptions. Try
to prove these results. You should also attempt an extension of GPC for obtaining
appropriate Gentzen systems to the modal logics.

11.9. VARIOUS MODALITIES 375

Exercises for § 11.8
1. Attempt tableau derivations for the following consequences and then deter-

mine whether each is K-valid or not:

(a) �p∧�q �∅⇒�(�p∧�q) (b) ∅ � �p∧�q⇒�(�p∧�q)
2. Construct a model from an open path in the tableau for Example 11.22(b).

11.9 VARIOUS MODALITIES
The modal logics have been introduced by playing with axioms and frame properties.
Do they actually help in representing various modalities? Modalities may express the
necessity or the possibility of truth, convenience, lawfulness, certainty, agreement,
acceptance, quotations, temporality, belief, contingency, knowledge, execution of
programs, etc. Look at the emphasized phrases in the following sentences:

It is necessarily true that moon is made of cheese.
It is possible that the morning star is the evening star.
It is convenient to have your residence near your workplace.
It is unlawful for Indians to smoke in a public place.
It is certain that Plato was a student of Socrates.
It is doubtful whether Descartes had doubt over everything.
It is allowed by the authorities to park your vehicles here.
Yesterday he was in a jolly mood.
Today morning he is depressed.
Sun will rise in the east for all time to come.
I believe that you will certainly like this book.
It is a belief that each algorithm is a Turing machine.
It is a fact that Confucius was a happy and wise person.
I know it very well that Hausdorff committed suicide.
It is common knowledge that Bertrand Russell married thrice.
After the execution of the program P, the hard disk will burn.
It is said by the ancients that if you cannot decide now, then you cannot
decide at all.

The emphasized phrases represent modalities of some sort. Some of them are modal-
ities of truth (alethic), some are temporal modalities, some are obligatory (deontic)
modalities, some are modalities of knowledge and belief (doxastic), etc.

Our plan is to symbolize such modalities by the two symbols � and ♦. For
example, we may translate the phrase “it is necessarily true that p” as �p; and “it
is possibly true that” as ♦p. Similarly, we may translate “I believe that p” to �p.
We assume implicitly that both the modalities “it is necessarily true that” and “I
believe that” do not occur in the same context. Otherwise, we may have to invent
new symbols for representing them.

Different modalities may follow different logics; and on deciding which logic
would be more suitable for arguing about a particular modality is always debatable.
However, certain modalities are well understood and their governing principles are
more or less clear.

376 CHAPTER 11. MODAL LOGIC K

In case we represent the modality “it is necessarily true that p” as �p, we accept
the mp �p→ p to hold since it represents the acceptable assertion: “If p is necessar-
ily true, then p is true”. Thus, in the problem domain of necessarily true and possibly
true, we will be translating our informal sentences to the modal propositions in the
formal language of the logic K. But there can be various views.

Suppose that the necessity here is interpreted as logical necessity. Then, if p
is necessarily true, so is �p. This would force us to accept the validity of the mp
�p→��p. But if we read �p as the physical necessity, then �p→��p would no
longer be valid since physical laws of the universe (as we have formulated) need not
be physically necessary.

Further, if we read �p as “I believe that” then, �p→ p need not be valid. For
example, even if I believe that P �=NP , it need not be so. I may believe that ghosts
exist, but they may not. Thus the logic of beliefs cannot have �p→ p as a valid mp.
Depending upon the problem domain, the meaning of the modal connectives � and
♦ would change, and then you have to choose the appropriate logic. If none of the
standard logics seem to be appropriate for some reason or the other, you may have
to create new logics.

EXAMPLE 11.29. Use the following legend for reading Table 11.4.
A : �p→ p B : �p→��p
C : ♦p→�♦p D : ♦�
E : �p→♦p F : �p∨�¬p
G : �(p→ q)∧�p→�q H : ♦p∧♦q→♦(p∧q)

Table 11.4: Different modalities
�X A B C D E F G H
It is necessarily true that X 1 1 1 1 1 0 1 0
It shall be the case that X 0 1 0 0 0 0 1 0
It should be the case that X 0 0 0 1 1 0 1 0
You believe that X 0 1 1 1 1 0 1 0
You know that X 1 1 1 1 1 0 1 0
After execution of the
program P, X holds 0 0 0 0 0 0 1 0

If � is interpreted as given in the leftmost column of the table, see that the corre-
sponding modal propositions in the corresponding columns having entry 1 hold. You
may give reasons why the mps having corresponding entry 0 do not hold.

In the following subsections, you will see some of the modalities and their for-
malizations. Note that we may end up at a multimodal logic if various modalities do
occur in the same context. But the new modal connectives will necessarily be similar
to our basic ones, possibly with different names.

A Logic of Knowledge
Suppose that we want to build up a logic for handling knowledge of an agent A. We
would translate the phrase “A knows that p” to �p. Then, the dual modal operator

11.9. VARIOUS MODALITIES 377

♦ is read as “it is possible for all that A knows that . . .” If there is more than one
agent, then we have to invent more symbols. The multimodal logic would then have
at least two modal operators corresponding to each agent. In such cases, we use the
small letter corresponding to an agent’s name as the subscript of the modal operator.
The scheme of symbolization is

�x p : X knows that p
♦x p : it is possible for all that X knows that p.

Then, �a and �b will be treated as two different symbols, one for the knowledge
of the agent A, and the other for the knowledge of the agent B. Note that you can
interpret �a also as “it follows from whatever A knows that” or as “A is entitled to
know that”, etc. What about the axioms of such a logic? The axioms of this logic
will include all the tautologies of PC and three more:

(LK1) �x(p→ q)→ (�x p→�xq)
(LK2) �x p→ p
(LK3) �x p→�x�x p

The rules of inference of the logic of knowledge are the modus pones
(MP) and the rule of necessitation (N), as in K.

If you read �x as �, then LK1 is simply the axiom K, LK2 is the axiom T, and LK3
is the axiom 4. Hence the logic you get is simply KT4 for each agent.

In this multimodal logic of knowledge, the knower (the agent) is assumed to be
logically omniscient, for, once he knows p, he also knows all the consequences of p.
The axiom LK3 says that one cannot know p and yet fail to know that he knows it.
This is why LK3 is called the axiom of or the principle of positive introspection.

We may take another stand by replacing LK3 by LK4 as follows:
(LK4) ¬�x p→�x¬�x p

This says that if one (the agent X) does not know p, then he knows that he does not
know p, the principle of negative introspection. So you see, nothing is conclusive
here; it all depends upon what you want to symbolize, and which properties you want
to keep and which to discard. Suppose that you want to interpret the modal operators
as in the following:

�x : the agent X believes that
♦x : it is compatible with whatever X believes that

Then, the same logic KT4 (for each agent) might work. However, beliefs are more
problematic than knowledge. An agent is not required to be entirely consistent on the
set of his beliefs. Try making a better logic than KT4 for understanding the beliefs!

A Temporal Logic
When there is a reference to time, we think of it as a linear extent, just as the real line,
but with a varying reference point unlike a fixed origin. For instance, when you tell
me, “Yesterday, Sam was in a jolly mood”, your reference is a time interval called
“today”. The sentence “Sam is in a jolly mood” may be devoid of any temporal
concern. To make temporality more effective you might fill the blank-modality with
a time index. Thus you may consider the sentence:

378 CHAPTER 11. MODAL LOGIC K

Sam is in a jolly mood at time t.

In so doing, the sentence “Sam is in a jolly mood” is viewed no longer as a whole
sentence, but just as a property of some time point, say, of t. You may universally or
existentially quantify over this variable t to get one of the following sentences:

Sam is always in a jolly mood.
Sam is sometimes in a jolly mood.

Interpreting the temporality as a modal operator, the sentences above can be rewrit-
ten, respectively, as

� (Sam is in a jolly mood)
♦ (Sam is in a jolly mood).

This reading of � and♦ would naturally give way to the logic K, as you can see that
the formulas �p→ p and p→♦p are true at any situation, whereas ♦p→ p and
p→�p are not.

If you want to operate with past and present as two connectives, instead of ‘for
all time’ or ‘for some time’, then you would have to introduce two modal operators
for past and future separately. Here is one such scheme:

F p : It will sometimes be the case that p
Pp : It was sometimes the case that p
Gp : It will always be the case that p
H p : It was always the case that p.

Here, Gp corresponds to the �-future, H p to �-past, F p to ♦-future, and Pp cor-
responds to ♦-past. This symbolization brings in a bimodal logic with two types of
�’s and two types of ♦’s. However, there is a marked difference between this logic
and the logic K. For example,

G(Sam is in a jolly mood)

is read as

Sam will always be in a jolly mood.

whereas the sentence “Sam is in a jolly mood” is interpreted as “Sam is in a jolly
mood now”. So that the mp

G(Sam is in a jolly mood)→ (Sam is in a jolly mood)

is no longer valid. That is, in this logic, we cannot assert that �p → p holds. On
the other hand, Gp → F p (i.e., �p → ♦p) holds. It says that if p will always be
true then at some time p will be true. Similarly, since temporal order is transitive,
Gp→ GGp is also valid.

As another variant, if you take �p ≡ p∧Gp and ♦p ≡ p∨F p, then �p → p
holds. However, ♦p → �♦p does not hold. For example, take p as the sentence
“Scientists are able to discover a cure for cancer”. You can imagine a world where,
in some future time, p will hold, i.e., ♦p holds (in that world), now. Then, in no
future time to that time the cure can again be discovered since it would have been
discovered by then. That is, �♦p does not hold.

In the next section, we will describe another temporal logic which helps in veri-
fying the properties of a real-time system.

11.10. COMPUTATION TREE LOGIC 379

Exercises for § 11.9
1. The mp �x is true at a world w is interpreted as “being in the world w I know

x ”. Similarly, interpret ‘the mp ♦x is true at a world w’ as “being in the world
w, I consider it possible that x holds”. Assuming that I cannot know false
things, explain why the mps in (a) and (b) are valid but the mp in (c) is invalid:

(a) �p→ p (b) �p→��p (c) p→�p

2. Interpret ‘�x is true at a world t’ as “from time t onwards, x will remain true”.
Similarly, interpret ‘♦x is true at a world t’ as “there is an instant of time not
before t when x is true”. Explain why the following are valid:

(a) �p→��p (b) ♦� (c) �p→ p

11.10 COMPUTATION TREE LOGIC
Consider an elevator operating in a multi-storey building. We want to develop a for-
mal language to express various states and functionality of the elevator. For example,
consider representing, in our language:

An upward going elevator at the third floor keeps on going upward when
it has some passengers who wish to go to the fourth floor or higher up.

Of course, you can simply take the whole sentence as an atomic proposition in PL.
Or, you may symbolize in FL by identifying the predicates. But that would not help
much if you want to verify this property of the elevator after designing its switching
circuit.

As a preliminary to symbolization, take the integer variables f loor and direction.
Now, f loor = 2 means that the elevator is on the second floor, and direction = 1
means that it is going upward. Similarly, direction = −1 tells that its movement is
downward, and direction = 0 shows that it is idle. The phrase “it has a passenger
wishing to go to fourth floor” would mean that someone has pressed the No. 4 but-
ton. That is, we introduce another integer variable, buttonpressed so that this state
is represented as buttonpressed = 4. Then, our sentence (quoted above) is translated
as

for all possible states of the elevator starting from any state,
((f loor = 2 ∧ direction = 1 ∧ buttonpressed ≥ 4) →
(for all possible start states, (direction= 1 until f loor = buttonpressed)))

The temporality in the until’ cannot be omitted here. In FL, you would have trans-
lated ‘until’ to the connective ∨; in this case, it is insufficient. So, we must have a
way in working with time. Here, it is enough to think of time as a discrete linearly
ordered set just as the set of integers or natural numbers. (Will a finite segment of
natural numbers suffice?)

Sometimes, we need to consider branching time. For example, consider a com-
puting system where many processors are run in parallel and they might request to
use certain other processes time to time. Here, once a job is submitted, it is dis-
tributed by a scheduler; the fragments, so to say, are to be worked out by many

380 CHAPTER 11. MODAL LOGIC K

processes. Process 1 is doing its part and for it, time goes linearly in a discrete way.
For Process 2, again, time goes linearly in a discrete way. For the scheduler, time
goes in a branching way, looking at the different processes and their requests. In
such a situation, suppose that a process has started but it is not yet ready. Then, we
have a property to be verified, namely,

It is possible to get a state where started holds but ready does not.

Assume that started and ready are the propositions with their obvious meanings.
Then the above sentence will be formalized as

It is possible for a state that (started∧¬ready).

The sentence “for each state, if a request occurs, then it will eventually be ac-
knowledged” will similarly be translated to “for all possible states starting with
any state, (requested → for any starting state there will be a future state where
(acknowledged))”. To have a symbolic way of writing such sentences, we devise
a scheme. We will use the mnemonics:

A : for all possible states E : for some possible states
F : for some future state G : for all future states
X : for the next state U : for expressing ‘until’

Then our connectives are:

AX , EX , AF, EF, AG, EG, A[· U ·], E[· U ·]

For propositions p,q, these connectives are used as follows:

AX p, EX p, AF p, EF p, AGp, EGp, A[pU q], E[pU q].

Formally, the language of computation tree logic, or CTL, for short, has the
(well formed) formulas defined by the following grammar:

w ::= � | ⊥ | p | ¬w | (w∧w) | (w∨w) | (w→ w) | AXw | EXw | AGw |
EGw |AFw | EFw | E[w U w] | A[w U w]

where p is any atomic formula (atomic proposition in PL). For instance, the follow-
ing are CTL-formulas

¬EFA[pU q], AF(p→ EGq), E[pU A[qU r]],

(EF(E[pU ((p∧q)∧A[qU ¬p])]→ AG(p∨q)).

whereas the following are not CTL-formulas (Why?):

AF(pU q), A¬G(p∧q), EG[(pU q)→ (pU r)].

We should be a bit careful with brackets larking around U. Your experience with syn-
tax will guide you to prove unique parsing of CTL-formulas. And then, subformulas
etc. can be defined in the usual way. Further, similar to any modal logic, CTL will
also have a possible world semantics. A possible state of computation is taken as a
world.

11.10. COMPUTATION TREE LOGIC 381

A model for CTL is a triple M = (W,R,�), where W is a set of worlds, a set
of possible states of computation; R is the accessible relation over W ; and � is the
satisfaction relation giving details of which world satisfies which atomic formulas.
A model is represented as a directed graph with nodes as the states annotated with
the propositions (atomic formulas) which are satisfied there, and the accessibility
relation is represented as the set of edges between the states. As earlier, whenever
uRv holds, the graph has an edge from u to v :

u ✲ v

We abbreviate it to u−→v. This edge may be interpreted as follows:

During computation, there may be a transition from the state u to the
state v.

That is, v is the next immediate state to u. Given a CTL formula p, we write M � p
whenever s � p holds for each state s∈W. The relation s � p (shorthand for M,s � p)
extends the definition of the given relation � from atomic formulas or propositions
to all formulas by the following rules:

1. For each s ∈W, s �� and s �⊥.
2. For each s ∈W and for atomic propositions p mentioned in the model, s � p.
3. For each s ∈W, s �¬q iff s �q.
4. For each s ∈W, s �q∧ r iff s �q and s �r.
5. For each s ∈W, s �q∨ r iff s �q or s �r.
6. For each s ∈W, s �q→ r iff s �q or s �r.
7. For each state s� with s−→ s�, s� �q iff s �AXq.

(AX stands for “in each next state”)
8. For some state s� with s−→ s�, s� �q iff s �EXq.

(EX stands for “in some next state”)
9. For each path of the form s1 −→ s2 −→ s3 −→ . . . , with s1 = s, there exists an

si such that si �q iff s �AFq.
(AF stands for “for each computation path beginning with s, there will be some
future state such that”)

10. For some path of the form s1 −→ s2 −→ s3 −→ . . . , with s1 = s, there exists
an si such that si �q iff s �EFq.
(EF stands for “for some computation path beginning with s, there will be
some future state such that”)

11. For each path of the form s1 −→ s2 −→ s3 −→ . . . with s1 = s, and for each si
along the path, si �q iff s �AGq.
(AG stands for “for all computation paths beginning with s, and for all future
states”)

12. For some path of the form s1 −→ s2 −→ s3 −→ . . . , with s1 = s, and for each
si along such a path, si �q iff s �EGq.
(EG stands for “for all computation paths beginning with s, there will be some
future state along such a path so that”)

382 CHAPTER 11. MODAL LOGIC K

13. For each path of the form s1 −→ s2 −→ s3 −→ . . . , with s1 = s, there exists an
si along the path such that si �r, and for each j < i, s j �q iff s �A[qU r].
(A[qU r] stands for “all computation paths beginning with s satisfy q until r”)

14. For some path of the form s1 −→ s2 −→ s3 −→ . . . , with s1 = s, there exists
an si along the path such that si �r, and for each j < i, s j �q iff s �E[qU r].
(E[qU r] stands for “some computation path beginning with s satisfies q until
r happens”)

Note that in this semantics, the future of a state includes the state itself. The compu-
tation paths referred to above is obtained from the (transition) graph of a model by
unwinding the graph into infinite trees. For example, consider the model (the relation
of �omitted) given below.

s1 s3

s2

�
�
�

�
�✒ ❅

❅
❅
❅
❅❘
✲ �

Here, a computation path beginning with s1 is

s1 −→ s2 −→ s3 −→ s3 −→ s3 −→ . . .

Another computation path beginning with s1 is

s1 −→ s3 −→ s3 −→ s3 −→ s3 −→ . . .

To check whether in a model, a state s satisfies a CTL formula, the computation
tree is constructed. Since this tree contains all computation paths beginning with s,
one has to check whether � for the formula holds on these paths. The tree of all
computation paths beginning with s1 is given below.

s1

s2 s3

s3 s3

...
...

�
�

❅
❅

EXAMPLE 11.30. Let Y be the CTL formula [EG(r∨q)U AFt]→ AXr. Let M be
the following model. Determine whether s1 �Y and/or s3 �Y.

11.10. COMPUTATION TREE LOGIC 383

s1

� p,q
s2

�q,r

s3
�r

s4
� p, t

✲

✲

✛

❄

✻M :

The computation trees beginning with s1 and s3 are given below. In the trees, the
symbol τ4 means the tree of s4 repeated thereafter. Similarly, τ1 means the tree for
s1 is to be appended there.

s1

s2 s3 s3

s1 s3 s4 s3 s4

s2 s3 s3 s4 s1 s2 s3 s4 s1 s2

s1

...
...

...
...

...
... τ4 τ1

s1

τ1...

✑
✑

✑✑
◗

◗
◗◗

�
�

❅
❅

�
�

❅
❅

✡✡ ❏❏ ✡✡ ❏❏ ✡✡ ❏❏ ✡✡ ❏❏ ✡✡ ❏❏

For Y to be true at the state s1, we see that

s1 � [EG(r∨q)U AFt]→ AXr iff (s1 � [EG(r∨q)U AFt] or s1 �AXr).

We take the simpler case first: s1 �AXr iff for each next state s to s1, s �r. The ‘next
states’ of s1 are s2 and s3. As s2 �r and s3 �r, we conclude that s1 �AXr. Therefore,
s1 � [EG(r∨q)U AFt]→ AXr.

For s3 �Y, we consider the next states of s3; they are s4 and s3. We see that s3 �r
but s4 �r. Hence s3 �AXr.

We must check the other alternative, i.e., whether s3 � [EG(r∨ q)U AFt]. This
happens if there is a computation path beginning with s3 that falsifies “EG(r∨ q)
until AFt ”.

The leftmost path in the computation tree for s3 is s3 −→ s3 −→ · · · . We want
to check whether this path falsifies the sentence “EG(r∨q) until AFt ”. This means
that either s3 �EG(r∨q) or s3 �AFt. (Why?) Now, s3 �AFt iff for all computation
paths beginning with s3, there is a future state satisfying t. From the computation tree
of s3, we see that s1 is a future state, and s1 � t. Therefore, s3 �AFt. Consequently,
s3 �A[EG(r∨q)U AFt]. Thus, s3 �Y.

In fact, any model of CTL is an abstraction of any transition system like concur-
rent and reactive systems, networks, etc. Our aim is to verify whether such a system
satisfies certain properties. These properties are now represented as CTL formulas,
by looking at the satisfaction at each state (truth at each world) of the model. It is
usually lengthy and too cumbersome to check this satisfaction relation manually.

384 CHAPTER 11. MODAL LOGIC K

However, if we have a finite model, programs can be written to do this repetitive
job. These programs are called model checkers. SMV is one such model checker.
There are also other model checkers using some specification language such as CTL.
Note that it all depends upon how you visualize time and the reactions of the system
components. In such a scenario of model checking, you have a real system for which
some properties are to be verified. When a model checker is available, you will be
doing the following:

1. Model the real system using the description language (such as SMV) of the
model checker arriving at an abstract model M.

2. Translate the properties of the real system which are to be verified, to the
specification language (such as CTL) of the model checker and arrive at a
formula p.

3. Run the model checker with inputs M and p to determine whether M � p.

It is of much practical importance to develop model checkers which use very
general specification languages so that interesting properties of real systems can be
checked efficiently.

Exercises for § 11.10
1. Plugging in the meanings of the individual letters, write in words what the

connectives AX , EX , AF, EF, AG, EG, A[· U ·], E[· U ·] mean.
2. Check the following with the model given below:

(a) s1 �EX(q∧ r) (b) s1 �¬AX(q∧ r) (c) s1 �EF(p∧ r)
(d) s2 �EGr∧AGr (e) s1 �AFr∨A[pU r] (f) s1 �E[(p∧q)U r]

s2 �¬q,r

s1
� p,q

s3 �r✲�
�

�
�
�✒��

�
�

�✠

❅
❅
❅

❅
❅❘

11.11 SUMMARY AND PROBLEMS
In this chapter, you have learnt how to deal with various modalities. The modalities
might be pertaining to truth, knowledge, belief, or even behaviour of real systems.
We have taken a simplistic approach of introducing the new modal connectives �
and ♦, which symbolize necessity and possibility, respectively. This has led us to
the basic modal logic K.

The semantics of K has taken us to the relational structures called frames. A
frame consists of a set, called the set of worlds, and a relation on this set, called the
accessibility relation. Each world is assumed to be propositional in the sense that

11.11. SUMMARY AND PROBLEMS 385

it is an interpretation of PL. A world thus comes with the information as to which
propositions are true at it and which are false. The frame with this information of
truth at worlds is called a model. The models serve the same job as interpretations
in PL. The truth at each world is taken into consideration in defining satisfaction of
modal propositions in models, and then the notion of validity.

Axiomatization of the basic logic K has led us to consider various properties and
extensions. The extensions of KC obtained by addition of different axiom schemes
have resulted in restricting frames to satisfy certain properties. This correspondence
of axioms and frame properties has brought in different modal logics, which are
found to address various problem domains.

As an application to real systems, you have learnt the computation tree logic
which uses the idea of branching time. To understand various phenomena in com-
puter science, you will naturally use logical models which would differ quite a bit
from the ones discussed here, though this will form a basis for your future work.

Modal logic is bread and butter for a computer scientist. Once it mixes into the
blood stream, it is impossible to find the source. However, one must start somewhere,
and this text is meant for that. This is a mere introduction; so pointers must be given
for pursuing the topics further.

You may start with the texts Epstein (2001), Lewis (1918), Lewis & Langford
(1938), and Popkorn (1994). In Snyder (1971), you will get another proof procedure,
called cancellation technique, a shortened form of Gentzen systems.

For a comprehensive introduction to modal logics, you may like the incomplete
Lemmon notes as exposed in Lemmon (1977). The semantics, called the possible
world semantics, was invented by S. Kripke; thus the name K for the basic modal
logic. Some good texts exclusively meant for modal logics are Chellas (1980), Gold-
blatt (1987), and Hughes & Cresswell (1971). These books discuss adequacy of
calculi and decidability of the modal logics via finite models property in great detail.
You will also find the references there to be very resourceful.

You have also seen how natural deduction and the method of analytic tableau
could be extended to these logics. The natural deduction system and the tableau, as
presented here, have their origin in Fitting (1993).

For a modal extension of the first order logic, see Fitting & Mendelson (1998).
Two good sources for applications of modal logics for reasoning about knowledge
(originated by J. Hintikka) are Fagin et al. (1995) and Meyer & van der Hoek (1993).

The computation tree logic as presented here is based on the chapter on Verifica-
tion by Model Checking in Huth & Ryan (2000). This text also includes discussions
on two nice puzzles, the wise men puzzle and the muddy children puzzle, and more
information on the symbolic model verifier SMV.

Modal logics have been extensively used in analysing the provability predicate,
which first appeared in Gödel’s incompleteness theorems. For such applications of
modal logics, see Boolos (1979).

Problems for Chapter 11
1. Describe a model in which the given mp is false at some world:

(a) �p→��p (b) �p→♦p (c) �(p∨q)→�p∨�q

386 CHAPTER 11. MODAL LOGIC K

2. Prove both the local and global deduction theorems. What can you say about
the following metastatements?

(a) If Σ⇒ A→ B, then Σ∪{A}⇒ B
(b) If Σ∪{A}⇒ B, then Σ⇒ A→ B

3. Let Σ be a set of mps, and let X be any mp. Show that Σ � X in KC iff Σ⇒ X .
Does it go hand in hand with Theorem 11.10?

4. Recall that in PND, we could forgo drawing the boxes by using artificial brack-
eting such as CPB and CPE. Develop similar conventions for replacing the
dashed boxes in KND.

5. Prove the adequacy of KND, i.e., Σ�KNDX iff Σ⇒ X .

6. Show that if the underlying frame is transitive, then the model satisfies the mp
♦♦p→♦p.

7. Describe a model in which each world would satisfy �(p∧¬p).
8. Describe the condition on the accessibility relation of a model under which

each world would satisfy ♦p→�p.
9. Show that if all mps of the form p→�♦p are valid, then the underlying frame

must be reflexive.
10. Suppose the accessibility relation R in a model is such that for all worlds u,v

if uRv, then there is no world w with vRw. Show that such a model satisfies
��(p∧¬p).

11. Show that adding the axiom scheme ��p→�p to KC has the same effect as
adding the scheme ♦p→♦♦p.

12. Show that adding the axiom scheme �(p∨ q)→ (�p∨�q) to KC has the
same effect as adding the scheme ♦p→�p.

13. Determine the frame property corresponding to the axiom scheme L of the
Gödel logic G.

14. Show that K4 is a sublogic of G.
15. Define equivalence of two CTL formulas by q ≡ r iff any state in any model

that satisfies q also satisfies r, and vice versa. Then show that

(a) AF¬t ≡ ¬EGt (b) EF¬t ≡ ¬AGt (c) AX¬t ≡ ¬EXt
(d) AFt ≡ A[�U t] (e) EFt ≡ E[�U t] (f) Equivalences of PL

Chapter 12

Some Other Logics

12.1 INTRODUCTION
The basic issue with logic engineering is: with a problem domain in view, what
would be the most appropriate logic to use? For instance, the argument “All saints
are altruistic. Bapuji was a saint. Therefore, Bapuji was altruistic” could be modelled
and justified by FL, but not by PL. When a familiar logic does not fit into a problem
domain, you may attempt at modifying the logic. This activity of modification of an
existing logic can be of two kinds.

One approach is to extend the vocabulary and then give an appropriate semantics.
These new logics talk about things that the earlier logics could not. These are called
extended logics. An example was FL as a modification of PL. The same way, modal
logics have also been obtained as extensions of PL.

The other direction in creating new logics is not by extension, but by restriction
on the semantics leading to a different set of valid formulas. Equivalently, these
logics can also be obtained by asserting additional (or different) axiom schemes.
The logics so obtained are called deviant logics.

The new logics obtained either way may or may not preserve the metalogical
properties of the earlier ones. By picking out different metalogical properties and
then looking at various logics through the properties is yet another way of classifica-
tion. One of the many such properties, namely, monotonicity, has attracted consider-
able attention.

Recall the definition of Σ � w in PL or Σ � w in a proof method such as PC, Cal-
culation, GPC, PND, PT, or in resolution. All these definitions attempt at defining
the consequence relation which we visualize to hold between a set of propositions
Σ and a proposition w. The semantic (model theoretic) considerations or the syntac-
tic derivations (proof theoretic) are then thought of as mechanisms for determining
whether the pair (Σ,w) is an element of this relation or not.

Thus a logic may be viewed as a mechanism to define the consequence relation.
Defining a consequence relation arbitrarily leads to different logics. If the new con-
sequence relation is different from the existing ones, then the logic so obtained is
also different from the existing ones.

387

388 CHAPTER 12. SOME OTHER LOGICS

For instance, suppose that you have a mechanism to convert each proposition to
an integer. (You can have many such mechanisms since the set of propositions, in
PL, is countable.) Define the consequence relation C by (Σ,w) ∈ C iff the integer
corresponding to w divides the product of the integer representations of some of the
elements of Σ. Taking this as the consequence relation, you can get a deviant logic
of propositions.

But, do you really want any arbitrary relation between a set of propositions and
a proposition to serve as a consequence relation? For ease in reading, let us write
(Σ,w) ∈ C as Σ � w. A. Tarski and D. Scott suggested that we regard any such rela-
tion as a consequence relation provided it possesses the following properties:

Reflexivity : If w ∈ Σ, then Σ � w.
Transitivity : If Σ � X and Σ∪{X}� w, then Σ � w.
Monotonicity : If Σ⊆ Γ and Σ � w, then Γ � w.

Such are the monotonic logics. Both PL and FL are monotonic logics, in the
sense that their consequence relations satisfy all the above properties. There are
other logics which do not satisfy the monotonicity condition; and are known as non-
monotonic logics. A nonmonotonic logic can be an extended logic, or a deviant
logic, depending upon whether it involves a nontrivial extension of vocabulary or a
reinterpretation of the same vocabulary.

In this chapter, we plan to review some logics keeping in mind both the classes.
The treatment is very brief, and it aims to show you how so many varieties of logics
have been invented out of necessity. You will, most probably, create your own logic
fitting a new situation more tightly than any of the logics known as of today.

12.2 INTUITIONISTIC LOGIC
In Example 8.19, you have seen a proof of existence of two algebraic irrational num-
bers a and b such that ab is rational. Specifically, the proof uses the idea that either
√

2
√

2
is rational, or it is not. If it is rational, then both a and b can be taken as

√
2. If

it is irrational, then we take a as this, and b as
√

2. It does not exhibit, in particular,

which of the two pairs, (
√

2,
√

2) or (
√

2
√

2
,
√

2), serves the purpose of (a,b).
Some mathematicians, now called intuitionists, object to accepting such a proof.

The objection is that we do not know whether
√

2
√

2
is rational or irrational. There-

fore, we do not yet have, following this argument, a pair of irrationals (a,b) with the

required property. (Of course, now we know that
√

2
√

2
is rational due to I. Gelfand;

but this is never used in the proof.)
According to this school of thought, a proposition p∨ q can be true only when

at least one of them has been demonstrated to be true. This implies that the law of
excluded middle cannot be regarded as a law at all.

Consider the following situation. A pair of positive integers (m, m+2) is a twin
prime if both m,m+ 2 are primes. We know of many twin primes but we do not
know whether there is a twin prime bigger than 101010

. We also do not know whether

12.2. INTUITIONISTIC LOGIC 389

there is no twin prime bigger than 101010
. Hence at this stage, we cannot accept the

truth of the following sentence:

Either there is a twin prime bigger than 101010
or there is no twin prime

bigger than 101010
.

This is the basic insight of L. E. J. Brower who says that if the law of excluded middle
is accepted, then we are assuming that every mathematical problem is solvable (in
this sense), and this is certainly objectionable.

In the absence of excluded middle, the law of double negation fails. Though
A → ¬¬A would still remain valid, its converse ¬¬A → A will no more hold. In
the intuitionistic propositional logic, INT, negation has a different meaning. In INT
the sentence 0 = 1 is a contradiction, but for any sentence A, the proposition A∧¬A
cannot be accepted as a contradiction.

INT has the same vocabulary as that of PL; leaving aside the symbols � and
⊥. We do not take ↔ into its vocabulary right now since this can be expressed in
terms of→ and ∧ as in PC. INT assigns different meanings to the connectives; it is a
deviant logic.

Axiom Schemes of INT:

(I1) A→ (B→ A)

(I2) A→ (B→ (A∧B))

(I3) (A∧B)→ A

(I4) (A∧B)→ B

(I5) A→ (A∨B)

(I6) B→ (A∨B)

(I7) (A∨B)→ ((A→C)→ ((B→C)→C))

(I8) (A→ B)→ ((A→ (B→C))→ (A→C))

(I9) (A→ B)→ ((A→ ¬B)→ ¬A)

(I10) A→ (¬A→ B)

Rule of Inference of INT:

(MP)
A A→ B

B
A. Heyting gave an axiomatization of INT, in which axioms and the law of uni-

form replacement had been used. The above axiomatization is by M. Dummett,
which uses axiom schemes.

A possible world semantics of INT uses the same idea of a frame and a model as
in the modal logics, except that all our frames are now reflexive and transitive. That
is, a model is a triple M = (W,R,�), where W is a nonempty set of worlds, R is a
reflexive and transitive relation on W, and � is a relation from W to the power set of
all atomic propositions. The relation � is extended to include all propositions in its
domain by using the following rules:

390 CHAPTER 12. SOME OTHER LOGICS

w �¬p iff for all z ∈W with wRz, z �� p.
w � p∧q iff w � p and w �q.
w � p∨q iff w � p or w �q.
w � p→ q iff for all z ∈W with wRz, z �� p or z �q.
M � p iff for all w ∈W, w � p.

As assumed earlier, the completeness and the soundness of the axiomatic system INT
can be proved with respect to the above semantics. However, since we use a possible
world semantics for INT, it must have some connection with modal logics. It can be
verified that the following translation (due to K. Gödel) to the logic S4 (KT4) holds.
Writing the translation by the map ∗, we have

p∗ = p

(¬p)∗ = ¬�p∗

(p∨q)∗ = �p∗ ∨�q∗

(p∧q)∗ = �p∗ ∧�q∗

(p→ q)∗ = �p∗ →�q∗

You can interpret � as ‘it is demonstrated that’. Now, rethink along the lines of the
two introducing illustrations above (that of ab and of the twin primes).

What is the relation between PL-validity and INT-validity? Note that all axioms
of INT are PL-valid, and the inference rule is MP, which is also a valid consequence
of PL. It follows (by induction?) that every INT-valid proposition is PL-valid. The
converse does not hold.

The relation is best understood by noting that whenever p is PL-valid, its double
negation ¬¬p is also PL-valid. But this does not happen in INT. The following result
(See Glivenko (1929) for a proof.) explains the connection between PL and INT.

Theorem 12.1. For a set of propositions Σ, let ¬¬Σ = {¬¬w : w ∈ Σ}. Let A be any
proposition. Then, Σ �PL A iff ¬¬Σ �INT ¬¬A. Moreover, �PL ¬A iff �INT ¬A.

Notice that Theorem 12.1 does not say that �PL A iff �INT A. This holds when
the only connectives used are ¬ and ∧. However, double negation does not hold even
in this restricted language. For example, ¬¬p �PL p but ¬¬p �INT p.

Theorem 12.1 suggests that PL-theorems may have a translation into INT in some
sense. The following is such a translation of PL-theorems to INT-theorems via the
map † :

p† = ¬¬p

(p∧q)† = p†∧q†

(p∨q)† = ¬(¬p†∧¬q†)

(p→ q)† = ¬(p†∧¬q†)

This translation preserves consequences. However, if p† = ¬¬p is replaced by
p† = p, then only theorem-hood is preserved; see Gentzen (1936) and Łukasiewicz
(1970). Dummett (1977) discusses the set assignment semantics for INT. Along
with other proof procedures for INT, intuitionistic first order logic has also been well
studied. Basing on this logic, intuitionistic mathematics has been created.

12.3. ŁUKASIEWICZ LOGICS 391

Exercises for § 12.2
1. Why is it that rejection of the law of excluded middle leads to the rejection

of the validity of ¬¬A→ A? Why does the conditional A→ ¬¬A still hold?
[Hint: Use PC instead of PL.]

2. Show that the rejection of the law of excluded middle leads to the invalidity of
¬(A∧B)→ (¬A∨¬B).

3. Prove that if A is a proposition that uses only ¬ and ∧, then �PL A iff �INT A.

12.3 ŁUKASIEWICZ LOGICS
Consider the sentence: “There will be an earth quake tomorrow”. Is it true? Is it
false? Since nothing about its truth or falsity is known today, it is neither true nor
false. But it is quite possible that tomorrow an earth quake may really occur. Its
truth is beyond the classical bivalence. It is something like an amoral action, which
is neither moral nor immoral; it is beyond morality.

To take into account such propositions, which do come up in abundance in day-
to-day life, the bivalent logics like PL or FL would not suffice. What about assigning
a new truth value to ‘beyond true or false’?

Suppose that we agree to have one more truth value, say, 1/2, in addition to 0 and
1. As in PL, we start with �,⊥, and the propositional variables as atoms and use the
connectives ¬,∧,∨,→ to build up a formal language of propositions. The semantics
of the logic is different from that of PL. Writing the truth value of a proposition p as
t(p), the semantics may be specified as follows:

t(�) = 1
t(⊥) = 0

t(¬p) = 1− t(p)

t(p∧q) = min{t(p), t(q)}
t(p∨q) = max{t(p), t(q)}

t(p→ q) =

�
1 if t(p) = t(q)
max{1− t(p), t(q)} otherwise

The same is also given in terms of a truth table; see Table 12.1.
Formally, you can define an interpretation as a map from all propositions to the

set of truth values {0,1/2,1}, obeying the conditions given in the truth table. Alter-
natively, you can show that the map t(·) is well defined on the set of all propositions
(due to unique parsing), starting from a preliminary definition on the set of atomic
propositions. That defines the concept of an interpretation; each such map is an
interpretation. Then you can define equivalence by

p≡ q iff t(p) = t(q) for any interpretation t.

Moreover, we define the connective↔ as follows:

p↔ q � (p→ q)∧ (q→ p)

392 CHAPTER 12. SOME OTHER LOGICS

Table 12.1: Truth table with three truth values
� ⊥ p q ¬p p∧q p∨q p→ q
1 0 0 0 1 0 0 1

1/2 0 1/2 0 1/2 1/2

1 0 0 0 1 0
0 1/2 0 1/2 1

1/2 1/2 1/2 1/2 1
1 1/2 1/2 1 1/2

0 1 0 1 1
1/2 1 1/2 1 1
1 1 1 1 1

We call this three-valued logic, L3 after the logician J. Łukasiewicz.
Though the law of excluded middle does not hold in L3, a similar law called

the law of trivalence holds. To formulate this law, we introduce the indeterminate
proposition in L3, written as ıp (iota p). Let p be any propositional variable. Define
a proposition ıp by

ıp � p↔ ¬p

The proposition ıp is called an indeterminate proposition. The truth table of ıp can
be given as

p 0 1/2 1
ıp 0 1 0

Any proposition A equivalent to� is called an L3-tautology or an L3-valid propo-
sition, and is written as �L3 A. It thus follows that p≡ q iff p↔ q≡�.

The law of trivalence is the metastatement

p∨¬p∨ ıp≡� in L3 for any proposition p.

You can also check the following for any interpretation t in L3:

t(p→ q) = 1 iff t(p)≤ t(q), and t(p↔ q) = 1 iff t(p) = t(q).

Let Σ be a set of propositions (in L3 now), and let w be any proposition. Define
the validity of an L3-consequence by

Σ �L3 w iff for each interpretation t, if t(A) = 1 for each A ∈ Σ, then
t(w) = 1.

You can check that the following results hold:
Modus Ponens: {p, p→ q} �L3 q.

Equivalence Replacement: p↔ q �L3 A↔ A[p :=e q].

Uniform Replacement: If �L3 B, then �L3 B[p := q].

where A[p :=e q] is obtained from A by substituting some or all or no occurrence of
p in A by q, and B[p := q] is obtained from B by substituting every occurrence of p
in B by q.

Moreover, J. Łukasiewicz constructed L3 for arguing about possibility and neces-
sity by using the following truth table:

12.3. ŁUKASIEWICZ LOGICS 393

p �p ♦p
0 0 0

1/2 0 1
1 1 1

From the above data, it is clear that ♦p ≡ ¬p → p and �p ≡ ¬♦¬p. (Verify.)
Though A→�A is not L3-valid, we have �L3 A→ (A→�A).

Theorem 12.2 (Deduction Theorem in L3). Let Σ be a set of propositions, and let
A,B be propositions. Then, Σ∪{A} �L3 B iff Σ �L3 A→ (A→ B).

Further, we can have a translation of PL (or PC) into L3, which preserves conse-
quences. This is achieved via the translation map ∗ from PL to L3 by

p∗ = p for atomic propositions p.

(¬p)∗ = p∗ → (p∗ → ¬(p∗ → p∗))

Σ∗ = {p∗ : p ∈ Σ} for any set Σ of propositions.

Such a translation identifies PL in L3. Observe that a simplistic way of identifying
both 1 and 1/2 with 1, i.e., true, would not result in PL. Similarly, identifying both
0 and 1/2 with 0 will also fail. (Why?) However, any L3-tautology is vacuously a
PL-tautology since the truth tables of connectives in L3 restricted to the values of 0
and 1 are simply the PL-truth tables.

Observe that the truth function σ p given by

σ p is 1/2 for every value of p

is not definable from the connectives ¬,∧ and ∨. This is so because, if it were,
then ¬σ p and σ p would be equivalent, forcing �L3 ¬σ p ↔ σ p to hold. Since
each L3-tautology is a PL-tautology, ¬σ p ↔ σ p would also be PL-valid. But this
is obviously wrong as ¬A ↔ A is not PL-valid. This truth function σ is called the
Słupecki operator. Consideration of the Słupecki operator shows that for the truth
functional completeness, the connectives ¬,∧,∨ are not enough in L3.

However, the set {¬,→} of connectives is truth functionally complete in L3. An
adequate axiomatic system (see Wójcicki (1998)) for L3 which uses ¬ and → as in
PC, has the following axiom schemes and the rule of inference:

Axiom Schemes for L3

(L1) A→ (B→ A)

(L2) (A→ B)→ ((B→C)→ (A→C))

(L3) (¬A→ ¬B)→ (B→ A)

(L4) ((A→ ¬A)→ A)→ A

Rule of Inference

(MP)
A A→ B

B

394 CHAPTER 12. SOME OTHER LOGICS

A generalization of Łukasiewicz three-valued logic L3 has been obtained by him
and A. Tarski. We briefly mention its peculiarity here. The idea is to view the truth
values as any real number between 0 and 1, instead of the three values 0, 1/2, 1. An
interpretation is taken as a map from the set of atoms to the interval [0,1]. This map
is extended to all propositions by

t(¬p) = 1− t(p)

t(p∨q) = max{t(p), t(q)}
t(p∧q) = min{t(p), t(q)}

t(p→ q) =

�
1 if t(p)≤ t(q)
1− t(p)+ t(q) otherwise

Many logics can be defined using this scheme t of truth values, depending upon
what subset of the interval [0,1] is fixed as the co-domain of the interpretation t.
Some of the logics and their corresponding co-domains of the interpretations are
given in the following table:

Logic Co-domain of interpretations
Ln { m

n−1 : 0≤ m≤ n−1, n≥ 2}
Lℵ0 {m

n : 0 < m≤ n, m,n ∈ N}
Lℵ [0,1]

In all cases, a proposition is called valid if each interpretation evaluates it to 1.
For example, Lℵ has the valid propositions as all p for which t(p) = 1 for each
interpretation t with the co-domain as the interval [0,1]. In this scheme, we get many
logics such as

L2, L3, L4, L5, . . . , Lℵ0 , Lℵ.

Note that L2 is simply the propositional logic PL. Further, Ln �= Ln+1, and each valid
proposition of Lm is also Ln-valid provided that n divides m. Again, Lℵ0 is the same
as Lℵ in the sense that their valid propositions coincide. This is a non-trivial result;
see Epstein (2001).

Now, in view of these many-valued logics, what do you think of INT? For a
proposition p, you have ¬p,¬¬p; and ¬¬¬p is equivalent to ¬p in INT. So, is INT
a three-valued logic? Is it L3, say, in the sense that INT-valid propositions coincide
with L3-valid propositions? Or, is the converse true? K. Gödel has proved in 1932
that INT cannot be characterized as any finite valued logic Ln (for n = 2,3,4, . . .). It
is again a non-trivial a result.

Still there are other varieties of many-valued logics. An example is Kleene’s
three-valued logic which has the same three truth values 0,1/2,1. Unlike L3, in
Kleene’s three-valued logic, when both A,B are 1/2, the formula A→ B is evaluated
to 1/2. You may define other many-valued logics by playing with the truth values and
the connectives.

12.4. PROBABILISTIC LOGICS 395

Exercises for § 12.3
1. Verify the formulas for t(p) in Łukasiewicz logic using Table 12.1.
2. Construct the truth table for↔ in L3 by defining p↔ q as (p→ q)∧ (q→ p).
3. Show that in L3, p∨¬p �≡ � and that p→ q �≡ ¬p∨q.
4. Show that �L3 p∨¬p∨ ıp. What are ı� and ı⊥?
5. Show the following equivalences in L3 :

(a) (p→ (q→ p))≡� (b) p∨q≡ (p→ q)→ q
(c) p∧q≡ ¬(¬p∨¬q) (d) σ¬p∨q≡ p→ (p→ q)

6. Prove Theorem 12.2.
7. With the translation map ∗ for L3, show that Σ �PL A iff Σ∗ �L3 A∗.
8. Show that Lℵ can be axiomatized with the axiom schemes L1, L2, L3, and

(A→ B)∨ (B→ A), and the inference rule MP.

12.4 PROBABILISTIC LOGICS
A doctor wants to decide whether a patient has the disease D after listening to and
examining the patient for symptoms. He only knows that certain symptoms and
certain diseases occur with such and such probabilities. (In this section, we write
p(·) for probabilities and not for denoting propositions.) Write S→ D to mean that
the symptom S implies the infliction of the disease D. To be specific, suppose that
the doctor knows the following:

A1: A→ D holds with probability p1 .
A2: ¬A→ D holds with probability p2 .
A3: B→ D holds with probability p3 .

When the patient exhibits the symptoms ¬A and B, the doctor wants to determine
whether the patient has the disease D. Note that the probabilities assigned to the
above statements are the doctor’s knowledge, i.e., they are subjective. So, the diag-
nosis will also be subjective; it is his rational opinion. It is rational in the sense that
the final decision uses an objective procedure even on the subjective probabilities.
He uses his subjective probabilities to compute the probability of the patient suffer-
ing from the disease D given that the patient exhibits the symptoms ¬A and B. The
doctor’s interest is in determining the conditional probability

p(D |¬A∧B) =
p(D∧¬A∧B)

p(¬A∧B)
.

Such computations become meaningful in the presence of a probability distribution
of propositions, that is, a probability space of propositions and a probability measure
on this space. In the diagnosis problem, we may consider the relevant propositions
to be drawn from the set

U = {A, B, A∧D, ¬A, ¬A∧D, B∧D, D, A∧B, ¬A∧B, D∧¬A∧B}.
Then, we go for constructing the set of elementary propositions (not necessarily
atomic) so that a probability measure can be defined. The set E = {E1,E2, . . . ,En}
of elementary propositions will satisfy the following properties:

396 CHAPTER 12. SOME OTHER LOGICS

1. Each relevant proposition is a disjunction of some elementary propositions.
2. The elementary propositions are exhaustive: E1∨ . . .∨En ≡�.
3. The elementary propositions are mutually exclusive: Ei∧E j ≡⊥ for i �= j.

Thus, in our diagnostic problem, we take the set E = {A,B,D,¬A,¬B,¬D} assuming
that A,B,D are atomic. Next, a probability measure is defined on the set E = E ∪
{�,⊥}. A probability measure is a function p : E→ [0,1] satisfying the following
properties:

(a) For any X ,Y ∈ E, p(X)≥ 0.
(b) p(�) = 1, p(⊥) = 0.
(c) If X ∧Y ≡⊥, then p(X ∨Y) = p(X)+ p(Y).

The probabilities are used to compute the required conditional probability. Note
that the restrictions of a probability measure are imposed on the subjective probabil-
ities of a decision-maker, here, the doctor. This is the reason that a decision-maker
who uses probabilistic logic is assumed to be a rational agent. As you have guessed,
probabilistic logic is rather a logical methodology for decision making than a logic.
One can go further in deciding upon a consensus by taking opinions from experts for
fixing the subjective probabilities of elementary propositions. One may also resort
to statistical methods while arriving at a consensus. A good start on this topic may
be Halpern (1990).

In a probabilistic framework, it is not possible to assign a probability to igno-
rance; we only assign a probability to what is known. In the presence of ignorance
or insufficient information, and vagueness, probabilistic logic will not be appropri-
ate. In the next section, we will have a rough outline of the two types of logics that
deal with uncertainty and vagueness.

12.5 POSSIBILISTIC AND FUZZY LOGIC
Consider the sentence s: Sam is tall. By introducing a variable h for the height of
Sam, you can translate the sentence to h ≈ tall. If h takes values from the set { tall,
medium, short}, then the truth predicate Ph can be evaluated to one value, depending
upon whether h is tall, medium or short. Say, Ph is either 1, 1/2 or 0 according as h
is tall, medium, or short. Then the predicate Ph is called a crisp predicate, as it has
definite values.

If height is allocated a value, say, any real number between 40cm and 300cm,
then possible values for Ph will be uncountably many. In such a case, Ph has no
definite value from among finitely many; it is now referred to as a vague predicate.
The range of values, the closed interval U = [40cm,300cm], is our universe for
height h, and Ph is a vague predicate defined on this universe U. Here the predicate
Ph is unary; thus, when it is crisp, it is just a subset of U. What would happen if Ph is
a vague predicate? It is clearly not a subset, for we do not know or we cannot know
for certainty which elements of U are in Ph and which are not. In such a case, we say
that Ph is a fuzzy subset of the universe U.

Any subset A of a set U can be characterized by its characteristic or indical
function χA : U → {0,1}, by the rule that for any u ∈U, u ∈ A iff χA(u) = 1. In case

12.5. POSSIBILISTIC AND FUZZY LOGIC 397

A is a fuzzy subset of U, we identify this fuzzy subset with the membership function
µA : U → [0,1]. Thus, any element u ∈U is a fuzzy member of the fuzzy subset A of
U determined by its degree of membership µA(u). (Imagine membership to admit of
degrees rather than being either 0 or 1.) If µA(u) = 1, then u ∈ A, as in the case of a
crisp subset. If µA(u) = 0, then u �∈ A, again as in the crisp subset case. If µA(u) = α
for 0 < α < 1, then the degree of membership of u in A is α.

When B = Ph is taken as a fuzzy subset of U (as a vague predicate), we have
a membership function µB. Then µB gives the idea as to how much tall Sam is, or
rather, “what is the degree of tallness of Sam when his height is so and so”. It gives
rise to four cases as considered in the following subsections. below. The ensuing four
cases are of crisp sentences and precise information, crisp sentences and imprecise
information, crisp sentences and fuzzy information, and vague sentences and fuzzy
information. These cases are considered in the following subsections.

12.5.1 Crisp Sentences and Precise Information

Suppose that B = {150cm}; we know that Sam is 150cm tall. Here, B⊆U is a crisp
subset of U. Depending upon whether we consider 150 cm as a height to be termed
as tall or not, µB(s) will take a value in {0,1}. That is, the truth of the sentence s is
either 0 (s is false) or 1 (s is true). Here, Sam’s height is exactly known. We also
have a crisp sentence since we have the information whether this height is termed as
tall or short. Thus the case is compared to PL, where the truth of each sentence is
either 0 or 1. That is, t(s) = µB(s) ∈ {0,1}.

12.5.2 Crisp Sentences and Imprecise Information

Suppose we know that Sam’s height is within 150 cm to 200 cm, i.e., we do not have
precise information here. Suppose also that the meaning of tall is crisp, i.e., if the
height of a person is within a range, say, a to b in centimetres, then he is called tall.
Symbolically, the predicate “tallness” is identified with the crisp subset [a,b] ⊆U.
Then, the following cases may be considered:

(a) If B = [150,200]⊆ A = [a,b], then clearly, t(B) = 1; Sam is tall.
(b) If A∩ [a,b] =∅, then t(B) = 0; Sam is not tall.
(c) If A∩ [a,b] �=∅ but A �⊆ [a,b], then t(B) cannot be fixed to either 0 or 1. The

sentence “Sam is tall” is possibly true or possibly false.

These situations are tackled by introducing a possibility measure π as follows:

for any subset E of U, π(E) = 1 if E ∩A �=∅, else, π(E) = 0.

Then the above cases correspond to:

(a) π(s) = 1, π(¬s) = 0.
(b) π(s) = 0, π(¬s) = 1.
(c) π(s) = 1, π(¬s) = 1.

The case π(s) = 0, π(¬s) = 0 leads to inconsistency; hence, it cannot occur.

398 CHAPTER 12. SOME OTHER LOGICS

12.5.3 Crisp Sentences and Fuzzy Information
Suppose that the meaning of tallness is crisp, i.e., we have a range of values for
tallness, say, if the height of anyone is in [a,b] ⊆U, then he is called tall. Assume
also that our information on Sam’s height is fuzzy. That is, B = Ph is now a fuzzy
subset of U, which is given by a membership function µB. Then, our answer to the
query “whether Sam is tall” will have a fuzzy answer, i.e., tallness of Sam will have
the degree of truth as µB(s).

12.5.4 Vague Sentences and Fuzzy Information
Here, both the sets representing tallness and Sam’s height are fuzzy subsets of U.
Suppose that S represents Sam’s height, i.e., S is a fuzzy subset of U given by its
membership function µS, and tallness is also a fuzzy subset B of U given by its
membership function µB. Then the answer to the query “whether Sam is tall” will
also be fuzzy. That is, the truth of the sentence “Sam is tall” will take a fuzzy truth
value in the interval [0,1], depending on the values of µB and µS. For example,
“Sam’s height is about 170 cm” is a fuzzy sentence. Such a sentence is translated to
a membership function µS : [0,1]→ [0,1] defined as

µS(v) = sup{π(u) : µB(u) = v for u ∈U}.

Here, the supremum over an empty set is taken as 0. Thus whenever µ−1
B (v) =∅,

we have µS(v) = 0. The truth value t(s) of the sentence “Sam is tall” is approximated
by the numbers N(s) and Π(s) given by

N(s)≤ t(s)≤Π(s),

Π(s) = sup{min{µB(u),π(u)} : u ∈U},
N(s) = 1−Π(¬s) = inf{max{µB(u),1−π(u)} : u ∈U}.

This is the most general case, as all the earlier cases will fall into place by regarding
the fuzzy subsets as crisp. The function Π is called the possibility measure and N
is called the necessity measure so that the uncertainty or fuzzy measure t(s) lies
between the possibility and necessity.

The high rate at which work in fuzzy logic and fuzzy mathematics is growing at
present prevents a non-specialist to catch up. However, it is wise to brush up some
basic literature so that it will be easy for you later when some application domain
demands fuzzy logic ideas. You may start with Tanaka (1996).

12.6 DEFAULT LOGIC
In this section, we briefly look at another way of dealing with certain kind of vague-
ness. The vagueness here is associated to limitations of knowledge or in its represen-
tation. For instance, when we say that “birds fly”, we do not mean that all birds fly
without exception, nor do we assert that only some birds fly. It is almost a general
rule that birds fly; however, there might be exceptions, as we know that penguins do

12.6. DEFAULT LOGIC 399

not fly and that a wounded bird may not fly. Such facts can be represented by first
order consequences such as

P(x)∧¬exception1(x)∧ · · ·∧¬exceptionm(x) � Q(x).

In so doing, we are treating exceptions as general facts defeating the intention of a
“general rule”. We are also assuming that these are all possible exceptions. Tomor-
row, we may discover another species of birds which might not fly! To tackle such
cases, we introduce a type of rule, called default.

If we know that Tweety is a penguin, all penguins are birds, birds fly, and pen-
guins do not fly, then we should be able to conclude that Tweety does not fly. We
would not just dispense with the facts by telling that the facts are inconsistent.
(Where is the inconsistency?) Here, we may take the following as facts:

Each penguin is a bird. Tweety is a bird. Tweety is a penguin.

The sentence “birds fly” will be taken not as a fact, but as a default rule since this is
the one that may admit of exceptions. The default rule is:

If x is a bird and it cannot be proved that x is a penguin, then deduce that
x flies.

Or, as a fraction:
x is a bird : x is not a penguin

x flies

Thus,

x is not a penguin

would now mean

if it cannot be proved that x is not a penguin.

This can also be written as

if it is consistent to assume that x is not a penguin.

Formally, a default (a default rule) looks like

u(x) : v1(x), . . . ,vm(x)
w(x)

where u(x),v1(x), . . . ,vm(x) and w(x) are well-formed formulas (of FL, in general)
whose free variables are among x1, . . . ,xn, written here as a single symbol x. The
formula u(x) is called the prerequisite of the default. The formulas v1(x) . . . ,vm(x)
are the justifications and w(x) is called the consequent of the default. The meaning
of the default is

If v1(x), . . . ,vm(x) are consistent with what is already known, then w(x)
is inferred.

A default theory is a pair of sets Δ = (D,W), where D is a set of default rules and W
is a set of FL-sentences.

400 CHAPTER 12. SOME OTHER LOGICS

Default logic is a nonmonotonic logic in the sense that addition of new facts may
invalidate earlier established consequences. For example, consider the default theory
Δ = (D,W), where W = {bird(tweety)} and D has the single rule:

bird(x) : ¬ penguin(x)
f lies(x)

Here, we infer that f lies(tweety). If we enlarge W to W � =W ∪{penguin(tweety)},
then we cannot infer f lies(tweety).

EXAMPLE 12.1. Consider a universe (of constants) having two members, say a
and b. Assume that an object in this universe is not an elf unless it is required to be.
Moreover, at least one of a or b is an elf. Then its default theory is

Δ = (D,W) with W = {elf (a)∨ elf (b)}, D =

�
: ¬elf (x)
¬elf (x)

�
.

The default rule in D says that “if it is consistent to assume that x is not an elf,
then deduce that x is not an elf”. You see that neither elf (a) nor elf (b) can be
inferred from the single fact elf (a)∨ elf (b). Since neither elf (a) nor elf (b) can be
concluded, we would like to think that ¬elf (a)∧¬elf (b) is provable. However, this
sentence is inconsistent with the fact elf (a)∨ elf (b).

In order to avoid this inconsistency, default reasoning admits of many extensions.
In the above example, we have an extension (an extended theory of Δ), where we can
infer ¬elf (a)∧elf (b), and in another extension of Δ, we can infer elf (a)∧¬elf (b).

Formally, let Δ= (D,W) be a given default theory. Let S be a set of FL-sentences.
For any set A of FL-sentences, denote by Th(A), the theory of A, i.e., the set of all
FL-sentences which can be inferred from the set of premises as A. Define Γ(S) as the
smallest set satisfying the following properties:

1. W ⊆ Γ(S).
2. Γ(S) = T h(Γ(S)).
3. For u ∈ Γ(S), and for ¬v1, . . . ,¬vm �∈ S, if

u : v1, . . . ,vm

w
∈ D then w ∈ Γ(S).

Finally, a set E is called an extension for Δ iff Γ(E) = E.
You can interpret Γ(S) as the minimal set of beliefs that one can have in view

of S, where S indicates which justification for beliefs is to be admitted. E is a fixed
point of the operator Γ, just as Th(A) is a fixed point of the operator Th in FL (i.e.,
Th(T h(A)) = T h(A)).

Alternatively, extensions of default theories can be defined from within. Let
Δ = (D,W) be a default theory. An extension for Δ is any set

E = ∪i∈NEi,

where the sets Ei are defined recursively by

E0 =W, Ei+1 = T h(Ei)∪
�

w :
u : v1, . . . ,vm

w
∈ D, u ∈ Ei, ¬v1 . . . ,¬vm �∈ Ei

�
.

It can be proved that whenever W is consistent, every extension of the corresponding
theory is consistent. The following examples will show you that a proper translation
of facts and rules to a default theory can lead to the desired inference.

12.6. DEFAULT LOGIC 401

EXAMPLE 12.2. (Dubois et al. (1985)) Consider the following facts:

1. Generally, if Mary attends a meeting, Peter does not.
2. Generally, if Peter attends a meeting, Mary does not.
3. At least, one of Peter or Mary attends the meeting.

To have a default theory, let us use the following symbolization:

M : Mary attends the meeting. P : Peter attends the meeting.

Here,

Δ1 = (D1,W1), W1 = {M∨P}, D1 =

�
M : ¬P
¬P

,
P : ¬M
¬M

�
.

This default theory has the unique extension E1 = Th({M∨P}). However, it is awk-
ward since we cannot infer from this extension that “both do not attend the same
meeting”. However, this sentence ought to be worth concluding. We will have an-
other translation below, where this is possible.

This time, we take Δ2 = (D2,W2), where W2 =W1, as earlier, but

D2 =

�
: M
¬P

,
: P
¬M

�
.

Here, the default translation of the sentence

Generally, if x attends a meeting, then y does not.

is taken as

If it is consistent to assume that x attends a meeting, then infer that y
does not attend it.

In this translation, Δ2 has two extensions (Verify!):

E2 = Th({M,¬P}), E �2 = Th({P,¬M}).

You see that ¬(M∧P) ∈ E2 and also ¬(M∧P) ∈ E �2.
A still better translation would be:

Δ3 = (D3,W3), W3 =W1, D3 =

�
: M∧¬P

¬P
,

: P∧¬M
¬M

�
.

This theory has two extensions again, and in both of them, ¬(M∧P) can be inferred.
Further, suppose that we have the following additional facts:

4. If Bill attends the meeting, then Peter attends.
5. Bill attends the meeting.

Then, the sentence “Peter attends the meeting” can be inferred in the last two
translations, but not in the first translation.

Much work on default logic have been reported in journals. If you prefer to start
with a book; see Besnard (1989).

402 CHAPTER 12. SOME OTHER LOGICS

12.7 AUTOEPISTEMIC LOGICS
It is possible to have a knowledge base which has information about the scope and
limitations of its own knowledge. For instance, in a database system, we often use
the so-called closed world assumption, where “not” is interpreted as “not in the
database”. It is a built-in metaknowledge about the database. More flexible knowl-
edge bases should have the ability to determine explicitly whether the knowledge of
the base about a particular object in the base is in some sense complete or not. In
such a scenario, we do not have to think about many agents and their knowledge or
belief about facts stored in the base. We would rather have a formalization of the
phrases such as “it is known that”, or “it is believed that” as operators.

Writing �p for “it is believed (known) that p”, the logic K45 would be an appro-
priate logic. This is so because the K45 axioms

�(p→ q)→ (�p→�q), �p→��p, ¬�p→�(¬�p)

capture the functionality of the operator � here. However, new beliefs change an ear-
lier conclusion; thus we require a nonmonotonic logic to deal with this operator. In
this section, we briefly discuss such a nonmonotonic logic of knowledge and belief.
The requirement of nonmonotonicity is made clearer in the following example.

EXAMPLE 12.3. Let p be the proposition: “Sam has died in the ongoing war”.
First, if p holds, then I also believe it, i.e., p → �p. Next, suppose that I do not
believe in a statement if I do not have any basis for such a belief. Hence I have the
sole premise p→�p.

Due to the absence of any information regarding Sam’s death, I do not believe
that Sam has died in the ongoing war, i.e., I have ¬�p. Since p→ �p is equivalent
to ¬�p→ ¬p, I conclude that ¬p. That is, Sam has not died in the ongoing war.

However, if I have the information that Sam has, indeed, died, then I have two
premises, p and p→�p, from which I conclude �p. Note that I have now p instead
of the earlier conclusion ¬p, which was inferred in the absence of any information
in the knowledge base.

This is the kind of nonmonotonicity involved in a logic of belief or knowledge.
Such a logic is called an autoepistemic logic. Syntactically, the formulas of an
autoepistemic logic are the modal propositions of K; the semantics differs.

Denote by L, the mps of K, which are now our building blocks for an autoepis-
temic logic. For simplicity, omit the symbols↔ and ♦; they can be introduced with
the help of definitions such as p↔ q � (p→ q)∧ (q→ p) and ♦p � ¬�¬p.

A subset T ⊆ L is called an autoepistemic theory. An autoepistemic interpre-
tation of an autoepistemic theory T is a function I : L→ {0,1} satisfying

(a) I conforms with a PL-interpretation.
(b) I(�p) = 1 iff p ∈ T.

An autoepistemic interpretation I is an autoepistemic model of T if I(p) = 1 for
each p ∈ T. In such a case, we also say that p is true in I. As usual, an autoepistemic
theory T is called semantically complete if T contains each formula that is true in
each model of T. Similarly, the theory T is called sound with respect to a set of

12.7. AUTOEPISTEMIC LOGICS 403

premises A ⊆ L if every autoepistemic interpretation of T , which is a model of A is
also a model of T.

Due to the absence of monotonicity, it is not easy to define the notion of a con-
sequence. However, as in default logic, extensions would give rise to some closure
conditions which can be used to define the set of all consequences of a theory. Instead
of defining a “closure of a theory”, we will give a name to a theory which is equal
to its closure. A stable theory is an autoepistemic theory satisfying the following
conditions:

1. If q1, . . . ,qn ∈ T and {q1, . . . ,qn} �PL q, then q ∈ T.
2. If q ∈ T, then �q ∈ T.
3. If q �∈ T, then ¬�q ∈ T.
It can be proved that an autoepistemic theory is semantically complete iff it is

stable. However, stability is silent about what is not believed; hence, soundness with
respect to a set of premises cannot be achieved under mere stability. The initial
premises must be included somewhere. Suppose that A is a set of premises (formu-
las). A theory T is grounded in A if

T ⊆
�

q : A∪{�p : p ∈ T}∪{¬�p : p �∈ T} �PL q
�
.

That is, T is grounded in A iff T is stable and it does not contain any formula which
is not a PL-consequence of a stable extension of A.

It can be shown that a theory T is sound with respect to A iff T is grounded in
A. Now, using both soundness and completeness, we arrive at the notion of a stable
expansion of a theory. An autoepistemic theory T is a stable expansion of a set of
premises A iff T is a superset of A that is stable and grounded in A, that is,

T = {q : A∪{�p : p ∈ T}∪{¬�p : p �∈ T} �PL q}.
A stable expansion contains all autoepistemic conclusions of the premises in A.

This means, ‘whatever that can be believed when all the formulas in A are believed’
are in the stable expansion. Does there exist always a stable expansion? Is it unique?

EXAMPLE 12.4. Let A = {¬�p → p : p is any formula}, and let T be a stable
autoepistemic theory that contains the formula ¬�p → p. If p �∈ T, then due to
stability, ¬�p ∈ T. Since ¬�p → p ∈ T, we have p ∈ T. Hence, p ∈ T. If T is
grounded in A, then T contains the PL-consequences of the set

{¬�p→ p : p is any formula}∪{�p : p ∈ T}∪{¬�p : p �∈ T}.
Since p ∈ T, �p ∈ T, we have ¬�p �∈ T ; otherwise, we have p �∈ T, resulting in a
contradiction. However, ¬�p �∈ T implies that ¬�¬�p ∈ T.

Again, ¬�¬�p→ ¬�p ∈ A implies ¬�p ∈ T as a PL-consequence. The con-
tradiction ¬�p ∈ T and ¬�p �∈ T shows that T cannot be grounded in A. Therefore,
there is no stable expansion of A.

EXAMPLE 12.5. Let A = {¬�p→ q,¬�q→ p}. Let T be any stable expansion
of A. The first element of A says that if p is not believed then q holds, and the second
one asserts that if q is not believed then p holds.

Now, if p �∈ T , then q ∈ T ; and if q �∈ T, then p ∈ T. Then there can be two stable
expansions of T ; one containing p but not q, and the other containing q but not p.

404 CHAPTER 12. SOME OTHER LOGICS

These examples show that stable expansions may not exist; and even if one exists,
it need not be the only stable expansion. Note that a stable expansion in A formal-
izes the notion of all consequences of the premises in A. Thus, even if a theory is
consistent, there may not be any conclusion, and even if there are conclusions, the
set of all conclusions need not be unique. The status of theorem-hood with axioms
in A is doubtful. However, this is pragmatic since belief in some statements need not
conclusively guarantee other beliefs.

An alternative is to regard the intersection of all stable expansions as the set of
all beliefs one may have. That is, any statement which is in every stable expansion
of a theory grounded in a set of premises A can be regarded as theorems of A. This
will be the view of an external observer about the agent. Also, in such a case, an
empty intersection will lead to a definition of an inconsistent autoepistemic theory
grounded in a set of premises.

There is a deep connection between default logic and autoepistemic logics. You
may approach both the topics from applications point of view; see Baral (2003).

12.8 SUMMARY
This chapter briefly reviews some of the logics that have been in use for quite some
time. You can start from the edited text Smets et al. (1998) to get an overall picture of
nonstandard logics having some general frameworks and then go through the topics
that interest you in Gabbay & Guenthner (2002).

We have not reviewed many logics which are in current use. One of them is the
description logic. It is a restricted fragment of first order logic used for modelling
relationships between various entities found on the web. In a description logic one
uses constants, unary predicates and binary predicates, all finite in number. These
are used to represent relations about the individuals named by constants, the classes
named by unary predicates, and the roles or properties named by binary predicates.
You may start from the introductory article Krötzsch et al. (2013) and go through the
references quoted there for a comprehensive account of description logics.

References

Andrews, P. B. (1970), ‘Resolution in type theory’, J. Symbolic Logic, 36, 414–432.

Apt, K. R. & Olderog, E.-R. (1991), Verification of Sequential and Concurrent
Programs, Springer-Verlag, New York.

Backhouse, R. C. (1986), Program Construction and Verification, Prentice Hall,
Englewood Cliffs, N.J.

Baral, C. (2003), Knowledge Representation, Reasoning and Declarative Problem
Solving, Cambridge University Press, Cambridge.

Barwise, J. & Etchemendy, J. (1999), Language, Proof and Logic, CSLI Publica-
tions, Stanford.

Besnard, J. (1989), An Introduction to Default Logic, Springer-Verlag, New York.

Bilaniuk, S. (1999), A Problem Course in Mathematical Logic, Unpublished Note,
sbilaniuk@trentu.ca.

Boole, G. (1951), An Investigation of the Laws of Thought, Dover, (Reprint of Walton
& Maberley, 1854), New York.

Boolos, G. (1979), The Unprovability of Consistency: An Essay in Modal Logic,
Cambridge University Press, Cambridge.

Boolos, G., Burgess, J., Richard, P. & Jeffrey, C. (2007), Computability and Logic,
Cambridge University Press, Cambridge.

Chang, C. L. & Lee, R. C. T. (1973), Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York.

Chellas, B. F. (1980), Modal Logic-An introduction, Cambridge University Press,
Cambridge.

Copi, I. M. (1979), Symbolic Logic, Macmillan, London.

Copi, I. M., Cohen, C., Prabhakar, M. & Jetli, P. (2010), Introduction to Logic,
Pearson, Delhi.

405

406 REFERENCES

Davis, M. D. & Putnam, H. (1960), ‘A computing procedure for quantification
theory’, J. ACM 7, 210–215.

Dijkstra, E. W. (1976), A Discipline of Programming, Prentice Hall, Englewood
Cliffs, N.J.

Dijkstra, E. W. (1982), Selected Writings on Computing: A personal perspective,
Springer-Verlag, New York.

Dowling, W. F. & Gallier, J. H. (1984), ‘Linear time algorithms for testing the
satisfiability of propositional horn formulas’, Journal of Logic Programming, 3,
267–284.

Doyle, J., Sandewall, E. & Torassi, P., eds (1994), Proc. Fourth International
Conference on Principles of Knowledge Representation and Reasoning, Morgan
Kaufmann. San Fransisco.

Du, D., Gu, J. & Pardalos, P. M. (1997), Satisfiability Problem : Theory and
applications, (Ed.) American Mathematical Society, Providence. AMS DIMACS
Series : Vol.35.

Dubois, D., Farreny, H. & Prade, H. (1985), ‘Sur divers probléms inhérents á l’
automatisation des raisonnements de sens commun’, Congrés AFCET-RFIA,
Grenoble 1, 321–328.

Dummett, M. (1977), Elements of Intuitionism, Clarendon Press, Oxford.

Ebbinghaus, H. D., Flum, J. & Thomas, W. (1994), Mathematical Logic, 2nd ed.,
Springer, New York.

Enderton, H. B. (1972), A Mathematical Introduction to Logic, Academic Press,
New York.

Epstein, R. L. (2001), Propositional Logics: The Semantic Foundations of Logic,
Wadsworth, Belmont, USA.

Ershov, Y. L. & Palyutin, E. A. (1984), Mathematical Logic, Mir Publishers,
Moscow.

Fagin, R., Halpern, J. Y., Moses, Y. & Vardi, M. Y. (1995), Reasoning about
Knowledge, MIT Press, Cambridge, USA.

Fitting, M. (1993), Basic modal logic, in D. Gabbay, C. Hogger & J. Robinson, eds,
‘Handbook of Logic in Artificial Intelligence and Logic Programming’, Vol. 1,
Oxford University Press, Oxford.

Fitting, M. (1996), First Order Logic and Automated Theorem Proving, Springer-
Verlag, New York.

Fitting, M. & Mendelson, R. L. (1998), First Order Modal Logic, Kluwer Academic
Publishers, Dordrecht, The Netherlands.

REFERENCES 407

Francez, N. (1992), Program Verification, Addison-Wesley, Reading, USA.

Frege, G. (1934), Die Grundlagen der Arithmetik, Eine logischmathematische
Untersuchung über der Begriff der Zahl., Breslau, Reprinted Marcus, Breslau.

Frege, G. (1984), ‘Collected papers on mathematics, logic, and philosophy’, Oxford.
Ed. by M. Mc. Guninness.

Gabbay, D. M. & Guenthner, F. (2002), Handbook of Philosophical Logic, 2nd ed.,
Vol. 1-9, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Gallier, J. H. (1987), Logic for Computer Science: Foundations of Automatic
Theorem Proving, John Wiley & Sons, New York.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman, New York.

Gentzen, G. (1936), ‘Die widerspruchsfreiheit der reinen zahlentheorie’, Mathemais-
che Annalen, 12, 493–565.

Glivenko, V. (1929), ‘Sur quelques points de la logique de m. brouwer’, Académie
Royale de Belgique, Bulletins de la Classe des Sciences, Ser. 5, 15, 183–188.

Goldblatt, R. (1987), Logics of Time and Computation, CSLI Publications, Stanford.

Gries, D. (1981), The Science of Programming, Springer-Verlag, New York.

Gries, D. (1982), ‘A note on a standard strategy for developing loop invariants and
loops’, Science of Computer Programming, 2, 207–214.

Gries, D. & Schneider, F. B. (1993), A Logical Approach to Discrete Math, Springer-
Verlag, New York.

Haken, A. (1985), ‘The intractability of resolution’, Theoretical Computer Science,
39, 297–308.

Halpern, J. Y. (1990), ‘An analysis of first order logics of probability’, Artificial
Intelligence, 46, 311–350.

Hehner, E. C. R. (1984), The Logic of Programming, Prentice Hall, Englewood
Cliffs, N.J.

Hoare, C. A. R. (1969), ‘An axiomatic basis for computer programming’, Comm.
ACM, 12, 576–580,583.

Hodges, W. (1993), Model Theory, Cambridge University Press, London.

Hughes, D. E. & Cresswell, M. J. (1971), An Introduction to Modal Logic, Methuen,
New York.

Huth, M. & Ryan, M. (2000), Logic in Computer Science: Modelling and reasoning
about systems, Cambridge University Press, Cambridge.

408 REFERENCES

Jones, C. B. (1980), Software Development: A Rigorous Approach, Prentice Hall,
Englewood Cliffs, N.J.

Kowalski, R. (1979), Logic for Problem Solving, Elsevier, Amsterdam.

Krötzsch, M., Simancik, F. & Horrocks, I. (2013), A description logic primer.
arXiv:1201.4089v3 [cs.AI].

Lemmon, E. J. (1977), An Introduction to Modal Logic, Basil Blackwell, Oxford.
Ed. N. Rescher, Monograph No.11, American Philosophical Quaterly Monograph
series.

Lewis, C. I. (1918), A Survey of Symbolic Logic, Dover, New York.

Lewis, C. I. & Langford, C. H. (1938), Symbolic Logic, Century, New York.

Loveland, D. W. (1979), Automated Theorem Proving: A logical basis, Elsevier,
Amsterdam.

Łukasiewicz, J. (1970), ‘Selected works’, North Holland, Amsterdam. Ed. by
L. Borkowski.

Manaster, A. B. (1978), Completeness, Compactness and Undecidability: An
Introduction to Mathematical Logic, PHI Learning, New Delhi.

Manin, Y. I. (1977), A Course in Mathematical Logic for Mathematicians, Springer
Verlag, New York.

Mates, B. (1972), Elementary Logic, Oxford University Press, New York.

Mendelson, E. (1979), Introduction to Mathematical Logic, D. Van Nostrand,
New York.

Meyer, J. J. C. & van der Hoek, W. (1993), Epistemic Logic for AI and Computer
Science, Cambridge University Press, Cambridge.

Paulson, L. C. (1991), ML for the Working Programmer, Cambridge University
Press, Cambridge.

Pelletier, F. J. (1999), ‘A brief history of natural deduction’, History and Philosophy
of Logic, 20, 1–31.

Popkorn, S. (1994), First Steps in Modal Logic, Cambridge University Press,
Cambridge.

Post, E. L. (1921), ‘Introduction to general theory of elementary propositions’,
American Journal of Mathematics, 43, 163–185.

Quine, W. V. (1959), ‘On cores and prime implicates of truth functions’, American
Math. Monthly, 66, 755–760.

Rasiowa, H. & Sikorski, R. (1970), The Mathematics of Metamathematics, 3rd ed.,
Polish Scientific Pub., Warschau.

REFERENCES 409

Rautenberg, W. (2010), A Concise Introduction to Mathematical Logic, 3rd ed.,
Springer, New York.

Reiter, R. & de Kleer, J. (1987), ‘Foundations of assumption based truth maintenance
systems : Preliminary report’, Proc. AAAI-87 .

Reynolds, J. C. (1981), The Craft of Programming, Prentice Hall, Englewood Cliffs,
N.J.

Robinson, A. (1996), Nonstandard Analysis, Princeton University Press, New Jersey,
USA.

Robinson, J. A. (1979), Logic: Form and Function, Elsevier, New York.

Robinson, J. A. & Wos, L. (1969), ‘Paramodulation and theorem proving in first
order logic with equality’, Machine Intelligence, 4, 135–150.

Schmidt, D. A. (1994), The Structure of Typed Programming Languages, MIT Press,
Cambridge, USA.

Selman, B. & Kautz, H. (1991), Knowledge Compilation using Horn Approximation,
(Ed.) Proc. Ninth National Conference on Artificial Intelligence, Anaheim, CA.

Shoenfield, J. R. (1967), Mathematical Logic, Addison Wesley, Reading, USA.

Singh, A. (1999), ‘Computing prime implicants via transversal clauses’, Int. J.
Computer Math., 70, 417–427.

Singh, A. (2009), Elements of Computation Theory, Springer-Verlag, London.

Singh, A. & Goswami, C. (1998), Fundamentals of Logic, Indian Council of
Philosophical Research, New Delhi.

Smets, P., Mamdani, A., Dubois, D. & Prade, H. (1998), Non-standard Logics for
Automated Reasoning, Academic Press, New York.

Smullyan, R. M. (1968), First Order Logic, Springer-Verlag, New York.

Smullyan, R. M. (1978), What is The Name of This Book?, Prentice Hall, Englewood
Cliffs, N.J.

Smullyan, R. M. (1983), The Lady or the Tiger and the Other Logical Puzzles,
Penguin Books, Harmondsworth, UK.

Smullyan, R. M. (2014), A Biginner’s Guide to Mathematical Logic, Dover Pub. Inc.,
New York.

Snyder, D. P. (1971), Modal Logic and its Applications, Van Nostrand Reinhold
Company, New York.

Sperchneider, V. & Antoniou, G. (1991), Logic, a Foundation for Computer Science,
Addison Wesley, Reading, USA.

410 REFERENCES

Srivastava, S. M. (2013), A Course on Mathematical Logic, 2nd ed., Springer
(Universitext), New York.

Stoll, R. R. (1963), Set Theory and Logic, W.H. Freeman, New York.

Suppes, P. (1957), Introduction to Logic, Van Nostrand, Princeton, N.J.

Tanaka, K. (1996), An Introduction to Fuzzy Logic for Paractical Applications,
Springer-Verlag, New York.

Tarski, A. (1944), ‘The semantic conception of truth’, Philosophy and Phenomeno-
logical Research, 4, 341–376.

Tennent, R. D. (1991), Semantics of Programming Languages, Prentice Hall,
Englewood Cliffs, N.J.

Tison, P. (1967), ‘Generalization of consensus theory and application to the
minimization of boolean functions’, IEEE Trans. on Elec. Comp., EC-16(4),
446–456.

Turner, T. (1991), Constructive Foundations for Functional Languages,
McGraw-Hill, New York.

van Dalen, D. (1989), Logic and Structure, Springer-Verlag (Universitext),
New York.

van Heijenoort, J. (1967), From Frege to Gödel: A Source Book in Mathematical
Logic 1879-1931, Ed. Harvard University Press, Cambridge, USA.

Wittgenstein, L. (1922), Tractatus Logico Philosophicus, Kegan & Paul, London.
Translated by C.K. Ogden.

Wójcicki, R. (1998), Theory of Logical Calculi, D. Reidel, Dordrecht, The
Netherlands.

Index

B-support, 102
F-valid, 369
A, 313
L3, 392
wp , 292
kSAT, 81
kcnf, 81
FORM, 199
SAT, 81
3SAT, 82

Abbreviated formula, 138
Accessibility relation, 345
Adequacy of

FND, 243
FT, 259
GFC, 247
GPC, 116
PT, 126

Adequate set of connectives, 77
Admissible substitution, 140
Agree, 153
Alphabet of

FL, 132
PL, 3

Applying a substitution, 214
Arbitrarily large model, 188
Arithmetic, 313
Arity, 132
Assignment

axiom, 275
function, 141
statement, 269

Assumption schemes, 369
Atomic formula, 133

Atomic proposition, 3
Atoms, 3
Autoepistemic

interpretation, 402
logic, 402
model, 402
soundness, 402
theory, 402

Axiom K, 354
Axiom of PC, 36
Axiom schemes, 307

of FC, 168
of KC, 354
of PC, 36

Bacus-Naur form, 3
Biform literal, 87
Biform variable, 87
Binary search, 290
BNF, 3
Body, 270
Boolean

expression in CL, 268
function, 78
valuation, 13
variable, 70, 78

Boolean conditions, 12
Bound, 269

by a quantifier, 135
occurrence, 135
variable, 135

Branching proposition, 118
Branching rules, 113, 118, 363

Calculation, 103, 237
Calculational proof, 104

411

412 INDEX

Canonical model, 358
Characteristic function, 396
Church-Turing thesis, 325
Closed

formula, 136
path, 118
path for K, 364
tableau, 118
tableau for K, 364
term, 133
world assumption, 231, 402

cnf, 72, 211
Coloring, 185
Compactness, 55, 184
Complement, 78
Complementary Literal, 72
Completed path, 118
Completed tableau, 118
Completeness

for PC, 54
of FC, 183
of FT, 258
of resolution, 92

Complete path, 118
Composition, 269
Composition of substitutions, 215
Compound formula, 133
Compound proposition, 3, 118
Computation tree logic, 380
Conclusion, 20, 39
Conditional statement, 269
Conjunctive clause, 72, 211
Conjunctive normal form, 72
Connectives, 3, 132
Consequence, 20, 358
Consequent, 399
Consistent

in KC, 357
in PC, 42
in PND, 107
set in FC, 172
set in FT, 256
set in PT, 118

Contingent, 17
Contradiction, 17
Correspondence theory, 369

Crisp predicate, 396
CTL, 380

Debugging, 264
Declarative version, 5
Deductively closed, 68
Deductive closure, 68
Default, 399

extension, 400
theory, 399

Definable relation, 332
Denial, 99
Derivation in KC, 358
Derived rules, 40
Deviant logics, 387
Disjunctive clause, 72, 211
Disjunctive normal form, 72
dnf, 72, 211
Domain, 142
Domain of a structure, 306
DPLL, 97
DT, 26, 41, 156, 172
Dual, 99

EG, 193
Eigenvariable condition, 245
Elementarily equivalent, 339
Empty sequent, 111
enf, 100
Entails, 20, 118, 150
Equality

axioms, 158
rules in FT, 250
sentences, 159

Equivalence in K, 351
Equivalent

in FL, 150
in PL, 20
states, 166
valuations, 166

Equivalently replaced with, 61
ES, 193
Exclusive or, 99
Exclusive or Normal form, 100
Exclusive sum, 78
Existential

INDEX 413

closure, 155
formula, 250, 337
quantifier, 132
rule, 250

Expressed by a formula, 331
Expressible in A, 331
Expression, 3, 132
Expressions, 329
Extended logics, 387

Factor of a clause, 223
Falsifies, 17, 143, 154, 346
FC, 168
fcnf, 211
fdnf, 211
Finitely generated tree, 56, 123
Finite model property, 328
Finite state-model, 143
First order language, 305
First order theory, 307
Flagged variable, 196
FND, 240
Follows from, 20
Formation rules, 3
Formula, 133, 402
Four colour theorem, 56
Frame, 345
Frame properties, 370
Free

for a variable, 139
occurrence, 135
universe, 255
variable, 135

FT, 250
Functional

cnf, 211
dnf, 211
form, 209
normal form, 211
standard form, 211

Function symbol, 132
Fundamental clause, 94
Fuzzy subset, 396

G, 370
Gödel logic, 370

Gödel number, 329
Gödel numbering, 329
Generalized consequence, 115
GFC, 245
Ghost variable, 267
GPC, 111
Ground

atomic formulas, 317
instances, 235, 318
literals, 317
terms, 235, 316

Grounded theory, 403
Guard, 270

Has colour, 185
Herbrand

base, 317
expansion, 318
interpretation, 317
map, 317
model, 317
universe, 316

Hintikka set, 53, 181
Hoare

logic, 280
proof, 280
proof tree, 281
triple, 267

Horn clause, 84, 230
Horn formula, 84
Hypothesis, 20

IC, 49
Identity, 132
Immediate sub-proposition, 9
Inconsistent

in GPC, 113
in PC, 42
in PND, 107
set in FC, 172
set in FT, 256
set in PT, 118

Independence of axioms, 68
Indeterminate proposition, 392
Indical function, 206, 396
Individual constants, 132

414 INDEX

Inductive construction, 5
Infinitesimal, 188
Infinite state-model, 143
Infinity, 188
Instance of PCP, 325
Integer expression in CL, 268
Interpolant, 100, 338
Interpretation, 12, 142, 306
Invalid, 17, 149
Invariant, 271, 277
Isomorphic, 338

Justifications, 399

K-calculus, 354
K-valid, 350
KC, 354
KND, 360
Knowledge compilation, 76
Kowalski form, 230
KT, 364

Law
∧-distributivity, 294
�-distributivity, 294
→-distributivity, 294
¬-distributivity, 294
∨-distributivity, 294
Excluded miracle, 294
FL, 192
in K, 350
of trivalence, 392
PL, 62
Termination, 294

Lemma
Diagonalization, 330
König’s, 56, 124
Lindenbaum, 53, 357
Relevance, for sentences, 155
Relevance, in FL, 152
Relevance, in PL, 14
Substitution, 144
Truth, 358

Length of a proposition, 82
Level of a term, 133
Literal, 19, 72, 211

Logical
constants, 16
symbols, 305
variable, 267

Logic gates, 79
Logic of knowledge, 376

M, 25, 43, 156, 172
Main connective, 9
Marriage condition, 57
Match in a PCP, 325
Matrix of, 201
Maximally

consistent, 51
consistent in KC, 357
inadequate, 99

Membership function, 397
MFC, 200
mgu, 219
Miniscope form, 338
Modal

atomic formula, 343
atomic proposition, 343
prefix, 363
proposition, 343

Modality
alethic, 375
deontic, 375
doxastic, 375
temporal, 375

Model, 17, 20, 154
based on a frame, 369
checkers, 384
finite, 154
infinite, 154
of K, 346

Monochromatic, 185
Monotone circuit, 81
Monotonic logics, 388
Most general unifier, 218
mp, 343

Names, 132
NAND, 78
Natural deduction system, 106
Necessitation, 354

INDEX 415

Necessity rules, 364
Negation

as failure, 231
complete, 54
complete set, 339
normal form, 99, 234

New
constant, 194, 251
term, 250
variable, 245

nnf, 99, 234
Nonfundamental clause, 94
Nonlogical constants, 16
Nonlogical symbols, 305
Nonstandard model, 188
Nontrivial clause, 94
NOR, 78

Open
formula, 136
path, 118
path for K, 364
tableau, 118

Outfix notation, 29

Paramodulant, 224
Paramodulation, 224
Parent clauses, 221
Parse tree, 4
Partially correct, 273
Partial correctness, 265
Path, 56
Path in a tableau, 118
PC, 37
pcnf, 211
PCP, 325
PCS, 325
pdnf, 211
Peano’s arithmetic, 313
PL, 3
PL-formulas, 3
Place, 13
PND, 106
PND-deduction, 107
Polish notation, 29
Possibility rules, 364

Possible world semantics, 385
Post’s correspondence problem, 325
Postcondition, 266
Precedence rules, 10
Precondition, 266
Predicate, 132
Prefixed mp, 363
Prefix of, 201
Premise, 20, 39, 118, 250
Prenex form, 201, 211
Prenex normal form, 211
Prerequisite, 399
Prime implicant, 76
Prime implicate, 76
Procedure

CompSub, 215
HornSat, 85
NorFor, 73
PrenForm, 202
PropDet, 8
QuaEli, 206
TwoSat, 83
Unify, 218

Product, 78
Product structure, 337
Program

Binary search, 291
specification, 267
state, 266
StringMatching, 264
termination, 265
variable, 266

Proof
by calculation, 237
in FC, 169
in KC, 354
in MPC, 130
in PC, 37
in PND, 107
of an FC-consequence, 169
of a PC-consequence, 39
of a sequent, 113
of partial correctness, 280
summary, 282

Prop, 3
Propositional

416 INDEX

constants, 3, 132
knowledge base, 76
language, 16
theory, 76
variable, 3

Provability predicate, 334
Provable

consequence, 39, 169
in FC, 169
in KC, 354
in PC, 37
in PND, 107
sequent, 113

PT, 117
Punctuation marks, 132
Pure literal, 96

QualEli-∀, 209
Quantifiers, 132
Quasi-proof, 64, 195

RA, 26, 43, 156, 173, 279
Rank, 30
RC, 279
Rectification, 201
Rectified formula, 201
Reflexive frame, 369
Residue of subsumption, 95
Resolution

DAG, 89
method, 226
proof, 89, 226
refutation, 89, 226

Resolvent, 87, 221
Resolvent closure, 92
Resolving upon, 87
Result of a substitution, 214
RI, 279
RPL, 88
RS, 279
Rule

BP, 355
GA, 365
LA, 365
R, 355
RW, 279

Rule of
binary resolution, 229
composition, 276
conditional statement, 276
full resolution, 229
global assumption, 365
implication, 276
inconsistency, 49
inference of FC, 169
inference of GPC, 111
inference of KC, 354
inference of PC, 36
Leibniz, 62
local assumption, 365
resolution, 88
sequential execution, 276
total while, 289
while, 277

S4, 371
S5, 371
Satisfiability form, 210
Satisfiable, 17, 20, 149, 150
Satisfiable path, 257
Satisfied, 273
Satisfies, 17, 143, 154, 346, 348
scnf, 211
Scope, 135
sdnf, 211
Semantically complete, 402
Semantic tree, 117
Semi-decidable, 328
Sentence, 136
Sentential forms, 210
Separating variant, 217
Sequent, 111
Sequential control, 269
Sequent rules, 111
Signature, 16, 305
Situation, 13
Skolem

cnf, 211
dnf, 211
form, 206
function, 206
normal form, 211

INDEX 417

standard form, 211
term, 206, 233

Skolemization, 206
Soundness

of FT, 258
of PC, 51
of resolution, 92

Stable expansion, 403
Stable theory, 403
Stacking proposition, 118
Stacking rules, 113, 118, 363
State, 13, 143
State-model, 143, 150
Strongly entails, 351
Structure, 306
Subformula, 135
Sublogic, 370
Subproposition, 9
Substitution, 139, 214
Substructure, 337
Subsumption, 95
Sum, 78
Systematic tableau, 122, 255
Słupecki operator, 393

Tableau
derivation, 366
first order, 250
for a proposition, 118
for a set, 118
proof for K, 364
propositional, 117
rules for K, 363
theorem for K, 364

Tautological clause, 94
Tautology, 17, 190
Temporal logic, 377
Term, 132
Theorem

Adequacy of PND, 110
Adequacy of resolution, 94
Beth’s definability, 338
Biconditional replacement in K, 355
Closure property of resolution, 93
Compactness of FL, 184
Compactness of PL, 55

Completeness of KC, 358
Completeness of PC, 54
Correspondence, 370
Craig’s interpolation, 100, 338
Deduction for L3, 393
Deduction for FC, 172
Deduction for FL, 156
Deduction for K, 353
Deduction for PC, 41
Deduction for PL, 26
Equality, 161
Equivalence replacement in FL, 190
Equivalence replacement in K, 351
Equivalence replacement in PL, 61
Existential generalization, 193
Existential specification, 193
Finiteness for FC, 173
Finiteness for PC, 44
Finiteness of PT, 124
Functional form, 210
Fundamental invariance, 303
Gödel’s first incompleteness, 333
Gödel’s second incompleteness, 334
Hall’s marriage, 58
Herbrand’s, 322
Infinite Ramsey, 185
Laws in FL, 192
Laws in K, 350
Laws of PL, 62
Model existence, 182
Model existence for PC, 54
Monotonicity for FC, 172
Monotonicity for FL, 156
Monotonicity for K, 353
Monotonicity for PC, 43
Monotonicity for PL, 25
Normal form, 72
of FC, 169
of GPC, 113
of KC, 354
of PC, 37
of PND, 107
of PT, 118
Paradox of material implication, 25,

156
Prenex form, 202

418 INDEX

Prenex normal form, 211
Ramsey, 186
Reductio ad absurdum for FC, 173
Reductio ad absurdum for FL, 156
Reductio ad absurdum for PC, 43
Reductio ad absurdum for PL, 26
Regularity, 355
Resolution principle, 88, 222
Sentential form, 210
Skolem, 189
Skolem-Löwenheim, 200, 323
Skolem-Löwenheim upward, 189, 324
Skolem Form, 234
Skolem form, 207
Soundness of KC, 357
Standard form, 211
Strong adequacy of FC, 183
Strong adequacy of FND, 243
Strong adequacy of FT, 259
Strong adequacy of GFC, 247
Strong adequacy of GPC, 116
Strong adequacy of PT, 126
Strong completeness of FT, 258
Strong generalization, 176
Strong soundness of FC, 177
Strong soundness of FT, 258
Strong soundness of PC, 51
Syntactic interpretation, 321
Tarski’s, 331
Tautological replacement, 191
Tautological replacement in K, 350
Turing’s Undecidability, 327
Ultrafilter, 59
Uniform replacement, 191
Uniform replacement in PL, 60
Unique parsing in FL, 134
Unique parsing in K, 344
Unique parsing in PL, 6
Universal generalization, 193
Universal specification, 193

Theory of a structure, 306
Totally correct, 288
Total correctness, 265
Trivial clause, 94
True at a world, 345, 346
Truth

assignment, 12
function, 18, 70
functionally complete, 77

Truth table, 12
Truth values, 11
TW, 289

UG, 193
Ultrafilter, 59
Undecidability of FL, 327
Underlying frame, 346
Unifiable clause, 217
Unifier, 217
Uniformly replaced with, 60
Uniform replacement, 48, 191
Unit resolution, 102
Universal

closure, 155
formula, 250, 337
quantifier, 132
rule, 250
sequent, 111

Universe, 142
Unsatisfiable, 17, 149
US, 193

Vague predicate, 396
Valid, 17, 149

consequence in K, 351
in a frame, 369
in K, 350

Validity form, 210
Valuation, 13, 141, 143
Variables, 132
Variable capturing, 139
Variant, 217, 288
Verification condition, 283
Verifies, 17, 143, 346, 348

Weakest precondition, 292
Weakly entails, 351
wff, 3
World, 13, 344
World truth mapping, 346

XOR, 99

ZFC, 310

