Thomas Nield

L earning
RxJava

Build concurrent, maintainable, and responsive Java
in less time

L1 Packb

Learning RxJava

Build concurrent, maintainable, and responsive Java in less
time

Thomas Nield

BIRMINGHAM - MUMBAI

Learning RxJava

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1140617

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-042-6

www .packtpub.com

http://www.packtpub.com

Author

Thomas Nield

Reviewers
David Karnok

David Moten

Commissioning Editor

Aaron Lazar

Acquisition Editor

Denim Pinto

Content Development Editor

Siddhi Chavan

Technical Editor

Pranali Badge

Credits

Copy Editor

Stuti Srivastava

Project Coordinator

Prajakta Naik

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Graphics

Abhinash Sahu

Production Coordinator

Shraddha Falebhai

About the Author

Thomas Nield is a business consultant for Southwest Airlines in Schedule Initiatives, and a
maintainer for RxJavaFX and RxKotlin. Early in his career, he became fascinated with
technology and its role in business analytics. After becoming proficient in Java, Kotlin,
Python, SQL, and reactive programming, he became an open source contributor as well as
an author/speaker at O'Reilly Media. He is passionate about sharing what he learns and
enabling others with new skill sets. He enjoys making technical content relatable and
relevant to those unfamiliar with or intimidated by it.

Currently, Thomas is interested in data science, reactive programming, and the Kotlin
language. You may find him speaking on these three subjects and how they can
interconnect.

He has also authored the book Getting Started with SQL, by O'Reilly Media.

Acknowledgements

I am blessed to have great people in my life who have enabled everything I do, including
this book. To all my family and friends who saw little of me for 6 months while I wrote this
book, thank you for being so patient and understanding.

First, I want to thank my mom and dad. They have worked hard to ensure that I have the
opportunities that I have today. My dad did everything he could to provide a better
education for my brothers and me. Growing up, my mom always pushed me forward, even
when I resisted; she taught me to never settle and always struggle past my limits.

There are so many people at my company, Southwest Airlines, who I have to thank--the
leaders and colleagues in ground ops, revenue management, and network planning, who
have taken risks to green-light my projects. They have embraced my unconventional
approaches in leveraging technology to solve industry challenges. It is amazing to work for
a company that continues to be a maverick and support a tradition started by an attorney, a
Texas businessman, and a cocktail napkin.

I also want to thank the great folks at O’Reilly Media and Packt who continue to open doors
for me to write and speak. Although I was approached by Packt to write this book, they
probably would never have found me if it was not for O’Reilly and my previous

book, Getting Started with SQL.

While he was not involved in this book or ReactiveX, I want to extend my gratitude to
Edvin Syse, the creator and maintainer of TornadoFX. I joined his project in early 2016, and
it is amazing how far it has come. Edvin’s work has helped me save a lot of my time and
enabled me to pursue initiatives like this book. If you ever need to build JVM desktop apps
quickly, Edvin’s work may change how you do so forever. More importantly, he is probably
the nicest and most helpful person you will encounter in the open source community.

Finally, I want to thank the open source community for helping me shape this journey and
what ultimately became this book. David Karnok and David Moten have been enormously
patient with me over the years when I had questions about RxJava. David Karnok seems to
have an infinite bandwidth, not only owning and maintaining RxJava, but also answering
questions and being the project’s ambassador. David Moten also contributes to RxJava and
is an Rx advocate for newbies and veterans alike, answering questions and helping anyone
at any skill level. It is an honor to have them both review this book. I also want to thank
Stepan Goncharov for checking my content on Android and everyone else in the OSS
community who has been quick to share their knowledge and insights over the years.

About the Reviewers

David Karnok is the project lead and top contributor of RxJava. He is a PhD candidate in
the field of production informatics. He is originally a mechanical engineer by trade who has
picked up computer science along the way. He is currently a research assistant at the
Engineering and Management Intelligence Research Lab under the Hungarian Academy of
Sciences. He was also the first to port the historical Rx.NET library to Java back in 2011
(Reactive4]ava)--2 years before Netflix started over again. Starting from late 2013, he
contributed more than half of RxJava 1 and then designed, architected, and implemented
almost all of RxJava 2 known today. In addition, he is perhaps the only person who does
any research and development on reactive flows in terms of architecture, algorithms, and
performance, of which, the major contribution to the field is the modern internals in RxJava
2 and Pivotal's Reactor Core 3. If one wants to know the in-depths of RxJava, Reactive-
Streams, or reactive programming in general, David is the go-to "guru" worth listening to.

David is also a reviewer of the book, Learning Reactive Programming With Java 8, by Packt,
and Reactive Programming with RxJava, by O'Reilly.

David Moten is a software developer, largely on JVM, who loves creating libraries for
others and himself to use. Contributing to open source projects and participating in open
source communities has been a source of enjoyment for him and a considerable education in
recent years, with some really interesting complex problems in the RxJava project. RxJava
itself has proven to be a huge boon, both in his workplace and outside of it, and David sees
reactive programming growing in importance in mobile, backend, and frontend
applications.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787120422.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422
https://www.amazon.com/dp/1787120422

Table of Contents

Preface 1
Chapter 1: Thinking Reactively 7
A brief history of ReactiveX and RxJava 8
Thinking reactively 9
Why should | learn RxJava? 10
What we will learn in this book? 11
Setting up 11
Navigating the Central Repository 12
Using Gradle 13

Using Maven 15

A quick exposure to RxJava 16
RxJava 1.0 versus RxJava 2.0 - which one do | use? 20
When to use RxJava 20
Summary 21
Chapter 2: Observables and Subscribers 23
The Observable 23
How Observables work 23
Using Observable.create() 24
Using Observable.just() 28
The Observer interface 30
Implementing and subscribing to an Observer 31
Shorthand Observers with lambdas 32
Cold versus hot Observables 34
Cold Observables 35
Hot Observables 38
ConnectableObservable 40
Other Observable sources 42
Observable.range() 42
Observable.interval() 44
Observable.future() 47
Observable.empty() 48
Observable.never() 48
Observable.error() 49

Observable.defer() 50

Observable.fromCallable() 53
Single, Completable, and Maybe 54
Single 54
Maybe 55
Completable 57
Disposing 58
Handling a Disposable within an Observer 59
Using CompositeDisposable 61
Handling Disposal with Observable.create() 62
Summary 64
Chapter 3: Basic Operators 65
Suppressing operators 65
filter() 66
take() 66
skip() 68
takeWhile() and skipWhile() 69
distinct() 70
distinctUntilChanged() 72
elementAt() 73
Transforming operators 74
map() 74
cast() 75
startWith() 75
defaultlfEmpty() 77
switchIfEmpty() 77
sorted() 78
delay() 80
repeat() 81
scan() 82
Reducing operators 84
count() 84
reduce() 85
all() 86
any() 87
contains() 87
Collection operators 88
toList() 89
toSortedList() 90
toMap() and toMultiMap() 90

[ii]

collect() 93
Error recovery operators 94
onErrorReturn() and onErrorReturnltem() 95
onErrorResumeNext() 97
retry() 99
Action operators 101
doOnNext(), doOnComplete(), and doOnError() 101
doOnSubscribe() and doOnDispose() 103
doOnSuccess() 105
Summary 105
Chapter 4: Combining Observables 107
Merging 108
Observable.merge() and mergeWith() 108
flatMap() 112
Concatenation 117
Observable.concat() and concatWith() 118
concatMap() 120
Ambiguous 121
Zipping 123
Combine latest 125
withLatestFrom() 127
Grouping 128
Summary 130
Chapter 5: Multicasting, Replaying, and Caching 132
Understanding multicasting 133
Multicasting with operators 134
When to multicast 139
Automatic connection 141
autoConnect() 142
refCount() and share() 145
Replaying and caching 147
Replaying 147
Caching 152
Subjects 153
PublishSubject 153
When to use Subjects 154
When Subjects go wrong 156
Serializing Subjects 157

[iii]

BehaviorSubiject 158

ReplaySubject 159
AsyncSubject 160
UnicastSubject 161
Summary 164
Chapter 6: Concurrency and Parallelization 165
Why concurrency is necessary 165
Concurrency in a nutshell 166
Understanding parallelization 167
Introducing RxJava concurrency 167
Keeping an application alive 173
Understanding Schedulers 176
Computation 177

10 177
New thread 177
Single 178
Trampoline 178
ExecutorService 179
Starting and shutting down Schedulers 180
Understanding subscribeOn() 180
Nuances of subscribeOn() 184
Understanding observeOn() 187
Using observeOn() for Ul event threads 191
Nuances of observeOn() 193
Parallelization 194
unsubscribeOn() 199
Summary 202
Chapter 7: Switching, Throttling, Windowing, and Buffering 203
Buffering 204
Fixed-size buffering 204
Time-based buffering 207
Boundary-based buffering 209
Windowing 210
Fixed-size windowing 210
Time-based windowing 212
Boundary-based windowing 213
Throttling 214
throttleLast() / sample() 216

[iv]

throttleFirst() 217
throttleWithTimeout() / debounce() 217
Switching 219
Grouping keystrokes 224
Summary 227
Chapter 8: Flowables and Backpressure 228
Understanding backpressure 228
An example that needs backpressure 230
Introducing the Flowable 232
When to use Flowables and backpressure 234
Use an Observable If... 234
Use a Flowable If... 235
Understanding the Flowable and Subscriber 236
The Subscriber 237
Creating a Flowable 242
Using Flowable.create() and BackpressureStrategy 243
Turning an Observable into a Flowable (and vice-versa) 245
Using onBackpressureXXX() operators 247
onBackPressureBuffer() 247
onBackPressurelLatest() 250
onBackPressureDrop() 251
Using Flowable.generate() 252
Summary 256
Chapter 9: Transformers and Custom Operators 257
Transformers 257
ObservableTransformer 258
FlowableTransformer 262
Avoiding shared state with Transformers 263
Using to() for fluent conversion 266
Operators 269
Implementing an ObservableOperator 269
FlowableOperator 274
Custom Transformers and operators for Singles, Maybes, and
Completables 277
Using RxJava2-Extras and RxJava2Extensions 278
Summary 279
Chapter 10: Testing and Debugging 281
Configuring JUnit 282

[v]

Blocking subscribers 282

Blocking operators 285
blockingFirst() 286
blockingGet() 287
blockingLast() 288
blockinglterable() 289
blockingForEach() 290
blockingNext() 290
blockingLatest() 291
blockingMostRecent() 292

Using TestObserver and TestSubscriber 293

Manipulating time with the TestScheduler 295

Debugging RxJava code 297

Summary 302

Chapter 11: RxJava on Android 303

Creating the Android project 304
Configuring Retrolambda 310
Configuring RxJava and friends 313

Using RxJava and RxAndroid 314
Using RxBinding 318

Other RxAndroid bindings libraries 321

Life cycles and cautions using RxJava with Android 322

Summary 326

Chapter 12: Using RxJava for Kotlin New 327

Why Kotlin? 328

Configuring Kotlin 328
Configuring Kotlin for Gradle 329
Configuring Kotlin for Maven 329
Configuring RxJava and RxKotlin 331

Kotlin basics 331
Creating a Kotlin file 332
Assigning properties and variables 333
Extension functions 334
Kotlin lambdas 335

Extension operators 337

Using RxKotlin 339

Dealing with SAM ambiguity 340

Using let() and apply() 342

[vi]

Using let() 342

Using apply() 344

Tuples and data classes 345
Future of ReactiveX and Kotlin 347
Summary 348
Appendix 349
Introducing lambda expressions 349
Making a Runnable a lambda 349

Making a Supplier a lambda 351

Making a Consumer a lambda 353

Making a Function a lambda 355
Functional types 357
Mixing object-oriented and reactive programming 358
Materializing and Dematerializing 363
Understanding Schedulers 366

Index 370

[vii]

Preface

Reactive programming is more than a technology or library specification. It is an entirely
new mindset in how we solve problems. The reason it is so effective and revolutionary is it
does not structure our world as a series of states, but rather something that is constantly in
motion. Being able to quickly capture the complexity and dynamic nature of movement
(rather than state) opens up powerful new possibilities in how we represent things with
code.

When I first learned Java and object-oriented programming, I felt it was useful, but not
effective enough. Although OOP is useful, I believed it needed to be paired with something
else to be truly productive, which is why I keep an eye on C# and Scala. Only a few years
later, Java 8 came out, and I put functional programming into practice for the first time.

However, something was still missing. I became fascinated with the idea of a value
notifying another value of its change, and an event triggering another event in a domino
effect. Was there not a way to model events in a fluent and functional way, much like Java 8
Streams? When I voiced this idea one day, somebody introduced me to reactive
programming. What I was looking for was the RxJava Observable, which, at first glance,
looked a lot like a Java 8 Stream. The two look and feel similar, but the Observable pushes
not just data but also events. At that moment, I found exactly what I was looking for.

For me, as well as many others, a challenge in learning RxJava is the lack of documentation
and literature. I was often left experimenting, asking questions on Stack Overflow, and
trawling obscure issues on GitHub to become knowledgeable. As I used RxJava heavily for
some business problems at work, I wrote several blog articles, sharing my discoveries on
topics such as parallelization and concurrency. To my surprise, these articles exploded with
traffic. Perhaps this should not have been surprising since these topics were sparsely
documented anywhere else. When Packt approached me to write my second book, Learning
RxJava, I jumped at the opportunity despite the work involved. Maybe, just maybe, this
book can solve the documentation problem once and for all. Every fundamental concept,
use case, helpful trick, and "gotcha" can be made accessible, and RxJava will no longer be
considered an "advanced topic." I believe RxJava should be made accessible to professional
developers of all skill levels, as it effectively makes hard problems easy and easy problems
even easier. It may require a bit more abstract understanding, but the immediate
productivity gained makes this small hurdle worthwhile.

Preface

As far as I know, this is the first published book covering RxJava 2.0, which has many major
differences from RxJava 1.0. This book you are reading now is the comprehensive, step-by-
step guide that I wish I had. It strives to not cut any corners or present code without
thorough explanation. I hope it helps you quickly find value in RxJava, and you become
successful in applying it to all your endeavors. If you have any concerns, feedback, or
comments, you are welcome to reach out to me at tmnield@outlook.com.

Good luck!
Thomas Nield

What this book covers

Chapter 1, Thinking Reactively, introduces you to RxJava.

Chapter 2, Observables and Subscribers, talks about the core types in RxJava, including the
Observable and Observer.

Chapter 3, Basic Operators, gives you a thorough introduction to the core operators that
allow you to express logic quickly and make RxJava productive.

Chapter 4, Combining Observables, teaches you how to usefully combine multiple
Observable sources together in a variety of ways.

Chapter 5, Multicasting, Replaying, and Caching, consolidates streams to prevent redundant
work with multiple Observers, as well as replay and cache emissions.

Chapter 6, Concurrency and Parallelization, helps you discover how RxJava flexibly and
powerfully enables concurrency in your application.

Chapter 7, Switching, Throttling, Windowing, and Buffering, develops strategies to cope with
rapidly-producing Observables without backpressure.

Chapter 8, Flowables and Backpressure, utilizes the Flowable to leverage backpressure and
keep producers from out-pacing consumers.

Chapter 9, Transformers and Custom Operators, teaches you how to reuse reactive logic and
create your own RxJava operators.

Chapter 10, Testing and Debugging, leverages effective tools to test and debug your RxJava
code bases.

Chapter 11, RxJava on Android, teaches you how to apply your RxJava knowledge and
RxAndroid extensions to streamline your Android apps.

[2]

Preface

Chapter 12, Using RxJava for Kotlin New, takes advantage of Kotlin’s language features to
enable expressive patterns with RxJava.

What you need for this book

We will be using Java 8, so Oracle’s JDK 1.8 will be required. You will need an environment
to write and compile your Java code (I recommend Intellij IDEA), and preferably a build
automation system such as Gradle or Maven. Later in this book, we will use Android
Studio.

Everything you need in this book should be free to use and not require commercial or
personal licensing.

Who this book is for

This book is for Java programmers who have a fundamental grasp of object-oriented
programing and core Java features. You should be familiar with variables, types, classes,
properties, methods, generics, inheritance, interfaces, and static classes/properties/methods.
In the Java standard library, you should at least be familiar with collections (including Lists,
Sets, and Maps) as well as object equality (hashcode () /equals ()). If any of these topics
sound unfamiliar, you may want to read Java: A Beginner’s Guide by Herbert Schildt to learn
the fundamentals of Java. Also, Effective Java (2nd Edition) by Joshua Bloch is a classic book
that should be on every Java developer’s shelf. This book strives to use the best practices
cited by Bloch.

You do not need to be familiar with concurrency as a prerequisite. This topic will be
covered from an RxJava perspective.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
also use several operators between Observable and Observer to transform each pushed
item or manipulate them in some way".

[3]

Preface

A block of code is set as follows:

import io.reactivex.Observable;
public class Launcher {

public static void main(String[] args) {
Observable<String> myStrings =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

}
}

Any output is written as follows:

Alpha
Beta
Gamma
Delta
Epsilon

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "You also have the option to
use Maven, and you can view the appropriate configuration in The Central Repository by
selecting the Apache Maven configuration information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

[4]

Preface

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

N LN

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Learning-RxJava. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/. Check them out!

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/Learning-RxJava
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t /supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Thinking Reactively

It is assumed you are fairly comfortable with Java and know how to use classes, interfaces,
methods, properties, variables, static/nonstatic scopes, and collections. If you have not done
concurrency or multithreading, that is okay. RxJava makes these advanced topics much
more accessible.

Have your favorite Java development environment ready, whether it is Intellij IDEA,
Eclipse, NetBeans, or any other environment of your choosing. I will be using Intellij IDEA,
although it should not matter or impact the examples in this book. I recommend that you
have a build automation system as well such as Gradle or Maven, which we will walk
through shortly.

Before we dive deep into RxJava, we will cover some core topics first:

e A brief history of Reactive Extensions and RxJava

Thinking reactively
e Leveraging RxJava

Setting up your first RxJava project

Building your first reactive applications

Differences between RxJava 1.0 and RxJava 2.0

Thinking Reactively

A brief history of ReactiveX and RxJava

As developers, we tend to train ourselves to think in counter-intuitive ways. Modeling our
world with code has never been short of challenges. It was not long ago that object-oriented
programming was seen as the silver bullet to solve this problem. Making blueprints of what
we interact with in real life was a revolutionary idea, and this core concept of classes and
objects still impacts how we code today. However, business and user demands continued to
grow in complexity. As 2010 approached, it became clear that object-oriented programming
only solved part of the problem.

Classes and objects do a great job of representing an entity with properties and methods,
but they become messy when they need to interact with each other in increasingly complex
(and often unplanned) ways. Decoupling patterns and paradigms emerged, but this yielded
an unwanted side effect of growing amounts of boilerplate code. In response to these
problems, functional programming began to make a comeback, not to replace object-
oriented programming, but rather to complement it and fill this void. Reactive
programming, a functional event-driven programming approach, began to receive special
attention.

A couple of reactive frameworks emerged ultimately, including Akka and Sodium. But at
Microsoft, a computer scientist named Erik Meijer created a reactive programming
framework for .NET called Reactive Extensions. In a matter of years, Reactive Extensions
(also called ReactiveX or Rx) was ported to several languages and platforms, including
JavaScript, Python, C++, Swift, and Java, of course. ReactiveX quickly emerged as a cross-
language standard to bring reactive programming into the industry.

RxJava, the ReactiveX port for Java, was created in large part by Ben Christensen from
Netflix and David Karnok. RxJava 1.0 was released in November 2014, followed by RxJava
2.0 in November 2016. RxJava is the backbone to other ReactiveX JVM ports, such as
RxScala, RxKotlin, and RxGroovy. It has become a core technology for Android
development and has also found its way into Java backend development. Many
RxJavaadapter libraries, such as RxAndroid (https://github.com/ReactiveX/RxAndroid),
RxJava-JDBC (https://github.com/davidmoten/rxjava-jdbc), RxNetty (https://githu
b.com/Reactivex/RxNetty), and RxJavaFX (https://github.com/Reactivex/RxJavaFX)
adapted several Java frameworks to become reactive and work with RxJava out of the box.
This all shows that RxJava is more than a library. It is part of a greater ReactiveX ecosystem
that represents an entire approach to programming. The fundamental idea of ReactiveX is
that events are data and data are events. This is a powerful concept that we will explore later in
this chapter, but first, let's step back and look at the world through the reactive lens.

[8]

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxNetty
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX
https://github.com/ReactiveX/RxJavaFX

Thinking Reactively

Thinking reactively

Suspend everything you know about Java (and programming in general) for a moment, and
let's make some observations about our world. These may sound like obvious statements,
but as developers, we can easily overlook them. Bring your attention to the fact that
everything is in motion. Traffic, weather, people, conversations, financial transactions, and
so on are all moving. Technically, even something stationary as a rock is in motion due to
the earth's rotation and orbit. When you consider the possibility that everything can be
modeled as in motion, you may find it a bit overwhelming as a developer.

Another observation to note is that these different events are happening concurrently.
Multiple activities are happening at the same time. Sometimes, they act independently, but
other times, they can converge at some point to interact. For instance, a car can drive with
no impact on a person jogging. They are two separate streams of events. However, they
may converge at some point and the car will stop when it encounters the jogger.

If this is how our world works, why do we not model our code this way?. Why do we not
model code as multiple concurrent streams of events or data happening at the same time? It
is not uncommon for developers to spend more time managing the states of objects and
doing it in an imperative and sequential manner. You may structure your code to execute
Process 1, Process 2, and then Process 3, which depends on Process 1 and Process 2. Why
not kick-off Process 1 and Process 2 simultaneously, and then the completion of these two
events immediately kicks-off Process 3? Of course, you can use callbacks and Java
concurrency tools, but RxJava makes this much easier and safer to express.

Let's make one last observation. A book or music CD is static. A book is an unchanging
sequence of words and a CD is a collection of tracks. There is nothing dynamic about them.
However, when we read a book, we are reading each word one at a time. Those words are
effectively put in motion as a stream being consumed by our eyes. It is no different with a
music CD track, where each track is put in motion as sound waves and your ears are
consuming each track. Static items can, in fact, be put in motion too. This is an abstract but
powerful idea because we made each of these static items a series of events. When we level
the playing field between data and events by treating them both the same, we unleash the
power of functional programming and unlock abilities you previously might have thought
impractical.

[9]

Thinking Reactively

The fundamental idea behind reactive programming is that events are data and data are events.
This may seem abstract, but it really does not take long to grasp when you consider our
real-world examples. The runner and car both have properties and states, but they are also
in motion. The book and CD are put in motion when they are consumed. Merging the event
and data to become one allows the code to feel organic and representative of the world we
are modeling.

Why should | learn RxJava?

ReactiveX and RxJava paints a broad stroke against many problems programmers face
daily, allowing you to express business logic and spend less time engineering code. Have
you ever struggled with concurrency, event handling, obsolete data states, and exception
recovery? What about making your code more maintainable, reusable, and evolvable so it
can keep up with your business? It might be presumptuous to call reactive programming a
silver bullet to these problems, but it certainly is a progressive leap in addressing them.

There is also growing user demand to make applications real time and responsive. Reactive
programming allows you to quickly analyse and work with live data sources such as
Twitter feeds or stock prices. It can also cancel and redirect work, scale with concurrency,
and cope with rapidly emitting data. Composing events and data as streams that can be
mixed, merged, filtered, split, and transformed opens up radically effective ways to
compose and evolve code.

In summary, reactive programming makes many hard tasks easy, enabling you to add
value in ways you might have thought impractical earlier. If you have a process written
reactively and you discover that you need to run part of it on a different thread, you can
implement this change in a matter of seconds. If you find network connectivity issues
crashing your application intermittently, you can gracefully use reactive recovery strategies
that wait and try again. If you need to inject an operation in the middle of your process, it is
as simple as inserting a new operator. Reactive programming is broken up into modular
chain links that can be added or removed, which can help overcome all the aforementioned
problems quickly. In essence, Rx]Java allows applications to be tactical and evolvable while
maintaining stability in production.

[10]

Thinking Reactively

What we will learn in this book?

As stated earlier, RxJava is the ReactiveX port for Java. In this book, we will focus primarily
on RxJava 2.0, but I will call out significant differences in RxJava 1.0. We will place priority
on learning to think reactively and leverage the practical features of RxJava. Starting with a
high-level understanding, we will gradually move deeper into how RxJava works. Along
the way, we will learn about reactive patterns and tricks to solve common problems
programmers encounter.

In chapter 2, The Observable and Subscribers, Chapter 3, Basic Operators, and Chapter

4, Combining Observables, we will cover core Rx concepts with Observable, Observer, and
Operator. These are the three core entities that make up RxJava applications. You will start
writing reactive programs immediately and have a solid knowledge foundation to build on
for the rest of the book.

Chapter 5, Multicasting, Replaying, and Caching, and chapter 6, Concurrency and
Parallelization, will explore more of the nuances of RxJava and how to effectively leverage
concurrency.

In chapter 7, Switching, Throttling, Windowing, and Buffering and chapter 8, Flowables and
Backpressure, we will learn about the different ways to cope with reactive streams that
produce data/events faster than they can be consumed.

Finally, chapter 9, Transformers and Custom Operators, Chapter 10, Testing and
Debugging, chapter 11, RxJava on Android, and Chapter 12, Using RxJava with Kotlin New,
will touch on several miscellaneous (but essential) topics including custom operators as
well as how to use RxJava with testing frameworks, Android, and the Kotlin language.

Setting up

There are two co-existing versions of RxJava currently: 1.0 and 2.0. We will go through
some of the major differences later and discuss which version you should use.

RxJava 2.0 is a fairly lightweight library and comes just above 2 Megabytes (MBs) in size.
This makes it practical for Android and other projects that require a low dependency
overhead. RxJava 2.0 has only one dependency, called Reactive Streams (http://www.reac
tive-streams.org/), which is a core library (made by the creators of RxJava) that sets a
standard for asynchronous stream implementations, one of which is RxJava 2.0.

[11]

http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/

Thinking Reactively

It may be used in other libraries beyond RxJava and is a critical effort in the standardization
of reactive programming on the Java platform. Note that RxJava 1.0 does not have any
dependencies, including Reactive Streams, which was realized after 1.0.

If you are starting a project from scratch, try to use RxJava 2.0. This is the version we will
cover in this book, but I will call out significant differences in 1.0. While RxJava 1.0 will be
supported for a good while due to countless projects using it, innovation will likely only
continue onward in RxJava 2.0. RxJava 1.0 will only get maintenance and bug fixes.

Both RxJava 1.0 and 2.0 run on Java 1.6+. In this book, we will use Java 8, and it is
recommended that you use a minimum of Java 8 so you can use lambdas out of the box. For
Android, there are ways to leverage lambdas in earlier Java versions that will be addressed
later. But weighing the fact that Android Nougat uses Java 8 and Java 8 has been out since
2014, hopefully, you will not have to do any workarounds to leverage lambdas.

Navigating the Central Repository

To bring in RxJava as a dependency, you have a few options. The best place to start is to go

to The Central Repository (search http://search.maven.org/) and search for rxjav. You
should see RxJava 2.0 and RxJava 1.0 as separate repositories at the top of the search results,
as shown in the following screenshot:

= The Centra| RepOS|tory SEARCH | ADVANCED SEARCH | BROWSE | QUICK STATS
s |
About Central Advanced Search | APIGuide | Help
Search Results <1234586 > displaying 1 to 20 of 110
Groupld Artifactld Latest Version Updated Download
in.reactivex rnijava2 rxjava 2.0.2 all(8) 02-Dec-2016 pom jar javadocjar sources.jar
io.reactivex rjava 1.2.3 all(44) 23-Nov-2016 pom jar javadoc.jar SOurces.jar
org.wildfly.swarm rxjava 1.0.0.Alpha8 all (3) 01-Feb-2016 pOm jar sources.jar
com.aremzin.rxjava proguard-rules 1.2.3.0 all (20) 24-Nov-2016 pom aar
net javacrumbs future-converter spring-rejava 0.3.0 all(9) 03-May-2015 pom
net javacrumbs. future-converter rxjava-java8 0.3.0 all(9) 03-May-2015 pom
com.kenzan.ryjava rxjava-appdynamics 002 12-Oct-2016 om Jar javadocjar sources.jar
com.netflix.java rxjava-swing 0.20.7 all (72) 11-Nov-2014 pom jar javadoc.jar sources.jar
com.netflix. rxjava njava-string 0.20.7 all (40) 11-Nov-2014 pom jar javadocjar sources.jar
com.netflix.rjava njava-scalaz 0.20.7 all (15) 11-Nov-2014 pom jar javadocjar sources.jar
com.netflix.rjava rxjava-quasar 0.20.7 all (26) 11-Nov-2014 pom jar javadocjar Sources.jar
com.netflix.rxjava rxjava-math 0.20.7 all (32 11-Nov-2014 pom jar javadoc.jar sources.jar

Searching for RxJava in the Central Repository (RxJava 2.0 and 1.0 are highlighted)

[12]

http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/
http://search.maven.org/

Thinking Reactively

At the time of writing, RxJava 2.0.2 is the latest version for RxJava 2.0 and RxJava 1.2.3 is the
latest for RxJava 1.0. You can download the latest JAR file for either by clicking the JAR
links in the far right under the Download column. You can then configure your project to
use the JAR file.

However, you might want to consider using Gradle or Maven to automatically import these
libraries into your project. This way, you can easily share and store your code project
(through GIT or other version control systems) without having to download and configure
RxJava manually into it each time. To view the latest configurations for Maven, Gradle, and
several other build automation systems, click on the version number for either of the
repositories, as highlighted in the following screenshot:

e The Central RepOS|tory SEARCH | ADVANCED SEARCH | BROWSE | QUICK STATS
b |
About Central Advanced Search AP Guide Help

Search Results <123456 3> displaying 1to 20 of 110

Groupld Artifactid Latest Version Updated Download

in.reactivex.rejava? ejava 2.0.2 all (8) 02-Dec-2016 pom jar javadoc.jar sources.jar
in.reactivex rxjava 1.2.3 all (44 23-Nov-2016 pom jar javadoc.jar sources.jar
org.wildfly.swarm rxjava 1.0.0Alphag all (3) 01-Feb-2016 pom jar sources.jar

com.artemzin.rxjava proguard-rules 1230 all (20) 24-Nov-2016 pom aar

Click the version number under the Latest Version column to view the configurations for Maven, Gradle, and other major build automation systems

Using Gradle

There are several automated build systems available, but the two most mainstream options
are Gradle and Maven. Gradle is somewhat a successor to Maven and is especially the go-to
build automation solution for Android development. If you are not familiar with Gradle
and would like to learn how to use it, check out the Gradle Getting Started guide (https

://gradle.org/getting-started-gradle-java/).

[13]

https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/
https://gradle.org/getting-started-gradle-java/

Thinking Reactively

There are also several decent books that cover Gradle in varying degrees of depth, which
you can find at https://gradle.org/books/. The following screenshot displays the The
Central Repository page showing how to set up RxJava 2.0.2 for Gradle:

g The Central RepOSitory SEARCH | ADVANCED SEARCH | BROWSE | QUICK STATS
rxjava

About Central Advanced Search | API Guide | Help

Browse Central For io.reactivex.rxjavaZ2 : rxjava : 2.0.2
Click on a link above to browse the repository.

Project Information Project Object Model (POM)

Groupld: [io.reactivex.rxjava2 <?xml version="1.8" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.
<modelVersion>4.0.0</modelVersion>

Artifactld: |rxjava <groupId-io.reactivex.rxjava2</groupId=>
<artifactId>rxjava</artifactId>

Version: [2.0.2 <version>2.0.2</version>
<dependencies>

<dependency>
- <groupId>prg.reactivestreams</groupId>
Dependency Information <artifactId>reactive-streams</artifactId>

<version>1.0.0</version>

Apache Maven <scope>runtime</scope>
- </dependency>
Apache Buildr </dependencies>
<name>rxjava</name>
dpacheiiey <description>rxjava</description>
Groovy Grape <developers>
Gradle/Grails <developer>

<id=benjchristensen</id=>
<name>Ben Christensen</name>
<email>benjchristensen@netflix.com</email>
</developer>
</developers>
<properties>
<nebula_Manifest_Version>1.8</nebula_Manifest_Version=>
<nebula_Implementation Title=io.reactivex.rxjava2#rxjava;2.0.2</nebula_Implement ™
»

Scala SBT
Leiningen

You can find the latest Gradle configuration code and copy it into your Gradle script

In your build.gradle script, ensure that you have declared mavenCentral () as one of
your repositories. Type in or paste that dependency line compile
'io.reactivex.rxjava2:rxjava:x.y.z', where x.y. z is the version number you want
to use, as shown in the following code snippet:

apply plugin: 'java'
sourceCompatibility = 1.8
repositories {

mavenCentral ()

dependencies {
compile 'io.reactivex.rxjavaZ:rxjava:x.y.z'

[14]

https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/
https://gradle.org/books/

Thinking Reactively

Build your Gradle project and you should be good to go! You will then have RxJava and its
types available for use in your project.

Using Maven

You also have the option to use Maven, and you can view the appropriate configuration in
The Central Repository by selecting the Apache Maven configuration information, as
shown in the following screenshot:

g The Central RepOSItory SEARCH | ADVANCEDSEARCH | BROWSE | QUICK STATS
rxjava

About Central Advanced Search | APl Guide | Help

Browse Central For io.reactivex.rxjavaz : rxjava : 2.0.2

Click on a link above to browse the repository.

Project Information Project Object Model (POM)

Groupld: io.reactivex.rxjava2 <?xml version="1.8" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.
<modelVersion=4.0.0</modelVersion>

Artifactld: |rxjava <groupld>io.reactivex.rxjava?</groupId>
<artifactId>rxjava</artifactId>

Version: [2.0.2 <version>2.6.2</version>
<dependencies>

<dependency>
: <groupId>org.reactivestreams</groupld>
Dependency Information <artifactId>reactive-streams</artifactId>

<version>1.6.0</version>

Apache Maven q;:;gﬂg:;g;ﬁimedscopw
</dependencies>
<dependency> i i 1 <name>rxjava</name>
<groupIld>io.reactivex.rxjava2</groupld> <description>rxjava</description>
<artifactId>rxjava</artifactId> <developers>
<version=>2.0.2</version> <developer>
</dependency> <id>benjchristensen</id>

<name>Ben Christensen</name>
<email>benjchristensen@netflix.com</email>

Apache Buildr

Apache Ivy </developer>
</developers>
Groovy Grape <propertge 5>

Gradle/Grails <nebula Manifest Version>1.08</nebula Manifest Version>
Scala SBT <nebula_Implementation Title>io.reactivex.rxjavaZ#rxjava;2.0.2</nebula_Implement ¥
»

Leiningen

Select and then copy the Apache Maven configuration

You can then copy and paste the <dependency> block containing the RxJava configuration
and paste it inside a <dependencies> block in your pom.xm1 file. Rebuild your project,
and you should now have RxJava set up as a dependency. The x.y .z version number
corresponds to the desired RxJava version that you want to use:

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.nield</groupId>
<artifactId>mavenrxtest</artifactId>

[15]

Thinking Reactively

<version>1.0</version>
<dependencies>
<dependency>
<groupld>io.reactivex.rxjava2</groupld>
<artifactId>rxjava</artifactId>
<version>x.y.z</version>
</dependency>
</dependencies>
</project>

A quick exposure to RxJava

Before we dive deep into the reactive world of RxJava, here is a quick exposure to get your
feet wet first. In ReactiveX, the core type you will work with is the Observable. We will be
learning more about the Observable throughout the rest of this book. But essentially, an
Observable pushes things. A given Observable<T>pushes things of type T through a
series of operators until it arrives at an Observer that consumes the items.

For instance, create a new Launcher. java file in your project and put in the following
code:

import io.reactivex.Observable;
public class Launcher {

public static void main(String[] args) {
Observable<String> myStrings =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

}
}

In our main () method, we have an Observable<string> that will push five string
objects. An Observable can push data or events from virtually any source, whether it is a
database query or live Twitter feeds. In this case, we are quickly creating an Observable
using Observable. just (), which will emit a fixed set of items.

In RxJava 2.0, most types you will use are contained in the io.reactivex
package. In RxJava 1.0, the types are contained in the rx package.

[16]

Thinking Reactively

However, running this main () method is not going to do anything other than

declare Observable<String>. To make this Observable actually push these five strings
(which are called emissions), we need an Observer to subscribe to it and receive the items.
We can quickly create and connect an Observer by passing a lambda expression that
specifies what to do with each string it receives:

import io.reactivex.Observable;

public class Launcher {

public static void main (String[] args) {
Observable<String> myStrings =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

myStrings.subscribe (s —> System.out.println(s));
}
}

When we run this code, we should get the following output:

Alpha
Beta
Gamma
Delta
Epsilon

What happened here is that our Observable<String> pushed each string object one at a
time to our Observer, which we shorthanded using the lambda expression s —>
System.out.println (s). We pass each string through the parameter s (which I
arbitrarily named) and instructed it to print each one. Lambdas are essentially mini
functions that allow us to quickly pass instructions on what action to take with each
incoming item. Everything to the left of the arrow —> are arguments (which in this case is a
string we named s), and everything to the right is the action (which is
System.out.println(s)).

If you are unfamiliar with lambda expressions, turn to Appendix, to learn more about how
they work. If you want to invest extra time in understanding lambda expressions, I highly
recommend that you read at least the first few chapters of Java 8§ Lambdas (O'Reilly) (http
://shop.oreilly.com/product/0636920030713.do) by Richard Warburton. Lambda
expressions are a critical topic in modern programming and have become especially
relevant to Java developers since their adoption in Java 8. We will be using lambdas
constantly in this book, so definitely take some time getting comfortable with them.

[17]

http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do
http://shop.oreilly.com/product/0636920030713.do

Thinking Reactively

We can also use several operators between Observable and Observer to transform each
pushed item or manipulate them in some way. Each operator returns a new Observable
derived-off the previous one but reflects that transformation. For example, we can use
map () to turn each string emission into its length (), and each length integer will then be
pushed to Observer, as shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {
public static void main(Stringl[] args) {

Observable<String> myStrings =

Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");
myStrings.map (s —-> s.length()).subscribe (s ->

System.out.println(s));
}

When we run this code, we should get the following output:

~ 01 O >)

If you have used Java 8 Streams or Kotlin sequences, you might be wondering how
Observable is any different. The key difference is that Observable pushes the items while
Streams and sequences pull the items. This may seem subtle, but the impact of a push-based
iteration is far more powerful than a pull-based one. As we saw earlier, you can push not
only data, but also events. For instance, Observable.interval () will push a consecutive
Long at each specified time interval, as shown in the following code snippet. This Long
emission is not only data, but also an event! Let's take a look:

import io.reactivex.Observable;
import java.util.concurrent.TimeUnit;

public class Launcher {
public static void main(String[] args) {
Observable<Long> secondIntervals =
Observable.interval (1, TimeUnit.SECONDS) ;

secondIntervals.subscribe (s —-> System.out.println(s));
/* Hold main thread for 5 seconds

[18]

Thinking Reactively

so Observable above has chance to fire */
sleep (5000);
}

public static void sleep(long millis) {
try |
Thread.sleep(millis);
} catch (InterruptedException e) {
e.printStackTrace () ;

}
}

When we run this code, we should get the following output:

s w D PO

When you run the preceding code, you will see that a consecutive emission fires every
second. This application will run for about five seconds before it quits, and you will likely
see emissions 0 to 4 fired, each separated by a just a second's gap. This simple idea that data
is a series of events over time will unlock new possibilities in how we tackle programming.

On a side note, we will get more into concurrency later, but we had to create a sleep ()
method because this Observable fires emissions on a computation thread when subscribed
to. The main thread used to launch our application is not going to wait on this Observable
since it fires on a computation thread, not the main thread. Therefore, we use sleep () to
pause the main thread for 5000 milliseconds and then allow it to reach the end of the

main () method (which will cause the application to terminate). This gives
Observable.interval () achance to fire for a five second window before the application
quits.

[191]

Thinking Reactively

Throughout this book, we will uncover many mysteries about Observable and the
powerful abstractions it takes care of for us. If you've conceptually understood what is
going on here so far, congrats! You are already becoming familiar with how reactive code
works. To emphasize again, emissions are pushed one at a time all the way to Observer.
Emissions represent both data and an event, which can be emitted over time. Of course,
beyond map (), there are hundreds of operators in RxJava, and we will learn about the key
ones in this book. Learning which operators to use for a situation and how to combine them
is the key to mastering RxJava. In the next chapter, we will cover Observable and
Observer much more comprehensively. We will also demystify events and data being
represented in Observable a bit more.

RxJava 1.0 versus RxJava 2.0 - which one do
| use?

As stated earlier, you are encouraged to use RxJava 2.0 if you can. It will continue to grow
and receive new features, while RxJava 1.0 will be maintained for bug fixes. However, there
are other considerations that may lead you to use RxJava 1.0.

If you inherit a project that is already using RxJava 1.0, you will likely continue using that
until it becomes feasible to refactor to 2.0. You can also check out David Akarnokd's
RxJava2lnterop project (https://github.com/akarnokd/RxJava2Interop), which converts
Rx types from RxJava 1.0 to RxJava 2.0 and vice versa. After you finish this book, you may
consider using this library to leverage RxJava 2.0 even if you have the RxJava 1.0 legacy
code.

In RxJava, there are several libraries to make several Java APIs reactive and plug into
RxJava seamlessly. Just to name a few, these libraries include RxJava-JDBC, RxAndroid,
RxJava-Extras, RxNetty, and RxJavaFX. At the time of writing this, only RxAndroid and
RxJavaFX have been fully ported to RxJava 2.0 (although many other libraries are
following). By the time you are reading this, all major RxJava extension libraries will
hopefully be ported to RxJava 2.0.

You will also want to prefer RxJava 2.0 because it was built on much of the hindsight and
wisdom gained from RxJava 1.0. It has better performance, simpler APIs, a cleaner
approach to backpressure, and a bit more safety when hacking together your own
operators.

[20]

https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop
https://github.com/akarnokd/RxJava2Interop

Thinking Reactively

When to use RxJava

A common question ReactiveX newcomers ask is what circumstances warrant a reactive
approach? Do we always want to use RxJava? As someone who has been living and
breathing reactive programming for a while, I have learned that there are two answers to
this question:

The first answer is when you first start out: yes! You always want to take a reactive
approach. The only way to truly become a master of reactive programming is to build
reactive applications from the ground up. Think of everything as Observable and always
model your program in terms of data and event flows. When you do this, you will leverage
everything reactive programming has to offer and see the quality of your applications go up
significantly.

The second answer is that when you become experienced in RxJava, you will find cases
where RxJava may not be appropriate. There will occasionally be times where a reactive
approach may not be optimal, but usually, this exception applies to only part of your code.
Your entire project itself should be reactive. There may be parts that are not reactive and for
good reason. These exceptions only stand out to a trained Rx veteran who sees that
returning List<String> is perhaps better than returning Observable<String>.

Rx greenhorns should not worry about when something should be reactive versus
something not reactive. Over time, they will start to see cases where the benefits of Rx are
marginalized, and this is something that only comes with experience.

So for now, no compromises. Go reactive all the way!

Summary

In this chapter, we learned how to look at the world in a reactive way. As a developer, you
may have to retrain yourself from a traditional imperative mindset and develop a reactive
one. Especially if you have done imperative, object-oriented programming for a long time,
this can be challenging. But the return on investment will be significant as your applications
will become more maintainable, scalable, and evolvable. You will also have faster turn
around and more legible code.

[21]

Thinking Reactively

We also covered how to configure a RxJava project using Gradle or Maven and what
decisions should drive whether you should choose RxJava 2.0 versus RxJava 1.0. We also
got a brief introduction to reactive code and how Observable works through push-based

iteration.

By the time you finish this book, you will hopefully find reactive programming intuitive
and easy to reason with. I hope you find that RxJava not only makes you more productive,
but also helps you take on tasks you hesitated to do earlier. So let's get started!

[22]

Observables and Subscribers

We already got a glimpse into the Observable and how it works in chapter 1, Thinking
Reactively. You probably have many questions on how exactly it operates and what practical
applications it holds. This chapter will provide a foundation for understanding how an
Observable works as well as the critical relationship it has with the Observer. We will
also cover several ways to create an Observable as well make it useful by covering a few
operators. To make the rest of the book flow smoothly, we will also cover all critical
nuances head-on to build a solid foundation and not leave you with surprises later.

Here is what we will cover in this chapter:

e The Observable
The Observer

Other Observable factories

e Single, Completable, and Maybe

® Disposable

The Observable

As introduced in chapter 1, Thinking Reactively, the Observable is a push-based,
composable iterator. For a given Observable<T>, it pushes items (called emissions) of type
T through a series of operators until it finally arrives at a final Observer, which consumes
the items. We will cover several ways to create an Observable, but first, let's dive into how
an Observable works through its onNext (), onCompleted (), and onError () calls.

Observables and Subscribers

How Observables work

Before we do anything else, we need to study how an Observable sequentially passes
items down a chain to an Observer. At the highest level, an Observable works by passing
three types of events:

e onNext () : This passes each item one at a time from the source Observable all
the way down to the Observer.

e onComplete (): This communicates a completion event all the way down to the
Observer, indicating that no more onNext () calls will occur.

e onError (): This communicates an error up the chain to the Observer, where
the Observer typically defines how to handle it. Unless a retry () operator is
used to intercept the error, the Observable chain typically terminates, and no
more emissions will occur.

These three events are abstract methods in the Observer type, and we will cover some of
the implementation later. For now, we will focus pragmatically on how they work in
everyday usage.

In RxJava 1.0, the onComplete () eventis actually called onCompleted ().

Using Observable.create()

Let's start with creating a source Observable using Observable.create (). Relatively
speaking, a source Observable is an Observable where emissions originate from and is
the starting point of our Observable chain.

The Observable.create () factory allows us to create an Observable by providing a
lambda receiving an Observable emitter. We can call the Observable emitter's onNext ()
method to pass emissions (one a time) up the chain as well as onComplete () to signal
completion and communicate that there will be no more items. These onNext () calls will
pass these items up the chain towards the Observer, where it will print each item, as
shown in the following code snippet:

import io.reactivex.Observable;

public class Launcher {

[24]

Observables and Subscribers

public

Obse

)

sour

}

static void main(String[] args) {

rvable<String> source = Observable.create(emitter —-> {
emitter.onNext ("Alpha");
emitter.onNext ("Beta");

(
(
emitter.onNext ("Gamma") ;
emitter.onNext ("Delta");
emitter.onNext ("Epsilon");
emitter.onComplete();

ce.subscribe (s -> System.out.println ("RECEIVED: " + s));

The output is as follows:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:

Alpha
Beta
Gamma
Delta
Epsilon

In RxJava 1.0, ensure that you use Observable. fromEmitter () instead
of Observable.create (). The latter is something entirely different in

RxJava 1

.0 and is only for advanced RxJava users.

The onNext () method is a way to hand each item, starting with Alpha, to the next step in
the chain. In this example, the next step is the Observer, which prints the item using the s
-> System.out.println ("RECEIVED: " + s) lambda. Thislambda is invoked in

the onNext () call of Observer, and we will look at Observer more closely in a moment.

Note that the Observable contract (http://reactivex.io/documentatio
n/contract.html) dictates that emissions must be passed sequentially
and one at a time. Emissions cannot be passed by an Observable
concurrently or in parallel. This may seem like a limitation, but it does in
fact simplify programs and make Rx easier to reason with. We will learn

parallelization in chapter 6, Concurrency and Parallelization , without

ﬂ some powerful tricks to effectively leverage concurrency and

breaking the Observable contract.

[25]

http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html

Observables and Subscribers

The onComplete () method is used to communicate up the chain to the Observer that no
more items are coming. Observables can indeed be infinite, and if this is the case, the
onComplete () event will never be called. Technically, a source could stop emitting
onNext () calls and never call onComplete (). This would likely be bad design, though, if
the source no longer plans to send emissions.

Although this particular example is unlikely to throw an error, we can catch errors that may
occur within our Observable.create () block and emit them through onError (). This
way, the error can be pushed up the chain and handled by the Observer. This particular
Observer that we have set up does not handle exceptions, but you can do that, as shown
here:

import io.reactivex.Observable;

public class Launcher {

public static void main(String[] args) {
Observable<String> source = Observable.create (emitter -> {
try |

emitter.onNext ("Alpha");
emitter.onNext ("Beta");
emitter.onNext ("Gamma") ;
emitter.onNext ("Delta");
emitter.onNext ("Epsilon");
emitter.onComplete () ;

} catch (Throwable e) {
emitter.onError(e);

)i

source.subscribe (s -> System.out.println("RECEIVED: " + s),
Throwable: :printStackTrace) ;
}
}

Note that onNext (), onComplete (), and onError () do not necessarily push directly to
the final Observer. They can also push to an operator serving as the next step in the chain.
In the following code, we derive new Observables with the map () and filter () operators,
which will act between the source Observable and final Observer printing the items:

import io.reactivex.Observable;

public class Launcher {
public static void main (String[] args) {
Observable<String> source = Observable.create (emitter -> {

[26]

Observables and Subscribers

try |
emitter.onNext ("Alpha");
emitter.onNext ("Beta");
emitter.onNext ("Gamma") ;
emitter.onNext ("Delta");
emitter.onNext ("Epsilon");
emitter.onComplete () ;
} catch (Throwable e) {
emitter.onError (e);
3
}) g
Observable<Integer> lengths = source.map(String::length);

Observable<Integer> filtered = lengths.filter(i -> 1 >= 5);

filtered.subscribe (s —-> System.out.println ("RECEIVED: " +
s))i

}

}

This is the output after running the code:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:

~J U1 U0 U;

With the map () and filter () operators between the source Observable and

Observer, onNext () will hand each item to the map () operator. Internally, it will act as
an intermediary Observer and convert each string to its Length () . This, in turn, will call
onNext () on filter () to pass that integer, and the lambda condition i -> i >= 5 will
suppress emissions that fail to be at least five characters in length. Finally, the filter ()
operator will call onNext () to hand each item to the final Observer where they will be
printed.

It is critical to note that the map () operator will yield a new

Observable<Integer> derived off the original Observable<sString>. The filter () will
also return an Observable<Integer> but ignore emissions that fail to meet the criteria.
Since operators such asmap () and filter () yield new Observables (which internally use
Observer implementations to receive emissions), we can chain all our returned
Observables with the next operator rather than unnecessarily saving each one to an
intermediary variable:

import io.reactivex.Observable;

public class Launcher {

[27]

Observables and Subscribers

public static void main(String[] args) {
Observable<String> source = Observable.create (emitter -> {
try |
emitter.onNext ("Alpha");
emitter.onNext ("Beta");
emitter.onNext ("Gamma") ;
emitter.onNext ("Delta");

emitter.onNext ("Epsilon");
emitter.onComplete();
} catch (Throwable e) {
emitter.onError (e);
}
P
source.map (String: :length)
.filter(i —> i >= 5)
.subscribe (s —-> System.out.println ("RECEIVED: " + s));

}

The output is as follows:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:

~J 01 o U;

Chaining operators in this way is common (and encouraged) in reactive programming. It
has a nice quality of being readable from left to right and top to bottom much like a book,
and this helps in maintainability and legibility.

In RxJava 2.0, Observables no longer support emitting null values. You
will immediately get a non-null exception if you create an Observable
that attempts to emit a null value. If you need to emit a null, consider
wrapping it in a Java 8 or Google Guava Optional.

Using Observable.just()

Before we look at the subscribe () method a bit more, note that you likely will not need to
use Observable.create () often. It can be helpful in hooking into certain sources that are
not reactive, and we will see this in a couple of places later in this chapter. But typically, we
use streamlined factories to create Observables for common sources.

[28]

Observables and Subscribers

In our previous example with Observable.create (), we could have used
Observable. just () toaccomplish this. We can pass it up to 10 items that we want to
emit. It will invoke the onNext () call for each one and then invoke onComplete () when
they all have been pushed:

import io.reactivex.Observable;

public class Launcher {

public static void main(String[] args) {
Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",

"Epsilon");
source.map (String::length) .filter(i -> i >= 5)
.subscribe (s —-> System.out.println ("RECEIVED: " + s));

}

We can also use Observable.fromIterable () to emit the items from any Iterable type,
such as a List. It also will call onNext () for each element and then call onComplete ()
after the iteration is complete. You will likely use this factory frequently since Iterables in
Java are common and can easily be made reactive:

import io.reactivex.Observable;

import java.util.Arrays;

import java.util.List;

public class Launcher {
public static void main (String[] args) {

List<String> items =

Arrays.asList ("Alpha", "Beta", "Gamma", "Delta", "Epsilon");
Observable<String> source = Observable.fromlIterable (items);
source.map (String::length) .filter(i -> 1 >= 5)

.subscribe (s —> System.out.println ("RECEIVED: " + s));

}

We will explore other factories to create Observables later in this chapter, but for now, let's
put that on hold and learn more about Observers.

[29]

Observables and Subscribers

The Observer interface

The onNext (), onComplete (), and onError () methods actually define the Observer type,
an abstract interface implemented throughout RxJava to communicate these events. This is
the Observer definition in RxJava shown in the code snippet. Do not bother yourself

about onSubscribe () for now, as we will cover it at the end of this chapter. Just bring
your attention to the other three methods:

package io.reactivex;
import io.reactivex.disposables.Disposable;

public interface Observer<T> {
void onSubscribe (Disposable d);
void onNext (T value);
void onError (Throwable e);
void onComplete () ;

}

Observers and source Observables are somewhat relative. In one context, a source
Observable is where your Observable chain starts and where emissions originate. In our
previous examples, you could say that the Observable returned from our
Observable.create () method or Observable. just () is the source Observable. But to
the filter () operator, the Observable returned from the map () operator is the source. It
has no idea where the emissions are originating from, and it just knows that it is receiving
emissions from the operator immediately upstream from it, which come from map () .

Conversely, each Observable returned by an operator is internally an Observer that
receives, transforms, and relays emissions to the next Observer downstream. It does not
know whether the next Observer is another operator or the final Observer at the end of the
chain. When we talk about the Observer, we are often talking about the final Observer at
the end of the Observable chain that consumes the emissions. But each operator, such
asmap () and filter (), also implements Observer internally.

We will learn in detail about how operators are built in chapter 9, Transformers and Custom
Operators. For now, we will focus on using an Observer for the subscribe () method.

In RxJava 1.0, the Subscriber essentially became a Observer in RxJava 2.0.
There is an Observer type in RxJava 1.0 that defines the three event
methods, but the Subscriber is what you passed to the subscribe ()
method, and it is implemented Observer. In RxJava 2.0, a Subscriber only

ﬂ exists when talking about Flowables, which we will discuss in Chapter 8,
Flowables and Backpressure.

[30]

Observables and Subscribers

Implementing and subscribing to an Observer

When you call the subscribe () method on an Observable, an Observer is used to
consume these three events by implementing its methods. Instead of specifying lambda
arguments like we were doing earlier, we can implement an Observer and pass an instance
of it to the subscribe () method. Do not bother yourself about onSubscribe () at the
moment. Just leave its implementation empty until we discuss it at the end of this chapter:

import io.reactivex.Observable;
import io.reactivex.Observer;
import io.reactivex.disposables.Disposable;

public class Launcher {
public static void main(String[] args) {

Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

Observer<Integer> myObserver = new Observer<Integer> () {
@Override
public void onSubscribe (Disposable d) A
//do nothing with Disposable, disregard for now

@Override

public void onNext (Integer value) {
System.out.println ("RECEIVED: " + value);

}

@QOverride

public void onError (Throwable e) {
e.printStackTrace();

@Override

public void onComplete () {
System.out.println ("Done!");

}

bi

source.map (String::length) .filter(i -> i >= 5)
.subscribe (myObserver) ;

[31]

Observables and Subscribers

The output is as follows:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:
Done!

~ o1 o U;»

We quickly create an Observer<Integer> that serves as our Observer, and it will receive
integer length emissions. Our Observer receives emissions at the end of an Observable
chain and serves as the endpoint where the emissions are consumed. By consumed, this
means they reach the end of the process where they are written to a database, text file, a
server response, displayed in a U], or (in this case) just printed to the console.

To further explain this example in detail, we start with string emissions at our source. We
declare our Observer in advance and pass it to the subscribe () method at the end of our
Observable chain. Note that each string is transformed to its length. The

onNext () method receives each integer length emission and prints it using
System.out.println ("RECEIVED: " + value).We will not get any errors running this
simple process, but if one did occur anywhere in our Observable chain, it will be pushed
toour onError () implementation on Observer, where the stack trace of Throwable will
be printed. Finally, when the source has no more emissions (after pushing "Epsilon"), it
will call onComplete () up the chain all the way to the Observer, where its

onComplete () method will be called and print Done! to the console.

Shorthand Observers with lambdas

Implementing an Observer is a bit verbose and cumbersome. Thankfully, the

subscribe () method is overloaded to accept lambda arguments for our three events. This
is likely what we will want to use for most cases, and we can specify three lambda
parameters separated by commas: the onNext lambda, the onError lambda, and the
onComplete lambda. For our previous example, we can consolidate our three method
implementations using these three lambdas:

Consumer<Integer> onNext = i -> System.out.println("RECEIVED: "

+ 1)
Action onComplete = () —-> System.out.println("Done!");
Consumer<Throwable> onError = Throwable::printStackTrace;

[32]

Observables and Subscribers

We can pass these three lambdas as arguments to the subscribe () method, and it will use
them to implement an Observer for us. This is much more concise and requires far less
boilerplate code:

import io.reactivex.Observable;
public class Launcher {
public static void main (String[] args) {

Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

source.map (String::length) .filter(i -> 1 >= 5)
.subscribe (i -> System.out.println ("RECEIVED: " + i),
Throwable: :printStackTrace,

() —> System.out.println("Done!"));
}
3

The output is as follows:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:
Done!

~ 01 o U;

Note that there are other overloads for subscribe (). You can omit onComplete () and
only implement onNext () and onError (). This will no longer perform any action for
onComplete (), but there will likely be cases where you do not need one:

import io.reactivex.Observable;
public class Launcher {
public static void main(String[] args) {
Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",

"Epsilon");

source.map (String::length) .filter(i -> i >= 5)
.subscribe (i -> System.out.println("RECEIVED: " + i),

[33]

Observables and Subscribers

Throwable: :printStackTrace) ;

}

The output is as follows:

RECEIVED:
RECEIVED:
RECEIVED:
RECEIVED:

~J 01 o U;

As you have seen in earlier examples, you can even omit onError and just specify onNext:

import io.reactivex.Observable;
public class Launcher {
public static void main(String[] args) {

Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta",
"Epsilon");

source.map (String::length) .filter(i -> i >= 5)
.subscribe (i -> System.out.println("RECEIVED: " + 1i));

}

However, not implementing onError () is something you want to avoid doing in
production. Errors that happen anywhere in the Observable chain will be propagated

to onError () to be handled and then terminate the Observable with no more emissions.
If you do not specify an action for onError, the error will go unhandled.

You can use retry () operators to attempt recovery and resubscribe to an
Observable if an error occurs. We will cover how to do that in the next
chapter.

It is critical to note that most of the subscribe () overload variants (including the
shorthand lambda ones we just covered) return a Disposable that we did not do anything
with. disposables allow us to disconnect an Observable from an Observer So emissions
are terminated early, which is critical for infinite or long-running Observables. We will
cover disposables at the end of this chapter.

[34]

Observables and Subscribers

Cold versus hot Observables

There are subtle behaviors in a relationship between an Observable and an Observer
depending on how the Observable is implemented. A major characteristic to be aware of is
cold versus hot Observables, which defines how Observables behave when there are
multiple Observers. First, we will cover cold Observables.

Cold Observables

Cold Observables are much like a music CD that can be replayed to each listener, so each
person can hear all the tracks at any time. In the same manner, cold Observables will replay
the emissions to each Observer, ensuring that all Observers get all the data. Most data-
driven Observables are cold, and this includes the Observable. just () and
Observable.fromIterable () factories.

In the following example, we have two Observers subscribed to one Observable. The
Observable will first play all the emissions to the first Observer and then call
onComplete (). Then, it will play all the emissions again to the second Observer and
call onComplete (). They both receive the same datasets by getting two separate streams
each, which is typical behavior for a cold Observable:

import io.reactivex.Observable;

public class Launcher {
public static void main(String[] args) {

Observable<String> source =
Observable. just ("Alpha", "Beta", "Gamma", "Delta", "Epsilon");

//first observer
source.subscribe (s —-> System.out.println ("Observer 1 Received:
"+ os));

//second observer
source.subscribe (s —-> System.out.println ("Observer 2 Received:
"+ s));

[35]

Observables and

Subscribers

The output is as follows:

Observer 1 Received: Alpha
Observer 1 Received: Beta
Observer 1 Received: Gamma
Observer 1 Received: Delta
Observer 1 Received: Epsilon
Observer 2 Received: Alpha
Observer 2 Received: Beta
Observer 2 Received: Gamma
Observer 2 Received: Delta
Observer 2 Received: Epsilon

Even if the second Observer transforms its emissions with operators, it will still get its own
stream of emissions. Using operators such asmap () and filter () against a cold
Observable will still maintain the cold nature of the yielded Observables:

import io.reactivex.Observable;

public class Launcher {
public static void main (String[] args) {

Observable<String> source =
Observable.just ("Alpha", "Beta", "Gamma", "Delta", "Epsilon");

//first observer
source.subscribe (s —-> System.out.println ("Observer 1 Received:
"t os))i

//second observer
source.map (String::length) .filter(i -> 1 >= 5)
.subscribe (s —-> System.out.println ("Observer 2 Received: " +
s))i
}

The output is as follows:

Observer 1 Received: Alpha
Observer 1 Received: Beta
Observer 1 Received: Gamma
Observer 1 Received: Delta
Observer 1 Received: Epsilon
Observer 2 Received: 5
Observer 2 Received: 5
Observer 2 Received: 5
Observer 2 Received: 7

[36]

Observables and Subscribers

As stated earlier, Observable sources that emit finite datasets are usually cold.

Here is a more real-world example: Dave Moten's RxJava-JDBC (https://github.com/dav
idmoten/rxjava-jdbc) allows you to create cold Observables built off of SQL database
queries. We will not digress into this library for too long, but if you want to query a SQLite
database, for instance, include the SQLite JDBC driver and RxJava-JDBC libraries in your
project. You can then query a database table reactively, as shown in the following code

snippet:
import com.github.davidmoten.rx.jdbc.ConnectionProviderFromUrl;
import com.github.davidmoten.rx.jdbc.Database;
import rx.Observable;
import java.sqgl.Connection;
public class Launcher {
public static void main(String[] args) {

Connection conn =
new ConnectionProviderFromUrl ("jdbc:sglite:/home/thomas

/rexon_metals.db") .get ();

Database db = Database.from(conn);

Observable<String> customerNames =

db.select ("SELECT NAME FROM CUSTOMER")

getAs (String.class);

customerNames.subscribe (s —-> System.out.println(s));

}

The output is as follows:

LITE Industrial

Rex Tooling Inc
Re-Barre Construction
Prairie Construction
Marsh Lane Metal Works

[371]

https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc
https://github.com/davidmoten/rxjava-jdbc

Observables and Subscribers

This SQL-driven Observable is cold. Many Observables emitting from finite data sources
such as databases, text files, or JSON are cold. It is still important to note how the source
Observable is architected. RxJava-JDBC will run the query each time for each Observer.
This means that if the data changes in between two subscriptions, the second Observer will
get different emissions than the first one. But the Observable is still cold since it is
replaying the query even if the resulting data changes from the underlying tables.

Again, cold Observables will, in some shape or form, repeat the operation to generate these
emissions to each Observer. Next, we will cover hot Observables that resemble events
more than data.

Hot Observables

You just learned about the cold Observable, which works much like a music CD. A hot
Observable is more like a radio station. It broadcasts the same emissions to all Observers
at the same time. If an Observer subscribes to a hot Observable, receives some emissions,
and then another Observer comes in afterwards, that second Observer will have missed
those emissions. Just like a radio station, if you tune in too late, you will have missed that
song.

Logically, hot Observables often represent events rather than finite datasets. The events can
carry data with them, but there is a time-sensitive component where late observers can miss
previously emitted data.

For instance, a JavaFX or Android Ul event can be represented as a hot Observable. In
JavaFX, you can create an Observable<Boolean> off a selectedProperty () operator of
a ToggleButton using Observable.create (). You can then transform the Boolean
emissions into strings indicating whether the ToggleButton is UP or DOWN and then use

an Observer to display them in Label, as shown in the following code snippet:

import io.reactivex.Observable;

import javafx.application.Application;
import javafx.beans.value.Change<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>