
Foundation Silverlight 2
Animation

Jeff Paries

Lead Editor

Ben Renow-Clarke

Technical Reviewer

Rob Houweling

Editorial Board

Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham,

Tony Campbell, Gary Cornell, Jonathan Gennick, Michelle Lowman,

Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager

Kylie Johnston

Copy Editor

Damon Larson

Associate Production Director

Kari Brooks-Copony

Production Editor

Laura Esterman

Compositor

Lynn L'Heureux

Proofreader

Dan Shaw

Indexer

Ron Strauss

Cover Image Designer

Corné van Dooren

Interior and Cover Designer

Kurt Krames

Manufacturing Director

Tom Debolski

Foundation Silverlight 2 Animation

Copyright © 2009 by Jeff Paries

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1569-1

ISBN-13 (electronic): 978-1-4302-1570-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,

we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

Original Firefly photograph courtesy of Terry Priest, .

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.

Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.

Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and

licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the

preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Credits

For Kate and Nick.

Without you, Kate, I would not be where I am today.

Nick, you can’t read this yet, but you are the light of my life.
Few days go by that you don’t make me laugh, and you are

always on my mind.

iv

CONTENTS AT A GLANCE

About the Author . xiii

About the Technical Reviewer . xiv

About the Cover Image Designer. xv

Acknowledgments . xvi

Introduction . xvii

PART ONE GETTING STARTED . 3

Chapter 1 What You Need to Know .5

PART TWO SILVERLIGHT ANIMATION: THE BASICS 33

Chapter 2 Basic Transforms. 35

Chapter 3 Storyboards and Animations . 63

Chapter 4 Animation Techniques . 109

PART THREE ADVANCED ANIMATION . 149

Chapter 5 Coordinates in Silverlight . 151

Chapter 6 Using Trigonometry for Animation . 207

Chapter 7 Simulating 3D in 2D . 271

v

Chapter 8 Collisions . 305

Chapter 9 Kinematics . 333

Chapter 10 Particle Systems . 371

Chapter 11 Silverlight VR (SLVR) Objects . 405

Index . 425

vii

About the Author . xiii

About the Technical Reviewer . xiv

About the Cover Image Designer. xv

Acknowledgments . xvi

Introduction . xvii

PART ONE GETTING STARTED .3

Chapter 1 What You Need to Know .5

What you need to know about software . 6

Microsoft Expression Blend . 6

Microsoft Expression Design . 7

Microsoft Visual Studio . 8

Silverlight Tools for Visual Studio 2008 . 9

What you need to know about XAML . 9

Using Blend to create XAML . 11

The Canvas element . 14

The Image element . 15

The Rectangle element . 17

The Path element . 17

The Ellipse element . 19

The TextBlock element . 19

The Line element . 20

The controls elements . 21

More about XAML . 22

What you need to know about programming . 22

Anatomy of a Silverlight project . 23

Summary . 31

CONTENTS

CONTENTS

viii

PART TWO SILVERLIGHT ANIMATION: THE BASICS 33

Chapter 2 Basic Transforms. 35

The Translate transform . 36

The Rotate transform . 39

The Scale transform . 42

The Skew transform . 48

The Center Point transform . 50

The Flip transform . 51

Animating object properties . 51

Animating control points . 55

Summary . 60

Chapter 3 Storyboards and Animations . 63

Before you get started . 63

Storyboards and storyboard properties . 64

Combining storyboard properties . 67

Types of animation . 68

Double . 69

Color . 71

Point .:72

A note about from/to . 76

Types of keyframes . 77

Linear . 77

Spline . 78

Discrete . 78

Keyframe interpolation in blend . 79

Events . 82

For designers . 83

For developers . 84

Storyboard events . 88

Programming storyboards and animations . 91

Storyboards . 91

DoubleAnimation . 91

Using functions to create animation . 96

DoubleAnimationUsingKeyframes . 99

ColorAnimation . 101

PointAnimation . 102

Summary . 107

Chapter 4 Animation Techniques . 109

Converting objects to paths . 109

Ghosting effects . 111

Image effects . 114

Creating effects by cross-fading . 114

Simulating drop shadow effects . 117

CONTENTS

ix

Creating custom, animated cursors . 120

Using clipping paths . 124

Creating user controls . 128

Implementing drag-and-drop . 131

Frame-based animation sequences . 134

Animation with the Visual State Manager . 139

A code-based Visual State Manager . 144

Summary . 146

PART THREE ADVANCED ANIMATION . 149

Chapter 5 Coordinates in Silverlight . 151

The Silverlight coordinate system . 151

Vectors and velocity . 152

One-dimensional vector movement . 153

Two-dimensional vector movement . 154

Changing the direction of a vector . 157

Single-player paddle game. 160

Dressing up the game . 166

Code-controlled vectors . 166

Vectors and frame-based animations . 174

Vectors and storyboard animations . 181

Vector math . 186

Angles in Silverlight . 188

Converting vectors to angles . 189

Separating acceleration from direction . 193

Firing a weapon from the ship . 199

Summary . 204

Chapter 6 Using Trigonometry for Animation . 207

What is trigonometry? . 207

Angles . 208

Triangles . 211

Sine (Sin) . 212

Cosine (Cos) . 213

Tangent (Tan) . 214

Arcsine (Asin) and arccosine (Acos) . 215

Arctangent (Atan) . 215

Converting between degrees and radians . 216

How does this relate to work you’ve done in Silverlight? . 221

Free-form rotation . 223

A little help with the visualization . 230

Sine curves . 231

Oscillation . 237

A practical use for oscillation . 238

Horizontal oscillation . 243

CONTENTS

x

Falling snow . 244

Flashing and blinking . 249

Combining oscillations and rotations . 250

Circular movement . 256

Orbiting . 258

The Pythagorean theorem . 261

Distance between objects . 263

A more practical use for the Pythagorean theorem . 265

Summary . 268

Chapter 7 Simulating 3D in 2D . 271

3D . 271

Z axis rotation . 272

A model of the inner solar system . 274

Y axis rotation . 280

A horizontal carousel . 284

X axis rotation . 295

A vertical carousel . 297

Summary . 303

Chapter 8 Collisions . 305

The basics of detecting collisions . 305

Linear collisions . 306

Angular collisions . 311

Angular collisions with forces . 315

Collisions with angled surfaces . 316

HitTest . 324

Summary . 330

Chapter 9 Kinematics . 333

Forward kinematics . 334

Automating forward kinematics . 337

Walking/running . 338

Multiple forward kinematic chains . 341

Inverse kinematics . 350

Reaching . 350

Dragging . 351

Dragging longer chains . 352

Organic animations . 355

Reaching with longer chains . 360

Variable-length reaching chains . 362

Reaching for objects . 365

Summary . 369

CONTENTS

xi

Chapter 10 Particle Systems . 371

A basic particle system . 372

Emitters . 377

Building a comet . 381

Explosions . 388

Random explosions . 389

Fountains . 391

Particles and gravity . 393

Particles and springs . 397

Visualizing particle interactions . 399

Summary . 401

Chapter 11 Silverlight VR (SLVR) Objects . 405

VR object images . 406

What do I do with all these images? . 407

What do I do with this giant image? . 410

Using the control: single-plane . 416

Using the control: multiplane . 419

You can do it! . 421

About that time travel thing . 422

Summary . 423

Index . 425

xiii

Jeff Paries has been creating applications in

Silverlight since early 2007, and he maintains a

blog with example programs and tips at

. He is currently

employed as a senior digital media developer at

Waggener Edstrom Worldwide in Lake Oswego,

Oregon.

Prior to joining Waggener Edstrom, Jeff spent

six years as a web manager for a company in

the Internet domain name space, where he

helped the company develop and maintain a

strong online identity.

Having worked for a 3D animation software company for six years, Jeff has a strong background

in computer graphics and animation. While there, Jeff played a strong role in training and devel-

opment of new users by developing training materials, teaching a course in 3D animation at a

local community college, and authoring three books and numerous magazine articles related to

3D graphics.

Jeff currently makes his home near Portland, Oregon, with his wife, Kate, and son, Nicholas. He

enjoys spending his free time hiking, mountain climbing, motorcycling, and writing Silverlight

applications and tutorials. You can contact him through his blog or by email at

.

ABOUT THE AUTHOR

xiv

Since the introduction of Silverlight 1.1, Rob Houweling has been develop-

ing applications and writing articles on his weblog (

) and has been an active member of the forums on

Silverlight.net, where he likes to help people with their problems.

Currently, Rob is employed by Amercom B.V. in the Netherlands, where he

develops many websites and applications in .NET versions 1.1 through 3.5,

using Microsoft SQL Server 2000 through 2005 as the database platform.

In 2007, he was lead developer on one of the first online corporate por-

tals built on SharePoint 2007.

Prior to his employment at Amercom, Rob spent several years as a Microsoft certified system

administrator.

Rob is very grateful to Jeff for giving him this opportunity, to Amercom for giving him the freedom

to work on Silverlight, and to his loving family (Piroschka, Mika, and Isabella) for being patient and

understanding.

ABOUT THE TECHNICAL REVIEWER

xv

Corné van Dooren designed the front cover image for this

book. Having been given a brief by friends of ED to create a

new design for the Foundation series, he was inspired to create

this new setup combining technology and organic forms.

With a colorful background as an avid cartoonist, Corné dis-

covered the infinite world of multimedia at the age of 17—

a journey of discovery that hasn’t stopped since. His mantra has

always been “The only limit to multimedia is the imagination,”

a mantra that is keeping him moving forward constantly.

After enjoying success after success over the past years—

working for many international clients, as well as being featured

in multimedia magazines, testing software, and working on many other friends of ED books—

Corné decided it was time to take another step in his career by launching his own company,

Project 79, in March 2005.

You can see more of his work and contact him through or

.

If you like his work, be sure to check out his chapter in New Masters of Photoshop: Volume 2

(friends of ED, 2004).

ABOUT THE COVER IMAGE DESIGNER

xvi

It has been my experience in writing four books that the successful completion of a project of

this size and scope are rarely the effort of a single person, and this one is no exception. The fol-

lowing people made this book much better than it would have been without them.

Rob Houweling, lead developer at Amercom: Rob served as my technical editor, going through

all of the examples in the book in great detail (oftentimes more than once), refactoring code,

offering suggestions, and so on. He also tried his best to get me to conform to best practices for

coding, and while I didn’t always hit the mark, I did better than I would have without him. I got

to know Rob personally over the months that it took to get the book done, and for someone

who I’ve never met in person and who lives half a world away, I feel like I can call him a good

friend. Rob, my door is always open to you.

Ryan Loghry, illustrator: Ryan’s artwork goes a long way to making the example projects in the

book move beyond primitive shapes and examples. While I’m responsible for all those wonderful

gradient-filled spheres, Ryan created all of the cool-looking stuff—the rockets, scenes, and so

forth. I asked him to deliver the sun and moon, and he did—quite literally. Check out his site at

 to see more of his excellent illustration work.

Keith Peters, author: Any Flash developer should recognize Keith’s name. While I’ve never

met him in person, he was kind enough to grant me permission to adapt some of his cool

ActionScript examples into Silverlight.

Other people that contributed to the successful completion of the book include Matt Smith of

PhotoSpherix, who provided the excellent sample images for the virtual reality object engine

in Chapter 11; Trevor McCauley and Andy Beaulieu for permission to include/adapt code they

originally developed; all of my coworkers (I’d put all of your names here, but I’d miss someone,

and then they’d be mad at me); and everyone at friends of ED—but especially Kylie for keeping

me on track and Ben for his guidance.

ACKNOWLEDGMENTS

xvii

I have found that one of the hardest goals to achieve when writing a book is to not only

describe a technique for doing something, but to do it in a way that gets the creative juices of

the reader flowing.

With that in mind, I tried to go a step beyond the concepts with the example projects and show

one or more ways to apply the techniques being described. It isn’t always about new techniques,

but it is often about applying existing techniques in new ways. Along those lines, it is often the

case that seeing a couple of different applications of a technique will help a person start think-

ing about ways to unlock the ideas that they have had floating around in their head for a while

and give them a means to bring their ideas to life.

I think this book can do that for you.

There are nearly 200 example projects included in this book, including both “code-along” and

“completed” versions that you can take apart, change, and put back together in order to learn

how to make the concepts work for you. Don’t get locked into what is being demonstrated,

though—find ways to move beyond the examples and apply the concepts in new and interest-

ing ways. This is where your applications will really start to shine.

In the end, the goal of the book is to provide a means to realize your ideas using Silverlight as

the technology to deliver them.

Have fun. There’s a lot to learn.

Who this book is for
This book is ideal for a wide variety of web developers. If you are a Silverlight developer wanting

to learn more about animation-specific topics or a Flash developer interested in learning about

Silverlight, this book will show you a wide variety of methods that you can use to make objects

move and interact with users, and each other.

Through a large assortment of code-along projects that you can work through while reading

the book, you will learn the basics of animation in Silverlight, and then step into intermediate

and advanced procedural (code-based) animation. If you get stuck, completed versions of the

projects are included on the friends of ED website (), so you can compare

that code with your own to get back on track in a hurry.

INTRODUCTION

INTRODUCTION

xviii

This is the right book for anyone interested in adding rich interactive applications to a website.

If you’re not sure how to get “there” from “here,” you will find a wealth of interesting tips, tech-

niques, and methods to help add some sparkle to your site. You will gain a solid understanding

of the techniques used to make objects move, and some ideas for how to apply them in projects

of your own.

No need to feel left out if you are a designer—this book will also serve as a valuable reference

for those seeking a deeper understanding of how to go about programming Silverlight. This can

be a big help when working in a team environment where cross-discipline skills are an asset.

How this book is structured
This book starts out by providing the foundation information necessary for those people new to

Silverlight development. The early portion of the book starts out with what you need to know

about Silverlight and development software and the basics of animation (transforms, story-

boards, and animations).

The middle portion of the book moves toward advanced animation topics—coordinates, vector

movement, and frame-based animations. The latter portion of the book describes interesting

ways to apply trigonometry, how to simulate simple 3D movements in a 2D environment, dif-

ferent techniques for collision detection, inverse and forward kinematics, and particle systems.

The final chapter in the book describes in detail how you can add virtual reality objects to your

applications with a Silverlight 2 version of the Silverlight Virtual Reality (SLVR) object engine.

If you have been developing Silverlight applications for a while, do a quick scan of the first chapter

or two so you know what information is there in case you need it as a reference, and then dig in.

Each chapter describes concepts through example projects. A description of the technique is

provided, and then step-by-step examples walk you through how to code up projects that dem-

onstrate the technique. If you get stuck, most of the projects include a completed version with

finalized code that you can take a look at to see how it’s done.

Many of the topics are tightly integrated, and you will see some crossover from chapter to chap-

ter. This is unavoidable, although some effort was made to present the information in manage-

able doses rather than opening the floodgates. There are, of course, additional optimizations

and different coding styles that could be applied to the code in the projects—many times, the

code in the examples is written in a longer form to make it more readable and easily digested.

Feel free to take the examples apart, reorganize, optimize, and put them back together—that’s

the whole point!

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are

used throughout.

Project names, and important words or concepts are normally highlighted on the first appear-

ance in bold type.

INTRODUCTION

xix

Code is presented in .

New or changed code is normally presented in .

Menu commands are written in the form Menu Submenu Submenu.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like

this:

Downloading the code
The source code for this book is available to readers at in the Downloads

section of this book’s home page. Please feel free to visit the friends of ED website and down-

load all the code there. You can also check for errata and find related titles from friends of ED

and Apress.

Part One

GETTING STARTED

5

Chapter 1

Silverlight is a cross-browser, cross-platform browser plug-in developed by Microsoft

to deliver multimedia, graphics, and animation on the Web. Content created for

Silverlight looks the same on a PC and a Mac, and supports a wide range of browsers.

There is even a Microsoft-supported Linux version, called Moonlight.

Silverlight projects can consist of many assets—images, vector graphics, XAML markup,

and programming code are all brought together and presented in the browser by the

Silverlight plug-in. You may use one program to create the XAML markup, another to

create the vector graphics, and another to create the programming code, as shown

in Figure 1-1. XAML, the markup language upon which Silverlight applications are

built, is to Silverlight what HTML is to a web page. XAML describes the containers,

positions, sizes, and other attributes of the objects in a Silverlight application.

You’re reading this because you want to learn how to make objects move in

Silverlight. Since it’s best to start at the beginning, this chapter presents an over-

view of the software and technologies with which you will be working to create

Silverlight content, and the various concepts covered in the book that you will need

to know to have success with the examples that are presented. If you are a Flash/

Flex developer exploring Silverlight, or if you are new to Silverlight altogether, this

chapter is designed to help you get your feet wet without being overwhelmed. If you

are a designer, you will likely want to focus on the Expression Blend–based aspects

of the text to get up and running quickly. If you are already comfortable develop-

ing Silverlight applications and want to get right to business, you can skip ahead to

Chapter 2 and start working through the animation-specific topics.

WHAT YOU NEED TO KNOW

6

CHAPTER 1

Figure 1-1. The Silverlight browser plug-in renders Silverlight content
in the browser.

What you need to know about software
The following tools were created with the goal of making the creation of Silverlight content as easy

and fast as possible. While you could use a simple text editor such as Notepad to create the XAML

markup that describes the objects you will be using in your applications, a visual design/development

environment will save you a lot of time and headaches. With that in mind, you will want to add some

of the following software tools to your collection.

Microsoft Expression Blend

Blend, shown in Figure 1-2, is a great tool for developing Silverlight applications. It bridges the gap

between designers and developers to speed application development time by providing a visual environ-

ment in which to create application interfaces. You can find a free trial version at

. For the Silverlight 2 development described in this book, you’ll want to use Blend 2.5

or above.

7

WHAT YOU NEED TO KNOW

Figure 1-2. The visual interface in Blend makes creating Silverlight interfaces fast and easy.

Microsoft Expression Design

Design, shown in Figure 1-3, is a vector-based drawing tool for designers that can be used to create or

edit the various graphical assets you will incorporate into your Silverlight projects. Design directly sup-

ports input of common formats such as Illustrator and Photoshop files, and can be utilized to export

vector drawings directly to XAML. Like Blend, a free trial of Design is available for download at

.

Figure 1-3. Expression Design is a vector-based drawing tool that can export directly to XAML.

8

CHAPTER 1

Microsoft Visual Studio

Visual Studio, shown in Figure 1-4, is the preferred development environment for creating the C#,

Visual Basic, or JavaScript code-behind files that bring Silverlight applications to life. The intuitive

interface makes common programming tasks quick and easy. Microsoft offers a 90-day free trial of

Visual Studio 2008 Professional, which you can find at

.

Figure 1-4. Visual Studio is the preferred environment for Silverlight development.

Alternatively, you can download and install Microsoft Visual Web Developer Express Edition, which

can be registered free of charge. You can find the download at . By

the fall of 2008, Visual Web Developer Express Edition (shown in Figure 1-5) is expected to support

Silverlight Tools for Visual Studio (see the following section), which enables Silverlight application

development. Visual Web Developer Express will be supporting both Visual Basic and C# develop-

ment.

9

WHAT YOU NEED TO KNOW

Figure 1-5. Microsoft Visual Web Developer is free to register.

Silverlight Tools for Visual Studio 2008

This is a free add-on for Visual Studio specifically for developing Silverlight applications. You can

find this download at . Currently, this package

includes the Silverlight plug-in, the Silverlight 2 Software Development Kit (SDK), Visual Basic and C#

project templates, XAML IntelliSense and code generators, debugging for Silverlight applications, web

reference support, and integration with Expression Blend. All this may sound very complicated, but in

a nutshell, this add-on makes developing Silverlight applications in Visual Studio much easier. If you

develop in Visual Studio, the tools are a must-have.

If you are new to Silverlight development, the relationship between the different software programs

will become more apparent as you work through the examples in this book. Expression Blend and

Visual Studio are tightly integrated, making movement between the two programs fast and easy.

What you need to know about XAML
So far, I’ve mentioned XAML a few times, and described it as the markup that describes objects used

in a Silverlight application. As a designer or developer new to Silverlight, the biggest question you are

probably asking yourself is “Why do I need to learn XAML?” XAML, pronounced zammel, is an acro-

nym for Extensible Application Markup Language. XAML is an XML-based language used to describe

10

CHAPTER 1

everything about the elements that are the building blocks of Silverlight applications—their shape,

size, color, position, and so forth. Beyond the importance of XAML to a Silverlight application, it also

serves as a bridge between designers and developers. Traditionally, the processes of design and devel-

opment have been separated, as illustrated in Figure 1-6. The designer creates full-fledged mock-ups

that, when approved, are sliced up and handed off to a developer for implementation. The designer

then waits for the developer to create a working version, and the two collaborate to get any actions

or animations just right before the application is released.

Figure 1-6. The “old way” of doing things: the designer hands off assets to the developer.

In a XAML world, that all changes. XAML

is a bridge between design and develop-

ment. The designer is empowered—no

longer are assets sent off into a black

hole for processing. With XAML, design-

ers can set up the objects, describe their

motions through storyboards, and take

part in the development process if they so

choose—all without writing any code. The

overall development cycle can be acceler-

ated as well. XAML is flexible and easily

allows “proxy objects” to stand in for the

real thing. In this way, the developer can

begin the work of coding an application

at the same time the designer is still work-

ing on the assets the application will uti-

lize. Figure 1-7 illustrates the XAML-based

development model. Of course, there is

some cross-discipline training that needs

to take place, which is why as a designer,

you will want to learn XAML.

Figure 1-7. In a XAML-based development model, the line
between designer and developer is blurred.

11

WHAT YOU NEED TO KNOW

If you are a developer, it is useful to note that each element described in a XAML file maps to a

Microsoft .NET type, and the attributes of an element (such as height, width, opacity, etc.) are equiva-

lent to .NET class properties. Don’t worry about what that means now if you’re not a developer; we’ll

cover it in more detail later.

Because XAML is XML-based, all XAML files must be well-formed XML files. This means that XAML

declarations are subject to many rules, including case sensitivity, use of whitespace, proper closing

tags, and so on. Once you have created a XAML file, the Silverlight plug-in in your web browser is used

to parse and render the content contained in the XAML file.

In contrast, Adobe Flex uses a different XML-based language, called MXML. While both XAML and

MXML are used to describe application interfaces, the two are not interchangeable.

Silverlight developers write code in files referred to as code-behind files, which manipulate the ele-

ments or element attributes described in a XAML file. Depending upon the complexity, you may find

yourself using several XAML files within a single project. Using multiple XAML files often makes man-

aging the code base a little easier because tasks unique to each object are separated from the main

application logic. Additionally, this creates a situation where multiple designers or developers can work

on a single project by dividing tasks. We will be using multiple XAML files in some of our projects.

You will want to have some familiarity with XAML because it is often more convenient to directly

edit the XAML file in an environment like Visual Studio or Expression Blend rather than hunt down a

specific property pane to change an attribute. Eventually, you will need to roll up your sleeves and get

your hands dirty.

There are many more XAML elements available for use in your Silverlight applications than those

described here. For simplicity, the examples in this book work mostly with the Canvas, Image, Rectangle,

Path, Ellipse, TextBlock, and Line elements. Those of you familiar with XAML are probably already ask-

ing “What about TextBox? Or Grid/StackPanel?” The examples presented are intended to focus on the

concepts used to make objects move, not various methods for laying out data or the merits of one

layout panel over another.

Using Blend to create XAML
Microsoft’s Expression Blend tool offers a useful visual environment in which to create Silverlight

applications because it automatically generates proper XAML as you work. Let’s take a look at some

XAML elements we’ll be using from the perspective of Blend.

If you already have Blend installed, go ahead and start the program. When Blend opens, you will be

given the option of opening a recent project via a list of recent projects displayed on the Projects tab,

or choosing from New Project, Open Project, or Open Site. Select the New Project option. Figure 1-8

shows the dialog with which you will be presented.

If it is not already selected, choose the Silverlight 2 Application project type, browse to the location

where you would like the project saved, and click the OK button to create a project using the default

name. Blend will take a moment to set the project up for you, and then you will be presented with a

blank project.

12

CHAPTER 1

Figure 1-8. Expression Blend New Project dialog

Blend initially presents the interface as the Design Workspace, as shown in Figure 1-9, which maxi-

mizes the space allotment for the design window. If you find yourself in the Animation Workspace,

with the Objects and Timeline panel across the bottom, press the F6 key to change back to the Design

Workspace. The Design Workspace is laid out such that the left side of the interface contains the tool-

box and the Objects and Timeline panel, the center contains the artboard, and the right contains the

Project, Properties, and Resources panels, each of which is accessible via a row of tabs across the top.

There is also a menu bar across the top.

Figure 1-9. The default interface layout for Blend

13

WHAT YOU NEED TO KNOW

One thing you will find out rather quickly is that Blend’s interface layout is fairly flexible to suit the way

you work. By selecting Window Active Workspace, you can toggle the main interface layout between

the Design Workspace and the Animation Workspace. The Animation Workspace shows a timeline

that is helpful when creating animations. Alternatively, the F6 key can be used to toggle between the

workspace layouts. Verify that the Design Workspace is the currently selected view.

Along the right side of the artboard, you will see three vertically arranged tabs, labeled Design, XAML,

and Split. These tabs allow you to change between the active document view. The Design view is the

current view and shows only the artboard. Clicking the XAML tab will display only the XAML code for

the current file, while selecting Split will show both the artboard and the XAML code. You can click the

interface tabs or use the F11 key to switch between active document views. Select Split view so that as

you are working through this section you can see how Blend assists in creating XAML code. Figure 1-10

shows what the Blend interface should look like at this point.

Figure 1-10. Using the Split active document view

Notice in the XAML window that Blend has added some code for you already. This code is the base

template for a new project, and is required in all XAML files. The first line is the opening tag for a

UserControl element, and the next line defines the namespace used by this XAML file. A namespace

defines what elements you can use in a Silverlight application, and always comes after the opening

UserControl type.

This is followed by another namespace declaration. The namespace contains information that

controls how XAML interacts with the .NET framework.

14

CHAPTER 1

The next line identifies this XAML file as an object class within the application that was created when

you selected New Project. The name Blend gave this application is , and the

default XAML file that is created for every new project is named :

Finally, there are some properties that are self-explanatory:

You will not typically need to make changes to the first few lines of code within the XAML files you

create. If you would like to run your application, select Project Test Solution, or press the F5 key.

Blend will open a browser window that contains your Silverlight application. Currently, the application

does not contain any elements, so the browser window will appear blank. Close the browser window

and return to Blend.

Select the Properties tab at the top right of the interface. The Properties panel contains the various

panes that display the attributes available for the object selected in the Objects and Timeline panel on

the left.

Select [UserControl] in the Objects and Timeline panel by clicking it. On the Layout pane of the Properties

panel, change Width to 800 and Height to 600. Notice that Blend automatically updates the XAML and

the Design view for you, as follows:

After the opening tag, the next line in the XAML file defines a container of type Grid:

Some of the available layout containers, such as Grid and StackPanel, have default behaviors that con-

trol the way objects placed in them are laid out. This is not the case with the Canvas container, so for

simplicity, we will be using Canvas elements as containers. In the XAML window, change the text that

says Grid to Canvas. Double-click the LayoutRoot element in the Objects and Timeline panel. A yellow

highlight will appear around the element to indicate that it is selected. Any elements that are added

will now automatically be added to the LayoutRoot element.

Let’s look at some of the XAML elements in more detail.

The Canvas element

Canvas elements are containers that allow you to define an area into which other elements can be

placed. Elements placed in a Canvas are referred to as children of the Canvas in which they reside.

Canvases are extremely useful for organizing elements that make up related parts of an interface,

and have properties such as , , , , , , , ,

, and .

15

WHAT YOU NEED TO KNOW

Locate the Grid element icon in the toolbox. Click and hold the mouse on the Grid icon

until the fly-out menu opens, and select the Canvas element, as shown in Figure 1-11.

Double-click the Canvas icon to add a Canvas element to your project. Blend will add

the new Canvas to the Objects and Timeline panel, and create the XAML for you. Notice

that the LayoutRoot Canvas has changed—it now has a matching closing tag, and the

new Canvas element has been added within the LayoutRoot element:

Select the newly added [Canvas] item in the Objects and Timeline panel, and use the Layout pane of the

Properties panel to change the Width property to 800 and Height to 600. In the XAML view window, edit

the new Canvas element to add a attribute:

The Brushes pane on the Properties panel will change to show a color picker with the background

color you defined for the Canvas element. You may have noticed that the color code Blend added

contains more characters than you are used to seeing when defining colors via hexadecimal. Whereas

normally you might see a group of three pairs of values for the red, green, and blue values, here you

see four pairs of values. This is because the first two numbers indicate the alpha channel (transpar-

ency) value for the defined color. To the right of the color picker are the individual values that make

up the selected color—Red, Green, Blue, and Alpha. If you have a known value, you may type it in here

rather than using the color picker in the interface.

Keep in mind that the alpha transparency defined for any given color is independent from the overall

opacity of an object. It is possible to have a color that has an alpha value of 25%, meaning it is 25% vis-

ible, while the object to which that color brush is applied has an overall opacity value of 50%, further

diminishing the visibility of the color.

We want to name the newly added Canvas element so it will be easily identifiable. At the top of the

Properties panel is a field called Name, which currently contains the value <No Name>. When an ele-

ment is not explicitly named, it appears in the Objects and Timeline panel by its type—in this case,

[Canvas]. Click in the Name field, enter myCanvas, and press the Enter key. Both the Objects and

Timeline list and XAML code will update. The final XAML for this Canvas element will look something

like this:

Later, when we start getting into adding code to control the objects in our XAML files, you will see

that having an property will make accessing objects extremely easy, since they are referenced

by name.

The Image element

XAML Image elements allow you to utilize JPG or PNG images in an application. Image elements have

attributes such as , , , , , , , , , and

.

Figure 1-11. The
Layout panel
fly-out menu

16

CHAPTER 1

To add an Image element in Blend, click the Asset Library icon on the toolbox, check the Show All

check box at the top right of the panel, and then click the Image item, as shown in Figure 1-12. The

Image icon will appear on your toolbox and remain there throughout your working session.

Double-click the myCanvas item in the Objects and Timeline panel to select it, and then double-click

the Image icon to insert a default Image object. An alternative method for adding elements is to click

their icon and then click and drag in the Design Workspace. This allows you to create elements that

are sized differently than the default if you prefer.

Figure 1-12. Using the Asset Library to insert an Image element onto the artboard

By default, Image elements do not point to an image, referred

to as a source attribute. To set the source for an Image object,

select the Choose an image button on the Common Properties

pane (labeled with ellipses points: . . .) and navigate to a JPG or

PNG image on your hard drive. Figure 1-13 shows the Common

Properties pane for an Image element.

When you select an image source in Blend, the image is auto-

matically copied as a resource to the directory where the proj-

ect is saved. Change the newly added Image element’s size to

320 240 pixels, and select Fill from the Stretch select box on the Common Properties pane. To move

an element around on the artboard, press the V key to change to selection mode, and drag it around

using the mouse. Observe the XAML code as you’re dragging, and how it changes when you release

the mouse button. Blend will add and attributes to describe the Image ele-

ment’s relationship to its parent—the container.

When you are finished exploring the Image element, your XAML code should look similar to this:

This XAML describes an image that is 320 240, and will display the image .

The image will be squashed or stretched to fill the 320 240 dimensions of the Image object. The

Figure 1-13. The Common Properties
pane for a XAML Image element

17

WHAT YOU NEED TO KNOW

 property specifies that the Image object will be placed 79 pixels down from the top of the

containing canvas, and the property will place the image 247 pixels from the left of the

containing canvas.

The Rectangle element

Rectangle XAML elements are used, as you might expect, to render rectangular shapes. Rectangle

elements have attributes such as , , , , , , ,

, , , , , and .

As with other XAML elements, Rectangles can be added by typing in the appropriate XAML or by using

the Rectangle icon on the toolbox. Click the Rectangle icon or press the M key and then click and

drag on the artboard to create a rectangle. Holding down the Shift key will lock the and

attributes, which is useful for creating squares.

On the Properties panel, at the top of the Brushes pane, verify that Fill is selected, and then click in the

color picker to select a red color.

Move the cursor over the control points on the rectangle’s bounding box and notice how the cursor

changes to indicate that various properties of the rectangle can be directly modified. By dragging any

of the points on the bounding box, the rectangle can be scaled. If the cursor is moved just outside a

corner point, the rectangle can be rotated. If the cursor is moved just outside the non-corner points,

the rectangle can be skewed vertically or horizontally. By manipulating the handles that appear at the

top-left corner of the rectangle, you can modify the radius and round the corners of the rectangle. By

default, the radius handles will affect both the x and y radius values equally. By holding down the Shift

key, you can modify the radius handles independently of each other. As with other objects and prop-

erties, changes can also be typed in directly on the Properties panel. Skew and rotation are referred

to as transforms and are accessible on the Transform pane. The XAML for a rectangle with rounded

corners looks like this:

The preceding XAML describes a Rectangle object that is 147 50. The top-left corner of the rectangle

will be 145 pixels from the left of the container canvas and 378 pixels from the top. The rectangle will

be filled with a dark reddish color, specified by the hex value #FFC60000, and will have a black

stroke. The and values will round the corners of the rectangle.

The Path element

Paths are series of connected lines and curves used to form shapes. Paths have properties such as

, , , , , , , , , , and . If you

are familiar with the Pen tool and the way that Bezier paths work in programs such as Photoshop or

Illustrator, you will find that creating a path in Blend works in a similar manner.

By selecting the Pen tool from the toolbox, you can create a path by clicking the artboard. Each time

you click, a new point is added to the path. By holding down the mouse button after clicking to cre-

ate a point, dragging the mouse will allow you to change the magnitude and bias of the spline as it

passes through the control point. If an endpoint is selected, clicking the opposite endpoint will close

the path. You can remove points that are already on a path by clicking them.

18

CHAPTER 1

Once a path has been drawn, you can press the A key or click the white arrow icon in the toolbox to

use the Direct Selection tool and modify the path. Holding down the Alt key while clicking a control

point will toggle the point between peaked and smooth, changing the way the spline appears as it

passes through that point. Figure 1-14 shows an example of both a smooth and a peaked path.

By default, paths are filled with a solid color, referred to as a solid color brush. To remove the

attribute from a path, set the Fill property to No brush. To do this, first select the element by clicking

it in the Objects and Timeline list. Select Fill on the Brushes pane to modify the fill, and then click the

leftmost tab above the color picker to remove the fill, as shown in Figure 1-15.

Figure 1-14. The path on the left is made from smooth points. Figure 1-15. Setting an object’s fill
The path on the right has a peaked center point. to No brush

In the Name field of the Properties panel, type myPath. The XAML code and Objects and Timeline list

will automatically update to reflect the change. The XAML code for the path created in this project

will look something like this:

The portion of the Path element is defined with a minilanguage used to describe geometric paths.

More information regarding the specifics of the language can be found in the Silverlight MSDN library

online, at . Don’t feel intimidated by the

looks of the path data—it’s unlikely you will often find yourself typing in the numbers to manually create

Path elements. More likely, you will be using a tool such as the one in Blend to create paths for you.

19

WHAT YOU NEED TO KNOW

You may be wondering if it will become necessary for you to re-create your entire collection of path-

based Illustrator artwork in Blend for use in your Silverlight applications. You will be happy to know

that converting your artwork from Illustrator to Silverlight is fairly easy. To export your Illustrator art-

work as XAML, visit and grab Michael Swanson’s excellent export

plug-in. Once it’s installed in Illustrator as per the instructions, open your artwork, select File Export,

and choose Silverlight XAML from the list of available file types. A XAML file will be produced, the con-

tents of which can be copied and pasted into the XAML editor in Blend or Visual Studio. If you are not

attached to Illustrator for your graphic design needs, another alternative is the Microsoft Expression

Design product. There is a free trial available at . Design will open

your Illustrator files and export Silverlight XAML files for use in Blend or Visual Studio as well.

The Ellipse element

The Ellipse element is used to draw ellipse shapes in your Silverlight applications. Like

the previous few examples, the Ellipse element also has properties such as , ,

, , , , , , , , and . Click

and hold the Rectangle icon in the toolbox to access the Ellipse icon. When the Shapes

fly-out menu opens, as in Figure 1-16, select the Ellipse icon. The shortcut key to create

an Ellipse is L.

With the Ellipse icon selected, click and drag on the artboard to draw an ellipse. As with Rectangle ele-

ments, the Width and Height properties are not linked when creating a new ellipse. To link the Height

and Width properties in order to create a circle, hold down the Shift key while dragging.

Once you have created an ellipse to your liking, use the color picker on the Brushes pane of the

Properties panel to select a shade of green. Select the Stroke item on the Brushes pane, and then click

the No brush tab above the color picker to turn off the stroke for this object. The XAML for a green

Ellipse element may look like this:

The XAML code shown here will create an ellipse that is 113 68. The ellipse’s top-left corner will be

82 pixels from the left of the containing canvas and 70 pixels down. The fill color #FF5ED221 will make

the ellipse fill with green. Notice that unlike the Rectangle object, no stroke is defined for the ellipse.

This means that the ellipse will not display a stroke line around its edge.

The TextBlock element

XAML currently offers two types of text elements. One is called a TextBox, and the

other is called a TextBlock. A TextBox is an editable text box, just like you would find

on an HTML form. On the other hand, TextBlocks are used to display a static block

of text that cannot be edited by a user. They are typically used for providing instruc-

tions or other information, though they can also be useful for debugging by displaying

various object property values within an application as it is running. TextBlocks have

properties such as (color), , , , and . There

are also properties for , , , , and so forth. To add a

TextBlock to the artboard, click and hold the TextBox icon in the toolbar until the Text Controls fly-out

menu opens. Select the TextBlock item, as shown in Figure 1-17.

Figure 1-16. The
Ellipse element icon

Figure 1-17. Adding
a TextBlock to the
artboard

20

CHAPTER 1

You can now double-click the TextBlock icon, or click and drag on

the artboard to create the new text block. You will notice that

the default text, TextBlock, is selected, allowing you to type in

the new text immediately. Once you’re done typing, click the

Selection tool icon in the toolbox, or click outside the TextBlock

to deselect it, and then press the V key to change back to selec-

tion mode. Alternatively, you can use the Common Properties

pane of the Properties panel, shown in Figure 1-18, to change the

text in a TextBlock. The Text field displays the text that is in the

selected TextBlock element. Typing new text into this field will update the text that is displayed.

The XAML for a TextBlock typically looks like this:

The code shown here will create a TextBlock object that is 332 pixels wide and 92 pixels high. The

TextBlock object will be located 165 pixels from the left of the container canvas and 86 pixels from the

top. The text displayed in this TextBlock will be displayed in the default Portable User Interface font,

and will read This is an example of a TextBlock element. The is set to wrap the text if it

exceeds the width of the TextBlock. Because the height of this TextBlock is hard-coded rather than set

to , any wrapped text that exceeds the 92-pixel height will be clipped.

Oftentimes, you may need to use multiple lines of text within the TextBlock, or change styles for dif-

ferent portions of the text. This is done by using the and tags within a TextBlock

element. When entering text via the Text field on the Common Properties pane, pressing Enter will

create a XAML tag. Each line of text is separated into its own tag. While the Blend

interface will create the base tags for you, if you’d like to mix font styles or sizes as shown here, you

must modify the XAML directly. In these cases, the TextBlock serves as a container, with an opening

and closing tag, and the text runs and line breaks are contained within the TextBlock container, as

shown here:

Notice how each can be used to define a different style for the text if necessary. While changing

text styles from line to line is not particularly common, runs and line breaks can be useful for creating

bulleted lists.

The Line element

The Line element is used to draw a straight line between two points. Lines are nothing more than

simple path segments that contain only two points. As such, they share the same properties as the

Path element. You can create Line elements by selecting the Line icon from the Shapes fly-out menu,

Figure 1-18. The Common Properties
pane can be used to modify the text
in a TextBlock element.

21

WHAT YOU NEED TO KNOW

or by using the Backslash key on the keyboard. Clicking and dragging the mouse on the artboard will

draw a line. Holding the Shift key will constrain the angle of the line to 15 degree multiples. XAML for

a Line element looks like this:

The example Line element XAML shown here draws a diagonal line. The top-left corner of the line’s

bounding box is located at 146,146, but the line itself is drawn diagonally from the bottom left of the

box to the top right. This is controlled by the numbers shown in the portion of the XAML. The

first pair of numbers is the starting point for the line (67,317). The second pair of numbers preceded

by the are the endpoint for the line (212,170). The property has to do with the way the

object is contained within its bounding box and how it is affected by explicitly set and

properties. For a simple two-point path, the fill color won’t have any effect—paths are typically filled

shapes, rather than simple lines. The stroke color, which is black in this case, will be what gives the

line its color.

It should be noted that there is an actual element in XAML, which takes four properties in order

to create a line: , , , and . These two coordinate pairs define the line’s beginning point and

endpoint. We will be using both throughout the various tutorials presented in the book, though

the true Line object is typically generated programmatically given that Blend produces paths. A Line

object’s XAML looks like the following code:

The controls elements

In addition to the previously mentioned elements, we will be working with some of the

existing user controls in Silverlight 2, such as sliders and buttons. Sliders and buttons

are prebuilt controls, and will be used at times to modify properties as applications are

running or to reset values. Buttons, sliders, and other prebuilt controls are added from

the Controls fly-out menu, shown in Figure 1-19.

In the following example, you can see that the XAML for both sliders and buttons looks

very simple. If you add them to your application by selecting them from the Controls

fly-out menu and run the application, you will see that they have some built-in behav-

iors already. The button changes when you mouseover or click, and the slider is drag-

gable. However, to use them for anything, it takes a bit of code to wire them up.

This built-in behavior you see is inherited from the class, and is referred to

as a ControlTemplate. We will not be modifying control styles or ControlTemplates over the course of

this book, but it is useful to know that they exist, and that you can find more information on them in

the Silverlight MSDN library online.

The following is some sample XAML code for a button and a slider:

Figure 1-19. The Con-
trols fly-out menu

22

CHAPTER 1

More about XAML

As you can see from the preceding simple walkthrough, Blend is a powerful tool that helps cut appli-

cation design and development time by creating XAML code for you as you work. However, even

with the help of Blend, you should take the opportunity to learn more about XAML in general—the

available objects and attributes extend well beyond the few discussed here. If you are interested in

learning more, explore the elements through Blend and use the Silverlight Development Center at

 for detailed descriptions of the available attributes of each element. The

development center has extensive descriptions of all the available elements.

What you need to know about programming
Teaching programming is beyond the scope of this book, so you will want to have some exposure to it

before digging into the more complex examples. While Silverlight supports code-behind files written

in C#, Visual Basic, and JavaScript, the examples here are written in C#.

If you are new to programming or the C# language, don’t panic. You don’t need to have years of pro-

gramming experience to work through the examples. If you enter the code as it is shown, you should

be able to run the projects without too much trouble. If you have experience with a language like

JavaScript or Java, the code should be fairly easy to follow because the syntax is fairly similar.

If you consider yourself more of a creative type than a developer, you should still be able to find value

in the provided example code and related information. All the examples are available as a download

from the friends of ED website (). You can look at them, dissect them, modify

them, and experiment to see how it all goes together.

A good development environment makes the development process faster and easier, so the process

described in the book relies on Visual Studio and C#. Visual Studio (or Visual Web Developer Express

Edition) is a great way to write code without the editor getting in your way. Visual Studio contains

extensive IntelliSense help—small pop-up windows open as you type in the name of objects or prop-

erties to show you the options available to you. Coding is often as simple as typing the first couple

of letters of your object’s name, and then pressing Enter. By then typing a period (.), all the proper-

ties and methods for that object will be displayed. The IntelliSense available within the programming

environment makes it easy to identify and utilize the properties and methods that are available for

various objects. The examples are written in a way that should be easy to absorb and follow. Once you

have the techniques and concepts down, you can optimize them as you see fit for use in your own

applications.

With regard to specifics of programming, familiarity with the various types of loops, public and private

variables, methods, and passing data will be helpful, as will some knowledge of object-oriented pro-

gramming, though it’s not critical.

Silverlight 1.0 applications supported only JavaScript, and in the general context of web development,

there are a lot of developers and designers that are familiar with the language. If you are used to pro-

gramming with JavaScript, you should be able to make the jump to C# fairly easily—the syntaxes of

the two languages are very similar, but C# offers a lot more flexibility.

23

WHAT YOU NEED TO KNOW

Anatomy of a Silverlight project
We’re going to be working with a lot of projects. Some of them are created with Blend, and some

with Visual Studio. While the basic structure of a project is common between the programs, there are

some important differences, and some important information you need to be aware of. Don’t worry

too much if you don’t get everything in this section just yet. Keep it in the back of your head and refer

back to the book if you need to. This is just to get you prepared for what you’ll be seeing later.

Both Blend and Visual Studio produce a group of files referred to as a “project.” Projects created in

Blend contain a smaller number of files than those created in Visual Studio, so we’ll start by exploring

the anatomy of a project in Blend. When you begin Blend, a startup pane will display a list of recent

projects on a Projects tab. You also have the option of selecting New Project, Open Project, or Open

Site.

When New Project is selected, a New Project dialog like the one shown in Figure 1-20 opens. You

can choose from the following options: WPF Application, WPF Control Library, Silverlight 1 Site, or

Silverlight 2 Application. WPF stands for Windows Presentation Foundation, and was the predecessor

to Silverlight. Silverlight’s capabilities are a subset of WPF intended for online use, whereas WPF is

more suited to creating robust Windows applications.

In this book, we will be working exclusively with Silverlight 2 applications. You also have the choice of

specifying either the C# or Visual Basic programming language to use in the code-behind files that you

will be writing later. Since the code samples in this book are done in C#, you will want to choose Visual

C# from the Language drop-down if it is not the default.

Figure 1-20. The New Project dialog in Blend

Once you have given your application a name, click OK, and Blend will create the project for you. In

Blend, the contents of a project are not as obvious as they are in Visual Studio because the list of files

appears on the Project tab of the Properties panel. To see or access the list of project-related files while

working in Blend, simply click the Project tab on the Properties panel. The file list shown in Figure 1-21

shows an example default file list after creating a new project in Blend.

24

CHAPTER 1

The topmost file in the list is the solution file. The file is

placed in the root directory of the project and has a

extension. Solution files can be opened in either Blend or

Visual Studio. The solution file contains a reference to the

next file in the list, which is in the project directory and has

a extension. This file is an XML file that contains all

the various configuration options for the development envi-

ronment.

Next in the list is the folder, which contains sev-

eral mysterious-looking DLL files. These files are referred to

as assemblies, and contain the libraries that Silverlight needs

to run your applications. Three of these files, ,

, and , are required. Three

others, , ,

and , are included to provide application

functionality above and beyond the base DLLs that are com-

monly used.

Inside the folder are two more files—

 and .

is updated when an application is compiled to include the

assemblies that are deployed within the client application.

The file contains metadata that gets

embedded into the assembly file that is generated when you

compile. The file contents look like the fol-

lowing listing:

Figure 1-21. The default list of files as-
sociated with a new project in Blend

25

WHAT YOU NEED TO KNOW

You can see that the listing contains fields for title, description, configuration, copyright, and so on.

For Blend-based projects, you can edit this file with any text editor if you have a need.

The next two files in the list are and . These two files create a class called ,

and are required by every Silverlight application. Their purpose is to start the application and show

the user interface (UI).

Finally, we come to and . These two files also create a class, called .

The class is where you will typically be creating the UI for your application. is a file

containing markup that contains elements of the UI, while is the code-behind file that

controls what happens when your application runs. Generally speaking, you won’t have to worry about

these files too much in the early going. Blend will take care of putting the right XAML code in the right

spot for you.

If you take a look at the folder where the application resides, you will see that the root folder contains

the solution file, and a folder with the same name. Inside the solution folder is the file, as well

as the and XAML and CS files, like those shown in Figure 1-22. Inside the folder

is where the and files reside.

Notice that there is no folder as displayed in the file list in Blend. This is because the

assemblies are located elsewhere and referenced in the project. When you compile a project, the

necessary libraries will be included in the application.

You will also see and folders. When you compile a Silverlight application in Blend, these fold-

ers will contain the final application files Blend uses to display the application to you. The

folder in particular may be useful. After compiling, you will find a file with the project name and a

 (pronounced zap) extension. This file is a renamed ZIP archive that contains your application.

Also in that folder is a file, which will load and display the application XAP file. The XAP

and HTML files can be used to deploy your application on a web server.

26

CHAPTER 1

Figure 1-22. The project folder for a Blend-created project

You can edit the HTML file to change the way your application is presented in the page, but use some

care—if you edit the file and then recompile in Blend, your HTML file will be overwritten with a new

test page that contains the default code. This is not the case with Visual Studio, but Visual Studio

creates the page in a slightly different way, as you will see. There are a few pieces of code that are of

interest in the HTML file, so we’ll take a quick look at those. The first are two of the styles near the

top of the page:

If you’re familiar with CSS, you can feel free to edit these as you choose. For the Visual Studio–based

projects in this book, the body style has a style applied in order to give the appli-

cation a little room across the top.

The style is applied to a that contains the Silverlight tag:

27

WHAT YOU NEED TO KNOW

Notice that the object has its height and width set to 100%. This will cause the application to fill the

. The style, in turn, sets the ’s width and height to 100%, which will fill the browser. In many

cases, you will want to control the size of your application. For the book projects, the applications are

800 600, and the style is adjusted accordingly, as shown:

If you do not adjust the style for the Silverlight application’s container, you may be surprised when

you see your content appear to spill outside the bounds of your application.

There are two other small changes made to the HTML for most of the projects in the book. The first

is the HTML tag’s background. You can change this via the tag or the tag. The back-

ground color of the page is typically set to a medium-gray.

Finally, the content of the page is wrapped in another that is center-aligned on the page. This can

also be handled via CSS rather than HTML code.

28

CHAPTER 1

Notice that inside the is the tag that instantiates the Silverlight

application. The first line of the tag declares the type of object and size. The param-

eter points directly to the XAP file that contains the application. The parameter points to a

JavaScript function that will run if Silverlight encounters an error. This is useful for troubleshooting,

but can be removed for release code. The final parameter sets the default background color of the

application. These are just the default parameters with which we will be working.

If you’re using Visual Studio, you will be presented with a New Project dialog when you select File

New Project in Visual Studio. If you have installed Silverlight Tools for Visual Studio, you will see a

Silverlight Application option under the Templates section on the right pane of the dialog box. Figure 1-23

shows the New Project dialog.

Once you have selected the Silverlight Application template, you can give the project a name, select a

location, and even change the solution name if you so choose. The biggest difference between Blend

and Visual Studio with regard to the project files is what happens when you click OK on the New

Project dialog. Visual Studio will open a second dialog called Add Silverlight Application, like the one

shown in Figure 1-24.

This dialog allows you to have Visual Studio add a web page to the solution for hosting the Silverlight

application. Typically, when this dialog opens, you will want to click OK and accept the defaults. Visual

Studio will then go about creating the project for you.

In Visual Studio’s Solution Explorer, you will see the same project files as those in the Blend project, as

well as the web page and related folder, which contains the application XAP file, as shown

in Figure 1-25.

Visual Studio will create both an ASPX and an HTML file in the web project. By default, the ASPX file will be

used when you compile and run an application. To change this, right-click the HTML file and select Set As Start

Page, as shown in Figure 1-26. The next time you compile, the selected file will be used. The example projects

throughout the book have been set to use the HTML file as the start page.

29

WHAT YOU NEED TO KNOW

Figure 1-23. The New Project dialog box in Visual Studio 2008

Figure 1-24. The Add Silverlight Application dialog box in Visual Studio 2008

30

CHAPTER 1

Unlike with Blend, the web files created as part of your project

in Visual Studio can be edited, and you will not lose the

changes each time you compile your project. This makes it a

little easier to see application content as part of a completed

web page without risk of having to re-create the web page if

you forget to copy files to a backup location.

You will notice in the project’s file list that the XAML files are

shown, but none of the code-behind files are visible. To view

the code-behind files, click the + symbol to the left of the

XAML control you want to edit, and the file list will expand.

You can then double-click the .cs file to open it for editing.

When you are editing a XAML file, a long list of available user

controls shows up in the toolbox. These are the same con-

trols available to you in Blend. At the moment, the interface in

Blend is a little more robust when it comes to creating inter-

faces or objects for your applications. The two programs are

well integrated, however. You can open any XAML file for edit-

ing in Blend by right-clicking the file in Solution Explorer and

selecting Open in Expression Blend from the menu, as shown in

Figure 1-27.

Figure 1-26. Changing the default Figure 1-27. Opening a file from your Visual
start page for a Visual Studio project Studio project in Blend for editing is fast and easy.

Figure 1-25. Solution Explorer in Visual Studio

31

WHAT YOU NEED TO KNOW

Summary
Of the software discussed for creating Silverlight content, Visual Studio and Blend are really must-

haves. The benefits they bring to development really smooth out the process for both designers and

developers. As the backbone of a Silverlight application, it is critical that both designers and develop-

ers familiarize themselves with XAML markup. XAML acts as a bridge between design and develop-

ment, giving designers more control throughout the application development process.

In our projects, we’ll only be using a subset of the XAML objects available. The objects we’ll be con-

centrating on include Canvas, Image, Rectangle, Path, Ellipse, TextBlock and a couple of the prebuilt

controls such as Slider and Button. Canvases are generally used as containers for other types of

objects. Images allow you to utilize JPG or PNG images in your applications. Rectangles, Paths, and

Ellipses are all vector-based drawing objects. TextBlocks are used to display noneditable text within an

application.

If you have some experience programming, you should be able to pick up the C# syntax relatively

quickly. Working through the projects in the book will help you identify how various objects and

properties are accessed through code. If you’re used to programming in JavaScript, you should find C#

fairly easy to adopt from a coding perspective, but there’s a lot to learn with respect to the availability

of the .NET libraries. Be patient, and you’ll get it!

New Silverlight projects can be created in either Blend or Visual Studio, though there are some differ-

ences between the two. Visual Studio will allow you to specify a web project that creates a web page

in which your application is automatically hosted. Blend only creates the web page when a project is

compiled, and will overwrite the page each time you compile.

In Chapter 2, we’ll take a look at the basic transforms available in Silverlight. These include Translate,

Scale, Rotate, Skew, Flip, and Center Point. We’ll also take a look at object properties, and how to work

with the control points of which objects are comprised.

Part Two

SILVERLIGHT ANIMATION: THE BASICS

35

When we talk about animation in Silverlight, we’re really talking about the different

ways we can manipulate the properties of an object within the applications we build.

One of the tools available to change the way an object looks relative to the original

is called a transform. Basic transforms are used to modify an object’s translation (its

location relative to the container in which it resides), rotation, scale, or skewing.

Basic transforms are a common aspect of application UI development, often used to

animate objects over time (such as panels sliding in and out, and objects growing and

shrinking).

We will be working with the transform proper-

ties located on the Transform pane (shown in

Figure 2-1), which can be found near the bot-

tom of the Properties panel. If the full pane is

not already visible, you will see a bar that con-

tains an arrowhead pointing to the right and the

word Transform. You can expand the pane by

clicking anywhere on the Transform header on

the bar.

The Transform pane contains tabs that are used to create transforms that translate,

rotate, skew, adjust the center point of, or flip an object. The following sections

describe how each of these transforms can be used to make changes to objects on

the artboard.

Figure 2-1. The Transform pane of
the Properties panel

BASIC TRANSFORMS

Chapter 2

36

CHAPTER 2

The Translate transform
By translating an object, we’re moving that object around the artboard, but moving it in a way that is

relative to its original position. This is different than what happens when you drag an object, because

dragging an object changes its position relative to the container in which it resides.

This is useful for creating motions that are self-contained. For example, if a panel “opens” by sliding

200 pixels to the right, you can freely reposition the panel anywhere in the layout container without

affecting the motion defined by the translation.

Consider an object that is positioned at the x and y coordinates 100,100. If you drag the object 50

pixels to the right and 50 pixels down, the object will now reside at the absolute position of 150,150.

However, if the same object has a transform applied that moves it 50 pixels to the right and 50 pixels

down from its original position, the object will be drawn at 150,150, though its absolute position rela-

tive to the container in which it resides will still be 100,100. The Top and Left fields on the Properties

panel will show the absolute value of 100,100.

This can be a bit confusing, so let’s work through an example that demonstrates the difference

between the two:

1. Create a new project in Blend.

Change the default Grid container

on the artboard to a Canvas by

editing the XAML, or by right-

clicking the LayoutRoot element

in the Objects and Timeline list and

selecting Change Layout Type

Canvas, as shown in Figure 2-2.

2. Select the Rectangle tool from the

toolbox by pressing M, and then

double-click the Rectangle icon

to add a Rectangle element to

the canvas. By default, a 100 100

rectangle will be placed in the

upper-left corner of the canvas

on the artboard. Select the rect-

angle on the Objects and Timelines

panel and use the Brushes pane

of the Properties panel to give it a

background color other than the default white.

3. On the Transform pane (shown in Figure 2-1), the square icon on the left with nine points

allows you to select the point of origin for the transform. We’ll take a closer look at this in

another example, but this is useful if you need to make an object scale or rotate about a point

other than the default center. In the X field, enter 100 and press Enter. The rectangle should

oblige by moving to the right 100 pixels. Notice on the Layout pane that the Left position of the

rectangle is still being reported as 0.

Figure 2-2. The Change Layout Type menu in Blend

37

BASIC TRANSFORMS

Translations define an offset from an object’s current position on the artboard. If you press the V key

to change to the Selection tool and then drag the rectangle to a different location on the artboard,

you will notice the Left property changing in the Layout pane. After dragging, the rectangle is still off-

set 100 pixels from the value being displayed in the Layout pane. You can test this by entering 0 into

the X field on the Transform pane—without a translation applied, the rectangle returns to the position

shown in the Left field of the Layout pane. Y offsets will work the same way as X offsets.

Let’s create an animation that will demonstrate a translation that occurs over time:

1. Open the eclipse project from Chapter 2 by

selecting File Open Project/Solution. Locate

the file. This project contains two

objects: a sun and a darkened moon.

2. In this project, we will be using a Translate trans-

form to move the moon in order to create a

lunar eclipse. If the workspace in Blend is not in

the Animation Workspace (with the Objects and

Timeline panel below the artboard), press F6 to

change the layout now. Once you’ve done that,

click the New Storyboard button on the Objects

and Timeline panel, as shown in Figure 2-3.

3. The Create Storyboard Resource window will open.

This window asks for a unique name for the story-

board that is about to be created. As you work on

the artboard creating motions for your objects,

Blend will automatically build out the storyboard

for you. We’ll take a more in-depth look at storyboards in Chapter 3. For now, just click OK to

accept the default name of Storyboard1.

4. The Blend interface will switch to timeline recording mode, as shown in Figure 2-4. A timeline

and its associated controls will appear to the right of the Objects and Timeline panel, and the

artboard border will turn red, indicating that timeline recording is on. When timeline recording

mode is on, any changes you make to the properties of an object will create a keyframe on the

timeline. You can toggle timeline recording mode on and off by clicking the red button at the

top left of the artboard. Turning off timeline recording will not close the current timeline—it

simply stops Blend from recording the changes you make as keyframes on the timeline. This

is very useful when you need to make some changes to an object that are not supposed to be

part of the animation.

The yellow bar on the timeline is called the timeline play head, and it indicates your current

position within the timeline. If you are coming from a Flash background, there is a significant

difference in the way timelines works in Silverlight. Here, animations are time-based rather

than frame-based. Time-based animations should offer a more consistent end user experi-

ence across a wide array of hardware, as one second is a consistent unit of measure across

computers.

Figure 2-3. Click the New Storyboard button
to create a new animation.

38

CHAPTER 2

Figure 2-4. The Blend interface showing the eclipse project in timeline recording mode

5. In order to move the timeline play head to a specific point on the timeline, use the mouse to

click the triangle at the top of the play head, and then drag it. For this example, we want to

move the moon in front of the sun over a 1-second period of time, so drag the timeline play

head to the 1-second mark, as shown in Figure 2-5.

Figure 2-5. Move the timeline play head to the 1-second mark on the timeline.

6. Select the darkMoon element on the Objects and Timeline panel by clicking it. On the Properties

panel, make sure that the Transform pane is expanded. On the Translate tab, we want to enter

values that cause the moon to be centered over the sun object. In the X field, enter 280 to

offset the moon object 280 pixels to the right. In the Y field, enter -245 to offset the moon

object up 245 pixels from its current location. Remember that in Silverlight, the x and y offsets

are measured from the top-left corner of an object.

39

BASIC TRANSFORMS

7. Press the Play button above the timeline to preview your animation. You defined the start point

of the object by its placement on the canvas, and the endpoint by the Translate transform you

defined. Blend will handle all the “in-between” frames automatically, and the moon will glide

in front of the sun. As you created the time-based translation, Blend automatically generated

a storyboard in the background. The storyboard is XAML code that tells Silverlight how the

objects in your application should move. I’ll talk a lot more about storyboards in Chapter 3, but

just so you can see what’s going on, the following code listing shows the storyboard that was

created for this animation:

8. As mentioned earlier, translations are simply offsets from an object’s actual position within its

parent object. To illustrate this, drag the timeline play head back to 0 or select the Go to first

frame button above the timeline. Click the red button at the top-left corner of the artboard to

turn off timeline recording.

9. With the darkMoon element still selected, enter 200 into the Top field on the Layout pane

of the Properties panel. Now press the Play button for the timeline again to preview the ani-

mation. What happens? The moon moves to the same offset defined in the storyboard, but

because the base object’s actual position has changed, the final frame of the animation now

finds the moon above the sun rather than over it.

This is an important detail to keep in mind when using translations. You may find yourself in need of

a relative offset when animating objects, but remember that changes to the location of the object will

affect the end position.

The Rotate transform
Rotate transforms are used to rotate objects within an application. Rotational angles are expressed

in degrees, and the values input are additive—a value of 720 will fully spin an object around twice

(360 2). For spinning in the opposite direction (counterclockwise), negative values can be used.

To see a Rotate transform in action, open the exhaustFan project from Chapter 2. This project con-

tains a scene comprised of a simple static background element and a fan element that will be made

to rotate, as shown in Figure 2-6.

40

CHAPTER 2

Figure 2-6. A Rotate transform will be used to make the exhaust fan in this project spin.

1. Click the New storyboard button on the Objects and Timeline panel. Click OK when the Create

Storyboard Resource dialog opens to accept the default storyboard name. Once again, verify

that the Blend layout is set to the Animation Workspace with the timeline open across the bot-

tom of the screen.

2. Drag the timeline play head to 2 seconds. Select the fan element from the Objects and Timeline

list. On the Transform pane, select the Rotate tab, and enter 720 into the Angle field. When you

click the Play button for the timeline, you will see the fan element perform two rotations over

the course of the 2-second animation.

If you are interested in seeing the angle at any given point in time on the storyboard, drag the

timeline play head and keep an eye on the Angle field of the Rotate tab. As you move the play

head, the value changes to reflect the fan’s current angle. Once again, Blend has taken the end

value you specified and created all the in-between frames automatically. The storyboard for

this project is shown in the following listing:

41

BASIC TRANSFORMS

As noted earlier, it is possible to change the point of origin for a transform by relocating the

center point. To change the point around which an object is rotating, click the Translate tab of

the Transform pane. The small box with nine points located on the left side of the Transform

pane allows you to change the location of the pivot to one of nine presets.

3. Click the red button at the top left of the artboard to turn off

timeline recording, and drag the timeline play head back to 0.

4. On the Translate tab, click the top-left point, as shown in Figure 2-7.

Press the Play button for the timeline. The fan should now be rotating

around its top-left corner. This is useful for creating objects that rotate

from locations other than their center point. A more accurate term for

“center point” is render transform origin, as this is how it is specified

in XAML code. Changing the location of the center point is really just

changing the origin of any transform applied to an object. It just happens that the default position of

the point is in the center of an object’s bounding box.

Try selecting other points for the center point and playing the timeline to see the effect it has on the

object. Figures 2-8 through 2-10 show the effect of changing the center point of the fan object if it

were rotated 15 degrees.

Figure 2-7. Changing the center
point for a Rotate transform

a. b. c.

Figure 2-8. Rotation around origin 0,0 (a); rotation around origin .5,0 (b); and rotation around origin 1,0 (c)

a. b. c.

Figure 2-9. Rotation around origin 0,.5 (a); rotation around origin .5,.5 (b); and rotation around origin 1,.5 (c)

42

CHAPTER 2

The Scale transform
Scale transforms are used to scale objects relative to their original size. The values used in Silverlight

for scaling are relative to 1, with 1 being 100%. Therefore, a value of 2 will scale an object to twice

its original size. Conversely, a value of .25 will make an object one quarter of its original size. When

scaling, values for x and y scale are not linked. This means that to scale an object proportionately, it is

necessary to enter the same value in both the X and Y fields of the Scale tab.

Let’s take a look at how a Scale transform can be used to modify an object over time in order to simu-

late perspective. Open the truck project from Chapter 2. This project contains a scene that consists of

a street backdrop and a truck object, as shown in Figure 2-11. We will be using a Scale transform to

make the truck appear as though it is driving away from us.

Figure 2-11. Scale transforms can be used to make objects appear as though they are moving away.

a. b. c.

Figure 2-10. Rotation around origin 0,1 (a); rotation around origin .5,1 (b); and rotation around origin 1,1 (c)

43

BASIC TRANSFORMS

1. Click the New storyboard button on the Objects and Timeline panel, and click OK when the

Create Storyboard Resource dialog opens. If the Animation Workspace is not set with the time-

line displayed below the artboard, press the F6 key.

2. Select the truck element from the Objects and Timeline panel.

3. Move the timeline play head to 3 seconds.

4. On the Transform pane of the Properties panel, select the Scale tab, and enter .15 in both the

X and Y fields. This will cause the truck to scale from its current value of 1 (100%) to a value of

.15 (15%) over 3 seconds.

5. Click Play to preview the animation. The truck should look as though it is driving down the

street, ending near the horizon. Figure 2-12 shows the end position of the truck.

Figure 2-12. A scale translation makes the truck appear to move down the street.

Like Rotate transforms, Scale transforms can also have their center point adjusted. This is useful for

making panels that appear to expand and/or collapse to a point other than the center. For this anima-

tion, the storyboard is shown in the following listing:

44

CHAPTER 2

To see an example of this type of scaling, open the panels project from Chapter 2. This project con-

tains a canvas with two rectangular “panels,” as shown in Figure 2-13.

Figure 2-13. The panels project upon opening

1. Click the New storyboard button, and click OK to accept the default name.

2. Select panel1 from the Objects and Timeline panel, and on the Transform pane, change the cen-

ter point to the middle-left selection (0,.5).

3. On the Scale tab, enter 0 into both the X and Y fields.

4. For the panel2 element, change the center point to the middle-right selection (1,.5).

5. On the Scale tab, scale panel2 down to 0.

Notice that Blend has placed small, oval-shaped keyframe markers on the timeline for both elements,

as shown in Figure 2-14.

45

BASIC TRANSFORMS

Figure 2-14. Blend adds keyframe markers to the timeline as you manipulate objects on the artboard.

6. Move the timeline play head to 3 seconds, and change the x-y scale for both objects back to 1.

7. Click the Play button on the timeline to see the animation.

Both objects will scale from 0 to 1 over the same time span, but each one scales from a different point

of origin. The origin point of the scaling is illustrated with arrows in Figure 2-15. You can create a lot

of interesting effects by using different points of origin in a Scale transform that makes use of varied

x and y values to expand panels along the different axes at different rates of speed.

Figure 2-15. The effect of scaling panels from different origin points

The storyboard for this project is a little more complex, since it contains multiple objects with multiple

keyframes. It is shown in the following listing:

46

CHAPTER 2

In addition to using the center point as a static origin for scaling, you can change the location of the

center point over time. For example, you could make the truck from the previous example weave

down the street by manipulating the center point.

If you would like to try this out, start with the truckCompleted project. Above the list of objects on

the Objects and Timeline panel, there is a select box that will allow you to open an existing storyboard.

Click the Open a Storyboard button, as shown in Figure 2-16.

Blend will present you with a list of available storyboards, as shown in Figure 2-17. This project con-

tains only a single storyboard, Storyboard1, which you should click to open as a starting point. The

storyboard will open and Blend will be in timeline recording mode.

47

BASIC TRANSFORMS

Figure 2-16. The Open a Storyboard button Figure 2-17. The list of available storyboards
on the Objects and Timeline panel in the truckCompleted project

1. Select the truck object from the Objects and Timeline list.

2. Drag the timeline play head to .8 seconds.

3. On the Transform pane of the Properties panel, use the Center Point selection presets to pick the

point at the middle left (0,.5).

4. Drag the timeline play head to 2 seconds.

5. On the Transform pane of the Properties panel, use the Center Point selection presets to pick the

point at the middle right (1,.5).

6. Preview the animation. The point of origin for the Scale transform changes as the truck object

scales down from 1 to .15, which causes the truck to appear as though it is swerving as it moves

down the road.

The storyboard for this project is shown in the following listing:

48

CHAPTER 2

The Skew transform
Skew transforms can be used to skew an object horizontally, vertically, or both. Open the skewTransform

project from Chapter 2. This project contains a simple room scene that consists of a background and a

door, as shown in Figure 2-18. We will be using a Skew transform to make the door appear as though it

has opened.

Figure 2-18. Making use of a Skew transform to make a door open

49

BASIC TRANSFORMS

1. Select the door element on the Objects and Timeline panel.

2. On the Transform pane of the Properties panel, select the Translate pane. As with a real door,

we want the door in our project to skew along an edge, not the center. On the center point

selector, select the control point that is in the middle on the right-hand side (1,.5).

3. On the Objects and Timeline panel, click the New storyboard button, and press Enter to accept

the default name.

4. Move the timeline play head to 1 second, and on the Skew pane, enter -10 into the Y field to

skew the door canvas –10 units along the y axis. The door should appear to be ajar, as shown

in Figure 2-19.

Figure 2-19. After skewing, the door appears to be open slightly.

Press the Play button for the timeline and watch the animation. The door should look like it swings

open. Now, you are probably saying to yourself that real-world doors rotate about the y axis rather

than skew, and you are correct. This project is really just a demonstration of how Skew transforms are

applied. We’re able to get away with it here because we didn’t overdo the transform. If you would like

to extend the Skew transform to make the door appear as though it has opened wider, you can also

apply some scaling to compensate for the warping that will result from the skew. The storyboard for

this animation is shown here:

50

CHAPTER 2

You may have noticed in the projects so far that the objects to which the transforms are being applied

are often canvas container objects. In the case of the door, the “door” canvas contains the paths that

make up the door, and even a nested canvas that contains the shapes for the doorknob. In this way,

canvas layout containers are useful in organizing objects in your projects. They also serve a purpose in

that transforms applied to canvases affect all the children inside the canvas being transformed.

The Center Point transform
As you’ve seen in some of the examples, there is an icon on the Translate tab that allows you to choose

one of nine preset locations for the center point of an object. In addition to the presets used to move

the center point, there is a Center Point tab. The presets available on the Translate tab are really just

shortcuts—as you choose different points, Blend fills the fields on the Center Point tab with appropri-

ate values.

The location of the center point for a selected item’s bounding box is changed by manipulating x and y

values between 0 and 1. As with the rotating fan example, the top-left position is 0,0; the top center is

.5,0; and the top right is 1,0. In the middle row, the values are 0,.5; .5,.5; and 1,.5. The bottom row is 0,1;

.5,1; and 1,1. These values are the same and have the same effect whether your object is big or small.

The Center Point tab is useful when you want to place the center point of a transform at a position

other than one of the presets—if you have an oddly shaped object that is supposed to appear as

though it is swinging, for example.

There are two ways to manipulate the center point of an object. The first way is to type values into

the available fields on the Center Point tab. The second way is to select the element on the Objects and

Timeline panel on the artboard with the Selection tool (V), and then manipulate the center point with

the mouse. Because it is more visual, it is often easier to “rough in” the position with the mouse, and

then fine-tune as necessary using the entry fields on the Center Point tab.

When the mouse is over the center point, the cursor will change to a small square with

four arrows on it, as shown in Figure 2-20. The center point can then be dragged to a

new location. Center points can even be located outside of an object’s bounding box.

This is useful in situations where you have objects rotating around other objects.

Changes to the location of an element’s center point don’t cause any visual changes to the

element itself. They will, however, change the way that transforms affect the element.

The centerpointTransform project contains two elements for you to experiment

with—an ellipse with a gradient fill and a simple black line. On the ellipse, simply use

the Selection tool (V) to select the center point with the mouse and then drag it to a

different location.

The line element is a little trickier—by default, an object’s center point location is in the middle of

the object’s bounding box, and lines don’t have large enough bounding boxes to make their center

Figure 2-20. An
object’s center
point can be
dragged with
the mouse.

51

BASIC TRANSFORMS

points easily accessible for clicking and dragging. Since a line element’s bounding box doesn’t have

any height, the center point is not visible.

If you need to move the center point of a line, resize the line’s bounding box by dragging the center

point of the bounding box border, as shown in Figure 2-21. This will make the center point of the

line’s bounding box visible/accessible, and you can then drag it where you would like. If you resize

the line object by manipulating the bounding box, the center point will move in relation to the size

of the bounding box.

Figure 2-21. Expand the bounding box of a Line object to access its center point.

The Flip transform
The Flip tab on the Transform pane, shown in Figure 2-22, has

shortcut buttons that allow you to flip an object along the x or

y axis. When you use the buttons on the Flip tab, Blend simply

creates a Scale transform for you. Using the Flip X axis button,

for example, will cause Blend to simply invert the scale of the

selected element along the x axis. If an object is scaled to 1x, it

will be 100% of its size along the x axis. When you click the Flip X

axis button, Blend will make the scale –1x, inverting the object’s

scale. You can see this by clicking the button and then selecting

the Scale tab. Because an object’s scale can be adjusted over time, you can use Flip to create key-

frames on a storyboard.

Animating object properties
In addition to transforming objects over time, it is also possible to modify an object’s properties over

time. Different types of objects have different properties. For example, when working with rectangles,

you might change the , , , , , , , , or

 values.

Changes to an object’s properties are different than transforms because they change the object itself.

For example, changing an object’s property or margins will move the object relative to the con-

tainer in which it resides. As shown, this is in contrast to a Translate transform, where an object moves

relative to its original position.

You can animate object properties by creating a new timeline, moving the play head to the appropri-

ate time, and making changes to the properties on the Properties panel. Blend will record the change

by placing a keyframe on the timeline.

Property animations can be used to make animations for use as button rollovers, sliding panels, menus

dropping down, and so on. Take a look at the propertyAnimations project for Chapter 2. This project

contains a couple of panels and a couple of ellipses, as shown in Figure 2-23.

Figure 2-22. The Flip tab is used to
scale an object along the x or y axis.

52

CHAPTER 2

Figure 2-23. An object’s properties can be animated in a manner similar to creating transforms.

Notice that Panel1 at the top left of the artboard is positioned partially off the main canvas. If the

Silverlight object in the base ASP or HTML file is styled appropriately, only the part of an object that

is on canvas will show up when the application runs. Positioning an object partially off-canvas is a use-

ful way to hide parts of that object when an application runs. In this project, we will be creating an

animation that will slide Panel1 onto the main canvas, bringing it into view. We’ll also change some

properties on the other objects in the project to see how they are affected.

1. Begin by creating a new storyboard.

2. Move the timeline play head to 2 seconds.

3. Click Panel1 in the Objects and Timeline panel.

4. Change to selection mode by pressing V on the keyboard, and then use the right arrow key

on the keyboard to move the panel to the right. The Shift key modifier will move an object by

10 pixels each time an arrow key is pressed. Move the panel to the right until it is mostly on the

main canvas, leaving just the left side positioned off-canvas.

5. Preview the animation—you should see a nice little slide action for that panel. The storyboard

that Blend automatically creates is shown here:

53

BASIC TRANSFORMS

6. Move the play head to 3 seconds.

7. Select Panel2 in the Objects and Timeline panel, and enter 0 into the Opacity field on the

Appearance pane of the Properties panel.

8. Play the animation again, and you will now see Panel2 slowly fade out as Panel1 slides in from

the left. Blend once again creates the XAML code for the animation that was just added:

9. In order to make Panel2 delay the fadeout a bit, and then fade a little more quickly, move the

play head to 2 seconds, and enter 100 into the Opacity field. When you preview storyboard,

Panel1 will now slide in, and then Panel2 will begin to fade.

10. Move the timeline play head to 1 and select ball1.

11. Select Fill on the Brushes pane, and change the color of the gradient that is being used to

fill the ellipse shape. It doesn’t make any difference which color you choose. For reference, I

changed the right gradient stop color to #FF3E6A01.

12. Move the timeline play head to 4 seconds, and select ball2.

13. Change the Width and Height properties to 100.

Now when you click Play, you should have quite a bit of action occurring on your artboard! Blend

continues to augment the storyboard as you make changes to the object properties over time. The

storyboard currently looks like the one shown in the following listing:

54

CHAPTER 2

Let’s take a quick look at the timeline. At the moment, it should look similar to the one shown in

Figure 2-24.

Figure 2-24. The timeline window shows objects and their keyframes.

55

BASIC TRANSFORMS

You can see that each time you make a change to one of the object’s properties, Blend adds a keyframe

to the timeline. From the storyboard code, you can also see that each keyframe on the timeline rep-

resents an entry, or animation, in the storyboard. Not only are keyframes useful visual cues for when

actions are taking place and which objects they will affect; but they can also be directly manipulated

in the timeline. You can do this by grabbing the small oval-shaped markers and dragging them. If, for

example, you decide that ball2 isn’t changing size quickly enough, you can drag the marker on the time-

line to the left to speed up the action. Try dragging the keyframe for ball2 to 2 seconds and playing the

timeline. The ball will now resize a little more quickly, and you don’t have to do very much work at all!

If you decide that you want ball2 to grow taller faster than it gains width, you can modify individual prop-

erty keyframes as well. Expand the ball2 object in the Objects and Timeline panel. You should see entries

for Height and Width and their associated markers on the timeline. Drag the oval keyframe marker for

the Height property to 1 second. Your timeline should look similar to the one shown in Figure 2-25. Now

when you press Play, ball2 will expand vertically more quickly than it expands horizontally.

Figure 2-25. Keyframe markers are easy to modify in the timeline.

As you spend time fine-tuning animations in the timeline, you may find yourself needing to manipulate

several keyframe markers at once. To do this, simply hold down the Ctrl key as you click keyframe mark-

ers to select/deselect multiple keyframes. You can then reposition the selected markers as a group.

Animating control points

In addition to the transform and property animations available to you in Blend/Silverlight, you can

also manipulate the individual points that make up an object. Technically speaking, you are simply

manipulating the properties of the control points that make up a path, but it is broken out here to a

separate section for the sake of clarity.

56

CHAPTER 2

Open the controlpointAnimation project from Chapter 2. This project contains a sunset ocean scene,

as shown in Figure 2-26. We’ll use the Direct Selection tool to add a control point animation that makes

the waves roll a bit.

Figure 2-26. You can use the Direct Selection tool to animate the control points that make up an object.

1. Once the project is open, press the A key to change to the Direct Selection tool.

2. Click the water element on the Objects and Timeline panel. The element will change to display

the control points that make up the path for this object.

3. Create a new storyboard and move the timeline play head to 3 seconds.

4. Along the top of the water object path, Shift-click to select the two uppermost points at the

top of the swells. The control points will turn blue as they are selected.

5. Use the down arrow key to move those two points down about 20 pixels.

6. Click one of the two corner points along the top of the object, and then Shift-click the oppo-

site corner and center point so that you have selected the inverse three points along the top of

the wave.

7. Move the selected points upward about 20 pixels.

8. Press Play, and the swells should gently invert over the 3 seconds of the timeline.

The storyboard for this project looks pretty complex. This is because manipulating the points of a

path-based object not only affects the points you are manipulating directly, but also the lines that pass

through the control points. I’ll talk more about that in Chapter 3, but for now, here’s a look at the

storyboard for this project:

57

BASIC TRANSFORMS

58

CHAPTER 2

59

BASIC TRANSFORMS

60

CHAPTER 2

Summary
The basic transforms available in Blend allow you to change the properties of an object over time, cre-

ating simple animations. The transforms include Translate, Rotate, Scale, Skew, as well as two special

shortcut transforms—Center Point and Flip. Transforms can be applied individually or in combinations

to achieve different effects. As you work in Blend’s visual interface, the software works “behind the

scenes” for you, adding the necessary XAML to your file in the form of storyboards and animations.

Now that you have had a chance to become more familiar with the types of transforms available to

you in Blend/Silverlight, it’s time to take a closer look at what is happening under the hood. As you

have seen, Blend is creating sometimes complex-looking storyboard and animation XAML code in the

background. Like other objects in Silverlight, storyboards also have properties associated with them.

In Chapter 3, we will take an in-depth look at how all of the storyboard code works, the types of key-

frames and keyframe interpolation available, and how events are used to make storyboards play. We’ll

also start exploring the development aspect of Silverlight a little more by writing some code.

63

As you have seen, Blend does the heavy lifting when it comes to creating animations

and storyboards while you concentrate on manipulating objects on the artboard. In

this regard, Blend is a great time-saving tool. However, the default animations pro-

duced in Blend may not be ideal in all situations. There are multiple types of animation

available to you in Blend/Silverlight, and being aware of the different types will make it

easier for you to select the appropriate match for your projects. In this chapter, we will

be taking an in-depth look at storyboards and each of the different types of animation

provided by Silverlight. To complete the discussion, you will also learn how each type

of animation can be written entirely in the code-behind file, with no XAML. Your main

take-away should be a deep understanding of the various animation types and how

each affects the motion of your objects.

Before you get started
A brief heads up before you begin: Despite the deep integration between Blend and

Visual Studio, they are still separate environments, and as such, invite nuances between

user experiences when working with project files. Blend 2.5 doesn’t persist the files that

were open in Visual Studio or the start page. Because of this, you are likely to open a

project and find a blank screen staring at you. Don’t panic! The project is open. To work

through the examples, click the Projects tab in Blend, and then right-click the HTML file

and select Startup—this will ensure that Blend uses the correct page when you run a

project. After that, double-click the Page.xaml file, and you should be ready to go.

STORYBOARDS AND ANIMATIONS

Chapter 3

64

CHAPTER 3

Storyboards and storyboard properties
When you think of a storyboard, think of it as a container that will hold a set of animations. As you

move objects around on the artboard in timeline recording mode, Blend automatically adds anima-

tions to the storyboard container for you. In some of the previous examples, you used the New story-

board button in Blend and the default name to create new storyboard containers. When

you do this, an empty storyboard is created in the XAML file that looks like this:

Each storyboard you create must have a unique name, which is assigned through the property.

As you create storyboards, it is a good idea to use descriptive names. In the event that you have a

project containing many storyboards, you will find it much easier to locate the correct one when it

comes time to play them.

Storyboards can contain any number of animations, from a few to dozens. They can also be left blank

and used as timers.

Like other objects in a Silverlight application, storyboards have properties that affect the way the story-

board behaves. Let’s work through some examples to explore these properties further.

1. Open the StoryboardProperties project from Chapter 3. If you open the project in Blend, you

may need to double-click the file on the Project tab to open the XAML. This project

contains a gradient-filled ellipse named GreenBall and a simple storyboard with one animation

that causes the ball to move from left to right in 2 seconds. The storyboard is named ,

and looks like this:

2. Click the Open a storyboard button to open the list of available storyboards, and select

MoveBall.

3. Play the storyboard to see how it moves the Ball object across the canvas.

We’ll talk more about the types of animation that go into storyboards later in this chapter. Right now,

we want to concentrate just on the tag and its available properties. Like most objects in

Silverlight, some storyboard properties have default values. You know that when you add an ellipse

to the artboard, you do not need to specify the or , for example. Even though

those properties are not explicitly written in the XAML code, the ellipse will still show up and have an

opaque fill by default.

Similarly, storyboards have properties that are not explicitly coded in XAML, but still affect the way a

storyboard behaves. This is the case for the first property we’ll look at: .

describes how a storyboard acts when it reaches its end. The default value for this property is ,

which will cause a storyboard to hold its end position when it has completed playing.

65

STORYBOARDS AND ANIMATIONS

Because it is default behavior, it is not necessary to code, but is the

functional equivalent to .

The other possible value for the property is . Using causes a storyboard to

return objects to the position at which they were located prior to the storyboard playing. Using

will cause all the objects affected by a storyboard to return to their initial positions. Let’s take a look.

4. Change to Split view and scroll to the top of the XAML window.

5. Modify the property for the storyboard. After the storyboard name, type

in FillBehavior="Stop". Hand-editing the XAML may cause Blend to close the storyboard. If this

happens, just reopen the storyboard by selecting Open a storyboard on the Objects and Timeline

panel once again. If you are using an early release version of Blend, the storyboard list may

improperly display multiple listings for the storyboard. In this case, select the last one in the list.

Test the animation. The ball should move across the canvas to the right, and then move to its starting

position on the left.

You should see a significant difference in the end position for the Ball object when using rather

than the default .

The next storyboard property we will take a look at is . As you might expect,

will cause a storyboard to play backward when it reaches the end. By default, the value for

is , and like the property, is not written into the XAML tag for the storyboard.

6. In Split view, scroll to the top of the XAML window and remove the tag that was

previously added.

7. After the storyboard name, type in so that the storyboard looks like the

one in the following code. Click Play to see how the behavior has changed.

The ball moves to the right, and when the storyboard reaches the end, it reverses and proceeds to

play backward until the ball is brought to a stop at the original starting position. The movement of the

timeline play head will mimic this motion.

Oftentimes, is used in conjunction with the next property we’ll be looking at, called

. The default value for is , meaning that a storyboard will play one

time. There are three ways to specify the for a storyboard. You can enter duration, a

number of iterations, or the string value .

8. Remove the property added in step 7.

9. Change the storyboard so that the is set to , as shown here:

66

CHAPTER 3

Press the F5 key to compile and view the project in a browser. The storyboard that moves the ball from

left to right will play repeatedly. Close the browser when you’re done looking at the application.

While you can certainly edit the XAML directly in XAML or Split view as we have done, you can also

access storyboard properties inside Blend’s interface, as shown in Figure 3-1. To change a storyboard’s

properties, click the storyboard name at the top of the Objects and Timeline list, and then make any

necessary changes on the Common Properties pane of the Properties panel.

Figure 3-1. Storyboard properties can be edited in the Blend interface.

If you have a case where an animation needs to play a specific number of times, you can change the

value of to get the necessary behavior.

10. In the example project, change the value to , like so:

11. Press the F5 key to compile the project and view it in a browser. The storyboard will

play four times. Close the browser when you’re done looking at the application.

Use caution when using iteration values. If you forget the that lets Silverlight know you are using

iterations, the value is instead interpreted as a duration value, and you may be left wondering why

your animation continues to play for a number of hours.

67

STORYBOARDS AND ANIMATIONS

Duration values for are expressed as a string, specified as .

When a duration value is used for , a storyboard will play for the amount of time

specified.

12. To play the example storyboard animation for 4 seconds, change the value of

to , as shown:

13. Press the F5 key to run the project. In this case, the animation of the ball moving only lasts

for 2 seconds, so the storyboard is played through twice. Close the browser when you’re done

looking at the application. What will happen if you specify a duration of 3 seconds ()?

The animation will play through , stopping halfway through the second iteration.

The next property we’ll look at is called , and is used to delay a storyboard from starting

for some period of time. Like the duration values for , values for are also

expressed as .

14. Remove the property from the storyboard.

15. Delay the start of the storyboard for 5 seconds by adding the following property to

the storyboard tag:

16. Press the F5 key to run the project. The ball will stay to the left of the canvas for 5 seconds,

and then the storyboard will move the ball across the screen. When you’re done viewing the

application, close the browser window.

 is a property that can be used to speed up the playback of a storyboard. Values for

 are expressed as a multiplier, with being normal speed.

17. Remove the property set in step 15.

18. To play an animation 8 times faster, set the value as shown here:

19. Press F5 once again to view the effect this change has on the storyboard. The ball should move

across the screen pretty quickly. Close the browser window when you’re done.

Using on a storyboard can help if the overall storyboard playback needs to be adjusted.

 offers an easy way to adjust the playback for all the animations in the storyboard at once.

Combining storyboard properties

Although we examined the storyboard properties individually in the previous exercises, you will often

find yourself combining them to achieve different effects. Let’s look at how to use multiple storyboard

properties at once:

68

CHAPTER 3

1. Open the ControlPointAnimation project. In Blend, double-click the Page.xaml file on the

Project tab to open the XAML. This is the same project used in Chapter 2 to animate some wave

swells. This project already contains an animation called that moves the control points

that make up the wave object. Press F5 to run the application if you’d like to see the animation.

2. Change to Split mode and scroll through the XAML window. You will see that the

storyboard is fairly complex, containing over a dozen separate point animations.

3. Since the main wave motion is already created, we are going to focus on adding some prop-

erties to the storyboard that will cause the animation to play to the end, reverse and play

backward to the beginning, and then play forward again, looping this behavior forever. We can

do that by adding two properties to the storyboard— and —as

shown here:

4. Press the F5 key to compile and run the application. The storyboard will play forward until it

reaches the end, at which time the property will cause the storyboard to play

backward. When it reaches the beginning, the property will cause the story-

board to play forward again, and this cycle will repeat endlessly.

Take a look at the following storyboard and try to determine what kind of behavior will result from

using the values shown.

 is unaffected by the value set for a storyboard. As such, this example will delay

10 seconds when the storyboard begins, after which the storyboard will play a total of four times at

twice the speed. In this example, and will essentially cancel each other out—

 doubles the duration of any animations contained in the storyboard, while a

of will play them twice as fast.

5. Paste the properties shown in the listing into the storyboard and run the project to

see the result.

As containers, storyboards are not the real workhorses when it comes to making things move in

Silverlight. For that, animations are used. In the next section, we’ll take an in-depth look at the types

of animation available to you within Silverlight.

Types of animation
One of the important concepts to understand with Silverlight is that all the values you can modify for

objects are of a particular type of data. The C# code we’ll be using later is considered strongly typed,

which means that every object and variable must have a declared data type.

69

STORYBOARDS AND ANIMATIONS

Some common data types are Boolean, which contains true or false values; integer, which con-

tains values between –2147483648 and 2147483647; double, which contains values between

–1.79769313486232E+308 and 1.79769313486232E+308; and byte, which contains values between 0

and 255. We’ll be dealing with different types of data later when we start doing more programming,

but for the time being, just be aware that different data types exist. In Silverlight, most numeric values

used for properties such as , , and are of the double type.

When it comes to animations, Silverlight offers three main types, , , and , each of

which has two variations: from/to and using keyframes. If you are using keyframes, there are three

further variations: linear, spline, and discreet. While that seems like a lot to keep track of, Blend goes

a long way in making animations easier to sort through and use. Unfortunately, no software can do it

all, and Blend does not offer the ability to work with the very useful from/to type of animation. Luckily,

from/to animations are relatively straightforward to code in XAML. Let’s look at all these animation

types in more detail now.

Double

As you might expect, the type changes properties of type over time.

There are two types of double animations: and .

The former is a from/to animation, and simply works by providing target values. The latter becomes a

container for a set of keyframes that define values at specific points along the timeline.

The code for a storyboard with a might look something like the following listing:

From/to animations animate the property of an object from one value to another—hence the name.

The example code specifies a property required for all animations called . This property is

the property of an object in your project. In this case, the object that will be affected by this

animation is called .

Following the target name is a . This tells Silverlight which property of the object will

be affected by this animation. This code tells Silverlight we will be changing the opacity.

As with a storyboard, the specifies how long this animation will take, while the and

properties are the beginning and ending values used in the animation. This animation can be read as

“Change the opacity of from 1 to .5 in 1 second.”

The property is not required, and is often left off. When omitted, becomes whatever the

current value is. When used this way, paired from/to animations are effective for creating animations

that need to smoothly reverse on some user action, such as panels that slide in and out as the mouse

enters or leaves an object.

70

CHAPTER 3

To take a closer look at how from/to animations work, open the DoubleFromTo project for Chapter 3.

The project contains a Canvas object called Slider that contains a panel shape. Press F5 to run the project.

As the mouse enters the panel, the panel will slide out, and when the mouse leaves the panel, it will slide

back in. The animations work if the mouse enters or leaves the object at any point. These movements are

created with two s, both of which omit the value. The following code listing shows

the storyboards and their animations:

When the mouse enters the Slider object, the SlideOut animation plays, moving the panel from its

current position to 150 over a duration of .5 seconds. If the mouse leaves the panel at any point,

the SlideIn animation begins, moving the panel from whatever the current value is to 0 over a dura-

tion of .5 seconds. In this particular animation, the value being manipulated is the X Translate

transform.

As noted earlier, Blend does not produce from/to animations by default. Instead, Blend generates

a type of animation called a . To see what one of these looks like,

open the DoubleUsingKeyframes project from Chapter 3. This project contains a single Rectangle

object and a storyboard that moves the rectangle 150 pixels to the right over a .5-second duration.

You can test it out by pressing F5.

Keyframe animations are containers that hold keyframe definitions. If you are using Blend, each time a

keyframe is created on the timeline, a corresponding entry is made into an animation container.

Like the type, animations also define

and values. However, the length of the animation is determined by the keyframes

within the animation, not by a duration value.

71

STORYBOARDS AND ANIMATIONS

 is specified to tell Silverlight when the animation should start. In this example,

is , so it will start with no delay when called.

Within the container is a definition

that defines a keyframe at .5 seconds and specifies that the value of the X Translate transform should

be .

Color

Color animations are animations that change colors over time. Instead of manipulating values of type

, color animations change the hex values that define a color. Like animations that use ,

color animations also come in two varieties: and .

With color values in Silverlight, hex values are preceded by a value representing the alpha transpar-

ency of the color being defined. For example, #FFFF0000 is 100% opaque red, while #7FFF0000 is 50%

red. If the alpha transparency value is left off of a hex color, Silverlight will assume the color to be

100% opaque.

The ColorFromTo project for Chapter 3 contains an example . Open the project and

press F5 to run it. When you move the mouse over the red ellipse, it will begin to turn dark blue.

If the mouse leaves the ellipse, it will turn back to red. Each of the two color animations happens

over .5 seconds, and as with the example, the attribute is omitted from the

 to give a smooth animation effect.

When working with color animations in Blend, the default type of animation that will be created is

. Like , this type of animation will

create a container within your storyboard that contains entries for each keyframe you create.

In the following code listing, a keyframe has been created at .5 seconds and contains a pure blue value

of #FF0000FF. When the animation runs, the specifies that the ellipse’s color is

to change from the current color to the blue defined by the keyframe in .5 seconds.

72

CHAPTER 3

Point

Like double and color animations, point animations also come in two flavors: and

. From a code perspective, they also become significantly more com-

plex to work with since you are now dealing with the individual points that sit along a path and form

an object. Even simple objects can become complex when viewed in the context of point animations.

Open the PointFromTo project for Chapter 3. This project contains a simple path that is in the shape

of an ellipse, the XAML for which is shown following:

The containers describe the points along the path that make up a simple circle shape.

Run the project by pressing F5. When the pointer is placed in the red ellipse, the bottom point will

drop down, as shown in Figure 3-2. When the pointer leaves the red circle, the bottom point returns

to its original position, as shown in Figure 3-3.

Figure 3-2. The bottom point Figure 3-3. The bottom point of the
of the circle drops when the circle returns to its starting position
mouse pointer enters the circle. when the mouse pointer leaves the circle.

73

STORYBOARDS AND ANIMATIONS

 definitions are a little more complex than the and

examples shown. The following code shows the storyboards and animations:

74

CHAPTER 3

To this point, the storyboards used to create from/to animations have been relatively simple.

The type has become full of confusing numbers and a very complex looking

. The values shown in these two storyboards directly relate to values in the XAML

markup for the object. Let’s take a closer look at the pieces that make up the for the

first animation in the storyboard.

The XAML for our object contains a section, which in turn contains a . A

more complex object might contain several elements. Inside of the are four

 entries, each one of which refers to a point on the path and its associated spline, as

shown in Figure 3-4.

Figure 3-4. The BezierSegments that make up the Sphere object

When referencing s in the container, they are numbered starting from 0. In

our case, we only have a single , so the first portion of the for the story-

board is saying, “In the path data section, I want the first figure from the list.”

Inside of the container, we can see four segments, numbered from 0 to 3. The next por-

tion of the tells Silverlight to which segment the animation will apply:

This information directs Silverlight to the second segment in the list (the first segment is), which

is shown here:

75

STORYBOARDS AND ANIMATIONS

Finally, the tells Silverlight which point values are being modified:

The duration value is the same as it has been for the other animation types, but notice that the

value is a pair of numbers separated by a comma:

This is the x,y coordinate where the point will end up. With both and ,

it is relatively simple to make changes to an object using just a single animation. This is not the case

with , because each point affects its adjoining spline segment. As a result, more ani-

mations are necessary.

When creating s that return points to their original position, it is important to pay

attention to the values being used. Unlike a that “undoes” a translation by return-

ing it to 0, the values used for s need to come from the XAML markup because they

represent the x,y location of the point being manipulated.

This becomes especially difficult when the XAML for an object is written in the traditional path mini-

language notation. For example, the preceding elliptical path typically appears in XAML as follows:

For this reason, it is often easier to utilize Blend when creating anima-

tions, and then convert them to s as opposed to trying to hand-code

XAML.

Blend generates the animation type when the points of an object are

manipulated over time. As points are moved, keyframes are added to the timeline.

The PointUsingKeyframes project from Chapter 3 contains a red path similar to the one in the last

project, as well as a storyboard that will move the bottom point of the ellipse down. As demonstrated

in the previous example, three animations are necessary to move a single point

down.

In Blend, use the Open a storyboard icon on the Objects and Timeline panel to open the

storyboard. Click Play to see the bottom of the path deform downward. The story-

board is shown in the following listing for reference:

76

CHAPTER 3

Once you have spent a little time working with paths and s, the code will become a

little easier to read. It is best to spend some time with a few simple objects in order to get a feel for

how the code changes in relation to changes you make to an object. As you can imagine, point anima-

tions can get complex very quickly.

A note about from/to

The from/to animation types with which you have been working have an additional attribute called

 that you can use in lieu of a value. The DoubleByAnimation project contains a storyboard that

moves an ellipse using a that is declared as a from/by.

When using the property, leave the property off. The animation will alter the of

an object by the specified amount. In this example, the ellipse’s X transform property is moved from

a value of 0 by 150 pixels over 1 second. One use for this type of animation may be specifying a range

of motion for an object.

Open the project and press F5 to see the animation in a browser. The storyboard that moves the

ellipse is shown following:

77

STORYBOARDS AND ANIMATIONS

If you wanted to generalize the starting position for the ellipse in this animation, you could remove

the property. The object would then move from wherever it is located by 150 pixels.

Types of keyframes
When working with animations, each animation contains a number of keyframes.

Silverlight has three types of keyframes, each of which creates a unique type of motion for an object.

Depending upon user action, Blend may change the keyframe type behind the scenes. This section will

take a look at each of the keyframe types and the type of motion they create.

Linear

Linear keyframes do what you might expect from their name—provide a way to move in a linear fash-

ion from one keyframe to the next.

Open the LinearKeyframe project for Chapter 3. This project contains an example of a rectangle that uses

linear keyframes to move in a diamond pattern. Press the F5 key to compile and run the application.

The storyboard is shown in the following listing. Even though the rectangle moves to four positions,

if you look through the code listing, you can count eight. This is because there are two sets of anima-

tions: one handles the X transform, and the other the Y. Each one is four keyframes, for a total of

eight.

When using linear keyframes, Silverlight simply calculates the value of the between

keyframes using linear interpolation. The preceding code illustrates , but

and are also available.

78

CHAPTER 3

Spline

If you work in Blend, you will typically see spline keyframes added to your animations, even if the anima-

tions define linear movements for your objects. This is because without an additional property called

, spline and linear keyframes produce the same results. If you open and run the SplineKeyframe

project for Chapter 3, you will see that it contains the same rectangle and animation as the linear key-

frame example. However, in this project, the animations are defined as a series of spline keyframes. From

the code listing, you can see that all the values are the same; only the type of keyframe has changed:

So if the motion is the same between linear and spline keyframes, what’s the difference? Why use one

over the other? Where create linear motion, it’s possible to add a property to

a called . The property affects the way an object moves

as it approaches or leaves a keyframe, and can be added to a spline keyframe by directly editing the

XAML or by modifying the keyframe via Blend’s interface.

Test it out—in the example project, edit the XAML and modify the first to

include a property:

Play the animation and notice the change in motion. Spline animations are used to add what is known

as ease to an object’s motion. I’ll talk more about ease in the next section of this chapter.

Discrete

Discrete keyframes create a type of motion that holds an object in place until a keyframe is reached,

at which time the object is moved to the value of the new keyframe. This type of motion is useful

when creating frame-by-frame animations.

79

STORYBOARDS AND ANIMATIONS

The DiscreteKeyframe project contains the same storyboard as the linear and spline projects, only

this time the storyboard is written with discrete keyframes, as shown in the code listing.

Once again, you will see that none of the values changed, only the type of keyframe being used. Press

F5 to compile and run the project, and notice how the rectangle holds its position until a keyframe is

reached, at which time it jumps to the value specified in the next keyframe.

Even though each of the example projects shown here uses a specific type of keyframe, you can freely

mix and match them in your storyboards to achieve different effects. When working with

curves for spline keyframes, motion control can be a little tricky to accomplish by hand-coding XAML;

this is where a tool such as Blend comes in very handy. In the next section, we will take a look at how

to use Blend to modify keyframe types, and take a closer look at how the different types of keyframes

affect the objects you are animating.

Keyframe interpolation in blend
Up to this point, all the animations created in our projects have had a bit of a mechanical feel due to

the fact that they are linear in nature. Silverlight is simply calculating the in-between frames (called

“tweening” in traditional animation) from a start value to an end value specified by various keyframes.

For example, if a rectangle scales to two times its original size over the span of 1 second, every 1/10th

of a second, the rectangle will increase in size by the same amount (1.1, 1.2, 1.3, 1.4, etc.).

We know that motion in the real world is not always linear, however. Cars don’t just immediately go

from standing still to moving at 60 MPH. Nonlinear motion is important in giving objects an organic,

natural feel. Silverlight offers several types of interpolation between keyframes: linear (the default),

ease-in, ease-out, and hold-in.

80

CHAPTER 3

1. Open the Ease project from Chapter 3. This project contains an image of a desktop along with

two folders positioned off the desktop to the left, as shown in Figure 3-5. There is also a basic

storyboard in place that will make both folders move onto the desktop over a 2-second span,

hold them there for 1 second, and then move them both off the desktop to the right over the

next 2 seconds.

2. Open the storyboard by selecting MoveFolders from the Open a storyboard list on the Objects

and Timeline panel.

3. Play the storyboard to see the default motion that occurs, which is linear in nature and similar

to the type of motion in the projects to this point.

Figure 3-5. The Ease project demonstrates different types of keyframe interpolation.

4. When using Blend, changes are made to keyframe interpolation via a

menu accessed by right-clicking a keyframe marker on the timeline.

Right-click the keyframe at 2 seconds for Folder1, and from the pop-up

menu, select Ease In 50%, as shown in Figure 3-6.

5. Play the timeline, and notice how Folder1 now moves just a bit faster

than Folder2, and “eases” as it approaches the keyframe at 2 seconds.

6. Set the ease-in value for Folder2 at 2 seconds to 100%. Folder2 now

moves ahead of Folder1, and both ease into the keyframe. As you can

see, ease-in is used to affect the way a property changes as a keyframe is

approached.

7. To alter the way a property changes as you move away from a keyframe,

edit the ease-out value for that keyframe. Right-click the keyframe for

Folder1 at 3 seconds and change Ease Out to 100%.

Figure 3-6. Change
the ease-in value
by right-clicking a
keyframe marker to
get the menu shown
here.

81

STORYBOARDS AND ANIMATIONS

Upon playing the storyboard, Folder1 will now leave the keyframe more slowly, but both folders reach

the next keyframe at the same time, since no ease has been set for that keyframe. Behind the scenes,

Blend is adding elements to the animations in this storyboard that control the motion

of the object. For the keyframe at 2 seconds on Folder1, the added XAML can be seen inside the

 container shown here:

The values represented in the XAML just shown can be seen in Blend

as keyframe markers are selected on the timeline. Select the keyframe

marker at 2 seconds for Folder1. On the Properties panel, you will see the

Easing pane, which looks like Figure 3-7.

As you select ease values from the pop-up menu, Blend will adjust the

ease spline for you. If you find that you would like different ease values

than what the pop-ups afford, you can make changes manually by drag-

ging the yellow handles at each end of the spline in the Easing pane.

The x axis of the graph is representative of the time between the previous

keyframe and the one you have selected, while the y axis is representative of

the property you are animating. Alternatively, you can type values into the

boxes at the bottom of the pane. As you can imagine, modifying the values

for a without a visual tool like Blend would be quite difficult.

Unlike easing, Hold In does not cause a property to change over time, but

instead causes an abrupt change to the value of a property when the play

head reaches the modified keyframe. This should sound familiar to you

because it describes the exact behavior of a discrete keyframe type.

8. Change the view to Split. Scroll in the XAML window until you can see the code for the

 storyboard.

9. For Folder1, right-click the keyframe at 2 seconds and select the Hold In item from the pop-up

menu. Did you see what happened to the code? Blend added a for

you!

10. Change the remaining two keyframes for Folder1 to use Hold In and play the animation. Folder2

will slide along as expected, while Folder1 leaps from keyframe to keyframe.

From this look at storyboards, animations, keyframes, and keyframe interpolation, you should have a pretty

good idea of the types of tools available to you when making objects move using XAML in Silverlight. You

should also be able to see that a tool like Blend does a lot of behind-the-scenes work for you to make the

job of animating objects easier. With a solid grip on how storyboards work, it’s time to take a look at how

to go about making storyboards play when you want them to. The next section takes a look at events and

how they are captured in order to give you control over when the storyboards you have created will play.

Figure 3-7. Manually editing the
spline on the Easing pane allows fine
control over ease values.

82

CHAPTER 3

Events
To this point, we have worked with animations fairly extensively, but always within the confines of

Blend. We haven’t yet done anything to get our animations running in the browser, where Silverlight

applications are usually presented. Events are used to add interactivity to applications, whether from

user input or based on some condition within the application itself. In this section, we’re going to take

a look at what events are, and how they can be wired up.

1. Open the Truck project from Chapter 3. This project contains the truck scene from Chapter 2, as

well as a storyboard that will scale the truck down in order to make it appear to be moving away.

2. Use the Open a storyboard icon and select the ScaleTruck item from the storyboard list.

3. Play the timeline to preview the animation.

4. Now press F5 to test the project. A browser window will open . . . and nothing happens. This is

because there is nothing telling Silverlight to play the timeline in the application.

The way to go about telling Silverlight what to do with various storyboards is through events. Events

consist of three parts: an event listener, an event, and an event handler. The event listener, as you

may have guessed, tells Silverlight to “listen” for a particular event, such as , ,

, or .

When the specified event occurs, the event listener tells Silverlight which event handler to use. The

event handler is a set of instructions that tells Silverlight what to do. Events can be caused by users,

as is the case with a mouse click, or they can occur from within the application, such as when a story-

board has ended. When an event occurs, it is said to be “raised.”

There are two ways to create events for objects in Silverlight. One is by adding them directly in the

XAML, and the other is by creating them entirely in the code-behind file. When created using XAML,

a typical event hookup looks like this:

This code creates a small red square named MyRect. An event listener is added to listen for the

 event. If the pointer is placed over this object, the event will be raised, and

the event handler—in this case, a set of instructions (or function) called —will be

executed.

Remember earlier when you were told that as a designer, a time would come when you’d have to roll

up your sleeves and get your hands dirty? Start rolling.

The following sections describe adding events first from a designer’s perspective, and then from a

developer’s perspective. If you are a designer, there isn’t really a way around having to add some code

to create interactivity, so after reading through your section, take the time to go through the devel-

oper section and see that it’s not difficult or scary to do. You will probably find that it is faster, easier,

and far more flexible.

Getting back to the Truck project, we want to find an event that will cause the storyboard we cre-

ated to play when the application is opened in a browser. The appropriate event in this case is called

, and will be attached to our main Canvas object, called LayoutRoot. When the Canvas loads, a

trigger will be used to play our storyboard.

83

STORYBOARDS AND ANIMATIONS

For designers

1. With the Truck project open, press F11 until you are in XAML view. Scroll to the top of the

XAML window, and beginning around line 6 you will see a section that contains the storyboard

resources that have been created for this project. It looks like this:

We are trying to avoid diving into the code-behind file, so the goal is to create an event trigger that is

automated as part of the XAML file. To do this, it is necessary to relocate the storyboard and included

animations to a new section of XAML code that we will create. The new section of XAML will define

what are known as triggers for this application. To save you some typing, a blank triggers section has

been provided in the file for Chapter 3.

2. Open , and then cut the storyboard from your Blend project and paste

it into the code, where it says . You

will have something that looks like the following code listing:

84

CHAPTER 3

3. Once the storyboard has been copied into the text file, hop back over to Blend and remove the

entire section, starting from and including the opening

 tag, to the closing tag.

4. Paste the entire contents from the text file just after the opening tag for the LayoutRoot Canvas

in Blend. Don’t panic if Blend reports that the XAML is invalid—as of the June 2008 release, the

trigger section will compile and run correctly.

5. Press F5 to run the project again, and when the browser opens, you should see the truck high-

tailing it away.

That was a lot of cutting, copying, and pasting of code. What just happened?

By default, storyboards are available to an application as a global resource. Rather than have the

storyboard available this way, we placed it inside of a trigger, which is a XAML method for attaching

an event. The tag in the XAML sets up an event handler that waits for

the Canvas to be loaded, which occurs when an application runs. When the event is raised

for the Canvas, the actions are performed—in this case, the actions list our

storyboard animations.

There’s a significant limitation to using triggers—at this time, is the only trigger available

directly within XAML. This means that at the moment, if you are hoping for anything more than basic

animations that run when an application loads, it will be necessary to wire them up in the code-behind

file.

If you are now questioning your ability to use Silverlight because it requires some programming, don’t

fret—hooking up events in the code-behind is more automated (and therefore less tedious) than the

process you just worked through. The tight integration between Blend and Visual Studio makes wir-

ing events easier than you may have thought, so work through the next section to get a feel for how

events are added in C#.

For developers

1. Start in Blend with the freshly opened Truck project.

2. Select the Project tab to the left of the Properties tab, and expand the Page.xaml item so you

can see the code-behind file.

85

STORYBOARDS AND ANIMATIONS

3. Right-click the code-behind and select Edit in Visual Studio from the menu, as shown in

Figure 3-8.

Figure 3-8. Using Visual Studio to open a
code-behind file from within Blend

Once Visual Studio opens, you will be looking at the code-behind file for the XAML file from the Truck

project.

4. Position the cursor at the end of the code and press Enter to move

the cursor to a new line. You will be adding an event listener to the LayoutRoot Canvas.

5. Type lay. As you type, an IntelliSense window will open that shows all the available objects,

properties, methods, and so on to which you have access. Inside the IntelliSense window,

LayoutRoot will become highlighted, as shown in Figure 3-9.

Figure 3-9. IntelliSense in Visual Studio
helps cut down on the time it takes to wire
up events.

6. Since the LayoutRoot Canvas is the object to which we want to attach an event, press the

period (.) key.

7. Visual Studio will finish typing the name of the element for you, and the IntelliSense window

will display a list of properties and methods for this object. We already know we will be using

the event, so type lo. Loaded will become highlighted in IntelliSense, so press Enter and

Visual Studio will fill in the rest of the text.

86

CHAPTER 3

8. To finish adding the event, type += and press the Tab key twice. The first time, Visual Studio will

add the event listener to the code, and the second time, Visual Studio will add a basic event

handler function that is called when the event is raised. The following code listing shows what

you should have at this point:

9. We’ll talk more about private vs. public variables and/or functions later, but for now, add a

 protection modifier to the event handler, as follows. This protects

the function from being available anywhere other than the file.

The function that Visual Studio just added is what will be called when the

LayoutRoot Canvas loads when the application runs. The function needs to contain a set of

instructions to tell Silverlight what to do—right now it contains some simple, default place-

holder code.

10. Remove the code. In its place, start typing the story-

board name—ScaleTruck. As soon as you see the storyboard name highlighted in IntelliSense,

press the period key to see the list of properties and methods available. To make a storyboard

play, the method is used, so type in Beg, then a set of empty parentheses, and end the

line with a semicolon:

You can now test the project in Visual Studio by pressing F5, or save the project and test it from Blend.

Either way, the storyboard will now play when the application loads. The TruckCompleted project

includes the code described in this example.

The previous process used only the code-behind to hook up an event to an object, but it is possible

to create the event listener in XAML, and only use the code-behind for the event handler. This makes

it a little easier when working in a team to identify which objects have event listeners. It also offers

some flexibility in that a designer may create the event listeners, and then hand off the project for the

developer to create the event handlers. I bet that every developer reading this right now is cringing

at that thought (and so are the designers who prefer to avoid any more code than necessary). The

important take-away is that there is a lot of flexibility in the workflow, and there is more than one way

to get the job done. Find out which one is the most comfortable for you, and run with it.

87

STORYBOARDS AND ANIMATIONS

Let’s take a look at how we can wire up one event listener to a mouse click, and another to the end

of a storyboard.

1. Open the Events project from Chapter 3. This project contains three rectangles, each of which

has an associated storyboard that defines a simple Translate transform to slide the rectangle to

the right. We will be hooking up an event listener that causes a storyboard to play when one of

the rectangles is clicked.

2. Begin by selecting the RedRectangle element on the Objects

and Timeline panel. At the top of the Properties panel, select

the Events icon, as shown in Figure 3-10.

The Events pane displays a list of the available events for this object,

such as , , , , and . If

you look down the list, you will see both and

. When utilizing clicks for input, it is typically pre-

ferred to use the “up” event for the click to avoid performing an

action before the user has released the mouse button.

3. In the MouseLeftButtonUp field, type Red_MouseUp and press

Enter. Two things will happen. First, Blend will add some XAML

to the definition of the RedRectangle object that attaches an event handler to this object:

Next, if you have Visual Studio installed, it will load the project and automatically create the

basic event handler code for you:

4. The storyboards in this project are named , ,

and . In order to tell Silverlight to play the storyboard

for the red rectangle, place the cursor between the curly braces

and type mo. IntelliSense will open a dialog like the one shown in

Figure 3-11. You can see all three storyboards listed alphabetically

in the window.

5. Select the MoveRed item with the arrow keys, and then press the

period key to see what methods are available for storyboard ele-

ments. You know from the previous example that the method to

call in order to play a storyboard is , so start typing beg.

When Begin becomes highlighted in the IntelliSense window, type

an empty set of parentheses, and end the line with a semicolon so

that the completed line looks like this:

6. Press F5 to test the project. When the browser window opens, click the red rectangle—it

should glide smoothly across the screen to the right.

Figure 3-10. The Events icon on the
Properties panel can be used to add
events.

Figure 3-11. The IntelliSense
window shows all the objects in a
project, including storyboards.

88

CHAPTER 3

7. Use Blend to add an event handler to the blue rectangle in a similar manner. Select BlueRectangle

in the Objects and Timeline panel or by clicking the object on the artboard, and then click the

Events icon on the Properties panel.

8. In the MouseLeftButtonUp field, type Blue_MouseUp and press Enter. Once again, Blend will add

the event listener to the XAML for you, and Visual Studio will create the event handler. All you

need to add is a call to the method for the storyboard:

Repeat this process for the green rectangle as well. Once all three events have been hooked up, run

the project. As you click each rectangle, the specified storyboard will play. Since each rectangle has

its own event listener awaiting a mouse click, the Rectangle objects can be clicked in any order or at

any speed, and the storyboards will play. A completed version of this project with all the event code

in place is available in the Chapter 3 projects as EventsCompleted.

Storyboard events

Applications that offer a lot of user interaction often use many storyboards and animations, mak-

ing them quite complex. In these cases, it can be useful to segment the storyboards, chaining them

together by using the end of one storyboard to start another. Like most objects in Silverlight, story-

boards also have events associated with them. The event listeners can be added to storyboards in

XAML, but like the previous example, you will still need to add some code to execute the desired

action.

The StoryboardEvents project for Chapter 3 contains the same rectangles and storyboards as the pre-

vious example. The event listener for the red rectangle has already been added,

and the event handler will play the storyboard to move the rectangle. Running the project will allow

you to click the red rectangle and see it move across the screen.

For this project, we want to add an event listener to the storyboard so that when ends, it

calls an event handler that contains code to play the storyboard. When a storyboard ends,

it raises a event.

1. Adding the code to attach an event listener to a storyboard is relatively straightforward, but

must be done in the XAML code. With the StoryboardEvents project open, press F11 until you

are in XAML view.

2. Scroll to the top of the window until you see the storyboard.

3. The event listener is written into the opening tag of a storyboard. Edit the XAML

code for the storyboard to look like the following:

89

STORYBOARDS AND ANIMATIONS

4. Save the project. On the Projects panel, expand the file list under Page.xaml, and then right-

click Page.xaml.cs and select Edit in Visual Studio.

5. Unlike using the Events pane in Blend to add events to objects, directly editing the XAML

code does not automatically add any event handler code in the code-behind files. Below the

 event handler code, add the following event handler for the event of

the storyboard:

6. Run the application and click the red rectangle. The rectangle will slide across the screen, and

when it reaches the end of its storyboard, the event will be raised. At that point,

Silverlight will execute the code in the event handler that was just added, and the blue rect-

angle will move.

7. To hook up a event listener on the storyboard that starts the

storyboard, begin by adding the appropriate event listener to the storyboard in

Blend:

8. Save the project and once again edit the code-behind file in Visual Studio. Add

the event handler function that the event listener will call when the

event is raised:

9. Run the application and click the red rectangle. Now what you will see is that when the

storyboard completes, the code will start the storyboard, which in turn has code that

will start the storyboard. For reference, StoryboardEventsCompleted contains the

completed version of this example.

As you can see from working through the event examples, the XAML and code-behind files are inte-

grated and work together to capture user interactions and let Silverlight know what to do. Developers

may prefer to keep the event listeners entirely in the code-behind where they can be easily edited or

changed if the need arises.

As demonstrated with the event listener, event listeners and event handlers can be hooked up

completely from the code-behind file. Let’s take a closer look at how the same event listeners look in

XAML and in the code-behind. The XAML for the RedRectangle object used in the previous example is

shown following, and includes an event listener for a mouse button release:

90

CHAPTER 3

The event listener can be removed from the XAML and added to the constructor in the code-

behind file. The constructor is a method that is called when the object is created in

the Silverlight application. Any user control you add to a project has a constructor, and each control’s

constructor is called when that control is instantiated in your applications. Any code you want to have

executed when a control is loaded is placed inside the constructor.

When creating event listeners in code, let the IntelliSense and code snippets do the work. In this

example, you would type RedRectangle., and then start typing the mouse event name until it was high-

lighted. Type += and press the Tab key twice, and a lot of the code will be created for you:

Whether coded in XAML markup or completely in the code-behind, the same function is called:

. Similarly, the event listener could be moved to the code-

behind. The XAML event listener would be removed so that

 becomes .

Then an appropriate event listener is added to the code-behind:

As with the event handler, the event listener calls the

 event handler the same way the XAML did. This project would function exactly as it did

with the XAML event handlers.

Being able to add event listeners via XAML or the code-behind offers a lot of flexibility when working

on a team comprised of both designers and developers, but it also means that it’s a good idea to agree

upon a preferred method for dealing with events to avoid unnecessary work.

The examples in this chapter have demonstrated just how much work Blend does behind the scenes

making application development easier by building out storyboards and animations. As a developer,

you may have a desire or need to create storyboards and animations entirely in code. In the next sec-

tion, we’ll take a look at how you can do this.

91

STORYBOARDS AND ANIMATIONS

Programming storyboards and animations
This section of the chapter will be useful to anyone interested in learning how to program story-

boards. As you have seen, there is quite an array of information that goes into storyboards and the

animations they contain. All the storyboards and animations you have worked through can be created

entirely from code. While it is perfectly acceptable to create storyboards in XAML as you have done to

this point, there may be times when you want a little more flexibility in creating animations that are

essentially reusable—“reusable” meaning more of a “code once, use many times” approach than, say,

using one storyboard on 20 objects. Let’s dig right in with storyboards.

Storyboards

As you are already aware, storyboards are containers for animations, and they may contain one ani-

mation, many animations, or no animations at all in order to function as a timer. When coding sto-

ryboards, you are creating an empty container to which you will be adding animations. Declaring a

storyboard is as simple as creating a new object of type , and giving it a name, which is

done with the following code. Remember that even though your storyboards are being created from

code, they still must each have a unique name.

Once a storyboard has been declared, you can set any of the properties you did with XAML. For exam-

ple, adding a property to would look like the following listing. When coding,

durations are typically expressed as objects. objects represent an interval or period

of time expressed as days, hours, minutes, seconds, and fractions of a second. Here, the duration is

being set to .5 seconds by defining a duration from just the seconds component of a :

Once a storyboard has been defined, it needs to be made available to the application as a resource.

This is done by adding the storyboard to the resources for the root object by calling the

 method for the root object and passing a string key and value to the method. The string key can

be any string identifier you wish to use, and the value is the storyboard name:

You can also add event listeners to the storyboard using the same type of code as you did in the exer-

cises from the last section:

Now that you know how to define a storyboard with code, the next section will take a close look at

how to add animations to the storyboard.

DoubleAnimation

Use Visual Studio to open the DoubleFromToWithCode project. As you might guess from the name, this

project demonstrates how to create a with code. As you can see from the code listing

shown following, this project contains the same sliding panel from an earlier project with event listeners

for and . The event handler code is in place, but currently contains no code.

92

CHAPTER 3

1. To begin, we will create the storyboard from earlier in the chapter. The code for that

looks like this:

2. Open the code-behind file and create the object just above the

 constructor:

This creates a object named that is accessible to the file in

the application. Checking our original XAML for reference, you can see that there are no other

properties assigned for this storyboard.

3. You can see in the original code that the storyboard contains a single . Add

code just after the storyboard declaration to create a new object:

This creates an animation object named that we need to set a few properties on.

The first property we will be setting is , which is referred to as a dependency prop-

erty. Dependency properties provide a way to compute values based on values of other inputs

such as user preferences.

93

STORYBOARDS AND ANIMATIONS

4. Set the property inside the constructor, just after the

method, by using the method on the object. The following code

tells Silverlight we are using as the :

5. Next, set another dependency property, . is declared through

a . This code tells Silverlight that the property this animation will be affecting is

the third item in the transform group, which is the Translate transform. The transform group in

the XAML looks like this, and is numbered from 0 (numbers were added for reference).

The code for this property looks like this:

6. Finally, the and properties of the animation are set:

Aside from the formatting of the code, the values assigned to the object are the

same ones from the XAML.

7. Now that the animation has been defined, it can be added to the object. The fol-

lowing code uses the method to place the object in the

collection of children for the storyboard:

8. The storyboard is now made available to the root element of our application. In this case, the

root element is a Canvas object named LayoutRoot:

At this point, the main code looks like the following listing. The application will compile and run, but

you will find that nothing happens when you move the pointer over the panel. This is because the

event handlers do not contain any code.

94

CHAPTER 3

9. The event handler functions are already in place, and need only to have code added that calls

the newly created storyboard. In the event handler, add the following

code to call the newly created storyboard:

10. Press F5 to test the project. When the pointer moves over the panel, the storyboard plays.

When you’re done testing, close the browser window and return to Visual Studio.

11. Let’s add a second storyboard that will slide the panel back in when the event is

raised. Begin by creating the object. This code goes near the top of the listing,

where the storyboard was declared:

12. Declare a new called :

13. Inside the constructor, assign , , , and proper-

ties to the new animation:

95

STORYBOARDS AND ANIMATIONS

14. Add the animation to the storyboard, and the storyboard to the root object in the application:

15. Finish up by adding a call to the method of the storyboard to the event han-

dler for the event:

You should now have something that looks like the code listing shown following:

96

CHAPTER 3

Press F5 to test the project out. When the pointer is placed over the panel, the storyboard

plays, and when the pointer leaves the panel, the storyboard plays. Since both animations

are defined with only a property and omit the property, the transition between storyboards is

seamless and results in a smooth animation. Take a look at the DoubleFromToWithCodeCompleted

project if you’d like to see the final code from this example.

Using functions to create animation

As you can probably imagine, a complex application may have many storyboards, each with many

animations inside them. One of the benefits of using code to produce storyboards and animations is

that you can create generic functions that can be passed variables in order to create the animations

for you.

1. Use Visual Studio to open the GeneratingAnimationsWithCode project. This project is identi-

cal to the skeleton project used in the previous example. This time, you are going to code up a

function that will create an animation for you.

2. In the code-behind, start by declaring a storyboard before the constructor:

3. Below the closing curly brace for the constructor, declare a function that accepts a

string and a value, and returns a type . This function will be passed

a name and a value, from which it will create a and return it to the calling

code:

4. Inside this function, declare a new type:

5. The next step is to use the value passed into the function as to set the

 for the animation. This is done by adding the following code:

97

STORYBOARDS AND ANIMATIONS

6. In this case, we already know what our target property is since the panel simply slides to the

right. The function could be altered to accept an argument for the target property in order to

make it a little more flexible, but for clarity we will simply hard-code the property here. Add

the following code to specify that the target property is once again the third child in the trans-

form group for our object, which specifies the Translate transform:

7. Next, code up the property:

8. Use the value that was passed to the function to create the property:

9. Finish up the function by returning the newly created animation to the calling code:

You now have a compact, generic function that will create animations on demand. Now all you need

is some code to call it with.

10. In the constructor, add a child animation to the desired storyboard by calling the func-

tion that was just created inside the method. It looks like this:

11. In the last step, the function we created is passed the element name

 and value , which it uses to create a that is returned to the

method. Now that the animation has been added to the storyboard, we need to add the story-

board to the root element resources. This code goes in the constructor, right after the

code from step 10:

12. Finish up by calling the method for this storyboard in the event handler

code:

Press F5 to run the project. When the browser window opens with the application, place the mouse

pointer over the panel, and it will slide out.

The really attractive thing about creating animations in this manner is that the hard work is already

done. Another animation can be added with just a few lines of code. Let’s create the story-

board using the same function.

13. Above the constructor, declare another storyboard:

98

CHAPTER 3

14. Inside the constructor, create the animation with a call to the automated function and

add it to the storyboard, and then add the storyboard to the resources for the root element:

15. Add a call to the method in the event handler, and you’re done:

Your completed code should look like the following listing:

99

STORYBOARDS AND ANIMATIONS

If you run the project at this point, you will find that both the and events start

the storyboards as expected when the pointer enters or leaves the Slider object. The beauty in this

approach is that you could use the function to create animations that will affect

any object, so you could quickly and easily populate multiple storyboards that target many objects.

The code is generalized, so it is reusable and can easily be augmented. The final code for this project

is in the GeneratingAnimationsCompleted project.

DoubleAnimationUsingKeyframes

As noted earlier, each type of animation you’ve worked with in this chapter can be replicated in code.

Let’s take a look at a few examples, starting with the DoubleUsingKeyframesWithCode project,

which will be used to code up the C# equivalent of the following storyboard, which transforms an

object 150 pixels along the x axis over .5 seconds:

Adding keyframes to an animation makes the coding of storyboards a little more complex, but they

still follow the same general pattern. Create a storyboard, create an animation, create some key-

frames, and add the keyframes to the animation, the animation to the storyboard, and the storyboard

to the resources.

1. Begin work in this project by declaring the object as we did in the previous exam-

ple. This code goes above the constructor in the file.

2. Inside the constructor, beneath the method, create a new

 object called , and set the and

 values. This code will once again be targeting the X transform property of the

object being animated.

100

CHAPTER 3

3. Declaration of the preceding object is similar to previous

examples. The next step differs a bit, though. Here, you declare the for the anima-

tion, which is expressed as a object. As per the example storyboard, this keyframe

begins at an offset time of 0. This code goes into the constructor after the code added

in step 2.

4. Now you need to declare any keyframes that will live inside the animation. Begin by declaring a

new object called . The is set to .5 seconds, and the

value of the keyframe is 150. This tells Silverlight to move the rectangle 150 pixels along the x

axis in .5 seconds.

5. After that is done, the keyframe object can be added to the animation. Keep in mind that if

you have many keyframes in an animation, each one needs to have a unique name.

6. Add the animation to the storyboard and the storyboard to the LayoutRoot object:

7. All that’s left is to add an event listener and an associated event handler. Add the event listener

at the bottom of the constructor.

8. If you are using the method described earlier, Visual Studio will create the event handler func-

tion for you. All you need to do is add the code that calls the storyboard:

9. Compile and run the project and place the pointer over the rectangle. The story-

board will play, moving the rectangle 150 pixels to the right. If you wanted to make the rect-

angle move at an angle, it would be as simple as adding a second animation that changes the Y

transform of the object.

10. Add the following code to the project, just after . Notice that

the new animation’s name is and the has been adjusted to affect the Y

transform of the Rectangle object.

101

STORYBOARDS AND ANIMATIONS

Use F5 to compile and run the program again. With the second animation in place, the rectangle now

moves down and to the right, holding the position at the end of the storyboard.

Remember that the on storyboards is set to , meaning that the storyboard will

stay at its last frame when it has finished playing through. If you would like to change the

for a storyboard, you can do this through code as well. The following line of code will change the

 for the storyboard you just created so that when it reaches the end, the rectangle will

return to the starting position of the animation:

If you’d like to take a look at the final version of the code described here, it’s in the

DoubleUsingKeyframesCompleted project.

ColorAnimation

Now let’s take a look at how color animations can be implemented via code. The ColorFromToWithCode

project illustrates how to work with objects. In this example, we will create a

 that turns a red ellipse blue when the event is raised. The storyboard

equivalent for this animation looks like this:

1. In Visual Studio, open the file for editing. Just above the constructor, add

the following code, which declares a storyboard:

2. On the next line, declare a new object called :

3. Next, code the animation object’s properties inside the constructor. In this case, the

 for the animation is the object, and the is

the object’s fill.

102

CHAPTER 3

4. In the previous example, data types were being used. In this example, data of type

 will be manipulated. To change a color fill for an object, define the target color as a

color from alpha, red, green, and blue color values. Note that the code shown here is using

an value (alpha, red, green, blue) to specify a color, whereas the storyboard produced in

Blend utilizes a hex value. color values get their value from four byte values (0 through

255), separated by commas. This is probably a familiar format for you if you’ve worked in

almost any paint program. Once a color has been defined, it can be assigned to the property

in the animation.

5. The animation can now be added to the storyboard, and the storyboard added to the

LayoutRoot element:

6. All that’s left is an event listener and a little bit of event handler code. The event listener goes

inside the constructor:

7. The event handler is placed after the closing curly brace of the constructor method:

Compile and run this project and place the pointer on the red ellipse. The object’s color will shift

to blue. Take a few minutes to add another storyboard and that will turn the

ellipse’s color to red when the event is raised. If you need a little help, look in the

ColorFromToWithCodeCompleted project.

As with the type, you can also create keyframe-based color anima-

tions using the type in the same manner.

PointAnimation

The final type of animation we will be producing with code is a . In the following

exercise, we will be coding up the equivalent of the following storyboard. This is the storyboard we

worked with earlier that causes the lower point of a circular red path shape to droop down when the

mouse pointer enters the shape.

103

STORYBOARDS AND ANIMATIONS

 is handled a bit differently than or . One of the

things to notice in the XAML listing is that each within the storyboard has a

and . You will need to take this into account when creating in code.

1. Open the PointFromToWithCode project in Visual Studio. Open the file for

editing.

2. As with and , everything begins with the declaration of a story-

board. Before the constructor, add the following code to declare a storyboard called

:

3. Inside the constructor, the property for the storyboard is set to the

object. This is a deviation from the previous examples where the target was set on the indi-

vidual animations. While it is also acceptable to set the target for each object,

all three animations affect the same object, so it saves a couple of lines of code doing it this

way.

4. Next, each of the three objects is created. Let’s go through each of them in

order. Begin by declaring a new object for the first point. Place this code just

below the storyboard declaration before the constructor:

5. Now the animation must tell Silverlight which property will be affected. The following code

specifies that we are setting the value for of segment 1.

6. As with the and types, is assigned:

7. Then the property value is assigned. Because this is a , the data type is expressed

as an x,y point. This means that the property must be created as type .

8. Finish up by adding the animation to the storyboard:

104

CHAPTER 3

9. Points 2 and 3 from the XAML example are coded in the same way. Start by declaring two more

 objects before the constructor:

10. Inside the constructor, use the values from the XAML as a guide to assign values to the

properties of the animation. The code for that looks like the following:

11. Once all three s have been defined and added to the storyboard, the story-

board can be added to the LayoutRoot resources:

12. As with the previous examples, an event listener and event handler are used to play the story-

board when the event is raised. Inside the constructor, place the following

event listener code:

13. Just after the closing brace of the constructor, add the following code to the event handler:

Compile and run the program by pressing F5. When you place the mouse pointer over the red ellipse,

the bottom point will move downward.

One of the nuances in working with types is that an animation to return the point to

its starting location does not return the values to 0, as was done in the examples that used transla-

tions. Instead, the points need to be returned to the locations that are specified in the XAML defini-

tion of the object. Here’s the code for the object:

105

STORYBOARDS AND ANIMATIONS

Let’s do a quick walkthrough to see what happens when the points are returned to 0,0.

14. Add a second object to the project above the constructor:

15. Inside the constructor, set the target on the storyboard rather than the individual

 objects:

16. Above the constructor, declare three new objects:

17. Assign the same properties used in the s from the storyboard.

Notice that the property for each of the three s has been set to an x,y point

value of .

106

CHAPTER 3

18. The newly created storyboard needs to be added to the page resources:

19. Finally, an event listener and associated event handler code are created for the

event. The event listener goes inside the constructor:

20. And the event handler code to call the new animation goes outside of the constructor:

Press F5 to run the project. Place the pointer inside the RedEllipse object.

The bottom point will glide down as the storyboard

plays. Now move the pointer off the RedEllipse object. The point returns

to the specified coordinate of 0,0, which is located at the top-left corner

of the Path object’s bounding box, rather than its starting point on the

ellipse (see Figure 3-12).

So how do you know which point from the XAML is the right one to use?

Each has three sets of point data that describe the curve.

With the reference storyboard for this project and a bit of detective

work, we can identify the corresponding points between the object and

those being modified by the storyboard.

The first in the storyboard has the follow-

ing :

The s in the object are numbered as follows:

0.

1.

2.

3.

Figure 3-12. Returning points
to 0,0 via a PointAnimation

107

STORYBOARDS AND ANIMATIONS

21. From the , we know that the animation is working with segment 1, and

needs the coordinates for point 1, which are 44.7715263366699,200 (which we will clean up to

45,200). Update the property for the animation as shown:

22. The animation targets segment 0, point 2, which is located at 155.228469848633,200

(155,200). The P2Back animation is updated to the following:

23. The animation targets segment 0, point 3, which is the point 100,200. Updating the

 animation makes the code look like this:

After plugging in those three sets of coordinates and recompiling, the object now behaves as expected

when the event is raised, returning our point to its starting position.

Summary
If you are new to Silverlight, the amount of information that was presented here may be overwhelm-

ing. You can probably see where the visual interface in Blend can be a big help when getting started—

take the time to create some of your own examples to see how Blend works behind the scenes for

you.

Remember that storyboards are just containers for animations, and animations are containers for

keyframes. I talked about the three main types of animations provided by Silverlight—double for

manipulating many of an object’s properties; color for changing an object’s fill color using a series of

four 1-byte values to represent the alpha, red, green, and blue channels; and point for moving the

points that make up paths.

Each animation type has two variations: from/to animations move an object from one position to

another, while animations using keyframes define a series of keyframes that contain positions to

which an object will move. With keyframe animations, there are different methods of interpolating

the movement from keyframe to keyframe. Linear interpolation will move an object smoothly from

keyframe to keyframe in a linear fashion. Spline keyframes define ease, which describes how an object

might accelerate or decelerate as it approaches or leaves a keyframe. Discrete keyframes cause an

object to hold the position of the last keyframe until the next keyframe is reached.

We also took a good look at how storyboards and animations can be created entirely with code. This is

useful if you need to create animations on the fly, or create a reusable generic function that produces

animations for you.

As you gain some experience with storyboards and animations, you will find that they become easier

to manipulate. In Chapter 4, we will take a look at a variety of animation techniques that make use of

the methods described in Chapters 2 and 3.

109

In this chapter, we’re going to take a little time and look at some ways to animate

objects using the techniques covered already. The projects presented here should

help open the door for you a bit when it comes to thinking through the different

ways to work with objects that you want to include in your own animations.

Converting objects to paths
Any shape object you work with in Blend can be converted to a path. This can be

used if you want to manually deform an object or text outside of the standard defor-

mations available via the built-in transforms. Let’s take a look at how to go about

converting a couple of text objects to paths and create some storyboards to deform

them.

Open the ObjectToPath project for Chapter 4. It contains two text elements—one

says TEXT, and the other WARP. Both text elements in this project are currently

TextBlock objects, meaning that the text is currently live and can be edited. Once a

text object has been converted to a path, the text will no longer be editable.

1. Click the TxtText element in the Objects and Timeline panel, and then Ctrl-click

the TxtWarp object so that both items are selected.

2. Right-click the grouped elements in the Objects and Timeline panel and select

Path Convert to Path from the pop-up menu, as shown in Figure 4-1. Blend

ANIMATION TECHNIQUES

Chapter 4

110

CHAPTER 4

will convert both text elements to paths and update the Objects and Timeline list and the art-

board. Note that when an object is converted to a path, its type changes, and Blend will change

the name of the text objects to [Path] in the Objects and Timeline list.

3. It’s a good idea to rename the two text ele-

ments to something meaningful in order to

keep track of them, so rename the two paths to

TxtText and TxtWarp.

4. Create a new storyboard and move the timeline

play head to 1 second.

5. Select the TxtText element on the Objects and

Timeline panel and press A to change to the Direct

Selection tool. The control points that make

up the path will become visible, allowing you

to manipulate them. You can now modify the

objects in whatever way you’d like. Figure 4-2

shows a quick-and-dirty bulge deformation.

Figure 4-2. Simulating a bulge deformation on a Path object

Converting objects to paths with the intention of deforming them works well either as a design tech-

nique, or for animation, as we’ve done here. If you’d like to take a closer look at the final animation

shown here, look at the ObjectToPathCompleted project in Chapter 4. Storyboard1 is the animated

deformation.

Figure 4-1. Select Path Convert to Path to
convert objects to editable paths.

111

ANIMATION TECHNIQUES

One thing you may find helpful when deforming text is to use a tool like Photoshop or Illustrator to

create an image of text deformed in a way you like. You can then add the image to Blend as a back-

ground layer and lock it from selection in the Objects and Timeline panel in order to avoid accidentally

moving it. Once the image is in place, you can move the timeline play head and start moving the

control points for the object.

If you find yourself needing to animate individual letters, it will be necessary to create a text object for

each letter, and then convert each one to a path. After that, the process is the same.

Ghosting effects
Ghosting is an effect that is used in a lot of interactive applications—you click a button or element,

and a copy of the element scales up and fades out over a second or two. This lets a user know that the

action they took was recognized. The effect can also be used when an application first loads in order

to draw attention to a particular part of the interface.

In order to create this type of effect, a copy of an object is created and hidden. Event listeners on the

original object are used to capture user input. When the desired action takes place on the original, the

copy is unhidden and animated.

The GhostingEffects project contains a TextBlock that mimics an “About Us” text menu item, and a

gradient-filled ellipse. When performing this action on a text object, remember that TextBlock objects

have their and properties set to , so any transforms you apply may look as though

they do not originate from the correct center point. To correct this, add an actual value to the

and property of your TextBlock. In the example project, the text object already has height and

width values.

1. Once the project is open, use Ctrl+C and Ctrl+V to copy and paste the TxtAboutUs object in the

Objects and Timeline list. The new object will paste as TxtAboutUs_Copy.

2. Create a new storyboard named , and move the timeline play head to 1.

3. Use the Scale tab on the Transform pane to change both the x and y scale for the TxtAboutUs_

Copy object to 3.

4. Enter 0 in the Opacity field.

5. Click Play to preview the storyboard. The copy of the text object should scale up to three times

its original size as it fades out.

6. Close the storyboard, and change the object’s visibility to Collapsed on the Appearance pane.

This will effectively hide the object from view until it is needed.

7. To add event listeners, select TxtAboutUs in the Objects and Timeline list and click the Events

icon. In the MouseLeftButtonUp field, type AboutUs_MouseUp and press Enter. Visual Studio

should open with the appropriate function already added:

112

CHAPTER 4

8. The code in this event handler will run when the user releases the mouse button on this object.

The event handler code should start by changing the property of the copied object

to . To change the property of an object, call the object followed by the

property, and then specify which visibility setting to use, as shown:

9. Next, the event handler needs a bit of code to play the animation. The storyboard was called

, and you should already know how to make storyboards play from previous

examples.

10. Press F5 to run the project. Click the About Us text, and you should see the animation play. The

action will only work one time, though—why is that?

Behind the scenes, the animation actually does play each time you click. However, you can’t see it

because the first time the animation plays, the opacity value of the object is animated to a value of 0,

and is left there when the animation completes. So every other time you click the object, the anima-

tion plays, but the object is totally transparent. This can be fixed by listening for the storyboard to

finish and then resetting the object’s state.

11. In Blend, press F11 to enter XAML view, and locate the storyboard.

12. Attach an event listener to the event for the storyboard that calls a function called

:

13. In Visual Studio, add the new function to the code:

14. Inside that function, add some code to hide the copied text object. This is done by setting the

 property to :

15. Stop the storyboard in order to reset it to the beginning for the next time it plays:

16. Next, reset the for the text object. Remember that in code, values range from

0 to 1.

Now when the project runs, you can click the text element as often as you’d like and the storyboard

will play repeatedly.

17. Repeat the process for the RedBall object to add the effect there as well. In Blend, copy and

paste the object to create RedBall_Copy.

113

ANIMATION TECHNIQUES

18. Create a new storyboard called and move the timeline play head to 1.

19. On the RedBall_Copy object, set the x and y scale values to 3, and the opacity to 0.

20. Test the animation to be sure it works as expected, and then close the storyboard.

21. Set the of RedBall_Copy to to hide it until needed.

22. Next, add the event listeners to the original object. Select the RedBall element in the Objects

and Timeline list, and click the Events icon.

23. Add an event handler called to the event listener.

24. In Visual Studio, wire up the event just as you did for the text object:

25. In Blend, add a event listener to the storyboard:

26. Finally, add the event handler code to reset the object in the code-behind file:

Press F5 to run the application. Now you can click either object and see the effect, as shown in Figure 4-3.

Notice that it doesn’t really matter what type of object you are working with—the process is the same for

each. A finalized version of the code shown here is available in the GhostingEffectsCompleted project.

Figure 4-3. Scaling/fading effects applied to a TextBlock and an Ellipse

114

CHAPTER 4

Image effects
Given that Silverlight is still essentially a new product, it’s not entirely surprising that built-in bitmap

image filters such as blur aren’t yet available. However, with a little help from your favorite photo-

editing program, you can still accomplish some interesting image effects.

Creating effects by cross-fading

Using the following technique, you can easily create animations that make images appear to pull

focus, or make blurry images come into focus when a user selects them.

Figure 4-4 shows an image of a yellow flower. Figure 4-5 shows a blurred version of the same image,

which had a 3.0 pixel radius Gaussian blur applied in Photoshop. For this project, we need event listen-

ers for and that will be used to cross-fade the two images when a user places

the pointer over the image, and fade back when the pointer leaves the image.

Figure 4-4. An image of a yellow flower that will be used
to simulate a blur effect

Figure 4-5. The same image with a 3.0-pixel Gaussian blur
filter applied in Photoshop

115

ANIMATION TECHNIQUES

Open the ImageBlur project from Chapter 4 to follow along with this example. This project already

has the basic structure in place, which consists of a Canvas element named CanvasFlower that contains

the two images: FlowerBlur and Flower. The intended action for this project is that when the user

moves the pointer over the image, it will scale up slightly as it comes into focus. When the pointer

leaves the image, the image will scale back down and become blurred.

There are a couple of things to keep in mind when setting up this type of effect. The first is to make

sure the object hierarchy is correct—the Flower element is “on top” of FlowerBlur. Objects in the

Objects and Timeline list are organized such that items on the bottom will appear on top of objects

beneath them. This is referred to as Z-order, and can be coded explicitly in XAML, or implied by the

order the objects appear in the list. For this project, the implied order is adequate. The second thing

to remember is to set the opacity of the topmost object (the object at the bottom of the Objects and

Timeline list) to 0. In this case, it is the Flower element that is at 0% opacity.

Transparent objects will remain visible to the mouse and will accept mouse events, unlike objects

that have their visibility set to . While this won’t affect us here since we’ll be working with

the canvas container, this is an important distinction when you are trying to capture events on a

particular object. Objects that are not transparent can be made invisible to the mouse by using the

 flag. As with most object properties, there are three ways to set this flag. The

first is to expand the Common Properties pane on the Properties panel, and check or uncheck the

IsHitTestVisible check box. The second is to type the property directly into the XAML for the object

you wish to make invisible to the mouse, and the third is to set the property in the code-behind file.

As you have probably already guessed, toggling the check box in Blend simply adds or modifies the

XAML for the selected element.

1. Create a new timeline called CanvasFlower_MouseEnter.

2. Move the timeline play head to .5 seconds.

3. With the CanvasFlower element selected, change both the X and Y scale fields on the Transform

pane to .65.

4. Select the Flower element and change the Opacity value to 100%.

5. Play the timeline. This is the effect that will be seen when the mouse is placed over the canvas.

The only problem is that this storyboard, shown following, is keyframe-based, and the effect

works more smoothly if it is done as a from/to animation.

116

CHAPTER 4

Let’s change this storyboard so that it is no longer keyframe-based.

6. Use F11 to change to XAML mode and scroll to the top of the window. I talked about the differ-

ences between (from/to) and in Chapter 3.

7. To convert between and , change the

animation type from to , delete the

 property, and add and properties. The value to use for this

conversion is the value shown in the ’s . The value for is the

’s field.

8. Once the new item is converted, make it self-closing by adding a slash before

the closing bracket: . You will also need to delete the and closing

 tag.

While all this may sound like a lot of complex work, it’s not too difficult and only takes a

moment before the previous storyboard listing becomes the following:

This also makes it super-easy for us to create the storyboard, because it does the

exact opposite action of the storyboard.

9. While still in XAML view, copy and paste the storyboard. Change the

storyboard name to .

10. Change the values in each of the three animations. The property for both the and

 transforms become .5, and the property for the element’s opacity is 0. That’s

it, the second storyboard is done!

117

ANIMATION TECHNIQUES

All that’s left for this project is to create some event listeners and event handler code. Since

both of our images are organized in a containing canvas, we will place event listeners on the

Canvas element.

11. Switch to Design view in Blend, and select the CanvasFlower object in the Objects and Timeline list.

12. On the Properties panel, click the Events icon, and in the MouseEnter field, type Flower_

MouseEnter. Visual Studio should open up and contain the empty event handler code. Inside

the event handler, add the code to play the storyboard, as shown:

13. Repeat this process to add the event listener to the CanvasFlower object. For the

 event, the event handler is called .

14. Add code to play the storyboard, shown here:

You can now run the project to see the result. As you move the pointer over the image, it will scale up

slightly and come into focus. Moving the pointer off the image will cause the image to scale down and

go out of focus. The ImageBlurCompleted project contains all the code shown here.

Don’t feel boxed into only doing blurs with this technique—there are a wide variety of image filters

that can be used in conjunction with cross-fades to create interesting image effects, and while less

flexible, a cross-fade will take less processing overhead than a live bitmap effect.

Simulating drop shadow effects

Drop shadows require two parts: an object and the shadow. As noted when working with blurs, there

are currently no bitmap effects available to do drop shadows directly. There are several options for

creating them, however. You can create a shadow PNG image file, a rectangle with a gray fill and lighter

gray stroke, multiple border objects of varying opacity, shades, or a series of line or border objects

that vary in color/opacity. We’ll take a look at all these techniques in the next example project.

I have found the path of least resistance to be creating an image file in Photoshop and placing the

image layer behind the object that needs the shadow. Shadow image layers scale reasonably well, they

are easy to implement, and they look nice. Whatever method you choose to create the shadows is up

to you—what we’re going to talk about is how we can work with an object that has a shadow when

the object is clicked.

118

CHAPTER 4

Drop shadows have been around forever, and everybody has seen this type of effect—a button or

image has a drop shadow, and when the object is clicked, it looks like it is pressed because of the change

between the object and shadow. When the mouse button is released, the image pops back up. The

description I just gave should clue you in as to which events you will need to use:

and . To follow along with this example, open the DropShadows project.

We’ll start by creating event listeners for each of the flower image objects in the project.

1. In Blend, select the Flower object in the Objects and Timeline list. Add an event listener called

 for the mouse down event, and another called for the

mouse up event. Since we have several events to add and we’re not coding up the event han-

dlers just yet, type the code directly into the XAML, as shown:

2. Select the Flower2 object in the Objects and Timeline list. Add an event listener called

 for the mouse down event, and another called for the mouse up

event:

3. Select the Flower3 object in the Objects and Timeline list. Add an event listener called

 for the mouse down event, and another called for the mouse up

event:

4. Next, we’ll write the code for the event handlers. Open the file for editing in

Visual Studio, and add the following code just before the constructor. This code is used

to store the original coordinates of the objects. For storing coordinate data, data types

seem like a good choice.

5. In the event handler for the mouse down event, begin by capturing the mouse on the Flower

object. This will ensure that we don’t lose mouse control if the pointer moves off of the image

before the mouse button is released. Continue by storing the original position of the object

that was clicked. Once we have done that, we can move the object to the same x,y coordinates

as the shadow. That covers our functionality for when the mouse button is pressed.

119

ANIMATION TECHNIQUES

6. When the mouse button is released, the mouse capture on the Flower1 object is released, and

the image is returned to its original location. Since these coordinates have been stored in a

point object, this is easy to do.

This method works with all three of the examples in the DropShadows project. Each one uses

a different way of displaying a drop shadow, but the third example is a little more complex as

it uses a canvas full of border objects to create the drop shadow for the object. The technique

still works because the origin values of the Shadow3 Canvas are relative to the object’s location

within its parent Canvas—in this case, the x,y coordinate of –1,–1. When the image is moved to

x,y 3,3 on , those coordinates are also relative to the container canvas.

7. Add the code for the Flower2 event handlers, shown here:

120

CHAPTER 4

8. Finish up by adding the event handler code for the Flower3 events:

9. Run the project. As you click each of the three images, the image will depress. When the

mouse button is released, the image will pop back up, just like common button behavior.

The event handlers could be generalized into a generic set of functions since the functionality for the

event handlers is common between objects. I left them separated here for illustrative purposes. The

finalized version of the code for this example is in the DropShadowsCompleted project.

Creating custom, animated cursors

We haven’t talked much about cursors, so let’s do a quick overview before looking at how to create

custom animated cursors. All the objects used in your Silverlight applications currently have eight cur-

sors to choose from, plus the ability to turn the cursor off altogether—Arrow, Eraser, Hand, IBeam,

None, SizeNS, SizeWE, Stylus, and Wait. In order to change the cursor that is displayed for an object,

you simply add a property to the object, and specify the type of cursor you would like dis-

played when the pointer is over that object, like this:

The default cursor for all objects is Arrow, so when a cursor is not specified, it will be an Arrow. This

means that both of the following XAML snippets will produce an identical red ellipse that has an

Arrow cursor when the pointer is over the object.

The display of cursors is hierarchical and inherited—if an ellipse with no cursor specified in the XAML

is placed within a canvas that has the cursor set to , no cursor will be displayed. However, if the

ellipse is given a cursor property of , the pointer will display an Arrow when over the Ellipse

object. Alternatively, if the Canvas object has set to , the cursor will display

normally.

121

ANIMATION TECHNIQUES

When working with cursors, just associate them mentally with the and events

for an object, and you should have no problems with their hierarchical nature. Anywhere a

or event can be raised, cursors can be controlled.

With that said, animated cursors aren’t really cursors as far as Silverlight is concerned. In order to

make custom cursors, the actual cursor for an object is hidden by setting its property to . A cus-

tom object is then built that will become the cursor, and it can even have animations associated with

it. Then a bit of code is used to “attach” the object to the mouse location via the event.

Take a look at the AnimatedCursors project to follow along with this example. It contains a duck, an

ellipse, and two objects that will be turned into custom animated cursors each in its own canvas—one

is an arrow, and the other is a simple crosshair.

1. We’ll start with the arrow. Create a new storyboard called .

2. Move the timeline play head to .5 seconds. Select the Arrow object inside the CurArrow

Canvas.

3. Use the Direct Selection tool to select the two points at the bottom of the arrow shape, and

move them to the right 10 pixels.

4. Move the timeline play head to 1.5 seconds, and move the same two points left 20 pixels.

5. When you click Play, the tail of the arrow should swing right, and then back to the left.

6. We want this animation to play constantly. Select the storyboard by clicking the ArrowCursor

name in the storyboard list. The Properties panel will change to show the available properties

for the selected object.

7. Place a check in the AutoReverse check box, and from the RepeatBehavior select box, choose

Forever, as shown in Figure 4-6.

Figure 4-6. The Common
Properties pane for a
Storyboard object

8. Change back to Design view.

With the Arrow object inside the CurArrow Canvas still selected, the artboard will show the

object and its bounding box. At the moment, both the object and its container canvas are the

same size. Thinking ahead to our implementation, our custom cursor will be attached to the

mouse pointer at the top-left corner. To ensure that out pointer is accurate, we want to rotate

the arrow within the canvas so that the point of the arrow is right at the top-left corner of the

canvas container.

9. With the arrow selected, enter a rotation value of -35. You’ll get a result something like the one

shown in Figure 4-7. It’s rotated correctly, but not yet positioned where it needs to be.

10. A slight adjustment to the and properties will place it in the right spot. –2 left and –3

top should place the tip of the arrow right at the corner of the canvas, as shown in Figure 4-8.

Earlier in this chapter, I talked about the flag and how it can be used to hide

an object from the mouse when the pointer is positioned over it. In this case, when the pointer

enters the Ball object’s bounds, we are going to display another object at the mouse’s location.

Because the custom cursor is an object, and will always be located under the pointer location,

it will always be hit-tested as .

122

CHAPTER 4

Figure 4-7. The arrow path is rotated within a Figure 4-8. The arrow path after being repositioned
container canvas. within the container canvas

11. To avoid conflicting hit tests between the object using the custom cursor and the cursor itself,

we want to set the flag to for both the CurArrow Canvas and the

Arrow object. The check box to change this flag is located near the bottom of the Common

Properties pane on the Properties panel. You may need to expand the pane to see it. If you

forget to set this flag, you may get some undesirable behavior when the custom cursor is dis-

played.

12. Once you have set each object’s flag to , select the CurArrow object

and change the property to to hide it from view until needed.

13. Select the Ball object from the Objects and Timeline list and use the Common Properties pane of

the Properties panel to select None from the Cursor drop-down. The object is now set so that

when the pointer is placed over it, no cursor will appear. If you run the project at this point,

you can confirm that as the pointer enters the ellipse, the cursor will disappear.

14. With the ball still selected, add an event listener for , and call the event handler

. Visual Studio will open and create the shell of the event handler for you.

15. Inside the handler, add some code that will place the custom cursor object at the current

mouse position, begin the animation for the cursor, and then display the cursor:

16. Create a event listener that will call an event handler called

when raised. Inside this event handler, we want to hide the cursor, and then stop the animation

that is associated with it.

123

ANIMATION TECHNIQUES

At this point, placing the pointer inside the ellipse will display the custom cursor and its anima-

tion, while moving the pointer out of the ellipse will hide the cursor and stop the animation.

All that’s left is to position the cursor at the current mouse position as the mouse is moved

inside the Ball object.

17. Add an event listener to the event for the Ball object. The event handler should be

called . This is an event that will fire continuously while the mouse is moving

inside the Ball object. In order to place the custom cursor in the right spot, get the mouse

position from the arguments passed to the event handler, and then place the cursor at that

location.

18. That’s all there is to it. Run the project. When you place the mouse over the Ball object, the

cursor will change to the custom, animated arrow.

For the other object in the project—the Duck—we want to do the same thing using the crosshair cur-

sor. Rather than work through this one step by step, we’ll just touch on a couple of things you need

to keep an eye on. To follow along with the code, look in the AnimatedCursorsCompleted project.

While the concept for the duck is identical to the ball, the technique is a little bit different, because

unlike the Ball object, the duck is a collection of paths inside a container canvas.

If we try to use the Canvas to capture the , , and events, we’ll run

into two problems. First, events won’t register on the Canvas, because it has no fill brush, and is there-

fore invisible to the mouse. If the Canvas is given a fill color with an alpha value of 0 to make it visible

to the mouse, the Canvas will register events, but bring us to the second problem. The mouse events

will be raised any time the pointer enters the canvas. Since the Duck object does not fill the entire

canvas, the cursor will show at inappropriate places, as shown in Figure 4-9.

Figure 4-9. Make certain to attach the event listeners to
the appropriate objects when using custom cursors; oth-
erwise, the cursors may show up in unintended places.

124

CHAPTER 4

The best way to handle this is to attach the event listeners to the path or paths that make up the

object itself. In this case, the paths that form the duck’s body and bill are adequate. Remember to turn

off for the wing, collar, and eye. This will allow the event listeners for the body to

bubble up to the top.

Using clipping paths

In Silverlight, clipping paths allow you to take one shape and use it to clip another. The overlapping

area remains visible, while the rest of the clipped object is hidden from view. I have found that a great

way to make use of clipping paths is to apply them to a container object such as a Canvas. Then, as

objects are added to the canvas, they can be positioned outside the boundaries of the canvas to keep

them hidden, or inside to bring them into view. You can also position objects within a clipped canvas

to display only parts of an object, such as a formed media element in a video player.

There are three ways to create clipping paths. The first is from the code-behind file. Since we’ll be work-

ing with clipping paths specifically in Blend, we won’t be going into code-based clipping paths here.

The second method is to select an object you want to clip on the artboard in Blend, and then Ctrl-click

a second object.

By then right-clicking the grouped objects in the Objects and Timeline list and selecting Path Make

Clipping Path from the pop-up menu, the second object will clip the first. This operation adds a

property to the XAML object, as shown here:

The third way to go about creating a clipping path is to add a clipping region to the XAML directly.

Functionally, the following code is exactly the same as the preceding code, only it is a little easier to

read and figure out what the code is doing. Both of these code snippets will create a 320 240 canvas

that is clipped. Any objects placed on the canvas will show, while those objects that lie outside of the

canvas bounds will be clipped, as illustrated in Figure 4-10.

Clipping paths are not limited to Canvases and Rectangles—you can clip any object with a Rectangle,

Ellipse, Line, or Path geometry. Of course, they can also be animated; otherwise there’s little need to

include them in a book about animation, right?

Let’s take a look at how we can break apart a larger image into 16 equal parts. From a clipping path

perspective, one problem is that only a single clipping path can be applied per object. This means that

to make a mosaic of an image, we will need 16 Image objects, each with a clipping path defined that

will allow a different part of the image to display. The ClippingPaths project contains just such a setup

for you. While it looks like a single image on the artboard, there are actually 16.

125

ANIMATION TECHNIQUES

Figure 4-10. Only the parts of an object inside the bounds of a clipping canvas will show.

The quickest way to do this is to copy and paste the XAML, adjusting the clipping paths as you go

along.

1. Switch to XAML editing mode and locate the first Image object, named Row0Col0. It starts on

line 14.

2. To add a clipping path to the first Image object, add the following code:

This creates a visible “window” over the image that starts at 0,0 and is 80 60. For each clipping

path across the row, you want to locate the clipping region 80 pixels over from the previous

one.

126

CHAPTER 4

3. To create the second object, copy and paste the first item, change the name to Row0Col1, and

adjust the clipping path to start at 80,0:

4. The third item, row 0 column 2, has a clip of 160,0; 80,60. See the pattern here? The code is

creating an 80 60 window for each object, and you’re just moving the window around.

5. Add the fourth item (row 0 column 2) with a clipping path of 240,0; 80,60, as shown:

Once the first row is done, you can copy and paste the whole row, rename the elements, and change

the second value of the clipping region to 60, since you want to clip the next row of the image starting

at 60 y. Here’s what row 1 column 0 looks like:

127

ANIMATION TECHNIQUES

The third row is at 120 y, and the fourth row is at 180. Once you’ve finished all four rows, you will

have what looks like a single image, but is really 16 parts. You can now create a timeline that animates

each of the 16 parts in order to blow apart the image. The ClippingPathsCompleted project has an

example storyboard in it that you can take a look at. Just run the project and click the main canvas

to see the animation. Because the HTML page for the project does not have the styles adjusted, the

pieces will move off the main canvas, but you’ll get a feel for the type of motion we’re creating. In

addition to animating objects that have clipping paths applied to them, you can animate the points

that make up the clipping paths themselves. This allows you to create some interesting effects such as

wipes or reveals. To animate a clipping path, create a new storyboard, select the clipped object, and

then click the Direct Selection tool. Clipping paths will be drawn in red on the artboard, and they have

white control points, as shown in Figure 4-11.

Figure 4-11. Clipping paths can be animated with the Direct Selection tool.

If an image is placed behind the image mosaic constructed from clipped regions, the clipped regions

can be animated to look as though they are peeling back, creating a sort of checkerboard effect. I’ve

provided an example of this type of effect in the AnimatedClippingPaths project for you to take a

look at. Clicking anywhere on the application will start the animation for you.

You’re probably asking yourself, “Why go about doing it this way? Why not just go into Photoshop

and slice up an image there?” You certainly have the option of doing that. It takes more work to re-

assemble the image that way, but the key reason to do it this way is because it’s reusable. In both of

the example projects, only a single image file was used. If you want to change the effect out, all you

need to do is change the image name that is being used.

128

CHAPTER 4

If you wanted to make it even easier to change images, you could set all the image source attributes

to empty strings (), add the image to your project in Visual Studio or Blend, and use code to assign

the image name across all the elements being used. In this way, you could create slideshow or video

effects, transitions, and so on. If you took an image and physically cut it into 16 or more parts, you

would create a lot more work for yourself because you would need to cut up each image you wanted

to work with.

Creating user controls

Before digging into the next two topics, I need to take a moment and talk about user controls. When

I say “user control,” I’m not referring to elements such as buttons or check boxes specifically, though

those are examples of user controls. I’m referring to them more as a general method we will be using

to add objects to a project.

To this point, the majority of projects we’ve looked at have had the object just added to the main

XAML file in the project, called . Moving forward, what we will be doing is adding objects

as their own unique XAML file, each of which will have its own code-behind file. This makes working

with the objects programmatically much easier—creating copies, or instances, of an object takes only

a few lines of code. More importantly, adding functionality to an object becomes relatively easy—you

add code to the base object, and any copies of it anywhere in your project will immediately gain the

same functionality. The best part is that user controls are really easy to add.

1. Open the MakeUserControl project to follow along with this section. It contains an ellipse

named EllipseElement.

2. There are two ways to add user controls within Blend. The first is to

select an object on the artboard or in the Objects and Timeline list,

right-click, and select Make Control, as shown in Figure 4-12. Try this

out with the EllipseElement item.

3. The Make Control dialog will open and prompt you to name the

new control. For this example, use the name EllipseControl and then

click OK. Blend will open the new control for editing in a new tab

on the artboard.

4. By default, the new control is placed into a Grid layout container

that has a white background. Change the background color to No

Brush and save the project.

5. Select the Page.xaml tab at the top of the interface to return to that

file for editing. You will see that the control is currently not visible

because of the change you made. Press Ctrl+Shift+B to rebuild the

project and the ellipse will be redrawn. That’s all there is to it. The

new user control you created from an existing item is built and ready to be used.

The second method for creating a new user control is to build one from scratch. If you change

to the Project tab in Blend, you will see a list of all the files associated with this project.

6. Right-click the project name (MakeUserControl), and add a user control by selecting Add New

Item, as shown in Figure 4-13.

Figure 4-12. Any object in
Blend can be turned into a
user control.

129

ANIMATION TECHNIQUES

Figure 4-13. In Blend,
right-click the project
name and select Add
New Item to create a
new user control.

7. Blend will open the New Item dialog box, which allows you to create a new user control. Type in

RectangleControl and click OK. Once again, Blend will open the control on a new tab. This time,

the control is blank since it was not created from an existing object.

8. Change the background color of the LayoutRoot element to No Brush, and make the size

200 200.

9. Add a 200 200 blue rectangle named RectangleElement to the LayoutRoot element and save

the project.

10. When you return to the Page.xaml tab, you will see that the Rectangle control has not yet been

added to the artboard. Press Ctrl+Shift+B to build the project.

11. The new control will become available to you on the Custom Controls tab of the Asset Library,

which is accessed through the toolbox, as shown in Figure 4-14.

Figure 4-14. The Asset Library contains all the controls available to your project.

12. Selecting a control from the Asset Library will add an icon to the toolbox that you can use to

add the control to your project. Select the RectangleControl object from the asset list. Once the

icon shows up in the toolbox, double-click it. A new 200 200 blue rectangle will be added to

the artboard.

130

CHAPTER 4

This turns into a lot of fun when the controls are added programmatically, because each

instance of a control exists in its own space and can have its own color, size, and so on.

13. On the Project tab, right-click Page.xaml.cs, and select Edit in Visual Studio from the pop-up

menu.

In Visual Studio, we’ll add an instance of this custom control in the same place as variables—just

above the constructor. Each instance that we create is a copy of the original object, but

each copy has its own set of unique properties. Once an object instance has been declared, it is

available for use in the application. To make it visible within the application, it must be added to

the LayoutRoot Canvas. This is done by calling the method for .

14. Just above the constructor, add the following code to declare an instance of the

Rectangle object:

15. To add the user control to the LayoutRoot Canvas, add the following code inside the

constructor, just after the line:

Now the rectangle will be displayed on the canvas when the project runs.

16. A second instance is equally simple to add—create an object called GreenRect and add it to

the canvas.

17. This time, we’ll add a little code to modify the object a bit. Because we named the elements

that make up the user control, they are easy to access from code by referencing the object

name and then the member name. In the case of GreenRect, we want to place the rectangle at

400,200. To do this, add some code before the rectangle is added to the canvas:

This code tells Silverlight to position the GreenRect object so that it is 400 pixels from the left

of the canvas in which it is being placed, and 200 pixels down. Be careful to use values

when setting properties or the project may throw an error.

Our object is called GreenRect, so it should probably be green. If you recall when you created

the object, you named the rectangle inside the user control RectangleElement. This is the

object you want to target when changing properties, and it is accessed through the GreenRect

object as . Since we want to change the fill type/color, the code

becomes . From there, it becomes a matter of assigning a

 to the property.

18. Add the following code to the project to change the fill color of the GreenRect object:

19. Add the GreenRect object to the collection of the LayoutRoot element with the fol-

lowing code:

131

ANIMATION TECHNIQUES

You can compile and run the project to see the results, which should be pretty close to those shown

in Figure 4-15.

Figure 4-15. The UserControlsCompleted project creates two instances from a single Rectangle user control.

You have now created two instances of the same base object. Even though both objects are derived

from the same base object, they look different. You can create as many instances of an object as you

would like, and each one can have its own unique properties! The MakeUserControlCompleted proj-

ect has a function in it called that will generate a group of rectangle objects all

with different colors. The comments in the project explain what you need to do to use the function.

Implementing drag-and-drop

Drag-and-drop is ubiquitous—people expect to be able to open an application and move things

around. If you’re coming over from Flash, you will find that drag-and-drop operations in Silverlight

aren’t quite as simple to implement as those in Flash, but they’re not difficult by any measure. Open

the DragAndDrop project and we’ll take a look at how to go about making an object draggable.

If you open the project in Blend, you won’t see much—it contains the layout canvas and the Rectangle

user control created in the previous section of this chapter. The rectangle is instanced three times

when the project runs, with each instance being positioned and filled randomly. What we are about to

132

CHAPTER 4

do is to add the drag-and-drop functionality described in Microsoft’s Silverlight documentation to the

base control, which will then enable drag-and-drop for all three instances of the object.

1. If you’re in Blend, use the Project tab to locate the code-behind for the

 file. It’s called .

2. Right-click and select Edit in Visual Studio. The code-behind for this object looks just like the

code-behind for the file, only here you are coding behaviors that will be specific to

this object.

3. The first two things we will need are a Boolean value to determine if the selected object is being

dragged, and a Point object that will be used to help determine the offset between the selected

object’s current location and the mouse pointer location. These variables are considered pri-

vate because they belong to the Rectangle user control, so they will not be accessible from the

main code-behind file. These are placed above the constructor:

4. Next, we need to register three event listeners inside the function. We

will need to know when the mouse button is pressed, when the mouse is moving, and when

the mouse button is released. Notice that we’re using the keyword to wire up event lis-

teners rather than an object name. When is used, it tells Silverlight that the code refers

to this object. Since all this code is placed within the , always refers to

.

In the mouse down event handler, the selected object is the sender passed to the function.

This function sets up a reference to the sender as . The position of the mouse is then

stored, and the Boolean flag indicating whether or not dragging is occurring is set to . The

 method ensures that while the mouse button is down, any events being raised

are exclusively owned by the selected object, even if the pointer goes outside the bounds of

the object. Finally, the object’s cursor is changed to a hand.

5. Add the following code to the event handler:

While dragging is occurring (the mouse button is down and the mouse is moving), the code

in the event handler once again creates a reference called to the sender object before

133

ANIMATION TECHNIQUES

checking to see if a drag is in process. If so, the difference between the stored mouse position

and the current mouse position is applied to the selected object. Once the object has been

moved, the stored mouse position is updated for the next time the function is called. As the

mouse is moving, this function is executing repeatedly—calculating the mouse position, mov-

ing the object, and getting the current mouse position again for the next time through.

6. Add the following code that contains the functionality described previously to the

event handler:

When the mouse is released, the sender object is once again captured as , and the Boolean

flag used to determine that a drag operation is in progress is set to . Mouse capture for

the selected object is released, and the variable is cleared. Finally, the

selected item’s cursor is returned back to whatever the default value is. In this case, the cursor

is not defined in the XAML, so the default arrow will be displayed.

7. Add the following code to the event handler to add the functionality

described:

134

CHAPTER 4

If you now run the project, you will see that even though you only wrote drag-and-drop code once,

you can drag and drop any of the three Rectangle user controls. Notice that when the selected rect-

angle passes behind another, you do not lose control of the drag operation. This is the result of using

the method.

If you wanted to augment the code so that the selected object is always on top, you could add a

function that would manipulate the z-index for each of the objects, setting them all to 0, for example,

except for the selected object, which would be set to 1.

One of the nice things about this bit of code is that it’s generic. You can place the ,

, and handlers’ code in any user control hosted in a canvas, or place

it in the main code and call it from any object, and it will enable dragging. This means that once you

have it coded up, it’s as simple as copying and pasting a bit of code, and hooking up the event listen-

ers for the object you want to be able to drag and drop. The completed example project is saved as

DragAndDropCompleted.

Frame-based animation sequences

I’ve talked a lot about how to make things move, but haven’t spent a lot of time dealing with actual

frame-based animation. This is the kind of animation that comes to mind when you think of how clas-

sic animation is created. A series of frames is drawn, each one slightly different. As you flip through

the frames, the slight changes from frame to frame create the illusion of motion. Depending upon

your approach to using Silverlight, you have a few choices in how you decide to implement your

own frame-based animations. Because of the flexibility, we will explore three different ways to create

frame-based animations.

Let’s begin by taking a look at the character we’ll be animating. Figure 4-16 shows a series of poses

for a duck. In the first pose, the wings are up. The second pose shows the wings in mid-flap, and the

final pose shows the wings down. To make the flap animation, we’ll create an animation that moves

forward through the frames, then backward, and then repeats.

Figure 4-16. The duck poses that will animate into a wing flap cycle

This is one of those situations where having an illustrator or animator handy is useful, because getting

the motion to look right if an animation is longer than a few frames can be a little tricky.

The first method for creating frame-based animations is done entirely with a storyboard. This tech-

nique is great if you’re a designer or just prefer to stick entirely to Blend to create your applications.

In your project, you create a new user control that will be the animated item. In the user control, a

canvas container is created, into which the poses for the action you’re creating are placed. Since most

objects are made up of many paths, it makes organization easier to place each pose inside of its own

descriptively named canvas.

135

ANIMATION TECHNIQUES

Open the DiscreteFrameBasedAnimation project to build this example. The project contains the

 file, as well as a Duck user control that is in the file. Open the file and

take a look at how the object is organized. There is a main container canvas named DuckFlyingPoses,

inside of which are three more canvases, each of which contains a pose for the duck. The WingsUp

canvas has the duck with its wings up—the leftmost pose shown in Figure 4-16. The WingsMid pose is

shown in the center, and WingsDown is on the right. The poses are spaced equally horizontally.

1. Click the DuckFlyingPoses canvas. Notice how the canvas is just large enough to contain a

single duck pose—in this case, the WingsUp pose.

2. Create a new storyboard named , and move the play head to .3 seconds.

3. In the Objects and Timeline list, click WingsUp, and then Ctrl-click WingsMid and WingsDown. All

three poses should be selected.

4. On the Transform pane of the Properties panel, type -300 into the X field. All three poses will

slide to the left 300 pixels.

5. Move the play head to .6 seconds.

6. With all three poses still selected, enter -600 into the X field on the Transform pane.

7. Play the animation.

Not quite what you expected, right? All three duck poses simply slide to the left, and you’re

wondering if you missed something in the instructions. It’s doing what it’s supposed to—we’re

not quite done yet!

Currently, the animation is at a point where the duck’s wings started in the up position, pushed

through the mid position, and are now at the down position. To complete the flap cycle, we

need to work back through the poses in the opposite direction.

8. Move the timeline play head to .9.

9. Enter -300 into the X field on the Transform pane.

10. Move the timeline play head to 1.2 seconds.

11. Enter 0 into the X transform field. The canvases will be back in their original positions at this

point.

At this point, playing the timeline will continue to give you some unexpected results, as the

duck poses simply slide back and forth along the x axis. In fact, it doesn’t look much like the

duck is flying at all.

What we need to finish off our animation is a tool that can help us change between poses

only when a keyframe is reached, rather than smoothly interpolating the motion between the

frames like we’re currently seeing.

Are you with me here? The tool we need is the reliable discrete keyframe that we discussed ear-

lier. Remember that discrete keyframes hold their position until the next keyframe is reached,

at which time the object being animated jumps to the position in the next keyframe.

12. To change the type of keyframe being used to a discrete keyframe, hold down the Ctrl key and

click all 12 of the keyframe markers on the timeline.

136

CHAPTER 4

13. With all the markers selected, right-click and select Hold In from the pop-up menu, as shown

in Figure 4-17. Alternatively, you could switch to XAML mode and edit the storyboard by hand

to use rather than . Either way, once the

change has been made, playing the storyboard again has it looking a little more like what we

were expecting—the poses jump from keyframe to keyframe rather than sliding. We’re almost

done!

Figure 4-17. Change the keyframes in the animation so that they become DiscreteDoubleKeyFrames.

The last thing needed to finish off this particular animation is a clipping path applied to the

DuckFlyingPoses Canvas in order to hide the poses that are positioned outside of the main

canvas. Assuming the canvas was sized appropriately prior to having the poses added, this is

easy to do.

14. Close the storyboard.

15. Double-click the DuckFlyingPoses Canvas to select it. It will display a yellow border. This means

that any new objects created will automatically be placed in the selected canvas.

16. The DuckFlyingPoses Canvas is 257 130. Double-click the Rectangle icon in the toolbox to add

a rectangle to the project.

17. In the Width field on the Layout pane, enter 257. For Height, enter 130. The new rectangle now

covers the canvas, as shown in Figure 4-18.

18. With the rectangle selected in the Objects and Timeline list, Ctrl-click the DuckFlyingPoses

Canvas so that both are selected.

19. Right-click the selected group and choose Path Make Clipping Path from the pop-up menu.

137

ANIMATION TECHNIQUES

Figure 4-18. Create a clipping region over the container canvas to hide the poses that are not in view.

Now when the storyboard is opened and played, there is a nice flapping animation.

20. The animation seems a little slow and needs to be sped up a bit. Switch to XAML view and scroll

up to find the storyboard. Add a property to the storyboard and set it to play the

storyboard twice as fast as it does by default. You can go up or down with the value

depending upon what you need to do with your animation. For now, will do.

21. We also know that this will be a repeating animation, so add a property to the

storyboard as well. At this point, the opening tag for the storyboard looks like the following:

The duck is flying and looks pretty good in Blend, but how do we put it to work in our applica-

tion? All that’s necessary is to create an instance of the user control, add it to the root canvas,

and start the animation. We’ll start the storyboard in the Duck user control. Every time the

duck is added to an application, it will begin flapping automatically.

22. Press Ctrl+S to save the project. On the Project panel in Blend, expand so you can

see the file. Right-click Duck.xaml.cs and select Edit in Visual Studio.

23. Just after the line, add . This line tells

Silverlight to start the storyboard each time a Duck object is instanced. The

keyword always means “this object”—since we’re calling from inside the

Duck object, saying tells Silverlight to play the animation for this

object.

138

CHAPTER 4

24. Next, open the file for editing in Visual Studio.

25. Just before the constructor, create an instance of the Duck object called

26. Because this duck isn’t moving relative to the underlying canvas, it needs to be positioned

where we can get a good look at it—200,200 seems like as good a spot as any. Place the fol-

lowing three lines of code after the code. This will position the duck

at 200,200, and add it to the LayoutRoot Canvas so that it is visible within the application.

Press F5 to compile and run the program. You should get a white canvas with the duck flapping

away. Want another duck that’s not working quite as hard? No problem! Keep working in the

 file.

27. Create a new instance of the Duck user control:

28. To separate the ducks a bit, position this one at 300,300. Before adding it to the canvas, how-

ever, tell Silverlight you want the animation of to have a of ,

meaning that this duck will flap one-half as fast as the first duck.

Now when the project runs, there are two ducks: one is flapping frantically, while the other

takes her sweet time.

What’s that? Now you want a whole flock of ducks? No problem!

29. Start by declaring a random number generator above the constructor.

30. Create a function that accepts an integer argument and uses it to generate the specified num-

ber of ducks. Here, the ducks are placed at random positions and given a random flap speed

between 1 and 3.

139

ANIMATION TECHNIQUES

31. To call this function and use it to create 20 ducks in addition to the 2 we already have, add the

code to the constructor. Changing the number inside the parentheses

will change the number of ducks that are added to the application.

The full code for this project is in the DiscreteFrameBasedCompleted project. There are some com-

ments in the code that explain how to enable the function shown previously so you can

see it in action.

Animation with the Visual State Manager

The next technique we’ll look at for working with frame-based animations uses the Visual State

Manager that found its way into Silverlight 2. This tool can be used very effectively for frame-based

animations—it provides a quick-and-easy visual tool with which you can quickly set up an animation

cycle. The interface for the Visual State Manager available in Blend allows you to take a series of

objects and create snapshots of their properties. Once the snapshots have been created, code can be

used to flip through them, giving the illusion of animation.

The setup for this method is a little bit different than the last. We will once again be working with

the duck poses from the previous example, but in the last example objects were spread horizontally,

and then flipped through via keyframes. This time, we want all the duck’s poses piled on top of one

another. The main hierarchy of objects is still the same—there is a Canvas called DuckFlyingPoses, and

three Canvases inside that. Once again, the container Canvases are called WingsUp, WingsMid, and

WingsDown. Figure 4-19 shows the base setup for the project.

140

CHAPTER 4

Figure 4-19. When using the Visual State Manager for frame-based animations, all the poses are aligned directly
on top of one another.

Open the VSMFrameBasedAnimation project to follow along with this example. The Visual State

Manager is accessed on the States panel, which is located to the left of the Objects and Timeline panel

when your workspace is set up for animation. In the default design workspace, the States panel is

located on the left side of the interface, above the Objects and Timeline panel.

1. With the VSMFrameBasedAnimation project open, open the file for editing. Create

a state group by clicking the Add State Group button located at the top right of the States panel,

as shown in Figure 4-20. The new state group will automatically be added to the pane.

Figure 4-20. Use the States panel to add named
snapshots of objects.

141

ANIMATION TECHNIQUES

2. As soon as the group is added, the name is selected by default, so you can begin typing to give

the newly added state group a unique name right away. Type in WingFlap. The state group is a

container. The group is now created but does not yet contain any state definitions.

3. To add a state to the state group, click the Add State icon,

shown in Figure 4-21.

4. When you click the Add State icon, the interface in Blend

will change to State recording mode, and a new state will

be added to the selected state group. Name the first state

in the duck project Up.

5. Expand the DuckFlyingPoses Canvas in the Objects and

Timeline list, and select both the WingsMid and WingsDown

poses.

6. On the Properties panel, set the Visibility to Collapsed. Only

the WingsUp pose will now be visible on the artboard. A

snapshot of the user control was just created that uses

XAML to describe how this view of the user control now

differs from the original state of the object. In this case,

the default base state had all three poses visible.

7. Create a second state named Mid.

8. For this state, set the Visibility for both WingsUp and WingsDown to Collapsed. Only the middle

pose will remain visible on the artboard.

9. Create a third state named Down.

10. For this state, set the Visibility of both the WingsUp and WingsMid poses to Collapsed. Once

you’re done adding states for a user control, you can turn off State recording mode by clicking

the red button at the top left of the artboard.

In the previous example, we moved forward through the frames and then back to the middle pose

before repeating the animation. Here, we will control the states the same way, in the order 1, 2, 3, 2,

1, 2, 3, 2, 1 . . . , which gives essentially the same effect as the previous example.

What exactly does Blend do to the code when you use the state manager? Each time you create a state

group, Blend creates a container for the group in the XAML. Each time you add a state, Blend adds a

container for that state. Inside our state containers go . . . you guessed it: discrete keyframes!

The following listing shows the XAML code for the Up state. You can identify the familiar properties

with which you have been working in storyboards and animations.

Figure 4-21. Use the Add State button to save
snapshots of your object’s properties.

142

CHAPTER 4

Let’s take a look at how to actually use these states to create an animation. We need a timer, which is

just a storyboard that doesn’t contain any animations. Each time the timer raises a completed event,

a set of actions will be performed.

11. To create a new timer storyboard in Blend, change to Split view and scroll to the top of the

XAML window.

12. Still working with the file, click the New storyboard button, type in FlapWings, and

then click OK. The storyboard XAML will appear in the code you see in the XAML portion of

the Split view. The timer storyboard needs to have an interval defined via the prop-

erty. For the duck project, a of 00:00:00.50 was added to the storyboard:

With this particular example, there’s a bit more code involved than with the prior method that used

a storyboard only. The majority of the code here is unique to the Duck user control, and is located in

the code-behind file, so press Ctrl+S to save the project, and then open

for editing in Visual Studio.

13. There are two variables initialized. One is an integer used to change the visible state, and the

second is a string used to keep track of the current state by name, because the method to

change the state on screen needs a string passed to it. Add the following two lines of code just

above the constructor:

14. In the class that is called when the Duck object is instantiated, the empty story-

board we’re using as a timer is started, and a event listener is wired up. Every half-

second (500ms), this storyboard will raise a event that is used to change the visible

state of the duck in the project.

15. The event handler code for the event does all the work. The integer is

used as a counter to keep track of which pose should be in view, and is tested by a state-

ment. When the correct statement is triggered, the variable is updated

with the name of the state that should be displayed. is then invoked to

change the state. The flag at the end of the method

tells Silverlight that these state changes do not use transitions.

143

ANIMATION TECHNIQUES

When called, the Visual State Manager does the work of changing the view rendered on the

screen. After that, the counter is incremented to get ready for the next pose, and checked to

keep it within the bounds of our animation, which is four poses. To finish, the timer storyboard

is restarted once again.

The timer storyboard is the real workhorse here. Every half-second, it causes the code in the

 event handler to execute in order to control the state of the object shown on the

screen.

With the code in place for the Duck object, move to the code-behind for the

main application. The code here is very simple.

16. First, declare a new Duck object:

17. When the application initializes, a bit of prep is done on the duck. First, it is positioned on the

canvas. In this example, it’s being placed at 200,200. Inside the constructor, add the fol-

lowing two lines of code to position the duck:

144

CHAPTER 4

18. Next, do a little preset on the object by calling upon the Visual State Manager to set the duck

to the WingsUp pose. Remember that the Duck object has all three poses visible, and they are

piled on top of one another. We do not want the duck to appear on screen with all three poses

showing, so the call to the state manager sets the initial view for us. Add the following line of

code immediately after the two lines added in step 17:

19. After that, add the Duck object to the LayoutRoot Canvas. This line of code goes immediately

after the one added in step 18:

Compile and run the application. The white background canvas will be drawn, and the animated duck

will be added. The Duck user control object is completely self-contained—it starts itself and hooks up

the event for the storyboard automatically. As with the last project, you can customize the

speed of the flapping wings animation by tweaking the property of the story-

board in the Duck user control. To speed up the flap, increase the property. Alternatively,

you may decrease the value—this will have essentially the same effect. All the code covered

in this example is available in the VSMFrameBasedCompleted project. One of the nice things about

coding up an animation in this manner is that the code is relatively easy to follow. It’s fairly easy to

track what the animation is going to do when looking through the statement in the Duck user

control code. The Visual State Manager in Blend makes it really easy to see what a user will see on the

screen in each state as it’s added to a state group. This makes the whole development process flow

very smoothly.

A code-based Visual State Manager

Some of you may prefer a solution that is purely code-based. The last frame-based animation method

that we’re going to look at describes a way of creating your own state manager using only code.

The setup for this project is almost identical to the previous example. The hierarchy and organiza-

tion for the Duck user control is the same, only it does not contain the state group and associated

states that were created in the last project. This time, we’ll be controlling the visible state entirely with

code. There are two differences. For this project, we don’t have the Visual State Manager to set our

initial pose for us, so the WingsMid and WingsDown Canvases are set to . In addition, the

 storyboard is already in place.

1. The differences between this project and the last one are confined to the Duck user control

code-behind. Open the CodeFrameBasedAnimation project.

2. The integer used for tracking the state is still declared at the beginning of the file. Add the fol-

lowing code just before the constructor:

3. When initialized, the object will start the storyboard that controls the animation and wire up a

 event to that storyboard. Add the following code to the constructor:

145

ANIMATION TECHNIQUES

4. The difference between the code-based control and the Visual State Manager’s control is in

the event handler. The event handler begins by changing the visibility for each of

the three poses to to hide them. The statement then manually sets the vis-

ibility for the appropriate pose, based on the variable. The rest of the code remains

the same as it was with the Visual State Manager example. The following listing shows the code

for the event handler on the storyboard’s event.

5. In the file, the code to create an instance of the Duck object is shown following.

This code goes before the constructor.

6. Position the Duck object and add it to the root canvas in the same way as the previous example.

Add the following code inside the constructor, right after the

line:

146

CHAPTER 4

If you want to change the speed at which the duck is moving, you can still adjust the prop-

erty of the storyboard, just as with the prior example. The CodeFrameBasedCompleted

project contains the completed code for this example of frame-based animation.

So there you have it: three different methods for creating frame-based animations.

The first example is probably well suited to designers, but has a tendency to hide the content a bit

because it’s using a clipping path to avoid showing the individual frames that make up the animation.

If a project containing this style of animation were handed off or stored away and referenced later, it

might take a bit of time to recall the technique being used.

The second method, which uses the Visual State Manager, is easy to set up with a tool like Blend, and

makes it easy to see exactly what Silverlight will be presenting on the screen when any given state is

called. It still requires a small amount of code in the code-behind to make it go, but easily adapts to

an object with a large number of poses.

The entirely code-based solution shown in the final example is extremely fast to set up, and works in a

manner very similar to the Visual State Manager. If you’re a code junkie or don’t have access to Blend

to create state groups and states, this one may be your answer.

Summary
In this chapter, I talked about ways to apply some of the techniques discussed in earlier chapters. You

saw how objects can be converted into paths and how the points of the paths can be animated to

create text effects. We also explored how we can use copies of objects to create interesting ghosting

effects for objects when clicked.

Though Silverlight doesn’t yet offer easily accessible built-in bitmap effects, it’s still possible to create

drop shadows and blurs by using a couple of images and storyboards to transition between them. The

code that enables these effects is relatively simple and transportable.

Individual animated objects can be turned into custom cursors by hiding the default cursor for the

object that will display the custom cursor and attaching the animated object to the mouse position in

the code-behind. The various mouse event listeners can then be used to show and hide the animated/

custom cursor.

Clipping paths allow you to take one shape and use it to clip the visible area of another. They will serve

a wide variety of purposes in your application development, from clipping a canvas in order to show

or hide content, to creating custom transition or image mosaic effects.

User control objects allow you to “divide and conquer” development tasks—separating objects and

their associated code from the main code base of an application. Object-oriented design in Silverlight

makes it very easy to utilize a single code source to create numerous instances of an object, each with

its own set of properties. With user controls, it’s possible for several developers to work on a single

project, each focusing on separate objects and their associated behavior, all of which can be brought

together in the final application.

147

ANIMATION TECHNIQUES

Drag-and-drop is something you are likely to use quite often. While at the moment it is not as directly

accessible as it is in Flash, it’s still easy to create a set of generalized functions that can be quickly

pasted into the code-behind for an object in order to implement drag-and-drop functionality.

I closed out this chapter by talking about three different techniques for implementing frame-based

animation. The first technique showed how you can utilize discrete keyframes to create the illusion of

motion by jumping between the different frames of an object. The second technique used the Visual

State Manager to define state views for an object. We then used code to call upon the Visual State

Manager to flip between the poses in order to animate our object. Finally, we employed a code-only

technique for performing the same function as the Visual State Manager.

Now that we’ve looked at different ways to apply the concepts described in the first few chapters, it’s

time to break free of the storyboard animation techniques a bit and have some fun exploring vectors

and angles in Silverlight, and how they’re used to work with objects programmatically.

ADVANCED ANIMATION

Part Three

151151

Chapter 5

Our journey into animating from the code-behind begins with a better look at

Silverlight’s angle and coordinate system. You’ve seen a little bit of this in some of

the earlier examples, but now that you will be directly manipulating objects, it is

important to have a firm understanding of the ideas presented here in order to make

objects move the way you want them to.

The Silverlight coordinate system
It’s a little bit easier to understand coordinates in Silverlight if you first get a little bit

of a refresher of the Cartesian coordinate system. You should remember Figure 5-1

from your school days—it represents a traditional, two-dimensional (2D) coordi-

nate system. The x axis runs horizontally, and the y axis runs vertically. The point

at which the two axes intersect is referred to as the origin, and has an x,y coordi-

nate of 0,0. The arrows at the end of each axis indicate that they extend forever in

their respective directions. The intersection of the two axes divides the Cartesian

plane into four quadrants, numbered from the upper right (the northeast quadrant),

counterclockwise.

The points that lie within quadrant I are positive along both the x and y axes. In quad-

rant II, points are –x,+y. Quadrant III contains points that are negative for both x and

y, and quadrant IV is positive along the x axis and negative along the y.

COORDINATES IN SILVERLIGHT

152

CHAPTER 5

Silverlight’s coordinate system, shown in Figure 5-2, is like working in quadrant IV of the Cartesian

coordinate system, except that the y axis is flipped. This means that in order to move an object toward

the bottom of a canvas, you increase the y coordinate (top property) for that object. Placing an object

at 0,0 will position the object such that the top-left corner of the object is aligned with the top-left

corner of the canvas. You can use negative x,y values or x,y values that exceed the width or height of

the canvas to place objects outside of the visible area. This assumes that the styled width and height

for the Silverlight application matches the height and width of the container canvas.

Figure 5-1. The four-quadrant Cartesian Figure 5-2. The Silverlight coordinate system uses a
coordinate system flipped y axis.

Vectors and velocity
When we talk about vectors in Silverlight, we’re really talking about velocity and direction. Using vec-

tors gives us a simple way to describe a direction and distance an object will be traveling over a given

period of time, though time is not specifically a component of vector movement. For our purposes,

the time component of code-based animations will be provided by a timer storyboard, as described

in Chapter 4.

It’s logical at this point to wonder what a vector is. Vectors describe motion by defining the size and

direction of distance. Let’s take a look at a one-dimensional (1D) vector. A 1D vector can be repre-

sented along the number line we all remember from school. We start at 0, and draw a line to the

number 3, as Figure 5-3 shows. This is vector 3. It has direction and distance.

Figure 5-3. The vector 3

152

153

COORDINATES IN SILVERLIGHT

Let’s draw another vector. This vector extends from 3 to 6, as shown in Figure 5-4. It is also vector 3.

Vectors do not have a position—they simply describe direction and distance. Objects, however, do

have a position, and when a vector is applied to an object, the object’s position will be altered.

Vectors can be added—when the two vectors that were just drawn are added, we get vector 6. The

speed of an object traveling along this new vector would be twice what it is for vector 3.

Figure 5-4. Vector 3, followed by vector 3 again

As you might expect, vectors that point to the left are defined with negative numbers. Negative and posi-

tive vectors can be added together just as two positive vectors are. For example, vector 5 + vector –3 =

vector 2.

The terms that define a vector are referred to as components. This is

because they are different from points, which define a position in 2D

space. Vectors can begin anywhere, but their distance and direction do

not change based on the location of the object to which they are applied.

As you can probably imagine, 2D vectors work in much the same way as

1D vectors, only they specify both an x and y component. The vector 5,5

is shown in Figure 5-5.

The concept of making an object move in Silverlight by using vectors is

relatively simple. Place the object on the canvas and start a timer. Each

time the specified period of time passes, move the object by the distance

defined in the vector. Let’s take a look at an example of a 1D vector.

One-dimensional vector movement

In this project, we’ll create some code that moves a simple ellipse particle across the screen using

a vector for movement.

1. Open the oneDimensionalVector project to code along with this example. The project con-

tains the main page XAML, as well as a user control called “particle” that is a simple yellow

ellipse. The particle object also contains a storyboard called , which will be used as a timer

to make the particle move.

2. Open the file for editing. Before the constructor, declare an instance of

the object:

3. Inside the constructor, after the code, add the following code

to position the instance on the main canvas:

Figure 5-5. A 2D vector

153

154

CHAPTER 5

4. Follow that up with the code that adds the particle to the main canvas:

5. Finally, start the particle’s timer. For this example, the particle has its own timer—if you’re

moving multiple objects on the screen, you would want to place the timer in the file

and call it from there.

6. Now that our particle is on the canvas, we need to add a bit of code in the code-behind for

the particle. Open the file for editing. Before the constructor,

declare a variable that will be used to store the vector:

7. Next, add an event handler for the event on the particle’s storyboard timer inside

the constructor:

8. Following the closing curly brace of the constructor, add the event handler

function:

9. The code inside the event handler function will run each time the timer completes. Add the

following code inside the function, which will reposition the particle to its current location plus

the value of the vector variable, and then restart the timer storyboard:

Press F5 to compile and run the project. The particle will be drawn on the screen, and as the

storyboard timer completes, the particle will move across the screen. The completed version of the

code for this project is available in the oneDimensionalVectorCompleted project.

Two-dimensional vector movement

Working with a 2D vector uses the exact same technique, except that 2D vectors utilize variables for

both the x and y components of the movement vector. Let’s throw down some code that allows a user

to fly a particle around the screen.

1. Open the twoDimensionalVector project to code along with the example. This project has

a similar setup as the last one, except that the storyboard is now on the main page. There

is also an instruction screen, which you won’t need to worry about. If you run the project,

you’ll see I’ve already added code to take care of hiding the instruction pane when the OK but-

ton is clicked. We will just concentrate on placing the particle and making it move.

155

COORDINATES IN SILVERLIGHT

2. Open the file for editing. In this file, we’re going to take care of storing the

particle’s velocity, and also add some boundary-checking code. We’ll start with the variable

declarations, which go before the constructor. The first two will store the x and y

velocity, and the last two will store the height and width of the application.

3. Create a new public function called after the closing curly brace of the

 constructor. This function will be used to update the position of the particle on the

screen, and check to see if the particle has gone beyond the boundaries of the application.

4. Inside the function, start with the following two lines of code. This will update the position of

the particle on the main canvas.

5. Follow that up with the following two statements that check to see if the particle

has gone beyond the edge of the application. If it has, the particle is repositioned to the oppo-

site side of the canvas.

6. Save the file, and open the file for editing. Before the constructor, declare

an instance of the object:

156

CHAPTER 5

7. Inside the constructor, add the following code to position the particle at the center of

the main canvas, and initialize the particle’s and variables with the size

of the main canvas before adding it to the main canvas:

8. If you press F5 to compile and run the project at this point, you should see the instruction

pane. Clicking OK closes the pane, and the particle should be positioned at the center of the

main canvas. All that’s left is to make it move. Begin by adding the following code inside the

 constructor. This code will set up an event handler for the event on the

storyboard, and start the storyboard.

9. After the closing curly brace of the constructor, create the event

handler function:

10. Inside the event handler function, call the particle’s function, and restart the

storyboard:

11. If you run the project again, you’ll see that the particle is on the canvas. Even though the

storyboard timer is running, the particle isn’t moving. This is because the velocity of the par-

ticle is still 0,0. We’re going to control the particle’s vector with the arrow keys. Start coding

this up by adding an event handler inside the constructor that listens for the

event on the main canvas:

12. After the closing curly brace of the constructor, create the event handler function:

13. Inside the function, add the following statement. This statement handles the up,

down, left, or right arrow keys, and then updates the particle’s velocity and the on-screen text

appropriately.

157

COORDINATES IN SILVERLIGHT

Press F5 to compile and run the program. As you press the arrow keys, the velocity of the particle will

change, as will the motion of the particle on the canvas. The final code for this example can be found

in the twoDimensionalVectorCompleted project. As you can see from this application, vectors are

relatively easily manipulated as an application is running, and will affect the movement of the object

to which they are applied in real time.

Changing the direction of a vector

When manipulating objects moving along vectors program-

matically, you can change their direction by multiplying one or

both components by –1. For example, given a positive vector

of 3, the vector is effectively reversed when multiplied by –1.

This will reverse the vector, as 3 –1 = –3.

The multiplication of two negative numbers results in a positive, so

a negative vector multiplied by –1 will become positive. For exam-

ple, –3 –1 = 3. This is a very useful way to reverse an object’s

direction completely, or just along a single axis if necessary.

Take a look at Figure 5-6, which shows the vector 5,5. In the

image, you can also see what the effect would be on the vec-

tor if one or both of the vector components were reversed by

multiplying the component by –1. The vectors shown are all

the same length, but describe four different directions, all with

a simple math operation.

So when might you find yourself needing to reverse vectors?

The two most likely answers to that question are (1) based on user input, which you have already seen

in the particle flight demonstration project, and (2) application boundaries, where an object should

“bounce” if a wall is encountered in order to stay within the bounds of an application.

Figure 5-6. The effect of reversing the compo-
nents of vector 5,5

158

CHAPTER 5

In the next example, we will implement directional changes using this technique. The directional

changes are going to be fairly easy to implement, because we’re going to invoke the law of reflection.

The law of reflection deals with rays of light, and states that a ray of light will leave a surface at the

same angle at which it approached, as illustrated in Figure 5-7. You may be more familiar with this

when it is stated as “The angle of incidence is equal to the angle of reflection.”

Figure 5-7. The law of reflection

Granted, we are not dealing with rays of light, but this is a common technique for boundary handling.

If you view the law of reflection image in terms of vectors, the angle of incidence could be an approach

vector of 5,5, while the angle of reflection is a vector of 5,–5. Let’s modify the particle project to make

the particle bounce back when it hits a boundary, rather than wrapping to the opposite side.

1. Open the VectorBounce project to code along with this example. We will be making all of our

changes in the user object, so open the file for editing.

2. Currently, the code to move the particle looks like the following listing. The particle is moved,

and then tests are done to see if the particle has moved outside the boundaries of the applica-

tion. If it has, it is placed on the opposite side of the canvas.

3. Remove the two statements that currently do the boundary checking and wrap the

particle to the other side of the Canvas. We’ll add some new code to replace them. In order to

make the particle bounce, there are really only two ways the vector needs to be manipulated.

159

COORDINATES IN SILVERLIGHT

The first is to reverse the x component. This happens if the particle hits either the left or right

boundary of the application. The second is to reverse the y component. This happens if the

particle hits either the top or bottom boundary of the application.

4. Start by doing a check for the right side boundary by taking the particle’s left position plus its

width, and test to see if it is greater than or equal to the application width, which is stored in

the variable. If so, we multiply the x vector by –1.

5. To test for the left boundary, add an clause to the statement that tests to see if the

particle’s left property is less than or equal to 0. If so, the x vector is multiplied by –1.

It’s important to remember that the position of the object may not always be exactly equal to the

boundary width or height values, which is why we use or . If an object is at left position 10 with

a vector of –3, its left position will be 10, 7, 4, 1, –2, and so on. Note that 0 is never hit, and we don’t

want to leave a hole there in the logic.

6. For the top and bottom boundaries, the idea is the same. We’ll test the particle’s top location

plus its height to see if it is greater than or equal to the application height. If so, the y vector is

multiplied by –1. Another check is done to see if the particle’s top location is less than or equal

to 0. If so, we multiply the y vector by –1.

That’s all it takes. Press F5 to compile and run the application, and watch the particle bounce around

the application. You’ll be seeing variations on this boundary checking code throughout the book. I put

the code changes covered here into the vectorBounceCompleted project so you can examine them.

When you run the application, one of the things you may notice is that it can become difficult to con-

trol the particle when large velocity vectors are reached—the particle will cross the application rather

quickly, reversing the vector. Once the vector is reversed, the key you need to use to change the

direction also changes, so user control can become difficult. In these cases, it’s a good idea to place an

upper limit on the vector in order to define a maximum speed an object can take.

Now that you’ve seen how vectors can be used to make objects move in Silverlight, let’s take a look at

a classic implementation: a single-player paddle game.

160

CHAPTER 5

Single-player paddle game
The classic paddle-and-ball game is a great example of how vectors can be used to move objects

around the screen. It also demonstrates how you can begin putting different pieces together to cre-

ate a more complete animation experience. In this section, I’ll talk about how to create a simple

single-player paddle game that uses drag-and-drop for the paddle, vectors for the movement of the

ball, and boundary checking to keep the ball on the screen in front of the paddle.

1. Open the PaddleGame project to code along with this example. The project is partially stubbed

out, and contains ball, paddle, and wall user objects. The ball object contains a 25 25 white

ellipse. The paddle object contains a filled rectangle with slightly rounded corners. The wall

object contains a series of rectangles arranged to look like a red brick wall. There is a story-

board timer on the main page called , which will be used to create the action. If you run

the project right now, you’ll see the instruction page, which I’ve already coded up. You can

click the Play button, and the pane will hide, but nothing further will happen.

2. We’ll start by coding up the objects we will be controlling from the file. The

wall has no function other than providing a visual barrier, so there’s nothing to do there. The

paddle object already contains drag-and-drop code, and has no other behaviors, so there’s

nothing to do there either. That leaves the ball object. Open for editing. Inside

the ball control, we’ll add some variables to store the application height, the velocity of the

ball, and a random number generator, as well as a function to place the ball randomly on the

game board. Start by declaring the following variables before the constructor.

3. After the closing curly brace of the constructor, create a publicly accessible function

called . This code will be called each time the ball needs to be placed on the screen—at

the beginning of the game and each time it gets by the paddle.

4. Inside the function, add the following code to initialize the velocity for the ball. The x velocity

will always be 5, and the y velocity will be a random number between 1 and 8.

5. Finish up the function with the following two lines. This will position the ball 65 pixels

from the left of the screen, and at a random vertical location.

161

COORDINATES IN SILVERLIGHT

6. Save the file and open for editing. At the moment, nothing is here except for the

instruction pane messaging. Let’s add some elements to the game board. Start by declaring an

instance of the ball, the paddle, and the wall object before the constructor. We’re also

going to be tracking “lives,” so declare an integer to store that value.

7. Inside the constructor, initialize the paddle object by setting its position on the main can-

vas and assigning a value to the variable we created in the object. We’ll hide it until

it’s needed, so set the to before adding the object to the

canvas:

8. Follow that up with code that positions the object and adds it to the

canvas:

9. Next, we’ll hide the ball, set the ball’s variable, and add it to the can-

vas. We won’t need to worry about positioning the ball since the function we wrote will

do that for us when called.

10. If you look at the event handlers set up inside the constructor, you’ll see one for

the event on the Play button, and one for the event of the

storyboard. The flow of the program is that it loads and displays the instruction pane with

the Play button. The Play button is clicked, which plays the storyboard in order

to hide the instruction pane. Once that storyboard is completed, control goes to the

 function, which is coded but currently empty.

So what needs to happen there? First, the instruction pane is gone, so we’ll show the ball and

paddle. Next, we’ll initialize the ball by calling the function. Finally, we’ll start the timer

storyboard to get everything moving.

162

CHAPTER 5

11. If you run the application, you’ll see the instruction pane disappear when the button is clicked,

and the ball and paddle show up, but nothing happens. You started the storyboard in step

10—what’s happening? The storyboard runs, but only for one tick. We need to set up an

event handler that keeps it going. Inside the constructor, add an event handler for the

 event on the storyboard:

12. Add the event handler function after the closing curly brace of the

constructor. This is where all of the action will take place.

13. Inside the function, update the position of the ball, and restart the timer:

14. Run the application again, and this time, when you click the Play button, the ball will move.

In fact, it keeps moving until it goes right off the screen. Let’s add some boundary checks for

the top and bottom of the application. In the function, remove the code

that starts the timer, and add the following statement. This will test for the top and

bottom of the application, just as with the particle project. If the ball encounters either, the y

velocity is reversed.

15. Next, we’ll test for the right side of the application, which in this case is really the left side of

the bricks object. If the bricks are encountered, the x velocity of the ball is reversed.

163

COORDINATES IN SILVERLIGHT

16. Now we have the ball bouncing off the top and bottom of the application, and the bricks along

the right. We want to test to see if the ball hit the paddle. That starts out with an statement

that checks to see if the ball is inside the upper and lower bounds of the paddle:

17. Inside of the statement goes another statement. This one tests to see if the paddle and

ball are contacting. If they are, the x velocity of the ball is reversed.

18. We are recognizing the game boundaries and the paddle. Now we need to figure out if the

ball gets by the paddle, and if so, what we’ll do about it. The following statement checks to

see if the ball makes it all the way off the screen. If so, the timer will be stopped, and we’ll call

a function called (which we’ll create in a moment). If the ball doesn’t make it off

the screen, then the timer will be restarted.

19. Create the function after the closing curly brace of the func-

tion. The ball has made it off the game board, so this is where we’ll put our reaction code:

20. Inside the function, start out by hiding the ball and paddle:

21. Next, decrement the number of lives left and update the messaging on the screen:

164

CHAPTER 5

22. Next, add some code to taunt the player with a different message each time they lose a life.

The messages will show up on the instruction pane. If a player loses all three lives (zero remain-

ing), the Play button on the instruction pane will be hidden so they cannot enter back into the

game loop.

23. The function finishes up by starting the storyboard, which is the opposite of

. At this point, the messaging has updated, the pane is visible, and the game is

awaiting user input to go back into the game loop.

This completes the code for the single-player paddle game. Run the application and test it out.

Figure 5-8 shows the game in action.

Figure 5-8. A single-player paddle game in action

165

COORDINATES IN SILVERLIGHT

One of the things this version of the game does not do is allow the paddle to influence the direction

of the ball. The ball simply bounces off the paddle in the opposite direction based on our applica-

tion of the law of reflection. It would be nice to add a bit of code so that the direction the paddle is

moving when the ball hits it will influence the ball’s direction. To do this, we need a way to determine

a movement vector for the paddle. Luckily, this just takes a few lines of code.

24. Open the code-behind for editing. We’ll need a couple of variables: one for

the old position of the paddle and one for the current position of the paddle. Add these vari-

ables above the constructor:

25. We’ll also need a publicly accessible to hold the paddle’s y velocity:

26. Inside the event handler code for the paddle, we’ll keep track of where

the paddle was and where it is now. The difference between the two will give us the magnitude

of the movement, and we’ll dampen that a bit by dividing it in half. The following code goes at

the top of the statement in the event handler:

27. Now we just add a bit of code to the paddle hit check in the code-behind file.

The code shown in bold takes the calculated velocity of the paddle and adds it to the y com-

ponent of the ball when it hits the paddle.

Now when the game runs, the direction and speed of the paddle will affect the reflected angle the ball

travels after hitting the paddle.

All of the code for this project is available in the PaddleGameCompleted project. It compiles into

a tidy little 8K package.

Think about some of the ways you could modify the program. Can you make the ball speed up the

longer it is on the screen? What about making each successive level more difficult by making the

paddle smaller?

166

CHAPTER 5

Dressing up the game

This game helps highlight one of the strengths in using XAML for the objects. Each object—the paddle,

ball, and wall—is contained within its own canvas, in its own user control. That offers a lot of flexibility

because you could very easily go into the XAML file for each object and change the look of the object,

or change the type of object being used altogether, and simply recompile the game to get a version

that looks completely different.

For example, if you had a rendered image of a wall that you wanted to use, you could replace the

entire set of rectangles that comprise the wall object and the game would still act the same. This is

because the boundary location values being used are based upon the positions of the canvases that

contain the objects, not the objects themselves. The same would be the case if you elected to use an

animated ball in the game. Take a bit of time to experiment with changes to the look and feel of the

game so you can see how easy the XAML structure makes it to edit the game pieces.

Code-controlled vectors
Let’s take a look at an application of vector movement that you will probably find more interesting.

We’ll use some vectors to move a ball object around the screen, but add some interactivity by allowing

the user to drag the ball, and add some interest by applying the force of gravity to the ball.

1. To code along with this example, open the gravityBall project—the project contains the main

 file, which provides a background gradient color, and a object, which is

a simple red ellipse. The ball object contains drag-and-drop code as well as a storyboard timer

called .

2. Begin in the file. Before the constructor, declare an instance of the

object:

3. Inside the constructor, position the ball and add it to the main canvas:

4. Run the application and see that you can use the mouse to drag the ball around the screen

and release it. What we are going to do now is add some code to the file so that

when the mouse button is released following a drag operation, the ball is affected by the force

of gravity. Start with publicly accessible variables to store the gravity, width, and height proper-

ties of the main application.

5. Follow those up with variables to store the ball’s position and velocity:

167

COORDINATES IN SILVERLIGHT

6. Next, we’ll add some code to the event handler so that when

the mouse button is pressed to begin a drag operation, the velocity variables used to move the

ball are set to 0. The lines to add to the function are shown in bold in the following listing.

7. In the event handler, add code to store the current position of the

ball object, and begin the storyboard:

8. To keep the ball moving, add an event handler for the event on the storyboard

in the constructor:

9. Create the event handler function after the closing curly brace of the constructor.

Inside the function, add code to add the constant to the current y velocity vector of

the ball object, and then update the values stored in the variable. After that, the

position of the ball can be updated on the screen and the storyboard restarted. This will cause

the ball to accelerate as it falls.

168

CHAPTER 5

10. While the code you’ve added will move the ball, we haven’t yet assigned a value to the

variable in this object. Open the file and declare a variable for gravity before the

 constructor.

11. Inside the constructor, initialize the value of the ball object with the value of

the variable you just declared:

Run the program and take a look at it. When the program runs, the ball is drawn on the screen and

can be dragged around. When the mouse is released, gravity takes over and the ball falls . . . and keeps

falling, right out of the application!

12. We already talked about how to reverse the vector along which an object is traveling. For the

ball, we’re trying to emulate what a real ball does when it bounces—each successive bounce

a ball makes is going to be a bit lower than the previous bounce. In our case, we’re going to

declare a variable to diminish the bounces, called , which we will set to .6. This

code goes inside the file, before the constructor:

13. Back in step 4, we added variables in the file called and ,

which will be used to store the height and width of the application. Before we can add in our

boundary checks, we need to initialize these variables. In the constructor inside the

 file, add the following two bold lines of code to the section where the ball is

initialized:

14. Now that the ball object is aware of the size of the application, we can start doing boundary

checking. Inside the event handler in the file, add the follow-

ing bold code to check for the top and bottom boundaries. Notice that the velocity is being

reversed by multiplying it not by –1, but by the value of our variable, .6. This

won’t have an obvious effect when the ball bounces off the top of the application because it is

being drawn down by gravity, but it will make a difference when the ball hits the bottom and

bounces up, as it will bounce only a portion of the distance it fell.

169

COORDINATES IN SILVERLIGHT

15. Follow that code up with the boundary-checking code for the right and left sides of the

application:

16. Now when the application runs, the ball can be dragged, and when released, will drop straight

down and bounce in a fairly realistic fashion until it comes to rest. Trying to drag the ball again

at this point will cause the ball to snap back to its resting location, because the storyboard that

makes the ball drop is still running. To correct this, add code to the

event handler that will stop the storyboard when the mouse button is pressed. The application

will then permit repeated dragging and dropping of the ball, though you will still need to drag

the ball straight up to avoid the lower boundary-checking code:

170

CHAPTER 5

17. So far, our application is looking pretty good. One of the things that you may notice is that the ball

always releases straight down, though. We’re going to add some code that allows us to throw the

ball around the application. In order to do this, we’re going to need to capture the x and y velocity

components of the mouse as the ball is dragged around the screen. To store the mouse velocity,

add a variable at the top of the file to store the last position of the mouse:

18. In the event handler code, add the following bold code to store the last

known mouse position:

19. Now that we have the variable and we’re storing the position of the mouse as it drags, we can

calculate and x and y velocity from the movement and speed of the mouse. This is done at the

very bottom of the statement inside the event handler.

171

COORDINATES IN SILVERLIGHT

Does this code look familiar? It should—we used the same technique for the y component in the paddle

game to get the direction and speed of the paddle to influence the direction the ball traveled when hit.

20. Run the application again and check it out. We’ve made only a few small changes, and now we

can use the mouse to drag the ball and throw it around the screen. It will bounce off of the

application boundaries until it no longer bounces. It will then continue to roll along the base

of the application until it goes beyond either the left or right side of the application. This is

because the ball no longer has any y velocity, but does still have an x velocity. No friction has

been applied to slow the ball after it has stopped bouncing. Two small lines of code will correct

this. The first is a variable declared in the file that will contain a value:

21. The second is a bit of code to slow the ball down when it comes in contact with the ground in

our application. This code goes into the logic that tests for the bottom of the application, and

simply multiplies the x velocity vector of the ball by the friction value. This will have little to no

effect on the normal bounce action for the ball when the ball is only in momentary contact

with the boundary, but will bring the ball to a stop when it is no longer bouncing.

At this point, there are a couple of holes in the

logic for the application that we need to plug.

If you played with the application long enough,

you would probably find them yourself, but I will

save you a little bit of time. The holes in the

logic are quite literally “corner cases.” In each

of the application’s four corners, the ball can be

made to contact two boundaries at once. For

example, if the ball is rolling along the bottom

boundary and also touches one of the sides,

it will be permitted to continue to roll off the

screen. You may have seen this before adding

the friction code. This is because the logic tests

for one boundary or the other, but not both.

While the situation exists for all four corners,

we really only need to worry about correct-

ing the bottom two for this application, as it

is highly unlikely that the ball will touch the

top boundary and one of the sides at the same

time. Figure 5-9 illustrates the corner cases.

Figure 5-9. If the ball touches the lower boundary of the application
at the same time it touches one of the sides, the boundary-checking
logic will allow the ball to roll off the screen.

172

CHAPTER 5

22. To fix these holes, we can add two more checks in the event handler code for the

storyboard. These two checks test for the following conditions: (1) if the ball is touching the

bottom and right boundaries at the same time, and (2) if the ball is touching the bottom and

left boundaries at the same time.

That’s all it takes to correct the problem with the corners. The ball will no longer be permitted to

leave the application even if it is contacting the lower boundary and one of the side boundaries at the

same time.

Now we can turn our attention to polishing the application. One more bit of functionality we would

like to add is to disallow the ball object from going off the screen while being dragged. This means

that in the event handler, we need to add a bit of code that checks to see if the ball

is outside of the boundaries, and if it is, start the storyboard.

23. Because each boundary check runs the same code, we’ll create a function to do the dirty

work for us. The following function is a pared-down version of the code in the

 function. Go ahead and add this function to the application. The code

inside the function basically releases the mouse capture, updates the variables,

and starts the timer so that the ball’s movement is then under the control of the application.

24. With that function in place, we can update the event handler to check for

the boundaries while dragging, and call the function if one is encountered.

Once this code is in place, test it out—run the program, grab the ball, and drag the mouse off

the canvas. The ball should bounce off of the boundary and fall.

173

COORDINATES IN SILVERLIGHT

25. We’re going to make one final tweak to this program before calling it done. To have a little bit

of fun with it, we will add a slider to the file that will allow a user to manipulate the

gravity value in real time. At the bottom of the file, just above the closing

tag, add the following code to create a slider and associated label:

174

CHAPTER 5

26. Inside the constructor in the file, set the minimum, maximum, and initial

values for the slider object. We’ll also update the label for the slider to indicate the current

gravity value being used.

27. Following that code, add an event listener for the event of the slider:

28. Add an event handler function. Inside the function, the code will change the

value, update the value of the variable in the ball object, and update the text on the screen as

the slider is manipulated.

That’s it! Now when the application runs, you can manipulate the gravity value in real time via the

slider control. Set the gravity low and throw the ball, and crank up the gravity while the ball is arcing

near the top of the application to see it in action.

All of the code shown here is available in the gravityBallCompleted project. Once again, the applica-

tion is really small—it compiles into a package that is only about 7K. It’s also pretty flexible. All the

behavior for the ball is stored inside the ball user control, meaning you could easily add a second ball

to the application if you wanted. You need only declare a second instance of the ball object, and add

it to the LayoutRoot of .

Vectors and frame-based animations
In Chapter 4, we talked about different ways to do frame-based animation in Silverlight. Regardless of

which method you choose, objects that are animated with a series of frames can use vector motion,

too. For instance, one of the examples we discussed was a duck flapping its wings. Once you have the

duck flap animation going, you still need a way to move the object on the screen. This would be done

via vectors.

In this example, we’ll take a look at a frame-based animation that is a little more complex than the

duck example. We will be working with a monkey walk cycle that spans 12 frames, each of which is

shown in the following series of illustrations.

175

COORDINATES IN SILVERLIGHT

176

CHAPTER 5

For this example, the monkey was animated via the Visual State Manager in Blend and a storyboard

timer that switches frames every 5 milliseconds. Slower frame switching still preserves the illusion of

animation, but you will find that you need to balance between the speed of the animation and the

speed the object travels across the screen.

For an object such as a duck that is flying, you won’t notice it as much. With an object such as our

monkey, the figure may have a tendency to “skate” across the screen while the animation plays. This is

why the storyboard timing and x velocity of the object need to be managed.

1. To code along with this example, open the monkeyWalk project. This project contains a bit

of code to get things going. In the file, an instance of the monkey user control

called is declared. It is then positioned, added to the LayoutRoot Canvas, and made

to start walking via the storyboard timer , which is located in the monkey user con-

trol file.

2. In order to augment this application for user input, we’ll need to add a bit of code to the

code-behind file. Start by declaring publicly accessible variables to store the x

velocity of the monkey, a Boolean flag that will be tested to see if the monkey is in the process

of walking, and a to store the application width. In addition, add a private variable to

store the monkey’s current position.

3. In the file, add the following bold code shown to the constructor. This

code sets the property of the user control for bounds checking.

177

COORDINATES IN SILVERLIGHT

4. At the top of the event handler, add code to change the flag

to , and update the value of the variable:

5. After the closing curly brace of the statement, add a line of code to update the loca-

tion of the monkey object on the screen:

6. If you run the project at this point, the monkey will be drawn on the screen and animated, and

will move very slowly to the right. We want the monkey to walk based on user input, so let’s

modify the file to add this capability. Start by removing the line of code in the

 method that causes the monkey animation to begin:

7. Instead of beginning on its own, we will make the animation begin when a key is pressed. To do

this, add a event to the constructor:

8. Create the event handler function:

9. When the left or right arrow keys are pressed, the monkey will be made to move in the

direction of the arrow key that was pressed. The flag you just added to the monkey

code-behind will be used to determine if the monkey is already moving. If it is not, the timer

that moves the monkey through its frame poses is started. Of note is the way the monkey is

turned if the left arrow key is pressed—it is scaled to –1 along the x axis, effectively flipping

the object. Because the scaling is applied to the canvas that contains all of the poses for the

monkey, all of the poses inside that canvas are reversed as well. All of this functionality is

handled by placing the following statement inside the event handler

function:

178

CHAPTER 5

10. Run the application. After clicking the canvas area, you will be able to use the arrow keys to

control the direction in which the monkey points, but not the direction in which it moves. To

add this functionality, we’re going to add a variable called to the

file:

11. The reason why a variable is being used is because movements to the left and right both need

access to the value, and based on the object being animated, it may take a little bit of tweaking

to get the value set just right. It’s much easier to change a single value than to hunt through

code for multiple instances of a number. The value will be assigned to the x

velocity value of the monkey so that the monkey will move 8 pixels with each completion

cycle of the storyboard timer. To change direction and move the monkey to the left, a negative

 value is assigned to the x velocity vector of the object. To move to the right,

the value is assigned to the x velocity of the monkey as-is. Update the

statement with the two bold lines in the following code:

In the code, each time the storyboard completes, the monkey is moved the distance defined by the

 variable. Remember that depending upon your object’s motion, you may end up need-

ing to use a larger or smaller value. The idea is to get a number that works well in order to keep the

object from looking as though it is skating across the screen.

After clicking the application to get focus, you will be able to control the monkey with the left and

right arrows, as shown in Figure 5-10.

The problem is that given the chance, the monkey will walk right off the edge of the screen. Once

again, we will need to add a bit of code to control where our object is allowed to travel. In this case, if

the left or right edge is encountered, we want to stop the walk cycle timer in order to stop the mon-

key from advancing. This code is added in the code-behind file, near the bottom of

the event handler code.

12. Remove the code that updates the monkey’s position:

179

COORDINATES IN SILVERLIGHT

Figure 5-10. Scaling an object to –1 along the x axis makes it possible to reverse a frame-based
object’s direction.

13. Add an statement to test for the left and right sides of the application. In this exam-

ple, we’re modifying the edge values by 1 to account for the border around the main canvas.

14. Next, wrap the existing Visual State Manager code in an statement:

180

CHAPTER 5

15. Finish up by adding the following line of code shown in bold back in to update the monkey’s

position on the screen. This code will be executed if no boundary is encountered.

Finally, the last line of the function is the existing code that restarted the . Notice that the code

to restart the timer is going to run even if the code to stop the timer due to a boundary is encountered.

This is deliberate, because the application is still “live” and awaiting input. If the were started

inside the clause in the preceding code, when a boundary was reached, pressing the opposite key

would turn the object, but it would stick to the wall since the boundary checks are still valid conditions.

The final code for the function is shown in the following listing:

181

COORDINATES IN SILVERLIGHT

Now you can run the final version of the monkeyWalk project. Click the application so it receives

focus for input, and then use the arrow keys. When the right arrow key is pressed, the monkey will

walk until the right side of the screen is reached, at which time it will stop.

If the left arrow key is pressed, the monkey will continue to the left until the edge of the application is

encountered. All of the code covered here is available in the monkeyWalkCompleted project.

Vectors and storyboard animations
The majority of what we’ve done with storyboard animations is use them to move objects around the

screen or modify their existing properties. However, don’t be afraid to experiment with mixing up

storyboard animations with vector-based animations that you are controlling from code.

182

CHAPTER 5

Combining both methods can help bring a level of interactivity to an application that neither one

would manage to do really well on its own. The next example we’ll look at combines storyboards with

vector animation to create a mechanical claw that the user can control.

1. Open the clawGame project to code along with this example. The project contains two user

controls. The first is a rail across which a tram will move. The second object is a tram to which

the claw is attached. The rail is really just there as a visual guide—all the action for this project

will take place in the tram user control.

2. Start out in the file by declaring instances of each object before the

constructor:

3. Inside the constructor, position each object’s top property, and add it to the main can-

vas. The rail does not move, and we’ll be controlling the tram with code, so there’s no need to

set the left properties. You can run the project and take a look at the objects at this point if

you’d like.

4. Next, we’ll code up the file. Start with a publicly accessible to hold the

application width. Following that, add a private velocity integer variable, and a Boolean that

will be used to determine if the claw is in motion:

5. Inside the constructor, add code to begin the storyboard, and create event

handlers for the event of the storyboard and the event of the

 storyboard. The storyboard contains an animation that opens the claw as it

drops toward the bottom of the screen, and then closes the claw and rises back up.

6. Create the event handler function. The code that goes inside the func-

tion is simple. It does nothing more than switch our Boolean flag to .

183

COORDINATES IN SILVERLIGHT

7. Create the event handler function. This function handles the motion

and boundary checking for the tram object. At each completion cycle of the timer storyboard,

the tram is moved by the current value contained in the variable. Tests are done

to see if either the left or right walls were hit, and if so, the direction of the velocity vector is

reversed. The function finishes off by restarting the timer that is used to move the tram.

8. Two more functions need to be added to this code-behind. The first, , will accept

an integer argument. When called, this function checks to see if the flag is ,

which will only happen if the storyboard animation for the claw is playing. If the storyboard

for the claw is not playing, the current value of is increased by the velocity amount

passed to the function. Then some simple tests are done to keep the speed of the tram within

the range of +2 and –2.

184

CHAPTER 5

9. The final function to add to this code-behind will be called when the down arrow key is

pressed on the keyboard. The function is called . When called, the code will check to

see if the storyboard is playing. If not, it will set the x velocity vector of the tram object

to 0, set the Boolean to , and start the animation.

10. That does it for the object. Since we added the property, we’ll need to add that

into the file, in the constructor:

11. The input for the application will be handled via the keyboard, so inside the construc-

tor, add a event listener to gather user input from the keyboard:

12. Create the event handler function after the closing curly brace of the constructor:

13. The event handler code for the keyboard input handles three cases. When the left arrow key

is pressed, the tram’s x velocity is adjusted by a value of –1. If the right arrow key is pressed,

the tram’s x velocity is incremented by 1. Remember that the function is passed

a value that is added to the current x velocity. This means that if the tram’s velocity is 2, when

the left arrow key is pressed, the velocity gets decremented by –1, which results in a slowing

motion (and an eventual change of direction if the arrow key is pressed repeatedly). When the

down arrow key is pressed, the method for the tram object is called.

185

COORDINATES IN SILVERLIGHT

Compile and run the project. Click the main application to gain focus, and then use the arrow keys to

manipulate the tram’s direction. The claw will drop when you press the down arrow key.

The finalized code for this project is available in the clawGameCompleted project. Take some time

to examine the XAML for the objects. The tram object is composed of three parts: the roller tram,

which is the main part of the object, the claw that hangs below the tram, and the cable that lowers

and raises the claw.

The cable canvas has a clipping region applied that hides the cable. Figure 5-11 shows the tram object

with the cable selected. Notice that only the area where the cable should be allowed to show is inside

the clipping region. The clipping region is what helps to give the illusion that the cable is dropping

when the storyboard is played, as shown in Figure 5-12.

Figure 5-11. The cable portion of the tram is hidden with a clipping region.

186

CHAPTER 5

Figure 5-12. The claw project in action. The user controls the movement of the claw and
when it drops.

Vector math
How you choose to store vectors for your objects is entirely up to you—you can store vectors as

individual x,y components in different variables, as in the previous examples, or you can use a

object to store both vector components in a single variable. One caveat to be aware of is that if you

attempt to store a vector as a property using a getter and setter, you will not be able to access

the individual components of the point. However, using data types as shown here—as public

variables—will work OK. Whichever method you choose to store your vectors, there is a bit of math

that can be done with them. Next, we’re going to take a look at how that is done.

We’ll start with vector addition. Vectors are pretty simple to add—you simply add the x components

of the vectors and the y components of the vectors. Figure 5-13 illustrates an example. Given the pair

of vectors drawn in white, which are 8,10 and 0,10, the resultant vector, 8,20, is drawn in black. The

magnitude of the vectors used in this example are exaggerated a bit to demonstrate the addition, but

the idea is what we’re after. Vector addition can be used to “look ahead” and see where your object

will be the next time it moves.

Vectors can also be scaled by multiplying. To scale a vector by 2, for example, you multiply both of

the vector’s components by 2. This will result in a vector that points in the same direction but is twice

as long.

187

COORDINATES IN SILVERLIGHT

Figure 5-13. To add vectors, add the individual components.

The vectorMath project contains a couple of examples for you to experiment with. There’s nothing

that you really need to code up here, so you can take a breather. I’ll just go through the code so you

can modify it if you’d like.

In the file, two objects are declared, each of which will be used to store

a vector:

To get started, I assigned some arbitrary values to the vector objects. The first is 8,10, and the second

is 0,10.

Once that’s done, both vectors are passed to a function called , which simply outputs

the values to the screen:

188

CHAPTER 5

Following that, the values are passed to the function:

This function takes both vectors, adds their components, and places the result on the screen:

Once that’s done, a vector and a scaling factor are passed to the function:

The function multiplies each component of the vector passed by the scale value that

was passed, and then writes the output to the screen:

Take a little time and play around with the values that are set for the vectors to see what type of

results the math operations you’re performing will have.

Angles in Silverlight
As you saw earlier when working through the transform types, rotational angles in Silverlight are

expressed in degrees and can be additive or subtractive—for example, both 720 and –720 degrees will

rotate an object around twice. The former will rotate an object clockwise, while the latter will rotate

an object counterclockwise.

As you have seen along the way, Rotate transforms are accessible through code. By adding an

property to an object’s Rotate transform, you can easily access the angle of rotation. Take, for exam-

ple, the following rectangle XAML:

189

COORDINATES IN SILVERLIGHT

You should be able to tell from this code that the rectangle has been rotated 90 degrees via a Rotate

transform. Notice that an attribute, , was added to the defini-

tion. To modify this value via code, you can directly access the member of as

follows:

You may have noticed when working with vectors that the line a vector makes kind of looks like an

angle. With just a bit of code, you can convert a vector into an angle. To do this, however, you’ll need

to know three things.

First off, mathematics uses a unit of measure called a radian to measure angles—1 radian is equal to

about 57.2958 degrees. Second, we use a math function called (arctangent) to determine the

radians. Finally, we need a way to convert the radians to a useful number that represents an angle for

us.

If you’re starting to get nervous because we’re using some mathematics, don’t worry. It’s presented

here as kind of a “plug-and-play” solution. For now, we want to focus on how vectors and angles are

related.

All of this radian and Atan2 talk is a fancy way of saying we need the following two lines of code, into

which we plug a vector. The result will be the angle of the vector.

The first line uses the math method to calculate the radians from the vector that was passed.

You can see the usage of the function, and how we pass the vector to the function. Notice

that the vector is passed y,x; not x,y. The second line of code contains the formula for converting

radians to degrees.

Converting vectors to angles

To see this code in action, visit the vectorAngleConversion project. This is a simple project that sets

up a object that contains a vector, and a variable called :

A value that represents a vector is assigned to the variable, and the angle of the vector

is calculated and output to a TextBlock:

190

CHAPTER 5

The result produced by this bit of code is 45, which is the correct angle (in degrees) for a vector of

5,5. Go ahead and play with the values of the variable and run the program to see what

kind of results you get. Don’t worry if you see a few results that surprise you—we’ll be visiting these

two math functions again later.

Let’s take a look at a project that graphically illustrates the math. This project allows a user to adjust

the endpoints of a line. As the endpoints are adjusted, the application calculates the length of the

vector that the line creates, calculates the angle of that vector, and applies the angle to a separate

line object as a sanity check for the calculations. All the code we’re about to discuss is available in the

vectorAngles project.

The file for this project contains four sliders and several TextBlock objects that are used to

provide user feedback. In addition, there is a Path object that is used to draw a simple line. The default

orientation for the line is horizontal.

In the file, the objects needed in the project are declared. The first one is the

user-adjustable line, called . The next two objects are objects, and , and are used to

store the endpoints of the object. The last two declarations are similar to those illustrated in

the previous project— is used to determine the length of the line as a user manipulates

it, and is used to store the angle of the line.

The code starts by assigning some default values to the and objects:

Next, the values in the and objects are used to create starting and ending points for the

 object. In Silverlight, a line is defined by two pairs of coordinates: the start point and the end-

point. They are referenced as , , and , . Once values are assigned to the object, the

line’s and are set.

191

COORDINATES IN SILVERLIGHT

Prior to adding the line to the canvas, a function called is called with the code .

This function uses the start point and endpoint of the object to determine the length of the

vector created by the line. You should recognize the next couple of lines of code from the previous

example—this is where the vector created by the line is converted into an angle.

The object is our sanity check—this object will be rotated the number of degrees cal-

culated by our code, and the angle of the line should match the angle of the object, assuming

the code is functioning correctly. The values are converted to integers for display as they are output

to the canvas.

Now that the initial state of the line has been used to determine the angle and the screen output is

current, the line is added to the LayoutRoot Canvas:

Next, the maximum limits for the sliders are set. The sliders will be used to allow a user to change

the starting and ending points of the object, and the application will not allow either point’s x

value to be greater than the width of the canvas, or either point’s y value to be greater than the height

of the canvas.

Each of the four sliders is then preset to the default value for the endpoints of , and the text

that displays the current value for each slider is updated:

192

CHAPTER 5

With all of the preliminary setup out of the way, the application then sets up an event listener for each

slider’s event. This event will be raised when a slider is manipulated by a user.

The event handler code for each of the four sliders is fairly similar. The value of the slider is used to

update the corresponding point of the object. The text that shows the slider’s value to the user

is updated, and the function is called to update the angle output on the screen.

The y slider event handler is shown in the following listing. Notice that functionally it is identi-

cal except that it references a different point of the object, and outputs text to a different

TextBlock.

The sliders for follow the same pattern. When the program runs, you can use the sliders to adjust

the endpoints of the line object, and the code will calculate the length of the vector that is created

by the line.

The vector length is used to calculate the angle of the line, which is then applied to the line object

near the bottom of the screen. Aside from slight differences due to the conversion to integer data

type and the imprecision that introduces, you should see that the code is doing what it is supposed to,

as shown in Figure 5-14. Pretty cool, huh?

You’ve seen a pretty broad variety of ways to manipulate objects using vectors. You know how to

make objects move using vectors, and you know how to make objects rotate by using vectors. Let’s

take a look at how you can separate the acceleration vector of an object from the directional vector.

193

COORDINATES IN SILVERLIGHT

Figure 5-14. The vectorAngle project allows you to modify the endpoints of a line as it
calculates the angle in real time.

Separating acceleration from direction
It’s very likely that as you begin building out your own applications, you will find yourself in a situation

where you will want to be able to separate the direction an object is traveling from the direction it is

pointing. A great example of this type of motion would be the kind found in old arcade games like

Asteroids. We’re going to take a look at how to code this type of movement up.

1. To code along with this example, open the vectorShip project. This project contains the famil-

iar file, which contains two additional canvases: and .

There is also a object to create a white border around the game board, as well as

a TextBlock that will be used to provide some user feedback.

There are two other user controls in this project. One is called , which contains

a simple 2 2 ellipse that will be used to generate a random star field. The other is called

, and contains a 45 45 spaceship and a timer called that will be used to

make the spaceship move.

2. Start coding in the file by declaring an instance of the rocket called

and a data type called that will be used to generate random numbers. These two

variables are placed before the constructor:

194

CHAPTER 5

3. Inside the constructor, add code to position the ship at the center of the application:

4. After the closing curly brace of the function, create a new function called

that accepts an integer argument:

5. Inside the function, add the following code. The integer passed to the function is used to

control a loop that draws stars in the background. For each iteration of the loop, the func-

tion creates a new object, which is randomly positioned. Once the position has been set,

a random color is generated for the star and assigned to the property. The

 is then added to the .

6. Call the function from inside the constructor, passing an integer that determines how

many stars are created:

7. Press F5 to compile and run the program. The application will display the ship over a star field

that contains 150 stars positioned and filled at random. The next step is to add the code to the

code-behind file that will be used to control the rocket, so open that file

for editing.

8. Before the constructor, declare the variables that this object will be using. The

variables include a publicly accessible that will control the direction in which the ship is

pointing, and two s for the application’s width and height. There are also three private

variables. One controls the direction in which the ship is accelerating, one controls the thrust,

and one is for holding an angle-to-radians conversion.

195

COORDINATES IN SILVERLIGHT

9. Inside the constructor, initialize the directional variable with a value of 0 for

both components:

10. Follow that up with code that adds an event handler for the event of the

timer, and starts the timer:

11. Create the event handler function after the closing curly brace of the

 constructor:

12. Inside the function, add the following two lines of code that will change the ship’s position by

adding the and components to the left and top properties of the ship:

13. Follow that up with some boundary-checking code. If the ship moves completely off-canvas in

any direction, it is wrapped to the opposite side of the canvas.

196

CHAPTER 5

14. After the boundary checks, restart the timer to keep the movement going:

15. Next, we’ll add functions that will be used to control the ship’s movement based on user

input. Create a new, publicly accessible function called . This function will convert

the angle the rocket is currently rotated to radians. The radian value is then used to calculate

acceleration along the x and y axes. The ship’s movement vector is then updated by adding the

acceleration vector.

16. Next, add two functions to control the rotation of the ship. These functions will be called based

on user keyboard input. One will decrement the ship’s angle of rotation to turn it counter-

clockwise; the other will increment the ship’s angle of rotation, causing the ship to rotate in

a clockwise direction. The functions are passed an integer to determine the amount of change

in the rotational value.

17. The last function we will need to add to this code-behind file will be used to stop the ship

when the down arrow is pressed. Create a function called , and make it publicly

accessible. This function simply sets both the acceleration and movement vectors to 0.

We just did a whole lot of coding, but you won’t see a lot of benefit from it just yet. If you run the pro-

gram at this point, you’ll see the same result as you did the last time—the ship will sit, quietly centered

on the screen, over a star field. We’ll change all that by making use of the code we just added.

197

COORDINATES IN SILVERLIGHT

18. Open the file for editing. Since we’re doing boundary checking in the rocket con-

trol, we’ll need to initialize the and variables we set up in the code-behind

for the rocket. Add the two following bold code lines to the constructor:

19. Add another variable declaration above the constructor. This one will be used to con-

trol the speed at which the ship rotates as the arrow keys are pressed.

20. Inside the constructor, add an event handler for the event:

21. Create the event handler function:

22. Inside the event handler, start by creating a statement to listen for the

arrow keys:

23. Now we will make use of the functions created inside the rocketship’s code-behind file. Inside

this event handler, add code to listen for all four of the arrow keys. When the up arrow

is pressed, the ship should thrust in the direction it is pointing. This is done by calling the

 method you added to the ship’s code-behind. The code will update the on-screen

text to show the current x and y movement vectors of the ship as well.

198

CHAPTER 5

24. Next, we’ll handle the down key. In the event the down arrow is pressed, the rocket will come

to a stop. This is done by calling the method for the ship before updating the

on-screen text to show the movement vectors once again.

25. When the left arrow key is pressed, the ship should rotate in a counterclockwise direction.

The rotate speed of the ship was declared in the code-behind. In order to

rotate the ship, the method is called and passed the variable as an

argument:

26. Finally, add the code to handle the right arrow key. This code calls the method of

the rocket object, and like the method, also passes the variable.

Press F5 to compile and run the program. Click the application to get focus for input. Press the left

arrow key and the ship will rotate counterclockwise 5 degrees. Pressing the right arrow key will rotate

the ship clockwise 5 degrees. Pressing the up arrow key causes the ship to thrust and move forward.

The more you press the up arrow, the faster the ship will travel.

Notice that as the ship travels in one direction, you are still free to use the left and right arrow keys

to rotate the ship so that it points in any direction you like. Pressing the up arrow key when the ship

is pointed in a direction other than that in which it is traveling will create some thrust in that direc-

tion. However, to fully change the ship’s direction, you need to use the thrust key enough times to

overcome the current inertia of the ship. Figure 5-15 shows a screenshot of the application in action.

The vectorShipCompleted project includes all of the code for this project.

199

COORDINATES IN SILVERLIGHT

Figure 5-15. The completed vectorShip project, which illustrates how to separate acceleration
from direction

Firing a weapon from the ship

To take this application one step further, let’s add the ability to fire a missile from the ship. We already

know in what direction the ship is pointing—it should be relatively easy to fire a missile, right?

1. Open the vectorShipMissile project to code along with this example. The project is identical

to the completed ship project from the last example, except that it contains one additional

user control: a missile that the ship will fire. There was also a small change to the

function in the code-behind. Some checks were added to keep the thrust

within a –2 to +2 range. This was done to keep the ship from out-accelerating the missile.

200

CHAPTER 5

2. The file contains the missile shape and a storyboard called that

will be used to make the missile move. While the XAML itself isn’t unusual, take a look at the

file and notice the orientation and position of the missile. The missile’s root canvas is 45 45,

which matches the size of the canvas for the ship. The missile is placed vertically, centered just

outside of this canvas. If you imagine the ship residing within the 45 45 canvas, as shown in

Figure 5-16, you can see where the missile is in relation to the ship.

Figure 5-16. The missile is
oriented to the right and
sits vertically centered out-
side of a 45 45 canvas.

When the user presses a key that fires the missile, the missile will be drawn in front of the ship. If

the missile were contained in a smaller canvas and positioned at the center of the ship when fired, it

would appear to come out off-center, as the ship would continue to drift in one direction while the

missile fired out in another. Placing the missile centered in front of the ship avoids this problem.

3. The majority of the code necessary to fire a missile goes into the code-behind,

so go ahead and open that file. Begin by declaring two variables. One will contain the accelera-

tion vector for the missile, and the other will contain a thrust value. This code goes before the

 constructor:

4. Inside of the constructor, add the following code to set the missile’s

property to . This will keep the missile hidden until fired. In addition, add an event

handler for the event on the storyboard:

5. Create the event handler function for the event:

201

COORDINATES IN SILVERLIGHT

6. Inside the event handler function, add the following code to update the position of the mis-

sile on the canvas, and then restart the timer to keep it moving. The position of the missile is

updated by adding the vector components to the appropriate position proper-

ties of the missile. Remember that this event handler won’t execute until the timer for the

missile is started once it has been fired.

7. The last thing we’ll add to this file is a public method that will be called when the rocket is

fired. The public method will be passed the rotational angle of the ship, as well

as the ship’s left and top position on the canvas:

8. Inside the function, the following code will match the missile’s angle of rotation with that of

the ship, and calculate the acceleration vectors. The missile is positioned at the same x,y coor-

dinate as the ship. It is then made visible, and the timer to control the movement is started.

9. Now all we need to do is add a bit of code to the file before we can test out our

missile firing. Start by declaring an instance of the missile object:

10. Inside the constructor, insert code to add the missile to the . The

object is added before the object so that the ship will be “on top” of the missile if

the two cross paths.

202

CHAPTER 5

11. All that’s left now is to hook up a key to cause the missile to fire. We’ll be using the Enter key,

so add the for to the statement inside the

event handler, as shown. Remember that the method inside the

 file is expecting three arguments of type . When called, the method is passed the

rocket’s rotational value, and the rocket’s left and top properties. The method then rotates and

positions the missile appropriately before starting the timer.

203

COORDINATES IN SILVERLIGHT

That should be all it takes. Press F5 to compile and run the program. Click the app to gain focus, and

then use the left and right arrow keys to spin the rocket, the up arrow key to thrust, and the Enter key

to fire. Figure 5-17 shows a missile being fired from the ship.

Figure 5-17. The ship fires a missile in the direction it is pointing.

As written, the code only really allows a single missile to be fired, and there is no collision detection

being done, so the missile won’t hit the ship.

If you’d like to change the code so the ship can fire multiple missiles, remove the object declaration

and initialization code:

The code can be moved inside the case that handles the Enter key event. By adding the following code,

the application will create a new instance of the missile each time the Enter key is pressed, and add it

to the canvas. Be aware of the fact that this code only adds missiles—no cleanup is being done when

a missile is off-screen, so this will eventually bog down the application’s performance if left as-is.

204

CHAPTER 5

All of the code described in this example can be found in vectorShipMissileCompleted.

Summary
We started out this chapter talking about the coordinate system in Silverlight. We’re all familiar with

the Cartesian coordinate system, but the coordinates used in Silverlight don’t quite work the same

way. In order to move an object toward the bottom of an application, you use an increasing y value.

To move an object up, you use a decreasing y value.

With a firm grip on the coordinate system, we spent some time digging into vectors, and you learned

about how they can be used to describe direction and distance for an object. One-dimensional vectors

move along a single axis, while two-dimensional vectors move along two axes. To change the direction

of a vector, one or both of a vector’s components can be multiplied by –1.

Vectors can be used strictly in the code-behind, with frame-by-frame based animations, or with story-

board animations to create a wide variety of experiences and effects.

The line that represents a vector is related to an angle. To convert from vector to angle, use the

 function, passing the y component and then the x component. The function will return an

angle in radians.

That wraps up our discussion on vectors. In the next chapter, we’re going to dig into a little more math

and see how we can apply that in order to animate objects.

207

The word trigonometry is enough to strike fear into people’s hearts. This is usually

the part where everyone regrets having slept through their math classes, but not to

worry—you’ve done a bit of trig already. It’s true. In the last chapter when we were

working with vectors, I slipped a little bit in. That wasn’t so bad, was it? Good. Now

we’re going to take a deeper dive and explore what math can do for us when it

comes to animating.

What is trigonometry?
Put simply, trigonometry is the study of how the angles and lengths of sides of trian-

gles relate to one another. The word trigonometry means “three-angle measure,” and

was originally developed to help study astronomy. Today, the use of trigonometry is

critical in science, technology, and programming Silverlight! That doesn’t sound too

scary, does it?

We’re going to take a nice, long look at trigonometry and trigonometric functions,

and what they can do for us in Silverlight. However, since trig is about measuring

angles, it makes sense to start with a deeper look at the topic of angles.

207

Chapter 6

USING TRIGONOMETRY FOR ANIMATION

208

CHAPTER 6

208

Angles
We touched on an important topic briefly in Chapter 5—degrees vs. radians for angular measurement.

You’re going to be seeing radians, or converting between radians and degrees, a lot in this chapter,

so it’s probably a good time to get a better idea of what they’re all about. This is important, because

while Blend/XAML will take angular measurements in degrees, any rotations you do via trigonometric

functions will give you radians, and you will get unexpected results if you forget to convert between

the two units.

Conversion, as you have already seen, is simple:

radians degrees / 180

degrees radians 180 /

One of the things I have found to be useful is to include two generalized functions in my code to

handle the conversion between degrees and radians on the fly. Internally, all of the calculations are

always done with radians, but to apply a rotation to an object or display the degrees on the screen,

there will be a need to convert. The following two functions will do the necessary conversions when

passed an appropriate value:

The functions can be called like this:

where the value 90 is 90 degrees. This function returns 1.5707963267949 radians. If we then turn that

around to test our function, we get the following:

This returns a value of 90 and some tiny fraction of another degree. You can see that the mathematic

conversions are pretty accurate, and that both of our functions are working as we would expect.

Let’s try to demystify the radian a little bit. I mentioned earlier that 1 radian is equal to 57.2958 degrees.

Where does that 57 come from? The mathematical explanation is that the radian is the subtended

angle of an arc that is equal in length to the radius of the circle. Wow, that sounds pretty complex! It’s

a little easier to understand in pictures, so take a look at Figure 6-1, and it should make a little more

sense.

From the figure, you can see that an arc whose length is equal to the radius of a circle will create an

angle that is exactly 1 radian. But how do we figure out that measurement?

209

USING TRIGONOMETRY FOR ANIMATION

209

Figure 6-1. The radian is the subtended angle of an arc that is equal in length
to the radius of the circle.

To get to the bottom of the specifics of the measurement, we’ll work backward. We can work through

an example angle where the measure in radians is known. We’ll use a “straight” angle, which is

180 degrees. In Figure 6-2, an arc has been drawn that traces the angle, resulting in a semicircle.

Because we know the radius, we can determine the length of the arc. The circumference of a circle is

equal to 2 pi r, where r is the radius. In our example, if the radius is 1, the total circumference

would be 6.283185[. . .].

Figure 6-2. Measuring a “straight”
angle of 180 degrees

Because our arc is a semicircle, it is equivalent to half that value, or simply pi r. Since the radius of

this particular circle is 1, that means that 180 degrees pi radians. To determine the measure of each

radian, we divide 180 degrees by pi, and we get 1 radian 57.2958 degrees. Since 180 degrees equals

pi radians, 360 degrees must be 2pi radians. Figure 6-3 shows some common angle measurements in

both degrees and radians to help get you oriented.

So other than being a little overwhelming, what does all this mean to the way you code an anima-

tion? You need to be thinking in radians, but remember that Silverlight objects are rotated in degrees.

Using the two code functions shown previously will save you a lot of trouble. All you’ll really need to

remember is that any number your code produces as the result of a trigonometric function will be

expressed as a radian, and before you apply that rotation to an object, you need to convert it. Let’s

look at how to do that.

210

CHAPTER 6

Figure 6-3. Some common angle measurements shown in both degrees and radians

The following code creates a rectangle object named that is 250 100 pixels. It is filled with red

and has a black stroke. The corners of the rectangle are rounded by 7 pixels in both the x and y axes.

It also has a Rotate transform called , which rotates the rectangle 45 degrees.

Let’s assume that we have created a program to rotate the rectangle and our program has produced

a rotational value of pi .5, or 1.5707963267949 (90 degrees). Typically, the value will be stored in

a variable, but for the purposes of clarity in this example, we’ll use the value itself. To rotate our rect-

angle with code, we call the named Rotate transform, and then the property we wish to access (in this

case,). We can then assign a value based on what is returned from our conversion function:

Our rectangle obliges by rotating to 90 degrees.

Now that you have a little more background on using radians as a unit of measure, it’s time for a little

refresher on triangles.

211

USING TRIGONOMETRY FOR ANIMATION

Triangles
Triangles are classified in one of two ways: either by their sides or by their angles. When categorized by

their sides, they can be scalene, isosceles, or equilateral, as shown in Figure 6-4. A scalene triangle has

no sides that are equal, or congruent. An isosceles triangle has two congruent sides, and in an equi-

lateral triangle, all three sides (and therefore angles) are congruent. Triangles are typically annotated

with letters at each angle, and referred to by their letters. The triangles shown in Figure 6-4 would be

referred to as ABC, DEF, and GHI.

Figure 6-4. When categorized by their sides, triangles fall into one of three categories: scalene, isosceles, or
equilateral.

In Figure 6-4, the isosceles triangle has two equal sides, referred to as DF and EF. Because the two sides

are equal, angles D and E are also equal. In equilateral triangle GHI, all three sides are equal, as are all

three angles.

The other way of categorizing triangles is by their angles, which results in four categories: acute, obtuse,

equiangular, and right, as shown in Figure 6-5. Acute triangles contain one angle that is less than

90 degrees. Obtuse triangles have one angle that is greater than 90 degrees. Equiangular triangles have

three equal angles (which also makes them equilateral). Finally, the right triangle contains one angle that is

exactly 90 degrees. Notice that in each type of triangle, the three angles add up to exactly 180 degrees.

Figure 6-5. From left to right, the triangles are categorized as acute, obtuse, equiangular, and right.

212

CHAPTER 6

The triangles we will be concerning ourselves with for trigonometry are right triangles, because as it

turns out, the sides and angles of right triangles have very specific relationships, which are relatively

easy to calculate with just a few basic formulas, called trigonometric functions.

Let’s take a look at the relationships and how they are calculated. Right triangles like the one shown

in Figure 6-6 are typically represented by a small box that is drawn in the right angle. We will need

a meaningful way to refer to the sides of the triangle. A right triangle has two angles that are not right

angles, one of which will be our angle of interest. This angle is labeled with the Greek symbol theta

(), and referred to as angle q. The sides of the triangle can then be labeled based on their relation-

ship to angle q.

Figure 6-6. A right triangle with
the sides meaningfully labeled

The side opposite the right angle is called the hypotenuse. This side will always be referred to as the

hypotenuse regardless of which of the two non-right angles are selected. The other two sides are

referred to as being “opposite to” or “adjacent to” angle q. The side of the triangle that touches angle

q is the adjacent side, while the side farthest from angle q is the opposite.

Now that our sides have meaningful names, we can explore their relationships through trigonometric

functions. For the purposes of working through these functions, let’s assume that angle q measures

35 degrees.

Sine (Sin)

An angle’s sine is the ratio of the angle’s opposite side to the hypotenuse. To calculate the sine of an

angle with code, we use the built-in sine function of C#:

So in code, assuming our conversion functions are in place, we would use the following:

And we get 0.573576436351046.

This does not seem like a meaningful number at first glance, does it? This number describes the

relationship of the opposite side of the triangle to the hypotenuse. What we have determined is that

sine(35°) 0.573576436351046 opposite / hypotenuse. We now know that for any right triangle that

has a 35-degree angle, the ratio of the opposite side to the hypotenuse will be 0.573576436351046.

213

USING TRIGONOMETRY FOR ANIMATION

I know you’re waiting for me to explain how this helps us. Let’s assume the hypotenuse of our triangle

is 15 feet long. How long is the opposite side?

sine(35°) opposite / hypotenuse

In order to solve for the opposite side, we multiply both sides of this equation by the hypotenuse. This

effectively negates the hypotenuse in the right side of the equation (see Figure 6-7).

sine(35°) hypotenuse opposite / hypotenuse hypotenuse

0.573576436351046 hypotenuse opposite / hypotenuse hypotenuse

0.573576436351046 hypotenuse opposite

0.573576436351046 15 opposite

opposite 8.60’

Figure 6-7. The sine of our angle
multiplied by the length of the
hypotenuse gives us the length of
the opposite side.

So there you have it—we just used the sine function to figure out how long the opposite side of

a triangle is. We’ll put this into a Silverlight context in a bit—right now, we’re going to move on to the

cosine function.

Cosine (Cos)

The cosine function is the ratio of the angle’s adjacent side to the hypotenuse. To calculate the cosine

of an angle with code, use the built-in cosine function of C# (see Figure 6-8):

Once again, assuming our degrees/radians conversion functions are in place, we would use the

following:

This gives us 0.819152044288992, a number that describes the relationship of the adjacent side of our

triangle to the hypotenuse:

cosine(35°) 0.819152044288992 adjacent / hypotenuse

214

CHAPTER 6

Now we can calculate the adjacent side of the triangle. Start by multiplying both sides of the equation

by the hypotenuse:

0.819152044288992 hypotenuse adjacent / hypotenuse hypotenuse

This leaves us with the following:

0.819152044288992 hypotenuse adjacent

0.819152044288992 15 adjacent

adjacent 12.28’

Figure 6-8. The cosine of our
angle multiplied by the length
of the hypotenuse gives us the
length of the adjacent side.

You’re becoming a regular math whiz, aren’t you? You used trigonometry to calculate the lengths of

two unknown sides on a right triangle! We can check our work by using yet another trigonometric

function, called tangent.

Tangent (Tan)

The tangent of an angle describes the ratio between the opposite and adjacent sides of a triangle. To

calculate tangent using code, use the tangent function of C#:

Utilizing our conversion functions, that looks like this:

Which gives us the result 0.70020753820971.

Let’s check our calculations by plugging some numbers into our ratio:

tangent opposite / adjacent

tangent 8.60 / 12.28

tangent 0.70032573289902

That’s pretty close! I’m willing to call it pretty accurate given that the final sine and cosine values were

rounded off for readability.

215

USING TRIGONOMETRY FOR ANIMATION

Arcsine (Asin) and arccosine (Acos)

Arcsine and arccosine are just like sine and cosine, only rather than feeding in an angle and getting

back a ratio, you provide the ratio and get back an angle.

Arcsine is utilized with the following code:

Recall that the sine of 35 degrees is 0.573576436351046. Using arcsine, the code looks like this:

Remember that the results are returned in radians, so we’ll need to convert back to degrees:

And the result that’s produced is (drum roll, please) . . . 35 degrees!

To use arccosine, the C# code is the following:

If we plug in the ratio from the preceding cosine example and wrap it up in our

converter, it looks like this:

And once again, the result is 35 degrees.

Arctangent (Atan)

Arctangent is similar to arcsine and arccosine—you hand the function the ratio,

and it will return the angle. Arctangent is utilized like this:

The full code wrapped in the converter would therefore

look like the following:

This code returns 35.0045438660122.

The function will return the arctangent of the number provided

as a numeric value that is between –pi/2 and pi/2 radians, or in terms you can

probably visualize a little more easily, –90 degrees to 90 degrees, as illustrated

in Figure 6-9.

Looking at Figure 6-9 should leave you with a big question. How are you sup-

posed to rotate objects all the way around if the tangent function only provides

a set of values that covers 180 degrees? The simple answer is to use

 to do the calculations.

Figure 6-9. The Math.Atan()
function returns values between
90 and –90 degrees

216

CHAPTER 6

 takes two arguments: the measurement of the opposite side and the measure-

ment of the adjacent side. Notice the specific order of the arguments being passed—the opposite

side comes first. If we insert the values we calculated earlier, and wrap the function in our

 converter method, it looks like this:

And the result we get is 35.

also returned a result of 35 when the tangent of our triangle was input. So what’s the difference

between and ? returns angles as a numeric value between –pi and pi radians,

or –180 to 180 degrees. Figure 6-10 should help you visualize the rotation a little more clearly.

Figure 6-10. Math.Atan2(y, x)
returns angles from –pi to pi.

Now we have access to a full range of 360-degree rotation! Since Silverlight will allow you to rotate to

either a positive or negative value, the value returned from the function can be converted to

degrees and applied to an object.

Converting between degrees and radians

Let’s code up a couple of examples to take a look at a few of the concepts we’ve covered so far. We’ll begin

with a project that will start getting you used to the idea of converting between radians and degrees.

1. Open the DegreeRadianRotation project to code along. The project contains two circles, each

with a radius of 100 pixels, as well as a couple of TextBlock labels so we can place some feed-

back on the screen.

2. Start in the file by creating the and

functions:

217

USING TRIGONOMETRY FOR ANIMATION

We’re going to create two lines—one radius for each of the circles in the application. One will be

rotated in degrees, and the other in radians. The rotation of each circle’s radius is based off of the sine

and cosine functions, which will be passed a changing angle.

3. We will need to track two angles and two rotations speeds—one expressed as degrees and

the other as radians. To position the radius correctly, two variables are created in order

to store the center of our circle elements. Add the following set of variables just before the

 constructor. Notice that the variable, which will be used to calculate the

radian-based rotation, is .01745. This is the equivalent of 1 degree.

4. We need to do a bit of initial setup to get our radii to draw on the screen. Inside the

constructor, just below the code that says , add the following code.

These two blocks create the lines that are the radii for our circles. Both have a stroke that is

2 pixels wide. The first one has a blue color applied, and the second is colored red. Once the

strokes have been defined, the lines are added to the canvas.

218

CHAPTER 6

5. Immediately following that code, we’ll add some code to initialize our variables with the center

values of each circle. Remember that a line is defined by two pairs of points. A circle’s radius

goes from the center of the circle to some point along the circle’s edge. Since we have not yet

calculated the location of our radius lines, we’ll hide them by setting the start and finish x loca-

tions to the center x point, and both the start and finish y locations to the center y point.

6. This project already contains a timer called , so add a event handler, and

then get the timer going:

7. Depending upon whether you’re letting Visual Studio create the event handler function for

you, you may also need to add the following handler code after the closing curly brace of the

 constructor. If this code isn’t in your program, you need to add it.

At this point, the program will compile and run, but nothing will happen. We’ll need to code up the

good stuff. We’ll start with the radius that will track degrees for us. Our angle incrementer would

count 358, 359, 360, 0, 1, etc. We know that 360 degrees is equivalent to 0 degrees, and we don’t want

to calculate the location of the radius line twice, so we’ll put our check in at 360.

8. The following code acts to reset our angle. If the angle is 360, the endpoint of the line is drawn

according to the calculation shown—this draws the line at the correct location (359 degrees)

before the angle is actually incremented to 360 degrees. The angle is then reset to 0 degrees,

effectively skipping 360.

The x location of the line coordinate pair is calculated based on the cosine of the angle

passed, and the y location is calculated based on the sine function. Add this code inside the

 event handler function:

219

USING TRIGONOMETRY FOR ANIMATION

9. Still working inside the event handler, add an clause to the statement that will do the

majority of the work. This one starts out similarly to the statement—by calculating the coor-

dinates for the endpoint of the line. The angle is then incremented by 1 degree, the text on the

screen is updated to show the current value of the angle, and the timer is restarted.

You can compile and run the program now if you’d like to take a look. The radius will draw in for the

circle on the left, and will be calculated in real time as the angle is altered. This causes the endpoint

of the radius to move around the outside of the circle, and the radius line to sweep through the

rotation.

Since the timer is already being used to create the motion for the radius on the left, we’ll cheat a bit

and piggyback the version that will use radians. Even though the second radius is being calculated in

radians, it still moves the same distance over the same period of time, so this will work well.

10. Type in the following code right after the closing curly brace of the clause. Notice that

this works exactly the same, except that the calculations are not converting the angle to radi-

ans first. Since the angle is already expressed in radian values, there is no reason to convert.

Radians have a tendency to be a little lengthy on the screen, so the output is formatted to

display only two decimal places, though the actual number is not changed. The final step is to

increment the angle being used for the radius using radians by the variable.

220

CHAPTER 6

Now when you compile and run, you’ll see both radii sweeping around their rotations. Note that the

circles drawn in the interface are purely for the reference of the person viewing the app. The circles

around which the radii are traveling can be arbitrarily moved in the code by altering the center points

and radius values. If you are so inclined, you can easily change the app to make one or both of the

radii move counterclockwise, as shown in Figure 6-11.

Figure 6-11. One or both of the radii can be made to rotate counterclockwise.

To change the radian-based radius, simply change the code that increments the angle so that it decre-

ments the angle instead:

To change the degree-based radius, it is necessary to change the code that increments the angle, as

well as the conditional statement that checks to see if the end value has been reached:

221

USING TRIGONOMETRY FOR ANIMATION

The final code for this project is in the DegreeRadianRotationCompleted project.

As you can see from the example, working with angles as a degree value or a radian value will give the

same results, but sticking to radians keeps the code a little cleaner and more straightforward, since no

conversions are taking place. This example was fairly basic—you can probably imagine that a complex

application with a lot of conversions could get a little tricky to keep track of. This is why it’s best to

stick with radians in the code as much as possible, as we will be doing moving forward.

How does this relate to work you’ve done in Silverlight?

So you’re sitting there looking at all the trigonometry and related functions and wondering how in the

world right triangles and circles have anything to do with anything you’ve done in Silverlight. Let’s take

an example vector like the one shown in Figure 6-12.

Figure 6-12. An example vector

Looks familiar, right? A vector is the radius of a circle when it comes to doing calculations, and the

start point of a vector (or more accurately, the coordinates of an object traveling along the vector) is

the origin. Figure 6-13 shows the same vector with a circle drawn for reference.

222

CHAPTER 6

If we drop a line from the endpoint of the vector to the y coordinate of the vector’s start, and

continue that line back to the origin of the circle, we’ll have a right triangle like the one shown in

Figure 6-14. All of a sudden, we can use what we’ve learned to figure out all kinds of useful informa-

tion about the triangle.

Figure 6-13. A vector is the radius of a circle. Figure 6-14. A vector forms a right triangle.

Think back to the spaceship example from Chapter 5. Our spaceship is traveling along a vector, and

we turn the spaceship and hit the thrust button. Figure 6-15 shows the triangle and calculations that

are used in this case.

Figure 6-15. A vector with the spaceship and
trigonometric functions overlaid

223

USING TRIGONOMETRY FOR ANIMATION

If I now throw the following code at you, you’ll probably have a much better understanding of what

is happening. Angle q is converted to radians, and then the and functions are used to

determine the acceleration along the x and y axes:

One thing you don’t see in the calculations is the length of the hypotenuse (or vector). The calculations

are based on a unit circle, which is a circle whose radius is 1. The cosine calculation determines how

far the ship moves horizontally when it moves one unit in the specified direction. The sine calculation

determines the vertical distance per unit. The thrust variable is what will turn “units” into a meaningful

measurement like “pixels” within our application. Starting to see how everything ties together here?

Free-form rotation

Next up, let’s take a look at a real-world example of how we can put the function

to work for us. We’re going to create an application that allows us to rotate an object by dragging

a handle with the mouse. To code along, open the ImageRotate project. This project contains a

 file that has a simple blue gradient fill, and a user control called .

1. Open the file and take a look at how the file is structured. There is a root

Canvas called ItemCanvas, which contains an Image element and a yellow Ellipse element. The

image does not currently have a source assigned—we will be doing this programmatically. The

Ellipse element is named and will be used as a handle to rotate the entire container

canvas. Note that the container canvas has a named Rotate transform available.

2. This time, all of the work is going to be done inside the user control to make the control re-

usable, so open the file.

3. Since we’re creating a handle that will be used to rotate an object, we’ll need a flag to deter-

mine if the mouse has been captured.

We’re also going to use three variables. The first, , is used to get the cur-

rent mouse position. The next, , is used to store the last position of the mouse

pointer. The last, , is a public variable that will be assigned a value when the

224

CHAPTER 6

object is instantiated, and is used to provide easy access to the center coordinate of the canvas

container.

The final three variables we need are all of type . We will be storing a

calculation, a calculation, and the difference between the two as .

The code for all of the variables is shown in the following listing. This code should be added

before the constructor.

4. Following the call in the constructor, add event han-

dlers for and up on the element named :

5. Inside the event handler function for the event, add the code shown

in the following listing. This code should look somewhat familiar to you. We are creating

a object named , on which the mouse is captured. The cursor is

changed to a hand, our Boolean flag that is used to keep track of a drag operation is set to

, and the variable is initialized with the current position of the mouse.

6. The code for the event handler function is used to once again create

a object named , from which the mouse capture is released. The

Boolean flag is changed to , indicating that the mouse is no longer being captured, and

the cursor for the item that was clicked is reset to the default.

225

USING TRIGONOMETRY FOR ANIMATION

7. We will also need to add our function to convert radian values to degrees, because we are rotating

an object. The Rotate transform angle value for an object in Silverlight is expressed in degrees.

8. Now for the good stuff. The handle will point in the direction of the mouse as the mouse

moves. Since this is a move operation, we’ll need to add an event handler for . This

code goes inside the constructor with the other handlers:

9. Inside the event handler function for , we’ll do the work of figuring out how much

the image should be rotated based on the current location of the mouse pointer. The first

thing the event handler does is get the current position of the mouse and store it in the

 variable.

Then, if the mouse is being dragged, is calculated by passing the coordinates that

result when the center coordinates of the canvas being rotated are subtracted from the last

pointer position to the method. Notice that they are passed y and then x.

Next, is calculated using the same method, but by subtracting the canvas center

position from the current mouse position.

The difference between the two angles is determined, and the Rotate transform angle of the

Canvas object is incremented by the difference after it’s converted to degrees.

The variable is then updated to the current mouse position for the next time

the mouse moves.

Now all we need to do is add some code to the file to instantiate our object

and see what kind of results we get.

226

CHAPTER 6

10. We will be assigning images to Image elements, so we’ll need to add a library reference to the

list of references at the top of the page:

The library makes it possible for us to work with bitmaps.

11. Before the constructor, create a new instance of the object called

.

12. Inside the constructor, assign the source of the object’s Image element, as

shown in the following code listing. I’ve already added two sample JPGs to the project for

you to work with. The code tells Silverlight where the image is relative to the

application.

The left and top properties of the object are then set to 100 to position it near the

top-left corner of the root canvas. Next, the public property for the object is

assigned a value. The angle of the object is preset to –15 degrees so it looks interesting when

it loads, and the object is added to the LayoutRoot Canvas.

227

USING TRIGONOMETRY FOR ANIMATION

Compile and run the application. You should get something similar to Figure 6-16. Dragging the yellow

handle with the mouse will rotate the image. Notice how the handle always points to the location of

the mouse pointer.

Figure 6-16. The ImageRotate project creates images with rotate handles.

When the program runs, the code that does the rotation is essentially saying “Here are the coordinates

of the mouse. Draw a line from the center of the canvas to these coordinates, calculate the angle

that forms, and then calculate the angle difference between this angle and the last angle.” This code

runs constantly as the mouse moves, calculating the angle offsets in real time. In the application, the

movements can be very small, but Figure 6-17 shows larger-scale movement to illustrate the code

functionality.

228

CHAPTER 6

Figure 6-17. As the mouse is dragged, the code constantly calculates the new angle based on the distance from
the center of the canvas to the mouse position.

Since the user control is completely self-contained, it takes about a minute to add another

instance of the object. You can add the following code to get a second image in the application.

13. Start by declaring a second object, named :

14. Next, set the initial properties for the new object as per the following code listing. Be sure to

reference the new object () when setting the property, or the rotation

will give unexpected results.

229

USING TRIGONOMETRY FOR ANIMATION

If you compile and run the project at this point, you’ll see both of the images drawn, and each can be

rotated independently. If you’d like to use your own images, add them to the project by right-clicking

the project name in Visual Studio’s Solution Explorer, and then select Add New Item from the menu,

as shown in Figure 6-18. They will then be available for use in the same way as the original two. The

code shown in this example is available in the ImageRotateCompleted project.

Figure 6-18. Right-click the project in Solution

Explorer and select Add New Item to add your

own images to the project.

230

CHAPTER 6

A little help with the visualization

We’ve gone through triangles, angles, and a lot of math, and perhaps you’re kind of getting it, but not

sure how it all pulls together.

At , I came across an applica-

tion originally written by Trevor McCauley that does a great job of illustrating the calculations involv-

ing right triangles for moving objects. With Trevor’s permission, I’ve included a Silverlight version in

the projects for Chapter 6 as RightTriangle.

The application, shown in Figure 6-19, contains a red ball object that is rotating in a circular path. As

the ball rotates, a red right triangle is drawn, with annotations for the and

calculations based on the hypotenuse of the triangle. The angle of the ball object is tracked via a small

blue circular path in the center of the application, and all of the associated calculations are displayed

on the screen. There is also a Pause button on the screen that allows you to temporarily suspend the

action of the application to take a closer look at the number.

This application is not about the “how,” so we’re not going to dig into the code; it’s more for illustra-

tive purposes to help you visualize the calculations you’re performing, and how triangles and circles

relate to rotational angles and distances.

Figure 6-19. The RightTriangle application illustrates the right triangles created by trigonometric functions on
a moving object.

231

USING TRIGONOMETRY FOR ANIMATION

Sine curves
Sine curves, or waves, like the one shown in Figure 6-20, are probably something with which you are

already familiar. The sine curve is related to the sine function we used earlier—each of the points

along the length of the wave is a result of feeding an angle into the function.

The horizontal points are the values of the angle being used, ranging from 0 to 2pi radians (0 to

360 degrees), while the vertical points are the resulting sine values for the angle at that particular

point. To help you visualize the association between sine, cosine, and their related curves, I have

included an application called unitCircleSin.

The application, shown in Figure 6-21, draws a real-time graph of both sine and cosine curves as they

relate to the angle of rotation. You can turn off either curve with the check boxes on the interface.

You will also see red lines within the circle that show the right angles created by the rotating radii.

Notice that the values for sine and cosine fluctuate between 1 and –1.

Figure 6-20. A basic sine curve

232

CHAPTER 6

Figure 6-21. Graphing sine/cosine curves

This application is another intended to illustrate some of the concepts we’ve been discussing, so we

won’t dig into the code, but feel free to explore it on your own.

What we will be building is a sine wave generator application, which will allow a user to modify the

amplitude or frequency of a sine wave by manipulating sliders in the interface. As a slider’s value

changes, the waveform will also change, being redrawn in real time.

In case you’re not familiar with the terms, Dictionary.com defines amplitude as “the absolute value of

the maximum displacement from a zero value during one period of an oscillation.” Think of amplitude

as the overall height of our waveform. Frequency is “the number of cycles or completed alternations

per unit time of a wave or oscillation.” As such, frequency will determine the density of waves along

our curve. Figure 6-22 illustrates both of these definitions against a waveform for you.

233

USING TRIGONOMETRY FOR ANIMATION

Figure 6-22. Amplitude and frequency of a sine waveform

To code along, open the SineWaveGenerator project. The file for the project contains

the usual LayoutRoot Canvas, which is filled with a gradient brush. There is also a Border object

used to make a thin white border for the application. To handle the drawing of the waveform, there

is a Polyline object. For input, there are two sliders and associated TextBlock labels. There is also

a TextBlock label for the application title.

1. All of the code for this project is contained within the file, so open that file

for editing. We’ll begin by adding the variables we’ll need to draw the waveform. The first

is , which is used to calculate the angle that our sine graph is based upon. Next is

a , which is literally a collection of points. We will calculate each point for

the waveform, add it to the , and then assign the to the

Polyline to draw the waveform. The variable is used to store the next point being

calculated along the graph of the waveform. Finally, we need variables for the amplitude and

frequency of the waveform. Place these variables before the constructor.

234

CHAPTER 6

2. The first thing we need to do is to write a function that creates the waveform. The application

is 800 pixels wide, so the calculations will run from 0 to 799. The first line of code within the

 loop in the following listing increments the angle by 2 degrees converted to radians, and

multiplied by the frequency. Smaller angle increments will result in more waves fitting on the

screen, while greater increments will produce fewer waves.

Next, the coordinates for the next point of the waveform are calculated. The wave fills the

screen, so the x coordinate is equal to the value of the variable , while the y coordinate is

equal to the sine of the current angle times the amplitude of the wave. By subtracting this num-

ber from the height of the application divided by two, the wave will be centered vertically.

Once the coordinate has been determined, it is added to the , which is then

assigned to the Polyline object.

This code goes after the closing curly brace of the constructor:

3. As you can see, drawing the curve is a fairly simple procedure. All we need to do now is call

the function from inside the constructor. The complete code listing at this

point is shown following:

235

USING TRIGONOMETRY FOR ANIMATION

When you run the program, you should get a sine wave drawn on the screen like the one shown in

Figure 6-23.

Figure 6-23. The default sine wave generated by the program

236

CHAPTER 6

4. Let’s hook up the sliders for frequency and amplitude. Inside the constructor, just

below the call, add the following code. This code sets minimum and

maximum values for each of the sliders, and also “presets” them to the values already assigned

to the and variables. The label for each slider is also updated to show the

current value of the slider.

5. After that code, add event handlers for the event on each slider. Watch this

code—both event listeners are calling the same event handler— . This

cuts down on some code duplication.

Your constructor should now look like the following listing:

6. The last addition to this program is the event handler code, which is shown following. This code

will execute any time a slider’s value changes. The code clears the current ,

effectively deleting the prior waveform. It then sets the and variables to

the values represented on the slider controls, and updates the text labels for each slider to

show the current value. Finally, the function is called to draw the new sine wave.

237

USING TRIGONOMETRY FOR ANIMATION

Now when you run the program, you can manipulate the sliders, and the waveform drawn in the

application will change accordingly. The SineWaveGeneratorCompleted project contains the final-

ized code for the project.

Oscillation

You’re probably playing with the project and thinking it’s pretty nice, but wondering how in the world

this will help you do what you’re trying to do in Silverlight. What happens if you remove the x compo-

nent from the wave? That’s right! You get smooth up-and-down oscillating movement.

1. Open the SimpleOscillation project to code along with this example. We’re going to make

a slight change to the instantiation of the Silverlight user control here, so open up the

 file and scroll down to the tag shown here:

2. Just beneath the line, add the following line:

As the number of objects we’re moving programmatically increases, this change will help Silverlight

maintain a refresh speed of 30 frames per second (FPS) to keep our motion as smooth as possible.

This should help maintain a more consistent experience from machine to machine.

238

CHAPTER 6

3. In the file, create an object instance for the object, as well as variables to

hold , , , and values. The code in the following listing goes before the

 constructor:

4. Inside the constructor, instantiate the object at the horizontal center of the

application:

5. Initialize the variable with the vertical center of the application:

6. There is a storyboard timer called already in the file. Add an event handler

for the event on the timer, and then call the timer’s method:

7. Inside the event handler function for the timer’s event, add the following code. This

code will move the ball using a sine calculation to determine a y range of values before incre-

menting the angle and restarting the timer to continue the animation.

Run the application. The ball object will move up and down smoothly. Remember that the result of the

 calculation will be a value between –1 and 1. This value is multiplied by the to

determine the offset for the ball from the location.

If you would like to change the distance the ball travels, simply modify the variable and run the

program again. Changing the variable will change the y location around which the ball is oscil-

lating. Changing the variable will alter the rate at which the changes, which will speed up

or slow down the oscillating motion.

The code shown in the previous example is available in the SimpleOscillationCompleted project.

A practical use for oscillation

The movement of the ball is pretty smooth, but let’s take a look at a more practical application.

239

USING TRIGONOMETRY FOR ANIMATION

1. Open the GuitarStrings project to code along with this example. The project contains a guitar

body object and a guitar string object. We’re going to add six strings to the guitar, and make

them vibrate as the mouse passes over each string.

2. We’ll start coding up the file by declaring some variables. Much like the

ball, the guitar string object has variables for , , and . There is also a variable

called , which is used to keep track of the setting for each string (the use of

this variable will become more clear in a few moments), as well as a variable. Both

and are public variables, so they are accessible from the main program. This code goes

just before the constructor:

3. Inside the constructor, is used to store the value that is set

when the object is instantiated from the main code. The object

has a storyboard timer in it called that is used to make the string move, and an event

handler is added to the event for this storyboard.

4. Each string handles its own oscillation movements inside the event handler. When

the storyboard completes, a quick check is done to see if the value is greater than 0. If

so, the string is moved with our familiar oscillation code, and the timer is restarted. Notice that

the value is dampened with each pass. Real guitar strings do not vibrate endlessly, and

neither should ours. By dampening the range, we can make the string vibrate widely when first

hit, and then fade down to no motion over time.

If the has dampened down to 0 or lower, the movement is stopped, the angle

is reset, and the value is reset to the original value in order to prepare for the next time

the string needs to move. This code goes inside the event handler, which is placed outside of

the constructor:

240

CHAPTER 6

5. That’s all we need to do for the strings. Now we need to work on our interface a bit, so open

the file for editing. We already know we’re going to need an instance of the gui-

tar body object, as well as six instances of the string object. In addition, we will use the mouse

to determine if a string has been plucked, so we need a object to store the current

mouse position, as well as one to store the last mouse position. All of these variable declara-

tions are placed just before the constructor:

6. Inside the constructor, instantiate all of the objects. Normally, guitar strings are attached

to both the bridge and the tuning pegs at the top of the neck, and vibrate in the middle. We

are going to cheat a little bit and have the whole string vibrate, so we’re going to get close

up on the guitar body. As such, our guitar is scaled up to 450% and positioned appropriately

before being added to the LayoutRoot Canvas.

Next come the strings. Each has its left and top property set. Notice that the public vari-

able is set along with the top property in order to create the point of origin for the oscillating

movement that was created in the guitar string object. The thickness of guitar strings varies,

and since our string object is made with a line stroke, we can adjust the stroke to create strings

of varied thickness. We also define a range—the thicker strings of a guitar vibrate more widely

than the thinner ones. After each string is set up, it is added to the LayoutRoot Canvas.

The next-to-last line of this section sets the y component of the variable to

be equal to the height of the application. This avoids having the strings play inadvertently when

the application is loaded if the mouse is being moved toward the top of the application.

The last line sets up the event handler for the LayoutRoot Canvas. The event han-

dler function for is where all the action takes place for the application.

241

USING TRIGONOMETRY FOR ANIMATION

7. The event handler code is shown in the following listing. The idea here is to only

strum a string when the mouse is moved toward the bottom of the application. To do this, we

start by getting the current position of the mouse. We can then check the current mouse posi-

tion against the last mouse position to determine which way the mouse is moving, and if it has

encountered the y position where a string is located.

The first check says, “If the mouse is located at 344y or greater, and the last mouse position

was less than 344y (meaning it was above the string), then play that string’s story-

board.” Each of the other five strings is checked the same way, with the appropriate y value

inserted for the tests.

242

CHAPTER 6

When the application is run, the guitar and strings are drawn in the application, as shown in Figure 6-24.

When the mouse is positioned above the strings and moved downward, the strings will vibrate as they

are encountered, and continue to oscillate until the range dampening cuts the motion down enough

to reset the string for the next pass.

Ideally, a range of y values would be provided to test for each string hit, as it is possible to move the

mouse over a string without a hit being registered. In addition, a string should not be reset until the

vibration has dampened enough to drop below the threshold set in the user control, so you cannot

continuously strum the strings.

The GuitarStringsCompleted project contains the final version of the code for this project.

243

USING TRIGONOMETRY FOR ANIMATION

Figure 6-24. The guitar strings oscillate as the mouse is moved across them.

Horizontal oscillation

Just as you can create smooth up-and-down oscillation using a sine wave, smooth left-to-right move-

ment can be achieved with cosine. Remember that sine is the y component of our triangle calcula-

tions, and cosine is the x component.

1. Open the SimpleOscillationsCompleted project.

2. Look in the file for the line of code that creates the motion:

3. Update that line of code to the following, in order to make the ball move from left to right:

4. As demonstrated in the application that generated the sine and cosine wave graphs earlier, it

generally won’t make any difference if you’re using sine or cosine—either will generate a range

of values between –1 and 1 multiplied by whatever distance range you choose. For example,

the following code gives the same result as the code in step 3:

244

CHAPTER 6

5. Once the ball oscillates horizontally, a few lines of code can be added to the project in order

to add some linear motion along the y axis to the ball as well. Start with a variable before the

 constructor to track the y position:

6. Inside the event handler, add two lines of code. The first positions the ball

to the current y position, and the second increments the y position:

Press F5 to run the project. As the project runs, the ball oscillates horizontally as it moves from the

top of the application toward the bottom. Having linear motion combined with oscillating movement

opens up some possibilities.

Falling snow

To code along with this project, open the Snowflakes project. The project contains a snowflake

object with both Scale and Rotate transforms. The file contains the LayoutRoot Canvas with

a black/gray gradient fill, and a storyboard timer called . This project has a lot going on, so

let’s get started!

When run, the completed project will create a number of snowflakes that are positioned randomly

about the application. Each flake will be scaled randomly, have a randomly generated y velocity, and

a random transparency. The snowflakes will fall slowly, drifting back and forth. When a snowflake

reaches the bottom of the application, it will be placed back at the top, in order to keep a continuous

snowfall going.

1. Start by coding up the file. We’ll start off with a variable to maintain

the flake’s position. Next are four variables related to the drifting motion of the flake. These

should look similar to our previous examples: angle, range, position (or point of origin), and

speed. Next comes a variable for the speed at which a flake will fall. Finally, we have a public

variable used to hold the height of the main application, as well as a variable that will be used

to generate random numbers.

2. This time, we’re going to modify the constructor in order to pass variables as each

flake is initialized by the main application. Normally, the code looks like this:

245

USING TRIGONOMETRY FOR ANIMATION

We want to change ours to accept three values. Our main application will generate

random numbers for the position and opacity and pass them to the object as it is

instantiated.

The object will also do some self-configuration. The code shown in the following few steps

is placed after the method.

3. The first line of the following code generates a random number between 0 and 5 for the flake.

If the number generated is less than 1, then it is made 1. This will ensure that all of the flakes

in the application actually fall.

4. Next, the point of origin for the flake’s drift is assigned using the left position passed when

the flake was instantiated. In addition, a range of up to 50 pixels is generated, and a random

starting angle for the drift is selected. The random angle is important—this adds some variance

to where in the drift motion each flake starts. Without it, all of the snowflakes would drift in

unison, which would not look very natural.

5. Next, a scale value between .25 and 1 is generated for the flake. Once the scale value has been

generated, it is assigned to both the x and y scale values for the flake in order to keep the scal-

ing symmetrical.

6. The last bit of code in the constructor positions the flake, sets the opacity, and

stores the position for when the flake is moving:

7. Now we need to add a function that is called from the main code in order to move each flake

when needed. This is a public method called that is placed after the

constructor. The function begins by updating the and variables for the snowflake.

The variable simply moves the flake down the screen. The variable calculates the horizontal

oscillation value that causes the snowflake to drift. Following this is a test to see if the flake has

246

CHAPTER 6

moved below the bottom of the application. If so, the flake is moved to the top of the applica-

tion. Finally, the actual position of the flake is updated, and the angle used to determine the

drift oscillation is incremented. This is a fairly simple bit of code that does a whole lot of work

for us.

8. Now that the snowflake code-behind is all set, move to the file. This is where

we’ll go about generating our snowflakes and getting them moving.

9. Before the constructor, start by declaring three s. In C#, a is similar to an ,

only it provides some methods that save time and code later (as you will see). The first will

contain all of our snowflake objects. The second will be used to hold the starting x and y

positions of each snowflake, and the third will hold the opacity values generated for each flake:

10. After the s are declared, declare an integer to give us control over how many flakes will be

on the screen, and a random number generator for use in initializing the flakes:

11. With the variable declarations in place, move to the constructor. The following code

comes after the method. We’ll start by initializing our s according

to the length specified by the variable:

12. Next, add a loop to generate the necessary number of x and y starting positions, and opacity

values:

247

USING TRIGONOMETRY FOR ANIMATION

13. With that in place, we’ll call the function (which we’ll code up momentarily),

add an event handler for the event on the storyboard, and start the

storyboard:

14. The function referenced previously is shown in the following listing. Place this

code after the constructor. The sole purpose of this function is to create snowflakes

based on the values that were just generated for starting positions and opacity values. This is

done by once again running a quick loop.

The code instantiates a new flake using the corresponding x and y starting positions, and opac-

ity. The newly instantiated flake is then added to the of flakes. The flake instance has its

public variable assigned in order to track the application height, and is then added

to the LayoutRoot Canvas:

15. The last bit of code to add before compiling and running the application is the event handler

code for the event on the storyboard. This code is very straightforward—

for every flake in the , the method is called. All of the flakes will have

their on-screen positions updated, and then the timer will be restarted.

When the application runs, the snowflake object is instantiated 250 times randomly around the screen.

Each flake is randomly scaled and drifts randomly, as shown in Figure 6-25.

248

CHAPTER 6

Figure 6-25. The application creates flakes that drift as they fall.

We can add a little polish to the application by making each flake spin as it falls. This can be accom-

plished with just three lines of code inside the file.

16. Add a variable declaration to hold the spin value for each flake:

17. Inside the constructor, add the following line of code that generates a random

spin speed between 0 and 5. It’s OK if some of the flakes do not spin as they fall.

18. The final line of code goes into the public method, and simply increments the

rotational angle of the flake by the generated value:

Now the flakes will spin a bit as they are falling, which makes the application a little more interesting

to look at.

249

USING TRIGONOMETRY FOR ANIMATION

Flashing and blinking

You’ve seen how a sine or cosine calculation can be used to make an object oscillate. You’ve also seen

how to combine linear motion with the oscillations to create interesting applications, like one that

creates falling snowflakes. Try to think outside the box a little bit when working with sine and cosine,

though.

You know that generated sine and cosine values are between –1 and 1. You can apply these values to

other properties on an object to get interesting effects. For example, applying a sine calculation to the

scale of an object would result in the object appearing to pulse. You can also attach such a calculation

to the property of an object to make an object blink or fade in and out. Let’s take a look at

how to do that.

1. To code along with this example, open the Flashing project. The project contains a city street

scene in the file, as well as a storyboard timer called . In addition, it has

a user control, which is a typical construction-type barricade with two orange lights

on top. The lights on the barricade are made of four parts—two “on” versions that have white

gradients, and two “off” versions that are flat orange. The on and off states for the lights are

positioned directly on top of one another, and nothing has been hidden or made transparent.

2. The purpose of this application will be to make the lights blink off and on, opposite one

another. When one light is on, the other will be off, and vice versa. All of the code for this

application will be placed in the file, so open that file for editing.

3. Begin by declaring an instance of the object, and adding variables to handle the

angle and speed of the flashing effect. Add the following code before the constructor:

4. Inside the constructor, add the following code after the

method. The first few lines position the object instance and add it to the LayoutRoot

Canvas:

5. Next, an event handler is attached to the event for the storyboard, and the

storyboard is started:

6. Add the event handler function. Inside the function, add the following

code that calculates the opacity of the left and right barricade lights. Since Silverlight’s

values run from 0 to 1 (0 to 100%), no extra work has to be done to the calculations. The first

light has set to the direct result of the calculation, and the second

light simply uses the inverse value. The variable is incremented, and the storyboard is

restarted to keep the animation going.

250

CHAPTER 6

When the application runs, you’ll see the street scene and the barricade flashing, as shown in

Figure 6-26. If you wanted the lights to blink in unison, you could change the code so that both opac-

ity values were assigned the result of the sine calculation. The finalized version of this project is avail-

able as FlashingCompleted.

Figure 6-26. The barricade’s flashing lights are driven by a sine calculation.

Combining oscillations and rotations

Of course, you can get much fancier with the way you’re applying the calculations to various proper-

ties on objects. Let’s code up something a little more complex. The next project, which will create

some falling leaves, will combine many of the concepts we’ve covered. The leaves will be random-

ized much like the snowflakes, but as they fall and drift, they will rotate as well. We’ll also randomize

the fill for the leaves to give the application a little more of a natural feel. We’ll use the concept of

251

USING TRIGONOMETRY FOR ANIMATION

vector-based movement, and sine calculations for the drifting. We’ll also tie a sine calculation into the

rotational angle of each leaf object so that the leaves will float as they fall.

1. To code along with this example, open the FallingLeaves project. This project contains the

 file, which is a simple canvas with a background fill color, and our storyboard timer,

called . There is also a user control, which is a simple alder leaf shape with

a gradient fill. The object has a Rotate transform called and a Scale transform

called .

2. We’ll code up the file first. Begin by declaring variables before the con-

structor. Add a public to store the application height:

3. Next, add the following private variables. We’ll need a to store the starting position,

a for the speed at which the leaf will fall, and then four s to control the leaf

drift. They include the angle, range of drift, drift origin, and drifting speed. Finish up with

a random number generator.

Currently, the constructor for the object looks like the following code:

4. As we did with the snowflake, we’re going to modify the code so that we can pass variables to

the object for use in initializing. Edit the code so it looks like the following:

5. Next, we’ll add code after the call inside the constructor. We’ll

start by generating a random number for scale between .25 and .50 (25% and 50%).

6. Next, add the following code to generate a random value between 0 and 5 for the speed. We’ll

test for a value of 0, and change the value to 1 if we find it. Since this will be our y velocity, this

will ensure that our leaf will fall.

7. Add the next few lines to generate random numbers that will be used to make the leaf drift.

The first is the side-to-side range for the leaf, the second is a starting angle seed, and the last

determines the x coordinate point of origin for the drifting based on the values passed to the

constructor.

252

CHAPTER 6

8. Now add the following code, which sets the initial left and top positions for the leaf and stores

them in the variable:

9. Now we’re going to generate some random colors for the leaf’s fill. The fill is a gradient with

two stops, and . For the first stop, we will generate a number

between 185 and 255, and use that as the red component of the color:

10. The second color stop is based on the first. The value generated for the first color stop is

divided in half, and used as the green component of the color. The red component

remains the same as it was in the first stop. This has a tendency to produce a more yellow- or

orange-tinted color.

11. That does it for the constructor. Next, add the following function to move the leaf. Start by

incrementing the variable by the , and then calculate the drift for

with our tried-and-true oscillation code. Increment the for the next pass.

A quick check is done to see if the leaf has moved beyond the bottom of the application. If so,

it is relocated back at the top. Finally, the leaf is moved to the new position.

That’s all we need for the leaf for the time being. It won’t yet be rotating—we want to generate the

leaves and make sure everything is working correctly before adding additional code to this object.

12. Next, we’ll move to , so open that file for editing.

253

USING TRIGONOMETRY FOR ANIMATION

13. Before the constructor, declare objects to hold our leaves and starting x,y posi-

tions. We’ll also need variables to determine the maximum number of leaves to draw in the

application, and an integer called that will be used to flip some of the leaves

along the x axis to add some randomness to the application. Finally, we have a random number

generator.

14. Inside the constructor, add the code shown in the following listing after the

 method. This code assigns a length to the used in this project.

The positions are then populated via a quick loop. We finish up by calling the

 function, setting up an event listener for the event of our

storyboard timer, and starting the storyboard:

15. Next, write the function. The function runs a loop that creates and positions

each new leaf at the corresponding positions stored in the . The leaf is then

added to the . The leaf’s variable is set to the application height. A test

of the value is done. If it is found to be 2, the leaf is scaled to –1x to flip

it along the x axis. The variable is incremented, and tested to keep within

a range of 0 to 2. Finally, the leaf is added to the LayoutRoot Canvas.

254

CHAPTER 6

16. The last bit of code we need before we can test is the event handler code for .

As with the snowflake example, this code goes through the objects in the

and calls the function for each one before restarting the storyboard that

moves all of the leaves in the application.

At this point, the application should compile and run, and looks like Figure 6-27. We have 250 leaves

on the screen, some are flipped, and there are a variety of colors. The leaves drift from side to side

as they fall.

Changes to the variable will change the number of leaves that appear in the application. If

you would like more leaves to flip, you can adjust the test done against the variable

in the function. If you feel it’s something you may need to change often, you can set up

a variable to make updating the number easy.

Figure 6-27. The nearly completed FallingLeaves project in action

255

USING TRIGONOMETRY FOR ANIMATION

Now that we know our application is in good shape and runs, we’ll add the code that makes the leaves

rock back and forth with the drifting as they fall. The nice thing about this addition is that we already

have the values we need. The drifting oscillation has an angle associated with it, and we’ll use that to

determine an angle for the spin.

17. Inside the file, find your function. Add the following line of code.

Recall that the object has a Rotate transform called . This code uses the angle

of drift and existing drift range to determine a rotational value for the leaf as it falls. By multi-

plying the value by .5, the angle is dampened and makes the rotations a little less extreme.

Now when you run the application, the leaves will have a little more natural motion to them, as shown

in Figure 6-28. Since the rotation is tied to the drifting oscillation, the leaf will rotate in the direction

in which it is traveling. The code described in this example is available in the FallingLeavesCompleted

project.

Figure 6-28. The final version of the FallingLeaves application

256

CHAPTER 6

Circular movement
The next example we’re going to look at will use the sine and cosine of an angle to create circular

motion for an object. This type of motion uses an angle and a radius to calculate the sine and cosine

values that determine the x,y position of an object for the given angle.

1. Open the CircularMovement project to code along with this example. The project contains a back-

ground canvas that contains a gradient fill, a storyboard named , and a user control.

2. All of the code for this project is placed in the file, so open that file for editing.

3. Add the variable declarations shown in the following listing. This code declares an instance

of the object, and then our familiar , , and values. We’ll also be using

a center point in this project.

4. Inside the constructor, add the following code to assign values to the and

 variables. In this case, I’ve used the center of the application. Next, the ball is added

to the LayoutRoot Canvas. This section is finished off by adding an event handler to the

storyboard’s event, and starting the storyboard.

5. Add the following event handler function after the constructor. Inside the function, add

the code to move the ball. The x position is determined by the cosine of the angle multiplied

by the radius. The y position is determined by the sine of the angle multiplied by the radius.

The variable is then incremented before restarting the storyboard.

Run the application. The ball will rotate in a perfect circle. One thing you will notice is that it is slightly

off-center, even though we specified the center point of the application as the point of origin for the

animation. This goes back to the reference points for objects in Silverlight—remember that they are

positioned by their top-left corner.

6. We can correct this fairly easily by adding an adjustment to the variable. Adjust the

variable assignments as shown:

257

USING TRIGONOMETRY FOR ANIMATION

Now when the application runs, the ball will animate correctly around the center point of the applica-

tion, as illustrated by Figure 6-29.

Figure 6-29. Circular movement created by using sine and cosine calculations

To create elliptical motion rather than circular, simply separate the x and y components of the motion

by using different radius values for the x and y calculations. This is easy to do.

7. Start by changing the from a to a data type.

8. Inside the constructor, assign some values for the x and y radius:

9. Inside the event handler function, use the new radius values:

Now when you run the project, the ball will follow an elliptical path, as illustrated in Figure 6-30. The

CircularMovementCompleted project contains both the circular and elliptical motion code described

here. There are comments in the project explaining how to edit the code to change between the types

of motion.

258

CHAPTER 6

Figure 6-30. Elliptical motion created with sine and cosine

Orbiting

Let’s take a look at an application of this concept that is fun to see in action. The project we’re going

to build will draw a moon object on the screen, and we will use the techniques that were just covered

to make a small space capsule orbit the moon.

1. Open up the MoonOrbit project to code along with this example.

2. The file for this project has a black background and a storyboard timer. We’re going to

want to make the moon draggable, so I’ve already added the necessary drag-and-drop code to the

 file for you. As soon as the moon is added to the application, it will be draggable.

All of the code for this project will go into the file, so open this file for editing.

3. As always, we’ll start by declaring our variables before the constructor. Create an

instance of the object and the object. Following this, we will need s

for and , and s for radius and position. The variable will be used to

determine the elliptical path of the capsule. The variable will store the center point

of the object.

259

USING TRIGONOMETRY FOR ANIMATION

4. Inside the constructor, add code to set the initial values for and .

These values are then used to set the moon’s location on the Layout Canvas. Once positioned,

the object is added to the canvas. Next, the object is added to the canvas.

We do not need to specify a position since we will be doing that through our sine and cosine

operations. The and values that will give the capsule an elliptical orbit are

set. Finally, the event handler for the storyboard is coded, and the storyboard is

started. The completed constructor is shown in the following listing:

5. Create the event handler function. Inside the function, begin by updating the values stored in

the variable. If the moon object is dragged around the screen, we want to make sure

we’re keeping track of the current center point in order to maintain proper rotation. Following

this, the capsule is positioned using code similar to some you’ve already seen. Next, the

variable is incremented, and the storyboard is restarted to keep the motion going. The

event handler code is shown following:

If you run the project at this point, you’ll see the objects drawn on the screen and the capsule go zip-

ping along as expected. You can even drag the moon around and the capsule will maintain its position.

One slight problem is that the capsule never passes behind the moon. We can fix this by augmenting

the event handler code a bit.

6. Right after the line of code that increments the angle, add the following line of code. Remember

that our numbers are being specified in radians, and that 180 degrees is equal to pi radians. 2pi

radians is equal to 360 degrees (or 0 degrees). This code will reset our angle when it reaches

a threshold so that we’re always working with in the 0-to-2pi range.

260

CHAPTER 6

7. Next, add the following statement to the very top of the event handler code. This

code will check to see if the angle value is greater than pi. If so, the object’s Z-index is set

to 1, and the capsule’s Z-index is set to 0. This will cause the capsule to be drawn behind the

moon. If the angle is less than pi, the moon’s Z-index will be set to 0, and the space capsule’s

Z-index will be set to 1. This will cause the capsule to draw in front of the moon.

As the capsule moves along its elliptical path, the motion is based on angles from 0 to 360 degrees,

or 0 to 2pi radians. We know that as the capsule passes 180 degrees (pi radians), it should no longer

appear in front of the moon. We also know that after it passes 360 degrees (2pi radians), the capsule

should be drawn in front of the moon. This code handles that for us.

When you run the program, you should see something similar to Figure 6-31, with the capsule obedi-

ently moving behind the moon with each revolution. If you would like to change the speed of the

capsule’s flight, modify the variable.

Figure 6-31. The space capsule orbits the moon along an elliptical path.

261

USING TRIGONOMETRY FOR ANIMATION

The Pythagorean theorem
The final topic we’re going to cover in this chapter is the Pythagorean theorem. The theorem deals

once again with the measurement of triangles, and looks like this:

a2 b2 c2

Let’s take another look at our right triangle, shown in Figure 6-32.

Figure 6-32. A triangle with sides
labeled

An illustration of the theorem is shown in Figure 6-33. If you calculate the area of the squares on each

leg of the triangle and add them together, you will get the area of the square on the hypotenuse.

Figure 6-33. An illustration of the
Pythagorean theorem. The area of
side a2 plus the area of side b2 is
equal to the area of side c2.

I know at this point your vision may be getting blurry and your mind weary, and you may be wonder-

ing how a triangle and square roots will be of any value to you in Silverlight. However, the Pythagorean

theorem can be used to determine distances between two points, which can be applied in many

interesting ways. Take a look at Figure 6-34. Here we have two objects, each one with its own set of

coordinates.

262

CHAPTER 6

Figure 6-34. The Pythagorean
theorem can be used to deter-
mine distances between objects.

If this chapter has done its job, you should be seeing right triangles when you close your eyes. If you

think you see a right triangle in Figure 6-34, you are correct. The distance line forms the hypotenuse

of a right triangle. If we fill in the triangle’s legs and some values for the position of the two objects,

we get something like what is shown in Figure 6-35.

Figure 6-35. The right triangle
formed between two points, along
with associated measurements

As you can see, once we know two points, we can determine the third, as well as the distances of the

two legs of the triangle. Distance X and Distance Y in the figure are typically coded as and , or can

be stored as a data type, and .

The calculation for distance, then, would look like the following:

263

USING TRIGONOMETRY FOR ANIMATION

This code determines the x and y distances, squares them, sums them, and calculates the square root.

If we plug in the numbers from Figure 6-35, we get the following:

Distance between objects

Now, I suspect you would like to see this in action, and I am happy to oblige.

1. Open the PythagoreanTheorem project to code along with this example. The project contains

the root canvas, which has a simple dark gray fill color. There is a TextBlock in the top-left cor-

ner that we will use to provide output so we can see the results of our calculations. The project

also contains a single user object—a red ball. The ball will be draggable, and I have already

included that code with the user control for you.

2. All of the code for this example will go into the file, so open that file for

editing.

3. Start by adding the variables we’ll be using before the constructor. Create two instances

of the control, and two objects that we will use to store the center points of the

balls. We’ll also use a object to store the x and y distances between the points, and

a to store the resulting distance calculation.

4. Inside the constructor, add the following code that positions each ball before adding

it to the root canvas. We won’t need a storyboard timer for this project—instead we’ll do our

calculations when the mouse is moving. Create an event handler for the event on

the LayoutRoot Canvas:

5. Create the function. Inside the function, add some code to do the

distance calculation. Start by calculating the centers for and .

264

CHAPTER 6

Next come the calculations to determine the x distance and y distance. Once we have those,

we can calculate the distance between and . Finally, the value of the vari-

able is output to the TextBlock.

Compile and run the application—you should see an application like the one shown in Figure 6-36.

Use the mouse to drag the balls around the canvas, and see how the distance value is affected. Either

ball can be moved around without affecting the accuracy of the calculation. Since we used the cen-

ter point value for each ball object, placing the balls perfectly on top of one another will reduce the

distance to 0.

The completed version of this project is available as PythagoreanTheoremCompleted.

Figure 6-36. The Pythagorean theorem in action

265

USING TRIGONOMETRY FOR ANIMATION

So you’re sitting there thinking this is kind of neat, but not really sure what you’re going to do with it.

Once again, there are plenty of options, and I’m going to show you one right now.

A more practical use for the Pythagorean theorem

1. Open the HotAndCold project to code along with this example. In this project, we’ll place

a sun, moon, and space capsule object on the canvas. If the space capsule is dragged toward

the sun, it will become hotter (redder), and if it is moved toward the moon, it will become

cooler (bluer).

The project already contains the user controls for the sun, the moon, and the capsule. I have also

already added the code to each to allow drag-and-drop. The XAML for the capsule is a little unique.

The file contains both the blue “cold” capsule and the red “warm” capsule, both positioned over

one another. As we drag objects around the screen, we will manipulate the transparency of the

CapsuleWarm Canvas.

2. All of the code for this project will be added to the file, so open

for editing.

3. Before the constructor, add the following code to declare instances of the , ,

and objects:

4. Continue by creating four variables—one each for the center positions of the , ,

and objects, and one to hold the x and y distances for our calculation:

5. The last few variables that need to be added are for determining some distances using the

Pythagorean theorem:

6. Inside the constructor, position the moon, sun, and capsule and add all three objects to

the canvas:

266

CHAPTER 6

7. Once again, we’ll use the event to trigger our calculations, so add an event handler

for . We need to do our calculation after the objects have been added

to the canvas to set the correct value for the capsule so it looks correct before any mouse

input is received. The function will be where we perform our calculations:

8. Because we will create a function to handle the calculations, there is no reason to repeat them

in the event handler. However, as the mouse moves around the application canvas,

we still want to do our magic. Code up the event handler function. Inside the event

handler, add code to call the function:

9. Next comes the function, shown in the following listing. The function starts

by calculating the center positions for each object on the canvas. The distance between the

sun and the moon is then determined. Dividing 100 by the multiplier and then dividing the

resulting number by 100 converts the number to a value that will be used to determine a final

opacity value. The next few lines of code calculate the distance between the moon and the

capsule. To finish up, the opacity of the CapsuleWarm Canvas in the capsule object is set to the

 multiplied by the variable.

267

USING TRIGONOMETRY FOR ANIMATION

By the code, the calculations may look a little confusing, so let’s plug in some numbers to see what’s

happening. If the sun is 700 pixels from the moon, the calculated multiplier is 0.001428.

The distance between the moon and the capsule is then determined. If the capsule is 200 pixels from

the moon, we get an opacity value of 200 0.001428, or .2857[. . .]. As an opacity value, this results

in the warm capsule canvas being 28% opaque. The farther the capsule is from the moon, the higher

the value, and the redder the capsule will appear.

Go ahead and run the application to see how it works. You should be able to drag the objects

around the screen, and the capsule will change according to the proximity of the objects to one

another. Figure 6-37 shows the final version of the application, for which the code is available in

HotAndColdCompleted.

Figure 6-37. As the ship moves closer to the sun, it becomes redder in color.

268

CHAPTER 6

Summary
Wow, nice work! Your brain may feel heavy, and it looks like your left eyelid is twitching a little bit,

but you did it! You went 12 rounds with trigonometry and came out on top. This chapter will probably

be one to which you find yourself referring often. It may take a while before some of the ideas, like

converting between radians and degrees, become automatic, but you’ve laid a solid foundation for all

the great work you have yet to do. Let’s recap some of the ideas we discussed.

Trigonometry is the study of how the angles and lengths of sides of triangles relate to one another.

When measuring angles, especially in Silverlight, we’re accustomed to using a measurement of degrees.

However, the trigonometric functions produce angles measured in radians. To convert between

degrees and radians, use the following formulas:

radians degrees / 180

degrees radians 180 /

To make the job of converting between angle types easier, it’s helpful to add conversion functions to

your programs. Since Silverlight objects are rotated in degrees, it’s a safe bet you’ll need to convert

between the two angle types at some point.

We talked about several trigonometric functions—let’s review what they do.

Sine is used to determine the y length of a right triangle for a given angle, while cosine is used

to determine the x length. After working with them a bit, the sine/y and cosine/x associations will

become a little more natural for you.

Arctangent—specifically, the method—can be used to determine an angle from two lengths.

This trigonometric function uses an origin and given point to create a right triangle, and returns the

value of the angle q.

We took some time to explore how sine and cosine can be used to create oscillating, circular, and

elliptical motions for objects. We also explored how movements created with sine and cosine calcula-

tions can be combined with linear motions to create interesting effects such as snowfall or drifting

leaves. Remember that the calculations for sine or cosine can be used for more than just movement.

The resulting values of these operations can be applied to an object’s scale for pulsing motion, or

opacity for flashing motion. Altering the speed of change for the angle in the calculation will change

the rate at which the object pulses or flashes.

The Pythagorean theorem says that by taking the square root of the squared and summed lengths of

the two legs of a right triangle, we will get the squared value of the length of the hypotenuse. This

theorem is expressed as follows:

a2 b2 c2

The Pythagorean theorem can be used to determine the distance between two objects. By determin-

ing how far apart objects are, we can create animations that cause objects to react to one another in

interesting ways.

In Chapter 7, we’ll take a look at how we can simulate 3D in a 2D environment. This opens the door

for creating some interesting animations, such as orbiting planets, and horizontal or vertical carousel

navigation systems.

271

In this chapter, we’re going to apply some of the concepts from Chapter 6 to emulate

3D object rotations. While Silverlight doesn’t yet support true 3D, you can add a little

pop to your applications by implementing the concepts we’ll talk about here.

3D
As you are aware, the coordinate system in

Silverlight has only x and y axes, where x is

the horizontal axis and y is the vertical. To

imagine a 3D coordinate system like the one

shown in Figure 7-1, a z axis line is drawn

straight into your computer screen.

We’re not going to be coding up a true 3D

coordinate system—instead, we’ll fake the

visual cues that make people see objects as

being farther away using some of the trigo-

nometry you learned in Chapter 6.

Figure 7-1. The z axis for a 3D coor-
dinate system in Silverlight would run
perpendicular to your monitor.

271

Chapter 7

SIMULATING 3D IN 2D

272

CHAPTER 7

Z axis rotation

We’ll start out with an easy one: z axis rotation. Any object you rotate around the z axis on the screen

would be moving in a circular or elliptical pattern, as shown in Figure 7-2.

Figure 7-2. Z axis rotation results
in a circular or elliptical rotation.

As such, z axis 3D movement isn’t really emulating any 3D motion. It will still become part of your tool-

box, however, so it’s worth taking a look at. You saw how to create circular movements in Chapter 6,

but let’s do a quick review project that puts our terms in a context that works for 3D. In this example,

we will build a project that moves a ball around the z axis.

1. Open the ZAxis3D project. This project contains a gradient-filled object, and the main

page. The file also contains a storyboard timer named .

2. If you were building an application that supported multiple objects traveling in circular or

elliptical paths, you might choose to place some of the code in the object’s code-behind files.

However, for this project, we’ll just take a look at the one ball, so all of our code will go into

the file. Open for editing.

3. Start by declaring an instance of the object:

4. Next, declare the variables we’ll be using for the movement. will be the origin point for

the motion, and will determine the radius of the circle the ball will travel. and

 will be used to determine our sine and cosine calculations, and will determine

where on the canvas the ball will be placed.

5. Inside the constructor, add the following code to initialize the variable. We’re

adjusting the location of the point of origin for the size of the ball by subtracting half of the

ball’s height or width from the center point on the canvas. This adjustment accounts for the fact

that objects are identified by the point at the top left of the object rather than the center.

272

273

SIMULATING 3D IN 2D

6. Continue adding code inside the constructor. The following three lines will place the

ball object at the position calculated in step 5, and add it to the LayoutRoot Canvas.

At this point, you can compile and run the application if you’d like. The main canvas will be drawn, and

the ball will be positioned at the center of the canvas. When you’re done looking at the application,

close the browser window and return to the file.

7. The next thing we need to do is make the ball move. The following two lines also go into the

 constructor. They set up an event listener for the event of the

storyboard, and start the storyboard.

8. The code block shown here is the complete code for the event han-

dler. The code calculates a new x and y position for the ball based on the cosine and sine of the

. The ball’s position is then updated on the canvas before incrementing the and

restarting the storyboard.

That’s all there is to it—compile and run the application, and the ball will move in a circular pattern

around the center of the canvas. With a couple of small changes, the path the ball follows can be

made elliptical.

9. Change the data type to :

10. Inside the constructor, initialize and with some values:

11. Finally, in the event handler, change the calculations to use

the values:

273

274

CHAPTER 7

Take some time and look at the ZAxis3DCompleted project, shown in Figure 7-3. It contains the code

shown here in the example, but I also added a few sliders so you can manipulate some of the values

in real time as the application runs.

Figure 7-3. The ZAxis3DCompleted project

A model of the inner solar system

So you’ve built this project and put some thought into it, but maybe you’re not entirely sure where

something like this can be applied in your own applications. As an example, let’s build a real-world,

working model of the orbits of the inner planets in our solar system. We will write the program in

a way that supports elliptical orbits—the inner planets travel in more circular orbits than the outer

planets, but you may choose to augment the program with elliptical orbits at a later time.

1. Open the InnerSolarSystem project. The project contains the sun and four planet objects:

Mercury, Venus, Earth, and Mars (the planets are not to scale). We will be coding up each plan-

et’s code-behind file in order, starting at the center of the solar system and moving outward.

There is also a timer storyboard called .

2. Open the file for editing. Since we’re starting from the center and working our

way out, we’ll begin with the sun. Declare an instance of the object just above the

constructor:

275

SIMULATING 3D IN 2D

3. Inside the constructor, add the following code to position the sun and add it to the

main canvas:

4. If you compile and run the application, you will see the sun object near the center of the black

canvas. Next, we’ll add Mercury, the planet closest to the sun. Still working in ,

create an instance of the user control:

5. Inside of the constructor, add the Mercury object to the main canvas. Notice here that

we’re not positioning the planet. We’ll be calculating its location mathematically, so it’s not

necessary to specify a starting location. It will automatically be added at 0,0.

6. We’ll add a little code to make the planet move. Open the file for editing.

7. Before the constructor, declare the following variables. We’ll declare s for

 and , and for and . The smaller a planet’s orbit, the faster the

planet travels. As such, Mercury will be our fastest-moving planet, and the speed of all of our

other planets will be determined using Mercury’s speed as a base.

8. Inside the constructor, initialize the and variables as shown in the

following code. The values being used were determined by me from a reference image. Notice

that we are once again adjusting the location of the center point to accommodate the way

Silverlight references objects by their top-left coordinate.

9. The last bit of code we need for Mercury will be used to move the object. The following public

method is used to update Mercury’s position on the screen based on the calculated value.

Each time the method is called, the is decremented to move the planet in a counter-

clockwise direction.

276

CHAPTER 7

10. In order to make Mercury orbit the sun, we’ll need to add a little more code to the main

code-behind, so return to the file. In the constructor, add the follow-

ing code to attach a event listener to the storyboard, and start the

storyboard:

11. The event handler code for the event is shown following. This code

calls the method of the object, which will update the location of the

planet on the main canvas. The storyboard timer is then restarted.

Compile and run the program. Mercury should be orbiting the sun, as shown in Figure 7-4.

Figure 7-4. Mercury orbiting the sun

277

SIMULATING 3D IN 2D

12. The next planet is Venus. In the file, declare an instance of the user

control:

13. Add to the main canvas:

14. Open the file for editing. Add the following variable declarations just above the

 constructor. Notice the value here. The average speed of the planet Mercury is

48km/sec. For , we used a value of .05, and we need to make the other planets

move relative to ’s speed. The average speed of the planet Venus is 35km/sec. To

determine the speed of in relation to , we take 35 / 48 .05.

15. Next, add the following bold code to the constructor to initialize the and

 variables:

16. Finish up the Venus code-behind by adding the method. The code inside the

method is identical to that used for Mercury.

17. In the file, locate the event handler code. Add a call

to the method on the object:

Compile and run the application. Both Mercury and Venus should be in view, as shown in Figure 7-5.

Notice that Venus is moving more slowly than Mercury as both planets orbit the sun.

278

CHAPTER 7

Figure 7-5. The InnerSolarSystem project with both Venus and Mercury in view

18. The last two planets follow the same pattern, so we’ll advance the pace a bit. In the

 file, create an instance of the user control, and inside of the constructor, add

it to the main canvas:

19. In the file, declare the necessary variables. The planet Earth orbits the sun at

about 30km/sec, so to determine ’s speed, we take 30 / 48 .05.

20. Inside the constructor, initialize the and variables by adding the code

shown in bold in the following listing:

279

SIMULATING 3D IN 2D

21. Create the method:

22. In the file, call the method to add the object to the

storyboard’s event handler:

23. Running the application at this point will show our first three planets orbiting the sun, which

means we have only one more to code up!

Still in the file, create an instance of the user control, and add it to the

main canvas of the application:

24. In the file, declare the requisite variables. The planet Mars orbits the sun at

about 24km/sec. In relation to ’s orbital speed, we get 24 / 48 .05.

25. Add the following bold code to the constructor to initialize the and

values:

26. Create the method as shown:

280

CHAPTER 7

27. In the file, locate the event handler, and add a call to

:

Compile and run the program, and you’ll see all four planets orbiting the sun. The

InnerSolarSystemCompleted project, shown in Figure 7-6, contains the code covered in this exam-

ple. I also added a check box that allows you to toggle the orbits of the planets, which are ellipses that

were manually added.

Think about some of the ways this program could be augmented. Certainly, adding more planets is an

option. What about adding moons? How would you go about doing that? Can you figure out a way to

“seed” the starting angle for each planet so it starts at a random location along its orbit? Is it possible

to calculate each planet’s distance from the sun?

Figure 7-6. The completed InnerSolarSystem project with orbits visible

Y axis rotation

In this section, we’re going to look at how we can go about emulating movement of an object around

the y axis, as illustrated in Figure 7-7.

281

SIMULATING 3D IN 2D

Figure 7-7. Y axis rotation causes
an object to move up and down,
front to back.

One of the biggest visual clues we have to tell how far we are from an object is scale. Objects closer

to us are larger, and those farther away are smaller, as illustrated by Figure 7-8. Our brains are pretty

good at comparing the relative sizes of objects we know, such as houses, trees, and vehicles, in order

to estimate how large an object may be.

Generally speaking, the farther away an object is, the harder it is to see—our view becomes obscured

by haze, and distant objects are not as well defined. Next, you’re going to learn how to exploit scale

and translucency in order to make objects appear to be moving either toward or away from the

viewer.

Figure 7-8. Objects appear to get more distant as they are
scaled down and made more translucent.

Let’s code up another example. This time, we’ll write some code that emulates motion around the y axis.

282

CHAPTER 7

1. Open the YAxis3D project. This project contains a simple layout Canvas, our trusty user

control, and a storyboard timer called .

2. All of the code for this project will go into the file, so open that file for editing.

3. Above the constructor, declare an instance of the object as well as the variables

shown. will be used as the origin for the rotation. As with the previous examples,

 determines the distance the ball will travel. and handle the rotation for

us. and are not things you have seen yet. These two variables work

together to create a modifier for scaling the object during rotation. is used to place

the ball on the canvas.

4. Inside the constructor, add the following code to initialize the variable, and

place the ball object at that location before adding it to the main canvas. As with the previous

examples, the variable is adjusted to align to the center point of the ball rather than the

top left.

5. Continuing with variable initialization, set the variable to match the value.

This is where the ball is currently located.

6. Assign values to the variable. This will control the height and width of the movement.

7. Finish up the constructor code by adding a event listener to the story-

board and starting the storyboard:

283

SIMULATING 3D IN 2D

8. Add the code to the event handler. The first two lines calculate the

position of the ball. The third line calculates the scale modifier based on the y position of

the ball and the variable. The next line adjusts the scale of the ball based on the

 calculation. The position of the ball on the canvas is then updated before increment-

ing the value and restarting the storyboard.

9. Compile and run the application. The ball will follow a circular path that appears to be

3D. There’s one small addition we can make to help with the illusion. Inside the

 function, adjust the property of the ball along with the scale. Now the

ball will also fade out as it scales down on the back side of the rotational movement.

10. Try some different values and see what happens when you run the program. One of the things

you’ll notice is that the variable, when used in conjunction with a decreasing x

, will act similarly to the depth of field on a camera, “flattening” the motion. Here are

a couple of values with which you can experiment:

a. : 200; : 0

b. Elliptical path: : 200; : 200; : 1000

All of the code for this example is in the YAxis3DCompleted project. I also added a few sliders and

a check box to the project, as shown in Figure 7-9. The sliders will allow you to change the ,

, and values as the application is running. The check box allows you to toggle the

transparency so you can see what effect that has on the object.

Now, I bet some of you reading this are thinking that the motion looks a bit like what you might use

on a carousel-style interface, and you’d be right. Getting from here to there requires a few extra steps,

but it’s not as hard as it might seem. In the next exercise, we’re going to take a detailed look at how to

create a horizontal carousel. We’ll create a carousel that uses proxy containers for the carousel items,

to which you can add whatever functionality you’d like (images, movies, etc.).

284

CHAPTER 7

Figure 7-9. The YAxis3DCompleted project includes some sliders to change values in real time.

A horizontal carousel

This time, you’re going to do almost all of the work. I’ve set up a base project so you can follow along,

but to really understand how everything fits together, it will be of more value to you to work through

the project from the very beginning.

1. Open the HorizontalCarousel project. The project currently contains only the main page

XAML, which consists of a gradient background and a storyboard timer called .

2. Right-click the HorizontalCarousel C# project name in Visual Studio’s Solution Explorer and select

Add New Item, as shown in Figure 7-10.

3. When the Add New Item dialog opens, select Silverlight User Control. Type in the name

CarouselItem and click the Add button. Visual Studio will create the new object for you and add

it to Solution Explorer. This object will become the basis for each carousel item added to the

application.

4. Edit the file—you can do this either directly in Visual Studio or by

right-clicking CarouselItem.xaml in Solution Explorer and selecting Open in Expression Blend from

the pop-up menu.

285

SIMULATING 3D IN 2D

Figure 7-10. Adding a new item through
Visual Studio’s Solution Explorer

5. Change the size of the user control to 150 100—change both the user control and LayoutRoot

Canvas dimensions. Add a white rectangle with a black stroke that is 150 100 with rounded

corners—both the and properties should be 5. Name this rectangle

RectBackground. In addition, add two TextBlocks. These will be used to identify which item is

which. Center the first TextBlock near the top of the rectangle and add the text Carousel Item.

Name the TextBlock MsgItem. Center the second TextBlock beneath the first, add the text 00,

and name it MsgNumber. Also, add a transform group to the LayoutRoot Canvas. Name the

ItemScale. The XAML that goes inside the user control for this object is shown

in the following listing. Figure 7-11 shows the object.

286

CHAPTER 7

Figure 7-11. This figure shows
what the carousel item should
look like.

6. Open the file for editing. We will be using code to distribute the carousel

items along an elliptical path when creating the carousel. In order to position each item appro-

priately, we need to store a unique angle for each carousel item. Above the

constructor, add the following code to create a publicly accessible variable:

7. Open the file for editing. This is the main application page. One thing I have found

useful when working with carousels is to create a canvas to contain the carousel rather than

generating it directly on the main canvas. This makes the carousel much more manageable

later—move the canvas and the carousel goes with it.

Add a canvas container to . Enter the following code two lines up from the bottom

of the XAML, just before the closing tag. Notice that this canvas is identical in size to

one of the carousel items. This will make adjustments for centering later very easy.

8. Now we’ll start coding up the carousel. Open the file for editing, and add the

following variable declarations just before the constructor. Each element added to the

carousel will be stored in a called . The variable allows easy modification

to the number of elements in the carousel. By now, you should be familiar with the functional-

ity provided by , , , , and .

9. Inside the constructor, add code to define a length for the in the carousel.

The length of the list is determined by the variable initialized in step 8.

287

SIMULATING 3D IN 2D

10. Add code to initialize the variable. Using a negative value for the radius will make the

carousel appear to be tipped forward.

11. Position the canvas that will contain the carousel:

12. Next, we will build a function called that will be used to populate the carou-

sel. The process of defining each element is done inside of a loop. The basic structure for

the function is shown in the following code listing:

13. Begin filling in the loop with the following code. Here, we create an instance of

 called . Once the instance has been defined, we populate one of the

TextBlocks with the element number. This is strictly for reference for this carousel—if you had

a set of images or videos in your carousel, this is where you would assign the property.

14. Next, each has a value assigned to its public variable. The is then used to

calculate the variable:

15. Once has been calculated, place the element at the value stored in the variable:

16. The variable is calculated to determine a modifier value that will be used for scaling

the elements and adjusting their opacity. With calculated, the and

are adjusted.

17. To finish out the function, add the to the and the :

288

CHAPTER 7

18. The function that was just created needs to be called from the constructor in order to

create the carousel when the application is loaded. Add the following code as the last line in

the constructor:

Compile and run the application. When the browser opens, you should see an application similar to

the one shown in Figure 7-12. The application calls the function, which adds eight

elements to the . The elements are evenly distributed based on the and

variables that were defined.

Figure 7-12. The carousel is populated and drawn on the screen.

19. Now we need to make it move. If you’re thinking this is done by manipulating the angle of each

object, you’re right! To start, we’ll need to add a bit of code at the bottom of the con-

structor. The two lines shown following attach an event listener to the event of the

 storyboard, and start the storyboard. Notice that the event handler being called is named

.

20. The event handler takes advantage of the loop, which will step through

each element in a like the one we’re using. The basic structure for the event handler is

shown in the following listing:

289

SIMULATING 3D IN 2D

21. Inside the loop, add the following code. This code decrements the angle for each ele-

ment, recalculates the position, and repositions the object on the .

22. As the objects rotate, the Z-index needs to be adjusted—the items in the front need to appear in

front of the items in the back. To do this, the Z-index is tied to an item’s y position. A test is done

against the y value to determine if it is greater than or equal to 0. If so, the distance is

calculated and the Z-index of the item adjusted. If the y radius is less than 0, the distance calcula-

tion is performed opposite the first method. This ensures that the carousel will draw correctly

regardless of the y value. Be careful when you type in this code—the difference between

the two distance calculations is very small, but makes a big difference in the end result.

23. With the variable having been recalculated based on the y position of the carousel

item, the scale and transparency of the object can be updated:

24. That’s all for the loop, but we still need to restart the storyboard. Just after the closing

curly brace () for the loop, add the following code to restart the storyboard:

Now when you compile and run the program, the carousel will load, draw, and begin spinning from

right to left (clockwise when viewed from above). If you wanted the carousel to spin in the opposite

direction, you would increment the variable in step 21 rather than decrement it. We still need

to augment our functionality a little bit—the carousel isn’t going to be very useful unless it’s inter-

active. Let’s begin adding to the carousel by creating some mouse events for the carousel items.

290

CHAPTER 7

25. Inside the function, add event listeners for and .

Since we’re creating our carousel items inside of a loop, we only need to add the following two

lines to create event listeners for every item on the carousel:

26. Inside the event handler, add code to stop the carousel from spinning:

27. When the mouse pointer leaves an item, we want to restart the carousel spinning. The

 event handler code is shown here:

Now when you run the application, placing the mouse over any of the items on the carousel will

cause the carousel to stop spinning. Moving the mouse off of the item will start the carousel back up.

Chances are you will at some point need to further augment the functionality to access the properties

of each carousel item.

For example, if the carousel contained images, when a user clicked on one of the images, you might

want to display the image on another panel elsewhere in the application. The basis for retrieving infor-

mation from the carousel items is the same regardless of the type of property you’re trying to get, so

we’ll add some basic functionality to access which item has been clicked.

28. Open the file for editing. Just below the code that defines the ele-

ment, add the following code to create a TextBlock named :

29. Back in the function in the file, add a

event listener.

30. Since we know that the items being clicked are of the type , the code inside the

event handler captures the as a . We then have access to all of the objects,

properties, and so on that are part of the , so it’s easy to assign the value of the

 TextBlock in the selected item to the TextBlock we just added to the main page.

291

SIMULATING 3D IN 2D

Compile and run the application. Each time you click an item in the carousel, the text in the TextBlock

at the top left of the screen should update, as shown in Figure 7-13.

Figure 7-13. The carousel with some click functionality in place

The last bit of functionality we will be adding to the carousel will allow the mouse to control the speed

and direction of spin. A lot of carousel controls have a tendency to be a little twitchy when it comes

to control, so I’ll show you a way to make the carousel behave the way we want, and you can change

it as you see fit.

The functionality we will add is to place a rectangle in the object and hook up

a event to the rectangle. As the mouse moves, we will determine the offset from the center

of the canvas, and use that calculation to spin the carousel in one direction or the other, allowing the

speed to change as the mouse moves farther from center.

31. Open the file for editing. Add a rectangle called inside of the

 container. The rectangle size will be manipulated via code, so a 100 100 rect-

angle is fine. Save the file.

292

CHAPTER 7

32. Open the file for editing. Since the rectangle has already been

added to the XAML, we will make some adjustments to its size and location. The following code

goes into the constructor. Start by adjusting the property—here, the code makes

the element twice as wide as the value and adds the of the

 to account for the top-left positioning Silverlight uses. Otherwise, our control

would stop at the left side of the rightmost carousel item. The height of 100 is fine as-is. If you

need a taller control for mouse input, you can modify the property to suit your needs.

33. Next, we will position the element. The element is moved left the equivalent of

the value. The top is moved down twice as far as the value. Note that while

these values work well for the settings on this carousel, they may not work for every carousel.

As the y radius is increased or decreased, you may need to adjust the top location for the

. An easy way to see where it’s located is to set the of the

rectangle to .5. Once it has been positioned where you want it, you can then set the

back to 0. The location of the rectangle for this example is shown in Figure 7-14.

Figure 7-14. The location of the MouseControl rectangle for the carousel project

34. Finish up the work in the constructor by adding an event listener for the

event on the element:

293

SIMULATING 3D IN 2D

35. The following code shows the event handler function. This code

adds the functionality illustrated in Figure 7-15. The farther the mouse pointer moves from the

center of the control rectangle, the faster the carousel will spin in the direction the mouse is

moving. As the pointer approaches the center of the rectangle, the movement of the carousel

slows or stops, eventually changing direction as the pointer crosses the center point.

This code gets the current position of the mouse pointer, and then calculates an offset from the cen-

ter of the control rectangle. The speed is then calculated by dividing the offset by 10,000. The divisor

you use depends upon the initial speed of your carousel, so you will likely need to modify that value

based on your carousel design. The fewer decimal places represented in your variable, the lower

the divisor you will use. The function finishes up by checking the value and limiting it to a maxi-

mum of two times the original speed.

Figure 7-15. The mouse control for the carousel application

294

CHAPTER 7

Now the application is pretty much complete. You can compile and run it to see the results. Moving

the mouse just below the carousel will change the speed and/or direction of spin. Placing the mouse

over an item on the carousel stops the movement, while moving the pointer off an object restarts

the movement. Clicking an item in the carousel reports back which item was selected. While I am

certain there are some further code optimizations that can be made, the end result of this application

is worth mentioning—6.5K. Of course, the application size would grow as content were added to the

carousel items, but we packed a lot of functionality into just about 130 lines of code.

All of the code described in this example is included in the HorizontalCarouselCompleted project.

I also added an extra project for you to compile and run: HorizontalCarouselHelper. This project,

shown in Figure 7-16, contains sliders that allow you to control the x and y origin, x and y radius, per-

spective, speed, and number of items for the demonstration carousel. You may find the application

helpful in determining what settings you want to use for your own carousel applications before you

dig in and start building. Take a good look at the code for the helper application—it illustrates how to

move a carousel in two axes—the x to tilt, and the y for the rotation of the carousel.

Figure 7-16. The HorizontalCarouselHelper application may help you determine optimal settings for your carou-
sel application before you build.

295

SIMULATING 3D IN 2D

Can you figure out how to add reflections to each object added on the carousel? What about rotating

it with buttons rather than the mouse control? Would it work to put 30 items on a carousel, each item

containing a frame from an animation, and then spin the carousel fast enough to see the motion from

the individual frames?

X axis rotation

In this section, we’ll finish out our look at emulating 3D movement in a 2D environment by looking at

x axis rotation, which is illustrated in Figure 7-17.

Figure 7-17. An illustration of
rotation around the x axis

As with y axis rotations, scale and transparency will once again be our clues as to the location of the

object within the context of 3D space. The technique for doing an x axis rotation is the same as it is

for a y axis rotation, but is applied slightly differently.

1. Open the XAxis3D project to code along with this example. The project contains the main

page canvas, as well as the object we have been using.

2. All of the code for this example will once again go into the file, so open that file

for editing.

3. Add an instance of the user control and the variables necessary to code up this example.

You should be pretty familiar with each of the variables by now.

296

CHAPTER 7

4. Inside the constructor, initialize the variables, and position the instance of the

 object before adding it to the main canvas:

5. Set the x and y values:

6. Finish up the constructor by adding a event listener to the storyboard and

starting the storyboard:

7. Inside the event handler, place the code to move the ball. This code

is very nearly identical to that used to simulate y axis rotations in the previous section of the

chapter. The only difference is that when calculating the , is used rather

than .

Compile and run the application, and the ball will travel in an elliptical path around the x axis. The

code shown in this example is included in the XAxis3DCompleted project. The project, shown in

Figure 7-18, has been augmented with sliders and a check box that allow you to modify the program’s

values in real time.

297

SIMULATING 3D IN 2D

Figure 7-18. The XAxis3DCompleted project includes some sliders to change values in real time.

A vertical carousel

Let’s go ahead and apply this to a real-world situation. Since we created a horizontal carousel for

the y axis rotation, we’ll create a vertical, Rolodex-style carousel for our x axis example. Because the

majority of the code for the vertical carousel is similar to that of the horizontal carousel, we’ll start out

a little farther along in the project.

1. Open the VerticalCarousel project. This project contains the main canvas, along with the

, rectangle object, and messaging TextBlock. The

object is also already present in the project, and has had the publicly accessible variable

added.

2. All of the code we will be adding will go into the file, so open that file for editing.

298

CHAPTER 7

3. Begin by declaring a to contain all of the objects that will be used in the

application. Once again, declare a variable to control the number of elements in the carousel,

as well as , , , , and variables.

4. Inside the constructor, add the following code to initialize the of

objects:

5. Assign values for the and variables:

6. Code up the resizing and positioning for the rectangle element. The code here

differs slightly from that used in the horizontal carousel. It is height-adjusted rather than

width-adjusted, and the positioning calculation is a little different—recall that you may need to

customize this a little depending upon the style of your carousel. Figure 7-19 shows where the

 element is located for the vertical carousel.

7. Continue coding the constructor by positioning the :

8. Finish up the constructor by calling the function (which we have yet to code),

adding an event listener to the event for the storyboard, and starting the

storyboard:

299

SIMULATING 3D IN 2D

Figure 7-19. The MouseControl rectangle for the vertical carousel

9. We’re working top-down through the code this time. We have three functions to build:

, , and . We’ll also be adding

three more event listeners for the mouse events on the carousel items. We’ll start with the

 function. This code is nearly identical to that used in the horizontal carousel,

with one exception—the calculation is based on the variable rather than

.

300

CHAPTER 7

10. Next, we’ll tackle the three event handlers that were attached in step 9. The event handler

code is identical to the code used in the horizontal carousel:

11. Let’s code up the event handler. The differences between this and

the horizontal carousel are related to using y values rather than x. The calculation is

modified slightly to account for the vertical orientation of the carousel.

301

SIMULATING 3D IN 2D

12. We’ll finish off by adding the function shown following. The difference in

code between the vertical and horizontal carousels comes in the test that is done against the

 value, not the value.

When you compile and run, the application will look like the one shown in Figure 7-20. You can move

the mouse up or down just to the right of the carousel to alter the speed/direction of rotation. Placing

the pointer over an element stops the carousel, and moving the pointer off of an element will restart

the carousel. Clicking an item will display the selected item number in the TextBlock at the top left of

the screen.

As with the horizontal carousel, you can configure the application to meet your needs by adjusting the

x or y radius values, perspective, or spin speed. All of the code covered in this example is available in

the VerticalCarouselCompleted project.

As with the horizontal carousel, I included an extra project called VerticalCarouselHelper, which is

shown in Figure 7-21. The program allows you to adjust many of the carousel parameters in real time

in order to help you with some of the planning on your carousel application projects.

302

CHAPTER 7

Figure 7-20. The vertical carousel application

Figure 7-21. The vertical carousel helper application

303

SIMULATING 3D IN 2D

Summary
In this chapter, we talked about how we can use some of the techniques from Chapter 6 to make

objects appear as though they are moving in a 3D environment on our 2D canvas. We can trick our

brains into seeing objects as 3D by using scale and transparency (distant objects are smaller and visu-

ally obscured, while close objects are large and well defined) in conjunction with Z-index.

Rotations around the z axis are really nothing more than circular or elliptical movements. You saw how

several z axis rotations could be combined to create a simulation of the inner solar system.

In order to simulate a y axis rotation, an object must have its and properties tied to its

location on the path it is traveling. This will cause the object to scale down and become more trans-

parent as it “moves away.” As the object “moves forward,” the object will become larger and more

opaque. We explored y axis rotations by creating a horizontal carousel.

Our example of x axis rotation worked much like that for y axis rotation, except that the y radius we

were using was larger than the x radius. As with y axis rotations, the and properties

for x axis rotation are tied to an object’s location along the path it is traveling. To simulate a 3D x axis

rotation, we built a vertically oriented carousel.

In Chapter 8, we’re going to take a look at different methods we can use for collision detection in

Silverlight. We’ll create projects that demonstrate a few different scenarios, and hopefully give you

a few ideas that you can apply in your own projects.

305305

Chapter 8

So far, you’ve learned how to make objects move in a variety of interesting ways.

They are missing one crucial component, however: interaction. In this chapter, we’re

going to talk about how to tell when objects have collided, and what to do with them

when a collision has occurred.

We will look at how to determine if a collision has occurred along a single axis,

along multiple axes, and against an angled surface. We’ll also take a look at how to

implement a pixel-level collision test using the built-in method. The linear,

angular, and angled-surface projects are based on projects created by Keith Peters.

The basics of detecting collisions
There are different techniques available for detecting collisions, but we’re going to

stick to simple methods that use bounding circles or rectangles. Why circles? Most

of the objects you will deal with can fit into a circle fairly well, circles are not expen-

sive from a processing perspective, and they are easy to detect collisions on. Take

the spaceship we used earlier as an example. Figure 8-1 shows the ship inside of

a bounding circle.

If we want to determine whether the ship in Figure 8-1 has collided with the sun in

Figure 8-2, it’s as simple as determining the distance between the two objects, and if

the distance is less than the sum of the two radii, a collision has occurred. Figure 8-3

illustrates this concept.

COLLISIONS

306

CHAPTER 8

Figure 8-1. A spaceship inside Figure 8-2. The sun model inside
of a bounding circle of a bounding circle

Figure 8-3. If the distance between two objects is less than the sum of their
bounding circle radii, a collision has occurred.

It sounds simple in theory, right? Let’s see what it looks like in code.

Linear collisions
A linear collision is one that occurs along a single axis. In this case, we’ll be coding up a collision along

the x axis between two ball objects.

1. Open the LinearCollisions project to code along with this example. One thing I’ve done in this

(and other collision projects) that is a little unusual is give the ball a center point of sorts. Take

a good look at the file so you can see what I mean.

The default size for the user control is 50 50. The LayoutRoot element was made to be

1 1, and the BallShape is 50 50, but offset –25,–25. If you select the LayoutRoot element

in Blend, you will see that it serves as the center point for the ball. This means when it is

306

307

COLLISIONS

referenced in code as or , we are returned the LayoutRoot left

or top point, which is the center of the ball. When resized from code, the actual BallShape is

resized rather than scaled, and when a size is needed for something like a collision or bounds

check, the BallShape is referenced directly. While it takes a few extra lines of code to account

for this, the math seems to behave a little better than it does when scaling is used on an object.

You may find an alternative method that works better for you.

2. Each ball has public variables for mass and velocity. Start by declaring a that will contain

all of the instances of the object, two instances of the object, and a random number

object. This code goes just before the constructor:

3. Inside the constructor, following the call, initialize the :

4. Next, we’ll add the two ball instances. Start by generating a random x velocity for the ball.

Since this is a linear collision, there is no need for y velocity.

5. Now we’ll define the ball. In step 1, I talked about how the object in this project is differ-

ent than ones we’ve used before. This code covers our needs for an object defined this way. It

starts by changing the BallShape height and width, and assigning a mass to the ball based on its

width. The last two lines adjust the position of the BallShape relative to the LayoutRoot (center

point). This is done to simply keep the center point at the center.

6. Next, the ball object is positioned on the main canvas. This ball is positioned at the left side of

the canvas. We can’t place the ball at 0 because while the user control is 50 pixels wide, the ball

shape is 75, and offset. To accommodate this change, the location is adjusted by finding the

difference between the widths and dividing it in two. The ball top position is then set before

adding the ball to the main canvas and the :

7. Add a second ball with the following code. This one is smaller—25 pixels in diameter, and posi-

tioned at the right side of the canvas:

307

308

CHAPTER 8

8. OK, the two balls are on the main canvas. Create an event handler for the event on

the storyboard, and start the storyboard:

9. Add the event handler function that will be called when the event is raised:

10. Inside of the event handler function, place a loop that steps through each ball in the

:

11. Inside the loop, add the following two lines of code. The first line creates a object from

the current ball in the , and the second line moves the ball according to the random x

velocity that was generated when the ball was initialized.

12. After the closing curly brace of the loop, restart the timer:

13. You can run the program at this point if you’d like. The two balls will move, but they will even-

tually both travel off the screen since there is no boundary checking in place. Let’s add some

boundary checks. Inside the loop in the function, add the following

code. This code tests the left and right application boundaries. Notice that there are references

to the width of the specific BallShape being checked.

309

COLLISIONS

14. The code you just added will keep the balls on the main canvas when the program runs. Now

that the balls move and collide with the walls, we need to get them to collide with each other.

The first thing you need to do is create a new function called that accepts

two passed arguments of type .

15. At the beginning of the function, add the following three lines of code. The first two lines cal-

culate the distance between the centers of the two objects, and the third line determines the

distance at which a collision occurs.

16. Following those three lines, test to see if there’s been a collision. If the distance between the

two objects is less than the collision distance, a collision has occurred. Inside this statement

is where the code goes to handle the collision reaction.

17. Inside the statement, begin the collision code by determining the total velocity. While it

looks like the two velocity values are being subtracted, one of the two balls will be moving

with a negative x velocity, and subtracting a negative number results in a positive result. For

example, if had an x velocity of 3, and had an x velocity of –2, you

would get 3 – –2, which is 5.

18. Next is the following exciting formula that calculates the velocity of . Without going into

the type of detail that only someone with a PhD in physics can provide, here’s what you need to

know: this is the formula for the conservation of momentum along a single axis. When two objects

collide as they do in this program, this formula will give you the velocity of the first object.

19. Following that code, we have the far less intimidating-looking calculation for the velocity of

the second object. Remember that one of the two objects will be moving with a negative

velocity, so this line will provide the remaining velocity.

310

CHAPTER 8

20. Finally, update the position of each of the objects that was passed to the function:

21. With the collision code in place, all we need to do is call the function and hand it a couple

of objects. Inside the statement in the function, add the following

loop after the boundary-checking code. Like the main loop, this loop counts through the

ball objects in the , but notice that it is indexing one ball ahead of the main

loop () . The current ball object and the next ball in the list are then passed to the

 function that was just created.

If you now compile and run the program, you will see two balls moving toward each other, as shown

in Figure 8-4. When the balls collide, their mass and velocity are taken into account as they rebound

in opposite directions.

Figure 8-4. Two balls of varying size and mass colliding along a single axis

311

COLLISIONS

22. One thing you may see when a fast collision occurs near a boundary is that one of the ball

objects may get “stuck” along the boundary. This occurs when the object’s velocity carries it

beyond the boundary check. Fortunately, it’s easily corrected with a few lines of code that

limit the boundary checking so that it only occurs if a ball is moving toward a wall. Inside the

 function, after the line of code that gets a reference to the current ball

(), add the following code. This code sets up a Boolean flag

to determine whether or not the current ball has negative velocity.

23. Next, update the first boundary check to also check for negative velocity. The new code is

shown in bold in the following listing. This will only check the collision for the left boundary if

the ball object is moving to the left.

24. Make a similar change to the code that checks for the right boundary. This time, you want to

check the boundary only if the ball is moving to the right.

Since we used a to contain the ball objects, adding another ball into the mix is fairly easy. See

if you can figure that out on your own for practice. Add a object that has a width and height

of 40, and starts at the center of the main canvas when the application runs. If you get stuck, use the

LinearCollisionsCompleted project for help.

Now that you have some experience with linear collisions, it’s time to step up to angular collisions.

Angular collisions
An angular collision is one that occurs along two axes. Since the

collision occurs along two axes, the code that handles the reac-

tion for an angular collision is quite a bit more complex than the

code for a linear collision. The basic process we will be coding

up is shown in the following six images, starting with the angular

collision shown in Figure 8-5. The arrows represent the direction

of travel; the lighter line between the center points is the angle

of collision.

The process for calculating the collision begins by finding the

angle of collision between the two balls and rotating the entire

collision counterclockwise by that same angle. The result of this

rotation would look like Figure 8-6.
Figure 8-5. A collision occurring
along two axes

312

CHAPTER 8

Figure 8-7 shows the same collision, with each ball’s travel vector split into its respective x and y

velocities. The original travel vectors are represented by the ghosted out arrows.

 Figure 8-6. The same collision rotated Figure 8-7. The x and y velocity of each vector
counterclockwise. The rotation is the is drawn with a black arrow. The original velocity
opposite of the angle between the is represented by a ghosted arrow.
two objects.

By removing the original travel vectors and y velocities, you are left with a linear collision along the x

axis, as shown in Figure 8-8.

After the collision occurs, the x velocities would be altered, while the y velocities would remain the

same. The post-collision velocities and travel vector are shown in Figure 8-9.

 Figure 8-8. The x velocities create a Figure 8-9. After the collision, the y velocities
linear collision. remain unchanged, while the x velocities are new.

The final step in the process is to rotate the collision in the clockwise direction to its original position.

As you can see in Figure 8-10, the balls now have a different direction of travel.

Figure 8-10. The collision, rotated back to the original angle

313

COLLISIONS

As you probably figured, it takes a fair amount of code to perform this operation. It’s not overly

complex, but the code is not something you would be likely to just look at and understand. With that

in mind, let’s write it up. In this example, you will be coding angular collisions between multiple ball

objects.

1. Open the AngularCollisions project to code along with this example. The project contains

essentially the same code as the LinearCollisions project, except that each ball is given both

an x and y velocity, and there is some additional bounds checking for the top and bottom

of the application. For this example, the bounds checking was moved to its own function:

. Compile and run the program to test it out—two balls are placed on the

screen and given random velocities. They will bounce off of the application boundaries, but

not each other. Take a few moments to examine the differences between this project and the

LinearCollisions project.

2. Inside the function is an empty statement that tests whether or not

a collision has occurred. Begin coding inside that statement by determining the angle of the

collision, as well as the sine and cosine of the angle.

3. Next, rotate the coordinates of the positions. , will be the coordinates of and

, are the coordinates of . The rotation of the collision is occurring around

, which is why and are both 0.

4. To rotate the velocity of , add the code shown here:

5. Follow that with the code that rotates the velocity of :

6. Resolve the collision. This code is very similar to the collision code used in the LinearCollision

project, except that it is using the rotated values calculated in steps 4 and 5.

314

CHAPTER 8

7. Now that the collision has been resolved, rotate the positions back:

8. Update the positions of and on the main canvas:

9. Rotate the and object’s velocities back:

Since that was a fair amount of code, here’s the whole statement shown in one listing:

315

COLLISIONS

Press F5 to compile and run the project, and wait for a collision to occur. If it doesn’t look like the two

balls will hit, press F5 in the browser to reload the application with new starting velocities. Eventually,

the two objects will collide, and bounce off of each other according to their mass and velocity.

Go ahead and add another ball or two to the project. Vary their size a little bit, and then run the proj-

ect and see how it behaves. Generally speaking, you will get accurate, good-quality collisions, but one

thing you may notice is that as an object travels faster, the collision will become less accurate.

The reason for this is in the way the positions are updated and the collisions are checked. The balls

are moved, the collisions are checked, the balls are moved again, the collisions are checked again, and

so on. If a ball has an x velocity of –7 and is 3 pixels from the object with which it is going to collide,

the next time the ball is moved, it will overlap the object by 4 pixels. This becomes a bigger issue

when there are many more objects on screen—one object may end up “trapping” another. This occurs

when one object makes it inside the bounds of another when the two objects are moved. The collision

checking will then determine that a collision has occurred between those two objects, but the objects

will often be unable to separate and will remain stuck together.

10. To account for this issue, add the following bit of code to the collision reaction code, just after

the line that calculates the updated x velocity of the object ().

This code sums the absolute values of both objects’ x velocities, figures out the amount that the

two objects are overlapping, and then adjusts each object based on a portion of the total overlap

determined by their contribution to the total velocity. This will result in very clean collisions even

at higher velocity.

The finished code from this example is available in the AngularCollisionsCompleted project.

Angular collisions with forces
Collisions become even more interesting when you start applying other forces such as gravity to them.

I’ve included an extra project for you to look at called BallDropCompleted that uses the same colli-

sion engine described in the previous example.

316

CHAPTER 8

When the application starts, two balls are generated, and then an additional ball of a random size and

color is created every second until the user-specified number is reached. As the balls move around the

main canvas, they are pulled downward by the force of gravity, bouncing and colliding as they fall until

they eventually come to rest, as shown in Figure 8-11.

Figure 8-11. The BallDropCompleted project applies gravity and multiaxis collisions to a user-specified number of
balls.

Collisions with angled surfaces
Earlier in the book, you saw how the law of reflection is used to create collisions with horizontal or

vertical surfaces. The angle of incidence is equal to the angle of reflection, which means an object will

bounce off of a flat surface at the same angle in which it hit the surface.

But what about angled surfaces? Bouncing objects off of angled surfaces is very similar to perform-

ing angular collisions, except that the angle of the collision is determined by the angle of the surface

being hit. When a collision with an angled surface occurs, the coordinate system is rotated, the colli-

sion is resolved, and then the system is rotated back. Let’s take a look at an example.

317

COLLISIONS

1. Open the AngledSurfaceCollision project to code along with this example. This project con-

tains a ball object and a line object, both of which have been adjusted as described earlier in

this chapter to have the LayoutRoot Canvas act as a center point. The line object user control

is 1 1, as is the LayoutRoot within the control. The actual visual reference line inside the

 control is called ReferenceLine, and is 400 pixels wide, offset –200 along the x to

position the center point.

2. Press F5 to compile and run the project. I’ve already placed the gravity and boundary checking

in place, as well as the basic motion loop, so you should see the ball drop and bounce.

3. I’ve already declared an instance of the line object for you, but you’ll need to add it to the

main canvas. Inside the constructor, add the following code. This will center the line

object on the main canvas, rotate the line 25 degrees, and add the line to the main canvas.

4. The line is now drawn on the main canvas, but it won’t do anything—the ball will still fall

straight through and hit the floor. We’ll need to add the collision code to the

function. Since we’ll be rotating the coordinate system again, we’ll need variables for ,

, and . In the previous example, was the angle between the two colliding

objects—here, the value is taken directly from the line object’s Rotate transform value.

5. Next, figure out the distance between the ball and the line:

6. Add the following code to rotate the coordinates:

7. Follow that by rotating the velocities:

8. Now that the velocities have been rotated, we can perform the bounce:

318

CHAPTER 8

9. Rotate back the coordinates:

10. Rotate back the velocities:

11. Finish by updating the position of the ball on the main canvas:

Press F5 to compile and run the program. The ball drops, hits the line, and bounces. When it reaches

the edge of the line, it keeps rolling as if the line were still there. What happened? Technically speak-

ing, the line is still there. The code defines a line mathematically, and that line continues all the way

across the application. The line that’s drawn in the interface is nothing more than a visual reference

and really doesn’t have any effect on the behavior of the ball as it bounces, even though it looks like

it does.

The solution to this problem is to introduce some boundary checking for the line into the

application.

We can’t use the position of the reference line within the line object, because the position of that

object is relative to its container and will never change as the application runs.

We also cannot use the center point of the object +/– the radius to locate the endpoints, because that

will only be accurate when the line is completely horizontal. The more the line rotates, the closer in

the left and right bounds become, and the less accurate the location +/– radius method will become.

However, we do know the position of the line, the rotation of the line, and the radius formed by the

line, so we can determine the left and right bounds fairly easily.

12. Open the file for editing. Before the constructor, declare

three variables that will be used to store the center point of the line, the radius, and the angle

of rotation:

13. We’ll also need publicly accessible variables to hold the boundary values that we calculate:

14. Create a publicly accessible function called . We’ll be placing code that calculates

the boundaries of the line inside this function. When the line object is instanced, this function

will be called.

319

COLLISIONS

15. Inside the function, place code to initialize the variables that were declared:

16. Follow that up with the code to calculate the left and right boundaries of the line:

17. In the file, the code inside the constructor that initializes the line needs

to be updated to call the new function. The newly added line is shown in bold in the following

code. Notice that the line comes after the angle for the line is set.

18. Now that we have boundaries for the line, we can apply them by wrapping our collision reaction

code in an statement that checks to see if the ball is within the bounds of the line. The updated

collision reaction code from the function follows—add only the lines shown in bold:

320

CHAPTER 8

Press F5 to compile and run the program again. This time, the ball drops, hits the line, bounces, and

drops off the line as you would expect it to. However, after hitting the edge of the application and

rolling back toward the line, the ball moves inside the right boundary, and then “jumps” as the code

calculates the collision again. This issue is easily corrected.

19. Locate the if statement that performs the collision reaction calculation—it looks like this:

. Change it so that it includes an (and) function like the

code shown following.

The tests the rotated position of the ball to see if it is less than the velocity of the

ball. When above the line, the ball’s rotated y position is negative, so it will be less than the

ball’s y velocity, which is positive as the ball drops. Once below the line and inside the line’s

boundaries, the ball’s rotated y position becomes positive, and is greater than the ball’s y

velocity, so no collision takes place.

Now when you compile and run the program, the ball will roll under the line as expected. Play around

with the angle of the line a little bit and see what kind of effect it has on the ball bouncing. Take a few

minutes and add a slider to the application that allows you to change the angle of the line while the appli-

cation is running. If you get stuck, I’ve included the code in the AngledSurfaceCollisionCompleted

project, shown in Figure 8-12.

Figure 8-12. The slider in the project allows you to control the angle of the surface with which the ball collides.

321

COLLISIONS

From where you’re currently at in the project, it takes just a few steps to add multiple lines for the ball

to collide with to the application.

20. Before the constructor, add a new called . This will be used to hold

each line added to the application.

21. Remove the declaration for the object:

22. Add the following four declarations:

23. Inside the constructor, remove the initialization code for the that was

removed:

24. Add the initialization code to the constructor for the , and the four

 you declared:

322

CHAPTER 8

25. Change the function so it accepts a argument, and replace the refer-

ences inside the function to with . The altered lines are shown in bold in the

following code:

26. Inside the event handler function, replace with the fol-

lowing code. This code will step through each in the of lines and do collision

checking.

323

COLLISIONS

Press F5 to compile and run the program. The ball will now roll and bounce along multiple lines, as

shown in Figure 8-13.

Figure 8-13. The ball rolls and bounces along multiple lines.

If you want to change the length of a line at the time of instantiation, all you need to do is change

the property of the ReferenceLine element, and adjust the position of the ReferenceLine ele-

ment so that LayoutRoot remains the center point for the object. The following code shows a typical

instantiation block for a line element, with the two lines of code that resize the individual line element

in bold:

324

CHAPTER 8

I’ve included code showing how to play around with some of the line properties in the

MultipleAngledSurfaces project, which is shown in Figure 8-14. This project also turns the line that

the ball is in contact with orange.

Figure 8-14. A ball colliding with multiple lines of different sizes and angles

We’ve talked about how to do collision detection using circles to detect the collision. Silverlight also

provides a pixel-by-pixel comparison method, called , which we’ll look at in the following

section and example.

HitTest
You have already seen how Silverlight describes objects with a bounding box, no matter what their

shape. The box is defined by the top-left point, and width and height properties, as illustrated in

Figure 8-15. While the method for collision detection described earlier in this chapter works pretty

well, take a look at Figure 8-16. If the space capsule were traveling in the direction indicated by the

arrow, this would produce a hit using circles as collision objects, because the distance between the

two objects is less than the sum of their radii.

325

COLLISIONS

 Figure 8-15. The bounding boxes for the Figure 8-16. Are the two objects colliding, or not?
sun and space capsule objects

If you think this is a possibility and you need a method of collision testing that is more precise

than the methods described previously, you will want to consider the built-in method in

Silverlight. is expensive from a processing perspective, so you will want to optimize the col-

lision checking code to avoid doing the test unless necessary.

Andy Beaulieu came up with a pretty good solution, and we will build a streamlined version of his

example in the following example. The concept is to do a “precheck” by comparing the two objects’

bounding boxes—if they don’t overlap, there’s no reason to spend the cycles checking each pixel for

a collision. If the bounding boxes do overlap, there might be a collision, so we’ll check pixel by pixel

to see if, in fact, a collision has occurred.

The one important thing you need to know is that a good collision test is dependent upon an outline

of the object. In some cases, like the sun and space capsule, there are many paths that make up the

object. What you want is just a single path that outlines the shape, as shown in Figures 8-17 and 8-18.

For the space capsule, I just traced around the edges with the Path tool, filled the path with a trans-

parent color, and saved it as . For the sun object, I was able to combine several of the

existing paths into the element.

 Figure 8-17. The outline path for the Figure 8-18. The outline path for the
space capsule object sun object

326

CHAPTER 8

1. Open the HitTestBuild project to code along with this example. The project contains an

instance of the space capsule and an instance of the sun, each of which has drag-and-drop

code already in place. Both objects have been initialized and placed on the main canvas—you

will see them if you run the application.

2. Open the file for editing. Start by creating a new function called

that accepts a and returns a :

3. Inside the function, begin by creating a object that gets the left and top properties of

the passed object:

4. Follow that up with a object that gets the bottom-right corner of the object that was

passed:

5. Finish the function by returning the rectangle object to the calling code:

6. Next, create a function called that accepts four objects

and returns a Boolean. Inside this function, we’ll test to see if a collision occurred. If it did, the

function will return ; otherwise, it will return .

7. Inside the function, begin by declaring two rectangles, and , which are defined by the

results of passing two of the elements passed into this function on to the

function created earlier:

327

COLLISIONS

8. Test to see if the and objects intersect:

9. If the results of the intersection test were , declare a new that will be used for the

pixel testing:

10. The following block of code steps through each point in the object, which contains the

overlapping area between the two rectangles, and checks to see if it contains any of the pixels

in the first object. If so, the same point is tested against the second object. If pixels from the

second object are found, a collision has occurred, and a value of is returned.

11. If no collision has been found, the function can return , so add the following code after

the closing curly brace of the statement:

The completed function is shown in the following listing for clarity:

328

CHAPTER 8

12. Now all we need to do is make use of that code! At the bottom of the constructor, cre-

ate a new event handler for :

13. Create the event handler function:

329

COLLISIONS

14. Inside the function, set up pointers to the “outline” paths of the two objects being compared:

15. I added Boolean flags to each object so they could be tested. As the mouse is

moving, we will test to see if a collision has occurred, but only if one of the objects is being

dragged.

16. All that’s left is to pass the function the two collision paths and the two

objects, and update the output message based on the result of the check.

Press F5 to compile and run the program. Drag the two objects around and see how the application

responds. As you can see from Figure 8-19, using rectangles alone for collision detection would create

a positive hit when in fact the objects have not collided, whereas the function shown in this example

is very accurate, as illustrated in Figure 8-20.

Figure 8-19. Rectangle-based collision
detection would indicate a collision had
occurred.

As long as you keep in mind that this method can be expensive and write your code in a way that avoids

doing the pixel-level check unless absolutely necessary, you should be able to apply this technique in

your applications rather easily. The code for this example is in the HitTestCompleted project.

330

CHAPTER 8

Figure 8-20. A very precise pixel-by-pixel collision test

Summary
In this chapter, we looked at some ways to detect collisions and make objects react when a collision

has occurred. One of the most common methods for collision detection involves using bounding

circles for objects. By checking the distance between objects and testing to see if the distance is less

than the sum of the two radii, we can quickly tell if the two objects are hitting.

Linear collisions occur along a single axis and are the easiest to resolve. Angular collisions occur along

two axes, and are resolved by rotating the coordinates and velocities of the objects involved, resolv-

ing the collision as though it were a linear collision, and then rotating the coordinates and velocities

back.

331

COLLISIONS

Collisions with angled surfaces work in a similar manner. The coordinates and velocity are rotated

an amount equal to the opposite angle of the surface being hit. This rotation results in a horizontal

surface, upon which a collision can be resolved by applying the law of reflection, which states that the

angle of incidence is equal to the angle of reflection.

The method in Silverlight can be used to get very accurate pixel-level collision check-

ing. Make certain when using this method that the collision-checking code is only called upon when

needed, as it can be expensive to process.

In Chapter 9, we’ll take a look at how we can implement forward and inverse kinematics in Silverlight.

333

In this chapter, we’re going to discuss how we can go about implementing basic

forward and inverse kinematic chains/systems in Silverlight. Both techniques have

been used pretty extensively in 3D animation to create objects with articulated, con-

strained joints that walk, interact, and so on. The concept is based upon a group (or

chain) of objects. Given that chain of objects, kinematics is a method of determining

an object’s rotation and position based on the object next to it.

In the case of forward kinematics, the location and rotation of the first object in the

chain determines the position of other objects in the chain. For inverse kinemat-

ics, the position and rotation of the last object in the chain propagates backward

through the chain.

To illustrate the concepts, stand on one leg and hold your other leg out in front of

you. Viewing the leg you’re holding out from a forward kinematics perspective, the

position of your thigh, calf, and foot all depend upon the position of your hip. If your

hip moves, so do all the parts of the chain.

If we view the leg you’re holding out from an inverse kinematic perspective, we

consider that the position of your foot will determine where your calf and thigh will

end up. Consider what would happen if someone were to come along and give the

foot you’re holding out a good yank—your leg would straighten out or rotate in the

direction it was being pulled.

KINEMATICS

Chapter 9

334

CHAPTER 9

The basis for both the forward and inverse kinematic projects with which we’ll be working was

developed by Keith Peters and adapted into Silverlight with his permission. The techniques were

custom-developed, and while they may not be the “official” methods for creating kinematic chains,

they are easy to set up and they work really well, which is why they’re here. If you’d like to learn more

about inverse kinematics, a good place to start is the Wikipedia entry at

.

Forward kinematics
Let’s start out easy with a simple kinematic chain. Open the ForwardKinematics project to code

along with this example. The project contains two sliders that we will be using to control the angle

of our segments, and a segment object called , which is shown in Figure 9-1. The

 object has a Rotate transform called that we will be using to manip-

ulate the angle of rotation for the segment.

Figure 9-1. The kinematic segment
with which we will be working

Notice in the segment object that the point around which the object will rotate is positioned over the

hole on the left side of the object. While the overall width of the segment object is 155 pixels, the

length of the segment for our project is 120. This keeps the joints aligned, as opposed to laying them

from end to end.

In this project, we’ll be setting up a basic forward kinematic chain consisting of two segments. You’ll

get the opportunity to see how the motion of each segment relates to the other.

1. With the project open, open the file for editing.

2. Before the constructor, declare an instance of the object called :

3. Inside the constructor, add the following code to set limits on the first slider control,

attach an event handler to the event for the slider, and update the on-screen

text:

335

KINEMATICS

4. Since we added an event handler for the slider, we need to add an event handler function.

The following code shows the function. For the time being, it simply

updates the text label for the slider on the screen.

5. Back inside the constructor, add code to position the object and add it to the

main canvas:

6. Next, create a function called . Inside this function, we will place the code to

move the segment as the slider is manipulated. You can see that it simply adjusts the segment’s

angle of rotation to match the value of the slider.

7. In order to call the function, place the following code inside the

 event handler function:

At this point, the program will compile and run, but doesn’t do much—you can manipulate the slider

for and watch the value change as the segment rotates. As you can see, the range of the slider

determines the constraints of motion for the segment. Let’s add another segment to the project and

see what the kinematics will do for us.

8. Back above the constructor, add a second instance of the object, as

well as a that will be used to store the length of the segment:

9. Add code inside the constructor to add the new segment to the main canvas:

10. Also inside the constructor, add the code to define the behavior for the second slider.

Here, we’re setting a slider range of –90 to 90, presetting the value to 0, creating a

event handler, and updating the on-screen messaging.

336

CHAPTER 9

11. Create the function. Like the event handler for the first slider, this

function simply updates the on-screen text and then calls the function.

12. Next, add the following code to the function beneath the existing line of

code. The code starts out by setting the angle of based on its own angle of rotation and

the angle of . It then uses the angle and location of to position on the can-

vas. Those last few lines of code should look somewhat familiar to you—they find a point on

a circle based on a radius. In this case, is the center point, and the radius is the length of

the segment.

13. With that code in place, we can add one more line at the bottom of the constructor.

Since we are positioning via the code, it would draw at the top left of the main canvas

until a slider is manipulated. Adding a call to will adjust the position of

based on the position of . That way, when the application loads, we’ll have a nice-looking

presentation.

Press F5 to compile and run the program. You will see an app like the one shown in Figure 9-2. You can

control the rotation of , and change the rotation of to affect the rotation of . The effect

is a kind of organic, arm-like motion. Adjusting the range of will further constrain the motion

for the forearm segment. Test out a range of –120 to 0 and see if that more closely emulates the range

of motion for your arm. The code for this project can be found in the ForwardKinematicsCompleted

project.

337

KINEMATICS

Figure 9-2. A two-object forward kinematic chain

Automating forward kinematics
Let’s take a look at how we can go about automating this motion. Open up the ForwardKinematics2

project to code along with this example. The project contains most of the code from the first project,

but does not include the sliders or their associated code. It also does not include the code that moves

the segments. It does contain a storyboard timer that will be used for the motion.

1. Open the file for editing. We will be using oscillating movements to control

, which means working with sine and cosine. To do this, we’ll need to cycle through the

angles of a circle and determine a new angle of rotation for the segment. Add the following

two variable declarations prior to the constructor to get started:

2. At the bottom of the constructor, add an event handler for the event on the

 storyboard, and begin the storyboard:

3. Add the event handler function shown in the following listing. The code will

determine a new angle based on the sine value of the variable. Since the slider that

constrained the motion has been removed, the in there simply defines the range. Since

we’re using sine, you should recognize that as creating motion between –90 and 90. Once that

calculation is done, the variable is incremented, the function is called,

and the timer is restarted to keep the motion going.

338

CHAPTER 9

4. Add the following two lines of code to the top of the function. This code per-

forms the movement on the segments by setting their angles based on the value calculated in

step 3.

Compile and run the program. The rotational angles of the segments will run from –90 to 90, creating

an interesting, if somewhat mechanical, motion for the arm. The ForwardKinematics2Completed

project contains the code covered here.

Walking/running
Let’s see what else we can do with forward kinematics. Open the ForwardKinematics3 project to

code along with the next example. This project contains two instances of the

object, with the first instance positioned at the center of the canvas. The second instance will be

controlled from code.

1. Open the file for editing. Before the constructor, add the following three

variables. We’ll be automating the movement again, so we have a variable that defines the seg-

ment length as well as a variable to handle the changing angle upon which the motion is based.

The final variable, , will be used to offset the lower segment’s angle from the upper

segment’s angle.

2. Take a look at the function. Notice the function declaration was changed in

order to accept three arguments—two segments and a cycle value:

3. We’ll move our angle calculations and constraints inside the function. Start

the function with the following code. Here, both angles have a range of 0 to 45. The 90 added

to the end of the first line rotates 90 degrees from the original position, so will

be pointing down, not to the right. The 45 degrees added to the end of rotates that

45-degree range of motion 45 degrees past the range of motion for .

339

KINEMATICS

4. Next, add some code to apply the calculated rotations to the segment objects that were passed

to the function:

5. Finally, move the second segment in relation to the first to line them up:

6. Inside the function, add the following code before the storyboard is

started. This code passes the function you just wrote two segments, and the

current value used to determine the rotation of the first segment.

Press F5 to compile and run the program. The contraints work with the motion of the segments to

form what looks like a single leg walking, as shown in Figure 9-3.

Figure 9-3. Combined with the constraints, the movement of the two segments
looks like a leg walking.

340

CHAPTER 9

7. Let’s continue by adding two more segments that will form the second leg. Before the

constructor, declare two more instances of the object:

8. Inside the constructor, position the object at the center of the main canvas, as was

done for . Add to the main canvas—don’t worry about positioning since the code will

take care of that for you.

9. Inside the function, add a line of code to move the newly added segments:

10. If you run the program, it will look as though there is just a single pair of segments on the

screen. All four are there, but they are moving at the same rate, in the same position. In order

to offset the angle of the second leg, modify the line of code you just added. By adding pi to

the passed to the function, the second pair of segments will be offset

from the first by 180 degrees.

Now when you run the program, you should get a pair of legs that look as though it’s walking, like the

one shown in Figure 9-4.

Figure 9-4. A set of walking legs

341

KINEMATICS

The ForwardKinematics3Completed project contains all of the code covered in the tutorial. I also

added several sliders that allow you to change the speed and constraints as the application runs.

Multiple forward kinematic chains
As you can probably imagine, there’s some pretty neat stuff you can do with longer chains of objects.

The next example of forward kinematics is going to be a little more complex. We’re going to write

a user control that will create a series of tentacles based on a forward kinematic chain. Once we’re

done, a few lines of code will allow you to create some pretty interesting effects.

1. Open the Tentacles project to code along with this example. The project contains the

 user control, from which our tentacles will be constructed. I’ve also added

a user control to the project. The main canvas also contains the storyboard, but

other than that, the project is pretty much empty.

2. Open the file for editing. Because the object will be

building the kinematic chain from the user control, we need to push some

of the functionality to the individual segments. We’re going to make the segments responsible

for tracking their own angles rather than doing it globally as we did with the walk cycle. To

do this, add the following variable declarations before the constructor.

These variables should all be familiar to you from earlier examples.

3. After the constructor, add the following function. This function will be

called from the user control to update the angles of the segments in the kinematic

chain.

4. Save the file and open for editing. This file is

where most of the heavy lifting will be done. We’ll be modifying the control to accept argu-

ments and build a kinematic chain, and create a function to move the chain.

5. Start by declaring the following variables before the constructor. These variables

determine the speed and range constraint of the base segment in the tentacle. The

variable is used to help vary the variable, and determines the initial

orientation of the tentacle when it’s added to the main canvas. The is used to store all of

the segments in the tentacle. Since all of the variables are used only in the user control, they

are scoped as .

342

CHAPTER 9

6. The constructor needs to be modified to accept five arguments. When a tentacle

is instantiated on the main canvas, we will pass in the number of segments desired for the ten-

tacle, the speed, the range, the multiplier, and the angle of rotation. Inside the constructor, the

passed values are assigned to the local variables, and the is initialized. We then

call two functions (which we will create momentarily): and .

When completed, your constructor should look like the following listing:

7. After the constructor, create the function. The function should

accept a single integer argument that represents the number of segments in the kinematic

chain. You can see in step 6 that when is called, it is passed the number of

elements:

8. Inside the function, add the following loop:

9. Inside the loop, add the following code. This code creates a new instance of the

 object, and scales it based on its position in the chain.

343

KINEMATICS

The variable for that instance of the segment is then updated to reflect the

appropriate size based on scale. The for the segment is based upon the passed variable

minus the multiplied by the segment’s position in the chain. This has the effect of

diminishing the angle of rotation of each successive piece of the chain. However, if the mul-

tiplier is set large enough across a number of segments, the angle of rotation will eventually

cross a threshold and become negative. For instance, a of 45 with a of 10

across 10 segments results in range values of 45, 35, 25, 15, 5, –5, –15, –25, –35, and –45. This

will result in a snaking chain. You’ll probably need to spend a little time experimenting with the

 and to get a good feel for it.

The newly created segment’s is then set to 0.

10. Following that code, add the following statement. Here, the code simply positions the first

segment in the Canvas. Since all of the other segments are positioned pro-

grammatically, they can just be added to the root, which is handled by the clause.

11. After the clause in step 10, add the following line of code. This places the new segment in

the .

12. Next up is the function. The code to create the function looks like this:

13. Now start typing inside those curly braces. The first line of this function sets the rotational angle

and segment instance variable to the rotation value that was passed into the

constructor. Remember that in a forward kinematic chain, the first segment drives the rotation and

location of every other segment. This simply sets up that angle of rotation on the first segment.

14. Follow that up with a counter to keep track of the current segment:

15. Next, we’ll need a loop to step through all of the segments in the chain:

344

CHAPTER 9

16. Inside the loop, place the following statement—here we’re just testing to make

sure that we’re making changes to every segment in the chain except for the first one, which

has already been handled with the code shown in step 13.

17. Inside the statement, begin by declaring an instance of the object that is

the previous segment in the chain:

18. Next, set the rotation of the current segment to the sum of the previous segment’s rotation

angle and the current segment’s variable:

19. Next, add the intimidating-looking lines of code shown following. This code is not new,

however—it’s the same code you used in the walking example, modified to work inside of the

 statement. The angle of rotation (in radians) of the previous segment is calculated, and then

the current segment is positioned based on that angle.

20. That’s it for the statement. After the closing curly brace, add the following code. Now that

the segment has been positioned, we will need to call the method to update

the segment’s variable, and then increment the segment’s variable. This is the

code that keeps each segment rotating. Finish up by incrementing the

variable.

That was a pretty good chunk of coding—here’s what the completed class looks like:

345

KINEMATICS

346

CHAPTER 9

21. Now it’s time to test out the code. Open the file for editing. Before the

constructor, declare a new instance of the object:

22. Inside the constructor, type . An IntelliSense window like

the one shown in Figure 9-5 will pop up, showing you all of the variables you need to pass to

the class. For a first pass, type to create a tentacle with ten

segments, a speed of .02, and a root segment range of 45 degrees. Each successive segment will

then have a range of 25 degrees less (remember what I mentioned earlier about creating a snak-

ing shape?). The rotation of the base segment is 0, meaning this tentacle will point to the right.

Figure 9-5. IntelliSense leads the way when calling the Tentacle control.

347

KINEMATICS

23. Next, set the position of the tentacle and add it to the main canvas:

24. To make the tentacle move, we still need to use the timer on the main page. Add a

event handler, and start the timer.

25. Add the event handler function after the constructor. The function is

fairly simple—it calls the method on the tentacle and restarts the timer.

Press F5 to compile and run the program. You will be greeted with a moving, curling tentacle like the

one shown in Figure 9-6.

Figure 9-6. A moving, curling tentacle

348

CHAPTER 9

26. Now that we know the code works, we can change it so that we can create a group of tentacles

on demand. Go ahead and remove or comment out all the code you just added to the

 file. We’ll change the code so that the tentacles are generated more randomly. Before

the constructor, declare the following two variables. The first is a of

objects, and the second is for generating random numbers.

27. After the constructor, add a function called that accepts an integer

argument named . The passed integer will be used to determine how many tentacles

should be drawn on the screen.

28. Inside the loop, generate some random numbers. We’ll randomize almost the whole pro-

cess. Start with a random number for the number of segments. That’s followed by declaring

a speed variable, setting it to 0, and then generating a random number between –.04 and .04.

The loop is there to avoid tentacles that don’t move. Next come variables for the base

segment’s range, a random multiplier, and random initial rotation that should generally keep

the tentacles pointing downward.

29. Next, add the following code to instance the object based on the random numbers

that were just generated. The new instance of the is then scaled randomly between

.5 and .8 before being positioned and added to the main canvas. The last line adds the new

 object to the of .

30. To call the newly created function, we’ll add code to the constructor. Start by initializing

the . Next, call the new function and pass it the number of tentacles you’d like

created:

349

KINEMATICS

31. The tentacles still need to be made to move, so add the event handler to the

storyboard, and start the storyboard:

32. The event handler function looks like the following listing. A loop steps through each

tentacle in the and calls the method for that tentacle. The function

closes out by restarting the timer.

Press F5 to compile and run the program. You will get something similar to Figure 9-7. Each time

you reload the browser, a new and unique set of waving tentacles is created. Spend some time play-

ing around with the constraint ranges and see what kind of results you can come up with. There are

certainly enough variables to experiment with! Due to the random scaling, you may also want to add

some code to adjust the location of each tentacle on the screen so they line up a little better.

Figure 9-7. A group of waving tentacles

350

CHAPTER 9

Inverse kinematics
We’ve gotten a pretty good look at how we can apply forward kinematics to a chain of objects and the

type of motion it will create. Now we’re going to take a look at inverse kinematics, where the free end

of a kinematic chain determines what the rest of the objects in the chain do.

A good example of this would be to imagine a section of chain laying on a surface. If you grab one

end of the chain and pull, the links will follow. If you pull just a bit, only the links close to the link

you’re pulling will move, and the rest will remain stationary. Pulling the first

link farther will result in more links being affected, until the entire chain is

eventually in motion. This type of behavior is inverse kinematic dragging

behavior. Another type of behavior, reaching, would be demonstrated if the

other end of the chain—the base—were nailed to a board, and the free end

were reaching.

We’ll take a look at both behavior types, but first take a look at the seg-

ment shown in Figure 9-8. The chain link shown in the image will be the

segment shape and length we will use for the inverse kinematic examples.

Reaching
Next, we will create a simple example that demonstrates a single segment that reaches for the mouse. You

will be able to see the effect that having one end of an object pinned as it reaches for the mouse has on

the motion for that object.

1. Open the InverseKinematics project. The project contains the chain link

user control, which is instanced a single time and placed on the main canvas. Open the

file for editing.

2. For this example, we’ll have the segment reach for the mouse. At the bottom of the

constructor, add a event handler:

3. Add the event handler code shown following. The function includes some code that should look

familiar to you. It begins by getting the current position of the mouse. It then finds the x and y

distances between the link and the mouse point, and uses to determine the angle. This

is similar to the way the picture rotation worked in Chapter 6. Finally, the segment’s angle of

rotation is updated by converting the calculated variable from radians to degrees.

Press F5 to compile and run the project. As you move the mouse, the segment will turn to reach for

the mouse location. The code for this example is in the InverseKinematicsCompleted project.

Figure 9-8. The kine-
matic segment we’ll be
using to demonstrate
inverse kinematics

351

KINEMATICS

Dragging
The other way I mentioned using inverse kinematics is by dragging. In this example, you will see how

dragging a kinematic chain is much like dragging a length of real chain—each link in the chain will

follow the link before it.

1. Open the InverseKinematics2 project. This base project is identical to the one used in the first

example, except that it includes an integer variable to store the length of the segment (65) for

use in calculations. Once again, open the file for editing.

2. Like the first example, this method also uses the event to move the segment. Inside

the constructor, add the event handler:

3. Create the event handler function:

4. Start the event handler just as you did with the previous example. Get the mouse location,

determine the angle between the points, and rotate the segment:

5. Add two more lines to position the segment based on the position of the mouse and the

length of the segment.

Press F5 to compile and run the project. As you move the mouse around the screen, the segment

rotates and follows, and you didn’t even need to add any dragging code to the segment object!

6. Let’s keep working in this project to add another segment. Before the constructor,

declare a second instance of the object:

7. Inside the constructor, add the second segment to the main canvas. Don’t worry about

the position—the code will handle that.

352

CHAPTER 9

8. Inside the event handler function, after the code that positions , add the

following code to calculate the position for the second segment and position it in relation to

the first. Since the variables are already declared, we just reuse them here for the second set

of calculations. The positioning of the second segment is based upon the location of the first.

Press F5 again to test the project. When it first loads, the second segment will be up in the corner

of the application, but when you move the mouse over the canvas, it will position itself correctly as

part of the chain. Drag the mouse around a little bit and test the motion out. One of the interest-

ing things about this type of motion is that you can use the first segment to push the second one

backward, or pull the first one and the second one will follow. The code for this project is in the

InverseKinematics2Completed project.

Dragging longer chains
Now, you’re probably thinking that this is pretty neat, and you’d like to do a really long chain to see

how it works. So let’s code it up.

1. Open the InverseKinematics3 project. This is essentially an empty project that contains the

same kinematic segment object with which we have been working.

2. Start by declaring variables above the constructor. We’ll be using a to hold our

segments, a to store the mouse location, and scale and length variables. For longer

chains, you will likely want to scale the segment object down so it will fit on the canvas.

3. We’re going to use a function to create the kinematic chain for us, so create a new function

called that accepts an integer argument that represents the number of items in

the chain. Inside the function, we will use a loop to create the chain.

353

KINEMATICS

4. Inside the loop, add the following code, which will create the instances of the segment for

the chain. Notice that the segments are created, scaled according to the variable we declared

earlier, and then added to the main canvas and . They are not positioned on the

canvas. We’ll add a bit of code to handle that later.

5. Inside the constructor, add the following code to initialize the , adjust the

 variable based on the scale, and call the function:

6. If you run the program at this point, all 100 segments will be created, but they will all be piled

on top of one another at the top left of the main canvas. We’ll need to add some code to move

the chain objects. We’ll separate this behavior into its own function rather than tying it to the

 event. Create a function called that accepts a ,

and two s as arguments.

7. Inside the function, add the following code. This will calculate the distance

between segment and offsets passed to the function, and calculate the angle between them.

8. Next, add the following code, which should look familiar to you. This code sets the rotation

and position of the passed segment.

354

CHAPTER 9

9. Now that the movement and positioning code has been generalized, create a new function

called . This function will be called as the mouse moves, and will be used to call

out to the function that was just created in order to move the chain.

10. Inside the function, add the following code to position the first object in the chain:

11. Follow that with the following loop, which will position the rest of the objects in the

chain:

12. Inside the constructor, add the following code. This will preset the location

to a position on the screen, and then call the function to position as many of the

links as possible.

13. If you run the project at this point, the chain will draw in a diagonal line from the top left of

the app down toward the right. Our chain is being created, added to the canvas, and posi-

tioned. All we need to do is add code to attach some mouse control to it. Add the following

 event handler following the code you added in step 9.

14. The event handler is shown following. Here, we’re just grabbing the

mouse position to update the variable, and then calling to update

the location of all the chain segments.

Press F5 to run the project. Drag the mouse around the screen and notice how the chain follows (see

Figure 9-9). You might need to drag it around a bit to see the rest of the links unfold from the pile

near the top left, but you should be able to see how this behavior mimics the example I mentioned

earlier in the chapter—moving the mouse just a bit moves just the few end links on the end of the

chain. You need to move the mouse much further to move the links way down at the end of the chain.

The completed version of this project is called InverseKinematics3Completed.

355

KINEMATICS

Figure 9-9. An inverse kinematic chain containing 100 segments. As the mouse is dragged, the
chain follows.

Organic animations
One of the things I find really appealing about inverse kinematics is the organic-like quality you can

apply to chains of objects—they start acting like little creatures inside a Silverlight application. In the

next example, I’m going to show you a way to set up a Chinese dragon that will cruise around the

application on its own, occasionally changing direction and speed. As you’ll see, I went pretty easy

on the code that changes the direction of the dragon, but I’m sure when you get the opportunity to

modify the code for your own critters, you’ll come up with some new and interesting ways to make

them move.

1. Open the IKDragon project to code along with this example. The project may seem a little

complex, but the concept is relatively straightforward. We’ll create a head that roams freely

about the canvas, and a series of body segments arranged in an inverse kinematic chain. As the

head moves, the body segments will update their angle of rotation and position on the screen.

Every 3 seconds, we’ll have the head change direction.

The project contains two timelines: , which

will automate the head and body movements, and

, which we will use to change the

direction of the head. The project also contains

two user controls: the dragon’s head and a body

segment, both of which are shown in Figure 9-10.

The head control has a public variable in it to store

a velocity value.
Figure 9-10. The dragon’s head (left) and
body (right)

356

CHAPTER 9

2. Open the file for editing. We’ll start with the dragon’s head, so create an instance

of the user control. We’ll also need s for managing the scale of the objects

and the length of the segment, and a random number generator to create some velocities for

the head.

3. Add the following code inside the constructor. This code initializes the object, and

then scales the instance according to the scaling value set up in step 2. After that, random x

and y velocities between 4 and 6 are generated. The loop runs to make sure the y veloc-

ity does not match the x velocity. This will keep the head from moving in a straight line. If the

velocities do match, a toned-down y velocity is generated. Finally, the head is positioned and

added to the main canvas.

4. You can compile and run the program if you’d like, and you’ll see the dragon head drawn on

the main canvas. The next step is to make it move, so inside the constructor, create an

event handler for the timer’s event, and start the timer.

5. After the constructor, create the event handler function:

6. Inside the function, start by calculating the angle of rotation from the head. Use the x and y

velocity to calculate angle, and then apply the rotation to the head:

7. Next, update the position of the head on the canvas:

357

KINEMATICS

8. Check to see if the head has hit a boundary, and if so, change the direction of the velocity. Note

here that while we’re adjusting the boundaries for the scale, we’re not taking into account the

rotation of the head, so the head may duck off canvas or change direction prematurely when

it reaches a boundary.

9. Finally, restart the timer.

10. Press F5 to test the application out. The head should be moving around the screen, changing

direction when it reaches the edge of the main canvas. We want to change the direction more

often than boundary collisions will occur, which is why there is a second timer. At the bottom

of the constructor, add the following code to create a event handler for the

 storyboard, and start the storyboard. is a storyboard timer

with a duration of 3 seconds.

11. Add the event handler function after the constructor.

This function will store the velocity, and generate a new one. If the head is currently mov-

ing up, the new velocity will point it down. If the head is moving down, the new velocity will

point it up. The code shown here is where you can spend some time to make the movement

more interesting. The last line of the code restarts the storyboard so that this function will be

called again in 3 seconds.

358

CHAPTER 9

12. Now when you run the program, the head will zigzag about the canvas. While the changes may

look a little abrupt at the moment, having the body in there will smooth them out. Speaking

of the body, we’re all done with the head, so now we need to create our kinematic chain of

body segments. Before the constructor, add the following lines of code to your variable

declaration section. This code declares a of objects and sets up a variable to

store the number of body segments.

13. Inside the constructor, initialize the of , and adjust the

for scaling. The last line calls a function we will create next.

14. Create the function shown in the following code. The function contains a

loop that will be used to generate the body segment objects.

15. Type the following code inside the loop. This should be pretty easy for you to figure out by

now. A new instance of the body segment is created, scaled, positioned, and added to the

of segments and the main canvas.

359

KINEMATICS

16. If you run the program again, you’ll see that the body segments get generated in a pile at the

top left of the main canvas, and the disembodied head is still running around loose. We’ll add

another function to handle the movement of the segments. As with the example earlier in this

chapter, the movement is handled by a generalized method that accepts a seg-

ment as well as two arguments.

17. The function begins by calculating the distance between the offset and the segment, and cal-

culates an angle from that offset:

18. From there, the segment that was passed in can be rotated and positioned:

19. With the function that handles the positioning of the segments in place, create a function

called that will make the necessary calls to the method:

20. This function starts by calling the function in order to position the first body

segment in relation to the head:

21. After the first body segment is positioned, the following loop will step through the remaining

segments, calling the function for each one in order to position it based upon

the previous segment in the chain:

360

CHAPTER 9

22. At the bottom of the constructor, add a call to the function you just wrote.

This will preset the locations of as many of the body segments as possible before the timer

starts.

23. In the event handler function, add the same line of code just before the

closing line. The first time we called the function, it set the body segments into

their initial positions. This time, the function will be called each time the storyboard timer

expires—this is where the body movement takes place as the application runs.

Press F5 to compile and run the program. The dragon will work its way around the screen, chang-

ing vertical directions every 3 seconds (see Figure 9-11). Play around with some of the velocities

and timing for the direction changes. See if you can come up with something that’s interesting and

organic-looking with regard to the movement.

Figure 9-11. The Chinese dragon cruises around the application on its own.

Reaching with longer chains
Since we looked at how to go about making longer chains that can be dragged around on the canvas,

we will also take a look at how to make a longer chain that reaches. Open the InverseKinematics4

project to code along with this example. This project is similar to the InverseKinematicsCompleted

project, except that the single segment in the application has been moved to the bottom center of the

main canvas, and the code to move the segment has been removed. We’ll modify the code to include

a second segment and move both.

361

KINEMATICS

1. Open the file for editing.

2. Before the constructor, add the following variable declarations. This will create a sec-

ond instance of the object and declare a variable that will be used to posi-

tion the second segment.

3. Inside the constructor, position the new instance of the segment object and add it to

the main canvas:

4. In order to calculate the angle and rotation of any given segment, we’re going to be using

a generalized method once again. Create a method called that accepts

a and two arguments, and returns a :

5. Inside the function, add the following code. This code determines the angle

between the passed segment and offsets, rotates the passed segment, and returns the angle of

rotation:

6. Now take a look at the function. After the code that determines the

value of , add the following code. This code uses the position of the mouse and

length of the segment to determine where would hit the target coordinate based

on the angle of rotation of the first segment.

7. Next, a call is made to the function, which passes and the calcu-

lated target positions. This will rotate .

362

CHAPTER 9

8. With all of the calculations done, is positioned based on the location of

:

Now, maybe you’re looking at the code and scratching your head a little bit wondering what just

happened, because we didn’t move the left or top positions for in the move code,

and it still seems to be moving around. Keep in mind that we’re building an inverse chain here—

 is now the segment that is in contact with the floor. I’ve illustrated this functionality for

you in Figure 9-12. The chain builds from the reaching position backward. The completed code for this

example is in the InverseKinematics4Completed project.

Figure 9-12. A graphical representation of a simple reaching inverse kinematic chain

Variable-length reaching chains
As you can probably imagine, coding up more than a couple of chain segments would get pretty

tedious and require a fair amount of code. Much like we did with the dragging chain, we can add some

functions that will make the work of moving a chain easier. To follow along with this example, open

the InverseKinematics5 project. This project is stubbed out with a good deal of code with which you

363

KINEMATICS

should already be familiar. It contains a to contain the segments, variables for the segment size

and scaling, and a function to build the chain. When run, the project will create a chain

with 25 links, but they won’t yet move. We’ll add code to the existing func-

tion to handle that for us:

1. Open the file for editing. Even though the code to move the chain will go in

the event handler, we’ll still need to create separate functions to handle the reach-

ing and positioning of the segments. Create a new function called . The function will

accept a and two s as arguments, and return a .

2. Inside the function, place the code that handles the angle between the x and y values and the

segment passed in:

3. In the last example, the target location was based around the mouse location and the segment.

This time, we’re using passed values. Add the following code, which calculates the target loca-

tion based on the x and y values and the angle calculated in step 2:

4. Next, add a function that accepts two objects. This is where the code goes

that positions the segments, so call this function :

5. Inside this function, add the following code. This code calculates an angle based on the rota-

tion of the first passed segment, and uses it in conjunction with the position of the first seg-

ment to position the second segment.

6. Next, we’ll be adding code to the function to make use of the func-

tions we just added. Start by creating two objects:

364

CHAPTER 9

7. The next line calculates the points by calling the function and passing the first

segment in the chain, as well as the x and y position of the mouse:

8. Add a loop that repeats step 7 for the rest of the segments in the chain. Each time through,

the coordinates are updated and passed into the function for the next segment.

9. Finish up the function with the following loop. This loop starts at the second loop in the

chain (second segment closest to the mouse), and steps backward through the of seg-

ments. For each iteration of the loop, the function is passed the current segment

and the next segment.

Press F5 to compile and run the project. Move the mouse around on the main canvas, and the chain

will follow the mouse, as shown in Figure 9-13. Play around with the scaling and number of segments

in the chain to get a feel for the application.

Figure 9-13. A longer reaching inverse kinematic chain

365

KINEMATICS

Reaching for objects
You can start getting some really interesting effects with reaching chains when they reach for some-

thing other than the mouse. We’ll close out the examples in this chapter by building an underwater

mine that appears to be tethered to the bottom of the application with a chain. This example will

demonstrate how to reach for an object other than the mouse point.

1. Open the UnderwaterMine project to code along with the example. This project has a few

parts to it. The file has the usual main canvas—this one has a blue gradient fill.

There is also a storyboard timer called . It’s not in use yet, but we’ll be using it soon.

I also added two user controls to the project. The first one is called , but

contains two different paths that form the chain shapes shown in Figure 9-14. By default, only

the one on the left is visible in the control. The side view is hidden. There is also an underwater

mine user control called . This control contains the mine shape shown in Figure 9-15.

Figure 9-14. The two path shapes Figure 9-15. The shape inside
in the segment object the Mine user control

2. Take a couple of minutes and go through the code in the project. This is the same code used

in the last example, with two minor differences. First, the chain has 23 links in it. I happen to

know that’s how many we will need to reach from the bottom of the app to the bottom of

the mine object. The other difference is that the segments in the chain look different. If you

compile and run the project, you’ll see a bunch of links forming a chain that reaches for the

mouse position just like the one shown in Figure 9-16.

3. Open the file for editing. We’ll start out by updating the chain. This is done by

changing the function, which follows:

366

CHAPTER 9

Figure 9-16. The chain of links reaches for the mouse position.

4. Update the function with the code shown following. This just sets up a simple alternating flag

that changes the visibility of the links on every other iteration. A Boolean would have worked

here just as easily. If you run the program again after making this change, you’ll see that the

chain looks more chain-like.

367

KINEMATICS

5. Next, we’ll add the object to the application. Before the constructor, add the fol-

lowing declaration:

6. Inside the constructor, add the following code to initialize the object, position the

top of the mine, and add it to the main canvas. We’re not going to worry about positioning the

left side of the object—we’ll be handling that with some code.

7. We will no longer be using the event, so remove the following line of code from the

 constructor:

8. Next, we’ll modify the event handler function, which follows:

9. Begin by changing the name of the function to . Be sure to remove the param-

eters as well.

10. Delete the line of code that gets the mouse position:

368

CHAPTER 9

11. At the moment, the calculation uses the mouse coordinates as a location. Update that

code to look like the following. It will now use the first element in the —the

one closest to the target—to reach for the mine object. The and adjustments are

to position the reaching point at the bottom center of the mine—since the object is scaled,

I hard-coded these values, which is probably not a good habit to get into.

12. The target is all set up; now we just need to make it move. Inside the constructor,

create an event handler for the event on the storyboard, and then start the

storyboard:

13. Create the event handler function. For the moment, all it needs to do is call

 to update the location of the chain, and restart the storyboard.

14. If you run the project at this point, you’ll see that the chain does indeed stretch toward the mine,

but doesn’t reach it, and nothing is moving. We’re going to move the mine slowly back and forth

along the x axis. With that in mind, add the following variables before the constructor:

15. Inside the constructor, initialize the variable:

16. Add the following code to the event hander function. This code should

look familiar to you from the oscillation examples in Chapter 6.

17. Press F5 to compile and run the program. The mine will drift slowly back and forth as the chain

follows.

18. There’s one more addition we can make to the function to add a little more

realism to the project. In order to make the mine rotate slightly as it’s drifting, add the follow-

ing line of code. This will rotate the mine back and forth 25 degrees as it drifts. Now when you

run the program, the mine tilts as it drifts, as shown in Figure 9-17.

369

KINEMATICS

Figure 9-17. The mine drifts and rotates, and the chain follows.

The final version of the code for this example is in the UnderwaterMineCompleted project. I also

added a gradient mask to the final project to give the effect a little more depth.

Now, given that an underwater mine is actually tethered to a chain, it probably makes more sense to

do this one as a dragging chain rather than a reaching chain, so with that in mind, I’m going to leave

you with two assignments. First, write the mine example using a dragging chain, and second, use either

the reaching or dragging example, and turn the mine and chain into a user control so that you can

instance the entire mine with just a couple of lines of code.

Summary
In this chapter, we talked about how to implement basic forward and inverse kinematic chains/systems

in Silverlight. Forward kinematic chains are formed when the base of a chain drives the angle and posi-

tion of the objects in the chain. An example of a forward kinematic chain would be moving your upper

arm—your lower arm and hand would follow.

Inverse kinematic chains are formed when the free end of a chain dictates the angle and position of

the objects in the chain. An example of an inverse kinematic chain would be if someone were to grab

your hand and pull—your forearm, upper arm, and maybe even body would follow.

While the method of implementation discussed here may not be the “official” method for doing for-

ward or inverse kinematics, they look and work extremely well, and don’t put too much pressure on

the processor.

In Chapter 10, we’ll take a look at how to implement a basic particle system. Once that’s in place, we’ll

look at some interesting ways to implement particle systems in Silverlight.

371

In this chapter, we’re going to take a look at how to build particle systems in Silverlight.

Particle systems are often used to model so-called fuzzy objects—objects that do not

have well-defined surfaces, such as smoke, fire, and water. Now, before you get too

excited, you should know that we won’t be doing those types of particle systems

here. Instead, we’re going to create a base system that you can augment based on

other concepts you’ve learned in this book in order to move in that direction.

The first thing we need to address is the definition of a particle. A particle is generally

defined as a small portion of something. For our purposes, we will define a particle as

a single occurrence of an object. That might mean a car, a tire, a drop of water, a ball,

or even a leaf or snowflake. That’s right—the projects we did way back in Chapter 6

to make snow fall and leaves waft were particle system implementations.

The basic model for particle systems is that for each unit of time that passes, the

application may create new particles based on some condition, assign a unique set

of attributes to any new particles that are created, remove any particles based on

some condition, and update the position of the particles on the screen. Typically, the

destruction of particles occurs based on a life span for the particle, but as you will

see, you can also use other conditions, such as if a particle goes off the canvas.

PARTICLE SYSTEMS

Chapter 10

372

CHAPTER 10

A basic particle system
Let’s take a look at how we would go about building a basic particle system in Silverlight.

1. Open the BasicParticleSystem project. This project contains the base

 file with a timer storyboard and an object called .

2. Open the file and take a look at the XAML, which is shown

following. The particle itself is a less-than-impressive gray ellipse with a black

stroke, as shown in Figure 10-1. Items of note in the code are that both the

Scale transform and ellipse shape are named to make them easily accessible

from the code-behind.

3. Open the file for editing. Just above the constructor, add the following

three lines of code. These will declare a of type named . The will

be used to track the number of particles in our particle system. The variable will

be used to generate the particles. The variable will allow us to use random numbers to

vary the look of the particles as they are generated.

4. Next, we’ll create a function that will generate our particles. This code goes after the closing

curly brace of the constructor. Notice that we will be passing the function an integer

that will be used to generate particles. Inside the function is a simple loop that creates

a new instance of the object, assigns random locations to the left and top properties,

adds the new particle to the , and draws the particle on the main canvas.

Figure 10-1. The
particle used in
the BasicParticle-
System project

373

PARTICLE SYSTEMS

5. Inside the constructor, we need to add a bit of code before we can use our and

create some particles. After the line, add the following two lines of

code. The first line initializes our so that its length equals the number of particles we’ll be

placing on the canvas. The second line calls the function created in step 4,

and passes the variable to the function.

6. Test out the project by pressing F5 to compile and run. You should see something similar to

what is shown in Figure 10-2. Just to test out the randomness of the particle placement, press

F5 a few times in the browser to reload the application. The particles should redraw at differ-

ent locations each time.

Figure 10-2. The CreateParticles() function at work

374

CHAPTER 10

7. Let’s add a little bit of randomness to the particles. Just before the

line, add the following code. This will create an array of bytes, generate random numbers for

each byte value in the array, and then use those values to change the colors of the particles.

8. After the code added in step 7, and before the code that adds the particle to the , add

the following lines of code to mix up the scaling and opacity of the particles. The

 line generates a value between 0 and 1 for the property. The

and properties are handled in the same way, except that we do a quick test to make

sure the particles are at least 25% in scale.

9. Compile and run the program. You will see something like what is shown in Figure 10-3.

Figure 10-3. The particles now have random color, scale, and opacity.

10. So the particle generator is in place and does a pretty good job of randomizing our particles,

but at this point, they’re static. We need to make them move. Let’s start by adding age and

life span to each particle. Open the file and add the following lines of code

before the constructor. These are two simple, publicly accessible properties that

will be used to track a particle’s age and life span.

375

PARTICLE SYSTEMS

11. Back in , add the following two lines at the bottom of the constructor.

These lines of code will set up an event listener for our timer storyboard and start the story-

board running.

12. Inside the function, add the following line, which will create a random life

span between 0 and 120 frames for each particle as it is created. At 30 frames per second, that

should be a maximum of 4 seconds that any given particle is on the screen.

13. The event handler is shown following. This code uses the loop to

step through each in the , increment the age, and test to see if the

particle has reached its life span. If so, the particle is removed from the main canvas.

14. Compile and run the project. The particles will be drawn, and after a second or so, will start

disappearing from the screen until they’re all gone.

15. Each time a particle dies, we’ll create a new one. To do this, we’ll first need to make a change

to the code, however. The loop locks up the enumeration of our

. When a particle dies, it’s not enough to remove it from the main canvas;

we should also pull it out of our . Since the enumeration is locked, attempting to change

the length while the loop is running would cause an exception. Instead, we’ll change

that to a basic loop. After the change, the function should look like the

following:

376

CHAPTER 10

16. Now we can add code inside the logic to remove the dead particle from the , and

generate a new one on the screen. The relevant new code is shown in bold in the following

listing:

17. If you run the program at this point, your particles will draw on the screen, and as a particle

dies, a new one will be generated to replace it. All that’s left to do is to add a little code to

make them move. Inside the file, add the following variable declaration

before the constructor:

18. Inside the function in the file, add the following code to

create random values for the x and y velocity values of each particle. Just to make sure none

of the particles are standing still, test for 0 values and assign them a new value to keep them

moving:

19. Inside the function, add the following two lines of code just before the line

that increments the particle’s age:

377

PARTICLE SYSTEMS

Press F5 to compile and run the project. The particles will be drawn and move about the screen ran-

domly. Each time a particle dies, another will be generated to take the place of the recently deceased.

The final version of this code is available in the BasicParticleSystemsCompleted project.

If you were so inclined, you might consider adding a “dying” storyboard animation to the

 file, perhaps one that quickly shrinks the particle to nothing. When the particle reaches its life

span, the dying animation would be played, and upon completion, the particle would be removed

from the and main canvas.

Emitters
Emitters are just what their name implies: objects that emit particles. The example project we just built

didn’t make use of a specific emitter for the particle, but emitters are relatively easy to implement.

Let’s take a look at how we can make use of an emitter.

1. Open the ParticleEmitters project. This project contains the same and particle

as the last project did, but also includes an object called . The XAML for the

object is shown following—it’s nothing more than a 100 100 canvas with a gray background

so you can see it on the screen. The reason why we want to be able to see it in this case is

because the canvas is draggable. I’ve already added the dragging code to the

 file, and the two lines of code necessary to instance the object on the main canvas. You can

compile and run the project and see that the gray canvas can be dragged around the applica-

tion.

2. The majority of the code for this project is identical to that of the last project, so we’ll move

through it a little more quickly. Once again, the variable declarations that are placed above the

 constructor in are as follows:

3. Add the following four lines of code to the constructor to give the

a length, call the function, and set up the event listener on the

storyboard timer before starting the timer:

378

CHAPTER 10

4. The function should be added below the constructor. Here, the code

has changed a bit, so I’ve highlighted the changed lines in bold. The particle positions are now

based on the center of the ParticleEmitter Canvas. We’ve also toned down the scaling a bit to keep

the particles at a maximum of 25%. Most importantly, the last line of the function adds the particle

to the Canvas. (This is different than the Canvas.)

5. Add the event handler function. The code here has also been updated.

The line that removes the dead particles needed to be updated to remove them from the

 object. Once again, the updated code is shown in bold.

379

PARTICLE SYSTEMS

6. Press F5 to compile and run the program. You will see something similar to Figure 10-4. The

gray emitter Canvas will appear in the upper-left corner and begin emitting particles. You can

use the mouse to move the emitter around the main canvas.

Figure 10-4. The emitter can be dragged around the main canvas.

7. There are two things we will add to this program to improve the functionality. The first will

adjust the program so that when it starts, the number of particles will increase—the pro-

gram won’t begin with an initial burst of particles. Inside the constructor, update the

 call so that it creates only a single particle:

380

CHAPTER 10

8. Now when the program runs, it will create only a single particle. As the program continues to

run, we want to build up the number of visible particles, so inside the func-

tion, add the following code as the very first line, before the loop. Each time the story-

board completes, another particle will be added if the number of particles on the screen is not

equal to the number of particles specified.

9. Press F5 to run the program. The emitter now produces one particle at a time, building up to

the specified 150. Close the browser when you’re done checking out the program.

10. Let’s make one more tweak to this program. We’re going to add some gravity to pull the par-

ticles downward. You’re going to be surprised how easy this is. At the top of the

file, add the following variable declaration for gravity:

11. Inside the event handler code, just before the closing curly brace of the

statement, add the following line of code:

12. Run the program again. You will see something like what is shown in Figure 10-5. Play around

with the gravity setting a little bit and see what happens to the particles. If you want to play

around with the spread of the particles as they are emitted, tweak the values in the line of code

that sets the x velocity for each particle ().

Figure 10-5. The particles are pulled
downward by gravity.

The finished version of this code is available in ParticleEmittersCompleted. I added a particle count

to the top-left corner and changed the emitter Canvas to have no background color. The emitter can

still be dragged around on the screen, but the application looks a little cleaner.

381

PARTICLE SYSTEMS

One thing you will notice is that if you move the emitter Canvas, all of the particles move as well. If

you want to be able to make trails with the particles, you’ll like the next project.

Building a comet
For this project, we’re going to build a comet that moves in an elliptical path, emitting particles as

it travels. The particles in this project are emitted to the main canvas based on the location of the

emitter. This means that as the emitter moves, the point of origin for the particles will move, but the

particles will sprinkle around the main canvas, leaving a tail on the comet.

1. Open up the ParticleComet project to code along with this example. The project contains

a few parts. There is the file, which contains a black background and the timer.

We also have the object, which in this case is an ellipse with an orange center and

a translucent red edge, like the one shown in Figure 10-6. Finally, there is the object,

which looks just like the emitter, but is smaller, as shown in Figure 10-7.

Figure 10-6. The particle emitter Figure 10-7. The particle shape used
shape used in the ParticleComet in the ParticleComet project
project

2. Take a look at the code-behind file. This file already has some variables

declared—you should recognize them as being the necessary components for making the

emitter move in an elliptical path.

3. Inside the file is our usual particle-related code:

4. Let’s start coding! Open up the file. We’ll start by getting the emitter moving.

Declare an instance of the object before the constructor:

382

CHAPTER 10

5. Inside the constructor, add the code shown in the following listing. The code will set the

 and values the will use for its elliptical movement. The is then

positioned according to the cosine/sine calculations you learned about back in Chapter 6. To

finish up, we set the Z-index property of the to 1 before adding it to the LayoutRoot

Canvas. This will cause the particle emitter to draw on top of the particles as they are added to

the LayoutRoot Canvas.

6. Finish coding up the constructor with the following code. This sets an event listener on

the event for the storyboard before starting the storyboard. Notice that the

event handler is still called —we’ll be augmenting the function we used before,

but we’re starting with the emitter.

7. Create the event handler as shown in the following listing. Remember that

this code will run each time the timer storyboard expires. When that happens, the code here

will update the position of the object on the main canvas, increment its , and

restart the timer.

383

PARTICLE SYSTEMS

8. Press F5 to compile and run the project. The comet will be drawn on the screen and will travel

an elliptical path, as shown in Figure 10-8.

Figure 10-8. The comet travels an elliptical path.

9. Next, we’ll add in the particles. Still working the file, add the following declara-

tions before the constructor. We’re going for a few more particles this time, and slightly

less gravity, to give the particles a little more float.

10. Before the event listener inside the constructor, add the following

two lines of code. This will initialize the of particles with a length of 200, and call the

 function to create a single particle:

11. Next, code up the function. Once again, we’re passing an integer value to

tell the function how many particles to generate. Notice that the positioning code positions the

particle based on the location and size of the object. The and

properties are randomly generated, as are the and . Once all that has been

done, the object is added to the and then added to the LayoutRoot

384

CHAPTER 10

Canvas. Did you catch that? The particle is positioned based on the location of the emitter

object, but added to the main canvas, not the emitter Canvas.

12. Next, you’ll need to augment the function with the following code. Add this

code to the top of the function. This code will check the particle count and

add a particle if necessary. The code then drops into the familiar loop that updates the

position of the particles on the screen, increments the particles’ ages, and then checks to see

if any particles have died and removes them if they have. Finally, each particle has its y velocity

modified by the variable.

385

PARTICLE SYSTEMS

For reference, here is a listing of the completed event handler after adding the code

shown previously:

386

CHAPTER 10

13. Press F5 to compile and run the project. The comet will travel the elliptical path, leaving a trail

of particles behind, as shown in Figure 10-9.

Figure 10-9. The comet now has a particle-based tail.

14. That looks pretty good, but we can push it a little farther. I put a storyboard called in

the file. It’s shown in the following listing. The storyboard fades the particle out

over .5 seconds, and then fades it back in over the next .5 seconds. The storyboard will then

reverse automatically, and is set to repeat endlessly.

15. Inside the function in the file, just before the

 line, add the following two lines of code. The first line will generate a random

 between 5 and 10 for the storyboard, and then begin the storyboard.

387

PARTICLE SYSTEMS

16. In the function, you need to add some code that stops the storyboard before

the particle is removed from the canvas and the . The following listing includes

the loop where the new line of code should be placed—the relevant line of code is shown

in bold.

Press F5 to run the project and check it out. Now as the comet moves, it leaves a trail of shim-

mering debris behind it, as shown in Figure 10-10. The final code for this project is available in

ParticleCometCompleted. See if you can figure out how to create a project that drops sparkling

particles from the mouse when it is moving.

Figure 10-10. The comet leaves a trail of shimmering debris.

388

CHAPTER 10

Explosions
The next type of particle system we’ll take a look at is an explosion. We’ll start out with a circular

explosion—similar to the type you see in games or movies when a spaceship explodes. Debris will

move out from the center point in a circular pattern, the diameter of which will increase along with

the life span of the explosion. Open the RingExplosions project to code along with this example.

Since this particle system is built on the same base system as the earlier examples, I’ve already pro-

vided a lot of the code in the project for you. We’ll just concentrate on adding the parts that make the

explosion look the way we want.

1. Open the file for editing. The particles in this explosion will form a ring that

expands. As such, the particles will need to have their x and y velocities match. We could easily

use a random number to generate the speed, but in this case, we’ll set up a variable to control

the speed. Add the following line of code to the variable declarations that precede the

constructor:

2. Inside the function, add code to set the velocity of the particles being

created:

3. If you’re thinking ahead, you’re figuring we’re going to be using sine and cosine to pull off the

magic with this particle system, and you’re correct. Still inside the function,

add the following line of code to assign a random angle to each of the particles in the system:

4. Inside the function, we’ll need to convert our particle’s angle to radians. Add

the following code at the top of the loop:

5. Next, the position of the particle is based on the value calculated in step 4. The following two

lines of code come after the code added in step 4, and will position the particle—you can see

the calculations use sine and cosine to determine the correct location for the particle.

Press F5 to compile and run the project. You will see an expanding ring explosion like the one

shown in Figure 10-11. The finalized version of the code described in this example is available in the

RingExplosionsCompleted project.

389

PARTICLE SYSTEMS

Figure 10-11. A ring explosion particle system

Random explosions
Of course, not every explosion is ring-shaped, so let’s work through an example of a more randomized

explosion. This time, we’ll create an application that creates a random explosion at the location of

a mouse click on the main canvas. To code along, open the RandomExplosions project. Once again,

the main code for the particle system is in place, and we’ll walk through what you need to add in to

make the explosion happen.

1. Open the file for editing. Since we’ll be using the mouse pointer’s location to

place the explosion, we’ll need a variable that holds the mouse location. Add the following line

of code to the variable declarations just before the constructor:

2. Inside the function, just after the dec-

laration, add the following two lines of code to position the new particle at the mouse location:

390

CHAPTER 10

3. In prior examples, we used to generate a random number between 0 and 1 for

the particle scale. For this example, we want a scale value between 1 and 4. Add the following

line of code just after the random value is set:

4. After the code that tests the scale value, add the following two lines of code. This code deter-

mines the spread of the explosion.

5. In the function, add the following code just after the line that adjusts the

velocity for gravity. This code will slowly fade the opacity out over the lifetime of the particle

system.

6. The particle system itself is pretty much ready to go, but we need to make it show up when

a user clicks on the main canvas. Inside the constructor, add an event listener for the

 event:

7. Inside the event handler, we need to reset the explosion. This is done by clearing the root

canvas of existing children (particles), clearing the , getting the current mouse

position, and generating new particles.

8. Press F5 to compile and run the project. Click somewhere on the canvas and an explosion will

appear. The explosions look pretty good, but we can enhance the look a bit with just a couple

more lines of code. Once again, I’ve added the storyboard to the object.

This storyboard fades the particle out over .5 seconds, and fades it back in over .5 seconds.

However, unlike the comet, we don’t want the particles flickering right away for the explosion;

instead, the explosion should be allowed to happen, and then the particles will be made to

flicker after a short delay. To accomplish this, the property for the animation inside

the storyboard was set to 3 seconds.

9. Inside the function, add the following two lines of code to set a random

 for the storyboard, and then start it:

391

PARTICLE SYSTEMS

10. Inside the function, we need to stop the storyboard before removing the

particle from the canvas. Add the following bold line of code to the particle age check:

Compile and run the project. When you click, you will see a nice-looking random explosion, and the

individual particles will start to flicker as they drop toward the bottom of the application, as shown in

Figure 10-12. The RandomExplosionsCompleted project contains the code covered in this example.

I added a color picker to the completed project that allows you to alter the outer color of the particles.

Figure 10-12. The individual particles in a random explosion start to flicker as they fade and drop.

Fountains
For our next particle system, we’ll take a look at how to create a fountain, like the one shown in

Figure 10-13. The particles are emitted from the top area of the tube, fly upward, and eventually fall

back as they are affected by the force of gravity.

392

CHAPTER 10

Figure 10-13. A particle fountain

The particle system for the fountain is similar to the one for the explosion, so rather than walk through

all of the code, we’ll hit on the important parts, and you can spend some time exploring the project

for yourself. All of the code shown in this example is from the ParticleFountain project.

The variable declarations and constructor should look pretty familiar to you by now. Inside the

 function are a couple of changes. The first is where the particles are placed on the

screen. The code uses the center point of the main canvas to determine the x position and the top of

the emitter tube to determine the y position.

A bit further down in the code, you can see where the x and y velocities are assigned via a random

number generator. Notice that the y velocity for each particle will vary between –15 and –2. Remember

that to move a particle up, you use a –y velocity; to move a particle downward, you use a +y velocity.

The rest of the code is pretty much what you’ve been working with in the last few examples. Even

though it’s a fairly simple particle system, a lot of flexibility can be programmed into it. Take a look at

the ParticleFountainCompleted project, shown in Figure 10-14.

I’ve taken the base fountain and added particle count messaging and sliders to allow real-time control

over the number of particles, gravity, y velocity, and x spread as the particles are emitted.

393

PARTICLE SYSTEMS

Figure 10-14. A particle fountain with some sliders to control the look and feel of the fountain

We’re going to close out this chapter with a look at some really interesting ways to work with particles.

The examples shown here are adapted from the originals done in Flash by Keith Peters, and used with

his kind permission. We’ll be seeing how each particle can be made to affect the particles around it.

Particles and gravity
For this example, we’ll add some gravitational pull between particles. Like planets, the influence each par-

ticle has on any particles nearby is affected by distance. The farther away a particle is from another particle,

the less influence it will have. Gravitational force is affected by mass—the larger something is, the greater

the mass and the greater the gravitational pull. The equation for the force of gravity looks like this:

force = G m1 m2 / distance2

This equation reads as follows: the gravitational force one object has on another equals the gravitational

constant times the mass of both objects, divided by the square of the distance between them. That may

seem relatively straightforward, except that the gravitational constant is not so easily figured out:

G = (6.6742 0.0010) 10–11 m3 kg–1 s–2

The easiest way to work around the gravitational constant for our particle systems is to ignore it. Since we’re

working with particles, and not sending manned spacecraft to Mars, the following formula will work:

force = m1 m2 / distance2

394

CHAPTER 10

Let’s check it out and see how it works. Open the ParticleGravitation project. This project has a bit of

code in it that will place 30 instances of a particle object around the canvas, as shown in Figure 10-15.

There’s nothing fancy going on here—it’s the same basic particle system we’ve been using all along.

The particle object contains variables for velocity and mass.

Figure 10-15. The ParticleGravitation project randomly places 30 particles on the main canvas.

1. Inside the file in the function is a loop that is used

to move each particle. The particles currently don’t go anywhere because they all have x and y

velocities of 0. Gravity will be doing the work for us in this project. Just after the closing curly

brace of the loop, add the following nested loop. The nested loop will figure

out the interactions between particles. The first loop gets a particle (), while the nested

loop gets the next particle (). Those two particles are then passed to a function that will

handle the gravity.

2. Add the function shown following after the function. This func-

tion begins by calculating the distance between the two particles being compared. The

calculation is used to get the distance squared, which goes into the total force calculation,

395

PARTICLE SYSTEMS

which you will see about midway through the code listing. Once that has been done, calculate

the total acceleration along the x and y axes. Finally, the total force and total acceleration are

divided up between the two particles based on their individual masses.

Press F5 to compile and run the project. The particles will start out motionless, but will slowly be

attracted to one another. Some may begin to orbit each other. Many of the particles will get very

close, and then speed off in opposite directions. This is called the “slingshot effect,” and is expected

behavior. This behavior models the way NASA sends spacecraft into deep space—as a spacecraft

approaches a planet, it feels an increasing amount of the planet’s gravitational pull, and starts travel-

ing at an increased velocity. By aiming very close to a planet without hitting it, a spacecraft will accel-

erate beyond the planet’s ability to capture it with gravitational pull, and gain the velocity necessary to

travel through space without burning fuel.

In the particle system we built, the behavior seems unusual—we expect to see particles bouncing off

of each other rather than flying off in opposite directions. For this, we’ll need to add some collision

detection and reaction code to our program.

3. Begin by creating a new function called , as shown:

4. Inside the new function, add variables to determine the distance between

two particles:

5. Add an statement to check if two particles are colliding based on their distance:

396

CHAPTER 10

6. Calculate the angle between the two particles and split it into x and y components:

7. Here’s where this function gets fun. We’re going to rotate the coordinate system and particle

velocities to resolve the collision along a linear path, and then rotate the coordinate system

and velocities back before updating the particle’s positions on the main canvas. Begin by rotat-

ing ’s position. The rotation of the coordinate system occurs around , so

these values are 0.

8. Rotate the position of :

9. Rotate both particles’ velocities:

10. Calculate the reaction to the collision—here, the total velocity along the x axis is being calculated

(remember that we rotated the coordinate system), and then divided up between particles:

11. Update the position variables:

12. Now it’s time to rotate everything back into proper position. Begin by calculating the particles’

final positions prior to rotating them back:

397

PARTICLE SYSTEMS

13. Update the position of the particles on the screen. Since the coordinate system was rotated

about , ’s original position is added to the calculated new position.

14. Finish up by rotating the velocities back. These are applied directly to the velocities in the par-

ticle objects.

15. Now all we need to do is call the newly added function from the function.

Add the following line of code inside the nested loop, just before the line of code that calls

the function:

Press F5 to compile and run the project. The particles will start out motionless, and become attracted

to each other. This time, the collision code will kick in when the particles get close, and they will

bounce off one another. We’ve included a variable for mass on each particle, but haven’t really done

anything with it, so let’s finish out this example by adding a couple of lines of code to vary the scale

and mass of the particles a bit.

16. Inside the method, add the following line of code to assign a random scale

between 1 and 5 to each particle as it is initialized:

17. Still inside the method, change the line so that

it uses a particle’s scale as mass—the larger an object, the higher the mass.

Now when the program runs, the size and mass of the particles are randomized a bit, and it gives

a pretty interesting effect as they bounce around off of one another. The code shown in this example

is available in the ParticleGravitationCompleted project.

Particles and springs
In the next example, we’ll take a look at how we can use springs as force between particles. Springs

act similarly to gravity in that two particles influencing one another will be drawn toward each other.

In the gravity example, particles farther apart decrease in acceleration. With springs, it’s just the

opposite—particles that are farther apart increase in acceleration. Open the ParticleSprings project

to follow along with this example.

398

CHAPTER 10

1. The base code for this project is very similar to the previous projects. If you compile and run

the project, you will see 30 particles meandering aimlessly about the canvas. This was done by

assigning random x and y velocities between –3 and 3. The other thing you may notice is that

in the file, there are two additional variables declared. The first determines the

distance between two particles that will cause them to affect one another. If no distance were

set, all of the particles would lump together. Instead, we will use this variable to make sure that

only particles within 100 pixels of one another will affect each other. The second variable is

, which is used to determine the springiness of the two particles’ interaction.

2. Add a new function beneath the function, called . This function

will determine the distance between the two particles passed to the function. If the distance

between the particles is less than the value contained in the variable, the accel-

eration along each axis is calculated based on the current distance and spring amount. That

acceleration is then added to ’s velocity, and subtracted from ’s velocity.

This is what pulls two particles together.

3. Inside the nested loop in the function, add the following line of code to

pass the current two particles to the function that was just created:

Press F5 to compile and run the project. The particles will now affect each other, form into little

clumps, and break away to join other nearby clumps. If you increase the value used for ,

this behavior becomes even more pronounced. The final version of this code is available in the

ParticleSpringsCompleted project.

399

PARTICLE SYSTEMS

Visualizing particle interactions
The last project we’re going to build out in this chapter will illustrate a really cool way of visualizing par-

ticle interactions. This project is built on top of the spring-based particle system from the last example.

In fact, if you compile and run the NodeGarden project, you will see that other than a slightly differ-

ent look and feel, the behavior is the same. Particles of different sizes drift around the screen, affected

by their proximity to other particles with springing behavior, as shown in Figure 10-16.

Figure 10-16. The basis for the NodeGarden project is a spring-based particle system.

1. Let’s start by adding lines between particles that are influencing one another. For this, we will

need a of lines, which we will call . Add the declaration in the usual area, just

before the constructor:

2. Inside the constructor, initialize the :

3. Next, we’ll add some code to the function. Each time the function runs, we’ll

clear the existing lines drawn between particles, so add the code shown in the following listing

at the very top of the function:

400

CHAPTER 10

4. The code to draw the lines goes inside the function. Since we only care about the

relationships for particles that are less than 100 pixels apart, place the following code inside

the statement that tests the distance between particles, at the very top.

Press F5 to compile and run the program. You will see something like Figure 10-17. As two particles

come within 100 pixels of each other, a 2-pixel-wide white line is drawn between them. When the dis-

tance between particles that are connected by a line increases beyond 100 pixels, the line is removed.

Even as-is, this project creates a pretty nice effect that is somewhat mesmerizing. But with one more

line of code, you will feel like you can stare at it for hours on end.

Figure 10-17. Lines are drawn between particles within each other’s area of influence.

401

PARTICLE SYSTEMS

5. The line of code you add next will alter the opacity of the line as the distance between particles

changes. The closer the particles, the more opaque (brighter) the line will be. As they grow

more distant, their influence on each other fades, as does the line indicating their connection.

Add the following line of code to the code you added in step 4, after the line that sets the

stroke color ():

Now when you compile and run the program, you’ll see connections like those shown in Figure 10-18.

The closer two particles are, the brighter the line between them. The effect is almost like looking at

moving constellations. Imagine this effect between drifting images or other objects. The final version

of the code from this example is available in the NodeGardenCompleted project.

Figure 10-18. The lines between particles fade as the distance between the particles increases.

Summary
In this chapter, we talked about what a particle is and how to create a basic particle system. The model

for a particle system is that as time passes, new particles may be created, old (dead) particles are

removed, and the remaining particles have their positions updated on the main canvas.

402

CHAPTER 10

Once you built a basic particle system, you learned about emitters and how to use them to create

particles that emanate from a specific location in your application. You also learned about how gravity

can be used to affect particles.

With all of that in place, we looked at some example particle systems. The comet example used an

emitter that moved, but placed particles on the main canvas. Then we looked at how to go about

creating ring-shaped and random explosions, as well as particle fountains.

We then talked about how forces can be applied between particles. You saw examples of how par-

ticles can gravitate toward one another, colliding and bouncing, and also how springing behavior can

be used to create interesting, organic-looking bunches of particles. We then closed out the chapter

by looking at a way to visualize the relationship between particles with lines, creating a nice-looking

particle node garden based on springing behavior.

In the next chapter, you’re going to learn how to create Silverlight-based virtual reality objects. You’ll

learn how the SLVR engine works, and how you can implement VR objects in your own Silverlight

applications.

405

In this chapter, we’ll talk about how to use Silverlight to display virtual reality (VR)

objects. Everybody’s seen this type of object—the image loads, and as you use

the mouse to drag inside the window, the object rotates with the mouse, allowing

a more interactive experience with the object being displayed. You’ll also see some-

thing you’re not likely to find in any other book. I’m going to show you how to use

Silverlight to travel through time. Yes, really.

There are two fundamental approaches to creating a VR object–based application.

The first is to take a series of photos of the object from different angles, load the

photos into the application, and then “flip” through them like a deck of cards.

The second is to take a series of photos, assemble them in columns and rows in

a single image, and then use the application to translate the image inside of a clipped

canvas. We’ll be using the single-image method. Based on my experience building

both types, it seems a little snappier; it’s much easier to set up, update, and augment;

and it has fewer moving parts to keep track of.

With that in mind, let’s get started. The first thing we need to talk about is the

images.

SILVERLIGHT VR (SLVR) OBJECTS

Chapter 11

406

CHAPTER 11

VR object images
Getting content to use in your Silverlight VR (SLVR)-based applications is likely to be the most

time-consuming part of the process. When it comes to getting images, you basically have three

options.

The first is to use a 3D program to render an object out. This may involve some expense and a learn-

ing curve if you don’t know 3D, although you may be able to get a friend or neighbor to help out if

you know someone who uses a 3D program.

The second method for getting content is to photograph your own object. This is not terribly difficult

to do, but may require a bit of extra equipment like a turntable for the object, and some time to

practice.

The third option is to use a company that specializes in doing the photography, such as PhotoSpherix

(), who was kind enough to supply the example object photos you’ll be work-

ing with in this chapter.

Generally speaking, there are two types of VR objects: single-row (or single-plane) and multirow (multi-

plane). The general concept for creating either is the same. An object is set up on a rotating turntable,

photographed, rotated some number of degrees, and photographed again. The process continues until

the desired number of photos has been taken. Taking photos of an object that is rotated 10 degrees

between shots means there are 35 shots per row for a full 360-degree rotation. The smaller the incre-

ment the object is rotated, the smoother the final action will be, but the larger the file, so there is

a trade-off there. Figure 11-1 shows a few example frames from a single-plane object.

Figure 11-1. The first few frames of a single-plane VR object

For a multiplane object, the camera is typically placed directly overhead (0 degrees), and then tilted

down in 10-degree increments as each row is completed. As you can probably imagine, this would

be tricky to do for the average home user. Companies that specialize in this type of photography

have specially made motorized camera rigs that make the process of taking the shots more exact.

Figure 11-2 shows the first few frames of the first few rows of a multiplane VR object.

407

SILVERLIGHT VR (SLVR) OBJECTS

Figure 11-2. The first few frames of the first few rows of
a multiplane VR object

You may end up with quite a few images. As long as they are numbered sequentially from the top left

across the first row, and then to the second row if you have one, and so on, you’ll be fine. For exam-

ple, one of the models with which we will be working has 120 source images (5 rows of 20 images), the

files for which are named through pg.

What do I do with all these images?
For use as a SLVR object, we need to take a big pile of 21 images and make a single image. The best

way to do this is to find a program that will create customizable contact sheets. Photoshop has

a contact sheet script, found under File Automate Contact Sheet II, but I’ve found that it will occa-

sionally place unexpected whitespace between images. Instead, take a few moments and download

the freeware program IrfanView from . Let’s practice making an image using

IrfanView.

1. Start the program. From the File menu, select Thumbnails, as shown in Figure 11-3.

2. The Thumbnails view window will open. Navigate to the folder in the projects

for Chapter 11. All 21 image thumbnails will be displayed in the right-hand pane. Click one to

select it, and then press Ctrl+A to select all of the images.

408

CHAPTER 11

Figure 11-3. In IrfanView, select File Thumbnails.

3. Select File Create contact sheet from selected files, as shown in Figure 11-4.

Figure 11-4. Creating a contact sheet in IrfanView

409

SILVERLIGHT VR (SLVR) OBJECTS

4. You’ll get a somewhat intimidating-looking Create Contact Sheet dialog box. We only need to

deal with the left side of the box, though, so it’s not too bad. The first things we need to fill in

are the width and height. There are 21 images in a single row. Each image is 600 600 pixels. For

Width, enter 12600 (21 images 600 pixels), and for Height, enter 600 (each image is 600 pixels

tall).

5. In the Columns box, enter 21. For Rows, enter 1, since this is a single-plane VR object.

6. Leave the Stretch small images to maximal size box unchecked, and verify that Thumbnail spacing

is 0 for both Horizontal and Vertical. The Horizontal and Vertical fields for Margins should also be

0. When you’re finished, the panel should look like Figure 11-5.

Figure 11-5. The Create Contact Sheet dialog box in IrfanView

7. Click the Create button. A clipboard window will open showing the contact sheet. Select File

Save As to save the file. JPG is your best bet for an image of this size, so select JPG from the

Save as type drop-down, and go for about 60% compression on the JPEG/GIF save options dia-

log. Click Save and you’re done.

Depending upon your specific compression settings, the single file will end up somewhere between

250 and 300K, which isn’t bad for an image that is 12600 600 pixels.

You create multiplane images the same way, except that for the contact sheet, you also specify the

number of rows in your source photos. Unfortunately, IrfanView runs out of steam a little bit here

with the high-resolution images, and doesn’t support contact sheets that are taller than 1800 pixels at

this resolution.

As a workaround, you can make multiple contact sheets of three rows each, and put them together in

your favorite graphics program. It will still be quick and relatively painless, and you can’t beat the price.

You can try creating multirow contact sheets with the images in the folder if you’d like. There are

6 rows of 20 images, each of which is 600 600. Just in case you don’t have a program like Photoshop

readily accessible, I included the Mini contact sheet in the folder. The 12000 3600-pixel image

is called .

410

CHAPTER 11

What do I do with this giant image?
So you got the photos of your object, or had a company like PhotoSpherix help you out; you con-

verted the images into a big contact sheet image; and you’re ready to plug them into Silverlight and

watch some magic happen. This is where the SLVR user control comes in. The control is already built,

but we’re going to go through all of the code so you understand how it does what it does; that way

you can add custom features if you like.

The first thing to take a look at is the user control. The architecture for the control is shown in

Figure 11-6. Inside the user control is the main LayoutRoot Canvas, which contains a rectangle called

, and an Image object called . The default size for each of these objects is

320 240, but the control will resize them based on how it is set up. A very important aspect of this

control is a clipping path applied to the Canvas. This creates a window onto the image

in the object.

Figure 11-6. The basic architecture of the SLVR user control

When the SLVR user control is instanced, it is handed an image, which is placed in the

object, behind the window of the ImageControl Canvas. This makes it so only a single frame of the

image is visible. The image is then translated behind the window, as illustrated in Figure 11-7, based on

input from the mouse on the MouseControl layer.

Let’s go through the code in the file. You’ll get to add this control to a project after the

walkthrough, so don’t worry about coding anything up right now. If you would like to follow along,

you can open the file in the folder.

411

SILVERLIGHT VR (SLVR) OBJECTS

Figure 11-7. The clipped ImageControl Canvas creates a window to the background image.

The first variable, , is used to determine how far the mouse will move before the

visible image is changed. This allows you some control over the smoothness of the action in the appli-

cation. The variable is used to keep track of how far the mouse has moved, and is the

trigger for changing the image.

The variable tells the application how large the images are. It is a data type because

not all images are square, so it is used to store both the width and height of a single image frame.

The next four variables let the application know how many columns and rows there are in the source

image, and whether or not the columns and rows should be wrapped when the beginning or end is

reached.

The variable is used to change the functionality of the application so that the view can

move opposite the mouse. The standard behavior is to let the user feel as though they are moving the

object. When is active, the motion is more akin to moving the camera around the object.

412

CHAPTER 11

The last four variables are used for drag-and-drop control:

Next is the constructor. Here, the control accepts a bunch of variables upon initialization.

Many of the private variables declared are initialized with the values passed here, and are named simi-

larly. In fact, a lot of the code in the constructor is used to apply these values to the control.

After the method, the code for the control begins. These two lines adjust the

width and height of the Image object in the control to the size of the full image.

Next, the size of the steps used to translate the image, control width, and rectangle

width are adjusted to the passed value:

Now the columns, rows, and wrapping behavior are assigned to the private variables in the control:

Next, the image specified by the user is loaded into the object in the control. This partic-

ular method for loading images requires the addition of the two resources at the top of the control:

The loading code looks like this:

413

SILVERLIGHT VR (SLVR) OBJECTS

Now the clipping region on the ImageControl Canvas is adjusted. The clip will always begin at 0,0, and

will have a width of , and height of , so this is fairly easy to apply through

code:

The next two lines of code try to find an image near the center of the single source image so that

you’re not always starting at 0,0. You’ll see how to override this feature if necessary when the control

is instanced.

Since it’s possible to have an image that contains only a single column or row, the control checks to

see if this is the case, and if so, starts at the image in the beginning of the series:

The next bit of code grabs the value of the passed Boolean :

Next, the mouse sensitivity is adjusted based on the value passed when the control was instanced:

Finally, the event listeners used for dragging are set up:

The and functions are the standard drag functions we’ve

used in other projects, so we won’t be rehashing them here. The function is worth taking

a look at, though—this is where the magic happens.

414

CHAPTER 11

If a drag is occurring, the current position of the mouse is acquired and compared against the last

position of the mouse. This is then used to increment the counters used to move the image:

Next comes the statement that does the work. The flag is checked. The only difference

the flag makes is which way the image is moved, so the and clauses are exactly opposite when

it comes to moving the object. This code is commented so you can see what each test

checks for—the control needs to know in which direction the mouse is moving, and if it is time to

switch the image. If so, the correct translation step is applied.

415

SILVERLIGHT VR (SLVR) OBJECTS

The next block of code checks to see if the image needs to wrap left or right, top or bottom, and then

takes the appropriate action to adjust the translation of the image:

416

CHAPTER 11

To finish out the function, the current mouse position is stored in the variable for usage the

next time through:

Using the control: single-plane
Let’s take a look at how to get the control into a project and make use of it.

1. Open the SLVRBed project. This project contains an empty 800 800 main canvas that we are

going to add a SLVR control to.

2. In Solution Explorer, right-click the SLVRBed item and select Add Existing Item from the

menu, as shown in Figure 11-8.

Figure 11-8. The Add Existing Item option in
Visual Studio

417

SILVERLIGHT VR (SLVR) OBJECTS

3. Navigate to the folder for Chapter 11, and select the file. The control

is now part of your project, but needs to have the class name updated to match the project.

4. Open the file and edit the first line. Remove the text:

and replace it with the name of your project: , like so:

5. Open the file. Update the namespace near the top of the file the same way.

Change the following code:

to this:

6. The control is now ready for use. The next thing we need to do is add the image we will be using.

Create a folder in Solution Explorer by right-clicking the SLVRBed item and selecting Add New

Folder. Name the folder .

7. Right-click the folder and select Add Existing Item. Navigate to the bed contact sheet

you created earlier. If you don’t have it available, I placed a file called in the

 folder for Chapter 11.

8. This step is very important—if you skip it, the control will throw an error when it tries to load

the image. Select the image in the folder, and look at the Properties panel. Under Build

Action, select Content. In Copy to Output Directory, select Copy always. This will compile the

image into the package that Silverlight creates when this application is compiled. By compiling

the image into the package, your Silverlight application will become larger. The trade-off is that

once it’s downloaded to the client, the application is ready to go—no extra clicks or waiting.

9. All that’s left to do is create an instance of the control and assign some parameters. Open the

 file for editing, and add an object declaration before the constructor:

10. Inside the constructor, beneath the line, type .

Visual Studio’s IntelliSense will open a list of the properties that are needed to instance the SLVR

object, as shown in Figure 11-9.

Figure 11-9. Visual Studio’s IntelliSense helps with the SLVR object declaration.

11. All you need to do is type each value, separated by commas. For and ,

we know the bed images were 600 600, so type .

12. For and , we know there were 21 source images in a single row, so type

.

418

CHAPTER 11

13. Since it’s a single row, will be on, but will be off, so type .

14. For the image name, we can see the image in the folder, so type the full path. You may

have a different file name if you created your own earlier, but I’ll use

(including the quotes).

15. For , 3 should work well on this image, so type .

16. Finally, for , type , and then finish with . The final code looks like the

following:

17. All that’s left is to position the SLVR object and add it to the main canvas:

Press F5 to compile and run the project. The browser will open, and you’ll see the bed, as shown in

Figure 11-10. Drag the mouse over the object to spin it. Keep in mind that the frames for the bed are

pretty good-sized, and the application is 600 600. If your browser doesn’t fit the entire application on

the screen, you may see a scrollbar for the browser and another for the containing the Silverlight

application. Plan accordingly when creating your own VR objects to provide the best possible experi-

ence for your end users.

Figure 11-10. The SLVR object in the browser

419

SILVERLIGHT VR (SLVR) OBJECTS

Earlier, I mentioned that it’s possible to override the starting position for an object. In our case, maybe

we’ve decided that we don’t want the application to load with the front of the bed showing, and

would prefer the side. The fifth image in our series is a nice side view of the bed, so before the code

to position the bed on canvas, we can add a line of code to prime, or preset, the position:

Remember to use a negative number in order to slide the image to the left.

The code for this example is in the SLVRBedCompleted project.

Using the control: multiplane
The bed was a nice example of a single-plane SLVR object. Let’s take a look at how to set up a multi-

plane object.

1. Open the SLVRFigure project. This project contains the SLVR object, but no image. (I figured

you might like a little practice adding images to a project.)

2. Right-click the SLVRFigure item in Solution Explorer and select Add New Folder. Name the

folder .

3. Right-click the folder you just added and select Add Existing Item. Navigate to the

 folder for Chapter 11 and locate the file inside. This is

a 12000 3000-pixel image that contains 20 columns and 5 rows of a wooden figure.

4. With selected, change the Build Action to Content and Copy to Output

Directory to Copy always on the File Properties panel.

5. Open the file for editing. Before the constructor, declare a new instance

of the SLVR object:

6. Instantiate the SLVR object. Each frame is 600 600. There are 20 columns and 5 rows. The

columns should wrap, but the rows won’t. The path to the image is .

Mouse sensitivity is 3, and this time, the mouse control should not be flipped.

7. Set the position for the object, and add it to the main canvas:

420

CHAPTER 11

8. Press F5 to compile and run the application. It looks pretty good, and works as expected,

but the initial state of the object has the figure with its back kind of turned, as shown in

Figure 11-11.

Figure 11-11. The figure loads, but is looking in the wrong direction!

9. If you open the file and take a look, the front-facing figure is in the 16th

column and 4th row (count from 0 in both cases). To change the default position, add the fol-

lowing two lines of code just before the code added in step 7. 16 600 (image width) = 9600.

4 600 = 2400. We want to move the image left and up, so the numbers are negative.

421

SILVERLIGHT VR (SLVR) OBJECTS

If you compile and run the program again, you will see the figure sitting cross-legged, facing forward,

as shown in Figure 11-12.

Figure 11-12. After priming the starting position, the figure faces forward as expected.

You can do it!
OK, now it’s your turn to make a SLVR object from scratch. Open the SLVRMini project. This is a skel-

eton project I created for you.

You will need to add the user control, change the namespace for the XAML and code-behind in the

control so it matches this project, add the image, set the image properties, and instance the SLVR

object. Use the file in the folder for Chapter 11. This image is 20 columns and 6 rows,

and each frame is 600 600, resulting in a 12000 3600-pixel image.

For a little extra challenge, set the starting image to the front view of the car.

If you get stuck, I’ve provided the SLVRMiniCompleted project to look at for help with the code if

necessary.

422

CHAPTER 11

About that time travel thing . . .
This is the moment you’ve been waiting for, right? You worked through the rest of the examples and

got to this point to see how Silverlight can help you travel through time.

Here’s the answer you’re looking for.

Don’t lock yourself into thinking of the SLVR user control as a VR “object.” You can use it to show the

passage of time very easily. Just about everyone has a digital camera. Set yours up on a tripod and use

an inexpensive kitchen timer or your watch to snap a photo of something every 30 or 60 seconds. If

your camera has an interval timer, it’s even easier. Photograph the sun setting, flowers blooming, seeds

sprouting, or clouds racing across the sky. Load your images into a SLVR control and enjoy the results.

You’ll be able to pass hours or days on command. Also consider experimenting with stop-motion

animation—children’s toys, product packaging, product assembly, and so on.

I’ve included two example projects that illustrate this concept. The first, shown in Figure 11-13, is

called SLVRCrownPoint. This is a time-lapse photo series taken at Crown Point, Oregon, at 1 minute

intervals. It shows the passage of about 45 minutes around sunset.

Figure 11-13. A still from the SLVRCrownPoint project

The second example, shown in Figure 11-14, is a time-lapse photo series taken near the base of Mt.

Adams in Washington State. The photo interval is 30 seconds, as it was quite windy and the clouds

were moving past the mountain at a pretty good clip. The project is called SLVRMtAdams.

423

SILVERLIGHT VR (SLVR) OBJECTS

Figure 11-14. A still from the SLVRMtAdams project

Summary
In this chapter, you learned about what a VR object is, and how to go about getting images suitable for

use in the SLVR user control. To get images, you can photograph your own objects, render them from

a 3D animation package, or use a service provider like PhotoSpherix.

Once you have the images of your object, you need to make a contact sheet to assemble the separate

frames into a single large image for use in the user control using a program like IrfanView.

When your contact sheet image is ready to go, adding the SLVR object to your application is pretty

quick. It involves adding the control to your project, importing your image into the project, and set-

ting up the code that instantiates the SLVR object.

Remember to “think outside the object” when creating VR presentations. While objects are certainly

a valid and important use for the technology, find ways to make your applications unique—pass time

or try some stop-motion animation.

425

bin\Debug folder (Blend), 25

blinking and flashing (trigonometry),

249–250

Boolean data type, 69

browser plug-in, Silverlight, 6–9

Brushes pane (Canvas element), 15

buttons, sample code for, 21

byte data type, 69

C
C# language, Visual Studio and, 22

CalcDistance() function, 266

Canvas element (XAML), 14–15

Cartesian coordinate system, 151

Center Point transform, 50–51

Chinese dragon project, 355–360

circular movement (trigonometry),

256–257

clawGame project, 181–185

ClientBin folder (Blend), 28

clipping paths, 124–128

code

code-based Visual State Manager,

144–146

code-behind files, 11

code-controlled vectors, 166–174

creating DoubleAnimation with, 91–96

defining storyboards with, 91

collisions

with angled surfaces, 316–324

angular collisions, 311–315

detecting, 305–306

HitTest() method, 324–329

linear collisions, 306–311

color animations, 69–71, 75, 101–102

ColorAnimationUsingKeyFrames, 71

comets, building (particle systems),

381–387

components, vector, 157

contact sheets, customizable, 407

control points, animating, 55–60

controlpointAnimation project, 56

controls elements (XAML), 21

keyframe interpolation in Blend,

79–81

linear keyframes, 77

object properties, animating, 51–55

point animations, 72–76

separating acceleration from direc-

tion, 193–204

spline keyframes, 78

stop-motion, 422

time-based animations, 37

vectors and velocity. See vectors

animation techniques

clipping paths, 124–128

code-based Visual State Manager,

144–146

converting objects to paths, 109–111

creating custom animated cursors,

120–124

creating effects by cross-fading,

114–117

drag-and-drop, 131–134

frame-based animation sequences,

134–139

ghosting effects, 111–113

image effects, 114

simulating drop shadow effects,

117–120

user controls, creating, 128–131

Visual State Manager, 139–144

App class, 25

arcsine and arccosine functions, 215

arctangent function, 215–216

Argb color values, 102

Atan2() math method, 189

automating forward kinematics, 337–338

AutoReverse storyboard property, 65, 68

B
BallDropCompleted project, 315

Barricade user control, 249

BasicParticleSystem project, 372–377

Beaulieu, Andy, 325

BeginTime storyboard property, 67

3D simulation

horizontal carousel example,

284–295

inner solar system model, 274–280

overview, 271

vertical carousel example, 297–301

x axis rotation, 295–296

y axis rotation, 280–283

z axis rotation, 272–274

A
acceleration, separating from direction,

193–204

ActionScript, coding in. See code

ActionScript, objects in. See objects

ActiveImage object (user control), 410

acute triangles, 211

Add Silverlight Application dialog box

(Visual Studio 2008), 28

addVectors() function, 188

Adobe Flex, 11

amplitude, defined (waveforms), 232

angled surfaces, collisions with, 316–324

angles

Angle variable, 343

converting vectors to, 189–192

fundamentals of, 188–189

measuring in degrees and radians, 208

angular collisions, 311–315

animation

angles in Silverlight. See angles

animated cursors, custom, 120–124

Animation Workspace, layout of, 12

basic transforms. See transforms

color animations, 69–71

control points, animating, 55–60

coordinates in Silverlight, 151–152

discrete keyframes, 78–79

DoubleAnimation type, 69–71

events for designers, 83–84

events for developers, 84–88

events overview, 82

from/to animation types, 76–77

INDEX

INDEX

426

coordinates in Silverlight, 151–152

cosine function, 213–214

cross-fading effects, creating, 114–117

cursors, creating custom animated,

120–124

customizing animated cursors, 120–124

D
data portion of Path element, 18

DegreeRadianRotation project, 216–221

degrees and radians, 216–221

dependency properties, 92

design

Design Workspace, layout of, 12

events for designers (animation),

83–84

detecting collisions, 305–306

developers, events for (animation),

84–88

Development Center, Silverlight, 22

development software tools, 6–9

Direct Selection tool (Path element),

18, 56

direction

separating acceleration from, 193–204

of vectors, changing, 157–159

discrete keyframes, 78–79

DiscreteDoubleKeyFrames, 136

distance between objects (trigonometry),

263–265

double data type, 69

DoubleAnimation

creating with code, 91–96

DoubleAnimationUsingKeyframes, 70,

99–101

type, 69–71, 75

dragging

implementing drag-and-drop (anima-

tion), 131–134

kinematic chains, 351–352

long kinematic chains, 352–354

drop shadow effects, simulating,

117–120

Duration property (animation), 69, 91

E
Ellipse element (XAML), 19

emitters, particle, 377–381

equiangular triangles, 211

equilateral triangles, 211

event handlers, 89, 117

event listeners, 89, 117

events (animation)

for designers, 83–84

for developers, 84–88

overview, 82

storyboards and, 88–90

Expression Blend, Microsoft. See Micro-

soft Expression Blend

Expression Design, Microsoft. See Micro-

soft Expression Design

F
FallingLeaves project, 251–255

FillBehavior storyboard property, 64

flashing and blinking (trigonometry),

249–250

Flex, Adobe, 11

Flip transform, 51

for loops, 308

forces, angular collisions with, 311–315

forward kinematics, 334–338, 341–349

fountains, creating (particle systems),

391–393

four-quadrant Cartesian coordinate

system, 152

frame-based animations, 37, 134–139,

174–181

frame-based objects, reversing direction

of, 178

free-form rotation (trigonometry),

223–229

frequency (waveforms), defined, 232

From property (animation), 69

from/to animation types, 69, 76–77

functions to create animations, 96–99

G
ghosting effects, 111–113

gravity, particles and, 393–397

gravityBall project, 166–174

GuitarStrings project, 239

H
HitTest() method, 324–329

HitTestBuild project, 326, 329

HoldEnd property, 101

horizontal carousel example (3D simula-

tion), 284–295

horizontal oscillation (trigonometry),

243–244

HotAndCold project (trigonometry),

265–267

hypotenuse (trigonometry), 212

I
IKDragon project, 355–360

Illustrator (Adobe), converting to

Silverlight, 19

images

image effects, 114

Image element (XAML), 15–17

ImageRotate project (trigonometry),

223–229

SLVR object, 406–407

inner solar system model (3D simula-

tion), 274–280

integer data type, 69

IntelliSense (Visual Studio), 85, 417

interactions, visualizing particle,

399–401

interpolation, keyframes, 79–81

inverse kinematics, 350–362

IrfanView, 407

isosceles triangles, 211

K
keyframes

discrete, 78–79

interpolation in Blend, 79–81

keyframe animations, 70

linear, 77

spline, 78

KeySpline property, 78

kinematic chains

automating forward kinematics,

337–338

dragging, 351–352

dragging long chains, 352–354

forward kinematics, 334–336

inverse kinematics, 350

multiple forward, 341–349

overview, 333–334

reaching behavior, 350

reaching for objects, 365–369

reaching with long chains, 360–362

variable-length reaching chains, 362

walking/running, 338–341

L
LayoutRoot element (XAML), 14

LayoutRoot_Loaded function, 86

Line element (XAML), 20–21

linear collisions, 306–311

linear keyframes, 77

Loaded event, 84

INDEX

 427

M
math, vector, 186–188

Math.Atan() function, 215–216

McCauley, Trevor, 230

Microsoft Expression Blend

creating XAML with, 11–14

defined, 6

Microsoft Expression Design, 7

Microsoft Visual Studio. See Visual

Studio 2008

Microsoft Visual Web Developer Express

Edition, 8

monkeyWalk project, 174–181

MoonOrbit project, 258–260

MouseControl (user control), 410

multi-plane SLVR objects, 406, 419–421

multiple forward kinematic chains,

341–349

Multiplier variable, 341, 343

N
New Project dialog box (Visual Studio

2008), 28

NodeGarden project (particle systems),

399–401

O
obj folder (Blend), 25

objects

converting to paths, 109–111

distance between (trigonometry),

263–265

object properties, animating, 51–55

object tags, Silverlight, 26, 28

reaching for (kinematics), 365–369

obtuse triangles, 211

one-dimensional vector movement,

153–154

Opacity property, 374, 383

orbiting (trigonometry), 258–260

origin of coordinates, 151

oscillation (trigonometry), 237–244,

250–255

P
PaddleGame project, 160–166

Page class, 25

Page() constructor, 90

panels project, 44

particle systems

BasicParticleSystem project, 372–377

building comet, 381–387

emitters, 377–381

explosions, 388

fountains, creating, 391–393

NodeGarden project, 399–401

overview, 371

ParticleComet project, 381–387

ParticleEmitters project., 377–381

ParticleGravitation project, 394–397

particles and gravity, 393–397

particles and springs, 397–398

random explosions, 389–391

RingExplosions project, 388

visualizing particle interactions,

399–401

paths

clipping, 124–128

converting objects to, 109–111

Path element (XAML), 17–19

Pen tool (Path element), 17

Peters, Keith, 305, 393

PhotoSpherix, 406

point animations, 72–76, 102–107

Point objects, 186

private variables, 132

programming basics, 22

projects, defined, 23

properties

Properties folder (Blend), 24, 25

propertyAnimations project, 51

storyboard, 64–68

publicly accessible variables, 318

Pythagorean theorem, 261–267

R
radians

defined, 189

and degrees, 208, 216–221

random explosions (particles), 389–391

reaching (kinematics)

behavior, 350

with long kinematic chains, 360–362

for objects, 365–369

variable-length reaching chains, 362

Rectangle element (XAML), 17

ReferenceLine element, 323

References folder (Blend), 24, 25

render transform origin, 41

RepeatBehavior storyboard property,

65–68, 137

Resources.Add() method, 91

ReverseCounter integer, 253

RightTriangle project (trigonometry), 230

RingExplosions project (particles), 388

Rotate transforms, 39–41, 188

RotateSegment (forward kinematics),

334

rotations

combining with oscillations (trigonom-

etry), 250–255

x axis (3D simulation), 295–296

y axis (3D simulation), 280–283

z axis (3D simulation), 272–274

running and walking behavior, 338–341

S
Scale transform, 42–47

scalene triangles, 211

scaleVector() function, 188

ScaleX/ScaleY properties, 374, 383

segmentLength variable, 343

Selection tool, 20

Silverlight

applying trigonometry to, 221–223

browser plug-in, 5–9

Development Center, 22

SimpleOscillation project, 237–238, 243

sine curves, 231–237

sine function, 212–213

SineWaveGenerator project, 233–237

single-plane SLVR objects, 406, 416–419

single player PaddleGame, 160–166

Skew transform, 48–50

sliders sample code, 21

slingshot effect, 395

SLVR objects

IrfanView, making images with, 407

multi-plane SLVR object, 419–421

object images, 406–407

single-plane SLVR object, 416–419

SLVRBed project, 416–419

SLVRCrownPoint project, 422

SLVRFigure project, 419–421

SLVRMini project, 421

SLVRMtAdams project, 422

stop-motion animation, 422

user control and large images,

410–416

user control and multi-plane SLVR

object, 419–421

user control and single-plane SLVR

object, 416–419

user control and time-lapse photos,

422

INDEX

428

Snowflakes project (trigonometry),

244–248

Solar System, Inner (3D simulation),

274–280

solid color brush, 18

Solution Explorer (Visual Studio),

28, 284

SpeedRatio property, 67–68, 137, 144

spline keyframes, 78

SplineColorKeyFrame, 71

SplineDoubleKeyFrames, 136

springs, particles and, 397–398

stop-motion animation, 422

storyboards

animation example, 39

color animations via code, 101–102

combining properties, 67–68

creating DoubleAnimation with code,

91–96

defining with code, 91

DoubleAnimationUsingKeyframes,

99–101

events and, 88–90

functions to create animations, 96–99

PointAnimation with code, 102–107

properties, 64–67

storyboard animations, vectors and,

181–185

Storyboard Resource window, 37

surfaces, angled, 305

System.Windows.Controls class, 21

T
tangent function, 214

Tentacles project, 341–349

TextBlock element (XAML), 19–20

TextBox element (XAML), 19

time-based animations, 37

time-lapse photos, 422

TimeSpan objects, 91

transforms

Center Point transform, 50–51

defined, 35

Flip transform, 51

Rotate transform, 39–41

Scale transform, 42–47

Skew transform, 48–50

Translate transform, 36–39

Translate transform, 36–39

transparent objects, 115

triangles

arcsine/arccosine functions, 215

arctangent function, 215–216

cosine function, 213–214

degrees and radians, 216–221

overview, 211–212

sine function, 212–213

tangent function, 214

trigonometry (animation)

angles, 208

applying to Silverlight, 221–223

circular movement, 256–257

combining oscillations and rotations,

250–255

defined, 207

flashing and blinking, 249–250

free-form rotation, 223–229

horizontal oscillation, 243–244

HotAndCold project, 265–267

objects, distance between, 263–265

orbiting, 258–260

oscillation, 237–242

Pythagorean theorem, 261–263,

265–267

sine curves, 231–237

Snowflakes project, 244–248

triangles. See triangles

truckCompleted project, 46–47

two-dimensional vector movement, 154

U
UnderwaterMine project, 365–369

unit circles, 216–221

unitCircleSin application, 231

user control, SLVR

large images and, 410–416

multi-plane SLVR object and, 419–421

single-plane SLVR object and, 416–419

time-lapse photos and, 422

user controls, creating (animation),

128–131

UsingKeyFrames animations, 77

V
variable-length reaching chains, 362

vectors

changing direction of, 157–159

clawGame project, 181–185

code-controlled, 166–174

converting to angles, 189–192

and frame-based animations, 174–181

fundamentals, 152–153

gravityBall project, 166–174

monkeyWalk project, 174–181

one-dimensional vector movement,

153–154

PaddleGame project, 160–166

and storyboard animations, 181–185

two-dimensional vector movement,

154

vector math, 186–188

vectorAngleConversion project,

189–192

VectorBounce project, 158–159

vectorShip project, 193–198

vectorShipMissile project, 199–204

vertical carousel example (3D simula-

tion), 297–301

Visibility property (objects), 112

Visual C# language, 23

Visual State Manager

basics, 139–144

code-based, 144–146

monkey animation via, 176

Visual Studio 2008

free trial of, 8

Silverlight tools for, 9

visualizing particle interactions,

399–401

W
walking and running behavior, 338–341

websites, for downloading

friends of ED website, 22

IrfanView, 407

Microsoft Expression Blend trial, 6

Microsoft Expression Design, 7

Microsoft Visual Web Developer

Express Edition, 8

Silverlight tools for Visual Studio

2008, 9

Visual Studio 2008 trial, 8

websites, for further information

exporting Illustrator as XAML, 19

PhotoSpherix, 406

right triangle calculations for moving

objects, 230

Silverlight Development Center, 22

Silverlight MSDN library, 18

INDEX

 429

Width property (ReferenceLine element),

323

Windows Presentation Foundation (WPF),

23

writeVectors() function, 187

X
x axis rotation (3D simulation), 295–296

XAML (Extensible Application Markup

Language). See also Microsoft

Expression Blend

basics, 9–11

Canvas element, 14–15

controls elements, 21

Ellipse element, 19

Image element, 15–17

LayoutRoot element, 14

Line element, 20–21

Path element, 17–19

Rectangle element, 17

TextBlock element, 19–20

TextBox element, 19

using Expression Blend to create, 11–14

XAxis3D project, 295–296

xmlns:x namespace, 13

x:Name property, 15

Y
y axis rotation (3D simulation), 280–283

YAxis3D project, 282–283

Z
z axis rotation (3D simulation), 272–274

Z-order, 115

ZAxis3D project, 272–274

