


Jeff Scanlon

Accelerated Silverlight 2



Accelerated Silverlight 2

Copyright © 2008 by Jeff Scanlon

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1076-4

ISBN-10 (pbk): 1-4302-1076-1

ISBN-13 (electronic): 978-1-4302-1075-7

ISBN-10 (electronic): 1-4302-1075-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben
Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editors: Damon Larson, Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Jill Ellis
Compositor: Kinetic Publishing Services, LLC
Proofreader: Linda Seifert
Indexer: Julie Grady
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com. 

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.



To Corey Chang, for showing me just how much patience can pay off.



v

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

■CHAPTER 1 Introducing Silverlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 Getting to Know XAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

■CHAPTER 3 Creating User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

■CHAPTER 4 Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

■CHAPTER 5 Working with Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

■CHAPTER 6 Working with Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

■CHAPTER 7 Extending the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

■CHAPTER 8 Styling and Templating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

■CHAPTER 9 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

■CHAPTER 10 Dynamic Languages and the Browser . . . . . . . . . . . . . . . . . . . . . . . . . 207

■CHAPTER 11 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

■CHAPTER 12 Testing and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

■CHAPTER 13 Packaging and Deploying Silverlight Applications . . . . . . . . . . . . . . 271

■CHAPTER 14 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

■CHAPTER 15 Case Study: Campus Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Contents at a Glance



vii

Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

■CHAPTER 1 Introducing Silverlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cross-Platform Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Java Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Flash/Flex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Silverlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The History of Silverlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Creating Your First Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

■CHAPTER 2 Getting to Know XAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Introducing XAML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Dependency Property System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Type Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Markup Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

More About Silverlight Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Events in Silverlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

■CHAPTER 3 Creating User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

DependencyObject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

UIElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FrameworkElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



■CONTENTSviii

Positioning Objects on Screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

StackPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Customizing Silverlight Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ContentControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

The Button Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

TextBlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

TextBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ItemsControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Popup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ToolTipService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

RangeBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ScrollViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Incorporating SDK Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

GridSplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Calendar and DatePicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

TabControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Implementing Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

■CHAPTER 4 Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Enabling Cross-Domain Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Using Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Creating and Using a Client Service Proxy . . . . . . . . . . . . . . . . . . . . . 76

Communicating Over HTTP Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

The HttpWebRequest Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Raw Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

The Socket Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

The SocketAsyncEventArgs Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Using the Socket Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Considerations for Using Networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

■CHAPTER 5 Working with Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Displaying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Introducing the DataGrid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



■CONTENTS ix

Processing Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Parsing XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Serializing XML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Using LINQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Saving State on the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

■CHAPTER 6 Working with Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Multiscale Images (Deep Zoom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Media (Video and Audio). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Timeline Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Silverlight Streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Preparing an Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Packaging Images and Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

■CHAPTER 7 Extending the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

2D Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Using Geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Using Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Skewing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Arbitrary Linear Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Combining Multiple Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 156

Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

The SolidColorBrush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

The Tile Brushes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

The Gradient Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



■CHAPTER 8 Styling and Templating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Using Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Using Control Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Creating a Control Template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Control Templates for Other Controls . . . . . . . . . . . . . . . . . . . . . . . . . 178

Developing a Templated Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

■CHAPTER 9 Animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Animation Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Timelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Storyboards and Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

From/To/By Animations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Keyframe Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Animating with Expression Blend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

■CHAPTER 10 Dynamic Languages and the Browser . . . . . . . . . . . . . . . . . . . . 207

Introducing Dynamic Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

The DynamicApplication Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Creating a Dynamic Language Application . . . . . . . . . . . . . . . . . . . . 209

Executing a Dynamic Language Application . . . . . . . . . . . . . . . . . . . 211

Developing with Dynamic Languages . . . . . . . . . . . . . . . . . . . . . . . . 212

Interoperating with the Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

■CHAPTER 11 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Security in the CoreCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Application-Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Securing Information in Transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Securing Information with Cryptography . . . . . . . . . . . . . . . . . . . . . . 232

Division of Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

■CONTENTSx



■CONTENTS xi

■CHAPTER 12 Testing and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Automated User Interface Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

The Debugging Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Conditional Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Debugging with Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Handling Unhandled Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

■CHAPTER 13 Packaging and Deploying Silverlight Applications . . . . . . 271

Client Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Silverlight Deployment Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Hosting Silverlight on a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Silverlight Versioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Custom Initialization Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Silverlight and the Build Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Silverlight Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

■CHAPTER 14 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

The Thread Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Creating and Managing Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

The Dispatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

The BackgroundWorker Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Working with Shared Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Using Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

The DispatcherTimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

The System.Threading Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Dynamically Loading Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313



■CONTENTSxii

■CHAPTER 15 Case Study: Campus Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Application Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Design of the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Packaging of the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Application Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Helper Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

XAML Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

MainPage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Map.xaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



xiii

About the Author

■JEFF SCANLON is an independent Microsoft consultant with extensive experience devel-
oping software using a variety of technologies. He designs and implements software across
all layers with a focus on web-based applications. Jeff has lead developer training sessions
on software engineering practices and introductions to new technologies at nearly every
company he has worked with. He is the author of Professional Java Programming with JDK 5,
and has written a number of articles on .NET for Software Development magazine. He
holds several Microsoft certifications and a bachelor’s degree in computer science from
George Mason University.



xv

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer. He
works for Brain Force (www.brainforce.com/) in its Italian branch (www.brainforce.it/).
He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application
Developer for .NET, and a Microsoft Certified Professional.

Fabio is a prolific author and technical reviewer. Over the past ten years, he has written
articles for Italian and international magazines, and has coauthored more than ten books on
a variety of computer-related topics. You can read his LINQ blog at www.ferracchiati.com/.



xvii

Acknowledgments

Thank you for deciding to buy this book. Without readers, a book is nothing more than
an actor on an empty stage. I hope this book successfully helps you gain proficiency with
Silverlight.

I had several publishers in mind when I first decided to pitch a book on Silverlight.
After sending out several e-mails, I received a response from Ewan Buckingham in a mere
matter of hours. This fast response encouraged me, since Apress was my top choice. Ewan
impressed me from the beginning by seeing where this book could fit and helping get the
project off the ground. He also saw this book through to the end, despite an issue during
the middle of the project. I can’t thank him enough for bringing me into the Apress author
family and sticking with me on this project.

There are many other people at Apress that helped create this book and each deserves
a great deal of appreciation. I couldn’t have asked for a better project manager than Richard
Dal Porto. Despite deadline slips and repeated schedule revisions that I’m sure would stress
out any PM, Richard gave me plenty of space to work without constantly asking for status
reports. Ewan and Richard trusted me to get the work done and I’m indebted to them for
seeing this project through to the end.

Damon Larson was the copy editor for this book. Without his feedback, many ideas
in this book would be unclear and the structure of the language might seem inconsistent.
I think I gave him a lot of work to do, but the book is much better for his careful combings-
through of my writing.

Jill Ellis worked as production editor. She helped the book through its final stages,
ensuring the book looked how it should before it was sent to the printer. She was helpful
in putting the extra polish on the book that will be evident when you read its pages.

Other people from Apress who helped along the way (in no particular order) are Joohn
Choe, Ami Knox, Linda Seifert, Nancy Wright, and Dominic Shakeshaft. Compared to the
hard work of all the people at Apress, I feel like my job was minor!

Fabio Claudio Ferracchiati, technical editor, was also of vital importance to this book.
He offered a significant amount of feedback that helped improve the chapters. Based on
his feedback, some sections were completely rewritten to improve structure and quality of
information.

Any imperfections in this book are solely my responsibility, not Apress’ or my techni-
cal editor’s. I encourage you to leave feedback online or contact me directly so they can
be addressed if necessary.

Claudia Holland from George Mason University helped ensure I had the required
permissions to use the name of the university and video/pictures of the Fairfax campus.



I would also like to thank the people in my life who helped make this book possible.
My parents deserve credit for letting me pursue what I want in life, regardless of the crazi-
ness of some pursuits. My closest friends deserve endless appreciation for their support:
Corey Chang, for inspiring me and supporting me despite being the only person busier
than I am; Phill Alexander, for his continual support and help with random snippets of
language, despite a busy schedule as a PhD student; and Dave Nelson, for getting me into
this intense, incredible field all those years ago.

■ACKNOWLEDGMENTSxviii



xix

Introduction

Silverlight is an exciting technology. There are technological aspects to Silverlight that
convince me it will be a viable platform in the years ahead. I think Silverlight and its Linux
implementation, Moonlight, will prove interesting to all developers, regardless of whether
they have .NET experience. Silverlight brings the advantages of XAML and a CLR, and a set
of useful platform libraries, to operating systems other than Windows. Someone once
commented that Silverlight is where I placed my bet, and this is definitely true. I’ve upped
the ante by investing the time and energy to write this book. Accelerated Silverlight 2 aims
to get you up to speed as efficiently as possible on Silverlight, and I hope you find what
you’re looking for within its pages. If you have any questions or problems, please get in
touch with me using the contact information at the end of the Introduction, and I’ll help.
I also have a site specifically devoted to this book, www.acceleratedsilverlight.net/, which
provides a place for readers to get questions answered and extend some of the topics
discussed in this book.

Who This Book Is For
This book assumes you have a reasonable degree of familiarity with .NET, such as under-
standing what assemblies are and how to develop on the .NET platform using C#. The goal
of this book is to get you up to speed on Silverlight as efficiently as possible. Although
Windows Presentation Foundation (WPF) also uses XAML (which you’ll learn about in
Chapter 2, in case you’re unfamiliar with this term), you do not need to be familiar with WPF.

How This Book Is Structured
This book covers a significant amount of Silverlight, from the new Extensible Application
Markup Language (XAML), to creating user interfaces, to the building of a real world–style
application. The following subsections more specifically detail what is covered in each
chapter.



Chapter 1, “Introducing Silverlight”

This chapter discusses some of the background of cross-platform applications to help
you understand where Silverlight fits into the overall technological picture. There may
not be much history to Silverlight, but it did start as a version 1.0 product that featured
a basic XAML parser (but no managed execution engine). This chapter concludes with
using Visual Studio 2008 and Expression Blend to create your first Silverlight application.

Chapter 2, “Getting to Know XAML”

XAML is a new declarative language. It provides an easy way to create and configure
object hierarchies and relationships in markup. This chapter introduces important con-
cepts, such as markup extensions to support handling resources and data binding, type
converters for interpreting property values, dependency properties, attached properties,
events, and other important aspects of XAML and Silverlight.

Chapter 3, “Creating User Interfaces”

Silverlight provides important controls for organizing user interfaces, displaying infor-
mation, and receiving user input. After discussing the important aspects of the Silverlight
object hierarchy, we get right into creating user interfaces. The major layout controls are
explored—the Canvas for absolute positioning, the StackPanel for organizing controls
horizontally or vertically, and the Grid for placing controls in HTML-like tables. Next, all
the standard user interface controls are covered, including those for creating text entry
boxes, check boxes, radio buttons, and list boxes.

Chapter 4, “Network Communication”

An online application that does not talk to other systems (or even back to its hosting
server) is a rare case, so Silverlight must provide ways to interact with other systems.
Unsurprisingly, Silverlight provides functionality to invoke web services and download
data (such as ZIP files) from a web server. However, it might surprise you that Silverlight
includes support for raw network communication, though it is subject to security restrictions.

Chapter 5, “Working with Data”

Communicating over the network is important for getting data—but once you have data,
what do you do with it? This chapter details how to connect data from a data source to
the user interface using the data binding architecture. Data can be stored in a collection
in the code-behind or in XML. Silverlight provides the ability to use LINQ expressions
(introduced in .NET 3.5—but don’t worry, Silverlight is still completely separate from the

xx ■INTRODUCTION



xxi

.NET Framework) in the code-behind, as well as support for both reading and writing
XML files and serialization to and from objects. This chapter concludes with a look at
how to save state on the client, mainly through the use of isolated storage—a private,
secure area on disk for Silverlight applications.

Chapter 6, “Working with Media”

Silverlight makes it easy to create rich user interfaces involving images, audio, and video.
This chapter details how to access and utilize these media elements. Silverlight can be used
to create sites that manage video—such as YouTube (www.youtube.com/)—or sophisticated
image-browsing sites like Hard Rock Memorabilia (http://memorabilia.hardrock.com/). This
chapter details the various media controls, including Image, MediaElement, and Multi-
ScaleImage (also known as Deep Zoom, the MultiScaleImage control was used to create
the Hard Rock Memorabilia site). The chapter concludes with a look at Silverlight Stream-
ing, a service Microsoft provides to host both Silverlight applications and videos for streaming.

Chapter 7, “Extending the User Interface”

Although Chapter 2 detailed many controls useful for building Silverlight applications, it
only showed one aspect of Silverlight’s support for building user interfaces. This chapter
returns to building user interfaces. Silverlight has support for 2D graphics, such as lines
and ellipses, and even complex geometrical shapes. Almost anything that can be drawn
on a user interface (such as 2D graphics or controls) can be transformed (e.g., rotated or
scaled down). These transforms are discussed along with performing custom transforma-
tions by using a transformation matrix. This chapter concludes with a look at the various
brushes provided by Silverlight, useful for painting colors, images, video, or even color
gradients onto foregrounds or backgrounds of elements in a user interface.

Chapter 8, “Styling and Templating”

Silverlight provides the ability to centrally manage styles that control the appearance of
elements on a user interface, such as those for font face, font size, and color. It also sup-
ports the ability to completely replace the visual representation of controls using control
templates. Both of these mechanisms are explored in this chapter.

■INTRODUCTION



Chapter 9, “Animation”

Animation provides the ability to change the properties of user interface elements over
time. This chapter discusses the support Silverlight provides for animation, beginning
with an explanation of a timeline and continuing with an exploration of storyboards and
the different ways to animate elements of a user interface. The chapter concludes with
a look at animating using Expression Blend, an invaluable tool for easily developing and
previewing animation.

Chapter 10, “Dynamic Languages and the Browser”

A big aspect of Silverlight that is currently not officially available in .NET on Windows is
the Dynamic Language Runtime (DLR). This enables the smooth execution of dynamic
languages such as IronPython, IronRuby, and Managed JScript within Silverlight. After
showing how to utilize dynamic languages in Silverlight applications, this chapter switches
gears to the support Silverlight provides for interoperating with the browser. Silverlight
provides the ability to send and receive data from the hosting browser, including invoking
JScript and accessing the DOM.

Chapter 11, “Security”

Silverlight can interact with the host operating system—for example, isolated storage
ultimately writes files to disk. This direct access is impossible from your application code
because all application code is considered unsafe. This forms the core of the security model
for executable code in Silverlight. Beyond the security of executable code, there are other
aspects at an application level that contribute to sound security in Silverlight applications.
These aspects include authentication/authorization to control access, communicating
over SSL, and using cryptography to protect sensitive data. This chapter explores all of
these, along with how to design a Silverlight application with security in mind.

Chapter 12, “Testing and Debugging”

Applications must be tested to prove, as best as possible, that they are bug free and work
as designed. This chapter primarily focuses on unit testing—testing Silverlight applica-
tions from the perspective of a developer. A strong set of unit tests can prove a useful part
of the build and verification process. When bugs are found, during development or from
testing, the root cause must be discovered. This is where debugging proves useful. Debugging
is more than simply attaching a debugger to a Silverlight application and tracing execution.
Both proactive and reactive debugging measures are discussed.

xxii ■INTRODUCTION



Chapter 13, “Packaging and Deploying Silverlight Applications”

Silverlight is a client-side technology. A Silverlight application can be placed on any web
server (e.g., IIS, Apache, etc.); however, there are some benefits to deploying Silverlight on
IIS 7 (primarily in the handling of video). This chapter will discuss how Silverlight applica-
tions are packaged and deployed on web servers, how they are embedded in HTML/ASPX
pages, and also what is necessary to support building Silverlight applications using MSBuild.

Chapter 14, “Advanced Topics”

One of the most frustrating things for users of an application is a frozen user interface.
Long-running operations should never occur on the user interface thread, and you should
be well aware of this if you’ve done any Windows Forms development. Silverlight supports
several techniques to improve responsiveness of user interfaces, including asynchronous
communication and threading. This chapter explores techniques to create responsive user
interfaces by looking at both explicit and implicit ways of leveraging multiple threads.
Silverlight also provides several timer-related classes useful for certain periodic tasks, such
as providing a time signature for a video that is playing.

Chapter 15, “Case Study: Campus Explorer”

The book concludes with the design and development of an example application that
uses many aspects of Silverlight. The application provides an interactive map of a univer-
sity campus and displays images/video linked to buildings on campus to give visitors to
the application a good idea of what the campus is like. The key features of this application
include images, video, control templating and styling, data binding, and various controls.

Contacting the Author
You can contact the author by visiting his site at www.artofcoding.net/, or via this book’s
site, at www.acceleratedsilverlight.net/. Comments on this book can be sent directly to
the author at feedback@acceleratedsilverlight.net.

xxiii■INTRODUCTION



Introducing Silverlight

Silverlight is an exciting new technology from Microsoft for developing rich user experiences
that are accessible on a variety of platforms. Stated succinctly, Silverlight is a cross-platform
Common Language Runtime (CLR) with a strong presentation framework for compositing user
interfaces and displaying images and video, making development of rich user experiences much
easier than before. At the core of Silverlight is a new markup language called Extensible
Application Markup Language, or XAML (pronounced zammel). XAML helps designers and
developers work more effectively with each other since it is a declarative language with tools
built around it. Silverlight 2.0 is a natural extension to technologies already in existence, specifi-
cally .NET and Windows Presentation Foundation (WPF). If you strip out the parts of .NET that
just aren’t needed or don’t easily work across platforms (such as interoperating with COM), add
in an implementation of XAML that is close to WPF’s, and mix in a few new things such as browser
interoperability and ability to execute dynamic languages such as Python (IronPython, as the
.NET implementation is called), you end up with Silverlight 2.0.

Developing applications that work on multiple platforms is a difficult problem. What con-
stitutes a platform is an important question, and for the purposes of this book, it is any unique
host environment that provides an execution environment for code. If you give it some thought,
it is easy to categorize Windows XP, Windows Vista, OS X, and Linux as platforms; but Firefox,
Internet Explorer 6, Internet Explorer 7, Opera, and so on also count as platforms. If you’ve done
any web development targeting multiple browsers, you’re familiar with the inherent headaches
in getting a web site to render and operate the same on Internet Explorer as it does on Firefox
and others. Technically, this web site is a cross-platform application. The goal of Silverlight is to
create a consistent execution environment across different browsers and operating systems. 

There is no magical reason why a cross-platform application is automatically “good.” Any
responsible software engineering starts with a careful examination of the business reasons for
a project. If all users are on a single platform, such as Windows, there is no reason to spend
extra development time ensuring that the software also works on other platforms. Also, a sig-
nificant amount of software that enables business applications (data and business logic layers)
has no need to work on multiple platforms (though it can potentially be consumed by different
platforms), and in fact benefits from platform-specific optimizations. 

However, cross-platform applications are definitely important—as is best evidenced by
web sites that are usable, generally, on any browser. The ability to develop cross-platform appli-
cations is of the most importance when the potential users for an application are on multiple
platforms. This is a rather obvious statement, but it is important to note that development of 
a cross-platform application offers no inherent benefits if all users are on a single platform.

1

C H A P T E R  1



That is, unless the cross-platform aspect is obtained free or near-free (therefore helping to
future-proof the application if the user base changes). This concept of “free or near-free” is
important—software engineering is already a challenging endeavor, and if making software
cross-platform is difficult to implement, it requires either significantly more development
time for a single code base, or a second code base for a different platform that replicates the
functionality of the first (not to mention a third or fourth code base if other platforms must
be supported). Without question, this means more time, more money, and more development
resources are needed. Optimally, we want a relatively easy way to create cross-platform
applications. Fortunately, a number of frameworks have attempted to make the creation of
cross-platform applications free or near-free.

Cross-Platform Frameworks
Frameworks for developing cross-platform applications are not new. Even the C language is
arguably cross-platform, since the source can be written once and compiled on each target
platform, thus enabling portability of projects written in C. While arguments over what truly
constitutes cross-platform can be interesting, they aren’t of much practical use for us here, so
let’s take a brief look at the serious contenders for developing cross-platform applications.

Qt
Qt (pronounced cute) is a cross-platform application development toolkit mainly for C++;
however, it has support for other languages such as Java. The significant benefit to Qt is that
programs execute natively after compilation (i.e., no new virtual machine is needed). The
cross-platform nature of Qt is provided at the source level, as long as developers utilize Qt’s
platform-agnostic API. The major downsides to Qt are the learning curve for developers and
the degree to which applications might become intertwined with Qt (though this might be
acceptable to many organizations). Visit www.trolltech.com/products/qt for more information.

The Java Platform
The Java platform is possibly the closest comparison to Silverlight on the market. Much like
.NET, the Java platform is a managed environment. Until Silverlight, though, .NET was only
available on Windows. Both platforms provide the ability to compile a program and immedi-
ately execute it on multiple platforms. The Java platform and Silverlight approach this similarly:
an execution environment (known as a virtual machine) is developed for each platform where
programs might be run. Java source code is compiled to Java bytecode, which is then executed
by the Java virtual machine. The downsides to this approach are the plethora of virtual machines
that can be created, each with potential quirks that sometimes affect existing applications, and
the time cost of starting up a Java virtual machine on a web site (you’ve no doubt seen the gray
rectangle and the loading symbol on web pages). Sun also has a more direct competitor to Sil-
verlight called JavaFX, a framework including a scripting language to more easily create Java
applications. This framework makes the most sense for institutions and developers already
used to working in the Java environment or needing to extend their existing Java applications.
Visit http://java.sun.com/javafx/ if you are curious about learning more.

CHAPTER 1 ■ INTRODUCING SILVERLIGHT2



Flash/Flex
Flash is, by far, the most popular comparison to Silverlight. A browser plug-in that enables
execution of rich content for the Web—doesn’t that sound familiar? This comparison is made
even more explicit with Adobe releasing Flex, an environment for executing rich applications
in the browser and on the desktop. While there are some feature differences between Flex
and Silverlight that can make one more appealing than the other, Flex is a viable alternative
to Silverlight; however, it caters to a different set of developers than Silverlight does. Flex
capitalizes on the languages people already know, including JavaScript, HTML, CSS, and
ActionScript. Silverlight, however, provides a brand new markup language, but is an incredibly
natural platform to develop on if you’re already a .NET developer. Visit www.adobe.com/products/
flex/ if you want to learn more about Flex.

Silverlight
This brings us to the subject of this book: Silverlight 2.0. The .NET 3.0 Framework included the
first release of WPF, along with other key technologies. With WPF came XAML, essentially a way
to create applications in markup (there is an almost one-to-one correspondence between XAML
constructs and code). While XAML is not necessarily tied to presentation logic, the two most
visible uses of it are in WPF and Silverlight. Silverlight’s implementation of XAML is a subset of
WPF’s—it does not have 3D support, for example. While Silverlight does contain a CLR, it has
absolutely no dependence on any of the .NET Framework versions—the Silverlight plug-in
brings with it a CLR and a base class library all its own.

If you are already a .NET developer, you will be in familiar territory after learning XAML
and its features. The correspondence of XAML to classes in .NET is a major strength, and the
tool support built around XAML for designers and developers is strong and growing.

The History of Silverlight
Before the MIX conference in March 2007, Silverlight was known by the relatively boring but
descriptive name WPF/E, which stands for Windows Presentation Foundation/Everywhere.
While the details were sparse at the time, the rough goal of the technology was clear: a browser-
hosted version of WPF. Silverlight 1.0 was unveiled at the conference and would no longer be
known as WPF/E. This initial release of Silverlight did not have a CLR or anywhere close to the
capabilities provided by 2.0. What it did have, though, is support for a small subset of XAML
and a variety of capabilities that foreshadowed the future of Silverlight. Possibly the most
obvious aspect of Silverlight 1.0 is that applications are written either completely in XAML or
in a mix of XAML and JavaScript. Since there is no CLR, there is no compilation step, and the
JavaScript is interpreted on the client. The major features supported by Silverlight 1.0 are

Core architecture: This includes DependencyObject at the root, and UIElement forming the
base of user interface classes (but no FrameworkElement class).

Basic layout: The Canvas is the only layout component, so user interface elements can
only be placed using absolute positions.

CHAPTER 1 ■ INTRODUCING SILVERLIGHT 3



Basic controls: The TextBlock and Run controls are provided to display text. In terms
of handling user input, nothing specialized is provided. This limitation extended to
Silverlight 1, and the full control architecture debuted when Silverlight 2.0 was first
released in beta.

2D graphics: Geometry-based classes (which are flexible but can’t be directly placed on
a user interface) and Shape-based classes (which can be directly placed on a user inter-
face) provide the ability to draw 2D shapes.

Media: Many early Silverlight applications showcased the image and video support pro-
vided by Silverlight. Also included is support for easily downloading media such as images
so that bandwidth could be utilized more effectively.

Animation: The Storyboard class known from WPF became part of the XAML implemen-
tation in this first release of Silverlight, providing the ability to animate different user
interface elements in a variety of ways.

Brushes and transforms: Brushes such as the image brush, video brush, and color brushes
(solid colors and gradients) have been in Silverlight since this initial release.

Silverlight 1.0 does require a plug-in on the client side, and in the spirit of Microsoft’s com-
mitment to backward compatibility, Silverlight 1.0 applications still work on Silverlight 2.0. Two
of the most important parts of the latest release of Silverlight that are not present in Silverlight
1.0 are a rich set of controls and performance advantages due to compiled code.

Soon after Silverlight 1.0 was released, the next version of Silverlight was released in pre-
view form. This preview release was known as Silverlight 1.1, the most significant aspect of
which is the cross-platform CLR. While Silverlight 1.0 could be used to develop some impres-
sive media-based applications, the possibilities greatly expand with the ability to target the
.NET platform and know that the application will run on multiple host platforms. The biggest
missing feature from Silverlight 1.1 was a set of standard controls. This made developing use-
ful user interfaces difficult. Handling input events was also difficult since events could only
be captured on the root container. You then had to manually propagate the events to child
objects. Input focus was also tricky.

After several months, as it got closer to the MIX08 conference in March 2007, Microsoft
revealed that Silverlight 1.1 would actually be released as Silverlight 2.0 since the feature set
grew so much. Fortunately, the 2.0 release of Silverlight includes a standard control set (proba-
bly everything you would want except for a tree control and a combo box control) and an input
event system that saves Silverlight developers the tedium of handling input events manually.
Silverlight 2.0 comes with much more than just these important additions. We get strong net-
working support, even including the ability to communicate over sockets. We get the System.Xml
classes, though they are a subset of the same classes in the .NET Framework on Windows. We
get the ability to develop in any .NET language we want—including dynamic languages such
as compiled JavaScript and IronPython. This book will cover Silverlight 2.0 in detail and help
you quickly get up to speed on this new technology.

CHAPTER 1 ■ INTRODUCING SILVERLIGHT4



Creating Your First Application
Since Visual Studio 2008 supports .NET 3.0 and 3.5, WPF application support is already built in.
However, since the release of Visual Studio 2008 preceded Silverlight 2.0, Silverlight support is
not provided out of the box. After you install the Silverlight 2.0 SDK, Visual Studio 2008 gains
support for building Silverlight 2.0 applications and class libraries, and adds a read-only design
surface and appropriate IntelliSense in the XAML editor. While Visual Studio is an established
tool targeted to developers, tool support for WPF and Silverlight for both designers and devel-
opers is necessary. This need is satisfied by the Expression suite of products from Microsoft.
Let’s install the Silverlight 2.0 SDK and briefly explore it and one of the Expression tools.

Visit http://silverlight.net/GetStarted/ and download Microsoft Silverlight Tools for
Visual Studio 2008. This single download includes the SDK for Visual Studio 2008 (Standard
edition and above) and the runtime for Silverlight 2.0. 

Two more tools are available at this page: Expression Blend and the Deep Zoom Composer.
If you have seen the Hard Rock Memorabilia site, you have seen a product of the Deep Zoom
Composer. This technology will be discussed when we take a closer look at media support in
Silverlight in Chapter 5. For now, just download and install Expression Blend 2.5 Preview.

When you edit a XAML file in a WPF application using Visual Studio, you have access to
a toolbox of controls, a design surface onto which you can drag and drop controls, and a text
editor view of the XAML code. When you edit a XAML file in a Silverlight application, you still
have these three elements, but the design surface is read-only. This is probably a result of the
Silverlight package being an add-on to Visual Studio. One thing you can do, though, is drag
and drop controls from the toolbox onto the text editor. This can help a lot when you want to
work with XAML exclusively in Visual Studio.

You can use Expression Blend if you want a full drag-and-drop user interface construction
tool for Silverlight. It’s possible to use Expression Blend simultaneously with Visual Studio.
Modifications to both XAML files and the project/solution file are fine, since when you switch
from one tool to the other, the tool will reload the updated files.

Start by loading Visual Studio 2008 and creating a new project (see Figure 1-1).

CHAPTER 1 ■ INTRODUCING SILVERLIGHT 5



Figure 1-1. The New Project dialog in Visual Studio 2008

After you click OK, the next dialog allows you to create a web site/web application project
that hosts the Silverlight application (see Figure 1-2). 

CHAPTER 1 ■ INTRODUCING SILVERLIGHT6



Figure 1-2. The Add Silverlight Application dialog in Visual Studio 2008

For the purpose of the examples in this book, it does not matter if you use a web site or
a web application project; however, web application projects are better for eventual deploy-
ment since they contain a project file suitable for MSBuild. 

Click OK, and the Solution Explorer will show two projects: the Silverlight application (Sil-
verlightApplication1) and the web site supporting it (SilverlightApplication1_Web). If you now
build the application, the Silverlight application is built to a XAP file that is automatically copied
to the ClientBin folder within the web site. This XAP file contains the Silverlight application
and will be downloaded by the client when it visits the web site.

If you now start the development server in Visual Studio (by pressing F5 or Ctrl+F5), you
will see the Silverlight application start. If, however, you create a new web site in IIS, point the
document root to SilverlightApplication1_Web, and navigate to this site, you will get a 404 error
when trying to load the Silverlight application in your browser. What’s going on? IIS must know
about the new file extension .xap. You accomplish this by adding a new MIME type to either
the root of IIS or to the specific web site you created. The file extension is .xap and the MIME
type is application/x-silverlight-app.

Now let’s take a look at Expression Blend, a tool used to lay out user interface controls
and create animations in WPF and Silverlight. Without closing Visual Studio, start Blend, go
to File ➤ Open ➤ Project/Solution, and navigate to the solution file created in Visual Studio
(in C:\book\examples\SilverlightApplication1 if you used the same directory structure). 

The top-right portion of Blend is devoted to managing the project files (like the Solution
Explorer in Visual Studio); properties for various user interface elements; and resources, which
include style templates, and animation storyboards, stored in XAML. Double-click Page.xaml
to open this XAML page in the designer (see Figure 1-3).

CHAPTER 1 ■ INTRODUCING SILVERLIGHT 7



Figure 1-3. The Project Property pane in Expression Blend

Along the left side of the Blend screen is the toolbox. This provides access to both layout
and input controls, and several tools used to modify the user interface, such as a paint bucket
and a transform tool for brushes. Hold down the left mouse button when selecting any icon
with a white triangle in the lower-right-hand corner and more tools will expand from it.
Figure 1-4 shows an example when clicking the Button icon (which looks like a mouse cursor
hovering over a rounded rectangle).

Figure 1-4. The control toolbox in Expression Blend

The Objects and Timeline area to the immediate right of the toolbox provides a place to
create and manage animation storyboards, but more importantly for us right now, it shows
the object hierarchy in XAML. After creating our application, we see [UserControl] and

CHAPTER 1 ■ INTRODUCING SILVERLIGHT8



LayoutRoot. Click [UserControl] to highlight it and then click Properties in the top-right
portion of the screen. The control with the gray highlight is the control that shows up in the
Properties pane (see Figure 1-5).

Figure 1-5. The Objects and Timeline pane in Expression Blend

Go to the Properties pane and set the width and height of the UserControl to 400 and 100,
respectively, as shown in Figure 1-6.

Figure 1-6. The size properties for a control in Expression Blend

You can also click XAML or Split along the right side of the design surface and view and
edit the XAML directly. However, as interfaces get more complex, Blend becomes an invalu-
able design tool for working with the XAML indirectly. Hand-editing XAML should generally
be used for tweaking some XAML instead of creating full-blown user interfaces.

Next, right-click LayoutRoot in the Objects and Timeline pane and select Delete. This
removes the default Grid layout control. While you can go to the toolbox and select the
Canvas control (it’s in the group four controls up from the bottom), let’s view the XAML
and create a Canvas control by hand. Click Split alongside the design surface to see the
design surface simultaneously with the XAML. Edit the XAML to look like the following
(reintroducing the close tag to the UserControl and dropping in the Canvas tag):

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="SilverlightApplication1.Page"
Width="400" Height="100">
<Canvas Height="Auto" Width="Auto" Background="White"/>

</UserControl>

Now go to the toolbox and select the TextBlock control, as shown in Figure 1-7.

CHAPTER 1 ■ INTRODUCING SILVERLIGHT 9



Figure 1-7. Choosing the TextBlock control from the toolbox

This control is used to place text on a user interface, much like a label in Windows Forms
or ASP.NET. Click the design surface and hold the mouse button down, and then drag right and
down to create a rectangle describing the area for the TextBlock. Now the TextBlock should
appear as a child of the Canvas in the Objects and Timeline pane. Make sure the TextBlock is
selected, and go to Properties.

If you’ve read even just one other programming book, you know what’s coming next.
Scroll down the properties until you see the Common Properties area, and set the text to
“Hello World!” as shown in Figure 1-8.

Figure 1-8. Setting the Text property of a TextBlock in Expression Blend

If you now switch back to Visual Studio, it will ask to reload Page.xaml. Go ahead and
reload. Press F6 to build the application and then Ctrl+F5 to start the application without
debugging. You should see something similar to Figure 1-9 in your browser.

Figure 1-9. The Hello World application as viewed in Internet Explorer 7

Congratulations, you have now created your first Silverlight application using both
Expression Blend and Visual Studio! 

CHAPTER 1 ■ INTRODUCING SILVERLIGHT10



Summary
This chapter began with a discussion of Silverlight and its major competitors. Next, it covered
how to create a new Silverlight application in Visual Studio with a supporting web site, how to
modify the user interface in Expression Blend, and finally, how to build and execute an appli-
cation in Visual Studio. The next stop on our journey through practical Silverlight development
takes us to XAML. Many of the core concepts needed to understand how Silverlight works are
covered in the next chapter, including markup extensions, dependency properties, and pre-
views of features such as data binding and styling applications.

CHAPTER 1 ■ INTRODUCING SILVERLIGHT 11



Getting to Know XAML

Now that you understand what Silverlight is and where it fits in the general technology land-
scape, and have installed the tools necessary to develop in Silverlight and created your first
Silverlight application, it is time to peel back the layers. This chapter will start by properly
introducing Extensible Application Markup Language (XAML), and then exploring its many
features, such as the new property and event systems needed to support data binding, anima-
tion, and other key parts of Silverlight. The chapter will wrap up with more information on
Silverlight applications, such as project structure and connecting XAML to events in code-behind.

Introducing XAML
Let’s jump right in and look at a simple Silverlight application. This application will display
a basic login screen with a text entry area for username and password, and a button. There is
no logic behind this screen—we will only look at the markup for now. Figure 2-1 shows what
this application looks like on Windows Vista. Focus on the content on the right—the naviga-
tion list on the left provides an easy way to navigate to other examples used in this chapter.

Figure 2-1. A simple login screen as shown in Internet Explorer 7 on Windows Vista

13

C H A P T E R  2



Since Silverlight is cross-platform, Figure 2-2 shows you what this application looks like
on OS X in Safari.

Figure 2-2. The login screen as shown in Safari on OS X

Unsurprisingly, it looks the same. As long as this behavior holds true throughout Silverlight
applications, it should reinforce the fact that Silverlight provides a viable cross-platform frame-
work, delivering on its promise.

Now let’s look at the XAML that describes the login screen. If you create a new Silverlight
application, you can paste this code into Page.xaml (make sure project is named XAMLTour, or
change the namespace in the x:Class attribute to match the project name). We’ve placed this
code in a XAML file named LoginScreenXAML.xaml. We will circle back at the end of this chapter
and see how this file becomes the main user interface for the application. Also, many aspects
of this code will be discussed in detail in later chapters, such as how the Grid and Canvas lay-
out controls work.

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="XAMLTour.LoginScreenXAML">
<Canvas Background="White">

<Grid Height="140" Width="250" Canvas.Left="25" Canvas.Top="15">
<Grid.RowDefinitions>

<RowDefinition/>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>

</Grid.RowDefinitions>

CHAPTER 2 ■ GETTING TO KNOW XAML14



<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<TextBlock HorizontalAlignment="Center" 

Text="Please enter your information" 
Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"/>

<TextBlock Text="Username:" VerticalAlignment="Top" 
HorizontalAlignment="Right" 
Grid.Column="0" Grid.Row="1"/>

<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="1"/>
<TextBlock HorizontalAlignment="Right" VerticalAlignment="Top" 

Grid.Column="0" Grid.Row="2">
Password:

</TextBlock>
<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="2"/>
<Button Content="Login" Grid.Row="3" Width="100" Grid.Column="1" 

HorizontalAlignment="Left"/>
</Grid>

</Canvas>
</UserControl>

XAML is a markup language that provides mechanisms for constructing and configuring
object hierarchies that are traditionally done in code, such as C#. The login screen, constructed
in C# instead of XAML, looks like the following:

Canvas canvas = new Canvas();
canvas.Background = new SolidColorBrush(Color.FromArgb(255, 255, 255, 255));
Grid grid = new Grid();
grid.Width = 250;
grid.Height = 140;
grid.SetValue(Canvas.LeftProperty, 25);
grid.SetValue(Canvas.TopProperty, 15);
grid.RowDefinitions.Add(new RowDefinition());
grid.RowDefinitions.Add(new RowDefinition());
grid.RowDefinitions.Add(new RowDefinition());
grid.RowDefinitions.Add(new RowDefinition());
ColumnDefinition cd = new ColumnDefinition();
cd.Width = new GridLength(0, GridUnitType.Auto);
grid.ColumnDefinitions.Add(cd);
grid.ColumnDefinitions.Add(new ColumnDefinition());
TextBlock headerText = new TextBlock();
headerText.HorizontalAlignment = HorizontalAlignment.Center;
headerText.Text = "Please enter your information";
headerText.SetValue(Grid.ColumnProperty, 0);
headerText.SetValue(Grid.ColumnSpanProperty, 2);
headerText.SetValue(Grid.RowProperty, 0);
TextBlock usernameText = new TextBlock();
usernameText.Text = "Username:";

CHAPTER 2 ■ GETTING TO KNOW XAML 15



usernameText.HorizontalAlignment = HorizontalAlignment.Right;
usernameText.SetValue(Grid.ColumnProperty, 0);
usernameText.SetValue(Grid.RowProperty, 1);
TextBox usernameInput = new TextBox();
usernameInput.VerticalAlignment = VerticalAlignment.Top;
usernameInput.SetValue(Grid.ColumnProperty, 1);
usernameInput.SetValue(Grid.RowProperty, 1);
TextBlock passwordText = new TextBlock();
passwordText.Text = "Password:";
passwordText.HorizontalAlignment = HorizontalAlignment.Right;
passwordText.SetValue(Grid.ColumnProperty, 0);
passwordText.SetValue(Grid.RowProperty, 2);
TextBox passwordInput = new TextBox();
passwordInput.VerticalAlignment = VerticalAlignment.Top;
passwordInput.SetValue(Grid.ColumnProperty, 1);
passwordInput.SetValue(Grid.RowProperty, 2);
Button loginButton = new Button();
loginButton.Content = "Login";
loginButton.SetValue(Grid.ColumnProperty, 1);
loginButton.SetValue(Grid.RowProperty, 3);
loginButton.HorizontalAlignment = HorizontalAlignment.Left;
loginButton.Width = 100;
grid.Children.Add(headerText);
grid.Children.Add(usernameText);
grid.Children.Add(usernameInput);
grid.Children.Add(passwordText);
grid.Children.Add(passwordInput);
grid.Children.Add(loginButton);
this.Content = canvas;
canvas.Children.Add(grid);

The C# code is more verbose and thus more difficult to read and maintain. The C# code
also requires a compilation step, though XAML files also have that requirement since they
have code-behind and must be packaged as part of a XAP file. C# also requires a software
developer to create the user interface, either by hand or by using a designer, as with Windows
Forms. XAML provides a way to create user interfaces such as the login screen in a straightforward
and (relatively) easy-to-maintain fashion. Markup is easier to read (at least in small doses—
complex user interfaces are a different story) and has far better tool support for creating and
maintaining. XAML isn’t just another markup language—its strength lies in its ability to model
object hierarchies and easily configure object state via attributes or child elements. Each ele-
ment name (e.g., UserControl, Canvas, etc.) directly corresponds to a Silverlight object of the
same name.

Let’s look closer at the XAML. The root element is UserControl, a container for other con-
trols. A UserControl on its own has no visual representation—layout controls such as Canvas
and Grid combined with standard controls such as text input boxes and buttons create the
visual representation. User controls provide a way to compose controls into a reusable “master”
control, not unlike user controls in ASP.NET. The next chapter will take a closer look at what
goes into user controls in Silverlight.

CHAPTER 2 ■ GETTING TO KNOW XAML16



Silverlight has rich support for composing what is ultimately viewed on screen. Many
controls can contain arbitrary content, such as a ListBox containing Buttons as items or even
other ListBoxes! This makes composing a custom user interface possible using nothing other
than markup. Since XAML is a dialect of XML, elements describing content are nested in a tree
hierarchy. From the perspective of XAML, this tree is known as a logical tree.

■Caution XAML is case sensitive. Since XAML is a dialect of XML, it possesses all of the characteristics of
XML. Most importantly, all element names, property names, and so on are case sensitive. Button is not the
same as button. However, this does not necessarily apply to property values, which are handled by Silverlight’s
XAML parser. In the preceding example, Auto is used in one place and auto in another—this is perfectly valid.

By reading this XAML code closely, you can see that it describes a UserControl that contains
a Canvas that contains a Grid that contains the various visual elements of the login screen. You
can view the logical tree of these elements in Visual Studio by right-clicking the design surface
and choosing Document Outline or, alternately, going to the View menu and choosing Other
Windows ➤ Document Outline. This displays a window showing the logical tree of elements
describing what’s currently on the design surface. The document outline for the login screen is
shown in Figure 2-3. This view of the logical tree is slightly different from a similar logical tree
in (Windows Presentation Foundation) WPF, as the document outline focuses on what is
explicitly found in the XAML. For example, if a ListBoxItem contains a Content attribute, the
type-converted string is not shown. However, creating a Button as a child of a ListBoxItem will
cause the Button to show up in the document outline.

Figure 2-3. The document outline describing the login screen

CHAPTER 2 ■ GETTING TO KNOW XAML 17



Namespaces
There are two important namespaces that appear in the root element of each XAML file.
(Expression Blend adds a couple others, but we’ll look at the two most important here.) The first
is the default namespace, specified by xmlns="http://schemas.microsoft.com/client/2007".
This namespace contains the various elements that correspond to objects in Silverlight, such
as UserControl, Canvas, and Grid. If you remove this declaration from a XAML file in Visual
Studio, blue squiggly lines will show just how much is defined in this namespace.

The other namespace declaration contains Silverlight-specific extensions. Elements in
this namespace are assigned to the x scope. While this is a convention, it is one that Silverlight
and all Silverlight documentation follows. The most important aspects of this namespace are
shown in Table 2-1.

Table 2-1. Features of the x: Namespace

Feature Description

x:Class Used to join different pieces of a partial class together. Valid syntax for this is
x:Class="namespace.classname" and x:Class="namespace.classname;
assembly=assemblyname". The XAML page causes generation of code to a piece of
the class that combines with the code-behind.

x:Key Provides a unique identifier to resources defined in XAML, vital for referencing
resources via a markup extension. Identifiers must begin with a letter or an underscore,
and can only contain letters, digits, and the underscore.

x:Name Provides a way to give an identifier to an object element in XAML for accessing via
the code-behind. This is not appropriate for use with resources (instead use x:Key).
Many elements have a Name property, and while Name and x:Name can be used
interchangeably, only one should be set. Identifiers must begin with a letter or an
underscore, and can only contain letters, digits, and the underscore. 

x:Null Corresponds to null in C# (or Nothing in VB .NET). Can be used via a markup exten-
sion ({x:Null}) or through a property element (<x:Null/>). 

Dependency Property System
The dependency property system is a significant aspect of Silverlight. It provides a way for mul-
tiple discrete sources, such as animation and data binding, to gain access to object properties.
Silverlight contains approximately 50 classes that directly relate to constructing user interfaces.
You can see the top classes in this hierarchy in Figure 2-4. Notice that the root of the hierarchy
is DependencyObject. This root object provides much of the infrastructure needed to support
the dependency property system, though it has only a few public methods. Let’s look closer at
what dependency properties are and then highlight a few aspects of DependencyObject that will
make more sense in light of dependency properties.

CHAPTER 2 ■ GETTING TO KNOW XAML18



Figure 2-4. Top portion of object hierarchy relating to visual elements

Dependency Properties
A dependency property is a special type of property that backs a .NET property. The impor-
tance of dependency properties lies in the fact that the value depends on multiple sources
(hence the name dependency property) and therefore, a standard .NET property is not enough.
The value of a dependency property might come from data binding, animation, template
resources specified in the XAML, styles, or local values. The precedence of these sources is
shown in Figure 2-5.

CHAPTER 2 ■ GETTING TO KNOW XAML 19



Figure 2-5. Precedence for sources of dependency property values

Animation has the highest precedence. Property values influenced by animation must be
the values that take effect or the user will never see the animation, since a different source
would trump the animation values. Local values are those set via an attribute or property ele-
ment. Local values can also be set via data binding or a static resource, so these are effectively
local values—thus, at equal precedence. Next lowest are values from a data template or a con-
trol template, which take effect if a local value does not override them. Styles defined in the
page/application are next lowest, and if absolutely nothing is set, the dependency property
takes on its default value.

■Caution The base value for a property is not the same as its default value. A property’s base value is
determined by applying the sources in the preceding precedence chart, but stopping before getting to anima-
tion. A property’s default value is its value when no other sources provide a value (e.g., a layout container’s
constructor may establish a default value for a size property, and if this is not modified anywhere else, its
value remains untouched).

Let’s examine an actual dependency property, one that we have already used. The Width
property, defined in the FrameworkElement class, is first defined as a dependency property, and
then wrapped by a .NET property. This provides all the capability of a dependency property
while providing a traditional approach to getting and setting its value. Let’s examine how this
particular dependency property is defined.

public static readonly DependencyProperty WidthProperty;

CHAPTER 2 ■ GETTING TO KNOW XAML20



By convention, dependency properties end with the word Property, and this is adhered to
throughout Silverlight. Notice that it is marked public—while this is also a convention, there is
no compelling reason to not expose it publicly. The dependency property should be just as visi-
ble as the .NET property wrapper. The .NET property provides a shortcut, hiding the fact that
there is an underlying dependency property, since it wraps the calls to GetValue and SetValue.

public double Width
{

get {
return (double) this.GetValue(WidthProperty);

}
set {

base.SetValue(WidthProperty, value);
}

}

Simply declaring the dependency property is not enough—it must be registered with
the dependency property system using the DependencyProperty.Register static method. The
Register method takes the following parameters:

public static DependencyProperty Register(
string name,
Type propertyType,
Type ownerType,
PropertyMetadata typeMetadata)

Although we won’t do much with it for now, let’s create a new dependency property named
TextSize in the LoginScreenCS.xaml.cs file. We can add the following code to the class:

public static readonly DependencyProperty TextSizeProperty = 
DependencyProperty.Register("TextSize", 

typeof(double), 
typeof(LoginScreenCS), 
null);

public double TextSize
{

get { return ((double)this.GetValue(TextSizeProperty)); }
set { this.SetValue(TextSizeProperty, value); }

}

The name of the dependency property (passed as the first parameter to Register) does
not need to have Property appended to it—this convention only holds for the actual field name
in the class. Now you have a new dependency property that can be used for data binding or any
of the other various sources that can modify dependency property values.

There is one other useful aspect to dependency properties: property change notifications. This
ability to capture property changes is vital for validating a property value at the last possible
moment. This is useful for scenarios such as a progress bar, where there is a clear minimum and
maximum value, and values below or above these should be constrained to their respective end-
points. The final parameter to the Register method is where you specify a handler for the property
change notification. Here’s a handler for constraining the TextSizeProperty to no larger than 36:

CHAPTER 2 ■ GETTING TO KNOW XAML 21



private static void onTextSizeChanged(DependencyObject source, 
DependencyPropertyChangedEventArgs e)

{
if (((double)source.GetValue(e.Property)) > 36)
{

source.SetValue(e.Property, 36.0);
}

}

■Note A callback for property changes is the perfect place to validate and constrain dependency property
values. It is also a great place to hold logic for modifying dependent properties, so when one changes, it
affects other dependency property values of the DependencyObject that contains the properties.

The first parameter is the instance of DependencyObject—this is what you use to retrieve
and set the value for the property. The Property member of the EventArgs class for this han-
dler is then used as a parameter to GetValue and SetValue. If you try setting the value of the
TextSize property to higher than 36 and then display its value, you will see it goes no higher
than 36.

Attached Properties

An attached property is a special type of dependency property. Attached properties provide
a way to assign values to properties on objects that do not actually have the property—the
attached property values are generally used by parent objects in the element hierarchy. You
have already seen several attached properties. Let’s look again at the XAML code used to cre-
ate header text for the login screen:

<TextBlock HorizontalAlignment="Center" 
Text="Please enter your information" 
Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"/>

The Grid class defines several attached properties, including Column, Row, and ColumnSpan,
which are used by the TextBlock object. If you look up the TextBlock object on MSDN, you
won’t find anything close to Grid.Row or Grid.Column properties. This is because Column, Row,
and ColumnSpan are defined as attached properties on the Grid class. The Grid class defines
a total of four attached properties: Column, Row, ColumnSpan, and RowSpan. The dotted syntax is
used to specify the class that does provide these dependency properties. By using this syntax,
it is possible to attach arbitrary properties to objects that do not have them. The attached
properties for the Grid layout control provide a way for child elements to specify where they
should be located in the grid. You can identify the attached properties by looking for an “Attached
Properties” section in the MSDN documentation for a particular class. If you attempt to use
a random dependency property as an attached property, the parser will throw an exception.
Registering an attached property is accomplished in a similar fashion to normal dependency
properties, but uses RegisterAttached instead of Register.

CHAPTER 2 ■ GETTING TO KNOW XAML22



Dependency properties are important to many aspects of Silverlight and will be used
often, generally transparently, throughout the rest of this book. 

The Root of Visual Elements: DependencyObject
Any class inheriting from DependencyObject, directly or indirectly, gains the ability to interact
with dependency properties. You have already seen the GetValue and SetValue methods, prob-
ably the two most important methods of DependencyObject. This root object also provides the
ability to obtain the value of the property (its base value) as if no animation occurred.

Type Converters
XAML introduces type converters in order to easily support setting of complicated property
values. A type converter simply converts a string representation of an object to the actual object,
but allows for complex handling, such as wrapping a value in several objects. While not explic-
itly tied to Silverlight (or WPF or XAML), type converters are heavily used when parsing XAML.
Let’s take a look at the definition of the Canvas layout control in the login screen’s XAML.

<Canvas Background="White" Width="300" Height="Auto">

The Background and Height properties are type-converted from a string to their actual
type (so is Width—however, it’s a more trivial conversion since Width is of type double and 300
is a simple parsing). If you were to create this Canvas in C#, the code would look like the
following:

Canvas canvas = new Canvas();
canvas.Background = new SolidColorBrush(Color.FromArgb(255, 255, 255, 255));
canvas.SetValue(Canvas.WidthProperty, 300);
canvas.SetValue(Canvas.HeightProperty, Double.NaN);

If you had to take a guess, you might think that the Background property is backed by the
Color type; however, it is actually backed by a Brush. Using a Brush for the background provides
the ability to easily display solid colors, gradients, and other fancy backgrounds, thus provid-
ing much more flexibility for creating backgrounds. Brushes will be discussed in more detail in
Chapter 7. Specifying the Canvas’s background as an attribute in XAML is the quickest way to
provide a background, and is known as property attribute syntax. XAML also supports property
element syntax, which makes the fact that the Background is a Brush explicit.

<Canvas Width="300" Height="Auto">
<Canvas.Background>

<SolidColorBrush Color="White"/>
</Canvas.Background>

</Canvas>

When the property appears as an element, it must take the form of object name, followed
by a dot and then the property name, as in the case of Canvas.Background.

In many cases, content can also be provided via an attribute or inside an element’s open-
ing tag. Each approach is illustrated in the text labels for the username and password entry
boxes. The username label uses the content attribute Text.

<TextBlock Text="Username:"/>

CHAPTER 2 ■ GETTING TO KNOW XAML 23



The password label, however, is specified as a child of the TextBox element.

<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="2">
Password:
</TextBox>

The content attribute syntax, much like the property attribute syntax, is a useful shorthand,
both in markup and when working with the code-behind. The content element syntax, however,
is required when specifying more complex content than what can be captured by a simple attri-
bute. Also note that content might be restricted based on which control you use—for example,
a TextBox cannot contain a Button as content.

Markup Extensions
A markup extension is a special syntax used to specify property values that require interpreta-
tion. This interpretation is based on which markup extension is used. A markup extension takes
the format of a { followed by the markup extension name, optionally followed by parameters to
the markup extension, and ending with a }. These are required to support some of the key fea-
tures of Silverlight, including resources, data binding, and template binding. Each of these
features will be briefly discussed here to highlight the syntax and usage of markup extensions.

■Note What’s with the funny syntax? Markup extensions may seem strange at first, and might leave you
wondering why context can’t dictate how a property value is interpreted (e.g., by utilizing a type converter).
Markup extensions provide a mechanism to specify more than a simple value—they stand in for more com-
plicated processing, such as completely changing the appearance of a user interface element via a style. If
you want to explicitly show something in curly braces, such as a label, you must escape it by placing an
empty set of curly braces in front—for example, {}{text here}.

Static Resources 
If we want to define a color object in C# once and reuse it in multiple places, we can create an
instance of Color and reference it many times. XAML supports this approach via resource
dictionaries—special sections we can add to many content elements. Any object that contains
a Resources member can contain resources. Resource dictionaries are used to hold styles, tem-
plates, animation storyboards, and other useful resources. Let’s revise the login screen to use
a resource dictionary to specify font style information. This screen will look slightly different
since the fonts are configured with different values. You can see the result in Figure 2-6. This
will make it easy to change the appearance of the header and labels. Only the germane parts
of the login screen code are shown here, with the new additions bolded.

CHAPTER 2 ■ GETTING TO KNOW XAML24



Figure 2-6. The login screen with font properties specified by a style resource

<Canvas Width="300" Height="Auto" x:Name="canvasTag">
<Canvas.Resources>
<Style x:Key="LoginHeaderFontStyle" TargetType="TextBlock">
<Setter Property="FontFamily" Value="Times New Roman"/>
<Setter Property="FontSize" Value="20"/>

</Style>
<Style x:Key="LoginLabelFontStyle" TargetType="TextBlock">
<Setter Property="FontFamily" Value="Arial"/>
<Setter Property="FontSize" Value="14"/>

</Style>
</Canvas.Resources>
...
<TextBlock HorizontalAlignment="Center" 

Text="Please enter your information"
Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2" 
Style="{StaticResource LoginHeaderFontStyle}"/>

...
<TextBlock HorizontalAlignment="Right" VerticalAlignment="Top" 

Text="Username:" TextWrapping="Wrap"
Grid.Column="0" Grid.Row="1"  
Style="{StaticResource LoginLabelFontStyle}"/>

<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="1" x:Name="userNameTB"/>
<TextBlock HorizontalAlignment="Right" VerticalAlignment="Top"

TextWrapping="Wrap"
Grid.Column="0" Grid.Row="2" 
Style="{StaticResource LoginLabelFontStyle}">
Password:

</TextBlock>
<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="2"/>

CHAPTER 2 ■ GETTING TO KNOW XAML 25



In order to reference static resources, we need a way to tell the XAML parser that we want
to use a resource and which resource to use. The markup extension name for referencing
a static resource is simply StaticResource, and it appears after the open curly brace. The
StaticResource markup extension takes a single parameter: the name of the resource to
reference.

The x:Key property is used to give each style a name for referencing in the markup exten-
sion. While styles will be discussed in Chapter 8, what’s going on here isn’t a big mystery. The
TargetType property of the Style element is used to specify the object type the style is meant
for, and the Setter elements are used to specify values for properties on this target type. In this
case, we are defining two styles: one for the header text (the “Please enter your information”)
and the other for the labels next to the text input boxes. By changing the LoginLabelFontStyle,
we affect both the username and password labels at the same time. This is good—it makes
styling applications significantly easier both because the style information is stored in a central
place and because the specific styles only need a single definition to affect potentially many
elements of a user interface.

Data Binding
Data binding is a way to connect data between the user interface and a data source. It is
possible to transfer data from a data source to the user interface once or each time the data
changes, or to constantly keep the data source synchronized with the user interface. The
markup extension controlling data binding is named Binding and has four possible syn-
taxes. Let’s imagine the login screen authorizes access to an online bank. After a customer
logs in, they are able to select one of their accounts to manage (and also instantly see their
balance for each account), as shown in Figure 2-7. 

Figure 2-7. Results of data binding Account objects to a ListBox

CHAPTER 2 ■ GETTING TO KNOW XAML26



Here’s what a simplistic business object for account information looks like:

public class Account
{

public string AccountName { get; set; }
public double AccountBalance { get; set; }
public Account(string n, double b)
{

this.AccountName = n;
this.AccountBalance = b;

}
}

Let’s create a new UserControl in Visual Studio and call it ChooseAccount. You can do this
by right-clicking the project in the top right and clicking Add ➤ New Item ➤ Silverlight User
Control. Give it the name ChooseAccount.xaml and click OK. Edit the ChooseAccount.xaml.cs
file, create a generic List containing the account type, and add a couple accounts. This will
serve as a data source for the data binding.

private List<Account> accountList;
public ChooseAccount()
{

// Required to initialize variables
InitializeComponent();
accountList = new List<Account>();
accountList.Add(new Account("Checking", 500.00));
accountList.Add(new Account("Savings", 23100.19));
accountListBox.DataContext = accountList;

}

Notice the final line in the constructor—this is where the data source (accountList) is con-
nected to the ListBox. The ListBox, named accountListBox, is our display control that we add
to the XAML shown here. The markup extensions for data binding are bolded.

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="XAMLTour.ChooseAccount">
<StackPanel Orientation="Horizontal" Margin="30 30 0 0">

<TextBlock Text="Choose account to manage: "></TextBlock>
<ListBox x:Name="accountListBox" Height="100" Width="300" 

VerticalAlignment="Top" ItemsSource="{Binding Mode=OneWay}">
<ListBox.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Horizontal">

<TextBlock Text="{Binding AccountName}" />
<TextBlock Text=" ($"></TextBlock>
<TextBlock Text="{Binding AccountBalance}" />
<TextBlock Text=")"></TextBlock>

CHAPTER 2 ■ GETTING TO KNOW XAML 27



</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

</StackPanel>
</UserControl>

The Binding markup extension used in the ItemsSource property specifies that the items
in the ListBox are data bound, and here you can specify how the data binding works (in this
case, OneWay, which causes data to flow only from the data source to the user interface).
A DataTemplate is used to format the data coming from the data source, in this case by using
the Binding markup extension to access properties on the data source (accountList). The Binding
markup extensions used to bind to AccountName and AccountBalance treat the parent object
(Account) implicitly. This is described in Table 2-2.

Table 2-2. Data Binding Markup Extensions

Syntax Description

{Binding} This signals data binding, configured with default properties
(such as OneWay for Mode). See Chapter 5 for specific property
values.

{Binding path} This is used to specify specific object properties to pull data
from. A dotted syntax is valid here, allowing you to drill down
inside the objects from the data source.

{Binding properties} This is used to set properties affecting data binding, following
a name=value syntax. Specific properties affecting data binding
will be discussed later.

{Binding path, properties} The properties affect the data specified by the path. For exam-
ple, a converter might be used to format data. The path must
come first.

We will delve deeper into data templates and data binding in Chapter 5.

Template Binding
Using something called a control template along with styles provides a mechanism to com-
pletely redefine how a control appears. This is one scenario where designers and developers
can work independently—the designer fleshes out how the user interface looks while the devel-
oper focuses on handling events and other logic related to the control. The TemplateBinding
markup extension is used to connect the template to properties of the control that uses the
template. Let’s look at a brief example of utilizing control templates to enforce a consistent
label on all buttons that use this template. Here’s what the XAML looks like:

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="XAMLTour.TemplateBindingExample">
<Canvas Background="White">

<Canvas.Resources>

CHAPTER 2 ■ GETTING TO KNOW XAML28



<Style x:Key="ButtonStyle" TargetType="Button">
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="Button">

<StackPanel Orientation="Horizontal" 
Background="Gainsboro">

<TextBlock Text="Label from Template: " 
FontSize="16"/>

<ContentPresenter 
Content="{TemplateBinding Content}"/>

</StackPanel>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
</Canvas.Resources>
<Button Style="{StaticResource ButtonStyle}" Content="I'm a Button"/>

</Canvas>
</UserControl>

The template is created as a style that the button references using the StaticResource markup
extension. The first TextBlock contains the label that never changes, and the ContentPresenter is
used to display any content the button specifies. In this case, the content is a simple string. The
TemplateBinding is used to connect a property of a control in the template to a property on
the control utilizing the template. The resulting user interface for this XAML is shown in Figure 2-8.

Figure 2-8. What a Button looks like when using the ControlTemplate

CHAPTER 2 ■ GETTING TO KNOW XAML 29



The bad news about this approach is also the good news: the Button’s visual implementa-
tion is completely overridden, so if you try to click it, nothing will happen visually. Using a control
template, though, provides a way to create any visual representation you want for when the
mouse hovers over the button and when the mouse clicks the button. The button is still a button—
it can just look drastically different from the default Silverlight button through the control
template mechanism.

More About Silverlight Applications
Now that you should be comfortable with many of the new concepts Silverlight introduces, let’s
take a closer look at the Silverlight application that gets created. If you reveal the referenced
assemblies in the Solution Explorer, you will see eight assemblies listed. These assemblies pro-
vide the majority of what you need when writing applications. Briefly, here are the important
namespaces/classes in each assembly:

mscorlib: Provides the core functionality you always need, including collections, input/
output, reflection, security, host interoperability, and threading. The important root name-
space here is System, which includes System.Collections, System.Security, System.IO,
and so on.

system: Supplements classes provided by mscorlib, such as by providing Queue and Stack
classes in the System.Collections.Generic namespace.

System.Core: Contains LINQ support (in the System.Linq namespace) and cryptography
support (System.Security.Cryptography).

System.Windows: Provides the bulk of what Silverlight uses, such as input-related classes
in System.Windows.Input (mouse/keyboard event classes and stylus-related classes),
image/video/animation-related classes in System.Windows.Media, the XAML parser in
System.Windows.Markup, control classes in System.Windows.Controls, and many others.
Chances are high that if you’re looking for something, it’s in this assembly.

System.Windows.Browser: Support classes for obtaining information about and communi-
cating with the browser (via classes in the System.Windows.Browser namespace) and the
managed host environment (via classes in System.Windows.Hosting).

System.Xml: Provides all XML-related classes (e.g., for an XML reader/writer/parser).

System.Windows.Controls: Provides many more useful controls, including Button, CheckBox,
and ListBox. The System.Windows assembly has the control framework along with the layout
controls and basic controls, and this assembly extends the control set of Silverlight.

System.Windows.Controls.Extended: Supplementary controls, mainly Calendar-related,
extending the control set in the System.Windows.Controls namespace.

So far, you have seen several user interfaces created in XAML. Each XAML file has a corre-
sponding code-behind file; however, there is a third file that we have not yet discussed explicitly.
If you open the XAMLTour project in Visual Studio, open the LoginScreenXAML.xaml.cs file,
right-click the InitializeComponent method call, and choose Go to Definition, you will be
taken to the LoginScreenXAML.g.cs file. This is a generated file based on the XAML. Any objects

CHAPTER 2 ■ GETTING TO KNOW XAML30



in the XAML that have an x:Name will cause a class member to get placed in this generated file.
Partial classes in C# make this assemblage of different pieces easy, as illustrated in Figure 2-9.

■Note The Name property on objects can only be set in XAML. This is most likely because the object is
either created in XAML (in which case it needs a corresponding member on the class for manipulation in the
code-behind) or created in code (in which case you have a reference to it that you can name and store how-
ever you like).

Figure 2-9. How the full class implementation for XAML comes together

When you create a new Silverlight application in Visual Studio or Expression Blend, you
might notice an App.xaml file along with an App.xaml.cs file. The application is based on the
System.Windows.Application class—it supports centralization of resources for the application,
it supports several important events, and it provides a direct connection to the browser/host
environment. 

The code placed in the initial project includes App.xaml and App.xaml.cs files. The
App.xaml file doesn’t have much in it, but there is one important feature to observe:

<Application xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
x:Class="XAMLTour.App">

<Application.Resources>

Page.xaml Page.g.cs

Page.xaml.cs

XAML created by hand in 
Visual Studio or in 
Expression Blend

As part of build process (or 
in Visual Studio upon 

saving the XAML file), a 
code-behind file is 

generated based on XAML

The generated file is 
combined with the already
present code-behind file to 

create the Page class

Page Class

CHAPTER 2 ■ GETTING TO KNOW XAML 31



</Application.Resources>
</Application>

The Application class contains a Resources element. Any resources specified in the
Application class can be referenced throughout a Silverlight application. This is the perfect place
to put style and template resources that are available to the entire application. The UserControl
is actually turned into the main user interface for the application in the code-behind file, App.
xaml.cs, as follows:

public partial class App : Application
{
public App()
{
this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException += this.Application_UnhandledException;
InitializeComponent();

}
private void Application_Startup(object sender, StartupEventArgs e)
{
// Load the main control
this.RootVisual = new MainPage();

}
private void Application_Exit(object sender, EventArgs e)
{
}
private void Application_UnhandledException(object sender, 

ApplicationUnhandledExceptionEventArgs e)
{
}

}

The RootVisual property on the Application class specifies what will be shown when the
application starts. The generated App.xaml.cs file also registers itself for all application-level
events. The Exit and UnhandledException events come already registered with empty handler
methods. The Startup method comes registered with a method that establishes where the
main user interface comes from (RootVisual). This Startup event handler is where the con-
nection to the MainPage class was established in the project code for this chapter.

These application events are the first events you’ve seen in this chapter. Many of the objects
in Silverlight support events that can be hooked up either in the code-behind, as in the App.xaml.cs
code, or through XAML.

Events in Silverlight
When a user clicks a button, chooses an item in a list box, or uses the cursor keys, the applica-
tion must be able to respond to these events. These events are input events, and are actually
forwarded to Silverlight by the browser hosting the Silverlight plug-in. Other events, such as
the application events just shown, are defined within Silverlight itself.

CHAPTER 2 ■ GETTING TO KNOW XAML32



Keyboard and mouse events are routed events. These events bubble up the tree of objects
starting at the first control to receive the input event. Let’s revisit the login screen and hook up
a few events.

■Note If you have any experience with WPF, you should be aware that there is a vital difference between
WPF routed events and Silverlight routed events. Silverlight routed events only bubble; they do not “tunnel”
as they can in WPF. This means that events are only passed up the tree (bubbling); they cannot be passed
down the tree (tunneling).

<UserControl
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="XAMLTour.RoutedEventExample">

<Canvas Background="White" x:Name="canvas" 
MouseLeftButtonDown="canvas_MouseLeftButtonDown" 
MouseLeftButtonUp="canvas_MouseLeftButtonUp">

<Grid Height="140" Width="250" Canvas.Left="25" Canvas.Top="15"
x:Name="grid" MouseLeftButtonDown="grid_MouseLeftButtonDown">

<Grid.RowDefinitions>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>
<RowDefinition/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto"/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<TextBlock HorizontalAlignment="Center" 

Text="Please enter your information" 
Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"/>

<TextBlock Text="Username:" VerticalAlignment="Top" 
HorizontalAlignment="Right" 
Grid.Column="0" Grid.Row="1"/>

<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="1"/>
<TextBlock HorizontalAlignment="Right" VerticalAlignment="Top" 

Grid.Column="0" Grid.Row="2">
Password:
</TextBlock>
<TextBox VerticalAlignment="Top" Grid.Column="1" Grid.Row="2"/>
<Button Content="Login" Grid.Row="3" Width="100" Grid.Column="1" 

x:Name="loginButton" 

CHAPTER 2 ■ GETTING TO KNOW XAML 33



MouseLeftButtonDown="loginButton_MouseLeftButtonDown"
HorizontalAlignment="Left"/>

<TextBlock Grid.Row="4" Grid.ColumnSpan="2" Text="" 
x:Name="eventTextBlock"/>

</Grid>
</Canvas>

</UserControl>

When the mouse button is pressed, the click event starts at the lowest control that is aware
of the event. For example, when the Login button is pressed, the event starts there. Look at
Figure 2-10 to visualize the mouse down event bubbling up the nested controls.

Figure 2-10. An input event bubbling up nested controls

The events are wired up to display which controls have received the mouse down event
(which occurs when a button is initially pressed). If you hold a mouse button down on the
Login button, the event originates at the button, gets sent up the tree to the enclosing Grid
control, and then gets sent up again to the enclosing Canvas control. You can see the results of
this in Figure 2-11. The controls receiving the event are shown beneath the Login button.

UserControl

Canvas

Grid

Button

When the mouse down event fires,
it bubbles up the control hierarchy

so each parent control can
optionally handle it.

CHAPTER 2 ■ GETTING TO KNOW XAML34



Figure 2-11. Clicking the Login button causes the event to bubble up to the button’s parents.

If instead the mouse button is held down on one of the text entry boxes, the event origi-
nates with the Grid and is passed up to the enclosing Canvas (see Figure 2-12).

Figure 2-12. Clicking the grid causes the event to bubble up to the grid’s parent.

If you want to mark an event as handled, you can set the Handled property on the EventArgs
class to true. However, just because an event is marked as handled doesn’t mean that the bub-
bling of the event will stop. Any event handlers on parent controls will still receive the event.
Therefore, if you want to prevent processing of an event that was handled, you must check this
property on the EventArgs parameter.

CHAPTER 2 ■ GETTING TO KNOW XAML 35



Summary
This chapter covered the foundations of Silverlight. Before we can explore in detail more
advanced topics such as theming, animation, handling media, and data binding, it is impor-
tant to understand how these core features support the rest of Silverlight. Any exploration of
Silverlight starts at understanding XAML and its many features, such as dependency proper-
ties, markup extensions, and resources. This chapter also showed how a Silverlight application
is structured and how routed events work in Silverlight. You are now prepared to learn more
about Silverlight. The next chapter explores creating user interfaces by using the layout con-
trols and other standard controls, some of which you have already briefly seen.

CHAPTER 2 ■ GETTING TO KNOW XAML36



Creating User Interfaces

Now that you’ve seen what XAML is all about, let’s look at the basic user interface controls
that Silverlight provides. Silverlight supplies standard controls such as text boxes for display
and for user input, list boxes, check boxes, radio buttons, and others. While a standard set of
controls is important for building user interfaces, even more important is how these controls
are placed on a user interface. This is handled by Silverlight’s layout controls: one that enables
absolute positioning and two that allow more intelligent layouts of controls relative to each
other. This chapter will conclude with some advice and examples on how you can build navi-
gation into a Silverlight application, something not directly supported yet.

Building Blocks
Silverlight provides many useful controls for displaying information and handling data input,
but before I get to the specifics of each control, it’s important to understand the base function-
ality Silverlight provides all controls. Figure 3-1 shows an abbreviated class diagram with a subset
of Silverlight’s controls and panels (used for positioning objects). While there is a Control class,
not all elements of a user interface are controls, as you can see in Figure 3-1.

37

C H A P T E R  3



Figure 3-1. Silverlight user interface class hierarchy

The DependencyObject class provides the functionality for interacting with the dependency
property system. The next class, UIElement, is the sign that a class has a visual appearance. The
FrameworkElement class provides some interesting behavior such as data binding, but the only
requirement for a visual appearance is a class must inherit (directly or indirectly) from UIElement.
Chapter 7 will detail some classes that inherit from UIElement but not FrameworkElement. Let’s
start at the top of this class hierarchy so you can see just what functionality is provided by each
class before getting to panels and controls.

CHAPTER 3 ■ CREATING USER INTERFACES38



DependencyObject
The DependencyObject class is arguably the most important class in Silverlight. This object
enables the dependency property system. In the last chapter, you saw what dependency prop-
erties are and how to create them. The piece left out, however, is what enables the setting and
reading of these properties. Any class that inherits directly or indirectly from DependencyObject
can participate in Silverlight’s dependency property system. Its most important features are
the methods it provides, shown in Table 3-1.

Table 3-1. Methods of the System.Windows.DependencyObject Class

Method Description

CheckAccess Returns true if the calling thread has access to this object.

ClearValue Removes the local value of the specified dependency property. The
property might take on its default value or a value from another source.

GetAnimationBaseValue Gets the value of the specified dependency property as if no animation
were applied.

GetValue Returns the current value of the specified dependency property.

ReadLocalValue Returns the local value of the specified dependency property or the
special value UnsetValue if the property does not have a local value.

SetValue Sets the value of the specified dependency property.

THREADING AND THE USER INTERFACE

Silverlight is a multithreaded environment. You can’t modify elements of a user interface from a non-user
interface thread since it can lead to a number of problems. The proper way to modify a user interface from
a different thread is by using a dispatcher. The DependencyObject class provides a single property,
Dispatcher, which holds a reference to the associated dispatcher. If you want to set the value of a text
block from a different thread, you must use Dispatcher.BeginInvoke to queue the modification on the
main thread’s work items queue like this:

Dispatcher.BeginInvoke(delegate() { textBlock.Text = "changed"; });

You’ll get a closer look at threading in Silverlight in Chapter 14.

UIElement
The UIElement class is the next class you encounter as you walk down the inheritance hierar-
chy. This class forms the base for all classes that have the ability to draw themselves on a user
interface, including input handling, focus support, and basic layout support. Table 3-2 lists the
methods of this class.

CHAPTER 3 ■ CREATING USER INTERFACES 39



Table 3-2. Methods of the System.Windows.UIElement Class

Method Description

Arrange Positions objects contained by this visual element. Invoked by the
layout system.

CaptureMouse Sends mouse input to the object even when the mouse pointer is not
within its bounding box. Useful for drag-and-drop scenarios. Only
one UIElement can have the mouse captured at a time.

HitTest Returns an IEnumerable<UIElement> collection of UIElement objects
that are considered “hit” by a specified point or rectangle. The
enumeration is ordered by descending Z-order, so you generally only
need the first object.

InvalidateArrange Causes UIElement to update its layout.

Measure Sets the DesiredSize property for layout purposes. Invoked by the
layout system.

OnCreateAutomationPeer Implemented by inheritors that participate in the automation system.
Returns an AutomationPeer object.

ReleaseMouseCapture Removes the mouse capture obtained via CaptureMouse.

TransformToVisual Returns a GeneralTransform that is used to transform coordinates
from this UIElement to the object passed in.

UpdateLayout Ensures all child objects are updated for layout. Invoked by the
layout system.

The properties of UIElement are shown in Table 3-3.

Table 3-3. Properties of the System.Windows.UIElement Class

Property Type Description

Clip Geometry Defines a clipping region to for the UIElement.

DesiredSize Size Indicates the size of the UIElement as determined by the
measure pass, which is important for layout. RenderSize
provides the actual size of the UIElement.

IsHitTestVisible bool Gets or sets whether UIElement can participate in hit testing.

Opacity double Specifies the opacity/transparency of the UIElement. The
default value is 1.0, corresponding to full opacity. Setting
this to 0.0 causes the UIElement to disappear visually, but
it can still respond to hit testing.

OpacityMask Brush Uses a brush to apply opacity to the UIElement. This only
uses the alpha component of a brush. Do not use a video
brush for this property due to lack of an alpha
component.

RenderSize Size Indicates the actual size of the UIElement after it has
passed through the layout system.

RenderTransform Transform Applies a transform to the rendering position of this
UIElement. The default rendering offset is (0,0)—the top
left of the UIElement.

RenderTransformOrigin Point Gets or sets the render transform origin. Defaults to (0,0)
if not specified. This can be used to translate the
UIElement.

CHAPTER 3 ■ CREATING USER INTERFACES40



Property Type Description

Visibility Visibility Gets or sets the visibility state of the UIElement. Set this to
Visibility.Collapsed to hide the UIElement (it does not
participate in layout, is removed from the tab order, and
is not hit testable). Set this to Visibility.Visible to
restore the UIElement’s position in its container.

UIElement also defines several important events, shown in Table 3-4.

Table 3-4. Events of the System.Windows.UIElement Class

Event Description

GotFocus Fires when the UIElement gains focus, if it doesn’t already have it. Event
args class: RoutedEventHandler.

KeyDown Fires when a key is pressed. This event will bubble up to the root container.
Event args class: KeyEventHandler.

KeyUp Fires when a key is released. This event also bubbles. Event args class:
KeyEventHandler.

LostFocus Fires when the UIElement loses focus. This event bubbles. Event args
class: RoutedEventHandler.

MouseEnter Fires if the mouse pointer is in motion and enters the UIElement’s
bounding box. A parent UIElement, if it also handles this event, will
receive the event before any children. Event args class: MouseEventHandler.

MouseLeave Fires when the mouse pointer leaves the UIElement’s bounding box.
Event args class: MouseEventHandler; however, the information provided
in the event args is without meaning since the mouse has left the
UIElement’s bounds.

MouseLeftButtonDown Fires when the mouse’s left button is pressed down while the mouse
pointer is within the bounds of the UIElement. Event args class:
MouseButtonEventHandler.

MouseLeftButtonUp Fires when the mouse’s left button is released while the mouse 
pointer is within the bounds of the UIElement. Event args class:
MouseButtonEventHandler.

MouseMove Fires each time the mouse pointer moves within the bounds of the
UIElement. This event bubbles. Event args class: MouseEventHandler.

FrameworkElement
The next class, FrameworkElement, adds to the support introduced by UIElement. This class
extends the layout support, introduces object lifetime events (such as when a FrameworkElement
is loaded), and provides data binding support. This class forms the direct base of Panel and
Control, the base classes for object positioning support and most controls. Its methods are
shown in Table 3-5.

CHAPTER 3 ■ CREATING USER INTERFACES 41



Table 3-5. Methods of the System.Windows.FrameworkElement Class

Method Description

FindName Searches the object tree, both up and down relative to the current FrameworkElement,
for the object with the specified name (x:Name in XAML). Returns null if the object
was not found.

SetBinding Binds a specified dependency property to a System.Windows.Data.Binding instance.

An abbreviated list of FrameworkElement’s properties is shown in Table 3-6.

Table 3-6. Properties of the System.Windows.FrameworkElement Class

Property Type Description

ActualWidth double Indicates the width of the FrameworkElement
after rendering.

ActualHeight double Indicates the height of the FrameworkElement
after rendering.

Cursor System.Windows. Gets/sets the cursor that is shown when 
Input.Cursor mouse hovers over this element. Possible

values (from the Cursors type): Arrow, Eraser,
Hand, IBeam, None (invisible cursor), SizeNS,
SizeWE, Stylus, Wait. Set to null to revert to
default behavior.

DataContext Object Defines context (source of data) used in data
binding.

Height double Indicates the asked-for height of the
FrameworkElement.

HorizontalAlignment HorizontalAlignment Gets/sets the horizontal alignment. Behavior
of this property is deferred to the layout
control hosting this FrameworkElement.
Possible values: Left, Center, Right, Stretch
(default: fills the entire layout slot).

Language System.Windows. Specifies localization/globalization 
Markup.XmlLanguage language used by this FrameworkElement.

Consult the XmlLanguage class documentation
and RFC 3066 for details.

Margin Thickness Gets/sets the outer margin of this
FrameworkElement.

Name String Gets the name of the FrameworkElement. When
set in XAML, corresponds to the name of the
variable automatically generated.

Resources ResourceDictionary Returns the resource dictionary defined on
this FrameworkElement.

Style Style Gets/sets the style applied during rendering
of this FrameworkElement.

Tag Object Places arbitrary information on a
FrameworkElement. Restricted to the string
type, although defined as an object.

CHAPTER 3 ■ CREATING USER INTERFACES42



Property Type Description

VerticalAlignment VerticalAlignment Gets/sets the vertical alignment. Behavior is
subject to the container that has this control.
Possible values: Top, Center, Bottom, Stretch
(default).

Width double Indicates the asked-for width of the 
FrameworkElement.

Events of FrameworkElement are shown in Table 3-7.

Table 3-7. Events of the System.Windows.FrameworkElement Class

Event Description

BindingValidationError Fires when a data validation error occurs as part of data binding. Event
args class: ValidationErrorEventArgs.

LayoutUpdated Fires when the layout of the FrameworkElement is updated. Event args
type: EventArgs (this is a CLR event).

Loaded Fires when the layout is complete and element is ready for interaction.
Event args type: RoutedEventHandler.

SizeChanged Fires when the ActualWidth or ActualHeight properties are updated by
the layout system. Event args type: SizeChangedEventHandler.

Positioning Objects on Screen
Having a variety of controls and other visual objects gives us the raw material for user inter-
faces, but in order to form a full user interface, these objects must be positioned on screen.
This is accomplished via the Panel class—the base class of layout containers.

A layout container is used to contain controls and to oversee positioning of these controls
on a user interface. In ASP.NET, layout of controls on a web page results from the application
of styles to HTML tags that contain ASP.NET controls. In Windows Forms, layout is accomplished
via absolute positioning: there is no layout control; instead, controls specify their position and
size. Silverlight strikes a balance between these two approaches, providing a layout control that
works in conjunction with properties of its children controls (such as size properties). Silverlight
provides three layout controls: the Canvas, the Grid, and the StackPanel. The Canvas provides
the ability to absolutely position child elements, much like in Windows Forms. The Grid pro-
vides support for laying controls out in a tabular configuration with rows and columns. The
StackPanel displays its child controls one next to the other, either in a horizontal or vertical
orientation. Layout controls can be nested, so by combining multiple controls together you
can assemble some sophisticated user interfaces.

CHAPTER 3 ■ CREATING USER INTERFACES 43



Canvas
The Canvas provides the ability to absolutely position elements. Controls that are added directly
to a Canvas can use the Canvas.Left and Canvas.Top attached properties to specify where they
should appear on the canvas. Figure 3-2 depicts several controls placed on a canvas, including
a nested canvas.

Figure 3-2. The Canvas panel

The XAML for this screen looks like this:

<UserControl x:Class="chapter3.CanvasPanel"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
Width="400" Height="300">
<Canvas x:Name="LayoutRoot" Background="White">

<Button Canvas.Left="10" Canvas.Top="20" Content="Button at (10,20)"/>
<TextBlock Text="Outer Canvas" Canvas.Left="180" Canvas.Top="10"
FontSize="26"/>

<Canvas Canvas.Top="60" Canvas.Left="10" Background="LightSkyBlue" 
Width="200" Height="100">

<TextBlock Text="Nested Canvas" Canvas.Left="10" Canvas.Top="20"/>
</Canvas>

</Canvas>
</UserControl>

StackPanel
A StackPanel stacks visual objects next to each other, either horizontally or vertically. The
Orientation property of the StackPanel can be set to Vertical (the default) or Horizontal.
Figure 3-3 shows stacking a label next to a text entry box in a horizontal orientation.

Figure 3-3. The StackPanel

CHAPTER 3 ■ CREATING USER INTERFACES44



Here’s the XAML for this control:

<StackPanel x:Name="LayoutRoot" Background="White" Orientation="Horizontal">
<TextBlock Text="Enter user id: "/>
<TextBox Width="200" Height="20" VerticalAlignment="Top"/>

</StackPanel>

Grid
The Grid is the most complicated (relatively) and most capable layout container. It consists of
one or more rows and one or more columns. Let’s look at the XAML for a simple grid consist-
ing of two rows and two columns:

<Grid x:Name="LayoutRoot" Background="White">
<Grid.ColumnDefinitions>

<ColumnDefinition/>
<ColumnDefinition/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition/>
<RowDefinition/>

</Grid.RowDefinitions>
</Grid>

Four attached properties control where in the grid content is placed. These attached
properties are shown in Table 3-8.

Table 3-8. Properties of the System.Windows.Controls.Control Class

Property Type Description

Grid.Row Int32 The row of the grid where content is placed. The first row is index 0.
The default value is 0.

Grid.Column Int32 The column of the grid where content is placed. The first column is
0. The default value is 0.

Grid.RowSpan Int32 The number of rows the content will occupy. The default value is 1.

Grid.ColumnSpan Int32 The number of columns the content will occupy. The default value is 1.

Placing content within a grid is a simple matter of creating content and then setting values
for the various attached properties. Figure 3-4 shows the result of placing content in each col-
umn of the first row and then using RowSpan to cause the content to fill the second row.

CHAPTER 3 ■ CREATING USER INTERFACES 45



Figure 3-4. The Grid panel

■Note There is an attribute called ShowGridLines that you can set to true on the Grid element to visibly
see where the columns and rows are. This is incredibly useful when designing the Grid; however, the grid
lines aren’t especially good looking. You should only use this for designing/debugging grids. If you want grid
lines, look to the Border control.

Here’s what the XAML looks like to create what’s shown in Figure 3-4.

<Border Grid.Row="0" Grid.Column="0" Background="Beige">
<TextBlock HorizontalAlignment="Center" VerticalAlignment="Center" 

Text="Row = 0, Column = 0"/>
</Border>
<Border Grid.Row="0" Grid.Column="1" Background="BurlyWood">

<TextBlock HorizontalAlignment="Center" VerticalAlignment="Center" 
Text="Row = 0, Column = 1"/>

</Border>
<Border Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2" Background="DarkKhaki">

<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center" >
<TextBlock Text="Row = 0, Column = 1"/>
<TextBlock HorizontalAlignment="Center" Text="ColumnSpan = 2"/>

</StackPanel>
</Border>

The ColumnDefinition class has a property named Width that allows you to set the width
of the column. Likewise, the RowDefinition class has a property named Height. These proper-
ties are of type GridLength, a special class that provides capabilities beyond a simple double
value representing size. In XAML, the Width and Height properties can be set to the special
value Auto. The Auto value causes the row/column to size automatically to the largest piece of
content. More sophisticated control over space is provided by something known as star sizing.

CHAPTER 3 ■ CREATING USER INTERFACES46



The Width and Height properties can be set to the special value * or a “star” with a number
in front, such as 2* or 3*. This syntax gives a proportional amount of the available space to
a row or a column. Figure 3-5 shows a grid with a single row and two columns given the star
sizes * and 2*.

Figure 3-5. Using star sizing with a Grid

The XAML to create this grid looks like this:

<UserControl x:Class="chapter3.BasicStarSizing"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
Width="300" Height="200">
<Grid x:Name="LayoutRoot" Background="White">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"/>
<ColumnDefinition Width="2*"/>

</Grid.ColumnDefinitions>
<Grid.RowDefinitions>

<RowDefinition/>
</Grid.RowDefinitions>
<Border Grid.Row="0" Grid.Column="0" Background="Beige">

<StackPanel HorizontalAlignment="Center" VerticalAlignment="Center">
<TextBlock HorizontalAlignment="Center" Text="Row = 0"/>
<TextBlock HorizontalAlignment="Center" Text="Column = 0"/>

</StackPanel>
</Border>
<Border Grid.Row="0" Grid.Column="1" Background="BurlyWood">

<TextBlock HorizontalAlignment="Center" 
VerticalAlignment="Center" Text="Row = 0, Column = 1"/>

</Border>
</Grid>

</UserControl>

The total width of the grid is 300. The second column is twice as big as the first, specified
by the 2* property value for the width. If no number is specified before the star, it is treated the
same as if the value were 1*. In this case, the first column is 100 since the second column is
twice as big, and 200 added to 100 gives the total width of the grid, 300. If you combine the
other sizing methods with star sizing, the value of 1* will equal whatever space is available. 

CHAPTER 3 ■ CREATING USER INTERFACES 47



Customizing Silverlight Controls
The System.Windows.Controls.Control class forms the base of many controls in the complete
Silverlight control set. This class provides properties for setting the background and foreground
of a control, configuring the appearance of text within the control, and enabling control tem-
plating (something we will look at in Chapter 8). The specific properties the Control class
introduces are shown in Table 3-9.

Table 3-9. Properties of the System.Windows.Controls.Control Class

Property Type Description

Background Brush Gets/sets the current brush used to paint the
background of the control.

BorderBrush Brush Gets/sets the brush used to draw the border of the
control.

BorderThickness Thickness Gets/sets the thickness of the control’s border.

FontFamily FontFamily Indicates the font used for the text shown in the
control.

FontSize double Gets/sets font size of the text shown in control.
Defaults to 11 pt.

FontStretch FontStretch Gets/sets font compression/expansion for fonts
that support it. 

FontStyle FontStyle Gets/sets the font style. Possible values: Normal
(default) and Italic.

FontWeight FontWeight Gets/sets thickness of font. Possible values range
from Thin (100) to ExtraBlack (950). The default is
Normal (400).

Foreground Brush Gets/sets the brush used to draw the foreground
of the control.

IsTabStop bool Gets/sets whether control participates in tab order.

Padding Thickness Gets/sets the space between the content of the
control and its border or margin (if no border).

TabIndex Int32 Gets/sets the position of the control in the tab
order. Lower numbers are encountered first in the
tab order.

TabNavigation KeyboardNavigationMode Controls how tabbing with this control works.
Possible values: Local (default), None, Cycle.

Template Template Gets/sets the control template used for the visual
appearance of this control.

ContentControl
Many controls can define their content by using other controls. This provides an amazing
degree of flexibility over how you construct user interfaces. One place where this is useful is in
the ListBox control, where the items of the list box can be anything you can construct in XAML

CHAPTER 3 ■ CREATING USER INTERFACES48



using controls. The controls that support this capability inherit from System.Windows.Controls.
ContentControl. You can tell immediately that a specific control inherits from ContentControl by
noticing it has a Content property in the IntelliSense window. The properties of ContentControl are
shown in Table 3-10.

Table 3-10. Properties of the System.Windows.Controls.Primitives.ContentControl Class

Property Type Description

Content Object Gets/sets the content control. This is generally
set to a Panel-based class, though can be set to
any UIElement-based class.

ContentTemplate DateTemplate Gets/sets the data template for this content
control, used for data binding.

TextAlignment TextAlignment Gets/sets the text alignment used for this control.
Possible values: Left (default), Center, Right.

TextDecorations TextDecorationCollection Gets/sets the decorations applied to text for
this control. Possible values: Underline or null
(default; corresponds to no decorations).

TextWrapping TextWrapping Gets/sets how text wraps when it reaches the
width of the control. Possible values: NoWrap
(default), Wrap.

The controls that inherit from ContentControl are ListBoxItem, ButtonBase, ScrollViewer,
TabItem, DataGridCell, DataGridColumnHeader, and DataGridRowHeader.

Border
The Border control is used to surround content with a border. It also provides the ability to eas-
ily add a background to a smaller part of a user interface. Its properties are shown in Table 3-11.

Table 3-11. Properties of the System.Windows.Controls.Primitives.ButtonBase Class

Property Type Description

Background Brush Gets/sets the brush used to paint the background.

BorderBrush Brush Gets/sets the brush used to paint the border.

BorderThickness Thickness Gets/sets the thickness of the border.

Child UIElement Indicates the single child that the border is drawn around.

CornerRadius CornerRadius Gets/sets the degree of rounding used for each corner. Set
to a single value to apply a uniform rounding for all corners.

Padding Thickness Defines the space between the child content and the border.

Figure 3-6 shows the Border control used in various ways.

CHAPTER 3 ■ CREATING USER INTERFACES 49



Figure 3-6. The Border control

The fanciest border uses a gradient brush and contains a button. We’ll take a closer look at
brushes in a later chapter. Here’s what the XAML looks like. The Border control can contain a single
child element that forms the child content of the control, and in this case it is a button.

<Border BorderThickness="10" Width="100" Height="100" CornerRadius="10">
<Border.BorderBrush>

<LinearGradientBrush StartPoint="0,1" EndPoint="1,0">
<GradientStop Color="#FF000000" Offset="0"/>
<GradientStop Color="#FFFF0000" Offset="1"/>

</LinearGradientBrush>
</Border.BorderBrush>
<Button Content="BUTTON"></Button>

</Border>

The Button Controls
Many specialized versions of buttons exist, all inheriting directly or indirectly from the ButtonBase
class (in the System.Windows.Controls.Primitives namespace). The ButtonBase class provides
the basic pressing behavior that is common to all buttons. Its properties are shown in Table 3-12.

Table 3-12. Properties of the System.Windows.Controls.Primitives.ButtonBase Class

Property Type Description

ClickMode ClickMode Controls how the mouse triggers the Click event. Possible values:
Hover (when the mouse moves over the button); Press (the left
mouse button is pressed down); Release (the left mouse button is
released while over the button). Defaults to Release.

IsFocused bool True if this button has focus, false otherwise.

IsMouseOver bool True if the mouse pointer is hovering over this button, false
otherwise.

IsPressed bool True if the button is in a pressed state, false otherwise.

CHAPTER 3 ■ CREATING USER INTERFACES50



The ButtonBase class provides a single event, Click (event args class: RoutedEventHandler).
Figure 3-7 shows what various buttons look like by default.

Figure 3-7. Collection of different button controls

Button
The Button control provides basic button functionality. Its implementation is completely supplied
by the base class, BaseButton. Here’s a basic button in XAML where the content is set to text:

<Button Canvas.Left="74" Canvas.Top="20" Width="100" 
Content="Press me!" x:Name="button" Click="button_Click" />

HyperlinkButton
The HyperlinkButton control introduces the capability to cause the browser to navigate to
a specific web site when it is clicked. The new properties provided by the HyperlinkButton
class are shown in Table 3-13.

Table 3-13. Properties of the System.Windows.Controls.HyperlinkButton Class

Property Type Description

NavigateUri Uri Gets/sets the URI to navigate to

TargetName String Gets/sets the name of target window/frame where navigation happens

Here’s the XAML for the hyperlink button shown in Figure 3-7:

<HyperlinkButton x:Name="hyperlinkButton" Canvas.Left="45" Canvas.Top="20" 
Width="200" Content="Click to visit Silverlight website"
NavigateUri="http://www.silverlight.net" 
TargetName="_new"/>

CHAPTER 3 ■ CREATING USER INTERFACES 51



RepeatButton
The functionality introduced by a RepeatButton is the repeated firing of the Click event for as
long as the button is clicked. You can set several properties to control how the Click event
fires, and these are shown in Table 3-14.

Table 3-14. Properties of the System.Windows.Controls.Primitives.RepeatButton Class

Property Type Description

Delay Int32 Number of milliseconds before the click action repeats, after the button is
initially pressed. The default is 250.

Interval Int32 Number of milliseconds between repeated Click events, after repeating
starts. The default is 250.

Here’s the XAML for the repeat button shown in Figure 3-7:

<RepeatButton Canvas.Left="73" Canvas.Top="20" Width="110" 
Content="Press and hold" Click="RepeatButton_Click"/>

An event handler shows the current value increment as the button is held down.

private int currentValue = 0;
private void RepeatButton_Click(object sender, RoutedEventArgs e)
{

currentValue++;
repeatButtonValue.Text = currentValue.ToString();

}

Toggle Buttons: CheckBox and RadioButton
The ToggleButton provides the base functionality for both radio buttons and check boxes,
controls that can switch states. Its properties are shown in Table 3-15.

Table 3-15. Properties of the System.Windows.Controls.Primitives.ToggleButton Class

Property Type Description

IsChecked Nullable<bool> Indicates true if checked, false if not, and null if in an
indeterminate state. If IsThreeState is set to true, the user can
cause this property’s value to cycle between true/false/null.

IsThreeState bool Gets/sets whether the control supports three states. If false,
the button supports only two states.

The ToggleButton class introduces three new events, Checked, Unchecked, and Indeterminate.
These events use RoutedEventArgs as the event argument type and capture the various states
a ToggleButton can switch into. The two classes that inherit from ToggleButton are CheckBox and
RadioButton. The main distinguishing factor between check boxes and radio buttons is that radio
buttons can be grouped, so only one specific radio button within a group can be selected at any
given moment. The properties of RadioButton are shown in Table 3-16. If no group is specified, all
ungrouped radio buttons within a single parent control become part of the same group.

CHAPTER 3 ■ CREATING USER INTERFACES52



Table 3-16. Properties of the System.Windows.Controls.Primitives.RadioButton Class

Property Type Description

GroupName string Gets/sets the name of the group this radio button belongs to

Here’s the XAML for the check boxes shown in Figure 3-7:

<CheckBox x:Name="checkBox" Canvas.Left="25" Canvas.Top="20" 
IsChecked="True" Content="Checked"/>

<CheckBox x:Name="checkBox2" Canvas.Left="25" Canvas.Top="40" 
IsChecked="False"  Content="Unchecked"/>

<CheckBox x:Name="checkBox3" Canvas.Left="25" Canvas.Top="60" 
IsChecked="" IsThreeState="True" Content="Indeterminate"/>

The radio buttons are given unique names, but they share the group name to ensure the
mutual exclusion functionality.

<RadioButton x:Name="radioButton1" GroupName="group1" 
Canvas.Left="40" Canvas.Top="20" Content="Red"/>

<RadioButton x:Name="radioButton2" GroupName="group1" 
Canvas.Left="40" Canvas.Top="40" Content="Green"/>

<RadioButton x:Name="radioButton3" GroupName="group1" 
Canvas.Left="40" Canvas.Top="60" Content="Blue"/>

<RadioButton x:Name="radioButton4" GroupName="group1" 
Canvas.Left="40" Canvas.Top="80" Content="Cyan"/>

TextBlock
The TextBlock control is used to display text on a user interface. This directly compares to the
label controls in both Windows Forms and ASP.NET. Its properties are shown in Table 3-17.

Table 3-17. Properties of the System.Windows.Controls.TextBlock Class

Property Type Description

FontFamily FontFamily Gets/sets the set of font families. Each
specified after the first is a fallback font
in case a previous font is not available.
Defaults to “Portable User Interface,”
which encompasses several fonts in order
to render the range of international language
possibilities.

FontSize double Gets/sets the desired font size in pixels.
Defaults to 14.666 (11 pt).

FontSource FontSource Gets/sets the font used to render text.

FontStretch FontStretch Gets/sets the degree to which a font is
stretched. Possible values are from the
usWidthClass definition in the OpenType
specification.

Continued

CHAPTER 3 ■ CREATING USER INTERFACES 53



Table 3-17. Continued

Property Type Description

FontStyle FontStyle Gets/sets the font style used for rendering
text. Possible values: Normal (default) and
Italic.

FontWeight FontWeight Gets/sets the desired font weight. Possible
values are from the usWeightClass
definition in the OpenType specification.

Foreground Brush Gets/sets the brush to apply to the text.

Inlines InlineCollection Gets/sets the collection of inline elements,
such as Run and LineBreak, to render.

LineHeight double Specifies the height of a line of text in
pixels. This property is only used when
the LineStackingStrategy is set to
BlockLineHeight.

LineStackingStrategy LineStackingStrategy Specifies how each line of text is stacked.
Possible values: MaxHeight (maximum height
of an element within the line dictates height
of line) and BlockLineHeight (maximum
height controlled by the LineHeight
property).

Padding Thickness Gets/sets the amount of space between
the border of the content area and the text.

Text string Gets/sets the text to display.

TextAlignment TextAlignment Gets/sets horizontal alignment of text.
Possible values: Left, Center, Right.

TextDecorations TextDecorationCollection Gets/sets the set of decorations to apply to
the text. Currently the only decoration
available is Underline.

TextWrapping TextWrapping Controls how text wraps when it reaches the
edge of its content area. Possible values: Wrap
and NoWrap.

The TextBlock control can contain inline elements, providing an alternative way to piece
text together. This approach is most useful when you want to apply specific font styles, such as
different colors or sizes, to elements of a larger set of text. Figure 3-8 shows several uses of the
TextBlock control.

Figure 3-8. The TextBlock control

CHAPTER 3 ■ CREATING USER INTERFACES54



Here’s the XAML used for each of the TextBlock controls shown in Figure 3-8, including
one where the TextBlock contains multiple inline elements:

<Border BorderBrush="Black" BorderThickness="1" Canvas.Left="20" Canvas.Top="20">
<TextBlock Text="This is text that does not wrap"/>

</Border>
<Border BorderBrush="Black" BorderThickness="1" Canvas.Left="20" Canvas.Top="60">

<TextBlock Text="This is text that wraps" TextWrapping="Wrap" Width="100"/>
</Border>
<Border BorderBrush="Black" BorderThickness="1" Canvas.Left="20" Canvas.Top="130">

<TextBlock>
<Run FontSize="20" Text="This"/>
<Run FontSize="20" FontStyle="Italic" Text="is "/>
<Run FontSize="20" Text="text within a single"/>
<LineBreak/>
<Run Foreground="Red" FontSize="14" Text="TextBlock control."/>

</TextBlock>
</Border>

TextBox
The TextBox control is used to get free-form text-based information from a user. It provides
single line and multiline input and the ability to let the user select text. Its properties are shown
in Table 3-18.

Table 3-18. Properties of the System.Windows.Controls.TextBox Class

Property Type Description

AcceptsReturn bool Indicates true if text box
accepts/interprets newline
characters. False otherwise.

FontSource FontSource Defines the font used for text within
the text box.

HorizontalScrollBarVisibility ScrollBarVisibility Controls how/when the horizontal
scrollbar is displayed. Possible values:
Disabled (scrollbar never appears);
Auto (scrollbar appears when content
cannot fully be displayed within the
bounds); Hidden (like Disabled, but
the dimension of the content is not
set to the viewport’s size); and Visible
(scrollbar is always visible).

IsReadOnly bool Indicates no edits from the user are
allowed if true. Defaults to false.

MaxLength Int32 Defines the maximum number of
characters that can be entered into
a text box. The default is 0 (no
restriction).

Continued

CHAPTER 3 ■ CREATING USER INTERFACES 55



Table 3-18. Continued

Property Type Description

SelectedText string Gets the currently highlighted text. If
set, the highlighted text is replaced
with the new string. Any change
(including programmatic) causes the
SelectionChanged event to fire.

SelectionBackground Brush Specifies the brush used to paint
background of selected text.

SelectionForeground Brush Specifies the brush used to paint the
text within the selection.

SelectionLength Int32 Defines the number of characters
currently selected, or zero if there is
no selection.

SelectionStart Int32 Specifies the index where the selected
text begins within the text of the text
box.

Text string Defines the text currently stored in
the text box.

TextAlignment TextAlignment Gets/sets alignment of text within
a text box. Possible values: Left,
Center, Right.

TextWrapping TextWrapping Controls whether text wraps when it
reaches the edge of the text box.
Possible values: Wrap, NoWrap.

VerticalScrollBarVisibility ScrollBarVisibility Controls how/when a vertical
scrollbar is displayed. See 
HorizontalScrollBarVisibility for
possible values.

A single line and multiline TextBox control with scrollbars is shown in Figure 3-9. Note
that for scrollbars to appear on a TextBox, the AcceptsReturn property must be set to true.

Figure 3-9. The TextBox control

CHAPTER 3 ■ CREATING USER INTERFACES56



Here’s the corresponding XAML:

<TextBox Canvas.Top="30" Canvas.Left="120" Width="200"/>
<TextBox Canvas.Top="60" Canvas.Left="120" Height="150" Width="200"

AcceptsReturn="True" HorizontalScrollBarVisibility="Visible"
VerticalScrollBarVisibility="Visible"/>

ItemsControl
Certain controls provide the ability to present a set of content as individual items. Currently,
these controls are the ListBox and TabControl. The base class that provides the item handling
behavior is ItemsControl. Its properties are shown in Table 3-19.

Table 3-19. Properties of the System.Windows.Controls.ItemsControl Class

Property Type Description

DisplayMemberPath string Gets/sets the path to the property on the source
object to display.

Items ItemCollection Defines a collection of items to display if this is
nonnull.

ItemsPanel ItemsPanelTemplate Specifies the panel to use for displaying items.
Defaults to an ItemsPanelTemplate that uses
a StackPanel.

ItemsSource IEnumerable Similar to Items, provides the set of items to display,
but provides more flexibility since any IEnumerable
can be used.

ItemTemplate DataTemplate Specifies the data template used to display items.
Used with data binding.

ListBox
The ListBox control provides a way to display one or more items and allows the user to select
among them. Its properties are shown in Table 3-20.

Table 3-20. Properties of the System.Windows.Controls.ListBox Class

Property Type Description

ItemContainerStyle Style Gets/sets the style applied to the container for the list box’s items

SelectedIndex Int32 Indicates the index of first selected item, or -1 if no items are
selected

SelectedItem Object Indicates the first selected item, or null if no items are
selected

It exposes one event—SelectionChanged (event args: SelectionChangedEventArgs). 
The ListBoxItem class represents a ListBox’s individual item. This class inherits from

ContentControl and so can contain a wide variety of content. It exposes a single property of
type bool, IsSelected, that is true when the item is selected. The appearance of the list box
items can be controlled by setting the DataTemplate property of the ListBox control. As implied

CHAPTER 3 ■ CREATING USER INTERFACES 57



by the properties shown in Table 3-20, the ListBox control only supports single selection. You
can include a check box in the content for each item or create a custom list control (inherit from
ListControl or combine a ScrollViewer with a StackPanel).

A ListBox containing several simple items (text blocks) is shown in Figure 3-10.

Figure 3-10. The ListBox control

The corresponding XAML looks like this:

<ListBox Canvas.Top="50" Canvas.Left="40" Width="200">
<ListBox.Items>

<ListBoxItem>
<TextBlock Text="ITEM #1"/>

</ListBoxItem>
<ListBoxItem>

<TextBlock Text="ITEM #2"/>
</ListBoxItem>
<ListBoxItem>

<TextBlock Text="ITEM #3"/>
</ListBoxItem>
<ListBoxItem>

<TextBlock Text="ITEM #4"/>
</ListBoxItem>

</ListBox.Items>
</ListBox>

We’ll take a look at displaying more complex items in a ListBox by using data templates in
Chapter 5.

Popup
The Popup control is used to display content over the existing user interface, for example,
showing a tool tip. Its properties are shown in Table 3-21.

Table 3-21. Properties of the System.Windows.Controls.Primitives.Popup Class

Property Type Description

Child UIElement Gets/sets the content to display.

HorizontalOffset double Defines the horizontal offset used in displaying the pop-up.
Defaults to 0 (left side).

IsOpen bool Gets/sets whether the pop-up is open.

VerticalOffset double Vertical offset used in displaying the pop-up. Defaults to 0 (top).

CHAPTER 3 ■ CREATING USER INTERFACES58



The Popup class provides two events: Opened and Closed. These events fire when the pop-
up is opened or closed via setting of the IsOpen property. Figure 3-11 shows a button and the
pop-up that opens when the button is clicked.

Figure 3-11. The Popup control

The XAML for the pop-up looks like this:

<Popup x:Name="xamlPopup" VerticalOffset="40" 
HorizontalOffset="270" IsOpen="False">

<Border BorderBrush="Black" BorderThickness="5" CornerRadius="3">
<Button Content="Click to close" Click="button_Click"/>

</Border>
</Popup>

The showing and hiding of the pop-up is done programmatically by simply setting the
IsOpen property of the Popup control to the correct value to show or hide the pop-up.

void button_Click(object sender, RoutedEventArgs e)
{

xamlPopup.IsOpen = false;
}
private void showPopup_Click(object sender, RoutedEventArgs e)
{

xamlPopup.IsOpen = true;
}

ToolTipService
The ToolTipService class is used to programmatically associate a UIElement describing con-
tent of the tool tip with the control. It provides an attached property (ToolTip) that is used in
the XAML to create a tool tip without having to go to the code-behind. Figure 3-12 shows two
buttons, the first with a tool tip already attached, and the second that gets a tool tip after the
first button is clicked. Figure 3-12 includes the tool tip for the first button.

Figure 3-12. The tool tip control

CHAPTER 3 ■ CREATING USER INTERFACES 59



The XAML for the first button looks like this:

<Button Canvas.Left="20" Canvas.Top="40" 
ToolTipService.ToolTip="Click button to add a tooltip to the other button" 
Content="I have a tooltip!"   Click="Button_Click"/>

The click handler programmatically adds the second button’s tool tip via the SetTooltip
method.

private void Button_Click(object sender, RoutedEventArgs e)
{

Border b = new Border();
b.BorderBrush = new SolidColorBrush(Color.FromArgb(255, 128, 128, 128));
b.BorderThickness = new Thickness(5);
TextBlock t = new TextBlock();
t.Margin = new Thickness(5);
t.Text = "I am another tool tip";
b.Child = t;
ToolTipService.SetToolTip(secondButton, b);

}

RangeBase
The RangeBase class provides behavior to handle a range of values and a selected value within
this range. It is the base class of the ScrollBar control and the Slider control that comes with the
Silverlight SDK. The RangeBase class uses value coercion in order to ensure the current value is
within the range. An ArgumentException will be raised if any of the properties defining the end
points of the range are set to a value that does not make sense, such as setting Minimum to NaN
or SmallChange to a value less than zero. The properties of RangeBase are shown in Table 3-22.

Table 3-22. Properties of the System.Windows.Controls.Primitives.RangeBase Class

Property Type Description

LargeChange double Specifies the value to add/subtract from the current value. Defaults
to 1. Exact behavior is specified by the inheritor.

Maximum double Defines the highest value possible for this range.

Minimum double Defines the lowest value possible for this range.

SmallChange double Specifies the value to add/subtract from the current value. Defaults
to 0.1. Exact behavior is specified by the inheritor.

Value double Gets/sets the current value. This property is subjected to value coer-
cion to ensure it stays within range.

The RangeBase provides one event: ValueChanged.

CHAPTER 3 ■ CREATING USER INTERFACES60



ScrollBar
The ScrollBar class is visually represented by two repeat buttons and a Thumb control that
corresponds to the currently selected value within the range. You can see what a horizontal
and vertical scrollbar on their own look like in Figure 3-13. 

Figure 3-13. ScrollBar controls

ScrollBar’s properties are shown in Table 3-23.

Table 3-23. Properties of the System.Windows.Controls.Primitives.ScrollBar Class

Property Type Description

IsEnabled bool Gets/sets whether the scrollbar currently responds to user
interaction.

Orientation Orientation Gets/sets the orientation of the scrollbar. Possible values:
Horizontal, Vertical.

ViewportSize double Specifies the amount of content that is currently visible according
to the position of the thumb within the scrollbar. Defaults to 0.

The ScrollBar class provides one event: Scroll (event args class: ScrollEventArgs). This
event fires only when the user changes the position of the thumb, not when the Value property
is changed in the code-behind.

The XAML for the scrollbars shown in Figure 3-13 looks like this:

<Canvas x:Name="LayoutRoot" Background="White">
<TextBlock Text="Horizontal Scroll Bar" Canvas.Left="20" Canvas.Top="40"/>
<ScrollBar Orientation="Horizontal" Canvas.Left="20" Canvas.Top="70" Width="200"

Minimum="0" Maximum="100" 
SmallChange="1" LargeChange="10" Value="50"/>

<TextBlock Text="Vertical Scroll Bar" Canvas.Left="20" Canvas.Top="100"/>
<ScrollBar Orientation="Vertical" Canvas.Left="150" Canvas.Top="100" 
Width="25"/>

</Canvas>

CHAPTER 3 ■ CREATING USER INTERFACES 61



Slider
The Slider control is essentially a scrollbar, but it provides the capability to select a value from
within a range. It inherits from RangeBase. Its properties are shown in Table 3-24.

Table 3-24. Properties of the System.Windows.Controls.Slider Class

Property Type Description

IsDirectionReversed bool Reverses the direction of increasing values if true: down
for vertical sliders and left for horizontal sliders.

IsEnabled bool Returns true if the slider can respond to user interaction,
false otherwise.

IsFocused bool Returns true if the slider currently has input focus.

Orientation Orientation Gets/sets the orientation of slider. Possible values:
Vertical, Horizontal.

Figure 3-14 shows what a horizontal and vertical slider look like.

Figure 3-14. Slider controls

Here’s the XAML used to create those sliders:

<Canvas x:Name="LayoutRoot" Background="White">
<TextBlock Text="Horizontal Slider" Canvas.Left="20" Canvas.Top="40"/>
<Slider Orientation="Horizontal" Canvas.Left="20" Canvas.Top="70" Width="200"

Minimum="0" Maximum="100" SmallChange="1" LargeChange="10" 
Value="50"/>

<TextBlock Text="Vertical Slider" Canvas.Left="20" Canvas.Top="100"/>
<Slider Orientation="Vertical" Canvas.Left="130" Canvas.Top="100" 

Width="25" Height="100"/>
</Canvas>

ScrollViewer
The ScrollViewer control is used to display content that is possibly larger than the allotted
space, so scrollbars are used to let the user scroll to different sections of the content. It exposes
a large set of properties that control the presentation of content, shown in Table 3-25.

CHAPTER 3 ■ CREATING USER INTERFACES62



Table 3-25. Properties of the System.Windows.Controls.GridSplitter Class

Property Type Description

ComputedHorizontalScrollBarVisibility Visibility Gets/sets whether the horizontal
scrollbar is currently visible

ComputedVerticalScrollBarVisibility Visibility Gets/sets whether the vertical scrollbar
is currently visible

HorizontalOffset double Gets/sets the current horizontal offset
of the content

HorizontalScrollBarVisibility Visibility Gets/sets whether the horizontal
scrollbar should be displayed

ScrollableHeight double Defines the total vertical size of the
content

ScrollableWidth double Defines the total horizontal size of the
content

VerticalOffset double Gets/sets the current vertical offset of
the content

VerticalScrollBarVisibility Visibility Gets/sets whether the vertical scrollbar
should be displayed

ViewportHeight double Gets/sets the height of the viewport
(the window into the content that is on
screen)

ViewportWidth double Gets/sets the width of the viewport

Figure 3-15 shows a grid with a checkerboard pattern contained in a ScrollView control.
The content is too large to display completely, so the vertical scrollbar is added automatically
(the horizontal scrollbar is added automatically but must be set to Auto first).

Figure 3-15. The ScrollViewer control

CHAPTER 3 ■ CREATING USER INTERFACES 63



Here’s the XAML to create the grid inside the scroll viewer:

<Canvas x:Name="LayoutRoot" Background="White">
<ScrollViewer Canvas.Left="60" Canvas.Top="70" Width="250" 

Height="200" HorizontalScrollBarVisibility="Auto">
<Grid Background="White" Height="300" Width="400">

<!-- 3 rows, 3 columns -->
<!-- Border controls to draw a different background in each cell -->

</Grid>
</ScrollViewer>

</Canvas>

Incorporating SDK Controls
Several useful controls are provided with the Silverlight SDK. In order to gain access to these
controls in XAML, you must add a reference to the System.Windows.Controls assembly and
add the following to the UserControl element in XAML. Note that using these controls means
an extra assembly will be added to the XAP file, thus making a slightly larger file for users to
download.

xmlns:swc=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"

GridSplitter
The GridSplitter control is used to provide the user with the capability of changing sizes of
rows and columns in a grid. It exposes three properties, shown in Table 3-26.

Table 3-26. Properties of the System.Windows.Controls.GridSplitter Class

Property Type Description

IsEnabled bool Gets/sets whether the grid splitter responds to user interaction

PreviewStyle Style Gets/sets the style used for previewing changes

ShowsPreview bool Gets/sets whether the preview is shown before changes from the grid
splitter are applied

Figure 3-16 shows a checkboard pattern with a grid splitter between the first and second
column, spanning all three rows.

CHAPTER 3 ■ CREATING USER INTERFACES64



Figure 3-16. The GridSplitter control

The XAML for this grid splitter looks like this:

<Grid x:Name="LayoutRoot" Background="White">
<!-- 3 rows, 3 columns -->
<!-- Border controls to draw a different background in each cell -->
<swcx:GridSplitter Grid.Row="0" Grid.Column="1" Width="10" Grid.RowSpan="3"

HorizontalAlignment="Left" VerticalAlignment="Stretch"/>
</Grid>

Calendar and DatePicker
The Calendar control provides a full calendar on screen that the user can use to navigate to
a month and select a date. It supports forbidding certain dates from being selected and constrain-
ing itself to a given date range. The properties for the Calendar control are shown in Table 3-27.

Table 3-27. Properties of the System.Windows.Controls.Calendar Class

Property Type Description

BlackoutDates CalendarDateRangeCollection Contains a set of dates that are blacked
out and thus cannot be selected by
a user.

DisplayDate DateTime Specifies the date to display in the
calendar.

DisplayDateStart Nullable<DateTime> Specifies the first date to display.

DisplayDateEnd Nullable<DateTime> Specifies the last date to display.

DisplayMode CalendarMode Controls how the calendar presents
itself. Possible values: Month (displays
a full month at a time), Year (displays
a full year at a time), and Decade
(displays a decade at a time).

Continued

CHAPTER 3 ■ CREATING USER INTERFACES 65



Table 3-27. Continued

Property Type Description

FirstDayOfWeek DayOfWeek Specifies the day that marks the
beginning of the week. Defaults to
DayOfWeek.Sunday.

IsEnabled bool Gets/sets whether the control responds
to user interaction.

IsTodayHighlighted bool Returns true if today’s date is selected in
the calendar.

SelectedDate Nullable<DateTime> Indicates null if no date is selected,
otherwise the selected date.

SelectedDates SelectedDatesCollection Contains one or more selected dates,
unless selection mode is None.

SelectionMode CalendarSelectionMode Gets/sets how the selection works in the
calendar. Possible values: None (no selec-
tions are allowed), SingleDate (only one
date can be selected), SingleRange (only
one consecutive range of dates can be
selected), MultipleRange (different, dis-
connected ranges of dates can be
selected).

The Calendar control provides three events: DisplayDateChanged, DisplayModeChanged,
and SelectedDatesChanged. There is another control, the DatePicker, that is made up of a text
box, a button, and a Calendar control. The Calendar control only appears when the button is
clicked. Figure 3-17 shows what the Calendar and DatePicker controls look like.

Figure 3-17. The Calendar and DatePicker controls

The XAML for these controls looks like this:

<Border Grid.Column="0" Grid.Row="0" Grid.RowSpan="2"
BorderBrush="Black" BorderThickness="1">

<Canvas>

CHAPTER 3 ■ CREATING USER INTERFACES66



<swcx:DatePicker x:Name="datePicker" Canvas.Top="30" Canvas.Left="65"/>
</Canvas>

</Border>
<Border Grid.Column="1" Grid.Row="0" Grid.RowSpan="2" 

BorderBrush="Black" BorderThickness="1">
<Canvas>

<swcx:Calendar x:Name="calendar" Canvas.Top="30" Canvas.Left="15"
SelectionMode="SingleRange"/>

</Canvas>
</Border>

TabControl
The TabControl is used to host content within a set of pages, each page accessible via a tab. Its
properties are shown in Table 3-28.

Table 3-28. Properties of the System.Windows.Controls.TabControl Class

Property Type Description

IsEnabled bool Returns true if the TabControl currently responds to user interface
interaction, false otherwise.

SelectedContent Object Specifies the content of the currently active TabItem.

SelectedIndex Int32 Gets/sets the index of the currently active TabItem, or -1 if none
are active.

SelectedItem Object Specifies the currently active TabItem, or null if none are active.

TabStripPlacement Dock Gets/sets where tabs are placed within the TabControl. Possible
values: Left, Top (default), Right, Bottom.

The TabControl provides one event, SelectionChanged (event args class: 
SelectionChangedEventArgs). The TabControl consists of TabItems, each with a Header prop-
erty that is used to set the tab label and a Content property used to set the contents of the
specific tab page. Figure 3-18 shows a tab control with three tabs.

Figure 3-18. The TabControl

CHAPTER 3 ■ CREATING USER INTERFACES 67



Here’s the XAML for this control:

<Canvas x:Name="LayoutRoot" Background="White">
<swcx:TabControl Canvas.Left="20" Canvas.Top="40" Width="300" Height="200">

<swcx:TabItem Header="Tab #1">
<Canvas Background="Red"></Canvas>

</swcx:TabItem>
<swcx:TabItem Header="Tab #2">

<Canvas Background="Green"></Canvas>
</swcx:TabItem>
<swcx:TabItem Header="Tab #3">

<Canvas Background="Blue"></Canvas>
</swcx:TabItem>

</swcx:TabControl>
</Canvas>

Implementing Navigation
You have an application designed that involves multiple user interface screens, each corre-
sponding to a different XAML page, but now what? How do you change from one XAML page
to another? Unfortunately, Silverlight does not directly provide any navigation functionality.
The good news is this is fairly straightforward to implement in your application, though there
are a few caveats related to some of the ways you could implement navigation.

There are roughly two types of Silverlight applications that can be developed. The first
operates like a desktop application where all navigation is built into the application via menus
and smaller windows that might dock within the larger user interface. The other type of appli-
cation more closely mimics the behavior of web sites. An online store where a user can browse
items might naturally fit navigation using the back/forward buttons of the browser. 

One problem with this second type of application, however, is that Silverlight doesn’t
directly support navigation, let alone navigation tied to the browser. Another problem: how
does a user bookmark a page? If a user uses his or her browser’s bookmarking functionality, all
the bookmark will do is take that user back to the the Silverlight application—not a specific part
of the application. You should make an attempt to use the first type of application as a model—
viewing Silverlight as an application in and of itself, not tied to the browser it is hosted in. If
browser navigation and/or bookmarking make good sense in the design of your application,
however, there are ways to go about adding this support to a Silverlight application.

One approach is to use isolated storage (covered in Chapter 5) and build bookmarking
and forward/backward navigation into the application itself, much like HTML help files do
(each stores its own private bookmarks since the bookmarks make no sense outside the help
file). The downside of this is additional design and development effort. A second approach is
to split the various aspects of a Silverlight application that need bookmarking into different
applications, each on their own HTML or ASPX page, which can then be bookmarked. This
isn’t a great approach because of the extra development, maintenance, and deployment effort
required, and it loses consistency if the smaller Silverlight applications are parts of a larger
whole that should contain them. 

If you really need to use the browser’s navigation and bookmarking, you can use browser
interoperability to, for example, save a custom bookmark with state information that can be

CHAPTER 3 ■ CREATING USER INTERFACES68



read by the Silverlight application from the query string. Working with the browser is covered
in Chapter 10. Internet Explorer 8 will introduce better capability for Silverlight applications to
respond to the browser’s back and forward buttons.

Creating navigation within the application is mandatory for anything except the simplest
applications. By navigation, I am specifically talking about representing and selectively display-
ing two or more XAML pages. You might conceive of three main approaches if you sit down and
think about building your own navigation support.

The first is by making a specific UserControl fully opaque by setting its Opacity property
to #00xxxxxx (where xxxxxx does not matter since a 00 opacity value makes the page disappear).
This is the worst approach because the UserControl is still there—it still responds to input
(technically, it is still hit testable), it still handles events, and so forth.

If Opacity isn’t the right property to use, the next most logical one is the Visibility prop-
erty. By setting a UserControl’s Visibility property to Collapsed, the page disappears. This
gets you closer to what you want—hide one page, show another. This in fact might be a work-
able solution for your application; however, UserControls with their Visibility property set to
Collapsed still handle events (but they are not hit testable). This may or may not be what you
want, depending on which events are implemented.

The third approach is to completely disconnect a UserControl from its visual tree. This
can be accomplished by either setting the application’s RootVisual to a completely different
XAML page or using a parent XAML page’s Children.Remove to remove a specific page and then
add another one. This requires a bit more work, but it ensures only the visible page receives
event notifications and also ensures the Loaded event does not happen until the page is requested
by the user (provided page construction is deferred until the page is needed).

Each chapter’s code in this book uses a class called XAML_Viewer. This class associates
a friendly name with an instance of a XAML page and then presents the pages in a list box
along the left-hand side. When a user clicks a name in the list box on the left-hand side, the
content on the right changes to the specific XAML page associated with the friendly name.
You’ve seen screenshots of only the content side in the examples in this chapter; however,
you can see what the entire application for this chapter looks like in Figure 3-19.

Figure 3-19. Full view of the XAML_Viewer

CHAPTER 3 ■ CREATING USER INTERFACES 69



The XAML_Viewer class works by associating the instance of a UserControl with its friendly
name (a string) in an instance of a Dictionary<string,UserControl>. When an item is clicked
in the list box, the currently displayed XAML page’s Visibility property is set to Collapsed and
the selected UserControl’s Visibility property is set to Visible. This is a simple and effective
way to showcase examples for each chapter.

While it is unlikely your application will have precisely this list box/content visual split,
the mechanism used is something you might well find useful. Let’s briefly consider some other
types of navigation.

First, if you have a backward/current/forward navigation (much like a web browser, but
also like you might see in a slide deck), the UserControl containing other XAML pages must
store the sequence in an ordered list. You could use a List<UserControl> for this purpose and
store the index to the currently displayed page in a member variable.

Second, a ListBox control could be used as a simple menu, either at the top of the appli-
cation or alongside the left side. Using data templates, styles, and possibly even control templates,
the appearance of the list box can be completely changed. The list-box-as-menu can be placed
within a grid containing other content providing for more sophisticated placement.

Summary
This chapter introduced the classes that enable the dependency property system and enable
the visual dimension of Silverlight: DependencyObject, UIElement, and FrameworkElement. After
going over these important classes, you were exposed to many of the controls that come with
Silverlight. Finally, you were introduced to approaches to adding navigation and bookmarking
of Silverlight applications.

CHAPTER 3 ■ CREATING USER INTERFACES70



Network Communication

So far, you have explored Silverlight via XAML and seen how to create basic user interfaces.
The next piece of the Silverlight picture is the support it provides for communication with
network services. The network communication classes in Silverlight provide the capability to
send/receive data over either HTTP or raw sockets. This chapter and the next two (on data and
media) are closely related. The next chapter, which covers consuming data, will utilize com-
munication techniques to retrieve data before consuming it, such as using web service calls to
retrieve data from a database or direct download over HTTP to get syndication feeds and other
XML documents. In Chapter 6, you’ll utilize techniques from this chapter to retrieve video
and other media from a server, and then show how to utilize the media. This chapter lays the
groundwork for the coming chapters, so let’s jump right in!

Enabling Cross-Domain Communication
Silverlight can communicate over the network via sockets or HTTP, but if a Silverlight applica-
tion could communicate to any arbitrary host, then it could be leveraged for hacking into
a network or participating in a denial-of-service attack. Therefore, network communication in
Silverlight must be controlled. A simplistic approach is to restrict communication between
a Silverlight application and the server that serves it (known as the application’s site of origin),
as shown in Figure 4-1.

Figure 4-1. Communication with site of origin

Fortunately, Silverlight provides support for cross-domain access via a special property file
that controls network access in specific ways. Nothing special must be done if the application
is communicating with its site of origin, but since the cross-domain request requires permission,
Silverlight must first determine that a network request is cross-domain. Three conditions must

71

C H A P T E R  4



be met to identify a request as a site of origin, and if any of these conditions aren’t met, the
request is viewed as cross-domain and triggers downloading of the cross-domain policy file.
These conditions are as follows:

• The protocol must be the same. If the application was served over HTTP, it can only
communicate over HTTP; likewise for HTTPS.

• The port must be the same. Again, the port must match the original URL the application
was downloaded from.

• The domain and path in the URL must match exactly. If the Silverlight application
was downloaded from http://www.fabrikam.com/app and the request is made to
http://fabrikam.com/app, the domains don’t match.

■Caution There are restrictions placed on what characters are considered valid in a request’s URI to help
prevent canonicalization attacks. The valid characters are all lowercase and uppercase letters (A through Z
and a through z), all digits (0 through 9), the comma (,), the forward slash (/), the tilde (~), the semicolon (;),
and the period (.), as long as there aren’t two consecutive periods.

What if Silverlight determines that a particular request is cross-domain? Before deeming
the request invalid, Silverlight checks permissions on the remote server. A server that wishes
to provide cross-domain permissions to Silverlight applications hosts a cross-domain policy
file. There are actually two cross-domain policy files usable by Silverlight: crossdomain.xml,
introduced by Flash; and clientaccesspolicy.xml, introduced with Silverlight.

■Note During the lifetime of a Silverlight application, only a single request is made to a cross-domain
policy file per server. This means it is safe (and suggested) to mark the cross-domain policy files as no-cache.
This prevents the browser from caching the file while offering no performance penalty to Silverlight, since
Silverlight will cache the file itself.

The crossdomain.xml file is the most straightforward since it is used to opt in the entire
domain. No other capabilities from this file are supported by Silverlight.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy 

SYSTEM 
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>
<allow-access-from domain="*"/>

</cross-domain-policy>

CHAPTER 4 ■ NETWORK COMMUNICATION72



■Caution The cross-domain policy files must be located in the root of the server. If you are trying to enable
cross-domain communication and it isn’t working, ensure the file is located in the server root, not in a sub-
path such as www.fabrikam.com/services. You can use a tool such as Fiddler (www.fiddlertool.com),
an HTTP traffic sniffer, to see the requests your Silverlight application is making. If this file is present and
being downloaded successfully, check the contents of the cross-domain policy file.

If you want more granular control over the allowed domains, you must use the 
clientaccesspolicy.xml. This file provides the capability to restrict which domains are
allowed and which paths on the local server can be accessed. The domains correspond to
where the Silverlight application is served, not any host information based on the client com-
puter. Let’s take a look at the structure of this clientaccesspolicy.xml file:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
<cross-domain-access>

<policy>
<allow-from http-request-headers="CustomHeader,Mail-*">

<domain uri="*"/>
<domain uri="http://www.fabrikam.com"/>
<domain uri="https://www.fabrikam.com"/>

</allow-from>
<grant-to>

<resource path="/services" include-subpaths="false"/>
</grant-to>

</policy>
</cross-domain-access>

</access-policy>

The root element must only appear once; however, multiple cross-domain-access elements
can be specified in order to link different sets of allowed domains with paths on the server.

The allow-from element is the parent element for the list of domains access is being granted
to. Access is granted to all Silverlight applications if you use the value * for the domain element.
The http-request-headers attribute is optional, but must be specified in order to allow the
sending of HTTP headers with requests from the client. It takes the form of a comma-separated
list of header names, and the wildcard character (*) can be used in a part of the header or to
allow all headers (when http-request-headers is set to *).

The grant-to element is the parent of resources (paths) local to the server that the set of
domains are allowed to access. Each resource element has a path attribute used to specify the
path (relative to root of server) to grant access to. The include-subpaths attribute is optional.
Setting this to true is an easy way to grant access to an entire hierarchy of paths by specifying
the base path in the path attribute. The default value for this attribute is false.

This file is also used to grant access to Silverlight applications communicating over sockets.
The format is basically the same, but instead of using resource in the grant-to section,
socket-resource is used.

CHAPTER 4 ■ NETWORK COMMUNICATION 73



<?xml version="1.0" encoding="utf-8"?>
<access-policy>

<cross-domain-access>
<policy>
<allow-from>
<domain uri="*"/> 

</allow-from>
<grant-to>
<socket-resource port="4502-4534" protocol="tcp"/>

</grant-to>
</policy>

</cross-domain-access>
</access-policy>

The port attribute can be a range of ports or a single port. Currently, the only supported
protocol is TCP and thus the protocol attribute must be set to tcp.

The need for this policy file is placed on all communication, including client proxies gen-
erated for services, the System.Net.WebClient class, and the System.Net.HttpWebRequest class.
Now that we’ve gone over the network security restrictions placed on communication in
Silverlight, let’s take a closer look at the communication classes.

Using Services
Silverlight uses an implementation of Windows Communication Foundation (WCF) to man-
age its network communication. The service implementation used by Silverlight is a subset of
WCF. The only binding that can be used is the classic web service binding. This means that when
it comes to web services, Silverlight can only communicate with classic ASMX web services or
WCF services that expose an endpoint with the basicHttpBinding.

■Note WCF is a communication stack introduced in .NET 3.0. Its aim is to separate the nature of commu-
nication from the service implementations. It uses communication endpoints that can be defined and utilized
outside the actual service. An endpoint consists of an address, a binding, and a contract (commonly known
as the ABCs of WCF). The address is an URI, such as www.fabrikam.com. The binding specifies the nature of
the communication, such as communicating over HTTP or TCP. The contract is typically an interface defined
in a language such as C#, and includes the service contract (what operations are exposed by the service)
and possibly a data contract (how data represented by objects appears).

Let’s start by creating a simple web service the traditional way (as an ASMX file). This ser-
vice provides a simple way to obtain a book in a hypothetical online bookstore. The Book class
only contains a few members: the book’s title, ISBN, authors, and price.

CHAPTER 4 ■ NETWORK COMMUNICATION74



public class Book
{

public string title, isbn, authors;
public double price;

}

The web service provides a method, getBookCount, to retrieve the count of books available,
and a method to retrieve a book by its identifier, which we’ll specify as an index.

[WebMethod]
public int getBookCount()
{

return (2);
}
[WebMethod]
public Book getBook(int bookId)
{

// ...
}

While we can use a classic web service, it is also possible to construct WCF services for con-
sumption by Silverlight applications. In both approaches to developing a service, the visibility
keyword of a data member specifies whether it is serialized or not. We don’t have to specify any
attributes on the Book class or its members to make them visible to Silverlight. If there is a public
member that you do not want serialized, mark it with the IgnoreDataMemberAttribute. While pub-
lic types are serialized by default, using the DataContractAttribute and the DataMemberAttribute
to specify the data contract does no harm, and is a good idea if the service will be consumed by
more than just Silverlight.

Either the Book class, configured for use by a WCF service, can be left as is, or the data
contract can be specified as shown here:

[DataContract]
public class Book
{

[DataMember]
public string title, isbn, authors;
[DataMember]
public double price;

}

The implementation of WCF used by Silverlight shares a lot with the full WCF implemen-
tation in .NET 3.5; however, there are restrictions. Since Silverlight is limited to using SOAP 1.1
(which the basic HTTP binding provides), the various web service protocols cannot be used.
One-way operations are not supported—either avoid using one-way operations in your WCF
service or provide a counterpart suitable for use by Silverlight. Service methods cannot have
as a parameter or a return type the Stream type. Also, you cannot have as part of a data con-
tract or operation contracts the types ISerializable or XmlElement, or arrays of XmlNode or
IXmlSerializable. Custom SOAP headers are also unsupported.

CHAPTER 4 ■ NETWORK COMMUNICATION 75



Creating and Using a Client Service Proxy
After deploying this web service and creating a new Silverlight application in Visual Studio, the
easiest way to connect to the web service is by adding a service reference. Right-click the Silverlight
application in Solution Explorer and select Add Service Reference, as shown in Figure 4-2.
This will create a client proxy and add it to the project. The client proxy class is based on the
System.ServiceModel.ClientBase class, and for each operation in the service, there is a class
based on System.ComponentModel.AsyncCompletedEventArgs.

Figure 4-2. Adding a service reference in Visual Studio 2008

Type in the address to the web service and click Go, and the services and service methods
will be discovered, just like you’ve seen when adding a web service reference in Visual Studio
2008 (see Figure 4-3).

CHAPTER 4 ■ NETWORK COMMUNICATION76



Figure 4-3. The Add Service Reference dialog in Visual Studio 2008

Along with the files that are created to support the new service reference, a ServiceReferences.
ClientConfig file is created (if it doesn’t already exist) and added to the project. This file must
have that name and be packaged in the XAP file for deployment. Silverlight consults this file at
runtime to determine the address of the service along with any configuration options provided
for the binding or the endpoint. For the BookServiceReference just added, this file contains the
following:

<configuration>
<system.serviceModel>

<bindings>
<basicHttpBinding>

<binding name="BookServiceSoap"
maxBufferSize="65536" 
maxReceivedMessageSize="65536">

<security mode="None" />
</binding>

</basicHttpBinding>
</bindings>
<client>

<endpoint address="http://www.fabrikam.com/classic/BookService.asmx"

CHAPTER 4 ■ NETWORK COMMUNICATION 77



binding="basicHttpBinding"
bindingConfiguration="BookServiceSoap" 
contract="chapter4.BookServiceReference.BookServiceSoap"
name="BookServiceSoap" />

</client>
</system.serviceModel>

</configuration>

The security mode is set to None for HTTP communication, but you can set this to Transport
for HTTPS communication. Although this file represents a subset of the capability provided by
WCF, it still has a range of configuration options available, such as buffer size restrictions and
timeout parameters for send/receive operations. Consult the MSDN documentation for a full list.

We’ll create a simple interface to connect to the web service. It will provide the ability to
input a book’s ID and retrieve information about the book (see Figure 4-4).

Figure 4-4. The client interface to the Book service

In the code-behind, we’ll add the service client as a private member on the class:

private BookServiceReference.BookServiceSoapClient serviceClient;

If you create an instance of this class and bring up IntelliSense, you’ll see something inter-
esting. Look at Figure 4-5. There are no getBook or getBookCount methods, meaning that there
is no support for synchronous service calls.

Figure 4-5. Methods on the client service proxy as shown in IntelliSense

CHAPTER 4 ■ NETWORK COMMUNICATION78



Synchronous communication, as shown in Figure 4-6, follows the standard request-
response pattern. A service method is invoked and then the application waits for the response
from the service.

Figure 4-6. Synchronous communication: The client sends requests and waits for a response

The disadvantage to synchronous communication is that the client application must wait
for a response before doing something else. In Silverlight, service calls are done on the user
interface thread—which means that any synchronous invocation of a service will cause the
user interface to block (i.e., it becomes unresponsive and appears frozen to the user). Due to
how networking works in the browser, Silverlight does not directly support synchronous commu-
nication. This isn’t necessarily a bad thing, since it’s better for developers to utilize asynchronous
communication. This will contribute to more responsive user interfaces, even if it adds a small
learning curve for developers unfamiliar with asynchronous communication. Figure 4-7
shows a diagram of asynchronous communication—here, the request/response is not a cycle;
instead, the response is disconnected from the request.

Figure 4-7. Asynchronous communication: The client sends requests and eventually gets a response

CHAPTER 4 ■ NETWORK COMMUNICATION 79



Each asynchronous service operation is made up of an asynchronous method (the name
of the operation with Async appended) and an EventArgs subclass that contains a Result prop-
erty matching the return type of the service operation. The EventArgs subclass also contains an
additional property, UserState, which is an optional final parameter to the asynchronous method.
This parameter is used to pass arbitrary data from the invocation of the service to the method that
handles the completion of the operation.

The bookstore client example first invokes the service to obtain the number of books in
its database. This code is located in the constructor of the Page class.

public Page()
{

InitializeComponent();
BookServiceSoapClient serviceClient;
serviceClient = new BookServiceSoapClient();
serviceClient.getBookCountCompleted += 

new EventHandler<getBookCountCompletedEventArgs> 
(serviceClient_getBookCountCompleted);

serviceClient.getBookCountAsync();
}

There is an alternate constructor for the client proxy that accepts the name of an endpoint.
This is useful if the service exposes multiple endpoints and you want to use an endpoint other
than the default.

Now we need the serviceClient_getBookCountCompleted method to handle the completion
of the asynchronous operation. If you type the code up to and including the +=, you can press
Tab twice to automatically generate the event handler.

void serviceClient_getBookCountCompleted(
object sender, getBookCountCompletedEventArgs e)

{
if (e.Cancelled == false && e.Error == null)
{

bookCount = e.Result;
getButton.IsEnabled = true;

}
}

The getBookCountCompletedEventArgs contains the Result property that matches the
return type of getBookCount, so no cast is necessary when assigning to the bookCount integer
class member.

Along with Result and UserState, there are two other important properties on the specific
EventArgs subclasses: Cancelled and Error. The Cancelled property is a boolean that indicates
whether the operation was cancelled (such as via the Abort method on the service client object).
The Error is of type Exception and communicates an exception that occurs on the service side
to the client. If all goes well with the service call, Cancelled is false and Error is null. You should
always check these properties in the asynchronous event handler in case something went wrong.

Generating and using a proxy to invoke a service is rather straightforward after you under-
stand the asynchronous nature of operations. Silverlight also contains two classes for direct
HTTP communication, which we’ll look at next.

CHAPTER 4 ■ NETWORK COMMUNICATION80



Communicating Over HTTP Directly
Two classes are provided to support direct communication over HTTP: System.Net.WebClient
and System.Net.HttpWebRequest. WebClient is simpler but only exposes simplified access to
the GET and POST methods of HTTP. WebClient is most useful for easily downloading resources.
The HttpWebRequest class provides greater control over HTTP communication.

The WebClient Class
The WebClient class provides simplified access to communicating over HTTP (it is located in
the System.Net assembly). Its most important members are listed in Table 4-1.

Table 4-1. Members of the System.Net.WebClient Class

Name Type Description

DownloadStringAsync Method Asynchronously downloads data and returns it as
a string.

DownloadStringCompleted Event Occurs when DownloadStringAsync is complete.

UploadStringAsync Method Uploads a string to a specified URI.

OpenReadAsync Method Asynchronously downloads data and returns it as
a Stream.

OpenReadCompleted Event Occurs when OpenReadAsync is complete.

DownloadProgressChanged Event Occurs when some/all data is transferred. This
is useful for building a status indicator such as
a download progress bar.

CancelAsync Method Used to cancel an already issued asynchronous
operation.

BaseAddress Property (URI) Gets/sets base address. This is useful for using
relative addresses in multiple operations with
a single WebClient.

IsBusy Property (bool) Indicates whether an asynchronous operation is
in progress.

One aspect of Silverlight that is really useful is its support of archived media. You can store
images, audio, and video in a ZIP file, download it to the client via WebClient, and then use
MediaElement’s or BitmapImage’s SetSource method to connect the visual element to the media
content within the archive. Let’s take a look at a simple Silverlight application to download and
display images. We’ll also implement the DownloadProgressChanged event for showing a simple
progress indicator. We need a System.Windows.Resources.StreamResourceInfo object in the
code-behind to store the result of the download (i.e., the archive of images).

private StreamResourceInfo imageArchive;

Next, we’ll implement the click event on the button to initiate the download. We are using the
OpenReadAsync method to download a stream of data and thus implement an OpenReadCompleted
event handler to handle the data when it is finished downloading.

CHAPTER 4 ■ NETWORK COMMUNICATION 81



private void downloadButton_Click(object sender, RoutedEventArgs e)
{

WebClient wc = new WebClient();
wc.OpenReadCompleted += 

new OpenReadCompletedEventHandler(wc_OpenReadCompleted);
wc.DownloadProgressChanged += 

new DownloadProgressChangedEventHandler(wc_DownloadProgressChanged);
wc.OpenReadAsync(new Uri("/ImageBrowser/renaissance.zip", UriKind.Relative));

}

The OpenReadCompleted event handler is straightforward: we’ll check for an error or cancel
and make our list box of image names visible (we’re cheating here—the image names are hard-
coded in a string array). We could add a metadata file to the ZIP archive that the Silverlight
application can access and then cache the downloaded image archive for later use.

private void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{

if ((e.Error == null) && (e.Cancelled == false))
{

imageListBox.Visibility = Visibility.Visible;
imageArchive = new StreamResourceInfo(e.Result, null);

}
}

The download progress indicator is simply a percentage value displayed in a TextBlock.
The DownloadProgressChangedEventArgs contains several useful properties (listed in Table 4-2),
including the percentage progress, so we don’t have to calculate percentage completion.

private void wc_DownloadProgressChanged(object sender,
DownloadProgressChangedEventArgs e)

{
progressTextBox.Text = e.ProgressPercentage + "%";

}

Table 4-2. Members of the DownloadProgresschangedEventArgs Class

Name Type Description

Address URI The URI to the file currently downloading

BytesReceived long A count of the bytes received so far

ProgressPercentage int A number from 0 to 100 representing percentage of bytes
downloaded; equates to the formula (BytesReceived /
TotalBytesToReceive) * 100

TotalBytesToReceive long Corresponds to the file size of the file requested

UserState object Corresponds to the optional data passed to the OpenReadAsync
or DownloadStringAsync methods

Now that we have the image archive cached in the class, we can access an image inside
when the user selects a different image in the ListBox.

CHAPTER 4 ■ NETWORK COMMUNICATION82



private void imageListBox_SelectionChanged(object sender, 
SelectionChangedEventArgs e)

{
BitmapImage bitmapImageSource = new BitmapImage();
StreamResourceInfo imageResourceInfo =

Application.GetResourceStream(imageArchive, new
Uri(imageListBox.SelectedItem.ToString(),
UriKind.Relative));

bitmapImageSource.SetSource(imageResourceInfo.Stream);
image.Source = bitmapImageSource;

}

First, we need to get access to the specific image inside the archive. We use the Application.
GetResourceStream to access the specific image we want. GetResourceStream has two overloads:
one to access resources stored in the application, and the other to access resources within an
arbitrary ZIP stream. The resource to access is specified by a Uri object. The images in the ZIP
archive are referenced relative to the path within the ZIP—the path to the Silverlight applica-
tion has no relation to the paths of images inside the archive. The only other remarkable thing
about this piece of code is that the BitmapImage class is needed to get a source for the Image
object.

The DownloadStringAsync method works just like the OpenReadAsync method does. The
only difference is the Result property of the DownloadStringCompletedEventArgs class is of
type String instead of Stream. This method makes it easy to download content such as XML
documents for parsing by the XML classes. We will be utilizing DownloadStringAsync in the
next chapter.

The WebClient class provides only basic communication support. Downloading files,
either as a String or a Stream, is done via the GET method of HTTP. The HTTP POST method is
supported via the UploadStringAsync method. There are three overloads of this method. One
version takes a Uri and the string to upload. A second version takes the Uri, a string specifying
the HTTP method (it defaults to POST if this parameter is null) to use, and the string to upload.
The final variant includes a user token that is passed to the asynchronous response handler.

If we want to utilize HTTP in more complex ways, manipulate cookies, or communicate
securely, we need something more powerful. This power is provided by the
System.Net.HttpWebRequest class.

The HttpWebRequest Class
The HttpWebRequest is a specialization of the WebRequest class designed to communicate over
the HTTP and HTTPS protocols. It also supports the POST method along with GET, whereas
WebClient only supports GET. Generally, if the host browser can do it, the HttpWebRequest can
do it too, since this class leverages the host browser’s networking. To use this class, you must
first add a reference to the System.Net assembly since Silverlight projects do not include this
by default. 

An instance of HttpWebRequest cannot be created directly. The WebRequest class contains
a factory method named Create that returns an appropriate instance of a WebRequest inheri-
tor, based on protocol specified in the URI. As of Silverlight 2.0, the only protocols supported
are HTTP and HTTPS, and both cause Create to return an instance of HttpWebRequest (actually,

CHAPTER 4 ■ NETWORK COMMUNICATION 83



since HttpWebRequest is also abstract, a concrete implementation of HttpWebRequest is created;
however, for all intents and purposes, it is an HttpWebRequest).

The HttpWebRequest class works in concert with HttpWebResponse to handle the data sent
back from the server. The nature of communication using HttpWebRequest is also asynchronous;
however, it utilizes the BeginXXX/EndXXX pattern that you may be familiar with from .NET.
Tables 4-3 and 4-4 describe the methods and properties of this class, respectively.

Table 4-3. Methods of the System.Net.HttpWebRequest Class

Name Description

BeginGetRequestStream Begins an asynchronous request to obtain a Stream to write data

EndGetRequestStream Returns a Stream. Use this in the asynchronous callback method passed
to BeginGetRequestStream to get the Stream to write your request to

BeginGetResponse Begins an asynchronous request to communicate with a server

EndGetResponse Returns a WebResponse; provides access to a Stream containing the data
downloaded from the server

Abort Cancels an executing asynchronous operation

Table 4-4. Properties of the System.Net.HttpWebRequest Class

Name Description

ContentType Corresponds to the Content-Type HTTP header.

HaveResponse true if a response has been received; false otherwise.

Headers A collection containing the HTTP headers.

Method Corresponds to the method used in the request. Currently, it can only be GET or POST.

RequestUri The URI of the request.

The EndGetResponse of the HttpWebRequest class returns a WebResponse. Much like the
WebRequest, the WebResponse is abstract and actually requires us to look one level deeper in
the hierarchy, so let’s take a look at the HttpWebResponse class.

The HttpWebResponse class provides access to the data sent by the server to Silverlight. Its
most important method is GetResponseStream, inherited from the WebResponse class. This
method gives you a Stream containing the data sent by the server. When you are done with the
response, make sure you call its Close method since the connection to the server remains
open in the meantime. Tables 4-5 and 4-6 describe the methods and properties of this class.

Table 4-5. Methods of the System.Net.HttpWebResponse Class

Name Description

Close Closes the stream and releases the connection to the server.

GetResponseStream Returns a Stream. Use this to access the data sent by the server to Silverlight.

CHAPTER 4 ■ NETWORK COMMUNICATION84



Table 4-6. Properties of the System.Net.HttpWebResponse Class

Name Description

ContentLength Length of the data sent to Silverlight

ContentType MIME type of the content sent, if available

ResponseUri URI of the server that sent the response

One way to use the HttpWebRequest class is to retrieve data from a server. In this case, we
can go straight to using the BeginGetResponse method, since all we care about is retrieving
data from a server, not sending data. This code uses an address we enter in a user interface to
connect to, such as downloading an HTML file from our site of origin.

HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(
new Uri(addressTB.Text));

request.BeginGetResponse(new AsyncCallback(responseHandler), request);

The implementation of the response handler is where we read the response from the server.

void responseHandler(IAsyncResult asyncResult)
{

try
{

HttpWebRequest request = (HttpWebRequest)asyncResult.AsyncState;
HttpWebResponse response = 

(HttpWebResponse)request.EndGetResponse(asyncResult);
StreamReader reader = new StreamReader(response.GetResponseStream());
string line;
outputTB.Text = "";
while ((line = reader.ReadLine()) != null)
{

outputTB.Text += line;
}

}
catch (Exception ex)
{

outputTB.Text = ex.Message;
}

}

In the response handler, we grab the request object via the AsyncState parameter, and
then get the Stream from EndGetResponse. This is the equivalent of the GET HTTP method.

Sending data to a server is similar to initiating an asynchronous operation for retrieving
the response. BeginGetRequestStream starts the operation, and then EndGetRequestStream gives
us the Stream in the asynchronous callback method passed to BeginGetRequestStream. This is
equivalent to the HTTP POST method.

CHAPTER 4 ■ NETWORK COMMUNICATION 85



Raw Network Communication
While most applications will use either the service proxy or one of the classes for downloading
via HTTP/HTTPS, some applications will need a raw communication channel. Severe restric-
tions are placed on Silverlight when communicating over sockets, so for advanced scenarios,
you’ll want to create a proxy service on your server for Silverlight to utilize to talk to a wider
range of network services (unless, of course, your system design can completely account for the
restrictions placed on Silverlight). Silverlight can only communicate over ports ranging from 4502
to 4532 (inclusive), and requires a special policy server to deliver the clientaccessproxy.xml
file for all socket communication, either with the application’s site of origin or a cross-domain
server.

There are several key classes used in the course of communicating over sockets. The Socket
class contains the core functionality for socket communication. The SocketAsyncEventArgs class
is used to pass parameters to a socket operation and also handle the result of a socket operation,
such as data received. The DnsEndPoint class specifies an endpoint as a combination of a host-
name and port number, while IPEndPoint specifies the endpoint as an IP address and port
number. An endpoint must be specified when executing a socket operation.

The Socket Class
The Socket class has three socket operations: connecting (ConnectAsync), sending data
(SendAsync), and receiving data (ReceiveAsync). The socket must first connect to a remote
endpoint, described by either the IPEndPoint class or DnsEndPoint class. The former is used
to connect to an IP address, and the latter is used to connect to a hostname. Tables 4-7 and 4-8
display the methods and properties of the Socket class. You should always call the Shutdown
method before Close to ensure that data is finished sending/receiving on the open socket.

Table 4-7. Methods of the System.Net.Socket Class

Name Description

ConnectAsync Initiates a connection to a remote host. A nonstatic version takes only
a SocketAsyncEventArgs, while a static version takes a SocketType,
a ProtocolType, and a SocketAsyncEventArgs. It returns true if the
operation is pending, and false if the operation has completed.

CancelConnectAsync Used to cancel a pending connection. It must pass the
SocketAsyncEventArgs used in the ConnectAsync method.

SendAsync Sends data specified in a SocketAsyncEventArgs. It returns true if the
operation is pending, and false if the operation has completed.

ReceiveAsync Receives data from the open socket. It returns true if the operation is
pending, and false if the operation has completed.

Shutdown Shuts down sending, receiving, or both on the socket. It ensures that
pending data is sent/received before shutting down a channel, so you
should call this before you call Close.

Close Closes the socket, releasing all resources. 

CHAPTER 4 ■ NETWORK COMMUNICATION86



Table 4-8. Properties of the System.Net.Socket Class

Name Description

AddressFamily Addressing scheme used to resolve addresses. Valid values from the
AddressFamily enumeration are Unknown, Unspecified, InterNetwork (for
IPv4), and InterNetworkV6 (for IPv6). AddressFamily is initially specified
when a socket is created.

Connected Used to cancel a pending connection. It must pass the SocketAsyncEventArgs
used in the ConnectAsync method.

NoDelay Sends data specified in a SocketAsyncEventArgs.

OSSupportsIPv4 Static property; indicates whether IPv4 addressing is supported or not.

OSSupportsIPv6 Static property; indicates whether IPv6 addressing is supported or not.

ReceiveBufferSize The size of the socket’s receive buffer. 

RemoteEndPoint The endpoint of the remote server.

SendBufferSize The size of the socket’s send buffer.

Ttl The time-to-live value for IP packets.

The SocketAsyncEventArgs Class
The SocketAsyncEventArgs class is possibly the most important class for socket communica-
tion, since it is used as a way to both pass data/configuration to the three socket operation
methods and pass access status information/data after an asynchronous call completes. Table 4-9
lists its members.

Table 4-9. Members of the System.Net.SocketAsyncEventArgs Class

Name Type Description

SetBuffer Method Initializes the data buffer for an
asynchronous operation. One overload sets
only the Count and Offset properties (Buffer
is set to null) while the other also sets the
Buffer property to an array of bytes.

Buffer Property (byte[]) Accesses the data buffer. This property is
read-only—use the SetBuffer method to
initialize and possibly place data into this
buffer.

BufferList Property Specifies an array of data buffers for use by 
(IList<ArraySegment<byte>>) ReceiveAsync and SendAsync. This property

has precedence over the Buffer property.

BytesTransferred Property (int) Number of bytes transferred in socket
operation. After a read operation, if this
property is 0, it indicates that the remote
service has closed the connection.

ConnectSocket Property (Socket) Socket related to this operation.

Count Property (int) Maximum number of bytes to send/receive.
It is set via SetBuffer.

Continued

CHAPTER 4 ■ NETWORK COMMUNICATION 87



Table 4-9. Continued

Name Type Description

LastOperation Property Valid values from SocketAsyncOperation
(SocketAsyncOperation) enumeration are None, Connect, Receive,

and Send. This is set to None before one of the
asynchronous methods is invoked, and then
it is set to the value corresponding to the
asynchronous operation. 

Offset Property (int) The offset, in bytes, into the Buffer property.
This is set via the SetBuffer method.

RemoteEndPoint Property (EndPoint) Specifies remote endpoint used for the
ConnectAsync method. This can be IPEndPoint
or DNSEndPoint. It supports both IPv4 and
IPv6 addressing.

SocketError Property (SocketError) Corresponds to a socket error from the most
recent socket operation (Connect, Send, or
Receive). There are a large number of error
codes; however, SocketError.Success is the
only code representing success. Check against
this to ensure that the most recent operation
succeeded.

UserToken Property (object) Arbitrary object used to pass data from the
invocation of an asynchronous method to
the Completed event handler.

Completed Event Used to specify an event handler that is
invoked when the asynchronous operation
is complete.

Using the Socket Class
You generally want to use asynchronous communication as much as possible. Sometimes, though,
you might want to handle a send-and-receive cycle despite an impact to the user interface, so
a synchronous approach might prove useful. Let’s look at how to develop a class to layer syn-
chronous semantics onto the Socket class. In the course of this discussion, you will see how to
utilize the Socket class asynchronously. Since the Socket class already contains asynchronous
semantics, you won’t need a wrapper class for that approach.

public class SynchronousSocket : IDisposable
{

public Exception Error { get; set; }
private Socket _socket;
private EndPoint _endPoint;
public SynchronousSocket(string hostName, int port)
{

if (port < 4502 || port > 4532)
{

throw new ArgumentException(
"TCP port must be between 4502 and 4532, inclusive");

}

CHAPTER 4 ■ NETWORK COMMUNICATION88



_endPoint = new DnsEndPoint(hostName, port);
_socket = new Socket(AddressFamily.InterNetwork, 

SocketType.Stream, ProtocolType.Tcp);
}
// ...

}

Since we are implementing a wrapper for the socket, we might as well add a check for the
port range. We first create an endpoint based on the DnsEndPoint class since we expect a host
name as a parameter to the constructor, and then we configure the socket for IPv4 communi-
cation (using AddressFamily.InterNetwork) and the only currently valid options for SocketType
and ProtocolType.

Before looking at the connect, send, and receive implementations, let’s implement the
Completed event handler:

protected void SocketOperationCompleted(object sender, SocketAsyncEventArgs e)
{

if (e.SocketError != SocketError.Success)
{

this.Error = new SocketException((int)e.SocketError);
}
((AutoResetEvent)e.UserToken).Set();

}

This handler exists to signal the end of the operation via an AutoResetEvent. This is the
mechanism by which we enforce the synchronous semantics. When connecting, sending, or
receiving, we clear the AutoResetEvent, and then wait for it to get signaled. Notice that the
AutoResetEvent is passed via the UserToken property of the SocketAsyncEventArgs class.
The AutoResetEvent class is located in the System.Threading namespace, which will be covered
in more detail later in this book.

While this particular implementation performs the same actions for all socket operations,
the LastOperation property of SocketAsyncEventArgs could be used here in order to create
a single event handler for all socket operations. You could utilize the following switch statement
inside the event handler:

switch (e.LastOperation)
{

case SocketAsyncOperation.Connect:
break;

case SocketAsyncOperation.Receive:
break;

case SocketAsyncOperation.Send:
break;

}

Now let’s move on to the implementations of the socket operations. First, we’ll take a look
at the Connect method. The SocketAsyncEventArgs class is instantiated in this method. There
is no need to hold onto this reference, so we aren’t storing it at the class level. In fact, after
a socket operation is initiated, the particular instance of SocketAsyncEventArgs can be reused.

CHAPTER 4 ■ NETWORK COMMUNICATION 89



If you are making a large number of SendAsync/ReceiveAsync calls, you could create a pool of
SocketAsyncEventArgs objects and store these at the class level. Although this requires more
management, it can cut down on object creation and disposal if your application performance
is negatively impacted.

public void Connect()
{

SocketAsyncEventArgs asyncEventArgs = new SocketAsyncEventArgs();
asyncEventArgs.RemoteEndPoint = _endPoint;
asyncEventArgs.Completed += 

new EventHandler<SocketAsyncEventArgs>(SocketOperationCompleted);
AutoResetEvent connectEvent = new AutoResetEvent(false);
asyncEventArgs.UserToken = connectEvent;
bool completedSynchronously = _socket.ConnectAsync(asyncEventArgs);
if (!completedSynchronously)
{

connectEvent.WaitOne();
}
connectEvent.Close();
if (asyncEventArgs.SocketError != SocketError.Success)
{

throw this.Error;
}

}

The ConnectAsync operation is the only socket operation that requires the RemoteEndPoint
to be set. The rest of this method consists of creating the AutoResetEvent, invoking ConnectAsync,
and then waiting for the signaling of the AutoResetEvent before completing. One important
aspect to notice is the return value from ConnectAsync: the asynchronous handler will not be
called if the connect operation finishes synchronously. Since we are treating Connect as a logi-
cal synchronous connection, it will throw the exception if an error occurs during the connect
attempt.

Since it goes along with the Connect method, let’s look at the Disconnect method:

public void Disconnect()
{

if (_socket.Connected)
{

_socket.Shutdown(SocketShutdown.Both);
_socket.Close();

}
}

Before closing the socket, we call Shutdown to ensure that all data is sent/received, in case
any data is currently in the buffer. The Shutdown method can also selectively shut down the
sending or receiving channels, specified by SocketShutdown.Send or SocketShutdown.Receive.
No further operations are allowed after the socket is closed.

We’ll create a simple Send method that matches the signature of Socket’s Send method,
specifying a byte buffer containing the data to send, an offset marking the beginning of the

CHAPTER 4 ■ NETWORK COMMUNICATION90



data in the buffer, and the length of the data to send. The offset and length parameters are
useful for sending data that is larger than the SendBufferSize of the socket. In this method, we
use the SetBuffer method of the SocketAsyncEventArgs class to initialize and set the data we’re
about to send over the socket:

public void Send(byte[] data, int offset, int length)
{

if (!this.Connected)
{

throw new Exception("Not connected.");
}
SocketAsyncEventArgs asyncEventArgs = new SocketAsyncEventArgs();
asyncEventArgs.SetBuffer(data, offset, length);
asyncEventArgs.Completed += new

EventHandler<SocketAsyncEventArgs>(SocketOperationCompleted);
AutoResetEvent sendEvent = new AutoResetEvent(false);
asyncEventArgs.UserToken = sendEvent;
_socket.SendAsync(asyncEventArgs);
sendEvent.WaitOne();
sendEvent.Close();
if (asyncEventArgs.SocketError != SocketError.Success)
{

this.Error = new SocketException((int)asyncEventArgs.SocketError);
throw this.Error;

}
}

Again, we wait for the event to get signaled. The Receive is similar to what we’ve seen so
far; however, after the operation is complete, we have a result—this is what we wait on so that
we have data to return from the method. The Receive here will return the data received as a string.

public string ReceiveAsString()
{

if (!this.Connected)
{

throw new Exception("Not connected.");
}
SocketAsyncEventArgs asyncEventArgs = new SocketAsyncEventArgs();
byte[] response = new byte[1024];
asyncEventArgs.SetBuffer(response, 0, response.Length);
asyncEventArgs.Completed += 

new EventHandler<SocketAsyncEventArgs>(SocketOperationCompleted);
AutoResetEvent receiveEvent = new AutoResetEvent(false);
asyncEventArgs.UserToken = receiveEvent;
_socket.ReceiveAsync(asyncEventArgs);
receiveEvent.WaitOne();
receiveEvent.Close();

CHAPTER 4 ■ NETWORK COMMUNICATION 91



if (asyncEventArgs.SocketError == SocketError.Success)
{

return (Encoding.UTF8.GetString(asyncEventArgs.Buffer, 
asyncEventArgs.Offset, asyncEventArgs.BytesTransferred));

}
else
{

throw this.Error;
}

}

This method wraps the ReceiveAsync, waits for it to complete, and returns the data encoded
as a string. This is a rather simple receive method, since we’re not taking into account the possi-
bility that the data is larger than can be received in a single ReceiveAsync. Figures 4-8 and 4-9
show a Silverlight application that uses the SynchronousSocket class to implement a simple chat
application. Before Silverlight can communicate over sockets, however, it needs to download the
cross-domain policy file. In order for this to happen, a policy server must be running on the same
machine as the service that your Silverlight wants to communicate with. The requirements for
this policy server are fairly straightforward: it must listen on port 943, and it must send the policy
file to the requesting client after receiving the special request <policy-file-request/>. Here’s the
main implementation of a very stripped-down policy server, sufficient to work but not suitable
for production:

byte[] policyFileBytes;
FileStream fileStream = new FileStream("clientaccesspolicy.xml", FileMode.Open);
policyFileBytes = new byte[fileStream.Length];
fileStream.Read(policyFileBytes, 0, policyFileBytes.Length);
fileStream.Close();
TcpListener listener = new TcpListener(IPAddress.Parse("127.0.0.1"), 943);
listener.Start();
Console.WriteLine("Waiting for connection...");
TcpClient client = listener.AcceptTcpClient();
Console.WriteLine("Connection accepted from " +

client.Client.RemoteEndPoint.ToString());
NetworkStream ns = client.GetStream();
byte[] buf = new byte[1024];
int bytesRead = ns.Read(buf, 0, 1024);
string msg = System.Text.Encoding.UTF8.GetString(buf, 0, bytesRead);
if(msg.Equals("<policy-file-request/>")) {

ns.Write(policyFileBytes, 0, policyFileBytes.Length);
} else {

Console.WriteLine("Unrecognized request from client: [" + msg + "]");
}
ns.Close();
client.Close();
Console.WriteLine("Sent policy file to client");

CHAPTER 4 ■ NETWORK COMMUNICATION92



Figure 4-8. Socket client example before connecting to a remote service

Figure 4-9. Socket client example after connecting and sending data

The code connects directly to the host that served the application. This is accomplished
by the following code:

socket = new SynchronousSocket(App.Current.Host.Source.DnsSafeHost, 4502);

Connecting to the remote server is done via the following code:

socket.Connect();

CHAPTER 4 ■ NETWORK COMMUNICATION 93



The send button performs the send and receive and then appends the response to the
main text box that shows the chat conversation.

private void sendButton_Click(object sender, RoutedEventArgs e)
{

if (socket != null && socket.Connected)
{

try
{

outputTextBox.Text += "you say: " + inputTextBox.Text + "\r\n";
socket.Send(inputTextBox.Text);
outputTextBox.Text += "server says: "

+ socket.ReceiveAsString() + "\r\n";
inputTextBox.Text = "";

}
catch (Exception ex)
{

outputTextBox.Text = ex.Message;
}

}
}

Considerations for Using Networking
So far, you have seen three ways to communicate over HTTP and one way to communicate
over sockets in Silverlight. Some great question to ask at this point are “How do these approaches
compare to each other?” and “When should you use which?”

Generating a client proxy for a service is the easiest from a development standpoint. It’s
also easy to use a different endpoint when constructing an instance of the client proxy. Using
a generated proxy is the easiest, best way to call services exposed on the World Wide Web. If
the service changes, you can simply update the proxy. If there are multiple endpoints exposed,
you will see these in the ClientConfig and can choose which to use. It is also important to
note that this approach uses SOAP 1.1 as a way to communicate with objects over HTTP.

The easiest way to download a resource from a site is to use the System.Net.WebClient
class. The two biggest resources are files (e.g., the archived media in the example earlier in this
chapter) and text files (such as syndication feeds in XML format). The WebClient class provides
a way to download data via a Stream or as a String, making the access of resources quite easy.

Although the WebClient class provides both the HTTP GET and POST methods, it is impossible
to send more complicated requests to a server. The System.Net.HttpWebRequest class supports
both GET and POST, and also supports both the HTTP and HTTPS protocols. The other major
benefit of the HttpWebRequest class is that capabilities provided by the browser, such as authen-
tication and cookies, are supported.

Finally, the socket support exists to directly communicate with an exposed TCP service.
Whereas HTTP is an application layer protocol, socket communication has no application
layer protocol. A communication protocol must be previously agreed on between a service
and the Silverlight application. The major benefit to socket communication is performance—
a well-designed TCP service can have less overhead than communication directly over
HTTP/SOAP.

CHAPTER 4 ■ NETWORK COMMUNICATION94



Summary
Silverlight exists in a connected world. Its network support is primarily focused on communi-
cation over HTTP(S), which enables it to easily invoke services on the World Wide Web and
download documents such as syndication feeds. In this chapter, you’ve seen the support for
HTTP(S) communication provided by the WebClient and HttpWebRequest classes. Silverlight
also supports raw socket communication, albeit with severe restrictions. The next two chap-
ters will utilize the networking support built into Silverlight to retrieve data for consumption
by Silverlight.

CHAPTER 4 ■ NETWORK COMMUNICATION 95



Working with Data

Data can take many forms, from simple types passed back from web services to complex
formats such as XML. In the previous chapter, you saw how to consume web services from
Silverlight and connect to various servers, including ones that live outside your application’s
host domain and others that communicate over sockets. Once you have data, though, you must
process it and/or display it to users. Silverlight provides a DataGrid control, a data binding
architecture to connect data to user interface elements, and even item templates for controls
like the ListBox to specifically define how each item should appear. On the data-processing
side, Silverlight provides a number of classes for working with XML, including LINQ, which
was introduced in .NET 3.5 on Windows (but remember, while Silverlight is based on .NET 3.5,
it has no dependence on the .NET 3.5 Framework!). Another important aspect to data is how
to save data on the client. While you can use cookies, Silverlight provides something called
isolated storage that provides file system semantics for saving and loading data. Let’s dig into
all this support Silverlight provides for working with data.

Displaying Data
In Chapter 3, you were introduced to a number of controls, including the ListBox. Data tem-
plates and the Binding markup extension were previewed in Chapter 2. Controls such as the
ListBox enable you to connect a user interface element to a data source and automatically dis-
play data. One control that wasn’t discussed in Chapter 2 is the DataGrid—a control specifically
designed for displaying data in rows and columns. It provides a lot of flexibility for displaying
the data and the column headers and footers. We’ll take a brief look at this control in this
section.

Data Binding
Data binding is the connection of a data source to a user interface element such as a text block,
text box, or list box. It is possible to do one-way data binding where data is simply displayed in
the user interface, and two-way data binding where any changes a user makes within the user
interface elements gets reflected in the underlying data source. Data sources in Silverlight are
generally objects or collections of objects with properties that can be accessed.

Before we can take a closer look at data binding, we need to examine what makes it hap-
pen: the Binding markup extension. This can be used either in XAML or in the code-behind.
It’s not possible to bind directly to basic data types such as Int32 and string, so we need at
least one containing class, such as AccountSettings shown here:

97

C H A P T E R  5



public class AccountSettings
{

public string Name { get; set; }
public string EmailAddress { get; set; }
public string SignatureLine { get; set; }
public bool HideEmailAddress { get; set; }

}

This class contains several properties that will be used in the data binding. If we have
a TextBlock and want to display the Name property, we first bind the Text property of the
TextBlock to the Name property:

<TextBlock x:Name="nameTextBlock" Text="{Binding Name}"/>

This gets us halfway there. The other step is to set the DataContext property of the TextBlock
to the AccountSettings object. This step is only necessary when it isn’t possible to set the data
context in XAML, and a simple object like this is one of those cases. The Binding markup exten-
sion provides support for three modes of operation: OneTime, OneWay, and TwoWay. These
modes of operation control how data is bound and controls the flow between data source and
user interface elements. The following list describes each of these modes:

OneTime: The data binding happens exactly once, meaning that any changes to the data
source after the initial binding will not be reflected in the user interface.

OneWay: The data flows only from the data source to the user interface. Any time the data
source is updated, the user interface will reflect the changes.

TwoWay: The data flows from the data source to the user interface and also from the user
interface to the data source. Any changes on either side will automatically be reflected in
the other side.

Table 5-1 displays the various valid XAML syntax for the Binding markup extension.

Table 5-1. Valid Syntax for the Binding Markup Extension

Syntax Description

{Binding} This signals data binding. The mode of operation is OneWay.
This is most commonly used with item templates for controls
such as the ListBox.

{Binding path} This signals data binding and specifies which property will
supply the data. The path takes the form of object properties
separated by dots, allowing you to drill down into an object.

{Binding properties} This signals data binding but provides the ability to set data
binding configuration properties using a name=value syntax. 

{Binding path, properties} This combines the previous two formats, allowing you to spec-
ify which object property supplies the data and also configure
the data binding.

CHAPTER 5 ■ WORKING WITH DATA98



There are a number of properties that help control how data binding behaves, such as
controlling how errors during data binding are handled. The full list of properties is shown in
Table 5-2.

Table 5-2. System.Windows.Data.Binding Properties

Name Type Description

Converter IValueConverter This is used to easily perform a custom
conversion of the data on its way to or from
the data source. This is useful for changing
how data appears in the user interface while
still maintaining proper data format for the
data source.

ConverterCulture CultureInfo This is used to specify the culture the converter
uses.

ConverterParameter object This is a custom parameter for use in the
converter.

Mode BindingMode The binding mode specifies how and where
data flows between the data source and user
interface. The valid modes are OneWay,
OneTime, and TwoWay.

NotifyOnValidatonError bool When set to true, the data binding system will
raise a BindingValidationError event if
validation fails when committing changes to
the data source in TwoWay data binding. If
false, validation errors will be ignored.

Path string This specifies the property path to the binding
data source.

Source object This specifies the source object for data
binding. This overrides the DataContext set on
containing elements within the visual tree.

ValidatesOnExceptions bool When this and NotifyOnValidationError are
true, any exceptions generated from the 
source object’s setters or the binding 
engine’s type converters will be reported by
raising BindingValidationError. If this is false,
or if it’s true and NotifyOnValidationError is
false, your application will not be aware of
exceptions generated by the binding system.
This only applies in TwoWay binding when the
data source is updated.

Now let’s take a closer look at data binding an AccountSettings object. This will be a TwoWay
data binding scenario, where changes done to the user interface will be reflected in the data
source and vice versa. Figure 5-1 shows an interface where the same data is shown twice. 

CHAPTER 5 ■ WORKING WITH DATA 99



Figure 5-1. TwoWay data binding example

In the top half, the user interface elements (in this case, text boxes) are bound to the data
source. Any changes made to these text boxes are reflected in the data source. You can verify
this by clicking Show Data Source Contents after modifying a value. The lower half lets you
change the data source directly. When you click Update Data Source, the values in the data
source will be updated directly and the corresponding fields in the top half will automatically
change. The following XAML shows how this user interface is put together and how the Binding
markup extension is used on several of the user interface elements.

<Border BorderBrush="Black" BorderThickness="2" Grid.Row="1">
<StackPanel Orientation="Vertical">

<TextBlock Text="User Interface" FontSize="16" 
HorizontalAlignment="Center"/>

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<TextBlock Text=" Name:"/>
<TextBox x:Name="nameTextBox" 

Text="{Binding Name, Mode=TwoWay}" Width="140"/>
</StackPanel>
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

<TextBlock Text="E-Mail:"/>
<TextBox x:Name="emailTextBox" Width="140" 

Text="{Binding EmailAddress, Mode=TwoWay}"/>
</StackPanel>
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

<TextBlock Text="Signature Line:"/>
<TextBox x:Name="signatureTextBox" Width="140" />

</StackPanel>
<Button x:Name="viewDataSourceButton" Margin="5" Width="155" 

Content="Show Data Source Contents" 
Click="viewDataSourceButton_Click"/>

</StackPanel>
</Border>

CHAPTER 5 ■ WORKING WITH DATA100



The lower half of the user interface is similar but uses no data binding. An instance of
AccountSettings is created in the constructor of this page and then connected when the page
loads via the Loaded event handler:

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{

dsNameTextBox.Text = settings.Name;
dsEmailTextBox.Text = settings.EmailAddress;
dsSignatureTextBox.Text = settings.SignatureLine;
nameTextBox.DataContext = settings;
emailTextBox.DataContext = settings;
Binding dataBinding = new Binding("SignatureLine");
dataBinding.Source = settings;
dataBinding.Mode = BindingMode.TwoWay;
signatureTextBox.SetBinding(TextBox.TextProperty, dataBinding);

}

There are two things of note in this event handler. First, the DataContext property for two
of the text boxes must be set. Between the DataContext and the Binding markup extension, the
data source is fully linked to the user interface element. The second thing of note is how to
create this linkage completely in the code-behind. If you look at the XAML again, you’ll see
that the SignatureLine doesn’t use the Binding markup extension. Instead, the property name
is set in the Binding constructor, the data source is linked, and then the data is bound by set-
ting the TextProperty dependency property to the Binding instance. This is almost everything
we need to completely enable TwoWay data binding.

Enabling Data Change Notification
If you assemble the code as is, you’ll discover that direct changes to the data source are not
reflected immediately in the user interface. This is because the data binding system isn’t aware
that the data source changed. In order to provide this notification, the object being used as the
data source must implement the INotifyPropertyChanged interface. This interface defines
a single event, PropertyChanged, that must be provided. Let’s modify the AccountSettings class
to implement this interface:

public class AccountSettings : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;
protected void OnPropertyChanged(string propertyName)
{

PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
{

handler(this, new PropertyChangedEventArgs(propertyName));
}

}
private string _name;
public string Name
{

CHAPTER 5 ■ WORKING WITH DATA 101



get { return (_name); }
set
{

_name = value;
OnPropertyChanged("Name");

}
}
// other properties; each setter must invoke OnPropertyChanged

}

Each time the Name property is updated, the PropertyChanged event will be raised and the
data binding system will be notified. This is the mechanism that will cause the user interface
elements (the top half of our demonstration interface) to change immediately after clicking
the button to update the data source directly.

Next, let’s take a look at using data binding to supply the items for a ListBox. This is
accomplished by combining two concepts: item templates and data templates. Item templates
are specifically related to various controls that can contain items, such as the ListBox. They are
used to define the appearance of each item within the control. Data templates define, using
user interface elements, how a single data object within an items control uses properties from
the each item stored in a data source such as a collection. Figure 5-2 shows a ListBox used to
display a customer’s bank accounts. A customer can have one or more bank accounts. These
are stored within a collection and the collection is set as the data source for the ListBox.

Figure 5-2. A data template used to connect data to items within a ListBox

Let’s use the following BankAccount class to hold details about a customer’s bank account:

public class BankAccount
{

public string AccountNumber { get; set; }
public double Balance { get; set; }
public string AccountName { get; set; }

}

CHAPTER 5 ■ WORKING WITH DATA102



Here’s what the ListBox looks like in the XAML:

<ListBox Grid.Row="2" x:Name="accountsListBox">
<ListBox.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Vertical">

<StackPanel Orientation="Horizontal">
<TextBlock FontSize="16" Text="Account #"/>
<TextBlock FontSize="16" Text="{Binding AccountNumber}"/>

</StackPanel>
<StackPanel Orientation="Horizontal">

<TextBlock FontSize="12" Text="Account Type: "/>
<TextBlock FontSize="12" Text="{Binding AccountName}"/>

</StackPanel>
<StackPanel Orientation="Horizontal">

<TextBlock FontSize="12" Text="Current Balance: "/>
<TextBlock FontSize="12" Text="{Binding Balance}"/>

</StackPanel>
</StackPanel>

</DataTemplate>
</ListBox.ItemTemplate>

</ListBox>

In the code-behind, we create a List<BankAccount> collection to hold the bank accounts,
create a couple dummy accounts, and then set the ItemsSource property of the ListBox to the
collection.

List<BankAccount> accounts = new List<BankAccount>();
BankAccount ba1 = new BankAccount();
ba1.AccountName = "Checking";
ba1.AccountNumber = "9048120948109185";
ba1.Balance = 2300.17;
accounts.Add(ba1);
BankAccount ba2 = new BankAccount();
ba2.AccountName = "Savings";
ba2.AccountNumber = "9128059128590812";
ba2.Balance = 18964.00;
accounts.Add(ba2);
accountsListBox.ItemsSource = accounts;

The rest happens automatically. Between the item template and the data template, each
item within the data source is queried for the property specified in the Binding markup exten-
sion in the XAML. This makes it easy to display a set of objects within a data source.

Type Converters
This is basically all there is to combining data binding with an items control such as a ListBox
for displaying data from a data source. Actually, wouldn’t it be nice to have a better formatting
for the balance amount than what is shown in Figure 5-2? Silverlight provides something called

CHAPTER 5 ■ WORKING WITH DATA 103



a type converter that can be used by the data binding system to conduct custom conversion as
the data flows from the data source to the user interface or vice versa. A custom type converter
implements the IValueConverter interface, providing Convert and ConvertBack methods for
handling the conversion. Here’s the implementation of a type converter used for formatting
the currency. Just in case this type converter is used in a TwoWay data binding scenario, the
ConvertBack method is also implemented.

public class BalanceConverter : IValueConverter
{

public object Convert(object value, Type targetType, 
object parameter, 
System.Globalization.CultureInfo culture)

{
return (String.Format("{0:C}", (double)value));

}
public object ConvertBack(object value, Type targetType, 

object parameter, 
System.Globalization.CultureInfo culture)

{
string balance = (string)value;
return(System.Convert.ToDouble(balance.Replace("$", "").Replace(",", "")));

}
}

The type converter must be registered as a resource and assigned an x:Key value before it
can be used in the XAML. Here’s what this registration looks like in the BankAccountsPage.xaml
page:

<UserControl x:Class="chapter5.BankAccountsPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
xmlns:u="clr-namespace:chapter5"
Width="400" Height="300" Margin="10">

<UserControl.Resources>
<u:BalanceConverter x:Key="BalanceConverter"/>

</UserControl.Resources>

Next, the TextBlock used to show the balance for an account is modified to include the
type converter in the Binding markup extension:

<TextBlock FontSize="12" 
Text="{Binding Balance, Converter={StaticResource BalanceConverter}}"/>

Now this gives us a nicely formatted balance without having to exert too much effort. You
can see the result in Figure 5-3.

CHAPTER 5 ■ WORKING WITH DATA104



Figure 5-3. Using a type converter to format data for the user interface

Introducing the DataGrid
The DataGrid control is useful for displaying data in tabular format with rows and columns. It
isn’t part of the core Silverlight installation, so you must download the Silverlight SDK and dis-
tribute the System.Windows.Controls.Data assembly with your application. In order to use the
DataGrid in XAML, you must make its namespace visible.

<UserControl x:Class="chapter5.DataGridDemo"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
xmlns:c="clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Data"
Width="400" Height="300" Margin="10">
<Grid x:Name="LayoutRoot" Background="White">

<c:DataGrid x:Name="accountsDataGrid"/>
</Grid>

</UserControl>

You then connect the DataGrid to a data source using the ItemsSource property. By default,
the DataGrid automatically generates column headings. The appearance of the default DataGrid
is shown in Figure 5-4 after connecting it to the collection of bank accounts used previously. 

CHAPTER 5 ■ WORKING WITH DATA 105



Figure 5-4. The default DataGrid control

The DataGrid provides a lot of functionality. You can change the style of rows, alternate
rows, and change column/row headers. The DataGrid can be configured to permit or prevent
the reordering of columns, enable row selection, and enable in-place editing of data. It also
provides a number of events to give you plenty of opportunity to transform or otherwise
handle data. 

Processing Data
You’ve seen how to connect data directly to the user interface. This data can be retrieved in
a number of ways, including directly downloading it via WebClient or HttpWebRequest/Response,
and having it returned from a web service call. The sample code for this chapter has a simple
implementation of a web search utilizing Microsoft’s Live Search web service. The ListBox is
configured with bindings to properties in the result set from Live Search.

<ListBox Grid.Row="3" x:Name="resultsListBox">
<ListBox.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Vertical">

<TextBlock FontFamily="Arial" Text="{Binding Title}"/>
<TextBlock FontSize="10" Text="{Binding Url}"/>
<TextBlock Text="{Binding Description}" FontSize="10" />

</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

Invoking the web service is done according to the Live API documentation available on
MSDN, the code for which is shown here:

MSNSearchPortTypeClient client = new MSNSearchPortTypeClient();
client.SearchCompleted += new

EventHandler<SearchCompletedEventArgs>

CHAPTER 5 ■ WORKING WITH DATA106



(client_SearchCompleted);
SearchRequest req = new SearchRequest();
SourceRequest[] sourceReq = new SourceRequest[1];
sourceReq[0] = new SourceRequest();
sourceReq[0].Source = SourceType.Web;
req.Query = searchTerms.Text;
req.Requests = sourceReq;
req.AppID = /* enter your AppID here!! */
req.CultureInfo = "en-US";
client.SearchAsync(req);

The asynchronous callback simply sets ItemsSource to the data source, provided no error
has occurred:

resultsListBox.ItemsSource = e.Result.Responses[0].Results;

This demonstrates how easy it can be to hook up data returned from web services to the
user interface. The services infrastructure within Silverlight handles the serialization/deserial-
ization of data for communication purposes, so your application can focus on the objects that
can serve as data sources. Of course, sometimes you’ll retrieve data directly; for example, by
downloading XML data files specific to your application. Silverlight provides a rich set of XML
classes for reading/writing/processing XML files. And since Silverlight is based on the .NET 3.5
Framework, it also provides support for LINQ (Language Integrated Query), a new technology
that provides syntax roughly similar to SQL for working with data directly within C# or VB .NET.

Parsing XML
The System.Xml.XmlReader class provides the ability to parse XML documents from a variety of
sources, such as a stream or a string. It also provides the ability to directly access an XML file
contained in the XAP file. These various approaches to handling an XML file are accessed
through the many overloads of the XmlReader.Create method. Let’s use the BankAccount class
again, this time stored in an XML file:

<?xml version="1.0" encoding="utf-8"?>
<ArrayOfBankAccount xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<BankAccount>
<AccountNumber>8203598230958</AccountNumber>
<Balance>1100.27</Balance>
<AccountName>Checking</AccountName>

</BankAccount>
<BankAccount>
<AccountNumber>8293852952359</AccountNumber>
<Balance>91824.00</Balance>
<AccountName>Savings</AccountName>

</BankAccount>
</ArrayOfBankAccount>

CHAPTER 5 ■ WORKING WITH DATA 107



You use XmlReaderSettings to configure the behavior of XmlReader. In this case, we’ll instruct
XmlReader to ignore whitespace. If we didn’t do this, it would take more code to advance to the
correct nodes within the XML file.

List<BankAccount> bankAccounts = new List<BankAccount>();
XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
XmlReader xmlReader = XmlReader.Create("BankAccountData.xml", settings);
while (xmlReader.ReadToFollowing("BankAccount"))
{

BankAccount account = new BankAccount();
xmlReader.ReadToDescendant("AccountNumber");
account.AccountNumber = 

xmlReader.ReadElementContentAsString("AccountNumber","");
account.Balance = xmlReader.ReadElementContentAsDouble("Balance","");
account.AccountName = xmlReader.ReadElementContentAsString("AccountName","");
bankAccounts.Add(account);

}

Silverlight also provides an XmlWriter class that you can use to write data to isolated storage—
essentially a secure, private file system for your Silverlight applications.

Serializing XML
Sometimes you’ll need to use XmlReader to parse XML files directly, such as when you want to
extract only certain details. If you’re saving/loading business objects manually (i.e., not lever-
aging the automatic serialization provided by web services), then you can use serialization
directly. The System.Xml.Serialization namespace provides the XmlSerializer class that you
can use to easily save and load objects to any stream. XmlSerializer also supports working
directly with XmlReader and TextReader. 

After creating a couple more fake bank accounts, this is how you can serialize the
List<BankAccount> collection to isolated storage. Using serialization with isolated storage is
an easy way to save a collection of objects to a special permanent storage area on the client.

XmlSerializer ser = new XmlSerializer(typeof(List<BankAccount>));
using (IsolatedStorageFile rootStore = 

IsolatedStorageFile.GetUserStoreForApplication())
{

using (IsolatedStorageFileStream fs =
new IsolatedStorageFileStream("accounts.xml", 

FileMode.Create, rootStore))
{

ser.Serialize(writer, accounts);
}

}

After serializing the list to isolated storage, you can verify that the file is created and even
view its contents. When you want to turn the file within isolated storage back into objects, you
follow a similar pattern, but invoke Deserialize.

CHAPTER 5 ■ WORKING WITH DATA108



List<BankAccount> bankAccounts = new List<BankAccount>();
XmlSerializer ser = new XmlSerializer(typeof(List<BankAccount>));
using (IsolatedStorageFile rootStore = 

IsolatedStorageFile.GetUserStoreForApplication())
{

using (IsolatedStorageFileStream fs =
new IsolatedStorageFileStream("accounts.xml", 

FileMode.Open, rootStore))
{

bankAccounts = (List<BankAccount>)ser.Deserialize(fs);
}

}

Serialization is by far the easiest way to save business objects to XML files and load them
from sources such as isolated storage, or download them via the Web using a class like WebClient.

Using LINQ
LINQ is a language-level technology that makes working with data such as collections of objects
and XML documents much easier. While it looks like SQL in some regards, and uses relational
model thinking, it has many differences. One similarity, though, is that you can use LINQ to
query databases. Revisiting the bank accounts, this time we’ll download the accounts.xml file
(containing the bank account data) packaged in the XAP file. Then we can use LINQ to easily
process the data and load it into an array.

void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e)
{

XDocument xmlDocument = XDocument.Parse(e.Result);
var bankAccountData = from b in xmlDocument.Descendants("BankAccount")

select new BankAccount
{

AccountName = b.Element("AccountName").Value,
AccountNumber = b.Element("AccountNumber").Value,
Balance = Convert.ToDouble(b.Element("Balance").Value)

};
outputTextBox.Text = "";
int count = 1;
foreach (BankAccount ba in bankAccountData)
{

outputTextBox.Text += "Record #" + count + "\r\n";
outputTextBox.Text += "----------\r\n";
outputTextBox.Text += "Account Number: " + ba.AccountNumber + "\r\n";
outputTextBox.Text += "Account Name: " + ba.AccountName + "\r\n";
outputTextBox.Text += "Account Balance: " + 

string.Format("{0:C}", ba.Balance) +"\r\n";
outputTextBox.Text += "\r\n";
count++;

}
}

CHAPTER 5 ■ WORKING WITH DATA 109



The var keyword is a LINQ-ism that can be viewed as a way to hold a reference to an
unknown type. It provides an easy way to obtain an IEnumerable from the LINQ query—
in this case, the BankAccount objects. The var keyword here could easily be replaced with
IEnumerable<BankAccount> since we know the query will return a collection of BankAccount
objects. The call to Descendents is used to get ahold of all the BankAccount nodes. Next,
new BankAccount is used to signal the creation of new BankAccount objects, which the data we
“select” will fill. The compound statement specifies exactly where the properties of BankAccount
get their values from—specifically the values of the three elements within each BankAccount ele-
ment. Since the Value property is of type string, it must be converted to a double value, which
is accomplished how it normally is in C#. LINQ is a huge topic that can’t satisfactorily be
covered in this chapter. If you want to learn more about LINQ, consult Pro LINQ: Language
Integrated Query in C# 2008, by Joseph C. Rattz, Jr. (Apress, 2007); and if you want to learn
more about the differences between LINQ in .NET 3.5 and Silverlight, consult the MSDN
online documentation. 

Saving State on the Client
There are two ways to store data on the client: through cookies and through isolated storage.
The most direct method to save and access cookies is through the HtmlPage.Document class:

HtmlPage.Document.Cookies = "name=value; expires=Saturday, 1-Nov-2008 12:00:00 GMT";

I won’t go into too much detail on working with cookies, since the important thing is
how to access them from Silverlight. Isolated storage, however, is much more interesting. It is
a mechanism provided by Silverlight to cache data or store user-specific data on the client.
The isolated storage support in Silverlight is based on the isolated storage support in .NET, so
you may already be familiar with this topic. Besides granting the ability to persist information
on the client, the two biggest advantages to isolated storage are safety and ease of use. Each
Silverlight application has its own dedicated storage area on disk, but the application isn’t
aware of the actual disk usage since it is managed by the runtime. This ensures safety because
each application can only use its own dedicated storage area, and there is isolation between
the application and the actual disk, mediated by the runtime. Different users on the same
computer using the same Silverlight application will each have their own isolated store for the
application, ensuring any data stored for one user is safe from other users since each user’s
store is private and isolated.

The other advantage is ease of use—while access to the underlying disk is prevented,
nonetheless, file/directory semantics are used for saving and accessing data in isolated stor-
age. The runtime transparently handles the translation of isolated storage paths to physical
paths on the computer.

In Silverlight, the isolated storage area is linked to a Silverlight application via the appli-
cation’s address—including its full path. For example, if you use a Silverlight application at
http://www.fabrikam.com/productbrowser, each time you visit this address, the application
served will access the same isolated storage area. By default, each application is limited to 1MB
of storage. This limit can be increased; however, it requires the user to explicitly grant permis-
sion. When a Silverlight application attempts to grow its reserved space in isolated storage,
a pop-up like the one shown in Figure 5-5 will ask the user for permission.

CHAPTER 5 ■ WORKING WITH DATA110



Figure 5-5. Confirmation dialog shown when application attempts to increase space

The two significant classes used when working with isolated storage are IsolatedStorageFile
and IsolatedStorageFileStream. These can be found in the mscorlib assembly in the 
System.IO.IsolatedStorage namespace. The IsolatedStorageFile class contains methods
for working with directories and files, and querying and increasing allocated space. It has 2
properties (listed in Table 5-3) and 16 methods (listed in Table 5-4). All methods will throw an
IsolatedStorageException if the store has been removed (through IsolatedStorageFile.Remove)
or if there’s an isolated storage–related error. They also will throw an ObjectDisposedException
if you attempt an operation on an IsolatedStorageFile instance that has been disposed. 

Table 5-3. System.IO.IsolatedStorageFile Properties

Name Type Description

AvailableFreeSpace long The free space, in bytes, for the current application; read-only

Quota long The maximum space allocated, in bytes, for current 
application; read-only

Table 5-4. System.IO.IsolatedStorageFile Methods

Name Description

CreateDirectory Attempts to create a directory based on the string path passed
in. It can create a tree of directories by passing in a path such
as \root\data.

CreateFile Attempts to create a file at the specified string path. If successful,
it returns an instance of the IsolatedStorageFileStream class.

DeleteDirectory Attempts to remove a directory from isolated storage. The
directory must be empty for the delete to succeed. 

DeleteFile Attempts to delete a specific file from isolated storage.

DirectoryExists Returns true if the specified directory exists, and false
otherwise.

Continued

CHAPTER 5 ■ WORKING WITH DATA 111



Table 5-4. Continued

Name Description

FileExists Returns true if the specified file exists, and false otherwise.

GetDirectoryNames Overloaded. The parameterless version returns a string array
of directory names from the root of the store. The overload
accepts a string search expression to search subdirectories and
also use wildcards: the ? matches a single character and the *
matches multiple. If no results are found, the Length property
of the returned array will be 0.

GetFileNames Overloaded. The parameterless version returns a string array
of files in the root of the store. The overload accepts a string
search expression to search subdirectories and also use wildcards:
the ? matches a single character and the * matches multiple. If
no results are found, the Length property of the returned array
will be 0.

GetUserStoreForApplication Static method. Used to get a reference to the isolated storage
for the current user and application.

OpenFile Overloaded. Opens a specified file from the store using the
requested FileMode and, optionally, FileAccess and FileShare
options.

Remove Removes all contents from the isolated storage and the store itself.

TryIncreaseQuotaTo Attempts to increase the quota to a certain size, specified in
bytes. Expanding the size of an isolated store causes a confir-
mation dialog to appear for user confirmation. It returns true
if successful, and false otherwise.

The System.IO.FileMode enumeration contains the following options. This enumeration
is the type for the only parameter used in all of the OpenFile overloads.

Append: Appends to an existing file or creates the file if it does not exist. 

Create: Creates a file if one doesn’t exist. If a file does exist, OpenFile will fail.

CreateNew: Creates a file if one doesn’t exist, and re-creates it if it does exist (use with
caution).

Open: Opens a file. Unless Append is specified, it also sets the file pointer at the beginning
of the file.

OpenOrCreate: Opens the file if it exists, and creates it otherwise.

Truncate: Removes all contents from the file.

The System.IO.FileAccess enumeration contains the following options. This is used to
specify the type of access requested to the file.

Read: Only allows reading from the file

ReadWrite: Allows reading and writing to and from the file

Write: Only allows writing to the file

CHAPTER 5 ■ WORKING WITH DATA112



The System.IO.FileShare enumeration contains the following options. This is used to
specify the type of access concurrently granted to other FileStream objects.

Delete: Allows the file to be deleted by others

Inheritable: Allows the file handle to be inherited by others

None: Disallows shared access

Read: Allows others to read from but not write to the file

ReadWrite: Allows others to read and write to and from the file

Write: Allows others to write to the file but not read from it

The code for this chapter has an isolated storage explorer. It provides functionality to view
contents of the store, create and delete files and directories, and expand the size of the store.
Let’s take a look at the code for these operations.

First, we need to get an IsolatedStoreFile object to work with isolated storage. This is
accomplished using the IsolatedStoreFile.GetUserStoreForApplication static method. Fol-
lowing best practices in .NET, it’s a good idea to always wrap this in a using statement so that
Dispose is automatically called:

using (IsolatedStorageFile rootStore = 
IsolatedStorageFile.GetUserStoreForApplication())

{
// can now interact with isolated storage files/directories/etc.

}

The XmlReader example uses isolated storage to store an object in XML format. The
IsolatedStorageFileStream inherits from System.IO.FileStream, so we can use it directly with
the Serialize method since it can write to any Stream.

XmlSerializer ser = new XmlSerializer(typeof(List<BankAccount>));
using (IsolatedStorageFile rootStore = 

IsolatedStorageFile.GetUserStoreForApplication())
{

using (IsolatedStorageFileStream fs =
new IsolatedStorageFileStream("accounts.xml", 

FileMode.Create, rootStore))
{

ser.Serialize(fs, accounts);
}

}

Once we have an instance of IsolatedStorageFile to work with, we can do things like create
files. We could use the CreateFile method of IsolatedStorageFileStream; however, the Stream
class also offers the ability to create files. It has three constructors that mirror the parameters of
IsolatedStorageFile’s OpenFile method, but each constructor takes IsolatedStorageFile as
a final parameter. Its public properties are listed in Table 5-5 and its public methods are listed in
Table 5-6.

CHAPTER 5 ■ WORKING WITH DATA 113



Table 5-5. System.IO.IsolatedStorageFileStream Properties

Name Type Description

CanRead bool Returns true if reading from the file is allowed, and false
otherwise; read-only

CanSeek bool Returns true if the position of the file pointer can be changed,
and false otherwise; read-only

CanWrite bool Returns true if writing is allowed, and false otherwise; read-only

Length long Specifies the length of the file, in bytes; read-only

Position long Specifies the current position of the file pointer

Table 5-6. System.IO.IsolatedStorageFileStream Methods

Name Description

BeginRead Asynchronous method to begin a read operation. Accepts a byte array buffer
along with an offset into the array to start writing to, and the maximum number
of bytes to read.

BeginWrite Asynchronous method to begin a write operation. Accepts a byte array buffer
along with an offset into the array to start reading, and the number of bytes to
write.

EndRead Used when the read operation ends. Returns an int specifying the number of
bytes read.

EndWrite Used when the write operation ends.

Flush Flushes any pending data from the internal buffer to disk.

Read Synchronous read operation. Accepts a byte array buffer along with an offset
into the array to start writing to, and the maximum number of bytes to read.
Returns the number of bytes actually read.

ReadByte Synchronously reads a single byte from the stream and returns it.

Seek Moves the stream pointer to the specified offset, modified by the SeekOrigin
option specified. SeekOrigin.Begin treats the offset as an absolute offset from
the beginning of the file. SeekOrigin.Current treats the offset as a relative offset
from the current position. SeekOrigin.End treats the offset as relative from the
end of the file.

SetLength Attempts to set the length of the file to the passed-in value.

Write Synchronous write operation. Accepts a byte array buffer along with an offset
into the array to start reading, and the number of bytes to write.

WriteByte Synchronously writes a single byte to the stream.

The sample code for this chapter provides an interface for experimenting with an isolated
store, including listing its contents. Figure 5-6 shows what the interface looks like.

CHAPTER 5 ■ WORKING WITH DATA114



Figure 5-6. Interface to experiment with and explore an isolated store

Summary
This chapter discussed connecting data to the user interface and synchronizing the interface
with data sources. It also covered support for working with XML documents, including the
System.Xml classes and LINQ. It closed with a discussion of how to save state on the client
using isolated storage. The next chapter will demonstrate how to work with media, including
images, video, and audio. You are now close to having all the pieces to start putting together
sophisticated data-connected user interfaces in Silverlight.

CHAPTER 5 ■ WORKING WITH DATA 115



Working with Media

Now that you’ve seen the support Silverlight provides for communicating with other systems
and retrieving, saving, displaying, and manipulating data, it’s time to focus again on building
user interfaces with Silverlight. Ever since the debut of Silverlight 1.0 under its code name
WPF/E, Silverlight has provided support for working with images and video. A significant
amount of Silverlight 1.0 applications featured video. Silverlight 2.0 provides the benefits of
a managed environment and brings with it rich support for working with images, audio, and
video. As you’ve seen in previous chapters, it isn’t too difficult to connect an Image control
with an image file on a server. However, it’s also possible to package images along with other
media, including video files, and work with them on the client side. Microsoft has also intro-
duced two interesting technologies to help enable rich Silverlight applications. The first, Silverlight
Streaming, is an environment to host and stream video to Silverlight applications. The second,
Deep Zoom, is way to efficiently handle the presentation and network transfer of a large collec-
tion of high-quality images. I’ll detail these technologies in this chapter.

Images
We have already utilized the Image control in several previous examples, but we haven’t delved
into the specifics. Silverlight currently supports only PNG and JPEG formats. There are restric-
tions placed on the PNG formats used, though. The only indexed color depths supported are
1 bit, 4 bits, and 8 bits per channel. The truecolor color depths supported are 24 and 32 bits
per channel (for truecolor plus alpha). The simplest way to place an image on a user interface
is by using the Image control and setting its Source property:

<Image Source="sunny.png"/>

The Image control inherits from FrameworkElement, so it inherits the bits from 
FrameworkElement and UIElement. The new properties and event introduced by the Image
class are listed in Tables 6-1 and 6-2.

117

C H A P T E R  6



Table 6-1. Properties of the Image Class

Property Type Description

DownloadProgress double Holds a value between 0 and 100 representing the
percentage of the image downloaded.

Source ImageSource Gets or sets the image source. Currently, only the
BitmapImage class can be an image source. From XAML,
you can specify a relative or absolute URI. 

Stretch Stretch Gets or sets how the image is sized within the width/height
set on the Image control.

Table 6-2. Event of the Image Class

Event Description

ImageFailed Fires if there’s a problem downloading or rendering an image. Possible causes
are the image not being found at the specified address and the image format
not being supported. The EventArgs class is ExceptionRoutedEventArgs and
provides ErrorException (the thrown Exception) and ErrorMessage properties.

The specific image to display is set via the Source property. In XAML, you can specify the
Source using a relative or absolute address.

<Image Source="../Images/10062506.jpg"/>

The Source property is being type-converted to a BitmapImage that inherits from ImageSource.
BitmapImage has two events, shown in Table 6-3. The specific image that BitmapImage represents
can be a Uri set via a constructor or via the UriSource property after object creation.

■Tip Images (and media) can have their Build Action set to Resource within Visual Studio in order for them
to be exposed via a relative path. If you can’t or don’t want to do this, you can make things easy on yourself
by utilizing the Application.Current.Host.Source property to retrieve the path to where the Silverlight
application is served. This can be useful when constructing image/media sources in the code-behind without
needing to know the full path at compile time, such as when things change between development and produc-
tion. If you specify a relative path in the XAML, however, it’s relative to the XAP location, such as the ClientBin
folder in this chapter’s example code.

You can also download an image and pass the Stream object to the SetSource method. Cur-
rently, this is the only ImageSource inheritor, so this class handles both PNG and JPEG images.

CHAPTER 6 ■ WORKING WITH MEDIA118



Table 6-3. Events of BitmapImage

Event Type

DownloadProgress Reports the progress of the image download. The EventArgs class is
DownloadProgressEventArgs and contains a Progress property that either
reports a 0 (indicating that the image is possibly in the process of downloading)
or 1 (indicating that the image has finished downloading).

ImageFailed Fires when the image cannot be downloaded or the image format is invalid.
The event handler is passed an ExceptionRoutedEventArgs instance, which
has ErrorException (the thrown Exception) and ErrorMessage properties.

If you don’t specify a width or height for an image, it will display without any modifications
to the image’s natural width and height. The Image control has a property named Stretch (it is
also a dependency property) that controls how an image conforms to a container. The Stretch
property can be one of four possible values:

None: The image maintains its original size.

Fill: The image completely fills the output area, both vertically and horizontally. The
image might appear distorted because the aspect ratio is not preserved.

Uniform: The image fills the output area, both vertically and horizontally, but maintains its
aspect ratio. This is the default value.

UniformToFill: The image is scaled to completely fill the output area, but its aspect ratio is
maintained.

You can see the result of the various Stretch values in Figure 6-1. Reading left to right and
top to bottom, Stretch takes on the values None, Fill, Uniform, and UniformToFill. 

Figure 6-1. A visual demonstration of each Stretch value

CHAPTER 6 ■ WORKING WITH MEDIA 119



The image is 100×80, so we can see how the image is treated in a 200×200 square area. The
bounding box for the image is defined on the Image control.

<Image Source="target.png" Stretch="None" Height="200" Width="200"/>

The image is left completely unaltered when Stretch is set to None—it maintains its size of
100×80. When Stretch is set to Fill, the image appears distorted because it is taller than it is
wide. For Uniform, the image now almost doubles in size. It doesn’t quite fill its bounding box
because it is maintaining its aspect ratio. Finally, UniformToFill is similar to Uniform but the
image is scaled to the full size of the bounding box—while this specific image can still be com-
pletely seen, it is possible that the image will be cut off either horizontally or vertically in order
to simultaneously fill its bounding box and maintain its aspect ratio.

You’ve seen some simple implementations of using images with list boxes in previous
chapters. Let’s take a closer look at an implementation of an image viewer. A ListBox will con-
tain several ListBoxItem instances, each containing an image scaled down by setting its width/
height (we’re only using one source image, but for a serious image browser, you might want to
store thumbnails separately due to image file size). When a specific image is clicked, the image
is shown at full size. The resulting user interface is shown in Figure 6-2.

Figure 6-2. User interface for an image browser using a ListBox

<ListBox x:Name="thumbnailList" Width="100" Grid.Column="0" 
SelectionChanged="thumbnailList_SelectionChanged">

<ListBox.Items>
<ListBoxItem>

<Image Source="/SpaceImages/10062506.jpg" Width="75" Height="50"/>
</ListBoxItem>
<ListBoxItem>

<Image Source="/SpaceImages/10063680.jpg" Width="75" Height="50"/>
</ListBoxItem>

</ListBox.Items>
</ListBox>

CHAPTER 6 ■ WORKING WITH MEDIA120



The full-size image is represented by the following Image control in the XAML:

<Image Grid.Column="1" Width="250" x:Name="fullImage"/>

The following code is used to display the full-size image. Note that we can’t set the source
of the fullImage to the same source; it instead must reference a new BitmapImage instance.

private void thumbnailList_SelectionChanged(object sender, 
SelectionChangedEventArgs e)

{
ListBox lb = (ListBox)sender;
ListBoxItem item = (ListBoxItem)lb.SelectedItem;
Image img = (Image)item.Content;
fullImage.Source = new BitmapImage(((BitmapImage)img.Source).UriSource);

}

Multiscale Images (Deep Zoom)
Deep Zoom first debuted as SeaDragon at the TED technology conference. The various Silverlight
announcements at MIX08 included the revelation that SeaDragon is now called Deep Zoom
and is a standard feature in Silverlight 2.0. The MultiScaleImage control is used to provide the
deep zoom functionality in a Silverlight user interface.

Just what is Deep Zoom? It is technology that makes it easy to develop applications that
can display a set of high-quality images (imagine 20MB per image, or more) in a grid-style lay-
out, allowing a user to explore the images at different zoom levels. When the user is zoomed out,
the quality is not as high as when they are zoomed in. Because of this, the full source images
don’t need to get downloaded by the client. Instead, lower-quality images are sent. As the user
zooms in, images closer to the quality level of the original are sent, but only pieces of the images
the user can see. This provides a highly optimized way to explore a collection of high-quality
images. Since the images are laid out in a grid, the MultiScaleImage control also provides the
ability to pan around the image collection.

You can get the gist of what Deep Zoom does to an image by consulting Figure 6-3.

Figure 6-3. The bull’s-eye graphic at different zoom levels

In this figure, we revisit the image of a bull’s-eye used earlier. The image stored at 100%
has full detail. When we zoom out, we lose detail, but this also gains us an important advantage—
less data has to be sent from the server to the client. This means that if we have a large collection
of images and we’re zoomed out, Silverlight won’t immediately request a 100% zoom level for
all the images. Instead, it will request a 50% zoom level, or 25%, or something even lower. As
the user zooms into specific images, most of the images around it disappear from view, so these
don’t need to be downloaded. The images still in view, however, do get sent to the client—but

CHAPTER 6 ■ WORKING WITH MEDIA 121



now Silverlight requests a 50% zoom, or perhaps a 100% zoom when the user zooms all the
way in. Feel free to use images with the highest resolutions you can get—the higher the resolu-
tion, the more detail there is for users to zoom in to.

The Deep Zoom Composer tool is used to create a package usable by Silverlight’s 
MultiScaleImage control. You can obtain this tool at http://silverlight.net/GetStarted.
This generated package contains versions of the images (stored at a possibly large number of
different zoom levels, along with certain slices of images used to optimize partial image display)
and information describing the layout as designed in the composing tool. The MultiScaleImage
control is pointed to this package and then handles all the logic on the client side, such as dis-
playing the images and downloading the right images at the right time to maintain a smooth
user experience.

The MultiScaleImage control exposes some useful properties, methods, and events; these
are shown respectively in Tables 6-4, 6-5, and 6-6.

Table 6-4. Properties of MultiScaleImage

Property Type Description

AspectRatio double Current aspect ratio of the images; read-only.

Source Uri The URI to the Deep Zoom package containing the
images, metadata, and so forth.

SubImages ReadOnlyCollection Read-only collection of the subimages used by 
<MultiScaleSubImage> the control. A MultiScaleSubImage exposes a

read-only AspectRatio property along with Opacity,
ViewportOrigin, ViewportWidth, and ZIndex
properties that can be used to set or discover which
set of images and which layer of images is currently
exposed.

UseSprings bool Controls spring motion of the control. Can be set to
false and later reset to true to block initial animation
when the control loads.

ViewportOrigin Point The top-left corner of the current view as an (x,y)
coordinate.

ViewportWidth double The width of the current viewport.

Table 6-5. Methods of MultiScaleImage

Method Description

ElementToLogicalPoint Translates a physical point (the screen) to a point located within the
image currently visible beneath the physical point.

LogicalToElementPoint Translates a point within a currently visible image to a physical point
(the screen).

ZoomAboutLogicalPoint Accepts a zoom increment factor and a center (x,y) point about which
to zoom. All parameters are of type double.

CHAPTER 6 ■ WORKING WITH MEDIA122



Table 6-6. Events of MultiScaleImage

Events Description

ImageFailed Fires when the image cannot be downloaded or the image format is invalid.
The event handler method is passed ExceptionRoutedEventArgs, which
provides ErrorException (the thrown Exception) and ErrorMessage
properties.

ImageOpenFailed Fires when an image cannot be opened.

ImageOpenSucceeded Fires when an image is successfully opened.

MotionFinished Fires when the currently ongoing motion is complete.

The Deep Zoom Composer is a development tool that allows you to aggregate and pack-
age images for a Deep Zoom implementation. 

When you start the Deep Zoom Composer, you’ll see a screen similar to the Expression
products (Figure 6-4). Unsurprisingly, this tool is clearly part of the Microsoft Expression family,
which supports WPF and Silverlight applications.

Figure 6-4. The Deep Zoom Composer’s start screen

There are three steps to creating a new Deep Zoom package, and these are clearly defined
at the top of the Deep Zoom Composer interface after you create a new project. These steps
are also listed at the top of the Deep Zoom Composer interface, clearly showing the workflow
in this tool.

CHAPTER 6 ■ WORKING WITH MEDIA 123



1. Import: This is where you add the images you want to include to the project. Information
about the type, dimensions, and file size of each image appear in the lower left, and the
full list of added images appears to the right. You can right-click an image to remove it
from the project.

2. Compose: The second step is where you define how the images are oriented for display,
including setting their initial size and position relative to each other.

3. Export: The final step allows you to create a package suitable for use by the Multi-
ScaleImage control. You can export in one of two formats: as a composition or as
a collection. Optionally, you can create a new Silverlight application as a wrapper.

The example code with this chapter features a Deep Zoom example with several space
shuttle pictures. Two of the pictures have other pictures, initially tiny (they’re zoomed way
out), but increasing in detail as you zoom into them. Figure 6-5 shows what the shuttle images
look like zoomed out.

Figure 6-5. Zoomed-out view of the space shuttles

By zooming in to the image on the bottom right, four other images in the sky become
visible, as shown in Figure 6-6.

Figure 6-6. Zooming in to the sky of one of the shuttle pictures

After zooming in to the tiny image on the left (in the sky), you can see the detail of this
new image (see Figure 6-7).

CHAPTER 6 ■ WORKING WITH MEDIA124



Figure 6-7. Zooming in to one of the initially tiny images in the sky

This entire Deep Zoom example was built in the Deep Zoom Composer in a matter of
a few minutes. After I exported it to its own Silverlight application, I brought it into this chap-
ter’s Silverlight application by first copying the GeneratedImages folder into the chapter6Web
folder. This folder contains all of the images and metadata required by the MultiScaleImage
control. The XAML for this example is rather bare:

<MultiScaleImage Height="600" x:Name="msi" Width="800"/>

As part of the generated Silverlight application, the Page.xaml.cs file contains the code to
connect the MultiScaleImage control to the GeneratedImages folder stored in the web site:

this.msi.Source = new DeepZoomImageTileSource(
new Uri("GeneratedImages/dzc_output.xml", UriKind.Relative));

The Deep Zoom Composer also includes, as part of the generation, all the code necessary
to hook the MultiScaleImage control up to user input. Between the MouseWheelHelper.cs class
and the event handlers in Page.xaml.cs (in the generated application), users can click to zoom,
use the mouse wheel to zoom, and also click and drag to pan around the scene.

Media (Video and Audio)
Silverlight 1.0 did not have a managed execution engine, but it did have great support for
media. Many early Silverlight applications featured video in a variety of presentations and
interfaces. The System.Windows.Controls.MediaElement control provides media playback
capability in Silverlight 2. It can handle both audio and video in a variety of formats. These are
the supported video formats:

WMV1: Windows Media Video 7

WMV2: Windows Media Video 8

WMV3: Windows Media Video 9

WMVA: Windows Media Video Advanced Profile (non-VC-1)

CHAPTER 6 ■ WORKING WITH MEDIA 125



WMVC1: Windows Media Video Advanced Profile (VC-1)

ASX: Advanced Stream Redirector files; extension might be .asx, .wax, .wvx, .wmx, or .wpl

And here are the supported audio formats:

WMA 7: Windows Media Audio 7

WMA 8: Windows Media Audio 8

WMA 9: Windows Media Audio 9

MP3: ISO/MPEG Layer-3; 8 to 320Kbps and variable bit rate; 8 to 48KHz sampling frequencies

You can reference a media file using either the HTTP or HTTPS protocols; or using MMS,
RTSP, or RTSPT. The latter three will fall back to HTTP. Using the MMS protocol causes Silverlight
to attempt to stream the media first; if that fails, it will attempt to download the media progres-
sively. Other protocols work in reverse—Silverlight attempts to progressively download the
media first, and if that fails, the media is streamed. The properties, methods, and events of
MediaElement are shown in Tables 6-7, 6-8, and 6-9, respectively.

Table 6-7. Properties of MediaElement

Property Type Description

Attributes Dictionary<string,string> A collection of attributes; read-only.

AudioStreamCount int The number of audio streams in the
current media file; read-only.

AudioStreamIndex int? The index of the audio stream that is
currently playing with a video.

AutoPlay bool If true, the media will begin playing
immediately after Source is set (i.e., it
will transition into the Buffering
state and then into the Playing state
automatically). If false, the media will
start in the Stopped state.

Balance double The ratio of volume across stereo
speakers.

BufferingProgress double The current buffering progress,
between 0 and 1. Multiply by 100 to
get a percentage value; read-only.

BufferingTime TimeSpan The amount of time to buffer; the
default is 5 seconds.

CanPause bool Returns true if the media can be paused
via the Pause method; read-only.

CanSeek bool Returns true if the current position in
the media can be set via the Seek
method; read-only.

CHAPTER 6 ■ WORKING WITH MEDIA126



Property Type Description

CurrentState MediaElementState The current state of the media. Possible
states include Closed, Opening,
Individualizing, AcquiringLicense,
Buffering, Playing, Paused, and Stopped.
It is possible for several state transitions
to happen in quick succession, so you
may not witness every state transition
happen; read-only.

DownloadProgress double The current download progress,
between 0 and 1. Multiply by 100 to
get a percentage value; read-only.

DownloadProgressOffset double The offset in the media where the
current downloaded started. Used
when media is progressively
downloaded; read-only.

IsMuted bool Used to set or determine whether
audio is currently muted. 

Markers TimelineMarkerCollection Accesses the collection of timeline
markers. Although the collection 
itself is read-only, it is possible to
dynamically add timeline markers.
These are temporary since they are not
saved to the media and are reset if the
Source property is changed.

NaturalDuration Duration Duration of the currently loaded
media; read-only.

NaturalVideoHeight int The height of the video based on what
the video file itself reports; read-only.

NaturalVideoWidth int The width of the video based on what
the video file itself reports; read-only.

Position TimeSpan The current position in the media file.

Source Uri Sets or retrieves the source of the
current media file.

Stretch Stretch Gets or sets how the media fills its
bounding rectangle. See the “Images”
section of this chapter for a discussion
of this property.

Volume double Gets or sets the volume of the media
based on a linear scale. Value can be
between 0 and 1; the default is 0.5.

CHAPTER 6 ■ WORKING WITH MEDIA 127



Table 6-8. Methods of MediaElement

Method Description

Pause Pauses the media at current position if it is possible to pause. If the media cannot
be paused, this method does nothing.

Play Plays the media from the current position if the media can be played.

SetSource Used when you want to set the source of the media to a Stream object. Use the
Source property to set the URI of the media file.

Stop Stops the media from playing, and sets the current position to 0.

Table 6-9. Events of MediaElement

Event Description

BufferingProgressChanged Fires each time BufferingProgress changes by at least 0.05 or when
it reaches 1.0.

CurrentStateChanged Fires when the state of the media changes. If states transition quickly
(such as bouncing between buffering and playing), some transitions
can be lost.

DownloadProgressChanged Fires when the progress of the downloading media changes. Use the
DownloadProgress property to discover the current progress.

MarkerReached Fires when a timeline marker is reached. The event handler method
is passed a TimelineMarkerRoutedEventArgs instance, which exposes
a Marker property of type TimelineMarker.

MediaEnded Fires when the media is done playing.

MediaFailed Fires when there is a problem with the media source (e.g., when the
media can’t be found or when the format is incorrect).

MediaOpened Fires after media file is opened and validated, and the headers are read.

Since a variety of state changes can happen to media, such as a video switching from
playing to buffering when it needs to load more of the file, in most applications you will want
to implement an event handler for CurrentStateChanged. The states and state transitions are
shown in Figure 6-8. The one transition left out of this diagram is to the Opening state. This can
happen any time a new source is set for MediaElement.

CHAPTER 6 ■ WORKING WITH MEDIA128



Figure 6-8. States and state transitions of MediaElement

While it’s fairly simple to specify a source for MediaElement, set AutoPlay to true and let it
just go, you probably want to build something with more control for the user. Figure 6-9 shows
a simple video player. 

CHAPTER 6 ■ WORKING WITH MEDIA 129



Figure 6-9. Simple video player with position indicator

Implementing the Start/Stop and Pause/Resume buttons is straightforward. The start/stop
event handler checks the media’s current state and acts accordingly. This gives you the basic
play/stop functionality. Pause and resume are implemented similarly by checking for those
states.

if (mainVideo.CurrentState == MediaElementState.Stopped || 
mainVideo.CurrentState == MediaElementState.Paused)

{
startStopButton.Content = "Stop";
mainVideo.Play();
pauseResumeButton.IsEnabled = true;

}
else
{

startStopButton.Content = "Play";
mainVideo.Stop();
pauseResumeButton.IsEnabled = false;

}

There’s another aspect to media players that is common for users to see: a time signature
displaying the length of the video and the current position as it plays. The best approach to
adding the current media position to a user interface is by using a timer to poll the Position
property of MediaElement and then displaying it. The best timer to use is DispatcherTimer since
it works on the user interface thread, allowing you to modify user interface elements directly.
(We’ll take a closer look at threading and DispatcherTimer in Chapter 14.) The following code
creates an instance of the timer and sets it to raise the Tick event every quarter of a second:

CHAPTER 6 ■ WORKING WITH MEDIA130



timer = new DispatcherTimer();
timer.Interval = new TimeSpan(0, 0, 0, 0, 250);
timer.Tick += new EventHandler(timer_Tick);

The Tick event handler calls showCurrentPosition to update the user interface, and the
CurrentStateChanged event of MediaElement is handled in order to start/stop the timer:

void timer_Tick(object sender, EventArgs e)
{

showCurrentPosition();
}
private void showCurrentPosition()
{

currentPositionText.Text = string.Format("{0:00}:{1:00}", 
mainVideo.Position.Minutes, 
mainVideo.Position.Seconds);

}
private void mainVideo_CurrentStateChanged(object sender, RoutedEventArgs e)
{

MediaElementState currentState = ((MediaElement)sender).CurrentState;
currentStateTextBlock.Text = currentState.ToString();
if (currentState == MediaElementState.Paused || 

currentState == MediaElementState.Stopped)
timer.Stop();

else
timer.Start();

}

Timeline Markers
A timeline marker is a point of time in a media file that has some data associated with it. A spe-
cific timeline marker (of the System.Windows.Media.Animation.TimelineMarker class) contains
three members: Text and Type, both of type String; and Time, of type TimeSpan. Both Text and
Type are arbitrary, so you can configure these however you want. Timeline markers can either
be embedded in the video file using an editor such as Microsoft Expression Media Encoder or
dynamically during program execution. Figure 6-10 shows the Markers pane in Expression
Media Encoder. I added one timeline marker to the bear.wmv video to mark when the bird
starts flying away. If this were a full-length nature documentary, the timeline markers could be
used to initiate different audio files in sync with events happening in the video.

CHAPTER 6 ■ WORKING WITH MEDIA 131



Figure 6-10. Editing the interface for timeline markers in Expression Media Encoder

If you define these dynamically, they are good only as long as a particular MediaElement
exists and references the same video file. If you load a new video file into a MediaElement
control, the timeline marker collection is reset.

The Markers property of MediaElement acts much like a regular collection since it imple-
ments the IList interface. Here’s an example of creating a new TimelineMarker and adding it
to a particular MediaElement:

TimelineMarker mark = new TimelineMarker();
mark.Type = "Commercial Cue";
mark.Text = "First Commercial";
mark.Time = new TimeSpan(0, 5, 11);
mainVideo.Markers.Add(mark);

Regardless of whether markers are defined in the media file itself or during program exe-
cution, you can use the MarkerReached event to perform custom processing when a specific
marker is reached. The TimelineMarkerRoutedEventArgs class provides a Marker member to
access the specific marker that was reached from the event handler.

Silverlight Streaming
Silverlight Streaming is a service Microsoft provides to host and stream videos to Silverlight
applications. It is currently in beta and provides 10GB of storage space free, provided each
video is no longer than 10 minutes (or 105MB) and is encoded at a bit rate of no more than
1.4Mbps. Before you can use Silverlight Streaming, you must first have a Live account and
a Silverlight Streaming account.

1. Create a Live account: if you don’t already have a Microsoft Live account, go to http://
login.live.com/ to create one. This account will be associated with your Silverlight
Streaming account.

CHAPTER 6 ■ WORKING WITH MEDIA132



2. Create a Silverlight Streaming account: visit http://silverlight.live.com/ and click
Get It Free. This will lead you to a page where you can create a Silverlight Streaming
account. You will need the API key in order for a Silverlight application to use this service.

Before you can use Silverlight Streaming, you must ensure source videos are in the correct
format. All video formats supported by Silverlight (as listed earlier in this chapter) are suitable
for use by Silverlight Streaming. We’ll take a brief look at using Expression Media Encoder to
prepare videos; however, you can also use Windows Media Encoder or other tools as long as
the encoded format is correct.

■Tip If you use Windows Media Encoder, you can download a set of profiles from http://dev.live.com/
silverlight/downloads/profiles.zip. These provide preset configurations for properly encoding
videos for use with Silverlight and Silverlight Streaming.

After you have created your account, you need to generate an account key. Figure 6-11
shows the Manage Account screen with an account key already generated. The account ID is
public. The account key, however, is confidential, so it is blurred out in this screenshot. It will
not, however, be blurred out when you access your account through Silverlight Streaming.

Figure 6-11. The Manage Account screen on the Silverlight Streaming site

CHAPTER 6 ■ WORKING WITH MEDIA 133



Preparing an Application
The Silverlight Streaming servers host the Silverlight applications that use Silverlight Stream-
ing. This means there are cross-domain considerations, since the application is embedded in
a web page on a server different from the Silverlight Streaming server. In order to upload a Sil-
verlight application to Silverlight Streaming, it must have a manifest file, manifest.xml, placed
in the root of the archive. Parameters passed to the Silverlight.createObject function should
be moved to this manifest file. Most child elements are optional—the one that is mandatory is
source, so Silverlight Streaming knows which file in the uploaded archive to use to start the
application. Here’s a manifest file with text describing the purpose of each element. All paths
are relative to the root of the archive.

<SilverlightApp>
<source>Path to main XAML or XAP file</source>
<version>Minimum Silverlight runtime version 

(1.0 or 2.0) or latest if this is not specified</version>
<width>percentage or value</width>
<height>percentage or value</height>
<background>

Named color, 8-bit or 16-bit color value, 
optionally with alpha transparency

</background>
<backgroundImage>

Path to background image to show while application is initializing
</backgroundImage>
<isWindowless>

Set to "True" or "False", specifies whether 
Silverlight control is in windowless mode

</isWindowless>
<framerate>Maximum number of frames to render per second</framerate>
<inPlaceInstallPrompt>

Specifies whether to display install prompt 
in case Silverlight version is out of date

</inPlaceInstallPrompt>
<onLoad>

JScript function to run when application's content is done rendering 
(not same as Silverlight's onLoad event)

</onLoad>
<onError>JScript function called to handle errors</onError>
<jsOrder>

<js>Path to first .js file to load</js>
<js>Path to second .js file to load</js>
<js>... etc ...</js>

</jsOrder>
</SilverlightApp>

CHAPTER 6 ■ WORKING WITH MEDIA134



There is a limit on the file types you can place within an archive you upload to Silverlight
Streaming. You can include text/XML formats (.js, .xaml, .xml, .txt, .sdx, and .bin), image files
(.gif, .jpg, and .png), media files (.wma, .wmv, and .mp3), and certain binary formats (.ttf, .odttf,
.dll, .zip, and .xap). If there are any unrecognized file types within the archive, upload to
Silverlight Streaming will fail.

Once you have the Silverlight application created and packaged with a manifest.xml file, it’s
time to upload it to the Silverlight Streaming servers. You can do this by clicking Manage Appli-
cations and then “Upload an application” on the administration site, as shown in Figure 6-12.

Figure 6-12. Creating a new application in Silverlight Streaming

The first step is to name the application and click Create. Next, you select an archive
containing the Silverlight application and, optionally, videos to upload (although videos are
typically uploaded via Manage Videos), as shown in Figure 6-13.

Figure 6-13. Uploading a packaged archive

CHAPTER 6 ■ WORKING WITH MEDIA 135



Once the Silverlight application is uploaded, the easiest way to reference the Silverlight
application in your own web site is by using an IFrame. You do this by using an iframe tag with
the src attribute pointing to the Silverlight application you uploaded:

<iframe src="..." frameborder="0" width="200" height="300" scrolling="no"></iframe>

The value for src takes the following format:

http://silverlight.services.live.com/invoke/ [account ID] / [App. name]/iframe.html

The [account ID] is replaced with your account ID, which you see when you log in to your
Silverlight Streaming account (shown earlier in Figure 6-11). The [App. name] is replaced with
the application name you specified when creating an application.

You can include videos as part of the application upload you archive (these videos are still
limited in size, bit rate, etc.), or you can upload videos directly to Silverlight Streaming using
the Manage Videos link on the administration site. After the video is done uploading, the server
processes it to ensure it is encoded properly and meets the restrictions. After this validation is
done, an Acknowledge button will appear. Click this button and the video will be properly
migrated to your account. Figure 6-14 shows the result of uploading the bear.wmv video that
comes with Windows Vista.

Figure 6-14. Administrative interface after uploaded video is done processing

CHAPTER 6 ■ WORKING WITH MEDIA136



Now that you have all the pieces, the rest is putting together an actual application. Let’s
take the simple video player used earlier and use it with Silverlight Streaming. The good news is
that the only thing you really have to change within the application is the source URI for the video.

<MediaElement 
x:Name="mainVideo" 
AutoPlay="False"
CurrentStateChanged="mainVideo_CurrentStateChanged"
VerticalAlignment="Stretch" 
Source="http://silverlight.services.live.com/64914/bear/video.wmv" 
Stretch="Fill" />

When you click Manage Videos, and then click a specific video you’ve uploaded, the Sil-
verlight Streaming web site will give you the exact code to drop in to your web site or Silverlight
application, as shown in Figure 6-15.

Figure 6-15. Links to the video provided by the administrative interface

Before the application can be uploaded to Silverlight Streaming, it must have a manifest,
and the XAP file and manifest file must be packaged into a ZIP file. The manifest for this appli-
cation supplies just a few parameters:

<SilverlightApp>
<source>chapter6_streaming.xap</source>
<width>400</width>

CHAPTER 6 ■ WORKING WITH MEDIA 137



<height>350</height>
<background>white</background>
<isWindowless>false</isWindowless>

</SilverlightApp>

The rest is a simple matter of uploading the ZIP archive and then clicking the link to preview
it. The video player, as served by Silverlight Streaming, is shown in Figure 6-16.

Figure 6-16. The video player, as shown from Silverlight Streaming

Packaging Images and Media
While you can download images and media file by file, sometimes an application requires
a collection of related images or other media before it can start. One example of this is a game
that might need a number of images to display scenes, characters, and the background. You
can package these resources into a single ZIP archive and download it. After downloading the
ZIP file, using the WebClient class perhaps, you can save its stream. Let’s revisit the image browser
from earlier in the chapter and alter it to download the images stored in a ZIP file. The image-
browsing interface is essentially the same, but there’s a download button that initiates the
download of the image archive.

private StreamResourceInfo imageArchiveStream;
private void downloadButton_Click(object sender, RoutedEventArgs e)
{

WebClient wc = new WebClient();
wc.OpenReadCompleted += 

new OpenReadCompletedEventHandler(wc_OpenReadCompleted);
wc.OpenReadAsync(

new Uri("/chapter6Web/HubbleImageArchive.zip", 
UriKind.Relative));

}

CHAPTER 6 ■ WORKING WITH MEDIA138



The OpenReadCompleted event handler is where the ZIP archive is processed. First, the
stream is saved, and then we get a reference to a custom XML file stored within the archive.

void wc_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{

imageArchiveStream = new StreamResourceInfo(e.Result, null);
StreamResourceInfo manifestStream = 

Application.GetResourceStream(imageArchiveStream, 
new Uri("manifest.xml", UriKind.Relative));

// ...
}

The manifest.xml file exists to specify where files such as images are stored within the
archive. The manifest.xml file is stored at the root of the archive and the images are stored in
a directory named images. Here’s the manifest.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<contents>

<images>
<image label="Hubble Picture 1" path="images/gpn-2000-000876.jpg"/>
<image label="Hubble Picture 2" path="images/gpn-2000-000877.jpg"/>
<image label="Hubble Picture 3" path="images/gpn-2000-000880.jpg"/>
<image label="Hubble Picture 4" path="images/gpn-2000-000891.jpg"/>
<image label="Hubble Picture 5" path="images/gpn-2000-000938.jpg"/>

</images>
</contents>

The code that fills in the ... in the OpenReadCompleted event handler processes the mani-
fest file and adds thumbnails of the images to the ListBox:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
XmlReader reader = XmlReader.Create(manifestStream.Stream, settings);
reader.ReadToDescendant("image");
do
{

string path = reader.GetAttribute("path");
StreamResourceInfo imageStream = 

Application.GetResourceStream(
imageArchiveStream,  
new Uri(path, UriKind.Relative));

ListBoxItem item = new ListBoxItem();
Image thumb = new Image();
BitmapImage imgSource = new BitmapImage();
imgSource.SetSource(imageStream.Stream);
thumb.Source = imgSource;
item.Content = thumb;
thumb.Width = 75;
thumb.Height = 50;

CHAPTER 6 ■ WORKING WITH MEDIA 139



thumb.Tag = path;
thumbnailList.Items.Add(item);

} while (reader.ReadToNextSibling("image"));
reader.Close();

You can use this approach to store references to other media files (video/audio) and even
any arbitrary data you might need to download on demand.

Summary
So far, we’ve been laying the groundwork to build a Silverlight application. This chapter covered
the pieces most popularly associated with Silverlight since its 1.0 days: displaying images and
media. You saw how to manage and manipulate images, including exploring the MultiScaleImage
control, which provides the Deep Zoom user experience. Next, we examined video and audio
via the MediaElement control and explored the Silverlight Streaming technology. The media
support is a rich and deep topic that cannot fully be explored in a single chapter, but you should
have a good grasp of the possibilities when using Silverlight. The next chapter will explore more
aspects of building user interfaces, such as the 2D drawing and brush support in Silverlight. We’ll
look at the ImageBrush and VideoBrush, which provide the ability to use images and videos in
even more interesting ways than described in this chapter.

CHAPTER 6 ■ WORKING WITH MEDIA140



Extending the User Interface

We’ve covered a lot of ground so far, but now it’s time to pull our focus back from the details
of the supporting infrastructure and revisit building user interfaces in Silverlight. Silverlight
provides a rich set of classes to perform 2D drawing, including lines, Bezier curves, and various
geometrical figures such as ellipses and rectangles. Next, we’ll take a look at transformations
and brushes, both of which provide a great deal of control in how elements are presented on
an interface. Any element inheriting from UIElement can have a transform applied to it—you
can create some interesting video presentations, for example, by skewing or growing/shrinking
a video. We’ll also take a look at the support for brushes in Silverlight. You can use specific
brushes to fill surfaces with images or video and other effects such as gradients.

2D Graphics
Silverlight provides two categories of classes for two dimensional graphics: shapes and geometries.
The System.Windows.Shapes.Shape class forms the base for all shape-related classes. The Shape
class inherits directly from FrameworkElement, so it gains all that is provided by the UIElement and
FrameworkElement classes. The System.Windows.Media.Geometry class, however, inherits directly
from DependencyObject, not from UIElement or FrameworkElement. There are similarities between
the two categories, but the difference is what they are designed for. The Geometry-based classes
provide more flexibility and focus more on the behavior of the geometric shapes (and are actually
used by some of the Shape-based classes). The Shape-derived classes, however, are meant for easily
adding 2D shapes to a Silverlight user interface. The hierarchy of 2D classes we will look at are
shown in Figure 7-1.

141

C H A P T E R  7



Figure 7-1. Geometry- and Shape-based classes

Using Geometries
We’ll take a look at the Geometry-based classes first since these provide more versatility. The
UIElement class uses a Geometry object to define a region used to clip what’s shown, and the
Path Shape–derived class uses a Geometry object to know what to draw. The Shapes.Path class
is the mechanism to use if you want to draw a Geometry-derived class on a user interface, since
the Geometry classes on their own can’t do this.

Simple Geometries
The LineGeometry, RectangleGeometry, and EllipseGeometry classes represent basic geometri-
cal figures. These classes cover the basic shapes, including lines, rectangles, and ellipses. These
geometries are shown in Figure 7-2.

Dependency Object

System.Windows.Media.Geomerty

EllipseGeometry PathGeometry

GeometryGroup LineGeometry

RectangleGeometry

UIElement

FrameworkElement

System.Windows.Shapes.Shape

Ellipse Line

Path Polygon

RectanglePolyline

CHAPTER 7 ■ EXTENDING THE USER INTERFACE142



Figure 7-2. Line, rectangle, and ellipse geometries

LineGeometry

The LineGeometry class represents a single line with a start point and endpoint. Its two proper-
ties are shown in Table 7-1.

Table 7-1. Properties of the System.Windows.Media.LineGeometry Class

Property Type Description

StartPoint Point The (x,y) point of the start of the line

EndPoint Point The (x,y) point of the end of the line

Since the Geometry-based classes can’t be shown directly, they must be shown using the
Path class. Let’s draw a line using the LineGeometry class in XAML:

<Path Stroke="Red" StrokeThickness="5">
<Path.Data>

<LineGeometry StartPoint="10,10" EndPoint="20,20"/>
</Path.Data>

</Path>

RectangleGeometry

The RectangleGeomtery class is used for representing rectangles (and squares, of course). Its
properties are shown in Table 7-2. The RadiusX and RadiusY properties are used to round the
corners. Combined, these properties represent an ellipse that is used to control the degree to
which the corners are rounded. If you set these sufficiently high, the rectangle will not disap-
pear, but instead will render as an ellipse or a circle.

Table 7-2. Properties of the System.Windows.Media.RectangleGeometry Class

Property Type Description

RadiusX double Gets or sets the x radius of the ellipse used for rounding
the rectangle’s corners.

RadiusY double Gets or sets the y radius of the ellipse used for rounding
the rectangle’s corners.

Rect System.Windows.Rect Gets or sets the rectangle’s dimensions. The Rect class has
x, y and width, height properties, each of type double.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 143



Let’s draw a rectangle on the screen again using the Path class:

<Path Stroke="Red" StrokeThickness="5">
<Path.Data>

<RectangleGeometry Rect="10,10,40,40" RadiusX="5" RadiusY="5"/>
</Path.Data>

</Path>

EllipseGeometry

The EllipseGeometry class represents an ellipse defined by a center point and two radii, one
for the top and bottom of the ellipse and the other for the sides. Its properties are shown in
Table 7-3.

Table 7-3. Properties of the System.Windows.Media.EllipseGeometry Class

Property Type Description

RadiusX double Gets or sets the x radius of the ellipse used for defining the ellipse’s sides.

RadiusY double Gets or sets the y radius of the ellipse used for defining the ellipse’s top
and bottom.

Center Point Gets or sets the center point of the ellipse.

Yet again, we use the Path class to display EllipseGeometry on the screen:

<Path Stroke="Red" StrokeThickness="5">
<Path.Data>

<EllipseGeometry Center="50,50" RadiusX="50" RadiusY="20"/>
</Path.Data>

</Path>

Path Geometries
The PathGeometry class is where the geometries get interesting. The PathGeometry class is used
to represent an arbitrary geometrical shape made up of lines and/or curves. PathGeometry
contains one or more PathFigure objects. Each PathFigure object contains one or more
PathSegment objects. The various segments are connected automatically within each PathFigure
object by each segment’s start point, starting at the previous segment’s endpoint. There are
seven segment classes you can use to construct figures, as shown in Table 7-4. Since using
these segments to construct geometrical shapes can be unwieldy, there is a special syntax
used with the Path class for drawing multiple segments. We’ll take a closer look at this in the
next section when we look at the various Shape-related classes.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE144



Table 7-4. Segment Classes Used in a PathFigure

Class Description

ArcSegment Elliptical arc between two points

BezierSegment Cubic Bezier curve between two points

LineSegment Straight line between two points

PolyBezierSegment Represents a series of cubic Bezier curves

PolyLineSegment Represents a series of lines

PolyQuadraticBezierSegment Represents a series of quadratic Bezier curves

QuadraticBezierSegment Quadratic Bezier curve between two points

Before we go over the specific properties of each segment, let’s take a look at piecing
together a rectangle. You can see what the rectangle looks like in Figure 7-3; its XAML code
is shown following.

■Caution If you use a StrokeThickness larger than 1, the final segment will leave a gap. Keep this in
mind when manually piecing together segments. The final segment might need an adjustment to go far
enough to fill in the visual gap left by the difference between the endpoint and the stroke thickness.

Figure 7-3. Rectangle drawn using PathGeometry

<Path Stroke="Red" StrokeThickness="1">
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigure StartPoint="10,10">
<PathFigure.Segments>

<LineSegment Point="10,40"/>
<LineSegment Point="40,40"/>
<LineSegment Point="40,10"/>
<LineSegment Point="10,10"/>

</PathFigure.Segments>
</PathFigure>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

Let’s take a look at what each segment describes and its properties.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 145



ArcSegment

This segment draws an elliptical segment between the end of the previous segment (or the
figure’s start point) and the specified destination point. Since the elliptical segment only has
two points, there must be a way to define how the arc is drawn since there are multiple candi-
date arcs. The IsLargeArc and SweepDirection properties exist for this purpose. Table 7-5
shows the properties of ArcSegment.

Table 7-5. Properties of the System.Windows.Media.ArcSegment Class

Property Type Description

isLargeArc bool If true, the arc drawn is greater than
180 degrees. This is one of the two
properties required to define how
arc is drawn.

Point System.Windows.Point This defines the endpoint of the arc.

RotationAngle double This specifies the rotation angle (in
degrees) of the arc around the x axis.
It defaults to 0.

Size System.Windows.Size This specifies the x and y radii of
the arc.

SweepDirection System.Windows.Media.SweepDirection This defines which direction the arc
is drawn in. It can be set to Clockwise
or Counterclockwise. The use of this
property with IsLargeArc fully spec-
ifies the type of arc drawn.

BezierSegment

This segment represents a Bezier curve, which is a curve defined by a start point, an endpoint,
and two control points. The line is bent toward each control point, so if the control points are
placed on opposite sides of the line, the line appears to have a hill and a valley along its length.
This class provides three properties, all of type System.Windows.Point, used to specify the Bezier
segment’s control points and ending point.

• Point1: Defines the first control point

• Point2: Defines the second control point

• Point3: Defines the endpoint of the curve

LineSegment

This segment represents a straight line. It has a single property, Point, which defines the end-
point of the line.

QuadraticBezierSegment

A quadratic Bezier segment is a Bezier curve with only a single control point. It defines a single
control point and an endpoint.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE146



• Point1: Defines the control point

• Point2: Defines the endpoint of the curve

PolyBezierSegment

This segment is similar to BezierSegment but provides an easy way to combine multiple Bezier
curves. Each curve is defined by three points and automatically connects to the endpoint of
the previous line (or previous segment if it’s the first line in the series). This class contains one
property, Points, of type System.Windows.Media.PointCollection.

PolyLineSegment

Similar in spirit to PolyBezierSegment, this segment allows you to easily combine multiple straight
lines in a series. It also exposes a property, Points, of type System.Windows.Media.PointCollection.
Each line is automatically connected to the endpoint of the previous line/segment, so for each
new line, all you need to do is add one new point.

PolyQuadraticBezierSegment

This segment combines multiple quadratic Bezier segments together. Each segment is defined
by two points: the control point and the endpoint. These are stored in the Points property just
like the other poly segments.

Grouping Geometries
The GeometryGroup class is used to group multiple geometries together. Since it is possible for
multiple geometrical shapes to intersect, the GeometryGroup class exposes a FillRule property
to specify how the intersections of geometries are treated to judge whether points within the
intersection are in the combined geometry or not. The FillRule property can take on one of
two possible values:

• EvenOdd: A point is judged within the fill region if the number of path segment rays drawn
in every direction away from the point ultimately cross an odd number of segments.
This is the default value.

• Nonzero: A point is judged within the fill region if the number of crossings of segments
across rays drawn from a point is greater than zero.

Using Shapes
The System.Windows.Shapes.Shape class forms the base for classes that represent geometrical
figures that have the ability to draw themselves on the screen. There are classes for drawing lines,
rectangles, ellipses, and polygons, all deriving from Shape. The most interesting Shape-derived
class is Path. The Path class is what we used in the previous section—it has the ability to draw
Geometry-based objects on the screen, and it can also process a specialized syntax for piecing
together Path-based geometries. Some of the most useful properties of the Shape class are
shown in Table 7-6.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 147



Table 7-6. Properties of the System.Windows.Shapes.Shape Class

Property Type Description

Fill Brush The brush used to fill the interior of the shape

Stretch Stretch The value from the Stretch enumeration; controls
how the shape fills its bounding space

Stroke Brush The brush used to paint the outline of the shape

StrokeDashArray DoubleCollection Collection of double values specifying the dash pattern
to use in outlining the shape

StrokeThickness double The thickness of the outline of the shape

Let’s briefly look at some of the simple Shape-based classes before moving on to the more
complicated Path class. The results of the XAML for each of these shapes are shown in Figure 7-4.

Figure 7-4. Appearance of the Shape-based classes

Ellipse
The Ellipse class exposes Height and Width properties that define what the ellipse looks like.
Unlike the Geometry class, where you specify a center point and x and y radius values, the Ellipse
class only needs to know its bounding box as defined by its Height and Width properties. This
provides more flexibility in visual presentation since a Shape can have different stretch behav-
iors and can be affected by the width of its outline and other properties. You can specify an
ellipse in XAML by using the following:

<Ellipse Fill="Red" Height="20" Width="40"/>

Line
The Line class has two properties to define the start point of the line: X1 and Y1. The X2 and Y2
properties are used to define the endpoint of the line. Drawing a line is accomplished using
the following XAML:

<Line X1="5" Y1="10" X2="50" Y2="10" Stroke="Red" StrokeThickness="2" />

CHAPTER 7 ■ EXTENDING THE USER INTERFACE148



Rectangle
The Rectangle class defines Width and Height properties specifying the dimensions of the
rectangle. The following XAML draws a rectangle:

<Rectangle Width="80" Height="50" Fill="White" Stroke="Black" StrokeThickness="5" />

Polyline
The Polyline class is used to draw multiple connected lines. The Points property contains the
set of points defining the lines. The following XAML draws the letter C:

<Polyline Points="100,10 10,10 10,50 100,50" Stroke="Black" StrokeThickness="5" />

Polygon
A polygon is a set of two or more points that form a filled shape. If two points are specified and
StrokeThickness and Stroke are defined, a line will be drawn. A set of points is specified in the
Polygon’s Points property. The following XAML draws a red triangle on the screen. Four points
are specified in order to connect the edges back to the triangle’s starting point. The shape formed
must be a closed shape.

<Polygon Points="30,20 50,100 10,100 30,20" Stroke="Red" StrokeThickness="5" />

Path
The Path class is by far the most versatile Shape-based class. This class can display any Geometry
object by setting its Data property to the object. While this can be used to show complex
Path-based geometries using PathGeometry, there is also a special syntax supported in XAML
to specify Path-based geometries in a more terse string form. This syntax is utilized by Expres-
sion Media when constructing Path-based geometries. This syntax is used when specifying the
value for the Data property of the Path class.

The string starts with specifying the fill rule, which is optional. If you want to specify a fill
rule it must come first. You can use the string F0 to specify EvenOdd (the default value) or F1 to
specify Nonzero for the fill rule.

After the fill rule (if you specify one) comes one or more figure descriptions. A figure
description is made up of a move command, a draw command, and optionally a close com-
mand. Each point in this string can take the form x y or x,y, and whitespace is ignored.

The move command is marked by either a capital M or a lowercase m, and then one or more
points. The capital M represents a move to an absolute position, and the lowercase m means that
the point specified is relative to the previous point. Generally, only one point will be specified,
since if multiple points are specified, move operations will be combined with draw operations
to draw lines. If only a single point is specified, the behavior of the move command is less
ambiguous.

The draw command can be used to draw eight possible shapes. Each command is either
a capital letter (for absolute positioning) or a lowercase letter (for relative positioning). Table 7-7
lists the possible draw commands. For simplicity each command is shown only in its capital
letter form.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 149



Table 7-7. Valid Draw Commands

Command Description

L endPoint Draws a line starting at the current point and ending at endPoint.

H x Draws a horizontal line from the current point to the specified x
coordinate.

V y Draws a vertical line from the current point to the specified y
coordinate.

C point1 point2 Draws a cubic Bezier curve, with point1 and point2 representing the 
endPoint control points and endPoint representing the endpoint of the curve.

Q point1 endPoint Draws a quadratic Bezier curve using point1 as the control point and
ending at the point specified by endPoint.

S point2 endPoint Draws a smooth cubic Bezier curve. The first control point is a reflection
of point2 relative to the current point. The curve ends at endPoint.

T point1 endPoint Draws a smooth quadratic Bezier curve.

A size rotationAngle Draws an elliptical arc. See the “EllipseGeometry” section earlier in the 
isLargeArcFlag chapter for a description of each parameter. You can set the flag to 0 to 
sweepDirectionFlag turn it off and 1 to turn it on.
endPoint

The close command is optional. If specified, the current figure is automatically closed by
connecting the current point to the starting point of the figure using a line. The close command
is specified using a capital or lowercase Z.

The star shape shown in Figure 7-5 is drawn using a Path with a solid fill.

Figure 7-5. Star shape drawn using a Path

The Path in XAML used to make the star looks like this:

<Path Stretch="Fill" 
StrokeThickness="2" 
StrokeLineJoin="Round" 
Stroke="Blue"
Data="F1 M 0,100 L 150,100 L 200,0 L 250,100 L 400,100 

CHAPTER 7 ■ EXTENDING THE USER INTERFACE150



L 266, 150 L 300,300 L 200,170 L 110,300 L 133,150 Z ">
<Path.Fill>

<SolidColorBrush Color="#FFAACCEE"/>
</Path.Fill>

</Path>

Transforms
Transforms are used to alter an element’s coordinate system, so applying a transform to a root
element causes it and all child content to uniformly alter in appearance. The benefit of a trans-
form is that the underlying elements need no knowledge of the transform—they act as if the
coordinate system is unaltered. Silverlight supports transforms for scaling, skewing, and rotat-
ing. Scaling makes it easy to shrink or grow an element; skewing can rotate x and y coordinates
independently; and rotating causes the entire element to rotate around a center, defaulting to
the element’s top-left corner. Silverlight also supports a matrix transform, which provides more
flexibility in transforms in case you want to do something that isn’t a scale, skew, or rotation.
Technically, there is one more transform, TransformGroup. This is used to group multiple trans-
formations together and is in itself a Transform.

Many visual elements in Silverlight are eligible for transforming. The Geometry base class
has a Transform property that can be set to any of the Transform inheritors. The Brush base class
has both a Transform property and a RelativeTransform property. A relative transform is most
useful when you don’t know the size of the element being transformed—we’ll briefly look at
this in the next section when we discuss brushes. The UIElement base class has a RenderTransform
property that can also be set to any of the Transform inheritors (hopefully, this will be renamed
Transform before Silverlight comes out of beta for consistency’s sake). Let’s take a closer look at
the transforms represented by classes in Silverlight.

Translation
A translation transform changes the position of an element. This is a simple operation of mov-
ing the top left of the element horizontally and/or vertically. A constant value is added to the x
and/or y coordinates to reposition the entire element. These values are specified in the X and Y
properties of the TranslateTransform class. The following XAML is used to translate a rec-
tangle. Figure 7-6 shows the rectangle translated in both a positive and a negative direction.
Translating an element, such as this rectangle, in XAML is a simple matter of specifying its
RenderTransform.

Figure 7-6. Translating a rectangle diagonally down and up

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 151



<Rectangle Stroke="Black" Width="60" Height="60"/>
<Rectangle Stroke="Crimson" Fill="Crimson" Width="50" Height="50">

<Rectangle.RenderTransform>
<TranslateTransform X="10" Y="10"/>

</Rectangle.RenderTransform>
</Rectangle>

Rotation
The RotateTransform class is used to rotate the entire element undergoing transformation.
This transform has three important properties for specifying how the rotation is performed:
Angle, CenterX, and CenterY. The CenterX and CenterY properties specify which point the rota-
tion is done around. The top left of an element is (0,0), as illustrated in Figure 7-7, and it is
around this point that rotation is done by default.

Figure 7-7. Rotating a rectangle about its default center and true center

You can rotate in a clockwise direction by using a positive angle (in degrees) between
0 and 360. If you want to rotate counterclockwise, you can specify a negative angle. Angles
greater than 360 or less than –360 are valid, but they wrap around the circle. For example,
a rotation by 405 degrees has the same result as rotating by 45 degrees, since 405 is equal to
360 (one full rotation) plus 45.

Again, we specify the rectangle’s RenderTransform. We will rotate the rectangle on the
screen by 45 degrees.

<Rectangle Height="50" Width="50" Fill="Crimson">
<Rectangle.RenderTransform>

<RotateTransform CenterX="0" CenterY="0" Angle="45"/>
</Rectangle.RenderTransform>

</Rectangle>

Since our center point is at (0,0), the rotation is done around the top-left corner of the
rectangle. If you want to rotate the rectangle around its true center, make sure you set CenterX
and CenterY appropriately. In this case, we’d set the center to the point (25,25). From left to
right, Figure 7-7 shows what our rectangle looks like normally, rotated by 45 degrees around its
top-left corner, (0,0), and rotated 45 degrees around its true center, (25,25).

CHAPTER 7 ■ EXTENDING THE USER INTERFACE152



Skewing
A skew transformation stretches the coordinate space in either the x or y direction (or both).
This is sometimes called a shear transformation. The angle controls how the corresponding
coordinate plane is stretched. For example, if you specify an AngleX of 45 degrees, the x and y
planes will form a 45 degree angle with each other. You can see this in Figure 7-8 (first row, sec-
ond column). As the y values increase (remember, top left of the rectangle is 0,0), the x values
are shifted over until the bottom of the rectangle is reached, forming the 45 degree angle at the
bottom. The third column shows a skewing transformation done using the AngleY property.
Similar to rotation, you can control the center point at which skewing is performed around.
The second row of Figure 7-8 shows the same skewing transformations, but with the center of
the rectangle, (25,25), as the center point.

Figure 7-8. Skewing a rectangle about its default center and true center

<Rectangle Stroke="Crimson" Fill="Crimson" Width="50" Height="50">
<Rectangle.RenderTransform>

<SkewTransform AngleX="45"/>
</Rectangle.RenderTransform>

</Rectangle>

Scaling
A scaling transformation uniformly increases or decreases the size of an element. You can
zoom into an element by scaling it up, and zoom out (e.g., as a cheap way to show thumb-
nails) by scaling the element down. The ScaleX and ScaleY properties are used to specify how
much to scale the element by. This transformation also has a CenterX and CenterY point. This
point specifies which point will stay constant in the scaling. Figure 7-9 shows our normal rec-
tangle again in the top left, and the first row shows a scale up and a scale down using the default,

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 153



(0,0), as the center point. Notice how the top-left corner is unmoved. If we specify (25,25) as
the center point, as is done in the second row, the rectangle completely overtakes its bounding
box when scaled up and is centered within its bounding box when scaled down. This behavior
is important to note when you utilize the scaling transformation. If you think about how some
menu animation has the menu expanding while its top-left corner stays intact, you can see
how using the top-left corner as the anchor point could prove useful. If this were a button,
though, and you wanted its size to change when a user hovers over it, it would be better to
scale the button up with its true center as the anchor so that it would grow/shrink in a more
expected manner for the user.

Figure 7-9. Scaling a rectangle up and down based on its default center and true center

Here’s the XAML used for scaling the rectangle up and down in the second row of
Figure 7-9.

<Rectangle Stroke="Crimson" Fill="Crimson" Width="50" Height="50">
<Rectangle.RenderTransform>

<ScaleTransform ScaleX="1.5" ScaleY="1.5"/>
</Rectangle.RenderTransform>

</Rectangle>

Arbitrary Linear Transforms
The final transformation class that Silverlight provides is the matrix transformation. This can
be used when the other transformations don’t give you what you want, or when you want to
combine multiple transformations into a single transformation (although you could also use
TransformGroup to group several). Each of the other transformations can be represented by
a 3×3 matrix. Let’s dust off our linear algebra textbooks and revisit the basics of matrix math to
see how a matrix can give us the other transformations, and even combine multiple transfor-
mations into a single operation.

The 3×3 matrix that Silverlight uses looks like Figure 7-10.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE154



Figure 7-10. The transformation matrix used by Silverlight 

The final column will always be (0,0,1) because Silverlight only supports affine transfor-
mations. In reality, the transformation matrix is 2×2, but it includes within its structure translation
values for the x and y coordinates (in the third row). An affine transformation is essentially
a linear transformation. Any three points that were on a line before the transformation con-
tinue to be on a line after the transformation. We won’t trouble ourselves with proving this,
since this isn’t a math textbook, but if you look at a side of a rectangle in the preceding rota-
tion and skewing figures, you’ll see that three arbitrary points along this line are still on a line
after the transformation (not the same line obviously, but a line nonetheless).

The bottom row of the 3×3 matrix contains values for the x and y offsets. These offsets are
used for translation. The M11, M12, M21, and M22 properties of the MatrixTransform class are used
to specify the custom transformation. Projection and reflection are two examples of affine
transformations not supported directly by Silverlight with a class of their own.

The simplest transformation is the translation. By setting M11 and M22 to 1, M12 and M21 to 0,
the offsetX property to 10, and the offsetY property to 0, the transformation will shift the entire
element being transformed 10 units to the right. The transformed points are calculated by
multiplying each point (x,y) in the element being transformed by the matrix shown in Figure 7-11.

Figure 7-11. Transformation matrix to translate 10 units to the right

In general, the result of multiplying a point (technically a vector) by the matrix is (x * M11 + y *
M12 + offsetX), (x * M21 + y * M22 + offsetY). There is a special matrix, known as the identity
matrix, where M11 = 1, M12 = 0, M21 = 0, and M22 = 1. If you multiply any (x,y) point by the
identity matrix, you’ll get the same point again, provided that offsetX and offsetY are 0. (Go
ahead and try this on a piece of paper.) This identity matrix is important because it is the default
configuration of the matrix. It allows you to specify only offsetX and/or offsetY to perform
a translation without having to worry about an unexpected transformation happening if the

0 0 0

0 0 0

10 0 1

M11 M12 0

M21 M22 0

offestX offsetY 1

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 155



M values are all 0 (actually, if they are all 0, the element undergoing transformation might
disappear!)

We can skew both coordinates and translate the element at the same time by specifying
OffsetX and the M12 and M21 properties, as follows: 

<Rectangle Stroke="Crimson" Fill="Crimson" Width="50" Height="50">
<Rectangle.RenderTransform>

<MatrixTransform>
<MatrixTransform.Matrix>

<Matrix OffsetX="-10" M12="0.5" M21="0.5"/>
</MatrixTransform.Matrix>

</MatrixTransform>
</Rectangle.RenderTransform>

</Rectangle>

From left to right, Figure 7-12 shows our normal rectangle, the rectangle translated right
using a matrix, and the rectangle skewed and translated at the same time.

Figure 7-12. Using MatrixTransform to translate and skew/translate

Combining Multiple Transformations
While you could use the MatrixTransform class to combine multiple transformations into

a single transformation, if you want to combine two or more of the directly supported transfor-
mations (such as a rotation and a scale), you can use the TransformGroup transform. Figure 7-13
shows the result of combining a ScaleTransform and a RotateTransform together inside
a TransformGroup.

Figure 7-13. Combining transforms using TransformGroup

CHAPTER 7 ■ EXTENDING THE USER INTERFACE156



<Rectangle Stroke="Crimson" Fill="Crimson" Width="50" Height="50">
<Rectangle.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX="0.75" ScaleY="0.75" CenterX="25" CenterY="25"/>
<RotateTransform Angle="45" CenterX="25" CenterY="25"/>

</TransformGroup>
</Rectangle.RenderTransform>

</Rectangle>

The code download for this chapter provides an interface for exploring the various trans-
forms and brushes (which we will discuss next), and shows how to use the transform classes in
C#. The TransformGroup class is used in this code to apply multiple transformations simulta-
neously.

Brushes
Throughout this book, brushes have been applied several times (generally, any time an ele-
ment has been filled with a solid color). For filling with a solid color, the SolidColorBrush class
is used. Silverlight also provides several other brushes, including an image brush, a video brush,
and several gradient brushes. As you can probably surmise, combining a video brush with
a geometric shape such as an ellipse or polygon (and perhaps even a transform) provides
a staggering degree of flexibility in how content is presented in Silverlight. The hierarchy of
brushes is shown in Figure 7-14.

Figure 7-14. Inheritance hierarchy of Brush-related classes

The System.Windows.Media.Brush class forms the base of all the brushes in Silverlight.
This class inherits directly from DependencyObject. Its properties are listed in Table 7-8.

Brush

TileBrush

ImageBrush VideoBrush

SolidColorBrush GradientBrush

LinearGradientBrush RadialGradientBrush

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 157



Table 7-8. Properties of the System.Windows.Media.Brush Class

Property Type Description

Opacity double Gets or sets the opacity of the brush. A value of 0 specifies
a fully transparent brush, and a value of 1 specifies a fully
opaque brush.

RelativeTransform Transform Applies a transform using relative coordinates. This is useful
for applying a transform when the size of the surface being
filled isn’t known.

Transform Transform Applies a transform using absolute coordinates.

The SolidColorBrush
The simplest brush you can use is the solid color brush. This inherits directly from Brush and
thus does not share functionality with other brush types. The solid color brush has a single
property, Color. In XAML, this can be set to the name of a color (see the Brushes class in the MSDN
documentation online for a full list of the colors, or use IntelliSense while editing the XAML in
Visual Studio) or an ARGB value by using the #FFFF0000 syntax (this example sets the color to
full red, no transparency). Filling a rectangle with a solid color can be accomplished with the
following XAML:

<Rectangle Width="50" Height="50">
<Rectangle.Fill>

<SolidColorBrush Color="Crimson"/>
</Rectangle.Fill>

</Rectangle>

The Tile Brushes
The parent of both ImageBrush and VideoBrush is TileBrush. This class cannot be instantiated
on its own—it exists to provide tiling behavior to inheriting classes. There are four properties
supported by the TileBrush class, listed in Table 7-9. Each is also a dependency property.

Table 7-9. Properties of the System.Windows.Media.TileBrush Class

Property Type Description

AlignmentX AlignmentX Horizontal alignment used for positioning. This can be set to Left,
Center, or Right.

AlignmentY AlignmentY Vertical alignment used for positioning. This can be set to Top,
Center, or Bottom.

Stretch Stretch Specifies how the contents of brush fill the bounding space. See
Chapter 6 for a discussion of this property.

TileMode TileMode Specifies how content is tiled. See the following discussion for
specific value descriptions.

The TileMode enumeration describes five different tiling behaviors:

CHAPTER 7 ■ EXTENDING THE USER INTERFACE158



• None: If the content of the brush does not fill the entire space, it is only painted once.
Unfilled space becomes transparent.

• FlipX: The base tile is drawn and repeated. Alternate columns are flipped horizontally.
The base tile is not flipped.

• FlipY: The base tile is drawn and repeated. Alternate rows are flipped vertically. The
base tile is not flipped.

• FlipXY: This is a combination of FlipX and FlipY. The base tile is not flipped.

• Tile: The base tile is drawn and then repeated. Tiles are stacked immediately next to
each other, both horizontally and vertically.

The ImageBrush
Using the Stretch and TileMode properties provides many ways to paint an image onto a sur-
face. Figure 7-15 shows what an image brush looks like for each of the possible Stretch values.

Figure 7-15. Various stretch configurations of an image brush

The VideoBrush
The video brush works much like the image brush, but uses a video instead of an image. The
VideoBrush class provides methods to play, pause, stop, and seek a different position in the video.
The SourceName property of the VideoBrush class must be set to the name of a MediaElement speci-
fied in your XAML. The following XAML gives an example:

<MediaElement x:Name="videoMediaElement" Source="video.wmv"/>
<Rectangle Width="300" Height="250" Stroke="Red" StrokeThickness="2">

<Rectangle.Fill>
<VideoBrush SourceName="videoMediaElement" />

</Rectangle.Fill>
</Rectangle>

The Gradient Brushes
There are two gradient brushes that are used to paint with a gradient of colors. The first is the
linear gradient brush, used to paint a gradient along a straight line. The second is the radial
gradient brush, used to spread colors across an elliptical surface. Both brushes utilize a gradi-
ent specified by one or more gradient stops. What a gradient looks like depends on the values
of control parameters and gradient stops. Gradient stops specify the color at which a particular
gradient ends. It’s possible to paint multiple gradients within a surface by using multiple gradient

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 159



stops. The GradientBrush class forms the base of both the linear and radial gradient brushes.
The properties provided by GradientBrush are shown in Table 7-10.

Table 7-10. Properties of the System.Windows.Media.GradientBrush Class

Property Type Description

ColorInterpolationMode ColorInterpolationMode Specifies the color space to use when
interpolating colors. Set it to 
ScRgbLinearInterpolation to use the scRGB
space or SRgbLinearInterpolation to use
the sRGB space.

GradientStops GradientStopCollection The collection of gradient stops defining
how colors are spread in the surface being
filled.

MappingMode BrushMappingMode Gets or sets the coordinate system used by
the brush. Set this to Absolute for coordi-
nates to be interpreted in local space, and
set it to RelativeToBoundingBox to use coor-
dinates relative to the bounding box (0
corresponds to 0 percent of the box, and 1
corresponds to 100 percent, so 0.5 would be
interpreted as the center point). The default
value is RelativeToBoundingBox. It does not
affect offset values of gradient brushes.

SpreadMethod GradientSpreadMethod Gets or sets how the gradient is spread.
Valid values are Pad (the default), Reflect,
and Repeat. 

The LinearGradientBrush
A linear gradient brush spreads a color gradient across a straight line. This straight line can be
any straight line through the surface being painted, and is described by the StartPoint and
EndPoint properties of the LinearGradientBrush class. The top-left corner is (0,0) and the bottom-
right corner is (1,1). Using 0 and 1 for the start point and endpoint of each coordinate plane
allows to use this brush without worrying about the actual size of the surface being painted. It
is through this line that the gradient spreads by default, starting from the top left and ending
at the bottom right. You can see this default behavior in the first column of Figure 7-16.

If you only specify a single gradient stop, the linear gradient brush paints a solid color. If
you use two gradient stops—for example, starting at black (#FF000000) and ending in red
(#FFFF0000)—the gradient starts at black and the color spreads evenly from black to red along
the length of the surface being painted, until the end of the surface is reached. Multiple gradi-
ent stops can be specified along a gradient line from 0.0 to 1.0.

Figure 7-16. Different configurations of the linear gradient brush

CHAPTER 7 ■ EXTENDING THE USER INTERFACE160



Figure 7-16 shows the behavior of several different options for the linear gradient brush.
The default behavior is shown first, spreading from black to white. Here’s the XAML for this
gradient:

<Rectangle Stroke="Black" Width="60" Height="60">
<Rectangle.Fill>

<LinearGradientBrush>
<GradientStop Color="#FF000000" Offset="0.0"/>
<GradientStop Color="#FFFFFFFF" Offset="1.0"/>

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

The following code shows how to spread the gradient horizontally instead of diagonally:

<Rectangle Stroke="Black" Width="60" Height="60">
<Rectangle.Fill>

<LinearGradientBrush StartPoint="0,0.5" EndPoint="1,0.5">
<GradientStop Color="#FF000000" Offset="0.0"/>
<GradientStop Color="#FFFFFFFF" Offset="1.0"/>

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

The next code block creates a gradient that spreads to the center point of the gradient line
and a second gradient that spreads from the center point to fill up the other half of the surface:

<Rectangle Stroke="Black" Width="60" Height="60">
<Rectangle.Fill>

<LinearGradientBrush>
<GradientStop Color="#FF000000" Offset="0.0"/>
<GradientStop Color="#FFFFFFFF" Offset="0.5"/>
<GradientStop Color="#FF000000" Offset="1.0"/>

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>

The RadialGradientBrush
The radial gradient brush spreads a color gradient from a point outward in an elliptical pattern.
The Center property specifies the center of the ellipse, and the RadiusX and RadiusY properties
control how the ellipse is shaped. If RadiusX and RadiusY are equal, the resulting ellipse is a cir-
cle. The GradientOrigin property specifies the point at which the gradient starts. The gradient
spreads outward from this point until it completely fills the bounding ellipse.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE 161



Figure 7-17 shows various radial gradients.

Figure 7-17. Different configurations of the radial gradient brush

The left-hand image in Figure 7-17 shows the default radial gradient, with the center at
(0.5,0.5) and the gradient going from black to white. Here’s the XAML for this first radial gradi-
ent example:

<Rectangle Stroke="Black" Width="60" Height="60">
<Rectangle.Fill>

<RadialGradientBrush>
<GradientStop Color="#FF000000" Offset="0.0"/>
<GradientStop Color="#FFFFFFFF" Offset="1.0"/>

</RadialGradientBrush>
</Rectangle.Fill>

</Rectangle>

The next two examples use different gradient origins, and the final one uses three
gradient stops.

Summary
This chapter has covered much more of the support Silverlight provides for building user
interfaces. First, it covered the support Silverlight provides for 2D drawing, including the
Geometry- and Shape-based classes. Then it covered the various transformations used to alter
how elements are rendered, such as applying a rotation. 

In the coming chapters, we will cover animation, and by combining transformations with
animation, you can perform interesting effects such as setting something spinning by contin-
ually altering its rotational angle. 

Finally, we looked at the various brushes in Silverlight that provide flexibility in how con-
tent is drawn within bounding elements. You can achieve some interesting effects when you
animate the properties of a brush, which you will also see soon. But before we get to anima-
tion, we’ll take a look at the support Silverlight provides for styling applications and modifying
the visual appearance of controls in the next chapter.

CHAPTER 7 ■ EXTENDING THE USER INTERFACE162



Styling and Templating

Silverlight provides the capability to easily style elements of user interfaces and alter the
appearance (separate from the behavior) of controls. Styling is similar in spirit to how CSS
properties work: user interface elements can reuse fonts, colors, and sizes that are specified as
a style by applying a specific style to a FrameworkElement. Templating, however, is limited to
Control-based classes and is used to completely change how controls are rendered visually.
This mechanism works because what the control does (its behavior) is separate from how it
looks. These two capabilities provide a significant amount of user interface customization to
designers and developers when working with Silverlight.

Using Styles
If you’re building a simple application that has just a few user interface screens, it probably
makes sense to set properties such as FontSize and colors on user interface elements them-
selves. If you’re building a larger application, though, you can quickly find yourself replicating
the same property values on page after page. A style, in Silverlight, is a group of properties and
specific values that you can reuse within a page or even across the whole application. A specific
style is given a name and stored within a resource dictionary, so a style can be scoped to the
page or application level. It’s possible to place a style within any resource dictionary, but in
practice, styles are rarely seen outside the page or application level since the benefit of a style
is in the reuse of sets of attribute values. Figure 8-1 shows a layout that many web sites follow.

163

C H A P T E R  8



Figure 8-1. Design layout for a web site

The main title and the navigation menu are omnipresent as the user navigates from one
page to another. The part of the interface that changes, however, features the content from an
individual page. In ASP.NET, the navigation menu and main title go into something called
a master page, which separates the common parts of the site from the page-specific parts.
Figure 8-1 shows a section title and some example text that might appear in a specific page of
a Silverlight application. The section title and page text will change from one page to the next.
In fact, there might be many elements used by different pages, such as hyperlinks and other
text. Before you can effectively use styles, you must understand the different user interface
elements used throughout your application. Two of these elements are visible in Figure 8-1:
the section title and the page-specific text. Some other possible elements are bylines (for blogs
or news articles), image captions, and hyperlinks. Once you have a list of the common user
interface elements, though, you have to determine exactly which properties you want applied
across your application. The properties you choose to group into styles correspond to the
properties from various Silverlight controls. Both the section header and the page text from
Figure 8-1 could be displayed using a TextBlock. Some useful properties of TextBlock that are
great for use in a style are FontSize, Foreground, Margin, and TextWrapping. All of these proper-
ties control how the text is presented.

■Caution The FontWeight and FontFamily properties of TextBlock are not eligible for use in styles.

Figure 8-2 shows this master page/content page relationship in a theoretical online bookstore.
The navigation menu at the left and the title at the top are present regardless of which section of
the site a user visits.

CHAPTER 8 ■ STYLING AND TEMPLATING164



Figure 8-2. User interface for an online bookstore

Here’s the XAML used for the section title (book name) and page content (book description),
and the navigation menu without using styles:

<StackPanel Grid.Row="1" Grid.Column="0">
<ListBox>

<ListBoxItem>
<Button Content="Home" Width="60" Margin="5"/>

</ListBoxItem>
<ListBoxItem>

<Button Content="DVDs" Width="60" Margin="5"/>
</ListBoxItem>
<ListBoxItem>

<Button Content="Music" Width="60" Margin="5"/>
</ListBoxItem>
<ListBoxItem>

<Button Content="Help" Width="60" Margin="5"/>
</ListBoxItem>
<ListBoxItem>

<Button Content="Sign Out" Width="60" Margin="5"/>
</ListBoxItem>

</ListBox>
</StackPanel>
<StackPanel Grid.Row="1" Grid.Column="2" VerticalAlignment="Top">

<TextBlock FontSize="20">Ulysses by James Joyce</TextBlock>
<TextBlock FontSize="12" TextWrapping="Wrap">
The ultimate tale of what it means to be human. Heralded as one 
of the best works of fiction during the 20th century.
</TextBlock>

</StackPanel>

CHAPTER 8 ■ STYLING AND TEMPLATING 165



You can see the duplication of the Width and Margin properties in the navigation buttons.
Also, the properties used for the content of a page wouldn’t necessarily be the same as other
content pages (e.g., DVDs and music), since the values must manually be kept consistent.
These are two of the biggest issues that styles solve. These properties will be pulled out and
grouped into three styles: one for the navigation buttons, one for the page header, and one for
the page content. 

There are two components to a style: where it is applied and what it does. In order to
specify where a style is applied, you must give it a name and a target type. This target type is
the name of a class that will use the style. This target type must match directly—the style will
not automatically apply to descendents of the specified class. This makes styling a user inter-
face predictable since a derived type won’t take on a specific style set for its parent class. Since
these user interface elements apply to the entire Silverlight application, the styles will go into
the application’s resource dictionary in the App.xaml file.

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
x:Class="chapter8.App">

<Application.Resources>
<Style x:Key="ContentHeader" TargetType="TextBlock">

<Setter Property="FontSize" Value="20"/>
</Style>
<Style x:Key="ContentDescription" TargetType="TextBlock">

<Setter Property="FontSize" Value="12"/>
<Setter Property="TextWrapping" Value="Wrap"/>

</Style>
<Style x:Key="NavigationButton" TargetType="Button">

<Setter Property="Width" Value="60"/>
<Setter Property="Margin" Value="5"/>

</Style>
</Application.Resources>

</Application>

Each style is given an x:Key that serves as the key for the resource dictionary and also the
key used when applying a style to a user interface element. The TargetType is set to TextBlock
for the page content header and page content, and to Button for the navigation buttons. These
properties, grouped in styles and then placed in the application’s resource dictionary, provide
the consistency and ease of maintenance for your application’s look and feel.

Applying the styles is a simple matter of using the StaticResouce markup extension in the
Style attribute of a user interface element of the corresponding type. Here’s the XAML that
makes up the navigation menu and the page content using styles:

<StackPanel Grid.Row="1" Grid.Column="0">
<ListBox>

<ListBoxItem>
<Button Content="Home" Style="{StaticResource NavigationButton}"/>

</ListBoxItem>
<ListBoxItem>

<Button Content="DVDs" Style="{StaticResource NavigationButton}"/>
</ListBoxItem>

CHAPTER 8 ■ STYLING AND TEMPLATING166



<ListBoxItem>
<Button Content="Music" Style="{StaticResource NavigationButton}"/>

</ListBoxItem>
<ListBoxItem>

<Button Content="Help" Style="{StaticResource NavigationButton}"/>
</ListBoxItem>
<ListBoxItem>

<Button Content="Sign Out" Style="{StaticResource NavigationButton}"/>
</ListBoxItem>

</ListBox>
</StackPanel>
<StackPanel Grid.Row="1" Grid.Column="2" VerticalAlignment="Top">
<TextBlock Style="{StaticResource ContentHeader}">

Ulysses by James Joyce
</TextBlock>
<TextBlock Style="{StaticResource ContentDescription}">
The ultimate tale of what it means to be human. Heralded as one of 
the best works of fiction during the 20th century.</TextBlock>

</StackPanel>

In the style, the setter is used to set a property to a specific value. Property element syntax
is also supported when setting the value of a property. One example of using property element
syntax is to set a control template, which can completely change the look and feel of a control.
We’ll examine control templates in more detail in the next section. Setting a control template
in a style looks like this:

<Style ...>
<Setter Property="Template">

<Setter.Value>
<ControlTemplate ...>

</Setter.Value>
</Setter>

</Style>

What if a property is defined in a style and also defined locally? If you consult the value
precedence diagram shown in Chapter 2 again (see Figure 8-3), you’ll see that the style setter
actually has rather low precedence. The property values from style setters can be overridden
by values from many sources, and as you can see, the local value has a relatively high prece-
dence. If you use a style setter and it doesn’t appear to work, look at these other sources for
property values since something is most likely overriding the property value.

CHAPTER 8 ■ STYLING AND TEMPLATING 167



Figure 8-3. Property value precedence chart

■Note Before the first time a style is applied, the collection of setters in the style can be modified. You can
use the x:Name property to make a style easily accessible in the code-behind for modification. After the first
time the style is used, however, the style cannot be changed. If you want to test whether a particular style
can be modified, check the Style.IsSealed property. This is a bool that is set to true after first applica-
tion of the style.

There are several significant drawbacks to using styles. Two features supported in WPF but
not Silverlight are conditional styling (known as property triggers) and style inheritance. Condi-
tional styling is useful for applying styles to framework elements based on conditions such as
a user hovering over the element. While it would be nice to have this directly supported in the
styling system, you can accomplish this behavior using control templates, which we’ll look at
next.

The other drawback is a lack of style inheritance. Style inheritance is a way for a new style
to combine its set of setters with its parent. Since a framework element can only have a single
style, it isn’t possible to combine multiple styles together at this level. For example, we can’t
break the previous example into a layout-related style and an appearance-related style. You
could potentially implement some custom code that takes multiple styles and programmati-
cally processes the Setter collection to make a new style, but this is more code to maintain
and would become useless if Silverlight supports a way to combine or inherit styles in the
future.

CHAPTER 8 ■ STYLING AND TEMPLATING168



Using Control Templates
One of the biggest advantages to the control architecture in Silverlight is that the behavior of
the standard controls is separated from their visual appearance. A control template is a mech-
anism used to specify how a control looks but not how it behaves. This core behavior can most
simply be viewed as what makes a particular control the control that it is. For example, what is
a button? Loosely defined, it is a control that can be pressed. There are specializations of but-
tons such as repeat buttons—but these specializations provide a different core behavior.

Each control can exist in a number of possible states, such as disabled, having input focus,
mouse is hovering over it, and so on. A control template provides the ability to define what the
control looks like in each of these states. Sometimes this is referred to as changing the “look and
feel” of the control, since changing the visual appearance of each state can alter how a user
sees and interacts with a control.

Creating a Control Template
The simplest control template contains a root layout control with a visual representation. Let’s
take a look at a diamond-shaped button with a gradient to color the top and bottom. You can
see the result in Figure 8-4.

Figure 8-4. A fancy button using a rotate transform and gradient brush

The control template is defined as the property value for the Template property of the
Control class. For ease of illustration, the style that contains the control template is stored in
the StackPanel’s resource dictionary. The button control sets its style and automatically picks
up the control template, completely changing its appearance.

<StackPanel Background="#FFAAAAAA">
<StackPanel.Resources>
<Style  x:Key="buttonStyle" TargetType="Button">

<Setter Property="Template">
<Setter.Value>

<ControlTemplate TargetType="Button">
<Grid>

<Rectangle Width="200" Height="200" RadiusX="20" RadiusY="20">
<Rectangle.Fill>

<LinearGradientBrush>

CHAPTER 8 ■ STYLING AND TEMPLATING 169



<GradientStop Color="Blue" Offset="0"/>
<GradientStop Color="White" Offset="0.3"/>
<GradientStop Color="White" Offset="0.7"/>
<GradientStop Color="Blue" Offset="1"/>

</LinearGradientBrush>
</Rectangle.Fill>
<Rectangle.RenderTransform>

<TransformGroup>
<RotateTransform Angle="45"/>
<TranslateTransform X="100"/>

</TransformGroup>
</Rectangle.RenderTransform>

</Rectangle>
<TextBlock HorizontalAlignment="Center" 

VerticalAlignment="Center"
FontSize="20" Text="BUTTON TEXT"/>

</Grid> 
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
</StackPanel.Resources>
<Button Content="Button1" FontSize="24" Style="{StaticResource buttonStyle}"/>

</StackPanel>

A button that uses this style takes on the diamond shape, but the button’s text is forced to
display the text “BUTTON TEXT.” This isn’t useful as a general control template since using this
approach requires a new control template defined for each text you would want to display.
This problem is solved by the TemplateBinding markup extension. This markup extension
exists to connect properties used by a control template to properties defined on a specific
control, and therefore can only be used in conjunction with control templates. The first revi-
sion we will make to the preceding control template is to make TemplateBinding use the same
content as that specified on a particular button.

■Note The TemplateBinding markup extension is one of the few cases where an aspect of XAML does
not have a backing class. Since this is a XAML-only construct, there is no way to utilize a TemplateBinding

in the code-behind. This also means that control templates are XAML-only, since their purpose is to replace
the visual appearance of controls. Fortunately, there are tools such as Expression Blend to make working
with control templates quite easy.

In order to use the TemplateBinding markup extension with a button, a special class called
ContentPresenter must be used. This class provides the capability to display the wide range of
content options possible with Button and other controls’ Content property. We can revisit the
control template included in the preceding style and change the TextBlock that displays
“BUTTON TEXT” to the following ContentPresenter:

CHAPTER 8 ■ STYLING AND TEMPLATING170



<ContentPresenter HorizontalAlignment="Center" 
VerticalAlignment="Center" 
Content="{TemplateBinding Content}"/>

Using the ContentPresenter in this case carries over the FontSize and Content properties
(possibly) defined on a specific Button control. If no FontSize property is specified, the default
value is used, so while a template might reference several properties, it doesn’t mandate that
these properties are set in the control utilizing the template.

If you build an application using this control template and attempt to use the button, you
will observe that the button doesn’t do anything. Actually, it does something—the events still
work on the button—but there is no visual feedback communicated to the user reflecting the
various states a Button control can have.

Defining different visual appearances based on the different states a control can be in is
accomplished using something called the Visual State Manager (VSM). Each control declara-
tively defines a set of visual state groups and visual states. The states within a group are mutually
exclusive, but the control can exist in multiple states if multiple groups are defined. Figure 8-5
shows the two state groups and the valid states within each group for the Button control.

Figure 8-5. The visual state groups and states of the Button control

CHAPTER 8 ■ STYLING AND TEMPLATING 171



The groups and states are defined declaratively by the control’s author. The states and groups
shown in Figure 8-5 are defined on the Button class using attributes. We’ll take a look at these
attributes shortly in the context of creating a new control that supports control templates.

The control template must then specify the appearance of the control in each state. Since
a control can exist in different states simultaneously (one per visual group), you must be careful
to define visual appearances that can be combined. For example, the color of a button’s border
might change based on whether it has focus, but the contents of the rectangle change based
on whether the button is pressed, disabled, moused over, or none of the above (normal). This
is the approach that the default Button takes.

Fortunately, Expression Blend makes defining control templates easy. We’ll first take a look
at defining a new control template for the Button control and then take a closer look at the
XAML generated.

Create or open a project in Expression Blend. Drag a new button onto the design surface.
Right-click the button and navigate to Edit Control Parts (Template), and you’ll see two options.
You can edit a copy of the button’s current control template or create an empty one by choos-
ing Create Empty. If you were to click Create Empty, the visual appearance of the button would
disappear from the design surface, and the generated XAML would be the minimum needed
for the button’s control template—specifically the list of groups and the states in each group
with no state transitions (as shown in the following code). This approach creates a control
template resource in the UserControl with the key you specify.

<UserControl.Resources>
<vsm:VisualStateManager.VisualStateGroups>

<vsm:VisualStateGroup x:Name="FocusStates">
<vsm:VisualState x:Name="Unfocused"/>
<vsm:VisualState x:Name="Focused"/>

</vsm:VisualStateGroup>
<vsm:VisualStateGroup x:Name="CommonStates">

<vsm:VisualState x:Name="MouseOver"/>
<vsm:VisualState x:Name="Pressed"/>
<vsm:VisualState x:Name="Disabled"/>
<vsm:VisualState x:Name="Normal"/>

</vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

</UserControl.Resources>

When you click Edit a Copy and enter a name for the style in the dialog (as shown in
Figure 8-6), the full default control template is placed into the XAML. The default control tem-
plate for Silverlight’s controls are part of a style because other properties of controls are also set,
such as padding, content alignment, and cursor appearance. These styled properties apply to
every visual state of a control.

CHAPTER 8 ■ STYLING AND TEMPLATING172



Figure 8-6. Creating a style resource that contains a control template

While at this point you could edit the XAML directly to change the appearance of the
button in each state, Expression Blend makes it easy to modify each state and state transition
without needing to drop down to the XAML. This is facilitated by the States pane in Expression
Blend. Figure 8-7 shows what this looks like for the default control template for the Button class.

Figure 8-7. The States pane for the Button control

There are several important aspects to this pane. It lists all the states that are defined for
the control and also provides capabilities for specifying state transitions. The star on the
MouseOver and Pressed states makes it easy to handle specifying transitioning from any state
to this state. The state transition duration represents the length of time it takes to transition from
one state to another. If you set the MouseOver state duration (currently 0.2) to 5 seconds, the
animation to reflect the moused-over state will take a lot longer.

CHAPTER 8 ■ STYLING AND TEMPLATING 173



Let’s take a closer look at the copy of the default control template for the Button control
before replacing it with our own. The style containing the default control template, now located
in the XAML file, starts off with 5 simple style property setters:

<UserControl.Resources>
<Style x:Key="ButtonStyle1" TargetType="Button">

<Setter Property="Background" Value="#FF1F3B53"/>
<Setter Property="Foreground" Value="#FF000000"/>
<Setter Property="Padding" Value="3"/>
<Setter Property="BorderThickness" Value="1"/>

The sixth style setter is the control template.

<Setter Property="Template">
<Setter.Value>

<ControlTemplate TargetType="Button">
<Grid>
</Grid>

</ControlTemplate>
</Setter.Value>

</Setter>

The Grid is the layout container for the various parts of the button. The Grid’s resource
dictionary includes a number of colors and several brushes that are used by the button. The
first child element of the Grid is VisualStateManager:

<vsm:VisualStateManager.VisualStateGroups>
<vsm:VisualStateGroup x:Name="CommonStates">

<vsm:VisualStateGroup.Transitions>
<vsm:VisualTransition GeneratedDuration="00:00:00.1" To="MouseOver"/>
<vsm:VisualTransition GeneratedDuration="00:00:00.1" To="Pressed"/>

</vsm:VisualStateGroup.Transitions>
<vsm:VisualState x:Name="Normal"/>
<vsm:VisualState x:Name="MouseOver">

<!-- changes background gradient to reflect mouse over state -->
</vsm:VisualState>
<vsm:VisualState x:Name="Pressed">

<!-- changes background gradient to reflect pressed and changes 
opacity of the DownStroke visual element -->

</vsm:VisualState>
<vsm:VisualState x:Name="Disabled">

<!-- changes opacity of DisabledVisual -->
</vsm:VisualState>

</vsm:VisualStateGroup>
<vsm:VisualStateGroup x:Name="FocusStates">

<vsm:VisualState x:Name="Focused">
<!-- makes FocusVisual visible -->

</vsm:VisualState>
<vsm:VisualState x:Name="Unfocused">

<!-- hides FocusVisual -->

CHAPTER 8 ■ STYLING AND TEMPLATING174



</vsm:VisualState>
</vsm:VisualStateGroup>

</vsm:VisualStateManager.VisualStateGroups>

The VisualTransition class has four properties that can specify the duration and behav-
ior of state transitions. Its properties are described in Table 8-1.

Table 8-1. Properties of System.Windows.VisualTransition

Property Type Description

GeneratedDuration TimeSpan Gets or sets the length of time the specified state transition
takes. This duration will affect the Storyboard specified in the
VisualState if none is specified here.

From string Gets or sets the starting state. If this property is not
specified, the transition will be from any state within the
state group to the state specified in the To property.

To string Gets or sets the name of the state to transition to.

Storyboard string Gets or sets the name of the storyboard that describes the
behavior of the state transition. If no storyboard is specified,
the Storyboard property of the VisualState class describes
the behavior.

The rest of the control template consists of a number of visual elements that, when combined,
create the full appearance of a default button. You can edit these visual elements directly using
Expression Blend. Figure 8-8 shows each element in the Objects and Timeline pane.

Figure 8-8. The visual elements that make up the Button control

These various visual elements are stored next to each other. Each state contains some-
thing called a Storyboard, which alters the appearance of different visual elements. We’ll take
a closer look at what the Storyboard class provides and how to use it in the next chapter. For

CHAPTER 8 ■ STYLING AND TEMPLATING 175



now, the important thing to note about the Storyboard is that it provides the capability to change
the value of any dependency property over a specified length of time.

Let’s now create a new button that looks like a jagged-lined bubble you might see in a comic
book. This could be useful for a comic-related site, an online store or modeling program, or any
site that’s on the whimsical side. The outline of the button is created in Expression Design using
the PolyLine. Figure 8-9 shows the outline of the button.

Figure 8-9. Jagged outline for the new button skin

The approach we will take for this button is to have separate visual elements for each
state. We’ll use a thin stroke for the default appearance and the mouseover, but thicken the
border when the button is pressed. When the button is hovered over, the fill will change from
light blue to light purple. Each visual appearance has a corresponding name that will be used
in the storyboards for the state transitions. Figure 8-10 shows a default button in Silverlight,
the new button as it appears normally, and the new button as it appears when pressed (from
left to right).

Figure 8-10. A default Silverlight button and the new button in two states

Here’s the corresponding XAML for the normal and pressed versions of the button:

<!-- Normal appearance of button -->
<Path x:Name="NormalAppearance" 

Stretch="Fill" StrokeThickness="2" 
StrokeLineJoin="Round" Data="...">

<Path.Fill>
<SolidColorBrush Color="#FFAACCEE"/>

</Path.Fill>
</Path>
<!-- Pressed appearance of button -->
<Path x:Name="PressedAppearance" Visibility="Collapsed" 

Stretch="Fill" StrokeThickness="4" 
StrokeLineJoin="Round" Data="...">

<Path.Fill>

CHAPTER 8 ■ STYLING AND TEMPLATING176



<SolidColorBrush Color="#FFE2CFF6"/>
</Path.Fill>

</Path>

Note that PressedAppearance has its Visibility initially set to Collapsed. This is the approach
used to change the appearance of the button: the versions we don’t want are hidden, and the
visual appearance corresponding to the state being transitioned to is shown. The disabled
state of the button still works with how we set the new button up, so we can leave that part of
the control template alone. The visual appearance when the button has focus features a black
rectangle surrounding the button, as shown on the right in Figure 8-10. The black rectangle is
illustrative of two states combined—you might want another visual indication of focus, but
this usually depends on the appearance of the other controls in your application, since it’s
generally good to maintain a degree of consistency.

The entire control template won’t be listed, but here’s what the transition to the Pressed
state looks like. A type of animation called object animation is used to modify an arbitrary
property of an object, in this case the Visibility property. The visual appearance of the
MouseOverAppearance and NormalAppearance states is hidden, and PressedAppearance is made
visible. Again, we’ll delve deeper into animation in the next chapter.

<vsm:VisualState x:Name="Pressed">
<Storyboard>

<ObjectAnimationUsingKeyFrames Duration="0" 
Storyboard.TargetName="PressedAppearance" 
Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>

<Visibility>Visible</Visibility>
</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Duration="0" 

Storyboard.TargetName="MouseOverAppearance" 
Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>

<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Duration="0" 

Storyboard.TargetName="NormalAppearance"  
Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>

<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>

CHAPTER 8 ■ STYLING AND TEMPLATING 177



</Storyboard>
</vsm:VisualState>

Control Templates for Other Controls
There are 16 controls that provide the ability to customize their control template. 

Button: The common states are normal, pressed, moused over, and disabled. The focus
states are focused and unfocused. 

Calendar: The common states are normal and disabled. The Calendar uses the DayButton
and MonthButton controls. The DayButton has five state groups: common (normal, disabled,
moused over, and pressed); selection (selected and unselected); focus (focused and not
focused); active (active and inactive); and day states (regular day and today). The Month-
Button shares similar states, but only uses the common, selection, focus, and active state
groups.

CheckBox: The common states are normal, moused over, pressed, and disabled. The
focus states are focused and unfocused. The check states are checked, unchecked, and
indeterminate.

DataGrid: The DataGrid provides normal and unfocused states. There are 11 states
defined on each row (for the DataGridRow class), 16 states for the DataGridRowHeader, 3 for
the DataGridColumnHeader, and 10 for each cell (for the DataGridCell class).

DataPicker: The common states are normal, disabled, moused over, and pressed.

GridSplitter: The common states are normal, moused over, and disabled. The focus states
are focused and unfocused.

HyperlinkButton: The common states are normal, moused over, pressed, and disabled.
The focus states are focused and unfocused.

ListBox: The ListBox control uses a ScrollViewer and the ListBoxItem classes. The ListBoxItem
defines eight states: common states (normal, moused over, and disabled); focus states
(focused and unfocused); and selection states (selected, unselected, and selected, but not
focus).

RadioButton: The common states are normal, moused over, disabled, and pressed. The
focus states are focused, unfocused, and content focused. The checked states are checked
and unchecked.

RepeatButton: The common states are normal, moused over, pressed, and disabled. The
focus states are focused and unfocused.

ScrollBar: The ScrollBar itself only has common states (normal, moused over, and disabled).
It consists of two sets of a template, two repeat buttons, and a thumb. One set is for verti-
cally oriented scrollbars and the other is for horizontally oriented scrollbars.

ScrollViewer: This has no states, but consists of a horizontal scrollbar, a vertical scrollbar,
and a content presenter class (ScrollContentPresenter).

CHAPTER 8 ■ STYLING AND TEMPLATING178



Slider: The common states are normal, moused over, and disabled. The focus states are
focused and unfocused. Much like the ScrollBar, the Slider consists of two sets of tem-
plates (one set for vertical orientation and the other for horizontal). Each set consists of
two repeat buttons and a thumb.

TabControl: The common states are normal and disabled. The tab control consists of
TabItem instances, each of which has common states (normal, moused over, and dis-
abled); focus states (focused and unfocused); and selection states (selected and unselected).

TextBox: The TextBox includes a normal state, a focused state, and a unfocused state.

ToggleButton: The common states are normal, moused over, pressed, and disabled. The
focus states are focused and unfocused. The check states are checked, unchecked, and
indeterminate.

Developing a Templated Control
If you want to create your own control, it’s a good idea to also make it compatible with control
templates. There are really only two things you must do: use the TemplateVisualState attribute
to specify state groups and states, and use the VisualStateManager class within the control’s
code to handle switching from one state to the next. Since you should be quite familiar with
the Button control, let’s look at the definition of the Button class:

[TemplateVisualState(Name = "Normal", GroupName = "CommonStates")]
[TemplateVisualState(Name = "MouseOver", GroupName = "CommonStates")]
[TemplateVisualState(Name = "Pressed", GroupName = "CommonStates")]
[TemplateVisualState(Name = "Disabled", GroupName = "CommonStates")]
[TemplateVisualState(Name = "Unfocused", GroupName = "FocusStates")]
[TemplateVisualState(Name = "Focused", GroupName = "FocusStates")]
public class Button : Control
{

// class implementation
}

The two properties of the TemplateVisualState attribute are used here. The groups and
states you specify define the behavior of the control. Try to use as few states as possible that
still completely define the behavior of your new control. Once these states are defined, the
other requirement is for your new control to switch states at the right time.

Some controls consist of other controls, such as the ScrollBar using the RepeatButton
control for its increasing/decreasing visual element.

[TemplatePart(Name="HorizontalRoot", Type=typeof(FrameworkElement)), 
TemplateVisualState(Name="Normal", GroupName="CommonStates"), 
TemplateVisualState(Name="Disabled", GroupName="CommonStates"), 
TemplatePart(Name="HorizontalLargeIncrease", Type=typeof(RepeatButton)), 
TemplatePart(Name="HorizontalLargeDecrease", Type=typeof(RepeatButton)), 
TemplatePart(Name="HorizontalThumb", Type=typeof(Thumb)), 
TemplatePart(Name="VerticalRoot", Type=typeof(FrameworkElement)), 
TemplatePart(Name="VerticalLargeIncrease", Type=typeof(RepeatButton)), 

CHAPTER 8 ■ STYLING AND TEMPLATING 179



TemplatePart(Name="VerticalLargeDecrease", Type=typeof(RepeatButton)), 
TemplatePart(Name="VerticalThumb", Type=typeof(Thumb)), 
TemplateVisualState(Name="MouseOver", GroupName="CommonStates")]
public sealed class ScrollBar : RangeBase
{

// ...
}

When you edit the control template of a control with template parts in Expression Blend
(via Edit a Copy), the control templates for each of the template parts are added as a resource
to the root layout container of the main control’s control template. The ScrollBar causes the
following XAML to be generated (most of the details are left out for brevity). Notice the series
of ControlTemplate elements added to the Grid’s resource dictionary.

<ControlTemplate TargetType="ScrollBar">
<Grid x:Name="Root">

<Grid.Resources>
<ControlTemplate x:Key="RepeatButtonTemplate" TargetType="RepeatButton">

<Grid x:Name="Root" Background="Transparent">
<vsm:VisualStateManager.VisualStateGroups>

<vsm:VisualStateGroup x:Name="CommonStates">
<vsm:VisualState x:Name="Normal"/>

</vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

</Grid>
</ControlTemplate>
<ControlTemplate x:Key="HorizontalIncrementTemplate" 

TargetType="RepeatButton">
</ControlTemplate>
<ControlTemplate x:Key="HorizontalDecrementTemplate" 

TargetType="RepeatButton">
</ControlTemplate>
<ControlTemplate x:Key="VerticalIncrementTemplate" 

TargetType="RepeatButton">
</ControlTemplate>
<ControlTemplate x:Key="VerticalDecrementTemplate" 

TargetType="RepeatButton">
</ControlTemplate>
<ControlTemplate x:Key="VerticalThumbTemplate" TargetType="Thumb">
</ControlTemplate>
<ControlTemplate x:Key="HorizontalThumbTemplate" TargetType="Thumb">
</ControlTemplate>

</Grid.Resources>
<vsm:VisualStateManager.VisualStateGroups>

<vsm:VisualStateGroup x:Name="CommonStates">
<vsm:VisualState x:Name="Normal"/>
<vsm:VisualState x:Name="MouseOver"/>
<vsm:VisualState x:Name="Disabled">

CHAPTER 8 ■ STYLING AND TEMPLATING180



<Storyboard>
<DoubleAnimationUsingKeyFrames 

Storyboard.TargetName="Root" 
Storyboard.TargetProperty="(UIElement.Opacity)">

<SplineDoubleKeyFrame KeyTime="00:00:00" Value="0.5"/>
</DoubleAnimationUsingKeyFrames>

</Storyboard>
</vsm:VisualState>

</vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>
<Grid x:Name="HorizontalRoot">

<!-- Grid definition and main controls -->
<RepeatButton x:Name="HorizontalSmallDecrease" ...>
<RepeatButton x:Name="HorizontalLargeDecrease" ...>
<Thumb MinWidth="10" x:Name="HorizontalThumb" ...>
<RepeatButton x:Name="HorizontalLargeIncrease" ...>
<RepeatButton x:Name="HorizontalSmallIncrease" ...>

</Grid>
<Grid x:Name="VerticalRoot" Visibility="Collapsed">

<!-- vertical appearance of ScrollBar -->
</Grid>

</Grid>
</ControlTemplate>

When you develop a control, the state changes are accomplished using the 
VisualStateManager’s GoToState method. This method takes three parameters: a reference to
a control, the name of the state to transition to, and a boolean value specifying whether to use
the visual transition specified by the Storyboard in the control template. For example, in the
Button control, when the button handles the MouseOver event, it triggers a state transition,
accomplished by invoking the VisualStateManager.

VisualStateManager.GoToState(this, "MouseOver", true);

By using the two attributes, TemplateVisualState and TemplatePart, and handling the state
transitions within your custom control via the GoToState method of the VisualStateManager,
you can easily create a control that isolates its behavior and allows designers and developers to
completely change the look of your control. Of course, if you create a new control that supports
control templates, you must create a default control template if you expect others to consume
the control.

Summary
This chapter covered styles and control templates. Styles make reusing properties easy, through-
out a single page or an entire application, depending on which resource dictionary contains the
styles. Control templates are a mechanism to completely change the visual appearance of a con-
trol. This chapter also briefly covered developing custom controls to utilize a control template,
and using the Storyboard class, a vital part of animation and the topic for the next chapter.

CHAPTER 8 ■ STYLING AND TEMPLATING 181



Animation

When it comes to making user interfaces that make people go “wow,” you have many of the
pieces of the puzzle: media (video/audio/images), brushes to easily create interesting surfaces,
and a set of controls that can be completely reskinned. There’s one final big piece to the user inter-
face support in Silverlight: animation. Silverlight makes it easy to make elements of user interfaces
move, and when you put together the various components into a full application, you end up
with something quite interesting. Any dependency property can potentially be influenced by
animation. If you give some thought to the various properties discussed throughout this book,
such as transforms and brushes, it’s possible to start coming up with a variety of creative effects
to jazz up a user interface. For example, by shifting offsets in gradient stops, a gradient can
appear to move from one side of the surface it is filling to the other side, creating a shimmer
effect. This chapter will delve into how to use animation and also discuss the support Expres-
sion Blend provides for working with animation.

Animation Basics
At its most basic, animation is the modification of a property value over time, usually a property
that has a visual effect. If you place a rectangle on a canvas and set its Canvas.Left property to
the width of the canvas, and then decrement the Canvas.Left property until it reaches zero,
the rectangle will seem like it is moving from off the right side of the canvas to the far left. The
animation is made up of one frame per change to the Canvas.Left property, but because the
rectangle is repositioned and updated quickly, it seems to the human eye like the rectangle is
moving smoothly from one side to the other. This is the illusion of animation that we are wit-
ness to on a daily basis when we watch television or movies or play video games.

If we simply specified the starting and ending points for the Canvas.Left property, the
rectangle could move at its own merry pace. Perhaps it would take 1 second or 10 minutes. Of
course, this isn’t suitable, since we want to create predictable animation within user interfaces.
This is accomplished using something called a timeline, which represents a segment of time
(e.g., 10 seconds). Figure 9-1 illustrates a 10-second timeline over which the Canvas.Left prop-
erty changes from 500 to 0. Notice that at the midway point (5 seconds), Canvas.Left is exactly
halfway between its starting value (500) and its ending value (0). For the purpose of this anima-
tion, the property value changes in direct relation to time elapsed, which is known as a linear
animation (technically, it’s a linear interpolation of the property value, but we’ll get to that in a bit).

183

C H A P T E R  9



Figure 9-1. Timeline showing the Canvas.Left animation over 10 seconds

Timelines
In Silverlight, the System.Windows.Media.Animation.Timeline class represents a timeline and
forms the base class for the various types of animations (shown in Figure 9-2). The two types
of animation Silverlight provides are from/to/by and keyframe. From/to/by animations make it
easy to specify the start and end values for a property. Keyframe animations, however, provide
much more control because each keyframe specifies a property’s value at a specific time. All
animations happens over a length of time. The base Timeline class provides time-related behav-
ior to inheritors, featuring a number of properties controlling duration, repeat behavior, and
the speed at which time elapses.

Figure 9-2. Timeline-related animation classes

CHAPTER 9 ■ ANIMATION184



The Timeline class defines six properties that influence how time is represented and
manipulated. These properties are listed in Table 9-1.

Table 9-1. Properties of System.Windows.Media.Animation.Timeline

Property Type Description

AutoReverse bool If true, the animation will happen once and
then repeat once in the reverse direction. For
more than a single reverse, also use
RepeatBehavior.

BeginTime Nullable<TimeSpan> If this property is null, it indicates there is no
BeginTime. This property can be used to stack
animations back to back, so if one animation
takes 2 seconds, the BeginTime of the second
animation can be set to 2s so that it starts
immediately after the first.

Duration Duration This represents the duration of a single sequence
of the animation.

FillBehavior Animation.FillBehavior This specifies what happens when an animation
hits its end. Set this to HoldEnd to make the
animation maintain its final value, or to Stop
to make the animation stop when it reaches its
end.

RepeatBehavior Animation.RepeatBehavior This specifies how many times the timeline
repeats (or if it should repeat forever) and the
total length of time.

SpeedRatio double This specifies the rate of time the current
timeline elapses relative to its parent. The
default value is 1, which means, for example,
that 5 seconds equates to 5 seconds.

The Timeline class also provides a single event, Completed, that fires when the timeline
has reached its end. Timeline’s properties provide a wide range of capabilities in how time is
managed and consequently how animation occurs. There are some subtleties in how the
properties work together and how a parent timeline can affect a child timeline, so we need to
dig deeper into how these properties work. 

AutoReverse
The AutoReverse property causes the animation to happen in reverse after the animation
reaches its end, much like rewinding a tape in a VCR while it is still playing. Figure 9-3 shows
what using this property by itself does to a timeline. Note that the forward iteration happens
once, the reverse iteration happens once, and then the timeline stops.

CHAPTER 9 ■ ANIMATION 185



Figure 9-3. Illustration of the AutoReverse property

BeginTime
The BeginTime property is used to delay the start of the timeline. When the timeline is started
(such as by starting an animation), the current value of this property is used, so this can be
changed after a timeline is stopped but before it is restarted. Figure 9-4 illustrates the BeginTime
property.

Figure 9-4. Illustration of BeginTime’s effect on a timeline

■Note The BeginTime property is of type TimeSpan. This type specifies a length of time measured in
days, hours, minutes, seconds, and fractions of a second. The XAML syntax to specify a TimeSpan takes the
form of [days.]hours:minutes:seconds[.fractional seconds]. The days and fractional seconds are
optional and are separated from their nearest neighbor by a period instead of a colon. Hours, minutes, and
seconds, however, are mandatory.

Again, we have a 10-second timeline, but there is a 3-second delay. The timeline automat-
ically lengthens by the addition of BeginTime and the timeline’s Duration. In this case, a 10-second
timeline becomes a 13-second timeline. Since the timeline is used for animation, you can see
the begin time as measure of time to delay before the animation starts. This makes it possible
to place timelines back to back and cause them to execute in sequence by setting the BeginTime
of the next timeline to the length of time it takes for all previous timelines to complete.

It is also possible to specify a negative BeginTime. Doing this provides a way to start the
animation at a specified point later in the timeline than its true beginning. For example,
a 10-second timeline with a BeginTime of 0:0:-2 starts the timeline at 2 seconds, as if the timeline

CHAPTER 9 ■ ANIMATION186



started at the specified time in the past. This would cause the 10-second timeline to be active
only for 8 seconds.

Duration
The Duration property represents the timeline of a single iteration. This property is of the special
type System.Windows.Duration. While the Duration type can represent a time span (and uses
the same syntax as any property of type TimeSpan when specified in markup), you can also set
a property of this type to the special value Automatic. The effects of using Automatic differ depend-
ing on whether this property is used on a Storyboard (a Storyboard contains one or more
animations, and will be discussed shortly) or on a specific animation. When set on a Storyboard,
Automatic causes Duration to be set to the length of time for all the animations it contains put
together. For animations, Automatic causes Duration to be set to 1 second (0:0:1). The 1-second
default ensures that the animation does something, despite its brevity. You’ll rarely if ever use
the Automatic value on animations directly. Figure 9-5 highlights the Duration section of the
previous timeline.

■Caution The value Forever can also be specified for properties of type Duration, but this property
value is deprecated; do not use it. See the “RepeatBehavior” section of this chapter for details on how to
cause an animation to run continuously.

Figure 9-5. Illustration of Duration combined with BeginTime

FillBehavior
An animation’s active period—also known as the animation’s fill period—is the time during
which the animation is happening. The FillBehavior property specifies what happens when
the end of the fill period is reached. It can be set to two values: Stop and HoldEnd. When set to
HoldEnd, the animation appears to freeze in its final state. For our original moving rectangle
example, this means that the rectangle would stop at the left side of the screen, holding its final
property value from the animation. The value Stop, however, causes the animation to freeze in
its initial state instead of its final state. For our rectangle, this means that after the rectangle
reaches the left side, it disappears (since it started completely off the right side of the canvas).

RepeatBehavior
RepeatBehavior, as its name implies, controls how the timeline repeats. It can take one of
three forms: a time span, an iteration count, or the special property value Forever (which

CHAPTER 9 ■ ANIMATION 187



causes the repetition to happen continuously). The RepeatBehavior property is of the type
Animation.RepeatBehavior, which has two properties that specify the exact repeat behavior:
Count and Duration. The Count property is of type double and specifies the number of times
the timeline should repeat. Since this is a double property, it’s possible to repeat a fraction of
the timeline by specifying a value (e.g., 1.5). To specify the Count property in XAML, the prop-
erty value must be followed by x (e.g., 1.5x) to indicate that the timeline repeats a full iteration
and a half. There is also a boolean property, HasCount, which is set to true if the RepeatBehavior
represents a Count.

The Duration property is the other means used to specify a repeat behavior. This property
is of type Duration and is used to specify the total time to run the animation. If the duration of
the repeat is longer than the duration of the timeline, the timeline will continue until the length
of the repeat behavior’s duration. If the repeat’s duration is shorter, however, the timeline will
stop before reaching its end. For example, if the Duration of the RepeatBehavior property is set
to 0:0:5 and the timeline’s duration is 0:0:2, the timeline will repeat one and a half times. 

There is also a HasDuration property that is set to true when the Duration is specified. It is
also possible to set RepeatBehavior to Forever, which represents an animation that continuously
repeats.

SpeedRatio
The SpeedRatioproperty is used to increase or decrease the rate at which time elapses within a time-
line. When this value is greater than 1.0 (its default value), the time elapses faster. Likewise, values
less than 1.0 cause the timeline to elongate. See Figure 9-6 for a representation of our 10-second
timeline sped up and slowed down. The total length of time for a timeline with this property set (and
the other properties set to their defaults) is its Durationmultiplied by the SpeedRatio.

Figure 9-6. Illustration of different SpeedRatio values

CHAPTER 9 ■ ANIMATION188



If we put all these properties together (disregarding a RepeatBehavior set to Forever), the
total time it takes for an animation is described by the formula shown in Figure 9-7.

Figure 9-7. Formula describing total time span of a timeline

Now that you’re familiar with how timelines can be represented and manipulated, it’s time
to see exactly what the animation classes bring to the table beyond the inherited timeline sup-
port. As mentioned, there are two types of animation: from/to/by and keyframe. From/to/by
animations are simpler and are used to alter a single property value over time. They are limited
to certain data types, however, which were shown in Figure 9-2. Keyframe animations provide
much more capability since you can specify the values you want at different points in time.
Also, the values can shift between frames in more than just a linear fashion.

Storyboards and Animation
The Storyboard class also inherits from Timeline. This is a special class used as a container for
other animations. Its timeline represents a length of time corresponding to the combination
of all the timelines in animations stored in the storyboard (if left unspecified) or a length of
time that constrains the total animation runtime. The most important aspects to this class are
its methods to begin, stop, pause, and resume the animation. These, along with the other meth-
ods of the class, are described in Table 9-2.

Table 9-2. Methods of System.Windows.Media.Animation.Storyboard

Method Description

Begin Starts the animation with the first timeline in the storyboard.

GetCurrentState Returns a ClockState enumeration value. Possible states are Active (the
animation is active and is changing in direct relation to its parent
timeline), Filling (the animation is active but not changing in direct
relation to its parent—e.g., it might be paused), and Stopped.

GetCurrentTime Returns a TimeSpan value corresponding to the current time in the
storyboard’s timeline.

Pause Pauses the current storyboard’s timeline. Call Resume to unpause the
timeline.

Resume Resumes the current storyboard’s timeline.

Seek Accepts a TimeSpan value corresponding to the time in the storyboard’s
timeline to move to. This can be done while an animation is active or
inactive. The seek operation happens on the next clock tick.

Continued

CHAPTER 9 ■ ANIMATION 189



Table 9-2. Continued

Method Description

SeekAlignedToLastTick Same as Seek, but the seek operation happens relative to the last clock tick.

SkipToFill Changes the frame of the animation to the end of the storyboard’s
active period. If AutoReverse is true, the end of the active period is the
initial frame of the animation. If RepeatBehavior is Forever, using this
method throws an InvalidOperation exception.

Stop Stops the animation.

Since the Storyboard class isn’t particularly interesting by itself, you’ll see it in action
when we take a closer look at the animation classes.

From/To/By Animations
The simplest form of animation is generally referred to as from/to/by because of its nature.
The “from” and “to” in its name refer to the fact that these animations modify a target prop-
erty’s value starting at the “from” value and ending at the “to” value (not taking into account
different configurations of the timeline). The By property provides a relative offset controlling
where the animation ends, and is ignored if combined with the To property. Each of these
properties can be used by themselves. Table 9-3 describes different configurations of these
properties and how they control the timeline.

Table 9-3. Usages of From/To/By Properties

Property Description

From This specifies the starting value of the property to animate. The animation stops at
the base value of the target property or at the final value of the target property
from a previous animation.

To The target property’s value starts at its base value or its final value from a previous
animation. It finishes at the value specified in the To property.

By The target property’s value starts at its base value or its final value from a previous
animation. The final value of the target property is its initial value added to the
value specified in the By property.

From/To This specifies the initial (“from”) and final (“to”) values of the target property.

From/By This specifies the initial value of the target property (From) and an offset value used
to calculate the target property’s final value (From + By).

From/To/By This is the same as specifying From/To. The value of To overrides By.

Since we’ve been using it often as an example, let’s take a look at how the moving rectan-
gle is animated using XAML. Nothing interesting is going on with the rectangle itself. We give it
a name, a position, a size, and a fill:

<Rectangle x:Name="rect" Width="25" Height="25" Canvas.Left="370" 
Canvas.Top="270" Fill="Black"/>

CHAPTER 9 ■ ANIMATION190



Then we give the Storyboard name so that it can be referenced in the code-behind:

<Storyboard x:Name="rectAnimation">
<DoubleAnimation Storyboard.TargetName="rect" Duration="0:0:2"

Storyboard.TargetProperty="(Canvas.Left)" 
From="370" To="5" />

</Storyboard>

DoubleAnimation is a type of animation used to modify properties of type double. The
other two from/to/by animation classes exist to animate points (PointAnimation) and colors
(ColorAnimation). Nothing particularly complicated is going on in this example—TargetName
refers to the object to animate and TargetProperty is the property to animate. You should be
familiar with Duration, From, and To. 

■Caution If you set a Duration on a storyboard that is less than the length of time of the animations the
storyboard contains, the animations will not have a chance to run to completion. While this should come as
no surprise, it has repercussions when you don’t specify the Duration on the animations within the story-
board. Individual animations default to 1 second, so a storyboard with a Duration of less than 1 second will
cause behavior that might be unexpected if you’re unprepared.

■Caution Attempting to animate a single target property using multiple animations within a single story-
board will cause the animation to fail (and possibly your application to crash if you don’t handle the exception).
This happens even if you stagger the animations using the BeginTime property. If you want to stagger anima-
tions of a specific property, place them in different storyboards and handle the Completed event to transition to
the next storyboard automatically.

You should take note of how the TargetProperty adheres to the property path syntax. The
simplest property path is the name of a dependency property on the object specified in
TargetName. Take, for example, the Width property:

TargetPropery = "Width"

If you want to specify an attached property, however, it must be surrounded by parenthe-
ses. This was shown earlier with the Canvas.Left property:

TargetProperty = "(Canvas.Left)"

The object to the left of the dot can be qualified with an XML namespace prefix if the class is
not located in the default XML namespace. The property to the right of the dot must be a depend-
ency property. If you want to access a subproperty, you can use the parentheses to surround
a Type.Property string before accessing the subproperty. For example, if you want to use
a ColorAnimation to change the background of our moving rectangle, you can specify it using
either of the following syntaxes for TargetProperty:

TargetProperty = "(Rectangle.Fill).Color"
TargetProperty = "(Rectangle.Fill).(SolidColorBrush.Color)"

CHAPTER 9 ■ ANIMATION 191



The second syntax simply adds the extra qualification to the Color property. This syntax
illustrates how to specify other subproperties if they are needed. A final syntax for property
paths is required for animating elements such as gradient stops that require indexing:

TargetProperty = "GradientStops[0].Offset"

As previously shown, the three types of properties you can animate with from/to/by ani-
mations are doubles, Points, and Colors. None of these classes provide any specific properties
unique to them, and having seen XAML throughout this book, you should be familiar with the
property syntaxes for these types. The important thing to keep in mind is that from/to/by ani-
mations provide a linear interpolation of values, meaning that the rate at which animation
happens is the difference between the initial and final property value during a single iteration,
divided by the duration of a single iteration. That is, the rate of change is constant throughout
the entire duration of the animation. If you want more control over the animation or the pos-
sibility of differing rates of change, Silverlight provides something called a keyframe animation,
which will be discussed in the next section.

Let’s make the rectangle animation a little more complicated. In the next example, the
rectangle will make a circuit around its host canvas and slowly spin as it goes around. While
this implies two logical animations, it requires five actual animations (one for each side of the
canvas and one for the rotation) and three storyboards (two for the circuit, since we can’t ani-
mate the same property twice within a storyboard, and one for the rotation).

■Note Many of the animation examples use the Canvas.Left and Canvas.Top attached properties to
change an object’s position during animation. In more complete applications, this is a poor approach
because it assumes the object being animated is within a Canvas and that the position uses absolute coordi-
nates. A much better approach to animating the position and size of objects is to animate the properties of
a TranslateTransform and a ScaleTransform that belong to the object being animated.

<Storyboard x:Name="rectAnimBottomLeft"
Completed="rectAnimBottomLeft_Completed">

<DoubleAnimation Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Left)"
From="370" To="5" Duration="0:0:2" />

<DoubleAnimation Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Top)"
From="270" To="5" Duration="0:0:2" BeginTime="0:0:2"/>

</Storyboard>
<Storyboard x:Name="rectAnimTopRight" Completed="rectAnimTopRight_Completed">

<DoubleAnimation Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Left)"
From="5" To="370" Duration="0:0:2"/>

<DoubleAnimation Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Top)"
From="5" To="270" Duration="0:0:2" BeginTime="0:0:2" />

</Storyboard>

CHAPTER 9 ■ ANIMATION192



<Storyboard x:Name="rectRotationAnim">
<DoubleAnimation Storyboard.TargetName="rect" 

Storyboard.TargetProperty="(Rectangle.RenderTransform).Angle" 
From="0" To="360" RepeatBehavior="Forever" Duration="0:0:4" />

</Storyboard>

Each animation is controlled by its own Start/Stop and Pause/Resume button:

<StackPanel Orientation="Horizontal" 
Grid.Row="0" Grid.Column="0" Background="White">

<StackPanel Orientation="Vertical">
<TextBlock FontSize="14">Movement Animation</TextBlock>
<StackPanel Orientation="Horizontal" Margin="15 0 0 0">

<Button Content="Start" x:Name="movementStartStopButton" 
Margin="2" Width="40" 
Click="movementStartStopButton_Click"/>

<Button Content="Pause" x:Name="movementPauseResumeButton" 
Margin="2" Width="60" 
Click="movementPauseResumeButton_Click"/>

</StackPanel>
</StackPanel>
<StackPanel Orientation="Vertical" Margin="15 0 0 0">

<TextBlock FontSize="14">Rotation Animation</TextBlock>
<StackPanel Orientation="Horizontal" Margin="10 0 0 0">

<Button Content="Start" x:Name="rotationStartStopButton" 
Margin="2" Width="40" 
Click="rotationStartStopButton_Click"/>

<Button Content="Pause" x:Name="rotationPauseResumeButton" 
Margin="2" Width="60" Click="rotationPauseResumeButton_Click"/>

</StackPanel>
</StackPanel>

</StackPanel>

We define the Completed event handlers in order to track which of the movement anima-
tions is currently executing.

■Caution Never invoke the Begin method in a constructor. The animation will not start and you will not
get any feedback detailing why. Instead, handle the Loaded event of the UserControl or a layout container,
and then invoke Begin.

private void rectAnimBottomLeft_Completed(object sender, EventArgs e)
{

current = rectAnimTopRight;
rectAnimTopRight.Begin();

}

CHAPTER 9 ■ ANIMATION 193



private void rectAnimTopRight_Completed(object sender, EventArgs e)
{

current = rectAnimBottomLeft;
rectAnimBottomLeft.Begin();

}

The start/stop and pause/resume functionality for each animation are similar. Here’s the
pause/resume button click handler. We need to check whether the animation is running and
whether it’s paused (in order to build the expected behavior into the buttons).

private void movementPauseResumeButton_Click(object sender, RoutedEventArgs e)
{

if(current.GetCurrentState() != ClockState.Stopped && !movementPaused)
{

current.Pause();
movementPauseResumeButton.Content = "Resume";
movementPaused = true;

}
else
{

current.Resume();
movementPauseResumeButton.Content = "Pause";
movementPaused = false;

}
}

Animation does not need to always happen in the foreground. We can create a shimmer-
ing effect in the background by changing gradient offsets in a linear gradient brush that is used
as the background for a Canvas. We also handle the Loaded event of the Canvas in order to start
the animation.

<Canvas x:Name="LayoutRoot" Loaded="LayoutRoot_Loaded">
<Canvas.Background>

<LinearGradientBrush x:Name="background" StartPoint="0,1" EndPoint="1,0">
<GradientStop Color="#FF000000"/>
<GradientStop Color="#FFAAAAAA"/>
<GradientStop Color="#FF000000"/>

</LinearGradientBrush>
</Canvas.Background>
<Rectangle Width="350" Height="250" Canvas.Left="25" 

Canvas.Top="25" Fill="Beige"/>
</Canvas>

The animation changes the offsets for each gradient stop evenly over the duration of the
animation (1 second). The storyboard’s duration is set to 5 seconds so that the shimmering effect
doesn’t immediately repeat. If it did, it would make the shimmering effect far less effective.

<Storyboard x:Name="shimmer" Duration="0:0:5" RepeatBehavior="Forever">
<DoubleAnimation Storyboard.TargetName="background" 

Storyboard.TargetProperty="GradientStops[0].Offset"

CHAPTER 9 ■ ANIMATION194



From="-0.2" To="1.0" Duration="0:0:1" />
<DoubleAnimation Storyboard.TargetName="background" 

Storyboard.TargetProperty="GradientStops[1].Offset"
From="-0.1" To="1.1" Duration="0:0:1" />

<DoubleAnimation Storyboard.TargetName="background" 
Storyboard.TargetProperty="GradientStops[2].Offset"
From="0" To="1.2" Duration="0:0:1" />

</Storyboard>

Let’s look at a more complicated example: the classic sliding puzzle game that is commonly
given out as children’s party favors. Figure 9-8 shows an example.

Figure 9-8. Sliding puzzle game

This example uses the By property of the animation to perform relative positional animation:

<Storyboard x:Name="horizStoryboard" Completed="horizStoryboard_Completed">
<DoubleAnimation x:Name="horizAnimation" Duration="0:0:0.5" 

Storyboard.TargetProperty="(Canvas.Left)"/>
</Storyboard>
<Storyboard x:Name="vertStoryboard" Completed="vertStoryboard_Completed">

<DoubleAnimation x:Name="vertAnimation" Duration="0:0:0.5" 
Storyboard.TargetProperty="(Canvas.Top)"/>

</Storyboard>

Notice how barren the animations are in this case. Since only one animation can be active
at a time, we can take the shortcut of defining only one animation per property: one for the block
moving horizontally and the other for it moving vertically. Nothing else related to the sliding
blocks in this game is defined in the XAML—the rest is done programmatically to make it easy
to track the blocks. Each block is represented by a Canvas with a white background and con-
taining a gray rectangle and a TextBlock to display the number. The Tag property of the Canvas
stores an index corresponding to the correct position on the board (the Tag property is set to
null for the empty block). You can explore the rest of the game logic in the SlidingGame.xaml.cs

CHAPTER 9 ■ ANIMATION 195



file from the code for this chapter. What we are interested in is the actual animation of the
blocks. The two animations (horizontal and vertical) use code with similar structure, so we’ll
just examine the vertical animation:

if (emptyCol == col)
{

if (emptyRow == row – 1 || emptyRow == row + 1)
{

Storyboard.SetTarget(vertStoryboard, currentCanvas);
vertAnimation.By = boardHeight / 4;
if (emptyRow < row)

vertAnimation.By *= –1;

vertInMotion = true;
vertStoryboard.Begin();

}
}

The first if ensures that the animation will be vertical (we know the empty block is above
or below since it’s the row that differs between the empty block and the block clicked), and the
second if ensures that the block clicked is only one space away from the empty block. Once
we’ve verified that the move is valid, we set the target of the vertical animation’s storyboard.
The Storyboard.SetTarget method provides an easy way to set the target of an animation to
an object. This is a convenient method when working in the code-behind. In XAML, this can
only be accomplished by setting the target object’s name. After setting the target, we set the By
property of the animation. It starts out with a positive value, but if the empty space is above
the clicked block, the property value must decrease in value, so we multiply by –1 to make the
By property negative.

There's one tricky aspect of reusing the animations defined in the XAML on different tar-
gets: the Storyboard must be stopped before a new target can be set (specifically, setting either
TargetName or TargetProperty required a stopped Storyboard). However, if the Storyboard is
stopped, the TargetProperty property will revert to its original value (even if FillBehavior is set to
HoldEnd). To get everything working, code must be placed in an animation completed event
handler to stop the Storyboard and set the target object's property to its correct final value.
Here's the event handler for the vertical animation.

private void vertStoryboard_Completed(object sender, EventArgs e)
{

// Get the final value for the Canvas.Top property
double yPosition = (double)currentCanvas.GetValue(Canvas.TopProperty);

// Stop the Storyboard
vertStoryboard.Stop();

// Set the Canvas.Top property to the final value
currentCanvas.SetValue(Canvas.TopProperty, yPosition);

vertInMotion = false;
}

CHAPTER 9 ■ ANIMATION196



Keyframe Animations
Keyframe animations provide significant capabilities over the simpler from/to/by animations.
Instead of specifying a starting and ending value and letting the animation smoothly change
the target property’s value over the animation’s duration, keyframe animations instead specify
the desired value at two or more points in time. Each specification of a property value is known
as a keyframe: a moment in time when you want a property to take on a certain value. The way
the value changes during each keyframe is called interpolation. Keyframe animation supports
interpolations more complicated than the linear interpolations used by from/to/by animations.
Keyframe animations also have another important advantage: from/to/by animations can
only animate Points, doubles, and Colors, while keyframe animations can animate arbitrary
properties using the ObjectAnimationUsingKeyFrames class.

A keyframe is a snapshot of a particular property at a specific moment in time. Instead of
specifying the starting and ending values of a property using a single animation class, you spec-
ify each value of the property you want within a keyframe class. The specific keyframe classes
correspond to the property type and interpolation method, which we will discuss shortly. Taking
our rectangle from earlier, let’s animate it so it moves in a straight line up and down. Figure 9-9
shows what each keyframe looks like.

Figure 9-9. Snapshots of the three keyframes for animating the rectangle

The DoubleAnimationUsingKeyFrames class acts as a container for keyframes. There’s one
animation class per property type, as shown in Figure 9-2. LinearDoubleKeyFrame uses linear
interpolation while it is active.

<Storyboard x:Name="rectAnimation">
<DoubleAnimationUsingKeyFrames 

Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Top)" 
RepeatBehavior="Forever">

<LinearDoubleKeyFrame Value="240" KeyTime="0:0:0"/>
<LinearDoubleKeyFrame Value="25" KeyTime="0:0:3"/>
<LinearDoubleKeyFrame Value="240" KeyTime="0:0:6"/>

</DoubleAnimationUsingKeyFrames>
</Storyboard>

CHAPTER 9 ■ ANIMATION 197



Each keyframe specifies the value of the target property at the time specified in the KeyTime
property. Since the KeyTime is 0:0:0 in the first keyframe, the target property is set to 240 when
the animation begins. If a keyframe is not specified with a KeyTime of 0, the target property uses
whatever its current value is, which might be the result of a previous animation or the property’s
local value.

Interpolation
Interpolation is the process of calculating the set of property values between two known val-
ues. As the timeline advances, the property changes to a value within this set. There are three
types of interpolation available for use with keyframe animation: linear, discrete, and spline.
The way interpolation works is by using a function that describes a line/curve from (0,0) to (1,1).
Linear interpolation uses a diagonal line, as shown in Figure 9-10. If you think back to freshman-
level calculus, you’ll recall that the derivative of a function describes its rate of change. The
linear interpolation function is y = C × f(x), where C is a constant and the derivative is a hori-
zontal line, also shown in Figure 9-10. Unsurprisingly, this describes a constant rate of change.
The coordinate space, although it runs from 0 to 1 in both axes, maps to any timeline/property
value range. For example, if a timeline has a duration of 10 seconds, 5 seconds corresponds
to x = 0.5 on the graph, and 10 seconds corresponds to 1. This coordinate space will be useful
when we look at spline interpolation.

Figure 9-10. Graph of linear interpolation and its rate of change

You have already seen linear interpolation in action, since it is the only interpolation sup-
ported in from/to/by animations.

Discrete interpolation is even simpler than linear interpolation. The property value can
have one of two values: its initial or its final value. As long as the current keyframe is active, the
property has its initial value. The target property immediately changes to its final value when
the end of the keyframe is reached. This might seem useless at first thought, since if a property
can only assume one of two values, where’s the animation? However, there are two main advan-
tages to using discrete interpolation: it’s a convenient way to hold a specific value for a length
of time, and it’s the only way to animate properties of types other than Point, double, and Color.

Let’s use ObjectAnimationUsingKeyFrames to change an image used in an animation. This
will change the Visibility property of two images to only show one image at a time. The two
images are animated simultaneously to make it easy to switch between them simply by chang-
ing the Visibility.

CHAPTER 9 ■ ANIMATION198



<DoubleAnimationUsingKeyFrames 
Storyboard.TargetName="ballImageUp" 
Storyboard.TargetProperty="(Canvas.Top)">

<LinearDoubleKeyFrame Value="300" KeyTime="0:0:0"/>
<LinearDoubleKeyFrame Value="25" KeyTime="0:0:1"/>
<LinearDoubleKeyFrame Value="300" KeyTime="0:0:2"/>

</DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames 

Storyboard.TargetName="ballImageDown" 
Storyboard.TargetProperty="(Canvas.Top)">

<LinearDoubleKeyFrame Value="300" KeyTime="0:0:0"/>
<LinearDoubleKeyFrame Value="25" KeyTime="0:0:1"/>
<LinearDoubleKeyFrame Value="300" KeyTime="0:0:2"/>

</DoubleAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames 

Storyboard.TargetName="ballImageUp" 
Storyboard.TargetProperty="Visibility">

<DiscreteObjectKeyFrame KeyTime="0:0:0">
<DiscreteObjectKeyFrame.Value>

<Visibility>Visible</Visibility>
</DiscreteObjectKeyFrame.Value>

</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:1">

<DiscreteObjectKeyFrame.Value>
<Visibility>Collapsed</Visibility>

</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
<DiscreteObjectKeyFrame KeyTime="0:0:2">

<DiscreteObjectKeyFrame.Value>
<Visibility>Visible</Visibility>

</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>

</ObjectAnimationUsingKeyFrames>

The animation for the other image is similar, but the Visibility values are opposite to
those used in this XAML. The property element syntax for this keyframe’s Value is used to ani-
mate different property types.

The final interpolation method is the most complex. Spline interpolation provides a mecha-
nism to alter the rate at which the property value changes at different points during the time
a keyframe is active. This means that Silverlight makes it easy to create some sophisticated
animations, such as an object that starts out moving slowly and increases its speed over the
length of the animation. Let’s look at one example of modeling an object that changes its veloc-
ity over the course of its total movement. Imagine a single car in motion between two stoplights,
as shown in Figure 9-11.

CHAPTER 9 ■ ANIMATION 199



Figure 9-11. Illustration of a car’s acceleration and deceleration segments

The car begins at a full stop and then the first light turns greens. The car’s speed increases
for a while, but as it approaches the second stoplight, the car must slow down before finally
coming to a full stop again. The car’s speed can be modeled using the Bezier curve shown in
Figure 9-12.

Figure 9-12. Bezier curve describing the acceleration and deceleration of the car

A Bezier curve is what the spline interpolation process uses to describe the varying rate of
change. Keep in mind this curve describes the values of the property over time. Bezier curves
were briefly mentioned in Chapter 7, but let’s take a closer look at how they work so it’s clear
how spline interpolation can be used. The type of Bezier curve used by spline interpolation is
a cubic Bezier with two control points, so the cubic Bezier curve is defined by four points, includ-
ing the endpoints. If P1 and P4 are the endpoints, and P2 and P3 are the control points, the
Bezier curve is a line that connects P1 to P4 but is pulled toward P2 and P3 in order to create
the curve. The control points are not necessarily touched by the curve. If you set P2 and P3 to
points along the line from P1 to P4, such as setting them to (0.25,0.25) and (0.75,0.75), the
Bezier curve is a straight line and the animation is effectively using linear interpolation. 

The Bezier curve to model the car in Figure 9-12 used the control points (0.9,0.25) (0.1,0.75).
The code in this chapter includes a plot of the Bezier curve along with our famous rectangle

CHAPTER 9 ■ ANIMATION200



moving in a straight line (on top of a line that marks the full path of the rectangle). Figure 9-13
shows this curve and the rectangle in its starting position.

Figure 9-13. Rectangle animated using spline interpolation, and the curve plotted

You can divide this Bezier curve into two regions: the first curvy segment (from x = 0 to x = 0.5)
and the second curvy segment (from x = 0.5 to x = 1). The first segment starts out with a subtle
curve that corresponds to a slowly increasing rate of movement (it’s not quite straight along
a diagonal, so the rate is not constant). After the bend, the curve is quite steep up to the center
point, corresponding to a fast rate of change. The second curvy segment is the mirror opposite
of this: the movement continues quickly and suddenly starts slowing down before coming to
a complete stop (when the final value of the property is reached). 

If you want to figure out the curve that describes the animation you desire, you have sev-
eral options. There are tools online that can assist, since Bezier curves are a popular approach
to modeling animation. You can experiment using the code in this chapter (and possibly extend-
ing the code) by plugging in control points and using the Plot Bezier Curve button to preview
the animation curve. You can also take out the trusty pen and paper and draw a curve that you
think will work, roughly determine the control points, and then experiment. (The derivative
for Bezier curves to show the rate of change, while interesting, is left as an exercise for you.) 

There’s one more way to determine the curve: using Expression Blend’s built-in animation
editor, which is covered next.

Animating with Expression Blend
Expression Blend makes it easy to create animation using its built-in timeline editor. You may
have noticed the Timeline part of the Objects and Timeline section, and now you know exactly
what it means. 

In Expression Blend, let’s animate another rectangle. Create a new UserControl and place
a rectangle on the design surface. Next, click the plus sign next to the “(No Storyboard open)”
text, as shown in Figure 9-14.

CHAPTER 9 ■ ANIMATION 201



Figure 9-14. The Objects and Timeline pane in Expression Blend

Once you click the plus sign, a dialog appears asking for a name for the storyboard. Give it
the name rectangleAnimation. The user interface will change in several ways. First, a red out-
line will surround the design surface and the text “Timeline recording is on” will appear. Next,
the timeline editor will open, as shown in Figure 9-15.

Figure 9-15. The timeline editor in Expression Blend

The reason the object hierarchy and timeline editing are combined within the same pane
is because each object has a corresponding line in the timeline. The control bar at the top of
the timeline editor has buttons to change the current frame to the first frame, the previous
frame, the next frame, or the last frame. The center button is the play button and runs the ani-
mation on the design surface. The only type of animation Expression Blend supports is keyframe,
which is reflected in the organization of the timeline editor. The default interpolation used is
spline, with the default control points set to effectively create linear interpolation.

Make sure the rectangle object is highlighted in gray in the object hierarchy, and then
click the small green plus button next to the time signature. This creates a keyframe with the
rectangle in its current position at time 0:0:0. A small white oval appears under the 0-second
vertical, showing that a keyframe exists at this time for the corresponding object. Next, click
the 1 on top of the timeline’s 1-second vertical. This moves the yellow marker to the 1-second
line. Next, after ensuring that the rectangle is currently highlighted on the design surface, hold
down the Shift key and press the right arrow key to move the rectangle quickly along a straight

CHAPTER 9 ■ ANIMATION202



horizontal line. Stop somewhere close to the right edge of the design surface. As soon as you
start moving the rectangle, a new keyframe is created at the 1-second line, shown with another
gray oval. The keyframe’s target property is set to whatever value corresponds to where you
complete the movement. Figure 9-16 shows what the timeline looks after moving the rectangle
to a new position at the 1-second mark.

Figure 9-16. The timeline editor with a keyframe recorded at the 0- and 1-second marks

Look at the XAML, and notice that the rectangle contains empty versions of the four
transforms that Silverlight provides:

<Grid x:Name="LayoutRoot" Background="White" >
<Rectangle Height="80" HorizontalAlignment="Left" Margin="62,0,0,82" 

VerticalAlignment="Bottom" Width="80" 
Fill="#FF000000" Stroke="#FF000000" 
x:Name="rectangle" RenderTransformOrigin="0.5,0.5">

<Rectangle.RenderTransform>
<TransformGroup>

<ScaleTransform/>
<SkewTransform/>
<RotateTransform/>
<TranslateTransform/>

</TransformGroup>
</Rectangle.RenderTransform>

</Rectangle>
</Grid>

An empty transform has its default values, which effectively does nothing to the object
being transformed. This makes it easy for the animation to affect a specific transform, such as
this example does to the X property of the TranslateTransform:

<Storyboard x:Name="rectangleAnimation">
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00" 

Storyboard.TargetName="rectangle" 
Storyboard.TargetProperty=

"(UIElement.RenderTransform).(TransformGroup.Children)[3].
(TranslateTransform.X)">

CHAPTER 9 ■ ANIMATION 203



<SplineDoubleKeyFrame KeyTime="00:00:00" Value="0"/>
<SplineDoubleKeyFrame KeyTime="00:00:01" Value="320"/>

</DoubleAnimationUsingKeyFrames>
</Storyboard>

You can change the interpolation for a specific keyframe in two ways. The first is by right-
clicking the gray oval for a keyframe and changing the Ease In or Ease Out value. The ease-in
percentage controls how the property value changes as time advances toward the selected
keyframe. The higher the ease-in value, the faster this keyframe is approached the closer time
gets to it. The ease-out functionality is similar, except it controls how the property value changes
as time advances away from the current keyframe. The ease-in and ease-out percentages alter
the control points for the KeySpline, for which Expression Blend offers a full-blown editor if you
click the Properties tab while a keyframe is selected. The KeySpline editor is shown in Figure 9-17.

Figure 9-17. The KeySpline editor in Expression Blend

The yellow dots correspond to the control points, which are set to the control points used
earlier in the car example. You can click and drag these yellow dots, or change the points by using
the sliders or entering the numbers by hand after clicking one of the sliders. This editor is likely
the best option for exploring KeySplines and discovering which control points will accomplish
what you are aiming for.

If you want to change the repeat count of the animation, you need to drill down into the
specific target property being animated. You can do this when in timeline recording mode by
repeatedly clicking the arrow button on the left of each object until you arrive at a series of
highlighted objects, as shown in Figure 9-18.

CHAPTER 9 ■ ANIMATION204



Figure 9-18. Right-clicking the drilled-down object to modify the repeat count

Figure 9-18 also shows the context menu when you right-click the target property (X in
this case). This context menu also appears if you right-click the time span for the X property.
When you select the Edit Repeat Count option, the repeat count dialog appears, as shown in
Figure 9-19.

Figure 9-19. Setting the repeat count using Expression Blend

You can set a repeat count or click the infinity sign to the right of the text entry to set the
repeat count to forever. Expression Blend provides other capabilities as well, such as creating
a motion path and converting it to a timeline, and manipulating keyframes in a variety of ways.
This section has introduced what Expression Blend can do to make creating animations easier
for you.

Summary
This chapter covered the animation support that comes with Silverlight. Timelines are central
to the animation support, and the Timeline class provides several properties to control how time
advances, possibly repeating or even reversing. The simplest form of animation is from/to/by,
and several applications of it were demonstrated. Next, you learned about the most powerful
animation support in Silverlight: keyframe animation. This provides the capability to alter how
property values change by supporting different interpolation methods—specifically linear,
discrete, and spline. The keyframe animation also supports modifying properties of types
other than double, Point, and Color. Finally, you got a taste of the animation support built into
Expression Blend, an invaluable tool for working with animation in both WPF and Silverlight. 

CHAPTER 9 ■ ANIMATION 205



Dynamic Languages and the
Browser

One major feature that Silverlight has that .NET doesn’t is a second runtime engine designed
to execute dynamic languages. A dynamic language is interpreted at runtime, meaning it is
possible to add new code while a program is executing. The dynamic language you are likely
most familiar with is JScript. Silverlight has direct support for both JScript and Managed JScript—
which is JScript executing on the Dynamic Language Runtime (DLR). Two other dynamic
languages are supported: Ruby and Python (called IronRuby and IronPython in the Silverlight/
.NET world). This chapter will introduce these dynamic languages, discuss why the DLR is
important in the Silverlight picture, and show how to go about using these languages. The latter
part of this chapter will discuss the integration of Silverlight with the browser.

Introducing Dynamic Languages
One of the most technically appealing aspects of the .NET platform on Windows is that it sup-
ports a wide variety of languages due to how the CLR is designed. Despite the many languages
.NET supports, one set of languages that aren’t as well supported as they could be are dynamic lan-
guages such as Python and Ruby. This lack of support is based largely on the fact that dynamic
languages are not compiled, and for a high-level language to execute on the CLR, it must be
translated into Intermediate Language (IL). This is a technical hurdle that can be overcome,
however. While there is an implementation of Python for .NET, known as IronPython, the most
interesting work being done around dynamic languages and .NET is focused on Silverlight.

Dynamic languages are interpreted (eliminating the compilation step) and are usually
dynamically typed. What this means, essentially, is you never declare variables of particular
types. Everything is handled by the runtime through the context of expressions. The languages
you are likely most familiar are C# and VB .NET, which are both statically typed languages.
Dynamic languages have many proponents since both development and deployment can be
greatly simplified over languages such as C# that require compilation and distribution of out-
put. A certain amount of trust is placed in the runtime that fans of statically typed languages
can be resistant to granting. While you do lose type safety with dynamic languages, this can be
nearly completely mitigated with a strong set of unit tests.

Both statically typed and dynamic languages have their fans. The great thing about the
CLR (and now the DLR, working with the CLR) is that you have a large degree of freedom in
language choice when programming on .NET and Silverlight. All the functionality exposed by

207

C H A P T E R  1 0



the various platform assemblies in Silverlight can be accessed from dynamic languages, so
you can write Silverlight applications completely in IronRuby, IronPython, or JScript (and
potentially others in the future, such as Smalltalk).

One significant feature of most dynamic languages is that functions are first-class citizens.
You can create a function and assign it to a variable or pass it as a parameter to another func-
tion. This makes things like closures and passing functions as parameters a lot easier. In general,
the two defining characteristics of closures are your ability to assign a block of code (a function)
to a variable, and this block of code’s ability to retain access to variables that were accessible
where it was created. If you were to write a method in C# to obtain a subset of a list of words
that matches a certain criterion, such as maximum length, the method might look like this:

public static List<string> ShortWords(List<string> wordList)
{

List<string> shortWordList = new List<string>();
int maximumWordLength = 3;
foreach(string word in wordList)
{

if(word.Length <= maximumWordLength)
{

shortWordList.Add(word);
}

}
return(shortWordList);

}

Implementing the same method in a dynamic language, such as IronRuby (an implemen-
tation of Ruby for the DLR) would be significantly shorter:

def ShortWords(wordList)
maximumWordLength = 3
return wordList.select {|w| w.Length <= maximumWordLength}

end

Just comparing these two implementations of the same algorithm reveals much about
IronRuby (and dynamic languages in general, by extension). The IronRuby code is much more
concise, and nowhere do you see a data type keyword such as string or int. However, the most
interesting aspect of this block of IronRuby code is the closure, located between the curly braces.
What’s going on here is that the closure, essentially a function, is being passed to the select
method. The select method uses a closure to extract a subset of a collection. The code that
forms the closure actually executes within the select method (here, the closure extracts strings
within the collection wordList that meet the criterion), but it retains access to the variables in
its original scope (in this case the maximumWordLength variable). Closures are much more powerful
than this simple example illustrates. This is similar to passing a delegate to a method such as Exists
or Find in C#, but closures bring the added benefit of retaining access to their original scope.

Dynamic languages in Silverlight are facilitated by the DLR. This runtime is actually just
a set of assemblies that creates a bridge between a dynamic language and the CoreCLR in
Silverlight. One of the benefits to code running on a managed platform such as Silverlight is
that types can typically be discovered at runtime using reflection. The DLR helps facilitate this
discovery so that code written in a dynamic language can perform well.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER208



The DynamicApplication Class
The DynamicApplication class inherits directly from System.Windows.Application and provides
the entry point for dynamic language applications. Table 10-1 shows the properties this class
provides, extending those already provided by Application.

Table 10-1. Properties of Microsoft.Scripting.Silverlight.DynamicApplication

Property Type Description

Current static DynamicApplication The DynamicApplication instance for
the current application.

Debug bool true if debugging features are
enabled. When debugging is enabled,
emitted code is suitable for debugging
(it’s not optimized) and error reporting
is enabled. You can enable debugging
by specifying debug=true in the
initParams parameters in the object
tag for the application in the HTML.

EntryPoint string Gets the name of the code file that
contains the application’s entry point.

Environment ScriptRuntime Gets an instance of ScriptRuntime that
represents the environment the
application is executing under.

ErrorTargetID string The ID of the HTML element where
errors/debugging information will be
displayed when Debug=true or
ReportUnhandledErrors=true.

ReportUnhandledErrors bool When true, unhandled exceptions are
displayed in the HTML element speci-
fied by ErrorTargetID. Otherwise, errors
are sent to the JScript function specified
in the onerror property of the object
tag for the Silverlight application.

This class operates just like the Application class in other Silverlight applications, but
provides the extra functionality that dynamic applications need.

Creating a Dynamic Language Application
The best way to get started with dynamic applications and Silverlight is by going to www.
codeplex.com/sdlsdk and downloading the Silverlight Dynamic Language (SDL) SDK. This
SDK contains several important items:

Scripting assemblies: Three assemblies provide the scripting environment that forms the
core bridge between Silverlight and dynamic languages in general. 

Assemblies specific to a dynamic language: Each dynamic language has assemblies that
support the specific language, providing capabilities such as parsing the language and
communicating with the host environment.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 209



Chiron.exe: This utility serves two main purposes: packaging applications and executing
a dynamic language within a development web server.

Application templates: Each dynamic language contained in the SDK (IronPython, Iron-
Ruby, and Managed JScript) has a minimal set of files that you can copy and modify to
create your own application.

Let’s take a look at the application template for IronRuby. After you extract the SDL SDK,
the script\templates\ruby directory contains the following directories and files:

index.html
javascripts\error.js
ruby\app.rb
ruby\app.xaml
ruby\silverlight.rb
stylesheets\error.css
stylesheets\screen.css

The index.html file contains a large amount of comments that can help guide you (for
sake of space, the entire file won’t be reproduced here). The object tag contains the name of
the XAP file for the Silverlight application (the XAP file contains everything in the ruby direc-
tory from the preceding directory listing). Here’s an abbreviated version of the object tag from
this file:

<object data="data:application/x-silverlight," 
type="application/x-silverlight-2-b2" width="100%" height="100%">

<param name="initParams" value="debug=true, reportErrors=errorLocation" />
<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />
<param name="windowless" value="true" />
<!-- 

Shows a "Install Microsoft Silverlight" link if Silverlight is 
not installed

-->
<a href="http://go.microsoft.com/fwlink/?LinkID=115261" 

style="text-decoration: none;">
<img src="http://go.microsoft.com/fwlink/?LinkId=108181" 
alt="Get Microsoft Silverlight" style="border-style: none"/>

</a>
</object>

The reportErrors parameter (in the initParams parameter of the object tag) specifies the
HTML element to display debugging information and errors. Creating a space for this infor-
mation is as simple as creating an empty div. The error information will be placed into the
innerHTML property of the HTML element.

<div id='errorLocation'></div>

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER210



If you turn debugging off and don’t specify the reportErrors parameter, unhandled
exceptions will be handled normally and will propagate to the JScript error handler specified
in the onerror parameter. This handler is located in the javascripts\error.js file that is part
of the IronRuby template. This handler is essentially the same JScript that is generated when
you create a new (nondynamic) Silverlight application in Visual Studio, but you’re free to
change this to handle errors however you want within the browser.

The two most important files that make up the application are the app.xaml and app.rb
files. The app.xaml file that comes with the SDL SDK just contains a TextBox.

<UserControl x:Class="System.Windows.Controls.UserControl"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Grid x:Name="layout_root" Background="White">
<TextBlock x:Name="message" FontSize="30" />

</Grid>
</UserControl>

The app.rb file uses code from the silverlight.rb file to easily load the XAML stored in
app.xaml:

require "silverlight"
class App < SilverlightApplication
use_xaml
def initialize
message.text = "Welcome to Ruby and Silverlight!"

end
end
$app = App.new

The final line of the app.rb file creates the instance of the application and thus the appli-
cation itself. By going to the scripts directory in the SDL SDK, you can execute the sl.bat file
to copy one of these templates to your own application.

C:\book\sdl-sdk\script>sl.bat ruby testapp
7 File(s) copied
Your ruby Silverlight application was created in testapp\.

Executing a Dynamic Language Application
Now that you have a starter application, you execute it by making use of the chiron.exe tool
that comes with the SDL SDK. This tool provides two main functions: it packages a set of files
into a XAP and it executes dynamic language applications. One of the interesting features of
chiron.exe is that any time you modify a file within the application directory, chiron.exe will
repackage the application into a XAP and reload it. You must still refresh the browser if there is
an active browser, though. The full list of command-line options for chiron.exe are shown in
Table 10-2.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 211



Table 10-2. Command-Line Options for chiron.exe

Option Description

/d:<path> Specifies the path for chiron to use; defaults to the current directory.

/x:<file> Specifies the file name for the XAP file; cannot be combined with /w or /b.

/n Does not display the logo banner.

/s Does not display any output.

/z:<file> Similar to /x, but also packages the dynamic language–related files.

/w:[<port>] Starts the development web server. If no port is specified, 2060 is used. The
XAP file is automatically generated, and is regenerated if any files are changed.

/b:[<start url>] Starts the development web server and launches the default browser,
optionally to the specified URL; cannot be combined with /x or /z, since
XAP generation is handled automatically.

/m Saves the generated AppManifest.xaml file to disk; can only be combined
with /d, /n, or /s.

After creating testapp as shown previously, you can execute it by passing the directory
name to chiron.exe and ensuring that a browser automatically opens by using the /b
command-line option:

C:\book\sdl-sdk_beta2\script>chiron /d:testapp /b
Microsoft(R) Silverlight(TM) Development Utility. Version 1.0.0.0
Copyright (c) Microsoft Corporation.  All rights reserved.
Chiron serving 'C:\book\sdl-sdk\script\testapp' as http://localhost:2060/
00:12:12 200       1,295 /
00:12:12 200          848 /style.css!
00:12:12 200       2,548 /sl.png!
00:12:12 200          698 /slx.png!
00:12:12 404          636 /favicon.ico [Resource not found]
00:12:15 200       5,029 /index.html
00:12:15 200          394 /stylesheets/screen.css
00:12:15 200       2,326 /stylesheets/error.css
00:12:15 200       1,305 /javascripts/error.js
00:12:16 200   925,613 /ruby.xap

Notice that the ruby.xap file is rather large. This is because the IronRuby-specific assem-
blies must be included in the XAP, since they are not part of Silverlight. This is the price you
pay for using a dynamic language, since the objective is to keep the Silverlight client installa-
tion as small as possible. This also allows dynamic languages to evolve independently from
the Silverlight client.

Developing with Dynamic Languages
Each dynamic language has its own syntax. IronPython and IronRuby closely follow their par-
ent language’s syntax, and Managed JScript also is close to its parent language, JScript. Each
language must support several Silverlight-specific features, such as referencing assemblies.

Several assemblies are automatically available to dynamic languages (i.e., you don’t need
to add a reference to them). These assemblies are as follows:

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER212



• mscorlib.dll

• System.dll

• System.Windows.dll

• System.Windows.Browser.dll

• System.Net.dll

• Microsoft.Scripting.dll

• Microsoft.Scripting.Silverlight.dll

If you want to use classes in any assembly not listed previously, you must first include this
assembly in the manifest file (and thus the XAP file) unless it is already part of the Silverlight
runtime (in which case, you need only mimic the behavior of the using keyword in C#—which
we’ll examine next). You can use the /m option of chiron.exe to generate the default manifest
and modify it, and then use chiron.exe to repackage it. For example, if you want to add an
assembly that contains a service proxy, you can invoke chiron.exe as shown here, combining
the /m and /z options, and the /d option with the directory name websearch that contains the
dynamic application:

C:\book\ dynamic>chiron /m /d:websearch
Microsoft(R) Silverlight(TM) Development Utility. Version 1.0.0.0
Copyright (c) Microsoft Corporation.  All rights reserved.

There is no other output to confirm the manifest has been saved to disk, but you should
now see an AppManifest.xaml file in the websearch directory. The default manifest file for
IronPython applications looks like this:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
RuntimeVersion="2.0.30523.00" 
EntryPointAssembly="Microsoft.Scripting.Silverlight" 

EntryPointType="Microsoft.Scripting.Silverlight.DynamicApplication">
<Deployment.Parts>
<!-- Add additional assemblies here -->
<AssemblyPart Name="Microsoft.Scripting.Silverlight"

Source="Microsoft.Scripting.Silverlight.dll" />
<AssemblyPart Source="Microsoft.Scripting.Core.dll" />
<AssemblyPart Source="Microsoft.Scripting.dll" />
<AssemblyPart Source="IronPython.dll" />
<AssemblyPart Source="IronPython.Modules.dll" />
<AssemblyPart Source="Microsoft.JScript.Runtime.dll" />
<AssemblyPart Source="Microsoft.JScript.Compiler.dll" />

</Deployment.Parts>
</Deployment>

This manifest file also includes the reference to the DynamicApplication class, specifying
the class that serves as the entry point for the dynamic application, much like Application
does in the other Silverlight applications. If you add another assembly to this manifest, you

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 213



then repackage the application with the /z option (to include the dynamic language assemblies
in the XAP):

C:\book\dynamic>chiron /d:websearch /z:websearch.xap
Microsoft(R) Silverlight(TM) Development Utility. Version 1.0.0.0
Copyright (c) Microsoft Corporation.  All rights reserved.
Generating XAP C:\book\dynamic\websearch.xap from C:\book\dynamic\websearch

Once you have a new assembly in the XAP, you must add a reference to it (within a dynamic
language source file, since no compilation step is involved with dynamic language applications)
and import any classes/namespaces, much like the using keyword in C#. In the three dynamic
languages that come with the SDL SDK, this looks like the following.

Here’s the IronPython version:

import clr
clr.AddReference("Assembly Name, Version=2.0.0.0, 

Culture=neutral, PublicKeyToken=abc012512def25a7")
import System.Windows # this makes the System.Windows namespace visible
# don't need previous line to do the following
from System.Windows.Controls import UserControl 

This is the IronRuby version:

require AssemblyName
include System.Windows.Controls

And this is the Managed JScript version:

AddReference("Assembly Name, Version=2.0.0.0, 
Culture=neutral, PublicKeyToken=abc012512def25a7")

Import("System.Windows.Controls") // makes namespace visible
// makes the UserControl type available
Import("System.Windows.Controls.UserControl") 

Let’s look briefly at an implementation of a simple dynamic language application. This is
an example used in Chapter 9, but with an extra button, as shown in Figure 10-1.

Figure 10-1. Animation example as implemented in IronPython

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER214



The XAML is exactly the same as is used in any other Silverlight application:

<UserControl x:Class="System.Windows.Controls.UserControl"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Width="400" Height="300" Margin="10">
<Canvas x:Name="layout_root" Background="White" Grid.Row="1" Grid.Column="0">
<Canvas.Resources>

<Storyboard x:Name="rectAnimation">
<DoubleAnimationUsingKeyFrames 

Storyboard.TargetName="rect" 
Storyboard.TargetProperty="(Canvas.Top)" RepeatBehavior="Forever">

<LinearDoubleKeyFrame Value="240" KeyTime="0:0:0"/>
<LinearDoubleKeyFrame Value="25" KeyTime="0:0:3"/>
<LinearDoubleKeyFrame Value="240" KeyTime="0:0:6"/>

</DoubleAnimationUsingKeyFrames>
</Storyboard>

</Canvas.Resources>
<Border BorderThickness="1" BorderBrush="Black" Width="400" Height="300"/>
<Rectangle x:Name="rect" Width="25" Height="25" Canvas.Left="200" 

Canvas.Top="240" Fill="Black"/>

<Button x:Name="animationButton" Canvas.Left="10" Canvas.Top="10" 
Content="Start Animation"/>

<Button x:Name="pauseButton" Canvas.Left="10" Canvas.Top="40" 
Content="Pause Animation"/>

</Canvas>
</UserControl>

The application file, app.py, connects the events in the __init__ function (essentially
a constructor) and defines the event handlers that control the animation:

from System.Windows import Application
from System.Windows.Controls import UserControl
from System.Windows.Media.Animation import ClockState
class App:
def __init__(self):
self.root = Application.Current.LoadRootVisual(UserControl(), "app.xaml")
self.root.animationButton.Click += self.startStopAnimation
self.root.pauseButton.Click += self.pauseAnimation
self.isPaused = False

def startStopAnimation(self,s,e):
if self.root.rectAnimation.GetCurrentState() == ClockState.Stopped:
self.root.rectAnimation.Begin()
self.root.animationButton.Content = "Stop Animation"

else:
self.root.rectAnimation.Stop()
self.root.animationButton.Content = "Start Animation"
self.root.pauseButton.Content = "Pause Animation"

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 215



def pauseAnimation(self,s,e):
if self.root.rectAnimation.GetCurrentState() == 

ClockState.Active and not self.isPaused is True:
self.root.rectAnimation.Pause()
self.isPaused = True
self.root.pauseButton.Content = "Resume Animation"

else:
self.root.rectAnimation.Resume()
self.isPaused = False
self.root.pauseButton.Content = "Pause Animation"

App()

The App() at the bottom is what creates an instance of the App class defined in this file.
There’s an additional from .. import used to make ClockState visible, much like you’d use
using System.Windows.Media.Animation in C#.

This has been a rather brief overview of the dynamic language support in Silverlight, but
it did show you how to go about creating real Silverlight applications using dynamic languages.
Visit http://silverlight.net/learn/dynamiclanguages.aspx for resources covering dynamic
languages in more detail.

Interoperating with the Browser
Along with support for dynamic languages, Silverlight provides libraries to access properties and
capabilities of its host environment. Silverlight can access the HTML DOM via the HtmlDocument
class and can expose classes and data to JScript via attributes and the HtmlPage class.

The classes provided for browser interoperability are located in the System.Windows.Browser
namespace. It provides seven classes related to HTML pages and elements, three classes (two
of which are attributes) related to client script, a BrowserInformation class to obtain proper-
ties about the browser, and an HttpUtility class providing encoding/decoding methods for
URLs and HTML.

Let’s start by taking a closer look at the BrowserInformation class. Table 10-3 lists the proper-
ties of this class.

Table 10-3. Properties of BrowserInformation

Property Type Description

BrowserVersion System.Version The version number of the browser

CookiesEnabled bool true if cookies are enabled; false otherwise

Name string String representation of the browser

Platform string String representation of the host platform

UserAgent string Contains the user agent as communicated from the
browser

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER216



■Caution It is strongly suggested you do not make application decisions based on the UserAgent prop-
erty. The user agent string is easy to spoof and is not a good way to determine capabilities provided by the
browser, since the user may have certain options turned off, or you might block future versions of a browser.

Table 10-4 shows what the BrowserInformation class reports on Internet Explorer 7 running
on Microsoft Windows Vista 64-bit.

Table 10-4. BrowserInformation Properties from Internet Explorer 7 on Windows Vista

Property Value

BrowserVersion 4.0

CookiesEnabled True

Name Microsoft Internet Explorer

Platform Win32

UserAgent Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; WOW64;
SLCC1; .NET CLR 2.0.50727; .NET CLR 1.1.4322; Media Center
PC 5.0; .NET CLR 3.0.04506; .NET CLR 3.5.21022; InfoPath.2)

There are ten core classes that support interoperating with the browser. The class hierar-
chy is shown in Figure 10-2. The HtmlPage class provides several static methods and properties
for working with HtmlObject subclasses and other related bits. The methods of HtmlPage are
shown in Table 10-5 and the properties are listed in Table 10-6. Note that all the methods and
properties are static.

Figure 10-2. Browser-related class hierarchy

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 217



Table 10-5. Methods of System.Windows.Browser.HtmlPage

Method Description

RegisterCreateableType Associates a createable type with a string alias. A createable
type can be created by using ManagedObject’s CreateObject
method.

RegisterScriptableObject Associates an instance of a scriptable object (its class is decorated
with ScriptableType) with a string alias.

UnregisterCreateableType Unregisters a registered createable type (by passing in its alias).

UnregisterScriptableObject Unregisters a particular scriptable object (by passing in its alias).

Table 10-6. Properties of System.Windows.Browser.HtmlPage

Property Type Description

BrowserInformation BrowserInformation Provides information about the browser

Document HtmlDocument Reference to the HTML document displayed in
the browser

IsEnabled bool Returns true as long as the page is initialized, the
enableHtmlAccess hosting option is false, and
code isn’t executing in a host such as Expression
Blend

Plugin HtmlElement Provides a reference to the HtmlElement
corresponding to the object tag that contains the
Silverlight application

Window HtmlWindow Returns an instance of the class representing the
browser’s window; provides access to navigating
the browser, ability to change location within the
current HTML document, and shortcuts to some
client script functions such as alert boxes

The HtmlObject class forms the base for the more interesting classes. It provides function-
ality to attach and detach events communicated from the browser, such as mouse click events
and keyboard events. Table 10-7 lists the methods provided by HtmlObject.

Table 10-7. Methods of System.Windows.Browser.HtmlObject

Method Description

AttachEvent Overloaded. Registers an EventHandler (optionally parameterized with
HtmlEventArgs) for a provided event name.

DetachEvent Overloaded. Unregisters an EventHandler (optionally parameterized with 
HtmlEventArgs) for a provided event name. Note that the event handler must still
be passed—this makes it possible to unregister only one of possibly many event
handlers for a particular event.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER218



The first class we’ll look at that descends from HtmlObject is HtmlWindow. The HtmlWindow
class provides a direct connection to functionality of the browser, including shortcuts to
displaying alert and confirmation dialogs, navigation control, executing arbitrary script code,
and accessing bookmarks within the page. Table 10-8 displays the methods of HtmlWindow.
This class only has a single property, CurrentBookmark, which can be set or retrieved. Setting
CurrentBookmark causes the browser to navigate to the specified bookmark within the current
page.

Table 10-8. Methods of System.Windows.Browser.HtmlWindow

Method Description

Alert Displays an alert dialog containing the text passed in. It’s the same as
invoking alert(...) from JScript.

Confirm Displays a confirmation dialog containing the text passed in. If the user clicks
yes, this method returns true; otherwise, it returns false.

CreateInstance Returns an instance of the specified type (can be dotted).

Eval Directly executes client script contained in a string. It returns an object that
contains the result of the executed code, if there is one.

Navigate Overloaded. Causes the browser to navigate to the URI passed in. It can
optionally specify target and targetFeatures to control navigation (such
as causing a browser window to contain the content from the URI specified).

NavigateToBookmark Currently provides the same functionality as setting the CurrentBookmark
property directly.

Prompt Displays a prompt dialog with the text passed in. This is a shortcut to receive
user input—the text serves as a label. The input from the user is returned as
a string.

The ScriptObject class descends directly from HtmlObject and introduces much useful
functionality for its inheritors. It is the abstraction used to uniformly treat client objects. This
class handles a lot of the communication with the browser related to client script, such as getting
and setting properties of script objects and invoking functions on script objects. Table 10-9
lists its methods.

Table 10-9. Methods of System.Windows.Browser.ScriptObject

Method Description

CheckAccess Returns true if the thread this is called from is the user interface thread.

GetProperty Retrieves the value of a named property.

Invoke Invokes a named function, optionally with arguments (passed in an array of object).

InvokeSelf Invokes a function on the browser, optionally with arguments (passed in an array
of object). The browser function invoked is based on the inheriting class’ type.

SetProperty Sets the named property to an object value.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 219



So far, we’ve picked up functionality for client-side script events and accessing/executing
properties and functions. Beneath ScriptObject are the HtmlDocument, HtmlElement, and
ScriptObjectCollection classes. These classes have a one-to-one relationship with aspects of
HTML pages.

The HtmlElement class represents an HTML tag. It contains properties for the tag’s attri-
butes, styles, name, ID, CSS class, and of course, any children. The ScriptObjectCollection
class represents a collection of children (it implements the generic and nongeneric IEnumerable
interfaces). The properties of HtmlElement are shown in Table 10-10, and the methods are shown
in Table 10-11.

Table 10-10. Properties of System.Windows.Browser.HtmlElement

Property Type Description

Children ScriptObjectCollection Contains a collection of HtmlElement objects, if this
tag has any children. Note that this is read-only—use
AppendChild and RemoveChild to manipulate this tag’s
children.

CssClass string Gets or sets the CSS class name for this tag.

Id string Gets or sets this tag’s ID.

Parent HtmlElement Gets this tag’s parent. This property is read-only.

TagName string Gets this tag’s name. This property is read-only.

Table 10-11. Methods of System.Windows.Browser.HtmlElement

Method Description

AppendChild Appends the passed-in HtmlElement to this tag (adds it to the Children
collection)

Focus Sets focus to this tag; most useful for HTML form elements such as
input boxes

GetAttribute Returns the specified attribute’s value as a string

GetStyleAttribute Returns the value of the specified style as applied to this tag

RemoveAttribute Removes the specified attribute from this tag

RemoveStyleAttribute Removes the specified named style from this tag

RemoveChild Removes the specified HtmlElement from this tag’s Children collection

SetAttribute Sets the specified attribute to the specified string value

SetStyleAttribute Sets the specified style attribute to the specified string value

The HtmlDocument class represents an HTML document—it contains the root HtmlElement
of the document, a reference to the body of the HTML document, and methods for retrieving
elements on the page by ID. It also has one event, DocumentReady, that fires when the document

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER220



is finished loading/initializing. If the document finishes loading before Silverlight finishes ini-
tializing, this event will not fire. The properties of HtmlDocument are shown in Table 10-12, and
the methods are shown in Table 10-13.

Table 10-12. Properties of System.Windows.Browser.HtmlDocument

Property Type Description

Body HtmlElement A reference directly to the body of the
HTML document; read-only.

Cookies string A string containing the cookies associated
with this document.

DocumentElement HtmlElement A reference to the root of the document;
read-only.

DocumentUri Uri The URI to this document; read-only.

IsReady bool true if the document is done
downloading/initializing; read-only.

QueryString IDictionary<string,string> A dictionary instance containing name/value
pairs corresponding to variables passed in
the query string.

Table 10-13. Methods of System.Windows.Browser.HtmlDocument

Method Description

CreateElement Returns an HtmlElement instance corresponding to the specified tag name.

GetElementById Returns an HtmlElement corresponding to the specified tag ID, or null if
no element was found.

GetElementsByTagName Returns a ScriptObjectCollection containing all tags that match the
specified tag name.

Submit Causes a postback to the server using the first (or only) form to submit.
Via an overload, this can also submit a specific form based on its ID incase
there are multiple forms in the document.

The ScriptableMemberAttribute and ScriptableTypeAttribute classes are used to expose
classes and class members in the code-behind to client-side script. The ScriptableTypeAttribute
class is required in order for JScript to access classes, including granting the ability for managed
code in Silverlight to handle DOM events.

Let’s create a simple application that shows a drop-down list (the select element) in HTML.
This list will be populated by the Silverlight application, and when the user changes the selected
value, the background of the Silverlight application will change. You can see what this looks
like in Figure 10-3.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 221



Figure 10-3. Demonstration of Silverlight influencing and responding to the browser

The HTML for the list is placed into the ASPX page (or HTML page, if you use that
instead):

<div id="menu" style="border:solid 2px black">
Choose color: 
<select id="colorMenu">
</select>
</div>

We can get a reference to the colorMenu element by using GetElementById from the
HtmlDocument class:

HtmlElement menu = HtmlPage.Document.GetElementById("colorMenu");

We need to add option tags beneath the select element, so we use HtmlDocument.
CreateElement to create new option elements. All HTML tags are treated the same in Silverlight—
the HtmlElement class provides the functionality needed to work with all the various tags in HTML:

HtmlElement option = HtmlPage.Document.CreateElement("option");

We now set attributes on the new tag appropriate to the option tag and append it to the
child collection of the select tag:

option.SetAttribute("value", "blue");
option.SetAttribute("innerHTML", "Blue");
menu.AppendChild(option);

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER222



We repeat this sequence for a few more colors, and then we register a method in the code-
behind to handle the onchange event of the select tag:

menu.AttachEvent("onchange", new EventHandler<HtmlEventArgs>(this.onColorChanged));

You will always use HtmlEventArgs when handling DOM events. It contains many proper-
ties, including the event name, which keys were pressed (including modifiers such as Ctrl and
Alt), mouse information, and a reference to the HtmlObject that generated the event.

The onColorChanged method uses the Source property of HtmlEventArgs to get a reference
to the original select tag:

public void onColorChanged(object sender, HtmlEventArgs e)
{

HtmlElement menu = (HtmlElement)e.Source;
string color = (string)menu.GetProperty("value");
Color c;
if (color == "blue")

c = Color.FromArgb(255, 0, 0, 255);
else if (color == "red")

c = Color.FromArgb(255, 255, 0, 0);
else if (color == "green")

c = Color.FromArgb(255, 0, 255, 0);
else

c = Color.FromArgb(255, 255, 255, 255);
choiceTB.Text = color;
LayoutRoot.Background = new SolidColorBrush(c);

}

Before this will work, ensure the class containing the managed code for script consump-
tion has the ScriptableType attribute:

[ScriptableType]
public partial class Page : UserControl
{

// code for class here
}

We don’t need to wait for the user to click the button to populate the drop-down list if we
don’t want to. However, if the HTML page is big, and the Silverlight application might finish
initializing before the entire HTML document is ready, we want to avoid accessing the DOM
prematurely. We can account for this case using the DocumentReady event of the HtmlDocument
class:

HtmlPage.Document.DocumentReady += new EventHandler(Document_DocumentReady);

The code from our onClick handler goes into the new Document_DocumentReady method.
Remember that if the document finishes loading before the Silverlight application is initialized,
this event will not fire.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 223



void Document_DocumentReady(object sender, EventArgs e)
{

// code to manipulate DOM after HTML page is initialized
}

The HtmlWindow object provides an optimized method to invoke several JScript functions,
including alert, confirm, eval, and prompt. When working in managed code, it is better to call
these JScript functions via the HtmlWindow class instead of through the Eval method. The Eval
method is quite useful, as it can call arbitrary JScript code, including functions in JScript. It
returns object, but the types you can expect back are bool, string, double (for numbers), and
ScriptObject (for JScript objects).

Let’s take a look at calling managed code from JScript. This can be useful for leveraging
the speed of managed code from interpreted JScript or for using libraries already written in
Silverlight (that hopefully have the correct attributes—but if not, you can write a proxy class
that exposes methods to script). To provide an interesting example, we’ll use Silverlight to give
WCF support to the browser. We’ll invoke a service from client-side JScript. Since the generated
WCF client is not visible to script by default, we have to build a layer between the JScript and
the WCF client in order to expose the latter to the former. You can see what this application
looks like in Figure 10-4.

Figure 10-4. Using Silverlight as a web service proxy to retrieve image data

This will be a different type of Silverlight application, as we aren’t leveraging any of its dis-
play capabilities. To ensure the Silverlight application is on the page and doesn’t unload at an
inopportune time, we’ll simply set its width and height to 1:

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER224



<asp:Silverlight ID="Xaml1" runat="server" Source="~/ClientBin/WebServiceProxy.xap"
Version="2.0" Width="1" Height="1" />

Since the generated web service client isn’t exposed to script by default, we’ll create an
intermediary type and decorate it with the required attributes:

[ScriptableType]
public class ScriptableImageInfo
{

[ScriptableMember]
public string name { get; set; }
[ScriptableMember]
public string uri { get; set; }

}

The ScriptableMember attribute also has a ScriptAlias property that allows you to expose
this class member via a different name to client script.

The Silverlight application contains a class decorated with ScriptableType so we can
access it from script. This class contains methods for script to invoke the web service. We will
maintain the asynchronous approach, so when we create a method to invoke the web service,
it will include a string parameter containing a callback function name.

[ScriptableMember]
public void getAllImages(string callbackFunc)
{

// We should move this handler to the class constructor, however it is 
// placed here for demonstration purposes
_serviceClient.GetAllImagesInformationCompleted += new

EventHandler<GetAllImagesInformationCompletedEventArgs>
(_serviceClient_GetAllImagesInformationCompleted);

_serviceClient.GetAllImagesInformationAsync(callbackFunc);
}

This callback function will be invoked via HtmlPage.Eval in the 
GetAllImagesInformationCompleted event handler:

void  _serviceClient_GetAllImagesInformationCompleted(object sender,
GetAllImagesInformationCompletedEventArgs e)

{
string callbackFunc = (string)e.UserState;
imageList = new ScriptableImageInfo[e.Result.Length];
for (int i = 0; i < e.Result.Length; i++)
{

ScriptableImageInfo scInfo = new ScriptableImageInfo();
scInfo.name = e.Result[i].Name;
scInfo.uri = e.Result[i].Uri;
imageList[i] = scInfo;

}
HtmlPage.Window.Eval(callbackFunc + "()");

}

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 225



The callback function, in this case, is used as a signaling mechanism. To get the results of
the service call, we need to expose another method for client script:

[ScriptableMember]
public ScriptableImageInfo[] getAllImagesResult()
{

return (imageList);
}

Now let’s take a look at the JScript side. We’ll create a button and a table in the HTML.
When the button is clicked, the Silverlight application is invoked and the results are shown in
the table.

<input type="button" onclick="loadImages()" value="Load Images"/>
<table border="1" id="outputTable">

<tr>
<th>Image Name</th>
<th>Image</th>

</tr>
</table>

The loadImages function caches a reference to the web service class in our Silverlight
application and invokes the getAllImages method to retrieve the image data:

var imageWebService;
function loadImages()
{

slPlugin = document.getElementById('Xaml1');
imageWebService = slPlugin.Content.imageWebService;
imageWebService.getAllImages("GetAllImagesCompleted");

}

The GetAllImagesCompleted function is implemented in JScript. The array from managed
code becomes a standard JScript array, so you can use the length property and iterate over it
in the expected manner:

function GetAllImagesCompleted()
{

var results = imageWebService.getAllImagesResult();
for(var i=0; i<results.length; i++)
{

var tr = outputTable.insertRow(outputTable.rows.length);
var td = tr.insertCell(0);
var text = document.createTextNode(results[i].name);
td.appendChild(text);

td = tr.insertCell(1);
var img = document.createElement('img');
img.setAttribute('src',results[i].uri);
img.setAttribute('width','100');
img.setAttribute('height','100');

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER226



td.appendChild(img);
}

}

Summary
This chapter introduced the support for dynamic languages that Silverlight provides and
showed how to create and deploy dynamic applications. The features of the three supported
languages were briefly discussed. Also discussed was the support Silverlight has for interoper-
ating with the host browser, which can be used to greatly expand the capabilities of the browser
by using Silverlight as a service provider, and for enabling scenarios where Silverlight and
client script communicate.

CHAPTER 10 ■ DYNAMIC LANGUAGES AND THE BROWSER 227



Security

The growth of the Internet and the World Wide Web has forever changed the way we use com-
puters. As software engineers, we can no longer ignore security as we did when the average
computer wasn’t directly connected to a slew of other computers. Silverlight lives online, in
users’ browsers and other connected devices. No exploration of Silverlight is complete without
understanding both the security features it provides and generally how to ensure your Silverlight
application has been developed with security in mind. This chapter will go over Silverlight’s secu-
rity model and general techniques for understanding how to design for and evaluate security.

Security in the CoreCLR
While application code executes under the auspices of an environment (the CoreCLR) executing
on top of a host operating system, careful thought must still be given to how code is executed.
The Silverlight plug-in can interact with the host operating system to communicate over the
network, modify files on the file system, and display graphics on screen. Security of the host
operating system would be compromised if a Silverlight application were able to make use of
these features directly. Therefore, some mechanism must be in place to ensure a division between
application code and code that can affect the host operating system.

The managed execution engine that Silverlight provides is based on .NET—specifically
the CLR. In .NET, the security model for executable code is called Code Access Security (CAS).
There are several important aspects to CAS, including code making requests for specific secu-
rity permissions (such as asking for the ability to write to files), stack walks to determine the
permission levels granted, and the ability for an administrator to control permission levels
granted to applications. For example, if your .NET application wants to modify a file stored in
a specific location, it must first ensure that it has the rights to access the directory and modify
the file. This permission request can be done declaratively by applying a particular permission-
related attribute to a method, or imperatively by invoking the Demand method for a specific
permission. In C# on the .NET platform, the imperative approach might look like the following.

public void saveDataToFile(string outputFilename)
{

FileIOPermission perm = new FileIOPermission(FileIOPermission.Write, 
outputFilename);

229

C H A P T E R  1 1



try {
perm.Demand(); // request permission to write to file

// throws exception if we don't have permission
StreamWriter sw = new StreamWriter(outputFilename);
// write data to sw
sw.Close();

} catch(SecurityException ex) {
// handle security exception

} catch(Exception generalEx) {
// handle other exceptions

}
}

It’s also possible to make security demands declaratively using a CAS-related attribute:

[FileIOPermission(SecurityAction.Demand, Write=@"app.config")]
public void saveDataToFile(string outputFilename)
{

// method code
}

The security model within the CLR ensures that the permission being requested can be
granted or the method won’t execute. Whether making permission requests imperatively or
declaratively, the application code must make specific demands based on what it needs to
accomplish. This is a fine-grained approach to ensuring that executable code only has the
permissions it needs and works well on the .NET platform.

Silverlight’s security model is slightly different. Instead of code asking for permission to
accomplish certain tasks, all code in Silverlight is security transparent—that is, it is not trusted.
Silverlight applications can still interact with the host operating system (e.g., to save and read
files in the file system), but not directly.

■Note While there is no CAS available for use by your application, if you explore the online documentation
or the assemblies in Reflector, you will come across a namespace related to CAS. This is a holdover from
.NET in order to allow the already existing C# compiler to compile Silverlight code, since a CAS-related attri-
bute is emitted by the compiler if the assembly is unverifiable.

Since all application code that you write is security transparent, how is it able to still utilize
services offered by the host operating system, such as file system access? There are three cate-
gories of code that can execute from the perspective of the Silverlight plug-in. First, there’s all the
code in a Silverlight application (the code you write and any third-party libraries your application
uses). The second and third categories cover code located in the platform assemblies that provide
functionality for Silverlight applications, such as isolated storage and network communication.
The code in these assemblies either does something high-privilege (e.g., directly modifying a file
on disk or invoking a native library on the host operating system) or it calls these high-privilege
methods. The code in your application invokes the second category of code. This second category

CHAPTER 11 ■ SECURITY230



is needed because it serves as the middleman between application code (security-transparent
code) and code that is allowed to interact with the host operating system (security-critical code).
The relationship between these three categories of executable code is shown in Figure 11-1.

Figure 11-1. Relationship of executable code and security categories

Figure 11-1 also shows the attributes that correspond to each category of code. Your appli-
cation’s code cannot use either the SecuritySafeCritical or SecurityCritical attributes—if you
attempt to use one, it will be ignored and your code treated as security transparent. Any code
decorated with the SecuritySafeCritical attribute can be invoked by security-transparent code.
Here are several methods from the System.IO.IsolatedStorage.IsolatedStorageFile class that
encompass all three categories of executable code:

[SecuritySafeCritical]
public void CreateDirectory(string dir);
public IsolatedStorageFileStream CreateFile(string path);
[SecurityCritical]
private string[] DirectoriesToCreate(string fullPath);

Both CreateFile and CreateDirectory can be called from your code. Of course, the pri-
vate visibility of DirectoriesToCreate hides this method from your code regardless, but the
SecurityCritical attribute helps to enforce the fact that only SecuritySafeCritical code is
a valid invoker. Your code might call the CreateDirectory method, which then subsequently
calls the DirectoriesToCreate method.

This brings about another question, though—why does the platform code get to use
the SecuritySafeCritical and SecurityCritical attributes, but your code doesn’t? This is
enforced by the Silverlight plug-in only granting the ability to run as SecuritySafeCritical or
SecurityCritical to code that is signed by Microsoft and downloaded from the Microsoft servers.
As shown in Figure 11-1, code marked with SecuritySafeCritical acts as a proxy between
code that is security transparent and code that is security critical. Without this intermediate

CHAPTER 11 ■ SECURITY 231



layer, application code could make calls to the security-critical code, giving application code
far more privilege than it should have. This security model firmly separates platform code (which
might be security critical) from application code (which is always security transparent, no
matter what).

Application-Level Security
The security of executable code provided by the CoreCLR is not where the security story ends.
While there are guarantees that Silverlight application code cannot gain access to the host
operating system, Silverlight applications may still handle confidential information. This
information might take the form of a user’s credit card data, a user’s login credentials, or other
information that needs careful handling. This information must be secured in transit, achieved
typically via HTTPS, and possibly with a further layer of encryption ensuring that only the
intended recipient can decrypt the encrypted information. Secure coding practices combined
with the support Silverlight provides can give you confidence that your Silverlight application
is secure.

Securing Information in Transit
When a Silverlight application communicates with a server, there is the potential for a third
party to listen in on or even tamper with the communication. The established way to secure
communication over HTTP is by using the SSL protocol via HTTPS. Silverlight can easily make
use of SSL. Both the WebClient and HttpWebRequest classes support HTTPS, and you can also
configure the ServiceReferences.ClientConfig to use SSL.

Configuring a service to communicate over HTTPS is accomplished by setting the mode
attribute of the security element to Transport, as shown here. Also, make sure the endpoint’s
address uses the HTTPS protocol.

<configuration>
<system.serviceModel>

<bindings>
<basicHttpBinding>

<binding name="BasicHttpBinding_AuthenticationService" 
maxBufferSize="65536"
maxReceivedMessageSize="65536">

<security mode="Transport" />
</binding>

</basicHttpBinding>
</bindings>
...

</system.serviceModel>
</configuration>

Securing Information with Cryptography
While communicating over an encrypted channel ensures that information stays secure in
transit, the information arrives unencrypted for the application to handle. Regardless of how
the application receives information, the information still might need to be decrypted; or if it

CHAPTER 11 ■ SECURITY232



will be stored locally (such as in isolated storage), it is possible that the information must be
encrypted before being written to disk. This is where the System.Security.Cryptography
namespace enters the picture. This namespace provides capabilities for encrypting and
decrypting data, generating hashes for purposes such as message authentication codes and
random number generation suitable for cryptography.

Hash Algorithms and Message Authentication Codes
A hash algorithm transforms a chunk of data into a small, fixed-length set of bytes known as
a hash (or hash code). As long as the same chunk of data is processed by the same hash algo-
rithm, the resulting hash code will always be the same. If you’ve heard of CRC codes or digital
signatures, you’ve heard of the result of hash algorithms. Used as a digital signature, a hash
code can prove that the data has not changed, since even a small change in the data will result
in a completely different hash code.

The base class of hash classes is HashAlgorithm. This class provides the main features of
a hash algorithm, including hash size and hash value properties, and methods for computing
a hash value. It provides additional functionality via the KeyedHashAlgorithm—most importantly
the addition of a secret password (key) as input to the hash algorithm. This added functionality is
important because otherwise, a chunk of data can be tampered with and a recomputed hash
code attached to it.

Taking one more step down the hierarchy brings us to the HMAC class. HMAC stands for
hash-based message authentication code. A message authentication code (MAC) is another
name for a hash value or a digital signature. Changing the data will cause the MAC value to
change, thus providing evidence of data tampering. The HMAC class is the one we’re most inter-
ested in from a class interface perspective since inheritors to HMAC provide specific algorithm
implementations. The direct inheritors to HMAC are HMACSHA1 and HMACSHA256, implementations
of the SHA-1 and SHA-256 cryptographic algorithms for computing MACs. Table 11-1 shows
the properties provided collectively by these three base classes.

Table 11-1. Properties of System.Cryptography.HMAC

Property Type Description

BlockSizeValue int Specifies the size, in number of bits, of the block
used by the algorithm

CanReuseTransform bool Returns true if you can reuse the current hash
transform

CanTransformMultipleBlocks bool Returns true if the algorithm can transform
multiple blocks

Hash byte[] Gets the computed hash value

HashName string Gets/sets the name of the algorithm used for
hashing

HashSize int Specifies the size, in number of bits, of the
computed hash value

InputBlockSize int Specifies the size, in number of bits, of input blocks

Key byte[] Gets/sets the secret key used in the algorithm

OutputBlockSize int Specifies the size of the output block

CHAPTER 11 ■ SECURITY 233



The methods are shown in Table 11-2.

Table 11-2. Methods of System.Cryptography.HMAC (et al.)

Method Description

Clear Releases all resources used by the algorithm.

ComputeHash Computes a hash for a byte array (or section thereof) or a Stream. This
is the method you use to generate hashes.

Initialize Initializes an instance of the algorithm.

TransformBlock Generates a hash value for a section of a byte array and stores it at
a specific offset in another byte array.

TransformFinalBlock Generates a hash value for a section of a byte array.

There are two algorithms that provide the specific implementation for the hash algorithms:
SHA-1 and SHA-256. Both algorithms can use a key of any length. The SHA-1 algorithm returns
a hash value that is 20 bytes (160 bits), and SHA-256 returns a hash value that is 32 bytes (256 bits).
As long as the same input bytes and the same key are used, the specific hash algorithm will
always generate the same hash value. Here’s a helper method that accepts a message (the input
bytes) and the key as strings and will use any specific implementation of the HMAC class that
you pass in:

byte[] calculateHash(string key, string message, HMAC hashAlgorithm)
{

UTF8Encoding encoder = new UTF8Encoding();
hashAlgorithm.Key = encoder.GetBytes(key);
byte[] hash = hashAlgorithm.ComputeHash(encoder.GetBytes(message));
return (hash);

}

If we pass the string this is a secret message through the HMACSHA1 class, with the secret
key p@ssw0rd, and then encode the resulting byte array as a Base64 string, we get the hash value
faox88ZBLKYp50KtvKgidtQgRTk=. If we capitalize the first t in the message, the hash value changes
to Rs4FcAVPDSFDD+eozXdNcBFHUWw=, which is a significant change. Even changing a single bit in
the message or the key will cause a wildly different hash value to be generated.

Encrypting/Decrypting Data
There are two types of encryption algorithms: symmetric key algorithms and asymmetric key
algorithms. A symmetric key algorithm is an algorithm where the key used to encrypt infor-
mation is the same key used for decryption. An asymmetric key algorithm uses separate keys
for encryption and decryption, generally referred to as a public key (used for encryption; any-
one can obtain the public key to encrypt data for a specific recipient) and a private key (this
key is kept secret and used to decrypt data encrypted with the public key). Silverlight only
supports one encryption algorithm, the symmetric key Advanced Encryption Standard (AES).

The simplest approach to encrypting and decrypting information is by using a single
password, as shown in Figure 11-2.

CHAPTER 11 ■ SECURITY234



Figure 11-2. Flow of encryption/decryption using a secret password

Since the password is used unmodified, an attacker could conceivably launch a dictionary-
based attack to find the password by brute force. For example, if an attacker has the encrypted
text and has reason to believe a fruit is used for the password, he could try “banana,” “orange,”
“pear,” and finally “apple,” and suddenly he’ll be staring at the original message, successfully
decrypted. One way to go about preventing a dictionary-based attack is to use a salt. Salts are
random data combined with passwords that make dictionary-based attacks much more
expensive, since every word in the dictionary must be combined with every possible salt. The
salt is stored with the password (usually a password transformed by a hashing algorithm), so
decryption is straightforward since the original salt is known and a human-readable password
can pass through the same hashing function again. It’s possible to make the attacker’s job even
harder by using a stronger algorithm to transform a password. One such algorithm is the
Public-Key Cryptography Standard (PKCS) #5, defined in RFC 2898, which you can find more
about at www.ietf.org/.

PKCS #5 actually defines two modes of operation used for deriving a password. The first is
Password-Based Key Derivation Function #1 (PBKDF1), and the second is PBKDF2, which you
can find in the cryptography namespace in Silverlight. The main advantage to using PBKDF2
is that while the more rudimentary salt-plus-hash approach makes dictionary attacks compu-
tationally infeasible, PBKDF2 requires even more computational resources to successfully crack

CHAPTER 11 ■ SECURITY 235



the password. This is accomplished by applying the hash function multiple times. So, instead
of an attacker having to try every possible salt with every possible password in a dictionary, he’d
also have to try a variety of iteration counts for rehashing along with every possible salt and
every password in the dictionary. This means that instead of storing just the salt with a hashed
password, you store the salt, the hashed password (the output from the PKCS #5 algorithm),
and the iteration count.

The Rfc2898DeriveBytes class provides the implementation of the PBKDF2 algorithm. You
pass the password (as a string or a byte array), the salt (as a byte array), and optionally an
iteration count to the constructor. Then you invoke the GetBytes member method with the
number of bytes you want returned. Here’s an example method that does the work of using
the Rfc2898DeriveBytes class for you:

private byte[] deriveBytes(string input, byte[] salt, int iterations)
{

Rfc2898DeriveBytes deriver = new Rfc2898DeriveBytes(input, salt, iterations);
return deriver.GetBytes(16);

}

The AesManaged class provides the implementation of the AES algorithm for encrypting/
decrypting data. This class inherits from SymmetricAlgorithm. The properties of SymmetricAlgorithm
are shown in Table 11-3.

Table 11-3. Properties of System.Cryptography.SymmetricAlgorithm

Property Type Description

BlockSize int Size, in number of bits, of the block used by the algorithm.

IV byte[] Initialization vector used by the algorithm; must be
BlockSize/8 bytes long.

Key byte[] Secret key (e.g., password) used by algorithm.

KeySize int Size, in number of bits, of the secret key.

LegalBlockSizes KeySizes[] Array of block sizes that are valid for this algorithm.
Certain algorithms, such as AES, only support a few
different block sizes.

LegalKeySizes KeySizes[] Array of key sizes valid for this algorithm.

Used in conjunction with the CryptoStream class, it’s straightforward to encrypt data in
a stream such as a MemoryStream or a file stream for working with files from isolated storage.
Figure 11-3 shows a simple interface for encrypting and decrypting data. The salt must be at
least eight characters long. The password entered, combined with the salt, is used for both
encrypting and decrypting.

CHAPTER 11 ■ SECURITY236



Figure 11-3. Demonstration interface for encrypting/decrypting data

Here’s a utility encryption method that takes a key, an initialization vector, and the text to
encrypt:

private string Encrypt(byte[] key, byte[] iv, string plaintext)
{

AesManaged aes = new AesManaged();
aes.Key = key;
aes.IV = iv;
using (MemoryStream stream = new MemoryStream())
{

using (CryptoStream encrypt = new CryptoStream(stream, 
aes.CreateEncryptor(), 
CryptoStreamMode.Write))

{
byte[] plaintextBytes = UTF8Encoding.UTF8.GetBytes(plaintext);
encrypt.Write(plaintextBytes, 0, plaintextBytes.Length);
encrypt.FlushFinalBlock();
encrypt.Close();
return Convert.ToBase64String(stream.ToArray());

}
}

}

The other important aspect to using the AES algorithm is using an initialization vector,
as shown in the preceding code in the second parameter. By default, AES uses a 128-bit block
size (a block is a fixed length of data used by certain encryption algorithms such as AES), and
the initialization vector is used to initialize the block. Since the default block size is 128 bits,
the default size of the initialization vector must be 16 bytes (128 bits / 8 bits per byte = 16 bytes).
The initialization vector for the encryption must be the same when decrypting data, so if you
send encrypted data over the wire, the other side must somehow know which initialization
vector to use. This can be something agreed upon by the encryptor and decryptor in the code
design phase. Here’s what an example initialization vector looks like along with invoking the
Encrypt method:

CHAPTER 11 ■ SECURITY 237



byte[] initializationVector = { 0x11, 0xAF, 0x0C, 0x07, 0x17, 0xFC, 0xAA, 0x89,
0x09, 0xAE, 0xDA, 0xEA, 0x83, 0x00, 0xC0, 0x90};

encryptedText.Text = Encrypt(deriveBytes(pwText.Text, saltText.Text, 10), 
initializationVector, plainText.Text);

The Decrypt method is implemented similarly, but uses the decryption functionality of
the AesManaged class:

private string Decrypt(byte[] key, byte[] iv, string encryptedText)
{

AesManaged aes = new AesManaged();
byte[] encryptedBytes = Convert.FromBase64String(encryptedText);
aes.Key = key;
aes.IV = iv;
using (MemoryStream stream = new MemoryStream())
{

using (CryptoStream decrypt = 
new CryptoStream(stream, aes.CreateDecryptor(), 

CryptoStreamMode.Write))
{

decrypt.Write(encryptedBytes, 0, encryptedBytes.Length);
decrypt.Flush();
decrypt.Close();
byte[] decryptedBytes = stream.ToArray();
return UTF8Encoding.UTF8.GetString(

decryptedBytes, 0, 
decryptedBytes.Length);

}
}

}

User Access Control
ASP.NET 2.0 introduced a membership database that combines database tables with stored
procedures to provide authentication and authorization capabilities. The process of authenti-
cation is similar to a guard at a gate, checking identification cards, before allowing access. The
authentication process has a binary answer: either the user has access or she doesn’t. Autho-
rization, however, controls the nature of the access once a user is inside the gate. Ushers at
a concert, for example, check concertgoers’ tickets to make sure they are permitted access to
the concert. This is an example of authentication. Some concert attendees might have access
to a VIP section or have a backstage pass. These are varying degrees of access, from a regular
concert attendee who can sit and watch, to someone who is allowed to go backstage and meet
the performers. This is an example of authorization—what access does someone have after
they get past the gate that separates insiders from outsiders?

In ASP.NET, authorization is accomplished via roles. A user can be a member of zero or more
roles, and how roles define access is a detail specified in the application design. ASP.NET 3.5
introduces services to provide clients access to the authentication and authorization databases.
Before these services can be used, a web application must be configured to use a membership

CHAPTER 11 ■ SECURITY238



database. If you want to install the membership capabilities into a database server, you can
use the aspnet_regsql utility that comes with the .NET framework.

Several services are exposed in the System.Web.ApplicationServices namespace. Let’s
take a look at the services for authentication and authorization. Exposing these services in an
ASP.NET application is a simple matter of adding the services and bindings in web.config and
enabling the services in the system.web.extensions configuration section. The services must
also be referenced in the ServiceHost tag in an SVC file. Let’s take a closer look at enabling
these services and consuming them from Silverlight.

In web.config, the authentication and roleManager elements within the system.web section
are used to configure and enable authentication for the web application.

<system.web>
<authentication mode="Forms" />
<roleManager enabled="true" />
<!-- ... -->

</system.web>

These services must then be enabled in the system.web.extensions section. The roleService
provides web methods for determining whether a user is a member of a particular role.

<system.web.extensions>
<scripting>

<webServices>
<authenticationService enabled="true" requireSSL="false"/>
<roleService enabled="true"/>

</webServices>
</scripting>

</system.web.extensions>

It is a good idea to enable SSL for authentication. The system.serviceModel section contains
the services, bindings, and behaviors related to these services:

<system.serviceModel>
<services>
<service name="System.Web.ApplicationServices.AuthenticationService"

behaviorConfiguration="authServiceBehaviors">
<endpoint contract="System.Web.ApplicationServices.AuthenticationService"

binding="basicHttpBinding" 
bindingConfiguration="serviceBindingConfig"
bindingNamespace="http://asp.net/ApplicationServices/v200"/>

</service>
<service name="System.Web.ApplicationServices.RoleService"

behaviorConfiguration="roleServiceBehaviors">
<endpoint contract="System.Web.ApplicationServices.RoleService"

binding="basicHttpBinding" 
bindingConfiguration="serviceBindingConfig"
bindingNamespace="http://asp.net/ApplicationServices/v200"/>

</service>
</services>

CHAPTER 11 ■ SECURITY 239



<bindings>
<basicHttpBinding>
<binding name="serviceBindingConfig">
<security mode="None"/>

</binding>
</basicHttpBinding>

</bindings>
<behaviors>
<serviceBehaviors>
<behavior name="authServiceBehaviors">
<serviceMetadata httpGetEnabled="true"/>

</behavior>
<behavior name="roleServiceBehaviors">
<serviceMetadata httpGetEnabled="true"/>

</behavior>
</serviceBehaviors>

</behaviors>
<serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>

</system.serviceModel>

Each service has a corresponding SVC file within the web application in order to connect
a service host with the service. The following is placed in a file, such as AuthService.svc, for
the authentication service:

<%@ ServiceHost Language="C#"
Service="System.Web.ApplicationServices.AuthenticationService" %>

The following is for the role service, placed in RoleService.svc:

<%@ ServiceHost Language="C#" 
Service="System.Web.ApplicationServices.RoleService" %>

Once you have this configuration done, you can attempt to access a service directly from
a browser—for example, by browsing to http://localhost/AuthService.svc.

Using the Authentication Service

The authentication service provides methods to log in and log out, along with checking whether
the user is logged in. When a successful login happens, a cookie is set on the client side to store
this state. Let’s look closer at the methods the authentication service provides.

IsLoggedIn: Returns true if the user is logged in (authentication cookie is present), and
false otherwise.

Login: Verifies user’s credentials, and if they are validated successfully, the authentication
cookie is set. This method takes the username and password, a custom credentials of type
string, and a Boolean value specifying whether the authentication cookie persists across
sessions.

CHAPTER 11 ■ SECURITY240



Logout: Clears the authentication cookie from the browser.

ValidateUser: Verifies a user’s credentials. This is similar to Login, but it does not set the
authentication cookie if the user’s credentials are validated successfully. 

Figure 11-4 shows a sample login screen. The login and password shown (testuser/testuser!)
are valid with the database distributed with this chapter’s code.

Figure 11-4. Sample login screen

In order to transition from a login screen to a screen that represents the main user inter-
face to the application, the XAML that houses the login screen also houses a layout panel that
has the main interface. There’s a login button on the login screen and a logout button that
generally will appear on each screen of the application.

<UserControl x:Class="chapter11.LoginScreen"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
Width="400" Height="300">
<Canvas x:Name="LayoutRoot">

<Grid x:Name="loginScreen" Background="White" Width="400" Height="300">
...
<Button Width="50" Content="Login" x:Name="loginButton" 

Click="login_clicked" Margin="5"/>
...

</Grid>
<Canvas x:Name="mainCanvas" Visibility="Collapsed">

<TextBlock Canvas.Left="25" Canvas.Top="25" 
Text="You have successfully logged in."/>

<Button Width="70" Height="50" Content="Logout" 
Canvas.Left="25" Canvas.Top="75" 
Click="logoutButton_Click" x:Name="logoutButton"/>

</Canvas>
</Canvas>

</UserControl>

CHAPTER 11 ■ SECURITY 241



After adding a service reference to the authentication service, you just need to implement
the click event handlers on the buttons for logging in and out:

AuthenticationServiceClient client;
public LoginScreen()
{

InitializeComponent();
client = new AuthenticationServiceClient();
client.LoginCompleted += 

new EventHandler<LoginCompletedEventArgs>(client_LoginCompleted);
client.LogoutCompleted += 

new EventHandler<AsyncCompletedEventArgs>(client_LogoutCompleted);
}

The login button click handler calls LoginAsync. The third parameter can be custom
authentication credentials, but in this case we just pass null. The final parameter is set to true
in order to maintain the authentication cookie on the client even after the browser navigates
away. This is similar to the “Remember me” check box on the ASP.NET login control.

private void login_clicked(object sender, RoutedEventArgs e)
{

client.LoginAsync(username.Text, password.Password, null, true);
}

The LoginCompleted event checks the result of the Login call, and if it indicates that the
user successfully logged in, the main user interface is shown. Otherwise, an error message is
displayed to the user.

void client_LoginCompleted(object sender, LoginCompletedEventArgs e)
{

if (e.Result)
{

loginScreen.Visibility = Visibility.Collapsed;
mainCanvas.Visibility = Visibility.Visible;

}
else
{

resultText.Text = "Incorrect username or password";
}

}

CHAPTER 11 ■ SECURITY242



The logout button calls the Logout method on the authentication service in order to clear
the authentication cookie from the user’s browser, and the asynchronous callback handler
hides the main user interface and shows the login screen again:

private void logoutButton_Click(object sender, RoutedEventArgs e)
{

client.LogoutAsync();
}
void client_LogoutCompleted(object sender, AsyncCompletedEventArgs e)
{

loginScreen.Visibility = Visibility.Visible;
mainCanvas.Visibility = Visibility.Collapsed;

}

Since the authentication cookie might be valid when a user first visits the application,
your application should call ValidateUser and react accordingly (such as displaying a message
that the user is logged in; similar to how web sites display it).

If you don’t want to (or can’t) use the ASP.NET authentication service, the ASP.NET authen-
tication service serves as a good model for an authentication service you could implement.

Using the RoleService

Once a user is authenticated, the RoleService is used to obtain the roles the user belongs to
and to check whether he belongs to a specified role. Let’s take a look at the methods the
RoleService provides:

GetRolesForCurrentUser: Returns an array of strings containing the roles the currently
authenticated user belongs to

IsCurrentUserInRole: Takes a role name and returns true if the user is a member of
the role

Once the user is authenticated, you can retrieve the list of roles the user is in using the
GetRolesForCurrentUser method. If your application will make a number of role-based decisions,
it’s better to cache this list of roles locally instead of repeatedly calling the IsCurrentUserInRole
service method.

Again, we create an instance of the RoleService client and register the GetRolesForCurrentUser
event handler:

roleClient = new RoleServiceClient();
roleClient.GetRolesForCurrentUserCompleted += 

new EventHandler<GetRolesForCurrentUserCompletedEventArgs>
(roleClient_GetRolesForCurrentUserCompleted);

CHAPTER 11 ■ SECURITY 243



One opportunity to cache the user’s roles occurs when the user successfully logs in—
although you might want to delay this, since it adds to the amount of time it takes to log the
user in. You’d also have to handle loading roles for when the user is already logged in:

roleClient.GetRolesForCurrentUserAsync();

Once the callback for this web service method occurs, the roles are cached in a List<string>:

private List<string> cachedRoles;
private void roleClient_GetRolesForCurrentUserCompleted(object sender, 

GetRolesForCurrentUserCompletedEventArgs e)
{

cachedRoles = new List<string>();
foreach (string role in e.Result)
{

cachedRoles.Add(role);
}

}
public bool isUserInRole(string role)
{

return(cachedRoles.Contains(role));
}

The application can now use the isUserInRole method, instead of the RoleService
directly, to make role-based decisions.

Division of Responsibility
You should use a secure communication channel with a server by using HTTPS, and enforce
application-level access control (such as using the authentication and authorization services
provided by ASP.NET 3.5). This doesn’t fully ensure that your application is secure, however.
There are several security-related concerns regarding your application’s code getting down-
loaded to the client. These concerns all relate to the possibility that someone can get at the
code and resources within a Silverlight application. They can be addressed by application
architecture.

The XAP file is just a ZIP archive containing one or more DLL files and resource files.
Assume someone wants to take a Silverlight application apart—all they need to do is obtain
the XAP file (in the browser’s cache or by other means), rename the file extension to zip, and
open it in an application that can extract and create ZIP files. The XAP file from this chapter
includes chapter11.dll and a manifest file. If you unzip this XAP, someone can now easily get
at the DLL.

Once someone has a DLL expanded on disk, it can be disassembled in a utility such as
Reflector. Figure 11-5 shows chapter11.dll taken apart in Reflector. It is possible to go a step
further and decompile the code, as you can see in Figure 11-6, which shows a method from
the LoginScreen class.

CHAPTER 11 ■ SECURITY244



Figure 11-5. The methods and classes contained in chapter11.dll as revealed by Reflector

Figure 11-6. The decompiled GetRolesForCurrentUser event callback

CHAPTER 11 ■ SECURITY 245



Of course, most users won’t have the skill or knowledge to disassemble and decompile
a Silverlight application, but an application built with security in mind must pay attention to
the people that can. The best solution to the disassembling/decompiling of code is to use an
obfuscator, such as Dotfuscator, which is distributed with Visual Studio. After running the DLL
for this chapter through Dotfuscator, the identifiers are garbled, and the decompiled methods
are a challenge to understand unless you’re the CoreCLR. Figure 11-7 shows the obfuscated
DLL in Reflector.

Figure 11-7. The obfuscated chapter11.dll file

CHAPTER 11 ■ SECURITY246



The method to retrieve and cache roles, after obfuscation, looks like this:

private void a(object A_0, hh A_1)
{

this.c = new List<string>();
IEnumerator<string> enumerator = A_1.a().l();
try
{

while (enumerator.g())
{

string str = enumerator.f();
this.c.d(str);
this.k.b(zt.a(this.k.r(), str, " "));

}
}
finally
{

if (enumerator != null)
{

enumerator.h();
}

}
}

As you can see, obfuscation is great at making it a challenge to understand the code. But
make sure as much code related to the application is obfuscated as possible, since some
revealed method names or variable names provide clues to what the code nearby is doing. For
example, the decompiled constructor makes the following call, revealing that no matter what
type b is, it has an event named GetRolesForCurrentUserCompleted:

this.b.add_GetRolesForCurrentUserCompleted(new EventHandler<hh>(this.a));

Between this and the previously shown obfuscated method (which is the asynchronous
callback), it is obvious where code can be modified to alter the roles the user belongs to. So, if
it’s possible to trick a Silverlight application into believing a user is in roles he doesn’t belong
to, it demonstrates why you must guard against placing too much functionality within a single
Silverlight application.

The simplest application design principle to follow is to place all privileged code on the
server side and let the server perform an authentication check before the rest of the method
executes. Role-based decisions made on the client side should not create a decision between
executing normal-privileged code and high-privileged code. However, you can make role-based
decisions on such benign things as the appearance of the user interface.

Another approach to separating different privilege levels of code is to place them behind
a traditional web site login screen for user authentication, and then deliver a completely differ-
ent Silverlight application to the user based on her access level. This is illustrated in Figure 11-8.

CHAPTER 11 ■ SECURITY 247



Figure 11-8. Redirecting to a different Silverlight application based on users’ roles

If you take this approach, make sure any more highly privileged Silverlight applications
are not cached on the client side. This helps makes it tougher to augment an application to
grant a regular user higher privileges. Even if you take this approach, it’s wise to place as much
high-privilege code on the server side as possible so you can make sure only users with the right
access level are allowed to run the code.

Another valid concern is the security of resources used by a Silverlight application. As
shown in Figure 11-9, even though the main application assembly has been obfuscated, not only
are resources such as the embedded XAML easily viewable, but they can also be easily extracted. 

Figure 11-9. The resources embedded in the application assembly

CHAPTER 11 ■ SECURITY248



One strategy to protect resources is to encrypt them. This is useful for any data files that
you want downloaded at same time as the Silverlight application. You can use the AesManaged
class previously detailed with a secret key that is downloaded as part of the Silverlight applica-
tion (perhaps an authenticated user’s data protection password stored with his profile) to encrypt
and decrypt data locally.

Another approach to protecting resources is to avoid packaging them with the 
Silverlight application. Once a user is authenticated, the application can download the
appropriate resources on demand. This applies to both resources stored within the appli-
cation’s DLL and resources stored in the XAP file. Your application design must account for
this anywhere a resource (such as an image) differs based on a user’s access level.

Summary
Applications must be designed and developed with security in mind. This chapter started off
by detailing the security model Silverlight provides for executable code, illustrating how appli-
cation code cannot directly invoke any code that can interact with the host platform. The rest
of this chapter detailed application-level security, such as using HTTPS as a secure channel,
encrypting/decrypting information, authenticating and authorizing users, and ensuring your
applications are designed well to protect code and resources. Make sure your Silverlight appli-
cation and surrounding infrastructure (such as an ASP.NET application) are designed and
developed with security in mind. Late in development or immediately before deployment are
not the times to start thinking about security.

CHAPTER 11 ■ SECURITY 249



Testing and Debugging

Testing and debugging are vital activities in building quality software. From a developer’s
perspective, unit testing ensures small units of code work. By having a suite of tests, it is easy
to catch a bug introduced into code that was previously shown to be bug free. Testing helps
ensure software quality by catching as many bugs as possible and proactively ensuring bugs
aren’t introduced. Debugging, however, is generally done after a bug has been found. Debug-
ging involves tools and an effective problem-solving process to find the root cause of a bug in
order to apply a fix. You can build defenses into your application to make debugging much
easier, such as error logs (to capture errors) and audit logs (to reconstruct what the user of the
application did to trigger the bug). This chapter aims to show you how to go about testing
Silverlight applications and preparing for and conducting debugging when things do go wrong.

Testing
Testing involves both ensuring applications are error free and verifying applications work
according to requirements and design. It is the software developer’s job to implement tests,
known as unit tests, to thoroughly test the code he writes. Other forms of testing include func-
tional testing to verify the application corresponds to its specification and usability testing to
ensure the application is well designed from a user interface perspective. These tests generally
belong to a quality assurance department.

Unit Testing
The goal of unit testing is to test the smallest unit of a system as possible. If you’re building an
airplane, it’s impractical to test the smallest pieces, such as verifying that each screw can with-
stand a certain degree of pressure, or that hoses that pump fluid or oxygen don’t disconnect or
wear out absurdly fast. These pieces still need testing, however, or the airplane likely won’t work.
Since the airplane manufacturer can’t practically test the tiniest parts, the responsibility of
testing lies with the manufacturer of these parts. The screw manufacturer must know how
much pressure the screws can withstand and then verify they match the specification. These
smallest parts are the units of a system, the building blocks that, when assembled, create some-
thing much larger. Just like the screw manufacturer must test his screws, the software developer
must test his code at the smallest unit possible—typically methods.

Silverlight provides a unit testing framework very similar to the testing framework used by
Visual Studio 2008; however, the testing output is not integrated with Visual Studio. The
testing framework takes the form of a Silverlight application, but it isn’t distributed as part of

251

C H A P T E R  1 2



Silverlight or the Silverlight SDK. Instead, you can download the testing assemblies along
with the source code of the controls by searching for “source code unit tests silverlight 2” at
www.microsoft.com/. Create a new application and add the three testing-related assemblies, as
shown in Figure 12-1.

Figure 12-1. Adding the three testing-related assemblies to the application’s references

You can remove Page.xaml and Page.xaml.cs from the project since these aren’t needed.
Go to App.xaml.cs and add the following using statement at the top:

using Microsoft.Silverlight.Testing;

The testing framework provides its own user interface that you can connect to your
Silverlight testing application by invoking UnitTestSystem.CreateTestPage, as shown here:

private void Application_Startup(object sender, StartupEventArgs e)
{

this.RootVisual = (UIElement)UnitTestSystem.CreateTestPage(this);
}

Now that you have the unit testing framework ready to go, the next step is to add a refer-
ence to the application assembly that is the subject of testing. The rest happens automatically
after we apply certain test-related attributes to classes that contain tests. Before we look at

CHAPTER 12 ■ TESTING AND DEBUGGING252



constructing tests, we need code to test. If you’re writing a business application, user input typ-
ically must be validated to ensure it meets certain criteria. A validation class might be located
in a class library assembly and used by any Silverlight applications developed by a company.
Here’s a Validators class with a single validation method that verifies a value is within a range:

public class Validators
{

public static bool validateRange(int value, int lowBound, int highBound)
{

return (value >= lowBound && value < highBound);
}

}

Even a method this simple may have a bug in it. Bugs aren’t only due to poorly written
code—bugs can also be due to incorrect assumptions or failure to match requirements. Or
a bug can be due to a simple typo. In order to know for sure whether a piece of code contains
bugs, a set of unit tests must be written. The Validators class is located in the chapter12 assembly.
Let’s turn to the application that provides the unit testing framework and implement some tests.

Create a new class (not a user control) and add the following using statements at the top:

using Microsoft.Silverlight.Testing;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using chapter12;

If you’re unfamiliar with unit testing frameworks, they typically work by examining the meta-
data on classes and methods to get the necessary cues as to what to do. A class that contains test
methods is decorated with the TestClass attribute, and individual test methods are decorated
with TestMethod, as shown here. Also, the testing class must inherit from SilverlightTest.

namespace chapter12test
{

[TestClass]
public class ValidatorsTests : SilverlightTest
{

[TestMethod]
public void TestRangeTooLow()
{

Assert.IsFalse(Validators.validateRange(0, 10, 20));
}
[TestMethod]
public void TestRangeAtUpperBound()
{

Assert.IsTrue(Validators.validateRange(20, 10, 20));
}

}
}

In the code for this chapter, this class contains other testing methods to test other values inside
and outside a range. These two tests, however, represent a test that succeeds (TestRangeTooLow) and
one that fails (TestRangeAtUpperBound). The Assert class provides a number of methods to verify

CHAPTER 12 ■ TESTING AND DEBUGGING 253



conditions to indicate test success. If the conditions are not met, an exception is thrown automat-
ically and is caught by the unit testing framework, informing that the test failed.

When you start the testing application, it immediately executes all tests. Figure 12-2
shows execution of several range validator–related tests, one of which is the failing test,
TestRangeAtUpperBound.

Figure 12-2. Unit testing framework output with a failing test

The reason this test fails is that the requirements for the validator method specify that
the lower and upper bounds must both be inclusive. This is easily fixed by changing the < to
a <= when testing the value against the upper bound. After making this fix, rerunning the test-
ing application shows all tests succeeding. You can see this in Figure 12-3.

Figure 12-3. Unit testing framework output with all tests passing

CHAPTER 12 ■ TESTING AND DEBUGGING254



The Assert class provides a number of useful methods for conveniently verifying test results,
and also provides a way to trigger a failure in case the provided methods are not sufficient.
Table 12-1 lists the static methods provided by the Assert class. Note that many methods provide
a large set of overloads in order to cover a wide variety of data types. These assertion methods also
give the ability to pass in a string parameter as a custom message that will be included in the test
execution report.

Table 12-1. Static Methods of Microsoft.VisualStudio.TestTools.UnitTesting.Assert

Method Description

AreEqual Tests whether two values are equal.

AreNotEqual Tests whether two values are not equal.

AreNotSame Tests whether two object references point to different objects.

AreSame Tests whether two object references point to the same objects.

Fail Causes a test to immediately fail. Use this to fail a test based on custom
logic.

Inconclusive Causes a test to report “inconclusive” in the report. Use this for tests not
implemented or for tests where it’s impossible to pass or fail the test.

IsFalse Tests whether the specified Boolean value is false.

IsInstanceOfType Tests whether an object is an instance of a given type.

IsNotInstanceOfType Tests whether an object is not an instance of a given type.

IsNotNull Tests whether a given reference is not null.

IsNull Tests whether a given reference is null.

IsTrue Tests whether the specified Boolean value is true.

ReplaceNullChars Utility method to replace null characters within a string with \0 so that
the null characters can be displayed.

The Assert class can throw an AssertFailedException or an AssertInconclusiveException.
These exceptions should never be caught by your code since they provide the mechanism for
communicating test results to the unit testing framework. There are two other Assert-related
classes: StringAssert and CollectionAssert. StringAssert provides a set of methods useful
for string-based conditional tests, and CollectionAssert does likewise for collections. Table 12-2
lists the methods of StringAssert and Table 12-3 shows the methods of CollectionAssert.

Table 12-2. Static Methods of Microsoft.VisualStudio.TestTools.UnitTesting.StringAssert

Method Description

Contains Tests whether one string occurs somewhere within another string

DoesNotMatch Tests whether two strings do not match

EndsWith Tests whether one string ends with another string

Matches Tests whether two strings match

StartsWith Tests whether one string starts with another string

CHAPTER 12 ■ TESTING AND DEBUGGING 255



Table 12-3. Static Methods of Microsoft.VisualStudio.TestTools.UnitTesting.CollectionAssert

Method Description

AllItemsAreInstancesOfType Tests whether all items in a collection are instances of a specific type

AllItemsAreNotNull Tests whether all items in a collection are not null

AllItemsAreUnique Tests whether all items in a collection are different

AreEqual Tests whether two collections contain the same items (object
values are tested, not references) in the same order

AreEquivalent Similar to AreEqual, but the items can be in any order as long as
two collections contain the same items

AreNotEqual Tests whether two collections contain a different number of items,
a different set of items, or the same items in different orders

AreNotEquivalent Tests whether two collections contain a different number of items
or a different set of items

Contains Tests whether a collection contains a specified item

DoesNotContain Tests whether a collection does not contain a specified item

IsNotSubsetOf Tests whether one collection does not contain a subset of items
from another collection

IsSubsetOf Tests whether one collection contains a subset of items from
another collection

Besides TestClass and TestMethod, there are many useful attributes for controlling how
tests behave. Table 12-4 lists attributes that are useful for initialization and cleanup of resources.
All attributes shown in Table 12-4 apply to methods.

Table 12-4. Testing Framework Attributes Related to Resource Initialization and Cleanup

Attribute Description

AssemblyCleanup Marks the method that executes after all tests within the assembly have
completed executing; can only be used on one method within an assembly

AssemblyInitialize Marks the method that executes before any tests within the assembly have
executed; can only be used on one method within an assembly

ClassCleanup Marks the method that contains the code to execute after all tests within
a class containing tests have completed executing; can only apply to a single
method within a class

ClassInitialize Marks the method that contains the code to execute before any tests
within a class execute; can only apply to a single method within a class

TestCleanup Marks the method that contains the code to execute after each test
completes executing; can only apply to a single method within a class

TestInitialize Marks the method that contains the code to execute before each test
executes; can only apply to a single method within a class

CHAPTER 12 ■ TESTING AND DEBUGGING256



Note that both TestInitialize and TestCleanup execute once per test, ClassInitialize
and ClassCleanup execute once per testing class, and AssemblyInitialize and AssemblyCleanup
execute once per testing assembly. These attributes provide for a variety of resource manage-
ment in a test class.

There are several other useful attributes you might encounter a need for when writing your
unit tests. These are shown in Table 12-5.

Table 12-5. Testing Framework Attributes

Attribute Description

Description Used to provide a description for a test.

ExpectedException Normally, exceptions indicate the code under test has failed. When a thrown
exception indicates success (such as verifying certain methods aren’t
implemented yet on purpose), this attribute tells the testing framework that
the specific exception is expected and avoids failing the test. You can specify
this attribute multiple times.

Ignore Indicates the test should be skipped.

Owner Provide information on who is responsible for the test.

Priority Specifies the integer priority of the test. 

Timeout Specifies a timeout in milliseconds for a test. If an operation takes longer
than the timeout value specified, the test fails.

The TestContext class is also available for unit test classes; however, the only supported
operation for Silverlight testing is the WriteLine method. Before you can use this class, how-
ever, you must provide the property in your test class. When the testing framework discovers
that your test class provides the following public property, it automatically sets the test context
for your class to use:

private TestContext testContext;
public TestContext TestContext
{

get
{

return testContext;
}
set
{

testContext = value;
}

}

There are also just a couple properties in the TestContext class usable in Silverlight testing.
These are shown in Table 12-6.

CHAPTER 12 ■ TESTING AND DEBUGGING 257



Table 12-6. Properties of TestContext

Name Type Description

CurrentTestOutcome UnitTestOutcome Represents the outcome of the test; possible
values are Aborted, Error, Failed, Inconclusive,
InProgress, Passed, Timeout, and Unknown

TestName string The name of the method containing the test

If you want to save your test results, you can use the properties of TestContext along with
a method marked with TestCleanup that saves results to isolated storage or communicates
them to a custom web service.

Since the testing application has access to your main application, you can interact with
controls on different pages of the application, including calling event handler methods directly
to simulate an event firing. While this does work, there are two major drawbacks. The first is
that it requires intimate knowledge of the application’s code. The second is that it isn’t a very
flexible approach as an application changes. It’s better to make decisions based on the user
interface than on the underlying code. It would be nice if it were possible to test an applica-
tion’s user interface from an outsider’s perspective, and automate this if possible. Fortunately,
Silverlight provides for this automation.

Automated User Interface Testing
Testing must be automated. Software is too complex to reliably test well manually on a consis-
tent basis. Test automation carries over to user interfaces. Manually testing user interfaces is
boring, tedious, and highly unreliable since test cases may be skipped or order of operations
for tests is violated. Optimally, we want user interface testing to happen automatically, instead
of a tester having to manually click every button and explore every screen. Another reason for
automated user interface testing is the ability to easily capture test results. Fortunately, Silverlight
does indeed provide automation capabilities in the form of a framework for programmatically
controlling user interfaces. The main supporting infrastructure for user interface automation
is a set of automation peer classes that closely mirror user interface classes in Silverlight. 

The UI Automation Library that works for other types of Windows applications can also
be used to work with Silverlight applications. Before you can use the automation classes to
interact with user interface elements, you must obtain an AutomationElement that serves as
a parent element. You can then search for controls that are descendents of the parent. You
could use the desktop as the parent, but this would make it slow when searching for controls.
Instead, you want to get as close to your Silverlight application as possible. You can use the fol-
lowing code to search the currently running processes for a specific window title:

Process process = null;
foreach (Process p in Process.GetProcessesByName("iexplore"))
{

if (p.MainWindowTitle.Contains("Silverlight (Chapter 12)"))
{

process = p;
break;

}
}

CHAPTER 12 ■ TESTING AND DEBUGGING258



if (process != null)
{

AutomationElement browserInstance  =
System.Windows.Automation.AutomationElement.FromHandle(

process.MainWindowHandle);
}

Once you have an AutomationElement that represents a parent to your Silverlight applica-
tion, you can then search for certain controls of interest. When searching the tree of user interface
elements beneath a given AutomationElement, you need to define the scope of the search and
a condition used to specify what specific elements you want to find. The AutomationElement
class provides two methods, FindFirst and FindAll, for finding one or more elements that
match the given criteria. The first parameter to these methods is the scope. Table 12-7 shows
the different scope values you can use.

Table 12-7. Enumeration Values from System.Windows.Automation.TreeScope

Enumeration Value Description

Element Search only within the element

Children Search within the element and its children

Descendents Search within the element and all its descendents (its children, its
children’s children, etc.)

Subtree Search within the root of the search and all descendents

The second parameter to these methods is the condition. A condition is essentially a search
criterion. The Condition class itself provides two shortcuts for making searching easy: Condition.
TrueCondition and Condition.FalseCondition. By combining the first with a search scope, you
can obtain all elements within the scope. The latter will return no elements. By combining one
of these with one of the Condition class’s four inheritors, you can create sophisticated search cri-
teria. The AndCondition, OrCondition, and NotCondition classes can be continually nested to
support as complicated a search condition as you need. The other inheritor, PropertyCondition,
is used to find elements with certain properties set to certain values. You can use PropertyCondition
to search for a value of any of the properties from AutomationElement, such as ClassNameProperty,
NameProperty, AcceleratorKeyProperty, and many others.

Revisiting the preceding browserInstance, which now holds a reference to the Internet
Explorer instance that hosts this chapter’s Silverlight application, you can search for a specific
XAML page within the application like this:

AutomationElement loginScreen = 
browserInstance.FindFirst(TreeScope.Descendants, 

new PropertyCondition(AutomationElement.NameProperty, 
"Login Screen"));

The AutomationProperties class provides several useful attached properties you can use
to provide cues for the automation system while leaving the rest of your object’s properties
intact. These attached properties are shown in Table 12-8. When developing an application,
you can use the AutomationId property to uniquely identify elements throughout your appli-
cation specifically for use by automation clients.

CHAPTER 12 ■ TESTING AND DEBUGGING 259



Table 12-8. Attached Properties in AutomationProperties

Name Type Description

AcceleratorKey string The accelerator key for the element

AccessKey string The access key for the element

AutomationId string A unique identifier for element; useful as a cue for
automation clients in searches

HelpText string Help text for the element; generally the associated tool tip text

IsColumnHeader bool true if the element is a column header (such as in a data grid)

IsRequiredForForm bool true if the element must be filled out for a given form

IsRowHeader bool true if the element is a row header (such as in a data grid)

ItemStatus string Indicates the status of the item; generally application-
specific

ItemType string Describes the type of the element

LabeledBy UIElement Specifies which UIElement acts as a label for this element

Name string The element’s name

Once you have a reference to the element of the Silverlight application, you can use other
aspects of the UI Automation Library to simulate keyboard and mouse input for the applica-
tion under test. 

Debugging
The debugging process should not begin when a bug is discovered. Instead, it should start
during application design. You should include logging functionality in your application, such
as error logs and audit logs. An error log is useful for tracking exceptions thrown by an applica-
tion. Exceptions also come with stack traces that help in identifying the code path that lead to
the exception. Audit logs can be used to reconstruct what users were doing within the applica-
tion leading up to an error. These are important elements that must go into application design
and development, but there are also other approaches you can use to make code easier to debug,
such as including extra logging or other features in special debug mode builds of an application.
Any time you go about debugging, however, you must take a structured approach to hunting
bugs down.

The Debugging Process
Debugging may or may not be your favorite activity when developing software, but the same
general frame of mind you use for developing code can be applied to debugging. Debugging is
just another form of problem solving. Having a plan of attack to discover the source of a bug is
invaluable. Here are the steps you should follow when you know of a bug and need to go about
fixing it:

CHAPTER 12 ■ TESTING AND DEBUGGING260



1. Get to know the system. If you’re unfamiliar with the system you’re fixing, you should
get enough familiarity to do as good a job as possible at fixing the bug without intro-
ducing new bugs. Knowing how the system works, what components it uses, and what
technologies are involved (e.g., IIS, ASP.NET, Windows Workflow Foundation) can also
possibly give you more clues to narrowing down the bug.

2. Reproduce the bug. You must know what you’re fixing in order to fix it. Sometimes
you’re lucky enough to have a consistent reproduction; sometimes you aren’t. The goal
here is to have the smallest piece of code or the shortest sequence of actions that
reveals the bug.

3. Make a guess. Sometimes by making a guess you can zero-in on the bug right away.
This isn’t always possible, but when it works, you appear to have special powers.
Raymond Chen calls this “psychic debugging.” It’s really just a matter of having enough
experience to know the source of a bug based on symptoms. If you can’t solve the bug
immediately, sometimes a guess will at least get you closer to the source of it in the code.

4. Gather evidence. Solving a bug isn’t the most difficult activity as long as you have a solid
plan. Part of this plan is to analyze the evidence at your disposal—usually bug reports,
error/audit logs, analysis tools such as file/registry activity monitors, and so on.

5. Conduct heavy debugging. If you haven’t discovered the source of the bug yet, then
now is likely the time to step through code in a debugger. This can be a slow process,
depending on how close you can get to the bug, but it will typically give you a clear
view of the system at a line-by-line level.

6. Identify the solution. By now you’ve found the source of the bug. Sometimes a bug fix
is straightforward; other times you must be careful not to affect other parts of the sys-
tem. A strong set of unit tests is invaluable at this point. If you fix the bug but introduce
a new bug, or reintroduce an old bug (a regression), the unit tests can identify this and
you can revisit your solution.

7. Apply the fix. You’ve identified the solution, implemented it, and verified it hasn’t bro-
ken any existing tests. After applying the fix, you may have to update unit tests or add
new unit tests. This is the time to do that.

Let’s take a closer look at some tools and techniques that can save you time when you are
debugging Silverlight applications.

Conditional Compilation
Much like .NET assemblies, Silverlight assemblies can be compiled in a debug mode configu-
ration or a release mode configuration. The main differences between debug and release
mode are which conditional symbols are defined and whether symbols are generated along
with the assembly. For debug mode, the preprocessor symbol DEBUG is automatically defined,
and for release mode, TRACE is defined.

Sometimes implementing code only for purposes of debugging can be extremely useful.
For example, an application might write a significant amount of information to a log file for
debugging only. This code can’t run in production applications due to performance reasons,
and optimally we want to get rid of this code completely. This can be achieved with conditional

CHAPTER 12 ■ TESTING AND DEBUGGING 261



compilation. The best approach to conditional compilation is to use #if...#endif to isolate
blocks of code that must only appear in certain configurations. Generally, these are used to
only put debug code in debug builds—for example, writing to a debug trace log.

private void login()
{
#if DEBUG

traceLog.WriteLine("entered login method");
#endif

authService.Login(usernameTB.Text, passwordTB.Text, null, null);
#if DEBUG

traceLog.WriteLine("leaving login method");
#endif
}

The DEBUG symbol is automatically defined for debug mode configurations and RELEASE is
automatically defined for release mode configurations. There is one other approach to condi-
tional compilation that is used to limit the type of code that can call a particular method. This
is accomplished using the Conditional attribute on a method, as shown here:

[Conditional("DEBUG")]
public void debugWriteLine(string message)
{

debugLog.WriteLine(message);
}

A method like this can be extremely useful when providing a public API to a class library
that has its own debug log. Any time client code defines the symbol applied to the method via
the Conditional attribute, the code is output with the compiled IL. If the client code does not
define this symbol, the code is not included. This means a client can use the following code
with the knowledge the debug writes will only happen when their code is in a debug mode
configuration.

public void doSomething()
{

library.debugWriteLine("calling doLongOperation");
library.doLongOperation();
library.debugWriteLine("doLongOperation finished");

}

When you use the Conditional attribute, the method it applies to is always compiled and
included in the finished assembly. This is an important difference between the Conditional
attribute and preprocessor symbol testing via the #if command. If you’re using Conditional to
control code within the same assembly (such as making decisions based on symbols other than
DEBUG/RELEASE), you can prevent the body of the method from being included in the compila-
tion by combining Conditional with #if:

[Conditional("DEBUG")]
public void debugWriteLine(string message)
{

CHAPTER 12 ■ TESTING AND DEBUGGING262



#if DEBUG
debugLog.WriteLine(message);

#endif
}

Debugging with Visual Studio
The Visual Studio debugger is an invaluable tool for tracing through code. There’s little differ-
ence between debugging .NET code on Windows and debugging a Silverlight application. The
important differences are that the Silverlight plug-in is hosted within a browser (which acts as
the host process you debug) and the code on the Silverlight platform runs on the CoreCLR,
a runtime completely separate from any other instance of the CLR you have on your system. 

Controlling the Debugger
The System.Diagnostics namespace provides a number of attributes that provide cues (such
as preventing stepping into certain methods) and more information to the debugger. These
attributes are shown in Table 12-9.

Table 12-9. Attributes in System.Diagnostics That Interact with the Debugger

Attribute Description

Debuggable Used to provide configuration-related cues to the JIT compiler and
debugger, such as disabling optimizations.

DebuggerBrowsable Controls display of a member within the debugger. Valid values are
Collapsed, Never (member is never shown), and RootHidden (useful for
collections; shows individual items without showing the root).

DebuggerDisplay Specifies what should be shown in the value column in the debugger
for the member this decorates.

DebuggerHidden Used to hide the member from the debugger.

DebuggerNonUserCode Indicates that a type/member is not part of the user code and should
be hidden from the debugger, not stepped into. This is effectively
a combination of DebuggerHidden and DebuggerStepThrough.

DebuggerStepThrough When applied to a method, causes the debugger to step through the
method instead of stepping into it.

If you have long (or long-running) methods that you don’t want to consciously step over
in the debugger, using the DebuggerStepThrough attribute can save significant time. It is used
to avoid stepping through code since it prevents the method from being stepped into. Here’s
an example usage to mark a validation function that is called often. Make sure you use it in
a situation like this when you’re sure the method isn’t the source of any bugs.

[DebuggerStepThrough]
private bool validateIpAddress(string ipAddress)
{

// parse ipAddress and validate that it's a correct IPv4 address
}

CHAPTER 12 ■ TESTING AND DEBUGGING 263



The System.Diagnostics.Debug class provides two useful methods: WriteLine, for sending
information to the debugger output, and Assert, for testing assumptions. The WriteLine
method uses the Windows OutputDebugString under the covers, so unfortunately this only works
when the debugger is on Windows. There are no debug listeners/trace listeners in Silverlight
as there are in .NET on Windows, so the Debug.WriteLine method is all there really is to writing
debug output. Since OutputDebugString is used at its core, you can attach a debugger and see
the output in the Output window (in Visual Studio) or through another debug viewer.

The other method, Assert, is used to test certain assumptions in your code. The Assert
method (and its overloads) takes a Boolean parameter as a condition to test. When the condi-
tion is false, you see either a dialog box when running in release mode or debugger output
when in debug mode. 

Configuring Startup for Debugging
When you’re developing a Silverlight application, you can either use the development web
server or another web server such as IIS or Apache. By including a web site or a web applica-
tion in your solution when you create a Silverlight project, you can point IIS to this and debug
a Silverlight application similar to how it will be deployed on a real server. This can help
ensure your configuration is correct on the server side, which will mainly consist of ensuring
the web server can serve XAP files and possibly PDB files for debugging purposes. Figure 12-4
shows configuring the web project to start up using an external server. You can separate the
base URL from specific pages to make it easier to change from one startup page to the next
(such as with the switching of the startup to the second Silverlight application in this chapter).

Figure 12-4. Web site startup properties

CHAPTER 12 ■ TESTING AND DEBUGGING264



If you create a Silverlight application with no accompanying web site/web application,
you can still debug a Silverlight application from Visual Studio. You can accomplish this by
going to the property pages for the Silverlight application itself and ensuring “Dynamically
generate a test page” is set (or set to a specific page). This page, and the Silverlight application,
will then be hosted in the development web server, and you can debug your application. You
can see this property page in Figure 12-5.

Figure 12-5. Silverlight application startup properties

Once you have your startup properly configured, you can set breakpoints and debug your
Silverlight application like any other. If you already have a browser running your Silverlight
application outside of Visual Studio, you can attach the debugger to the host process (the
browser). You can accomplish this by going to the Debug menu in Visual Studio and choosing
“Attach to process.” If you’re debugging ASP.NET, you attach the debugger to the ASP.NET
worker process. Similarly, you attach the Visual Studio debugger to the process that hosts the
Silverlight plug-in: the browser. On the Attach to Process dialog (shown in Figure 12-6), you
can click Select to limit the type of code the debugger focuses on. 

CHAPTER 12 ■ TESTING AND DEBUGGING 265



Figure 12-6. The Attach to Process dialog

Figure 12-7 shows the Select Code Type dialog. You can leave this on the default to let the
debugger automatically determine the code type, or manually override and focus on Silverlight,
as shown in Figure 12-7.

Figure 12-7. Narrowing the type of code to debug via the Select Code Type dialog

CHAPTER 12 ■ TESTING AND DEBUGGING266



The easiest way to find the process you want to debug is by the window title. An instance
of iexplore.exe running this chapter’s Silverlight application is highlighted in Figure 12-6.
Once you’ve successfully attached to the correct process, using the debugger is no different
from starting the browser within the IDE under the debugger. You can set breakpoints, break
into the application, and so on.

Handling Unhandled Exceptions
Exceptions happen. It’s your mission as a software developer to handle exceptions, such as
using isolated storage and reading from a file that doesn’t exist. You must handle these in order
to build an application that works well and is resistant to expected problems. Sometimes con-
ditions outside your control or conditions you haven’t considered will cause an exception, and
the Application class provides an unhandled exception handler just for this eventuality. By
default (i.e., the default Silverlight application template in Visual Studio), a Silverlight applica-
tion passes unhandled exceptions on to the browser via the following unhandled exception
handler:

private void Application_UnhandledException(object sender, 
ApplicationUnhandledExceptionEventArgs e)

{
// If the app is running outside of the debugger then report the exception using
// the browser's exception mechanism. On IE this will display a yellow alert 
// icon in the status bar and Firefox will display a script error.
if (!System.Diagnostics.Debugger.IsAttached)
{

// NOTE: This will allow the application to continue running after 
//             an exception has been thrown but not handled.
//             For production applications this error handling should be 
//             replaced with something that will report the error to the 
//             website and stop the application.
e.Handled = true;
try
{

string errorMsg = e.ExceptionObject.Message + 
e.ExceptionObject.StackTrace;

errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");
System.Windows.Browser.HtmlPage.Window.Eval
("throw new Error(\"Unhandled Error in Silverlight 2 Application " + 

errorMsg + "\");");
}
catch (Exception)
{
}

}
}

CHAPTER 12 ■ TESTING AND DEBUGGING 267



This is a basic unhandled exception handler. The information provided in the browser’s
error dialog isn’t always especially useful, as you can see in Figure 12-8. The dialog isn’t too
friendly to users, and you won’t know your Silverlight application has problems unless users
manually report it.

Figure 12-8. The alert dialog in Internet Explorer displaying the Silverlight exception

This chapter’s code includes a XAML page named ErrorFrame that provides improved
handling and display of exceptions. When an exception is thrown and goes unhandled, it gets
sent to the unhandled exception handler and then passed to the ErrorFrame. The ErrorFrame
then displays a red bar at the top, similar to the information bar in Internet Explorer. This red
bar displays the simple feedback to users, “The application has caused an error. Click for details.”
Clicking this red bar causes a Popup control to appear that contains the exception’s message
and stack trace, and two buttons: one to report the exception and the other to close the pop-
up. You might want to automatically send exception feedback to the server instead of waiting
for the user to do so manually, but there are cases where you’ll want the user to have a say.
Figure 12-9 shows what this exception pop-up looks like.

Figure 12-9. The exception dialog as implemented within Silverlight

CHAPTER 12 ■ TESTING AND DEBUGGING268



The ErrorFrame page is made up of three main elements: the red error bar, the pop-up,
and an empty canvas that contains your main user interface. The red error bar is a Border con-
trol that contains several elements, including a HyperLink button to give it clickability.

<Border Background="#FFAA0000" Grid.Row="0" 
x:Name="errorBar" Visibility="Collapsed">

<StackPanel Orientation="Horizontal">
<Ellipse Fill="White" Margin="5 0 0 0" Width="10" Height="10"/>
<HyperlinkButton x:Name="errorDetailsButton" 

Click="errorDetailsButton_Click">
<HyperlinkButton.Content>

<TextBlock Margin="5" Foreground="White" FontSize="12" 
Text="The application has caused an error. Click for details."
x:Name="errorMesageTB"/>

</HyperlinkButton.Content>
</HyperlinkButton>

</StackPanel>
</Border>

The important part of the exception pop-up is the TextBox inside the ScrollViewer:

<Popup x:Name="errorPopup" HorizontalOffset="10" VerticalOffset="50">
<Border>

...
<ScrollViewer Background="LightGray" Grid.Row="0" 

HorizontalScrollBarVisibility="Auto">
<TextBox x:Name="exceptionTB" AcceptsReturn="True"/>

</ScrollViewer>
...

</Border>
</Popup>

The final element is simply an empty canvas. This is where your application’s user inter-
face will appear.

<Canvas x:Name="FrameLayoutRoot" Grid.Row="1">
</Canvas>

The most important aspect to the ErrorFrame is a method used to set the exception:

public void setException(Exception ex)
{

exceptionTB.Text = "An unhandled exception has occurred.\n\nMessage: " + 
ex.Message + "\n\nStack trace:\n" + ex.StackTrace;

errorBar.Visibility = Visibility.Visible;
}

Inside the App.xaml.cs file, the ErrorFrame becomes the root container, instead of the
XAML_Viewer, which has been the root throughout this book. The ErrorFrame instance is stored
so the unhandled exception handler can communicate the exception to the ErrorFrame.

CHAPTER 12 ■ TESTING AND DEBUGGING 269



private ErrorFrame errorFrame;
private void Application_Startup(object sender, StartupEventArgs e)
{

XAML_Viewer viewer = new XAML_Viewer();
viewer.addXamlPage("Generate Exception", new CreateException());
errorFrame = new ErrorFrame();
errorFrame.setLayoutRoot(viewer);
this.RootVisual = errorFrame;

}

The rest is as simple as invoking the setException method of the ErrorFrame class in the
unhandled exception handler.

errorFrame.setException(e.ExceptionObject);

Now any time your application encounters an exception it can’t recover from (otherwise
you’d be handling the exception), the user will get immediate feedback and can optionally
choose to report the error (if you don’t do this automatically or remove this button).

Summary
Testing and debugging are vital activities to develop software effectively. When combined,
testing and debugging help form proactive and reactive strategies to reduce the number of
defects in software. You saw to how leverage the unit testing libraries and the test harness that
you can obtain from Microsoft in order to construct and execute unit tests for Silverlight
applications. You also briefly saw how user interface automation is used to interact with
Silverlight, and the attached properties you can use to instrument your Silverlight application
for user interface automation clients. When it comes to debugging, the class library that comes
with Silverlight provides some useful features, such as attributes to control the debugger, and
a Debug class useful for sending output to the debugger and testing assumptions within debug
mode builds of your application. Finally, you saw an approach to catching unhandled excep-
tions and displaying them to a user within the Silverlight application itself, providing a prime
place to also report unhandled exceptions back to your server. 

CHAPTER 12 ■ TESTING AND DEBUGGING270



Packaging and Deploying
Silverlight Applications

Silverlight is a client-side technology. This means any server can host a Silverlight application
since there is no dependence on IIS or ASP.NET. For many applications, the only configuration
that must be done on the server for the Silverlight application itself is configuring the MIME
type. While server configuration is straightforward, there remain many aspects to creating and
deploying Silverlight applications. This chapter will explore in detail the parts of Silverlight
applications and will discuss Silverlight class assemblies, as well as issues such as versioning
and caching.

Client Considerations
Since the Silverlight plug-in is a self-contained managed environment based on .NET, the
plug-in itself must be developed (by Microsoft or a third party, such as the people behind
Moonlight, a Silverlight implementation for Linux) for each environment that will host it. The
two major aspects of supported platforms are the host operating system and the host browser.
The minimum memory requirement for all operating systems is 128 MB, though naturally, the
more memory you have, the better Silverlight can perform. The supported operating systems
are as follows:

• Windows XP with SP2 or later

• Windows Server 2003

• Windows Vista

• Mac OS X 10.4.8 or higher

The supported browsers on Windows operating systems are as follows:

• Internet Explorer 6 or later

• Mozilla Firefox 1.5.0.8 or later

• Mozilla Firefox 2.0 or later

271

C H A P T E R  1 3



The supported browsers on OS X are as follows:

• Firefox 1.5.0.8 or later

• Firefox 2.0 or later

• Safari 2.0.4 or later

Once Silverlight is installed, it is possible to temporarily disable the add-on (perhaps for
diagnostic purposes). In Microsoft Internet Explorer 7, disabling add-ons is accomplished by
going to Tools ➤ Manage Add-Ons ➤ Enable or Disable Add-Ons. You can then disable the
add-on by highlighting Microsoft Silverlight and changing the selected radio button, as shown
in Figure 13-1.

Figure 13-1. The Manage Add-ons dialog in Microsoft Internet Explorer 7

Every computer that has the Silverlight plug-in also has a configuration utility (named
Silverlight.Configuration.exe and located in the Silverlight installation directory) to change
options related to the Silverlight plug-in, such as automatic updating. Figure 13-2 shows the
configuration utility when it first starts. This is a great place to tell your users to look for the full
version number of their Silverlight plug-in if you ever need this information.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS272



Figure 13-2. The About tab in the Silverlight configuration utility

The second tab, Updates (shown in Figure 13-3), provides options to let the user specify
how updates to the Silverlight plug-in are handled.

Figure 13-3. The Updates tab in the Silverlight configuration utility

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 273



The first option, “Install updates automatically,” will be disabled on Windows Vista systems
that have User Account Control (UAC) enabled. This is because explicit permission from the
user is required before an installation can occur, thus making automatic installation of
a Silverlight update impossible. If Silverlight is not running on Vista (or UAC is disabled), and
this option is still unavailable (or “Check for Updates” is unavailable), it’s likely that Windows
components needed to enable this functionality are not present or are outdated. Visiting Win-
dows Update should fix this problem. 

Then next tab, shown in Figure 13-4, relates to DRM.

Figure 13-4. The DRM tab in the Silverlight configuration utility

Silverlight has the capability of playing media that is protected with DRM, and this pro-
vides the user with a mechanism to explicitly forbid the playing of DRM content. The final tab,
shown in Figure 13-5, is Application Storage.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS274



Figure 13-5. The Application Storage tab in the Silverlight configuration utility

This tab shows the list of Silverlight applications that utilize isolated storage, as discussed
in Chapter 5. This tab provides a way for a user to see how much space is used and by which
applications. The user can also selectively delete (by application) or completely delete the con-
tents of isolated storage. Something important to note, however, is the check box at the bottom.
A user can completely turn off isolated storage. If you develop a Silverlight application that has
issues using isolated storage that you can’t track down, this configuration option is a possible
cause.

Silverlight Deployment Packages
Silverlight applications are packaged into a file with the .xap extension. This extension stands
for XAML Application Package. This file is simply a ZIP archive that stores the main application
DLL, auxiliary library DLLs, and resource files. Figure 13-6 shows the components of a XAP file.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 275



Figure 13-6. Organization of XAP files

The defining difference between an application DLL and a library DLL is that the applica-
tion DLL includes a class that serves as the entry point for the application. If you suspect that
this class is called Application, you would be correct. You’ve seen this as part of every applica-
tion we’ve developed so far, but I haven’t mentioned much about it since the beginning of the
book. Your Silverlight application should include both a XAML file and a code-behind file that
provide your application with a System.Windows.Application-derived class that will conduct
the creation of the user interface to show the user. The default application implementation
generated by Visual Studio and Expression Blend features the following XAML file:

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
x:Class="chapter13.App"
>

<Application.Resources>

</Application.Resources>
</Application>

As you can see, this XAML is bare. This is a great place to put application-level resources,
such as styles and control templates that you want to use throughout the application. Also
generated is the code-behind file:

public partial class App : Application
{

public App()
{

this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException += this.Application_UnhandledException;
InitializeComponent();

}
private void Application_Startup(object sender, StartupEventArgs e)
{

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS276



this.RootVisual = new Page();
}
// ...

}

The constructor registers default event handlers for the events defined in the Application
class. The life cycle of a Silverlight application is shown in Figure 13-7.

Figure 13-7. Silverlight application life cycle

The Startup event handler is the place to specify the UIElement-based class that provides
the main user interface. This is generally a UserControl-based class, such as is generated by
default and reflected in setting the RootVisual to a new instance of this class (Page). The Exit
event handler has no implementation, but the method body is there for you to put any code
you want executed when the user has exited the Silverlight application (generally by closing
the browser or navigating to a different page).

The Application class also provides two useful properties. The Current property is static
and returns the one (and only) instance of the Application implementation, making it easy to
reference application-level resources from the code-behind. The other property is Host, of
type SilverlightHost; it returns a reference to the environment hosting the Silverlight plug-in.

If you do not include an Application-based class, the compiled assembly can be used as
a library, either packaged as part of a XAP file containing a Silverlight application or down-
loaded on demand and loaded via reflection. You can also store other resources, such as data
files and media files, outside this XAP file. 

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 277



Hosting Silverlight on a Web Page
The OBJECT element of HTML is used to place a Silverlight object on a web page. When you
create a new application via Visual Studio, you have the option of creating a web site. Part of
this web site is an HTML file that features an OBJECT tag to host the Silverlight application.
Here’s what the generated OBJECT tag looks like:

<div id="silverlightControlHost">
<object data="data:application/x-silverlight," 

type="application/x-silverlight-2" 
width="100%" height="100%">

<param name="source" value="ClientBin/chapter13.xap"/>
<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />
<a href="http://go.microsoft.com/fwlink/?LinkID=115261" 

style="text-decoration: none;">
<img src="http://go.microsoft.com/fwlink/?LinkId=108181" 

alt="Get Microsoft Silverlight" 
style="border-style: none"/>

</a>
</object>
<iframe style='visibility:hidden;height:0;width:0;border:0px'>
</iframe>

</div>

The properties of the OBJECT tag are shown in Table 13-1.

Table 13-1. Properties of the HTML OBJECT Tag for Hosting Silverlight

Property Description

data Required. Set to the literal data:; followed by the MIME type corresponding to
Silverlight.

id Provides an identifier for this tag within the DOM.

height Height of the content area devoted to the Silverlight application; can be specified as
a number of pixels or a percentage.

type Required. Set to the MIME type that correlates with the specific version of the
Silverlight plug-in the application is built to run on. This controls the specific
Silverlight plug-in that loads. See the “Silverlight Versioning” section of the chapter
for more information.

width Width of the content area devoted to the Silverlight application; can be specified as
a number of pixels or a percentage.

This particular example of the OBJECT tag includes three parameters. There are actually
many parameters that can be specified to control and communicate with the Silverlight plug-in.

background: Defaults to white. Specifies the color used by the Silverlight plug-in to paint
its background. Useful when the content of the Silverlight application does not fill up the
entire space specified in the OBJECT tag. This parameter uses the same syntax for colors as
in XAML.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS278



enableFramerateCounter: Should not be used with production applications! If this is set to
true, the current frame rate is displayed in the host browser’s status bar. This is only sup-
ported on Internet Explorer on Windows.

enableHtmlAccess: Defaults to true. Boolean value that controls whether the Silverlight
application can use the HTML DOM bridge classes.

enableRedrawRegions: Should not be used with production applications! If this is set to
true, the regions that are being redrawn are specially highlighted.

initParams: Used to communicate initialization parameters to Silverlight that can be
accessed from an application. Properties are comma-separated, and the property value is
separated by an equal sign from the property’s name.

maxFrameRate: Defaults to 60. Integer value specifying an upper limit for the frame rate
(the actual frame rate might be lower than what is requested).

onError: Mandatory. Specifies a JavaScript event handler to handle exceptions from the
hosted Silverlight application.

onLoad: Specifies a JavaScript event handler invoked when the root XAML file has completed
loading.

onResize: Specifies a JavaScript event handler that is invoked when the Silverlight plug-in’s
ActionWidth or ActualHeight properties are changed.

onSourceDownloadComplete: Invoked when the application specified in the Source parame-
ter has finished downloading.

onSourceDownloadProgressChanged: Invoked periodically while the Silverlight application
is downloading in order to report download progress.

Source: Mandatory. Specifies the URI to the XAP file containing the Silverlight application.

splashScreenSource: Specifies the URI to a XAML file to show a splash screen while the
Silverlight application is downloading.

windowless: Defaults to false. Only applies to Silverlight running on Windows. Set to true
to run Silverlight as a windowless plug-in.

The other important aspects to this specific OBJECT tag are the links that provide direction
to a user who does not have the Silverlight plug-in installed. The URLs corresponding to installer
packages for each version of Silverlight are shown in Table 13-2.

Table 13-2. Installer URLs for Silverlight Versions

Silverlight Version Installer URL

1.0 http://go2.microsoft.com/fwlink/?LinkId=110408

2.0 Beta 1 http://go2.microsoft.com/fwlink/?LinkId=108182

2.0 Beta 2 http://go2.microsoft.com/fwlink/?LinkID=115261

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 279



■Note The iframe tag is specified in order to prevent the Safari browser from caching the page. If the
page is cached, the Silverlight plug-in will fail to reload correctly.

Several of these properties are exposed via the App.Current.Host.Settings object (of type
System.Windows.Interop.Settings). These settings are shown in Table 13-3.

Table 13-3. Properties of the System.Windows.Interop.Settings Class

Property Type Description

EnableFrameRateCounter bool Gets or sets whether the frame rate counter is displayed
(Microsoft Internet Explorer only)

EnableHTMLAccess bool Gets a value specifying whether HTML DOM access is
permitted

EnableRedrawRegions bool Gets or sets a value specifying where redraw regions are
shown

MaxFrameRate int Gets or sets the maximum frame rate per second

Windowless bool Gets a value specifying whether the Silverlight plug-in is
windowless (only applies to Silverlight running on Windows)

Silverlight Versioning
The OBJECT tag provides a way to specify a MIME type that corresponds to the version of the
Silverlight plug-in the application targets. Table 13-4 describes the current set of MIME types
and the Silverlight versions they correspond to.

Table 13-4. Silverlight Versions and Their MIME Types

Silverlight Version Version Number MIME Type

1.0 1.0 application/x-silverlight

2.0 Beta 1 2.0.30226 application/x-silverlight-2-b1

2.0 Beta 2 2.0.30523 application/x-silverlight-2-b2

2.0 2.0.30923 application/x-silverlight-2

Table 13-4 also shows the specific version numbers for each release of Silverlight. There is
a JavaScript function called isInstalled that is located in the Silverlight.js file. While you
can include the build number and revision number as part of the version string when calling
this function, it is suggested you only use the major and minor parts of the version number.
This function returns true or false.

var isInstalled = Silverlight.isInstalled(version);

ASP.NET provides a server control that handles the generation of the OBJECT tag automati-
cally. Along with the HTML page generated with Visual Studio, an ASPX page is generated that
uses this server control.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS280



<asp:Silverlight ID="Xaml1" runat="server" 
Source="~/ClientBin/chapter13.xap" 
MinimumVersion="2.0.30523" Width="100%" Height="100%" />

This server control exposes properties that correspond to each of the parameters listed
earlier, so there’s no need to relist them. Utilize IntelliSense or MSDN if you need more infor-
mation on the properties this server control supports.

Custom Initialization Parameters
The initParams parameter is used to pass a set of delimited properties with their values to
Silverlight, and thus to the Silverlight application. Each property takes the form of Name=Value,
and the properties are separated by commas. These initialization parameters can be accessed
from JScript or from the Silverlight application in the Application class’s startup handler. From
JScript, you can access the parameters from the onLoaded event handler, or directly via the
DOM. Using onLoaded, you just need to get a reference to the plug-in object and then access
the initParams string property.

function onLoaded(sender, args)
{

var params = sender.getHost().initParams;

var paramList = params.split(",");
for(var i=0; i<paramList.length; i++)
{

var propertyName = paramList[i].split("=")[0];
var propertyValue = paramList[i].split("=")[1];

// do something with property
}

}

These initialization parameters are accessible via the StartupEventArgs parameter to the
Startup event handler in your implementation of the Application class. You can cache these
in your App class by handling the Startup event.

internal IDictionary<string, string> InitParams;
private void Application_Startup(object sender, StartupEventArgs e)
{

this.InitParams = e.InitParams;
}

Once the parameters are cached in your Application-based class, they can be accessed
via the App instance (though you need to cast it to your specific class type in order to access
the InitParams member).

IDictionary<string,string> initParams = ((App)App.Current).InitParams;
foreach (string key in initParams.Keys)
{

TextBlock tb = new TextBlock();

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 281



tb.Text = key + " = " + initParams[key];
LayoutRoot.Children.Add(tb);

}

Resources
There are two main types of resources you can reference from a Silverlight application:
supporting files (such as images and XML data files) and class libraries. Supporting files can be
embedded in the application assembly as a resource, packaged as part of the XAP, or down-
loaded on demand. Class libraries can also be packaged as part of the XAP or downloaded on
demand and loaded using reflection.

Supporting Files
Supporting files can be anything the application needs to work, such as media files (images/
audio/video), data files, custom configuration files, and so on. These files can be embed-
ded directly in the application assembly. Figure 13-8 shows the Properties pane in Visual
Studio 2008 for an image file that was just added to the project.

Figure 13-8. Image resource just added to the Silverlight project

Any file set with a build action of Resource (set in the file’s properties window in Visual
Studio) is placed into the application’s assembly as a resource. This image file can then be ref-
erenced either from the XAML or from the code-behind. In XAML, it’s a simple matter of using
the image’s path and file name.

<Image Source="ball_blue.png" Canvas.Left="10" Canvas.Top="10"/>

This same image can be set from the code-behind by using a relative URI:

Image img = new Image();
img.Source = new BitmapImage(new Uri("ball_blue.png", UriKind.Relative));

If you don’t want to (or can’t) embed resource files in the application assembly, but still
want to distribute them with the application, it’s possible to put the files into the XAP file. These
resource files are known as content files. To ensure that they’re packaged with the application,
you must set their build action to Content in Visual Studio. These files can still be referenced
from the XAML; the only change required is to place a forward slash in front of the file name:

<Image Source="/ball_red.png" Canvas.Left="10" Canvas.Top="10"/>

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS282



The forward slash was omitted when referencing the image inside the assembly since the
image is part of the application assembly. The forward slash, however, is required to indicate
that the relative URI is relative to the root of the XAP file. 

One final syntax format is provided to reference resource files. This is useful when you
need to access a resource inside a library assembly (not the application assembly). 

<Image Source="/chapter13library;component/ball_green.png" />

The forward slash again corresponds to the root of the XAP file. Next is the name of the
assembly, followed by a semicolon and the literal string component, followed by the path to the
resource you want to access (in this case an image file).

Libraries
Silverlight class libraries can include both compiled classes and resource files. The library
assemblies can be stored within the XAP, or if the application does not need them immedi-
ately, can be downloaded on demand. No matter how you deliver the library assemblies to the
client, they must be added as references to the Silverlight application within Visual Studio. Two
library assemblies are used by the example application for this chapter, named chapter13library
and chapter13library2. The first is packaged as part of the XAP and the second isn’t. To prevent
the second library from being packaged in the XAP, set Copy Local to False in the properties
for the assembly, as shown in Figure 13-9.

Figure 13-9. Preventing the library assembly from being packaged in the XAP file

Using an assembly packaged in the XAP doesn’t require anything special. You add a using
reference and then use the types from the assembly:

using chapter13library;
// ...
private void loadButton_Click(object sender, RoutedEventArgs e)
{

ImageUtilities iu = new ImageUtilities();
statusText.Text = "Successfully created instance from class library";

}

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 283



If you choose not to package the assembly with your application, it must first be downloaded
and then loaded into the application domain using the Load method of AssemblyPart. You can
download the assembly using the WebClient class.

WebClient webClient = new WebClient();
webClient.OpenReadCompleted += 

new OpenReadCompletedEventHandler(webClient_OpenReadCompleted);
webClient.OpenReadAsync(new Uri("/chapter13Web/chapter13library2.dll", 

UriKind.Relative));

Once the assembly is finished downloading, you pass the resulting stream to the Load
method:

AssemblyPart part = new AssemblyPart();
Assembly asm = part.Load(e.Result);
Control c = (Control)asm.CreateInstance("chapter13library2.TreeControl");

Unfortunately, while you can add a reference to chapter13library2 and use the types, it
does not seem possible to then cast the type created from the dynamically loaded assembly to
the types from the same assembly when used in the code. For example, if you add this line
below the CreateInstance invocation, an exception will be thrown indicating that the assem-
bly was not found:

chapter13library2.TreeControl tree = (chapter13library2.TreeControl)c;

This will hopefully be fixed in a future release.

Silverlight and the Build Process
An important part of an effective software development process includes a strong build and
deployment process. The build process, at a minimum, should leverage scripts to make building
software easy and primed for automation (either in the form of scheduled builds or continuous
integration). Two of the most popular tools used for building software are NAnt and MSBuild.
Both of these tools use XML configuration files that specify a series of tasks, including compiling
projects, copying build output to different locations, and packaging applications (such as construct-
ing an install package). Silverlight applications must be compiled (unless they target Silverlight 1.0)
and packaged into a XAP for deployment to a web site. MSBuild is the official build tool from
Microsoft, and the Silverlight SDK comes with MSBuild-specific tasks related to compiling and
packaging Silverlight applications. You must use the version of MSBuild that comes with .NET 3.5
(this version of MSBuild also has the version number 3.5). This section will be most useful to you
if you are trying to build Silverlight applications outside the IDE—for example, if you’re trying to
establish a build process.

One huge advantage to MSBuild is that it can use project files from Visual Studio as build
scripts. A Visual Studio CSPROJ file contains a set of properties, many of which are Silverlight-
specific. Let’s briefly dissect one of these Visual Studio project files to see the Silverlight specific
additions:

<OutputType>Library</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>chapter13</RootNamespace>

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS284



<AssemblyName>chapter13</AssemblyName>
<TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
<SilverlightApplication>true</SilverlightApplication>
<SupportedCultures>
</SupportedCultures>
<XapOutputs>true</XapOutputs>
<GenerateSilverlightManifest>true</GenerateSilverlightManifest>
<XapFilename>chapter13.xap</XapFilename>
<SilverlightManifestTemplate>

Properties\AppManifest.xml
</SilverlightManifestTemplate>
<SilverlightAppEntry>chapter13.App</SilverlightAppEntry>
<TestPageFileName>TestPage.html</TestPageFileName>
<CreateTestPage>true</CreateTestPage>
<ValidateXaml>true</ValidateXaml>

You can see that this project file is configured for Silverlight applications, setting proper-
ties related to the XAP file and defining the class that inherits from the IntelliSense class and
serves as the entry point to the application. This project file also contains the directive to include
the extension for building Silverlight applications. This extension controls how XAML pages
are processed and how the XAP file is created. The structure of a Silverlight application as gen-
erated by Visual Studio includes the entry point for the application (the App.xaml and App.xaml.cs
files), an empty UserControl (Page), an empty application manifest, the AssemblyInfo source file,
and of course the project file. Let’s look at using MSBuild to build this application. On disk, these
files are organized as shown here:

chapter13\App.xaml
chapter13\App.xaml.cs
chapter13\chapter13.csproj
chapter13\Page.xaml
chapter13\Page.xaml.cs
chapter13\Properties
chapter13\Properties\AppManifest.xml
chapter13\Properties\AssemblyInfo.cs

Simply executing msbuild.exe with the project file specified as the command line param-
eter causes MSBuild to execute, compiling and packaging this application. The output from
msbuild.exe looks like this:

C:\book\code\chapter13>msbuild chapter13.csproj
Microsoft (R) Build Engine Version 3.5.30428.1
[Microsoft .NET Framework, Version 2.0.50727.3031]
Copyright (C) Microsoft Corporation 2007. All rights reserved.
Build started 7/7/2008 10:43:22 PM.
Project "C:\book\code\chapter13\chapter13.csproj" on node 0 (default targets).

Processing 0 edmx files
Finished processing 0 edmx files

PrepareForBuild:
Creating directory "Bin\Debug\".

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 285



Creating directory "obj\Debug\".
CopyFilesToOutputDirectory:
Copying file from "obj\Debug\chapter13.dll" to "Bin\Debug\chapter13.dll".
chapter13 -> C:\book\code\chapter13\Bin\Debug\chapter13.dll
Copying file from "obj\Debug\chapter13.pdb" to "Bin\Debug\chapter13.pdb".

CreateSilverlightAppManifest:
Begin application manifest generation
Application manifest generation completed successfully

XapPackager:
Begin Xap packaging
Packaging chapter13.dll
Packaging AppManifest.xaml
Xap packaging completed successfully

CreateHtmlTestPage:
Creating test page
Test page created successfully

Done Building Project "C:\book\code\chapter13\chapter13.csproj" (default targets).
Build succeeded.

0 Warning(s)
0 Error(s)

Time Elapsed 00:00:01.04

The actual compilation and creation of the DLL and PDB files is done after the PrepareForBuild
task. After the compilation, a Silverlight-specific application manifest is created, and the con-
tents are packaged into a XAP file. If you examine the contents of the obj\Debug directory, you
will see the following files:

App.g.cs
chapter13.csproj.FileListAbsolute.txt
chapter13.dll
chapter13.g.resources
chapter13.pdb
Page.g.cs
ResolveAssemblyReference.cache
XapCacheFile.xml

The App.g.cs and Page.g.cs files are generated based on their corresponding XAML files
and should not be edited. These files contain the generated partial class definition for their
corresponding class. Much like with Windows Forms, these generated files include the imple-
mentation of InitializeComponent and objects for any XAML elements with an x:Name attribute
defined. The DLL and PDB files are the important parts of the output, and exactly what you
should be used to from .NET—the code compiled to an assembly and a symbol file for debug-
ging purposes. The XapCacheFile.xml file is the Silverlight application manifest and contains
instructions for the XAP packaging utility, such as the files to include in the XAP and where to
place the generated XAP file.

<xapCache source="C:\book\code\ chapter13\Bin\Debug\chapter13.xap" 
lastWriteTime="7/7/2008 10:43:23 PM">

<file source="C:\book\code\ chapter13\obj\Debug\chapter13.dll" 

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS286



archivePath="chapter13.dll" 
lastWriteTime="7/7/2008 10:43:22 PM" />

<file source="C:\book\code\ chapter13\Bin\Debug\AppManifest.xaml" 
archivePath="AppManifest.xaml" 
lastWriteTime="7/7/2008 10:43:23 PM" />

</xapCache>

While using Visual Studio project files as the configuration files with MSBuild is a useful
approach, sometimes you might need to use the native MSBuild file format. While it does share
a lot with the Visual Studio project file format, there are a few differences. Let’s take a look at
an MSBuild file that goes a lot further than the preceding simple example. This build file is
suitable for this chapter’s code; therefore, it includes directives to compile library assemblies
and the application, and include resources or content files. The file, build.proj, is annotated
with line numbers and broken up for ease of discussion. Repetitive elements have been removed
in the interest of space and clarity, but all line numbers match the build.proj included in this
chapter’s code. Of course, these line numbers would not appear in an actual MSBuild project file.

001: <Project 
002:   ToolsVersion="3.5"
003:   DefaultTargets="Build" 
004:   xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
005: 
006:   <!-- Application Configuration -->
007:   <PropertyGroup>
008:     <TargetFrameworkVersion>v3.5</TargetFrameworkVersion>
009:     <SchemaVersion>2.0</SchemaVersion>
010:     <NoStdLib>true</NoStdLib>
011:     <NoStdCfg>true</NoStdCfg>

The Project is the root element for MSBuild configuration files. The TargetFrameworkVersion
is set to 3.5, but keep in mind that this has no connection to .NET 3.5 on Windows. This
version number is reflective of the time when Silverlight was released (.NET 3.5 is the latest
release and includes WCF and the updated MSBuild, as described here).

013:     <RootNamespace>chapter13</RootNamespace>
014:     <AssemblyName>chapter13</AssemblyName>
015:     <OutputType>Library</OutputType>
016:     <OutputPath>ClientBin</OutputPath>

The RootNamespace, as its name implies, specifies the root namespace used in the source
code being built. The AssemblyName specifies the file name used for the built assembly. Since
both Silverlight applications and Silverlight libraries are DLLs, the OutputType will always be
set to Library. The OutputPath specifies the directory where the output files of tasks from this
configuration file are placed.

018:     <SilverlightAppEntry>chapter13.App</SilverlightAppEntry>

This specifies the class that inherits from the IntelliSense class and thus serves as the
entry point for the Silverlight application. Without this, the packaged XAP won’t be valid and
won’t successfully start in Silverlight.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 287



020:     <SilverlightManifestTemplate>
Properties\AppManifest.xml</SilverlightManifestTemplate>

021:     <GenerateSilverlightManifest>true</GenerateSilverlightManifest>

These two properties are required in order to generate a Silverlight manifest file that
includes the details of the XAP file. If you don’t specify these, no Silverlight manifest is gener-
ated, and if you specify the next two properties, the constructed XAP file will contain only the
DLL from the build process instead of all the files it should.

023:     <XapOutputs>true</XapOutputs>
024:     <XapFilename>chapter13.xap</XapFilename>

These two properties instruct MSBuild to create a XAP file with the specified name. The
XAP file is placed in the directory specified in the OutputPath property. If these properties are
not specified, no XAP file will be produced.

025:   </PropertyGroup>
026: 
027:   <!-- Silverlight assembly references required by code -->
028:   <ItemGroup>
029:     <Reference Include="mscorlib" />
030:     <Reference Include="system" />
031:     <Reference Include="System.Windows" />
032:     <Reference Include="System.Core" />
033:     <Reference Include="System.Net" />
034:     <Reference Include="System.Windows.Browser" />

This ItemGroup section shows the set of Silverlight assemblies that are required to build
a default Silverlight application that results from creating a new Silverlight project in Visual
Studio. If the application being built uses assemblies other than these, this section is where
they get added.

035:     <Reference Include=
"chapter13library, Version=1.0.0.0, Culture=neutral, 

processorArchitecture=MSIL">
036:       <SpecificVersion>False</SpecificVersion>
037:       <HintPath>libs\chapter13library.dll</HintPath>
038:     </Reference>

This is the first Silverlight class library. The HintPath specifies where this library is located.

039:     <Reference Include=
"chapter13library2, Version=1.0.0.0, Culture=neutral, 

processorArchitecture=MSIL">
040:       <SpecificVersion>False</SpecificVersion>
041:       <HintPath>libs\chapter13library2.dll</HintPath>
042:       <Private>False</Private>

This is the other class library. Setting the value of the Private property to False is what
prevents this assembly from being included in the XAP file.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS288



043:     </Reference>
044:   </ItemGroup>
045: 
046:   <!-- Files to build application class -->
047:   <ItemGroup>
048:     <Compile Include="App.xaml.cs">
049:       <DependentUpon>App.xaml</DependentUpon>
050:     </Compile>
051:     <Compile Include="Page.xaml.cs">
052:       <DependentUpon>Page.xaml</DependentUpon>
053:     </Compile>

This is the format used to compile the code-behind files for each XAML page. Since each
XAML page is marked as a dependency, the next ItemGroup’s contents are built first.

075:     <Compile Include="Properties\AssemblyInfo.cs" />
076:   </ItemGroup>
077:   <ItemGroup>
078:     <ApplicationDefinition Include="App.xaml">
079:       <Generator>MSBuild:MarkupCompilePass1</Generator>
080:       <SubType>Designer</SubType>
081:     </ApplicationDefinition>
082:     <Page Include="Page.xaml">
083:       <Generator>MSBuild:MarkupCompilePass1</Generator>
084:       <SubType>Designer</SubType>
085:     </Page>

This section includes the part of the build process that turns a XAML page, such as
Page.xaml, into its corresponding generated partial class for the code-behind, such as
Page.g.cs. There’s one entry here for each XAML file in the project.

114:   </ItemGroup>
115:   <ItemGroup>
116:     <Resource Include="ball_blue.png" />
117:   </ItemGroup>

This Resource element specifies that the resource file is placed into the Silverlight applica-
tion assembly.

118:   <ItemGroup>
119:     <Content Include="ball_red.png" />
120:   </ItemGroup>

The Content element specifies that the resource file should be packaged in a XAP file that
is created at the end of the build process.

122:   <!-- 
123:     The file that is used by MSBuild to Build C# Silverlight Applications, and
124:     which specifies the C# compiler. Note that $(MSBuildExtensionsPath) is the
125:     path to the Program Files\MSBuild folder.
126:   -->

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 289



127:   <Import Project=
"$(MSBuildExtensionsPath)\Microsoft\Silverlight\v2.0\
Microsoft.Silverlight.CSharp.targets" />

128: </Project>

This part is required to import the Silverlight-related tasks into the build for use by MSBuild.
The Silverlight-related tasks used in this build file include compiling XAML and creating a XAP
file.

Silverlight Assemblies
Certain assemblies are not automatically available for Silverlight applications. Only the core
runtime assemblies, installed to $(ProgramFiles)\Microsoft Silverlight\(version #), are
present on client computers. The reason these assemblies form a core is to keep the Silverlight
plug-in relatively small. Just a few of the assemblies in this directory are mscorlib (IO, reflection,
collections, etc.), System (support classes), System.Xml (XML parsing), System.Windows (con-
trols, animation, 2D drawing, etc.), System.Core (LINQ), System.Windows.Browser (DOM access
and host interoperability), and System.ServiceModel (services). This set of classes should pro-
vide a significant amount of what Silverlight applications need. If you need more, though, you
must install the Silverlight SDK and distribute assemblies from the SDK with your application.

The assemblies included with the Silverlight SDK fall into two categories: client and server.
Since these are not part of the core, these assemblies must be packaged as part of the XAP file
that is downloaded by the client. The client assemblies include dynamic language support
(IronPython, IronRuby, managed JScript), more controls in System.Windows.Controls.Extended
(e.g., the Calendar and Tab controls), and other assemblies to support syndication, more XML
functionality, and so on. There is only one server assembly, System.Web.Silverlight, and its
main feature is a media player capable of fine-grained control over media. These assemblies
are located in $(ProgramFiles)\Microsoft SDKs\Silverlight\v2.0\Libraries by default.

The MSDN documentation specifies which assembly a class is in. Consult the documen-
tation if Visual Studio cannot build your application because an assembly reference is missing.

■Note The library assemblies are packaged with the XAP file, so make sure your application only references
those assemblies that it needs. It is important to keep the size of the XAP file as small as possible to provide
a positive user experience. Other strategies for improving the user experience are to download library assem-
blies on demand (if your application doesn’t need them right away) or provide a splash screen (using the
splashScreenSource) since it will load much faster than the XAP.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS290



Summary
This chapter covered packaging and deployment of Silverlight applications and libraries. The
XAP file is the main unit of deployment when delivering Silverlight applications to the user.
A XAP file can include the main Silverlight application assembly, resources such as images and
video, and library assemblies. I discussed the OBJECT tag, showing how to place a Silverlight
application on a web page and describing the various Silverlight plug-in configuration options
available. You saw how to use resources and libraries from Silverlight, including how to package
them and how to download them on demand. Finally, any complete software engineering
process has a build process, so you saw how to leverage MSBuild to include Silverlight in the
build. You’ve now reached the end of the journey through how Silverlight works and learned
all you need to build applications. In the final segment of this book, all these pieces will come
together into a real application.

CHAPTER 13 ■ PACKAGING AND DEPLOYING SILVERLIGHT APPLICATIONS 291



Advanced Topics

While this book has covered a significant amount of Silverlight, there is much more to it.
This chapter aims to provide information on some of these other topics. The biggest topic yet
to be covered is the multithreading support that Silverlight provides. Used properly, threading
is a great way to provide a smooth user experience by doing work such as lengthy calculations
or downloading files while the user interface remains responsive. Another useful technique for
certain applications is the use of a timer—a way to execute some code on a certain periodic
schedule (e.g., every 10 seconds). This chapter concludes with how to dynamically load assem-
blies and even dynamically add XAML to your user interface.

Threading
Silverlight is a multithreaded environment, which means multiple sequences of code can exe-
cute simultaneously. You’ve already encountered this in the asynchronous nature of network
communication. The main application thread makes a call to the BeginGetResponse method of
HttpWebRequest, and then your code doesn’t need to sit around waiting for a response. The
actual network communication happens on a different thread, and when a response from the
server is received, the method specified as the asynchronous callback is invoked. In Silverlight,
this specific callback actually happens on a thread other than the main application thread.
The main application thread is usually referred to as the user interface thread, since this is the
thread where all user interface–related code lives (e.g., code that creates the user interface, code
for handling events, etc.). Figure 14-1 shows an illustration of two threads of execution: the user
interface thread and a worker thread that is used for the network communication. The worker
thread representation is shifted down to illustrate the time when the worker thread is created.

293

C H A P T E R  1 4



Figure 14-1. Illustration of user interface thread and worker thread

If you build web applications solely using technologies such as HTML, JScript, and Ajax,
you can’t take advantage of threading in the underlying operating system. Using multiple
threads allows you to build more complex applications that have a high degree of responsive-
ness to users. With multiple cores and multiple processors in computers these days, it would
be surprising if Silverlight did not provide support for using threads. Of course, using threads
introduces new sets of problems for developers. First, you want to be careful to not overuse
threads. Since ultimately each thread is backed by an operating system thread, there are a limited
number of threads you can use, as each thread requires memory and costs CPU time. Another
significant problem occurs any time several threads want to access the same data. If two threads
want to modify a shared piece of data, such as an integer variable, it’s possible to see unexpected
behavior if one thread modifies the variable while the other thread is in the middle of a modi-
fication operation. This is known as a race condition, since both threads are in a race to access
the shared data, and it’s unpredictable which will “win.” Race conditions are only one type of
potential threading issue. If you need to use threads in your Silverlight application, use them
carefully. Of course, the benefit of threads can outweigh the inherent problems when used
properly.

Network
communication
happens here

When server
responds, this thread

invokes the
asynchronous callback
method passed to the 

BeginGetResponse
method

Worker
thread

HttpWebRequest’s
BeginGetResponse

User
interface
thread

CHAPTER 14 ■ ADVANCED TOPICS294



The Thread Class
The System.Threading.Thread class is the managed class that wraps a thread in the underlying
operating system. This is the class you use when you manually create threads or when you want
to do something like put a thread to sleep. The properties of the Thread class are shown in
Table 14-1.

Table 14-1. Properties of the System.Threading.Thread Class

Property Type Description

CurrentCulture CultureInfo Gets/sets the culture for the current
thread.

CurrentThread static Thread Gets the currently active thread.

CurrentUICulture CultureInfo Gets/sets the culture used by the resource
manager when accessing culture-specific
resources at runtime.

IsAlive bool true if the thread is currently running
normally and not aborted/stopped.

IsBackground bool true if the thread is a background thread.
Background threads do not prevent the
Silverlight runtime from shutting down;
therefore, they may be killed abruptly
without completing.

ManagedThreadId Int32 Unique identifier assigned to the managed
thread.

Name string Gets/sets the name of the thread.

ThreadState System.Threading.ThreadState Gets the current state of the thread.

The most useful methods of the Thread class are shown in Table 14-2.

Table 14-2. Methods of the System.Threading.Thread Class

Method Description

Abort Causes a ThreadAbortException to occur in the thread. The thread will usually terminate.
It will transition to the AbortRequested state and ultimately to the Aborted state.

Join Blocks the calling thread until the thread that Join is invoked on is finished. This is
useful when the calling thread must wait for results or other events to complete before
proceeding.

Sleep Static method. Puts the calling thread to sleep for a specified time span or number of
milliseconds. While sleeping, the thread will not consume any processor time.

Start Starts the thread. You can optionally pass an object to the Start method that the thread’s
work method will use.

CHAPTER 14 ■ ADVANCED TOPICS 295



A thread can be in one of several states, as shown in Figure 14-2. Note that the Background
state is not mutually exclusive to the other states. It’s possible for a thread to be a background
thread and to be running, for example. Both of these states can be discovered by consulting
the ThreadState property of a thread. 

Figure 14-2. Thread states and transitions

Note: Dashed lines represent
an external stimulus, such as
another thread invoking
Suspend() on a thread

Background

Thread created

Unstarted

Running

Suspended

Thread responds to 
suspend request

Start() is called and
thread starts running

StoppedAbort

WaitSleepJoin

SuspendRequested

AbortRequested

Suspend() is called

Abort() is called

1. Interrupt() is called
2. Resume() is called

1. Thread calls Sleep

3. Thread calls Wait on 
    an object

2. Thread calls Join on
    another thread

CHAPTER 14 ■ ADVANCED TOPICS296



Creating and Managing Threads
If you want to execute some code on an alternate thread, you can place the code to execute in
its own method and then pass this method to the Thread class’s constructor (by wrapping the
method in a ThreadStart object). We’ll use the following method to simulate some work:

public void doSomething()
{

Thread.Sleep(5000); // 5 seconds
Dispatcher.BeginInvoke(delegate() { statusText.Text = "Work done."; });

}

The code for this chapter contains a simple interface used to start a thread executing the
doSomething method. You can repeatedly click a button to see the current state of the thread.
You should see the state go from Running to WaitSleepJoin and finally to Stopped after the
5-second sleep period is over. Here’s the event handler for the first button that creates and starts
the thread:

private void startThreadButton_Click(object sender, RoutedEventArgs e)
{

currentThread = new Thread(new ThreadStart(doSomething));
currentThread.Start();
statusText.Text = "Thread created and started";
threadStateText.Text = currentThread.ThreadState.ToString();

}

The Thread constructor uses the ThreadStart class to wrap the method that does the work.
There is an alternate class, ParameterizedThreadStart, that is used when you want to pass an
object to the method that performs the work. This object gets passed to the Start method,
which subsequently passes it to the method wrapped by ParameterizedThreadStart. A method
suitable for use with ParameterizedThreadStart takes a single object as a parameter.

public void gotoSleep(object time)
{

int timeToSleep = (int)time;
Thread.Sleep(timeToSleep);

}

Starting the thread is accomplished using code similar to the nonparameterized ThreadStart
class; however, the parameter is passed to the Start method:

currentThread = new Thread(new ParameterizedThreadStart(gotoSleep));
currentThread.Start(7500);

While this is an effective way to create a thread to do some processing, it has several prob-
lems. The main problem is that creating a thread is expensive, and if you continue to create
threads like this, your application’s performance might be impacted, since the environment
handles the creation and eventually the cleanup of threads. To address this problem, you should
use something called the thread pool, which contains a number of already created threads ready
to jump into action and do some work.

CHAPTER 14 ■ ADVANCED TOPICS 297



The thread pool automatically handles the allocation, creation, and cleanup of threads. If
your application requires a larger number of threads than the thread pool already has, then
new threads are created and added to the pool. If your application requires fewer threads than
the pool has, however, your application won’t incur the cost of creation of new threads, since
they are already available in the pool. Another advantage to the thread pool is that if at one
point your application requires a large number of threads, but later on it doesn’t, the unused
threads will automatically clean themselves up until the pool contains a number of threads
closer to what your application currently requires. You interact with the thread pool using the
System.Threading.ThreadPool class. You never create an instance of the thread pool, since it is
completely managed by the environment (the Silverlight plug-in), so all methods are static.
The ThreadPool class provides methods to get and set the minimum and maximum number of
threads, but you’ll usually leave this up to the thread pool itself. The vast majority of the time
the thread pool will better manage thread counts than you can. The most useful method to you
is the QueueUserWorkItem method.

The simplest way to use QueueUserWorkItem is to pass it a method that does the work. This
is similar to passing a method to a ThreadStart class constructor, but it requires less work and
frees you from having to interact with the thread directly.

private void startThreadButton_Click(object sender, RoutedEventArgs e)
{

ThreadPool.QueueUserWorkItem(doSomething);
statusText.Text = "Work queued for a thread pool thread";

}

Although this code functions similar to manually creating and using a thread, you can’t
get state information about the thread since there is no Thread object. The work is sent to
a background thread, and then the application just carries on. 

Let’s say you have a user interface with a TextBox, named resultTextBox, that displays the
contents of something you download using HttpWebRequest. Error handling and details of reading
the response stream are left out for simplicity since they aren’t needed for this illustration.

void responseHandler(IAsyncResult asyncResult)
{

HttpWebResponse response = (HttpWebResponse)request.EndGetResponse(asyncResult);
StreamReader reader = new StreamReader(response.GetResponseStream());
string result = "";
// read and process file
resultTextBox.Text = result;

}

If you attempt to run this code, you’ll get an error about cross-thread access not being
allowed. This problem with modifying resultTextBox directly from the response handler is
due to the response handler executing on a different thread. Only the main user interface
thread can modify user interface elements. What you need, then, is a way to get the user inter-
face thread to make the user interface modification. This happens using something called the
Dispatcher.

CHAPTER 14 ■ ADVANCED TOPICS298



The Dispatcher
The DependencyObject acts as the base object for many classes in Silverlight. One important
aspect of this class, however, is its single property, Dispatcher. Objects can only be modified
on the thread they are created on. Each object, therefore, has a Dispatcher property that pro-
vides two important pieces of functionality. First, you can test whether an object can be modified
from the current thread by calling the CheckAccess method. If the current thread is the same as
the one the Dispatcher belongs to, CheckAccess will return true. The other important function-
ality is the ability to queue some code to execute on the Dispatcher’s thread. This is how we go
about solving the cross-thread access problem when modifying user interface objects. The
method used to execute some code on the Dispatcher’s thread is called BeginInvoke. Figure 14-3
shows the relationship of two threads and the Dispatcher object.

Figure 14-3. A worker thread using the Dispatcher to queue code to execute on the main thread

Let’s rewrite the responseHandler to properly interact with the user interface by using the
Dispatcher property:

void responseHandler(IAsyncResult asyncResult)
{

HttpWebResponse response = (HttpWebResponse)request.EndGetResponse(asyncResult);
StreamReader reader = new StreamReader(response.GetResponseStream());
string result = "";
// read and process file
Dispatcher.BeginInvoke(delegate() { resultTextBox.Text = output; });

}

This usage of BeginInvoke creates an anonymous, zero-parameter method by using the
delegate keyword. You can also execute a method that has parameters by using the alternate
form of BeginInvoke, which takes an array of parameters as its second parameter. In this case,
we call BeginInvoke directly because part of the defined behavior of HttpWebResponse is that
the response handler is invoked on a thread other than the original calling thread. If you’re in

Page Class

User Interface Thread

Dispatch Queue

Dispatcher.BeginInvoke( . . . )

Worker Thread

CHAPTER 14 ■ ADVANCED TOPICS 299



a situation where the invoking thread might be the user interface thread or a different thread,
you can use CheckAccess combined with BeginInvoke in order to modify the user interface:

void modifyUserInterface()
{

if(Dispatcher.CheckAccess())
{

resultTextBox.Text = "modified from UI thread";
} else {

Dispatcher.BeginInvoke(
delegate() {

outputTB.Text = "modified from non-UI thread"; 
}

);
}

}

Of course, while you’ll primarily use the Dispatcher to modify the user interface, it is also
useful for modifying any data that is associated with a different thread. As illustrated in Figure 14-3,
each thread has a dispatch queue. This is where the code you specify in a BeginInvoke method
goes. Each call to BeginInvoke adds a unit of work to the dispatch queue.

The BackgroundWorker Class
If you need to perform work on a separate thread, the easiest way to do this is by using the
BackgroundWorker class. This class makes it easy to do work (such as a long download) on
a separate thread so your user interface stays responsive. This class also provides events for
reporting progress of the work. Its properties are shown in Table 14-3.

Table 14-3. Properties of the System.ComponentModel.BackgroudWorker Class

Property Type Description

CancellationPending bool true when the application attempts to cancel the
BackgroundWorker via a call to the CancelAsync method.

IsBusy bool true when the BackgroundWorker’s task is in progress
(after the call to RunWorkerAsync, and as long as the
task isn’t complete or cancelled).

WorkerReportsProgress bool true when the BackgroundWorker is configured to report
progress via the ProgressChanged event handler.

WorkerSupportsCancellation bool true when the BackgroundWorker is capable of being
cancelled via CancelAsync.

The BackgroundWorker has three events: DoWork, ProgressChanged, and RunWorkerCompleted.
Normally, a method you register with an event is invoked when the event is raised. This same
mechanism, however, is used by the DoWork event. In this case, what is normally an event handler
instead contains code that makes up the work that will be performed by the BackgroundWorker.
ProgressChanged is used to register a method that can handle progress change notification—
most useful for displaying a status indicator on the user interface, since the method call happens

CHAPTER 14 ■ ADVANCED TOPICS300



on the initiating thread (most commonly the user interface thread). The RunWorkerCompleted
event is raised when the work is complete.

Let’s explore just how the BackgroundWorker operates. Figure 14-4 shows a demonstration
with three buttons. Clicking each button will start a new BackgroundWorker configured with
some information to tell it how long to execute, and where to send data (the TextBlock next to
the button) as it executes and when it completes.

Figure 14-4. BackgroundWorker demonstration

Before we can make use of the BackgroundWorker, we must define a method that encapsu-
lates the work that we want done on a background thread. This method supports cancellation,
and takes an integer argument (contained in the CustomWorkerArgs instance that is passed in
via the DoWorkEventArgs object) that controls how long the method takes to execute. The long-
running operation is simulated via Thread.Sleep:

public void performLengthyOperation(object sender, DoWorkEventArgs e)
{

BackgroundWorker bw = (BackgroundWorker)sender;
CustomWorkerArgs args = (CustomWorkerArgs)e.Argument;
e.Result = args;
for (int i = 1; i <= 10; i++)
{

if (bw.CancellationPending)
{

e.Cancel = true;
break;

}
else
{

Thread.Sleep(args.sleepTime / 10);
bw.ReportProgress(i * 10, args);

}
}

}

The DoWorkEventArgs object defines several useful properties: Argument, which contains
an arbitrary object that was passed to RunWorkerAsync; Cancel, which you set to true to cancel
the work (generally done when CancellationPending is set to true); and Result, which is used
to store an object that can be processed by the RunWorkerCompleted event handler. Since this
configuration of BackgroundWorker supports cancellation (something we must explicitly

CHAPTER 14 ■ ADVANCED TOPICS 301



implement in the method that performs work), the CancellationPending property is checked
and the loop aborted prematurely if it is true. The ReportProgress method takes two parameters:
an integer representing percentage completion, and optionally a user state, used to communi-
cate some form of information to the progress event handler.

The CustomWorkerArgs class simply holds an integer representing an index (so we can easily
access the button/text block associated with a BackgroundWorker) and an integer for sleepTime
(the total time the worker method should take to execute). Using a class like this is how you can
communicate as much information as needed to the BackgroundWorker.

class CustomWorkerArgs
{

public int index;
public int sleepTime;

}

Since the various event handlers for BackgroundWorker include a sender (the BackgroundWorker
instance), we can hold a reference to this worker at the class level and compare the instances
instead of passing the index via CustomWorkerArgs. In fact, in one case (when the worker is
cancelled or throws an exception), this is mandated. However, this information is included in
the CustomWorkerArgs class in order to show where information can be accessed and used in the
BackgroundWorker’s event handlers. We keep an array of BackgroundWorker instances at the class
level, along with an array of Buttons and an array of TextBlocks. The Button, in XAML, stores
the appropriate index in the Tag attribute. A single Button event handler is used to start a
BackgroundWorker.

private void buttonTask_Click(object sender, RoutedEventArgs e)
{

// Tag used to get index for button/text blocks
int index = Convert.ToInt32(((Button)sender).Tag);
if (workers[index] != null)
{

resultBoxes[index].Text = "Cancelling...";
workers[index].CancelAsync();
bwButtons[index].Content = "Start";

}
else
{

BackgroundWorker worker = new BackgroundWorker();
worker.WorkerReportsProgress = true;
worker.WorkerSupportsCancellation = true;
worker.ProgressChanged += 

new ProgressChangedEventHandler(worker_ProgressChanged);
worker.RunWorkerCompleted += 

new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
worker.DoWork += new DoWorkEventHandler(performLengthyOperation);
CustomWorkerArgs args = new CustomWorkerArgs();

CHAPTER 14 ■ ADVANCED TOPICS302



args.index = index;
args.sleepTime = 25000;
bwButtons[index].Content = "Cancel";
resultBoxes[index].Text = "Starting...";
workers[index] = worker;
worker.RunWorkerAsync(args);

}
}

The index is retrieved via the Tag attribute, and then the corresponding worker entry in
the workers array is checked. This entry is set to null when the BackgroundWorker completes
(or errors or is cancelled), so if you find it not null, then the worker is active and working.
Otherwise, a new BackgroundWorker is created. This is where we set WorkReportsProgress and
WorkerSupportsCancellation to true. Again, these properties should only be set to true when
you construct the method that does work to explicitly handle the cancel condition and to
report progress. 

Next, the event handlers are registered. Let’s take a closer look at these. DoWork is registered
with the method that actually does the work. In this case, this is the performLengthyOperation
that we already implemented. The rest of this method creates a CustomWorkerArgs instance,
configures it, and passes it to the BackgroundWorker in the RunWorkerAsync method. RunWorkerAsync
is what starts the actual work, provided DoWork is registered with the work method.

The progress handler is straightforward. The UserState property of ProgressChangedEventArgs
contains the object originally passed to RunWorkerAsync. The source of this property, however,
is the second (optional) parameter to the ReportProgress method of BackgroundWorker. If you
need to pass something custom specifically to the progress report handler, you can do it using
the UserState property.

void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{

int index = ((CustomWorkerArgs)e.UserState).index;
resultBoxes[index].Text = "In progress: " + e.ProgressPercentage + "%";

}

The RunWorkerCompleted event handler is much more interesting. Here, we must check
whether the background worker was cancelled or if it had an error. If either of these condi-
tions are true, you can’t use the Result property of the RunWorkerCompletedEventArgs, or else
your code will throw an exception.

void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{

BackgroundWorker bw = (BackgroundWorker)sender;
int index;
if (e.Error != null || e.Cancelled)
{

// if there's an Error or this worker was cancelled,
// we can't access Result without throwing an exception

CHAPTER 14 ■ ADVANCED TOPICS 303



if (bw == workers[0])
index = 0;

else if (bw == workers[1])
index = 1;

else
index = 2;

if (e.Error != null)
resultBoxes[index].Text = "Exception: " + e.Error.Message;

else
resultBoxes[index].Text = Cancelled";

}
else
{

index = ((CustomWorkerArgs)e.Result).index;
resultBoxes[index].Text = "Completed";

}
bwButtons[index].Content = "Start";
workers[index] = null;

}

If there is no error and the worker was not cancelled, the Result property can be accessed.
The else block illustrates accessing Result, providing a quick way to arrive at the right text
block.

Remember that all of these event handlers happen in the thread that created the
BackgroundWorker. Since these workers were created on the user interface thread, it’s possible
to directly access the various text blocks to set their Text property to something appropriate.
There are two big advantages to using the BackgroundWorker. First, it makes it easy to do work
on a background thread without needing to worry about manually creating and managing
a thread. Second, the various event handlers happen on the calling thread, making modifica-
tion of a user interface easy without needing to use a Dispatcher.

Working with Shared Data
One of the trickiest problems when it comes to working with multiple threads is using shared
resources—typically, shared memory in the form of objects or primitive types. When it comes
to shared data, one potential issue is known as a race condition. Figure 14-5 illustrates two threads
attempting to increment a single integer variable named value. However, a simple increment
is split into smaller operations behind the scenes: the value of the variable is read, incremented,
and stored back into the variable.

CHAPTER 14 ■ ADVANCED TOPICS304



Figure 14-5. Two threads incrementing a shared variable

After each thread is done executing, you would expect the value of the integer variable to
be 2, not 1. Unfortunately, while the second thread did read the value, the read happened
before the first thread was done with its increment. This means both threads think the value
was 0 and increment it to 1. The second thread clobbers the increment done by the first thread.

What we want is a way to ensure that all the tiny pieces of the increment (the read, the
increment, and the write-back) work as a single unit. This increment then acts as an atomic
operation—an operation (or sequence of operations) that works together and isn’t preempted
by another thread. This atomicity is achieved by using synchronization mechanisms. Actually,
the increment and decrement are such common operations that the Silverlight base class
framework provides a specialized increment and decrement that are guaranteed to happen
without another thread preempting them. These convenience operations, and a few others,
are provided by the System.Threading.Interlocked class. The methods of Interlocked are
shown in Table 14-4. All methods are static.

Increasing
time

int value;

(value = 0 initially)

Thread #1

Read value (0)

Add 1 (0+1=1)

Read value (0)

Thread #2

Store result in value
(value is now 1) Add 1 (0+1=1)

Store result in value
(value is now 1)

CHAPTER 14 ■ ADVANCED TOPICS 305



Table 14-4. Methods of the System.Threading.Interlocked Class

Method Description

Add Adds two 32-bit or two 64-bit integers and stores the result in the memory
location of the first integer (pass first integer by reference).

CompareExchange Compares two values (integers or arbitrary types via a generic version) and
replaces the value in the memory location of the first parameter with the
second parameter if the first parameter is equal to the third parameter (a value
used in comparison with first parameter).

Decrement Decrements a 32-bit or 64-bit integer by 1.

Exchange Exchanges two values (32-bit or 64-bit integers, or arbitrary types via a generic
version). The exchange occurs by setting the memory of the first parameter to
the value of the second parameter, and then the original value stored at the
memory of the first parameter is returned from the method.

Increment Increments a 32-bit or 64-bit integer by 1.

The Interlocked class can be extremely useful if you need to only make use of an opera-
tion it accounts for. You don’t need to do anything other than invoke Interlocked.Increment
(ref number) if you want to add 1 to an integer variable without needing to worry about other
threads getting in the way. If you want to do something beyond a simple increment or add or
comparison, you need a mechanism to turn an arbitrary set of operations into an atomic
operation that can’t be affected by other threads.

This atomicity is achieved by using a synchronization mechanism. A synchronization
mechanism is a way for a thread to gain exclusive access to something (possibly one or more
resources), locking out all other threads. When a thread is done with its work, it sends a signal
essentially saying “I’m done” and letting other threads then obtain access to the shared resources. 

One of these synchronization mechanisms is known as a monitor. Every object instance
has a monitor associated with it. You can view a monitor as a token that only a single thread
can own at any given time. If there are multiple threads attempting to gain access to a moni-
tor, only the first thread that successfully requests it gets it. Other threads then line up, waiting
for the first thread to release the monitor. The C# language provides a keyword, lock, that makes
it easy to obtain a lock on an object’s monitor. 

If you need to control access to resources within a class, it’s recommended you create
a private object instance to use as a lock. This solves several problems with the design of the
monitors in the CLR, including ensuring that the lock cannot be obtained by an outside class.
If you were to obtain a lock on the current object instance via this, an outside class could also
request a lock on the same instance. In practice, this looks like the following if we attempt to
write a simple list (that uses an array internally). This is a simple list without error handling to
illustrate how to use this synchronization functionality.

class ThreadSafeList
{

private Object m_lock = new Object();
private int[] listItems;
private int count;
public ThreadSafeList()
{

listItems = new int[100];

CHAPTER 14 ■ ADVANCED TOPICS306



count = 0;
}
public void Add(int num)
{

lock(m_lock)
{

// if list is full, allocate more space
// otherwise, just add to end...
listItems[count] = num;
count++;

}
}
public void RemoveAt(int index)
{

lock(m_lock)
{

for(int i=index; i<count; i++)
{

listItems[i] = listeItems[i+1];
}
count--;

}
}

}

Using the lock keyword ensures that only a single thread has access to the internals of the
list (the listItems array and the count variable) at any given time. If you removed the lock
requests and let several threads add items to and remove items from the list, it probably won’t
take long for something to go wrong, such as phantom values showing up in the list or the
count variable not accurately reflecting the proper size of the list.

There are other synchronization mechanisms you can use in your code, such as
AutoResetEvent. This class was used in Chapter 4 to create a synchronous socket. The
AutoResetEvent class works by signaling. An instance of this class can either be signaled or not
signaled. When not signaled, any thread that calls the Wait method of the AutoResetEvent
class will block. Conceptually, the thread is waiting for a specific event to signal. An instance
of AutoResetEvent is signaled when its Set method is called. Let’s look at the ReceiveAsString
method from the SynchronousSocket class from Chapter 3:

public string ReceiveAsString()
{

if (!this.Connected)
{

throw new Exception("Not connected.");
}
SocketAsyncEventArgs asyncEventArgs = new SocketAsyncEventArgs();
byte[] response = new byte[1024];
asyncEventArgs.SetBuffer(response, 0, response.Length);
asyncEventArgs.Completed +=

CHAPTER 14 ■ ADVANCED TOPICS 307



new EventHandler<SocketAsyncEventArgs>(SocketOperationCompleted);
AutoResetEvent receiveEvent = new AutoResetEvent(false);
asyncEventArgs.UserToken = receiveEvent;
_socket.ReceiveAsync(asyncEventArgs);
receiveEvent.WaitOne();
receiveEvent.Close();
if (asyncEventArgs.SocketError == SocketError.Success)
{

return (Encoding.UTF8.GetString(asyncEventArgs.Buffer, 
asyncEventArgs.Offset, asyncEventArgs.BytesTransferred));

}
else
{

throw this.Error;
}

}

The relevant part of this code is the creation of AutoResetEvent (initially in the
nonsignaled state, specified by passing false to the constructor), invoking the asynchro-
nous receive method, and then blocking by waiting for the event to signal via WaitOne. The
call to Close just cleans up this particular AutoResetEvent since it isn’t needed beyond this
single method call. The AutoResetEvent instance is passed to the method that acts as the
callback for the receive operation via the UserToken property of SocketAsyncEventArgs.
The callback method, SocketOperationCompleted, gets ahold of the AutoResetEvent
instance and signals it.

protected void SocketOperationCompleted(object sender, SocketAsyncEventArgs e)
{

if (e.SocketError != SocketError.Success)
{

this.Error = new SocketException((int)e.SocketError);
}
((AutoResetEvent)e.UserToken).Set();

}

Once signaled, the ReceiveAsString method can proceed, since it now has a result from
the socket receive operation completing. While this is an effective way to impose synchronous
semantics on asynchronous operations, you should in general not take this approach without
considering the design of the application. A synchronous socket can be useful for quick bursts
of communication, but if you’re implementing a file downloader via sockets, the user interface
will completely block; therefore, you should use the standard asynchronous functionality of
sockets.

Using Timers
Timing can be quite useful in applications, such as to time-code execution, influence anima-
tions (such as when a certain animation starts), or perform or other application-specific
functions, such as using a stage timer in a game. The two most useful timer classes in Silverlight

CHAPTER 14 ■ ADVANCED TOPICS308



are DispatcherTimer, a timer integrated with the dispatch queue, and Timer, from the 
System.Threading namespace. The major difference between these two timers is where the
work method that occurs periodically is executed. The Timer class executes the work method
on a separate thread, leaving the user interface responsive, but requiring use of the Dispatcher
to change the user interface. The DispatcherTimer, however, does not have this restriction since
it executes on the same thread. This makes it much easier to use. Figure 14-6 shows an interface
used to experiment with both of these timers.

Figure 14-6. DispatcherTimer and Timer classs demonstrations

The DispatcherTimer
The DispatcherTimer works by hooking its Tick event up to a method that will be called on
a periodic basis. You specify how often the Tick event is raised by passing a TimeSpan to the
DispatcherTimer constructor, or by setting the Interval property to the TimeSpan. The timer is
then started via the Start method and stopped via the Stop method. Here’s code that counts to
20 in 1-second intervals, displaying each number on the user interface:

private int count = 0;
private void startTimer_Click(object sender, RoutedEventArgs e)
{

DispatcherTimer timer = new DispatcherTimer();
timer.Interval = new TimeSpan(0, 0, 1);
timer.Tick += new EventHandler(timer_Tick);
timer.Start();

}
void timer_Tick(object sender, EventArgs e)
{

count++;
outputText.Text = "Tick count: " + count;
if (count == 20)

((DispatcherTimer)sender).Stop();
}

The System.Threading Timer
The Timer in the System.Threading namespace does basically the same thing, but the work (in
the form of a callback method passed to Timer) is done on a thread from the thread pool. The
method that does work on a periodic basis is specified as a parameter to the Timer construc-
tor. There are five overloads of this constructor, each providing a different way to specify how
often the work method is invoked. You can also optionally pass extra state information. The

CHAPTER 14 ■ ADVANCED TOPICS 309



most important parameter to each constructor is TimerCallback, used to wrap the method
that does the work. The dueTime parameter is used to specify delay before the timer starts, and
the period parameter is used to specify delay between each subsequent invocation of the call-
back. If dueTime or period are set to infinite, they are effectively disabled (an infinite due time,
for example, causes the timer to never start). A due time of zero causes the timer to start
immediately, and a period of zero causes the work method to get invoked only once.

Timer(TimerCallback): Creates a timer with an infinite due time and infinite period,
preventing the timer from invoking the callback. Use the Change method to set a new
due time/period. The state object is the Timer itself.

Timer(TimerCallback, object state, Int32 dueTime, Int32 period): Creates a timer
with a custom state object (useful for passing information to the work method), and a due
time and period in milliseconds.

Timer(TimerCallback, object state, Int64 dueTime, Int64 period): Same as the Int32
version, but provides the ability to specify lengths of time that can’t be represented in
a 32-bit integer.

Timer(TimerCallback, object state, TimeSpan dueTime, TimeSpan period): Same as the
Int32 version, but uses a TimeSpan to make it easier to specify lengths of time such as sec-
onds or minutes.

Timer(TimerCallback, object state, UInt32 dueTime, UInt32 period): Same as the
Int32 version, but instead uses unsigned integers to represent the due time and period.

■Caution Each time the Timer’s period elapses, the work method passed to the TimerCallback is
invoked. This work is then executed by a thread from the thread pool. If the work method takes longer to
execute than the period, it is likely that the work method will be executed by two threads from the thread
pool at the same time. You must ensure that the work method can tolerate this scenario. This can also hap-
pen if the threads in the pool are exhausted and the work method is queued multiple times, waiting for
threads from the pool to become available.

There is only one useful method on the Timer class: Change. The Change method is used to
change the due time and interval of the timer, and has four overloads that match the four
ways to specify due time and period in the constructor. The work method takes a single object
parameter that corresponds to the state parameter passed to the constructor (or the Timer
object itself if the first form of the constructor was used).

private void doSomething(object state)
{

Dispatcher.BeginInvoke(
delegate() { 

timerOutputText.Text = 
(Convert.ToInt32(timerOutputText.Text) + 1).ToString(); 

});
}

CHAPTER 14 ■ ADVANCED TOPICS310



Since the work method happens on a different thread, the Dispatcher must be used to make
changes to the user interface. A button on the user interface is again hooked up to a method
that starts/stops the timer.

private void timerButton_Click(object sender, RoutedEventArgs e)
{

if (threadTimer != null)
{

threadTimer.Change(0, Timeout.Infinite);
timerButton.Content = "Start Timer";

}
else
{

if (threadTimer != null)
threadTimer.Change(Convert.ToInt32(dueTimeTextBox.Text) * 1000,

Convert.ToInt32(periodTextBox.Text) * 1000);
else

threadTimer = new Timer(new TimerCallback(doSomething), null,
Convert.ToInt32(dueTimeTextBox.Text) * 1000,
Convert.ToInt32(periodTextBox.Text) * 1000);

timerButton.Content = "Stop Timer";
}

}

We instruct the timer to stop by setting the period to Timeout.Infinite. The Change
method is used to restart the timer also. This is the only way to interact with the Timer after it
has been created, except for destroying it via Dispose.

Dynamically Loading Applications
There are two mechanisms Silverlight provides for dynamically loading applications. Assem-
blies can be stored outside an application’s XAP file and downloaded on demand, and then
loaded into the Silverlight environment via a tiny subset of the Reflection support from .NET.
The other approach is to create or download XAML and add it to the visual tree. You can create
fragments of XAML, stored in strings, and convert these to an object by using the XamlReader.Load
method.

You saw the first approach in Chapter 13. You can download an assembly using WebClient
and then pass the result stream to the Load method of AssemblyPart in order to get an Assembly
object you can use.

AssemblyPart part = new AssemblyPart();
Assembly asm = part.Load(e.Result);

You can then use this assembly, such as for invoking CreateInstance to create instances of
classes within the assembly. The other approach, using XamlReader, provides a mechanism to
dynamically parse XAML at runtime and possibly add the resulting object (or tree of objects) to
the user interface. Let’s take a simple TextBlock stored in a XAML file in the web site (i.e., not
distributed in the XAP) and then download and display it. The file contains a TextBlock by itself.

CHAPTER 14 ■ ADVANCED TOPICS 311



<TextBlock xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
Text="Downloaded Fragment" 
Margin="20" Foreground="Red" FontSize="16"/>

In order for this disembodied XAML to successfully parse via XamlReader.Load, it must
meet the following criteria:

• It must be well formed. This should go without saying, but in the interest of being com-
plete, the XAML must be well-formed XML and XAML. If an element name is misspelled
or an end tag is missing, parsing will fail.

• It must have a single root element. Any XAML fragment can only have a single root ele-
ment. It’s easy to load a single TextBlock, but if you want to load a more complex tree of
objects, they must be in a root element such as Canvas or Grid.

• The root element must specify the default XAML namescope. No matter what object
you use for the root, you must add the xmlns, as shown in the preceding TextBlock. This
provides the link between the XAML structure and the XAML fragment to the parser.
You can specify other namescopes if there is a need.

We’ll use WebClient to download this file. The DownloadStringCompleted event handler
invokes XamlReader.Load to parse the downloaded file, cast it to the right class, and then add it
to the user interface.

private void downloadFragmentButton_Click(object sender, RoutedEventArgs e)
{

WebClient wc = new WebClient();
wc.DownloadStringCompleted += 

new DownloadStringCompletedEventHandler(wc_DownloadStringCompleted);
wc.DownloadStringAsync(

new Uri("/chapter14Web/XamlFragment.xaml", UriKind.Relative));
}
void wc_DownloadStringCompleted(object sender, 

DownloadStringCompletedEventArgs e)
{

TextBlock tb = (TextBlock)XamlReader.Load(e.Result);
downloadedFragmentBorder.Child = tb;

}

Figure 14-7 shows what the downloaded fragment looks like after being added to the bottom
Border control.

CHAPTER 14 ■ ADVANCED TOPICS312



Figure 14-7. Dynamically loaded XAML

Summary
This chapter delved into some of the advanced aspects of Silverlight. You probably won’t use
them in every application, but when you do need them, you’re now familiar. The biggest topic
was the multithreading support provided by Silverlight. While you can manually create and
use threads, it’s much better to either leverage the thread pool or use the BackgroundWorker
class to do work on a thread other than the main application thread. You also saw two timers
provided by Silverlight, the DispatcherTimer and the Timer from the System.Threading name-
space. Finally, you saw how to parse XAML at runtime and even load it into the user interface. 

Chapter 15 will complete your journey through Silverlight by combining many of the topics
you’ve encountered in this book. You’ll see the design and implementation of a real application,
showing just what Silverlight is capable of when put to use.

CHAPTER 14 ■ ADVANCED TOPICS 313



Case Study: Campus Explorer

This chapter explores the rationale, design, and implementation of a Silverlight application
that could conceivably exist on the Web. This application features an interactive map, infor-
mation, images, and video of different parts of a university campus. The finished application
is shown in Figure 15-1.

Figure 15-1. A view of the finished Campus Explorer application

315

C H A P T E R  1 5



Application Features
George Mason University has decided it wants to introduce a new feature on its main web site
to help prospective students and other visitors explore the campus. The university currently
has several campus maps that can be viewed online or downloaded and printed. While useful
(especially when on campus), there is no connection to what the campus actually looks like.
Additionally, other aspects of the university, such as academic departments, must be looked
up separately and then manually located on the map (first by finding the building’s number
and then where this building is on the map).

The people representing George Mason University have asked for the following features
in the first version of an application:

• Display the existing map.

• Show all buildings on a single campus and allow users to select a building and highlight
it on the map.

• Show all departments within the university, and when a user selects a department,
display information about the department and highlight the building that houses the
department’s main offices.

• When a building is the focus of the user’s attention, show any images/video associated
with it in thumbnail form.

• When a user selects an image or video thumbnail, reveal a more detailed view (for
videos, the user can play/pause/resume/stop the video).

• Show a list of main roads visitors can take to get to the university, and when one is
selected, highlight the route on the map (possibly with additional information on the
map such as directional arrows, text assistance, etc.).

• Ensure the application can work on both Windows and OS X, and within different
browsers, ensuring all visitors to the web site can make use of the interactive map.

Silverlight is an excellent choice to address these requested features because it is cross-
platform, natural to develop on for .NET programmers, and has great support for handling
images and video.

Design of the Application
The Campus Explorer must present different views of information and provide a good deal of
interactivity for exploring a campus map. All this must be represented in some way so the
application can display information to the user and know where to get media files such as
video.

User Interface Design
A reduced version of a highly detailed map must be visible at all times. Users must be able to
see a list of buildings on the map, departments in the school, and driving directions. When
focusing on a building, users must be able to see any media attached to it. All these aspects

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER316



must be considered when designing the user interface. Figure 15-2 shows the outline of the
user interface that will be built.

Figure 15-2. Outline of the Campus Explorer application

This user interface is implemented using several XAML files. There is a XAML page for the
main application, one for the map, and another for the video thumbnails. Any functionality
that is limited to a page can stay within that page, such as the navigation buttons at the top
and the navigation options at left. These fit more as part of the page code than code for
a reusable element.

Data Representation
The data representation must be determined before the implementation can begin. After
gathering information about what needs to be stored and processed by the application, the
following facts are defined:

• A school has a name and initials.

• A school has one or more campuses.

• A school has one or more academic departments.

• A department has a name, an abbreviation, a description, and a building number.

• A campus has a name.

• A campus has a map.

• A campus map has a name, a full-size image (path to image, width, and height), and
a reduced-size image (path to image, width and height).

• A campus map has zero or more annotations.

• A map annotation has a name, a description, a path to an image, and a category.

• A campus has one or more buildings.

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 317



• A building has a name.

• A building has associated map information.

• A building’s map information has a building number, a grid cell, and a building location
that can be highlighted on the map.

• A building has zero or more images and zero or more videos.

• Images/video for buildings have a caption, a path to the media, a width, and a height.

Figure 15-3 shows a data model that represents the preceding information. This model
will turn into a set of classes corresponding to the structure of an XML file.

Figure 15-3. Data model

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER318



The use of classes provides an easy way to serialize an XML file, enable data binding, and
expose a DisplayText property to help make the XAML a bit cleaner. A piece of the XML file
looks like this:

<?xml version="1.0" encoding="utf-8"?>
<school name="George Mason University" initials="GMU">
<departments>
<department abbreviation="CS" name="Computer Science"

building="44" description="..."/>
</departments>
<campuses>
<campus name="Fairfax">

<mapdata name="Fairfax Campus" source="fairfax.png"
width="2400" height="2000"
downsource="fairfax_down.png"
downwidth="600" downheight="500">

<annotations>
<annotation name="From 66"

category="Driving Directions" description="..."
image="annotations/fairfax_directions_66.png"/>

</annotations>
</mapdata>
<buildings>

<building name="Enterprise Hall">
<mapinfo number="13" highlight="1470,1040,170,120" grid="E5"/>
<images>

<image caption="Stairs to center of campus"
source="/images/EnterpriseBasement.png"
width="100" height="100"/>

</images>
<videos>

<video caption="Outside Main Entrance Floor"
source="/videos/EnterpriseMainEntrance.wmv"
width="100" height="100"/>

<video caption="Outside Bottom Floor"
source="/videos/EnterpriseBottomFloor.wmv"
width="100" height="100"/>

</videos>
</building>

</buildings>
</campus>

</campuses>
</school>

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 319



Packaging of the Application
There are three general categories of files that are sent to the client: the Silverlight application, the
school data (the XML file and map information), and media files for the school (images/video).
The XAP file containing the application is downloaded to the client when a user browses to the
application on a web site. This must be done regardless, though it’s possible to cache the XAP
file on the client browser.

The school data is downloaded after the application initializes. This is done for three main
reasons. First, the user interface (even if it’s a progress bar) is displayed faster, giving the user
a better experience. Second, the school’s data can be saved to isolated storage, also improving
the user’s experience (faster loading next time they visit the application). This also carries with
it the benefit of less server traffic for users who visit the application repeatedly. If you use iso-
lated storage, you must implement a version check to see if the server has updated data. Third,
this places school-specific information outside the Silverlight application, making it easier to
structure a generalized application that can be productized and sold to other universities.

The third category of files contains images and video of different parts of a campus. These
are packaged as part of the web site. The paths to these files are stored in the XML data file.
This also provides a way to store the media in Silverlight Streaming and reference those paths.
For simplicity, the included media is packaged with the web site for this chapter.

Application Implementation
Let’s now take a look at how the different aspects of this application are implemented.

Helper Methods
Any application usually has some form of utility methods—code useful in many different
parts of the application. Sometimes these are stored in their own class. This application only
has one method that is useful in different parts of the application, and since it makes sense as
a way to augment the Application class, it takes the form of an extension method, a feature
introduced in C# 3.0. Here’s the implementation of this extension method, GetHostAddress—
an easy way to retrieve the path to the server where the Silverlight application lives, but
suitable for referencing media contained in the web site:

public static class ApplicationExtensions
{

public static string GetHostAddress(this Application app)
{

return (app.Host.Source.AbsoluteUri.Substring(0,
app.Host.Source.AbsoluteUri.IndexOf(

app.Host.Source.AbsolutePath)));
}

}

The GetHostAddress is useful for referencing images/video located on the host web site.
You use it like this:

video.Source = new Uri(App.Current.GetHostAddress() + "/test.wmv", 
UriKind.Absolute);

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER320



This extension method does not return a string with a trailing slash, and the method must
be modified if the web site/web application hosting the Silverlight application is under a directory
within the web site. For example, this method won’t work with http://localhost:51161/
chapter15web, but it will work with http://localhost:51161/. This is because the virtual direc-
tory piece isn’t presented in the app.Host object in a way we can identify it.

XAML Organization
There are four XAML files that make up this application (not including App.xaml). MainPage.xaml
features the main user interface. Map.xaml includes the interactive map and the informational
panel. VideoThumbnail.xaml is used to display a video with a play button overlay in Map.xaml.
ErrorFrame.xaml catches and displays unhandled exceptions, providing a smoother user expe-
rience than a browser error.

MainPage
MainPage.xaml contains the main parts of the application. An instance of this XAML is wrapped
by the ErrorFrame from Chapter 12. MainPage.xaml contains everything except the interactive
map and its associated informational panel (that contains text or images/video). The ListBox’s
appearance is changed by using a control template, as are the navigation buttons at the top of
the user interface. A user control can be placed onto a XAML page by exposing the XML name-
space, and is done in MainPage.xaml to put the Map.xaml control on the page:

<UserControl x:Class="chapter15.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:ce="clr-namespace:chapter15">
<!-- ... -->
<ce:Map Grid.Row="1" Grid.Column="1" x:Name="mapControl"/>
<!-- ... -->

</UserControl>

MainPage.xaml also includes a pop-up that covers the entire interface while data is down-
loaded. The frosted effect of the entire interface is achieved by using Opacity.

<Popup x:Name="startupPopup">
<Canvas Background="White" Opacity="0.7"

Width="860" Height="815">
<TextBlock x:Name="dataDownloadProgressText" Text=""

Canvas.Left="400" Canvas.Top="400"/>
</Canvas>

</Popup>

Map Interaction ListBox
The left side of the application contains a list of items such as the buildings on the map,
departments from the school, or a group of annotations such as driving directions. The default
ListBox appearance doesn’t fit as well into this application as it should, so it was modified. As
discussed in Chapter 8, the best way to go about changing a control’s appearance is by using

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 321



Expression Blend to either create an empty control template (if you want to work with a clean
slate) or edit the existing control template (if you want to make minor tweaks or have existing
XAML that can guide you). Changing the appearance of the ListBox for this application requires
defining a new control template both for the ListBox and for the items in the ListBox. The
ListBox control template is changed to remove the border around it:

<Style x:Key="ListBoxStyle1" TargetType="ListBox">
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="ListBox">

<Grid>
<ScrollViewer x:Name="ScrollViewer"

BorderThickness="0"
Padding="{TemplateBinding Padding}">

<ItemsPresenter/>
</ScrollViewer>

</Grid>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>

The ListBoxItem’s control template is changed by removing many of the storyboard ani-
mations, making the items appear flatter in order to blend in more with the visual appearance
of the application. The entire control template is too long to show in this chapter, but here is
the new XAML for the MouseOver state. The Opacity property is altered to display the mouseover
highlight since the item’s content is underneath.

<vsm:VisualState x:Name="MouseOver">
<Storyboard>

<DoubleAnimationUsingKeyFrames
Storyboard.TargetName="HoverOverlay"
Storyboard.TargetProperty="(UIElement.Opacity)">

<SplineDoubleKeyFrame KeyTime="00:00:00" Value="0.75"/>
</DoubleAnimationUsingKeyFrames>

</Storyboard>
</vsm:VisualState>

There is a single ListBox that uses this control template (by way of a style). The ListBox
uses data binding to easily populate the items collection. Since there is a control template for
the ListBox and a control template for ListBoxItem, the ItemContainerStyle of the ListBox is
used to specify the style (containing the control template) for the items.

<ListBox x:Name="mapItemsListBox"
ItemsSource="{Binding Mode=OneWay}"
Width="190" Height="500"
Canvas.Left="15" Canvas.Top="75"
Style="{StaticResource ListBoxStyle1}"
SelectionChanged="mapItemsListBox_SelectionChanged"

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER322



ItemContainerStyle="{StaticResource ListBoxItemStyle1}">
<ListBox.ItemTemplate>

<DataTemplate>
<StackPanel Orientation="Horizontal">

<TextBlock Text="{Binding Path=DisplayText}" Height="25"
Foreground="Black" FontSize="10"
VerticalAlignment="Top"/>

</StackPanel>
</DataTemplate>

</ListBox.ItemTemplate>
</ListBox>

Any object with a DisplayText property can be used for data binding with this ListBox. For
example, the Department class features the following DisplayText:

public class Department
{

[XmlAttribute("name")]
public string name { get; set; }
public string DisplayText
{

get
{

return (this.name);
}

}
// ...

}

This approach makes it easy to only specify the ListBox once in the XAML; then, behind
the scenes, the DataContext property is set accordingly. This could also be accomplished by
changing the DataContext and the data binding within the item template.

Map.xaml
The Map.xaml page contains four main elements: the informational panel at top (featuring
text/images/video), the reduced-size map on the user interface, the zoomed map, and a pop-
up for viewing a larger image/video. Let’s look closer at these aspects of the map interface.

Map Zoom
The core of the application is the interactive map. The most interesting feature is the ability to
zoom into a particular point on the map. The map zoom is accomplished using two images
and what you might call a trick. The high-resolution map is a 2400×2000 PNG file. If this were
the only image used, letting Silverlight shrink the map into a smaller space would potentially
look terrible. Instead, the image is shrunk in a graphics program such as Paint.NET. The two
big advantages to having the lower-resolution version are that you can ensure it looks good,
and Silverlight won’t have to do the extra work of shrinking the image into a smaller space. For
this application, the 2400×2000 map is shrunk to 600×500. This maintains the aspect ratio of

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 323



the image while ensuring the image is small enough to fit on the main user interface. These
two images are placed into the data package downloaded by the application.

When a user presses and holds the left mouse button, a zoomed slice of the map appears,
along with some informational text. The zoomed slice is a 200×200 rectangle taken from the
2400×2000 image. Figure 15-4 shows what the smaller rectangle shown on top of the 600×500
image looks like in outline form, and Figure 15-5 shows what this looks like in the application.

Figure 15-4. Representation of zoom rectangle on top of reduced-size map

Figure 15-5. The zoomed slice of the map shown on top of the main map

The zoomed slice is actually an image with its source set to the full-size map image, and
the Clip property is used to isolate the 200×200 rectangle:

<Image x:Name="zoomedMapImage"
Width="2400" Height="2000" Visibility="Collapsed">

<Image.Clip>
<RectangleGeometry Rect="0,0,200,200">

<RectangleGeometry.Transform>
<TranslateTransform X="0" Y="0"

x:Name="zoomedMapClipTransform"/>

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER324



</RectangleGeometry.Transform>
</RectangleGeometry>

</Image.Clip>
<Image.RenderTransform>

<TranslateTransform X="0" Y="0"
x:Name="zoomedMapTransform" />

</Image.RenderTransform>
</Image>

The zoomed slice is centered on the point where the mouse is clicked. The initial mouse
click is handled by the following method:

private void mapCanvas_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)

{
zoomedMapImage.Visibility = Visibility.Visible;
zoomBorder.Visibility = Visibility.Visible;
gridInfoBorder.Visibility = Visibility.Visible;
setZoomedPosition(e.GetPosition(mapCanvas));

}

This method makes the appropriate elements of the zoomed slice and associated grid
information visible, and then translates the position of the mouse to a point within the mapCanvas
(the top-left of the mapCanvas is 0,0, and this ensures the mouse position is relative to this point).
The setZoomedPosition method does all the work of calculating the correct slice to show and
determining what buildings are within the current grid cell.

private void setZoomedPosition(Point p)
{

// ...
}

Let’s look at what the setZoomedPosition does, a piece at a time. The position of the image
(the zoomed slice) is set as follows:

zoomedMapImage.SetValue(Canvas.LeftProperty, p.X-100);
zoomedMapImage.SetValue(Canvas.TopProperty, p.Y-100);

Since it’s a 200×200 slice, subtracting 100 from each coordinate centers the slice. Next, the
clip must be set so that the image displays the correct slice. This is a matter of converting the
position of the mouse from the local coordinate system (a point within the 600×500 image) to
the larger map’s coordinate system (a point within the 2400×2000 image).

zoomedMapClipTransform.X = ((p.X) / 600) * 2400 - 100;
zoomedMapClipTransform.Y = ((p.Y) / 500) * 2000 - 100;

This clips the full-size image to where we want it. Subtracting 100 must be done since the
slice is centered. This isn’t all that is needed, however. The image itself must be placed into
position based on where the mouse was clicked. This is why there’s an additional Translate
transform on the image. Once the clip region is set, this slice must be moved into position so
the top left of the slice is the top left of the visible rectangle that contains the slice on the user

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 325



interface. This is accomplished by setting the Translate transform to the opposite of the Translate
transform used for the clipping:

zoomedMapTransform.X = -1 * zoomedMapClipTransform.X;
zoomedMapTransform.Y = -1 * zoomedMapClipTransform.Y;

It may help to visualize a physical map on a desk with a rectangular magnifying glass that
is in a fixed location above the map. First, the rectangle of interest must be identified (this is the
crop, isolating a small section of the map), and then the map itself must be moved beneath
the magnifying glass so that the correct piece of the map is directly beneath the magnifier.
Allowing the user to hold down the left mouse button and drag the zoomed slice around is
accomplished by handling the MouseMove event of the Canvas that holds the map. This event
handler passes the mouse position to the setPosition method that performs the calculations
and placement of the slice:

private void mapCanvas_MouseMove(object sender, MouseEventArgs e)
{

setZoomedPosition(e.GetPosition(mapCanvas));
}

The rest of setZoomedPosition positions the informational pane that is attached to the
zoomed map slice and populates it with a list of building names within the current grid cell.

Highlighting Buildings
The data contains information on the location of each building in order for the application to
highlight it on the map. This highlighting is accomplished via a black ellipse in the XAML that
is only visible when a building is highlighted:

<Ellipse Stroke="Black" StrokeThickness="5" x:Name="highlight"
Visibility="Collapsed"/>

The ellipse’s Visibility property is set to Visible and placed on the user interface according
to the map information stored along with the buildings:

private void highlightBuilding(Building building)
{

if (!string.IsNullOrEmpty(building.mapinfo.highlight))
{

string[] pieces = building.mapinfo.highlight.Split(',');
highlight.Visibility = Visibility.Visible;
highlight.SetValue(Canvas.LeftProperty, Convert.ToDouble(pieces[0]));
highlight.SetValue(Canvas.TopProperty, Convert.ToDouble(pieces[1]));
highlight.Width = Convert.ToDouble(pieces[2]);
highlight.Height = Convert.ToDouble(pieces[3]);

}
}

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER326



Map Annotations
A map annotation is some form of decoration that adds information to the map. While anno-
tations can be viewed as a generalized concept, this application uses them just for driving
directions. There are mainly two approaches to creating annotations. The first is by leveraging
drawing primitives from Silverlight, such as the TextBlock for text, and shapes such as lines and
ellipses to paint information onto the surface of the map. This approach would either require
a specialized use of Expression Blend (to create XAML on top of the map image and then export
this XAML) or a custom tool (to either draw the annotations onto a map image or convert XAML
from Expression Blend into another format if required).

The other approach, and the one taken with this application, is to start with the original
map image, open it in a graphics editor such as Paint.NET, and draw annotations on a new
layer, leaving the original map alone on the initial layer. The original layer containing the map
can then be deleted, leaving the annotations on a largely transparent image. When this image
is displayed after the original map, the annotations appear on top. By working with the origi-
nal full-size map, the annotations can easily be displayed on the 600×500 surface and on the
zoomed slices from the 2400×2000 image.

The Map class defines the showAnnotation method that takes the path to the annotation:

public void showAnnotation(string annotationImageSource)
{

clear();
BitmapImage imageSource = new BitmapImage();
imageSource.SetSource(SchoolData.GetMapAnnotation(annotationImageSource));
annotationMapMini.Source = imageSource;
annotationMapMini.Visibility = Visibility.Visible;

}

The annotationMapMini is placed right after the main map image shown on the user inter-
face. This ensures that when the annotation image is shown it appears on top of the main map:

<Image x:Name="mainMap" Width="600" Height="500"
Canvas.Left="0" Canvas.Top="0"/>

<Image x:Name="annotationMapMini" Width="600" Height="500"
Canvas.Left="0" Canvas.Top="0" Visibility="Collapsed"/>

Since most of the annotation image is transparent, the file size generally isn’t too large.
There was one problem encountered in the development of this part, however, The color space
in the PNG was stored in an indexed format that is incompatible with Silverlight with respect
to transparency. The image appeared fine but the transparent parts weren’t transparent. This
was addressed by converting the PNG from an indexed color space to RGBA. One easy way to
do this is with ImageMagick (you can download this from www.imagemagick.org/). The follow-
ing invocation of the convert.exe program changes a PNG to RGBA:

convert.exe <source image> -channel RGBA <destination image>

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 327



Informational Panel
The informational panel located immediately above the map features a single line of text that
is always visible, and optionally additional text or images/video below it. You can see what this
panel looks like in Figure 15-6 when it features some media.

Figure 15-6. The upper panel containing images/video

The right side of the first line also contains an arrow allowing users to collapse this panel
if they don’t want to see the extra information. The arrow is a single image that a Rotate trans-
form can be applied to.

<StackPanel Orientation="Horizontal" Canvas.Left="518" Canvas.Top="0" >
<TextBlock Text="Click to collapse" x:Name="arrowLabel"

Foreground="White" FontSize="12" Margin="0 0 5 0"/>
<Image Source="arrow_down.png" x:Name="arrowButton" Width="18" Height="18"

MouseLeftButtonUp="arrow_MouseLeftButtonUp">
<Image.RenderTransform>

<RotateTransform Angle="0" CenterX="9" CenterY="9" 
x:Name="arrowRotation"/>

</Image.RenderTransform>
</Image>

</StackPanel>

When the arrow is clicked, the animation happens and the rotational angle of the arrow
image is set:

private void arrow_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{

if (upperPanelExpanded)
{

scrollUp.Begin();
arrowRotation.Angle = 90;
infoText.Visibility = Visibility.Collapsed;
mediaScrollViewer.Visibility = Visibility.Collapsed;
arrowLabel.Text = "Click to expand";
upperPanelExpanded = false;

}
else
{

scrollDown.Begin();

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER328



arrowRotation.Angle = 0;
infoText.Visibility = informationalTextVisibility;
mediaScrollViewer.Visibility = mediaListVisibility;
arrowLabel.Text = "Click to collapse";
upperPanelExpanded = true;

}
}

This arrow could be implemented as a custom control template for Button, but its
appearance is so simple that the additional visual states for the Button are more than we need.

The container for images/video associated with a building on campus is simply an empty
StackPanel inside a ScrollViewer. This makes it easy to provide scrolling behavior in case there
are more images/videos than can be seen at a single time.

<ScrollViewer HorizontalScrollBarVisibility="Auto"
VerticalScrollBarVisibility="Disabled"
Height="130" Canvas.Left="15" Canvas.Top="30" Width="600"
Visibility="Collapsed" x:Name="mediaScrollViewer">

<StackPanel Orientation="Horizontal" x:Name="mediaStackPanel"/>
</ScrollViewer>

When a building is selected (either by the user selecting a building or department), any
videos/images associated with it are added to the mediaStackPanel. Here’s the code that han-
dles all the video. Remember that the video and images are stored on the web site, not as part
of the Silverlight application.

mediaStackPanel.Children.Clear();
if (SchoolData.school.campuses[0].buildings[i].videos != null &&

SchoolData.school.campuses[0].buildings[i].videos.Count > 0)
{

for (int j = 0; 
j < SchoolData.school.campuses[0].buildings[i].videos.Count; 
j++)

{
VideoThumbnail video = new VideoThumbnail();
video.Source = new Uri(App.Current.GetHostAddress() +

SchoolData.school.campuses[0].buildings[i].videos[j].source,
UriKind.Absolute);

video.MouseLeftButtonUp += media_MouseLeftButtonUp;
video.Margin = new Thickness(10, 0, 10, 0);
video.Tag = j;
mediaStackPanel.Children.Add(video);

}
}

Whenever an image or video is clicked, the media_MouseLeftButtonUp event handler is
invoked. This event handler displays either the image or video and causes a pop-up to open.
The pop-up is defined in XAML and contains the header text, the content (image or video),
and control buttons (play/pause for video, and always a close button).

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 329



<Popup Canvas.Left="20" Canvas.Top="40"
Width="300" Height="300" x:Name="imagePopup">

<Border BorderBrush="Black" BorderThickness="1"
Background="Black">

<Grid>
<Grid.RowDefinitions>

<RowDefinition Height="24"/>
<RowDefinition Height="*"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<TextBlock x:Name="zoomedMediaHeader"

HorizontalAlignment="Center"
Text="Front Entrance" Foreground="Red"/>

<Image x:Name="zoomedImage" Width="300" Height="300"
Grid.Row="1" Visibility="Collapsed"/>

<MediaElement x:Name="zoomedVideo" AutoPlay="False"
Width="300" Height="300" Grid.Row="1"
Visibility="Visible"/>

<StackPanel HorizontalAlignment="Center" Grid.Row="2"
Orientation="Horizontal" Height="24">

<Button x:Name="videoPlayStopButton" Content="PLAY"
Margin="2" Click="videoPlayStopButton_Click"/>

<Button x:Name="videoPauseResumeButton" Content="PAUSE"
Margin="2" Click="videoPauseResumeButton_Click"/>

<Button x:Name="popupButton" Content="CLOSE"
Click="popupButton_Click" Margin="2"/>

</StackPanel>
</Grid>

</Border>
</Popup>

This informational panel can be collapsed or expanded, and is a great place to add some
subtle animation. This is accomplished via two storyboards in the resource dictionary for the
Map control:

<UserControl.Resources>
<Storyboard x:Name="scrollUp" Storyboard.TargetName="upperPanel"

Storyboard.TargetProperty="Height">
<DoubleAnimationUsingKeyFrames>

<LinearDoubleKeyFrame KeyTime="0:0:0" Value="170"/>
<LinearDoubleKeyFrame KeyTime="0:0:0.2" Value="30"/>

</DoubleAnimationUsingKeyFrames>
</Storyboard>
<Storyboard x:Name="scrollDown" Storyboard.TargetName="upperPanel"

Storyboard.TargetProperty="Height">
<DoubleAnimationUsingKeyFrames>

<LinearDoubleKeyFrame KeyTime="0:0:0" Value="30"/>
<LinearDoubleKeyFrame KeyTime="0:0:0.2" Value="170"/>

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER330



</DoubleAnimationUsingKeyFrames>
</Storyboard>

</UserControl.Resources>

Summary
This chapter described the design and implementation of a Silverlight application that could
conceivably exist on the Web. There are definitely enhancements that can be made to this
application, such as linking the interactive map with courses and student schedules, and pro-
viding additional information that can be pointed out on the map. There were relatively few
problems encountered when developing this application, illustrating the fact that Silverlight
provides a great degree of what we need as software developers to build rich applications.
There is a lot of expressiveness provided by Silverlight, and now it’s your turn to make use of
this new platform from Microsoft.

CHAPTER 15 ■ CASE STUDY: CAMPUS EXPLORER 331



■A
Abort method, 84, 295
absolute positioning, 43–44
ActualHeight property, 42
ActualWidth property, 42
Add method, 306
add-ons, disabling, 272
address, 74
AddressFamily property, 87
Advanced Encryption Standard (AES),

234–238
AesManaged class, 236, 238
algorithms

AES, 234–238
asymmetric key, 234
hash, 233–234
symmetric key, 234

Alignment property, 158
allow-from element, 73
AndCondition, 259
Angle property, 152
animation, 183–205

basics, 183–189
dependency property precedence for, 20
with Expression Blend, 201–205
from/to/by, 184, 190–196
keyframe, 184, 197–201
linear, 183
object, 177–178
storyboards and, 189–201
timelines, 183–189

App.g.cs file, 286
app.rb file, 211, 211
App.xaml file, 31–32, 211
App.xaml.cs file, 32
Application class, 31, 32, 277
application DLLs, 276
Application Storage tab, 275
application templates, 210–211
application-level security, 232–249
applications

See also Silverlight applications
developing cross-platform, 1–3
dynamically loading, 311–313

ApplicationServices namespace, 239–240
AppManifest.xaml file, 213
archived media, 81
ArcSegment class, 145, 146

ArgumentException, 60
Arrange method, 40
.ASMX web services, 74
ASP.NET, 43, 164
ASP.NET 2.0, 238
ASP.NET 3.5, 238–239
aspnet_regsql utility, 238–239
assemblies, 290, 311

for dynamic languages, 209, 212–214
scripting assemblies, 209

AssemblyCleanup attribute, 256
AssemblyInitialize attribute, 256
Assert class, 253–256
Assert method, 264
AssertFailedException, 255
AssertInconclusiveException, 255
asymmetric key algorithms, 234
asynchronous callbacks, 293
asynchronous communication, 79–80
asynchronous method, 80
attached properties, 22–23
attributes

See also specific attributes
property, 23
testing, 256–257

audio, 125–132
authentication, 238–240, 247
authentication service, 240–243
authorization, 238
automated user interface testing, 258–260
Automatic value, 187
AutomationElement class, 258–259
AutomationProperties class, 259–260
AutoResetEvent class, 89–90, 307–308
AutoReverse property, 185–186

■B
background parameter, 278
Background property, 23
background threads, 296
BackgroundWorker class, 300–304
BaseAddress property, 81
basicHttpBinding, 74
Begin method, 193
BeginGetRequestStream method, 84
BeginGetResponse method, 84, 293
BeginRead method, 114
BeginTime property, 185–187, 191

Index

333



BeginWrite method, 114
Bezier curves, 146, 200–201
BezierSegment class, 145–146
Binding markup extension, 26–28, 97–99, 101
binding, 74
binding mode, 99
BindingValidationError event, 43
BitmapImage class, 83, 118–119
bookmarking functionality, 68–69
Border control, 49–50
Browser class, 30
browser interoperability, 1–2, 68–69, 216–227
browser-related class hierarchy, 217–218
BrowserInformation class, 216–217
browsers, supported, 271–272
Brush class, 151, 157–158
brushes, 23, 157–162

gradient, 159–162
image, 159
solid color brush, 158
tile, 158–160
video, 159

Buffer property, 87
BufferList property, 87
build process, 284–290
Button class, 179
Button control, 51, 169–178
button controls, 50–53

Button, 51, 169–178
CheckBox, 52–53, 178
HyperlinkButton, 51, 178
RadioButton, 52–53, 178
RepeatButton, 52, 178
ToggleButton, 52–53, 179
visual appearance of, 169–178

ButtonBase class, 50–51
By property, 190, 195
BytesTransferred property, 87

■C
C#, 207
Calendar control, 65–67, 178
Campus Explorer application (case study),

315–331
application features, 316
data representation, 317–320
design, 316–320
helper methods, 320–321
implementation, 320–331
information panel, 328–331
MainPage.xaml, 321–323
map annotations, 327
map zoom, 323–326
Map.xaml, 323–331
packaging, 320
user interface, 316–317
XAML organization, 321

CancelAsync method, 81
CancelConnectAsync method, 86
canonicalization attacks, 72
Canvas, 12, 43, 44
Canvas.Left property, 183–184, 192
Canvas.Top property, 192
CaptureMouse method, 40
CAS. See Code Access Security (CAS)
case study. See Campus explorer application
Center property, 161
CenterX property, 152
CenterY property, 152
Change method, 310–311
CheckAccess method, 39
CheckBox control, 52–53, 178
Checked event, 52
chiron.exe, 210–213
class libraries, 283–284
Classcleanup attribute, 256
ClassInitialize attribute, 256
ClearValue method, 39
Click event, 51–52
client, saving state on, 110–113
client assemblies, 290
client considerations, 271–275
client proxy, 76–80, 94
clientaccesspolicy.xml file, 72–74, 86
ClientBin folder, 7
Clip property, 40
close command, 149–150
Close method, 84, 86
Closed event, 59
closures, 208
code

disassembling/decompiling, 244
privilege levels of, 247–248
security-related issues, 244–249

Code Access Security (CAS), 229–230
code-behind file, 276
Color property, 158
ColorInterpolationMode property, 160
Colors properties, 191–192
ColumnDefinition class, 46
Common Language Runtime (CLR), 1
communication

See also network communication
asynchronous, 79–80
cross-domain, 71–74
synchronous, 79, 88–94

communication endpoints, 74
CompareExchange method, 306
Completed event, 88–89, 185
Condition class, 259
Conditional attribute, 262
conditional compilation, 261–263
conditional styling, 168
conditions, 259

■INDEX334



confidential information, securing, 232–249
configuration utility, 272–275
Connect method, 89–90
ConnectAsync method, 86, 90
Connected property, 87
ConnectSocket property, 87
content attribute syntax, 24
content files, 282
Content property, 48–49
ContentControl property, 48–49
ContentLength property, 85
ContentPresenter property, 170–171
ContentType property, 84–85
contract, 74
Control class, 30, 45, 48, 70, 169
control templates, 28–30

control types, 178–179
creating, 169–178
developing, 179–181
editing, 180
Expression Blend tool, 172–173, 175, 180
setting style for, 167
using, 169–181

control states, 169, 171–172, 181
Convert method, 103–104
ConvertBack method, 103–104
Converter property, 99
ConverterCulture property, 99
ConverterParameter property, 99
cookies, 97, 110
CoreCLR, security in, 229–232
Count property, 87
CreateDirectory method, 111
CreateFile method, 111
cross-domain communication, enabling,

71–74
cross-domain policy files, 72–74, 92
cross-platform applications, developing, 1–3
cross-platform frameworks, 2–3
crossdomain.xml, 72–73
cryptography, 232–244

hash algorithms, 233–234
message authentication codes (MAC),

233–234
CryptoSteam class, 236
curly braces {}, 24
CurrentStatechanged event, 128
Cursor property, 42
custom initialization parameters, 281–282
CustWorkersArgs class, 302

■D
data

displaying, 97–106
forms of, 97
isolated storage, 110–115
processing, 106–110

saving state on client, 110–113
serialization/deserialization, 107

data binding, 26–28, 97–105
architecture, 97
containing classes, 97–98
enabling data change notification,

101–103
properties, 99
TwoWay, 99–101
type converters, 103–104

data change notification, 101–103
data encryption/decryption, 234–238
data members, serializable, 75
Data property, 149
data representation, 317–320
data sources, 97
data templates, 102
databases, querying with LINQ, 109–110
DataContext property, 42, 98, 101
DataContractAttribute, 75
DataGrid control, 97, 105–106, 178
DataMemberAttribute, 75
DatePicker control, 66, 178
debug mode configuration, 261–263
DebuggerStepThrough attribute, 263
debugging, 251, 260–270

conditional compilation, 261–263
configuring startup for, 264–267
handling unhandled exceptions, 267–270
process, 260–261
with Visual Studio, 263–267

Decrement method, 306
Deep Zoom, 117, 121–125
Deep Zoom Composer, 5
DeleteDirectory method, 111
DeleteFile method, 111
dependency properties, 19–23
dependency property system, 18–23, 38–39

attached properties, 22–23
dependency properties, 19–23

DependencyObject class, 18, 23, 38–39, 141,
157, 299

DependencyProperty.Register static method,
21

deployment packages, 275–277
Description attribute, 257
DesiredSize property, 40
dictionary-based attacks, 235
digital signatures, 233
DirectoriesToCreate method, 231
DirectoryExists method, 111
Disconnect method, 90
discrete interpolation, 198
Dispatcher property, 299–300
DispatcherTimer property, 130, 308–309
DLR. See Dynamic Language Runtime
DnsEndPoint class, 89, 86

■INDEX 335



Dotfuscator, 246–247
DoubleAnimation, 191
DoubleAnimationUsingKeyFrames class, 197
doubles properties, 191, 192
DownloadProgressChanged event, 81
DownloadProgressChangedEventArgs class,

82
DownloadStringAsync method, 81, 83
DownloadStringCompleted method, 81
DownloadStringCompletedEventArgs class,

83
DoWork event, 300–301
DoWorkEventArgs object, 301–302
draw command, 149–150
DRM tab, 274
dueTime parameter, 309–310
Duration property, 185, 187, 191
dynamic language application

creating, 209–211
executing, 211–212
implementation of, 214–216

Dynamic Language Runtime (DLR), 207–208
dynamic languages

developing, 212–216
functions, 208
introduction to, 207–216

dynamically loading applications, 311–313
DynamicApplication class, 209

■E
Ellipse class, 148
EllipseGeometry, 144
elliptical segments, 146
enableFramerateCounter parameter, 279
enableHtmlAccess parameter, 279
enableRedrawRegions parameter, 279
encryption, 234–238, 249
EndGetRequestStream method, 84
endpoints, 86, 89, 94
EndRead method, 114
EndWrite method, 114
ErrorFrame class, 269
EvenOdd value, 147
event handlers, 35
EventArgs class, 35, 80
events

input, 32
routed, 33
in Silverlight, 32–35

exceptions, 253–254, 267–270
Exchange method, 306
Exit event, 32
Exit event handler, 277
ExpectedException attribute, 257
Expression Blend, 5–9, 172–175, 180

for animation, 201–205
States pane, 173

Extensible Application Markup Language
(XAML), 1, 3, 36

as dialect of XML, 17
class implementation, 30–31
dependency property system, 18–23
introduction to, 13–30
markup extensions, 24–30
namespaces, 18
type converters, 23–24

■F
Fiddler, 73
figure descriptions, 149
FileExists method, 111
fill rule, 149
FillBehavior property, 185, 187
FillRule property, 147
FindName method, 42
Flash, 3
Flex, 3
Flush method, 114
font styles, 54
FontFamily property, 164
FontWeight property, 164
Forever value, 187
FrameworkElement class, 41–43, 117, 141
From property, 190
From/By property, 190
From/To property, 190
from/to/by animations, 184, 190–196
From/To/By property, 190
functional testing, 251

■G
geometries, 142–147

ArcSegment class, 146
BezierSegment class, 146
EllipseGeometry class, 144
grouping, 147
LineGeometry class, 143
LineSegment class, 146
path, 144–145
PolyBezierSegment class, 147
PolyLineSegment class, 147
PolyQuadraticBezierSegment class, 147
QuadraticBezierSegment class, 146
RectangleGeometry class, 143
simple, 142–144

Geometry class, 142, 141, 151
GeometryGroup class, 147
GET method, 94, 83
GetAllImagesCompleted function, 226
GetAnimatedBaseValue method, 39
GetDirectoryNames method, 112
GetFileNames method, 112
GetResponseStream method, 83–84
GetUserStoreForApplication method, 112

■INDEX336



GetValue method, 21, 39
GotFocus event, 41
GoToState method, 181
gradient brushes, 159–162

linear, 160–161
radial, 161–162

gradient stops, 159–160
GradientBrush class, 159–160
GradientOrigin property, 161
GradientStops property, 160
grant-to element, 73
graphics, 141–151
Grid, 43, 45–47, 174–175
GridSplitter control, 64–65, 178

■H
Handled property, 35
hash algorithms, 233–234
hash-based message authentication code

(HMAC), 233–234
HashAlgorithm, 233
HaveResponse property, 84
Headers property, 84
Height property, 42
Hello World application, 10
helper methods, 320–321
HitTest method, 40
HMAC class, 233–234
HorizontalAlignment property, 42
host browser, 271
host operating system, 271
HtmlDocument class, 216, 220–221, 223
HtmlElement class, 220–221
HtmlElementCollection class, 220
HtmlEventArgs class, 223
HtmlObject class, 218–219
HtmlPage class, 216–218
HtmlPage.Document class, 110
HtmlWindow class, 219, 224
HTTP protocol

direct communication over, 81–83
for referencing media files, 126

http-request-headers attribute, 73
HTTPS protocol, 126, 232–233, 244
HttpWebRequest class, 83–85, 94, 293
HttpWebResponse class, 84–85
HyperlinkButton control, 51, 178

■I
identity matrix, 155–156
iframe tag, 280
Ignore attribute, 257
IgnoreDataMemberAttribute, 75
Image class, properties of, 117–118
Image control, 117–121
image viewers, 120–121
ImageBrush class, 158–159

ImageFailed event, 118
images, 117–125

downloading and displaying, 81–83
with list boxes, 120–121
multiscale, 121–125
packaging, 138–140
relative paths, 118
sizing, 119–120

include-subpaths attribute, 73
Increment method, 306
Indeterminate event, 52
index.html file, 210
initialization parameters, 281–282
initParams parameter, 279, 281–282
inline elements, 54
INotifyPropertyChanged interface, 101–103
input events, 32
installer URLs, 279
Interlocked class, 305–308
Intermediate Language (IL), 207
interpolation, 197–201
InvalidateArrange method, 40
IPEndPoint class, 86
IronPython, 1, 207, 214
IronRuby, 207, 208, 212, 214
IsBusy property, 81
IsHitTestVisible property, 40
isLargeArc property, 146
isolated storage, 68, 97, 110–115, 275
IsolatedStorageException, 111
IsolatedStorageFile class, 111–113
IsolatedStorageFileStream class, 113–114
IsolatedStoreFile object, 113
item templates, 102
ItemsControl class, 57–58
ItemsSource property, 105

■J
Java platform, 2
JavaFX, 2
Join method, 295
JPEG format, 117
JScript

calling managed code from, 224–227
support for, 207

■K
KeyDown event, 41
KeyedHashAlgorithm, 233
keyframe animations, 184, 197–201
Keyspline editor, 204
KeyUp event, 41

■L
Language property, 42
LastOperation property, 88–89

■INDEX 337



layout, web site, 163–164
layout containers, 43
layout controls, 37, 43–44

Canvas, 44
Grid, 45–47
StackPanel, 44

LayoutUpdated event, 43
libraries, 283–284
library assemblies, 290
library DLLs, 276
Line class, 148
linear animation, 183
linear gradient brush, 160–161
linear interpolation, 198
linear transforms, 154–156
LineGeometry class, 143
LineSegment class, 145, 146
LINQ (Language Integrated Query), 97, 107–110
List<UserControl>, 70
ListBox control, 57–58, 178

image browser using, 120–121
for navigation, 70

ListBoxItem class, 57–58
Live Search web service, 106–107
Loaded event, 43
Loaded event handler, 101
loadImages function, 226
locks, 306–307
logical tree, 16–17
login screen

constructing, in C#, 15–16
constructing, in XAML, 13–15

LoginCompleted event, 242
LoginScreenXAML.g.cs file, 30–31
Logout method, 243
LostFocus event, 41

■M
MAC. See message authentication codes
Mac OS X, 272
managed code, calling from JScript, 224–227
Managed JScript, 207, 212, 214
manifest.xml file, 139, 213–214
map annotations, 327
map zoom, 323–326
MappingMode property, 160
Margin property, 42
markup extensions, 24–30
master page, 164
matrix, identity, 155–156
matrix transforms, 151, 154–156
MatrixTransform class, 154–156
maxFrameRate parameter, 279
Measure method, 40
media, 125–140

packaging, 138–140
referencing files, 126

Silverlight Streaming, 132–138
timeline markers, 131–132

media players, 129–130
MediaElement control, 125

events, 128
methods, 128
properties of, 126–127
states and state transitions, 128–129

membership database, 238–240
message authentication codes (MAC),

233–234
Method property, 84
methods, in dynamic languages, 208
Microsoft Expression Media Encoder, 131
Microsoft Live account, 132–133
MIME type, specifying, 280
MMS protocol, for referencing media files,

126
monitors, 306
MouseEnter event, 41
MouseLeave event, 41
MouseLeftButtonDown event, 41
MouseLeftButtonUp event, 41
MouseMove event, 41
move command, 149
MSBuild, 284–290
mscorlib, 30
multiple platforms. See cross-platform

applications
multiple transformations, 156–157
multiscale images, 121–125
MultiScaleImage control, 122–123
multithreaded environment, 293

■N
Name property, 31, 42
namespaces, 18
NAnt, 284–285
navigation, implementing, 68–70
.NET framework, 1, 3, 229
.NET 3.5 framework, 97
network communication

asynchronous, 79–80
client service proxy for, 76–80
considerations for, 94
enabling cross-domain, 71–74
over HTTP, 81–83
raw, 86–94
synchronous, 79
web services for, 74–94

network requests, 71–72
nLoad parameter, 279
NoDelay property, 87
Nonzero value, 147
NotCondition property, 259
NotifyOnValidationError property, 99

■INDEX338



■O
obfuscation, 246–247
object animation, 177–178
Object AnimationUsingKeyFrames class,

197–199
object hierarchies, constructing in XAML,

15–16
OBJECT tag, 278–280
ObjectDisposedException, 111
objects, positioning on screen, 43–47
Objects and Timeline pane, of Expression

Blend, 201–205
Offset property, 88
OnCreateAutomationPeer method, 40
onError parameter, 279
OneTime data binding, 98
OneWay data binding, 98
onResize parameter, 279
onSourceDownloadComplete parameter, 279
onSourceDownloadProgressChanged

parameter, 279
Opacity property, 40, 69, 158
OpacityMask property, 40
Opened event, 59
OpenFile method, 112
OpenReadAsync method, 81
OpenReadCompleted event handler, 81, 139
operating systems, supported, 271
OrCondition, 259
OS X, 272
OSSupportIPv6 property, 87
Owner attribute, 257

■P
Page.g.cs file, 286
Panel class, 43
parameters, 278–279

See also specific parameters
custom initialization, 281–282

Password-Based Key Derivation Function #1
(PBKDF1), 235–236

Path class, 147–151
path geometries, 144–145
Path property, 99
PathFigure objects, 144–145
PathGeometry class, 144–145
PathSegment objects, 144–145
PBKDF2, 235–236
platform, definition of, 1
PNG format, 117
Points properties, 191–192
Points property, 147, 149
policy files, cross-domain, 72–74
PolyBezierSegment class, 145, 147
Polygon class, 149
Polyline class, 149

PolyLineSegment class, 145, 147
PolyQuadraticBezierSegment class, 145, 147
Popup control, 58–59
port attribute, 74
POST method, 83, 94
Priority attribute, 257
ProgressChanged event, 300–301
ProgressChangedEventArgs class, 303
properties

See also specific properties
attached, 22–23
base value of, 20
default value of, 20
dependency, 19–23
using styles for, 163–168

property attribute syntax, 23
property change notifications, 21
property element syntax, 23, 167
property value precedence, 167–168
PropertyCondition, 259
protocol attribute, 74
proxy service, 86
Public-Key Cryptography Standard (PKCS) #

5, 235–236
Python, 1, 207

■Q
Qt, 2
QuadraticBezierSegment class, 145, 146
QueueUserWorkItem method, 298

■R
race conditions, 294, 304
radial gradient brush, 161–162
RadioButton control, 52–53, 178
RadiusX property, 143, 144, 161
RadiusY property, 143, 144, 161
RangeBase class, 60–62
raw network communication, 86–94
ReadByte method, 114
ReadLocalValue method, 39
ReadSynchronous method, 114
ReceiveAsString method, 307–308
ReceiveAsync method, 91–92, 86
ReceiveBufferSize property, 87
Rectangle class, 149
RectangleGeometry class, 143
Reflector, 244
relative paths, for images, 118
RelativeTransform property, 151, 158
release mode configuration, 261–263
ReleaseMouseCapture method, 40
remote server, connecting to, 93–94
RemoteEndpoint property, 87, 88
Remove method, 112
RenderSize property, 40
RenderTransform property, 40, 151

■INDEX 339



RenderTransformOriginPoint property, 40
repeat count, 205
RepeatBehavior property, 185, 187–188
RepeatButton control, 52, 178
RequestUri property, 84
resource dictionaries, 24–26, 163
resource security, 248–249
resources, 282–284

static, 24–26
supporting files, 282–283

Resources property, 42
ResponseUri property, 85
role-based decisions, 247
RoleService, 239, 243–244
RootVisual property, 32, 69
RotateTransform class, 152
rotating, 151
rotations, 152
routed events, 33
RowDefinition class, 46
RTSP protocol, 126
RTSPT protocol, 126
Ruby, 207
RunWorkerCompleted event, 300–301, 303

■S
salts, 235
ScaleTransform, 192
ScaleX property, 153–154
ScaleY property, 153–154
scaling, 151, 153–154
scope values, 259
ScriptableMemberAttribute class, 221, 225
ScriptableTypeAttribute class, 221, 225
scripting assemblies, 209
ScriptObject class, 219
Scroll event, 61
ScrollBar class, 61–62
ScrollBar control, 178–180
ScrollViewer control, 62–64, 178
SDK controls, incorporating, 64
SDL. See Silverlight Dynamic Language
SeaDragon. See Deep Zoom
Secure Sockets Layer (SSL), 232, 239
security, 229–249

application design principles, 244–249
application-level, 232–249
in CoreCLR, 229–232
cryptography, 232–244
HTTPS, 232–233
of resources, 248–249
user access control, 238–240

security-critical code, 230–231
security-transparent code, 230–231
SecurityCritical attribute, 231
SecuritySafeCritical attribute, 231
Seek method, 114

segment classes, 144–145
Select Code Type dialog, 266
SelectionChanged event, 57, 67
Send method, 90–91
SendAsync method, 86
SendBufferSize property, 87
serialization, of XML, 108–109
Serialization class, 108–109
server assemblies, 290
server configuration, 271
service references, adding, 76–80
ServiceReferences.ClientConfig file, 77–78
SetBinding method, 42
SetBuffer method, 87
setException method, 270
SetLength method, 114
SetSource method, 81, 118
SetTarget method, 196
SetTooltip method, 60
SetValue method, 21, 39
SHA-1 algorithm, 234
SHA-256 algorithm, 234
Shape class, 141, 147–148
Shape-based classes, 147–151

Ellipse class, 148
Line class, 148
Path class, 149–151
Polygon class, 149
Polyline class, 149
Rectangle class, 149

Shapes.Path class, 142
shared data, threading and, 304–308
shear transformation, 153–154
ShowGridLines attribute, 46
Shutdown method, 86, 90
Silverlight 

configuration utility, 272–275
disabling, 272
history of, 3–4
versions, 280–281

Silverlight 1.0, 3–4
Silverlight 1.1, 4
Silverlight 2.0, 4

as cross-platform framework, 3
introduction to, 11
Java platform and, 2

Silverlight applications
assemblies, 30–31
bookmarking functionality in, 68–69
build process, 284–290
case study: Campus Explorer, 315–331
class implementation, 30–31
client considerations, 271–275
creating first, 5–10
deployment, 275–277
events in, 32–35
hosting on web page, 278–284

■INDEX340



initialization parameters, 281–282
life cycle, 277
navigation functionality in, 68–70
resources, 32, 282–284
sample, 13–17

Silverlight controls. See user interface
controls

Silverlight Dynamic Language (SDL) SDK, 5,
209

Silverlight Streaming, 117, 132–138
site of origin, 71
SizeChanged event, 43
skewing, 151, 153–154
Sleep method, 295
Slider control, 62, 179
SOAP 1.1, 75
Socket class, 86–94
socket communication, 86–94
SocketAsyncEventArgs class, 86–91
SocketError property, 88
solid color brush, 158
SolidColorBrush class, 157
Source parameter, 279
Source property, 99, 117, 118
SourceName property, 159
SpeedRatio property, 185, 188–189
splashScreenSource parameter, 279
spline interpolation, 198–201
SpreadMethod property, 160
SSL (Secure Sockets Layer), 232, 239
StackPanel, 43, 44
standard controls, 37
Start method, 295
Startup event handler, 277
Startup method, 32
StartupEventArgs parameter, 281
static resources, 24–26
statically typed languages, 207–208
StaticResource markup, 29, 166
Storyboard class, 175–176, 187, 189–190
storyboards, 189–201

from/to/by animation, 190–196
keyframe animations, 197–201

Stream object, 118
streaming video, 132–138
Stretch property, 119–120, 158
StrokeThickness, 145, 149
Style element, 26
style inheritance, 168
Style property, 42
style setters, precedence of, 167
styles

components of, 166
drawbacks of, 168
modifying, 168
target type, 166
using, 163–168

supporting files, 282–284
SweepDirection property, 146
symmetric key algorithms, 234
SymmetricAlgorithm, 236
synchronization mechanisms, 306–308
synchronous communication, 79, 88–94
SynchronousSocket class, 92
system, 30
System.Core, 30
System.Diagnostics namespace, 263
System.IO.FileAccess enumeration, 112
System.IO.FileMode enumeration, 112
System.IO.FileShare enumeration, 113
System.Net.WebClient class, 81–83, 94
System.Sml.Serialization class, 108–109
System.Threading.Interlocked class, 305–308
System.Windows.Application class, 31, 32,

277
System.Windows.Browser class, 30
System.Windows.Controls.Control class, 30,

45, 48, 70, 169
System.Windows.Controls.Extended

assembly, 30, 64
System.Windows.Resources.

StreamResourceInfo object, 81
System.Windows, 30
System.Xml, 30
System.Xml.XmlReader class, 107
Systems.Windows.Interop.Settings class, 280

■T
TabControl control, 57, 67–68, 179
TabItems, 67
Tag property, 42, 195–196
TargetProperty, 191
TargetType, 166
TargetType property, 26
template binding, 28–30
Template property, 169
TemplateBinding markup extension, 28–30,

170
templates, 163

application, 210–211
control, 28–30, 169–181
data, 102

TemplateVisualState attribute, 179
TestClass attribute, 253
TestCleanup attribute, 256
TestContext class, 257–258
testing, 251–260

attributes, 256–257
automated user interface, 258–260
functional, 251
unit, 251–258
usability, 251

TestInitialize attribute, 256
TestMethod, 253

■INDEX 341



TextBlock control, 9–10, 53–55
TextBox control, 55–57, 179
Thread class, 295–296
thread pool, 297–298
thread states, 296
threading, 293–308

BackgroundWorker class, 300–304
creating and managing threads, 297–298
Dispatcher property, 299–300
Interlocked class, 305–308
race conditions, 294, 304
Thread class, 295–296
user interface and, 39
user interface thread, 293
worker thread, 293
working with shared data, 304–308

ThreadPool class, 298
ThreadStart class, 297
Thumb control, 61
Tick event handler, 131
tile brushes, 158–160
TileBrush class, 158–160
TileMode property, 158–159
Timeline class, 184–189

AutoReverse property, 185–186
BeginTime property, 185, 186–187
Completed event, 185
Duration property, 185, 187
FillBehavior property, 185, 187
RepeatBehavior property, 185, 187–188
SpeedRatio property, 185, 188–189

timeline editor, 201–205
timeline markers, 131–132
timelines, 183–189
Timeout attribute, 257
Timer class, 308–311
timers, 293, 308–311

DispatcherTimer, 308–309
Timer class, 308–311

TimeSpan, 186
To property, 190
ToggleButton control, 52–53, 179
ToolTipService class, 59–60
Transform property, 158, 151
transformations, 141
TransformGroup class, 151, 156–157
transforms, 151–157

combining multiple, 156–157
linear, 154–156
matrix, 151, 154–156
rotation, 152
scaling, 153–154
skew, 153–154
translation, 151, 155

TransformToVisual method, 40
TranslateTransform class, 151, 192
translation transform, 151, 155

TryIncreaseQuotaTo method, 112
Ttl property, 87
2D classes, hierarchy of, 142
TwoWay data binding, 98–101
type converters, 23–24, 103–104

■U
UI Automation Library, 258
UIElement class, 39–41, 141, 151
Unchecked event, 52
unhandled exceptions, handling, 267–270
UnhandledException event, 32
unit testing, 251–258
UpdateLayout method, 40
UploadStringAsync method, 81, 83
usability testing, 251
user access control, 238–240
User Account Control (UAC), 274
user interface controls

base functionality of, 37–43
Border control, 49–50
button controls, 50–53
Calendar control, 65–67
ContentControl, 48–49
customizing, 48–63
DatePicker control, 66
DependencyObject class, 38–39
Expression Blend for laying out, 7–9
FrameworkElement class, 41–43
GridSplitter control, 64–65
incorporating SDK control, 64
ItemsControl class, 57–58
layout controls, 37, 43–47
ListBox, 57–58
Popup control, 58–59
for positioning objects on screen, 

43–47
RangeBase class, 60–62
ScrollBar class, 61–62
ScrollViewer control, 62–64
Slider control, 62
standard controls, 37
TabControl, 57, 67–68
TextBlock control, 53–55
TextBox control, 55–57
ToolTipService class, 59–60
UIElement class, 39–41

user interface thread, 293
user interfaces (UIs)

Campus Explorer application (case study),
316–317

class hierarchy, 37–43
connecting data between data source and,

26–28
elements, 164–166
navigation functionality in, 68–70
testing, automated, 258–260

■INDEX342



threading and, 39
in XAML, 16–17

user roles, 238–239, 243–244
UserAgent property, 217
UserControl element, 64, 69–70
UserToken property, 88, 89

■V
ValidatedOnException, 99
ValueChanged event, 60
var keyword, 110
VB .NET, 207
versioning, 280–281
VerticalAlignment property, 43
video, 125–138
video player, 129–130
VideoBrush class, 158, 159
virtual machines, 2
visibility keyword, 75
Visibility property, 40, 69
Visual State Manager (VSM), 171–172
Visual Studio, debugging with, 263–267
Visual Studio 2008, 5
VisualStateManager class, 174, 179, 181
VisualTransition class, 175

■W
WCF. See Windows Communication

Foundation
web application projects, 7
web pages

hosting Silverlight on, 278–284
user interface elements, 164–166

web service binding, 74
web services

client service proxy for, 76–80
creating simple, 74–75
for network communication, 74–94

WebClient class, 81–83, 94
Width property, 43, 20
windowless parameter, 279
Windows, supported browsers, 271
Windows Communication Foundation

(WCF), 74–75
Windows Forms, control layout in, 43

Windows Media Encoder, 133
Windows Presentation Foundation (WPF),

1, 3
Windows Presentation

Foundation/Everywhere (WPF/E), 3
worker thread, 293
Write method, 114
WriteByte method, 114
WriteLine method, 264

■X
x scope, 18
XAML (Extensible Application Markup

Language), 1, 3, 36
as dialect of XML, 17
class implementation, 30–31
dependency property system, 18–23
for dynamically loading applications,

311–313
introduction to, 13–30
markup extensions, 24–30
namespaces, 18
type converters, 23–24

XAML files, 5–9, 276
XAML pages, navigating between, 68–70
XamlReader, 311
XAML_Viewer class, 69–70
.xap file extension, 7, 275
XAP files, 7, 241, 249
XapCacheFile.xml file, 286
x:Key property, 26, 166
x:Name property, 168
XML

classes for working with, 97
parsing, 107–108
serializing, 108–109
XAML as dialect of, 17

XmlReader class, 107
XmlReader.Create method, 107
XmlSerializer, 108–109
XmlWriter class, 108

■Z
ZIP files, downloading images stored in,

138–140

■INDEX 343


	front-matter
	fulltext
	fulltext_001
	fulltext_002
	fulltext_003
	fulltext_004
	fulltext_005
	fulltext_006
	fulltext_007
	fulltext_008
	fulltext_009
	fulltext_010
	fulltext_011
	fulltext_012
	fulltext_013
	fulltext_014
	back-matter

